prompt
stringlengths
162
4.26M
response
stringlengths
109
5.16M
Generate the Verilog code corresponding to the following Chisel files. File Tile.scala: // See README.md for license details. package gemmini import chisel3._ import chisel3.util._ import Util._ /** * A Tile is a purely combinational 2D array of passThrough PEs. * a, b, s, and in_propag are broadcast across the entire array and are passed through to the Tile's outputs * @param width The data width of each PE in bits * @param rows Number of PEs on each row * @param columns Number of PEs on each column */ class Tile[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, tree_reduction: Boolean, max_simultaneous_matmuls: Int, val rows: Int, val columns: Int)(implicit ev: Arithmetic[T]) extends Module { val io = IO(new Bundle { val in_a = Input(Vec(rows, inputType)) val in_b = Input(Vec(columns, outputType)) // This is the output of the tile next to it val in_d = Input(Vec(columns, outputType)) val in_control = Input(Vec(columns, new PEControl(accType))) val in_id = Input(Vec(columns, UInt(log2Up(max_simultaneous_matmuls).W))) val in_last = Input(Vec(columns, Bool())) val out_a = Output(Vec(rows, inputType)) val out_c = Output(Vec(columns, outputType)) val out_b = Output(Vec(columns, outputType)) val out_control = Output(Vec(columns, new PEControl(accType))) val out_id = Output(Vec(columns, UInt(log2Up(max_simultaneous_matmuls).W))) val out_last = Output(Vec(columns, Bool())) val in_valid = Input(Vec(columns, Bool())) val out_valid = Output(Vec(columns, Bool())) val bad_dataflow = Output(Bool()) }) import ev._ val tile = Seq.fill(rows, columns)(Module(new PE(inputType, outputType, accType, df, max_simultaneous_matmuls))) val tileT = tile.transpose // TODO: abstract hori/vert broadcast, all these connections look the same // Broadcast 'a' horizontally across the Tile for (r <- 0 until rows) { tile(r).foldLeft(io.in_a(r)) { case (in_a, pe) => pe.io.in_a := in_a pe.io.out_a } } // Broadcast 'b' vertically across the Tile for (c <- 0 until columns) { tileT(c).foldLeft(io.in_b(c)) { case (in_b, pe) => pe.io.in_b := (if (tree_reduction) in_b.zero else in_b) pe.io.out_b } } // Broadcast 'd' vertically across the Tile for (c <- 0 until columns) { tileT(c).foldLeft(io.in_d(c)) { case (in_d, pe) => pe.io.in_d := in_d pe.io.out_c } } // Broadcast 'control' vertically across the Tile for (c <- 0 until columns) { tileT(c).foldLeft(io.in_control(c)) { case (in_ctrl, pe) => pe.io.in_control := in_ctrl pe.io.out_control } } // Broadcast 'garbage' vertically across the Tile for (c <- 0 until columns) { tileT(c).foldLeft(io.in_valid(c)) { case (v, pe) => pe.io.in_valid := v pe.io.out_valid } } // Broadcast 'id' vertically across the Tile for (c <- 0 until columns) { tileT(c).foldLeft(io.in_id(c)) { case (id, pe) => pe.io.in_id := id pe.io.out_id } } // Broadcast 'last' vertically across the Tile for (c <- 0 until columns) { tileT(c).foldLeft(io.in_last(c)) { case (last, pe) => pe.io.in_last := last pe.io.out_last } } // Drive the Tile's bottom IO for (c <- 0 until columns) { io.out_c(c) := tile(rows-1)(c).io.out_c io.out_control(c) := tile(rows-1)(c).io.out_control io.out_id(c) := tile(rows-1)(c).io.out_id io.out_last(c) := tile(rows-1)(c).io.out_last io.out_valid(c) := tile(rows-1)(c).io.out_valid io.out_b(c) := { if (tree_reduction) { val prods = tileT(c).map(_.io.out_b) accumulateTree(prods :+ io.in_b(c)) } else { tile(rows - 1)(c).io.out_b } } } io.bad_dataflow := tile.map(_.map(_.io.bad_dataflow).reduce(_||_)).reduce(_||_) // Drive the Tile's right IO for (r <- 0 until rows) { io.out_a(r) := tile(r)(columns-1).io.out_a } }
module Tile_180( // @[Tile.scala:16:7] input clock, // @[Tile.scala:16:7] input reset, // @[Tile.scala:16:7] input [7:0] io_in_a_0, // @[Tile.scala:17:14] input [19:0] io_in_b_0, // @[Tile.scala:17:14] input [19:0] io_in_d_0, // @[Tile.scala:17:14] input io_in_control_0_dataflow, // @[Tile.scala:17:14] input io_in_control_0_propagate, // @[Tile.scala:17:14] input [4:0] io_in_control_0_shift, // @[Tile.scala:17:14] input [2:0] io_in_id_0, // @[Tile.scala:17:14] input io_in_last_0, // @[Tile.scala:17:14] output [7:0] io_out_a_0, // @[Tile.scala:17:14] output [19:0] io_out_c_0, // @[Tile.scala:17:14] output [19:0] io_out_b_0, // @[Tile.scala:17:14] output io_out_control_0_dataflow, // @[Tile.scala:17:14] output io_out_control_0_propagate, // @[Tile.scala:17:14] output [4:0] io_out_control_0_shift, // @[Tile.scala:17:14] output [2:0] io_out_id_0, // @[Tile.scala:17:14] output io_out_last_0, // @[Tile.scala:17:14] input io_in_valid_0, // @[Tile.scala:17:14] output io_out_valid_0 // @[Tile.scala:17:14] ); wire [7:0] io_in_a_0_0 = io_in_a_0; // @[Tile.scala:16:7] wire [19:0] io_in_b_0_0 = io_in_b_0; // @[Tile.scala:16:7] wire [19:0] io_in_d_0_0 = io_in_d_0; // @[Tile.scala:16:7] wire io_in_control_0_dataflow_0 = io_in_control_0_dataflow; // @[Tile.scala:16:7] wire io_in_control_0_propagate_0 = io_in_control_0_propagate; // @[Tile.scala:16:7] wire [4:0] io_in_control_0_shift_0 = io_in_control_0_shift; // @[Tile.scala:16:7] wire [2:0] io_in_id_0_0 = io_in_id_0; // @[Tile.scala:16:7] wire io_in_last_0_0 = io_in_last_0; // @[Tile.scala:16:7] wire io_in_valid_0_0 = io_in_valid_0; // @[Tile.scala:16:7] wire io_bad_dataflow = 1'h0; // @[Tile.scala:16:7, :17:14, :42:44] wire [7:0] io_out_a_0_0; // @[Tile.scala:16:7] wire [19:0] io_out_c_0_0; // @[Tile.scala:16:7] wire [19:0] io_out_b_0_0; // @[Tile.scala:16:7] wire io_out_control_0_dataflow_0; // @[Tile.scala:16:7] wire io_out_control_0_propagate_0; // @[Tile.scala:16:7] wire [4:0] io_out_control_0_shift_0; // @[Tile.scala:16:7] wire [2:0] io_out_id_0_0; // @[Tile.scala:16:7] wire io_out_last_0_0; // @[Tile.scala:16:7] wire io_out_valid_0_0; // @[Tile.scala:16:7] PE_436 tile_0_0 ( // @[Tile.scala:42:44] .clock (clock), .reset (reset), .io_in_a (io_in_a_0_0), // @[Tile.scala:16:7] .io_in_b (io_in_b_0_0), // @[Tile.scala:16:7] .io_in_d (io_in_d_0_0), // @[Tile.scala:16:7] .io_out_a (io_out_a_0_0), .io_out_b (io_out_b_0_0), .io_out_c (io_out_c_0_0), .io_in_control_dataflow (io_in_control_0_dataflow_0), // @[Tile.scala:16:7] .io_in_control_propagate (io_in_control_0_propagate_0), // @[Tile.scala:16:7] .io_in_control_shift (io_in_control_0_shift_0), // @[Tile.scala:16:7] .io_out_control_dataflow (io_out_control_0_dataflow_0), .io_out_control_propagate (io_out_control_0_propagate_0), .io_out_control_shift (io_out_control_0_shift_0), .io_in_id (io_in_id_0_0), // @[Tile.scala:16:7] .io_out_id (io_out_id_0_0), .io_in_last (io_in_last_0_0), // @[Tile.scala:16:7] .io_out_last (io_out_last_0_0), .io_in_valid (io_in_valid_0_0), // @[Tile.scala:16:7] .io_out_valid (io_out_valid_0_0) ); // @[Tile.scala:42:44] assign io_out_a_0 = io_out_a_0_0; // @[Tile.scala:16:7] assign io_out_c_0 = io_out_c_0_0; // @[Tile.scala:16:7] assign io_out_b_0 = io_out_b_0_0; // @[Tile.scala:16:7] assign io_out_control_0_dataflow = io_out_control_0_dataflow_0; // @[Tile.scala:16:7] assign io_out_control_0_propagate = io_out_control_0_propagate_0; // @[Tile.scala:16:7] assign io_out_control_0_shift = io_out_control_0_shift_0; // @[Tile.scala:16:7] assign io_out_id_0 = io_out_id_0_0; // @[Tile.scala:16:7] assign io_out_last_0 = io_out_last_0_0; // @[Tile.scala:16:7] assign io_out_valid_0 = io_out_valid_0_0; // @[Tile.scala:16:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File PlusArg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.experimental._ import chisel3.util.HasBlackBoxResource @deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05") case class PlusArgInfo(default: BigInt, docstring: String) /** Case class for PlusArg information * * @tparam A scala type of the PlusArg value * @param default optional default value * @param docstring text to include in the help * @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT) */ private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String) /** Typeclass for converting a type to a doctype string * @tparam A some type */ trait Doctypeable[A] { /** Return the doctype string for some option */ def toDoctype(a: Option[A]): String } /** Object containing implementations of the Doctypeable typeclass */ object Doctypes { /** Converts an Int => "INT" */ implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" } /** Converts a BigInt => "INT" */ implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" } /** Converts a String => "STRING" */ implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" } } class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map( "FORMAT" -> StringParam(format), "DEFAULT" -> IntParam(default), "WIDTH" -> IntParam(width) )) with HasBlackBoxResource { val io = IO(new Bundle { val out = Output(UInt(width.W)) }) addResource("/vsrc/plusarg_reader.v") } /* This wrapper class has no outputs, making it clear it is a simulation-only construct */ class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module { val io = IO(new Bundle { val count = Input(UInt(width.W)) }) val max = Module(new plusarg_reader(format, default, docstring, width)).io.out when (max > 0.U) { assert (io.count < max, s"Timeout exceeded: $docstring") } } import Doctypes._ object PlusArg { /** PlusArg("foo") will return 42.U if the simulation is run with +foo=42 * Do not use this as an initial register value. The value is set in an * initial block and thus accessing it from another initial is racey. * Add a docstring to document the arg, which can be dumped in an elaboration * pass. */ def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out } /** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert * to kill the simulation when count exceeds the specified integer argument. * Default 0 will never assert. */ def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count } } object PlusArgArtefacts { private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty /* Add a new PlusArg */ @deprecated( "Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05" ) def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring) /** Add a new PlusArg * * @tparam A scala type of the PlusArg value * @param name name for the PlusArg * @param default optional default value * @param docstring text to include in the help */ def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit = artefacts = artefacts ++ Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default))) /* From plus args, generate help text */ private def serializeHelp_cHeader(tab: String = ""): String = artefacts .map{ case(arg, info) => s"""|$tab+$arg=${info.doctype}\\n\\ |$tab${" "*20}${info.docstring}\\n\\ |""".stripMargin ++ info.default.map{ case default => s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("") }.toSeq.mkString("\\n\\\n") ++ "\"" /* From plus args, generate a char array of their names */ private def serializeArray_cHeader(tab: String = ""): String = { val prettyTab = tab + " " * 44 // Length of 'static const ...' s"${tab}static const char * verilog_plusargs [] = {\\\n" ++ artefacts .map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" } .mkString("")++ s"${prettyTab}0};" } /* Generate C code to be included in emulator.cc that helps with * argument parsing based on available Verilog PlusArgs */ def serialize_cHeader(): String = s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\ |${serializeHelp_cHeader(" "*7)} |${serializeArray_cHeader()} |""".stripMargin } File Nodes.scala: package constellation.channel import chisel3._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.{Parameters, Field} import freechips.rocketchip.diplomacy._ case class EmptyParams() case class ChannelEdgeParams(cp: ChannelParams, p: Parameters) object ChannelImp extends SimpleNodeImp[EmptyParams, ChannelParams, ChannelEdgeParams, Channel] { def edge(pd: EmptyParams, pu: ChannelParams, p: Parameters, sourceInfo: SourceInfo) = { ChannelEdgeParams(pu, p) } def bundle(e: ChannelEdgeParams) = new Channel(e.cp)(e.p) def render(e: ChannelEdgeParams) = if (e.cp.possibleFlows.size == 0) { RenderedEdge(colour = "ffffff", label = "X") } else { RenderedEdge(colour = "#0000ff", label = e.cp.payloadBits.toString) } override def monitor(bundle: Channel, edge: ChannelEdgeParams): Unit = { val monitor = Module(new NoCMonitor(edge.cp)(edge.p)) monitor.io.in := bundle } // TODO: Add nodepath stuff? override def mixO, override def mixI } case class ChannelSourceNode(val destId: Int)(implicit valName: ValName) extends SourceNode(ChannelImp)(Seq(EmptyParams())) case class ChannelDestNode(val destParams: ChannelParams)(implicit valName: ValName) extends SinkNode(ChannelImp)(Seq(destParams)) case class ChannelAdapterNode( slaveFn: ChannelParams => ChannelParams = { d => d })( implicit valName: ValName) extends AdapterNode(ChannelImp)((e: EmptyParams) => e, slaveFn) case class ChannelIdentityNode()(implicit valName: ValName) extends IdentityNode(ChannelImp)() case class ChannelEphemeralNode()(implicit valName: ValName) extends EphemeralNode(ChannelImp)() case class IngressChannelEdgeParams(cp: IngressChannelParams, p: Parameters) case class EgressChannelEdgeParams(cp: EgressChannelParams, p: Parameters) object IngressChannelImp extends SimpleNodeImp[EmptyParams, IngressChannelParams, IngressChannelEdgeParams, IngressChannel] { def edge(pd: EmptyParams, pu: IngressChannelParams, p: Parameters, sourceInfo: SourceInfo) = { IngressChannelEdgeParams(pu, p) } def bundle(e: IngressChannelEdgeParams) = new IngressChannel(e.cp)(e.p) def render(e: IngressChannelEdgeParams) = if (e.cp.possibleFlows.size == 0) { RenderedEdge(colour = "ffffff", label = "X") } else { RenderedEdge(colour = "#00ff00", label = e.cp.payloadBits.toString) } } object EgressChannelImp extends SimpleNodeImp[EmptyParams, EgressChannelParams, EgressChannelEdgeParams, EgressChannel] { def edge(pd: EmptyParams, pu: EgressChannelParams, p: Parameters, sourceInfo: SourceInfo) = { EgressChannelEdgeParams(pu, p) } def bundle(e: EgressChannelEdgeParams) = new EgressChannel(e.cp)(e.p) def render(e: EgressChannelEdgeParams) = if (e.cp.possibleFlows.size == 0) { RenderedEdge(colour = "ffffff", label = "X") } else { RenderedEdge(colour = "#ff0000", label = e.cp.payloadBits.toString) } } case class IngressChannelSourceNode(val destId: Int)(implicit valName: ValName) extends SourceNode(IngressChannelImp)(Seq(EmptyParams())) case class IngressChannelDestNode(val destParams: IngressChannelParams)(implicit valName: ValName) extends SinkNode(IngressChannelImp)(Seq(destParams)) case class EgressChannelSourceNode(val egressId: Int)(implicit valName: ValName) extends SourceNode(EgressChannelImp)(Seq(EmptyParams())) case class EgressChannelDestNode(val destParams: EgressChannelParams)(implicit valName: ValName) extends SinkNode(EgressChannelImp)(Seq(destParams)) case class IngressChannelAdapterNode( slaveFn: IngressChannelParams => IngressChannelParams = { d => d })( implicit valName: ValName) extends AdapterNode(IngressChannelImp)(m => m, slaveFn) case class EgressChannelAdapterNode( slaveFn: EgressChannelParams => EgressChannelParams = { d => d })( implicit valName: ValName) extends AdapterNode(EgressChannelImp)(m => m, slaveFn) case class IngressChannelIdentityNode()(implicit valName: ValName) extends IdentityNode(IngressChannelImp)() case class EgressChannelIdentityNode()(implicit valName: ValName) extends IdentityNode(EgressChannelImp)() case class IngressChannelEphemeralNode()(implicit valName: ValName) extends EphemeralNode(IngressChannelImp)() case class EgressChannelEphemeralNode()(implicit valName: ValName) extends EphemeralNode(EgressChannelImp)() File Router.scala: package constellation.router import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config.{Field, Parameters} import freechips.rocketchip.diplomacy._ import freechips.rocketchip.util._ import constellation.channel._ import constellation.routing.{RoutingRelation} import constellation.noc.{HasNoCParams} case class UserRouterParams( // Payload width. Must match payload width on all channels attached to this routing node payloadBits: Int = 64, // Combines SA and ST stages (removes pipeline register) combineSAST: Boolean = false, // Combines RC and VA stages (removes pipeline register) combineRCVA: Boolean = false, // Adds combinational path from SA to VA coupleSAVA: Boolean = false, vcAllocator: VCAllocatorParams => Parameters => VCAllocator = (vP) => (p) => new RotatingSingleVCAllocator(vP)(p) ) case class RouterParams( nodeId: Int, nIngress: Int, nEgress: Int, user: UserRouterParams ) trait HasRouterOutputParams { def outParams: Seq[ChannelParams] def egressParams: Seq[EgressChannelParams] def allOutParams = outParams ++ egressParams def nOutputs = outParams.size def nEgress = egressParams.size def nAllOutputs = allOutParams.size } trait HasRouterInputParams { def inParams: Seq[ChannelParams] def ingressParams: Seq[IngressChannelParams] def allInParams = inParams ++ ingressParams def nInputs = inParams.size def nIngress = ingressParams.size def nAllInputs = allInParams.size } trait HasRouterParams { def routerParams: RouterParams def nodeId = routerParams.nodeId def payloadBits = routerParams.user.payloadBits } class DebugBundle(val nIn: Int) extends Bundle { val va_stall = Vec(nIn, UInt()) val sa_stall = Vec(nIn, UInt()) } class Router( val routerParams: RouterParams, preDiplomaticInParams: Seq[ChannelParams], preDiplomaticIngressParams: Seq[IngressChannelParams], outDests: Seq[Int], egressIds: Seq[Int] )(implicit p: Parameters) extends LazyModule with HasNoCParams with HasRouterParams { val allPreDiplomaticInParams = preDiplomaticInParams ++ preDiplomaticIngressParams val destNodes = preDiplomaticInParams.map(u => ChannelDestNode(u)) val sourceNodes = outDests.map(u => ChannelSourceNode(u)) val ingressNodes = preDiplomaticIngressParams.map(u => IngressChannelDestNode(u)) val egressNodes = egressIds.map(u => EgressChannelSourceNode(u)) val debugNode = BundleBridgeSource(() => new DebugBundle(allPreDiplomaticInParams.size)) val ctrlNode = if (hasCtrl) Some(BundleBridgeSource(() => new RouterCtrlBundle)) else None def inParams = module.inParams def outParams = module.outParams def ingressParams = module.ingressParams def egressParams = module.egressParams lazy val module = new LazyModuleImp(this) with HasRouterInputParams with HasRouterOutputParams { val (io_in, edgesIn) = destNodes.map(_.in(0)).unzip val (io_out, edgesOut) = sourceNodes.map(_.out(0)).unzip val (io_ingress, edgesIngress) = ingressNodes.map(_.in(0)).unzip val (io_egress, edgesEgress) = egressNodes.map(_.out(0)).unzip val io_debug = debugNode.out(0)._1 val inParams = edgesIn.map(_.cp) val outParams = edgesOut.map(_.cp) val ingressParams = edgesIngress.map(_.cp) val egressParams = edgesEgress.map(_.cp) allOutParams.foreach(u => require(u.srcId == nodeId && u.payloadBits == routerParams.user.payloadBits)) allInParams.foreach(u => require(u.destId == nodeId && u.payloadBits == routerParams.user.payloadBits)) require(nIngress == routerParams.nIngress) require(nEgress == routerParams.nEgress) require(nAllInputs >= 1) require(nAllOutputs >= 1) require(nodeId < (1 << nodeIdBits)) val input_units = inParams.zipWithIndex.map { case (u,i) => Module(new InputUnit(u, outParams, egressParams, routerParams.user.combineRCVA, routerParams.user.combineSAST)) .suggestName(s"input_unit_${i}_from_${u.srcId}") } val ingress_units = ingressParams.zipWithIndex.map { case (u,i) => Module(new IngressUnit(i, u, outParams, egressParams, routerParams.user.combineRCVA, routerParams.user.combineSAST)) .suggestName(s"ingress_unit_${i+nInputs}_from_${u.ingressId}") } val all_input_units = input_units ++ ingress_units val output_units = outParams.zipWithIndex.map { case (u,i) => Module(new OutputUnit(inParams, ingressParams, u)) .suggestName(s"output_unit_${i}_to_${u.destId}")} val egress_units = egressParams.zipWithIndex.map { case (u,i) => Module(new EgressUnit(routerParams.user.coupleSAVA && all_input_units.size == 1, routerParams.user.combineSAST, inParams, ingressParams, u)) .suggestName(s"egress_unit_${i+nOutputs}_to_${u.egressId}")} val all_output_units = output_units ++ egress_units val switch = Module(new Switch(routerParams, inParams, outParams, ingressParams, egressParams)) val switch_allocator = Module(new SwitchAllocator(routerParams, inParams, outParams, ingressParams, egressParams)) val vc_allocator = Module(routerParams.user.vcAllocator( VCAllocatorParams(routerParams, inParams, outParams, ingressParams, egressParams) )(p)) val route_computer = Module(new RouteComputer(routerParams, inParams, outParams, ingressParams, egressParams)) val fires_count = WireInit(PopCount(vc_allocator.io.req.map(_.fire))) dontTouch(fires_count) (io_in zip input_units ).foreach { case (i,u) => u.io.in <> i } (io_ingress zip ingress_units).foreach { case (i,u) => u.io.in <> i.flit } (output_units zip io_out ).foreach { case (u,o) => o <> u.io.out } (egress_units zip io_egress).foreach { case (u,o) => o.flit <> u.io.out } (route_computer.io.req zip all_input_units).foreach { case (i,u) => i <> u.io.router_req } (all_input_units zip route_computer.io.resp).foreach { case (u,o) => u.io.router_resp <> o } (vc_allocator.io.req zip all_input_units).foreach { case (i,u) => i <> u.io.vcalloc_req } (all_input_units zip vc_allocator.io.resp).foreach { case (u,o) => u.io.vcalloc_resp <> o } (all_output_units zip vc_allocator.io.out_allocs).foreach { case (u,a) => u.io.allocs <> a } (vc_allocator.io.channel_status zip all_output_units).foreach { case (a,u) => a := u.io.channel_status } all_input_units.foreach(in => all_output_units.zipWithIndex.foreach { case (out,outIdx) => in.io.out_credit_available(outIdx) := out.io.credit_available }) (all_input_units zip switch_allocator.io.req).foreach { case (u,r) => r <> u.io.salloc_req } (all_output_units zip switch_allocator.io.credit_alloc).foreach { case (u,a) => u.io.credit_alloc := a } (switch.io.in zip all_input_units).foreach { case (i,u) => i <> u.io.out } (all_output_units zip switch.io.out).foreach { case (u,o) => u.io.in <> o } switch.io.sel := (if (routerParams.user.combineSAST) { switch_allocator.io.switch_sel } else { RegNext(switch_allocator.io.switch_sel) }) if (hasCtrl) { val io_ctrl = ctrlNode.get.out(0)._1 val ctrl = Module(new RouterControlUnit(routerParams, inParams, outParams, ingressParams, egressParams)) io_ctrl <> ctrl.io.ctrl (all_input_units zip ctrl.io.in_block ).foreach { case (l,r) => l.io.block := r } (all_input_units zip ctrl.io.in_fire ).foreach { case (l,r) => r := l.io.out.map(_.valid) } } else { input_units.foreach(_.io.block := false.B) ingress_units.foreach(_.io.block := false.B) } (io_debug.va_stall zip all_input_units.map(_.io.debug.va_stall)).map { case (l,r) => l := r } (io_debug.sa_stall zip all_input_units.map(_.io.debug.sa_stall)).map { case (l,r) => l := r } val debug_tsc = RegInit(0.U(64.W)) debug_tsc := debug_tsc + 1.U val debug_sample = RegInit(0.U(64.W)) debug_sample := debug_sample + 1.U val sample_rate = PlusArg("noc_util_sample_rate", width=20) when (debug_sample === sample_rate - 1.U) { debug_sample := 0.U } def sample(fire: Bool, s: String) = { val util_ctr = RegInit(0.U(64.W)) val fired = RegInit(false.B) util_ctr := util_ctr + fire fired := fired || fire when (sample_rate =/= 0.U && debug_sample === sample_rate - 1.U && fired) { val fmtStr = s"nocsample %d $s %d\n" printf(fmtStr, debug_tsc, util_ctr); fired := fire } } destNodes.map(_.in(0)).foreach { case (in, edge) => in.flit.map { f => sample(f.fire, s"${edge.cp.srcId} $nodeId") } } ingressNodes.map(_.in(0)).foreach { case (in, edge) => sample(in.flit.fire, s"i${edge.cp.asInstanceOf[IngressChannelParams].ingressId} $nodeId") } egressNodes.map(_.out(0)).foreach { case (out, edge) => sample(out.flit.fire, s"$nodeId e${edge.cp.asInstanceOf[EgressChannelParams].egressId}") } } } File LazyModuleImp.scala: package org.chipsalliance.diplomacy.lazymodule import chisel3.{withClockAndReset, Module, RawModule, Reset, _} import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo} import firrtl.passes.InlineAnnotation import org.chipsalliance.cde.config.Parameters import org.chipsalliance.diplomacy.nodes.Dangle import scala.collection.immutable.SortedMap /** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]]. * * This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy. */ sealed trait LazyModuleImpLike extends RawModule { /** [[LazyModule]] that contains this instance. */ val wrapper: LazyModule /** IOs that will be automatically "punched" for this instance. */ val auto: AutoBundle /** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */ protected[diplomacy] val dangles: Seq[Dangle] // [[wrapper.module]] had better not be accessed while LazyModules are still being built! require( LazyModule.scope.isEmpty, s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}" ) /** Set module name. Defaults to the containing LazyModule's desiredName. */ override def desiredName: String = wrapper.desiredName suggestName(wrapper.suggestedName) /** [[Parameters]] for chisel [[Module]]s. */ implicit val p: Parameters = wrapper.p /** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and * submodules. */ protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = { // 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]], // 2. return [[Dangle]]s from each module. val childDangles = wrapper.children.reverse.flatMap { c => implicit val sourceInfo: SourceInfo = c.info c.cloneProto.map { cp => // If the child is a clone, then recursively set cloneProto of its children as well def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = { require(bases.size == clones.size) (bases.zip(clones)).map { case (l, r) => require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}") l.cloneProto = Some(r) assignCloneProtos(l.children, r.children) } } assignCloneProtos(c.children, cp.children) // Clone the child module as a record, and get its [[AutoBundle]] val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName) val clonedAuto = clone("auto").asInstanceOf[AutoBundle] // Get the empty [[Dangle]]'s of the cloned child val rawDangles = c.cloneDangles() require(rawDangles.size == clonedAuto.elements.size) // Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) } dangles }.getOrElse { // For non-clones, instantiate the child module val mod = try { Module(c.module) } catch { case e: ChiselException => { println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}") throw e } } mod.dangles } } // Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]]. // This will result in a sequence of [[Dangle]] from these [[BaseNode]]s. val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate()) // Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]] val allDangles = nodeDangles ++ childDangles // Group [[allDangles]] by their [[source]]. val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*) // For each [[source]] set of [[Dangle]]s of size 2, ensure that these // can be connected as a source-sink pair (have opposite flipped value). // Make the connection and mark them as [[done]]. val done = Set() ++ pairing.values.filter(_.size == 2).map { case Seq(a, b) => require(a.flipped != b.flipped) // @todo <> in chisel3 makes directionless connection. if (a.flipped) { a.data <> b.data } else { b.data <> a.data } a.source case _ => None } // Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module. val forward = allDangles.filter(d => !done(d.source)) // Generate [[AutoBundle]] IO from [[forward]]. val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*)) // Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]] val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) => if (d.flipped) { d.data <> io } else { io <> d.data } d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name) } // Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]]. wrapper.inModuleBody.reverse.foreach { _() } if (wrapper.shouldBeInlined) { chisel3.experimental.annotate(new ChiselAnnotation { def toFirrtl = InlineAnnotation(toNamed) }) } // Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]]. (auto, dangles) } } /** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike { /** Instantiate hardware of this `Module`. */ val (auto, dangles) = instantiate() } /** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike { // These wires are the default clock+reset for all LazyModule children. // It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the // [[LazyRawModuleImp]] children. // Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly. /** drive clock explicitly. */ val childClock: Clock = Wire(Clock()) /** drive reset explicitly. */ val childReset: Reset = Wire(Reset()) // the default is that these are disabled childClock := false.B.asClock childReset := chisel3.DontCare def provideImplicitClockToLazyChildren: Boolean = false val (auto, dangles) = if (provideImplicitClockToLazyChildren) { withClockAndReset(childClock, childReset) { instantiate() } } else { instantiate() } }
module Router_19( // @[Router.scala:89:25] input clock, // @[Router.scala:89:25] input reset, // @[Router.scala:89:25] output [1:0] auto_debug_out_va_stall_0, // @[LazyModuleImp.scala:107:25] output [1:0] auto_debug_out_va_stall_1, // @[LazyModuleImp.scala:107:25] output [1:0] auto_debug_out_sa_stall_0, // @[LazyModuleImp.scala:107:25] output [1:0] auto_debug_out_sa_stall_1, // @[LazyModuleImp.scala:107:25] input auto_egress_nodes_out_flit_ready, // @[LazyModuleImp.scala:107:25] output auto_egress_nodes_out_flit_valid, // @[LazyModuleImp.scala:107:25] output auto_egress_nodes_out_flit_bits_head, // @[LazyModuleImp.scala:107:25] output auto_egress_nodes_out_flit_bits_tail, // @[LazyModuleImp.scala:107:25] output [36:0] auto_egress_nodes_out_flit_bits_payload, // @[LazyModuleImp.scala:107:25] output auto_ingress_nodes_in_flit_ready, // @[LazyModuleImp.scala:107:25] input auto_ingress_nodes_in_flit_valid, // @[LazyModuleImp.scala:107:25] input auto_ingress_nodes_in_flit_bits_head, // @[LazyModuleImp.scala:107:25] input auto_ingress_nodes_in_flit_bits_tail, // @[LazyModuleImp.scala:107:25] input [36:0] auto_ingress_nodes_in_flit_bits_payload, // @[LazyModuleImp.scala:107:25] input [3:0] auto_ingress_nodes_in_flit_bits_egress_id, // @[LazyModuleImp.scala:107:25] output auto_source_nodes_out_flit_0_valid, // @[LazyModuleImp.scala:107:25] output auto_source_nodes_out_flit_0_bits_head, // @[LazyModuleImp.scala:107:25] output auto_source_nodes_out_flit_0_bits_tail, // @[LazyModuleImp.scala:107:25] output [36:0] auto_source_nodes_out_flit_0_bits_payload, // @[LazyModuleImp.scala:107:25] output auto_source_nodes_out_flit_0_bits_flow_vnet_id, // @[LazyModuleImp.scala:107:25] output [3:0] auto_source_nodes_out_flit_0_bits_flow_ingress_node, // @[LazyModuleImp.scala:107:25] output auto_source_nodes_out_flit_0_bits_flow_ingress_node_id, // @[LazyModuleImp.scala:107:25] output [3:0] auto_source_nodes_out_flit_0_bits_flow_egress_node, // @[LazyModuleImp.scala:107:25] output auto_source_nodes_out_flit_0_bits_flow_egress_node_id, // @[LazyModuleImp.scala:107:25] output [1:0] auto_source_nodes_out_flit_0_bits_virt_channel_id, // @[LazyModuleImp.scala:107:25] input [3:0] auto_source_nodes_out_credit_return, // @[LazyModuleImp.scala:107:25] input [3:0] auto_source_nodes_out_vc_free, // @[LazyModuleImp.scala:107:25] input auto_dest_nodes_in_flit_0_valid, // @[LazyModuleImp.scala:107:25] input auto_dest_nodes_in_flit_0_bits_head, // @[LazyModuleImp.scala:107:25] input auto_dest_nodes_in_flit_0_bits_tail, // @[LazyModuleImp.scala:107:25] input [36:0] auto_dest_nodes_in_flit_0_bits_payload, // @[LazyModuleImp.scala:107:25] input auto_dest_nodes_in_flit_0_bits_flow_vnet_id, // @[LazyModuleImp.scala:107:25] input [3:0] auto_dest_nodes_in_flit_0_bits_flow_ingress_node, // @[LazyModuleImp.scala:107:25] input auto_dest_nodes_in_flit_0_bits_flow_ingress_node_id, // @[LazyModuleImp.scala:107:25] input [3:0] auto_dest_nodes_in_flit_0_bits_flow_egress_node, // @[LazyModuleImp.scala:107:25] input auto_dest_nodes_in_flit_0_bits_flow_egress_node_id, // @[LazyModuleImp.scala:107:25] input [1:0] auto_dest_nodes_in_flit_0_bits_virt_channel_id, // @[LazyModuleImp.scala:107:25] output [3:0] auto_dest_nodes_in_credit_return, // @[LazyModuleImp.scala:107:25] output [3:0] auto_dest_nodes_in_vc_free // @[LazyModuleImp.scala:107:25] ); wire [19:0] _plusarg_reader_out; // @[PlusArg.scala:80:11] wire _route_computer_io_resp_0_vc_sel_0_0; // @[Router.scala:136:32] wire _route_computer_io_resp_0_vc_sel_0_1; // @[Router.scala:136:32] wire _route_computer_io_resp_0_vc_sel_0_2; // @[Router.scala:136:32] wire _route_computer_io_resp_0_vc_sel_0_3; // @[Router.scala:136:32] wire _vc_allocator_io_req_1_ready; // @[Router.scala:133:30] wire _vc_allocator_io_req_0_ready; // @[Router.scala:133:30] wire _vc_allocator_io_resp_1_vc_sel_1_0; // @[Router.scala:133:30] wire _vc_allocator_io_resp_1_vc_sel_0_0; // @[Router.scala:133:30] wire _vc_allocator_io_resp_1_vc_sel_0_1; // @[Router.scala:133:30] wire _vc_allocator_io_resp_1_vc_sel_0_2; // @[Router.scala:133:30] wire _vc_allocator_io_resp_1_vc_sel_0_3; // @[Router.scala:133:30] wire _vc_allocator_io_resp_0_vc_sel_1_0; // @[Router.scala:133:30] wire _vc_allocator_io_resp_0_vc_sel_0_0; // @[Router.scala:133:30] wire _vc_allocator_io_resp_0_vc_sel_0_1; // @[Router.scala:133:30] wire _vc_allocator_io_resp_0_vc_sel_0_2; // @[Router.scala:133:30] wire _vc_allocator_io_resp_0_vc_sel_0_3; // @[Router.scala:133:30] wire _vc_allocator_io_out_allocs_1_0_alloc; // @[Router.scala:133:30] wire _vc_allocator_io_out_allocs_0_0_alloc; // @[Router.scala:133:30] wire _vc_allocator_io_out_allocs_0_1_alloc; // @[Router.scala:133:30] wire _vc_allocator_io_out_allocs_0_2_alloc; // @[Router.scala:133:30] wire _vc_allocator_io_out_allocs_0_3_alloc; // @[Router.scala:133:30] wire _switch_allocator_io_req_1_0_ready; // @[Router.scala:132:34] wire _switch_allocator_io_req_0_0_ready; // @[Router.scala:132:34] wire _switch_allocator_io_credit_alloc_1_0_alloc; // @[Router.scala:132:34] wire _switch_allocator_io_credit_alloc_1_0_tail; // @[Router.scala:132:34] wire _switch_allocator_io_credit_alloc_0_0_alloc; // @[Router.scala:132:34] wire _switch_allocator_io_credit_alloc_0_1_alloc; // @[Router.scala:132:34] wire _switch_allocator_io_credit_alloc_0_2_alloc; // @[Router.scala:132:34] wire _switch_allocator_io_credit_alloc_0_3_alloc; // @[Router.scala:132:34] wire _switch_allocator_io_switch_sel_1_0_1_0; // @[Router.scala:132:34] wire _switch_allocator_io_switch_sel_1_0_0_0; // @[Router.scala:132:34] wire _switch_allocator_io_switch_sel_0_0_1_0; // @[Router.scala:132:34] wire _switch_allocator_io_switch_sel_0_0_0_0; // @[Router.scala:132:34] wire _switch_io_out_1_0_valid; // @[Router.scala:131:24] wire _switch_io_out_1_0_bits_head; // @[Router.scala:131:24] wire _switch_io_out_1_0_bits_tail; // @[Router.scala:131:24] wire [36:0] _switch_io_out_1_0_bits_payload; // @[Router.scala:131:24] wire [3:0] _switch_io_out_1_0_bits_flow_ingress_node; // @[Router.scala:131:24] wire _switch_io_out_1_0_bits_flow_ingress_node_id; // @[Router.scala:131:24] wire _switch_io_out_0_0_valid; // @[Router.scala:131:24] wire _switch_io_out_0_0_bits_head; // @[Router.scala:131:24] wire _switch_io_out_0_0_bits_tail; // @[Router.scala:131:24] wire [36:0] _switch_io_out_0_0_bits_payload; // @[Router.scala:131:24] wire _switch_io_out_0_0_bits_flow_vnet_id; // @[Router.scala:131:24] wire [3:0] _switch_io_out_0_0_bits_flow_ingress_node; // @[Router.scala:131:24] wire _switch_io_out_0_0_bits_flow_ingress_node_id; // @[Router.scala:131:24] wire [3:0] _switch_io_out_0_0_bits_flow_egress_node; // @[Router.scala:131:24] wire _switch_io_out_0_0_bits_flow_egress_node_id; // @[Router.scala:131:24] wire [1:0] _switch_io_out_0_0_bits_virt_channel_id; // @[Router.scala:131:24] wire _egress_unit_1_to_7_io_credit_available_0; // @[Router.scala:125:13] wire _egress_unit_1_to_7_io_channel_status_0_occupied; // @[Router.scala:125:13] wire _egress_unit_1_to_7_io_out_valid; // @[Router.scala:125:13] wire _output_unit_0_to_7_io_credit_available_0; // @[Router.scala:122:13] wire _output_unit_0_to_7_io_credit_available_1; // @[Router.scala:122:13] wire _output_unit_0_to_7_io_credit_available_2; // @[Router.scala:122:13] wire _output_unit_0_to_7_io_credit_available_3; // @[Router.scala:122:13] wire _output_unit_0_to_7_io_channel_status_0_occupied; // @[Router.scala:122:13] wire _output_unit_0_to_7_io_channel_status_1_occupied; // @[Router.scala:122:13] wire _output_unit_0_to_7_io_channel_status_2_occupied; // @[Router.scala:122:13] wire _output_unit_0_to_7_io_channel_status_3_occupied; // @[Router.scala:122:13] wire _ingress_unit_1_from_7_io_vcalloc_req_valid; // @[Router.scala:116:13] wire _ingress_unit_1_from_7_io_vcalloc_req_bits_vc_sel_1_0; // @[Router.scala:116:13] wire _ingress_unit_1_from_7_io_vcalloc_req_bits_vc_sel_0_0; // @[Router.scala:116:13] wire _ingress_unit_1_from_7_io_vcalloc_req_bits_vc_sel_0_1; // @[Router.scala:116:13] wire _ingress_unit_1_from_7_io_vcalloc_req_bits_vc_sel_0_2; // @[Router.scala:116:13] wire _ingress_unit_1_from_7_io_vcalloc_req_bits_vc_sel_0_3; // @[Router.scala:116:13] wire _ingress_unit_1_from_7_io_salloc_req_0_valid; // @[Router.scala:116:13] wire _ingress_unit_1_from_7_io_salloc_req_0_bits_vc_sel_1_0; // @[Router.scala:116:13] wire _ingress_unit_1_from_7_io_salloc_req_0_bits_vc_sel_0_0; // @[Router.scala:116:13] wire _ingress_unit_1_from_7_io_salloc_req_0_bits_vc_sel_0_1; // @[Router.scala:116:13] wire _ingress_unit_1_from_7_io_salloc_req_0_bits_vc_sel_0_2; // @[Router.scala:116:13] wire _ingress_unit_1_from_7_io_salloc_req_0_bits_vc_sel_0_3; // @[Router.scala:116:13] wire _ingress_unit_1_from_7_io_salloc_req_0_bits_tail; // @[Router.scala:116:13] wire _ingress_unit_1_from_7_io_out_0_valid; // @[Router.scala:116:13] wire _ingress_unit_1_from_7_io_out_0_bits_flit_head; // @[Router.scala:116:13] wire _ingress_unit_1_from_7_io_out_0_bits_flit_tail; // @[Router.scala:116:13] wire [36:0] _ingress_unit_1_from_7_io_out_0_bits_flit_payload; // @[Router.scala:116:13] wire _ingress_unit_1_from_7_io_out_0_bits_flit_flow_vnet_id; // @[Router.scala:116:13] wire [3:0] _ingress_unit_1_from_7_io_out_0_bits_flit_flow_ingress_node; // @[Router.scala:116:13] wire _ingress_unit_1_from_7_io_out_0_bits_flit_flow_ingress_node_id; // @[Router.scala:116:13] wire [3:0] _ingress_unit_1_from_7_io_out_0_bits_flit_flow_egress_node; // @[Router.scala:116:13] wire _ingress_unit_1_from_7_io_out_0_bits_flit_flow_egress_node_id; // @[Router.scala:116:13] wire [1:0] _ingress_unit_1_from_7_io_out_0_bits_out_virt_channel; // @[Router.scala:116:13] wire _ingress_unit_1_from_7_io_in_ready; // @[Router.scala:116:13] wire [1:0] _input_unit_0_from_5_io_router_req_bits_src_virt_id; // @[Router.scala:112:13] wire _input_unit_0_from_5_io_router_req_bits_flow_vnet_id; // @[Router.scala:112:13] wire [3:0] _input_unit_0_from_5_io_router_req_bits_flow_ingress_node; // @[Router.scala:112:13] wire _input_unit_0_from_5_io_router_req_bits_flow_ingress_node_id; // @[Router.scala:112:13] wire [3:0] _input_unit_0_from_5_io_router_req_bits_flow_egress_node; // @[Router.scala:112:13] wire _input_unit_0_from_5_io_router_req_bits_flow_egress_node_id; // @[Router.scala:112:13] wire _input_unit_0_from_5_io_vcalloc_req_valid; // @[Router.scala:112:13] wire _input_unit_0_from_5_io_vcalloc_req_bits_vc_sel_1_0; // @[Router.scala:112:13] wire _input_unit_0_from_5_io_vcalloc_req_bits_vc_sel_0_0; // @[Router.scala:112:13] wire _input_unit_0_from_5_io_vcalloc_req_bits_vc_sel_0_1; // @[Router.scala:112:13] wire _input_unit_0_from_5_io_vcalloc_req_bits_vc_sel_0_2; // @[Router.scala:112:13] wire _input_unit_0_from_5_io_vcalloc_req_bits_vc_sel_0_3; // @[Router.scala:112:13] wire _input_unit_0_from_5_io_salloc_req_0_valid; // @[Router.scala:112:13] wire _input_unit_0_from_5_io_salloc_req_0_bits_vc_sel_1_0; // @[Router.scala:112:13] wire _input_unit_0_from_5_io_salloc_req_0_bits_vc_sel_0_0; // @[Router.scala:112:13] wire _input_unit_0_from_5_io_salloc_req_0_bits_vc_sel_0_1; // @[Router.scala:112:13] wire _input_unit_0_from_5_io_salloc_req_0_bits_vc_sel_0_2; // @[Router.scala:112:13] wire _input_unit_0_from_5_io_salloc_req_0_bits_vc_sel_0_3; // @[Router.scala:112:13] wire _input_unit_0_from_5_io_salloc_req_0_bits_tail; // @[Router.scala:112:13] wire _input_unit_0_from_5_io_out_0_valid; // @[Router.scala:112:13] wire _input_unit_0_from_5_io_out_0_bits_flit_head; // @[Router.scala:112:13] wire _input_unit_0_from_5_io_out_0_bits_flit_tail; // @[Router.scala:112:13] wire [36:0] _input_unit_0_from_5_io_out_0_bits_flit_payload; // @[Router.scala:112:13] wire _input_unit_0_from_5_io_out_0_bits_flit_flow_vnet_id; // @[Router.scala:112:13] wire [3:0] _input_unit_0_from_5_io_out_0_bits_flit_flow_ingress_node; // @[Router.scala:112:13] wire _input_unit_0_from_5_io_out_0_bits_flit_flow_ingress_node_id; // @[Router.scala:112:13] wire [3:0] _input_unit_0_from_5_io_out_0_bits_flit_flow_egress_node; // @[Router.scala:112:13] wire _input_unit_0_from_5_io_out_0_bits_flit_flow_egress_node_id; // @[Router.scala:112:13] wire [1:0] _input_unit_0_from_5_io_out_0_bits_out_virt_channel; // @[Router.scala:112:13] wire [1:0] fires_count = {1'h0, _vc_allocator_io_req_0_ready & _input_unit_0_from_5_io_vcalloc_req_valid} + {1'h0, _vc_allocator_io_req_1_ready & _ingress_unit_1_from_7_io_vcalloc_req_valid}; // @[Decoupled.scala:51:35] reg REG_1_0_1_0; // @[Router.scala:178:14] reg REG_1_0_0_0; // @[Router.scala:178:14] reg REG_0_0_1_0; // @[Router.scala:178:14] reg REG_0_0_0_0; // @[Router.scala:178:14] reg [63:0] debug_tsc; // @[Router.scala:195:28] reg [63:0] debug_sample; // @[Router.scala:197:31] wire _GEN = debug_sample == {44'h0, _plusarg_reader_out - 20'h1}; // @[PlusArg.scala:80:11] reg [63:0] util_ctr; // @[Router.scala:203:29] reg fired; // @[Router.scala:204:26] wire _GEN_0 = (|_plusarg_reader_out) & _GEN; // @[PlusArg.scala:80:11] wire _GEN_1 = _GEN_0 & fired; // @[Router.scala:204:26, :207:{33,71}] reg [63:0] util_ctr_1; // @[Router.scala:203:29] reg fired_1; // @[Router.scala:204:26] wire _GEN_2 = _GEN_0 & fired_1; // @[Router.scala:204:26, :207:{33,71}] reg [63:0] util_ctr_2; // @[Router.scala:203:29] reg fired_2; // @[Router.scala:204:26] wire _GEN_3 = _GEN_0 & fired_2; // @[Router.scala:204:26, :207:{33,71}]
Generate the Verilog code corresponding to the following Chisel files. File Tile.scala: // See README.md for license details. package gemmini import chisel3._ import chisel3.util._ import Util._ /** * A Tile is a purely combinational 2D array of passThrough PEs. * a, b, s, and in_propag are broadcast across the entire array and are passed through to the Tile's outputs * @param width The data width of each PE in bits * @param rows Number of PEs on each row * @param columns Number of PEs on each column */ class Tile[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, tree_reduction: Boolean, max_simultaneous_matmuls: Int, val rows: Int, val columns: Int)(implicit ev: Arithmetic[T]) extends Module { val io = IO(new Bundle { val in_a = Input(Vec(rows, inputType)) val in_b = Input(Vec(columns, outputType)) // This is the output of the tile next to it val in_d = Input(Vec(columns, outputType)) val in_control = Input(Vec(columns, new PEControl(accType))) val in_id = Input(Vec(columns, UInt(log2Up(max_simultaneous_matmuls).W))) val in_last = Input(Vec(columns, Bool())) val out_a = Output(Vec(rows, inputType)) val out_c = Output(Vec(columns, outputType)) val out_b = Output(Vec(columns, outputType)) val out_control = Output(Vec(columns, new PEControl(accType))) val out_id = Output(Vec(columns, UInt(log2Up(max_simultaneous_matmuls).W))) val out_last = Output(Vec(columns, Bool())) val in_valid = Input(Vec(columns, Bool())) val out_valid = Output(Vec(columns, Bool())) val bad_dataflow = Output(Bool()) }) import ev._ val tile = Seq.fill(rows, columns)(Module(new PE(inputType, outputType, accType, df, max_simultaneous_matmuls))) val tileT = tile.transpose // TODO: abstract hori/vert broadcast, all these connections look the same // Broadcast 'a' horizontally across the Tile for (r <- 0 until rows) { tile(r).foldLeft(io.in_a(r)) { case (in_a, pe) => pe.io.in_a := in_a pe.io.out_a } } // Broadcast 'b' vertically across the Tile for (c <- 0 until columns) { tileT(c).foldLeft(io.in_b(c)) { case (in_b, pe) => pe.io.in_b := (if (tree_reduction) in_b.zero else in_b) pe.io.out_b } } // Broadcast 'd' vertically across the Tile for (c <- 0 until columns) { tileT(c).foldLeft(io.in_d(c)) { case (in_d, pe) => pe.io.in_d := in_d pe.io.out_c } } // Broadcast 'control' vertically across the Tile for (c <- 0 until columns) { tileT(c).foldLeft(io.in_control(c)) { case (in_ctrl, pe) => pe.io.in_control := in_ctrl pe.io.out_control } } // Broadcast 'garbage' vertically across the Tile for (c <- 0 until columns) { tileT(c).foldLeft(io.in_valid(c)) { case (v, pe) => pe.io.in_valid := v pe.io.out_valid } } // Broadcast 'id' vertically across the Tile for (c <- 0 until columns) { tileT(c).foldLeft(io.in_id(c)) { case (id, pe) => pe.io.in_id := id pe.io.out_id } } // Broadcast 'last' vertically across the Tile for (c <- 0 until columns) { tileT(c).foldLeft(io.in_last(c)) { case (last, pe) => pe.io.in_last := last pe.io.out_last } } // Drive the Tile's bottom IO for (c <- 0 until columns) { io.out_c(c) := tile(rows-1)(c).io.out_c io.out_control(c) := tile(rows-1)(c).io.out_control io.out_id(c) := tile(rows-1)(c).io.out_id io.out_last(c) := tile(rows-1)(c).io.out_last io.out_valid(c) := tile(rows-1)(c).io.out_valid io.out_b(c) := { if (tree_reduction) { val prods = tileT(c).map(_.io.out_b) accumulateTree(prods :+ io.in_b(c)) } else { tile(rows - 1)(c).io.out_b } } } io.bad_dataflow := tile.map(_.map(_.io.bad_dataflow).reduce(_||_)).reduce(_||_) // Drive the Tile's right IO for (r <- 0 until rows) { io.out_a(r) := tile(r)(columns-1).io.out_a } }
module Tile_61( // @[Tile.scala:16:7] input clock, // @[Tile.scala:16:7] input reset, // @[Tile.scala:16:7] input [7:0] io_in_a_0, // @[Tile.scala:17:14] input [19:0] io_in_b_0, // @[Tile.scala:17:14] input [19:0] io_in_d_0, // @[Tile.scala:17:14] input io_in_control_0_dataflow, // @[Tile.scala:17:14] input io_in_control_0_propagate, // @[Tile.scala:17:14] input [4:0] io_in_control_0_shift, // @[Tile.scala:17:14] input [2:0] io_in_id_0, // @[Tile.scala:17:14] input io_in_last_0, // @[Tile.scala:17:14] output [7:0] io_out_a_0, // @[Tile.scala:17:14] output [19:0] io_out_c_0, // @[Tile.scala:17:14] output [19:0] io_out_b_0, // @[Tile.scala:17:14] output io_out_control_0_dataflow, // @[Tile.scala:17:14] output io_out_control_0_propagate, // @[Tile.scala:17:14] output [4:0] io_out_control_0_shift, // @[Tile.scala:17:14] output [2:0] io_out_id_0, // @[Tile.scala:17:14] output io_out_last_0, // @[Tile.scala:17:14] input io_in_valid_0, // @[Tile.scala:17:14] output io_out_valid_0 // @[Tile.scala:17:14] ); wire [7:0] io_in_a_0_0 = io_in_a_0; // @[Tile.scala:16:7] wire [19:0] io_in_b_0_0 = io_in_b_0; // @[Tile.scala:16:7] wire [19:0] io_in_d_0_0 = io_in_d_0; // @[Tile.scala:16:7] wire io_in_control_0_dataflow_0 = io_in_control_0_dataflow; // @[Tile.scala:16:7] wire io_in_control_0_propagate_0 = io_in_control_0_propagate; // @[Tile.scala:16:7] wire [4:0] io_in_control_0_shift_0 = io_in_control_0_shift; // @[Tile.scala:16:7] wire [2:0] io_in_id_0_0 = io_in_id_0; // @[Tile.scala:16:7] wire io_in_last_0_0 = io_in_last_0; // @[Tile.scala:16:7] wire io_in_valid_0_0 = io_in_valid_0; // @[Tile.scala:16:7] wire io_bad_dataflow = 1'h0; // @[Tile.scala:16:7, :17:14, :42:44] wire [7:0] io_out_a_0_0; // @[Tile.scala:16:7] wire [19:0] io_out_c_0_0; // @[Tile.scala:16:7] wire [19:0] io_out_b_0_0; // @[Tile.scala:16:7] wire io_out_control_0_dataflow_0; // @[Tile.scala:16:7] wire io_out_control_0_propagate_0; // @[Tile.scala:16:7] wire [4:0] io_out_control_0_shift_0; // @[Tile.scala:16:7] wire [2:0] io_out_id_0_0; // @[Tile.scala:16:7] wire io_out_last_0_0; // @[Tile.scala:16:7] wire io_out_valid_0_0; // @[Tile.scala:16:7] PE_317 tile_0_0 ( // @[Tile.scala:42:44] .clock (clock), .reset (reset), .io_in_a (io_in_a_0_0), // @[Tile.scala:16:7] .io_in_b (io_in_b_0_0), // @[Tile.scala:16:7] .io_in_d (io_in_d_0_0), // @[Tile.scala:16:7] .io_out_a (io_out_a_0_0), .io_out_b (io_out_b_0_0), .io_out_c (io_out_c_0_0), .io_in_control_dataflow (io_in_control_0_dataflow_0), // @[Tile.scala:16:7] .io_in_control_propagate (io_in_control_0_propagate_0), // @[Tile.scala:16:7] .io_in_control_shift (io_in_control_0_shift_0), // @[Tile.scala:16:7] .io_out_control_dataflow (io_out_control_0_dataflow_0), .io_out_control_propagate (io_out_control_0_propagate_0), .io_out_control_shift (io_out_control_0_shift_0), .io_in_id (io_in_id_0_0), // @[Tile.scala:16:7] .io_out_id (io_out_id_0_0), .io_in_last (io_in_last_0_0), // @[Tile.scala:16:7] .io_out_last (io_out_last_0_0), .io_in_valid (io_in_valid_0_0), // @[Tile.scala:16:7] .io_out_valid (io_out_valid_0_0) ); // @[Tile.scala:42:44] assign io_out_a_0 = io_out_a_0_0; // @[Tile.scala:16:7] assign io_out_c_0 = io_out_c_0_0; // @[Tile.scala:16:7] assign io_out_b_0 = io_out_b_0_0; // @[Tile.scala:16:7] assign io_out_control_0_dataflow = io_out_control_0_dataflow_0; // @[Tile.scala:16:7] assign io_out_control_0_propagate = io_out_control_0_propagate_0; // @[Tile.scala:16:7] assign io_out_control_0_shift = io_out_control_0_shift_0; // @[Tile.scala:16:7] assign io_out_id_0 = io_out_id_0_0; // @[Tile.scala:16:7] assign io_out_last_0 = io_out_last_0_0; // @[Tile.scala:16:7] assign io_out_valid_0 = io_out_valid_0_0; // @[Tile.scala:16:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag }
module OptimizationBarrier_EntryData_70( // @[package.scala:267:30] input clock, // @[package.scala:267:30] input reset, // @[package.scala:267:30] input [19:0] io_x_ppn, // @[package.scala:268:18] input io_x_u, // @[package.scala:268:18] input io_x_g, // @[package.scala:268:18] input io_x_ae, // @[package.scala:268:18] input io_x_sw, // @[package.scala:268:18] input io_x_sx, // @[package.scala:268:18] input io_x_sr, // @[package.scala:268:18] input io_x_pw, // @[package.scala:268:18] input io_x_px, // @[package.scala:268:18] input io_x_pr, // @[package.scala:268:18] input io_x_pal, // @[package.scala:268:18] input io_x_paa, // @[package.scala:268:18] input io_x_eff, // @[package.scala:268:18] input io_x_c, // @[package.scala:268:18] input io_x_fragmented_superpage, // @[package.scala:268:18] output [19:0] io_y_ppn, // @[package.scala:268:18] output io_y_u, // @[package.scala:268:18] output io_y_g, // @[package.scala:268:18] output io_y_ae, // @[package.scala:268:18] output io_y_sw, // @[package.scala:268:18] output io_y_sx, // @[package.scala:268:18] output io_y_sr, // @[package.scala:268:18] output io_y_pw, // @[package.scala:268:18] output io_y_px, // @[package.scala:268:18] output io_y_pr, // @[package.scala:268:18] output io_y_pal, // @[package.scala:268:18] output io_y_paa, // @[package.scala:268:18] output io_y_eff, // @[package.scala:268:18] output io_y_c, // @[package.scala:268:18] output io_y_fragmented_superpage // @[package.scala:268:18] ); wire [19:0] io_x_ppn_0 = io_x_ppn; // @[package.scala:267:30] wire io_x_u_0 = io_x_u; // @[package.scala:267:30] wire io_x_g_0 = io_x_g; // @[package.scala:267:30] wire io_x_ae_0 = io_x_ae; // @[package.scala:267:30] wire io_x_sw_0 = io_x_sw; // @[package.scala:267:30] wire io_x_sx_0 = io_x_sx; // @[package.scala:267:30] wire io_x_sr_0 = io_x_sr; // @[package.scala:267:30] wire io_x_pw_0 = io_x_pw; // @[package.scala:267:30] wire io_x_px_0 = io_x_px; // @[package.scala:267:30] wire io_x_pr_0 = io_x_pr; // @[package.scala:267:30] wire io_x_pal_0 = io_x_pal; // @[package.scala:267:30] wire io_x_paa_0 = io_x_paa; // @[package.scala:267:30] wire io_x_eff_0 = io_x_eff; // @[package.scala:267:30] wire io_x_c_0 = io_x_c; // @[package.scala:267:30] wire io_x_fragmented_superpage_0 = io_x_fragmented_superpage; // @[package.scala:267:30] wire [19:0] io_y_ppn_0 = io_x_ppn_0; // @[package.scala:267:30] wire io_y_u_0 = io_x_u_0; // @[package.scala:267:30] wire io_y_g_0 = io_x_g_0; // @[package.scala:267:30] wire io_y_ae_0 = io_x_ae_0; // @[package.scala:267:30] wire io_y_sw_0 = io_x_sw_0; // @[package.scala:267:30] wire io_y_sx_0 = io_x_sx_0; // @[package.scala:267:30] wire io_y_sr_0 = io_x_sr_0; // @[package.scala:267:30] wire io_y_pw_0 = io_x_pw_0; // @[package.scala:267:30] wire io_y_px_0 = io_x_px_0; // @[package.scala:267:30] wire io_y_pr_0 = io_x_pr_0; // @[package.scala:267:30] wire io_y_pal_0 = io_x_pal_0; // @[package.scala:267:30] wire io_y_paa_0 = io_x_paa_0; // @[package.scala:267:30] wire io_y_eff_0 = io_x_eff_0; // @[package.scala:267:30] wire io_y_c_0 = io_x_c_0; // @[package.scala:267:30] wire io_y_fragmented_superpage_0 = io_x_fragmented_superpage_0; // @[package.scala:267:30] assign io_y_ppn = io_y_ppn_0; // @[package.scala:267:30] assign io_y_u = io_y_u_0; // @[package.scala:267:30] assign io_y_g = io_y_g_0; // @[package.scala:267:30] assign io_y_ae = io_y_ae_0; // @[package.scala:267:30] assign io_y_sw = io_y_sw_0; // @[package.scala:267:30] assign io_y_sx = io_y_sx_0; // @[package.scala:267:30] assign io_y_sr = io_y_sr_0; // @[package.scala:267:30] assign io_y_pw = io_y_pw_0; // @[package.scala:267:30] assign io_y_px = io_y_px_0; // @[package.scala:267:30] assign io_y_pr = io_y_pr_0; // @[package.scala:267:30] assign io_y_pal = io_y_pal_0; // @[package.scala:267:30] assign io_y_paa = io_y_paa_0; // @[package.scala:267:30] assign io_y_eff = io_y_eff_0; // @[package.scala:267:30] assign io_y_c = io_y_c_0; // @[package.scala:267:30] assign io_y_fragmented_superpage = io_y_fragmented_superpage_0; // @[package.scala:267:30] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Tile.scala: // See README.md for license details. package gemmini import chisel3._ import chisel3.util._ import Util._ /** * A Tile is a purely combinational 2D array of passThrough PEs. * a, b, s, and in_propag are broadcast across the entire array and are passed through to the Tile's outputs * @param width The data width of each PE in bits * @param rows Number of PEs on each row * @param columns Number of PEs on each column */ class Tile[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, tree_reduction: Boolean, max_simultaneous_matmuls: Int, val rows: Int, val columns: Int)(implicit ev: Arithmetic[T]) extends Module { val io = IO(new Bundle { val in_a = Input(Vec(rows, inputType)) val in_b = Input(Vec(columns, outputType)) // This is the output of the tile next to it val in_d = Input(Vec(columns, outputType)) val in_control = Input(Vec(columns, new PEControl(accType))) val in_id = Input(Vec(columns, UInt(log2Up(max_simultaneous_matmuls).W))) val in_last = Input(Vec(columns, Bool())) val out_a = Output(Vec(rows, inputType)) val out_c = Output(Vec(columns, outputType)) val out_b = Output(Vec(columns, outputType)) val out_control = Output(Vec(columns, new PEControl(accType))) val out_id = Output(Vec(columns, UInt(log2Up(max_simultaneous_matmuls).W))) val out_last = Output(Vec(columns, Bool())) val in_valid = Input(Vec(columns, Bool())) val out_valid = Output(Vec(columns, Bool())) val bad_dataflow = Output(Bool()) }) import ev._ val tile = Seq.fill(rows, columns)(Module(new PE(inputType, outputType, accType, df, max_simultaneous_matmuls))) val tileT = tile.transpose // TODO: abstract hori/vert broadcast, all these connections look the same // Broadcast 'a' horizontally across the Tile for (r <- 0 until rows) { tile(r).foldLeft(io.in_a(r)) { case (in_a, pe) => pe.io.in_a := in_a pe.io.out_a } } // Broadcast 'b' vertically across the Tile for (c <- 0 until columns) { tileT(c).foldLeft(io.in_b(c)) { case (in_b, pe) => pe.io.in_b := (if (tree_reduction) in_b.zero else in_b) pe.io.out_b } } // Broadcast 'd' vertically across the Tile for (c <- 0 until columns) { tileT(c).foldLeft(io.in_d(c)) { case (in_d, pe) => pe.io.in_d := in_d pe.io.out_c } } // Broadcast 'control' vertically across the Tile for (c <- 0 until columns) { tileT(c).foldLeft(io.in_control(c)) { case (in_ctrl, pe) => pe.io.in_control := in_ctrl pe.io.out_control } } // Broadcast 'garbage' vertically across the Tile for (c <- 0 until columns) { tileT(c).foldLeft(io.in_valid(c)) { case (v, pe) => pe.io.in_valid := v pe.io.out_valid } } // Broadcast 'id' vertically across the Tile for (c <- 0 until columns) { tileT(c).foldLeft(io.in_id(c)) { case (id, pe) => pe.io.in_id := id pe.io.out_id } } // Broadcast 'last' vertically across the Tile for (c <- 0 until columns) { tileT(c).foldLeft(io.in_last(c)) { case (last, pe) => pe.io.in_last := last pe.io.out_last } } // Drive the Tile's bottom IO for (c <- 0 until columns) { io.out_c(c) := tile(rows-1)(c).io.out_c io.out_control(c) := tile(rows-1)(c).io.out_control io.out_id(c) := tile(rows-1)(c).io.out_id io.out_last(c) := tile(rows-1)(c).io.out_last io.out_valid(c) := tile(rows-1)(c).io.out_valid io.out_b(c) := { if (tree_reduction) { val prods = tileT(c).map(_.io.out_b) accumulateTree(prods :+ io.in_b(c)) } else { tile(rows - 1)(c).io.out_b } } } io.bad_dataflow := tile.map(_.map(_.io.bad_dataflow).reduce(_||_)).reduce(_||_) // Drive the Tile's right IO for (r <- 0 until rows) { io.out_a(r) := tile(r)(columns-1).io.out_a } }
module Tile_82( // @[Tile.scala:16:7] input clock, // @[Tile.scala:16:7] input reset, // @[Tile.scala:16:7] input [7:0] io_in_a_0, // @[Tile.scala:17:14] input [19:0] io_in_b_0, // @[Tile.scala:17:14] input [19:0] io_in_d_0, // @[Tile.scala:17:14] input io_in_control_0_dataflow, // @[Tile.scala:17:14] input io_in_control_0_propagate, // @[Tile.scala:17:14] input [4:0] io_in_control_0_shift, // @[Tile.scala:17:14] input [2:0] io_in_id_0, // @[Tile.scala:17:14] input io_in_last_0, // @[Tile.scala:17:14] output [7:0] io_out_a_0, // @[Tile.scala:17:14] output [19:0] io_out_c_0, // @[Tile.scala:17:14] output [19:0] io_out_b_0, // @[Tile.scala:17:14] output io_out_control_0_dataflow, // @[Tile.scala:17:14] output io_out_control_0_propagate, // @[Tile.scala:17:14] output [4:0] io_out_control_0_shift, // @[Tile.scala:17:14] output [2:0] io_out_id_0, // @[Tile.scala:17:14] output io_out_last_0, // @[Tile.scala:17:14] input io_in_valid_0, // @[Tile.scala:17:14] output io_out_valid_0, // @[Tile.scala:17:14] output io_bad_dataflow // @[Tile.scala:17:14] ); wire [7:0] io_in_a_0_0 = io_in_a_0; // @[Tile.scala:16:7] wire [19:0] io_in_b_0_0 = io_in_b_0; // @[Tile.scala:16:7] wire [19:0] io_in_d_0_0 = io_in_d_0; // @[Tile.scala:16:7] wire io_in_control_0_dataflow_0 = io_in_control_0_dataflow; // @[Tile.scala:16:7] wire io_in_control_0_propagate_0 = io_in_control_0_propagate; // @[Tile.scala:16:7] wire [4:0] io_in_control_0_shift_0 = io_in_control_0_shift; // @[Tile.scala:16:7] wire [2:0] io_in_id_0_0 = io_in_id_0; // @[Tile.scala:16:7] wire io_in_last_0_0 = io_in_last_0; // @[Tile.scala:16:7] wire io_in_valid_0_0 = io_in_valid_0; // @[Tile.scala:16:7] wire [7:0] io_out_a_0_0; // @[Tile.scala:16:7] wire [19:0] io_out_c_0_0; // @[Tile.scala:16:7] wire [19:0] io_out_b_0_0; // @[Tile.scala:16:7] wire io_out_control_0_dataflow_0; // @[Tile.scala:16:7] wire io_out_control_0_propagate_0; // @[Tile.scala:16:7] wire [4:0] io_out_control_0_shift_0; // @[Tile.scala:16:7] wire [2:0] io_out_id_0_0; // @[Tile.scala:16:7] wire io_out_last_0_0; // @[Tile.scala:16:7] wire io_out_valid_0_0; // @[Tile.scala:16:7] wire io_bad_dataflow_0; // @[Tile.scala:16:7] PE_338 tile_0_0 ( // @[Tile.scala:42:44] .clock (clock), .reset (reset), .io_in_a (io_in_a_0_0), // @[Tile.scala:16:7] .io_in_b (io_in_b_0_0), // @[Tile.scala:16:7] .io_in_d (io_in_d_0_0), // @[Tile.scala:16:7] .io_out_a (io_out_a_0_0), .io_out_b (io_out_b_0_0), .io_out_c (io_out_c_0_0), .io_in_control_dataflow (io_in_control_0_dataflow_0), // @[Tile.scala:16:7] .io_in_control_propagate (io_in_control_0_propagate_0), // @[Tile.scala:16:7] .io_in_control_shift (io_in_control_0_shift_0), // @[Tile.scala:16:7] .io_out_control_dataflow (io_out_control_0_dataflow_0), .io_out_control_propagate (io_out_control_0_propagate_0), .io_out_control_shift (io_out_control_0_shift_0), .io_in_id (io_in_id_0_0), // @[Tile.scala:16:7] .io_out_id (io_out_id_0_0), .io_in_last (io_in_last_0_0), // @[Tile.scala:16:7] .io_out_last (io_out_last_0_0), .io_in_valid (io_in_valid_0_0), // @[Tile.scala:16:7] .io_out_valid (io_out_valid_0_0), .io_bad_dataflow (io_bad_dataflow_0) ); // @[Tile.scala:42:44] assign io_out_a_0 = io_out_a_0_0; // @[Tile.scala:16:7] assign io_out_c_0 = io_out_c_0_0; // @[Tile.scala:16:7] assign io_out_b_0 = io_out_b_0_0; // @[Tile.scala:16:7] assign io_out_control_0_dataflow = io_out_control_0_dataflow_0; // @[Tile.scala:16:7] assign io_out_control_0_propagate = io_out_control_0_propagate_0; // @[Tile.scala:16:7] assign io_out_control_0_shift = io_out_control_0_shift_0; // @[Tile.scala:16:7] assign io_out_id_0 = io_out_id_0_0; // @[Tile.scala:16:7] assign io_out_last_0 = io_out_last_0_0; // @[Tile.scala:16:7] assign io_out_valid_0 = io_out_valid_0_0; // @[Tile.scala:16:7] assign io_bad_dataflow = io_bad_dataflow_0; // @[Tile.scala:16:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File ShiftReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ // Similar to the Chisel ShiftRegister but allows the user to suggest a // name to the registers that get instantiated, and // to provide a reset value. object ShiftRegInit { def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T = (0 until n).foldRight(in) { case (i, next) => { val r = RegNext(next, init) name.foreach { na => r.suggestName(s"${na}_${i}") } r } } } /** These wrap behavioral * shift registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * The different types vary in their reset behavior: * AsyncResetShiftReg -- Asynchronously reset register array * A W(width) x D(depth) sized array is constructed from D instantiations of a * W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg, * but only used for timing applications */ abstract class AbstractPipelineReg(w: Int = 1) extends Module { val io = IO(new Bundle { val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) } ) } object AbstractPipelineReg { def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = { val chain = Module(gen) name.foreach{ chain.suggestName(_) } chain.io.d := in.asUInt chain.io.q.asTypeOf(in) } } class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) { require(depth > 0, "Depth must be greater than 0.") override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}" val chain = List.tabulate(depth) { i => Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}") } chain.last.io.d := io.d chain.last.io.en := true.B (chain.init zip chain.tail).foreach { case (sink, source) => sink.io.d := source.io.q sink.io.en := true.B } io.q := chain.head.io.q } object AsyncResetShiftReg { def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name) def apply [T <: Data](in: T, depth: Int, name: Option[String]): T = apply(in, depth, 0, name) def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T = apply(in, depth, init.litValue.toInt, name) def apply [T <: Data](in: T, depth: Int, init: T): T = apply (in, depth, init.litValue.toInt, None) } File SynchronizerReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util.{RegEnable, Cat} /** These wrap behavioral * shift and next registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * * These are built up of *ResetSynchronizerPrimitiveShiftReg, * intended to be replaced by the integrator's metastable flops chains or replaced * at this level if they have a multi-bit wide synchronizer primitive. * The different types vary in their reset behavior: * NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin * AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep * 1-bit-wide shift registers. * SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg * * [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference. * * ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross * Clock Domains. */ object SynchronizerResetType extends Enumeration { val NonSync, Inferred, Sync, Async = Value } // Note: this should not be used directly. // Use the companion object to generate this with the correct reset type mixin. private class SynchronizerPrimitiveShiftReg( sync: Int, init: Boolean, resetType: SynchronizerResetType.Value) extends AbstractPipelineReg(1) { val initInt = if (init) 1 else 0 val initPostfix = resetType match { case SynchronizerResetType.NonSync => "" case _ => s"_i${initInt}" } override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}" val chain = List.tabulate(sync) { i => val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B) reg.suggestName(s"sync_$i") } chain.last := io.d.asBool (chain.init zip chain.tail).foreach { case (sink, source) => sink := source } io.q := chain.head.asUInt } private object SynchronizerPrimitiveShiftReg { def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = { val gen: () => SynchronizerPrimitiveShiftReg = resetType match { case SynchronizerResetType.NonSync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) case SynchronizerResetType.Async => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset case SynchronizerResetType.Sync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset case SynchronizerResetType.Inferred => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) } AbstractPipelineReg(gen(), in) } } // Note: This module may end up with a non-AsyncReset type reset. // But the Primitives within will always have AsyncReset type. class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asAsyncReset){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async) } } io.q := Cat(output.reverse) } object AsyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } // Note: This module may end up with a non-Bool type reset. // But the Primitives within will always have Bool reset type. @deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2") class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asBool){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync) } } io.q := Cat(output.reverse) } object SyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred) } io.q := Cat(output.reverse) } object ResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}" val output = Seq.tabulate(w) { i => SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync) } io.q := Cat(output.reverse) } object SynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, None) def apply [T <: Data](in: T): T = apply (in, 3, None) } class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module { override def desiredName = s"ClockCrossingReg_w${w}" val io = IO(new Bundle{ val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) val en = Input(Bool()) }) val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en) io.q := cdc_reg } object ClockCrossingReg { def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = { val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit)) name.foreach{ cdc_reg.suggestName(_) } cdc_reg.io.d := in.asUInt cdc_reg.io.en := en cdc_reg.io.q.asTypeOf(in) } }
module AsyncResetSynchronizerShiftReg_w1_d3_i0_160( // @[SynchronizerReg.scala:80:7] input clock, // @[SynchronizerReg.scala:80:7] input reset, // @[SynchronizerReg.scala:80:7] input io_d, // @[ShiftReg.scala:36:14] output io_q // @[ShiftReg.scala:36:14] ); wire io_d_0 = io_d; // @[SynchronizerReg.scala:80:7] wire _output_T = reset; // @[SynchronizerReg.scala:86:21] wire _output_T_1 = io_d_0; // @[SynchronizerReg.scala:80:7, :87:41] wire output_0; // @[ShiftReg.scala:48:24] wire io_q_0; // @[SynchronizerReg.scala:80:7] assign io_q_0 = output_0; // @[SynchronizerReg.scala:80:7] AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_280 output_chain ( // @[ShiftReg.scala:45:23] .clock (clock), .reset (_output_T), // @[SynchronizerReg.scala:86:21] .io_d (_output_T_1), // @[SynchronizerReg.scala:87:41] .io_q (output_0) ); // @[ShiftReg.scala:45:23] assign io_q = io_q_0; // @[SynchronizerReg.scala:80:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File ShiftReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ // Similar to the Chisel ShiftRegister but allows the user to suggest a // name to the registers that get instantiated, and // to provide a reset value. object ShiftRegInit { def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T = (0 until n).foldRight(in) { case (i, next) => { val r = RegNext(next, init) name.foreach { na => r.suggestName(s"${na}_${i}") } r } } } /** These wrap behavioral * shift registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * The different types vary in their reset behavior: * AsyncResetShiftReg -- Asynchronously reset register array * A W(width) x D(depth) sized array is constructed from D instantiations of a * W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg, * but only used for timing applications */ abstract class AbstractPipelineReg(w: Int = 1) extends Module { val io = IO(new Bundle { val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) } ) } object AbstractPipelineReg { def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = { val chain = Module(gen) name.foreach{ chain.suggestName(_) } chain.io.d := in.asUInt chain.io.q.asTypeOf(in) } } class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) { require(depth > 0, "Depth must be greater than 0.") override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}" val chain = List.tabulate(depth) { i => Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}") } chain.last.io.d := io.d chain.last.io.en := true.B (chain.init zip chain.tail).foreach { case (sink, source) => sink.io.d := source.io.q sink.io.en := true.B } io.q := chain.head.io.q } object AsyncResetShiftReg { def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name) def apply [T <: Data](in: T, depth: Int, name: Option[String]): T = apply(in, depth, 0, name) def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T = apply(in, depth, init.litValue.toInt, name) def apply [T <: Data](in: T, depth: Int, init: T): T = apply (in, depth, init.litValue.toInt, None) } File AsyncQueue.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ case class AsyncQueueParams( depth: Int = 8, sync: Int = 3, safe: Boolean = true, // If safe is true, then effort is made to resynchronize the crossing indices when either side is reset. // This makes it safe/possible to reset one side of the crossing (but not the other) when the queue is empty. narrow: Boolean = false) // If narrow is true then the read mux is moved to the source side of the crossing. // This reduces the number of level shifters in the case where the clock crossing is also a voltage crossing, // at the expense of a combinational path from the sink to the source and back to the sink. { require (depth > 0 && isPow2(depth)) require (sync >= 2) val bits = log2Ceil(depth) val wires = if (narrow) 1 else depth } object AsyncQueueParams { // When there is only one entry, we don't need narrow. def singleton(sync: Int = 3, safe: Boolean = true) = AsyncQueueParams(1, sync, safe, false) } class AsyncBundleSafety extends Bundle { val ridx_valid = Input (Bool()) val widx_valid = Output(Bool()) val source_reset_n = Output(Bool()) val sink_reset_n = Input (Bool()) } class AsyncBundle[T <: Data](private val gen: T, val params: AsyncQueueParams = AsyncQueueParams()) extends Bundle { // Data-path synchronization val mem = Output(Vec(params.wires, gen)) val ridx = Input (UInt((params.bits+1).W)) val widx = Output(UInt((params.bits+1).W)) val index = params.narrow.option(Input(UInt(params.bits.W))) // Signals used to self-stabilize a safe AsyncQueue val safe = params.safe.option(new AsyncBundleSafety) } object GrayCounter { def apply(bits: Int, increment: Bool = true.B, clear: Bool = false.B, name: String = "binary"): UInt = { val incremented = Wire(UInt(bits.W)) val binary = RegNext(next=incremented, init=0.U).suggestName(name) incremented := Mux(clear, 0.U, binary + increment.asUInt) incremented ^ (incremented >> 1) } } class AsyncValidSync(sync: Int, desc: String) extends RawModule { val io = IO(new Bundle { val in = Input(Bool()) val out = Output(Bool()) }) val clock = IO(Input(Clock())) val reset = IO(Input(AsyncReset())) withClockAndReset(clock, reset){ io.out := AsyncResetSynchronizerShiftReg(io.in, sync, Some(desc)) } } class AsyncQueueSource[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module { override def desiredName = s"AsyncQueueSource_${gen.typeName}" val io = IO(new Bundle { // These come from the source domain val enq = Flipped(Decoupled(gen)) // These cross to the sink clock domain val async = new AsyncBundle(gen, params) }) val bits = params.bits val sink_ready = WireInit(true.B) val mem = Reg(Vec(params.depth, gen)) // This does NOT need to be reset at all. val widx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.enq.fire, !sink_ready, "widx_bin")) val ridx = AsyncResetSynchronizerShiftReg(io.async.ridx, params.sync, Some("ridx_gray")) val ready = sink_ready && widx =/= (ridx ^ (params.depth | params.depth >> 1).U) val index = if (bits == 0) 0.U else io.async.widx(bits-1, 0) ^ (io.async.widx(bits, bits) << (bits-1)) when (io.enq.fire) { mem(index) := io.enq.bits } val ready_reg = withReset(reset.asAsyncReset)(RegNext(next=ready, init=false.B).suggestName("ready_reg")) io.enq.ready := ready_reg && sink_ready val widx_reg = withReset(reset.asAsyncReset)(RegNext(next=widx, init=0.U).suggestName("widx_gray")) io.async.widx := widx_reg io.async.index match { case Some(index) => io.async.mem(0) := mem(index) case None => io.async.mem := mem } io.async.safe.foreach { sio => val source_valid_0 = Module(new AsyncValidSync(params.sync, "source_valid_0")) val source_valid_1 = Module(new AsyncValidSync(params.sync, "source_valid_1")) val sink_extend = Module(new AsyncValidSync(params.sync, "sink_extend")) val sink_valid = Module(new AsyncValidSync(params.sync, "sink_valid")) source_valid_0.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset source_valid_1.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset sink_extend .reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset sink_valid .reset := reset.asAsyncReset source_valid_0.clock := clock source_valid_1.clock := clock sink_extend .clock := clock sink_valid .clock := clock source_valid_0.io.in := true.B source_valid_1.io.in := source_valid_0.io.out sio.widx_valid := source_valid_1.io.out sink_extend.io.in := sio.ridx_valid sink_valid.io.in := sink_extend.io.out sink_ready := sink_valid.io.out sio.source_reset_n := !reset.asBool // Assert that if there is stuff in the queue, then reset cannot happen // Impossible to write because dequeue can occur on the receiving side, // then reset allowed to happen, but write side cannot know that dequeue // occurred. // TODO: write some sort of sanity check assertion for users // that denote don't reset when there is activity // assert (!(reset || !sio.sink_reset_n) || !io.enq.valid, "Enqueue while sink is reset and AsyncQueueSource is unprotected") // assert (!reset_rise || prev_idx_match.asBool, "Sink reset while AsyncQueueSource not empty") } } class AsyncQueueSink[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module { override def desiredName = s"AsyncQueueSink_${gen.typeName}" val io = IO(new Bundle { // These come from the sink domain val deq = Decoupled(gen) // These cross to the source clock domain val async = Flipped(new AsyncBundle(gen, params)) }) val bits = params.bits val source_ready = WireInit(true.B) val ridx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.deq.fire, !source_ready, "ridx_bin")) val widx = AsyncResetSynchronizerShiftReg(io.async.widx, params.sync, Some("widx_gray")) val valid = source_ready && ridx =/= widx // The mux is safe because timing analysis ensures ridx has reached the register // On an ASIC, changes to the unread location cannot affect the selected value // On an FPGA, only one input changes at a time => mem updates don't cause glitches // The register only latches when the selected valued is not being written val index = if (bits == 0) 0.U else ridx(bits-1, 0) ^ (ridx(bits, bits) << (bits-1)) io.async.index.foreach { _ := index } // This register does not NEED to be reset, as its contents will not // be considered unless the asynchronously reset deq valid register is set. // It is possible that bits latches when the source domain is reset / has power cut // This is safe, because isolation gates brought mem low before the zeroed widx reached us val deq_bits_nxt = io.async.mem(if (params.narrow) 0.U else index) io.deq.bits := ClockCrossingReg(deq_bits_nxt, en = valid, doInit = false, name = Some("deq_bits_reg")) val valid_reg = withReset(reset.asAsyncReset)(RegNext(next=valid, init=false.B).suggestName("valid_reg")) io.deq.valid := valid_reg && source_ready val ridx_reg = withReset(reset.asAsyncReset)(RegNext(next=ridx, init=0.U).suggestName("ridx_gray")) io.async.ridx := ridx_reg io.async.safe.foreach { sio => val sink_valid_0 = Module(new AsyncValidSync(params.sync, "sink_valid_0")) val sink_valid_1 = Module(new AsyncValidSync(params.sync, "sink_valid_1")) val source_extend = Module(new AsyncValidSync(params.sync, "source_extend")) val source_valid = Module(new AsyncValidSync(params.sync, "source_valid")) sink_valid_0 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset sink_valid_1 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset source_extend.reset := (reset.asBool || !sio.source_reset_n).asAsyncReset source_valid .reset := reset.asAsyncReset sink_valid_0 .clock := clock sink_valid_1 .clock := clock source_extend.clock := clock source_valid .clock := clock sink_valid_0.io.in := true.B sink_valid_1.io.in := sink_valid_0.io.out sio.ridx_valid := sink_valid_1.io.out source_extend.io.in := sio.widx_valid source_valid.io.in := source_extend.io.out source_ready := source_valid.io.out sio.sink_reset_n := !reset.asBool // TODO: write some sort of sanity check assertion for users // that denote don't reset when there is activity // // val reset_and_extend = !source_ready || !sio.source_reset_n || reset.asBool // val reset_and_extend_prev = RegNext(reset_and_extend, true.B) // val reset_rise = !reset_and_extend_prev && reset_and_extend // val prev_idx_match = AsyncResetReg(updateData=(io.async.widx===io.async.ridx), resetData=0) // assert (!reset_rise || prev_idx_match.asBool, "Source reset while AsyncQueueSink not empty") } } object FromAsyncBundle { // Sometimes it makes sense for the sink to have different sync than the source def apply[T <: Data](x: AsyncBundle[T]): DecoupledIO[T] = apply(x, x.params.sync) def apply[T <: Data](x: AsyncBundle[T], sync: Int): DecoupledIO[T] = { val sink = Module(new AsyncQueueSink(chiselTypeOf(x.mem(0)), x.params.copy(sync = sync))) sink.io.async <> x sink.io.deq } } object ToAsyncBundle { def apply[T <: Data](x: ReadyValidIO[T], params: AsyncQueueParams = AsyncQueueParams()): AsyncBundle[T] = { val source = Module(new AsyncQueueSource(chiselTypeOf(x.bits), params)) source.io.enq <> x source.io.async } } class AsyncQueue[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Crossing[T] { val io = IO(new CrossingIO(gen)) val source = withClockAndReset(io.enq_clock, io.enq_reset) { Module(new AsyncQueueSource(gen, params)) } val sink = withClockAndReset(io.deq_clock, io.deq_reset) { Module(new AsyncQueueSink (gen, params)) } source.io.enq <> io.enq io.deq <> sink.io.deq sink.io.async <> source.io.async }
module AsyncValidSync_108( // @[AsyncQueue.scala:58:7] output io_out, // @[AsyncQueue.scala:59:14] input clock, // @[AsyncQueue.scala:63:17] input reset // @[AsyncQueue.scala:64:17] ); wire io_in = 1'h1; // @[ShiftReg.scala:45:23] wire _io_out_WIRE; // @[ShiftReg.scala:48:24] wire io_out_0; // @[AsyncQueue.scala:58:7] assign io_out_0 = _io_out_WIRE; // @[ShiftReg.scala:48:24] AsyncResetSynchronizerShiftReg_w1_d3_i0_125 io_out_sink_valid_0 ( // @[ShiftReg.scala:45:23] .clock (clock), .reset (reset), .io_q (_io_out_WIRE) ); // @[ShiftReg.scala:45:23] assign io_out = io_out_0; // @[AsyncQueue.scala:58:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Monitor.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceLine import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import freechips.rocketchip.diplomacy.EnableMonitors import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode} import freechips.rocketchip.util.PlusArg case class TLMonitorArgs(edge: TLEdge) abstract class TLMonitorBase(args: TLMonitorArgs) extends Module { val io = IO(new Bundle { val in = Input(new TLBundle(args.edge.bundle)) }) def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit legalize(io.in, args.edge, reset) } object TLMonitor { def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = { if (enable) { EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) } } else { node } } } class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args) { require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal)) val cover_prop_class = PropertyClass.Default //Like assert but can flip to being an assumption for formal verification def monAssert(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir, cond, message, PropertyClass.Default) } def assume(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir.flip, cond, message, PropertyClass.Default) } def extra = { args.edge.sourceInfo match { case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)" case _ => "" } } def visible(address: UInt, source: UInt, edge: TLEdge) = edge.client.clients.map { c => !c.sourceId.contains(source) || c.visibility.map(_.contains(address)).reduce(_ || _) }.reduce(_ && _) def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = { //switch this flag to turn on diplomacy in error messages def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n" monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra) // Reuse these subexpressions to save some firrtl lines val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility") //The monitor doesn’t check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B //TODO: check for acquireT? when (bundle.opcode === TLMessages.AcquireBlock) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra) } when (bundle.opcode === TLMessages.AcquirePerm) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra) monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra) monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra) monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra) } } def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = { monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra) monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility") // Reuse these subexpressions to save some firrtl lines val address_ok = edge.manager.containsSafe(edge.address(bundle)) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source when (bundle.opcode === TLMessages.Probe) { assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra) assume (address_ok, "'B' channel Probe carries unmanaged address" + extra) assume (legal_source, "'B' channel Probe carries source that is not first source" + extra) assume (is_aligned, "'B' channel Probe address not aligned to size" + extra) assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra) assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra) assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra) monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra) monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra) monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra) monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra) } } def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = { monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val address_ok = edge.manager.containsSafe(edge.address(bundle)) monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility") when (bundle.opcode === TLMessages.ProbeAck) { monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra) } when (bundle.opcode === TLMessages.ProbeAckData) { monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.Release) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra) monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra) } when (bundle.opcode === TLMessages.ReleaseData) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.AccessAck) { monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra) } when (bundle.opcode === TLMessages.HintAck) { monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra) } } def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = { assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val sink_ok = bundle.sink < edge.manager.endSinkId.U val deny_put_ok = edge.manager.mayDenyPut.B val deny_get_ok = edge.manager.mayDenyGet.B when (bundle.opcode === TLMessages.ReleaseAck) { assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra) assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra) assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra) } when (bundle.opcode === TLMessages.Grant) { assume (source_ok, "'D' channel Grant carries invalid source ID" + extra) assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra) assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra) } when (bundle.opcode === TLMessages.GrantData) { assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra) assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra) } when (bundle.opcode === TLMessages.AccessAck) { assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra) } when (bundle.opcode === TLMessages.HintAck) { assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra) } } def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = { val sink_ok = bundle.sink < edge.manager.endSinkId.U monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra) } def legalizeFormat(bundle: TLBundle, edge: TLEdge) = { when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) } when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) } when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) } when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) } } else { monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra) monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra) monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra) } } def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = { val a_first = edge.first(a.bits, a.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (a.valid && !a_first) { monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra) monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra) monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra) monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra) monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra) } when (a.fire && a_first) { opcode := a.bits.opcode param := a.bits.param size := a.bits.size source := a.bits.source address := a.bits.address } } def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = { val b_first = edge.first(b.bits, b.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (b.valid && !b_first) { monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra) monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra) monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra) monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra) monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra) } when (b.fire && b_first) { opcode := b.bits.opcode param := b.bits.param size := b.bits.size source := b.bits.source address := b.bits.address } } def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = { // Symbolic variable val sym_source = Wire(UInt(edge.client.endSourceId.W)) // TODO: Connect sym_source to a fixed value for simulation and to a // free wire in formal sym_source := 0.U // Type casting Int to UInt val maxSourceId = Wire(UInt(edge.client.endSourceId.W)) maxSourceId := edge.client.endSourceId.U // Delayed verison of sym_source val sym_source_d = Reg(UInt(edge.client.endSourceId.W)) sym_source_d := sym_source // These will be constraints for FV setup Property( MonitorDirection.Monitor, (sym_source === sym_source_d), "sym_source should remain stable", PropertyClass.Default) Property( MonitorDirection.Monitor, (sym_source <= maxSourceId), "sym_source should take legal value", PropertyClass.Default) val my_resp_pend = RegInit(false.B) val my_opcode = Reg(UInt()) val my_size = Reg(UInt()) val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire) val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire) val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source) val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source) val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat) val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend) when (my_set_resp_pend) { my_resp_pend := true.B } .elsewhen (my_clr_resp_pend) { my_resp_pend := false.B } when (my_a_first_beat) { my_opcode := bundle.a.bits.opcode my_size := bundle.a.bits.size } val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size) val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode) val my_resp_opcode_legal = Wire(Bool()) when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) || (my_resp_opcode === TLMessages.LogicalData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData) } .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck) } .otherwise { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck) } monAssert (IfThen(my_resp_pend, !my_a_first_beat), "Request message should not be sent with a source ID, for which a response message" + "is already pending (not received until current cycle) for a prior request message" + "with the same source ID" + extra) assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)), "Response message should be accepted with a source ID only if a request message with the" + "same source ID has been accepted or is being accepted in the current cycle" + extra) assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)), "Response message should be sent with a source ID only if a request message with the" + "same source ID has been accepted or is being sent in the current cycle" + extra) assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)), "If d_valid is 1, then d_size should be same as a_size of the corresponding request" + "message" + extra) assume (IfThen(my_d_first_beat, my_resp_opcode_legal), "If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" + "request message" + extra) } def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = { val c_first = edge.first(c.bits, c.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (c.valid && !c_first) { monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra) monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra) monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra) monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra) monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra) } when (c.fire && c_first) { opcode := c.bits.opcode param := c.bits.param size := c.bits.size source := c.bits.source address := c.bits.address } } def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = { val d_first = edge.first(d.bits, d.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val sink = Reg(UInt()) val denied = Reg(Bool()) when (d.valid && !d_first) { assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra) assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra) assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra) assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra) assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra) assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra) } when (d.fire && d_first) { opcode := d.bits.opcode param := d.bits.param size := d.bits.size source := d.bits.source sink := d.bits.sink denied := d.bits.denied } } def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = { legalizeMultibeatA(bundle.a, edge) legalizeMultibeatD(bundle.d, edge) if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { legalizeMultibeatB(bundle.b, edge) legalizeMultibeatC(bundle.c, edge) } } //This is left in for almond which doesn't adhere to the tilelink protocol @deprecated("Use legalizeADSource instead if possible","") def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.client.endSourceId.W)) val a_first = edge.first(bundle.a.bits, bundle.a.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val a_set = WireInit(0.U(edge.client.endSourceId.W)) when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra) } if (edge.manager.minLatency > 0) { assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = { val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size) val log_a_size_bus_size = log2Ceil(a_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error inflight.suggestName("inflight") val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) inflight_opcodes.suggestName("inflight_opcodes") val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) inflight_sizes.suggestName("inflight_sizes") val a_first = edge.first(bundle.a.bits, bundle.a.fire) a_first.suggestName("a_first") val d_first = edge.first(bundle.d.bits, bundle.d.fire) d_first.suggestName("d_first") val a_set = WireInit(0.U(edge.client.endSourceId.W)) val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) a_set.suggestName("a_set") a_set_wo_ready.suggestName("a_set_wo_ready") val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) a_opcodes_set.suggestName("a_opcodes_set") val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) a_sizes_set.suggestName("a_sizes_set") val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W)) a_opcode_lookup.suggestName("a_opcode_lookup") a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W)) a_size_lookup.suggestName("a_size_lookup") a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant)) val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant)) val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W)) a_opcodes_set_interm.suggestName("a_opcodes_set_interm") val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W)) a_sizes_set_interm.suggestName("a_sizes_set_interm") when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) { a_set_wo_ready := UIntToOH(bundle.a.bits.source) } when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U) a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U) monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) d_opcodes_clr.suggestName("d_opcodes_clr") val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) || (bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra) assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) || (bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra) assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) { assume((!bundle.d.ready) || bundle.a.ready, "ready check") } if (edge.manager.minLatency > 0) { assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = { val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size) val log_c_size_bus_size = log2Ceil(c_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) inflight.suggestName("inflight") inflight_opcodes.suggestName("inflight_opcodes") inflight_sizes.suggestName("inflight_sizes") val c_first = edge.first(bundle.c.bits, bundle.c.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) c_first.suggestName("c_first") d_first.suggestName("d_first") val c_set = WireInit(0.U(edge.client.endSourceId.W)) val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) c_set.suggestName("c_set") c_set_wo_ready.suggestName("c_set_wo_ready") c_opcodes_set.suggestName("c_opcodes_set") c_sizes_set.suggestName("c_sizes_set") val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W)) val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W)) c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U c_opcode_lookup.suggestName("c_opcode_lookup") c_size_lookup.suggestName("c_size_lookup") val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W)) val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W)) c_opcodes_set_interm.suggestName("c_opcodes_set_interm") c_sizes_set_interm.suggestName("c_sizes_set_interm") when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) { c_set_wo_ready := UIntToOH(bundle.c.bits.source) } when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) { c_set := UIntToOH(bundle.c.bits.source) c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U) c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U) monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra) } val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") d_opcodes_clr.suggestName("d_opcodes_clr") d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) { assume((!bundle.d.ready) || bundle.c.ready, "ready check") } if (edge.manager.minLatency > 0) { when (c_set_wo_ready.orR) { assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra) } } inflight := (inflight | c_set) & ~d_clr inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.manager.endSinkId.W)) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val e_first = true.B val d_set = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) { d_set := UIntToOH(bundle.d.bits.sink) assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra) } val e_clr = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) { e_clr := UIntToOH(bundle.e.bits.sink) monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra) } // edge.client.minLatency applies to BC, not DE inflight := (inflight | d_set) & ~e_clr } def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = { val sourceBits = log2Ceil(edge.client.endSourceId) val tooBig = 14 // >16kB worth of flight information gets to be too much if (sourceBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked") } else { if (args.edge.params(TestplanTestType).simulation) { if (args.edge.params(TLMonitorStrictMode)) { legalizeADSource(bundle, edge) legalizeCDSource(bundle, edge) } else { legalizeADSourceOld(bundle, edge) } } if (args.edge.params(TestplanTestType).formal) { legalizeADSourceFormal(bundle, edge) } } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { // legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize... val sinkBits = log2Ceil(edge.manager.endSinkId) if (sinkBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked") } else { legalizeDESink(bundle, edge) } } } def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = { legalizeFormat (bundle, edge) legalizeMultibeat (bundle, edge) legalizeUnique (bundle, edge) } } File Misc.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ import chisel3.util.random.LFSR import org.chipsalliance.cde.config.Parameters import scala.math._ class ParameterizedBundle(implicit p: Parameters) extends Bundle trait Clocked extends Bundle { val clock = Clock() val reset = Bool() } object DecoupledHelper { def apply(rvs: Bool*) = new DecoupledHelper(rvs) } class DecoupledHelper(val rvs: Seq[Bool]) { def fire(exclude: Bool, includes: Bool*) = { require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!") (rvs.filter(_ ne exclude) ++ includes).reduce(_ && _) } def fire() = { rvs.reduce(_ && _) } } object MuxT { def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2)) def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3)) def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4)) } /** Creates a cascade of n MuxTs to search for a key value. */ object MuxTLookup { def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } } object ValidMux { def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = { apply(v1 +: v2.toSeq) } def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = { val out = Wire(Valid(valids.head.bits.cloneType)) out.valid := valids.map(_.valid).reduce(_ || _) out.bits := MuxCase(valids.head.bits, valids.map(v => (v.valid -> v.bits))) out } } object Str { def apply(s: String): UInt = { var i = BigInt(0) require(s.forall(validChar _)) for (c <- s) i = (i << 8) | c i.U((s.length*8).W) } def apply(x: Char): UInt = { require(validChar(x)) x.U(8.W) } def apply(x: UInt): UInt = apply(x, 10) def apply(x: UInt, radix: Int): UInt = { val rad = radix.U val w = x.getWidth require(w > 0) var q = x var s = digit(q % rad) for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s) } s } def apply(x: SInt): UInt = apply(x, 10) def apply(x: SInt, radix: Int): UInt = { val neg = x < 0.S val abs = x.abs.asUInt if (radix != 10) { Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix)) } else { val rad = radix.U val w = abs.getWidth require(w > 0) var q = abs var s = digit(q % rad) var needSign = neg for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad val placeSpace = q === 0.U val space = Mux(needSign, Str('-'), Str(' ')) needSign = needSign && !placeSpace s = Cat(Mux(placeSpace, space, digit(q % rad)), s) } Cat(Mux(needSign, Str('-'), Str(' ')), s) } } private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0) private def validChar(x: Char) = x == (x & 0xFF) } object Split { def apply(x: UInt, n0: Int) = { val w = x.getWidth (x.extract(w-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n2: Int, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } } object Random { def apply(mod: Int, random: UInt): UInt = { if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0) else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod)) } def apply(mod: Int): UInt = apply(mod, randomizer) def oneHot(mod: Int, random: UInt): UInt = { if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0)) else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt } def oneHot(mod: Int): UInt = oneHot(mod, randomizer) private def randomizer = LFSR(16) private def partition(value: UInt, slices: Int) = Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U) } object Majority { def apply(in: Set[Bool]): Bool = { val n = (in.size >> 1) + 1 val clauses = in.subsets(n).map(_.reduce(_ && _)) clauses.reduce(_ || _) } def apply(in: Seq[Bool]): Bool = apply(in.toSet) def apply(in: UInt): Bool = apply(in.asBools.toSet) } object PopCountAtLeast { private def two(x: UInt): (Bool, Bool) = x.getWidth match { case 1 => (x.asBool, false.B) case n => val half = x.getWidth / 2 val (leftOne, leftTwo) = two(x(half - 1, 0)) val (rightOne, rightTwo) = two(x(x.getWidth - 1, half)) (leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne)) } def apply(x: UInt, n: Int): Bool = n match { case 0 => true.B case 1 => x.orR case 2 => two(x)._2 case 3 => PopCount(x) >= n.U } } // This gets used everywhere, so make the smallest circuit possible ... // Given an address and size, create a mask of beatBytes size // eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111 // groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01 object MaskGen { def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = { require (groupBy >= 1 && beatBytes >= groupBy) require (isPow2(beatBytes) && isPow2(groupBy)) val lgBytes = log2Ceil(beatBytes) val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U def helper(i: Int): Seq[(Bool, Bool)] = { if (i == 0) { Seq((lgSize >= lgBytes.asUInt, true.B)) } else { val sub = helper(i-1) val size = sizeOH(lgBytes - i) val bit = addr_lo(lgBytes - i) val nbit = !bit Seq.tabulate (1 << i) { j => val (sub_acc, sub_eq) = sub(j/2) val eq = sub_eq && (if (j % 2 == 1) bit else nbit) val acc = sub_acc || (size && eq) (acc, eq) } } } if (groupBy == beatBytes) 1.U else Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse) } } File PlusArg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.experimental._ import chisel3.util.HasBlackBoxResource @deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05") case class PlusArgInfo(default: BigInt, docstring: String) /** Case class for PlusArg information * * @tparam A scala type of the PlusArg value * @param default optional default value * @param docstring text to include in the help * @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT) */ private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String) /** Typeclass for converting a type to a doctype string * @tparam A some type */ trait Doctypeable[A] { /** Return the doctype string for some option */ def toDoctype(a: Option[A]): String } /** Object containing implementations of the Doctypeable typeclass */ object Doctypes { /** Converts an Int => "INT" */ implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" } /** Converts a BigInt => "INT" */ implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" } /** Converts a String => "STRING" */ implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" } } class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map( "FORMAT" -> StringParam(format), "DEFAULT" -> IntParam(default), "WIDTH" -> IntParam(width) )) with HasBlackBoxResource { val io = IO(new Bundle { val out = Output(UInt(width.W)) }) addResource("/vsrc/plusarg_reader.v") } /* This wrapper class has no outputs, making it clear it is a simulation-only construct */ class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module { val io = IO(new Bundle { val count = Input(UInt(width.W)) }) val max = Module(new plusarg_reader(format, default, docstring, width)).io.out when (max > 0.U) { assert (io.count < max, s"Timeout exceeded: $docstring") } } import Doctypes._ object PlusArg { /** PlusArg("foo") will return 42.U if the simulation is run with +foo=42 * Do not use this as an initial register value. The value is set in an * initial block and thus accessing it from another initial is racey. * Add a docstring to document the arg, which can be dumped in an elaboration * pass. */ def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out } /** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert * to kill the simulation when count exceeds the specified integer argument. * Default 0 will never assert. */ def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count } } object PlusArgArtefacts { private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty /* Add a new PlusArg */ @deprecated( "Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05" ) def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring) /** Add a new PlusArg * * @tparam A scala type of the PlusArg value * @param name name for the PlusArg * @param default optional default value * @param docstring text to include in the help */ def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit = artefacts = artefacts ++ Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default))) /* From plus args, generate help text */ private def serializeHelp_cHeader(tab: String = ""): String = artefacts .map{ case(arg, info) => s"""|$tab+$arg=${info.doctype}\\n\\ |$tab${" "*20}${info.docstring}\\n\\ |""".stripMargin ++ info.default.map{ case default => s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("") }.toSeq.mkString("\\n\\\n") ++ "\"" /* From plus args, generate a char array of their names */ private def serializeArray_cHeader(tab: String = ""): String = { val prettyTab = tab + " " * 44 // Length of 'static const ...' s"${tab}static const char * verilog_plusargs [] = {\\\n" ++ artefacts .map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" } .mkString("")++ s"${prettyTab}0};" } /* Generate C code to be included in emulator.cc that helps with * argument parsing based on available Verilog PlusArgs */ def serialize_cHeader(): String = s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\ |${serializeHelp_cHeader(" "*7)} |${serializeArray_cHeader()} |""".stripMargin } File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag } File Bundles.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import freechips.rocketchip.util._ import scala.collection.immutable.ListMap import chisel3.util.Decoupled import chisel3.util.DecoupledIO import chisel3.reflect.DataMirror abstract class TLBundleBase(val params: TLBundleParameters) extends Bundle // common combos in lazy policy: // Put + Acquire // Release + AccessAck object TLMessages { // A B C D E def PutFullData = 0.U // . . => AccessAck def PutPartialData = 1.U // . . => AccessAck def ArithmeticData = 2.U // . . => AccessAckData def LogicalData = 3.U // . . => AccessAckData def Get = 4.U // . . => AccessAckData def Hint = 5.U // . . => HintAck def AcquireBlock = 6.U // . => Grant[Data] def AcquirePerm = 7.U // . => Grant[Data] def Probe = 6.U // . => ProbeAck[Data] def AccessAck = 0.U // . . def AccessAckData = 1.U // . . def HintAck = 2.U // . . def ProbeAck = 4.U // . def ProbeAckData = 5.U // . def Release = 6.U // . => ReleaseAck def ReleaseData = 7.U // . => ReleaseAck def Grant = 4.U // . => GrantAck def GrantData = 5.U // . => GrantAck def ReleaseAck = 6.U // . def GrantAck = 0.U // . def isA(x: UInt) = x <= AcquirePerm def isB(x: UInt) = x <= Probe def isC(x: UInt) = x <= ReleaseData def isD(x: UInt) = x <= ReleaseAck def adResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, Grant, Grant) def bcResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, ProbeAck, ProbeAck) def a = Seq( ("PutFullData",TLPermissions.PermMsgReserved), ("PutPartialData",TLPermissions.PermMsgReserved), ("ArithmeticData",TLAtomics.ArithMsg), ("LogicalData",TLAtomics.LogicMsg), ("Get",TLPermissions.PermMsgReserved), ("Hint",TLHints.HintsMsg), ("AcquireBlock",TLPermissions.PermMsgGrow), ("AcquirePerm",TLPermissions.PermMsgGrow)) def b = Seq( ("PutFullData",TLPermissions.PermMsgReserved), ("PutPartialData",TLPermissions.PermMsgReserved), ("ArithmeticData",TLAtomics.ArithMsg), ("LogicalData",TLAtomics.LogicMsg), ("Get",TLPermissions.PermMsgReserved), ("Hint",TLHints.HintsMsg), ("Probe",TLPermissions.PermMsgCap)) def c = Seq( ("AccessAck",TLPermissions.PermMsgReserved), ("AccessAckData",TLPermissions.PermMsgReserved), ("HintAck",TLPermissions.PermMsgReserved), ("Invalid Opcode",TLPermissions.PermMsgReserved), ("ProbeAck",TLPermissions.PermMsgReport), ("ProbeAckData",TLPermissions.PermMsgReport), ("Release",TLPermissions.PermMsgReport), ("ReleaseData",TLPermissions.PermMsgReport)) def d = Seq( ("AccessAck",TLPermissions.PermMsgReserved), ("AccessAckData",TLPermissions.PermMsgReserved), ("HintAck",TLPermissions.PermMsgReserved), ("Invalid Opcode",TLPermissions.PermMsgReserved), ("Grant",TLPermissions.PermMsgCap), ("GrantData",TLPermissions.PermMsgCap), ("ReleaseAck",TLPermissions.PermMsgReserved)) } /** * The three primary TileLink permissions are: * (T)runk: the agent is (or is on inwards path to) the global point of serialization. * (B)ranch: the agent is on an outwards path to * (N)one: * These permissions are permuted by transfer operations in various ways. * Operations can cap permissions, request for them to be grown or shrunk, * or for a report on their current status. */ object TLPermissions { val aWidth = 2 val bdWidth = 2 val cWidth = 3 // Cap types (Grant = new permissions, Probe = permisions <= target) def toT = 0.U(bdWidth.W) def toB = 1.U(bdWidth.W) def toN = 2.U(bdWidth.W) def isCap(x: UInt) = x <= toN // Grow types (Acquire = permissions >= target) def NtoB = 0.U(aWidth.W) def NtoT = 1.U(aWidth.W) def BtoT = 2.U(aWidth.W) def isGrow(x: UInt) = x <= BtoT // Shrink types (ProbeAck, Release) def TtoB = 0.U(cWidth.W) def TtoN = 1.U(cWidth.W) def BtoN = 2.U(cWidth.W) def isShrink(x: UInt) = x <= BtoN // Report types (ProbeAck, Release) def TtoT = 3.U(cWidth.W) def BtoB = 4.U(cWidth.W) def NtoN = 5.U(cWidth.W) def isReport(x: UInt) = x <= NtoN def PermMsgGrow:Seq[String] = Seq("Grow NtoB", "Grow NtoT", "Grow BtoT") def PermMsgCap:Seq[String] = Seq("Cap toT", "Cap toB", "Cap toN") def PermMsgReport:Seq[String] = Seq("Shrink TtoB", "Shrink TtoN", "Shrink BtoN", "Report TotT", "Report BtoB", "Report NtoN") def PermMsgReserved:Seq[String] = Seq("Reserved") } object TLAtomics { val width = 3 // Arithmetic types def MIN = 0.U(width.W) def MAX = 1.U(width.W) def MINU = 2.U(width.W) def MAXU = 3.U(width.W) def ADD = 4.U(width.W) def isArithmetic(x: UInt) = x <= ADD // Logical types def XOR = 0.U(width.W) def OR = 1.U(width.W) def AND = 2.U(width.W) def SWAP = 3.U(width.W) def isLogical(x: UInt) = x <= SWAP def ArithMsg:Seq[String] = Seq("MIN", "MAX", "MINU", "MAXU", "ADD") def LogicMsg:Seq[String] = Seq("XOR", "OR", "AND", "SWAP") } object TLHints { val width = 1 def PREFETCH_READ = 0.U(width.W) def PREFETCH_WRITE = 1.U(width.W) def isHints(x: UInt) = x <= PREFETCH_WRITE def HintsMsg:Seq[String] = Seq("PrefetchRead", "PrefetchWrite") } sealed trait TLChannel extends TLBundleBase { val channelName: String } sealed trait TLDataChannel extends TLChannel sealed trait TLAddrChannel extends TLDataChannel final class TLBundleA(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleA_${params.shortName}" val channelName = "'A' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(List(TLAtomics.width, TLPermissions.aWidth, TLHints.width).max.W) // amo_opcode || grow perms || hint val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // from val address = UInt(params.addressBits.W) // to val user = BundleMap(params.requestFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val mask = UInt((params.dataBits/8).W) val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleB(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleB_${params.shortName}" val channelName = "'B' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.bdWidth.W) // cap perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // to val address = UInt(params.addressBits.W) // from // variable fields during multibeat: val mask = UInt((params.dataBits/8).W) val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleC(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleC_${params.shortName}" val channelName = "'C' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.cWidth.W) // shrink or report perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // from val address = UInt(params.addressBits.W) // to val user = BundleMap(params.requestFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleD(params: TLBundleParameters) extends TLBundleBase(params) with TLDataChannel { override def typeName = s"TLBundleD_${params.shortName}" val channelName = "'D' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.bdWidth.W) // cap perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // to val sink = UInt(params.sinkBits.W) // from val denied = Bool() // implies corrupt iff *Data val user = BundleMap(params.responseFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleE(params: TLBundleParameters) extends TLBundleBase(params) with TLChannel { override def typeName = s"TLBundleE_${params.shortName}" val channelName = "'E' channel" val sink = UInt(params.sinkBits.W) // to } class TLBundle(val params: TLBundleParameters) extends Record { // Emulate a Bundle with elements abcde or ad depending on params.hasBCE private val optA = Some (Decoupled(new TLBundleA(params))) private val optB = params.hasBCE.option(Flipped(Decoupled(new TLBundleB(params)))) private val optC = params.hasBCE.option(Decoupled(new TLBundleC(params))) private val optD = Some (Flipped(Decoupled(new TLBundleD(params)))) private val optE = params.hasBCE.option(Decoupled(new TLBundleE(params))) def a: DecoupledIO[TLBundleA] = optA.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleA(params))))) def b: DecoupledIO[TLBundleB] = optB.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleB(params))))) def c: DecoupledIO[TLBundleC] = optC.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleC(params))))) def d: DecoupledIO[TLBundleD] = optD.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleD(params))))) def e: DecoupledIO[TLBundleE] = optE.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleE(params))))) val elements = if (params.hasBCE) ListMap("e" -> e, "d" -> d, "c" -> c, "b" -> b, "a" -> a) else ListMap("d" -> d, "a" -> a) def tieoff(): Unit = { DataMirror.specifiedDirectionOf(a.ready) match { case SpecifiedDirection.Input => a.ready := false.B c.ready := false.B e.ready := false.B b.valid := false.B d.valid := false.B case SpecifiedDirection.Output => a.valid := false.B c.valid := false.B e.valid := false.B b.ready := false.B d.ready := false.B case _ => } } } object TLBundle { def apply(params: TLBundleParameters) = new TLBundle(params) } class TLAsyncBundleBase(val params: TLAsyncBundleParameters) extends Bundle class TLAsyncBundle(params: TLAsyncBundleParameters) extends TLAsyncBundleBase(params) { val a = new AsyncBundle(new TLBundleA(params.base), params.async) val b = Flipped(new AsyncBundle(new TLBundleB(params.base), params.async)) val c = new AsyncBundle(new TLBundleC(params.base), params.async) val d = Flipped(new AsyncBundle(new TLBundleD(params.base), params.async)) val e = new AsyncBundle(new TLBundleE(params.base), params.async) } class TLRationalBundle(params: TLBundleParameters) extends TLBundleBase(params) { val a = RationalIO(new TLBundleA(params)) val b = Flipped(RationalIO(new TLBundleB(params))) val c = RationalIO(new TLBundleC(params)) val d = Flipped(RationalIO(new TLBundleD(params))) val e = RationalIO(new TLBundleE(params)) } class TLCreditedBundle(params: TLBundleParameters) extends TLBundleBase(params) { val a = CreditedIO(new TLBundleA(params)) val b = Flipped(CreditedIO(new TLBundleB(params))) val c = CreditedIO(new TLBundleC(params)) val d = Flipped(CreditedIO(new TLBundleD(params))) val e = CreditedIO(new TLBundleE(params)) } File Parameters.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.diplomacy import chisel3._ import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor} import freechips.rocketchip.util.ShiftQueue /** Options for describing the attributes of memory regions */ object RegionType { // Define the 'more relaxed than' ordering val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS) sealed trait T extends Ordered[T] { def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this) } case object CACHED extends T // an intermediate agent may have cached a copy of the region for you case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively } // A non-empty half-open range; [start, end) case class IdRange(start: Int, end: Int) extends Ordered[IdRange] { require (start >= 0, s"Ids cannot be negative, but got: $start.") require (start <= end, "Id ranges cannot be negative.") def compare(x: IdRange) = { val primary = (this.start - x.start).signum val secondary = (x.end - this.end).signum if (primary != 0) primary else secondary } def overlaps(x: IdRange) = start < x.end && x.start < end def contains(x: IdRange) = start <= x.start && x.end <= end def contains(x: Int) = start <= x && x < end def contains(x: UInt) = if (size == 0) { false.B } else if (size == 1) { // simple comparison x === start.U } else { // find index of largest different bit val largestDeltaBit = log2Floor(start ^ (end-1)) val smallestCommonBit = largestDeltaBit + 1 // may not exist in x val uncommonMask = (1 << smallestCommonBit) - 1 val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0) // the prefix must match exactly (note: may shift ALL bits away) (x >> smallestCommonBit) === (start >> smallestCommonBit).U && // firrtl constant prop range analysis can eliminate these two: (start & uncommonMask).U <= uncommonBits && uncommonBits <= ((end-1) & uncommonMask).U } def shift(x: Int) = IdRange(start+x, end+x) def size = end - start def isEmpty = end == start def range = start until end } object IdRange { def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else { val ranges = s.sorted (ranges.tail zip ranges.init) find { case (a, b) => a overlaps b } } } // An potentially empty inclusive range of 2-powers [min, max] (in bytes) case class TransferSizes(min: Int, max: Int) { def this(x: Int) = this(x, x) require (min <= max, s"Min transfer $min > max transfer $max") require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)") require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max") require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min") require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)") def none = min == 0 def contains(x: Int) = isPow2(x) && min <= x && x <= max def containsLg(x: Int) = contains(1 << x) def containsLg(x: UInt) = if (none) false.B else if (min == max) { log2Ceil(min).U === x } else { log2Ceil(min).U <= x && x <= log2Ceil(max).U } def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max) def intersect(x: TransferSizes) = if (x.max < min || max < x.min) TransferSizes.none else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max)) // Not a union, because the result may contain sizes contained by neither term // NOT TO BE CONFUSED WITH COVERPOINTS def mincover(x: TransferSizes) = { if (none) { x } else if (x.none) { this } else { TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max)) } } override def toString() = "TransferSizes[%d, %d]".format(min, max) } object TransferSizes { def apply(x: Int) = new TransferSizes(x) val none = new TransferSizes(0) def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _) def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _) implicit def asBool(x: TransferSizes) = !x.none } // AddressSets specify the address space managed by the manager // Base is the base address, and mask are the bits consumed by the manager // e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff // e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ... case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet] { // Forbid misaligned base address (and empty sets) require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}") require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous // We do allow negative mask (=> ignore all high bits) def contains(x: BigInt) = ((x ^ base) & ~mask) == 0 def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S // turn x into an address contained in this set def legalize(x: UInt): UInt = base.U | (mask.U & x) // overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1) def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0 // contains iff bitwise: x.mask => mask && contains(x.base) def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0 // The number of bytes to which the manager must be aligned def alignment = ((mask + 1) & ~mask) // Is this a contiguous memory range def contiguous = alignment == mask+1 def finite = mask >= 0 def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask } // Widen the match function to ignore all bits in imask def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask) // Return an AddressSet that only contains the addresses both sets contain def intersect(x: AddressSet): Option[AddressSet] = { if (!overlaps(x)) { None } else { val r_mask = mask & x.mask val r_base = base | x.base Some(AddressSet(r_base, r_mask)) } } def subtract(x: AddressSet): Seq[AddressSet] = { intersect(x) match { case None => Seq(this) case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit => val nmask = (mask & (bit-1)) | remove.mask val nbase = (remove.base ^ bit) & ~nmask AddressSet(nbase, nmask) } } } // AddressSets have one natural Ordering (the containment order, if contiguous) def compare(x: AddressSet) = { val primary = (this.base - x.base).signum // smallest address first val secondary = (x.mask - this.mask).signum // largest mask first if (primary != 0) primary else secondary } // We always want to see things in hex override def toString() = { if (mask >= 0) { "AddressSet(0x%x, 0x%x)".format(base, mask) } else { "AddressSet(0x%x, ~0x%x)".format(base, ~mask) } } def toRanges = { require (finite, "Ranges cannot be calculated on infinite mask") val size = alignment val fragments = mask & ~(size-1) val bits = bitIndexes(fragments) (BigInt(0) until (BigInt(1) << bits.size)).map { i => val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) } AddressRange(off, size) } } } object AddressSet { val everything = AddressSet(0, -1) def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = { if (size == 0) tail.reverse else { val maxBaseAlignment = base & (-base) // 0 for infinite (LSB) val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size val step = if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment) maxSizeAlignment else maxBaseAlignment misaligned(base+step, size-step, AddressSet(base, step-1) +: tail) } } def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = { // Pair terms up by ignoring 'bit' seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) => if (seq.size == 1) { seq.head // singleton -> unaffected } else { key.copy(mask = key.mask | bit) // pair - widen mask by bit } }.toList } def unify(seq: Seq[AddressSet]): Seq[AddressSet] = { val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _) AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted } def enumerateMask(mask: BigInt): Seq[BigInt] = { def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] = if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail) helper(0, Nil) } def enumerateBits(mask: BigInt): Seq[BigInt] = { def helper(x: BigInt): Seq[BigInt] = { if (x == 0) { Nil } else { val bit = x & (-x) bit +: helper(x & ~bit) } } helper(mask) } } case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean) { require (depth >= 0, "Buffer depth must be >= 0") def isDefined = depth > 0 def latency = if (isDefined && !flow) 1 else 0 def apply[T <: Data](x: DecoupledIO[T]) = if (isDefined) Queue(x, depth, flow=flow, pipe=pipe) else x def irrevocable[T <: Data](x: ReadyValidIO[T]) = if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe) else x def sq[T <: Data](x: DecoupledIO[T]) = if (!isDefined) x else { val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe)) sq.io.enq <> x sq.io.deq } override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "") } object BufferParams { implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false) val default = BufferParams(2) val none = BufferParams(0) val flow = BufferParams(1, true, false) val pipe = BufferParams(1, false, true) } case class TriStateValue(value: Boolean, set: Boolean) { def update(orig: Boolean) = if (set) value else orig } object TriStateValue { implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true) def unset = TriStateValue(false, false) } trait DirectedBuffers[T] { def copyIn(x: BufferParams): T def copyOut(x: BufferParams): T def copyInOut(x: BufferParams): T } trait IdMapEntry { def name: String def from: IdRange def to: IdRange def isCache: Boolean def requestFifo: Boolean def maxTransactionsInFlight: Option[Int] def pretty(fmt: String) = if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5 fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } else { fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } } abstract class IdMap[T <: IdMapEntry] { protected val fmt: String val mapping: Seq[T] def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n") } File Edges.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.util._ class TLEdge( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdgeParameters(client, manager, params, sourceInfo) { def isAligned(address: UInt, lgSize: UInt): Bool = { if (maxLgSize == 0) true.B else { val mask = UIntToOH1(lgSize, maxLgSize) (address & mask) === 0.U } } def mask(address: UInt, lgSize: UInt): UInt = MaskGen(address, lgSize, manager.beatBytes) def staticHasData(bundle: TLChannel): Option[Boolean] = { bundle match { case _:TLBundleA => { // Do there exist A messages with Data? val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial // Do there exist A messages without Data? val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint // Statically optimize the case where hasData is a constant if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None } case _:TLBundleB => { // Do there exist B messages with Data? val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial // Do there exist B messages without Data? val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint // Statically optimize the case where hasData is a constant if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None } case _:TLBundleC => { // Do there eixst C messages with Data? val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe // Do there exist C messages without Data? val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None } case _:TLBundleD => { // Do there eixst D messages with Data? val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB // Do there exist D messages without Data? val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None } case _:TLBundleE => Some(false) } } def isRequest(x: TLChannel): Bool = { x match { case a: TLBundleA => true.B case b: TLBundleB => true.B case c: TLBundleC => c.opcode(2) && c.opcode(1) // opcode === TLMessages.Release || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(2) && !d.opcode(1) // opcode === TLMessages.Grant || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } } def isResponse(x: TLChannel): Bool = { x match { case a: TLBundleA => false.B case b: TLBundleB => false.B case c: TLBundleC => !c.opcode(2) || !c.opcode(1) // opcode =/= TLMessages.Release && // opcode =/= TLMessages.ReleaseData case d: TLBundleD => true.B // Grant isResponse + isRequest case e: TLBundleE => true.B } } def hasData(x: TLChannel): Bool = { val opdata = x match { case a: TLBundleA => !a.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case b: TLBundleB => !b.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case c: TLBundleC => c.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.ProbeAckData || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } staticHasData(x).map(_.B).getOrElse(opdata) } def opcode(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.opcode case b: TLBundleB => b.opcode case c: TLBundleC => c.opcode case d: TLBundleD => d.opcode } } def param(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.param case b: TLBundleB => b.param case c: TLBundleC => c.param case d: TLBundleD => d.param } } def size(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.size case b: TLBundleB => b.size case c: TLBundleC => c.size case d: TLBundleD => d.size } } def data(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.data case b: TLBundleB => b.data case c: TLBundleC => c.data case d: TLBundleD => d.data } } def corrupt(x: TLDataChannel): Bool = { x match { case a: TLBundleA => a.corrupt case b: TLBundleB => b.corrupt case c: TLBundleC => c.corrupt case d: TLBundleD => d.corrupt } } def mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.mask case b: TLBundleB => b.mask case c: TLBundleC => mask(c.address, c.size) } } def full_mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => mask(a.address, a.size) case b: TLBundleB => mask(b.address, b.size) case c: TLBundleC => mask(c.address, c.size) } } def address(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.address case b: TLBundleB => b.address case c: TLBundleC => c.address } } def source(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.source case b: TLBundleB => b.source case c: TLBundleC => c.source case d: TLBundleD => d.source } } def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes) def addr_lo(x: UInt): UInt = if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0) def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x)) def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x)) def numBeats(x: TLChannel): UInt = { x match { case _: TLBundleE => 1.U case bundle: TLDataChannel => { val hasData = this.hasData(bundle) val size = this.size(bundle) val cutoff = log2Ceil(manager.beatBytes) val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U val decode = UIntToOH(size, maxLgSize+1) >> cutoff Mux(hasData, decode | small.asUInt, 1.U) } } } def numBeats1(x: TLChannel): UInt = { x match { case _: TLBundleE => 0.U case bundle: TLDataChannel => { if (maxLgSize == 0) { 0.U } else { val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes) Mux(hasData(bundle), decode, 0.U) } } } } def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val beats1 = numBeats1(bits) val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W)) val counter1 = counter - 1.U val first = counter === 0.U val last = counter === 1.U || beats1 === 0.U val done = last && fire val count = (beats1 & ~counter1) when (fire) { counter := Mux(first, beats1, counter1) } (first, last, done, count) } def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1 def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire) def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid) def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2 def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire) def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid) def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3 def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire) def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid) def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3) } def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire) def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid) def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4) } def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire) def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid) def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes)) } def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire) def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid) // Does the request need T permissions to be executed? def needT(a: TLBundleA): Bool = { val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLPermissions.NtoB -> false.B, TLPermissions.NtoT -> true.B, TLPermissions.BtoT -> true.B)) MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array( TLMessages.PutFullData -> true.B, TLMessages.PutPartialData -> true.B, TLMessages.ArithmeticData -> true.B, TLMessages.LogicalData -> true.B, TLMessages.Get -> false.B, TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLHints.PREFETCH_READ -> false.B, TLHints.PREFETCH_WRITE -> true.B)), TLMessages.AcquireBlock -> acq_needT, TLMessages.AcquirePerm -> acq_needT)) } // This is a very expensive circuit; use only if you really mean it! def inFlight(x: TLBundle): (UInt, UInt) = { val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W)) val bce = manager.anySupportAcquireB && client.anySupportProbe val (a_first, a_last, _) = firstlast(x.a) val (b_first, b_last, _) = firstlast(x.b) val (c_first, c_last, _) = firstlast(x.c) val (d_first, d_last, _) = firstlast(x.d) val (e_first, e_last, _) = firstlast(x.e) val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits)) val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits)) val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits)) val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits)) val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits)) val a_inc = x.a.fire && a_first && a_request val b_inc = x.b.fire && b_first && b_request val c_inc = x.c.fire && c_first && c_request val d_inc = x.d.fire && d_first && d_request val e_inc = x.e.fire && e_first && e_request val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil)) val a_dec = x.a.fire && a_last && a_response val b_dec = x.b.fire && b_last && b_response val c_dec = x.c.fire && c_last && c_response val d_dec = x.d.fire && d_last && d_response val e_dec = x.e.fire && e_last && e_response val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil)) val next_flight = flight + PopCount(inc) - PopCount(dec) flight := next_flight (flight, next_flight) } def prettySourceMapping(context: String): String = { s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n" } } class TLEdgeOut( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { // Transfers def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquireBlock a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquirePerm a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.Release c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ReleaseData c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) = Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B) def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAck c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions, data) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAckData c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B) def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink) def GrantAck(toSink: UInt): TLBundleE = { val e = Wire(new TLBundleE(bundle)) e.sink := toSink e } // Accesses def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsGetFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Get a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutFullFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutFullData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, mask, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutPartialFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutPartialData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask a.data := data a.corrupt := corrupt (legal, a) } def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = { require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsArithmeticFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.ArithmeticData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsLogicalFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.LogicalData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = { require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsHintFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Hint a.param := param a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data) def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAckData c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size) def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.HintAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } } class TLEdgeIn( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = { val todo = x.filter(!_.isEmpty) val heads = todo.map(_.head) val tails = todo.map(_.tail) if (todo.isEmpty) Nil else { heads +: myTranspose(tails) } } // Transfers def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = { require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}") val legal = client.supportsProbe(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Probe b.param := capPermissions b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.Grant d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.GrantData d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B) def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.ReleaseAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } // Accesses def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = { require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsGet(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Get b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsPutFull(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutFullData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, mask, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsPutPartial(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutPartialData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask b.data := data b.corrupt := corrupt (legal, b) } def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsArithmetic(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.ArithmeticData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsLogical(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.LogicalData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = { require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsHint(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Hint b.param := param b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size) def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied) def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B) def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data) def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAckData d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B) def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied) def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B) def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.HintAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } }
module TLMonitor_50( // @[Monitor.scala:36:7] input clock, // @[Monitor.scala:36:7] input reset, // @[Monitor.scala:36:7] input io_in_a_ready, // @[Monitor.scala:20:14] input io_in_a_valid, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_size, // @[Monitor.scala:20:14] input [3:0] io_in_a_bits_source, // @[Monitor.scala:20:14] input [27:0] io_in_a_bits_address, // @[Monitor.scala:20:14] input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14] input [63:0] io_in_a_bits_data, // @[Monitor.scala:20:14] input io_in_a_bits_corrupt, // @[Monitor.scala:20:14] input io_in_d_ready, // @[Monitor.scala:20:14] input io_in_d_valid, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14] input [1:0] io_in_d_bits_param, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_size, // @[Monitor.scala:20:14] input [3:0] io_in_d_bits_source, // @[Monitor.scala:20:14] input io_in_d_bits_sink, // @[Monitor.scala:20:14] input io_in_d_bits_denied, // @[Monitor.scala:20:14] input [63:0] io_in_d_bits_data, // @[Monitor.scala:20:14] input io_in_d_bits_corrupt // @[Monitor.scala:20:14] ); wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11] wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11] wire io_in_a_ready_0 = io_in_a_ready; // @[Monitor.scala:36:7] wire io_in_a_valid_0 = io_in_a_valid; // @[Monitor.scala:36:7] wire [2:0] io_in_a_bits_opcode_0 = io_in_a_bits_opcode; // @[Monitor.scala:36:7] wire [2:0] io_in_a_bits_param_0 = io_in_a_bits_param; // @[Monitor.scala:36:7] wire [2:0] io_in_a_bits_size_0 = io_in_a_bits_size; // @[Monitor.scala:36:7] wire [3:0] io_in_a_bits_source_0 = io_in_a_bits_source; // @[Monitor.scala:36:7] wire [27:0] io_in_a_bits_address_0 = io_in_a_bits_address; // @[Monitor.scala:36:7] wire [7:0] io_in_a_bits_mask_0 = io_in_a_bits_mask; // @[Monitor.scala:36:7] wire [63:0] io_in_a_bits_data_0 = io_in_a_bits_data; // @[Monitor.scala:36:7] wire io_in_a_bits_corrupt_0 = io_in_a_bits_corrupt; // @[Monitor.scala:36:7] wire io_in_d_ready_0 = io_in_d_ready; // @[Monitor.scala:36:7] wire io_in_d_valid_0 = io_in_d_valid; // @[Monitor.scala:36:7] wire [2:0] io_in_d_bits_opcode_0 = io_in_d_bits_opcode; // @[Monitor.scala:36:7] wire [1:0] io_in_d_bits_param_0 = io_in_d_bits_param; // @[Monitor.scala:36:7] wire [2:0] io_in_d_bits_size_0 = io_in_d_bits_size; // @[Monitor.scala:36:7] wire [3:0] io_in_d_bits_source_0 = io_in_d_bits_source; // @[Monitor.scala:36:7] wire io_in_d_bits_sink_0 = io_in_d_bits_sink; // @[Monitor.scala:36:7] wire io_in_d_bits_denied_0 = io_in_d_bits_denied; // @[Monitor.scala:36:7] wire [63:0] io_in_d_bits_data_0 = io_in_d_bits_data; // @[Monitor.scala:36:7] wire io_in_d_bits_corrupt_0 = io_in_d_bits_corrupt; // @[Monitor.scala:36:7] wire _source_ok_T = 1'h0; // @[Parameters.scala:54:10] wire _source_ok_T_6 = 1'h0; // @[Parameters.scala:54:10] wire sink_ok = 1'h0; // @[Monitor.scala:309:31] wire _c_first_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_first_T = 1'h0; // @[Decoupled.scala:51:35] wire c_first_beats1_opdata = 1'h0; // @[Edges.scala:102:36] wire _c_first_last_T = 1'h0; // @[Edges.scala:232:25] wire c_first_done = 1'h0; // @[Edges.scala:233:22] wire _c_set_wo_ready_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_set_wo_ready_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_set_wo_ready_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_T = 1'h0; // @[Monitor.scala:772:47] wire _c_probe_ack_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_T_1 = 1'h0; // @[Monitor.scala:772:95] wire c_probe_ack = 1'h0; // @[Monitor.scala:772:71] wire _same_cycle_resp_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_T_3 = 1'h0; // @[Monitor.scala:795:44] wire _same_cycle_resp_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_T_4 = 1'h0; // @[Edges.scala:68:36] wire _same_cycle_resp_T_5 = 1'h0; // @[Edges.scala:68:51] wire _same_cycle_resp_T_6 = 1'h0; // @[Edges.scala:68:40] wire _same_cycle_resp_T_7 = 1'h0; // @[Monitor.scala:795:55] wire _same_cycle_resp_WIRE_4_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_4_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_4_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_5_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_5_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_5_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire same_cycle_resp_1 = 1'h0; // @[Monitor.scala:795:88] wire [2:0] responseMap_0 = 3'h0; // @[Monitor.scala:643:42] wire [2:0] responseMap_1 = 3'h0; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_0 = 3'h0; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_1 = 3'h0; // @[Monitor.scala:644:42] wire [2:0] _c_first_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] c_first_beats1_decode = 3'h0; // @[Edges.scala:220:59] wire [2:0] c_first_beats1 = 3'h0; // @[Edges.scala:221:14] wire [2:0] _c_first_count_T = 3'h0; // @[Edges.scala:234:27] wire [2:0] c_first_count = 3'h0; // @[Edges.scala:234:25] wire [2:0] _c_first_counter_T = 3'h0; // @[Edges.scala:236:21] wire [2:0] _c_set_wo_ready_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_wo_ready_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_wo_ready_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_4_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_4_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_4_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_5_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_5_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_5_bits_size = 3'h0; // @[Bundles.scala:265:61] wire _source_ok_T_1 = 1'h1; // @[Parameters.scala:54:32] wire _source_ok_T_2 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_3 = 1'h1; // @[Parameters.scala:54:67] wire _source_ok_T_7 = 1'h1; // @[Parameters.scala:54:32] wire _source_ok_T_8 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_9 = 1'h1; // @[Parameters.scala:54:67] wire c_first = 1'h1; // @[Edges.scala:231:25] wire _c_first_last_T_1 = 1'h1; // @[Edges.scala:232:43] wire c_first_last = 1'h1; // @[Edges.scala:232:33] wire [2:0] c_first_counter1 = 3'h7; // @[Edges.scala:230:28] wire [3:0] _c_first_counter1_T = 4'hF; // @[Edges.scala:230:28] wire [63:0] _c_first_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_first_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_first_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_first_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_set_wo_ready_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_set_wo_ready_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_opcodes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_opcodes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_sizes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_sizes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_opcodes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_opcodes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_sizes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_sizes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_probe_ack_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_probe_ack_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_probe_ack_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_probe_ack_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _same_cycle_resp_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _same_cycle_resp_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _same_cycle_resp_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _same_cycle_resp_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _same_cycle_resp_WIRE_4_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _same_cycle_resp_WIRE_5_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [27:0] _c_first_WIRE_bits_address = 28'h0; // @[Bundles.scala:265:74] wire [27:0] _c_first_WIRE_1_bits_address = 28'h0; // @[Bundles.scala:265:61] wire [27:0] _c_first_WIRE_2_bits_address = 28'h0; // @[Bundles.scala:265:74] wire [27:0] _c_first_WIRE_3_bits_address = 28'h0; // @[Bundles.scala:265:61] wire [27:0] _c_set_wo_ready_WIRE_bits_address = 28'h0; // @[Bundles.scala:265:74] wire [27:0] _c_set_wo_ready_WIRE_1_bits_address = 28'h0; // @[Bundles.scala:265:61] wire [27:0] _c_set_WIRE_bits_address = 28'h0; // @[Bundles.scala:265:74] wire [27:0] _c_set_WIRE_1_bits_address = 28'h0; // @[Bundles.scala:265:61] wire [27:0] _c_opcodes_set_interm_WIRE_bits_address = 28'h0; // @[Bundles.scala:265:74] wire [27:0] _c_opcodes_set_interm_WIRE_1_bits_address = 28'h0; // @[Bundles.scala:265:61] wire [27:0] _c_sizes_set_interm_WIRE_bits_address = 28'h0; // @[Bundles.scala:265:74] wire [27:0] _c_sizes_set_interm_WIRE_1_bits_address = 28'h0; // @[Bundles.scala:265:61] wire [27:0] _c_opcodes_set_WIRE_bits_address = 28'h0; // @[Bundles.scala:265:74] wire [27:0] _c_opcodes_set_WIRE_1_bits_address = 28'h0; // @[Bundles.scala:265:61] wire [27:0] _c_sizes_set_WIRE_bits_address = 28'h0; // @[Bundles.scala:265:74] wire [27:0] _c_sizes_set_WIRE_1_bits_address = 28'h0; // @[Bundles.scala:265:61] wire [27:0] _c_probe_ack_WIRE_bits_address = 28'h0; // @[Bundles.scala:265:74] wire [27:0] _c_probe_ack_WIRE_1_bits_address = 28'h0; // @[Bundles.scala:265:61] wire [27:0] _c_probe_ack_WIRE_2_bits_address = 28'h0; // @[Bundles.scala:265:74] wire [27:0] _c_probe_ack_WIRE_3_bits_address = 28'h0; // @[Bundles.scala:265:61] wire [27:0] _same_cycle_resp_WIRE_bits_address = 28'h0; // @[Bundles.scala:265:74] wire [27:0] _same_cycle_resp_WIRE_1_bits_address = 28'h0; // @[Bundles.scala:265:61] wire [27:0] _same_cycle_resp_WIRE_2_bits_address = 28'h0; // @[Bundles.scala:265:74] wire [27:0] _same_cycle_resp_WIRE_3_bits_address = 28'h0; // @[Bundles.scala:265:61] wire [27:0] _same_cycle_resp_WIRE_4_bits_address = 28'h0; // @[Bundles.scala:265:74] wire [27:0] _same_cycle_resp_WIRE_5_bits_address = 28'h0; // @[Bundles.scala:265:61] wire [3:0] _c_first_WIRE_bits_source = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_first_WIRE_1_bits_source = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_first_WIRE_2_bits_source = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_first_WIRE_3_bits_source = 4'h0; // @[Bundles.scala:265:61] wire [3:0] c_opcodes_set_interm = 4'h0; // @[Monitor.scala:754:40] wire [3:0] c_sizes_set_interm = 4'h0; // @[Monitor.scala:755:40] wire [3:0] _c_set_wo_ready_WIRE_bits_source = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_set_wo_ready_WIRE_1_bits_source = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_set_WIRE_bits_source = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_set_WIRE_1_bits_source = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_opcodes_set_interm_WIRE_bits_source = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_opcodes_set_interm_WIRE_1_bits_source = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_opcodes_set_interm_T = 4'h0; // @[Monitor.scala:765:53] wire [3:0] _c_sizes_set_interm_WIRE_bits_source = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_sizes_set_interm_WIRE_1_bits_source = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_sizes_set_interm_T = 4'h0; // @[Monitor.scala:766:51] wire [3:0] _c_opcodes_set_WIRE_bits_source = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_opcodes_set_WIRE_1_bits_source = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_sizes_set_WIRE_bits_source = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_sizes_set_WIRE_1_bits_source = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_probe_ack_WIRE_bits_source = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_probe_ack_WIRE_1_bits_source = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_probe_ack_WIRE_2_bits_source = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_probe_ack_WIRE_3_bits_source = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _same_cycle_resp_WIRE_bits_source = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _same_cycle_resp_WIRE_1_bits_source = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _same_cycle_resp_WIRE_2_bits_source = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _same_cycle_resp_WIRE_3_bits_source = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _same_cycle_resp_WIRE_4_bits_source = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _same_cycle_resp_WIRE_5_bits_source = 4'h0; // @[Bundles.scala:265:61] wire [15:0] _a_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _a_size_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _d_opcodes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _d_sizes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _c_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57] wire [15:0] _c_size_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57] wire [15:0] _d_opcodes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57] wire [15:0] _d_sizes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57] wire [16:0] _a_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _a_size_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _d_opcodes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _d_sizes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _c_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57] wire [16:0] _c_size_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57] wire [16:0] _d_opcodes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57] wire [16:0] _d_sizes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57] wire [15:0] _a_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _a_size_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _d_opcodes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _d_sizes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _c_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51] wire [15:0] _c_size_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51] wire [15:0] _d_opcodes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51] wire [15:0] _d_sizes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51] wire [130:0] _c_opcodes_set_T_1 = 131'h0; // @[Monitor.scala:767:54] wire [130:0] _c_sizes_set_T_1 = 131'h0; // @[Monitor.scala:768:52] wire [6:0] _c_opcodes_set_T = 7'h0; // @[Monitor.scala:767:79] wire [6:0] _c_sizes_set_T = 7'h0; // @[Monitor.scala:768:77] wire [3:0] _c_opcodes_set_interm_T_1 = 4'h1; // @[Monitor.scala:765:61] wire [3:0] _c_sizes_set_interm_T_1 = 4'h1; // @[Monitor.scala:766:59] wire [15:0] _c_set_wo_ready_T = 16'h1; // @[OneHot.scala:58:35] wire [15:0] _c_set_T = 16'h1; // @[OneHot.scala:58:35] wire [39:0] c_opcodes_set = 40'h0; // @[Monitor.scala:740:34] wire [39:0] c_sizes_set = 40'h0; // @[Monitor.scala:741:34] wire [9:0] c_set = 10'h0; // @[Monitor.scala:738:34] wire [9:0] c_set_wo_ready = 10'h0; // @[Monitor.scala:739:34] wire [5:0] _c_first_beats1_decode_T_2 = 6'h0; // @[package.scala:243:46] wire [5:0] _c_first_beats1_decode_T_1 = 6'h3F; // @[package.scala:243:76] wire [12:0] _c_first_beats1_decode_T = 13'h3F; // @[package.scala:243:71] wire [2:0] responseMap_6 = 3'h4; // @[Monitor.scala:643:42] wire [2:0] responseMap_7 = 3'h4; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_7 = 3'h4; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_6 = 3'h5; // @[Monitor.scala:644:42] wire [2:0] responseMap_5 = 3'h2; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_5 = 3'h2; // @[Monitor.scala:644:42] wire [2:0] responseMap_2 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMap_3 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMap_4 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_2 = 3'h1; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_3 = 3'h1; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_4 = 3'h1; // @[Monitor.scala:644:42] wire [3:0] _a_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:637:123] wire [3:0] _a_size_lookup_T_2 = 4'h4; // @[Monitor.scala:641:117] wire [3:0] _d_opcodes_clr_T = 4'h4; // @[Monitor.scala:680:48] wire [3:0] _d_sizes_clr_T = 4'h4; // @[Monitor.scala:681:48] wire [3:0] _c_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:749:123] wire [3:0] _c_size_lookup_T_2 = 4'h4; // @[Monitor.scala:750:119] wire [3:0] _d_opcodes_clr_T_6 = 4'h4; // @[Monitor.scala:790:48] wire [3:0] _d_sizes_clr_T_6 = 4'h4; // @[Monitor.scala:791:48] wire [2:0] _mask_sizeOH_T = io_in_a_bits_size_0; // @[Misc.scala:202:34] wire [3:0] _source_ok_uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [3:0] _uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [3:0] _uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [3:0] _uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [3:0] _uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [3:0] _uncommonBits_T_4 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [3:0] _uncommonBits_T_5 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [3:0] _uncommonBits_T_6 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [3:0] _uncommonBits_T_7 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [3:0] _uncommonBits_T_8 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [3:0] _source_ok_uncommonBits_T_1 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [3:0] source_ok_uncommonBits = _source_ok_uncommonBits_T; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_4 = source_ok_uncommonBits < 4'hA; // @[Parameters.scala:52:56, :57:20] wire _source_ok_T_5 = _source_ok_T_4; // @[Parameters.scala:56:48, :57:20] wire _source_ok_WIRE_0 = _source_ok_T_5; // @[Parameters.scala:1138:31] wire [12:0] _GEN = 13'h3F << io_in_a_bits_size_0; // @[package.scala:243:71] wire [12:0] _is_aligned_mask_T; // @[package.scala:243:71] assign _is_aligned_mask_T = _GEN; // @[package.scala:243:71] wire [12:0] _a_first_beats1_decode_T; // @[package.scala:243:71] assign _a_first_beats1_decode_T = _GEN; // @[package.scala:243:71] wire [12:0] _a_first_beats1_decode_T_3; // @[package.scala:243:71] assign _a_first_beats1_decode_T_3 = _GEN; // @[package.scala:243:71] wire [5:0] _is_aligned_mask_T_1 = _is_aligned_mask_T[5:0]; // @[package.scala:243:{71,76}] wire [5:0] is_aligned_mask = ~_is_aligned_mask_T_1; // @[package.scala:243:{46,76}] wire [27:0] _is_aligned_T = {22'h0, io_in_a_bits_address_0[5:0] & is_aligned_mask}; // @[package.scala:243:46] wire is_aligned = _is_aligned_T == 28'h0; // @[Edges.scala:21:{16,24}] wire [1:0] mask_sizeOH_shiftAmount = _mask_sizeOH_T[1:0]; // @[OneHot.scala:64:49] wire [3:0] _mask_sizeOH_T_1 = 4'h1 << mask_sizeOH_shiftAmount; // @[OneHot.scala:64:49, :65:12] wire [2:0] _mask_sizeOH_T_2 = _mask_sizeOH_T_1[2:0]; // @[OneHot.scala:65:{12,27}] wire [2:0] mask_sizeOH = {_mask_sizeOH_T_2[2:1], 1'h1}; // @[OneHot.scala:65:27] wire mask_sub_sub_sub_0_1 = io_in_a_bits_size_0 > 3'h2; // @[Misc.scala:206:21] wire mask_sub_sub_size = mask_sizeOH[2]; // @[Misc.scala:202:81, :209:26] wire mask_sub_sub_bit = io_in_a_bits_address_0[2]; // @[Misc.scala:210:26] wire mask_sub_sub_1_2 = mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27] wire mask_sub_sub_nbit = ~mask_sub_sub_bit; // @[Misc.scala:210:26, :211:20] wire mask_sub_sub_0_2 = mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_sub_acc_T = mask_sub_sub_size & mask_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_0_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T; // @[Misc.scala:206:21, :215:{29,38}] wire _mask_sub_sub_acc_T_1 = mask_sub_sub_size & mask_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_1_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T_1; // @[Misc.scala:206:21, :215:{29,38}] wire mask_sub_size = mask_sizeOH[1]; // @[Misc.scala:202:81, :209:26] wire mask_sub_bit = io_in_a_bits_address_0[1]; // @[Misc.scala:210:26] wire mask_sub_nbit = ~mask_sub_bit; // @[Misc.scala:210:26, :211:20] wire mask_sub_0_2 = mask_sub_sub_0_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_acc_T = mask_sub_size & mask_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_0_1 = mask_sub_sub_0_1 | _mask_sub_acc_T; // @[Misc.scala:215:{29,38}] wire mask_sub_1_2 = mask_sub_sub_0_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_acc_T_1 = mask_sub_size & mask_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_1_1 = mask_sub_sub_0_1 | _mask_sub_acc_T_1; // @[Misc.scala:215:{29,38}] wire mask_sub_2_2 = mask_sub_sub_1_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_acc_T_2 = mask_sub_size & mask_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_2_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_2; // @[Misc.scala:215:{29,38}] wire mask_sub_3_2 = mask_sub_sub_1_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_acc_T_3 = mask_sub_size & mask_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_3_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_3; // @[Misc.scala:215:{29,38}] wire mask_size = mask_sizeOH[0]; // @[Misc.scala:202:81, :209:26] wire mask_bit = io_in_a_bits_address_0[0]; // @[Misc.scala:210:26] wire mask_nbit = ~mask_bit; // @[Misc.scala:210:26, :211:20] wire mask_eq = mask_sub_0_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T = mask_size & mask_eq; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc = mask_sub_0_1 | _mask_acc_T; // @[Misc.scala:215:{29,38}] wire mask_eq_1 = mask_sub_0_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_1 = mask_size & mask_eq_1; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_1 = mask_sub_0_1 | _mask_acc_T_1; // @[Misc.scala:215:{29,38}] wire mask_eq_2 = mask_sub_1_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_2 = mask_size & mask_eq_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_2 = mask_sub_1_1 | _mask_acc_T_2; // @[Misc.scala:215:{29,38}] wire mask_eq_3 = mask_sub_1_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_3 = mask_size & mask_eq_3; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_3 = mask_sub_1_1 | _mask_acc_T_3; // @[Misc.scala:215:{29,38}] wire mask_eq_4 = mask_sub_2_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_4 = mask_size & mask_eq_4; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_4 = mask_sub_2_1 | _mask_acc_T_4; // @[Misc.scala:215:{29,38}] wire mask_eq_5 = mask_sub_2_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_5 = mask_size & mask_eq_5; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_5 = mask_sub_2_1 | _mask_acc_T_5; // @[Misc.scala:215:{29,38}] wire mask_eq_6 = mask_sub_3_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_6 = mask_size & mask_eq_6; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_6 = mask_sub_3_1 | _mask_acc_T_6; // @[Misc.scala:215:{29,38}] wire mask_eq_7 = mask_sub_3_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_7 = mask_size & mask_eq_7; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_7 = mask_sub_3_1 | _mask_acc_T_7; // @[Misc.scala:215:{29,38}] wire [1:0] mask_lo_lo = {mask_acc_1, mask_acc}; // @[Misc.scala:215:29, :222:10] wire [1:0] mask_lo_hi = {mask_acc_3, mask_acc_2}; // @[Misc.scala:215:29, :222:10] wire [3:0] mask_lo = {mask_lo_hi, mask_lo_lo}; // @[Misc.scala:222:10] wire [1:0] mask_hi_lo = {mask_acc_5, mask_acc_4}; // @[Misc.scala:215:29, :222:10] wire [1:0] mask_hi_hi = {mask_acc_7, mask_acc_6}; // @[Misc.scala:215:29, :222:10] wire [3:0] mask_hi = {mask_hi_hi, mask_hi_lo}; // @[Misc.scala:222:10] wire [7:0] mask = {mask_hi, mask_lo}; // @[Misc.scala:222:10] wire [3:0] uncommonBits = _uncommonBits_T; // @[Parameters.scala:52:{29,56}] wire [3:0] uncommonBits_1 = _uncommonBits_T_1; // @[Parameters.scala:52:{29,56}] wire [3:0] uncommonBits_2 = _uncommonBits_T_2; // @[Parameters.scala:52:{29,56}] wire [3:0] uncommonBits_3 = _uncommonBits_T_3; // @[Parameters.scala:52:{29,56}] wire [3:0] uncommonBits_4 = _uncommonBits_T_4; // @[Parameters.scala:52:{29,56}] wire [3:0] uncommonBits_5 = _uncommonBits_T_5; // @[Parameters.scala:52:{29,56}] wire [3:0] uncommonBits_6 = _uncommonBits_T_6; // @[Parameters.scala:52:{29,56}] wire [3:0] uncommonBits_7 = _uncommonBits_T_7; // @[Parameters.scala:52:{29,56}] wire [3:0] uncommonBits_8 = _uncommonBits_T_8; // @[Parameters.scala:52:{29,56}] wire [3:0] source_ok_uncommonBits_1 = _source_ok_uncommonBits_T_1; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_10 = source_ok_uncommonBits_1 < 4'hA; // @[Parameters.scala:52:56, :57:20] wire _source_ok_T_11 = _source_ok_T_10; // @[Parameters.scala:56:48, :57:20] wire _source_ok_WIRE_1_0 = _source_ok_T_11; // @[Parameters.scala:1138:31] wire _T_672 = io_in_a_ready_0 & io_in_a_valid_0; // @[Decoupled.scala:51:35] wire _a_first_T; // @[Decoupled.scala:51:35] assign _a_first_T = _T_672; // @[Decoupled.scala:51:35] wire _a_first_T_1; // @[Decoupled.scala:51:35] assign _a_first_T_1 = _T_672; // @[Decoupled.scala:51:35] wire [5:0] _a_first_beats1_decode_T_1 = _a_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}] wire [5:0] _a_first_beats1_decode_T_2 = ~_a_first_beats1_decode_T_1; // @[package.scala:243:{46,76}] wire [2:0] a_first_beats1_decode = _a_first_beats1_decode_T_2[5:3]; // @[package.scala:243:46] wire _a_first_beats1_opdata_T = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7] wire _a_first_beats1_opdata_T_1 = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7] wire a_first_beats1_opdata = ~_a_first_beats1_opdata_T; // @[Edges.scala:92:{28,37}] wire [2:0] a_first_beats1 = a_first_beats1_opdata ? a_first_beats1_decode : 3'h0; // @[Edges.scala:92:28, :220:59, :221:14] reg [2:0] a_first_counter; // @[Edges.scala:229:27] wire [3:0] _a_first_counter1_T = {1'h0, a_first_counter} - 4'h1; // @[Edges.scala:229:27, :230:28] wire [2:0] a_first_counter1 = _a_first_counter1_T[2:0]; // @[Edges.scala:230:28] wire a_first = a_first_counter == 3'h0; // @[Edges.scala:229:27, :231:25] wire _a_first_last_T = a_first_counter == 3'h1; // @[Edges.scala:229:27, :232:25] wire _a_first_last_T_1 = a_first_beats1 == 3'h0; // @[Edges.scala:221:14, :232:43] wire a_first_last = _a_first_last_T | _a_first_last_T_1; // @[Edges.scala:232:{25,33,43}] wire a_first_done = a_first_last & _a_first_T; // @[Decoupled.scala:51:35] wire [2:0] _a_first_count_T = ~a_first_counter1; // @[Edges.scala:230:28, :234:27] wire [2:0] a_first_count = a_first_beats1 & _a_first_count_T; // @[Edges.scala:221:14, :234:{25,27}] wire [2:0] _a_first_counter_T = a_first ? a_first_beats1 : a_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] reg [2:0] opcode; // @[Monitor.scala:387:22] reg [2:0] param; // @[Monitor.scala:388:22] reg [2:0] size; // @[Monitor.scala:389:22] reg [3:0] source; // @[Monitor.scala:390:22] reg [27:0] address; // @[Monitor.scala:391:22] wire _T_745 = io_in_d_ready_0 & io_in_d_valid_0; // @[Decoupled.scala:51:35] wire _d_first_T; // @[Decoupled.scala:51:35] assign _d_first_T = _T_745; // @[Decoupled.scala:51:35] wire _d_first_T_1; // @[Decoupled.scala:51:35] assign _d_first_T_1 = _T_745; // @[Decoupled.scala:51:35] wire _d_first_T_2; // @[Decoupled.scala:51:35] assign _d_first_T_2 = _T_745; // @[Decoupled.scala:51:35] wire [12:0] _GEN_0 = 13'h3F << io_in_d_bits_size_0; // @[package.scala:243:71] wire [12:0] _d_first_beats1_decode_T; // @[package.scala:243:71] assign _d_first_beats1_decode_T = _GEN_0; // @[package.scala:243:71] wire [12:0] _d_first_beats1_decode_T_3; // @[package.scala:243:71] assign _d_first_beats1_decode_T_3 = _GEN_0; // @[package.scala:243:71] wire [12:0] _d_first_beats1_decode_T_6; // @[package.scala:243:71] assign _d_first_beats1_decode_T_6 = _GEN_0; // @[package.scala:243:71] wire [5:0] _d_first_beats1_decode_T_1 = _d_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}] wire [5:0] _d_first_beats1_decode_T_2 = ~_d_first_beats1_decode_T_1; // @[package.scala:243:{46,76}] wire [2:0] d_first_beats1_decode = _d_first_beats1_decode_T_2[5:3]; // @[package.scala:243:46] wire d_first_beats1_opdata = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire d_first_beats1_opdata_1 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire d_first_beats1_opdata_2 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire [2:0] d_first_beats1 = d_first_beats1_opdata ? d_first_beats1_decode : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [2:0] d_first_counter; // @[Edges.scala:229:27] wire [3:0] _d_first_counter1_T = {1'h0, d_first_counter} - 4'h1; // @[Edges.scala:229:27, :230:28] wire [2:0] d_first_counter1 = _d_first_counter1_T[2:0]; // @[Edges.scala:230:28] wire d_first = d_first_counter == 3'h0; // @[Edges.scala:229:27, :231:25] wire _d_first_last_T = d_first_counter == 3'h1; // @[Edges.scala:229:27, :232:25] wire _d_first_last_T_1 = d_first_beats1 == 3'h0; // @[Edges.scala:221:14, :232:43] wire d_first_last = _d_first_last_T | _d_first_last_T_1; // @[Edges.scala:232:{25,33,43}] wire d_first_done = d_first_last & _d_first_T; // @[Decoupled.scala:51:35] wire [2:0] _d_first_count_T = ~d_first_counter1; // @[Edges.scala:230:28, :234:27] wire [2:0] d_first_count = d_first_beats1 & _d_first_count_T; // @[Edges.scala:221:14, :234:{25,27}] wire [2:0] _d_first_counter_T = d_first ? d_first_beats1 : d_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] reg [2:0] opcode_1; // @[Monitor.scala:538:22] reg [1:0] param_1; // @[Monitor.scala:539:22] reg [2:0] size_1; // @[Monitor.scala:540:22] reg [3:0] source_1; // @[Monitor.scala:541:22] reg sink; // @[Monitor.scala:542:22] reg denied; // @[Monitor.scala:543:22] reg [9:0] inflight; // @[Monitor.scala:614:27] reg [39:0] inflight_opcodes; // @[Monitor.scala:616:35] reg [39:0] inflight_sizes; // @[Monitor.scala:618:33] wire [5:0] _a_first_beats1_decode_T_4 = _a_first_beats1_decode_T_3[5:0]; // @[package.scala:243:{71,76}] wire [5:0] _a_first_beats1_decode_T_5 = ~_a_first_beats1_decode_T_4; // @[package.scala:243:{46,76}] wire [2:0] a_first_beats1_decode_1 = _a_first_beats1_decode_T_5[5:3]; // @[package.scala:243:46] wire a_first_beats1_opdata_1 = ~_a_first_beats1_opdata_T_1; // @[Edges.scala:92:{28,37}] wire [2:0] a_first_beats1_1 = a_first_beats1_opdata_1 ? a_first_beats1_decode_1 : 3'h0; // @[Edges.scala:92:28, :220:59, :221:14] reg [2:0] a_first_counter_1; // @[Edges.scala:229:27] wire [3:0] _a_first_counter1_T_1 = {1'h0, a_first_counter_1} - 4'h1; // @[Edges.scala:229:27, :230:28] wire [2:0] a_first_counter1_1 = _a_first_counter1_T_1[2:0]; // @[Edges.scala:230:28] wire a_first_1 = a_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25] wire _a_first_last_T_2 = a_first_counter_1 == 3'h1; // @[Edges.scala:229:27, :232:25] wire _a_first_last_T_3 = a_first_beats1_1 == 3'h0; // @[Edges.scala:221:14, :232:43] wire a_first_last_1 = _a_first_last_T_2 | _a_first_last_T_3; // @[Edges.scala:232:{25,33,43}] wire a_first_done_1 = a_first_last_1 & _a_first_T_1; // @[Decoupled.scala:51:35] wire [2:0] _a_first_count_T_1 = ~a_first_counter1_1; // @[Edges.scala:230:28, :234:27] wire [2:0] a_first_count_1 = a_first_beats1_1 & _a_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}] wire [2:0] _a_first_counter_T_1 = a_first_1 ? a_first_beats1_1 : a_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [5:0] _d_first_beats1_decode_T_4 = _d_first_beats1_decode_T_3[5:0]; // @[package.scala:243:{71,76}] wire [5:0] _d_first_beats1_decode_T_5 = ~_d_first_beats1_decode_T_4; // @[package.scala:243:{46,76}] wire [2:0] d_first_beats1_decode_1 = _d_first_beats1_decode_T_5[5:3]; // @[package.scala:243:46] wire [2:0] d_first_beats1_1 = d_first_beats1_opdata_1 ? d_first_beats1_decode_1 : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [2:0] d_first_counter_1; // @[Edges.scala:229:27] wire [3:0] _d_first_counter1_T_1 = {1'h0, d_first_counter_1} - 4'h1; // @[Edges.scala:229:27, :230:28] wire [2:0] d_first_counter1_1 = _d_first_counter1_T_1[2:0]; // @[Edges.scala:230:28] wire d_first_1 = d_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25] wire _d_first_last_T_2 = d_first_counter_1 == 3'h1; // @[Edges.scala:229:27, :232:25] wire _d_first_last_T_3 = d_first_beats1_1 == 3'h0; // @[Edges.scala:221:14, :232:43] wire d_first_last_1 = _d_first_last_T_2 | _d_first_last_T_3; // @[Edges.scala:232:{25,33,43}] wire d_first_done_1 = d_first_last_1 & _d_first_T_1; // @[Decoupled.scala:51:35] wire [2:0] _d_first_count_T_1 = ~d_first_counter1_1; // @[Edges.scala:230:28, :234:27] wire [2:0] d_first_count_1 = d_first_beats1_1 & _d_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}] wire [2:0] _d_first_counter_T_1 = d_first_1 ? d_first_beats1_1 : d_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [9:0] a_set; // @[Monitor.scala:626:34] wire [9:0] a_set_wo_ready; // @[Monitor.scala:627:34] wire [39:0] a_opcodes_set; // @[Monitor.scala:630:33] wire [39:0] a_sizes_set; // @[Monitor.scala:632:31] wire [2:0] a_opcode_lookup; // @[Monitor.scala:635:35] wire [6:0] _GEN_1 = {1'h0, io_in_d_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :637:69] wire [6:0] _a_opcode_lookup_T; // @[Monitor.scala:637:69] assign _a_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69] wire [6:0] _a_size_lookup_T; // @[Monitor.scala:641:65] assign _a_size_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :641:65] wire [6:0] _d_opcodes_clr_T_4; // @[Monitor.scala:680:101] assign _d_opcodes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :680:101] wire [6:0] _d_sizes_clr_T_4; // @[Monitor.scala:681:99] assign _d_sizes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :681:99] wire [6:0] _c_opcode_lookup_T; // @[Monitor.scala:749:69] assign _c_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :749:69] wire [6:0] _c_size_lookup_T; // @[Monitor.scala:750:67] assign _c_size_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :750:67] wire [6:0] _d_opcodes_clr_T_10; // @[Monitor.scala:790:101] assign _d_opcodes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :790:101] wire [6:0] _d_sizes_clr_T_10; // @[Monitor.scala:791:99] assign _d_sizes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :791:99] wire [39:0] _a_opcode_lookup_T_1 = inflight_opcodes >> _a_opcode_lookup_T; // @[Monitor.scala:616:35, :637:{44,69}] wire [39:0] _a_opcode_lookup_T_6 = {36'h0, _a_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:637:{44,97}] wire [39:0] _a_opcode_lookup_T_7 = {1'h0, _a_opcode_lookup_T_6[39:1]}; // @[Monitor.scala:637:{97,152}] assign a_opcode_lookup = _a_opcode_lookup_T_7[2:0]; // @[Monitor.scala:635:35, :637:{21,152}] wire [3:0] a_size_lookup; // @[Monitor.scala:639:33] wire [39:0] _a_size_lookup_T_1 = inflight_sizes >> _a_size_lookup_T; // @[Monitor.scala:618:33, :641:{40,65}] wire [39:0] _a_size_lookup_T_6 = {36'h0, _a_size_lookup_T_1[3:0]}; // @[Monitor.scala:641:{40,91}] wire [39:0] _a_size_lookup_T_7 = {1'h0, _a_size_lookup_T_6[39:1]}; // @[Monitor.scala:641:{91,144}] assign a_size_lookup = _a_size_lookup_T_7[3:0]; // @[Monitor.scala:639:33, :641:{19,144}] wire [3:0] a_opcodes_set_interm; // @[Monitor.scala:646:40] wire [3:0] a_sizes_set_interm; // @[Monitor.scala:648:38] wire _same_cycle_resp_T = io_in_a_valid_0 & a_first_1; // @[Monitor.scala:36:7, :651:26, :684:44] wire [15:0] _GEN_2 = 16'h1 << io_in_a_bits_source_0; // @[OneHot.scala:58:35] wire [15:0] _a_set_wo_ready_T; // @[OneHot.scala:58:35] assign _a_set_wo_ready_T = _GEN_2; // @[OneHot.scala:58:35] wire [15:0] _a_set_T; // @[OneHot.scala:58:35] assign _a_set_T = _GEN_2; // @[OneHot.scala:58:35] assign a_set_wo_ready = _same_cycle_resp_T ? _a_set_wo_ready_T[9:0] : 10'h0; // @[OneHot.scala:58:35] wire _T_598 = _T_672 & a_first_1; // @[Decoupled.scala:51:35] assign a_set = _T_598 ? _a_set_T[9:0] : 10'h0; // @[OneHot.scala:58:35] wire [3:0] _a_opcodes_set_interm_T = {io_in_a_bits_opcode_0, 1'h0}; // @[Monitor.scala:36:7, :657:53] wire [3:0] _a_opcodes_set_interm_T_1 = {_a_opcodes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:657:{53,61}] assign a_opcodes_set_interm = _T_598 ? _a_opcodes_set_interm_T_1 : 4'h0; // @[Monitor.scala:646:40, :655:{25,70}, :657:{28,61}] wire [3:0] _a_sizes_set_interm_T = {io_in_a_bits_size_0, 1'h0}; // @[Monitor.scala:36:7, :658:51] wire [3:0] _a_sizes_set_interm_T_1 = {_a_sizes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:658:{51,59}] assign a_sizes_set_interm = _T_598 ? _a_sizes_set_interm_T_1 : 4'h0; // @[Monitor.scala:648:38, :655:{25,70}, :658:{28,59}] wire [6:0] _GEN_3 = {1'h0, io_in_a_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :659:79] wire [6:0] _a_opcodes_set_T; // @[Monitor.scala:659:79] assign _a_opcodes_set_T = _GEN_3; // @[Monitor.scala:659:79] wire [6:0] _a_sizes_set_T; // @[Monitor.scala:660:77] assign _a_sizes_set_T = _GEN_3; // @[Monitor.scala:659:79, :660:77] wire [130:0] _a_opcodes_set_T_1 = {127'h0, a_opcodes_set_interm} << _a_opcodes_set_T; // @[Monitor.scala:646:40, :659:{54,79}] assign a_opcodes_set = _T_598 ? _a_opcodes_set_T_1[39:0] : 40'h0; // @[Monitor.scala:630:33, :655:{25,70}, :659:{28,54}] wire [130:0] _a_sizes_set_T_1 = {127'h0, a_sizes_set_interm} << _a_sizes_set_T; // @[Monitor.scala:648:38, :659:54, :660:{52,77}] assign a_sizes_set = _T_598 ? _a_sizes_set_T_1[39:0] : 40'h0; // @[Monitor.scala:632:31, :655:{25,70}, :660:{28,52}] wire [9:0] d_clr; // @[Monitor.scala:664:34] wire [9:0] d_clr_wo_ready; // @[Monitor.scala:665:34] wire [39:0] d_opcodes_clr; // @[Monitor.scala:668:33] wire [39:0] d_sizes_clr; // @[Monitor.scala:670:31] wire _GEN_4 = io_in_d_bits_opcode_0 == 3'h6; // @[Monitor.scala:36:7, :673:46] wire d_release_ack; // @[Monitor.scala:673:46] assign d_release_ack = _GEN_4; // @[Monitor.scala:673:46] wire d_release_ack_1; // @[Monitor.scala:783:46] assign d_release_ack_1 = _GEN_4; // @[Monitor.scala:673:46, :783:46] wire _T_644 = io_in_d_valid_0 & d_first_1; // @[Monitor.scala:36:7, :674:26] wire [15:0] _GEN_5 = 16'h1 << io_in_d_bits_source_0; // @[OneHot.scala:58:35] wire [15:0] _d_clr_wo_ready_T; // @[OneHot.scala:58:35] assign _d_clr_wo_ready_T = _GEN_5; // @[OneHot.scala:58:35] wire [15:0] _d_clr_T; // @[OneHot.scala:58:35] assign _d_clr_T = _GEN_5; // @[OneHot.scala:58:35] wire [15:0] _d_clr_wo_ready_T_1; // @[OneHot.scala:58:35] assign _d_clr_wo_ready_T_1 = _GEN_5; // @[OneHot.scala:58:35] wire [15:0] _d_clr_T_1; // @[OneHot.scala:58:35] assign _d_clr_T_1 = _GEN_5; // @[OneHot.scala:58:35] assign d_clr_wo_ready = _T_644 & ~d_release_ack ? _d_clr_wo_ready_T[9:0] : 10'h0; // @[OneHot.scala:58:35] wire _T_613 = _T_745 & d_first_1 & ~d_release_ack; // @[Decoupled.scala:51:35] assign d_clr = _T_613 ? _d_clr_T[9:0] : 10'h0; // @[OneHot.scala:58:35] wire [142:0] _d_opcodes_clr_T_5 = 143'hF << _d_opcodes_clr_T_4; // @[Monitor.scala:680:{76,101}] assign d_opcodes_clr = _T_613 ? _d_opcodes_clr_T_5[39:0] : 40'h0; // @[Monitor.scala:668:33, :678:{25,70,89}, :680:{21,76}] wire [142:0] _d_sizes_clr_T_5 = 143'hF << _d_sizes_clr_T_4; // @[Monitor.scala:681:{74,99}] assign d_sizes_clr = _T_613 ? _d_sizes_clr_T_5[39:0] : 40'h0; // @[Monitor.scala:670:31, :678:{25,70,89}, :681:{21,74}] wire _same_cycle_resp_T_1 = _same_cycle_resp_T; // @[Monitor.scala:684:{44,55}] wire _same_cycle_resp_T_2 = io_in_a_bits_source_0 == io_in_d_bits_source_0; // @[Monitor.scala:36:7, :684:113] wire same_cycle_resp = _same_cycle_resp_T_1 & _same_cycle_resp_T_2; // @[Monitor.scala:684:{55,88,113}] wire [9:0] _inflight_T = inflight | a_set; // @[Monitor.scala:614:27, :626:34, :705:27] wire [9:0] _inflight_T_1 = ~d_clr; // @[Monitor.scala:664:34, :705:38] wire [9:0] _inflight_T_2 = _inflight_T & _inflight_T_1; // @[Monitor.scala:705:{27,36,38}] wire [39:0] _inflight_opcodes_T = inflight_opcodes | a_opcodes_set; // @[Monitor.scala:616:35, :630:33, :706:43] wire [39:0] _inflight_opcodes_T_1 = ~d_opcodes_clr; // @[Monitor.scala:668:33, :706:62] wire [39:0] _inflight_opcodes_T_2 = _inflight_opcodes_T & _inflight_opcodes_T_1; // @[Monitor.scala:706:{43,60,62}] wire [39:0] _inflight_sizes_T = inflight_sizes | a_sizes_set; // @[Monitor.scala:618:33, :632:31, :707:39] wire [39:0] _inflight_sizes_T_1 = ~d_sizes_clr; // @[Monitor.scala:670:31, :707:56] wire [39:0] _inflight_sizes_T_2 = _inflight_sizes_T & _inflight_sizes_T_1; // @[Monitor.scala:707:{39,54,56}] reg [31:0] watchdog; // @[Monitor.scala:709:27] wire [32:0] _watchdog_T = {1'h0, watchdog} + 33'h1; // @[Monitor.scala:709:27, :714:26] wire [31:0] _watchdog_T_1 = _watchdog_T[31:0]; // @[Monitor.scala:714:26] reg [9:0] inflight_1; // @[Monitor.scala:726:35] wire [9:0] _inflight_T_3 = inflight_1; // @[Monitor.scala:726:35, :814:35] reg [39:0] inflight_opcodes_1; // @[Monitor.scala:727:35] wire [39:0] _inflight_opcodes_T_3 = inflight_opcodes_1; // @[Monitor.scala:727:35, :815:43] reg [39:0] inflight_sizes_1; // @[Monitor.scala:728:35] wire [39:0] _inflight_sizes_T_3 = inflight_sizes_1; // @[Monitor.scala:728:35, :816:41] wire [5:0] _d_first_beats1_decode_T_7 = _d_first_beats1_decode_T_6[5:0]; // @[package.scala:243:{71,76}] wire [5:0] _d_first_beats1_decode_T_8 = ~_d_first_beats1_decode_T_7; // @[package.scala:243:{46,76}] wire [2:0] d_first_beats1_decode_2 = _d_first_beats1_decode_T_8[5:3]; // @[package.scala:243:46] wire [2:0] d_first_beats1_2 = d_first_beats1_opdata_2 ? d_first_beats1_decode_2 : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [2:0] d_first_counter_2; // @[Edges.scala:229:27] wire [3:0] _d_first_counter1_T_2 = {1'h0, d_first_counter_2} - 4'h1; // @[Edges.scala:229:27, :230:28] wire [2:0] d_first_counter1_2 = _d_first_counter1_T_2[2:0]; // @[Edges.scala:230:28] wire d_first_2 = d_first_counter_2 == 3'h0; // @[Edges.scala:229:27, :231:25] wire _d_first_last_T_4 = d_first_counter_2 == 3'h1; // @[Edges.scala:229:27, :232:25] wire _d_first_last_T_5 = d_first_beats1_2 == 3'h0; // @[Edges.scala:221:14, :232:43] wire d_first_last_2 = _d_first_last_T_4 | _d_first_last_T_5; // @[Edges.scala:232:{25,33,43}] wire d_first_done_2 = d_first_last_2 & _d_first_T_2; // @[Decoupled.scala:51:35] wire [2:0] _d_first_count_T_2 = ~d_first_counter1_2; // @[Edges.scala:230:28, :234:27] wire [2:0] d_first_count_2 = d_first_beats1_2 & _d_first_count_T_2; // @[Edges.scala:221:14, :234:{25,27}] wire [2:0] _d_first_counter_T_2 = d_first_2 ? d_first_beats1_2 : d_first_counter1_2; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [3:0] c_opcode_lookup; // @[Monitor.scala:747:35] wire [3:0] c_size_lookup; // @[Monitor.scala:748:35] wire [39:0] _c_opcode_lookup_T_1 = inflight_opcodes_1 >> _c_opcode_lookup_T; // @[Monitor.scala:727:35, :749:{44,69}] wire [39:0] _c_opcode_lookup_T_6 = {36'h0, _c_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:749:{44,97}] wire [39:0] _c_opcode_lookup_T_7 = {1'h0, _c_opcode_lookup_T_6[39:1]}; // @[Monitor.scala:749:{97,152}] assign c_opcode_lookup = _c_opcode_lookup_T_7[3:0]; // @[Monitor.scala:747:35, :749:{21,152}] wire [39:0] _c_size_lookup_T_1 = inflight_sizes_1 >> _c_size_lookup_T; // @[Monitor.scala:728:35, :750:{42,67}] wire [39:0] _c_size_lookup_T_6 = {36'h0, _c_size_lookup_T_1[3:0]}; // @[Monitor.scala:750:{42,93}] wire [39:0] _c_size_lookup_T_7 = {1'h0, _c_size_lookup_T_6[39:1]}; // @[Monitor.scala:750:{93,146}] assign c_size_lookup = _c_size_lookup_T_7[3:0]; // @[Monitor.scala:748:35, :750:{21,146}] wire [9:0] d_clr_1; // @[Monitor.scala:774:34] wire [9:0] d_clr_wo_ready_1; // @[Monitor.scala:775:34] wire [39:0] d_opcodes_clr_1; // @[Monitor.scala:776:34] wire [39:0] d_sizes_clr_1; // @[Monitor.scala:777:34] wire _T_716 = io_in_d_valid_0 & d_first_2; // @[Monitor.scala:36:7, :784:26] assign d_clr_wo_ready_1 = _T_716 & d_release_ack_1 ? _d_clr_wo_ready_T_1[9:0] : 10'h0; // @[OneHot.scala:58:35] wire _T_698 = _T_745 & d_first_2 & d_release_ack_1; // @[Decoupled.scala:51:35] assign d_clr_1 = _T_698 ? _d_clr_T_1[9:0] : 10'h0; // @[OneHot.scala:58:35] wire [142:0] _d_opcodes_clr_T_11 = 143'hF << _d_opcodes_clr_T_10; // @[Monitor.scala:790:{76,101}] assign d_opcodes_clr_1 = _T_698 ? _d_opcodes_clr_T_11[39:0] : 40'h0; // @[Monitor.scala:776:34, :788:{25,70,88}, :790:{21,76}] wire [142:0] _d_sizes_clr_T_11 = 143'hF << _d_sizes_clr_T_10; // @[Monitor.scala:791:{74,99}] assign d_sizes_clr_1 = _T_698 ? _d_sizes_clr_T_11[39:0] : 40'h0; // @[Monitor.scala:777:34, :788:{25,70,88}, :791:{21,74}] wire _same_cycle_resp_T_8 = io_in_d_bits_source_0 == 4'h0; // @[Monitor.scala:36:7, :795:113] wire [9:0] _inflight_T_4 = ~d_clr_1; // @[Monitor.scala:774:34, :814:46] wire [9:0] _inflight_T_5 = _inflight_T_3 & _inflight_T_4; // @[Monitor.scala:814:{35,44,46}] wire [39:0] _inflight_opcodes_T_4 = ~d_opcodes_clr_1; // @[Monitor.scala:776:34, :815:62] wire [39:0] _inflight_opcodes_T_5 = _inflight_opcodes_T_3 & _inflight_opcodes_T_4; // @[Monitor.scala:815:{43,60,62}] wire [39:0] _inflight_sizes_T_4 = ~d_sizes_clr_1; // @[Monitor.scala:777:34, :816:58] wire [39:0] _inflight_sizes_T_5 = _inflight_sizes_T_3 & _inflight_sizes_T_4; // @[Monitor.scala:816:{41,56,58}] reg [31:0] watchdog_1; // @[Monitor.scala:818:27]
Generate the Verilog code corresponding to the following Chisel files. File Buffer.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import org.chipsalliance.diplomacy.lazymodule._ import freechips.rocketchip.diplomacy.BufferParams class TLBufferNode ( a: BufferParams, b: BufferParams, c: BufferParams, d: BufferParams, e: BufferParams)(implicit valName: ValName) extends TLAdapterNode( clientFn = { p => p.v1copy(minLatency = p.minLatency + b.latency + c.latency) }, managerFn = { p => p.v1copy(minLatency = p.minLatency + a.latency + d.latency) } ) { override lazy val nodedebugstring = s"a:${a.toString}, b:${b.toString}, c:${c.toString}, d:${d.toString}, e:${e.toString}" override def circuitIdentity = List(a,b,c,d,e).forall(_ == BufferParams.none) } class TLBuffer( a: BufferParams, b: BufferParams, c: BufferParams, d: BufferParams, e: BufferParams)(implicit p: Parameters) extends LazyModule { def this(ace: BufferParams, bd: BufferParams)(implicit p: Parameters) = this(ace, bd, ace, bd, ace) def this(abcde: BufferParams)(implicit p: Parameters) = this(abcde, abcde) def this()(implicit p: Parameters) = this(BufferParams.default) val node = new TLBufferNode(a, b, c, d, e) lazy val module = new Impl class Impl extends LazyModuleImp(this) { def headBundle = node.out.head._2.bundle override def desiredName = (Seq("TLBuffer") ++ node.out.headOption.map(_._2.bundle.shortName)).mkString("_") (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => out.a <> a(in .a) in .d <> d(out.d) if (edgeOut.manager.anySupportAcquireB && edgeOut.client.anySupportProbe) { in .b <> b(out.b) out.c <> c(in .c) out.e <> e(in .e) } else { in.b.valid := false.B in.c.ready := true.B in.e.ready := true.B out.b.ready := true.B out.c.valid := false.B out.e.valid := false.B } } } } object TLBuffer { def apply() (implicit p: Parameters): TLNode = apply(BufferParams.default) def apply(abcde: BufferParams) (implicit p: Parameters): TLNode = apply(abcde, abcde) def apply(ace: BufferParams, bd: BufferParams)(implicit p: Parameters): TLNode = apply(ace, bd, ace, bd, ace) def apply( a: BufferParams, b: BufferParams, c: BufferParams, d: BufferParams, e: BufferParams)(implicit p: Parameters): TLNode = { val buffer = LazyModule(new TLBuffer(a, b, c, d, e)) buffer.node } def chain(depth: Int, name: Option[String] = None)(implicit p: Parameters): Seq[TLNode] = { val buffers = Seq.fill(depth) { LazyModule(new TLBuffer()) } name.foreach { n => buffers.zipWithIndex.foreach { case (b, i) => b.suggestName(s"${n}_${i}") } } buffers.map(_.node) } def chainNode(depth: Int, name: Option[String] = None)(implicit p: Parameters): TLNode = { chain(depth, name) .reduceLeftOption(_ :*=* _) .getOrElse(TLNameNode("no_buffer")) } } File Nodes.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import org.chipsalliance.diplomacy.nodes._ import freechips.rocketchip.util.{AsyncQueueParams,RationalDirection} case object TLMonitorBuilder extends Field[TLMonitorArgs => TLMonitorBase](args => new TLMonitor(args)) object TLImp extends NodeImp[TLMasterPortParameters, TLSlavePortParameters, TLEdgeOut, TLEdgeIn, TLBundle] { def edgeO(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeOut(pd, pu, p, sourceInfo) def edgeI(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeIn (pd, pu, p, sourceInfo) def bundleO(eo: TLEdgeOut) = TLBundle(eo.bundle) def bundleI(ei: TLEdgeIn) = TLBundle(ei.bundle) def render(ei: TLEdgeIn) = RenderedEdge(colour = "#000000" /* black */, label = (ei.manager.beatBytes * 8).toString) override def monitor(bundle: TLBundle, edge: TLEdgeIn): Unit = { val monitor = Module(edge.params(TLMonitorBuilder)(TLMonitorArgs(edge))) monitor.io.in := bundle } override def mixO(pd: TLMasterPortParameters, node: OutwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLMasterPortParameters = pd.v1copy(clients = pd.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }) override def mixI(pu: TLSlavePortParameters, node: InwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLSlavePortParameters = pu.v1copy(managers = pu.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }) } trait TLFormatNode extends FormatNode[TLEdgeIn, TLEdgeOut] case class TLClientNode(portParams: Seq[TLMasterPortParameters])(implicit valName: ValName) extends SourceNode(TLImp)(portParams) with TLFormatNode case class TLManagerNode(portParams: Seq[TLSlavePortParameters])(implicit valName: ValName) extends SinkNode(TLImp)(portParams) with TLFormatNode case class TLAdapterNode( clientFn: TLMasterPortParameters => TLMasterPortParameters = { s => s }, managerFn: TLSlavePortParameters => TLSlavePortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLImp)(clientFn, managerFn) with TLFormatNode case class TLJunctionNode( clientFn: Seq[TLMasterPortParameters] => Seq[TLMasterPortParameters], managerFn: Seq[TLSlavePortParameters] => Seq[TLSlavePortParameters])( implicit valName: ValName) extends JunctionNode(TLImp)(clientFn, managerFn) with TLFormatNode case class TLIdentityNode()(implicit valName: ValName) extends IdentityNode(TLImp)() with TLFormatNode object TLNameNode { def apply(name: ValName) = TLIdentityNode()(name) def apply(name: Option[String]): TLIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLIdentityNode = apply(Some(name)) } case class TLEphemeralNode()(implicit valName: ValName) extends EphemeralNode(TLImp)() object TLTempNode { def apply(): TLEphemeralNode = TLEphemeralNode()(ValName("temp")) } case class TLNexusNode( clientFn: Seq[TLMasterPortParameters] => TLMasterPortParameters, managerFn: Seq[TLSlavePortParameters] => TLSlavePortParameters)( implicit valName: ValName) extends NexusNode(TLImp)(clientFn, managerFn) with TLFormatNode abstract class TLCustomNode(implicit valName: ValName) extends CustomNode(TLImp) with TLFormatNode // Asynchronous crossings trait TLAsyncFormatNode extends FormatNode[TLAsyncEdgeParameters, TLAsyncEdgeParameters] object TLAsyncImp extends SimpleNodeImp[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncEdgeParameters, TLAsyncBundle] { def edge(pd: TLAsyncClientPortParameters, pu: TLAsyncManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLAsyncEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLAsyncEdgeParameters) = new TLAsyncBundle(e.bundle) def render(e: TLAsyncEdgeParameters) = RenderedEdge(colour = "#ff0000" /* red */, label = e.manager.async.depth.toString) override def mixO(pd: TLAsyncClientPortParameters, node: OutwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLAsyncManagerPortParameters, node: InwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLAsyncAdapterNode( clientFn: TLAsyncClientPortParameters => TLAsyncClientPortParameters = { s => s }, managerFn: TLAsyncManagerPortParameters => TLAsyncManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLAsyncImp)(clientFn, managerFn) with TLAsyncFormatNode case class TLAsyncIdentityNode()(implicit valName: ValName) extends IdentityNode(TLAsyncImp)() with TLAsyncFormatNode object TLAsyncNameNode { def apply(name: ValName) = TLAsyncIdentityNode()(name) def apply(name: Option[String]): TLAsyncIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLAsyncIdentityNode = apply(Some(name)) } case class TLAsyncSourceNode(sync: Option[Int])(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLAsyncImp)( dFn = { p => TLAsyncClientPortParameters(p) }, uFn = { p => p.base.v1copy(minLatency = p.base.minLatency + sync.getOrElse(p.async.sync)) }) with FormatNode[TLEdgeIn, TLAsyncEdgeParameters] // discard cycles in other clock domain case class TLAsyncSinkNode(async: AsyncQueueParams)(implicit valName: ValName) extends MixedAdapterNode(TLAsyncImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = p.base.minLatency + async.sync) }, uFn = { p => TLAsyncManagerPortParameters(async, p) }) with FormatNode[TLAsyncEdgeParameters, TLEdgeOut] // Rationally related crossings trait TLRationalFormatNode extends FormatNode[TLRationalEdgeParameters, TLRationalEdgeParameters] object TLRationalImp extends SimpleNodeImp[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalEdgeParameters, TLRationalBundle] { def edge(pd: TLRationalClientPortParameters, pu: TLRationalManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLRationalEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLRationalEdgeParameters) = new TLRationalBundle(e.bundle) def render(e: TLRationalEdgeParameters) = RenderedEdge(colour = "#00ff00" /* green */) override def mixO(pd: TLRationalClientPortParameters, node: OutwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLRationalManagerPortParameters, node: InwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLRationalAdapterNode( clientFn: TLRationalClientPortParameters => TLRationalClientPortParameters = { s => s }, managerFn: TLRationalManagerPortParameters => TLRationalManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLRationalImp)(clientFn, managerFn) with TLRationalFormatNode case class TLRationalIdentityNode()(implicit valName: ValName) extends IdentityNode(TLRationalImp)() with TLRationalFormatNode object TLRationalNameNode { def apply(name: ValName) = TLRationalIdentityNode()(name) def apply(name: Option[String]): TLRationalIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLRationalIdentityNode = apply(Some(name)) } case class TLRationalSourceNode()(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLRationalImp)( dFn = { p => TLRationalClientPortParameters(p) }, uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLRationalEdgeParameters] // discard cycles from other clock domain case class TLRationalSinkNode(direction: RationalDirection)(implicit valName: ValName) extends MixedAdapterNode(TLRationalImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = 1) }, uFn = { p => TLRationalManagerPortParameters(direction, p) }) with FormatNode[TLRationalEdgeParameters, TLEdgeOut] // Credited version of TileLink channels trait TLCreditedFormatNode extends FormatNode[TLCreditedEdgeParameters, TLCreditedEdgeParameters] object TLCreditedImp extends SimpleNodeImp[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedEdgeParameters, TLCreditedBundle] { def edge(pd: TLCreditedClientPortParameters, pu: TLCreditedManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLCreditedEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLCreditedEdgeParameters) = new TLCreditedBundle(e.bundle) def render(e: TLCreditedEdgeParameters) = RenderedEdge(colour = "#ffff00" /* yellow */, e.delay.toString) override def mixO(pd: TLCreditedClientPortParameters, node: OutwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLCreditedManagerPortParameters, node: InwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLCreditedAdapterNode( clientFn: TLCreditedClientPortParameters => TLCreditedClientPortParameters = { s => s }, managerFn: TLCreditedManagerPortParameters => TLCreditedManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLCreditedImp)(clientFn, managerFn) with TLCreditedFormatNode case class TLCreditedIdentityNode()(implicit valName: ValName) extends IdentityNode(TLCreditedImp)() with TLCreditedFormatNode object TLCreditedNameNode { def apply(name: ValName) = TLCreditedIdentityNode()(name) def apply(name: Option[String]): TLCreditedIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLCreditedIdentityNode = apply(Some(name)) } case class TLCreditedSourceNode(delay: TLCreditedDelay)(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLCreditedImp)( dFn = { p => TLCreditedClientPortParameters(delay, p) }, uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLCreditedEdgeParameters] // discard cycles from other clock domain case class TLCreditedSinkNode(delay: TLCreditedDelay)(implicit valName: ValName) extends MixedAdapterNode(TLCreditedImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = 1) }, uFn = { p => TLCreditedManagerPortParameters(delay, p) }) with FormatNode[TLCreditedEdgeParameters, TLEdgeOut] File LazyModuleImp.scala: package org.chipsalliance.diplomacy.lazymodule import chisel3.{withClockAndReset, Module, RawModule, Reset, _} import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo} import firrtl.passes.InlineAnnotation import org.chipsalliance.cde.config.Parameters import org.chipsalliance.diplomacy.nodes.Dangle import scala.collection.immutable.SortedMap /** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]]. * * This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy. */ sealed trait LazyModuleImpLike extends RawModule { /** [[LazyModule]] that contains this instance. */ val wrapper: LazyModule /** IOs that will be automatically "punched" for this instance. */ val auto: AutoBundle /** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */ protected[diplomacy] val dangles: Seq[Dangle] // [[wrapper.module]] had better not be accessed while LazyModules are still being built! require( LazyModule.scope.isEmpty, s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}" ) /** Set module name. Defaults to the containing LazyModule's desiredName. */ override def desiredName: String = wrapper.desiredName suggestName(wrapper.suggestedName) /** [[Parameters]] for chisel [[Module]]s. */ implicit val p: Parameters = wrapper.p /** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and * submodules. */ protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = { // 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]], // 2. return [[Dangle]]s from each module. val childDangles = wrapper.children.reverse.flatMap { c => implicit val sourceInfo: SourceInfo = c.info c.cloneProto.map { cp => // If the child is a clone, then recursively set cloneProto of its children as well def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = { require(bases.size == clones.size) (bases.zip(clones)).map { case (l, r) => require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}") l.cloneProto = Some(r) assignCloneProtos(l.children, r.children) } } assignCloneProtos(c.children, cp.children) // Clone the child module as a record, and get its [[AutoBundle]] val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName) val clonedAuto = clone("auto").asInstanceOf[AutoBundle] // Get the empty [[Dangle]]'s of the cloned child val rawDangles = c.cloneDangles() require(rawDangles.size == clonedAuto.elements.size) // Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) } dangles }.getOrElse { // For non-clones, instantiate the child module val mod = try { Module(c.module) } catch { case e: ChiselException => { println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}") throw e } } mod.dangles } } // Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]]. // This will result in a sequence of [[Dangle]] from these [[BaseNode]]s. val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate()) // Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]] val allDangles = nodeDangles ++ childDangles // Group [[allDangles]] by their [[source]]. val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*) // For each [[source]] set of [[Dangle]]s of size 2, ensure that these // can be connected as a source-sink pair (have opposite flipped value). // Make the connection and mark them as [[done]]. val done = Set() ++ pairing.values.filter(_.size == 2).map { case Seq(a, b) => require(a.flipped != b.flipped) // @todo <> in chisel3 makes directionless connection. if (a.flipped) { a.data <> b.data } else { b.data <> a.data } a.source case _ => None } // Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module. val forward = allDangles.filter(d => !done(d.source)) // Generate [[AutoBundle]] IO from [[forward]]. val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*)) // Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]] val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) => if (d.flipped) { d.data <> io } else { io <> d.data } d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name) } // Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]]. wrapper.inModuleBody.reverse.foreach { _() } if (wrapper.shouldBeInlined) { chisel3.experimental.annotate(new ChiselAnnotation { def toFirrtl = InlineAnnotation(toNamed) }) } // Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]]. (auto, dangles) } } /** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike { /** Instantiate hardware of this `Module`. */ val (auto, dangles) = instantiate() } /** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike { // These wires are the default clock+reset for all LazyModule children. // It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the // [[LazyRawModuleImp]] children. // Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly. /** drive clock explicitly. */ val childClock: Clock = Wire(Clock()) /** drive reset explicitly. */ val childReset: Reset = Wire(Reset()) // the default is that these are disabled childClock := false.B.asClock childReset := chisel3.DontCare def provideImplicitClockToLazyChildren: Boolean = false val (auto, dangles) = if (provideImplicitClockToLazyChildren) { withClockAndReset(childClock, childReset) { instantiate() } } else { instantiate() } }
module TLBuffer_a32d128s5k4z4u( // @[Buffer.scala:40:9] input clock, // @[Buffer.scala:40:9] input reset, // @[Buffer.scala:40:9] output auto_in_a_ready, // @[LazyModuleImp.scala:107:25] input auto_in_a_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25] input [3:0] auto_in_a_bits_size, // @[LazyModuleImp.scala:107:25] input [4:0] auto_in_a_bits_source, // @[LazyModuleImp.scala:107:25] input [31:0] auto_in_a_bits_address, // @[LazyModuleImp.scala:107:25] input [15:0] auto_in_a_bits_mask, // @[LazyModuleImp.scala:107:25] input [127:0] auto_in_a_bits_data, // @[LazyModuleImp.scala:107:25] input auto_in_d_ready, // @[LazyModuleImp.scala:107:25] output auto_in_d_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25] output [1:0] auto_in_d_bits_param, // @[LazyModuleImp.scala:107:25] output [3:0] auto_in_d_bits_size, // @[LazyModuleImp.scala:107:25] output [4:0] auto_in_d_bits_source, // @[LazyModuleImp.scala:107:25] output [3:0] auto_in_d_bits_sink, // @[LazyModuleImp.scala:107:25] output auto_in_d_bits_denied, // @[LazyModuleImp.scala:107:25] output [127:0] auto_in_d_bits_data, // @[LazyModuleImp.scala:107:25] output auto_in_d_bits_corrupt, // @[LazyModuleImp.scala:107:25] input auto_out_a_ready, // @[LazyModuleImp.scala:107:25] output auto_out_a_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25] output [2:0] auto_out_a_bits_param, // @[LazyModuleImp.scala:107:25] output [3:0] auto_out_a_bits_size, // @[LazyModuleImp.scala:107:25] output [4:0] auto_out_a_bits_source, // @[LazyModuleImp.scala:107:25] output [31:0] auto_out_a_bits_address, // @[LazyModuleImp.scala:107:25] output [15:0] auto_out_a_bits_mask, // @[LazyModuleImp.scala:107:25] output [127:0] auto_out_a_bits_data, // @[LazyModuleImp.scala:107:25] output auto_out_a_bits_corrupt, // @[LazyModuleImp.scala:107:25] output auto_out_d_ready, // @[LazyModuleImp.scala:107:25] input auto_out_d_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25] input [1:0] auto_out_d_bits_param, // @[LazyModuleImp.scala:107:25] input [3:0] auto_out_d_bits_size, // @[LazyModuleImp.scala:107:25] input [4:0] auto_out_d_bits_source, // @[LazyModuleImp.scala:107:25] input [3:0] auto_out_d_bits_sink, // @[LazyModuleImp.scala:107:25] input auto_out_d_bits_denied, // @[LazyModuleImp.scala:107:25] input [127:0] auto_out_d_bits_data, // @[LazyModuleImp.scala:107:25] input auto_out_d_bits_corrupt // @[LazyModuleImp.scala:107:25] ); wire _nodeIn_d_q_io_deq_valid; // @[Decoupled.scala:362:21] wire [2:0] _nodeIn_d_q_io_deq_bits_opcode; // @[Decoupled.scala:362:21] wire [1:0] _nodeIn_d_q_io_deq_bits_param; // @[Decoupled.scala:362:21] wire [3:0] _nodeIn_d_q_io_deq_bits_size; // @[Decoupled.scala:362:21] wire [4:0] _nodeIn_d_q_io_deq_bits_source; // @[Decoupled.scala:362:21] wire [3:0] _nodeIn_d_q_io_deq_bits_sink; // @[Decoupled.scala:362:21] wire _nodeIn_d_q_io_deq_bits_denied; // @[Decoupled.scala:362:21] wire _nodeIn_d_q_io_deq_bits_corrupt; // @[Decoupled.scala:362:21] wire _nodeOut_a_q_io_enq_ready; // @[Decoupled.scala:362:21] TLMonitor_45 monitor ( // @[Nodes.scala:27:25] .clock (clock), .reset (reset), .io_in_a_ready (_nodeOut_a_q_io_enq_ready), // @[Decoupled.scala:362:21] .io_in_a_valid (auto_in_a_valid), .io_in_a_bits_opcode (auto_in_a_bits_opcode), .io_in_a_bits_size (auto_in_a_bits_size), .io_in_a_bits_source (auto_in_a_bits_source), .io_in_a_bits_address (auto_in_a_bits_address), .io_in_a_bits_mask (auto_in_a_bits_mask), .io_in_d_ready (auto_in_d_ready), .io_in_d_valid (_nodeIn_d_q_io_deq_valid), // @[Decoupled.scala:362:21] .io_in_d_bits_opcode (_nodeIn_d_q_io_deq_bits_opcode), // @[Decoupled.scala:362:21] .io_in_d_bits_param (_nodeIn_d_q_io_deq_bits_param), // @[Decoupled.scala:362:21] .io_in_d_bits_size (_nodeIn_d_q_io_deq_bits_size), // @[Decoupled.scala:362:21] .io_in_d_bits_source (_nodeIn_d_q_io_deq_bits_source), // @[Decoupled.scala:362:21] .io_in_d_bits_sink (_nodeIn_d_q_io_deq_bits_sink), // @[Decoupled.scala:362:21] .io_in_d_bits_denied (_nodeIn_d_q_io_deq_bits_denied), // @[Decoupled.scala:362:21] .io_in_d_bits_corrupt (_nodeIn_d_q_io_deq_bits_corrupt) // @[Decoupled.scala:362:21] ); // @[Nodes.scala:27:25] Queue2_TLBundleA_a32d128s5k4z4u nodeOut_a_q ( // @[Decoupled.scala:362:21] .clock (clock), .reset (reset), .io_enq_ready (_nodeOut_a_q_io_enq_ready), .io_enq_valid (auto_in_a_valid), .io_enq_bits_opcode (auto_in_a_bits_opcode), .io_enq_bits_size (auto_in_a_bits_size), .io_enq_bits_source (auto_in_a_bits_source), .io_enq_bits_address (auto_in_a_bits_address), .io_enq_bits_mask (auto_in_a_bits_mask), .io_enq_bits_data (auto_in_a_bits_data), .io_deq_ready (auto_out_a_ready), .io_deq_valid (auto_out_a_valid), .io_deq_bits_opcode (auto_out_a_bits_opcode), .io_deq_bits_param (auto_out_a_bits_param), .io_deq_bits_size (auto_out_a_bits_size), .io_deq_bits_source (auto_out_a_bits_source), .io_deq_bits_address (auto_out_a_bits_address), .io_deq_bits_mask (auto_out_a_bits_mask), .io_deq_bits_data (auto_out_a_bits_data), .io_deq_bits_corrupt (auto_out_a_bits_corrupt) ); // @[Decoupled.scala:362:21] Queue2_TLBundleD_a32d128s5k4z4u nodeIn_d_q ( // @[Decoupled.scala:362:21] .clock (clock), .reset (reset), .io_enq_ready (auto_out_d_ready), .io_enq_valid (auto_out_d_valid), .io_enq_bits_opcode (auto_out_d_bits_opcode), .io_enq_bits_param (auto_out_d_bits_param), .io_enq_bits_size (auto_out_d_bits_size), .io_enq_bits_source (auto_out_d_bits_source), .io_enq_bits_sink (auto_out_d_bits_sink), .io_enq_bits_denied (auto_out_d_bits_denied), .io_enq_bits_data (auto_out_d_bits_data), .io_enq_bits_corrupt (auto_out_d_bits_corrupt), .io_deq_ready (auto_in_d_ready), .io_deq_valid (_nodeIn_d_q_io_deq_valid), .io_deq_bits_opcode (_nodeIn_d_q_io_deq_bits_opcode), .io_deq_bits_param (_nodeIn_d_q_io_deq_bits_param), .io_deq_bits_size (_nodeIn_d_q_io_deq_bits_size), .io_deq_bits_source (_nodeIn_d_q_io_deq_bits_source), .io_deq_bits_sink (_nodeIn_d_q_io_deq_bits_sink), .io_deq_bits_denied (_nodeIn_d_q_io_deq_bits_denied), .io_deq_bits_data (auto_in_d_bits_data), .io_deq_bits_corrupt (_nodeIn_d_q_io_deq_bits_corrupt) ); // @[Decoupled.scala:362:21] assign auto_in_a_ready = _nodeOut_a_q_io_enq_ready; // @[Decoupled.scala:362:21] assign auto_in_d_valid = _nodeIn_d_q_io_deq_valid; // @[Decoupled.scala:362:21] assign auto_in_d_bits_opcode = _nodeIn_d_q_io_deq_bits_opcode; // @[Decoupled.scala:362:21] assign auto_in_d_bits_param = _nodeIn_d_q_io_deq_bits_param; // @[Decoupled.scala:362:21] assign auto_in_d_bits_size = _nodeIn_d_q_io_deq_bits_size; // @[Decoupled.scala:362:21] assign auto_in_d_bits_source = _nodeIn_d_q_io_deq_bits_source; // @[Decoupled.scala:362:21] assign auto_in_d_bits_sink = _nodeIn_d_q_io_deq_bits_sink; // @[Decoupled.scala:362:21] assign auto_in_d_bits_denied = _nodeIn_d_q_io_deq_bits_denied; // @[Decoupled.scala:362:21] assign auto_in_d_bits_corrupt = _nodeIn_d_q_io_deq_bits_corrupt; // @[Decoupled.scala:362:21] endmodule
Generate the Verilog code corresponding to the following Chisel files. File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag }
module OptimizationBarrier_EntryData_15( // @[package.scala:267:30] input clock, // @[package.scala:267:30] input reset, // @[package.scala:267:30] input [19:0] io_x_ppn, // @[package.scala:268:18] input io_x_u, // @[package.scala:268:18] input io_x_g, // @[package.scala:268:18] input io_x_ae, // @[package.scala:268:18] input io_x_sw, // @[package.scala:268:18] input io_x_sx, // @[package.scala:268:18] input io_x_sr, // @[package.scala:268:18] input io_x_pw, // @[package.scala:268:18] input io_x_px, // @[package.scala:268:18] input io_x_pr, // @[package.scala:268:18] input io_x_pal, // @[package.scala:268:18] input io_x_paa, // @[package.scala:268:18] input io_x_eff, // @[package.scala:268:18] input io_x_c, // @[package.scala:268:18] input io_x_fragmented_superpage, // @[package.scala:268:18] output [19:0] io_y_ppn, // @[package.scala:268:18] output io_y_u, // @[package.scala:268:18] output io_y_g, // @[package.scala:268:18] output io_y_ae, // @[package.scala:268:18] output io_y_sw, // @[package.scala:268:18] output io_y_sx, // @[package.scala:268:18] output io_y_sr, // @[package.scala:268:18] output io_y_pw, // @[package.scala:268:18] output io_y_px, // @[package.scala:268:18] output io_y_pr, // @[package.scala:268:18] output io_y_pal, // @[package.scala:268:18] output io_y_paa, // @[package.scala:268:18] output io_y_eff, // @[package.scala:268:18] output io_y_c, // @[package.scala:268:18] output io_y_fragmented_superpage // @[package.scala:268:18] ); wire [19:0] io_x_ppn_0 = io_x_ppn; // @[package.scala:267:30] wire io_x_u_0 = io_x_u; // @[package.scala:267:30] wire io_x_g_0 = io_x_g; // @[package.scala:267:30] wire io_x_ae_0 = io_x_ae; // @[package.scala:267:30] wire io_x_sw_0 = io_x_sw; // @[package.scala:267:30] wire io_x_sx_0 = io_x_sx; // @[package.scala:267:30] wire io_x_sr_0 = io_x_sr; // @[package.scala:267:30] wire io_x_pw_0 = io_x_pw; // @[package.scala:267:30] wire io_x_px_0 = io_x_px; // @[package.scala:267:30] wire io_x_pr_0 = io_x_pr; // @[package.scala:267:30] wire io_x_pal_0 = io_x_pal; // @[package.scala:267:30] wire io_x_paa_0 = io_x_paa; // @[package.scala:267:30] wire io_x_eff_0 = io_x_eff; // @[package.scala:267:30] wire io_x_c_0 = io_x_c; // @[package.scala:267:30] wire io_x_fragmented_superpage_0 = io_x_fragmented_superpage; // @[package.scala:267:30] wire [19:0] io_y_ppn_0 = io_x_ppn_0; // @[package.scala:267:30] wire io_y_u_0 = io_x_u_0; // @[package.scala:267:30] wire io_y_g_0 = io_x_g_0; // @[package.scala:267:30] wire io_y_ae_0 = io_x_ae_0; // @[package.scala:267:30] wire io_y_sw_0 = io_x_sw_0; // @[package.scala:267:30] wire io_y_sx_0 = io_x_sx_0; // @[package.scala:267:30] wire io_y_sr_0 = io_x_sr_0; // @[package.scala:267:30] wire io_y_pw_0 = io_x_pw_0; // @[package.scala:267:30] wire io_y_px_0 = io_x_px_0; // @[package.scala:267:30] wire io_y_pr_0 = io_x_pr_0; // @[package.scala:267:30] wire io_y_pal_0 = io_x_pal_0; // @[package.scala:267:30] wire io_y_paa_0 = io_x_paa_0; // @[package.scala:267:30] wire io_y_eff_0 = io_x_eff_0; // @[package.scala:267:30] wire io_y_c_0 = io_x_c_0; // @[package.scala:267:30] wire io_y_fragmented_superpage_0 = io_x_fragmented_superpage_0; // @[package.scala:267:30] assign io_y_ppn = io_y_ppn_0; // @[package.scala:267:30] assign io_y_u = io_y_u_0; // @[package.scala:267:30] assign io_y_g = io_y_g_0; // @[package.scala:267:30] assign io_y_ae = io_y_ae_0; // @[package.scala:267:30] assign io_y_sw = io_y_sw_0; // @[package.scala:267:30] assign io_y_sx = io_y_sx_0; // @[package.scala:267:30] assign io_y_sr = io_y_sr_0; // @[package.scala:267:30] assign io_y_pw = io_y_pw_0; // @[package.scala:267:30] assign io_y_px = io_y_px_0; // @[package.scala:267:30] assign io_y_pr = io_y_pr_0; // @[package.scala:267:30] assign io_y_pal = io_y_pal_0; // @[package.scala:267:30] assign io_y_paa = io_y_paa_0; // @[package.scala:267:30] assign io_y_eff = io_y_eff_0; // @[package.scala:267:30] assign io_y_c = io_y_c_0; // @[package.scala:267:30] assign io_y_fragmented_superpage = io_y_fragmented_superpage_0; // @[package.scala:267:30] endmodule
Generate the Verilog code corresponding to the following Chisel files. File ShiftRegisterPriorityQueue.scala: package compressacc import chisel3._ import chisel3.util._ import chisel3.util._ // TODO : support enq & deq at the same cycle class PriorityQueueStageIO(keyWidth: Int, value: ValueInfo) extends Bundle { val output_prev = KeyValue(keyWidth, value) val output_nxt = KeyValue(keyWidth, value) val input_prev = Flipped(KeyValue(keyWidth, value)) val input_nxt = Flipped(KeyValue(keyWidth, value)) val cmd = Flipped(Valid(UInt(1.W))) val insert_here = Input(Bool()) val cur_input_keyval = Flipped(KeyValue(keyWidth, value)) val cur_output_keyval = KeyValue(keyWidth, value) } class PriorityQueueStage(keyWidth: Int, value: ValueInfo) extends Module { val io = IO(new PriorityQueueStageIO(keyWidth, value)) dontTouch(io) val CMD_DEQ = 0.U val CMD_ENQ = 1.U val MAX_VALUE = (1 << keyWidth) - 1 val key_reg = RegInit(MAX_VALUE.U(keyWidth.W)) val value_reg = Reg(value) io.output_prev.key := key_reg io.output_prev.value := value_reg io.output_nxt.key := key_reg io.output_nxt.value := value_reg io.cur_output_keyval.key := key_reg io.cur_output_keyval.value := value_reg when (io.cmd.valid) { switch (io.cmd.bits) { is (CMD_DEQ) { key_reg := io.input_nxt.key value_reg := io.input_nxt.value } is (CMD_ENQ) { when (io.insert_here) { key_reg := io.cur_input_keyval.key value_reg := io.cur_input_keyval.value } .elsewhen (key_reg >= io.cur_input_keyval.key) { key_reg := io.input_prev.key value_reg := io.input_prev.value } .otherwise { // do nothing } } } } } object PriorityQueueStage { def apply(keyWidth: Int, v: ValueInfo): PriorityQueueStage = new PriorityQueueStage(keyWidth, v) } // TODO // - This design is not scalable as the enqued_keyval is broadcasted to all the stages // - Add pipeline registers later class PriorityQueueIO(queSize: Int, keyWidth: Int, value: ValueInfo) extends Bundle { val cnt_bits = log2Ceil(queSize+1) val counter = Output(UInt(cnt_bits.W)) val enq = Flipped(Decoupled(KeyValue(keyWidth, value))) val deq = Decoupled(KeyValue(keyWidth, value)) } class PriorityQueue(queSize: Int, keyWidth: Int, value: ValueInfo) extends Module { val keyWidthInternal = keyWidth + 1 val CMD_DEQ = 0.U val CMD_ENQ = 1.U val io = IO(new PriorityQueueIO(queSize, keyWidthInternal, value)) dontTouch(io) val MAX_VALUE = ((1 << keyWidthInternal) - 1).U val cnt_bits = log2Ceil(queSize+1) // do not consider cases where we are inserting more entries then the queSize val counter = RegInit(0.U(cnt_bits.W)) io.counter := counter val full = (counter === queSize.U) val empty = (counter === 0.U) io.deq.valid := !empty io.enq.ready := !full when (io.enq.fire) { counter := counter + 1.U } when (io.deq.fire) { counter := counter - 1.U } val cmd_valid = io.enq.valid || io.deq.ready val cmd = Mux(io.enq.valid, CMD_ENQ, CMD_DEQ) assert(!(io.enq.valid && io.deq.ready)) val stages = Seq.fill(queSize)(Module(new PriorityQueueStage(keyWidthInternal, value))) for (i <- 0 until (queSize - 1)) { stages(i+1).io.input_prev <> stages(i).io.output_nxt stages(i).io.input_nxt <> stages(i+1).io.output_prev } stages(queSize-1).io.input_nxt.key := MAX_VALUE // stages(queSize-1).io.input_nxt.value := stages(queSize-1).io.input_nxt.value.symbol := 0.U // stages(queSize-1).io.input_nxt.value.child(0) := 0.U // stages(queSize-1).io.input_nxt.value.child(1) := 0.U stages(0).io.input_prev.key := io.enq.bits.key stages(0).io.input_prev.value <> io.enq.bits.value for (i <- 0 until queSize) { stages(i).io.cmd.valid := cmd_valid stages(i).io.cmd.bits := cmd stages(i).io.cur_input_keyval <> io.enq.bits } val is_large_or_equal = WireInit(VecInit(Seq.fill(queSize)(false.B))) for (i <- 0 until queSize) { is_large_or_equal(i) := (stages(i).io.cur_output_keyval.key >= io.enq.bits.key) } val is_large_or_equal_cat = Wire(UInt(queSize.W)) is_large_or_equal_cat := Cat(is_large_or_equal.reverse) val insert_here_idx = PriorityEncoder(is_large_or_equal_cat) for (i <- 0 until queSize) { when (i.U === insert_here_idx) { stages(i).io.insert_here := true.B } .otherwise { stages(i).io.insert_here := false.B } } io.deq.bits <> stages(0).io.output_prev }
module PriorityQueueStage_7( // @[ShiftRegisterPriorityQueue.scala:21:7] input clock, // @[ShiftRegisterPriorityQueue.scala:21:7] input reset, // @[ShiftRegisterPriorityQueue.scala:21:7] output [30:0] io_output_prev_key, // @[ShiftRegisterPriorityQueue.scala:22:14] output [9:0] io_output_prev_value_symbol, // @[ShiftRegisterPriorityQueue.scala:22:14] output [30:0] io_output_nxt_key, // @[ShiftRegisterPriorityQueue.scala:22:14] output [9:0] io_output_nxt_value_symbol, // @[ShiftRegisterPriorityQueue.scala:22:14] input [30:0] io_input_prev_key, // @[ShiftRegisterPriorityQueue.scala:22:14] input [9:0] io_input_prev_value_symbol, // @[ShiftRegisterPriorityQueue.scala:22:14] input [30:0] io_input_nxt_key, // @[ShiftRegisterPriorityQueue.scala:22:14] input [9:0] io_input_nxt_value_symbol, // @[ShiftRegisterPriorityQueue.scala:22:14] input io_cmd_valid, // @[ShiftRegisterPriorityQueue.scala:22:14] input io_cmd_bits, // @[ShiftRegisterPriorityQueue.scala:22:14] input io_insert_here, // @[ShiftRegisterPriorityQueue.scala:22:14] input [30:0] io_cur_input_keyval_key, // @[ShiftRegisterPriorityQueue.scala:22:14] input [9:0] io_cur_input_keyval_value_symbol, // @[ShiftRegisterPriorityQueue.scala:22:14] output [30:0] io_cur_output_keyval_key, // @[ShiftRegisterPriorityQueue.scala:22:14] output [9:0] io_cur_output_keyval_value_symbol // @[ShiftRegisterPriorityQueue.scala:22:14] ); wire [30:0] io_input_prev_key_0 = io_input_prev_key; // @[ShiftRegisterPriorityQueue.scala:21:7] wire [9:0] io_input_prev_value_symbol_0 = io_input_prev_value_symbol; // @[ShiftRegisterPriorityQueue.scala:21:7] wire [30:0] io_input_nxt_key_0 = io_input_nxt_key; // @[ShiftRegisterPriorityQueue.scala:21:7] wire [9:0] io_input_nxt_value_symbol_0 = io_input_nxt_value_symbol; // @[ShiftRegisterPriorityQueue.scala:21:7] wire io_cmd_valid_0 = io_cmd_valid; // @[ShiftRegisterPriorityQueue.scala:21:7] wire io_cmd_bits_0 = io_cmd_bits; // @[ShiftRegisterPriorityQueue.scala:21:7] wire io_insert_here_0 = io_insert_here; // @[ShiftRegisterPriorityQueue.scala:21:7] wire [30:0] io_cur_input_keyval_key_0 = io_cur_input_keyval_key; // @[ShiftRegisterPriorityQueue.scala:21:7] wire [9:0] io_cur_input_keyval_value_symbol_0 = io_cur_input_keyval_value_symbol; // @[ShiftRegisterPriorityQueue.scala:21:7] wire [9:0] io_output_prev_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7] wire [30:0] io_output_prev_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7] wire [9:0] io_output_nxt_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7] wire [30:0] io_output_nxt_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7] wire [9:0] io_cur_output_keyval_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7] wire [30:0] io_cur_output_keyval_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7] reg [30:0] key_reg; // @[ShiftRegisterPriorityQueue.scala:30:24] assign io_output_prev_key_0 = key_reg; // @[ShiftRegisterPriorityQueue.scala:21:7, :30:24] assign io_output_nxt_key_0 = key_reg; // @[ShiftRegisterPriorityQueue.scala:21:7, :30:24] assign io_cur_output_keyval_key_0 = key_reg; // @[ShiftRegisterPriorityQueue.scala:21:7, :30:24] reg [9:0] value_reg_symbol; // @[ShiftRegisterPriorityQueue.scala:31:22] assign io_output_prev_value_symbol_0 = value_reg_symbol; // @[ShiftRegisterPriorityQueue.scala:21:7, :31:22] assign io_output_nxt_value_symbol_0 = value_reg_symbol; // @[ShiftRegisterPriorityQueue.scala:21:7, :31:22] assign io_cur_output_keyval_value_symbol_0 = value_reg_symbol; // @[ShiftRegisterPriorityQueue.scala:21:7, :31:22] wire _T_2 = key_reg >= io_cur_input_keyval_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7, :30:24, :52:30] always @(posedge clock) begin // @[ShiftRegisterPriorityQueue.scala:21:7] if (reset) // @[ShiftRegisterPriorityQueue.scala:21:7] key_reg <= 31'h7FFFFFFF; // @[ShiftRegisterPriorityQueue.scala:30:24] else if (io_cmd_valid_0) begin // @[ShiftRegisterPriorityQueue.scala:21:7] if (io_cmd_bits_0) begin // @[ShiftRegisterPriorityQueue.scala:21:7] if (io_insert_here_0) // @[ShiftRegisterPriorityQueue.scala:21:7] key_reg <= io_cur_input_keyval_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7, :30:24] else if (_T_2) // @[ShiftRegisterPriorityQueue.scala:52:30] key_reg <= io_input_prev_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7, :30:24] end else // @[ShiftRegisterPriorityQueue.scala:21:7] key_reg <= io_input_nxt_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7, :30:24] end if (io_cmd_valid_0) begin // @[ShiftRegisterPriorityQueue.scala:21:7] if (io_cmd_bits_0) begin // @[ShiftRegisterPriorityQueue.scala:21:7] if (io_insert_here_0) // @[ShiftRegisterPriorityQueue.scala:21:7] value_reg_symbol <= io_cur_input_keyval_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7, :31:22] else if (_T_2) // @[ShiftRegisterPriorityQueue.scala:52:30] value_reg_symbol <= io_input_prev_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7, :31:22] end else // @[ShiftRegisterPriorityQueue.scala:21:7] value_reg_symbol <= io_input_nxt_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7, :31:22] end always @(posedge) assign io_output_prev_key = io_output_prev_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7] assign io_output_prev_value_symbol = io_output_prev_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7] assign io_output_nxt_key = io_output_nxt_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7] assign io_output_nxt_value_symbol = io_output_nxt_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7] assign io_cur_output_keyval_key = io_cur_output_keyval_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7] assign io_cur_output_keyval_value_symbol = io_cur_output_keyval_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File ShiftReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ // Similar to the Chisel ShiftRegister but allows the user to suggest a // name to the registers that get instantiated, and // to provide a reset value. object ShiftRegInit { def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T = (0 until n).foldRight(in) { case (i, next) => { val r = RegNext(next, init) name.foreach { na => r.suggestName(s"${na}_${i}") } r } } } /** These wrap behavioral * shift registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * The different types vary in their reset behavior: * AsyncResetShiftReg -- Asynchronously reset register array * A W(width) x D(depth) sized array is constructed from D instantiations of a * W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg, * but only used for timing applications */ abstract class AbstractPipelineReg(w: Int = 1) extends Module { val io = IO(new Bundle { val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) } ) } object AbstractPipelineReg { def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = { val chain = Module(gen) name.foreach{ chain.suggestName(_) } chain.io.d := in.asUInt chain.io.q.asTypeOf(in) } } class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) { require(depth > 0, "Depth must be greater than 0.") override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}" val chain = List.tabulate(depth) { i => Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}") } chain.last.io.d := io.d chain.last.io.en := true.B (chain.init zip chain.tail).foreach { case (sink, source) => sink.io.d := source.io.q sink.io.en := true.B } io.q := chain.head.io.q } object AsyncResetShiftReg { def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name) def apply [T <: Data](in: T, depth: Int, name: Option[String]): T = apply(in, depth, 0, name) def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T = apply(in, depth, init.litValue.toInt, name) def apply [T <: Data](in: T, depth: Int, init: T): T = apply (in, depth, init.litValue.toInt, None) } File SynchronizerReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util.{RegEnable, Cat} /** These wrap behavioral * shift and next registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * * These are built up of *ResetSynchronizerPrimitiveShiftReg, * intended to be replaced by the integrator's metastable flops chains or replaced * at this level if they have a multi-bit wide synchronizer primitive. * The different types vary in their reset behavior: * NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin * AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep * 1-bit-wide shift registers. * SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg * * [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference. * * ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross * Clock Domains. */ object SynchronizerResetType extends Enumeration { val NonSync, Inferred, Sync, Async = Value } // Note: this should not be used directly. // Use the companion object to generate this with the correct reset type mixin. private class SynchronizerPrimitiveShiftReg( sync: Int, init: Boolean, resetType: SynchronizerResetType.Value) extends AbstractPipelineReg(1) { val initInt = if (init) 1 else 0 val initPostfix = resetType match { case SynchronizerResetType.NonSync => "" case _ => s"_i${initInt}" } override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}" val chain = List.tabulate(sync) { i => val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B) reg.suggestName(s"sync_$i") } chain.last := io.d.asBool (chain.init zip chain.tail).foreach { case (sink, source) => sink := source } io.q := chain.head.asUInt } private object SynchronizerPrimitiveShiftReg { def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = { val gen: () => SynchronizerPrimitiveShiftReg = resetType match { case SynchronizerResetType.NonSync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) case SynchronizerResetType.Async => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset case SynchronizerResetType.Sync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset case SynchronizerResetType.Inferred => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) } AbstractPipelineReg(gen(), in) } } // Note: This module may end up with a non-AsyncReset type reset. // But the Primitives within will always have AsyncReset type. class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asAsyncReset){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async) } } io.q := Cat(output.reverse) } object AsyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } // Note: This module may end up with a non-Bool type reset. // But the Primitives within will always have Bool reset type. @deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2") class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asBool){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync) } } io.q := Cat(output.reverse) } object SyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred) } io.q := Cat(output.reverse) } object ResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}" val output = Seq.tabulate(w) { i => SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync) } io.q := Cat(output.reverse) } object SynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, None) def apply [T <: Data](in: T): T = apply (in, 3, None) } class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module { override def desiredName = s"ClockCrossingReg_w${w}" val io = IO(new Bundle{ val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) val en = Input(Bool()) }) val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en) io.q := cdc_reg } object ClockCrossingReg { def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = { val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit)) name.foreach{ cdc_reg.suggestName(_) } cdc_reg.io.d := in.asUInt cdc_reg.io.en := en cdc_reg.io.q.asTypeOf(in) } }
module AsyncResetSynchronizerShiftReg_w1_d3_i0_103( // @[SynchronizerReg.scala:80:7] input clock, // @[SynchronizerReg.scala:80:7] input reset, // @[SynchronizerReg.scala:80:7] input io_d, // @[ShiftReg.scala:36:14] output io_q // @[ShiftReg.scala:36:14] ); wire io_d_0 = io_d; // @[SynchronizerReg.scala:80:7] wire _output_T = reset; // @[SynchronizerReg.scala:86:21] wire _output_T_1 = io_d_0; // @[SynchronizerReg.scala:80:7, :87:41] wire output_0; // @[ShiftReg.scala:48:24] wire io_q_0; // @[SynchronizerReg.scala:80:7] assign io_q_0 = output_0; // @[SynchronizerReg.scala:80:7] AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_167 output_chain ( // @[ShiftReg.scala:45:23] .clock (clock), .reset (_output_T), // @[SynchronizerReg.scala:86:21] .io_d (_output_T_1), // @[SynchronizerReg.scala:87:41] .io_q (output_0) ); // @[ShiftReg.scala:45:23] assign io_q = io_q_0; // @[SynchronizerReg.scala:80:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File ShiftReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ // Similar to the Chisel ShiftRegister but allows the user to suggest a // name to the registers that get instantiated, and // to provide a reset value. object ShiftRegInit { def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T = (0 until n).foldRight(in) { case (i, next) => { val r = RegNext(next, init) name.foreach { na => r.suggestName(s"${na}_${i}") } r } } } /** These wrap behavioral * shift registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * The different types vary in their reset behavior: * AsyncResetShiftReg -- Asynchronously reset register array * A W(width) x D(depth) sized array is constructed from D instantiations of a * W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg, * but only used for timing applications */ abstract class AbstractPipelineReg(w: Int = 1) extends Module { val io = IO(new Bundle { val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) } ) } object AbstractPipelineReg { def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = { val chain = Module(gen) name.foreach{ chain.suggestName(_) } chain.io.d := in.asUInt chain.io.q.asTypeOf(in) } } class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) { require(depth > 0, "Depth must be greater than 0.") override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}" val chain = List.tabulate(depth) { i => Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}") } chain.last.io.d := io.d chain.last.io.en := true.B (chain.init zip chain.tail).foreach { case (sink, source) => sink.io.d := source.io.q sink.io.en := true.B } io.q := chain.head.io.q } object AsyncResetShiftReg { def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name) def apply [T <: Data](in: T, depth: Int, name: Option[String]): T = apply(in, depth, 0, name) def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T = apply(in, depth, init.litValue.toInt, name) def apply [T <: Data](in: T, depth: Int, init: T): T = apply (in, depth, init.litValue.toInt, None) } File SynchronizerReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util.{RegEnable, Cat} /** These wrap behavioral * shift and next registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * * These are built up of *ResetSynchronizerPrimitiveShiftReg, * intended to be replaced by the integrator's metastable flops chains or replaced * at this level if they have a multi-bit wide synchronizer primitive. * The different types vary in their reset behavior: * NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin * AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep * 1-bit-wide shift registers. * SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg * * [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference. * * ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross * Clock Domains. */ object SynchronizerResetType extends Enumeration { val NonSync, Inferred, Sync, Async = Value } // Note: this should not be used directly. // Use the companion object to generate this with the correct reset type mixin. private class SynchronizerPrimitiveShiftReg( sync: Int, init: Boolean, resetType: SynchronizerResetType.Value) extends AbstractPipelineReg(1) { val initInt = if (init) 1 else 0 val initPostfix = resetType match { case SynchronizerResetType.NonSync => "" case _ => s"_i${initInt}" } override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}" val chain = List.tabulate(sync) { i => val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B) reg.suggestName(s"sync_$i") } chain.last := io.d.asBool (chain.init zip chain.tail).foreach { case (sink, source) => sink := source } io.q := chain.head.asUInt } private object SynchronizerPrimitiveShiftReg { def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = { val gen: () => SynchronizerPrimitiveShiftReg = resetType match { case SynchronizerResetType.NonSync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) case SynchronizerResetType.Async => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset case SynchronizerResetType.Sync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset case SynchronizerResetType.Inferred => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) } AbstractPipelineReg(gen(), in) } } // Note: This module may end up with a non-AsyncReset type reset. // But the Primitives within will always have AsyncReset type. class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asAsyncReset){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async) } } io.q := Cat(output.reverse) } object AsyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } // Note: This module may end up with a non-Bool type reset. // But the Primitives within will always have Bool reset type. @deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2") class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asBool){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync) } } io.q := Cat(output.reverse) } object SyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred) } io.q := Cat(output.reverse) } object ResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}" val output = Seq.tabulate(w) { i => SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync) } io.q := Cat(output.reverse) } object SynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, None) def apply [T <: Data](in: T): T = apply (in, 3, None) } class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module { override def desiredName = s"ClockCrossingReg_w${w}" val io = IO(new Bundle{ val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) val en = Input(Bool()) }) val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en) io.q := cdc_reg } object ClockCrossingReg { def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = { val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit)) name.foreach{ cdc_reg.suggestName(_) } cdc_reg.io.d := in.asUInt cdc_reg.io.en := en cdc_reg.io.q.asTypeOf(in) } }
module AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_299( // @[SynchronizerReg.scala:68:19] input clock, // @[SynchronizerReg.scala:68:19] input reset, // @[SynchronizerReg.scala:68:19] input io_d, // @[ShiftReg.scala:36:14] output io_q // @[ShiftReg.scala:36:14] ); wire io_d_0 = io_d; // @[SynchronizerReg.scala:68:19] wire _sync_2_T = io_d_0; // @[SynchronizerReg.scala:54:22, :68:19] wire io_q_0; // @[SynchronizerReg.scala:68:19] reg sync_0; // @[SynchronizerReg.scala:51:87] assign io_q_0 = sync_0; // @[SynchronizerReg.scala:51:87, :68:19] reg sync_1; // @[SynchronizerReg.scala:51:87] reg sync_2; // @[SynchronizerReg.scala:51:87] always @(posedge clock or posedge reset) begin // @[SynchronizerReg.scala:68:19] if (reset) begin // @[SynchronizerReg.scala:68:19] sync_0 <= 1'h0; // @[SynchronizerReg.scala:51:87] sync_1 <= 1'h0; // @[SynchronizerReg.scala:51:87] sync_2 <= 1'h0; // @[SynchronizerReg.scala:51:87] end else begin // @[SynchronizerReg.scala:68:19] sync_0 <= sync_1; // @[SynchronizerReg.scala:51:87] sync_1 <= sync_2; // @[SynchronizerReg.scala:51:87] sync_2 <= _sync_2_T; // @[SynchronizerReg.scala:51:87, :54:22] end always @(posedge, posedge)
Generate the Verilog code corresponding to the following Chisel files. File Misc.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ import chisel3.util.random.LFSR import org.chipsalliance.cde.config.Parameters import scala.math._ class ParameterizedBundle(implicit p: Parameters) extends Bundle trait Clocked extends Bundle { val clock = Clock() val reset = Bool() } object DecoupledHelper { def apply(rvs: Bool*) = new DecoupledHelper(rvs) } class DecoupledHelper(val rvs: Seq[Bool]) { def fire(exclude: Bool, includes: Bool*) = { require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!") (rvs.filter(_ ne exclude) ++ includes).reduce(_ && _) } def fire() = { rvs.reduce(_ && _) } } object MuxT { def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2)) def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3)) def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4)) } /** Creates a cascade of n MuxTs to search for a key value. */ object MuxTLookup { def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } } object ValidMux { def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = { apply(v1 +: v2.toSeq) } def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = { val out = Wire(Valid(valids.head.bits.cloneType)) out.valid := valids.map(_.valid).reduce(_ || _) out.bits := MuxCase(valids.head.bits, valids.map(v => (v.valid -> v.bits))) out } } object Str { def apply(s: String): UInt = { var i = BigInt(0) require(s.forall(validChar _)) for (c <- s) i = (i << 8) | c i.U((s.length*8).W) } def apply(x: Char): UInt = { require(validChar(x)) x.U(8.W) } def apply(x: UInt): UInt = apply(x, 10) def apply(x: UInt, radix: Int): UInt = { val rad = radix.U val w = x.getWidth require(w > 0) var q = x var s = digit(q % rad) for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s) } s } def apply(x: SInt): UInt = apply(x, 10) def apply(x: SInt, radix: Int): UInt = { val neg = x < 0.S val abs = x.abs.asUInt if (radix != 10) { Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix)) } else { val rad = radix.U val w = abs.getWidth require(w > 0) var q = abs var s = digit(q % rad) var needSign = neg for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad val placeSpace = q === 0.U val space = Mux(needSign, Str('-'), Str(' ')) needSign = needSign && !placeSpace s = Cat(Mux(placeSpace, space, digit(q % rad)), s) } Cat(Mux(needSign, Str('-'), Str(' ')), s) } } private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0) private def validChar(x: Char) = x == (x & 0xFF) } object Split { def apply(x: UInt, n0: Int) = { val w = x.getWidth (x.extract(w-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n2: Int, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } } object Random { def apply(mod: Int, random: UInt): UInt = { if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0) else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod)) } def apply(mod: Int): UInt = apply(mod, randomizer) def oneHot(mod: Int, random: UInt): UInt = { if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0)) else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt } def oneHot(mod: Int): UInt = oneHot(mod, randomizer) private def randomizer = LFSR(16) private def partition(value: UInt, slices: Int) = Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U) } object Majority { def apply(in: Set[Bool]): Bool = { val n = (in.size >> 1) + 1 val clauses = in.subsets(n).map(_.reduce(_ && _)) clauses.reduce(_ || _) } def apply(in: Seq[Bool]): Bool = apply(in.toSet) def apply(in: UInt): Bool = apply(in.asBools.toSet) } object PopCountAtLeast { private def two(x: UInt): (Bool, Bool) = x.getWidth match { case 1 => (x.asBool, false.B) case n => val half = x.getWidth / 2 val (leftOne, leftTwo) = two(x(half - 1, 0)) val (rightOne, rightTwo) = two(x(x.getWidth - 1, half)) (leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne)) } def apply(x: UInt, n: Int): Bool = n match { case 0 => true.B case 1 => x.orR case 2 => two(x)._2 case 3 => PopCount(x) >= n.U } } // This gets used everywhere, so make the smallest circuit possible ... // Given an address and size, create a mask of beatBytes size // eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111 // groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01 object MaskGen { def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = { require (groupBy >= 1 && beatBytes >= groupBy) require (isPow2(beatBytes) && isPow2(groupBy)) val lgBytes = log2Ceil(beatBytes) val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U def helper(i: Int): Seq[(Bool, Bool)] = { if (i == 0) { Seq((lgSize >= lgBytes.asUInt, true.B)) } else { val sub = helper(i-1) val size = sizeOH(lgBytes - i) val bit = addr_lo(lgBytes - i) val nbit = !bit Seq.tabulate (1 << i) { j => val (sub_acc, sub_eq) = sub(j/2) val eq = sub_eq && (if (j % 2 == 1) bit else nbit) val acc = sub_acc || (size && eq) (acc, eq) } } } if (groupBy == beatBytes) 1.U else Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse) } } File LatencyInjectionQueue.scala: package compressacc import chisel3._ import chisel3.util._ import chisel3.util._ import freechips.rocketchip.util.DecoupledHelper class LatencyInjectionQueue[T <: Data](data: T, depth: Int) extends Module { val io = IO(new Bundle { val latency_cycles = Input(UInt(64.W)) val enq = Flipped(Decoupled(data)) val deq = Decoupled(data) }) val cur_cycle = RegInit(0.U(64.W)) cur_cycle := cur_cycle + 1.U val queue = Module(new Queue(data, depth)) val release_ready_cycle_q = Module(new Queue(UInt(64.W), depth)) release_ready_cycle_q.io.enq.bits := cur_cycle + io.latency_cycles queue.io.enq.bits := io.enq.bits io.deq.bits := queue.io.deq.bits val enq_fire = DecoupledHelper( queue.io.enq.ready, release_ready_cycle_q.io.enq.ready, io.enq.valid ) queue.io.enq.valid := enq_fire.fire(queue.io.enq.ready) release_ready_cycle_q.io.enq.valid := enq_fire.fire(release_ready_cycle_q.io.enq.ready) io.enq.ready := enq_fire.fire(io.enq.valid) val deq_fire = DecoupledHelper( queue.io.deq.valid, release_ready_cycle_q.io.deq.valid, release_ready_cycle_q.io.deq.bits <= cur_cycle, io.deq.ready ) queue.io.deq.ready := deq_fire.fire(queue.io.deq.valid) release_ready_cycle_q.io.deq.ready := deq_fire.fire(release_ready_cycle_q.io.deq.valid) io.deq.valid := deq_fire.fire(io.deq.ready) }
module LatencyInjectionQueue_28( // @[LatencyInjectionQueue.scala:9:7] input clock, // @[LatencyInjectionQueue.scala:9:7] input reset, // @[LatencyInjectionQueue.scala:9:7] input [63:0] io_latency_cycles, // @[LatencyInjectionQueue.scala:10:14] output io_enq_ready, // @[LatencyInjectionQueue.scala:10:14] input io_enq_valid, // @[LatencyInjectionQueue.scala:10:14] input [4:0] io_enq_bits_source, // @[LatencyInjectionQueue.scala:10:14] input [31:0] io_enq_bits_address, // @[LatencyInjectionQueue.scala:10:14] input io_deq_ready, // @[LatencyInjectionQueue.scala:10:14] output io_deq_valid, // @[LatencyInjectionQueue.scala:10:14] output [2:0] io_deq_bits_opcode, // @[LatencyInjectionQueue.scala:10:14] output [2:0] io_deq_bits_param, // @[LatencyInjectionQueue.scala:10:14] output [3:0] io_deq_bits_size, // @[LatencyInjectionQueue.scala:10:14] output [4:0] io_deq_bits_source, // @[LatencyInjectionQueue.scala:10:14] output [31:0] io_deq_bits_address, // @[LatencyInjectionQueue.scala:10:14] output [31:0] io_deq_bits_mask, // @[LatencyInjectionQueue.scala:10:14] output [255:0] io_deq_bits_data, // @[LatencyInjectionQueue.scala:10:14] output io_deq_bits_corrupt // @[LatencyInjectionQueue.scala:10:14] ); wire _release_ready_cycle_q_io_enq_ready; // @[LatencyInjectionQueue.scala:19:37] wire _release_ready_cycle_q_io_deq_valid; // @[LatencyInjectionQueue.scala:19:37] wire [63:0] _release_ready_cycle_q_io_deq_bits; // @[LatencyInjectionQueue.scala:19:37] wire _queue_io_enq_ready; // @[LatencyInjectionQueue.scala:18:21] wire _queue_io_deq_valid; // @[LatencyInjectionQueue.scala:18:21] wire [63:0] io_latency_cycles_0 = io_latency_cycles; // @[LatencyInjectionQueue.scala:9:7] wire io_enq_valid_0 = io_enq_valid; // @[LatencyInjectionQueue.scala:9:7] wire [4:0] io_enq_bits_source_0 = io_enq_bits_source; // @[LatencyInjectionQueue.scala:9:7] wire [31:0] io_enq_bits_address_0 = io_enq_bits_address; // @[LatencyInjectionQueue.scala:9:7] wire io_deq_ready_0 = io_deq_ready; // @[LatencyInjectionQueue.scala:9:7] wire io_enq_bits_corrupt = 1'h0; // @[LatencyInjectionQueue.scala:9:7, :10:14, :18:21] wire [255:0] io_enq_bits_data = 256'h0; // @[LatencyInjectionQueue.scala:9:7, :10:14, :18:21] wire [31:0] io_enq_bits_mask = 32'hFFFFFFFF; // @[LatencyInjectionQueue.scala:9:7, :10:14, :18:21] wire [3:0] io_enq_bits_size = 4'h5; // @[LatencyInjectionQueue.scala:9:7, :10:14, :18:21] wire [2:0] io_enq_bits_param = 3'h0; // @[LatencyInjectionQueue.scala:9:7, :10:14, :18:21] wire [2:0] io_enq_bits_opcode = 3'h4; // @[LatencyInjectionQueue.scala:9:7, :10:14, :18:21] wire _io_enq_ready_T; // @[Misc.scala:26:53] wire _io_deq_valid_T_1; // @[Misc.scala:26:53] wire io_enq_ready_0; // @[LatencyInjectionQueue.scala:9:7] wire [2:0] io_deq_bits_opcode_0; // @[LatencyInjectionQueue.scala:9:7] wire [2:0] io_deq_bits_param_0; // @[LatencyInjectionQueue.scala:9:7] wire [3:0] io_deq_bits_size_0; // @[LatencyInjectionQueue.scala:9:7] wire [4:0] io_deq_bits_source_0; // @[LatencyInjectionQueue.scala:9:7] wire [31:0] io_deq_bits_address_0; // @[LatencyInjectionQueue.scala:9:7] wire [31:0] io_deq_bits_mask_0; // @[LatencyInjectionQueue.scala:9:7] wire [255:0] io_deq_bits_data_0; // @[LatencyInjectionQueue.scala:9:7] wire io_deq_bits_corrupt_0; // @[LatencyInjectionQueue.scala:9:7] wire io_deq_valid_0; // @[LatencyInjectionQueue.scala:9:7] reg [63:0] cur_cycle; // @[LatencyInjectionQueue.scala:16:26] wire [64:0] _GEN = {1'h0, cur_cycle}; // @[LatencyInjectionQueue.scala:9:7, :10:14, :16:26, :17:26, :18:21] wire [64:0] _cur_cycle_T = _GEN + 65'h1; // @[LatencyInjectionQueue.scala:17:26] wire [63:0] _cur_cycle_T_1 = _cur_cycle_T[63:0]; // @[LatencyInjectionQueue.scala:17:26] wire [64:0] _release_ready_cycle_q_io_enq_bits_T = _GEN + {1'h0, io_latency_cycles_0}; // @[LatencyInjectionQueue.scala:9:7, :10:14, :17:26, :18:21, :21:50] wire [63:0] _release_ready_cycle_q_io_enq_bits_T_1 = _release_ready_cycle_q_io_enq_bits_T[63:0]; // @[LatencyInjectionQueue.scala:21:50] wire _queue_io_enq_valid_T = _release_ready_cycle_q_io_enq_ready & io_enq_valid_0; // @[Misc.scala:26:53] wire _release_ready_cycle_q_io_enq_valid_T = _queue_io_enq_ready & io_enq_valid_0; // @[Misc.scala:26:53] assign _io_enq_ready_T = _queue_io_enq_ready & _release_ready_cycle_q_io_enq_ready; // @[Misc.scala:26:53] assign io_enq_ready_0 = _io_enq_ready_T; // @[Misc.scala:26:53] wire _T = _release_ready_cycle_q_io_deq_bits <= cur_cycle; // @[LatencyInjectionQueue.scala:16:26, :19:37, :38:39] wire _queue_io_deq_ready_T = _release_ready_cycle_q_io_deq_valid & _T; // @[Misc.scala:26:53] wire _queue_io_deq_ready_T_1 = _queue_io_deq_ready_T & io_deq_ready_0; // @[Misc.scala:26:53] wire _release_ready_cycle_q_io_deq_ready_T = _queue_io_deq_valid & _T; // @[Misc.scala:26:53] wire _release_ready_cycle_q_io_deq_ready_T_1 = _release_ready_cycle_q_io_deq_ready_T & io_deq_ready_0; // @[Misc.scala:26:53] wire _io_deq_valid_T = _queue_io_deq_valid & _release_ready_cycle_q_io_deq_valid; // @[Misc.scala:26:53] assign _io_deq_valid_T_1 = _io_deq_valid_T & _T; // @[Misc.scala:26:53] assign io_deq_valid_0 = _io_deq_valid_T_1; // @[Misc.scala:26:53] always @(posedge clock) begin // @[LatencyInjectionQueue.scala:9:7] if (reset) // @[LatencyInjectionQueue.scala:9:7] cur_cycle <= 64'h0; // @[LatencyInjectionQueue.scala:16:26] else // @[LatencyInjectionQueue.scala:9:7] cur_cycle <= _cur_cycle_T_1; // @[LatencyInjectionQueue.scala:16:26, :17:26] always @(posedge) Queue64_TLBundleA_a32d256s5k3z4u_10 queue ( // @[LatencyInjectionQueue.scala:18:21] .clock (clock), .reset (reset), .io_enq_ready (_queue_io_enq_ready), .io_enq_valid (_queue_io_enq_valid_T), // @[Misc.scala:26:53] .io_enq_bits_source (io_enq_bits_source_0), // @[LatencyInjectionQueue.scala:9:7] .io_enq_bits_address (io_enq_bits_address_0), // @[LatencyInjectionQueue.scala:9:7] .io_deq_ready (_queue_io_deq_ready_T_1), // @[Misc.scala:26:53] .io_deq_valid (_queue_io_deq_valid), .io_deq_bits_opcode (io_deq_bits_opcode_0), .io_deq_bits_param (io_deq_bits_param_0), .io_deq_bits_size (io_deq_bits_size_0), .io_deq_bits_source (io_deq_bits_source_0), .io_deq_bits_address (io_deq_bits_address_0), .io_deq_bits_mask (io_deq_bits_mask_0), .io_deq_bits_data (io_deq_bits_data_0), .io_deq_bits_corrupt (io_deq_bits_corrupt_0) ); // @[LatencyInjectionQueue.scala:18:21] Queue64_UInt64_20 release_ready_cycle_q ( // @[LatencyInjectionQueue.scala:19:37] .clock (clock), .reset (reset), .io_enq_ready (_release_ready_cycle_q_io_enq_ready), .io_enq_valid (_release_ready_cycle_q_io_enq_valid_T), // @[Misc.scala:26:53] .io_enq_bits (_release_ready_cycle_q_io_enq_bits_T_1), // @[LatencyInjectionQueue.scala:21:50] .io_deq_ready (_release_ready_cycle_q_io_deq_ready_T_1), // @[Misc.scala:26:53] .io_deq_valid (_release_ready_cycle_q_io_deq_valid), .io_deq_bits (_release_ready_cycle_q_io_deq_bits) ); // @[LatencyInjectionQueue.scala:19:37] assign io_enq_ready = io_enq_ready_0; // @[LatencyInjectionQueue.scala:9:7] assign io_deq_valid = io_deq_valid_0; // @[LatencyInjectionQueue.scala:9:7] assign io_deq_bits_opcode = io_deq_bits_opcode_0; // @[LatencyInjectionQueue.scala:9:7] assign io_deq_bits_param = io_deq_bits_param_0; // @[LatencyInjectionQueue.scala:9:7] assign io_deq_bits_size = io_deq_bits_size_0; // @[LatencyInjectionQueue.scala:9:7] assign io_deq_bits_source = io_deq_bits_source_0; // @[LatencyInjectionQueue.scala:9:7] assign io_deq_bits_address = io_deq_bits_address_0; // @[LatencyInjectionQueue.scala:9:7] assign io_deq_bits_mask = io_deq_bits_mask_0; // @[LatencyInjectionQueue.scala:9:7] assign io_deq_bits_data = io_deq_bits_data_0; // @[LatencyInjectionQueue.scala:9:7] assign io_deq_bits_corrupt = io_deq_bits_corrupt_0; // @[LatencyInjectionQueue.scala:9:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File primitives.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import chisel3.util._ //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object lowMask { def apply(in: UInt, topBound: BigInt, bottomBound: BigInt): UInt = { require(topBound != bottomBound) val numInVals = BigInt(1)<<in.getWidth if (topBound < bottomBound) { lowMask(~in, numInVals - 1 - topBound, numInVals - 1 - bottomBound) } else if (numInVals > 64 /* Empirical */) { // For simulation performance, we should avoid generating // exteremely wide shifters, so we divide and conquer. // Empirically, this does not impact synthesis QoR. val mid = numInVals / 2 val msb = in(in.getWidth - 1) val lsbs = in(in.getWidth - 2, 0) if (mid < topBound) { if (mid <= bottomBound) { Mux(msb, lowMask(lsbs, topBound - mid, bottomBound - mid), 0.U ) } else { Mux(msb, lowMask(lsbs, topBound - mid, 0) ## ((BigInt(1)<<(mid - bottomBound).toInt) - 1).U, lowMask(lsbs, mid, bottomBound) ) } } else { ~Mux(msb, 0.U, ~lowMask(lsbs, topBound, bottomBound)) } } else { val shift = (BigInt(-1)<<numInVals.toInt).S>>in Reverse( shift( (numInVals - 1 - bottomBound).toInt, (numInVals - topBound).toInt ) ) } } } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object countLeadingZeros { def apply(in: UInt): UInt = PriorityEncoder(in.asBools.reverse) } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object orReduceBy2 { def apply(in: UInt): UInt = { val reducedWidth = (in.getWidth + 1)>>1 val reducedVec = Wire(Vec(reducedWidth, Bool())) for (ix <- 0 until reducedWidth - 1) { reducedVec(ix) := in(ix * 2 + 1, ix * 2).orR } reducedVec(reducedWidth - 1) := in(in.getWidth - 1, (reducedWidth - 1) * 2).orR reducedVec.asUInt } } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object orReduceBy4 { def apply(in: UInt): UInt = { val reducedWidth = (in.getWidth + 3)>>2 val reducedVec = Wire(Vec(reducedWidth, Bool())) for (ix <- 0 until reducedWidth - 1) { reducedVec(ix) := in(ix * 4 + 3, ix * 4).orR } reducedVec(reducedWidth - 1) := in(in.getWidth - 1, (reducedWidth - 1) * 4).orR reducedVec.asUInt } } File RoundAnyRawFNToRecFN.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import chisel3.util.Fill import consts._ //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class RoundAnyRawFNToRecFN( inExpWidth: Int, inSigWidth: Int, outExpWidth: Int, outSigWidth: Int, options: Int ) extends RawModule { override def desiredName = s"RoundAnyRawFNToRecFN_ie${inExpWidth}_is${inSigWidth}_oe${outExpWidth}_os${outSigWidth}" val io = IO(new Bundle { val invalidExc = Input(Bool()) // overrides 'infiniteExc' and 'in' val infiniteExc = Input(Bool()) // overrides 'in' except for 'in.sign' val in = Input(new RawFloat(inExpWidth, inSigWidth)) // (allowed exponent range has limits) val roundingMode = Input(UInt(3.W)) val detectTininess = Input(UInt(1.W)) val out = Output(Bits((outExpWidth + outSigWidth + 1).W)) val exceptionFlags = Output(Bits(5.W)) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val sigMSBitAlwaysZero = ((options & flRoundOpt_sigMSBitAlwaysZero) != 0) val effectiveInSigWidth = if (sigMSBitAlwaysZero) inSigWidth else inSigWidth + 1 val neverUnderflows = ((options & (flRoundOpt_neverUnderflows | flRoundOpt_subnormsAlwaysExact) ) != 0) || (inExpWidth < outExpWidth) val neverOverflows = ((options & flRoundOpt_neverOverflows) != 0) || (inExpWidth < outExpWidth) val outNaNExp = BigInt(7)<<(outExpWidth - 2) val outInfExp = BigInt(6)<<(outExpWidth - 2) val outMaxFiniteExp = outInfExp - 1 val outMinNormExp = (BigInt(1)<<(outExpWidth - 1)) + 2 val outMinNonzeroExp = outMinNormExp - outSigWidth + 1 //------------------------------------------------------------------------ //------------------------------------------------------------------------ val roundingMode_near_even = (io.roundingMode === round_near_even) val roundingMode_minMag = (io.roundingMode === round_minMag) val roundingMode_min = (io.roundingMode === round_min) val roundingMode_max = (io.roundingMode === round_max) val roundingMode_near_maxMag = (io.roundingMode === round_near_maxMag) val roundingMode_odd = (io.roundingMode === round_odd) val roundMagUp = (roundingMode_min && io.in.sign) || (roundingMode_max && ! io.in.sign) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val sAdjustedExp = if (inExpWidth < outExpWidth) (io.in.sExp +& ((BigInt(1)<<outExpWidth) - (BigInt(1)<<inExpWidth)).S )(outExpWidth, 0).zext else if (inExpWidth == outExpWidth) io.in.sExp else io.in.sExp +& ((BigInt(1)<<outExpWidth) - (BigInt(1)<<inExpWidth)).S val adjustedSig = if (inSigWidth <= outSigWidth + 2) io.in.sig<<(outSigWidth - inSigWidth + 2) else (io.in.sig(inSigWidth, inSigWidth - outSigWidth - 1) ## io.in.sig(inSigWidth - outSigWidth - 2, 0).orR ) val doShiftSigDown1 = if (sigMSBitAlwaysZero) false.B else adjustedSig(outSigWidth + 2) val common_expOut = Wire(UInt((outExpWidth + 1).W)) val common_fractOut = Wire(UInt((outSigWidth - 1).W)) val common_overflow = Wire(Bool()) val common_totalUnderflow = Wire(Bool()) val common_underflow = Wire(Bool()) val common_inexact = Wire(Bool()) if ( neverOverflows && neverUnderflows && (effectiveInSigWidth <= outSigWidth) ) { //-------------------------------------------------------------------- //-------------------------------------------------------------------- common_expOut := sAdjustedExp(outExpWidth, 0) + doShiftSigDown1 common_fractOut := Mux(doShiftSigDown1, adjustedSig(outSigWidth + 1, 3), adjustedSig(outSigWidth, 2) ) common_overflow := false.B common_totalUnderflow := false.B common_underflow := false.B common_inexact := false.B } else { //-------------------------------------------------------------------- //-------------------------------------------------------------------- val roundMask = if (neverUnderflows) 0.U(outSigWidth.W) ## doShiftSigDown1 ## 3.U(2.W) else (lowMask( sAdjustedExp(outExpWidth, 0), outMinNormExp - outSigWidth - 1, outMinNormExp ) | doShiftSigDown1) ## 3.U(2.W) val shiftedRoundMask = 0.U(1.W) ## roundMask>>1 val roundPosMask = ~shiftedRoundMask & roundMask val roundPosBit = (adjustedSig & roundPosMask).orR val anyRoundExtra = (adjustedSig & shiftedRoundMask).orR val anyRound = roundPosBit || anyRoundExtra val roundIncr = ((roundingMode_near_even || roundingMode_near_maxMag) && roundPosBit) || (roundMagUp && anyRound) val roundedSig: Bits = Mux(roundIncr, (((adjustedSig | roundMask)>>2) +& 1.U) & ~Mux(roundingMode_near_even && roundPosBit && ! anyRoundExtra, roundMask>>1, 0.U((outSigWidth + 2).W) ), (adjustedSig & ~roundMask)>>2 | Mux(roundingMode_odd && anyRound, roundPosMask>>1, 0.U) ) //*** IF SIG WIDTH IS VERY NARROW, NEED TO ACCOUNT FOR ROUND-EVEN ZEROING //*** M.S. BIT OF SUBNORMAL SIG? val sRoundedExp = sAdjustedExp +& (roundedSig>>outSigWidth).asUInt.zext common_expOut := sRoundedExp(outExpWidth, 0) common_fractOut := Mux(doShiftSigDown1, roundedSig(outSigWidth - 1, 1), roundedSig(outSigWidth - 2, 0) ) common_overflow := (if (neverOverflows) false.B else //*** REWRITE BASED ON BEFORE-ROUNDING EXPONENT?: (sRoundedExp>>(outExpWidth - 1) >= 3.S)) common_totalUnderflow := (if (neverUnderflows) false.B else //*** WOULD BE GOOD ENOUGH TO USE EXPONENT BEFORE ROUNDING?: (sRoundedExp < outMinNonzeroExp.S)) val unboundedRange_roundPosBit = Mux(doShiftSigDown1, adjustedSig(2), adjustedSig(1)) val unboundedRange_anyRound = (doShiftSigDown1 && adjustedSig(2)) || adjustedSig(1, 0).orR val unboundedRange_roundIncr = ((roundingMode_near_even || roundingMode_near_maxMag) && unboundedRange_roundPosBit) || (roundMagUp && unboundedRange_anyRound) val roundCarry = Mux(doShiftSigDown1, roundedSig(outSigWidth + 1), roundedSig(outSigWidth) ) common_underflow := (if (neverUnderflows) false.B else common_totalUnderflow || //*** IF SIG WIDTH IS VERY NARROW, NEED TO ACCOUNT FOR ROUND-EVEN ZEROING //*** M.S. BIT OF SUBNORMAL SIG? (anyRound && ((sAdjustedExp>>outExpWidth) <= 0.S) && Mux(doShiftSigDown1, roundMask(3), roundMask(2)) && ! ((io.detectTininess === tininess_afterRounding) && ! Mux(doShiftSigDown1, roundMask(4), roundMask(3) ) && roundCarry && roundPosBit && unboundedRange_roundIncr))) common_inexact := common_totalUnderflow || anyRound } //------------------------------------------------------------------------ //------------------------------------------------------------------------ val isNaNOut = io.invalidExc || io.in.isNaN val notNaN_isSpecialInfOut = io.infiniteExc || io.in.isInf val commonCase = ! isNaNOut && ! notNaN_isSpecialInfOut && ! io.in.isZero val overflow = commonCase && common_overflow val underflow = commonCase && common_underflow val inexact = overflow || (commonCase && common_inexact) val overflow_roundMagUp = roundingMode_near_even || roundingMode_near_maxMag || roundMagUp val pegMinNonzeroMagOut = commonCase && common_totalUnderflow && (roundMagUp || roundingMode_odd) val pegMaxFiniteMagOut = overflow && ! overflow_roundMagUp val notNaN_isInfOut = notNaN_isSpecialInfOut || (overflow && overflow_roundMagUp) val signOut = Mux(isNaNOut, false.B, io.in.sign) val expOut = (common_expOut & ~Mux(io.in.isZero || common_totalUnderflow, (BigInt(7)<<(outExpWidth - 2)).U((outExpWidth + 1).W), 0.U ) & ~Mux(pegMinNonzeroMagOut, ~outMinNonzeroExp.U((outExpWidth + 1).W), 0.U ) & ~Mux(pegMaxFiniteMagOut, (BigInt(1)<<(outExpWidth - 1)).U((outExpWidth + 1).W), 0.U ) & ~Mux(notNaN_isInfOut, (BigInt(1)<<(outExpWidth - 2)).U((outExpWidth + 1).W), 0.U )) | Mux(pegMinNonzeroMagOut, outMinNonzeroExp.U((outExpWidth + 1).W), 0.U ) | Mux(pegMaxFiniteMagOut, outMaxFiniteExp.U((outExpWidth + 1).W), 0.U ) | Mux(notNaN_isInfOut, outInfExp.U((outExpWidth + 1).W), 0.U) | Mux(isNaNOut, outNaNExp.U((outExpWidth + 1).W), 0.U) val fractOut = Mux(isNaNOut || io.in.isZero || common_totalUnderflow, Mux(isNaNOut, (BigInt(1)<<(outSigWidth - 2)).U, 0.U), common_fractOut ) | Fill(outSigWidth - 1, pegMaxFiniteMagOut) io.out := signOut ## expOut ## fractOut io.exceptionFlags := io.invalidExc ## io.infiniteExc ## overflow ## underflow ## inexact } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class RoundRawFNToRecFN(expWidth: Int, sigWidth: Int, options: Int) extends RawModule { override def desiredName = s"RoundRawFNToRecFN_e${expWidth}_s${sigWidth}" val io = IO(new Bundle { val invalidExc = Input(Bool()) // overrides 'infiniteExc' and 'in' val infiniteExc = Input(Bool()) // overrides 'in' except for 'in.sign' val in = Input(new RawFloat(expWidth, sigWidth + 2)) val roundingMode = Input(UInt(3.W)) val detectTininess = Input(UInt(1.W)) val out = Output(Bits((expWidth + sigWidth + 1).W)) val exceptionFlags = Output(Bits(5.W)) }) val roundAnyRawFNToRecFN = Module( new RoundAnyRawFNToRecFN( expWidth, sigWidth + 2, expWidth, sigWidth, options)) roundAnyRawFNToRecFN.io.invalidExc := io.invalidExc roundAnyRawFNToRecFN.io.infiniteExc := io.infiniteExc roundAnyRawFNToRecFN.io.in := io.in roundAnyRawFNToRecFN.io.roundingMode := io.roundingMode roundAnyRawFNToRecFN.io.detectTininess := io.detectTininess io.out := roundAnyRawFNToRecFN.io.out io.exceptionFlags := roundAnyRawFNToRecFN.io.exceptionFlags }
module RoundAnyRawFNToRecFN_ie8_is26_oe8_os24_135( // @[RoundAnyRawFNToRecFN.scala:48:5] input io_invalidExc, // @[RoundAnyRawFNToRecFN.scala:58:16] input io_in_isNaN, // @[RoundAnyRawFNToRecFN.scala:58:16] input io_in_isInf, // @[RoundAnyRawFNToRecFN.scala:58:16] input io_in_isZero, // @[RoundAnyRawFNToRecFN.scala:58:16] input io_in_sign, // @[RoundAnyRawFNToRecFN.scala:58:16] input [9:0] io_in_sExp, // @[RoundAnyRawFNToRecFN.scala:58:16] input [26:0] io_in_sig, // @[RoundAnyRawFNToRecFN.scala:58:16] output [32:0] io_out, // @[RoundAnyRawFNToRecFN.scala:58:16] output [4:0] io_exceptionFlags // @[RoundAnyRawFNToRecFN.scala:58:16] ); wire io_invalidExc_0 = io_invalidExc; // @[RoundAnyRawFNToRecFN.scala:48:5] wire io_in_isNaN_0 = io_in_isNaN; // @[RoundAnyRawFNToRecFN.scala:48:5] wire io_in_isInf_0 = io_in_isInf; // @[RoundAnyRawFNToRecFN.scala:48:5] wire io_in_isZero_0 = io_in_isZero; // @[RoundAnyRawFNToRecFN.scala:48:5] wire io_in_sign_0 = io_in_sign; // @[RoundAnyRawFNToRecFN.scala:48:5] wire [9:0] io_in_sExp_0 = io_in_sExp; // @[RoundAnyRawFNToRecFN.scala:48:5] wire [26:0] io_in_sig_0 = io_in_sig; // @[RoundAnyRawFNToRecFN.scala:48:5] wire [8:0] _expOut_T_4 = 9'h194; // @[RoundAnyRawFNToRecFN.scala:258:19] wire [15:0] _roundMask_T_5 = 16'hFF; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_4 = 16'hFF00; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_10 = 16'hFF00; // @[primitives.scala:77:20] wire [11:0] _roundMask_T_13 = 12'hFF; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_14 = 16'hFF0; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_15 = 16'hF0F; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_20 = 16'hF0F0; // @[primitives.scala:77:20] wire [13:0] _roundMask_T_23 = 14'hF0F; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_24 = 16'h3C3C; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_25 = 16'h3333; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_30 = 16'hCCCC; // @[primitives.scala:77:20] wire [14:0] _roundMask_T_33 = 15'h3333; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_34 = 16'h6666; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_35 = 16'h5555; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_40 = 16'hAAAA; // @[primitives.scala:77:20] wire [25:0] _roundedSig_T_15 = 26'h0; // @[RoundAnyRawFNToRecFN.scala:181:24] wire [8:0] _expOut_T_6 = 9'h1FF; // @[RoundAnyRawFNToRecFN.scala:257:14, :261:14] wire [8:0] _expOut_T_9 = 9'h1FF; // @[RoundAnyRawFNToRecFN.scala:257:14, :261:14] wire [8:0] _expOut_T_5 = 9'h0; // @[RoundAnyRawFNToRecFN.scala:257:18] wire [8:0] _expOut_T_8 = 9'h0; // @[RoundAnyRawFNToRecFN.scala:261:18] wire [8:0] _expOut_T_14 = 9'h0; // @[RoundAnyRawFNToRecFN.scala:269:16] wire [8:0] _expOut_T_16 = 9'h0; // @[RoundAnyRawFNToRecFN.scala:273:16] wire [22:0] _fractOut_T_4 = 23'h0; // @[RoundAnyRawFNToRecFN.scala:284:13] wire io_detectTininess = 1'h1; // @[RoundAnyRawFNToRecFN.scala:48:5] wire roundingMode_near_even = 1'h1; // @[RoundAnyRawFNToRecFN.scala:90:53] wire _roundIncr_T = 1'h1; // @[RoundAnyRawFNToRecFN.scala:169:38] wire _unboundedRange_roundIncr_T = 1'h1; // @[RoundAnyRawFNToRecFN.scala:207:38] wire _common_underflow_T_7 = 1'h1; // @[RoundAnyRawFNToRecFN.scala:222:49] wire _overflow_roundMagUp_T = 1'h1; // @[RoundAnyRawFNToRecFN.scala:243:32] wire overflow_roundMagUp = 1'h1; // @[RoundAnyRawFNToRecFN.scala:243:60] wire [2:0] io_roundingMode = 3'h0; // @[RoundAnyRawFNToRecFN.scala:48:5] wire io_infiniteExc = 1'h0; // @[RoundAnyRawFNToRecFN.scala:48:5] wire roundingMode_minMag = 1'h0; // @[RoundAnyRawFNToRecFN.scala:91:53] wire roundingMode_min = 1'h0; // @[RoundAnyRawFNToRecFN.scala:92:53] wire roundingMode_max = 1'h0; // @[RoundAnyRawFNToRecFN.scala:93:53] wire roundingMode_near_maxMag = 1'h0; // @[RoundAnyRawFNToRecFN.scala:94:53] wire roundingMode_odd = 1'h0; // @[RoundAnyRawFNToRecFN.scala:95:53] wire _roundMagUp_T = 1'h0; // @[RoundAnyRawFNToRecFN.scala:98:27] wire _roundMagUp_T_2 = 1'h0; // @[RoundAnyRawFNToRecFN.scala:98:63] wire roundMagUp = 1'h0; // @[RoundAnyRawFNToRecFN.scala:98:42] wire _roundIncr_T_2 = 1'h0; // @[RoundAnyRawFNToRecFN.scala:171:29] wire _roundedSig_T_13 = 1'h0; // @[RoundAnyRawFNToRecFN.scala:181:42] wire _unboundedRange_roundIncr_T_2 = 1'h0; // @[RoundAnyRawFNToRecFN.scala:209:29] wire _pegMinNonzeroMagOut_T_1 = 1'h0; // @[RoundAnyRawFNToRecFN.scala:245:60] wire pegMinNonzeroMagOut = 1'h0; // @[RoundAnyRawFNToRecFN.scala:245:45] wire _pegMaxFiniteMagOut_T = 1'h0; // @[RoundAnyRawFNToRecFN.scala:246:42] wire pegMaxFiniteMagOut = 1'h0; // @[RoundAnyRawFNToRecFN.scala:246:39] wire notNaN_isSpecialInfOut = io_in_isInf_0; // @[RoundAnyRawFNToRecFN.scala:48:5, :236:49] wire [26:0] adjustedSig = io_in_sig_0; // @[RoundAnyRawFNToRecFN.scala:48:5, :114:22] wire [32:0] _io_out_T_1; // @[RoundAnyRawFNToRecFN.scala:286:33] wire [4:0] _io_exceptionFlags_T_3; // @[RoundAnyRawFNToRecFN.scala:288:66] wire [32:0] io_out_0; // @[RoundAnyRawFNToRecFN.scala:48:5] wire [4:0] io_exceptionFlags_0; // @[RoundAnyRawFNToRecFN.scala:48:5] wire _roundMagUp_T_1 = ~io_in_sign_0; // @[RoundAnyRawFNToRecFN.scala:48:5, :98:66] wire doShiftSigDown1 = adjustedSig[26]; // @[RoundAnyRawFNToRecFN.scala:114:22, :120:57] wire [8:0] _common_expOut_T; // @[RoundAnyRawFNToRecFN.scala:187:37] wire [8:0] common_expOut; // @[RoundAnyRawFNToRecFN.scala:122:31] wire [22:0] _common_fractOut_T_2; // @[RoundAnyRawFNToRecFN.scala:189:16] wire [22:0] common_fractOut; // @[RoundAnyRawFNToRecFN.scala:123:31] wire _common_overflow_T_1; // @[RoundAnyRawFNToRecFN.scala:196:50] wire common_overflow; // @[RoundAnyRawFNToRecFN.scala:124:37] wire _common_totalUnderflow_T; // @[RoundAnyRawFNToRecFN.scala:200:31] wire common_totalUnderflow; // @[RoundAnyRawFNToRecFN.scala:125:37] wire _common_underflow_T_18; // @[RoundAnyRawFNToRecFN.scala:217:40] wire common_underflow; // @[RoundAnyRawFNToRecFN.scala:126:37] wire _common_inexact_T; // @[RoundAnyRawFNToRecFN.scala:230:49] wire common_inexact; // @[RoundAnyRawFNToRecFN.scala:127:37] wire [8:0] _roundMask_T = io_in_sExp_0[8:0]; // @[RoundAnyRawFNToRecFN.scala:48:5, :156:37] wire [8:0] _roundMask_T_1 = ~_roundMask_T; // @[primitives.scala:52:21] wire roundMask_msb = _roundMask_T_1[8]; // @[primitives.scala:52:21, :58:25] wire [7:0] roundMask_lsbs = _roundMask_T_1[7:0]; // @[primitives.scala:52:21, :59:26] wire roundMask_msb_1 = roundMask_lsbs[7]; // @[primitives.scala:58:25, :59:26] wire [6:0] roundMask_lsbs_1 = roundMask_lsbs[6:0]; // @[primitives.scala:59:26] wire roundMask_msb_2 = roundMask_lsbs_1[6]; // @[primitives.scala:58:25, :59:26] wire roundMask_msb_3 = roundMask_lsbs_1[6]; // @[primitives.scala:58:25, :59:26] wire [5:0] roundMask_lsbs_2 = roundMask_lsbs_1[5:0]; // @[primitives.scala:59:26] wire [5:0] roundMask_lsbs_3 = roundMask_lsbs_1[5:0]; // @[primitives.scala:59:26] wire [64:0] roundMask_shift = $signed(65'sh10000000000000000 >>> roundMask_lsbs_2); // @[primitives.scala:59:26, :76:56] wire [21:0] _roundMask_T_2 = roundMask_shift[63:42]; // @[primitives.scala:76:56, :78:22] wire [15:0] _roundMask_T_3 = _roundMask_T_2[15:0]; // @[primitives.scala:77:20, :78:22] wire [7:0] _roundMask_T_6 = _roundMask_T_3[15:8]; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_7 = {8'h0, _roundMask_T_6}; // @[primitives.scala:77:20] wire [7:0] _roundMask_T_8 = _roundMask_T_3[7:0]; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_9 = {_roundMask_T_8, 8'h0}; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_11 = _roundMask_T_9 & 16'hFF00; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_12 = _roundMask_T_7 | _roundMask_T_11; // @[primitives.scala:77:20] wire [11:0] _roundMask_T_16 = _roundMask_T_12[15:4]; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_17 = {4'h0, _roundMask_T_16 & 12'hF0F}; // @[primitives.scala:77:20] wire [11:0] _roundMask_T_18 = _roundMask_T_12[11:0]; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_19 = {_roundMask_T_18, 4'h0}; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_21 = _roundMask_T_19 & 16'hF0F0; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_22 = _roundMask_T_17 | _roundMask_T_21; // @[primitives.scala:77:20] wire [13:0] _roundMask_T_26 = _roundMask_T_22[15:2]; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_27 = {2'h0, _roundMask_T_26 & 14'h3333}; // @[primitives.scala:77:20] wire [13:0] _roundMask_T_28 = _roundMask_T_22[13:0]; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_29 = {_roundMask_T_28, 2'h0}; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_31 = _roundMask_T_29 & 16'hCCCC; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_32 = _roundMask_T_27 | _roundMask_T_31; // @[primitives.scala:77:20] wire [14:0] _roundMask_T_36 = _roundMask_T_32[15:1]; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_37 = {1'h0, _roundMask_T_36 & 15'h5555}; // @[primitives.scala:77:20] wire [14:0] _roundMask_T_38 = _roundMask_T_32[14:0]; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_39 = {_roundMask_T_38, 1'h0}; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_41 = _roundMask_T_39 & 16'hAAAA; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_42 = _roundMask_T_37 | _roundMask_T_41; // @[primitives.scala:77:20] wire [5:0] _roundMask_T_43 = _roundMask_T_2[21:16]; // @[primitives.scala:77:20, :78:22] wire [3:0] _roundMask_T_44 = _roundMask_T_43[3:0]; // @[primitives.scala:77:20] wire [1:0] _roundMask_T_45 = _roundMask_T_44[1:0]; // @[primitives.scala:77:20] wire _roundMask_T_46 = _roundMask_T_45[0]; // @[primitives.scala:77:20] wire _roundMask_T_47 = _roundMask_T_45[1]; // @[primitives.scala:77:20] wire [1:0] _roundMask_T_48 = {_roundMask_T_46, _roundMask_T_47}; // @[primitives.scala:77:20] wire [1:0] _roundMask_T_49 = _roundMask_T_44[3:2]; // @[primitives.scala:77:20] wire _roundMask_T_50 = _roundMask_T_49[0]; // @[primitives.scala:77:20] wire _roundMask_T_51 = _roundMask_T_49[1]; // @[primitives.scala:77:20] wire [1:0] _roundMask_T_52 = {_roundMask_T_50, _roundMask_T_51}; // @[primitives.scala:77:20] wire [3:0] _roundMask_T_53 = {_roundMask_T_48, _roundMask_T_52}; // @[primitives.scala:77:20] wire [1:0] _roundMask_T_54 = _roundMask_T_43[5:4]; // @[primitives.scala:77:20] wire _roundMask_T_55 = _roundMask_T_54[0]; // @[primitives.scala:77:20] wire _roundMask_T_56 = _roundMask_T_54[1]; // @[primitives.scala:77:20] wire [1:0] _roundMask_T_57 = {_roundMask_T_55, _roundMask_T_56}; // @[primitives.scala:77:20] wire [5:0] _roundMask_T_58 = {_roundMask_T_53, _roundMask_T_57}; // @[primitives.scala:77:20] wire [21:0] _roundMask_T_59 = {_roundMask_T_42, _roundMask_T_58}; // @[primitives.scala:77:20] wire [21:0] _roundMask_T_60 = ~_roundMask_T_59; // @[primitives.scala:73:32, :77:20] wire [21:0] _roundMask_T_61 = roundMask_msb_2 ? 22'h0 : _roundMask_T_60; // @[primitives.scala:58:25, :73:{21,32}] wire [21:0] _roundMask_T_62 = ~_roundMask_T_61; // @[primitives.scala:73:{17,21}] wire [24:0] _roundMask_T_63 = {_roundMask_T_62, 3'h7}; // @[primitives.scala:68:58, :73:17] wire [64:0] roundMask_shift_1 = $signed(65'sh10000000000000000 >>> roundMask_lsbs_3); // @[primitives.scala:59:26, :76:56] wire [2:0] _roundMask_T_64 = roundMask_shift_1[2:0]; // @[primitives.scala:76:56, :78:22] wire [1:0] _roundMask_T_65 = _roundMask_T_64[1:0]; // @[primitives.scala:77:20, :78:22] wire _roundMask_T_66 = _roundMask_T_65[0]; // @[primitives.scala:77:20] wire _roundMask_T_67 = _roundMask_T_65[1]; // @[primitives.scala:77:20] wire [1:0] _roundMask_T_68 = {_roundMask_T_66, _roundMask_T_67}; // @[primitives.scala:77:20] wire _roundMask_T_69 = _roundMask_T_64[2]; // @[primitives.scala:77:20, :78:22] wire [2:0] _roundMask_T_70 = {_roundMask_T_68, _roundMask_T_69}; // @[primitives.scala:77:20] wire [2:0] _roundMask_T_71 = roundMask_msb_3 ? _roundMask_T_70 : 3'h0; // @[primitives.scala:58:25, :62:24, :77:20] wire [24:0] _roundMask_T_72 = roundMask_msb_1 ? _roundMask_T_63 : {22'h0, _roundMask_T_71}; // @[primitives.scala:58:25, :62:24, :67:24, :68:58] wire [24:0] _roundMask_T_73 = roundMask_msb ? _roundMask_T_72 : 25'h0; // @[primitives.scala:58:25, :62:24, :67:24] wire [24:0] _roundMask_T_74 = {_roundMask_T_73[24:1], _roundMask_T_73[0] | doShiftSigDown1}; // @[primitives.scala:62:24] wire [26:0] roundMask = {_roundMask_T_74, 2'h3}; // @[RoundAnyRawFNToRecFN.scala:159:{23,42}] wire [27:0] _shiftedRoundMask_T = {1'h0, roundMask}; // @[RoundAnyRawFNToRecFN.scala:159:42, :162:41] wire [26:0] shiftedRoundMask = _shiftedRoundMask_T[27:1]; // @[RoundAnyRawFNToRecFN.scala:162:{41,53}] wire [26:0] _roundPosMask_T = ~shiftedRoundMask; // @[RoundAnyRawFNToRecFN.scala:162:53, :163:28] wire [26:0] roundPosMask = _roundPosMask_T & roundMask; // @[RoundAnyRawFNToRecFN.scala:159:42, :163:{28,46}] wire [26:0] _roundPosBit_T = adjustedSig & roundPosMask; // @[RoundAnyRawFNToRecFN.scala:114:22, :163:46, :164:40] wire roundPosBit = |_roundPosBit_T; // @[RoundAnyRawFNToRecFN.scala:164:{40,56}] wire _roundIncr_T_1 = roundPosBit; // @[RoundAnyRawFNToRecFN.scala:164:56, :169:67] wire _roundedSig_T_3 = roundPosBit; // @[RoundAnyRawFNToRecFN.scala:164:56, :175:49] wire [26:0] _anyRoundExtra_T = adjustedSig & shiftedRoundMask; // @[RoundAnyRawFNToRecFN.scala:114:22, :162:53, :165:42] wire anyRoundExtra = |_anyRoundExtra_T; // @[RoundAnyRawFNToRecFN.scala:165:{42,62}] wire anyRound = roundPosBit | anyRoundExtra; // @[RoundAnyRawFNToRecFN.scala:164:56, :165:62, :166:36] wire roundIncr = _roundIncr_T_1; // @[RoundAnyRawFNToRecFN.scala:169:67, :170:31] wire [26:0] _roundedSig_T = adjustedSig | roundMask; // @[RoundAnyRawFNToRecFN.scala:114:22, :159:42, :174:32] wire [24:0] _roundedSig_T_1 = _roundedSig_T[26:2]; // @[RoundAnyRawFNToRecFN.scala:174:{32,44}] wire [25:0] _roundedSig_T_2 = {1'h0, _roundedSig_T_1} + 26'h1; // @[RoundAnyRawFNToRecFN.scala:174:{44,49}] wire _roundedSig_T_4 = ~anyRoundExtra; // @[RoundAnyRawFNToRecFN.scala:165:62, :176:30] wire _roundedSig_T_5 = _roundedSig_T_3 & _roundedSig_T_4; // @[RoundAnyRawFNToRecFN.scala:175:{49,64}, :176:30] wire [25:0] _roundedSig_T_6 = roundMask[26:1]; // @[RoundAnyRawFNToRecFN.scala:159:42, :177:35] wire [25:0] _roundedSig_T_7 = _roundedSig_T_5 ? _roundedSig_T_6 : 26'h0; // @[RoundAnyRawFNToRecFN.scala:175:{25,64}, :177:35] wire [25:0] _roundedSig_T_8 = ~_roundedSig_T_7; // @[RoundAnyRawFNToRecFN.scala:175:{21,25}] wire [25:0] _roundedSig_T_9 = _roundedSig_T_2 & _roundedSig_T_8; // @[RoundAnyRawFNToRecFN.scala:174:{49,57}, :175:21] wire [26:0] _roundedSig_T_10 = ~roundMask; // @[RoundAnyRawFNToRecFN.scala:159:42, :180:32] wire [26:0] _roundedSig_T_11 = adjustedSig & _roundedSig_T_10; // @[RoundAnyRawFNToRecFN.scala:114:22, :180:{30,32}] wire [24:0] _roundedSig_T_12 = _roundedSig_T_11[26:2]; // @[RoundAnyRawFNToRecFN.scala:180:{30,43}] wire [25:0] _roundedSig_T_14 = roundPosMask[26:1]; // @[RoundAnyRawFNToRecFN.scala:163:46, :181:67] wire [25:0] _roundedSig_T_16 = {1'h0, _roundedSig_T_12}; // @[RoundAnyRawFNToRecFN.scala:180:{43,47}] wire [25:0] roundedSig = roundIncr ? _roundedSig_T_9 : _roundedSig_T_16; // @[RoundAnyRawFNToRecFN.scala:170:31, :173:16, :174:57, :180:47] wire [1:0] _sRoundedExp_T = roundedSig[25:24]; // @[RoundAnyRawFNToRecFN.scala:173:16, :185:54] wire [2:0] _sRoundedExp_T_1 = {1'h0, _sRoundedExp_T}; // @[RoundAnyRawFNToRecFN.scala:185:{54,76}] wire [10:0] sRoundedExp = {io_in_sExp_0[9], io_in_sExp_0} + {{8{_sRoundedExp_T_1[2]}}, _sRoundedExp_T_1}; // @[RoundAnyRawFNToRecFN.scala:48:5, :185:{40,76}] assign _common_expOut_T = sRoundedExp[8:0]; // @[RoundAnyRawFNToRecFN.scala:185:40, :187:37] assign common_expOut = _common_expOut_T; // @[RoundAnyRawFNToRecFN.scala:122:31, :187:37] wire [22:0] _common_fractOut_T = roundedSig[23:1]; // @[RoundAnyRawFNToRecFN.scala:173:16, :190:27] wire [22:0] _common_fractOut_T_1 = roundedSig[22:0]; // @[RoundAnyRawFNToRecFN.scala:173:16, :191:27] assign _common_fractOut_T_2 = doShiftSigDown1 ? _common_fractOut_T : _common_fractOut_T_1; // @[RoundAnyRawFNToRecFN.scala:120:57, :189:16, :190:27, :191:27] assign common_fractOut = _common_fractOut_T_2; // @[RoundAnyRawFNToRecFN.scala:123:31, :189:16] wire [3:0] _common_overflow_T = sRoundedExp[10:7]; // @[RoundAnyRawFNToRecFN.scala:185:40, :196:30] assign _common_overflow_T_1 = $signed(_common_overflow_T) > 4'sh2; // @[RoundAnyRawFNToRecFN.scala:196:{30,50}] assign common_overflow = _common_overflow_T_1; // @[RoundAnyRawFNToRecFN.scala:124:37, :196:50] assign _common_totalUnderflow_T = $signed(sRoundedExp) < 11'sh6B; // @[RoundAnyRawFNToRecFN.scala:185:40, :200:31] assign common_totalUnderflow = _common_totalUnderflow_T; // @[RoundAnyRawFNToRecFN.scala:125:37, :200:31] wire _unboundedRange_roundPosBit_T = adjustedSig[2]; // @[RoundAnyRawFNToRecFN.scala:114:22, :203:45] wire _unboundedRange_anyRound_T = adjustedSig[2]; // @[RoundAnyRawFNToRecFN.scala:114:22, :203:45, :205:44] wire _unboundedRange_roundPosBit_T_1 = adjustedSig[1]; // @[RoundAnyRawFNToRecFN.scala:114:22, :203:61] wire unboundedRange_roundPosBit = doShiftSigDown1 ? _unboundedRange_roundPosBit_T : _unboundedRange_roundPosBit_T_1; // @[RoundAnyRawFNToRecFN.scala:120:57, :203:{16,45,61}] wire _unboundedRange_roundIncr_T_1 = unboundedRange_roundPosBit; // @[RoundAnyRawFNToRecFN.scala:203:16, :207:67] wire _unboundedRange_anyRound_T_1 = doShiftSigDown1 & _unboundedRange_anyRound_T; // @[RoundAnyRawFNToRecFN.scala:120:57, :205:{30,44}] wire [1:0] _unboundedRange_anyRound_T_2 = adjustedSig[1:0]; // @[RoundAnyRawFNToRecFN.scala:114:22, :205:63] wire _unboundedRange_anyRound_T_3 = |_unboundedRange_anyRound_T_2; // @[RoundAnyRawFNToRecFN.scala:205:{63,70}] wire unboundedRange_anyRound = _unboundedRange_anyRound_T_1 | _unboundedRange_anyRound_T_3; // @[RoundAnyRawFNToRecFN.scala:205:{30,49,70}] wire unboundedRange_roundIncr = _unboundedRange_roundIncr_T_1; // @[RoundAnyRawFNToRecFN.scala:207:67, :208:46] wire _roundCarry_T = roundedSig[25]; // @[RoundAnyRawFNToRecFN.scala:173:16, :212:27] wire _roundCarry_T_1 = roundedSig[24]; // @[RoundAnyRawFNToRecFN.scala:173:16, :213:27] wire roundCarry = doShiftSigDown1 ? _roundCarry_T : _roundCarry_T_1; // @[RoundAnyRawFNToRecFN.scala:120:57, :211:16, :212:27, :213:27] wire [1:0] _common_underflow_T = io_in_sExp_0[9:8]; // @[RoundAnyRawFNToRecFN.scala:48:5, :220:49] wire _common_underflow_T_1 = _common_underflow_T != 2'h1; // @[RoundAnyRawFNToRecFN.scala:220:{49,64}] wire _common_underflow_T_2 = anyRound & _common_underflow_T_1; // @[RoundAnyRawFNToRecFN.scala:166:36, :220:{32,64}] wire _common_underflow_T_3 = roundMask[3]; // @[RoundAnyRawFNToRecFN.scala:159:42, :221:57] wire _common_underflow_T_9 = roundMask[3]; // @[RoundAnyRawFNToRecFN.scala:159:42, :221:57, :225:49] wire _common_underflow_T_4 = roundMask[2]; // @[RoundAnyRawFNToRecFN.scala:159:42, :221:71] wire _common_underflow_T_5 = doShiftSigDown1 ? _common_underflow_T_3 : _common_underflow_T_4; // @[RoundAnyRawFNToRecFN.scala:120:57, :221:{30,57,71}] wire _common_underflow_T_6 = _common_underflow_T_2 & _common_underflow_T_5; // @[RoundAnyRawFNToRecFN.scala:220:{32,72}, :221:30] wire _common_underflow_T_8 = roundMask[4]; // @[RoundAnyRawFNToRecFN.scala:159:42, :224:49] wire _common_underflow_T_10 = doShiftSigDown1 ? _common_underflow_T_8 : _common_underflow_T_9; // @[RoundAnyRawFNToRecFN.scala:120:57, :223:39, :224:49, :225:49] wire _common_underflow_T_11 = ~_common_underflow_T_10; // @[RoundAnyRawFNToRecFN.scala:223:{34,39}] wire _common_underflow_T_12 = _common_underflow_T_11; // @[RoundAnyRawFNToRecFN.scala:222:77, :223:34] wire _common_underflow_T_13 = _common_underflow_T_12 & roundCarry; // @[RoundAnyRawFNToRecFN.scala:211:16, :222:77, :226:38] wire _common_underflow_T_14 = _common_underflow_T_13 & roundPosBit; // @[RoundAnyRawFNToRecFN.scala:164:56, :226:38, :227:45] wire _common_underflow_T_15 = _common_underflow_T_14 & unboundedRange_roundIncr; // @[RoundAnyRawFNToRecFN.scala:208:46, :227:{45,60}] wire _common_underflow_T_16 = ~_common_underflow_T_15; // @[RoundAnyRawFNToRecFN.scala:222:27, :227:60] wire _common_underflow_T_17 = _common_underflow_T_6 & _common_underflow_T_16; // @[RoundAnyRawFNToRecFN.scala:220:72, :221:76, :222:27] assign _common_underflow_T_18 = common_totalUnderflow | _common_underflow_T_17; // @[RoundAnyRawFNToRecFN.scala:125:37, :217:40, :221:76] assign common_underflow = _common_underflow_T_18; // @[RoundAnyRawFNToRecFN.scala:126:37, :217:40] assign _common_inexact_T = common_totalUnderflow | anyRound; // @[RoundAnyRawFNToRecFN.scala:125:37, :166:36, :230:49] assign common_inexact = _common_inexact_T; // @[RoundAnyRawFNToRecFN.scala:127:37, :230:49] wire isNaNOut = io_invalidExc_0 | io_in_isNaN_0; // @[RoundAnyRawFNToRecFN.scala:48:5, :235:34] wire _commonCase_T = ~isNaNOut; // @[RoundAnyRawFNToRecFN.scala:235:34, :237:22] wire _commonCase_T_1 = ~notNaN_isSpecialInfOut; // @[RoundAnyRawFNToRecFN.scala:236:49, :237:36] wire _commonCase_T_2 = _commonCase_T & _commonCase_T_1; // @[RoundAnyRawFNToRecFN.scala:237:{22,33,36}] wire _commonCase_T_3 = ~io_in_isZero_0; // @[RoundAnyRawFNToRecFN.scala:48:5, :237:64] wire commonCase = _commonCase_T_2 & _commonCase_T_3; // @[RoundAnyRawFNToRecFN.scala:237:{33,61,64}] wire overflow = commonCase & common_overflow; // @[RoundAnyRawFNToRecFN.scala:124:37, :237:61, :238:32] wire _notNaN_isInfOut_T = overflow; // @[RoundAnyRawFNToRecFN.scala:238:32, :248:45] wire underflow = commonCase & common_underflow; // @[RoundAnyRawFNToRecFN.scala:126:37, :237:61, :239:32] wire _inexact_T = commonCase & common_inexact; // @[RoundAnyRawFNToRecFN.scala:127:37, :237:61, :240:43] wire inexact = overflow | _inexact_T; // @[RoundAnyRawFNToRecFN.scala:238:32, :240:{28,43}] wire _pegMinNonzeroMagOut_T = commonCase & common_totalUnderflow; // @[RoundAnyRawFNToRecFN.scala:125:37, :237:61, :245:20] wire notNaN_isInfOut = notNaN_isSpecialInfOut | _notNaN_isInfOut_T; // @[RoundAnyRawFNToRecFN.scala:236:49, :248:{32,45}] wire signOut = ~isNaNOut & io_in_sign_0; // @[RoundAnyRawFNToRecFN.scala:48:5, :235:34, :250:22] wire _expOut_T = io_in_isZero_0 | common_totalUnderflow; // @[RoundAnyRawFNToRecFN.scala:48:5, :125:37, :253:32] wire [8:0] _expOut_T_1 = _expOut_T ? 9'h1C0 : 9'h0; // @[RoundAnyRawFNToRecFN.scala:253:{18,32}] wire [8:0] _expOut_T_2 = ~_expOut_T_1; // @[RoundAnyRawFNToRecFN.scala:253:{14,18}] wire [8:0] _expOut_T_3 = common_expOut & _expOut_T_2; // @[RoundAnyRawFNToRecFN.scala:122:31, :252:24, :253:14] wire [8:0] _expOut_T_7 = _expOut_T_3; // @[RoundAnyRawFNToRecFN.scala:252:24, :256:17] wire [8:0] _expOut_T_10 = _expOut_T_7; // @[RoundAnyRawFNToRecFN.scala:256:17, :260:17] wire [8:0] _expOut_T_11 = {2'h0, notNaN_isInfOut, 6'h0}; // @[RoundAnyRawFNToRecFN.scala:248:32, :265:18] wire [8:0] _expOut_T_12 = ~_expOut_T_11; // @[RoundAnyRawFNToRecFN.scala:265:{14,18}] wire [8:0] _expOut_T_13 = _expOut_T_10 & _expOut_T_12; // @[RoundAnyRawFNToRecFN.scala:260:17, :264:17, :265:14] wire [8:0] _expOut_T_15 = _expOut_T_13; // @[RoundAnyRawFNToRecFN.scala:264:17, :268:18] wire [8:0] _expOut_T_17 = _expOut_T_15; // @[RoundAnyRawFNToRecFN.scala:268:18, :272:15] wire [8:0] _expOut_T_18 = notNaN_isInfOut ? 9'h180 : 9'h0; // @[RoundAnyRawFNToRecFN.scala:248:32, :277:16] wire [8:0] _expOut_T_19 = _expOut_T_17 | _expOut_T_18; // @[RoundAnyRawFNToRecFN.scala:272:15, :276:15, :277:16] wire [8:0] _expOut_T_20 = isNaNOut ? 9'h1C0 : 9'h0; // @[RoundAnyRawFNToRecFN.scala:235:34, :278:16] wire [8:0] expOut = _expOut_T_19 | _expOut_T_20; // @[RoundAnyRawFNToRecFN.scala:276:15, :277:73, :278:16] wire _fractOut_T = isNaNOut | io_in_isZero_0; // @[RoundAnyRawFNToRecFN.scala:48:5, :235:34, :280:22] wire _fractOut_T_1 = _fractOut_T | common_totalUnderflow; // @[RoundAnyRawFNToRecFN.scala:125:37, :280:{22,38}] wire [22:0] _fractOut_T_2 = {isNaNOut, 22'h0}; // @[RoundAnyRawFNToRecFN.scala:235:34, :281:16] wire [22:0] _fractOut_T_3 = _fractOut_T_1 ? _fractOut_T_2 : common_fractOut; // @[RoundAnyRawFNToRecFN.scala:123:31, :280:{12,38}, :281:16] wire [22:0] fractOut = _fractOut_T_3; // @[RoundAnyRawFNToRecFN.scala:280:12, :283:11] wire [9:0] _io_out_T = {signOut, expOut}; // @[RoundAnyRawFNToRecFN.scala:250:22, :277:73, :286:23] assign _io_out_T_1 = {_io_out_T, fractOut}; // @[RoundAnyRawFNToRecFN.scala:283:11, :286:{23,33}] assign io_out_0 = _io_out_T_1; // @[RoundAnyRawFNToRecFN.scala:48:5, :286:33] wire [1:0] _io_exceptionFlags_T = {io_invalidExc_0, 1'h0}; // @[RoundAnyRawFNToRecFN.scala:48:5, :288:23] wire [2:0] _io_exceptionFlags_T_1 = {_io_exceptionFlags_T, overflow}; // @[RoundAnyRawFNToRecFN.scala:238:32, :288:{23,41}] wire [3:0] _io_exceptionFlags_T_2 = {_io_exceptionFlags_T_1, underflow}; // @[RoundAnyRawFNToRecFN.scala:239:32, :288:{41,53}] assign _io_exceptionFlags_T_3 = {_io_exceptionFlags_T_2, inexact}; // @[RoundAnyRawFNToRecFN.scala:240:28, :288:{53,66}] assign io_exceptionFlags_0 = _io_exceptionFlags_T_3; // @[RoundAnyRawFNToRecFN.scala:48:5, :288:66] assign io_out = io_out_0; // @[RoundAnyRawFNToRecFN.scala:48:5] assign io_exceptionFlags = io_exceptionFlags_0; // @[RoundAnyRawFNToRecFN.scala:48:5] endmodule
Generate the Verilog code corresponding to the following Chisel files. File HistoryBufferSRAM.scala: package compressacc import chisel3._ import chisel3.util._ import chisel3.{Printable, SyncReadMem} import freechips.rocketchip.tile._ import org.chipsalliance.cde.config._ import freechips.rocketchip.diplomacy._ import freechips.rocketchip.rocket.{TLBConfig} import freechips.rocketchip.util.DecoupledHelper import freechips.rocketchip.rocket.constants.MemoryOpConstants // there is no offset here, because we always just add on at the current // pointer class HBSRAMWrite extends Bundle { val data = UInt(256.W) val valid_bytes = UInt(6.W) } class HBSRAMReadReq extends Bundle { val offset = UInt(48.W) } class HBSRAMReadResp extends Bundle { val data = UInt(256.W) } class HBSRAMAdvanceReadPtr extends Bundle { val advance_bytes = UInt(6.W) } /* * This block maintains the history of everything that has been * loaded from a buffer to compress. It runs at least one cycle * AHEAD of the state machine doing compression, so that handling * cases where the offset is less than 32B is easy. * * The write interface is "valid" only, it does not have the ability * to backpressure. */ class HistoryBufferSRAM()(implicit p: Parameters) extends Module with MemoryOpConstants { val io = IO(new Bundle { val writes_in = Flipped((Valid(new HBSRAMWrite))) // these valids are technically not necessary, but useful for debugging/ // tracking purposes val read_req_in = Flipped((Valid(new HBSRAMReadReq))) val read_resp_out = (Valid(new HBSRAMReadResp)) val read_advance_ptr = Flipped((Valid(new HBSRAMAdvanceReadPtr))) }) println(s"HIST BUF OVERPROV FACTOR: ${p(LZ77HistBufOverProvisionFactor)}") val HIST_BUF_WIDTH = 32 val HIST_BUF_ELEMS_PER_CHUNK = 4 * 512 * p(LZ77HistBufOverProvisionFactor) val HIST_SIZE_BYTES = HIST_BUF_WIDTH * HIST_BUF_ELEMS_PER_CHUNK val HIST_BUF_INDEX_WIDTH = log2Up(HIST_SIZE_BYTES) val BYTE_SIZE = 8 println(s"HIST BUF WIDTH: ${HIST_BUF_WIDTH}") println(s"HIST BUF ELEMS PER CHUNK: ${HIST_BUF_ELEMS_PER_CHUNK}") println(s"TOTAL HIST BUF SIZE (B): ${HIST_SIZE_BYTES}") val recent_history_vec = Array.fill(HIST_BUF_WIDTH) {SyncReadMem(HIST_BUF_ELEMS_PER_CHUNK, UInt(BYTE_SIZE.W))} val read_indexing_vec = Wire(Vec(HIST_BUF_WIDTH, UInt(HIST_BUF_INDEX_WIDTH.W))) val read_ports_vec = Wire(Vec(HIST_BUF_WIDTH, UInt(BYTE_SIZE.W))) for (i <- 0 until HIST_BUF_WIDTH) { read_indexing_vec(i) := DontCare } // shift amount to remove memindex part of addr (low # of bits required to count HIST BUF WIDTH items) val MEMINDEX_BITS = log2Up(HIST_BUF_WIDTH) // mask to get only memindex part of addr val MEMINDEX_MASK = (1 << MEMINDEX_BITS) - 1 // HANDLE READS: val read_addr_ptr = RegInit(0.U(HIST_BUF_INDEX_WIDTH.W)) when (io.read_advance_ptr.valid) { // TODO: should an ongoing read account for advance_bytes? read_addr_ptr := read_addr_ptr + io.read_advance_ptr.bits.advance_bytes } val read_result_valid = RegNext(io.read_req_in.valid) val read_result_addr_ptr = RegNext(read_addr_ptr) val read_result_offset = RegNext(io.read_req_in.bits.offset) io.read_resp_out.valid := read_result_valid for (elemno <- 0 until HIST_BUF_WIDTH) { read_ports_vec(elemno) := recent_history_vec(elemno)(read_indexing_vec(elemno)) } for (elemno <- 0 until HIST_BUF_WIDTH) { val read_memaddr = (read_addr_ptr + 32.U - io.read_req_in.bits.offset - elemno.U - 1.U) >> MEMINDEX_BITS val read_memno = (read_addr_ptr + 32.U - io.read_req_in.bits.offset - elemno.U - 1.U) & MEMINDEX_MASK.U read_indexing_vec(read_memno) := read_memaddr when (io.read_req_in.valid) { CompressAccelLogger.logInfo("issued hist_read(elemno:%d): from memno:%d,memaddr:%d\n", elemno.U, read_memno, read_memaddr) } } val read_output_vec = Wire(Vec(HIST_BUF_WIDTH, UInt(BYTE_SIZE.W))) for (elemno <- 0 until HIST_BUF_WIDTH) { // get read data val read_memaddr = (read_result_addr_ptr + 32.U - read_result_offset - elemno.U - 1.U) >> MEMINDEX_BITS val read_memno = (read_result_addr_ptr + 32.U - read_result_offset - elemno.U - 1.U) & MEMINDEX_MASK.U read_output_vec(elemno) := read_ports_vec(read_memno) val print_read_ports_vec = Wire(UInt(BYTE_SIZE.W)) print_read_ports_vec := read_ports_vec(read_memno) when (read_result_valid) { CompressAccelLogger.logInfo("got hist_read(elemno:%d): from memno:%d,memaddr:%d = val:0x%x\n", elemno.U, read_memno, read_memaddr, print_read_ports_vec) } } io.read_resp_out.bits.data := Cat(read_output_vec) when (read_result_valid) { CompressAccelLogger.logInfo("read_resp: 0x%x\n", io.read_resp_out.bits.data) } // HANDLE WRITES: val write_addr_ptr = RegInit(0.U(HIST_BUF_INDEX_WIDTH.W)) when (io.writes_in.valid) { write_addr_ptr := write_addr_ptr + io.writes_in.bits.valid_bytes } val write_indexing_vec = Wire(Vec(HIST_BUF_WIDTH, UInt(HIST_BUF_INDEX_WIDTH.W))) val write_ports_vec = Wire(Vec(HIST_BUF_WIDTH, UInt(BYTE_SIZE.W))) val write_ports_write_enable = Wire(Vec(HIST_BUF_WIDTH, Bool())) for (elemno <- 0 until HIST_BUF_WIDTH) { write_ports_write_enable(elemno) := false.B write_indexing_vec(elemno) := DontCare write_ports_vec(elemno) := DontCare } for (elemno <- 0 until HIST_BUF_WIDTH) { when (write_ports_write_enable(elemno)) { recent_history_vec(elemno)(write_indexing_vec(elemno)) := write_ports_vec(elemno) } } val recent_history_vec_next = Wire(Vec(HIST_BUF_WIDTH, UInt(BYTE_SIZE.W))) for (elemno <- 0 until HIST_BUF_WIDTH) { recent_history_vec_next(elemno) := DontCare } for (elemno <- 0 until HIST_BUF_WIDTH) { recent_history_vec_next(io.writes_in.bits.valid_bytes - elemno.U - 1.U) := io.writes_in.bits.data(((elemno+1) << 3) - 1, elemno << 3) } for (elemno <- 0 until HIST_BUF_WIDTH) { when (io.writes_in.valid && (elemno.U(MEMINDEX_BITS.W) < io.writes_in.bits.valid_bytes)) { val full_address = write_addr_ptr + io.writes_in.bits.valid_bytes - elemno.U - 1.U val memno = full_address & (MEMINDEX_MASK).U val memaddr = full_address >> MEMINDEX_BITS write_indexing_vec(memno) := memaddr write_ports_vec(memno) := recent_history_vec_next(elemno) write_ports_write_enable(memno) := true.B val print_recent_history_vec = Wire(UInt(BYTE_SIZE.W)) //recent_history_vec_next(elemno)) print_recent_history_vec := recent_history_vec_next(elemno) CompressAccelLogger.logInfo("do_write:mem(memno:%d,memaddr:%d): from rhvn(elemno:%d) = val:0x%x\n", memno, memaddr, elemno.U, print_recent_history_vec) } } }
module MEM_13( // @[HistoryBufferSRAM.scala:66:67] input [11:0] R0_addr, input R0_clk, output [7:0] R0_data, input [11:0] W0_addr, input W0_en, input W0_clk, input [7:0] W0_data ); MEM_ext MEM_ext ( // @[HistoryBufferSRAM.scala:66:67] .R0_addr (R0_addr), .R0_en (1'h1), // @[HistoryBufferSRAM.scala:66:67] .R0_clk (R0_clk), .R0_data (R0_data), .W0_addr (W0_addr), .W0_en (W0_en), .W0_clk (W0_clk), .W0_data (W0_data) ); // @[HistoryBufferSRAM.scala:66:67] endmodule
Generate the Verilog code corresponding to the following Chisel files. File ShiftReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ // Similar to the Chisel ShiftRegister but allows the user to suggest a // name to the registers that get instantiated, and // to provide a reset value. object ShiftRegInit { def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T = (0 until n).foldRight(in) { case (i, next) => { val r = RegNext(next, init) name.foreach { na => r.suggestName(s"${na}_${i}") } r } } } /** These wrap behavioral * shift registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * The different types vary in their reset behavior: * AsyncResetShiftReg -- Asynchronously reset register array * A W(width) x D(depth) sized array is constructed from D instantiations of a * W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg, * but only used for timing applications */ abstract class AbstractPipelineReg(w: Int = 1) extends Module { val io = IO(new Bundle { val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) } ) } object AbstractPipelineReg { def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = { val chain = Module(gen) name.foreach{ chain.suggestName(_) } chain.io.d := in.asUInt chain.io.q.asTypeOf(in) } } class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) { require(depth > 0, "Depth must be greater than 0.") override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}" val chain = List.tabulate(depth) { i => Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}") } chain.last.io.d := io.d chain.last.io.en := true.B (chain.init zip chain.tail).foreach { case (sink, source) => sink.io.d := source.io.q sink.io.en := true.B } io.q := chain.head.io.q } object AsyncResetShiftReg { def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name) def apply [T <: Data](in: T, depth: Int, name: Option[String]): T = apply(in, depth, 0, name) def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T = apply(in, depth, init.litValue.toInt, name) def apply [T <: Data](in: T, depth: Int, init: T): T = apply (in, depth, init.litValue.toInt, None) } File AsyncQueue.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ case class AsyncQueueParams( depth: Int = 8, sync: Int = 3, safe: Boolean = true, // If safe is true, then effort is made to resynchronize the crossing indices when either side is reset. // This makes it safe/possible to reset one side of the crossing (but not the other) when the queue is empty. narrow: Boolean = false) // If narrow is true then the read mux is moved to the source side of the crossing. // This reduces the number of level shifters in the case where the clock crossing is also a voltage crossing, // at the expense of a combinational path from the sink to the source and back to the sink. { require (depth > 0 && isPow2(depth)) require (sync >= 2) val bits = log2Ceil(depth) val wires = if (narrow) 1 else depth } object AsyncQueueParams { // When there is only one entry, we don't need narrow. def singleton(sync: Int = 3, safe: Boolean = true) = AsyncQueueParams(1, sync, safe, false) } class AsyncBundleSafety extends Bundle { val ridx_valid = Input (Bool()) val widx_valid = Output(Bool()) val source_reset_n = Output(Bool()) val sink_reset_n = Input (Bool()) } class AsyncBundle[T <: Data](private val gen: T, val params: AsyncQueueParams = AsyncQueueParams()) extends Bundle { // Data-path synchronization val mem = Output(Vec(params.wires, gen)) val ridx = Input (UInt((params.bits+1).W)) val widx = Output(UInt((params.bits+1).W)) val index = params.narrow.option(Input(UInt(params.bits.W))) // Signals used to self-stabilize a safe AsyncQueue val safe = params.safe.option(new AsyncBundleSafety) } object GrayCounter { def apply(bits: Int, increment: Bool = true.B, clear: Bool = false.B, name: String = "binary"): UInt = { val incremented = Wire(UInt(bits.W)) val binary = RegNext(next=incremented, init=0.U).suggestName(name) incremented := Mux(clear, 0.U, binary + increment.asUInt) incremented ^ (incremented >> 1) } } class AsyncValidSync(sync: Int, desc: String) extends RawModule { val io = IO(new Bundle { val in = Input(Bool()) val out = Output(Bool()) }) val clock = IO(Input(Clock())) val reset = IO(Input(AsyncReset())) withClockAndReset(clock, reset){ io.out := AsyncResetSynchronizerShiftReg(io.in, sync, Some(desc)) } } class AsyncQueueSource[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module { override def desiredName = s"AsyncQueueSource_${gen.typeName}" val io = IO(new Bundle { // These come from the source domain val enq = Flipped(Decoupled(gen)) // These cross to the sink clock domain val async = new AsyncBundle(gen, params) }) val bits = params.bits val sink_ready = WireInit(true.B) val mem = Reg(Vec(params.depth, gen)) // This does NOT need to be reset at all. val widx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.enq.fire, !sink_ready, "widx_bin")) val ridx = AsyncResetSynchronizerShiftReg(io.async.ridx, params.sync, Some("ridx_gray")) val ready = sink_ready && widx =/= (ridx ^ (params.depth | params.depth >> 1).U) val index = if (bits == 0) 0.U else io.async.widx(bits-1, 0) ^ (io.async.widx(bits, bits) << (bits-1)) when (io.enq.fire) { mem(index) := io.enq.bits } val ready_reg = withReset(reset.asAsyncReset)(RegNext(next=ready, init=false.B).suggestName("ready_reg")) io.enq.ready := ready_reg && sink_ready val widx_reg = withReset(reset.asAsyncReset)(RegNext(next=widx, init=0.U).suggestName("widx_gray")) io.async.widx := widx_reg io.async.index match { case Some(index) => io.async.mem(0) := mem(index) case None => io.async.mem := mem } io.async.safe.foreach { sio => val source_valid_0 = Module(new AsyncValidSync(params.sync, "source_valid_0")) val source_valid_1 = Module(new AsyncValidSync(params.sync, "source_valid_1")) val sink_extend = Module(new AsyncValidSync(params.sync, "sink_extend")) val sink_valid = Module(new AsyncValidSync(params.sync, "sink_valid")) source_valid_0.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset source_valid_1.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset sink_extend .reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset sink_valid .reset := reset.asAsyncReset source_valid_0.clock := clock source_valid_1.clock := clock sink_extend .clock := clock sink_valid .clock := clock source_valid_0.io.in := true.B source_valid_1.io.in := source_valid_0.io.out sio.widx_valid := source_valid_1.io.out sink_extend.io.in := sio.ridx_valid sink_valid.io.in := sink_extend.io.out sink_ready := sink_valid.io.out sio.source_reset_n := !reset.asBool // Assert that if there is stuff in the queue, then reset cannot happen // Impossible to write because dequeue can occur on the receiving side, // then reset allowed to happen, but write side cannot know that dequeue // occurred. // TODO: write some sort of sanity check assertion for users // that denote don't reset when there is activity // assert (!(reset || !sio.sink_reset_n) || !io.enq.valid, "Enqueue while sink is reset and AsyncQueueSource is unprotected") // assert (!reset_rise || prev_idx_match.asBool, "Sink reset while AsyncQueueSource not empty") } } class AsyncQueueSink[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module { override def desiredName = s"AsyncQueueSink_${gen.typeName}" val io = IO(new Bundle { // These come from the sink domain val deq = Decoupled(gen) // These cross to the source clock domain val async = Flipped(new AsyncBundle(gen, params)) }) val bits = params.bits val source_ready = WireInit(true.B) val ridx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.deq.fire, !source_ready, "ridx_bin")) val widx = AsyncResetSynchronizerShiftReg(io.async.widx, params.sync, Some("widx_gray")) val valid = source_ready && ridx =/= widx // The mux is safe because timing analysis ensures ridx has reached the register // On an ASIC, changes to the unread location cannot affect the selected value // On an FPGA, only one input changes at a time => mem updates don't cause glitches // The register only latches when the selected valued is not being written val index = if (bits == 0) 0.U else ridx(bits-1, 0) ^ (ridx(bits, bits) << (bits-1)) io.async.index.foreach { _ := index } // This register does not NEED to be reset, as its contents will not // be considered unless the asynchronously reset deq valid register is set. // It is possible that bits latches when the source domain is reset / has power cut // This is safe, because isolation gates brought mem low before the zeroed widx reached us val deq_bits_nxt = io.async.mem(if (params.narrow) 0.U else index) io.deq.bits := ClockCrossingReg(deq_bits_nxt, en = valid, doInit = false, name = Some("deq_bits_reg")) val valid_reg = withReset(reset.asAsyncReset)(RegNext(next=valid, init=false.B).suggestName("valid_reg")) io.deq.valid := valid_reg && source_ready val ridx_reg = withReset(reset.asAsyncReset)(RegNext(next=ridx, init=0.U).suggestName("ridx_gray")) io.async.ridx := ridx_reg io.async.safe.foreach { sio => val sink_valid_0 = Module(new AsyncValidSync(params.sync, "sink_valid_0")) val sink_valid_1 = Module(new AsyncValidSync(params.sync, "sink_valid_1")) val source_extend = Module(new AsyncValidSync(params.sync, "source_extend")) val source_valid = Module(new AsyncValidSync(params.sync, "source_valid")) sink_valid_0 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset sink_valid_1 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset source_extend.reset := (reset.asBool || !sio.source_reset_n).asAsyncReset source_valid .reset := reset.asAsyncReset sink_valid_0 .clock := clock sink_valid_1 .clock := clock source_extend.clock := clock source_valid .clock := clock sink_valid_0.io.in := true.B sink_valid_1.io.in := sink_valid_0.io.out sio.ridx_valid := sink_valid_1.io.out source_extend.io.in := sio.widx_valid source_valid.io.in := source_extend.io.out source_ready := source_valid.io.out sio.sink_reset_n := !reset.asBool // TODO: write some sort of sanity check assertion for users // that denote don't reset when there is activity // // val reset_and_extend = !source_ready || !sio.source_reset_n || reset.asBool // val reset_and_extend_prev = RegNext(reset_and_extend, true.B) // val reset_rise = !reset_and_extend_prev && reset_and_extend // val prev_idx_match = AsyncResetReg(updateData=(io.async.widx===io.async.ridx), resetData=0) // assert (!reset_rise || prev_idx_match.asBool, "Source reset while AsyncQueueSink not empty") } } object FromAsyncBundle { // Sometimes it makes sense for the sink to have different sync than the source def apply[T <: Data](x: AsyncBundle[T]): DecoupledIO[T] = apply(x, x.params.sync) def apply[T <: Data](x: AsyncBundle[T], sync: Int): DecoupledIO[T] = { val sink = Module(new AsyncQueueSink(chiselTypeOf(x.mem(0)), x.params.copy(sync = sync))) sink.io.async <> x sink.io.deq } } object ToAsyncBundle { def apply[T <: Data](x: ReadyValidIO[T], params: AsyncQueueParams = AsyncQueueParams()): AsyncBundle[T] = { val source = Module(new AsyncQueueSource(chiselTypeOf(x.bits), params)) source.io.enq <> x source.io.async } } class AsyncQueue[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Crossing[T] { val io = IO(new CrossingIO(gen)) val source = withClockAndReset(io.enq_clock, io.enq_reset) { Module(new AsyncQueueSource(gen, params)) } val sink = withClockAndReset(io.deq_clock, io.deq_reset) { Module(new AsyncQueueSink (gen, params)) } source.io.enq <> io.enq io.deq <> sink.io.deq sink.io.async <> source.io.async }
module AsyncValidSync_66( // @[AsyncQueue.scala:58:7] input io_in, // @[AsyncQueue.scala:59:14] output io_out, // @[AsyncQueue.scala:59:14] input clock, // @[AsyncQueue.scala:63:17] input reset // @[AsyncQueue.scala:64:17] ); wire io_in_0 = io_in; // @[AsyncQueue.scala:58:7] wire _io_out_WIRE; // @[ShiftReg.scala:48:24] wire io_out_0; // @[AsyncQueue.scala:58:7] assign io_out_0 = _io_out_WIRE; // @[ShiftReg.scala:48:24] AsyncResetSynchronizerShiftReg_w1_d3_i0_79 io_out_sink_extend ( // @[ShiftReg.scala:45:23] .clock (clock), .reset (reset), .io_d (io_in_0), // @[AsyncQueue.scala:58:7] .io_q (_io_out_WIRE) ); // @[ShiftReg.scala:45:23] assign io_out = io_out_0; // @[AsyncQueue.scala:58:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Monitor.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceLine import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import freechips.rocketchip.diplomacy.EnableMonitors import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode} import freechips.rocketchip.util.PlusArg case class TLMonitorArgs(edge: TLEdge) abstract class TLMonitorBase(args: TLMonitorArgs) extends Module { val io = IO(new Bundle { val in = Input(new TLBundle(args.edge.bundle)) }) def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit legalize(io.in, args.edge, reset) } object TLMonitor { def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = { if (enable) { EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) } } else { node } } } class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args) { require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal)) val cover_prop_class = PropertyClass.Default //Like assert but can flip to being an assumption for formal verification def monAssert(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir, cond, message, PropertyClass.Default) } def assume(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir.flip, cond, message, PropertyClass.Default) } def extra = { args.edge.sourceInfo match { case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)" case _ => "" } } def visible(address: UInt, source: UInt, edge: TLEdge) = edge.client.clients.map { c => !c.sourceId.contains(source) || c.visibility.map(_.contains(address)).reduce(_ || _) }.reduce(_ && _) def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = { //switch this flag to turn on diplomacy in error messages def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n" monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra) // Reuse these subexpressions to save some firrtl lines val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility") //The monitor doesn’t check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B //TODO: check for acquireT? when (bundle.opcode === TLMessages.AcquireBlock) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra) } when (bundle.opcode === TLMessages.AcquirePerm) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra) monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra) monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra) monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra) } } def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = { monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra) monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility") // Reuse these subexpressions to save some firrtl lines val address_ok = edge.manager.containsSafe(edge.address(bundle)) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source when (bundle.opcode === TLMessages.Probe) { assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra) assume (address_ok, "'B' channel Probe carries unmanaged address" + extra) assume (legal_source, "'B' channel Probe carries source that is not first source" + extra) assume (is_aligned, "'B' channel Probe address not aligned to size" + extra) assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra) assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra) assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra) monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra) monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra) monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra) monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra) } } def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = { monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val address_ok = edge.manager.containsSafe(edge.address(bundle)) monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility") when (bundle.opcode === TLMessages.ProbeAck) { monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra) } when (bundle.opcode === TLMessages.ProbeAckData) { monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.Release) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra) monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra) } when (bundle.opcode === TLMessages.ReleaseData) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.AccessAck) { monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra) } when (bundle.opcode === TLMessages.HintAck) { monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra) } } def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = { assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val sink_ok = bundle.sink < edge.manager.endSinkId.U val deny_put_ok = edge.manager.mayDenyPut.B val deny_get_ok = edge.manager.mayDenyGet.B when (bundle.opcode === TLMessages.ReleaseAck) { assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra) assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra) assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra) } when (bundle.opcode === TLMessages.Grant) { assume (source_ok, "'D' channel Grant carries invalid source ID" + extra) assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra) assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra) } when (bundle.opcode === TLMessages.GrantData) { assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra) assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra) } when (bundle.opcode === TLMessages.AccessAck) { assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra) } when (bundle.opcode === TLMessages.HintAck) { assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra) } } def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = { val sink_ok = bundle.sink < edge.manager.endSinkId.U monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra) } def legalizeFormat(bundle: TLBundle, edge: TLEdge) = { when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) } when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) } when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) } when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) } } else { monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra) monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra) monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra) } } def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = { val a_first = edge.first(a.bits, a.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (a.valid && !a_first) { monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra) monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra) monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra) monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra) monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra) } when (a.fire && a_first) { opcode := a.bits.opcode param := a.bits.param size := a.bits.size source := a.bits.source address := a.bits.address } } def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = { val b_first = edge.first(b.bits, b.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (b.valid && !b_first) { monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra) monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra) monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra) monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra) monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra) } when (b.fire && b_first) { opcode := b.bits.opcode param := b.bits.param size := b.bits.size source := b.bits.source address := b.bits.address } } def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = { // Symbolic variable val sym_source = Wire(UInt(edge.client.endSourceId.W)) // TODO: Connect sym_source to a fixed value for simulation and to a // free wire in formal sym_source := 0.U // Type casting Int to UInt val maxSourceId = Wire(UInt(edge.client.endSourceId.W)) maxSourceId := edge.client.endSourceId.U // Delayed verison of sym_source val sym_source_d = Reg(UInt(edge.client.endSourceId.W)) sym_source_d := sym_source // These will be constraints for FV setup Property( MonitorDirection.Monitor, (sym_source === sym_source_d), "sym_source should remain stable", PropertyClass.Default) Property( MonitorDirection.Monitor, (sym_source <= maxSourceId), "sym_source should take legal value", PropertyClass.Default) val my_resp_pend = RegInit(false.B) val my_opcode = Reg(UInt()) val my_size = Reg(UInt()) val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire) val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire) val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source) val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source) val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat) val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend) when (my_set_resp_pend) { my_resp_pend := true.B } .elsewhen (my_clr_resp_pend) { my_resp_pend := false.B } when (my_a_first_beat) { my_opcode := bundle.a.bits.opcode my_size := bundle.a.bits.size } val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size) val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode) val my_resp_opcode_legal = Wire(Bool()) when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) || (my_resp_opcode === TLMessages.LogicalData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData) } .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck) } .otherwise { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck) } monAssert (IfThen(my_resp_pend, !my_a_first_beat), "Request message should not be sent with a source ID, for which a response message" + "is already pending (not received until current cycle) for a prior request message" + "with the same source ID" + extra) assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)), "Response message should be accepted with a source ID only if a request message with the" + "same source ID has been accepted or is being accepted in the current cycle" + extra) assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)), "Response message should be sent with a source ID only if a request message with the" + "same source ID has been accepted or is being sent in the current cycle" + extra) assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)), "If d_valid is 1, then d_size should be same as a_size of the corresponding request" + "message" + extra) assume (IfThen(my_d_first_beat, my_resp_opcode_legal), "If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" + "request message" + extra) } def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = { val c_first = edge.first(c.bits, c.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (c.valid && !c_first) { monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra) monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra) monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra) monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra) monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra) } when (c.fire && c_first) { opcode := c.bits.opcode param := c.bits.param size := c.bits.size source := c.bits.source address := c.bits.address } } def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = { val d_first = edge.first(d.bits, d.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val sink = Reg(UInt()) val denied = Reg(Bool()) when (d.valid && !d_first) { assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra) assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra) assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra) assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra) assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra) assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra) } when (d.fire && d_first) { opcode := d.bits.opcode param := d.bits.param size := d.bits.size source := d.bits.source sink := d.bits.sink denied := d.bits.denied } } def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = { legalizeMultibeatA(bundle.a, edge) legalizeMultibeatD(bundle.d, edge) if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { legalizeMultibeatB(bundle.b, edge) legalizeMultibeatC(bundle.c, edge) } } //This is left in for almond which doesn't adhere to the tilelink protocol @deprecated("Use legalizeADSource instead if possible","") def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.client.endSourceId.W)) val a_first = edge.first(bundle.a.bits, bundle.a.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val a_set = WireInit(0.U(edge.client.endSourceId.W)) when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra) } if (edge.manager.minLatency > 0) { assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = { val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size) val log_a_size_bus_size = log2Ceil(a_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error inflight.suggestName("inflight") val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) inflight_opcodes.suggestName("inflight_opcodes") val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) inflight_sizes.suggestName("inflight_sizes") val a_first = edge.first(bundle.a.bits, bundle.a.fire) a_first.suggestName("a_first") val d_first = edge.first(bundle.d.bits, bundle.d.fire) d_first.suggestName("d_first") val a_set = WireInit(0.U(edge.client.endSourceId.W)) val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) a_set.suggestName("a_set") a_set_wo_ready.suggestName("a_set_wo_ready") val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) a_opcodes_set.suggestName("a_opcodes_set") val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) a_sizes_set.suggestName("a_sizes_set") val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W)) a_opcode_lookup.suggestName("a_opcode_lookup") a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W)) a_size_lookup.suggestName("a_size_lookup") a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant)) val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant)) val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W)) a_opcodes_set_interm.suggestName("a_opcodes_set_interm") val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W)) a_sizes_set_interm.suggestName("a_sizes_set_interm") when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) { a_set_wo_ready := UIntToOH(bundle.a.bits.source) } when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U) a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U) monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) d_opcodes_clr.suggestName("d_opcodes_clr") val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) || (bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra) assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) || (bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra) assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) { assume((!bundle.d.ready) || bundle.a.ready, "ready check") } if (edge.manager.minLatency > 0) { assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = { val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size) val log_c_size_bus_size = log2Ceil(c_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) inflight.suggestName("inflight") inflight_opcodes.suggestName("inflight_opcodes") inflight_sizes.suggestName("inflight_sizes") val c_first = edge.first(bundle.c.bits, bundle.c.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) c_first.suggestName("c_first") d_first.suggestName("d_first") val c_set = WireInit(0.U(edge.client.endSourceId.W)) val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) c_set.suggestName("c_set") c_set_wo_ready.suggestName("c_set_wo_ready") c_opcodes_set.suggestName("c_opcodes_set") c_sizes_set.suggestName("c_sizes_set") val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W)) val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W)) c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U c_opcode_lookup.suggestName("c_opcode_lookup") c_size_lookup.suggestName("c_size_lookup") val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W)) val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W)) c_opcodes_set_interm.suggestName("c_opcodes_set_interm") c_sizes_set_interm.suggestName("c_sizes_set_interm") when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) { c_set_wo_ready := UIntToOH(bundle.c.bits.source) } when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) { c_set := UIntToOH(bundle.c.bits.source) c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U) c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U) monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra) } val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") d_opcodes_clr.suggestName("d_opcodes_clr") d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) { assume((!bundle.d.ready) || bundle.c.ready, "ready check") } if (edge.manager.minLatency > 0) { when (c_set_wo_ready.orR) { assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra) } } inflight := (inflight | c_set) & ~d_clr inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.manager.endSinkId.W)) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val e_first = true.B val d_set = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) { d_set := UIntToOH(bundle.d.bits.sink) assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra) } val e_clr = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) { e_clr := UIntToOH(bundle.e.bits.sink) monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra) } // edge.client.minLatency applies to BC, not DE inflight := (inflight | d_set) & ~e_clr } def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = { val sourceBits = log2Ceil(edge.client.endSourceId) val tooBig = 14 // >16kB worth of flight information gets to be too much if (sourceBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked") } else { if (args.edge.params(TestplanTestType).simulation) { if (args.edge.params(TLMonitorStrictMode)) { legalizeADSource(bundle, edge) legalizeCDSource(bundle, edge) } else { legalizeADSourceOld(bundle, edge) } } if (args.edge.params(TestplanTestType).formal) { legalizeADSourceFormal(bundle, edge) } } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { // legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize... val sinkBits = log2Ceil(edge.manager.endSinkId) if (sinkBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked") } else { legalizeDESink(bundle, edge) } } } def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = { legalizeFormat (bundle, edge) legalizeMultibeat (bundle, edge) legalizeUnique (bundle, edge) } } File Misc.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ import chisel3.util.random.LFSR import org.chipsalliance.cde.config.Parameters import scala.math._ class ParameterizedBundle(implicit p: Parameters) extends Bundle trait Clocked extends Bundle { val clock = Clock() val reset = Bool() } object DecoupledHelper { def apply(rvs: Bool*) = new DecoupledHelper(rvs) } class DecoupledHelper(val rvs: Seq[Bool]) { def fire(exclude: Bool, includes: Bool*) = { require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!") (rvs.filter(_ ne exclude) ++ includes).reduce(_ && _) } def fire() = { rvs.reduce(_ && _) } } object MuxT { def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2)) def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3)) def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4)) } /** Creates a cascade of n MuxTs to search for a key value. */ object MuxTLookup { def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } } object ValidMux { def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = { apply(v1 +: v2.toSeq) } def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = { val out = Wire(Valid(valids.head.bits.cloneType)) out.valid := valids.map(_.valid).reduce(_ || _) out.bits := MuxCase(valids.head.bits, valids.map(v => (v.valid -> v.bits))) out } } object Str { def apply(s: String): UInt = { var i = BigInt(0) require(s.forall(validChar _)) for (c <- s) i = (i << 8) | c i.U((s.length*8).W) } def apply(x: Char): UInt = { require(validChar(x)) x.U(8.W) } def apply(x: UInt): UInt = apply(x, 10) def apply(x: UInt, radix: Int): UInt = { val rad = radix.U val w = x.getWidth require(w > 0) var q = x var s = digit(q % rad) for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s) } s } def apply(x: SInt): UInt = apply(x, 10) def apply(x: SInt, radix: Int): UInt = { val neg = x < 0.S val abs = x.abs.asUInt if (radix != 10) { Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix)) } else { val rad = radix.U val w = abs.getWidth require(w > 0) var q = abs var s = digit(q % rad) var needSign = neg for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad val placeSpace = q === 0.U val space = Mux(needSign, Str('-'), Str(' ')) needSign = needSign && !placeSpace s = Cat(Mux(placeSpace, space, digit(q % rad)), s) } Cat(Mux(needSign, Str('-'), Str(' ')), s) } } private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0) private def validChar(x: Char) = x == (x & 0xFF) } object Split { def apply(x: UInt, n0: Int) = { val w = x.getWidth (x.extract(w-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n2: Int, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } } object Random { def apply(mod: Int, random: UInt): UInt = { if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0) else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod)) } def apply(mod: Int): UInt = apply(mod, randomizer) def oneHot(mod: Int, random: UInt): UInt = { if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0)) else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt } def oneHot(mod: Int): UInt = oneHot(mod, randomizer) private def randomizer = LFSR(16) private def partition(value: UInt, slices: Int) = Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U) } object Majority { def apply(in: Set[Bool]): Bool = { val n = (in.size >> 1) + 1 val clauses = in.subsets(n).map(_.reduce(_ && _)) clauses.reduce(_ || _) } def apply(in: Seq[Bool]): Bool = apply(in.toSet) def apply(in: UInt): Bool = apply(in.asBools.toSet) } object PopCountAtLeast { private def two(x: UInt): (Bool, Bool) = x.getWidth match { case 1 => (x.asBool, false.B) case n => val half = x.getWidth / 2 val (leftOne, leftTwo) = two(x(half - 1, 0)) val (rightOne, rightTwo) = two(x(x.getWidth - 1, half)) (leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne)) } def apply(x: UInt, n: Int): Bool = n match { case 0 => true.B case 1 => x.orR case 2 => two(x)._2 case 3 => PopCount(x) >= n.U } } // This gets used everywhere, so make the smallest circuit possible ... // Given an address and size, create a mask of beatBytes size // eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111 // groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01 object MaskGen { def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = { require (groupBy >= 1 && beatBytes >= groupBy) require (isPow2(beatBytes) && isPow2(groupBy)) val lgBytes = log2Ceil(beatBytes) val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U def helper(i: Int): Seq[(Bool, Bool)] = { if (i == 0) { Seq((lgSize >= lgBytes.asUInt, true.B)) } else { val sub = helper(i-1) val size = sizeOH(lgBytes - i) val bit = addr_lo(lgBytes - i) val nbit = !bit Seq.tabulate (1 << i) { j => val (sub_acc, sub_eq) = sub(j/2) val eq = sub_eq && (if (j % 2 == 1) bit else nbit) val acc = sub_acc || (size && eq) (acc, eq) } } } if (groupBy == beatBytes) 1.U else Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse) } } File PlusArg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.experimental._ import chisel3.util.HasBlackBoxResource @deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05") case class PlusArgInfo(default: BigInt, docstring: String) /** Case class for PlusArg information * * @tparam A scala type of the PlusArg value * @param default optional default value * @param docstring text to include in the help * @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT) */ private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String) /** Typeclass for converting a type to a doctype string * @tparam A some type */ trait Doctypeable[A] { /** Return the doctype string for some option */ def toDoctype(a: Option[A]): String } /** Object containing implementations of the Doctypeable typeclass */ object Doctypes { /** Converts an Int => "INT" */ implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" } /** Converts a BigInt => "INT" */ implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" } /** Converts a String => "STRING" */ implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" } } class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map( "FORMAT" -> StringParam(format), "DEFAULT" -> IntParam(default), "WIDTH" -> IntParam(width) )) with HasBlackBoxResource { val io = IO(new Bundle { val out = Output(UInt(width.W)) }) addResource("/vsrc/plusarg_reader.v") } /* This wrapper class has no outputs, making it clear it is a simulation-only construct */ class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module { val io = IO(new Bundle { val count = Input(UInt(width.W)) }) val max = Module(new plusarg_reader(format, default, docstring, width)).io.out when (max > 0.U) { assert (io.count < max, s"Timeout exceeded: $docstring") } } import Doctypes._ object PlusArg { /** PlusArg("foo") will return 42.U if the simulation is run with +foo=42 * Do not use this as an initial register value. The value is set in an * initial block and thus accessing it from another initial is racey. * Add a docstring to document the arg, which can be dumped in an elaboration * pass. */ def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out } /** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert * to kill the simulation when count exceeds the specified integer argument. * Default 0 will never assert. */ def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count } } object PlusArgArtefacts { private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty /* Add a new PlusArg */ @deprecated( "Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05" ) def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring) /** Add a new PlusArg * * @tparam A scala type of the PlusArg value * @param name name for the PlusArg * @param default optional default value * @param docstring text to include in the help */ def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit = artefacts = artefacts ++ Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default))) /* From plus args, generate help text */ private def serializeHelp_cHeader(tab: String = ""): String = artefacts .map{ case(arg, info) => s"""|$tab+$arg=${info.doctype}\\n\\ |$tab${" "*20}${info.docstring}\\n\\ |""".stripMargin ++ info.default.map{ case default => s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("") }.toSeq.mkString("\\n\\\n") ++ "\"" /* From plus args, generate a char array of their names */ private def serializeArray_cHeader(tab: String = ""): String = { val prettyTab = tab + " " * 44 // Length of 'static const ...' s"${tab}static const char * verilog_plusargs [] = {\\\n" ++ artefacts .map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" } .mkString("")++ s"${prettyTab}0};" } /* Generate C code to be included in emulator.cc that helps with * argument parsing based on available Verilog PlusArgs */ def serialize_cHeader(): String = s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\ |${serializeHelp_cHeader(" "*7)} |${serializeArray_cHeader()} |""".stripMargin } File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag } File Bundles.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import freechips.rocketchip.util._ import scala.collection.immutable.ListMap import chisel3.util.Decoupled import chisel3.util.DecoupledIO import chisel3.reflect.DataMirror abstract class TLBundleBase(val params: TLBundleParameters) extends Bundle // common combos in lazy policy: // Put + Acquire // Release + AccessAck object TLMessages { // A B C D E def PutFullData = 0.U // . . => AccessAck def PutPartialData = 1.U // . . => AccessAck def ArithmeticData = 2.U // . . => AccessAckData def LogicalData = 3.U // . . => AccessAckData def Get = 4.U // . . => AccessAckData def Hint = 5.U // . . => HintAck def AcquireBlock = 6.U // . => Grant[Data] def AcquirePerm = 7.U // . => Grant[Data] def Probe = 6.U // . => ProbeAck[Data] def AccessAck = 0.U // . . def AccessAckData = 1.U // . . def HintAck = 2.U // . . def ProbeAck = 4.U // . def ProbeAckData = 5.U // . def Release = 6.U // . => ReleaseAck def ReleaseData = 7.U // . => ReleaseAck def Grant = 4.U // . => GrantAck def GrantData = 5.U // . => GrantAck def ReleaseAck = 6.U // . def GrantAck = 0.U // . def isA(x: UInt) = x <= AcquirePerm def isB(x: UInt) = x <= Probe def isC(x: UInt) = x <= ReleaseData def isD(x: UInt) = x <= ReleaseAck def adResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, Grant, Grant) def bcResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, ProbeAck, ProbeAck) def a = Seq( ("PutFullData",TLPermissions.PermMsgReserved), ("PutPartialData",TLPermissions.PermMsgReserved), ("ArithmeticData",TLAtomics.ArithMsg), ("LogicalData",TLAtomics.LogicMsg), ("Get",TLPermissions.PermMsgReserved), ("Hint",TLHints.HintsMsg), ("AcquireBlock",TLPermissions.PermMsgGrow), ("AcquirePerm",TLPermissions.PermMsgGrow)) def b = Seq( ("PutFullData",TLPermissions.PermMsgReserved), ("PutPartialData",TLPermissions.PermMsgReserved), ("ArithmeticData",TLAtomics.ArithMsg), ("LogicalData",TLAtomics.LogicMsg), ("Get",TLPermissions.PermMsgReserved), ("Hint",TLHints.HintsMsg), ("Probe",TLPermissions.PermMsgCap)) def c = Seq( ("AccessAck",TLPermissions.PermMsgReserved), ("AccessAckData",TLPermissions.PermMsgReserved), ("HintAck",TLPermissions.PermMsgReserved), ("Invalid Opcode",TLPermissions.PermMsgReserved), ("ProbeAck",TLPermissions.PermMsgReport), ("ProbeAckData",TLPermissions.PermMsgReport), ("Release",TLPermissions.PermMsgReport), ("ReleaseData",TLPermissions.PermMsgReport)) def d = Seq( ("AccessAck",TLPermissions.PermMsgReserved), ("AccessAckData",TLPermissions.PermMsgReserved), ("HintAck",TLPermissions.PermMsgReserved), ("Invalid Opcode",TLPermissions.PermMsgReserved), ("Grant",TLPermissions.PermMsgCap), ("GrantData",TLPermissions.PermMsgCap), ("ReleaseAck",TLPermissions.PermMsgReserved)) } /** * The three primary TileLink permissions are: * (T)runk: the agent is (or is on inwards path to) the global point of serialization. * (B)ranch: the agent is on an outwards path to * (N)one: * These permissions are permuted by transfer operations in various ways. * Operations can cap permissions, request for them to be grown or shrunk, * or for a report on their current status. */ object TLPermissions { val aWidth = 2 val bdWidth = 2 val cWidth = 3 // Cap types (Grant = new permissions, Probe = permisions <= target) def toT = 0.U(bdWidth.W) def toB = 1.U(bdWidth.W) def toN = 2.U(bdWidth.W) def isCap(x: UInt) = x <= toN // Grow types (Acquire = permissions >= target) def NtoB = 0.U(aWidth.W) def NtoT = 1.U(aWidth.W) def BtoT = 2.U(aWidth.W) def isGrow(x: UInt) = x <= BtoT // Shrink types (ProbeAck, Release) def TtoB = 0.U(cWidth.W) def TtoN = 1.U(cWidth.W) def BtoN = 2.U(cWidth.W) def isShrink(x: UInt) = x <= BtoN // Report types (ProbeAck, Release) def TtoT = 3.U(cWidth.W) def BtoB = 4.U(cWidth.W) def NtoN = 5.U(cWidth.W) def isReport(x: UInt) = x <= NtoN def PermMsgGrow:Seq[String] = Seq("Grow NtoB", "Grow NtoT", "Grow BtoT") def PermMsgCap:Seq[String] = Seq("Cap toT", "Cap toB", "Cap toN") def PermMsgReport:Seq[String] = Seq("Shrink TtoB", "Shrink TtoN", "Shrink BtoN", "Report TotT", "Report BtoB", "Report NtoN") def PermMsgReserved:Seq[String] = Seq("Reserved") } object TLAtomics { val width = 3 // Arithmetic types def MIN = 0.U(width.W) def MAX = 1.U(width.W) def MINU = 2.U(width.W) def MAXU = 3.U(width.W) def ADD = 4.U(width.W) def isArithmetic(x: UInt) = x <= ADD // Logical types def XOR = 0.U(width.W) def OR = 1.U(width.W) def AND = 2.U(width.W) def SWAP = 3.U(width.W) def isLogical(x: UInt) = x <= SWAP def ArithMsg:Seq[String] = Seq("MIN", "MAX", "MINU", "MAXU", "ADD") def LogicMsg:Seq[String] = Seq("XOR", "OR", "AND", "SWAP") } object TLHints { val width = 1 def PREFETCH_READ = 0.U(width.W) def PREFETCH_WRITE = 1.U(width.W) def isHints(x: UInt) = x <= PREFETCH_WRITE def HintsMsg:Seq[String] = Seq("PrefetchRead", "PrefetchWrite") } sealed trait TLChannel extends TLBundleBase { val channelName: String } sealed trait TLDataChannel extends TLChannel sealed trait TLAddrChannel extends TLDataChannel final class TLBundleA(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleA_${params.shortName}" val channelName = "'A' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(List(TLAtomics.width, TLPermissions.aWidth, TLHints.width).max.W) // amo_opcode || grow perms || hint val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // from val address = UInt(params.addressBits.W) // to val user = BundleMap(params.requestFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val mask = UInt((params.dataBits/8).W) val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleB(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleB_${params.shortName}" val channelName = "'B' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.bdWidth.W) // cap perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // to val address = UInt(params.addressBits.W) // from // variable fields during multibeat: val mask = UInt((params.dataBits/8).W) val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleC(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleC_${params.shortName}" val channelName = "'C' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.cWidth.W) // shrink or report perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // from val address = UInt(params.addressBits.W) // to val user = BundleMap(params.requestFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleD(params: TLBundleParameters) extends TLBundleBase(params) with TLDataChannel { override def typeName = s"TLBundleD_${params.shortName}" val channelName = "'D' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.bdWidth.W) // cap perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // to val sink = UInt(params.sinkBits.W) // from val denied = Bool() // implies corrupt iff *Data val user = BundleMap(params.responseFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleE(params: TLBundleParameters) extends TLBundleBase(params) with TLChannel { override def typeName = s"TLBundleE_${params.shortName}" val channelName = "'E' channel" val sink = UInt(params.sinkBits.W) // to } class TLBundle(val params: TLBundleParameters) extends Record { // Emulate a Bundle with elements abcde or ad depending on params.hasBCE private val optA = Some (Decoupled(new TLBundleA(params))) private val optB = params.hasBCE.option(Flipped(Decoupled(new TLBundleB(params)))) private val optC = params.hasBCE.option(Decoupled(new TLBundleC(params))) private val optD = Some (Flipped(Decoupled(new TLBundleD(params)))) private val optE = params.hasBCE.option(Decoupled(new TLBundleE(params))) def a: DecoupledIO[TLBundleA] = optA.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleA(params))))) def b: DecoupledIO[TLBundleB] = optB.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleB(params))))) def c: DecoupledIO[TLBundleC] = optC.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleC(params))))) def d: DecoupledIO[TLBundleD] = optD.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleD(params))))) def e: DecoupledIO[TLBundleE] = optE.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleE(params))))) val elements = if (params.hasBCE) ListMap("e" -> e, "d" -> d, "c" -> c, "b" -> b, "a" -> a) else ListMap("d" -> d, "a" -> a) def tieoff(): Unit = { DataMirror.specifiedDirectionOf(a.ready) match { case SpecifiedDirection.Input => a.ready := false.B c.ready := false.B e.ready := false.B b.valid := false.B d.valid := false.B case SpecifiedDirection.Output => a.valid := false.B c.valid := false.B e.valid := false.B b.ready := false.B d.ready := false.B case _ => } } } object TLBundle { def apply(params: TLBundleParameters) = new TLBundle(params) } class TLAsyncBundleBase(val params: TLAsyncBundleParameters) extends Bundle class TLAsyncBundle(params: TLAsyncBundleParameters) extends TLAsyncBundleBase(params) { val a = new AsyncBundle(new TLBundleA(params.base), params.async) val b = Flipped(new AsyncBundle(new TLBundleB(params.base), params.async)) val c = new AsyncBundle(new TLBundleC(params.base), params.async) val d = Flipped(new AsyncBundle(new TLBundleD(params.base), params.async)) val e = new AsyncBundle(new TLBundleE(params.base), params.async) } class TLRationalBundle(params: TLBundleParameters) extends TLBundleBase(params) { val a = RationalIO(new TLBundleA(params)) val b = Flipped(RationalIO(new TLBundleB(params))) val c = RationalIO(new TLBundleC(params)) val d = Flipped(RationalIO(new TLBundleD(params))) val e = RationalIO(new TLBundleE(params)) } class TLCreditedBundle(params: TLBundleParameters) extends TLBundleBase(params) { val a = CreditedIO(new TLBundleA(params)) val b = Flipped(CreditedIO(new TLBundleB(params))) val c = CreditedIO(new TLBundleC(params)) val d = Flipped(CreditedIO(new TLBundleD(params))) val e = CreditedIO(new TLBundleE(params)) } File Parameters.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy.nodes._ import freechips.rocketchip.diplomacy.{ AddressDecoder, AddressSet, BufferParams, DirectedBuffers, IdMap, IdMapEntry, IdRange, RegionType, TransferSizes } import freechips.rocketchip.resources.{Resource, ResourceAddress, ResourcePermissions} import freechips.rocketchip.util.{ AsyncQueueParams, BundleField, BundleFieldBase, BundleKeyBase, CreditedDelay, groupByIntoSeq, RationalDirection, SimpleProduct } import scala.math.max //These transfer sizes describe requests issued from masters on the A channel that will be responded by slaves on the D channel case class TLMasterToSlaveTransferSizes( // Supports both Acquire+Release of the following two sizes: acquireT: TransferSizes = TransferSizes.none, acquireB: TransferSizes = TransferSizes.none, arithmetic: TransferSizes = TransferSizes.none, logical: TransferSizes = TransferSizes.none, get: TransferSizes = TransferSizes.none, putFull: TransferSizes = TransferSizes.none, putPartial: TransferSizes = TransferSizes.none, hint: TransferSizes = TransferSizes.none) extends TLCommonTransferSizes { def intersect(rhs: TLMasterToSlaveTransferSizes) = TLMasterToSlaveTransferSizes( acquireT = acquireT .intersect(rhs.acquireT), acquireB = acquireB .intersect(rhs.acquireB), arithmetic = arithmetic.intersect(rhs.arithmetic), logical = logical .intersect(rhs.logical), get = get .intersect(rhs.get), putFull = putFull .intersect(rhs.putFull), putPartial = putPartial.intersect(rhs.putPartial), hint = hint .intersect(rhs.hint)) def mincover(rhs: TLMasterToSlaveTransferSizes) = TLMasterToSlaveTransferSizes( acquireT = acquireT .mincover(rhs.acquireT), acquireB = acquireB .mincover(rhs.acquireB), arithmetic = arithmetic.mincover(rhs.arithmetic), logical = logical .mincover(rhs.logical), get = get .mincover(rhs.get), putFull = putFull .mincover(rhs.putFull), putPartial = putPartial.mincover(rhs.putPartial), hint = hint .mincover(rhs.hint)) // Reduce rendering to a simple yes/no per field override def toString = { def str(x: TransferSizes, flag: String) = if (x.none) "" else flag def flags = Vector( str(acquireT, "T"), str(acquireB, "B"), str(arithmetic, "A"), str(logical, "L"), str(get, "G"), str(putFull, "F"), str(putPartial, "P"), str(hint, "H")) flags.mkString } // Prints out the actual information in a user readable way def infoString = { s"""acquireT = ${acquireT} |acquireB = ${acquireB} |arithmetic = ${arithmetic} |logical = ${logical} |get = ${get} |putFull = ${putFull} |putPartial = ${putPartial} |hint = ${hint} | |""".stripMargin } } object TLMasterToSlaveTransferSizes { def unknownEmits = TLMasterToSlaveTransferSizes( acquireT = TransferSizes(1, 4096), acquireB = TransferSizes(1, 4096), arithmetic = TransferSizes(1, 4096), logical = TransferSizes(1, 4096), get = TransferSizes(1, 4096), putFull = TransferSizes(1, 4096), putPartial = TransferSizes(1, 4096), hint = TransferSizes(1, 4096)) def unknownSupports = TLMasterToSlaveTransferSizes() } //These transfer sizes describe requests issued from slaves on the B channel that will be responded by masters on the C channel case class TLSlaveToMasterTransferSizes( probe: TransferSizes = TransferSizes.none, arithmetic: TransferSizes = TransferSizes.none, logical: TransferSizes = TransferSizes.none, get: TransferSizes = TransferSizes.none, putFull: TransferSizes = TransferSizes.none, putPartial: TransferSizes = TransferSizes.none, hint: TransferSizes = TransferSizes.none ) extends TLCommonTransferSizes { def intersect(rhs: TLSlaveToMasterTransferSizes) = TLSlaveToMasterTransferSizes( probe = probe .intersect(rhs.probe), arithmetic = arithmetic.intersect(rhs.arithmetic), logical = logical .intersect(rhs.logical), get = get .intersect(rhs.get), putFull = putFull .intersect(rhs.putFull), putPartial = putPartial.intersect(rhs.putPartial), hint = hint .intersect(rhs.hint) ) def mincover(rhs: TLSlaveToMasterTransferSizes) = TLSlaveToMasterTransferSizes( probe = probe .mincover(rhs.probe), arithmetic = arithmetic.mincover(rhs.arithmetic), logical = logical .mincover(rhs.logical), get = get .mincover(rhs.get), putFull = putFull .mincover(rhs.putFull), putPartial = putPartial.mincover(rhs.putPartial), hint = hint .mincover(rhs.hint) ) // Reduce rendering to a simple yes/no per field override def toString = { def str(x: TransferSizes, flag: String) = if (x.none) "" else flag def flags = Vector( str(probe, "P"), str(arithmetic, "A"), str(logical, "L"), str(get, "G"), str(putFull, "F"), str(putPartial, "P"), str(hint, "H")) flags.mkString } // Prints out the actual information in a user readable way def infoString = { s"""probe = ${probe} |arithmetic = ${arithmetic} |logical = ${logical} |get = ${get} |putFull = ${putFull} |putPartial = ${putPartial} |hint = ${hint} | |""".stripMargin } } object TLSlaveToMasterTransferSizes { def unknownEmits = TLSlaveToMasterTransferSizes( arithmetic = TransferSizes(1, 4096), logical = TransferSizes(1, 4096), get = TransferSizes(1, 4096), putFull = TransferSizes(1, 4096), putPartial = TransferSizes(1, 4096), hint = TransferSizes(1, 4096), probe = TransferSizes(1, 4096)) def unknownSupports = TLSlaveToMasterTransferSizes() } trait TLCommonTransferSizes { def arithmetic: TransferSizes def logical: TransferSizes def get: TransferSizes def putFull: TransferSizes def putPartial: TransferSizes def hint: TransferSizes } class TLSlaveParameters private( val nodePath: Seq[BaseNode], val resources: Seq[Resource], setName: Option[String], val address: Seq[AddressSet], val regionType: RegionType.T, val executable: Boolean, val fifoId: Option[Int], val supports: TLMasterToSlaveTransferSizes, val emits: TLSlaveToMasterTransferSizes, // By default, slaves are forbidden from issuing 'denied' responses (it prevents Fragmentation) val alwaysGrantsT: Boolean, // typically only true for CacheCork'd read-write devices; dual: neverReleaseData // If fifoId=Some, all accesses sent to the same fifoId are executed and ACK'd in FIFO order // Note: you can only rely on this FIFO behaviour if your TLMasterParameters include requestFifo val mayDenyGet: Boolean, // applies to: AccessAckData, GrantData val mayDenyPut: Boolean) // applies to: AccessAck, Grant, HintAck // ReleaseAck may NEVER be denied extends SimpleProduct { def sortedAddress = address.sorted override def canEqual(that: Any): Boolean = that.isInstanceOf[TLSlaveParameters] override def productPrefix = "TLSlaveParameters" // We intentionally omit nodePath for equality testing / formatting def productArity: Int = 11 def productElement(n: Int): Any = n match { case 0 => name case 1 => address case 2 => resources case 3 => regionType case 4 => executable case 5 => fifoId case 6 => supports case 7 => emits case 8 => alwaysGrantsT case 9 => mayDenyGet case 10 => mayDenyPut case _ => throw new IndexOutOfBoundsException(n.toString) } def supportsAcquireT: TransferSizes = supports.acquireT def supportsAcquireB: TransferSizes = supports.acquireB def supportsArithmetic: TransferSizes = supports.arithmetic def supportsLogical: TransferSizes = supports.logical def supportsGet: TransferSizes = supports.get def supportsPutFull: TransferSizes = supports.putFull def supportsPutPartial: TransferSizes = supports.putPartial def supportsHint: TransferSizes = supports.hint require (!address.isEmpty, "Address cannot be empty") address.foreach { a => require (a.finite, "Address must be finite") } address.combinations(2).foreach { case Seq(x,y) => require (!x.overlaps(y), s"$x and $y overlap.") } require (supportsPutFull.contains(supportsPutPartial), s"PutFull($supportsPutFull) < PutPartial($supportsPutPartial)") require (supportsPutFull.contains(supportsArithmetic), s"PutFull($supportsPutFull) < Arithmetic($supportsArithmetic)") require (supportsPutFull.contains(supportsLogical), s"PutFull($supportsPutFull) < Logical($supportsLogical)") require (supportsGet.contains(supportsArithmetic), s"Get($supportsGet) < Arithmetic($supportsArithmetic)") require (supportsGet.contains(supportsLogical), s"Get($supportsGet) < Logical($supportsLogical)") require (supportsAcquireB.contains(supportsAcquireT), s"AcquireB($supportsAcquireB) < AcquireT($supportsAcquireT)") require (!alwaysGrantsT || supportsAcquireT, s"Must supportAcquireT if promising to always grantT") // Make sure that the regionType agrees with the capabilities require (!supportsAcquireB || regionType >= RegionType.UNCACHED) // acquire -> uncached, tracked, cached require (regionType <= RegionType.UNCACHED || supportsAcquireB) // tracked, cached -> acquire require (regionType != RegionType.UNCACHED || supportsGet) // uncached -> supportsGet val name = setName.orElse(nodePath.lastOption.map(_.lazyModule.name)).getOrElse("disconnected") val maxTransfer = List( // Largest supported transfer of all types supportsAcquireT.max, supportsAcquireB.max, supportsArithmetic.max, supportsLogical.max, supportsGet.max, supportsPutFull.max, supportsPutPartial.max).max val maxAddress = address.map(_.max).max val minAlignment = address.map(_.alignment).min // The device had better not support a transfer larger than its alignment require (minAlignment >= maxTransfer, s"Bad $address: minAlignment ($minAlignment) must be >= maxTransfer ($maxTransfer)") def toResource: ResourceAddress = { ResourceAddress(address, ResourcePermissions( r = supportsAcquireB || supportsGet, w = supportsAcquireT || supportsPutFull, x = executable, c = supportsAcquireB, a = supportsArithmetic && supportsLogical)) } def findTreeViolation() = nodePath.find { case _: MixedAdapterNode[_, _, _, _, _, _, _, _] => false case _: SinkNode[_, _, _, _, _] => false case node => node.inputs.size != 1 } def isTree = findTreeViolation() == None def infoString = { s"""Slave Name = ${name} |Slave Address = ${address} |supports = ${supports.infoString} | |""".stripMargin } def v1copy( address: Seq[AddressSet] = address, resources: Seq[Resource] = resources, regionType: RegionType.T = regionType, executable: Boolean = executable, nodePath: Seq[BaseNode] = nodePath, supportsAcquireT: TransferSizes = supports.acquireT, supportsAcquireB: TransferSizes = supports.acquireB, supportsArithmetic: TransferSizes = supports.arithmetic, supportsLogical: TransferSizes = supports.logical, supportsGet: TransferSizes = supports.get, supportsPutFull: TransferSizes = supports.putFull, supportsPutPartial: TransferSizes = supports.putPartial, supportsHint: TransferSizes = supports.hint, mayDenyGet: Boolean = mayDenyGet, mayDenyPut: Boolean = mayDenyPut, alwaysGrantsT: Boolean = alwaysGrantsT, fifoId: Option[Int] = fifoId) = { new TLSlaveParameters( setName = setName, address = address, resources = resources, regionType = regionType, executable = executable, nodePath = nodePath, supports = TLMasterToSlaveTransferSizes( acquireT = supportsAcquireT, acquireB = supportsAcquireB, arithmetic = supportsArithmetic, logical = supportsLogical, get = supportsGet, putFull = supportsPutFull, putPartial = supportsPutPartial, hint = supportsHint), emits = emits, mayDenyGet = mayDenyGet, mayDenyPut = mayDenyPut, alwaysGrantsT = alwaysGrantsT, fifoId = fifoId) } def v2copy( nodePath: Seq[BaseNode] = nodePath, resources: Seq[Resource] = resources, name: Option[String] = setName, address: Seq[AddressSet] = address, regionType: RegionType.T = regionType, executable: Boolean = executable, fifoId: Option[Int] = fifoId, supports: TLMasterToSlaveTransferSizes = supports, emits: TLSlaveToMasterTransferSizes = emits, alwaysGrantsT: Boolean = alwaysGrantsT, mayDenyGet: Boolean = mayDenyGet, mayDenyPut: Boolean = mayDenyPut) = { new TLSlaveParameters( nodePath = nodePath, resources = resources, setName = name, address = address, regionType = regionType, executable = executable, fifoId = fifoId, supports = supports, emits = emits, alwaysGrantsT = alwaysGrantsT, mayDenyGet = mayDenyGet, mayDenyPut = mayDenyPut) } @deprecated("Use v1copy instead of copy","") def copy( address: Seq[AddressSet] = address, resources: Seq[Resource] = resources, regionType: RegionType.T = regionType, executable: Boolean = executable, nodePath: Seq[BaseNode] = nodePath, supportsAcquireT: TransferSizes = supports.acquireT, supportsAcquireB: TransferSizes = supports.acquireB, supportsArithmetic: TransferSizes = supports.arithmetic, supportsLogical: TransferSizes = supports.logical, supportsGet: TransferSizes = supports.get, supportsPutFull: TransferSizes = supports.putFull, supportsPutPartial: TransferSizes = supports.putPartial, supportsHint: TransferSizes = supports.hint, mayDenyGet: Boolean = mayDenyGet, mayDenyPut: Boolean = mayDenyPut, alwaysGrantsT: Boolean = alwaysGrantsT, fifoId: Option[Int] = fifoId) = { v1copy( address = address, resources = resources, regionType = regionType, executable = executable, nodePath = nodePath, supportsAcquireT = supportsAcquireT, supportsAcquireB = supportsAcquireB, supportsArithmetic = supportsArithmetic, supportsLogical = supportsLogical, supportsGet = supportsGet, supportsPutFull = supportsPutFull, supportsPutPartial = supportsPutPartial, supportsHint = supportsHint, mayDenyGet = mayDenyGet, mayDenyPut = mayDenyPut, alwaysGrantsT = alwaysGrantsT, fifoId = fifoId) } } object TLSlaveParameters { def v1( address: Seq[AddressSet], resources: Seq[Resource] = Seq(), regionType: RegionType.T = RegionType.GET_EFFECTS, executable: Boolean = false, nodePath: Seq[BaseNode] = Seq(), supportsAcquireT: TransferSizes = TransferSizes.none, supportsAcquireB: TransferSizes = TransferSizes.none, supportsArithmetic: TransferSizes = TransferSizes.none, supportsLogical: TransferSizes = TransferSizes.none, supportsGet: TransferSizes = TransferSizes.none, supportsPutFull: TransferSizes = TransferSizes.none, supportsPutPartial: TransferSizes = TransferSizes.none, supportsHint: TransferSizes = TransferSizes.none, mayDenyGet: Boolean = false, mayDenyPut: Boolean = false, alwaysGrantsT: Boolean = false, fifoId: Option[Int] = None) = { new TLSlaveParameters( setName = None, address = address, resources = resources, regionType = regionType, executable = executable, nodePath = nodePath, supports = TLMasterToSlaveTransferSizes( acquireT = supportsAcquireT, acquireB = supportsAcquireB, arithmetic = supportsArithmetic, logical = supportsLogical, get = supportsGet, putFull = supportsPutFull, putPartial = supportsPutPartial, hint = supportsHint), emits = TLSlaveToMasterTransferSizes.unknownEmits, mayDenyGet = mayDenyGet, mayDenyPut = mayDenyPut, alwaysGrantsT = alwaysGrantsT, fifoId = fifoId) } def v2( address: Seq[AddressSet], nodePath: Seq[BaseNode] = Seq(), resources: Seq[Resource] = Seq(), name: Option[String] = None, regionType: RegionType.T = RegionType.GET_EFFECTS, executable: Boolean = false, fifoId: Option[Int] = None, supports: TLMasterToSlaveTransferSizes = TLMasterToSlaveTransferSizes.unknownSupports, emits: TLSlaveToMasterTransferSizes = TLSlaveToMasterTransferSizes.unknownEmits, alwaysGrantsT: Boolean = false, mayDenyGet: Boolean = false, mayDenyPut: Boolean = false) = { new TLSlaveParameters( nodePath = nodePath, resources = resources, setName = name, address = address, regionType = regionType, executable = executable, fifoId = fifoId, supports = supports, emits = emits, alwaysGrantsT = alwaysGrantsT, mayDenyGet = mayDenyGet, mayDenyPut = mayDenyPut) } } object TLManagerParameters { @deprecated("Use TLSlaveParameters.v1 instead of TLManagerParameters","") def apply( address: Seq[AddressSet], resources: Seq[Resource] = Seq(), regionType: RegionType.T = RegionType.GET_EFFECTS, executable: Boolean = false, nodePath: Seq[BaseNode] = Seq(), supportsAcquireT: TransferSizes = TransferSizes.none, supportsAcquireB: TransferSizes = TransferSizes.none, supportsArithmetic: TransferSizes = TransferSizes.none, supportsLogical: TransferSizes = TransferSizes.none, supportsGet: TransferSizes = TransferSizes.none, supportsPutFull: TransferSizes = TransferSizes.none, supportsPutPartial: TransferSizes = TransferSizes.none, supportsHint: TransferSizes = TransferSizes.none, mayDenyGet: Boolean = false, mayDenyPut: Boolean = false, alwaysGrantsT: Boolean = false, fifoId: Option[Int] = None) = TLSlaveParameters.v1( address, resources, regionType, executable, nodePath, supportsAcquireT, supportsAcquireB, supportsArithmetic, supportsLogical, supportsGet, supportsPutFull, supportsPutPartial, supportsHint, mayDenyGet, mayDenyPut, alwaysGrantsT, fifoId, ) } case class TLChannelBeatBytes(a: Option[Int], b: Option[Int], c: Option[Int], d: Option[Int]) { def members = Seq(a, b, c, d) members.collect { case Some(beatBytes) => require (isPow2(beatBytes), "Data channel width must be a power of 2") } } object TLChannelBeatBytes{ def apply(beatBytes: Int): TLChannelBeatBytes = TLChannelBeatBytes( Some(beatBytes), Some(beatBytes), Some(beatBytes), Some(beatBytes)) def apply(): TLChannelBeatBytes = TLChannelBeatBytes( None, None, None, None) } class TLSlavePortParameters private( val slaves: Seq[TLSlaveParameters], val channelBytes: TLChannelBeatBytes, val endSinkId: Int, val minLatency: Int, val responseFields: Seq[BundleFieldBase], val requestKeys: Seq[BundleKeyBase]) extends SimpleProduct { def sortedSlaves = slaves.sortBy(_.sortedAddress.head) override def canEqual(that: Any): Boolean = that.isInstanceOf[TLSlavePortParameters] override def productPrefix = "TLSlavePortParameters" def productArity: Int = 6 def productElement(n: Int): Any = n match { case 0 => slaves case 1 => channelBytes case 2 => endSinkId case 3 => minLatency case 4 => responseFields case 5 => requestKeys case _ => throw new IndexOutOfBoundsException(n.toString) } require (!slaves.isEmpty, "Slave ports must have slaves") require (endSinkId >= 0, "Sink ids cannot be negative") require (minLatency >= 0, "Minimum required latency cannot be negative") // Using this API implies you cannot handle mixed-width busses def beatBytes = { channelBytes.members.foreach { width => require (width.isDefined && width == channelBytes.a) } channelBytes.a.get } // TODO this should be deprecated def managers = slaves def requireFifo(policy: TLFIFOFixer.Policy = TLFIFOFixer.allFIFO) = { val relevant = slaves.filter(m => policy(m)) relevant.foreach { m => require(m.fifoId == relevant.head.fifoId, s"${m.name} had fifoId ${m.fifoId}, which was not homogeneous (${slaves.map(s => (s.name, s.fifoId))}) ") } } // Bounds on required sizes def maxAddress = slaves.map(_.maxAddress).max def maxTransfer = slaves.map(_.maxTransfer).max def mayDenyGet = slaves.exists(_.mayDenyGet) def mayDenyPut = slaves.exists(_.mayDenyPut) // Diplomatically determined operation sizes emitted by all outward Slaves // as opposed to emits* which generate circuitry to check which specific addresses val allEmitClaims = slaves.map(_.emits).reduce( _ intersect _) // Operation Emitted by at least one outward Slaves // as opposed to emits* which generate circuitry to check which specific addresses val anyEmitClaims = slaves.map(_.emits).reduce(_ mincover _) // Diplomatically determined operation sizes supported by all outward Slaves // as opposed to supports* which generate circuitry to check which specific addresses val allSupportClaims = slaves.map(_.supports).reduce( _ intersect _) val allSupportAcquireT = allSupportClaims.acquireT val allSupportAcquireB = allSupportClaims.acquireB val allSupportArithmetic = allSupportClaims.arithmetic val allSupportLogical = allSupportClaims.logical val allSupportGet = allSupportClaims.get val allSupportPutFull = allSupportClaims.putFull val allSupportPutPartial = allSupportClaims.putPartial val allSupportHint = allSupportClaims.hint // Operation supported by at least one outward Slaves // as opposed to supports* which generate circuitry to check which specific addresses val anySupportClaims = slaves.map(_.supports).reduce(_ mincover _) val anySupportAcquireT = !anySupportClaims.acquireT.none val anySupportAcquireB = !anySupportClaims.acquireB.none val anySupportArithmetic = !anySupportClaims.arithmetic.none val anySupportLogical = !anySupportClaims.logical.none val anySupportGet = !anySupportClaims.get.none val anySupportPutFull = !anySupportClaims.putFull.none val anySupportPutPartial = !anySupportClaims.putPartial.none val anySupportHint = !anySupportClaims.hint.none // Supporting Acquire means being routable for GrantAck require ((endSinkId == 0) == !anySupportAcquireB) // These return Option[TLSlaveParameters] for your convenience def find(address: BigInt) = slaves.find(_.address.exists(_.contains(address))) // The safe version will check the entire address def findSafe(address: UInt) = VecInit(sortedSlaves.map(_.address.map(_.contains(address)).reduce(_ || _))) // The fast version assumes the address is valid (you probably want fastProperty instead of this function) def findFast(address: UInt) = { val routingMask = AddressDecoder(slaves.map(_.address)) VecInit(sortedSlaves.map(_.address.map(_.widen(~routingMask)).distinct.map(_.contains(address)).reduce(_ || _))) } // Compute the simplest AddressSets that decide a key def fastPropertyGroup[K](p: TLSlaveParameters => K): Seq[(K, Seq[AddressSet])] = { val groups = groupByIntoSeq(sortedSlaves.map(m => (p(m), m.address)))( _._1).map { case (k, vs) => k -> vs.flatMap(_._2) } val reductionMask = AddressDecoder(groups.map(_._2)) groups.map { case (k, seq) => k -> AddressSet.unify(seq.map(_.widen(~reductionMask)).distinct) } } // Select a property def fastProperty[K, D <: Data](address: UInt, p: TLSlaveParameters => K, d: K => D): D = Mux1H(fastPropertyGroup(p).map { case (v, a) => (a.map(_.contains(address)).reduce(_||_), d(v)) }) // Note: returns the actual fifoId + 1 or 0 if None def findFifoIdFast(address: UInt) = fastProperty(address, _.fifoId.map(_+1).getOrElse(0), (i:Int) => i.U) def hasFifoIdFast(address: UInt) = fastProperty(address, _.fifoId.isDefined, (b:Boolean) => b.B) // Does this Port manage this ID/address? def containsSafe(address: UInt) = findSafe(address).reduce(_ || _) private def addressHelper( // setting safe to false indicates that all addresses are expected to be legal, which might reduce circuit complexity safe: Boolean, // member filters out the sizes being checked based on the opcode being emitted or supported member: TLSlaveParameters => TransferSizes, address: UInt, lgSize: UInt, // range provides a limit on the sizes that are expected to be evaluated, which might reduce circuit complexity range: Option[TransferSizes]): Bool = { // trim reduces circuit complexity by intersecting checked sizes with the range argument def trim(x: TransferSizes) = range.map(_.intersect(x)).getOrElse(x) // groupBy returns an unordered map, convert back to Seq and sort the result for determinism // groupByIntoSeq is turning slaves into trimmed membership sizes // We are grouping all the slaves by their transfer size where // if they support the trimmed size then // member is the type of transfer that you are looking for (What you are trying to filter on) // When you consider membership, you are trimming the sizes to only the ones that you care about // you are filtering the slaves based on both whether they support a particular opcode and the size // Grouping the slaves based on the actual transfer size range they support // intersecting the range and checking their membership // FOR SUPPORTCASES instead of returning the list of slaves, // you are returning a map from transfer size to the set of // address sets that are supported for that transfer size // find all the slaves that support a certain type of operation and then group their addresses by the supported size // for every size there could be multiple address ranges // safety is a trade off between checking between all possible addresses vs only the addresses // that are known to have supported sizes // the trade off is 'checking all addresses is a more expensive circuit but will always give you // the right answer even if you give it an illegal address' // the not safe version is a cheaper circuit but if you give it an illegal address then it might produce the wrong answer // fast presumes address legality // This groupByIntoSeq deterministically groups all address sets for which a given `member` transfer size applies. // In the resulting Map of cases, the keys are transfer sizes and the values are all address sets which emit or support that size. val supportCases = groupByIntoSeq(slaves)(m => trim(member(m))).map { case (k: TransferSizes, vs: Seq[TLSlaveParameters]) => k -> vs.flatMap(_.address) } // safe produces a circuit that compares against all possible addresses, // whereas fast presumes that the address is legal but uses an efficient address decoder val mask = if (safe) ~BigInt(0) else AddressDecoder(supportCases.map(_._2)) // Simplified creates the most concise possible representation of each cases' address sets based on the mask. val simplified = supportCases.map { case (k, seq) => k -> AddressSet.unify(seq.map(_.widen(~mask)).distinct) } simplified.map { case (s, a) => // s is a size, you are checking for this size either the size of the operation is in s // We return an or-reduction of all the cases, checking whether any contains both the dynamic size and dynamic address on the wire. ((Some(s) == range).B || s.containsLg(lgSize)) && a.map(_.contains(address)).reduce(_||_) }.foldLeft(false.B)(_||_) } def supportsAcquireTSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.acquireT, address, lgSize, range) def supportsAcquireBSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.acquireB, address, lgSize, range) def supportsArithmeticSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.arithmetic, address, lgSize, range) def supportsLogicalSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.logical, address, lgSize, range) def supportsGetSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.get, address, lgSize, range) def supportsPutFullSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.putFull, address, lgSize, range) def supportsPutPartialSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.putPartial, address, lgSize, range) def supportsHintSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.hint, address, lgSize, range) def supportsAcquireTFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.acquireT, address, lgSize, range) def supportsAcquireBFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.acquireB, address, lgSize, range) def supportsArithmeticFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.arithmetic, address, lgSize, range) def supportsLogicalFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.logical, address, lgSize, range) def supportsGetFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.get, address, lgSize, range) def supportsPutFullFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.putFull, address, lgSize, range) def supportsPutPartialFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.putPartial, address, lgSize, range) def supportsHintFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.hint, address, lgSize, range) def emitsProbeSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.probe, address, lgSize, range) def emitsArithmeticSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.arithmetic, address, lgSize, range) def emitsLogicalSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.logical, address, lgSize, range) def emitsGetSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.get, address, lgSize, range) def emitsPutFullSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.putFull, address, lgSize, range) def emitsPutPartialSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.putPartial, address, lgSize, range) def emitsHintSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.hint, address, lgSize, range) def findTreeViolation() = slaves.flatMap(_.findTreeViolation()).headOption def isTree = !slaves.exists(!_.isTree) def infoString = "Slave Port Beatbytes = " + beatBytes + "\n" + "Slave Port MinLatency = " + minLatency + "\n\n" + slaves.map(_.infoString).mkString def v1copy( managers: Seq[TLSlaveParameters] = slaves, beatBytes: Int = -1, endSinkId: Int = endSinkId, minLatency: Int = minLatency, responseFields: Seq[BundleFieldBase] = responseFields, requestKeys: Seq[BundleKeyBase] = requestKeys) = { new TLSlavePortParameters( slaves = managers, channelBytes = if (beatBytes != -1) TLChannelBeatBytes(beatBytes) else channelBytes, endSinkId = endSinkId, minLatency = minLatency, responseFields = responseFields, requestKeys = requestKeys) } def v2copy( slaves: Seq[TLSlaveParameters] = slaves, channelBytes: TLChannelBeatBytes = channelBytes, endSinkId: Int = endSinkId, minLatency: Int = minLatency, responseFields: Seq[BundleFieldBase] = responseFields, requestKeys: Seq[BundleKeyBase] = requestKeys) = { new TLSlavePortParameters( slaves = slaves, channelBytes = channelBytes, endSinkId = endSinkId, minLatency = minLatency, responseFields = responseFields, requestKeys = requestKeys) } @deprecated("Use v1copy instead of copy","") def copy( managers: Seq[TLSlaveParameters] = slaves, beatBytes: Int = -1, endSinkId: Int = endSinkId, minLatency: Int = minLatency, responseFields: Seq[BundleFieldBase] = responseFields, requestKeys: Seq[BundleKeyBase] = requestKeys) = { v1copy( managers, beatBytes, endSinkId, minLatency, responseFields, requestKeys) } } object TLSlavePortParameters { def v1( managers: Seq[TLSlaveParameters], beatBytes: Int, endSinkId: Int = 0, minLatency: Int = 0, responseFields: Seq[BundleFieldBase] = Nil, requestKeys: Seq[BundleKeyBase] = Nil) = { new TLSlavePortParameters( slaves = managers, channelBytes = TLChannelBeatBytes(beatBytes), endSinkId = endSinkId, minLatency = minLatency, responseFields = responseFields, requestKeys = requestKeys) } } object TLManagerPortParameters { @deprecated("Use TLSlavePortParameters.v1 instead of TLManagerPortParameters","") def apply( managers: Seq[TLSlaveParameters], beatBytes: Int, endSinkId: Int = 0, minLatency: Int = 0, responseFields: Seq[BundleFieldBase] = Nil, requestKeys: Seq[BundleKeyBase] = Nil) = { TLSlavePortParameters.v1( managers, beatBytes, endSinkId, minLatency, responseFields, requestKeys) } } class TLMasterParameters private( val nodePath: Seq[BaseNode], val resources: Seq[Resource], val name: String, val visibility: Seq[AddressSet], val unusedRegionTypes: Set[RegionType.T], val executesOnly: Boolean, val requestFifo: Boolean, // only a request, not a requirement. applies to A, not C. val supports: TLSlaveToMasterTransferSizes, val emits: TLMasterToSlaveTransferSizes, val neverReleasesData: Boolean, val sourceId: IdRange) extends SimpleProduct { override def canEqual(that: Any): Boolean = that.isInstanceOf[TLMasterParameters] override def productPrefix = "TLMasterParameters" // We intentionally omit nodePath for equality testing / formatting def productArity: Int = 10 def productElement(n: Int): Any = n match { case 0 => name case 1 => sourceId case 2 => resources case 3 => visibility case 4 => unusedRegionTypes case 5 => executesOnly case 6 => requestFifo case 7 => supports case 8 => emits case 9 => neverReleasesData case _ => throw new IndexOutOfBoundsException(n.toString) } require (!sourceId.isEmpty) require (!visibility.isEmpty) require (supports.putFull.contains(supports.putPartial)) // We only support these operations if we support Probe (ie: we're a cache) require (supports.probe.contains(supports.arithmetic)) require (supports.probe.contains(supports.logical)) require (supports.probe.contains(supports.get)) require (supports.probe.contains(supports.putFull)) require (supports.probe.contains(supports.putPartial)) require (supports.probe.contains(supports.hint)) visibility.combinations(2).foreach { case Seq(x,y) => require (!x.overlaps(y), s"$x and $y overlap.") } val maxTransfer = List( supports.probe.max, supports.arithmetic.max, supports.logical.max, supports.get.max, supports.putFull.max, supports.putPartial.max).max def infoString = { s"""Master Name = ${name} |visibility = ${visibility} |emits = ${emits.infoString} |sourceId = ${sourceId} | |""".stripMargin } def v1copy( name: String = name, sourceId: IdRange = sourceId, nodePath: Seq[BaseNode] = nodePath, requestFifo: Boolean = requestFifo, visibility: Seq[AddressSet] = visibility, supportsProbe: TransferSizes = supports.probe, supportsArithmetic: TransferSizes = supports.arithmetic, supportsLogical: TransferSizes = supports.logical, supportsGet: TransferSizes = supports.get, supportsPutFull: TransferSizes = supports.putFull, supportsPutPartial: TransferSizes = supports.putPartial, supportsHint: TransferSizes = supports.hint) = { new TLMasterParameters( nodePath = nodePath, resources = this.resources, name = name, visibility = visibility, unusedRegionTypes = this.unusedRegionTypes, executesOnly = this.executesOnly, requestFifo = requestFifo, supports = TLSlaveToMasterTransferSizes( probe = supportsProbe, arithmetic = supportsArithmetic, logical = supportsLogical, get = supportsGet, putFull = supportsPutFull, putPartial = supportsPutPartial, hint = supportsHint), emits = this.emits, neverReleasesData = this.neverReleasesData, sourceId = sourceId) } def v2copy( nodePath: Seq[BaseNode] = nodePath, resources: Seq[Resource] = resources, name: String = name, visibility: Seq[AddressSet] = visibility, unusedRegionTypes: Set[RegionType.T] = unusedRegionTypes, executesOnly: Boolean = executesOnly, requestFifo: Boolean = requestFifo, supports: TLSlaveToMasterTransferSizes = supports, emits: TLMasterToSlaveTransferSizes = emits, neverReleasesData: Boolean = neverReleasesData, sourceId: IdRange = sourceId) = { new TLMasterParameters( nodePath = nodePath, resources = resources, name = name, visibility = visibility, unusedRegionTypes = unusedRegionTypes, executesOnly = executesOnly, requestFifo = requestFifo, supports = supports, emits = emits, neverReleasesData = neverReleasesData, sourceId = sourceId) } @deprecated("Use v1copy instead of copy","") def copy( name: String = name, sourceId: IdRange = sourceId, nodePath: Seq[BaseNode] = nodePath, requestFifo: Boolean = requestFifo, visibility: Seq[AddressSet] = visibility, supportsProbe: TransferSizes = supports.probe, supportsArithmetic: TransferSizes = supports.arithmetic, supportsLogical: TransferSizes = supports.logical, supportsGet: TransferSizes = supports.get, supportsPutFull: TransferSizes = supports.putFull, supportsPutPartial: TransferSizes = supports.putPartial, supportsHint: TransferSizes = supports.hint) = { v1copy( name = name, sourceId = sourceId, nodePath = nodePath, requestFifo = requestFifo, visibility = visibility, supportsProbe = supportsProbe, supportsArithmetic = supportsArithmetic, supportsLogical = supportsLogical, supportsGet = supportsGet, supportsPutFull = supportsPutFull, supportsPutPartial = supportsPutPartial, supportsHint = supportsHint) } } object TLMasterParameters { def v1( name: String, sourceId: IdRange = IdRange(0,1), nodePath: Seq[BaseNode] = Seq(), requestFifo: Boolean = false, visibility: Seq[AddressSet] = Seq(AddressSet(0, ~0)), supportsProbe: TransferSizes = TransferSizes.none, supportsArithmetic: TransferSizes = TransferSizes.none, supportsLogical: TransferSizes = TransferSizes.none, supportsGet: TransferSizes = TransferSizes.none, supportsPutFull: TransferSizes = TransferSizes.none, supportsPutPartial: TransferSizes = TransferSizes.none, supportsHint: TransferSizes = TransferSizes.none) = { new TLMasterParameters( nodePath = nodePath, resources = Nil, name = name, visibility = visibility, unusedRegionTypes = Set(), executesOnly = false, requestFifo = requestFifo, supports = TLSlaveToMasterTransferSizes( probe = supportsProbe, arithmetic = supportsArithmetic, logical = supportsLogical, get = supportsGet, putFull = supportsPutFull, putPartial = supportsPutPartial, hint = supportsHint), emits = TLMasterToSlaveTransferSizes.unknownEmits, neverReleasesData = false, sourceId = sourceId) } def v2( nodePath: Seq[BaseNode] = Seq(), resources: Seq[Resource] = Nil, name: String, visibility: Seq[AddressSet] = Seq(AddressSet(0, ~0)), unusedRegionTypes: Set[RegionType.T] = Set(), executesOnly: Boolean = false, requestFifo: Boolean = false, supports: TLSlaveToMasterTransferSizes = TLSlaveToMasterTransferSizes.unknownSupports, emits: TLMasterToSlaveTransferSizes = TLMasterToSlaveTransferSizes.unknownEmits, neverReleasesData: Boolean = false, sourceId: IdRange = IdRange(0,1)) = { new TLMasterParameters( nodePath = nodePath, resources = resources, name = name, visibility = visibility, unusedRegionTypes = unusedRegionTypes, executesOnly = executesOnly, requestFifo = requestFifo, supports = supports, emits = emits, neverReleasesData = neverReleasesData, sourceId = sourceId) } } object TLClientParameters { @deprecated("Use TLMasterParameters.v1 instead of TLClientParameters","") def apply( name: String, sourceId: IdRange = IdRange(0,1), nodePath: Seq[BaseNode] = Seq(), requestFifo: Boolean = false, visibility: Seq[AddressSet] = Seq(AddressSet.everything), supportsProbe: TransferSizes = TransferSizes.none, supportsArithmetic: TransferSizes = TransferSizes.none, supportsLogical: TransferSizes = TransferSizes.none, supportsGet: TransferSizes = TransferSizes.none, supportsPutFull: TransferSizes = TransferSizes.none, supportsPutPartial: TransferSizes = TransferSizes.none, supportsHint: TransferSizes = TransferSizes.none) = { TLMasterParameters.v1( name = name, sourceId = sourceId, nodePath = nodePath, requestFifo = requestFifo, visibility = visibility, supportsProbe = supportsProbe, supportsArithmetic = supportsArithmetic, supportsLogical = supportsLogical, supportsGet = supportsGet, supportsPutFull = supportsPutFull, supportsPutPartial = supportsPutPartial, supportsHint = supportsHint) } } class TLMasterPortParameters private( val masters: Seq[TLMasterParameters], val channelBytes: TLChannelBeatBytes, val minLatency: Int, val echoFields: Seq[BundleFieldBase], val requestFields: Seq[BundleFieldBase], val responseKeys: Seq[BundleKeyBase]) extends SimpleProduct { override def canEqual(that: Any): Boolean = that.isInstanceOf[TLMasterPortParameters] override def productPrefix = "TLMasterPortParameters" def productArity: Int = 6 def productElement(n: Int): Any = n match { case 0 => masters case 1 => channelBytes case 2 => minLatency case 3 => echoFields case 4 => requestFields case 5 => responseKeys case _ => throw new IndexOutOfBoundsException(n.toString) } require (!masters.isEmpty) require (minLatency >= 0) def clients = masters // Require disjoint ranges for Ids IdRange.overlaps(masters.map(_.sourceId)).foreach { case (x, y) => require (!x.overlaps(y), s"TLClientParameters.sourceId ${x} overlaps ${y}") } // Bounds on required sizes def endSourceId = masters.map(_.sourceId.end).max def maxTransfer = masters.map(_.maxTransfer).max // The unused sources < endSourceId def unusedSources: Seq[Int] = { val usedSources = masters.map(_.sourceId).sortBy(_.start) ((Seq(0) ++ usedSources.map(_.end)) zip usedSources.map(_.start)) flatMap { case (end, start) => end until start } } // Diplomatically determined operation sizes emitted by all inward Masters // as opposed to emits* which generate circuitry to check which specific addresses val allEmitClaims = masters.map(_.emits).reduce( _ intersect _) // Diplomatically determined operation sizes Emitted by at least one inward Masters // as opposed to emits* which generate circuitry to check which specific addresses val anyEmitClaims = masters.map(_.emits).reduce(_ mincover _) // Diplomatically determined operation sizes supported by all inward Masters // as opposed to supports* which generate circuitry to check which specific addresses val allSupportProbe = masters.map(_.supports.probe) .reduce(_ intersect _) val allSupportArithmetic = masters.map(_.supports.arithmetic).reduce(_ intersect _) val allSupportLogical = masters.map(_.supports.logical) .reduce(_ intersect _) val allSupportGet = masters.map(_.supports.get) .reduce(_ intersect _) val allSupportPutFull = masters.map(_.supports.putFull) .reduce(_ intersect _) val allSupportPutPartial = masters.map(_.supports.putPartial).reduce(_ intersect _) val allSupportHint = masters.map(_.supports.hint) .reduce(_ intersect _) // Diplomatically determined operation sizes supported by at least one master // as opposed to supports* which generate circuitry to check which specific addresses val anySupportProbe = masters.map(!_.supports.probe.none) .reduce(_ || _) val anySupportArithmetic = masters.map(!_.supports.arithmetic.none).reduce(_ || _) val anySupportLogical = masters.map(!_.supports.logical.none) .reduce(_ || _) val anySupportGet = masters.map(!_.supports.get.none) .reduce(_ || _) val anySupportPutFull = masters.map(!_.supports.putFull.none) .reduce(_ || _) val anySupportPutPartial = masters.map(!_.supports.putPartial.none).reduce(_ || _) val anySupportHint = masters.map(!_.supports.hint.none) .reduce(_ || _) // These return Option[TLMasterParameters] for your convenience def find(id: Int) = masters.find(_.sourceId.contains(id)) // Synthesizable lookup methods def find(id: UInt) = VecInit(masters.map(_.sourceId.contains(id))) def contains(id: UInt) = find(id).reduce(_ || _) def requestFifo(id: UInt) = Mux1H(find(id), masters.map(c => c.requestFifo.B)) // Available during RTL runtime, checks to see if (id, size) is supported by the master's (client's) diplomatic parameters private def sourceIdHelper(member: TLMasterParameters => TransferSizes)(id: UInt, lgSize: UInt) = { val allSame = masters.map(member(_) == member(masters(0))).reduce(_ && _) // this if statement is a coarse generalization of the groupBy in the sourceIdHelper2 version; // the case where there is only one group. if (allSame) member(masters(0)).containsLg(lgSize) else { // Find the master associated with ID and returns whether that particular master is able to receive transaction of lgSize Mux1H(find(id), masters.map(member(_).containsLg(lgSize))) } } // Check for support of a given operation at a specific id val supportsProbe = sourceIdHelper(_.supports.probe) _ val supportsArithmetic = sourceIdHelper(_.supports.arithmetic) _ val supportsLogical = sourceIdHelper(_.supports.logical) _ val supportsGet = sourceIdHelper(_.supports.get) _ val supportsPutFull = sourceIdHelper(_.supports.putFull) _ val supportsPutPartial = sourceIdHelper(_.supports.putPartial) _ val supportsHint = sourceIdHelper(_.supports.hint) _ // TODO: Merge sourceIdHelper2 with sourceIdHelper private def sourceIdHelper2( member: TLMasterParameters => TransferSizes, sourceId: UInt, lgSize: UInt): Bool = { // Because sourceIds are uniquely owned by each master, we use them to group the // cases that have to be checked. val emitCases = groupByIntoSeq(masters)(m => member(m)).map { case (k, vs) => k -> vs.map(_.sourceId) } emitCases.map { case (s, a) => (s.containsLg(lgSize)) && a.map(_.contains(sourceId)).reduce(_||_) }.foldLeft(false.B)(_||_) } // Check for emit of a given operation at a specific id def emitsAcquireT (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.acquireT, sourceId, lgSize) def emitsAcquireB (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.acquireB, sourceId, lgSize) def emitsArithmetic(sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.arithmetic, sourceId, lgSize) def emitsLogical (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.logical, sourceId, lgSize) def emitsGet (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.get, sourceId, lgSize) def emitsPutFull (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.putFull, sourceId, lgSize) def emitsPutPartial(sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.putPartial, sourceId, lgSize) def emitsHint (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.hint, sourceId, lgSize) def infoString = masters.map(_.infoString).mkString def v1copy( clients: Seq[TLMasterParameters] = masters, minLatency: Int = minLatency, echoFields: Seq[BundleFieldBase] = echoFields, requestFields: Seq[BundleFieldBase] = requestFields, responseKeys: Seq[BundleKeyBase] = responseKeys) = { new TLMasterPortParameters( masters = clients, channelBytes = channelBytes, minLatency = minLatency, echoFields = echoFields, requestFields = requestFields, responseKeys = responseKeys) } def v2copy( masters: Seq[TLMasterParameters] = masters, channelBytes: TLChannelBeatBytes = channelBytes, minLatency: Int = minLatency, echoFields: Seq[BundleFieldBase] = echoFields, requestFields: Seq[BundleFieldBase] = requestFields, responseKeys: Seq[BundleKeyBase] = responseKeys) = { new TLMasterPortParameters( masters = masters, channelBytes = channelBytes, minLatency = minLatency, echoFields = echoFields, requestFields = requestFields, responseKeys = responseKeys) } @deprecated("Use v1copy instead of copy","") def copy( clients: Seq[TLMasterParameters] = masters, minLatency: Int = minLatency, echoFields: Seq[BundleFieldBase] = echoFields, requestFields: Seq[BundleFieldBase] = requestFields, responseKeys: Seq[BundleKeyBase] = responseKeys) = { v1copy( clients, minLatency, echoFields, requestFields, responseKeys) } } object TLClientPortParameters { @deprecated("Use TLMasterPortParameters.v1 instead of TLClientPortParameters","") def apply( clients: Seq[TLMasterParameters], minLatency: Int = 0, echoFields: Seq[BundleFieldBase] = Nil, requestFields: Seq[BundleFieldBase] = Nil, responseKeys: Seq[BundleKeyBase] = Nil) = { TLMasterPortParameters.v1( clients, minLatency, echoFields, requestFields, responseKeys) } } object TLMasterPortParameters { def v1( clients: Seq[TLMasterParameters], minLatency: Int = 0, echoFields: Seq[BundleFieldBase] = Nil, requestFields: Seq[BundleFieldBase] = Nil, responseKeys: Seq[BundleKeyBase] = Nil) = { new TLMasterPortParameters( masters = clients, channelBytes = TLChannelBeatBytes(), minLatency = minLatency, echoFields = echoFields, requestFields = requestFields, responseKeys = responseKeys) } def v2( masters: Seq[TLMasterParameters], channelBytes: TLChannelBeatBytes = TLChannelBeatBytes(), minLatency: Int = 0, echoFields: Seq[BundleFieldBase] = Nil, requestFields: Seq[BundleFieldBase] = Nil, responseKeys: Seq[BundleKeyBase] = Nil) = { new TLMasterPortParameters( masters = masters, channelBytes = channelBytes, minLatency = minLatency, echoFields = echoFields, requestFields = requestFields, responseKeys = responseKeys) } } case class TLBundleParameters( addressBits: Int, dataBits: Int, sourceBits: Int, sinkBits: Int, sizeBits: Int, echoFields: Seq[BundleFieldBase], requestFields: Seq[BundleFieldBase], responseFields: Seq[BundleFieldBase], hasBCE: Boolean) { // Chisel has issues with 0-width wires require (addressBits >= 1) require (dataBits >= 8) require (sourceBits >= 1) require (sinkBits >= 1) require (sizeBits >= 1) require (isPow2(dataBits)) echoFields.foreach { f => require (f.key.isControl, s"${f} is not a legal echo field") } val addrLoBits = log2Up(dataBits/8) // Used to uniquify bus IP names def shortName = s"a${addressBits}d${dataBits}s${sourceBits}k${sinkBits}z${sizeBits}" + (if (hasBCE) "c" else "u") def union(x: TLBundleParameters) = TLBundleParameters( max(addressBits, x.addressBits), max(dataBits, x.dataBits), max(sourceBits, x.sourceBits), max(sinkBits, x.sinkBits), max(sizeBits, x.sizeBits), echoFields = BundleField.union(echoFields ++ x.echoFields), requestFields = BundleField.union(requestFields ++ x.requestFields), responseFields = BundleField.union(responseFields ++ x.responseFields), hasBCE || x.hasBCE) } object TLBundleParameters { val emptyBundleParams = TLBundleParameters( addressBits = 1, dataBits = 8, sourceBits = 1, sinkBits = 1, sizeBits = 1, echoFields = Nil, requestFields = Nil, responseFields = Nil, hasBCE = false) def union(x: Seq[TLBundleParameters]) = x.foldLeft(emptyBundleParams)((x,y) => x.union(y)) def apply(master: TLMasterPortParameters, slave: TLSlavePortParameters) = new TLBundleParameters( addressBits = log2Up(slave.maxAddress + 1), dataBits = slave.beatBytes * 8, sourceBits = log2Up(master.endSourceId), sinkBits = log2Up(slave.endSinkId), sizeBits = log2Up(log2Ceil(max(master.maxTransfer, slave.maxTransfer))+1), echoFields = master.echoFields, requestFields = BundleField.accept(master.requestFields, slave.requestKeys), responseFields = BundleField.accept(slave.responseFields, master.responseKeys), hasBCE = master.anySupportProbe && slave.anySupportAcquireB) } case class TLEdgeParameters( master: TLMasterPortParameters, slave: TLSlavePortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge { // legacy names: def manager = slave def client = master val maxTransfer = max(master.maxTransfer, slave.maxTransfer) val maxLgSize = log2Ceil(maxTransfer) // Sanity check the link... require (maxTransfer >= slave.beatBytes, s"Link's max transfer (${maxTransfer}) < ${slave.slaves.map(_.name)}'s beatBytes (${slave.beatBytes})") def diplomaticClaimsMasterToSlave = master.anyEmitClaims.intersect(slave.anySupportClaims) val bundle = TLBundleParameters(master, slave) def formatEdge = master.infoString + "\n" + slave.infoString } case class TLCreditedDelay( a: CreditedDelay, b: CreditedDelay, c: CreditedDelay, d: CreditedDelay, e: CreditedDelay) { def + (that: TLCreditedDelay): TLCreditedDelay = TLCreditedDelay( a = a + that.a, b = b + that.b, c = c + that.c, d = d + that.d, e = e + that.e) override def toString = s"(${a}, ${b}, ${c}, ${d}, ${e})" } object TLCreditedDelay { def apply(delay: CreditedDelay): TLCreditedDelay = apply(delay, delay.flip, delay, delay.flip, delay) } case class TLCreditedManagerPortParameters(delay: TLCreditedDelay, base: TLSlavePortParameters) {def infoString = base.infoString} case class TLCreditedClientPortParameters(delay: TLCreditedDelay, base: TLMasterPortParameters) {def infoString = base.infoString} case class TLCreditedEdgeParameters(client: TLCreditedClientPortParameters, manager: TLCreditedManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge { val delay = client.delay + manager.delay val bundle = TLBundleParameters(client.base, manager.base) def formatEdge = client.infoString + "\n" + manager.infoString } case class TLAsyncManagerPortParameters(async: AsyncQueueParams, base: TLSlavePortParameters) {def infoString = base.infoString} case class TLAsyncClientPortParameters(base: TLMasterPortParameters) {def infoString = base.infoString} case class TLAsyncBundleParameters(async: AsyncQueueParams, base: TLBundleParameters) case class TLAsyncEdgeParameters(client: TLAsyncClientPortParameters, manager: TLAsyncManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge { val bundle = TLAsyncBundleParameters(manager.async, TLBundleParameters(client.base, manager.base)) def formatEdge = client.infoString + "\n" + manager.infoString } case class TLRationalManagerPortParameters(direction: RationalDirection, base: TLSlavePortParameters) {def infoString = base.infoString} case class TLRationalClientPortParameters(base: TLMasterPortParameters) {def infoString = base.infoString} case class TLRationalEdgeParameters(client: TLRationalClientPortParameters, manager: TLRationalManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge { val bundle = TLBundleParameters(client.base, manager.base) def formatEdge = client.infoString + "\n" + manager.infoString } // To be unified, devices must agree on all of these terms case class ManagerUnificationKey( resources: Seq[Resource], regionType: RegionType.T, executable: Boolean, supportsAcquireT: TransferSizes, supportsAcquireB: TransferSizes, supportsArithmetic: TransferSizes, supportsLogical: TransferSizes, supportsGet: TransferSizes, supportsPutFull: TransferSizes, supportsPutPartial: TransferSizes, supportsHint: TransferSizes) object ManagerUnificationKey { def apply(x: TLSlaveParameters): ManagerUnificationKey = ManagerUnificationKey( resources = x.resources, regionType = x.regionType, executable = x.executable, supportsAcquireT = x.supportsAcquireT, supportsAcquireB = x.supportsAcquireB, supportsArithmetic = x.supportsArithmetic, supportsLogical = x.supportsLogical, supportsGet = x.supportsGet, supportsPutFull = x.supportsPutFull, supportsPutPartial = x.supportsPutPartial, supportsHint = x.supportsHint) } object ManagerUnification { def apply(slaves: Seq[TLSlaveParameters]): List[TLSlaveParameters] = { slaves.groupBy(ManagerUnificationKey.apply).values.map { seq => val agree = seq.forall(_.fifoId == seq.head.fifoId) seq(0).v1copy( address = AddressSet.unify(seq.flatMap(_.address)), fifoId = if (agree) seq(0).fifoId else None) }.toList } } case class TLBufferParams( a: BufferParams = BufferParams.none, b: BufferParams = BufferParams.none, c: BufferParams = BufferParams.none, d: BufferParams = BufferParams.none, e: BufferParams = BufferParams.none ) extends DirectedBuffers[TLBufferParams] { def copyIn(x: BufferParams) = this.copy(b = x, d = x) def copyOut(x: BufferParams) = this.copy(a = x, c = x, e = x) def copyInOut(x: BufferParams) = this.copyIn(x).copyOut(x) } /** Pretty printing of TL source id maps */ class TLSourceIdMap(tl: TLMasterPortParameters) extends IdMap[TLSourceIdMapEntry] { private val tlDigits = String.valueOf(tl.endSourceId-1).length() protected val fmt = s"\t[%${tlDigits}d, %${tlDigits}d) %s%s%s" private val sorted = tl.masters.sortBy(_.sourceId) val mapping: Seq[TLSourceIdMapEntry] = sorted.map { case c => TLSourceIdMapEntry(c.sourceId, c.name, c.supports.probe, c.requestFifo) } } case class TLSourceIdMapEntry(tlId: IdRange, name: String, isCache: Boolean, requestFifo: Boolean) extends IdMapEntry { val from = tlId val to = tlId val maxTransactionsInFlight = Some(tlId.size) } File Edges.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.util._ class TLEdge( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdgeParameters(client, manager, params, sourceInfo) { def isAligned(address: UInt, lgSize: UInt): Bool = { if (maxLgSize == 0) true.B else { val mask = UIntToOH1(lgSize, maxLgSize) (address & mask) === 0.U } } def mask(address: UInt, lgSize: UInt): UInt = MaskGen(address, lgSize, manager.beatBytes) def staticHasData(bundle: TLChannel): Option[Boolean] = { bundle match { case _:TLBundleA => { // Do there exist A messages with Data? val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial // Do there exist A messages without Data? val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint // Statically optimize the case where hasData is a constant if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None } case _:TLBundleB => { // Do there exist B messages with Data? val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial // Do there exist B messages without Data? val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint // Statically optimize the case where hasData is a constant if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None } case _:TLBundleC => { // Do there eixst C messages with Data? val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe // Do there exist C messages without Data? val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None } case _:TLBundleD => { // Do there eixst D messages with Data? val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB // Do there exist D messages without Data? val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None } case _:TLBundleE => Some(false) } } def isRequest(x: TLChannel): Bool = { x match { case a: TLBundleA => true.B case b: TLBundleB => true.B case c: TLBundleC => c.opcode(2) && c.opcode(1) // opcode === TLMessages.Release || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(2) && !d.opcode(1) // opcode === TLMessages.Grant || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } } def isResponse(x: TLChannel): Bool = { x match { case a: TLBundleA => false.B case b: TLBundleB => false.B case c: TLBundleC => !c.opcode(2) || !c.opcode(1) // opcode =/= TLMessages.Release && // opcode =/= TLMessages.ReleaseData case d: TLBundleD => true.B // Grant isResponse + isRequest case e: TLBundleE => true.B } } def hasData(x: TLChannel): Bool = { val opdata = x match { case a: TLBundleA => !a.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case b: TLBundleB => !b.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case c: TLBundleC => c.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.ProbeAckData || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } staticHasData(x).map(_.B).getOrElse(opdata) } def opcode(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.opcode case b: TLBundleB => b.opcode case c: TLBundleC => c.opcode case d: TLBundleD => d.opcode } } def param(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.param case b: TLBundleB => b.param case c: TLBundleC => c.param case d: TLBundleD => d.param } } def size(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.size case b: TLBundleB => b.size case c: TLBundleC => c.size case d: TLBundleD => d.size } } def data(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.data case b: TLBundleB => b.data case c: TLBundleC => c.data case d: TLBundleD => d.data } } def corrupt(x: TLDataChannel): Bool = { x match { case a: TLBundleA => a.corrupt case b: TLBundleB => b.corrupt case c: TLBundleC => c.corrupt case d: TLBundleD => d.corrupt } } def mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.mask case b: TLBundleB => b.mask case c: TLBundleC => mask(c.address, c.size) } } def full_mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => mask(a.address, a.size) case b: TLBundleB => mask(b.address, b.size) case c: TLBundleC => mask(c.address, c.size) } } def address(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.address case b: TLBundleB => b.address case c: TLBundleC => c.address } } def source(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.source case b: TLBundleB => b.source case c: TLBundleC => c.source case d: TLBundleD => d.source } } def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes) def addr_lo(x: UInt): UInt = if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0) def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x)) def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x)) def numBeats(x: TLChannel): UInt = { x match { case _: TLBundleE => 1.U case bundle: TLDataChannel => { val hasData = this.hasData(bundle) val size = this.size(bundle) val cutoff = log2Ceil(manager.beatBytes) val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U val decode = UIntToOH(size, maxLgSize+1) >> cutoff Mux(hasData, decode | small.asUInt, 1.U) } } } def numBeats1(x: TLChannel): UInt = { x match { case _: TLBundleE => 0.U case bundle: TLDataChannel => { if (maxLgSize == 0) { 0.U } else { val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes) Mux(hasData(bundle), decode, 0.U) } } } } def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val beats1 = numBeats1(bits) val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W)) val counter1 = counter - 1.U val first = counter === 0.U val last = counter === 1.U || beats1 === 0.U val done = last && fire val count = (beats1 & ~counter1) when (fire) { counter := Mux(first, beats1, counter1) } (first, last, done, count) } def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1 def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire) def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid) def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2 def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire) def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid) def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3 def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire) def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid) def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3) } def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire) def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid) def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4) } def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire) def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid) def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes)) } def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire) def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid) // Does the request need T permissions to be executed? def needT(a: TLBundleA): Bool = { val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLPermissions.NtoB -> false.B, TLPermissions.NtoT -> true.B, TLPermissions.BtoT -> true.B)) MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array( TLMessages.PutFullData -> true.B, TLMessages.PutPartialData -> true.B, TLMessages.ArithmeticData -> true.B, TLMessages.LogicalData -> true.B, TLMessages.Get -> false.B, TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLHints.PREFETCH_READ -> false.B, TLHints.PREFETCH_WRITE -> true.B)), TLMessages.AcquireBlock -> acq_needT, TLMessages.AcquirePerm -> acq_needT)) } // This is a very expensive circuit; use only if you really mean it! def inFlight(x: TLBundle): (UInt, UInt) = { val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W)) val bce = manager.anySupportAcquireB && client.anySupportProbe val (a_first, a_last, _) = firstlast(x.a) val (b_first, b_last, _) = firstlast(x.b) val (c_first, c_last, _) = firstlast(x.c) val (d_first, d_last, _) = firstlast(x.d) val (e_first, e_last, _) = firstlast(x.e) val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits)) val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits)) val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits)) val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits)) val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits)) val a_inc = x.a.fire && a_first && a_request val b_inc = x.b.fire && b_first && b_request val c_inc = x.c.fire && c_first && c_request val d_inc = x.d.fire && d_first && d_request val e_inc = x.e.fire && e_first && e_request val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil)) val a_dec = x.a.fire && a_last && a_response val b_dec = x.b.fire && b_last && b_response val c_dec = x.c.fire && c_last && c_response val d_dec = x.d.fire && d_last && d_response val e_dec = x.e.fire && e_last && e_response val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil)) val next_flight = flight + PopCount(inc) - PopCount(dec) flight := next_flight (flight, next_flight) } def prettySourceMapping(context: String): String = { s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n" } } class TLEdgeOut( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { // Transfers def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquireBlock a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquirePerm a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.Release c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ReleaseData c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) = Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B) def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAck c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions, data) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAckData c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B) def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink) def GrantAck(toSink: UInt): TLBundleE = { val e = Wire(new TLBundleE(bundle)) e.sink := toSink e } // Accesses def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsGetFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Get a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutFullFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutFullData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, mask, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutPartialFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutPartialData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask a.data := data a.corrupt := corrupt (legal, a) } def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = { require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsArithmeticFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.ArithmeticData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsLogicalFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.LogicalData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = { require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsHintFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Hint a.param := param a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data) def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAckData c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size) def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.HintAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } } class TLEdgeIn( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = { val todo = x.filter(!_.isEmpty) val heads = todo.map(_.head) val tails = todo.map(_.tail) if (todo.isEmpty) Nil else { heads +: myTranspose(tails) } } // Transfers def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = { require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}") val legal = client.supportsProbe(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Probe b.param := capPermissions b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.Grant d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.GrantData d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B) def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.ReleaseAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } // Accesses def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = { require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsGet(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Get b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsPutFull(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutFullData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, mask, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsPutPartial(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutPartialData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask b.data := data b.corrupt := corrupt (legal, b) } def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsArithmetic(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.ArithmeticData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsLogical(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.LogicalData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = { require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsHint(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Hint b.param := param b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size) def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied) def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B) def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data) def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAckData d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B) def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied) def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B) def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.HintAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } }
module TLMonitor_13( // @[Monitor.scala:36:7] input clock, // @[Monitor.scala:36:7] input reset, // @[Monitor.scala:36:7] input io_in_a_ready, // @[Monitor.scala:20:14] input io_in_a_valid, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14] input [3:0] io_in_a_bits_size, // @[Monitor.scala:20:14] input [4:0] io_in_a_bits_source, // @[Monitor.scala:20:14] input [31:0] io_in_a_bits_address, // @[Monitor.scala:20:14] input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14] input [63:0] io_in_a_bits_data, // @[Monitor.scala:20:14] input io_in_a_bits_corrupt, // @[Monitor.scala:20:14] input io_in_d_ready, // @[Monitor.scala:20:14] input io_in_d_valid, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14] input [1:0] io_in_d_bits_param, // @[Monitor.scala:20:14] input [3:0] io_in_d_bits_size, // @[Monitor.scala:20:14] input [4:0] io_in_d_bits_source, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_sink, // @[Monitor.scala:20:14] input io_in_d_bits_denied, // @[Monitor.scala:20:14] input [63:0] io_in_d_bits_data, // @[Monitor.scala:20:14] input io_in_d_bits_corrupt // @[Monitor.scala:20:14] ); wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11] wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11] wire io_in_a_ready_0 = io_in_a_ready; // @[Monitor.scala:36:7] wire io_in_a_valid_0 = io_in_a_valid; // @[Monitor.scala:36:7] wire [2:0] io_in_a_bits_opcode_0 = io_in_a_bits_opcode; // @[Monitor.scala:36:7] wire [2:0] io_in_a_bits_param_0 = io_in_a_bits_param; // @[Monitor.scala:36:7] wire [3:0] io_in_a_bits_size_0 = io_in_a_bits_size; // @[Monitor.scala:36:7] wire [4:0] io_in_a_bits_source_0 = io_in_a_bits_source; // @[Monitor.scala:36:7] wire [31:0] io_in_a_bits_address_0 = io_in_a_bits_address; // @[Monitor.scala:36:7] wire [7:0] io_in_a_bits_mask_0 = io_in_a_bits_mask; // @[Monitor.scala:36:7] wire [63:0] io_in_a_bits_data_0 = io_in_a_bits_data; // @[Monitor.scala:36:7] wire io_in_a_bits_corrupt_0 = io_in_a_bits_corrupt; // @[Monitor.scala:36:7] wire io_in_d_ready_0 = io_in_d_ready; // @[Monitor.scala:36:7] wire io_in_d_valid_0 = io_in_d_valid; // @[Monitor.scala:36:7] wire [2:0] io_in_d_bits_opcode_0 = io_in_d_bits_opcode; // @[Monitor.scala:36:7] wire [1:0] io_in_d_bits_param_0 = io_in_d_bits_param; // @[Monitor.scala:36:7] wire [3:0] io_in_d_bits_size_0 = io_in_d_bits_size; // @[Monitor.scala:36:7] wire [4:0] io_in_d_bits_source_0 = io_in_d_bits_source; // @[Monitor.scala:36:7] wire [2:0] io_in_d_bits_sink_0 = io_in_d_bits_sink; // @[Monitor.scala:36:7] wire io_in_d_bits_denied_0 = io_in_d_bits_denied; // @[Monitor.scala:36:7] wire [63:0] io_in_d_bits_data_0 = io_in_d_bits_data; // @[Monitor.scala:36:7] wire io_in_d_bits_corrupt_0 = io_in_d_bits_corrupt; // @[Monitor.scala:36:7] wire _source_ok_T = 1'h0; // @[Parameters.scala:54:10] wire _source_ok_T_6 = 1'h0; // @[Parameters.scala:54:10] wire _c_first_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_first_T = 1'h0; // @[Decoupled.scala:51:35] wire c_first_beats1_opdata = 1'h0; // @[Edges.scala:102:36] wire _c_first_last_T = 1'h0; // @[Edges.scala:232:25] wire c_first_done = 1'h0; // @[Edges.scala:233:22] wire _c_set_wo_ready_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_set_wo_ready_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_set_wo_ready_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_T = 1'h0; // @[Monitor.scala:772:47] wire _c_probe_ack_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_T_1 = 1'h0; // @[Monitor.scala:772:95] wire c_probe_ack = 1'h0; // @[Monitor.scala:772:71] wire _same_cycle_resp_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_T_3 = 1'h0; // @[Monitor.scala:795:44] wire _same_cycle_resp_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_T_4 = 1'h0; // @[Edges.scala:68:36] wire _same_cycle_resp_T_5 = 1'h0; // @[Edges.scala:68:51] wire _same_cycle_resp_T_6 = 1'h0; // @[Edges.scala:68:40] wire _same_cycle_resp_T_7 = 1'h0; // @[Monitor.scala:795:55] wire _same_cycle_resp_WIRE_4_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_4_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_4_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_5_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_5_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_5_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire same_cycle_resp_1 = 1'h0; // @[Monitor.scala:795:88] wire [8:0] c_first_beats1_decode = 9'h0; // @[Edges.scala:220:59] wire [8:0] c_first_beats1 = 9'h0; // @[Edges.scala:221:14] wire [8:0] _c_first_count_T = 9'h0; // @[Edges.scala:234:27] wire [8:0] c_first_count = 9'h0; // @[Edges.scala:234:25] wire [8:0] _c_first_counter_T = 9'h0; // @[Edges.scala:236:21] wire _source_ok_T_1 = 1'h1; // @[Parameters.scala:54:32] wire _source_ok_T_2 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_3 = 1'h1; // @[Parameters.scala:54:67] wire _source_ok_T_4 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_5 = 1'h1; // @[Parameters.scala:56:48] wire _source_ok_WIRE_0 = 1'h1; // @[Parameters.scala:1138:31] wire _source_ok_T_7 = 1'h1; // @[Parameters.scala:54:32] wire _source_ok_T_8 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_9 = 1'h1; // @[Parameters.scala:54:67] wire _source_ok_T_10 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_11 = 1'h1; // @[Parameters.scala:56:48] wire _source_ok_WIRE_1_0 = 1'h1; // @[Parameters.scala:1138:31] wire sink_ok = 1'h1; // @[Monitor.scala:309:31] wire c_first = 1'h1; // @[Edges.scala:231:25] wire _c_first_last_T_1 = 1'h1; // @[Edges.scala:232:43] wire c_first_last = 1'h1; // @[Edges.scala:232:33] wire [8:0] c_first_counter1 = 9'h1FF; // @[Edges.scala:230:28] wire [9:0] _c_first_counter1_T = 10'h3FF; // @[Edges.scala:230:28] wire [63:0] _c_first_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_first_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_first_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_first_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_set_wo_ready_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_set_wo_ready_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_opcodes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_opcodes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_sizes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_sizes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_opcodes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_opcodes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_sizes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_sizes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_probe_ack_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_probe_ack_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_probe_ack_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_probe_ack_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _same_cycle_resp_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _same_cycle_resp_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _same_cycle_resp_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _same_cycle_resp_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _same_cycle_resp_WIRE_4_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _same_cycle_resp_WIRE_5_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [31:0] _c_first_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_first_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_first_WIRE_2_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_first_WIRE_3_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] c_set = 32'h0; // @[Monitor.scala:738:34] wire [31:0] c_set_wo_ready = 32'h0; // @[Monitor.scala:739:34] wire [31:0] _c_set_wo_ready_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_set_wo_ready_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_set_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_set_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_opcodes_set_interm_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_opcodes_set_interm_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_sizes_set_interm_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_sizes_set_interm_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_opcodes_set_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_opcodes_set_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_sizes_set_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_sizes_set_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_probe_ack_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_probe_ack_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_probe_ack_WIRE_2_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_probe_ack_WIRE_3_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _same_cycle_resp_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _same_cycle_resp_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _same_cycle_resp_WIRE_2_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _same_cycle_resp_WIRE_3_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _same_cycle_resp_WIRE_4_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _same_cycle_resp_WIRE_5_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [4:0] _c_first_WIRE_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _c_first_WIRE_1_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [4:0] _c_first_WIRE_2_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _c_first_WIRE_3_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [4:0] c_sizes_set_interm = 5'h0; // @[Monitor.scala:755:40] wire [4:0] _c_set_wo_ready_WIRE_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _c_set_wo_ready_WIRE_1_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [4:0] _c_set_WIRE_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _c_set_WIRE_1_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [4:0] _c_opcodes_set_interm_WIRE_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _c_opcodes_set_interm_WIRE_1_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [4:0] _c_sizes_set_interm_WIRE_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _c_sizes_set_interm_WIRE_1_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [4:0] _c_sizes_set_interm_T = 5'h0; // @[Monitor.scala:766:51] wire [4:0] _c_opcodes_set_WIRE_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _c_opcodes_set_WIRE_1_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [4:0] _c_sizes_set_WIRE_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _c_sizes_set_WIRE_1_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [4:0] _c_probe_ack_WIRE_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _c_probe_ack_WIRE_1_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [4:0] _c_probe_ack_WIRE_2_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _c_probe_ack_WIRE_3_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [4:0] _same_cycle_resp_WIRE_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _same_cycle_resp_WIRE_1_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [4:0] _same_cycle_resp_WIRE_2_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _same_cycle_resp_WIRE_3_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [4:0] _same_cycle_resp_WIRE_4_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _same_cycle_resp_WIRE_5_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [3:0] _c_first_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_first_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_first_WIRE_2_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_first_WIRE_3_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] c_opcodes_set_interm = 4'h0; // @[Monitor.scala:754:40] wire [3:0] _c_set_wo_ready_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_set_wo_ready_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_set_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_set_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_opcodes_set_interm_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_opcodes_set_interm_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_opcodes_set_interm_T = 4'h0; // @[Monitor.scala:765:53] wire [3:0] _c_sizes_set_interm_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_sizes_set_interm_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_opcodes_set_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_opcodes_set_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_sizes_set_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_sizes_set_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_probe_ack_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_probe_ack_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_probe_ack_WIRE_2_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_probe_ack_WIRE_3_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _same_cycle_resp_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _same_cycle_resp_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _same_cycle_resp_WIRE_2_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _same_cycle_resp_WIRE_3_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _same_cycle_resp_WIRE_4_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _same_cycle_resp_WIRE_5_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [2:0] responseMap_0 = 3'h0; // @[Monitor.scala:643:42] wire [2:0] responseMap_1 = 3'h0; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_0 = 3'h0; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_1 = 3'h0; // @[Monitor.scala:644:42] wire [2:0] _c_first_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_wo_ready_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_wo_ready_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_4_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_4_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_5_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_5_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [15:0] _a_size_lookup_T_5 = 16'hFF; // @[Monitor.scala:612:57] wire [15:0] _d_sizes_clr_T_3 = 16'hFF; // @[Monitor.scala:612:57] wire [15:0] _c_size_lookup_T_5 = 16'hFF; // @[Monitor.scala:724:57] wire [15:0] _d_sizes_clr_T_9 = 16'hFF; // @[Monitor.scala:724:57] wire [16:0] _a_size_lookup_T_4 = 17'hFF; // @[Monitor.scala:612:57] wire [16:0] _d_sizes_clr_T_2 = 17'hFF; // @[Monitor.scala:612:57] wire [16:0] _c_size_lookup_T_4 = 17'hFF; // @[Monitor.scala:724:57] wire [16:0] _d_sizes_clr_T_8 = 17'hFF; // @[Monitor.scala:724:57] wire [15:0] _a_size_lookup_T_3 = 16'h100; // @[Monitor.scala:612:51] wire [15:0] _d_sizes_clr_T_1 = 16'h100; // @[Monitor.scala:612:51] wire [15:0] _c_size_lookup_T_3 = 16'h100; // @[Monitor.scala:724:51] wire [15:0] _d_sizes_clr_T_7 = 16'h100; // @[Monitor.scala:724:51] wire [15:0] _a_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _d_opcodes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _c_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57] wire [15:0] _d_opcodes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57] wire [16:0] _a_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _d_opcodes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _c_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57] wire [16:0] _d_opcodes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57] wire [15:0] _a_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _d_opcodes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _c_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51] wire [15:0] _d_opcodes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51] wire [259:0] _c_sizes_set_T_1 = 260'h0; // @[Monitor.scala:768:52] wire [7:0] _c_opcodes_set_T = 8'h0; // @[Monitor.scala:767:79] wire [7:0] _c_sizes_set_T = 8'h0; // @[Monitor.scala:768:77] wire [258:0] _c_opcodes_set_T_1 = 259'h0; // @[Monitor.scala:767:54] wire [4:0] _c_sizes_set_interm_T_1 = 5'h1; // @[Monitor.scala:766:59] wire [3:0] _c_opcodes_set_interm_T_1 = 4'h1; // @[Monitor.scala:765:61] wire [31:0] _c_set_wo_ready_T = 32'h1; // @[OneHot.scala:58:35] wire [31:0] _c_set_T = 32'h1; // @[OneHot.scala:58:35] wire [255:0] c_sizes_set = 256'h0; // @[Monitor.scala:741:34] wire [127:0] c_opcodes_set = 128'h0; // @[Monitor.scala:740:34] wire [11:0] _c_first_beats1_decode_T_2 = 12'h0; // @[package.scala:243:46] wire [11:0] _c_first_beats1_decode_T_1 = 12'hFFF; // @[package.scala:243:76] wire [26:0] _c_first_beats1_decode_T = 27'hFFF; // @[package.scala:243:71] wire [2:0] responseMap_6 = 3'h4; // @[Monitor.scala:643:42] wire [2:0] responseMap_7 = 3'h4; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_7 = 3'h4; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_6 = 3'h5; // @[Monitor.scala:644:42] wire [2:0] responseMap_5 = 3'h2; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_5 = 3'h2; // @[Monitor.scala:644:42] wire [2:0] responseMap_2 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMap_3 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMap_4 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_2 = 3'h1; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_3 = 3'h1; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_4 = 3'h1; // @[Monitor.scala:644:42] wire [3:0] _a_size_lookup_T_2 = 4'h8; // @[Monitor.scala:641:117] wire [3:0] _d_sizes_clr_T = 4'h8; // @[Monitor.scala:681:48] wire [3:0] _c_size_lookup_T_2 = 4'h8; // @[Monitor.scala:750:119] wire [3:0] _d_sizes_clr_T_6 = 4'h8; // @[Monitor.scala:791:48] wire [3:0] _a_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:637:123] wire [3:0] _d_opcodes_clr_T = 4'h4; // @[Monitor.scala:680:48] wire [3:0] _c_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:749:123] wire [3:0] _d_opcodes_clr_T_6 = 4'h4; // @[Monitor.scala:790:48] wire [3:0] _mask_sizeOH_T = io_in_a_bits_size_0; // @[Misc.scala:202:34] wire [4:0] _source_ok_uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [4:0] _uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [4:0] _uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [4:0] _uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [4:0] _uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [4:0] _uncommonBits_T_4 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [4:0] _uncommonBits_T_5 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [4:0] _uncommonBits_T_6 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [4:0] _uncommonBits_T_7 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [4:0] _uncommonBits_T_8 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [4:0] _source_ok_uncommonBits_T_1 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [4:0] source_ok_uncommonBits = _source_ok_uncommonBits_T; // @[Parameters.scala:52:{29,56}] wire [26:0] _GEN = 27'hFFF << io_in_a_bits_size_0; // @[package.scala:243:71] wire [26:0] _is_aligned_mask_T; // @[package.scala:243:71] assign _is_aligned_mask_T = _GEN; // @[package.scala:243:71] wire [26:0] _a_first_beats1_decode_T; // @[package.scala:243:71] assign _a_first_beats1_decode_T = _GEN; // @[package.scala:243:71] wire [26:0] _a_first_beats1_decode_T_3; // @[package.scala:243:71] assign _a_first_beats1_decode_T_3 = _GEN; // @[package.scala:243:71] wire [11:0] _is_aligned_mask_T_1 = _is_aligned_mask_T[11:0]; // @[package.scala:243:{71,76}] wire [11:0] is_aligned_mask = ~_is_aligned_mask_T_1; // @[package.scala:243:{46,76}] wire [31:0] _is_aligned_T = {20'h0, io_in_a_bits_address_0[11:0] & is_aligned_mask}; // @[package.scala:243:46] wire is_aligned = _is_aligned_T == 32'h0; // @[Edges.scala:21:{16,24}] wire [1:0] mask_sizeOH_shiftAmount = _mask_sizeOH_T[1:0]; // @[OneHot.scala:64:49] wire [3:0] _mask_sizeOH_T_1 = 4'h1 << mask_sizeOH_shiftAmount; // @[OneHot.scala:64:49, :65:12] wire [2:0] _mask_sizeOH_T_2 = _mask_sizeOH_T_1[2:0]; // @[OneHot.scala:65:{12,27}] wire [2:0] mask_sizeOH = {_mask_sizeOH_T_2[2:1], 1'h1}; // @[OneHot.scala:65:27] wire mask_sub_sub_sub_0_1 = io_in_a_bits_size_0 > 4'h2; // @[Misc.scala:206:21] wire mask_sub_sub_size = mask_sizeOH[2]; // @[Misc.scala:202:81, :209:26] wire mask_sub_sub_bit = io_in_a_bits_address_0[2]; // @[Misc.scala:210:26] wire mask_sub_sub_1_2 = mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27] wire mask_sub_sub_nbit = ~mask_sub_sub_bit; // @[Misc.scala:210:26, :211:20] wire mask_sub_sub_0_2 = mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_sub_acc_T = mask_sub_sub_size & mask_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_0_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T; // @[Misc.scala:206:21, :215:{29,38}] wire _mask_sub_sub_acc_T_1 = mask_sub_sub_size & mask_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_1_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T_1; // @[Misc.scala:206:21, :215:{29,38}] wire mask_sub_size = mask_sizeOH[1]; // @[Misc.scala:202:81, :209:26] wire mask_sub_bit = io_in_a_bits_address_0[1]; // @[Misc.scala:210:26] wire mask_sub_nbit = ~mask_sub_bit; // @[Misc.scala:210:26, :211:20] wire mask_sub_0_2 = mask_sub_sub_0_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_acc_T = mask_sub_size & mask_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_0_1 = mask_sub_sub_0_1 | _mask_sub_acc_T; // @[Misc.scala:215:{29,38}] wire mask_sub_1_2 = mask_sub_sub_0_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_acc_T_1 = mask_sub_size & mask_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_1_1 = mask_sub_sub_0_1 | _mask_sub_acc_T_1; // @[Misc.scala:215:{29,38}] wire mask_sub_2_2 = mask_sub_sub_1_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_acc_T_2 = mask_sub_size & mask_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_2_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_2; // @[Misc.scala:215:{29,38}] wire mask_sub_3_2 = mask_sub_sub_1_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_acc_T_3 = mask_sub_size & mask_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_3_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_3; // @[Misc.scala:215:{29,38}] wire mask_size = mask_sizeOH[0]; // @[Misc.scala:202:81, :209:26] wire mask_bit = io_in_a_bits_address_0[0]; // @[Misc.scala:210:26] wire mask_nbit = ~mask_bit; // @[Misc.scala:210:26, :211:20] wire mask_eq = mask_sub_0_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T = mask_size & mask_eq; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc = mask_sub_0_1 | _mask_acc_T; // @[Misc.scala:215:{29,38}] wire mask_eq_1 = mask_sub_0_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_1 = mask_size & mask_eq_1; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_1 = mask_sub_0_1 | _mask_acc_T_1; // @[Misc.scala:215:{29,38}] wire mask_eq_2 = mask_sub_1_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_2 = mask_size & mask_eq_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_2 = mask_sub_1_1 | _mask_acc_T_2; // @[Misc.scala:215:{29,38}] wire mask_eq_3 = mask_sub_1_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_3 = mask_size & mask_eq_3; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_3 = mask_sub_1_1 | _mask_acc_T_3; // @[Misc.scala:215:{29,38}] wire mask_eq_4 = mask_sub_2_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_4 = mask_size & mask_eq_4; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_4 = mask_sub_2_1 | _mask_acc_T_4; // @[Misc.scala:215:{29,38}] wire mask_eq_5 = mask_sub_2_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_5 = mask_size & mask_eq_5; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_5 = mask_sub_2_1 | _mask_acc_T_5; // @[Misc.scala:215:{29,38}] wire mask_eq_6 = mask_sub_3_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_6 = mask_size & mask_eq_6; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_6 = mask_sub_3_1 | _mask_acc_T_6; // @[Misc.scala:215:{29,38}] wire mask_eq_7 = mask_sub_3_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_7 = mask_size & mask_eq_7; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_7 = mask_sub_3_1 | _mask_acc_T_7; // @[Misc.scala:215:{29,38}] wire [1:0] mask_lo_lo = {mask_acc_1, mask_acc}; // @[Misc.scala:215:29, :222:10] wire [1:0] mask_lo_hi = {mask_acc_3, mask_acc_2}; // @[Misc.scala:215:29, :222:10] wire [3:0] mask_lo = {mask_lo_hi, mask_lo_lo}; // @[Misc.scala:222:10] wire [1:0] mask_hi_lo = {mask_acc_5, mask_acc_4}; // @[Misc.scala:215:29, :222:10] wire [1:0] mask_hi_hi = {mask_acc_7, mask_acc_6}; // @[Misc.scala:215:29, :222:10] wire [3:0] mask_hi = {mask_hi_hi, mask_hi_lo}; // @[Misc.scala:222:10] wire [7:0] mask = {mask_hi, mask_lo}; // @[Misc.scala:222:10] wire [4:0] uncommonBits = _uncommonBits_T; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_1 = _uncommonBits_T_1; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_2 = _uncommonBits_T_2; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_3 = _uncommonBits_T_3; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_4 = _uncommonBits_T_4; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_5 = _uncommonBits_T_5; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_6 = _uncommonBits_T_6; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_7 = _uncommonBits_T_7; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_8 = _uncommonBits_T_8; // @[Parameters.scala:52:{29,56}] wire [4:0] source_ok_uncommonBits_1 = _source_ok_uncommonBits_T_1; // @[Parameters.scala:52:{29,56}] wire _T_1257 = io_in_a_ready_0 & io_in_a_valid_0; // @[Decoupled.scala:51:35] wire _a_first_T; // @[Decoupled.scala:51:35] assign _a_first_T = _T_1257; // @[Decoupled.scala:51:35] wire _a_first_T_1; // @[Decoupled.scala:51:35] assign _a_first_T_1 = _T_1257; // @[Decoupled.scala:51:35] wire [11:0] _a_first_beats1_decode_T_1 = _a_first_beats1_decode_T[11:0]; // @[package.scala:243:{71,76}] wire [11:0] _a_first_beats1_decode_T_2 = ~_a_first_beats1_decode_T_1; // @[package.scala:243:{46,76}] wire [8:0] a_first_beats1_decode = _a_first_beats1_decode_T_2[11:3]; // @[package.scala:243:46] wire _a_first_beats1_opdata_T = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7] wire _a_first_beats1_opdata_T_1 = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7] wire a_first_beats1_opdata = ~_a_first_beats1_opdata_T; // @[Edges.scala:92:{28,37}] wire [8:0] a_first_beats1 = a_first_beats1_opdata ? a_first_beats1_decode : 9'h0; // @[Edges.scala:92:28, :220:59, :221:14] reg [8:0] a_first_counter; // @[Edges.scala:229:27] wire [9:0] _a_first_counter1_T = {1'h0, a_first_counter} - 10'h1; // @[Edges.scala:229:27, :230:28] wire [8:0] a_first_counter1 = _a_first_counter1_T[8:0]; // @[Edges.scala:230:28] wire a_first = a_first_counter == 9'h0; // @[Edges.scala:229:27, :231:25] wire _a_first_last_T = a_first_counter == 9'h1; // @[Edges.scala:229:27, :232:25] wire _a_first_last_T_1 = a_first_beats1 == 9'h0; // @[Edges.scala:221:14, :232:43] wire a_first_last = _a_first_last_T | _a_first_last_T_1; // @[Edges.scala:232:{25,33,43}] wire a_first_done = a_first_last & _a_first_T; // @[Decoupled.scala:51:35] wire [8:0] _a_first_count_T = ~a_first_counter1; // @[Edges.scala:230:28, :234:27] wire [8:0] a_first_count = a_first_beats1 & _a_first_count_T; // @[Edges.scala:221:14, :234:{25,27}] wire [8:0] _a_first_counter_T = a_first ? a_first_beats1 : a_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] reg [2:0] opcode; // @[Monitor.scala:387:22] reg [2:0] param; // @[Monitor.scala:388:22] reg [3:0] size; // @[Monitor.scala:389:22] reg [4:0] source; // @[Monitor.scala:390:22] reg [31:0] address; // @[Monitor.scala:391:22] wire _T_1330 = io_in_d_ready_0 & io_in_d_valid_0; // @[Decoupled.scala:51:35] wire _d_first_T; // @[Decoupled.scala:51:35] assign _d_first_T = _T_1330; // @[Decoupled.scala:51:35] wire _d_first_T_1; // @[Decoupled.scala:51:35] assign _d_first_T_1 = _T_1330; // @[Decoupled.scala:51:35] wire _d_first_T_2; // @[Decoupled.scala:51:35] assign _d_first_T_2 = _T_1330; // @[Decoupled.scala:51:35] wire [26:0] _GEN_0 = 27'hFFF << io_in_d_bits_size_0; // @[package.scala:243:71] wire [26:0] _d_first_beats1_decode_T; // @[package.scala:243:71] assign _d_first_beats1_decode_T = _GEN_0; // @[package.scala:243:71] wire [26:0] _d_first_beats1_decode_T_3; // @[package.scala:243:71] assign _d_first_beats1_decode_T_3 = _GEN_0; // @[package.scala:243:71] wire [26:0] _d_first_beats1_decode_T_6; // @[package.scala:243:71] assign _d_first_beats1_decode_T_6 = _GEN_0; // @[package.scala:243:71] wire [11:0] _d_first_beats1_decode_T_1 = _d_first_beats1_decode_T[11:0]; // @[package.scala:243:{71,76}] wire [11:0] _d_first_beats1_decode_T_2 = ~_d_first_beats1_decode_T_1; // @[package.scala:243:{46,76}] wire [8:0] d_first_beats1_decode = _d_first_beats1_decode_T_2[11:3]; // @[package.scala:243:46] wire d_first_beats1_opdata = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire d_first_beats1_opdata_1 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire d_first_beats1_opdata_2 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire [8:0] d_first_beats1 = d_first_beats1_opdata ? d_first_beats1_decode : 9'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [8:0] d_first_counter; // @[Edges.scala:229:27] wire [9:0] _d_first_counter1_T = {1'h0, d_first_counter} - 10'h1; // @[Edges.scala:229:27, :230:28] wire [8:0] d_first_counter1 = _d_first_counter1_T[8:0]; // @[Edges.scala:230:28] wire d_first = d_first_counter == 9'h0; // @[Edges.scala:229:27, :231:25] wire _d_first_last_T = d_first_counter == 9'h1; // @[Edges.scala:229:27, :232:25] wire _d_first_last_T_1 = d_first_beats1 == 9'h0; // @[Edges.scala:221:14, :232:43] wire d_first_last = _d_first_last_T | _d_first_last_T_1; // @[Edges.scala:232:{25,33,43}] wire d_first_done = d_first_last & _d_first_T; // @[Decoupled.scala:51:35] wire [8:0] _d_first_count_T = ~d_first_counter1; // @[Edges.scala:230:28, :234:27] wire [8:0] d_first_count = d_first_beats1 & _d_first_count_T; // @[Edges.scala:221:14, :234:{25,27}] wire [8:0] _d_first_counter_T = d_first ? d_first_beats1 : d_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] reg [2:0] opcode_1; // @[Monitor.scala:538:22] reg [1:0] param_1; // @[Monitor.scala:539:22] reg [3:0] size_1; // @[Monitor.scala:540:22] reg [4:0] source_1; // @[Monitor.scala:541:22] reg [2:0] sink; // @[Monitor.scala:542:22] reg denied; // @[Monitor.scala:543:22] reg [31:0] inflight; // @[Monitor.scala:614:27] reg [127:0] inflight_opcodes; // @[Monitor.scala:616:35] reg [255:0] inflight_sizes; // @[Monitor.scala:618:33] wire [11:0] _a_first_beats1_decode_T_4 = _a_first_beats1_decode_T_3[11:0]; // @[package.scala:243:{71,76}] wire [11:0] _a_first_beats1_decode_T_5 = ~_a_first_beats1_decode_T_4; // @[package.scala:243:{46,76}] wire [8:0] a_first_beats1_decode_1 = _a_first_beats1_decode_T_5[11:3]; // @[package.scala:243:46] wire a_first_beats1_opdata_1 = ~_a_first_beats1_opdata_T_1; // @[Edges.scala:92:{28,37}] wire [8:0] a_first_beats1_1 = a_first_beats1_opdata_1 ? a_first_beats1_decode_1 : 9'h0; // @[Edges.scala:92:28, :220:59, :221:14] reg [8:0] a_first_counter_1; // @[Edges.scala:229:27] wire [9:0] _a_first_counter1_T_1 = {1'h0, a_first_counter_1} - 10'h1; // @[Edges.scala:229:27, :230:28] wire [8:0] a_first_counter1_1 = _a_first_counter1_T_1[8:0]; // @[Edges.scala:230:28] wire a_first_1 = a_first_counter_1 == 9'h0; // @[Edges.scala:229:27, :231:25] wire _a_first_last_T_2 = a_first_counter_1 == 9'h1; // @[Edges.scala:229:27, :232:25] wire _a_first_last_T_3 = a_first_beats1_1 == 9'h0; // @[Edges.scala:221:14, :232:43] wire a_first_last_1 = _a_first_last_T_2 | _a_first_last_T_3; // @[Edges.scala:232:{25,33,43}] wire a_first_done_1 = a_first_last_1 & _a_first_T_1; // @[Decoupled.scala:51:35] wire [8:0] _a_first_count_T_1 = ~a_first_counter1_1; // @[Edges.scala:230:28, :234:27] wire [8:0] a_first_count_1 = a_first_beats1_1 & _a_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}] wire [8:0] _a_first_counter_T_1 = a_first_1 ? a_first_beats1_1 : a_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [11:0] _d_first_beats1_decode_T_4 = _d_first_beats1_decode_T_3[11:0]; // @[package.scala:243:{71,76}] wire [11:0] _d_first_beats1_decode_T_5 = ~_d_first_beats1_decode_T_4; // @[package.scala:243:{46,76}] wire [8:0] d_first_beats1_decode_1 = _d_first_beats1_decode_T_5[11:3]; // @[package.scala:243:46] wire [8:0] d_first_beats1_1 = d_first_beats1_opdata_1 ? d_first_beats1_decode_1 : 9'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [8:0] d_first_counter_1; // @[Edges.scala:229:27] wire [9:0] _d_first_counter1_T_1 = {1'h0, d_first_counter_1} - 10'h1; // @[Edges.scala:229:27, :230:28] wire [8:0] d_first_counter1_1 = _d_first_counter1_T_1[8:0]; // @[Edges.scala:230:28] wire d_first_1 = d_first_counter_1 == 9'h0; // @[Edges.scala:229:27, :231:25] wire _d_first_last_T_2 = d_first_counter_1 == 9'h1; // @[Edges.scala:229:27, :232:25] wire _d_first_last_T_3 = d_first_beats1_1 == 9'h0; // @[Edges.scala:221:14, :232:43] wire d_first_last_1 = _d_first_last_T_2 | _d_first_last_T_3; // @[Edges.scala:232:{25,33,43}] wire d_first_done_1 = d_first_last_1 & _d_first_T_1; // @[Decoupled.scala:51:35] wire [8:0] _d_first_count_T_1 = ~d_first_counter1_1; // @[Edges.scala:230:28, :234:27] wire [8:0] d_first_count_1 = d_first_beats1_1 & _d_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}] wire [8:0] _d_first_counter_T_1 = d_first_1 ? d_first_beats1_1 : d_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [31:0] a_set; // @[Monitor.scala:626:34] wire [31:0] a_set_wo_ready; // @[Monitor.scala:627:34] wire [127:0] a_opcodes_set; // @[Monitor.scala:630:33] wire [255:0] a_sizes_set; // @[Monitor.scala:632:31] wire [2:0] a_opcode_lookup; // @[Monitor.scala:635:35] wire [7:0] _GEN_1 = {1'h0, io_in_d_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :637:69] wire [7:0] _a_opcode_lookup_T; // @[Monitor.scala:637:69] assign _a_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69] wire [7:0] _d_opcodes_clr_T_4; // @[Monitor.scala:680:101] assign _d_opcodes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :680:101] wire [7:0] _c_opcode_lookup_T; // @[Monitor.scala:749:69] assign _c_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :749:69] wire [7:0] _d_opcodes_clr_T_10; // @[Monitor.scala:790:101] assign _d_opcodes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :790:101] wire [127:0] _a_opcode_lookup_T_1 = inflight_opcodes >> _a_opcode_lookup_T; // @[Monitor.scala:616:35, :637:{44,69}] wire [127:0] _a_opcode_lookup_T_6 = {124'h0, _a_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:637:{44,97}] wire [127:0] _a_opcode_lookup_T_7 = {1'h0, _a_opcode_lookup_T_6[127:1]}; // @[Monitor.scala:637:{97,152}] assign a_opcode_lookup = _a_opcode_lookup_T_7[2:0]; // @[Monitor.scala:635:35, :637:{21,152}] wire [7:0] a_size_lookup; // @[Monitor.scala:639:33] wire [7:0] _GEN_2 = {io_in_d_bits_source_0, 3'h0}; // @[Monitor.scala:36:7, :641:65] wire [7:0] _a_size_lookup_T; // @[Monitor.scala:641:65] assign _a_size_lookup_T = _GEN_2; // @[Monitor.scala:641:65] wire [7:0] _d_sizes_clr_T_4; // @[Monitor.scala:681:99] assign _d_sizes_clr_T_4 = _GEN_2; // @[Monitor.scala:641:65, :681:99] wire [7:0] _c_size_lookup_T; // @[Monitor.scala:750:67] assign _c_size_lookup_T = _GEN_2; // @[Monitor.scala:641:65, :750:67] wire [7:0] _d_sizes_clr_T_10; // @[Monitor.scala:791:99] assign _d_sizes_clr_T_10 = _GEN_2; // @[Monitor.scala:641:65, :791:99] wire [255:0] _a_size_lookup_T_1 = inflight_sizes >> _a_size_lookup_T; // @[Monitor.scala:618:33, :641:{40,65}] wire [255:0] _a_size_lookup_T_6 = {248'h0, _a_size_lookup_T_1[7:0]}; // @[Monitor.scala:641:{40,91}] wire [255:0] _a_size_lookup_T_7 = {1'h0, _a_size_lookup_T_6[255:1]}; // @[Monitor.scala:641:{91,144}] assign a_size_lookup = _a_size_lookup_T_7[7:0]; // @[Monitor.scala:639:33, :641:{19,144}] wire [3:0] a_opcodes_set_interm; // @[Monitor.scala:646:40] wire [4:0] a_sizes_set_interm; // @[Monitor.scala:648:38] wire _same_cycle_resp_T = io_in_a_valid_0 & a_first_1; // @[Monitor.scala:36:7, :651:26, :684:44] wire [31:0] _GEN_3 = {27'h0, io_in_a_bits_source_0}; // @[OneHot.scala:58:35] wire [31:0] _GEN_4 = 32'h1 << _GEN_3; // @[OneHot.scala:58:35] wire [31:0] _a_set_wo_ready_T; // @[OneHot.scala:58:35] assign _a_set_wo_ready_T = _GEN_4; // @[OneHot.scala:58:35] wire [31:0] _a_set_T; // @[OneHot.scala:58:35] assign _a_set_T = _GEN_4; // @[OneHot.scala:58:35] assign a_set_wo_ready = _same_cycle_resp_T ? _a_set_wo_ready_T : 32'h0; // @[OneHot.scala:58:35] wire _T_1183 = _T_1257 & a_first_1; // @[Decoupled.scala:51:35] assign a_set = _T_1183 ? _a_set_T : 32'h0; // @[OneHot.scala:58:35] wire [3:0] _a_opcodes_set_interm_T = {io_in_a_bits_opcode_0, 1'h0}; // @[Monitor.scala:36:7, :657:53] wire [3:0] _a_opcodes_set_interm_T_1 = {_a_opcodes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:657:{53,61}] assign a_opcodes_set_interm = _T_1183 ? _a_opcodes_set_interm_T_1 : 4'h0; // @[Monitor.scala:646:40, :655:{25,70}, :657:{28,61}] wire [4:0] _a_sizes_set_interm_T = {io_in_a_bits_size_0, 1'h0}; // @[Monitor.scala:36:7, :658:51] wire [4:0] _a_sizes_set_interm_T_1 = {_a_sizes_set_interm_T[4:1], 1'h1}; // @[Monitor.scala:658:{51,59}] assign a_sizes_set_interm = _T_1183 ? _a_sizes_set_interm_T_1 : 5'h0; // @[Monitor.scala:648:38, :655:{25,70}, :658:{28,59}] wire [7:0] _a_opcodes_set_T = {1'h0, io_in_a_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :659:79] wire [258:0] _a_opcodes_set_T_1 = {255'h0, a_opcodes_set_interm} << _a_opcodes_set_T; // @[Monitor.scala:646:40, :659:{54,79}] assign a_opcodes_set = _T_1183 ? _a_opcodes_set_T_1[127:0] : 128'h0; // @[Monitor.scala:630:33, :655:{25,70}, :659:{28,54}] wire [7:0] _a_sizes_set_T = {io_in_a_bits_source_0, 3'h0}; // @[Monitor.scala:36:7, :660:77] wire [259:0] _a_sizes_set_T_1 = {255'h0, a_sizes_set_interm} << _a_sizes_set_T; // @[Monitor.scala:648:38, :659:54, :660:{52,77}] assign a_sizes_set = _T_1183 ? _a_sizes_set_T_1[255:0] : 256'h0; // @[Monitor.scala:632:31, :655:{25,70}, :660:{28,52}] wire [31:0] d_clr; // @[Monitor.scala:664:34] wire [31:0] d_clr_wo_ready; // @[Monitor.scala:665:34] wire [127:0] d_opcodes_clr; // @[Monitor.scala:668:33] wire [255:0] d_sizes_clr; // @[Monitor.scala:670:31] wire _GEN_5 = io_in_d_bits_opcode_0 == 3'h6; // @[Monitor.scala:36:7, :673:46] wire d_release_ack; // @[Monitor.scala:673:46] assign d_release_ack = _GEN_5; // @[Monitor.scala:673:46] wire d_release_ack_1; // @[Monitor.scala:783:46] assign d_release_ack_1 = _GEN_5; // @[Monitor.scala:673:46, :783:46] wire _T_1229 = io_in_d_valid_0 & d_first_1; // @[Monitor.scala:36:7, :674:26] wire [31:0] _GEN_6 = {27'h0, io_in_d_bits_source_0}; // @[OneHot.scala:58:35] wire [31:0] _GEN_7 = 32'h1 << _GEN_6; // @[OneHot.scala:58:35] wire [31:0] _d_clr_wo_ready_T; // @[OneHot.scala:58:35] assign _d_clr_wo_ready_T = _GEN_7; // @[OneHot.scala:58:35] wire [31:0] _d_clr_T; // @[OneHot.scala:58:35] assign _d_clr_T = _GEN_7; // @[OneHot.scala:58:35] wire [31:0] _d_clr_wo_ready_T_1; // @[OneHot.scala:58:35] assign _d_clr_wo_ready_T_1 = _GEN_7; // @[OneHot.scala:58:35] wire [31:0] _d_clr_T_1; // @[OneHot.scala:58:35] assign _d_clr_T_1 = _GEN_7; // @[OneHot.scala:58:35] assign d_clr_wo_ready = _T_1229 & ~d_release_ack ? _d_clr_wo_ready_T : 32'h0; // @[OneHot.scala:58:35] wire _T_1198 = _T_1330 & d_first_1 & ~d_release_ack; // @[Decoupled.scala:51:35] assign d_clr = _T_1198 ? _d_clr_T : 32'h0; // @[OneHot.scala:58:35] wire [270:0] _d_opcodes_clr_T_5 = 271'hF << _d_opcodes_clr_T_4; // @[Monitor.scala:680:{76,101}] assign d_opcodes_clr = _T_1198 ? _d_opcodes_clr_T_5[127:0] : 128'h0; // @[Monitor.scala:668:33, :678:{25,70,89}, :680:{21,76}] wire [270:0] _d_sizes_clr_T_5 = 271'hFF << _d_sizes_clr_T_4; // @[Monitor.scala:681:{74,99}] assign d_sizes_clr = _T_1198 ? _d_sizes_clr_T_5[255:0] : 256'h0; // @[Monitor.scala:670:31, :678:{25,70,89}, :681:{21,74}] wire _same_cycle_resp_T_1 = _same_cycle_resp_T; // @[Monitor.scala:684:{44,55}] wire _same_cycle_resp_T_2 = io_in_a_bits_source_0 == io_in_d_bits_source_0; // @[Monitor.scala:36:7, :684:113] wire same_cycle_resp = _same_cycle_resp_T_1 & _same_cycle_resp_T_2; // @[Monitor.scala:684:{55,88,113}] wire [31:0] _inflight_T = inflight | a_set; // @[Monitor.scala:614:27, :626:34, :705:27] wire [31:0] _inflight_T_1 = ~d_clr; // @[Monitor.scala:664:34, :705:38] wire [31:0] _inflight_T_2 = _inflight_T & _inflight_T_1; // @[Monitor.scala:705:{27,36,38}] wire [127:0] _inflight_opcodes_T = inflight_opcodes | a_opcodes_set; // @[Monitor.scala:616:35, :630:33, :706:43] wire [127:0] _inflight_opcodes_T_1 = ~d_opcodes_clr; // @[Monitor.scala:668:33, :706:62] wire [127:0] _inflight_opcodes_T_2 = _inflight_opcodes_T & _inflight_opcodes_T_1; // @[Monitor.scala:706:{43,60,62}] wire [255:0] _inflight_sizes_T = inflight_sizes | a_sizes_set; // @[Monitor.scala:618:33, :632:31, :707:39] wire [255:0] _inflight_sizes_T_1 = ~d_sizes_clr; // @[Monitor.scala:670:31, :707:56] wire [255:0] _inflight_sizes_T_2 = _inflight_sizes_T & _inflight_sizes_T_1; // @[Monitor.scala:707:{39,54,56}] reg [31:0] watchdog; // @[Monitor.scala:709:27] wire [32:0] _watchdog_T = {1'h0, watchdog} + 33'h1; // @[Monitor.scala:709:27, :714:26] wire [31:0] _watchdog_T_1 = _watchdog_T[31:0]; // @[Monitor.scala:714:26] reg [31:0] inflight_1; // @[Monitor.scala:726:35] wire [31:0] _inflight_T_3 = inflight_1; // @[Monitor.scala:726:35, :814:35] reg [127:0] inflight_opcodes_1; // @[Monitor.scala:727:35] wire [127:0] _inflight_opcodes_T_3 = inflight_opcodes_1; // @[Monitor.scala:727:35, :815:43] reg [255:0] inflight_sizes_1; // @[Monitor.scala:728:35] wire [255:0] _inflight_sizes_T_3 = inflight_sizes_1; // @[Monitor.scala:728:35, :816:41] wire [11:0] _d_first_beats1_decode_T_7 = _d_first_beats1_decode_T_6[11:0]; // @[package.scala:243:{71,76}] wire [11:0] _d_first_beats1_decode_T_8 = ~_d_first_beats1_decode_T_7; // @[package.scala:243:{46,76}] wire [8:0] d_first_beats1_decode_2 = _d_first_beats1_decode_T_8[11:3]; // @[package.scala:243:46] wire [8:0] d_first_beats1_2 = d_first_beats1_opdata_2 ? d_first_beats1_decode_2 : 9'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [8:0] d_first_counter_2; // @[Edges.scala:229:27] wire [9:0] _d_first_counter1_T_2 = {1'h0, d_first_counter_2} - 10'h1; // @[Edges.scala:229:27, :230:28] wire [8:0] d_first_counter1_2 = _d_first_counter1_T_2[8:0]; // @[Edges.scala:230:28] wire d_first_2 = d_first_counter_2 == 9'h0; // @[Edges.scala:229:27, :231:25] wire _d_first_last_T_4 = d_first_counter_2 == 9'h1; // @[Edges.scala:229:27, :232:25] wire _d_first_last_T_5 = d_first_beats1_2 == 9'h0; // @[Edges.scala:221:14, :232:43] wire d_first_last_2 = _d_first_last_T_4 | _d_first_last_T_5; // @[Edges.scala:232:{25,33,43}] wire d_first_done_2 = d_first_last_2 & _d_first_T_2; // @[Decoupled.scala:51:35] wire [8:0] _d_first_count_T_2 = ~d_first_counter1_2; // @[Edges.scala:230:28, :234:27] wire [8:0] d_first_count_2 = d_first_beats1_2 & _d_first_count_T_2; // @[Edges.scala:221:14, :234:{25,27}] wire [8:0] _d_first_counter_T_2 = d_first_2 ? d_first_beats1_2 : d_first_counter1_2; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [3:0] c_opcode_lookup; // @[Monitor.scala:747:35] wire [7:0] c_size_lookup; // @[Monitor.scala:748:35] wire [127:0] _c_opcode_lookup_T_1 = inflight_opcodes_1 >> _c_opcode_lookup_T; // @[Monitor.scala:727:35, :749:{44,69}] wire [127:0] _c_opcode_lookup_T_6 = {124'h0, _c_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:749:{44,97}] wire [127:0] _c_opcode_lookup_T_7 = {1'h0, _c_opcode_lookup_T_6[127:1]}; // @[Monitor.scala:749:{97,152}] assign c_opcode_lookup = _c_opcode_lookup_T_7[3:0]; // @[Monitor.scala:747:35, :749:{21,152}] wire [255:0] _c_size_lookup_T_1 = inflight_sizes_1 >> _c_size_lookup_T; // @[Monitor.scala:728:35, :750:{42,67}] wire [255:0] _c_size_lookup_T_6 = {248'h0, _c_size_lookup_T_1[7:0]}; // @[Monitor.scala:750:{42,93}] wire [255:0] _c_size_lookup_T_7 = {1'h0, _c_size_lookup_T_6[255:1]}; // @[Monitor.scala:750:{93,146}] assign c_size_lookup = _c_size_lookup_T_7[7:0]; // @[Monitor.scala:748:35, :750:{21,146}] wire [31:0] d_clr_1; // @[Monitor.scala:774:34] wire [31:0] d_clr_wo_ready_1; // @[Monitor.scala:775:34] wire [127:0] d_opcodes_clr_1; // @[Monitor.scala:776:34] wire [255:0] d_sizes_clr_1; // @[Monitor.scala:777:34] wire _T_1301 = io_in_d_valid_0 & d_first_2; // @[Monitor.scala:36:7, :784:26] assign d_clr_wo_ready_1 = _T_1301 & d_release_ack_1 ? _d_clr_wo_ready_T_1 : 32'h0; // @[OneHot.scala:58:35] wire _T_1283 = _T_1330 & d_first_2 & d_release_ack_1; // @[Decoupled.scala:51:35] assign d_clr_1 = _T_1283 ? _d_clr_T_1 : 32'h0; // @[OneHot.scala:58:35] wire [270:0] _d_opcodes_clr_T_11 = 271'hF << _d_opcodes_clr_T_10; // @[Monitor.scala:790:{76,101}] assign d_opcodes_clr_1 = _T_1283 ? _d_opcodes_clr_T_11[127:0] : 128'h0; // @[Monitor.scala:776:34, :788:{25,70,88}, :790:{21,76}] wire [270:0] _d_sizes_clr_T_11 = 271'hFF << _d_sizes_clr_T_10; // @[Monitor.scala:791:{74,99}] assign d_sizes_clr_1 = _T_1283 ? _d_sizes_clr_T_11[255:0] : 256'h0; // @[Monitor.scala:777:34, :788:{25,70,88}, :791:{21,74}] wire _same_cycle_resp_T_8 = io_in_d_bits_source_0 == 5'h0; // @[Monitor.scala:36:7, :795:113] wire [31:0] _inflight_T_4 = ~d_clr_1; // @[Monitor.scala:774:34, :814:46] wire [31:0] _inflight_T_5 = _inflight_T_3 & _inflight_T_4; // @[Monitor.scala:814:{35,44,46}] wire [127:0] _inflight_opcodes_T_4 = ~d_opcodes_clr_1; // @[Monitor.scala:776:34, :815:62] wire [127:0] _inflight_opcodes_T_5 = _inflight_opcodes_T_3 & _inflight_opcodes_T_4; // @[Monitor.scala:815:{43,60,62}] wire [255:0] _inflight_sizes_T_4 = ~d_sizes_clr_1; // @[Monitor.scala:777:34, :816:58] wire [255:0] _inflight_sizes_T_5 = _inflight_sizes_T_3 & _inflight_sizes_T_4; // @[Monitor.scala:816:{41,56,58}] reg [31:0] watchdog_1; // @[Monitor.scala:818:27]
Generate the Verilog code corresponding to the following Chisel files. File ICache.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.rocket import chisel3.{dontTouch, _} import chisel3.util._ import chisel3.util.random.LFSR import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy.bundlebridge._ import org.chipsalliance.diplomacy.lazymodule._ import freechips.rocketchip.amba.{AMBAProt, AMBAProtField} import freechips.rocketchip.diplomacy.{IdRange, AddressSet, RegionType, TransferSizes} import freechips.rocketchip.resources.{SimpleDevice, ResourceBindings, Binding, ResourceAddress, Description, ResourceString, ResourceValue} import freechips.rocketchip.tile.{L1CacheParams, HasL1CacheParameters, HasCoreParameters, CoreBundle, TileKey, LookupByHartId} import freechips.rocketchip.tilelink.{TLClientNode, TLMasterPortParameters, TLManagerNode, TLSlavePortParameters, TLSlaveParameters, TLMasterParameters, TLHints} import freechips.rocketchip.util.{Code, CanHaveErrors, DescribedSRAM, RandomReplacement, Split, IdentityCode, property} import freechips.rocketchip.util.BooleanToAugmentedBoolean import freechips.rocketchip.util.UIntToAugmentedUInt import freechips.rocketchip.util.SeqToAugmentedSeq import freechips.rocketchip.util.OptionUIntToAugmentedOptionUInt /** Parameter of [[ICache]]. * * @param nSets number of sets. * @param nWays number of ways. * @param rowBits L1Cache parameter * @param nTLBSets TLB sets * @param nTLBWays TLB ways * @param nTLBBasePageSectors TLB BasePageSectors * @param nTLBSuperpages TLB Superpages * @param tagECC tag ECC, will be parsed to [[freechips.rocketchip.util.Code]]. * @param dataECC data ECC, will be parsed to [[freechips.rocketchip.util.Code]]. * @param itimAddr optional base ITIM address, * if None, ITIM won't be generated, * if Some, ITIM will be generated, with itimAddr as ITIM base address. * @param prefetch if set, will send next-line[[TLEdgeOut.Hint]] to manger. * @param blockBytes size of a cacheline, calculates in byte. * @param latency latency of a instruction fetch, 1 or 2 are available * @param fetchBytes byte size fetched by CPU for each cycle. */ case class ICacheParams( nSets: Int = 64, nWays: Int = 4, rowBits: Int = 128, nTLBSets: Int = 1, nTLBWays: Int = 32, nTLBBasePageSectors: Int = 4, nTLBSuperpages: Int = 4, cacheIdBits: Int = 0, tagECC: Option[String] = None, dataECC: Option[String] = None, itimAddr: Option[BigInt] = None, prefetch: Boolean = false, blockBytes: Int = 64, latency: Int = 2, fetchBytes: Int = 4) extends L1CacheParams { def tagCode: Code = Code.fromString(tagECC) def dataCode: Code = Code.fromString(dataECC) def replacement = new RandomReplacement(nWays) } trait HasL1ICacheParameters extends HasL1CacheParameters with HasCoreParameters { val cacheParams = tileParams.icache.get } class ICacheReq(implicit p: Parameters) extends CoreBundle()(p) with HasL1ICacheParameters { val addr = UInt(vaddrBits.W) } class ICacheErrors(implicit p: Parameters) extends CoreBundle()(p) with HasL1ICacheParameters with CanHaveErrors { val correctable = (cacheParams.tagCode.canDetect || cacheParams.dataCode.canDetect).option(Valid(UInt(paddrBits.W))) val uncorrectable = (cacheParams.itimAddr.nonEmpty && cacheParams.dataCode.canDetect).option(Valid(UInt(paddrBits.W))) val bus = Valid(UInt(paddrBits.W)) } /** [[ICache]] is a set associated cache I$(Instruction Cache) of Rocket. * {{{ * Keywords: Set-associated * 3 stage pipeline * Virtually-Indexed Physically-Tagged (VIPT) * Parallel access to tag and data SRAM * Random replacement algorithm * Optional Features: * Prefetch * ECC * Instruction Tightly Integrated Memory(ITIM)}}} *{{{ * PipeLine: * Stage 0 : access data and tag SRAM in parallel * Stage 1 : receive paddr from CPU * compare tag and paddr when the entry is valid * if hit : pick up the target instruction * if miss : start refilling in stage 2 * Stage 2 : respond to CPU or start a refill}}} *{{{ * Note: Page size = 4KB thus paddr[11:0] = vaddr[11:0] * considering sets = 64, cachelineBytes =64 * use vaddr[11:6] to access tag_array * use vaddr[11:2] to access data_array}}} *{{{ * ITIM: * │ tag │ set │offset│ * ├way┘ → indicate way location * │ line │ }}} * if `way` == b11 (last way), deallocate * if write to ITIM all I$ will be invalidate * * The optional dynamic configurable ITIM sharing SRAM with I$ is set by [[icacheParams.itimAddr]]. * if PutFullData/PutPartialData to the ITIM address, it will dynamically allocate base address to the address of this accessing from SRAM. * if access to last way of ITIM, it set will change back to I$. * * If ITIM is configured: * set: if address to access is not to be configured to ITIM yet, * a memory accessing to ITIM address range will modify `scratchpadMax`, * from ITIM base to `scratchpadMax` will be used as ITIM. * unset: @todo * * There will always be one way(the last way) used for I$, which cannot be allocated to ITIM. * * @param icacheParams parameter to this I$. * @param staticIdForMetadataUseOnly metadata used for hart id. */ class ICache(val icacheParams: ICacheParams, val staticIdForMetadataUseOnly: Int)(implicit p: Parameters) extends LazyModule { lazy val module = new ICacheModule(this) /** Diplomatic hartid bundle used for ITIM. */ val hartIdSinkNodeOpt = icacheParams.itimAddr.map(_ => BundleBridgeSink[UInt]()) /** @todo base address offset for ITIM? */ val mmioAddressPrefixSinkNodeOpt = icacheParams.itimAddr.map(_ => BundleBridgeSink[UInt]()) /** Rocket configuration has virtual memory. * * This only affect [[masterNode]] AMBA ports only: * AMBA privileged, secure will be set as true while others set as false. * see [[freechips.rocketchip.amba.AMBAProt]] for more informations. */ val useVM = p(TileKey).core.useVM /** [[TLClientNode]] of I$. * * source Id range: * 0: use [[TLEdgeOut.Get]] to get instruction. * 1: use [[TLEdgeOut.Hint]] to hint next level memory device fetching next cache line, if configured [[icacheParams.prefetch]]. * * @todo why if no [[useVM]], will have AMBAProtField in requestFields? */ val masterNode = TLClientNode(Seq(TLMasterPortParameters.v1( clients = Seq(TLMasterParameters.v1( sourceId = IdRange(0, 1 + icacheParams.prefetch.toInt), // 0=refill, 1=hint name = s"Core ${staticIdForMetadataUseOnly} ICache")), requestFields = useVM.option(Seq()).getOrElse(Seq(AMBAProtField()))))) /** size of [[ICache]], count in byte. */ val size = icacheParams.nSets * icacheParams.nWays * icacheParams.blockBytes /** last way will be configured to control offest, access it will deallocate an entire set to I$. */ val itim_control_offset = size - icacheParams.nSets * icacheParams.blockBytes val device = new SimpleDevice("itim", Seq("sifive,itim0")) { override def describe(resources: ResourceBindings): Description = { val Description(name, mapping) = super.describe(resources) val Seq(Binding(_, ResourceAddress(address, perms))) = resources("reg/mem") val base_address = address.head.base val mem_part = AddressSet.misaligned(base_address, itim_control_offset) val control_part = AddressSet.misaligned(base_address + itim_control_offset, size - itim_control_offset) val extra = Map( "reg-names" -> Seq(ResourceString("mem"), ResourceString("control")), "reg" -> Seq(ResourceAddress(mem_part, perms), ResourceAddress(control_part, perms))) Description(name, mapping ++ extra) } } def itimProperty: Option[Seq[ResourceValue]] = icacheParams.itimAddr.map(_ => device.asProperty) /** @todo why [[wordBytes]] is defined by [[icacheParams.fetchBytes]], rather than 32 directly? */ private val wordBytes = icacheParams.fetchBytes /** Instruction Tightly Integrated Memory node. */ val slaveNode = TLManagerNode(icacheParams.itimAddr.toSeq.map { itimAddr => TLSlavePortParameters.v1( Seq(TLSlaveParameters.v1( address = Seq(AddressSet(itimAddr, size-1)), resources = device.reg("mem"), regionType = RegionType.IDEMPOTENT, executable = true, supportsPutFull = TransferSizes(1, wordBytes), supportsPutPartial = TransferSizes(1, wordBytes), supportsGet = TransferSizes(1, wordBytes), fifoId = Some(0))), // requests handled in FIFO order beatBytes = wordBytes, minLatency = 1)}) } class ICacheResp(outer: ICache) extends Bundle { /** data to CPU. */ val data = UInt((outer.icacheParams.fetchBytes*8).W) /** ask CPU to replay fetch when tag or data ECC error happened. */ val replay = Bool() /** access exception: * indicate CPU an tag ECC error happened. * if [[outer.icacheParams.latency]] is 1, tie 0. */ val ae = Bool() } class ICachePerfEvents extends Bundle { val acquire = Bool() } /** IO from CPU to ICache. */ class ICacheBundle(val outer: ICache) extends CoreBundle()(outer.p) { /** first cycle requested from CPU. */ val req = Flipped(Decoupled(new ICacheReq)) val s1_paddr = Input(UInt(paddrBits.W)) // delayed one cycle w.r.t. req val s2_vaddr = Input(UInt(vaddrBits.W)) // delayed two cycles w.r.t. req val s1_kill = Input(Bool()) // delayed one cycle w.r.t. req val s2_kill = Input(Bool()) // delayed two cycles; prevents I$ miss emission val s2_cacheable = Input(Bool()) // should L2 cache line on a miss? val s2_prefetch = Input(Bool()) // should I$ prefetch next line on a miss? /** response to CPU. */ val resp = Valid(new ICacheResp(outer)) /** flush L1 cache from CPU. * TODO: IIRC, SFENCE.I */ val invalidate = Input(Bool()) /** I$ has error, notify to bus. * TODO: send to BPU. */ val errors = new ICacheErrors /** for performance counting. */ val perf = Output(new ICachePerfEvents()) /** enable clock. */ val clock_enabled = Input(Bool()) /** I$ miss or ITIM access will still enable clock even [[ICache]] is asked to be gated. */ val keep_clock_enabled = Output(Bool()) } class ICacheModule(outer: ICache) extends LazyModuleImp(outer) with HasL1ICacheParameters { override val cacheParams = outer.icacheParams // Use the local parameters /** IO between Core and ICache. */ val io = IO(new ICacheBundle(outer)) /** TileLink port to memory. */ val (tl_out, edge_out) = outer.masterNode.out(0) /** TileLink port as ITIM memory. * if [[outer.slaveNode]] is not connected [[outer.slaveNode.in]] will be empty. * * wes: Option.unzip does not exist :-( */ val (tl_in, edge_in) = outer.slaveNode.in.headOption.unzip val tECC = cacheParams.tagCode val dECC = cacheParams.dataCode require(isPow2(nSets) && isPow2(nWays)) require(!usingVM || outer.icacheParams.itimAddr.isEmpty || pgIdxBits >= untagBits, s"When VM and ITIM are enabled, I$$ set size must not exceed ${1<<(pgIdxBits-10)} KiB; got ${(outer.size/nWays)>>10} KiB") /** if this ICache can be used as ITIM, which hart it belongs to. */ val io_hartid = outer.hartIdSinkNodeOpt.map(_.bundle) /** @todo tile Memory mapping I/O base address? */ val io_mmio_address_prefix = outer.mmioAddressPrefixSinkNodeOpt.map(_.bundle) /** register indicates wheather ITIM is enabled. */ val scratchpadOn = RegInit(false.B) /** a cut point to SRAM, indicates which SRAM will be used as SRAM or Cache. */ val scratchpadMax = tl_in.map(tl => Reg(UInt(log2Ceil(nSets * (nWays - 1)).W))) /** Check if a line is in the scratchpad. * * line is a minimal granularity accessing to SRAM, calculated by [[scratchpadLine]] */ def lineInScratchpad(line: UInt) = scratchpadMax.map(scratchpadOn && line <= _).getOrElse(false.B) /** scratchpad base address, if exist [[ICacheParams.itimAddr]], add [[ReplicatedRegion]] to base. * @todo seem [[io_hartid]] is not connected? * maybe when implementing itim, LookupByHartId should be changed to [[]]? */ val scratchpadBase = outer.icacheParams.itimAddr.map { dummy => p(LookupByHartId)(_.icache.flatMap(_.itimAddr.map(_.U)), io_hartid.get) | io_mmio_address_prefix.get } /** check an address in the scratchpad address range. */ def addrMaybeInScratchpad(addr: UInt) = scratchpadBase.map(base => addr >= base && addr < base + outer.size.U).getOrElse(false.B) /** check property this address(paddr) exists in scratchpad. * @todo seems duplicated in `addrMaybeInScratchpad(addr)` between `lineInScratchpad(addr(untagBits+log2Ceil(nWays)-1, blockOffBits))`? */ def addrInScratchpad(addr: UInt) = addrMaybeInScratchpad(addr) && lineInScratchpad(addr(untagBits+log2Ceil(nWays)-1, blockOffBits)) /** return the way which will be used as scratchpad for accessing address * {{{ * │ tag │ set │offset│ * └way┘ * }}} * @param addr address to be found. */ def scratchpadWay(addr: UInt) = addr.extract(untagBits+log2Ceil(nWays)-1, untagBits) /** check if the selected way is legal. * note: the last way should be reserved to ICache. */ def scratchpadWayValid(way: UInt) = way < (nWays - 1).U /** return the cacheline which will be used as scratchpad for accessing address * {{{ * │ tag │ set │offset│ * ├way┘ → indicate way location * │ line │ * }}} * @param addr address to be found. * applied to slave_addr */ def scratchpadLine(addr: UInt) = addr(untagBits+log2Ceil(nWays)-1, blockOffBits) /** scratchpad access valid in stage N*/ val s0_slaveValid = tl_in.map(_.a.fire).getOrElse(false.B) val s1_slaveValid = RegNext(s0_slaveValid, false.B) val s2_slaveValid = RegNext(s1_slaveValid, false.B) val s3_slaveValid = RegNext(false.B) /** valid signal for CPU accessing cache in stage 0. */ val s0_valid = io.req.fire /** virtual address from CPU in stage 0. */ val s0_vaddr = io.req.bits.addr /** valid signal for stage 1, drived by s0_valid.*/ val s1_valid = RegInit(false.B) /** virtual address from CPU in stage 1. */ val s1_vaddr = RegEnable(s0_vaddr, s0_valid) /** tag hit vector to indicate hit which way. */ val s1_tag_hit = Wire(Vec(nWays, Bool())) /** CPU I$ Hit in stage 1. * * @note * for logic in `Mux(s1_slaveValid, true.B, addrMaybeInScratchpad(io.s1_paddr))`, * there are two different types based on latency: * * if latency is 1: `s1_slaveValid === false.B` and `addrMaybeInScratchpad(io.s1_paddr) === false.B` , * since in this case, ITIM must be empty. * * if latency is 2: if `s1_slaveValid` is true, this SRAM accessing is coming from [[tl_in]], so it will hit. * if `s1_slaveValid` is false, but CPU is accessing memory range in scratchpad address, it will hit by default. * Hardware won't guarantee this access will access to a data which have been written in ITIM. * * @todo seem CPU access are both processed by `s1_tag_hit` and `Mux(s1_slaveValid, true.B, addrMaybeInScratchpad(io.s1_paddr))`? */ val s1_hit = s1_tag_hit.reduce(_||_) || Mux(s1_slaveValid, true.B, addrMaybeInScratchpad(io.s1_paddr)) dontTouch(s1_hit) val s2_valid = RegNext(s1_valid && !io.s1_kill, false.B) val s2_hit = RegNext(s1_hit) /** status register to indicate a cache flush. */ val invalidated = Reg(Bool()) val refill_valid = RegInit(false.B) /** register to indicate [[tl_out]] is performing a hint. * prefetch only happens after refilling * */ val send_hint = RegInit(false.B) /** indicate [[tl_out]] is performing a refill. */ val refill_fire = tl_out.a.fire && !send_hint /** register to indicate there is a outstanding hint. */ val hint_outstanding = RegInit(false.B) /** [[io]] access L1 I$ miss. */ val s2_miss = s2_valid && !s2_hit && !io.s2_kill /** forward signal to stage 1, permit stage 1 refill. */ val s1_can_request_refill = !(s2_miss || refill_valid) /** real refill signal, stage 2 miss, and was permit to refill in stage 1. * Since a miss will trigger burst. * miss under miss won't trigger another burst. */ val s2_request_refill = s2_miss && RegNext(s1_can_request_refill) val refill_paddr = RegEnable(io.s1_paddr, s1_valid && s1_can_request_refill) val refill_vaddr = RegEnable(s1_vaddr, s1_valid && s1_can_request_refill) val refill_tag = refill_paddr >> pgUntagBits val refill_idx = index(refill_vaddr, refill_paddr) /** AccessAckData, is refilling I$, it will block request from CPU. */ val refill_one_beat = tl_out.d.fire && edge_out.hasData(tl_out.d.bits) /** block request from CPU when refill or scratch pad access. */ io.req.ready := !(refill_one_beat || s0_slaveValid || s3_slaveValid) s1_valid := s0_valid val (_, _, d_done, refill_cnt) = edge_out.count(tl_out.d) /** at last beat of `tl_out.d.fire`, finish refill. */ val refill_done = refill_one_beat && d_done /** scratchpad is writing data. block refill. */ tl_out.d.ready := !s3_slaveValid require (edge_out.manager.minLatency > 0) /** way to be replaced, implemented with a hardcoded random replacement algorithm */ val repl_way = if (isDM) 0.U else { // pick a way that is not used by the scratchpad val v0 = LFSR(16, refill_fire)(log2Up(nWays)-1,0) var v = v0 for (i <- log2Ceil(nWays) - 1 to 0 by -1) { val mask = nWays - (BigInt(1) << (i + 1)) v = v | (lineInScratchpad(Cat(v0 | mask.U, refill_idx)) << i) } assert(!lineInScratchpad(Cat(v, refill_idx))) v } /** Tag SRAM, indexed with virtual memory, * content with `refillError ## tag[19:0]` after ECC * */ val tag_array = DescribedSRAM( name = s"${tileParams.baseName}_icache_tag_array", desc = "ICache Tag Array", size = nSets, data = Vec(nWays, UInt(tECC.width(1 + tagBits).W)) ) val tag_rdata = tag_array.read(s0_vaddr(untagBits-1,blockOffBits), !refill_done && s0_valid) /** register indicates the ongoing GetAckData transaction is corrupted. */ val accruedRefillError = Reg(Bool()) /** wire indicates the ongoing GetAckData transaction is corrupted. */ val refillError = tl_out.d.bits.corrupt || (refill_cnt > 0.U && accruedRefillError) when (refill_done) { // For AccessAckData, denied => corrupt /** data written to [[tag_array]]. * ECC encoded `refillError ## refill_tag`*/ val enc_tag = tECC.encode(Cat(refillError, refill_tag)) tag_array.write(refill_idx, VecInit(Seq.fill(nWays){enc_tag}), Seq.tabulate(nWays)(repl_way === _.U)) ccover(refillError, "D_CORRUPT", "I$ D-channel corrupt") } // notify CPU, I$ has corrupt. io.errors.bus.valid := tl_out.d.fire && (tl_out.d.bits.denied || tl_out.d.bits.corrupt) io.errors.bus.bits := (refill_paddr >> blockOffBits) << blockOffBits /** true indicate this cacheline is valid, * indexed by (wayIndex ## setIndex) * after refill_done and not FENCE.I, (repl_way ## refill_idx) set to true. */ val vb_array = RegInit(0.U((nSets*nWays).W)) when (refill_one_beat) { accruedRefillError := refillError // clear bit when refill starts so hit-under-miss doesn't fetch bad data vb_array := vb_array.bitSet(Cat(repl_way, refill_idx), refill_done && !invalidated) } /** flush cache when invalidate is true. */ val invalidate = WireDefault(io.invalidate) when (invalidate) { vb_array := 0.U invalidated := true.B } /** wire indicates that tag is correctable or uncorrectable. * will trigger CPU to replay and I$ invalidating, if correctable. */ val s1_tag_disparity = Wire(Vec(nWays, Bool())) /** wire indicates that bus has an uncorrectable error. * respond to CPU [[io.resp.bits.ae]], cause [[Causes.fetch_access]]. */ val s1_tl_error = Wire(Vec(nWays, Bool())) /** how many bits will be fetched by CPU for each fetch. */ val wordBits = outer.icacheParams.fetchBytes*8 /** a set of raw data read from [[data_arrays]]. */ val s1_dout = Wire(Vec(nWays, UInt(dECC.width(wordBits).W))) s1_dout := DontCare /** address accessed by [[tl_in]] for ITIM. */ val s0_slaveAddr = tl_in.map(_.a.bits.address).getOrElse(0.U) /** address used at stage 1 and 3. * {{{ * In stage 1, it caches TileLink data, store in stage 2 if ECC passed. * In stage 3, it caches corrected data from stage 2, and store in stage 4.}}} */ val s1s3_slaveAddr = Reg(UInt(log2Ceil(outer.size).W)) /** data used at stage 1 and 3. * {{{ * In stage 1, it caches TileLink data, store in stage 2. * In stage 3, it caches corrected data from data ram, and return to d channel.}}} */ val s1s3_slaveData = Reg(UInt(wordBits.W)) for (i <- 0 until nWays) { val s1_idx = index(s1_vaddr, io.s1_paddr) val s1_tag = io.s1_paddr >> pgUntagBits /** this way is used by scratchpad. * [[tag_array]] corrupted. */ val scratchpadHit = scratchpadWayValid(i.U) && Mux(s1_slaveValid, // scratchpad accessing form [[tl_in]]. // @todo I think XBar will guarantee there won't be an illegal access on the bus? // so why did have this check `lineInScratchpad(scratchpadLine(s1s3_slaveAddr))`? // I think it will always be true. lineInScratchpad(scratchpadLine(s1s3_slaveAddr)) && scratchpadWay(s1s3_slaveAddr) === i.U, // scratchpad accessing from [[io]]. // @todo Accessing ITIM correspond address will be able to read cacheline? // is this desired behavior? addrInScratchpad(io.s1_paddr) && scratchpadWay(io.s1_paddr) === i.U) val s1_vb = vb_array(Cat(i.U, s1_idx).pad(log2Ceil(nSets*nWays))) && !s1_slaveValid val enc_tag = tECC.decode(tag_rdata(i)) /** [[tl_error]] ECC error bit. * [[tag]] of [[tag_array]] access. */ val (tl_error, tag) = Split(enc_tag.uncorrected, tagBits) val tagMatch = s1_vb && tag === s1_tag /** tag error happens. */ s1_tag_disparity(i) := s1_vb && enc_tag.error /** if tag matched but ecc checking failed, this access will trigger [[Causes.fetch_access]] exception.*/ s1_tl_error(i) := tagMatch && tl_error.asBool s1_tag_hit(i) := tagMatch || scratchpadHit } assert(!(s1_valid || s1_slaveValid) || PopCount(s1_tag_hit zip s1_tag_disparity map { case (h, d) => h && !d }) <= 1.U) require(tl_out.d.bits.data.getWidth % wordBits == 0) /** Data SRAM * * banked with TileLink beat bytes / CPU fetch bytes, * indexed with [[index]] and multi-beats cycle, * content with `eccError ## wordBits` after ECC. * {{{ * │ │xx│xxxxxx│xxx│x│xx│ * ↑word * ↑bank * ↑way * └─set──┴─offset─┘ * └────row───┘ *}}} * Note: * Data SRAM is indexed with virtual memory(vaddr[11:2]), * - vaddr[11:3]->row, * - vaddr[2]->bank=i * - Cache line size = refillCycels(8) * bank(2) * datasize(4 bytes) = 64 bytes * - data width = 32 * * read: * read happens in stage 0 * * write: * It takes 8 beats to refill 16 instruction in each refilling cycle. * Data_array receives data[63:0](2 instructions) at once,they will be allocated in deferent bank according to vaddr[2] */ val data_arrays = Seq.tabulate(tl_out.d.bits.data.getWidth / wordBits) { i => DescribedSRAM( name = s"${tileParams.baseName}_icache_data_arrays_${i}", desc = "ICache Data Array", size = nSets * refillCycles, data = Vec(nWays, UInt(dECC.width(wordBits).W)) ) } for ((data_array , i) <- data_arrays.zipWithIndex) { /** bank match (vaddr[2]) */ def wordMatch(addr: UInt) = addr.extract(log2Ceil(tl_out.d.bits.data.getWidth/8)-1, log2Ceil(wordBits/8)) === i.U def row(addr: UInt) = addr(untagBits-1, blockOffBits-log2Ceil(refillCycles)) /** read_enable signal*/ val s0_ren = (s0_valid && wordMatch(s0_vaddr)) || (s0_slaveValid && wordMatch(s0_slaveAddr)) /** write_enable signal * refill from [[tl_out]] or ITIM write. */ val wen = (refill_one_beat && !invalidated) || (s3_slaveValid && wordMatch(s1s3_slaveAddr)) /** index to access [[data_array]]. */ val mem_idx = // I$ refill. refill_idx[2:0] is the beats Mux(refill_one_beat, (refill_idx << log2Ceil(refillCycles)) | refill_cnt, // ITIM write. Mux(s3_slaveValid, row(s1s3_slaveAddr), // ITIM read. Mux(s0_slaveValid, row(s0_slaveAddr), // CPU read. row(s0_vaddr)))) when (wen) { //wr_data val data = Mux(s3_slaveValid, s1s3_slaveData, tl_out.d.bits.data(wordBits*(i+1)-1, wordBits*i)) //the way to be replaced/written val way = Mux(s3_slaveValid, scratchpadWay(s1s3_slaveAddr), repl_way) data_array.write(mem_idx, VecInit(Seq.fill(nWays){dECC.encode(data)}), (0 until nWays).map(way === _.U)) } // write access /** data read from [[data_array]]. */ val dout = data_array.read(mem_idx, !wen && s0_ren) // Mux to select a way to [[s1_dout]] when (wordMatch(Mux(s1_slaveValid, s1s3_slaveAddr, io.s1_paddr))) { s1_dout := dout } } /** When writing full words to ITIM, ECC errors are correctable. * When writing a full scratchpad word, suppress the read so Xs don't leak out */ val s1s2_full_word_write = WireDefault(false.B) val s1_dont_read = s1_slaveValid && s1s2_full_word_write /** clock gate signal for [[s2_tag_hit]], [[s2_dout]], [[s2_tag_disparity]], [[s2_tl_error]], [[s2_scratchpad_hit]]. */ val s1_clk_en = s1_valid || s1_slaveValid val s2_tag_hit = RegEnable(Mux(s1_dont_read, 0.U.asTypeOf(s1_tag_hit), s1_tag_hit), s1_clk_en) /** way index to access [[data_arrays]]. */ val s2_hit_way = OHToUInt(s2_tag_hit) /** ITIM index to access [[data_arrays]]. * replace tag with way, word set to 0. */ val s2_scratchpad_word_addr = Cat(s2_hit_way, Mux(s2_slaveValid, s1s3_slaveAddr, io.s2_vaddr)(untagBits-1, log2Ceil(wordBits/8)), 0.U(log2Ceil(wordBits/8).W)) val s2_dout = RegEnable(s1_dout, s1_clk_en) val s2_way_mux = Mux1H(s2_tag_hit, s2_dout) val s2_tag_disparity = RegEnable(s1_tag_disparity, s1_clk_en).asUInt.orR val s2_tl_error = RegEnable(s1_tl_error.asUInt.orR, s1_clk_en) /** ECC decode result for [[data_arrays]]. */ val s2_data_decoded = dECC.decode(s2_way_mux) /** ECC error happened, correctable or uncorrectable, ask CPU to replay. */ val s2_disparity = s2_tag_disparity || s2_data_decoded.error /** access hit in ITIM, if [[s1_slaveValid]], this access is from [[tl_in]], else from CPU [[io]]. */ val s1_scratchpad_hit = Mux(s1_slaveValid, lineInScratchpad(scratchpadLine(s1s3_slaveAddr)), addrInScratchpad(io.s1_paddr)) /** stage 2 of [[s1_scratchpad_hit]]. */ val s2_scratchpad_hit = RegEnable(s1_scratchpad_hit, s1_clk_en) /** ITIM uncorrectable read. * `s2_scratchpad_hit`: processing a scratchpad read(from [[tl_in]] or [[io]]) * `s2_data_decoded.uncorrectable`: read a uncorrectable data. * `s2_valid`: [[io]] non-canceled read. * `(s2_slaveValid && !s2_full_word_write)`: [[tl_in]] read or write a word with wormhole. * if write a full word, even stage 2 read uncorrectable. * stage 3 full word write will recovery this. */ val s2_report_uncorrectable_error = s2_scratchpad_hit && s2_data_decoded.uncorrectable && (s2_valid || (s2_slaveValid && !s1s2_full_word_write)) /** ECC uncorrectable address, send to Bus Error Unit. */ val s2_error_addr = scratchpadBase.map(base => Mux(s2_scratchpad_hit, base + s2_scratchpad_word_addr, 0.U)).getOrElse(0.U) // output signals outer.icacheParams.latency match { // if I$ latency is 1, no ITIM, no ECC. case 1 => require(tECC.isInstanceOf[IdentityCode]) require(dECC.isInstanceOf[IdentityCode]) require(outer.icacheParams.itimAddr.isEmpty) // reply data to CPU at stage 2. no replay. io.resp.bits.data := Mux1H(s1_tag_hit, s1_dout) io.resp.bits.ae := s1_tl_error.asUInt.orR io.resp.valid := s1_valid && s1_hit io.resp.bits.replay := false.B // if I$ latency is 2, can have ITIM and ECC. case 2 => // when some sort of memory bit error have occurred // @todo why so aggressive to invalidate all when ecc corrupted. when (s2_valid && s2_disparity) { invalidate := true.B } // reply data to CPU at stage 2. io.resp.bits.data := s2_data_decoded.uncorrected io.resp.bits.ae := s2_tl_error io.resp.bits.replay := s2_disparity io.resp.valid := s2_valid && s2_hit // report correctable error to BEU at stage 2. io.errors.correctable.foreach { c => c.valid := (s2_valid || s2_slaveValid) && s2_disparity && !s2_report_uncorrectable_error c.bits := s2_error_addr } // report uncorrectable error to BEU at stage 2. io.errors.uncorrectable.foreach { u => u.valid := s2_report_uncorrectable_error u.bits := s2_error_addr } // ITIM access tl_in.map { tl => /** valid signal for D channel. */ val respValid = RegInit(false.B) // ITIM access is unpipelined tl.a.ready := !(tl_out.d.valid || s1_slaveValid || s2_slaveValid || s3_slaveValid || respValid || !io.clock_enabled) /** register used to latch TileLink request for one cycle. */ val s1_a = RegEnable(tl.a.bits, s0_slaveValid) // Write Data(Put / PutPartial all mask is 1) s1s2_full_word_write := edge_in.get.hasData(s1_a) && s1_a.mask.andR // (de)allocate ITIM when (s0_slaveValid) { val a = tl.a.bits // address s1s3_slaveAddr := tl.a.bits.address // store Put/PutP data s1s3_slaveData := tl.a.bits.data // S0 when (edge_in.get.hasData(a)) { // access data in 0 -> way - 2 allocate and enable, access data in way - 1(last way), deallocate. val enable = scratchpadWayValid(scratchpadWay(a.address)) //The address isn't in range, when (!lineInScratchpad(scratchpadLine(a.address))) { scratchpadMax.get := scratchpadLine(a.address) invalidate := true.B } scratchpadOn := enable val itim_allocated = !scratchpadOn && enable val itim_deallocated = scratchpadOn && !enable val itim_increase = scratchpadOn && enable && scratchpadLine(a.address) > scratchpadMax.get val refilling = refill_valid && refill_cnt > 0.U ccover(itim_allocated, "ITIM_ALLOCATE", "ITIM allocated") ccover(itim_allocated && refilling, "ITIM_ALLOCATE_WHILE_REFILL", "ITIM allocated while I$ refill") ccover(itim_deallocated, "ITIM_DEALLOCATE", "ITIM deallocated") ccover(itim_deallocated && refilling, "ITIM_DEALLOCATE_WHILE_REFILL", "ITIM deallocated while I$ refill") ccover(itim_increase, "ITIM_SIZE_INCREASE", "ITIM size increased") ccover(itim_increase && refilling, "ITIM_SIZE_INCREASE_WHILE_REFILL", "ITIM size increased while I$ refill") } } assert(!s2_valid || RegNext(RegNext(s0_vaddr)) === io.s2_vaddr) when (!(tl.a.valid || s1_slaveValid || s2_slaveValid || respValid) && s2_valid && s2_data_decoded.error && !s2_tag_disparity) { // handle correctable errors on CPU accesses to the scratchpad. // if there is an in-flight slave-port access to the scratchpad, // report the miss but don't correct the error (as there is // a structural hazard on s1s3_slaveData/s1s3_slaveAddress). s3_slaveValid := true.B s1s3_slaveData := s2_data_decoded.corrected s1s3_slaveAddr := s2_scratchpad_word_addr | s1s3_slaveAddr(log2Ceil(wordBits/8)-1, 0) } // back pressure is allowed on the [[tl]] // pull up [[respValid]] when [[s2_slaveValid]] until [[tl.d.fire]] respValid := s2_slaveValid || (respValid && !tl.d.ready) // if [[s2_full_word_write]] will overwrite data, and [[s2_data_decoded.uncorrectable]] can be ignored. val respError = RegEnable(s2_scratchpad_hit && s2_data_decoded.uncorrectable && !s1s2_full_word_write, s2_slaveValid) when (s2_slaveValid) { // need stage 3 if Put or correct decoding. // @todo if uncorrectable [[s2_data_decoded]]? when (edge_in.get.hasData(s1_a) || s2_data_decoded.error) { s3_slaveValid := true.B } /** data not masked by the TileLink PutData/PutPartialData. * means data is stored at [[s1s3_slaveData]] which was read at stage 1. */ def byteEn(i: Int) = !(edge_in.get.hasData(s1_a) && s1_a.mask(i)) // write [[s1s3_slaveData]] based on index of wordBits. // @todo seems a problem here? // granularity of CPU fetch is `wordBits/8`, // granularity of TileLink access is `TLBundleParameters.dataBits/8` // these two granularity can be different. // store data read from RAM s1s3_slaveData := (0 until wordBits/8).map(i => Mux(byteEn(i), s2_data_decoded.corrected, s1s3_slaveData)(8*(i+1)-1, 8*i)).asUInt } tl.d.valid := respValid tl.d.bits := Mux(edge_in.get.hasData(s1_a), // PutData/PutPartialData -> AccessAck edge_in.get.AccessAck(s1_a), // Get -> AccessAckData edge_in.get.AccessAck(s1_a, 0.U, denied = false.B, corrupt = respError)) tl.d.bits.data := s1s3_slaveData // Tie off unused channels tl.b.valid := false.B tl.c.ready := true.B tl.e.ready := true.B ccover(s0_valid && s1_slaveValid, "CONCURRENT_ITIM_ACCESS_1", "ITIM accessed, then I$ accessed next cycle") ccover(s0_valid && s2_slaveValid, "CONCURRENT_ITIM_ACCESS_2", "ITIM accessed, then I$ accessed two cycles later") ccover(tl.d.valid && !tl.d.ready, "ITIM_D_STALL", "ITIM response blocked by D-channel") ccover(tl_out.d.valid && !tl_out.d.ready, "ITIM_BLOCK_D", "D-channel blocked by ITIM access") } } tl_out.a.valid := s2_request_refill tl_out.a.bits := edge_out.Get( fromSource = 0.U, toAddress = (refill_paddr >> blockOffBits) << blockOffBits, lgSize = lgCacheBlockBytes.U)._2 // prefetch when next-line access does not cross a page if (cacheParams.prefetch) { /** [[crosses_page]] indicate if there is a crosses page access * [[next_block]] : the address to be prefetched. */ val (crosses_page, next_block) = Split(refill_paddr(pgIdxBits-1, blockOffBits) +& 1.U, pgIdxBits-blockOffBits) when (tl_out.a.fire) { send_hint := !hint_outstanding && io.s2_prefetch && !crosses_page when (send_hint) { send_hint := false.B hint_outstanding := true.B } } // @todo why refill_done will kill hint at this cycle? when (refill_done) { send_hint := false.B } // D channel reply with HintAck. when (tl_out.d.fire && !refill_one_beat) { hint_outstanding := false.B } when (send_hint) { tl_out.a.valid := true.B tl_out.a.bits := edge_out.Hint( fromSource = 1.U, toAddress = Cat(refill_paddr >> pgIdxBits, next_block) << blockOffBits, lgSize = lgCacheBlockBytes.U, param = TLHints.PREFETCH_READ)._2 } ccover(send_hint && !tl_out.a.ready, "PREFETCH_A_STALL", "I$ prefetch blocked by A-channel") ccover(refill_valid && (tl_out.d.fire && !refill_one_beat), "PREFETCH_D_BEFORE_MISS_D", "I$ prefetch resolves before miss") ccover(!refill_valid && (tl_out.d.fire && !refill_one_beat), "PREFETCH_D_AFTER_MISS_D", "I$ prefetch resolves after miss") ccover(tl_out.a.fire && hint_outstanding, "PREFETCH_D_AFTER_MISS_A", "I$ prefetch resolves after second miss") } // Drive APROT information tl_out.a.bits.user.lift(AMBAProt).foreach { x => // Rocket caches all fetch requests, and it's difficult to differentiate privileged/unprivileged on // cached data, so mark as privileged x.fetch := true.B x.secure := true.B x.privileged := true.B x.bufferable := true.B x.modifiable := true.B x.readalloc := io.s2_cacheable x.writealloc := io.s2_cacheable } tl_out.b.ready := true.B tl_out.c.valid := false.B tl_out.e.valid := false.B assert(!(tl_out.a.valid && addrMaybeInScratchpad(tl_out.a.bits.address))) // if there is an outstanding refill, cannot flush I$. when (!refill_valid) { invalidated := false.B } when (refill_fire) { refill_valid := true.B } when (refill_done) { refill_valid := false.B} io.perf.acquire := refill_fire // don't gate I$ clock since there are outstanding transcations. io.keep_clock_enabled := tl_in.map(tl => tl.a.valid || tl.d.valid || s1_slaveValid || s2_slaveValid || s3_slaveValid).getOrElse(false.B) || // ITIM s1_valid || s2_valid || refill_valid || send_hint || hint_outstanding // I$ /** index to access [[data_arrays]] and [[tag_array]]. * @note * if [[untagBits]] > [[pgIdxBits]] in * {{{ * ┌──idxBits──┐ * ↓ ↓ * │ tag │ set │offset│ * │ pageTag │ pageIndex│ * ↑ ↑ ↑ │ * untagBits│ blockOffBits│ * pgIdxBits │ * └msb┴──lsb──┘ * vaddr paddr * }}} * * else use paddr directly. * Note: if [[untagBits]] > [[pgIdxBits]], there will be a alias issue which isn't addressend by the icache yet. */ def index(vaddr: UInt, paddr: UInt) = { /** [[paddr]] as LSB to be used for VIPT. */ val lsbs = paddr(pgUntagBits-1, blockOffBits) /** if [[untagBits]] > [[pgIdxBits]], append [[vaddr]] to higher bits of index as [[msbs]]. */ val msbs = (idxBits+blockOffBits > pgUntagBits).option(vaddr(idxBits+blockOffBits-1, pgUntagBits)) msbs ## lsbs } ccover(!send_hint && (tl_out.a.valid && !tl_out.a.ready), "MISS_A_STALL", "I$ miss blocked by A-channel") ccover(invalidate && refill_valid, "FLUSH_DURING_MISS", "I$ flushed during miss") def ccover(cond: Bool, label: String, desc: String)(implicit sourceInfo: SourceInfo) = property.cover(cond, s"ICACHE_$label", "MemorySystem;;" + desc) val mem_active_valid = Seq(property.CoverBoolean(s2_valid, Seq("mem_active"))) val data_error = Seq( property.CoverBoolean(!s2_data_decoded.correctable && !s2_data_decoded.uncorrectable, Seq("no_data_error")), property.CoverBoolean(s2_data_decoded.correctable, Seq("data_correctable_error")), property.CoverBoolean(s2_data_decoded.uncorrectable, Seq("data_uncorrectable_error"))) val request_source = Seq( property.CoverBoolean(!s2_slaveValid, Seq("from_CPU")), property.CoverBoolean(s2_slaveValid, Seq("from_TL")) ) val tag_error = Seq( property.CoverBoolean(!s2_tag_disparity, Seq("no_tag_error")), property.CoverBoolean(s2_tag_disparity, Seq("tag_error")) ) val mem_mode = Seq( property.CoverBoolean(s2_scratchpad_hit, Seq("ITIM_mode")), property.CoverBoolean(!s2_scratchpad_hit, Seq("cache_mode")) ) val error_cross_covers = new property.CrossProperty( Seq(mem_active_valid, data_error, tag_error, request_source, mem_mode), Seq( // tag error cannot occur in ITIM mode Seq("tag_error", "ITIM_mode"), // Can only respond to TL in ITIM mode Seq("from_TL", "cache_mode") ), "MemorySystem;;Memory Bit Flip Cross Covers") property.cover(error_cross_covers) } File Misc.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ import chisel3.util.random.LFSR import org.chipsalliance.cde.config.Parameters import scala.math._ class ParameterizedBundle(implicit p: Parameters) extends Bundle trait Clocked extends Bundle { val clock = Clock() val reset = Bool() } object DecoupledHelper { def apply(rvs: Bool*) = new DecoupledHelper(rvs) } class DecoupledHelper(val rvs: Seq[Bool]) { def fire(exclude: Bool, includes: Bool*) = { require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!") (rvs.filter(_ ne exclude) ++ includes).reduce(_ && _) } def fire() = { rvs.reduce(_ && _) } } object MuxT { def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2)) def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3)) def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4)) } /** Creates a cascade of n MuxTs to search for a key value. */ object MuxTLookup { def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } } object ValidMux { def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = { apply(v1 +: v2.toSeq) } def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = { val out = Wire(Valid(valids.head.bits.cloneType)) out.valid := valids.map(_.valid).reduce(_ || _) out.bits := MuxCase(valids.head.bits, valids.map(v => (v.valid -> v.bits))) out } } object Str { def apply(s: String): UInt = { var i = BigInt(0) require(s.forall(validChar _)) for (c <- s) i = (i << 8) | c i.U((s.length*8).W) } def apply(x: Char): UInt = { require(validChar(x)) x.U(8.W) } def apply(x: UInt): UInt = apply(x, 10) def apply(x: UInt, radix: Int): UInt = { val rad = radix.U val w = x.getWidth require(w > 0) var q = x var s = digit(q % rad) for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s) } s } def apply(x: SInt): UInt = apply(x, 10) def apply(x: SInt, radix: Int): UInt = { val neg = x < 0.S val abs = x.abs.asUInt if (radix != 10) { Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix)) } else { val rad = radix.U val w = abs.getWidth require(w > 0) var q = abs var s = digit(q % rad) var needSign = neg for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad val placeSpace = q === 0.U val space = Mux(needSign, Str('-'), Str(' ')) needSign = needSign && !placeSpace s = Cat(Mux(placeSpace, space, digit(q % rad)), s) } Cat(Mux(needSign, Str('-'), Str(' ')), s) } } private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0) private def validChar(x: Char) = x == (x & 0xFF) } object Split { def apply(x: UInt, n0: Int) = { val w = x.getWidth (x.extract(w-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n2: Int, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } } object Random { def apply(mod: Int, random: UInt): UInt = { if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0) else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod)) } def apply(mod: Int): UInt = apply(mod, randomizer) def oneHot(mod: Int, random: UInt): UInt = { if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0)) else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt } def oneHot(mod: Int): UInt = oneHot(mod, randomizer) private def randomizer = LFSR(16) private def partition(value: UInt, slices: Int) = Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U) } object Majority { def apply(in: Set[Bool]): Bool = { val n = (in.size >> 1) + 1 val clauses = in.subsets(n).map(_.reduce(_ && _)) clauses.reduce(_ || _) } def apply(in: Seq[Bool]): Bool = apply(in.toSet) def apply(in: UInt): Bool = apply(in.asBools.toSet) } object PopCountAtLeast { private def two(x: UInt): (Bool, Bool) = x.getWidth match { case 1 => (x.asBool, false.B) case n => val half = x.getWidth / 2 val (leftOne, leftTwo) = two(x(half - 1, 0)) val (rightOne, rightTwo) = two(x(x.getWidth - 1, half)) (leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne)) } def apply(x: UInt, n: Int): Bool = n match { case 0 => true.B case 1 => x.orR case 2 => two(x)._2 case 3 => PopCount(x) >= n.U } } // This gets used everywhere, so make the smallest circuit possible ... // Given an address and size, create a mask of beatBytes size // eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111 // groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01 object MaskGen { def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = { require (groupBy >= 1 && beatBytes >= groupBy) require (isPow2(beatBytes) && isPow2(groupBy)) val lgBytes = log2Ceil(beatBytes) val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U def helper(i: Int): Seq[(Bool, Bool)] = { if (i == 0) { Seq((lgSize >= lgBytes.asUInt, true.B)) } else { val sub = helper(i-1) val size = sizeOH(lgBytes - i) val bit = addr_lo(lgBytes - i) val nbit = !bit Seq.tabulate (1 << i) { j => val (sub_acc, sub_eq) = sub(j/2) val eq = sub_eq && (if (j % 2 == 1) bit else nbit) val acc = sub_acc || (size && eq) (acc, eq) } } } if (groupBy == beatBytes) 1.U else Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse) } } File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag } File ECC.scala: // See LICENSE.Berkeley for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ import chisel3.util.random.LFSR abstract class Decoding { def uncorrected: UInt def corrected: UInt def correctable: Bool def uncorrectable: Bool // If true, correctable should be ignored def error = correctable || uncorrectable } abstract class Code { def canDetect: Boolean def canCorrect: Boolean def width(w0: Int): Int /** Takes the unencoded width and returns a list of indices indicating which * bits of the encoded value will be used for ecc */ def eccIndices(width: Int): Seq[Int] /** Encode x to a codeword suitable for decode. * If poison is true, the decoded value will report uncorrectable * error despite uncorrected == corrected == x. */ def encode(x: UInt, poison: Bool = false.B): UInt def decode(x: UInt): Decoding /** Copy the bits in x to the right bit positions in an encoded word, * so that x === decode(swizzle(x)).uncorrected; but don't generate * the other code bits, so decode(swizzle(x)).error might be true. * For codes for which this operation is not trivial, throw an * UnsupportedOperationException. */ def swizzle(x: UInt): UInt } class IdentityCode extends Code { def canDetect = false def canCorrect = false def width(w0: Int) = w0 def eccIndices(width: Int) = Seq.empty[Int] def encode(x: UInt, poison: Bool = false.B) = { require (poison.isLit && poison.litValue == 0, "IdentityCode can not be poisoned") x } def swizzle(x: UInt) = x def decode(y: UInt) = new Decoding { def uncorrected = y def corrected = y def correctable = false.B def uncorrectable = false.B } } class ParityCode extends Code { def canDetect = true def canCorrect = false def width(w0: Int) = w0+1 def eccIndices(w0: Int) = Seq(w0) def encode(x: UInt, poison: Bool = false.B) = Cat(x.xorR ^ poison, x) def swizzle(x: UInt) = Cat(false.B, x) def decode(y: UInt) = new Decoding { val uncorrected = y(y.getWidth-2,0) val corrected = uncorrected val correctable = false.B val uncorrectable = y.xorR } } class SECCode extends Code { def canDetect = true def canCorrect = true // SEC codes may or may not be poisonous depending on the length // If the code is perfect, every non-codeword is correctable def poisonous(n: Int) = !isPow2(n+1) def width(k: Int) = { val m = log2Floor(k) + 1 k + m + (if((1 << m) < m+k+1) 1 else 0) } def eccIndices(w0: Int) = { (0 until width(w0)).collect { case i if i >= w0 => i } } def swizzle(x: UInt) = { val k = x.getWidth val n = width(k) Cat(0.U((n-k).W), x) } // An (n=16, k=11) Hamming code is naturally encoded as: // PPxPxxxPxxxxxxxP where P are parity bits and x are data // Indexes typically start at 1, because then the P are on powers of two // In systematic coding, you put all the data in the front: // xxxxxxxxxxxPPPPP // Indexes typically start at 0, because Computer Science // For sanity when reading SRAMs, you want systematic form. private def impl(n: Int, k: Int) = { require (n >= 3 && k >= 1 && !isPow2(n)) val hamm2sys = IndexedSeq.tabulate(n+1) { i => if (i == 0) { n /* undefined */ } else if (isPow2(i)) { k + log2Ceil(i) } else { i - 1 - log2Ceil(i) } } val sys2hamm = hamm2sys.zipWithIndex.sortBy(_._1).map(_._2).toIndexedSeq def syndrome(j: Int) = { val bit = 1 << j ("b" + Seq.tabulate(n) { i => if ((sys2hamm(i) & bit) != 0) "1" else "0" }.reverse.mkString).U } (hamm2sys, sys2hamm, syndrome _) } def encode(x: UInt, poison: Bool = false.B) = { val k = x.getWidth val n = width(k) val (_, _, syndrome) = impl(n, k) require ((poison.isLit && poison.litValue == 0) || poisonous(n), s"SEC code of length ${n} cannot be poisoned") /* By setting the entire syndrome on poison, the corrected bit falls off the end of the code */ val syndromeUInt = VecInit.tabulate(n-k) { j => (syndrome(j)(k-1, 0) & x).xorR ^ poison }.asUInt Cat(syndromeUInt, x) } def decode(y: UInt) = new Decoding { val n = y.getWidth val k = n - log2Ceil(n) val (_, sys2hamm, syndrome) = impl(n, k) val syndromeUInt = VecInit.tabulate(n-k) { j => (syndrome(j) & y).xorR }.asUInt val hammBadBitOH = UIntToOH(syndromeUInt, n+1) val sysBadBitOH = VecInit.tabulate(k) { i => hammBadBitOH(sys2hamm(i)) }.asUInt val uncorrected = y(k-1, 0) val corrected = uncorrected ^ sysBadBitOH val correctable = syndromeUInt.orR val uncorrectable = if (poisonous(n)) { syndromeUInt > n.U } else { false.B } } } class SECDEDCode extends Code { def canDetect = true def canCorrect = true private val sec = new SECCode private val par = new ParityCode def width(k: Int) = sec.width(k)+1 def eccIndices(w0: Int) = { (0 until width(w0)).collect { case i if i >= w0 => i } } def encode(x: UInt, poison: Bool = false.B) = { // toggling two bits ensures the error is uncorrectable // to ensure corrected == uncorrected, we pick one redundant // bit from SEC (the highest); correcting it does not affect // corrected == uncorrected. the second toggled bit is the // parity bit, which also does not appear in the decoding val toggle_lo = Cat(poison.asUInt, poison.asUInt) val toggle_hi = toggle_lo << (sec.width(x.getWidth)-1) par.encode(sec.encode(x)) ^ toggle_hi } def swizzle(x: UInt) = par.swizzle(sec.swizzle(x)) def decode(x: UInt) = new Decoding { val secdec = sec.decode(x(x.getWidth-2,0)) val pardec = par.decode(x) val uncorrected = secdec.uncorrected val corrected = secdec.corrected val correctable = pardec.uncorrectable val uncorrectable = !pardec.uncorrectable && secdec.correctable } } object ErrGen { // generate a 1-bit error with approximate probability 2^-f def apply(width: Int, f: Int): UInt = { require(width > 0 && f >= 0 && log2Up(width) + f <= 16) UIntToOH(LFSR(16)(log2Up(width)+f-1,0))(width-1,0) } def apply(x: UInt, f: Int): UInt = x ^ apply(x.getWidth, f) } trait CanHaveErrors extends Bundle { val correctable: Option[ValidIO[UInt]] val uncorrectable: Option[ValidIO[UInt]] } case class ECCParams( bytes: Int = 1, code: Code = new IdentityCode, notifyErrors: Boolean = false, ) object Code { def fromString(s: Option[String]): Code = fromString(s.getOrElse("none")) def fromString(s: String): Code = s.toLowerCase match { case "none" => new IdentityCode case "identity" => new IdentityCode case "parity" => new ParityCode case "sec" => new SECCode case "secded" => new SECDEDCode case _ => throw new IllegalArgumentException("Unknown ECC type") } } // Synthesizable unit tests import freechips.rocketchip.unittest._ class ECCTest(k: Int, timeout: Int = 500000) extends UnitTest(timeout) { val code = new SECDEDCode val n = code.width(k) // Brute force the decode space val test = RegInit(0.U((n+1).W)) val last = test(n) test := test + !last io.finished := RegNext(last, false.B) // Confirm the decoding matches the encoding val decoded = code.decode(test(n-1, 0)) val recoded = code.encode(decoded.corrected) val distance = PopCount(recoded ^ test) // Count the cases val correct = RegInit(0.U(n.W)) val correctable = RegInit(0.U(n.W)) val uncorrectable = RegInit(0.U(n.W)) when (!last) { when (decoded.uncorrectable) { assert (distance >= 2.U) // uncorrectable uncorrectable := uncorrectable + 1.U } .elsewhen (decoded.correctable) { assert (distance(0)) // correctable => odd bit errors correctable := correctable + 1.U } .otherwise { assert (distance === 0.U) // correct assert (decoded.uncorrected === decoded.corrected) correct := correct + 1.U } } // Expected number of each case val nCodes = BigInt(1) << n val nCorrect = BigInt(1) << k val nCorrectable = nCodes / 2 val nUncorrectable = nCodes - nCorrectable - nCorrect when (last) { assert (correct === nCorrect.U) assert (correctable === nCorrectable.U) assert (uncorrectable === nUncorrectable.U) } } File LazyModuleImp.scala: package org.chipsalliance.diplomacy.lazymodule import chisel3.{withClockAndReset, Module, RawModule, Reset, _} import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo} import firrtl.passes.InlineAnnotation import org.chipsalliance.cde.config.Parameters import org.chipsalliance.diplomacy.nodes.Dangle import scala.collection.immutable.SortedMap /** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]]. * * This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy. */ sealed trait LazyModuleImpLike extends RawModule { /** [[LazyModule]] that contains this instance. */ val wrapper: LazyModule /** IOs that will be automatically "punched" for this instance. */ val auto: AutoBundle /** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */ protected[diplomacy] val dangles: Seq[Dangle] // [[wrapper.module]] had better not be accessed while LazyModules are still being built! require( LazyModule.scope.isEmpty, s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}" ) /** Set module name. Defaults to the containing LazyModule's desiredName. */ override def desiredName: String = wrapper.desiredName suggestName(wrapper.suggestedName) /** [[Parameters]] for chisel [[Module]]s. */ implicit val p: Parameters = wrapper.p /** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and * submodules. */ protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = { // 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]], // 2. return [[Dangle]]s from each module. val childDangles = wrapper.children.reverse.flatMap { c => implicit val sourceInfo: SourceInfo = c.info c.cloneProto.map { cp => // If the child is a clone, then recursively set cloneProto of its children as well def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = { require(bases.size == clones.size) (bases.zip(clones)).map { case (l, r) => require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}") l.cloneProto = Some(r) assignCloneProtos(l.children, r.children) } } assignCloneProtos(c.children, cp.children) // Clone the child module as a record, and get its [[AutoBundle]] val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName) val clonedAuto = clone("auto").asInstanceOf[AutoBundle] // Get the empty [[Dangle]]'s of the cloned child val rawDangles = c.cloneDangles() require(rawDangles.size == clonedAuto.elements.size) // Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) } dangles }.getOrElse { // For non-clones, instantiate the child module val mod = try { Module(c.module) } catch { case e: ChiselException => { println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}") throw e } } mod.dangles } } // Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]]. // This will result in a sequence of [[Dangle]] from these [[BaseNode]]s. val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate()) // Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]] val allDangles = nodeDangles ++ childDangles // Group [[allDangles]] by their [[source]]. val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*) // For each [[source]] set of [[Dangle]]s of size 2, ensure that these // can be connected as a source-sink pair (have opposite flipped value). // Make the connection and mark them as [[done]]. val done = Set() ++ pairing.values.filter(_.size == 2).map { case Seq(a, b) => require(a.flipped != b.flipped) // @todo <> in chisel3 makes directionless connection. if (a.flipped) { a.data <> b.data } else { b.data <> a.data } a.source case _ => None } // Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module. val forward = allDangles.filter(d => !done(d.source)) // Generate [[AutoBundle]] IO from [[forward]]. val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*)) // Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]] val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) => if (d.flipped) { d.data <> io } else { io <> d.data } d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name) } // Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]]. wrapper.inModuleBody.reverse.foreach { _() } if (wrapper.shouldBeInlined) { chisel3.experimental.annotate(new ChiselAnnotation { def toFirrtl = InlineAnnotation(toNamed) }) } // Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]]. (auto, dangles) } } /** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike { /** Instantiate hardware of this `Module`. */ val (auto, dangles) = instantiate() } /** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike { // These wires are the default clock+reset for all LazyModule children. // It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the // [[LazyRawModuleImp]] children. // Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly. /** drive clock explicitly. */ val childClock: Clock = Wire(Clock()) /** drive reset explicitly. */ val childReset: Reset = Wire(Reset()) // the default is that these are disabled childClock := false.B.asClock childReset := chisel3.DontCare def provideImplicitClockToLazyChildren: Boolean = false val (auto, dangles) = if (provideImplicitClockToLazyChildren) { withClockAndReset(childClock, childReset) { instantiate() } } else { instantiate() } } File Parameters.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy.nodes._ import freechips.rocketchip.diplomacy.{ AddressDecoder, AddressSet, BufferParams, DirectedBuffers, IdMap, IdMapEntry, IdRange, RegionType, TransferSizes } import freechips.rocketchip.resources.{Resource, ResourceAddress, ResourcePermissions} import freechips.rocketchip.util.{ AsyncQueueParams, BundleField, BundleFieldBase, BundleKeyBase, CreditedDelay, groupByIntoSeq, RationalDirection, SimpleProduct } import scala.math.max //These transfer sizes describe requests issued from masters on the A channel that will be responded by slaves on the D channel case class TLMasterToSlaveTransferSizes( // Supports both Acquire+Release of the following two sizes: acquireT: TransferSizes = TransferSizes.none, acquireB: TransferSizes = TransferSizes.none, arithmetic: TransferSizes = TransferSizes.none, logical: TransferSizes = TransferSizes.none, get: TransferSizes = TransferSizes.none, putFull: TransferSizes = TransferSizes.none, putPartial: TransferSizes = TransferSizes.none, hint: TransferSizes = TransferSizes.none) extends TLCommonTransferSizes { def intersect(rhs: TLMasterToSlaveTransferSizes) = TLMasterToSlaveTransferSizes( acquireT = acquireT .intersect(rhs.acquireT), acquireB = acquireB .intersect(rhs.acquireB), arithmetic = arithmetic.intersect(rhs.arithmetic), logical = logical .intersect(rhs.logical), get = get .intersect(rhs.get), putFull = putFull .intersect(rhs.putFull), putPartial = putPartial.intersect(rhs.putPartial), hint = hint .intersect(rhs.hint)) def mincover(rhs: TLMasterToSlaveTransferSizes) = TLMasterToSlaveTransferSizes( acquireT = acquireT .mincover(rhs.acquireT), acquireB = acquireB .mincover(rhs.acquireB), arithmetic = arithmetic.mincover(rhs.arithmetic), logical = logical .mincover(rhs.logical), get = get .mincover(rhs.get), putFull = putFull .mincover(rhs.putFull), putPartial = putPartial.mincover(rhs.putPartial), hint = hint .mincover(rhs.hint)) // Reduce rendering to a simple yes/no per field override def toString = { def str(x: TransferSizes, flag: String) = if (x.none) "" else flag def flags = Vector( str(acquireT, "T"), str(acquireB, "B"), str(arithmetic, "A"), str(logical, "L"), str(get, "G"), str(putFull, "F"), str(putPartial, "P"), str(hint, "H")) flags.mkString } // Prints out the actual information in a user readable way def infoString = { s"""acquireT = ${acquireT} |acquireB = ${acquireB} |arithmetic = ${arithmetic} |logical = ${logical} |get = ${get} |putFull = ${putFull} |putPartial = ${putPartial} |hint = ${hint} | |""".stripMargin } } object TLMasterToSlaveTransferSizes { def unknownEmits = TLMasterToSlaveTransferSizes( acquireT = TransferSizes(1, 4096), acquireB = TransferSizes(1, 4096), arithmetic = TransferSizes(1, 4096), logical = TransferSizes(1, 4096), get = TransferSizes(1, 4096), putFull = TransferSizes(1, 4096), putPartial = TransferSizes(1, 4096), hint = TransferSizes(1, 4096)) def unknownSupports = TLMasterToSlaveTransferSizes() } //These transfer sizes describe requests issued from slaves on the B channel that will be responded by masters on the C channel case class TLSlaveToMasterTransferSizes( probe: TransferSizes = TransferSizes.none, arithmetic: TransferSizes = TransferSizes.none, logical: TransferSizes = TransferSizes.none, get: TransferSizes = TransferSizes.none, putFull: TransferSizes = TransferSizes.none, putPartial: TransferSizes = TransferSizes.none, hint: TransferSizes = TransferSizes.none ) extends TLCommonTransferSizes { def intersect(rhs: TLSlaveToMasterTransferSizes) = TLSlaveToMasterTransferSizes( probe = probe .intersect(rhs.probe), arithmetic = arithmetic.intersect(rhs.arithmetic), logical = logical .intersect(rhs.logical), get = get .intersect(rhs.get), putFull = putFull .intersect(rhs.putFull), putPartial = putPartial.intersect(rhs.putPartial), hint = hint .intersect(rhs.hint) ) def mincover(rhs: TLSlaveToMasterTransferSizes) = TLSlaveToMasterTransferSizes( probe = probe .mincover(rhs.probe), arithmetic = arithmetic.mincover(rhs.arithmetic), logical = logical .mincover(rhs.logical), get = get .mincover(rhs.get), putFull = putFull .mincover(rhs.putFull), putPartial = putPartial.mincover(rhs.putPartial), hint = hint .mincover(rhs.hint) ) // Reduce rendering to a simple yes/no per field override def toString = { def str(x: TransferSizes, flag: String) = if (x.none) "" else flag def flags = Vector( str(probe, "P"), str(arithmetic, "A"), str(logical, "L"), str(get, "G"), str(putFull, "F"), str(putPartial, "P"), str(hint, "H")) flags.mkString } // Prints out the actual information in a user readable way def infoString = { s"""probe = ${probe} |arithmetic = ${arithmetic} |logical = ${logical} |get = ${get} |putFull = ${putFull} |putPartial = ${putPartial} |hint = ${hint} | |""".stripMargin } } object TLSlaveToMasterTransferSizes { def unknownEmits = TLSlaveToMasterTransferSizes( arithmetic = TransferSizes(1, 4096), logical = TransferSizes(1, 4096), get = TransferSizes(1, 4096), putFull = TransferSizes(1, 4096), putPartial = TransferSizes(1, 4096), hint = TransferSizes(1, 4096), probe = TransferSizes(1, 4096)) def unknownSupports = TLSlaveToMasterTransferSizes() } trait TLCommonTransferSizes { def arithmetic: TransferSizes def logical: TransferSizes def get: TransferSizes def putFull: TransferSizes def putPartial: TransferSizes def hint: TransferSizes } class TLSlaveParameters private( val nodePath: Seq[BaseNode], val resources: Seq[Resource], setName: Option[String], val address: Seq[AddressSet], val regionType: RegionType.T, val executable: Boolean, val fifoId: Option[Int], val supports: TLMasterToSlaveTransferSizes, val emits: TLSlaveToMasterTransferSizes, // By default, slaves are forbidden from issuing 'denied' responses (it prevents Fragmentation) val alwaysGrantsT: Boolean, // typically only true for CacheCork'd read-write devices; dual: neverReleaseData // If fifoId=Some, all accesses sent to the same fifoId are executed and ACK'd in FIFO order // Note: you can only rely on this FIFO behaviour if your TLMasterParameters include requestFifo val mayDenyGet: Boolean, // applies to: AccessAckData, GrantData val mayDenyPut: Boolean) // applies to: AccessAck, Grant, HintAck // ReleaseAck may NEVER be denied extends SimpleProduct { def sortedAddress = address.sorted override def canEqual(that: Any): Boolean = that.isInstanceOf[TLSlaveParameters] override def productPrefix = "TLSlaveParameters" // We intentionally omit nodePath for equality testing / formatting def productArity: Int = 11 def productElement(n: Int): Any = n match { case 0 => name case 1 => address case 2 => resources case 3 => regionType case 4 => executable case 5 => fifoId case 6 => supports case 7 => emits case 8 => alwaysGrantsT case 9 => mayDenyGet case 10 => mayDenyPut case _ => throw new IndexOutOfBoundsException(n.toString) } def supportsAcquireT: TransferSizes = supports.acquireT def supportsAcquireB: TransferSizes = supports.acquireB def supportsArithmetic: TransferSizes = supports.arithmetic def supportsLogical: TransferSizes = supports.logical def supportsGet: TransferSizes = supports.get def supportsPutFull: TransferSizes = supports.putFull def supportsPutPartial: TransferSizes = supports.putPartial def supportsHint: TransferSizes = supports.hint require (!address.isEmpty, "Address cannot be empty") address.foreach { a => require (a.finite, "Address must be finite") } address.combinations(2).foreach { case Seq(x,y) => require (!x.overlaps(y), s"$x and $y overlap.") } require (supportsPutFull.contains(supportsPutPartial), s"PutFull($supportsPutFull) < PutPartial($supportsPutPartial)") require (supportsPutFull.contains(supportsArithmetic), s"PutFull($supportsPutFull) < Arithmetic($supportsArithmetic)") require (supportsPutFull.contains(supportsLogical), s"PutFull($supportsPutFull) < Logical($supportsLogical)") require (supportsGet.contains(supportsArithmetic), s"Get($supportsGet) < Arithmetic($supportsArithmetic)") require (supportsGet.contains(supportsLogical), s"Get($supportsGet) < Logical($supportsLogical)") require (supportsAcquireB.contains(supportsAcquireT), s"AcquireB($supportsAcquireB) < AcquireT($supportsAcquireT)") require (!alwaysGrantsT || supportsAcquireT, s"Must supportAcquireT if promising to always grantT") // Make sure that the regionType agrees with the capabilities require (!supportsAcquireB || regionType >= RegionType.UNCACHED) // acquire -> uncached, tracked, cached require (regionType <= RegionType.UNCACHED || supportsAcquireB) // tracked, cached -> acquire require (regionType != RegionType.UNCACHED || supportsGet) // uncached -> supportsGet val name = setName.orElse(nodePath.lastOption.map(_.lazyModule.name)).getOrElse("disconnected") val maxTransfer = List( // Largest supported transfer of all types supportsAcquireT.max, supportsAcquireB.max, supportsArithmetic.max, supportsLogical.max, supportsGet.max, supportsPutFull.max, supportsPutPartial.max).max val maxAddress = address.map(_.max).max val minAlignment = address.map(_.alignment).min // The device had better not support a transfer larger than its alignment require (minAlignment >= maxTransfer, s"Bad $address: minAlignment ($minAlignment) must be >= maxTransfer ($maxTransfer)") def toResource: ResourceAddress = { ResourceAddress(address, ResourcePermissions( r = supportsAcquireB || supportsGet, w = supportsAcquireT || supportsPutFull, x = executable, c = supportsAcquireB, a = supportsArithmetic && supportsLogical)) } def findTreeViolation() = nodePath.find { case _: MixedAdapterNode[_, _, _, _, _, _, _, _] => false case _: SinkNode[_, _, _, _, _] => false case node => node.inputs.size != 1 } def isTree = findTreeViolation() == None def infoString = { s"""Slave Name = ${name} |Slave Address = ${address} |supports = ${supports.infoString} | |""".stripMargin } def v1copy( address: Seq[AddressSet] = address, resources: Seq[Resource] = resources, regionType: RegionType.T = regionType, executable: Boolean = executable, nodePath: Seq[BaseNode] = nodePath, supportsAcquireT: TransferSizes = supports.acquireT, supportsAcquireB: TransferSizes = supports.acquireB, supportsArithmetic: TransferSizes = supports.arithmetic, supportsLogical: TransferSizes = supports.logical, supportsGet: TransferSizes = supports.get, supportsPutFull: TransferSizes = supports.putFull, supportsPutPartial: TransferSizes = supports.putPartial, supportsHint: TransferSizes = supports.hint, mayDenyGet: Boolean = mayDenyGet, mayDenyPut: Boolean = mayDenyPut, alwaysGrantsT: Boolean = alwaysGrantsT, fifoId: Option[Int] = fifoId) = { new TLSlaveParameters( setName = setName, address = address, resources = resources, regionType = regionType, executable = executable, nodePath = nodePath, supports = TLMasterToSlaveTransferSizes( acquireT = supportsAcquireT, acquireB = supportsAcquireB, arithmetic = supportsArithmetic, logical = supportsLogical, get = supportsGet, putFull = supportsPutFull, putPartial = supportsPutPartial, hint = supportsHint), emits = emits, mayDenyGet = mayDenyGet, mayDenyPut = mayDenyPut, alwaysGrantsT = alwaysGrantsT, fifoId = fifoId) } def v2copy( nodePath: Seq[BaseNode] = nodePath, resources: Seq[Resource] = resources, name: Option[String] = setName, address: Seq[AddressSet] = address, regionType: RegionType.T = regionType, executable: Boolean = executable, fifoId: Option[Int] = fifoId, supports: TLMasterToSlaveTransferSizes = supports, emits: TLSlaveToMasterTransferSizes = emits, alwaysGrantsT: Boolean = alwaysGrantsT, mayDenyGet: Boolean = mayDenyGet, mayDenyPut: Boolean = mayDenyPut) = { new TLSlaveParameters( nodePath = nodePath, resources = resources, setName = name, address = address, regionType = regionType, executable = executable, fifoId = fifoId, supports = supports, emits = emits, alwaysGrantsT = alwaysGrantsT, mayDenyGet = mayDenyGet, mayDenyPut = mayDenyPut) } @deprecated("Use v1copy instead of copy","") def copy( address: Seq[AddressSet] = address, resources: Seq[Resource] = resources, regionType: RegionType.T = regionType, executable: Boolean = executable, nodePath: Seq[BaseNode] = nodePath, supportsAcquireT: TransferSizes = supports.acquireT, supportsAcquireB: TransferSizes = supports.acquireB, supportsArithmetic: TransferSizes = supports.arithmetic, supportsLogical: TransferSizes = supports.logical, supportsGet: TransferSizes = supports.get, supportsPutFull: TransferSizes = supports.putFull, supportsPutPartial: TransferSizes = supports.putPartial, supportsHint: TransferSizes = supports.hint, mayDenyGet: Boolean = mayDenyGet, mayDenyPut: Boolean = mayDenyPut, alwaysGrantsT: Boolean = alwaysGrantsT, fifoId: Option[Int] = fifoId) = { v1copy( address = address, resources = resources, regionType = regionType, executable = executable, nodePath = nodePath, supportsAcquireT = supportsAcquireT, supportsAcquireB = supportsAcquireB, supportsArithmetic = supportsArithmetic, supportsLogical = supportsLogical, supportsGet = supportsGet, supportsPutFull = supportsPutFull, supportsPutPartial = supportsPutPartial, supportsHint = supportsHint, mayDenyGet = mayDenyGet, mayDenyPut = mayDenyPut, alwaysGrantsT = alwaysGrantsT, fifoId = fifoId) } } object TLSlaveParameters { def v1( address: Seq[AddressSet], resources: Seq[Resource] = Seq(), regionType: RegionType.T = RegionType.GET_EFFECTS, executable: Boolean = false, nodePath: Seq[BaseNode] = Seq(), supportsAcquireT: TransferSizes = TransferSizes.none, supportsAcquireB: TransferSizes = TransferSizes.none, supportsArithmetic: TransferSizes = TransferSizes.none, supportsLogical: TransferSizes = TransferSizes.none, supportsGet: TransferSizes = TransferSizes.none, supportsPutFull: TransferSizes = TransferSizes.none, supportsPutPartial: TransferSizes = TransferSizes.none, supportsHint: TransferSizes = TransferSizes.none, mayDenyGet: Boolean = false, mayDenyPut: Boolean = false, alwaysGrantsT: Boolean = false, fifoId: Option[Int] = None) = { new TLSlaveParameters( setName = None, address = address, resources = resources, regionType = regionType, executable = executable, nodePath = nodePath, supports = TLMasterToSlaveTransferSizes( acquireT = supportsAcquireT, acquireB = supportsAcquireB, arithmetic = supportsArithmetic, logical = supportsLogical, get = supportsGet, putFull = supportsPutFull, putPartial = supportsPutPartial, hint = supportsHint), emits = TLSlaveToMasterTransferSizes.unknownEmits, mayDenyGet = mayDenyGet, mayDenyPut = mayDenyPut, alwaysGrantsT = alwaysGrantsT, fifoId = fifoId) } def v2( address: Seq[AddressSet], nodePath: Seq[BaseNode] = Seq(), resources: Seq[Resource] = Seq(), name: Option[String] = None, regionType: RegionType.T = RegionType.GET_EFFECTS, executable: Boolean = false, fifoId: Option[Int] = None, supports: TLMasterToSlaveTransferSizes = TLMasterToSlaveTransferSizes.unknownSupports, emits: TLSlaveToMasterTransferSizes = TLSlaveToMasterTransferSizes.unknownEmits, alwaysGrantsT: Boolean = false, mayDenyGet: Boolean = false, mayDenyPut: Boolean = false) = { new TLSlaveParameters( nodePath = nodePath, resources = resources, setName = name, address = address, regionType = regionType, executable = executable, fifoId = fifoId, supports = supports, emits = emits, alwaysGrantsT = alwaysGrantsT, mayDenyGet = mayDenyGet, mayDenyPut = mayDenyPut) } } object TLManagerParameters { @deprecated("Use TLSlaveParameters.v1 instead of TLManagerParameters","") def apply( address: Seq[AddressSet], resources: Seq[Resource] = Seq(), regionType: RegionType.T = RegionType.GET_EFFECTS, executable: Boolean = false, nodePath: Seq[BaseNode] = Seq(), supportsAcquireT: TransferSizes = TransferSizes.none, supportsAcquireB: TransferSizes = TransferSizes.none, supportsArithmetic: TransferSizes = TransferSizes.none, supportsLogical: TransferSizes = TransferSizes.none, supportsGet: TransferSizes = TransferSizes.none, supportsPutFull: TransferSizes = TransferSizes.none, supportsPutPartial: TransferSizes = TransferSizes.none, supportsHint: TransferSizes = TransferSizes.none, mayDenyGet: Boolean = false, mayDenyPut: Boolean = false, alwaysGrantsT: Boolean = false, fifoId: Option[Int] = None) = TLSlaveParameters.v1( address, resources, regionType, executable, nodePath, supportsAcquireT, supportsAcquireB, supportsArithmetic, supportsLogical, supportsGet, supportsPutFull, supportsPutPartial, supportsHint, mayDenyGet, mayDenyPut, alwaysGrantsT, fifoId, ) } case class TLChannelBeatBytes(a: Option[Int], b: Option[Int], c: Option[Int], d: Option[Int]) { def members = Seq(a, b, c, d) members.collect { case Some(beatBytes) => require (isPow2(beatBytes), "Data channel width must be a power of 2") } } object TLChannelBeatBytes{ def apply(beatBytes: Int): TLChannelBeatBytes = TLChannelBeatBytes( Some(beatBytes), Some(beatBytes), Some(beatBytes), Some(beatBytes)) def apply(): TLChannelBeatBytes = TLChannelBeatBytes( None, None, None, None) } class TLSlavePortParameters private( val slaves: Seq[TLSlaveParameters], val channelBytes: TLChannelBeatBytes, val endSinkId: Int, val minLatency: Int, val responseFields: Seq[BundleFieldBase], val requestKeys: Seq[BundleKeyBase]) extends SimpleProduct { def sortedSlaves = slaves.sortBy(_.sortedAddress.head) override def canEqual(that: Any): Boolean = that.isInstanceOf[TLSlavePortParameters] override def productPrefix = "TLSlavePortParameters" def productArity: Int = 6 def productElement(n: Int): Any = n match { case 0 => slaves case 1 => channelBytes case 2 => endSinkId case 3 => minLatency case 4 => responseFields case 5 => requestKeys case _ => throw new IndexOutOfBoundsException(n.toString) } require (!slaves.isEmpty, "Slave ports must have slaves") require (endSinkId >= 0, "Sink ids cannot be negative") require (minLatency >= 0, "Minimum required latency cannot be negative") // Using this API implies you cannot handle mixed-width busses def beatBytes = { channelBytes.members.foreach { width => require (width.isDefined && width == channelBytes.a) } channelBytes.a.get } // TODO this should be deprecated def managers = slaves def requireFifo(policy: TLFIFOFixer.Policy = TLFIFOFixer.allFIFO) = { val relevant = slaves.filter(m => policy(m)) relevant.foreach { m => require(m.fifoId == relevant.head.fifoId, s"${m.name} had fifoId ${m.fifoId}, which was not homogeneous (${slaves.map(s => (s.name, s.fifoId))}) ") } } // Bounds on required sizes def maxAddress = slaves.map(_.maxAddress).max def maxTransfer = slaves.map(_.maxTransfer).max def mayDenyGet = slaves.exists(_.mayDenyGet) def mayDenyPut = slaves.exists(_.mayDenyPut) // Diplomatically determined operation sizes emitted by all outward Slaves // as opposed to emits* which generate circuitry to check which specific addresses val allEmitClaims = slaves.map(_.emits).reduce( _ intersect _) // Operation Emitted by at least one outward Slaves // as opposed to emits* which generate circuitry to check which specific addresses val anyEmitClaims = slaves.map(_.emits).reduce(_ mincover _) // Diplomatically determined operation sizes supported by all outward Slaves // as opposed to supports* which generate circuitry to check which specific addresses val allSupportClaims = slaves.map(_.supports).reduce( _ intersect _) val allSupportAcquireT = allSupportClaims.acquireT val allSupportAcquireB = allSupportClaims.acquireB val allSupportArithmetic = allSupportClaims.arithmetic val allSupportLogical = allSupportClaims.logical val allSupportGet = allSupportClaims.get val allSupportPutFull = allSupportClaims.putFull val allSupportPutPartial = allSupportClaims.putPartial val allSupportHint = allSupportClaims.hint // Operation supported by at least one outward Slaves // as opposed to supports* which generate circuitry to check which specific addresses val anySupportClaims = slaves.map(_.supports).reduce(_ mincover _) val anySupportAcquireT = !anySupportClaims.acquireT.none val anySupportAcquireB = !anySupportClaims.acquireB.none val anySupportArithmetic = !anySupportClaims.arithmetic.none val anySupportLogical = !anySupportClaims.logical.none val anySupportGet = !anySupportClaims.get.none val anySupportPutFull = !anySupportClaims.putFull.none val anySupportPutPartial = !anySupportClaims.putPartial.none val anySupportHint = !anySupportClaims.hint.none // Supporting Acquire means being routable for GrantAck require ((endSinkId == 0) == !anySupportAcquireB) // These return Option[TLSlaveParameters] for your convenience def find(address: BigInt) = slaves.find(_.address.exists(_.contains(address))) // The safe version will check the entire address def findSafe(address: UInt) = VecInit(sortedSlaves.map(_.address.map(_.contains(address)).reduce(_ || _))) // The fast version assumes the address is valid (you probably want fastProperty instead of this function) def findFast(address: UInt) = { val routingMask = AddressDecoder(slaves.map(_.address)) VecInit(sortedSlaves.map(_.address.map(_.widen(~routingMask)).distinct.map(_.contains(address)).reduce(_ || _))) } // Compute the simplest AddressSets that decide a key def fastPropertyGroup[K](p: TLSlaveParameters => K): Seq[(K, Seq[AddressSet])] = { val groups = groupByIntoSeq(sortedSlaves.map(m => (p(m), m.address)))( _._1).map { case (k, vs) => k -> vs.flatMap(_._2) } val reductionMask = AddressDecoder(groups.map(_._2)) groups.map { case (k, seq) => k -> AddressSet.unify(seq.map(_.widen(~reductionMask)).distinct) } } // Select a property def fastProperty[K, D <: Data](address: UInt, p: TLSlaveParameters => K, d: K => D): D = Mux1H(fastPropertyGroup(p).map { case (v, a) => (a.map(_.contains(address)).reduce(_||_), d(v)) }) // Note: returns the actual fifoId + 1 or 0 if None def findFifoIdFast(address: UInt) = fastProperty(address, _.fifoId.map(_+1).getOrElse(0), (i:Int) => i.U) def hasFifoIdFast(address: UInt) = fastProperty(address, _.fifoId.isDefined, (b:Boolean) => b.B) // Does this Port manage this ID/address? def containsSafe(address: UInt) = findSafe(address).reduce(_ || _) private def addressHelper( // setting safe to false indicates that all addresses are expected to be legal, which might reduce circuit complexity safe: Boolean, // member filters out the sizes being checked based on the opcode being emitted or supported member: TLSlaveParameters => TransferSizes, address: UInt, lgSize: UInt, // range provides a limit on the sizes that are expected to be evaluated, which might reduce circuit complexity range: Option[TransferSizes]): Bool = { // trim reduces circuit complexity by intersecting checked sizes with the range argument def trim(x: TransferSizes) = range.map(_.intersect(x)).getOrElse(x) // groupBy returns an unordered map, convert back to Seq and sort the result for determinism // groupByIntoSeq is turning slaves into trimmed membership sizes // We are grouping all the slaves by their transfer size where // if they support the trimmed size then // member is the type of transfer that you are looking for (What you are trying to filter on) // When you consider membership, you are trimming the sizes to only the ones that you care about // you are filtering the slaves based on both whether they support a particular opcode and the size // Grouping the slaves based on the actual transfer size range they support // intersecting the range and checking their membership // FOR SUPPORTCASES instead of returning the list of slaves, // you are returning a map from transfer size to the set of // address sets that are supported for that transfer size // find all the slaves that support a certain type of operation and then group their addresses by the supported size // for every size there could be multiple address ranges // safety is a trade off between checking between all possible addresses vs only the addresses // that are known to have supported sizes // the trade off is 'checking all addresses is a more expensive circuit but will always give you // the right answer even if you give it an illegal address' // the not safe version is a cheaper circuit but if you give it an illegal address then it might produce the wrong answer // fast presumes address legality // This groupByIntoSeq deterministically groups all address sets for which a given `member` transfer size applies. // In the resulting Map of cases, the keys are transfer sizes and the values are all address sets which emit or support that size. val supportCases = groupByIntoSeq(slaves)(m => trim(member(m))).map { case (k: TransferSizes, vs: Seq[TLSlaveParameters]) => k -> vs.flatMap(_.address) } // safe produces a circuit that compares against all possible addresses, // whereas fast presumes that the address is legal but uses an efficient address decoder val mask = if (safe) ~BigInt(0) else AddressDecoder(supportCases.map(_._2)) // Simplified creates the most concise possible representation of each cases' address sets based on the mask. val simplified = supportCases.map { case (k, seq) => k -> AddressSet.unify(seq.map(_.widen(~mask)).distinct) } simplified.map { case (s, a) => // s is a size, you are checking for this size either the size of the operation is in s // We return an or-reduction of all the cases, checking whether any contains both the dynamic size and dynamic address on the wire. ((Some(s) == range).B || s.containsLg(lgSize)) && a.map(_.contains(address)).reduce(_||_) }.foldLeft(false.B)(_||_) } def supportsAcquireTSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.acquireT, address, lgSize, range) def supportsAcquireBSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.acquireB, address, lgSize, range) def supportsArithmeticSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.arithmetic, address, lgSize, range) def supportsLogicalSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.logical, address, lgSize, range) def supportsGetSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.get, address, lgSize, range) def supportsPutFullSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.putFull, address, lgSize, range) def supportsPutPartialSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.putPartial, address, lgSize, range) def supportsHintSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.hint, address, lgSize, range) def supportsAcquireTFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.acquireT, address, lgSize, range) def supportsAcquireBFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.acquireB, address, lgSize, range) def supportsArithmeticFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.arithmetic, address, lgSize, range) def supportsLogicalFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.logical, address, lgSize, range) def supportsGetFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.get, address, lgSize, range) def supportsPutFullFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.putFull, address, lgSize, range) def supportsPutPartialFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.putPartial, address, lgSize, range) def supportsHintFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.hint, address, lgSize, range) def emitsProbeSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.probe, address, lgSize, range) def emitsArithmeticSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.arithmetic, address, lgSize, range) def emitsLogicalSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.logical, address, lgSize, range) def emitsGetSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.get, address, lgSize, range) def emitsPutFullSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.putFull, address, lgSize, range) def emitsPutPartialSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.putPartial, address, lgSize, range) def emitsHintSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.hint, address, lgSize, range) def findTreeViolation() = slaves.flatMap(_.findTreeViolation()).headOption def isTree = !slaves.exists(!_.isTree) def infoString = "Slave Port Beatbytes = " + beatBytes + "\n" + "Slave Port MinLatency = " + minLatency + "\n\n" + slaves.map(_.infoString).mkString def v1copy( managers: Seq[TLSlaveParameters] = slaves, beatBytes: Int = -1, endSinkId: Int = endSinkId, minLatency: Int = minLatency, responseFields: Seq[BundleFieldBase] = responseFields, requestKeys: Seq[BundleKeyBase] = requestKeys) = { new TLSlavePortParameters( slaves = managers, channelBytes = if (beatBytes != -1) TLChannelBeatBytes(beatBytes) else channelBytes, endSinkId = endSinkId, minLatency = minLatency, responseFields = responseFields, requestKeys = requestKeys) } def v2copy( slaves: Seq[TLSlaveParameters] = slaves, channelBytes: TLChannelBeatBytes = channelBytes, endSinkId: Int = endSinkId, minLatency: Int = minLatency, responseFields: Seq[BundleFieldBase] = responseFields, requestKeys: Seq[BundleKeyBase] = requestKeys) = { new TLSlavePortParameters( slaves = slaves, channelBytes = channelBytes, endSinkId = endSinkId, minLatency = minLatency, responseFields = responseFields, requestKeys = requestKeys) } @deprecated("Use v1copy instead of copy","") def copy( managers: Seq[TLSlaveParameters] = slaves, beatBytes: Int = -1, endSinkId: Int = endSinkId, minLatency: Int = minLatency, responseFields: Seq[BundleFieldBase] = responseFields, requestKeys: Seq[BundleKeyBase] = requestKeys) = { v1copy( managers, beatBytes, endSinkId, minLatency, responseFields, requestKeys) } } object TLSlavePortParameters { def v1( managers: Seq[TLSlaveParameters], beatBytes: Int, endSinkId: Int = 0, minLatency: Int = 0, responseFields: Seq[BundleFieldBase] = Nil, requestKeys: Seq[BundleKeyBase] = Nil) = { new TLSlavePortParameters( slaves = managers, channelBytes = TLChannelBeatBytes(beatBytes), endSinkId = endSinkId, minLatency = minLatency, responseFields = responseFields, requestKeys = requestKeys) } } object TLManagerPortParameters { @deprecated("Use TLSlavePortParameters.v1 instead of TLManagerPortParameters","") def apply( managers: Seq[TLSlaveParameters], beatBytes: Int, endSinkId: Int = 0, minLatency: Int = 0, responseFields: Seq[BundleFieldBase] = Nil, requestKeys: Seq[BundleKeyBase] = Nil) = { TLSlavePortParameters.v1( managers, beatBytes, endSinkId, minLatency, responseFields, requestKeys) } } class TLMasterParameters private( val nodePath: Seq[BaseNode], val resources: Seq[Resource], val name: String, val visibility: Seq[AddressSet], val unusedRegionTypes: Set[RegionType.T], val executesOnly: Boolean, val requestFifo: Boolean, // only a request, not a requirement. applies to A, not C. val supports: TLSlaveToMasterTransferSizes, val emits: TLMasterToSlaveTransferSizes, val neverReleasesData: Boolean, val sourceId: IdRange) extends SimpleProduct { override def canEqual(that: Any): Boolean = that.isInstanceOf[TLMasterParameters] override def productPrefix = "TLMasterParameters" // We intentionally omit nodePath for equality testing / formatting def productArity: Int = 10 def productElement(n: Int): Any = n match { case 0 => name case 1 => sourceId case 2 => resources case 3 => visibility case 4 => unusedRegionTypes case 5 => executesOnly case 6 => requestFifo case 7 => supports case 8 => emits case 9 => neverReleasesData case _ => throw new IndexOutOfBoundsException(n.toString) } require (!sourceId.isEmpty) require (!visibility.isEmpty) require (supports.putFull.contains(supports.putPartial)) // We only support these operations if we support Probe (ie: we're a cache) require (supports.probe.contains(supports.arithmetic)) require (supports.probe.contains(supports.logical)) require (supports.probe.contains(supports.get)) require (supports.probe.contains(supports.putFull)) require (supports.probe.contains(supports.putPartial)) require (supports.probe.contains(supports.hint)) visibility.combinations(2).foreach { case Seq(x,y) => require (!x.overlaps(y), s"$x and $y overlap.") } val maxTransfer = List( supports.probe.max, supports.arithmetic.max, supports.logical.max, supports.get.max, supports.putFull.max, supports.putPartial.max).max def infoString = { s"""Master Name = ${name} |visibility = ${visibility} |emits = ${emits.infoString} |sourceId = ${sourceId} | |""".stripMargin } def v1copy( name: String = name, sourceId: IdRange = sourceId, nodePath: Seq[BaseNode] = nodePath, requestFifo: Boolean = requestFifo, visibility: Seq[AddressSet] = visibility, supportsProbe: TransferSizes = supports.probe, supportsArithmetic: TransferSizes = supports.arithmetic, supportsLogical: TransferSizes = supports.logical, supportsGet: TransferSizes = supports.get, supportsPutFull: TransferSizes = supports.putFull, supportsPutPartial: TransferSizes = supports.putPartial, supportsHint: TransferSizes = supports.hint) = { new TLMasterParameters( nodePath = nodePath, resources = this.resources, name = name, visibility = visibility, unusedRegionTypes = this.unusedRegionTypes, executesOnly = this.executesOnly, requestFifo = requestFifo, supports = TLSlaveToMasterTransferSizes( probe = supportsProbe, arithmetic = supportsArithmetic, logical = supportsLogical, get = supportsGet, putFull = supportsPutFull, putPartial = supportsPutPartial, hint = supportsHint), emits = this.emits, neverReleasesData = this.neverReleasesData, sourceId = sourceId) } def v2copy( nodePath: Seq[BaseNode] = nodePath, resources: Seq[Resource] = resources, name: String = name, visibility: Seq[AddressSet] = visibility, unusedRegionTypes: Set[RegionType.T] = unusedRegionTypes, executesOnly: Boolean = executesOnly, requestFifo: Boolean = requestFifo, supports: TLSlaveToMasterTransferSizes = supports, emits: TLMasterToSlaveTransferSizes = emits, neverReleasesData: Boolean = neverReleasesData, sourceId: IdRange = sourceId) = { new TLMasterParameters( nodePath = nodePath, resources = resources, name = name, visibility = visibility, unusedRegionTypes = unusedRegionTypes, executesOnly = executesOnly, requestFifo = requestFifo, supports = supports, emits = emits, neverReleasesData = neverReleasesData, sourceId = sourceId) } @deprecated("Use v1copy instead of copy","") def copy( name: String = name, sourceId: IdRange = sourceId, nodePath: Seq[BaseNode] = nodePath, requestFifo: Boolean = requestFifo, visibility: Seq[AddressSet] = visibility, supportsProbe: TransferSizes = supports.probe, supportsArithmetic: TransferSizes = supports.arithmetic, supportsLogical: TransferSizes = supports.logical, supportsGet: TransferSizes = supports.get, supportsPutFull: TransferSizes = supports.putFull, supportsPutPartial: TransferSizes = supports.putPartial, supportsHint: TransferSizes = supports.hint) = { v1copy( name = name, sourceId = sourceId, nodePath = nodePath, requestFifo = requestFifo, visibility = visibility, supportsProbe = supportsProbe, supportsArithmetic = supportsArithmetic, supportsLogical = supportsLogical, supportsGet = supportsGet, supportsPutFull = supportsPutFull, supportsPutPartial = supportsPutPartial, supportsHint = supportsHint) } } object TLMasterParameters { def v1( name: String, sourceId: IdRange = IdRange(0,1), nodePath: Seq[BaseNode] = Seq(), requestFifo: Boolean = false, visibility: Seq[AddressSet] = Seq(AddressSet(0, ~0)), supportsProbe: TransferSizes = TransferSizes.none, supportsArithmetic: TransferSizes = TransferSizes.none, supportsLogical: TransferSizes = TransferSizes.none, supportsGet: TransferSizes = TransferSizes.none, supportsPutFull: TransferSizes = TransferSizes.none, supportsPutPartial: TransferSizes = TransferSizes.none, supportsHint: TransferSizes = TransferSizes.none) = { new TLMasterParameters( nodePath = nodePath, resources = Nil, name = name, visibility = visibility, unusedRegionTypes = Set(), executesOnly = false, requestFifo = requestFifo, supports = TLSlaveToMasterTransferSizes( probe = supportsProbe, arithmetic = supportsArithmetic, logical = supportsLogical, get = supportsGet, putFull = supportsPutFull, putPartial = supportsPutPartial, hint = supportsHint), emits = TLMasterToSlaveTransferSizes.unknownEmits, neverReleasesData = false, sourceId = sourceId) } def v2( nodePath: Seq[BaseNode] = Seq(), resources: Seq[Resource] = Nil, name: String, visibility: Seq[AddressSet] = Seq(AddressSet(0, ~0)), unusedRegionTypes: Set[RegionType.T] = Set(), executesOnly: Boolean = false, requestFifo: Boolean = false, supports: TLSlaveToMasterTransferSizes = TLSlaveToMasterTransferSizes.unknownSupports, emits: TLMasterToSlaveTransferSizes = TLMasterToSlaveTransferSizes.unknownEmits, neverReleasesData: Boolean = false, sourceId: IdRange = IdRange(0,1)) = { new TLMasterParameters( nodePath = nodePath, resources = resources, name = name, visibility = visibility, unusedRegionTypes = unusedRegionTypes, executesOnly = executesOnly, requestFifo = requestFifo, supports = supports, emits = emits, neverReleasesData = neverReleasesData, sourceId = sourceId) } } object TLClientParameters { @deprecated("Use TLMasterParameters.v1 instead of TLClientParameters","") def apply( name: String, sourceId: IdRange = IdRange(0,1), nodePath: Seq[BaseNode] = Seq(), requestFifo: Boolean = false, visibility: Seq[AddressSet] = Seq(AddressSet.everything), supportsProbe: TransferSizes = TransferSizes.none, supportsArithmetic: TransferSizes = TransferSizes.none, supportsLogical: TransferSizes = TransferSizes.none, supportsGet: TransferSizes = TransferSizes.none, supportsPutFull: TransferSizes = TransferSizes.none, supportsPutPartial: TransferSizes = TransferSizes.none, supportsHint: TransferSizes = TransferSizes.none) = { TLMasterParameters.v1( name = name, sourceId = sourceId, nodePath = nodePath, requestFifo = requestFifo, visibility = visibility, supportsProbe = supportsProbe, supportsArithmetic = supportsArithmetic, supportsLogical = supportsLogical, supportsGet = supportsGet, supportsPutFull = supportsPutFull, supportsPutPartial = supportsPutPartial, supportsHint = supportsHint) } } class TLMasterPortParameters private( val masters: Seq[TLMasterParameters], val channelBytes: TLChannelBeatBytes, val minLatency: Int, val echoFields: Seq[BundleFieldBase], val requestFields: Seq[BundleFieldBase], val responseKeys: Seq[BundleKeyBase]) extends SimpleProduct { override def canEqual(that: Any): Boolean = that.isInstanceOf[TLMasterPortParameters] override def productPrefix = "TLMasterPortParameters" def productArity: Int = 6 def productElement(n: Int): Any = n match { case 0 => masters case 1 => channelBytes case 2 => minLatency case 3 => echoFields case 4 => requestFields case 5 => responseKeys case _ => throw new IndexOutOfBoundsException(n.toString) } require (!masters.isEmpty) require (minLatency >= 0) def clients = masters // Require disjoint ranges for Ids IdRange.overlaps(masters.map(_.sourceId)).foreach { case (x, y) => require (!x.overlaps(y), s"TLClientParameters.sourceId ${x} overlaps ${y}") } // Bounds on required sizes def endSourceId = masters.map(_.sourceId.end).max def maxTransfer = masters.map(_.maxTransfer).max // The unused sources < endSourceId def unusedSources: Seq[Int] = { val usedSources = masters.map(_.sourceId).sortBy(_.start) ((Seq(0) ++ usedSources.map(_.end)) zip usedSources.map(_.start)) flatMap { case (end, start) => end until start } } // Diplomatically determined operation sizes emitted by all inward Masters // as opposed to emits* which generate circuitry to check which specific addresses val allEmitClaims = masters.map(_.emits).reduce( _ intersect _) // Diplomatically determined operation sizes Emitted by at least one inward Masters // as opposed to emits* which generate circuitry to check which specific addresses val anyEmitClaims = masters.map(_.emits).reduce(_ mincover _) // Diplomatically determined operation sizes supported by all inward Masters // as opposed to supports* which generate circuitry to check which specific addresses val allSupportProbe = masters.map(_.supports.probe) .reduce(_ intersect _) val allSupportArithmetic = masters.map(_.supports.arithmetic).reduce(_ intersect _) val allSupportLogical = masters.map(_.supports.logical) .reduce(_ intersect _) val allSupportGet = masters.map(_.supports.get) .reduce(_ intersect _) val allSupportPutFull = masters.map(_.supports.putFull) .reduce(_ intersect _) val allSupportPutPartial = masters.map(_.supports.putPartial).reduce(_ intersect _) val allSupportHint = masters.map(_.supports.hint) .reduce(_ intersect _) // Diplomatically determined operation sizes supported by at least one master // as opposed to supports* which generate circuitry to check which specific addresses val anySupportProbe = masters.map(!_.supports.probe.none) .reduce(_ || _) val anySupportArithmetic = masters.map(!_.supports.arithmetic.none).reduce(_ || _) val anySupportLogical = masters.map(!_.supports.logical.none) .reduce(_ || _) val anySupportGet = masters.map(!_.supports.get.none) .reduce(_ || _) val anySupportPutFull = masters.map(!_.supports.putFull.none) .reduce(_ || _) val anySupportPutPartial = masters.map(!_.supports.putPartial.none).reduce(_ || _) val anySupportHint = masters.map(!_.supports.hint.none) .reduce(_ || _) // These return Option[TLMasterParameters] for your convenience def find(id: Int) = masters.find(_.sourceId.contains(id)) // Synthesizable lookup methods def find(id: UInt) = VecInit(masters.map(_.sourceId.contains(id))) def contains(id: UInt) = find(id).reduce(_ || _) def requestFifo(id: UInt) = Mux1H(find(id), masters.map(c => c.requestFifo.B)) // Available during RTL runtime, checks to see if (id, size) is supported by the master's (client's) diplomatic parameters private def sourceIdHelper(member: TLMasterParameters => TransferSizes)(id: UInt, lgSize: UInt) = { val allSame = masters.map(member(_) == member(masters(0))).reduce(_ && _) // this if statement is a coarse generalization of the groupBy in the sourceIdHelper2 version; // the case where there is only one group. if (allSame) member(masters(0)).containsLg(lgSize) else { // Find the master associated with ID and returns whether that particular master is able to receive transaction of lgSize Mux1H(find(id), masters.map(member(_).containsLg(lgSize))) } } // Check for support of a given operation at a specific id val supportsProbe = sourceIdHelper(_.supports.probe) _ val supportsArithmetic = sourceIdHelper(_.supports.arithmetic) _ val supportsLogical = sourceIdHelper(_.supports.logical) _ val supportsGet = sourceIdHelper(_.supports.get) _ val supportsPutFull = sourceIdHelper(_.supports.putFull) _ val supportsPutPartial = sourceIdHelper(_.supports.putPartial) _ val supportsHint = sourceIdHelper(_.supports.hint) _ // TODO: Merge sourceIdHelper2 with sourceIdHelper private def sourceIdHelper2( member: TLMasterParameters => TransferSizes, sourceId: UInt, lgSize: UInt): Bool = { // Because sourceIds are uniquely owned by each master, we use them to group the // cases that have to be checked. val emitCases = groupByIntoSeq(masters)(m => member(m)).map { case (k, vs) => k -> vs.map(_.sourceId) } emitCases.map { case (s, a) => (s.containsLg(lgSize)) && a.map(_.contains(sourceId)).reduce(_||_) }.foldLeft(false.B)(_||_) } // Check for emit of a given operation at a specific id def emitsAcquireT (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.acquireT, sourceId, lgSize) def emitsAcquireB (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.acquireB, sourceId, lgSize) def emitsArithmetic(sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.arithmetic, sourceId, lgSize) def emitsLogical (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.logical, sourceId, lgSize) def emitsGet (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.get, sourceId, lgSize) def emitsPutFull (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.putFull, sourceId, lgSize) def emitsPutPartial(sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.putPartial, sourceId, lgSize) def emitsHint (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.hint, sourceId, lgSize) def infoString = masters.map(_.infoString).mkString def v1copy( clients: Seq[TLMasterParameters] = masters, minLatency: Int = minLatency, echoFields: Seq[BundleFieldBase] = echoFields, requestFields: Seq[BundleFieldBase] = requestFields, responseKeys: Seq[BundleKeyBase] = responseKeys) = { new TLMasterPortParameters( masters = clients, channelBytes = channelBytes, minLatency = minLatency, echoFields = echoFields, requestFields = requestFields, responseKeys = responseKeys) } def v2copy( masters: Seq[TLMasterParameters] = masters, channelBytes: TLChannelBeatBytes = channelBytes, minLatency: Int = minLatency, echoFields: Seq[BundleFieldBase] = echoFields, requestFields: Seq[BundleFieldBase] = requestFields, responseKeys: Seq[BundleKeyBase] = responseKeys) = { new TLMasterPortParameters( masters = masters, channelBytes = channelBytes, minLatency = minLatency, echoFields = echoFields, requestFields = requestFields, responseKeys = responseKeys) } @deprecated("Use v1copy instead of copy","") def copy( clients: Seq[TLMasterParameters] = masters, minLatency: Int = minLatency, echoFields: Seq[BundleFieldBase] = echoFields, requestFields: Seq[BundleFieldBase] = requestFields, responseKeys: Seq[BundleKeyBase] = responseKeys) = { v1copy( clients, minLatency, echoFields, requestFields, responseKeys) } } object TLClientPortParameters { @deprecated("Use TLMasterPortParameters.v1 instead of TLClientPortParameters","") def apply( clients: Seq[TLMasterParameters], minLatency: Int = 0, echoFields: Seq[BundleFieldBase] = Nil, requestFields: Seq[BundleFieldBase] = Nil, responseKeys: Seq[BundleKeyBase] = Nil) = { TLMasterPortParameters.v1( clients, minLatency, echoFields, requestFields, responseKeys) } } object TLMasterPortParameters { def v1( clients: Seq[TLMasterParameters], minLatency: Int = 0, echoFields: Seq[BundleFieldBase] = Nil, requestFields: Seq[BundleFieldBase] = Nil, responseKeys: Seq[BundleKeyBase] = Nil) = { new TLMasterPortParameters( masters = clients, channelBytes = TLChannelBeatBytes(), minLatency = minLatency, echoFields = echoFields, requestFields = requestFields, responseKeys = responseKeys) } def v2( masters: Seq[TLMasterParameters], channelBytes: TLChannelBeatBytes = TLChannelBeatBytes(), minLatency: Int = 0, echoFields: Seq[BundleFieldBase] = Nil, requestFields: Seq[BundleFieldBase] = Nil, responseKeys: Seq[BundleKeyBase] = Nil) = { new TLMasterPortParameters( masters = masters, channelBytes = channelBytes, minLatency = minLatency, echoFields = echoFields, requestFields = requestFields, responseKeys = responseKeys) } } case class TLBundleParameters( addressBits: Int, dataBits: Int, sourceBits: Int, sinkBits: Int, sizeBits: Int, echoFields: Seq[BundleFieldBase], requestFields: Seq[BundleFieldBase], responseFields: Seq[BundleFieldBase], hasBCE: Boolean) { // Chisel has issues with 0-width wires require (addressBits >= 1) require (dataBits >= 8) require (sourceBits >= 1) require (sinkBits >= 1) require (sizeBits >= 1) require (isPow2(dataBits)) echoFields.foreach { f => require (f.key.isControl, s"${f} is not a legal echo field") } val addrLoBits = log2Up(dataBits/8) // Used to uniquify bus IP names def shortName = s"a${addressBits}d${dataBits}s${sourceBits}k${sinkBits}z${sizeBits}" + (if (hasBCE) "c" else "u") def union(x: TLBundleParameters) = TLBundleParameters( max(addressBits, x.addressBits), max(dataBits, x.dataBits), max(sourceBits, x.sourceBits), max(sinkBits, x.sinkBits), max(sizeBits, x.sizeBits), echoFields = BundleField.union(echoFields ++ x.echoFields), requestFields = BundleField.union(requestFields ++ x.requestFields), responseFields = BundleField.union(responseFields ++ x.responseFields), hasBCE || x.hasBCE) } object TLBundleParameters { val emptyBundleParams = TLBundleParameters( addressBits = 1, dataBits = 8, sourceBits = 1, sinkBits = 1, sizeBits = 1, echoFields = Nil, requestFields = Nil, responseFields = Nil, hasBCE = false) def union(x: Seq[TLBundleParameters]) = x.foldLeft(emptyBundleParams)((x,y) => x.union(y)) def apply(master: TLMasterPortParameters, slave: TLSlavePortParameters) = new TLBundleParameters( addressBits = log2Up(slave.maxAddress + 1), dataBits = slave.beatBytes * 8, sourceBits = log2Up(master.endSourceId), sinkBits = log2Up(slave.endSinkId), sizeBits = log2Up(log2Ceil(max(master.maxTransfer, slave.maxTransfer))+1), echoFields = master.echoFields, requestFields = BundleField.accept(master.requestFields, slave.requestKeys), responseFields = BundleField.accept(slave.responseFields, master.responseKeys), hasBCE = master.anySupportProbe && slave.anySupportAcquireB) } case class TLEdgeParameters( master: TLMasterPortParameters, slave: TLSlavePortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge { // legacy names: def manager = slave def client = master val maxTransfer = max(master.maxTransfer, slave.maxTransfer) val maxLgSize = log2Ceil(maxTransfer) // Sanity check the link... require (maxTransfer >= slave.beatBytes, s"Link's max transfer (${maxTransfer}) < ${slave.slaves.map(_.name)}'s beatBytes (${slave.beatBytes})") def diplomaticClaimsMasterToSlave = master.anyEmitClaims.intersect(slave.anySupportClaims) val bundle = TLBundleParameters(master, slave) def formatEdge = master.infoString + "\n" + slave.infoString } case class TLCreditedDelay( a: CreditedDelay, b: CreditedDelay, c: CreditedDelay, d: CreditedDelay, e: CreditedDelay) { def + (that: TLCreditedDelay): TLCreditedDelay = TLCreditedDelay( a = a + that.a, b = b + that.b, c = c + that.c, d = d + that.d, e = e + that.e) override def toString = s"(${a}, ${b}, ${c}, ${d}, ${e})" } object TLCreditedDelay { def apply(delay: CreditedDelay): TLCreditedDelay = apply(delay, delay.flip, delay, delay.flip, delay) } case class TLCreditedManagerPortParameters(delay: TLCreditedDelay, base: TLSlavePortParameters) {def infoString = base.infoString} case class TLCreditedClientPortParameters(delay: TLCreditedDelay, base: TLMasterPortParameters) {def infoString = base.infoString} case class TLCreditedEdgeParameters(client: TLCreditedClientPortParameters, manager: TLCreditedManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge { val delay = client.delay + manager.delay val bundle = TLBundleParameters(client.base, manager.base) def formatEdge = client.infoString + "\n" + manager.infoString } case class TLAsyncManagerPortParameters(async: AsyncQueueParams, base: TLSlavePortParameters) {def infoString = base.infoString} case class TLAsyncClientPortParameters(base: TLMasterPortParameters) {def infoString = base.infoString} case class TLAsyncBundleParameters(async: AsyncQueueParams, base: TLBundleParameters) case class TLAsyncEdgeParameters(client: TLAsyncClientPortParameters, manager: TLAsyncManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge { val bundle = TLAsyncBundleParameters(manager.async, TLBundleParameters(client.base, manager.base)) def formatEdge = client.infoString + "\n" + manager.infoString } case class TLRationalManagerPortParameters(direction: RationalDirection, base: TLSlavePortParameters) {def infoString = base.infoString} case class TLRationalClientPortParameters(base: TLMasterPortParameters) {def infoString = base.infoString} case class TLRationalEdgeParameters(client: TLRationalClientPortParameters, manager: TLRationalManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge { val bundle = TLBundleParameters(client.base, manager.base) def formatEdge = client.infoString + "\n" + manager.infoString } // To be unified, devices must agree on all of these terms case class ManagerUnificationKey( resources: Seq[Resource], regionType: RegionType.T, executable: Boolean, supportsAcquireT: TransferSizes, supportsAcquireB: TransferSizes, supportsArithmetic: TransferSizes, supportsLogical: TransferSizes, supportsGet: TransferSizes, supportsPutFull: TransferSizes, supportsPutPartial: TransferSizes, supportsHint: TransferSizes) object ManagerUnificationKey { def apply(x: TLSlaveParameters): ManagerUnificationKey = ManagerUnificationKey( resources = x.resources, regionType = x.regionType, executable = x.executable, supportsAcquireT = x.supportsAcquireT, supportsAcquireB = x.supportsAcquireB, supportsArithmetic = x.supportsArithmetic, supportsLogical = x.supportsLogical, supportsGet = x.supportsGet, supportsPutFull = x.supportsPutFull, supportsPutPartial = x.supportsPutPartial, supportsHint = x.supportsHint) } object ManagerUnification { def apply(slaves: Seq[TLSlaveParameters]): List[TLSlaveParameters] = { slaves.groupBy(ManagerUnificationKey.apply).values.map { seq => val agree = seq.forall(_.fifoId == seq.head.fifoId) seq(0).v1copy( address = AddressSet.unify(seq.flatMap(_.address)), fifoId = if (agree) seq(0).fifoId else None) }.toList } } case class TLBufferParams( a: BufferParams = BufferParams.none, b: BufferParams = BufferParams.none, c: BufferParams = BufferParams.none, d: BufferParams = BufferParams.none, e: BufferParams = BufferParams.none ) extends DirectedBuffers[TLBufferParams] { def copyIn(x: BufferParams) = this.copy(b = x, d = x) def copyOut(x: BufferParams) = this.copy(a = x, c = x, e = x) def copyInOut(x: BufferParams) = this.copyIn(x).copyOut(x) } /** Pretty printing of TL source id maps */ class TLSourceIdMap(tl: TLMasterPortParameters) extends IdMap[TLSourceIdMapEntry] { private val tlDigits = String.valueOf(tl.endSourceId-1).length() protected val fmt = s"\t[%${tlDigits}d, %${tlDigits}d) %s%s%s" private val sorted = tl.masters.sortBy(_.sourceId) val mapping: Seq[TLSourceIdMapEntry] = sorted.map { case c => TLSourceIdMapEntry(c.sourceId, c.name, c.supports.probe, c.requestFifo) } } case class TLSourceIdMapEntry(tlId: IdRange, name: String, isCache: Boolean, requestFifo: Boolean) extends IdMapEntry { val from = tlId val to = tlId val maxTransactionsInFlight = Some(tlId.size) } File MixedNode.scala: package org.chipsalliance.diplomacy.nodes import chisel3.{Data, DontCare, Wire} import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.{Field, Parameters} import org.chipsalliance.diplomacy.ValName import org.chipsalliance.diplomacy.sourceLine /** One side metadata of a [[Dangle]]. * * Describes one side of an edge going into or out of a [[BaseNode]]. * * @param serial * the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to. * @param index * the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to. */ case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] { import scala.math.Ordered.orderingToOrdered def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that)) } /** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]] * connects. * * [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] , * [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]]. * * @param source * the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within * that [[BaseNode]]. * @param sink * sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that * [[BaseNode]]. * @param flipped * flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to * `danglesIn`. * @param dataOpt * actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module */ case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) { def data = dataOpt.get } /** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often * derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually * implement the protocol. */ case class Edges[EI, EO](in: Seq[EI], out: Seq[EO]) /** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */ case object MonitorsEnabled extends Field[Boolean](true) /** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented. * * For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but * [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink * nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the * [[LazyModule]]. */ case object RenderFlipped extends Field[Boolean](false) /** The sealed node class in the package, all node are derived from it. * * @param inner * Sink interface implementation. * @param outer * Source interface implementation. * @param valName * val name of this node. * @tparam DI * Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters * describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected * [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port * parameters. * @tparam UI * Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing * the protocol parameters of a sink. For an [[InwardNode]], it is determined itself. * @tparam EI * Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers * specified for a sink according to protocol. * @tparam BI * Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface. * It should extends from [[chisel3.Data]], which represents the real hardware. * @tparam DO * Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters * describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself. * @tparam UO * Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing * the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]]. * Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters. * @tparam EO * Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers * specified for a source according to protocol. * @tparam BO * Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source * interface. It should extends from [[chisel3.Data]], which represents the real hardware. * * @note * Call Graph of [[MixedNode]] * - line `─`: source is process by a function and generate pass to others * - Arrow `→`: target of arrow is generated by source * * {{{ * (from the other node) * ┌─────────────────────────────────────────────────────────[[InwardNode.uiParams]]─────────────┐ * ↓ │ * (binding node when elaboration) [[OutwardNode.uoParams]]────────────────────────[[MixedNode.mapParamsU]]→──────────┐ │ * [[InwardNode.accPI]] │ │ │ * │ │ (based on protocol) │ * │ │ [[MixedNode.inner.edgeI]] │ * │ │ ↓ │ * ↓ │ │ │ * (immobilize after elaboration) (inward port from [[OutwardNode]]) │ ↓ │ * [[InwardNode.iBindings]]──┐ [[MixedNode.iDirectPorts]]────────────────────→[[MixedNode.iPorts]] [[InwardNode.uiParams]] │ * │ │ ↑ │ │ │ * │ │ │ [[OutwardNode.doParams]] │ │ * │ │ │ (from the other node) │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * │ │ │ └────────┬──────────────┤ │ * │ │ │ │ │ │ * │ │ │ │ (based on protocol) │ * │ │ │ │ [[MixedNode.inner.edgeI]] │ * │ │ │ │ │ │ * │ │ (from the other node) │ ↓ │ * │ └───[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] │ [[MixedNode.edgesIn]]───┐ │ * │ ↑ ↑ │ │ ↓ │ * │ │ │ │ │ [[MixedNode.in]] │ * │ │ │ │ ↓ ↑ │ * │ (solve star connection) │ │ │ [[MixedNode.bundleIn]]──┘ │ * ├───[[MixedNode.resolveStar]]→─┼─────────────────────────────┤ └────────────────────────────────────┐ │ * │ │ │ [[MixedNode.bundleOut]]─┐ │ │ * │ │ │ ↑ ↓ │ │ * │ │ │ │ [[MixedNode.out]] │ │ * │ ↓ ↓ │ ↑ │ │ * │ ┌─────[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]──┘ │ │ * │ │ (from the other node) ↑ │ │ * │ │ │ │ │ │ * │ │ │ [[MixedNode.outer.edgeO]] │ │ * │ │ │ (based on protocol) │ │ * │ │ │ │ │ │ * │ │ │ ┌────────────────────────────────────────┤ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * (immobilize after elaboration)│ ↓ │ │ │ │ * [[OutwardNode.oBindings]]─┘ [[MixedNode.oDirectPorts]]───→[[MixedNode.oPorts]] [[OutwardNode.doParams]] │ │ * ↑ (inward port from [[OutwardNode]]) │ │ │ │ * │ ┌─────────────────────────────────────────┤ │ │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * [[OutwardNode.accPO]] │ ↓ │ │ │ * (binding node when elaboration) │ [[InwardNode.diParams]]─────→[[MixedNode.mapParamsD]]────────────────────────────┘ │ │ * │ ↑ │ │ * │ └──────────────────────────────────────────────────────────────────────────────────────────┘ │ * └──────────────────────────────────────────────────────────────────────────────────────────────────────────┘ * }}} */ abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data]( val inner: InwardNodeImp[DI, UI, EI, BI], val outer: OutwardNodeImp[DO, UO, EO, BO] )( implicit valName: ValName) extends BaseNode with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO] with InwardNode[DI, UI, BI] with OutwardNode[DO, UO, BO] { // Generate a [[NodeHandle]] with inward and outward node are both this node. val inward = this val outward = this /** Debug info of nodes binding. */ def bindingInfo: String = s"""$iBindingInfo |$oBindingInfo |""".stripMargin /** Debug info of ports connecting. */ def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}] |${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}] |""".stripMargin /** Debug info of parameters propagations. */ def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}] |${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}] |${diParams.size} downstream inward parameters: [${diParams.mkString(",")}] |${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}] |""".stripMargin /** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and * [[MixedNode.iPortMapping]]. * * Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward * stars and outward stars. * * This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type * of node. * * @param iKnown * Number of known-size ([[BIND_ONCE]]) input bindings. * @param oKnown * Number of known-size ([[BIND_ONCE]]) output bindings. * @param iStar * Number of unknown size ([[BIND_STAR]]) input bindings. * @param oStar * Number of unknown size ([[BIND_STAR]]) output bindings. * @return * A Tuple of the resolved number of input and output connections. */ protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int) /** Function to generate downward-flowing outward params from the downward-flowing input params and the current output * ports. * * @param n * The size of the output sequence to generate. * @param p * Sequence of downward-flowing input parameters of this node. * @return * A `n`-sized sequence of downward-flowing output edge parameters. */ protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO] /** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]]. * * @param n * Size of the output sequence. * @param p * Upward-flowing output edge parameters. * @return * A n-sized sequence of upward-flowing input edge parameters. */ protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI] /** @return * The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with * [[BIND_STAR]]. */ protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR) /** @return * The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of * output bindings bound with [[BIND_STAR]]. */ protected[diplomacy] lazy val sourceCard: Int = iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR) /** @return list of nodes involved in flex bindings with this node. */ protected[diplomacy] lazy val flexes: Seq[BaseNode] = oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2) /** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin * greedily taking up the remaining connections. * * @return * A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return * value is not relevant. */ protected[diplomacy] lazy val flexOffset: Int = { /** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex * operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a * connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of * each node in the current set and decide whether they should be added to the set or not. * * @return * the mapping of [[BaseNode]] indexed by their serial numbers. */ def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = { if (visited.contains(v.serial) || !v.flexibleArityDirection) { visited } else { v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum)) } } /** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node. * * @example * {{{ * a :*=* b :*=* c * d :*=* b * e :*=* f * }}} * * `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)` */ val flexSet = DFS(this, Map()).values /** The total number of :*= operators where we're on the left. */ val allSink = flexSet.map(_.sinkCard).sum /** The total number of :=* operators used when we're on the right. */ val allSource = flexSet.map(_.sourceCard).sum require( allSink == 0 || allSource == 0, s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction." ) allSink - allSource } /** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */ protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = { if (flexibleArityDirection) flexOffset else if (n.flexibleArityDirection) n.flexOffset else 0 } /** For a node which is connected between two nodes, select the one that will influence the direction of the flex * resolution. */ protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = { val dir = edgeArityDirection(n) if (dir < 0) l else if (dir > 0) r else 1 } /** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */ private var starCycleGuard = false /** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star" * connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also * need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct * edge parameters and later build up correct bundle connections. * * [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding * operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort * (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*= * bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N` */ protected[diplomacy] lazy val ( oPortMapping: Seq[(Int, Int)], iPortMapping: Seq[(Int, Int)], oStar: Int, iStar: Int ) = { try { if (starCycleGuard) throw StarCycleException() starCycleGuard = true // For a given node N... // Number of foo :=* N // + Number of bar :=* foo :*=* N val oStars = oBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0) } // Number of N :*= foo // + Number of N :*=* foo :*= bar val iStars = iBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0) } // 1 for foo := N // + bar.iStar for bar :*= foo :*=* N // + foo.iStar for foo :*= N // + 0 for foo :=* N val oKnown = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, 0, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => 0 } }.sum // 1 for N := foo // + bar.oStar for N :*=* foo :=* bar // + foo.oStar for N :=* foo // + 0 for N :*= foo val iKnown = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, 0) case BIND_QUERY => n.oStar case BIND_STAR => 0 } }.sum // Resolve star depends on the node subclass to implement the algorithm for this. val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars) // Cumulative list of resolved outward binding range starting points val oSum = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => oStar } }.scanLeft(0)(_ + _) // Cumulative list of resolved inward binding range starting points val iSum = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar) case BIND_QUERY => n.oStar case BIND_STAR => iStar } }.scanLeft(0)(_ + _) // Create ranges for each binding based on the running sums and return // those along with resolved values for the star operations. (oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar) } catch { case c: StarCycleException => throw c.copy(loop = context +: c.loop) } } /** Sequence of inward ports. * * This should be called after all star bindings are resolved. * * Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. * `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this * connection was made in the source code. */ protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oBindings.flatMap { case (i, n, _, p, s) => // for each binding operator in this node, look at what it connects to val (start, end) = n.iPortMapping(i) (start until end).map { j => (j, n, p, s) } } /** Sequence of outward ports. * * This should be called after all star bindings are resolved. * * `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of * outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection * was made in the source code. */ protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iBindings.flatMap { case (i, n, _, p, s) => // query this port index range of this node in the other side of node. val (start, end) = n.oPortMapping(i) (start until end).map { j => (j, n, p, s) } } // Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree // Thus, there must exist an Eulerian path and the below algorithms terminate @scala.annotation.tailrec private def oTrace( tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) ): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.iForward(i) match { case None => (i, n, p, s) case Some((j, m)) => oTrace((j, m, p, s)) } } @scala.annotation.tailrec private def iTrace( tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) ): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.oForward(i) match { case None => (i, n, p, s) case Some((j, m)) => iTrace((j, m, p, s)) } } /** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - Numeric index of this binding in the [[InwardNode]] on the other end. * - [[InwardNode]] on the other end of this binding. * - A view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace) /** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - numeric index of this binding in [[OutwardNode]] on the other end. * - [[OutwardNode]] on the other end of this binding. * - a view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace) private var oParamsCycleGuard = false protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) } protected[diplomacy] lazy val doParams: Seq[DO] = { try { if (oParamsCycleGuard) throw DownwardCycleException() oParamsCycleGuard = true val o = mapParamsD(oPorts.size, diParams) require( o.size == oPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of outward ports should equal the number of produced outward parameters. |$context |$connectedPortsInfo |Downstreamed inward parameters: [${diParams.mkString(",")}] |Produced outward parameters: [${o.mkString(",")}] |""".stripMargin ) o.map(outer.mixO(_, this)) } catch { case c: DownwardCycleException => throw c.copy(loop = context +: c.loop) } } private var iParamsCycleGuard = false protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) } protected[diplomacy] lazy val uiParams: Seq[UI] = { try { if (iParamsCycleGuard) throw UpwardCycleException() iParamsCycleGuard = true val i = mapParamsU(iPorts.size, uoParams) require( i.size == iPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of inward ports should equal the number of produced inward parameters. |$context |$connectedPortsInfo |Upstreamed outward parameters: [${uoParams.mkString(",")}] |Produced inward parameters: [${i.mkString(",")}] |""".stripMargin ) i.map(inner.mixI(_, this)) } catch { case c: UpwardCycleException => throw c.copy(loop = context +: c.loop) } } /** Outward edge parameters. */ protected[diplomacy] lazy val edgesOut: Seq[EO] = (oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) } /** Inward edge parameters. */ protected[diplomacy] lazy val edgesIn: Seq[EI] = (iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) } /** A tuple of the input edge parameters and output edge parameters for the edges bound to this node. * * If you need to access to the edges of a foreign Node, use this method (in/out create bundles). */ lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut) /** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */ protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e => val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } /** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */ protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e => val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(serial, i), sink = HalfEdge(n.serial, j), flipped = false, name = wirePrefix + "out", dataOpt = None ) } private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(n.serial, j), sink = HalfEdge(serial, i), flipped = true, name = wirePrefix + "in", dataOpt = None ) } /** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */ protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleOut(i))) } /** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */ protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleIn(i))) } private[diplomacy] var instantiated = false /** Gather Bundle and edge parameters of outward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def out: Seq[(BO, EO)] = { require( instantiated, s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleOut.zip(edgesOut) } /** Gather Bundle and edge parameters of inward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def in: Seq[(BI, EI)] = { require( instantiated, s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleIn.zip(edgesIn) } /** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires, * instantiate monitors on all input ports if appropriate, and return all the dangles of this node. */ protected[diplomacy] def instantiate(): Seq[Dangle] = { instantiated = true if (!circuitIdentity) { (iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) } } danglesOut ++ danglesIn } protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn /** Connects the outward part of a node with the inward part of this node. */ protected[diplomacy] def bind( h: OutwardNode[DI, UI, BI], binding: NodeBinding )( implicit p: Parameters, sourceInfo: SourceInfo ): Unit = { val x = this // x := y val y = h sourceLine(sourceInfo, " at ", "") val i = x.iPushed val o = y.oPushed y.oPush( i, x, binding match { case BIND_ONCE => BIND_ONCE case BIND_FLEX => BIND_FLEX case BIND_STAR => BIND_QUERY case BIND_QUERY => BIND_STAR } ) x.iPush(o, y, binding) } /* Metadata for printing the node graph. */ def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) => val re = inner.render(e) (n, re.copy(flipped = re.flipped != p(RenderFlipped))) } /** Metadata for printing the node graph */ def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) } } File DescribedSRAM.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3.{Data, SyncReadMem, Vec} import chisel3.util.log2Ceil object DescribedSRAM { def apply[T <: Data]( name: String, desc: String, size: BigInt, // depth data: T ): SyncReadMem[T] = { val mem = SyncReadMem(size, data) mem.suggestName(name) val granWidth = data match { case v: Vec[_] => v.head.getWidth case d => d.getWidth } val uid = 0 Annotated.srams( component = mem, name = name, address_width = log2Ceil(size), data_width = data.getWidth, depth = size, description = desc, write_mask_granularity = granWidth ) mem } } File Edges.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.util._ class TLEdge( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdgeParameters(client, manager, params, sourceInfo) { def isAligned(address: UInt, lgSize: UInt): Bool = { if (maxLgSize == 0) true.B else { val mask = UIntToOH1(lgSize, maxLgSize) (address & mask) === 0.U } } def mask(address: UInt, lgSize: UInt): UInt = MaskGen(address, lgSize, manager.beatBytes) def staticHasData(bundle: TLChannel): Option[Boolean] = { bundle match { case _:TLBundleA => { // Do there exist A messages with Data? val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial // Do there exist A messages without Data? val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint // Statically optimize the case where hasData is a constant if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None } case _:TLBundleB => { // Do there exist B messages with Data? val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial // Do there exist B messages without Data? val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint // Statically optimize the case where hasData is a constant if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None } case _:TLBundleC => { // Do there eixst C messages with Data? val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe // Do there exist C messages without Data? val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None } case _:TLBundleD => { // Do there eixst D messages with Data? val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB // Do there exist D messages without Data? val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None } case _:TLBundleE => Some(false) } } def isRequest(x: TLChannel): Bool = { x match { case a: TLBundleA => true.B case b: TLBundleB => true.B case c: TLBundleC => c.opcode(2) && c.opcode(1) // opcode === TLMessages.Release || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(2) && !d.opcode(1) // opcode === TLMessages.Grant || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } } def isResponse(x: TLChannel): Bool = { x match { case a: TLBundleA => false.B case b: TLBundleB => false.B case c: TLBundleC => !c.opcode(2) || !c.opcode(1) // opcode =/= TLMessages.Release && // opcode =/= TLMessages.ReleaseData case d: TLBundleD => true.B // Grant isResponse + isRequest case e: TLBundleE => true.B } } def hasData(x: TLChannel): Bool = { val opdata = x match { case a: TLBundleA => !a.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case b: TLBundleB => !b.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case c: TLBundleC => c.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.ProbeAckData || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } staticHasData(x).map(_.B).getOrElse(opdata) } def opcode(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.opcode case b: TLBundleB => b.opcode case c: TLBundleC => c.opcode case d: TLBundleD => d.opcode } } def param(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.param case b: TLBundleB => b.param case c: TLBundleC => c.param case d: TLBundleD => d.param } } def size(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.size case b: TLBundleB => b.size case c: TLBundleC => c.size case d: TLBundleD => d.size } } def data(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.data case b: TLBundleB => b.data case c: TLBundleC => c.data case d: TLBundleD => d.data } } def corrupt(x: TLDataChannel): Bool = { x match { case a: TLBundleA => a.corrupt case b: TLBundleB => b.corrupt case c: TLBundleC => c.corrupt case d: TLBundleD => d.corrupt } } def mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.mask case b: TLBundleB => b.mask case c: TLBundleC => mask(c.address, c.size) } } def full_mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => mask(a.address, a.size) case b: TLBundleB => mask(b.address, b.size) case c: TLBundleC => mask(c.address, c.size) } } def address(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.address case b: TLBundleB => b.address case c: TLBundleC => c.address } } def source(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.source case b: TLBundleB => b.source case c: TLBundleC => c.source case d: TLBundleD => d.source } } def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes) def addr_lo(x: UInt): UInt = if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0) def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x)) def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x)) def numBeats(x: TLChannel): UInt = { x match { case _: TLBundleE => 1.U case bundle: TLDataChannel => { val hasData = this.hasData(bundle) val size = this.size(bundle) val cutoff = log2Ceil(manager.beatBytes) val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U val decode = UIntToOH(size, maxLgSize+1) >> cutoff Mux(hasData, decode | small.asUInt, 1.U) } } } def numBeats1(x: TLChannel): UInt = { x match { case _: TLBundleE => 0.U case bundle: TLDataChannel => { if (maxLgSize == 0) { 0.U } else { val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes) Mux(hasData(bundle), decode, 0.U) } } } } def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val beats1 = numBeats1(bits) val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W)) val counter1 = counter - 1.U val first = counter === 0.U val last = counter === 1.U || beats1 === 0.U val done = last && fire val count = (beats1 & ~counter1) when (fire) { counter := Mux(first, beats1, counter1) } (first, last, done, count) } def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1 def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire) def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid) def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2 def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire) def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid) def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3 def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire) def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid) def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3) } def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire) def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid) def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4) } def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire) def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid) def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes)) } def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire) def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid) // Does the request need T permissions to be executed? def needT(a: TLBundleA): Bool = { val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLPermissions.NtoB -> false.B, TLPermissions.NtoT -> true.B, TLPermissions.BtoT -> true.B)) MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array( TLMessages.PutFullData -> true.B, TLMessages.PutPartialData -> true.B, TLMessages.ArithmeticData -> true.B, TLMessages.LogicalData -> true.B, TLMessages.Get -> false.B, TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLHints.PREFETCH_READ -> false.B, TLHints.PREFETCH_WRITE -> true.B)), TLMessages.AcquireBlock -> acq_needT, TLMessages.AcquirePerm -> acq_needT)) } // This is a very expensive circuit; use only if you really mean it! def inFlight(x: TLBundle): (UInt, UInt) = { val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W)) val bce = manager.anySupportAcquireB && client.anySupportProbe val (a_first, a_last, _) = firstlast(x.a) val (b_first, b_last, _) = firstlast(x.b) val (c_first, c_last, _) = firstlast(x.c) val (d_first, d_last, _) = firstlast(x.d) val (e_first, e_last, _) = firstlast(x.e) val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits)) val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits)) val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits)) val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits)) val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits)) val a_inc = x.a.fire && a_first && a_request val b_inc = x.b.fire && b_first && b_request val c_inc = x.c.fire && c_first && c_request val d_inc = x.d.fire && d_first && d_request val e_inc = x.e.fire && e_first && e_request val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil)) val a_dec = x.a.fire && a_last && a_response val b_dec = x.b.fire && b_last && b_response val c_dec = x.c.fire && c_last && c_response val d_dec = x.d.fire && d_last && d_response val e_dec = x.e.fire && e_last && e_response val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil)) val next_flight = flight + PopCount(inc) - PopCount(dec) flight := next_flight (flight, next_flight) } def prettySourceMapping(context: String): String = { s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n" } } class TLEdgeOut( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { // Transfers def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquireBlock a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquirePerm a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.Release c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ReleaseData c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) = Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B) def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAck c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions, data) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAckData c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B) def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink) def GrantAck(toSink: UInt): TLBundleE = { val e = Wire(new TLBundleE(bundle)) e.sink := toSink e } // Accesses def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsGetFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Get a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutFullFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutFullData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, mask, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutPartialFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutPartialData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask a.data := data a.corrupt := corrupt (legal, a) } def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = { require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsArithmeticFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.ArithmeticData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsLogicalFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.LogicalData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = { require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsHintFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Hint a.param := param a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data) def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAckData c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size) def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.HintAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } } class TLEdgeIn( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = { val todo = x.filter(!_.isEmpty) val heads = todo.map(_.head) val tails = todo.map(_.tail) if (todo.isEmpty) Nil else { heads +: myTranspose(tails) } } // Transfers def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = { require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}") val legal = client.supportsProbe(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Probe b.param := capPermissions b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.Grant d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.GrantData d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B) def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.ReleaseAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } // Accesses def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = { require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsGet(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Get b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsPutFull(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutFullData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, mask, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsPutPartial(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutPartialData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask b.data := data b.corrupt := corrupt (legal, b) } def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsArithmetic(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.ArithmeticData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsLogical(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.LogicalData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = { require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsHint(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Hint b.param := param b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size) def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied) def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B) def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data) def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAckData d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B) def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied) def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B) def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.HintAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } }
module ICache( // @[ICache.scala:251:7] input clock, // @[ICache.scala:251:7] input reset, // @[ICache.scala:251:7] input auto_master_out_a_ready, // @[LazyModuleImp.scala:107:25] output auto_master_out_a_valid, // @[LazyModuleImp.scala:107:25] output [31:0] auto_master_out_a_bits_address, // @[LazyModuleImp.scala:107:25] input auto_master_out_d_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_master_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25] input [1:0] auto_master_out_d_bits_param, // @[LazyModuleImp.scala:107:25] input [3:0] auto_master_out_d_bits_size, // @[LazyModuleImp.scala:107:25] input [2:0] auto_master_out_d_bits_sink, // @[LazyModuleImp.scala:107:25] input auto_master_out_d_bits_denied, // @[LazyModuleImp.scala:107:25] input [63:0] auto_master_out_d_bits_data, // @[LazyModuleImp.scala:107:25] input auto_master_out_d_bits_corrupt, // @[LazyModuleImp.scala:107:25] input io_req_valid, // @[ICache.scala:256:14] input [38:0] io_req_bits_addr, // @[ICache.scala:256:14] input [31:0] io_s1_paddr, // @[ICache.scala:256:14] input [38:0] io_s2_vaddr, // @[ICache.scala:256:14] input io_s1_kill, // @[ICache.scala:256:14] input io_s2_kill, // @[ICache.scala:256:14] input io_s2_cacheable, // @[ICache.scala:256:14] input io_s2_prefetch, // @[ICache.scala:256:14] output io_resp_valid, // @[ICache.scala:256:14] output [31:0] io_resp_bits_data, // @[ICache.scala:256:14] output io_resp_bits_ae, // @[ICache.scala:256:14] input io_invalidate, // @[ICache.scala:256:14] output io_errors_bus_valid, // @[ICache.scala:256:14] output [31:0] io_errors_bus_bits, // @[ICache.scala:256:14] output io_perf_acquire // @[ICache.scala:256:14] ); wire rockettile_icache_data_arrays_1_MPORT_2_mask_7; // @[ICache.scala:586:102] wire rockettile_icache_data_arrays_1_MPORT_2_mask_6; // @[ICache.scala:586:102] wire rockettile_icache_data_arrays_1_MPORT_2_mask_5; // @[ICache.scala:586:102] wire rockettile_icache_data_arrays_1_MPORT_2_mask_4; // @[ICache.scala:586:102] wire rockettile_icache_data_arrays_1_MPORT_2_mask_3; // @[ICache.scala:586:102] wire rockettile_icache_data_arrays_1_MPORT_2_mask_2; // @[ICache.scala:586:102] wire rockettile_icache_data_arrays_1_MPORT_2_mask_1; // @[ICache.scala:586:102] wire rockettile_icache_data_arrays_1_MPORT_2_mask_0; // @[ICache.scala:586:102] wire rockettile_icache_data_arrays_0_MPORT_1_mask_7; // @[ICache.scala:586:102] wire rockettile_icache_data_arrays_0_MPORT_1_mask_6; // @[ICache.scala:586:102] wire rockettile_icache_data_arrays_0_MPORT_1_mask_5; // @[ICache.scala:586:102] wire rockettile_icache_data_arrays_0_MPORT_1_mask_4; // @[ICache.scala:586:102] wire rockettile_icache_data_arrays_0_MPORT_1_mask_3; // @[ICache.scala:586:102] wire rockettile_icache_data_arrays_0_MPORT_1_mask_2; // @[ICache.scala:586:102] wire rockettile_icache_data_arrays_0_MPORT_1_mask_1; // @[ICache.scala:586:102] wire rockettile_icache_data_arrays_0_MPORT_1_mask_0; // @[ICache.scala:586:102] wire rockettile_icache_tag_array_MPORT_mask_7; // @[ICache.scala:436:97] wire rockettile_icache_tag_array_MPORT_mask_6; // @[ICache.scala:436:97] wire rockettile_icache_tag_array_MPORT_mask_5; // @[ICache.scala:436:97] wire rockettile_icache_tag_array_MPORT_mask_4; // @[ICache.scala:436:97] wire rockettile_icache_tag_array_MPORT_mask_3; // @[ICache.scala:436:97] wire rockettile_icache_tag_array_MPORT_mask_2; // @[ICache.scala:436:97] wire rockettile_icache_tag_array_MPORT_mask_1; // @[ICache.scala:436:97] wire rockettile_icache_tag_array_MPORT_mask_0; // @[ICache.scala:436:97] wire s1_tag_hit_6; // @[ICache.scala:345:24] wire s1_tag_hit_5; // @[ICache.scala:345:24] wire s1_tag_hit_4; // @[ICache.scala:345:24] wire s1_tag_hit_3; // @[ICache.scala:345:24] wire s1_tag_hit_2; // @[ICache.scala:345:24] wire s1_tag_hit_1; // @[ICache.scala:345:24] wire s1_tag_hit_0; // @[ICache.scala:345:24] wire [255:0] _rockettile_icache_data_arrays_1_RW0_rdata; // @[DescribedSRAM.scala:17:26] wire [255:0] _rockettile_icache_data_arrays_0_RW0_rdata; // @[DescribedSRAM.scala:17:26] wire [167:0] _rockettile_icache_tag_array_RW0_rdata; // @[DescribedSRAM.scala:17:26] wire _repl_way_v0_prng_io_out_0; // @[PRNG.scala:91:22] wire _repl_way_v0_prng_io_out_1; // @[PRNG.scala:91:22] wire _repl_way_v0_prng_io_out_2; // @[PRNG.scala:91:22] wire _repl_way_v0_prng_io_out_3; // @[PRNG.scala:91:22] wire _repl_way_v0_prng_io_out_4; // @[PRNG.scala:91:22] wire _repl_way_v0_prng_io_out_5; // @[PRNG.scala:91:22] wire _repl_way_v0_prng_io_out_6; // @[PRNG.scala:91:22] wire _repl_way_v0_prng_io_out_7; // @[PRNG.scala:91:22] wire _repl_way_v0_prng_io_out_8; // @[PRNG.scala:91:22] wire _repl_way_v0_prng_io_out_9; // @[PRNG.scala:91:22] wire _repl_way_v0_prng_io_out_10; // @[PRNG.scala:91:22] wire _repl_way_v0_prng_io_out_11; // @[PRNG.scala:91:22] wire _repl_way_v0_prng_io_out_12; // @[PRNG.scala:91:22] wire _repl_way_v0_prng_io_out_13; // @[PRNG.scala:91:22] wire _repl_way_v0_prng_io_out_14; // @[PRNG.scala:91:22] wire _repl_way_v0_prng_io_out_15; // @[PRNG.scala:91:22] wire auto_master_out_a_ready_0 = auto_master_out_a_ready; // @[ICache.scala:251:7] wire auto_master_out_d_valid_0 = auto_master_out_d_valid; // @[ICache.scala:251:7] wire [2:0] auto_master_out_d_bits_opcode_0 = auto_master_out_d_bits_opcode; // @[ICache.scala:251:7] wire [1:0] auto_master_out_d_bits_param_0 = auto_master_out_d_bits_param; // @[ICache.scala:251:7] wire [3:0] auto_master_out_d_bits_size_0 = auto_master_out_d_bits_size; // @[ICache.scala:251:7] wire [2:0] auto_master_out_d_bits_sink_0 = auto_master_out_d_bits_sink; // @[ICache.scala:251:7] wire auto_master_out_d_bits_denied_0 = auto_master_out_d_bits_denied; // @[ICache.scala:251:7] wire [63:0] auto_master_out_d_bits_data_0 = auto_master_out_d_bits_data; // @[ICache.scala:251:7] wire auto_master_out_d_bits_corrupt_0 = auto_master_out_d_bits_corrupt; // @[ICache.scala:251:7] wire io_req_valid_0 = io_req_valid; // @[ICache.scala:251:7] wire [38:0] io_req_bits_addr_0 = io_req_bits_addr; // @[ICache.scala:251:7] wire [31:0] io_s1_paddr_0 = io_s1_paddr; // @[ICache.scala:251:7] wire [38:0] io_s2_vaddr_0 = io_s2_vaddr; // @[ICache.scala:251:7] wire io_s1_kill_0 = io_s1_kill; // @[ICache.scala:251:7] wire io_s2_kill_0 = io_s2_kill; // @[ICache.scala:251:7] wire io_s2_cacheable_0 = io_s2_cacheable; // @[ICache.scala:251:7] wire io_s2_prefetch_0 = io_s2_prefetch; // @[ICache.scala:251:7] wire io_invalidate_0 = io_invalidate; // @[ICache.scala:251:7] wire _repl_way_T_13 = reset; // @[ICache.scala:413:11] wire auto_master_out_d_ready = 1'h1; // @[ICache.scala:251:7] wire io_clock_enabled = 1'h1; // @[ICache.scala:251:7] wire masterNodeOut_d_ready = 1'h1; // @[MixedNode.scala:542:17] wire _refill_fire_T_1 = 1'h1; // @[ICache.scala:374:38] wire _masterNodeOut_d_ready_T = 1'h1; // @[ICache.scala:401:21] wire _repl_way_T_12 = 1'h1; // @[ICache.scala:413:12] wire _scratchpadHit_T = 1'h1; // @[ICache.scala:316:43] wire _s1_vb_T_4 = 1'h1; // @[ICache.scala:508:74] wire _scratchpadHit_T_11 = 1'h1; // @[ICache.scala:316:43] wire _s1_vb_T_9 = 1'h1; // @[ICache.scala:508:74] wire _scratchpadHit_T_22 = 1'h1; // @[ICache.scala:316:43] wire _s1_vb_T_14 = 1'h1; // @[ICache.scala:508:74] wire _scratchpadHit_T_33 = 1'h1; // @[ICache.scala:316:43] wire _s1_vb_T_19 = 1'h1; // @[ICache.scala:508:74] wire _scratchpadHit_T_44 = 1'h1; // @[ICache.scala:316:43] wire _s1_vb_T_23 = 1'h1; // @[ICache.scala:508:74] wire _scratchpadHit_T_55 = 1'h1; // @[ICache.scala:316:43] wire _s1_vb_T_27 = 1'h1; // @[ICache.scala:508:74] wire _scratchpadHit_T_66 = 1'h1; // @[ICache.scala:316:43] wire _s1_vb_T_31 = 1'h1; // @[ICache.scala:508:74] wire _s1_vb_T_35 = 1'h1; // @[ICache.scala:508:74] wire _s0_ren_T_3 = 1'h1; // @[ICache.scala:564:111] wire _s2_report_uncorrectable_error_T_1 = 1'h1; // @[ICache.scala:632:124] wire _masterNodeOut_a_bits_legal_T = 1'h1; // @[Parameters.scala:92:28] wire _masterNodeOut_a_bits_legal_T_1 = 1'h1; // @[Parameters.scala:92:38] wire _masterNodeOut_a_bits_legal_T_2 = 1'h1; // @[Parameters.scala:92:33] wire _masterNodeOut_a_bits_legal_T_3 = 1'h1; // @[Parameters.scala:684:29] wire _masterNodeOut_a_bits_legal_T_10 = 1'h1; // @[Parameters.scala:92:28] wire _masterNodeOut_a_bits_legal_T_11 = 1'h1; // @[Parameters.scala:92:38] wire _masterNodeOut_a_bits_legal_T_12 = 1'h1; // @[Parameters.scala:92:33] wire _masterNodeOut_a_bits_legal_T_13 = 1'h1; // @[Parameters.scala:684:29] wire masterNodeOut_a_bits_a_mask_sub_sub_sub_0_1 = 1'h1; // @[Misc.scala:206:21] wire masterNodeOut_a_bits_a_mask_sub_sub_size = 1'h1; // @[Misc.scala:209:26] wire masterNodeOut_a_bits_a_mask_sub_sub_0_1 = 1'h1; // @[Misc.scala:215:29] wire masterNodeOut_a_bits_a_mask_sub_sub_1_1 = 1'h1; // @[Misc.scala:215:29] wire masterNodeOut_a_bits_a_mask_sub_0_1 = 1'h1; // @[Misc.scala:215:29] wire masterNodeOut_a_bits_a_mask_sub_1_1 = 1'h1; // @[Misc.scala:215:29] wire masterNodeOut_a_bits_a_mask_sub_2_1 = 1'h1; // @[Misc.scala:215:29] wire masterNodeOut_a_bits_a_mask_sub_3_1 = 1'h1; // @[Misc.scala:215:29] wire masterNodeOut_a_bits_a_mask_size = 1'h1; // @[Misc.scala:209:26] wire masterNodeOut_a_bits_a_mask_acc = 1'h1; // @[Misc.scala:215:29] wire masterNodeOut_a_bits_a_mask_acc_1 = 1'h1; // @[Misc.scala:215:29] wire masterNodeOut_a_bits_a_mask_acc_2 = 1'h1; // @[Misc.scala:215:29] wire masterNodeOut_a_bits_a_mask_acc_3 = 1'h1; // @[Misc.scala:215:29] wire masterNodeOut_a_bits_a_mask_acc_4 = 1'h1; // @[Misc.scala:215:29] wire masterNodeOut_a_bits_a_mask_acc_5 = 1'h1; // @[Misc.scala:215:29] wire masterNodeOut_a_bits_a_mask_acc_6 = 1'h1; // @[Misc.scala:215:29] wire masterNodeOut_a_bits_a_mask_acc_7 = 1'h1; // @[Misc.scala:215:29] wire auto_master_out_a_bits_source = 1'h0; // @[ICache.scala:251:7] wire auto_master_out_a_bits_corrupt = 1'h0; // @[ICache.scala:251:7] wire auto_master_out_d_bits_source = 1'h0; // @[ICache.scala:251:7] wire io_resp_bits_replay = 1'h0; // @[ICache.scala:251:7] wire masterNodeOut_a_bits_source = 1'h0; // @[MixedNode.scala:542:17] wire masterNodeOut_a_bits_corrupt = 1'h0; // @[MixedNode.scala:542:17] wire masterNodeOut_d_bits_source = 1'h0; // @[MixedNode.scala:542:17] wire _s1_hit_T_7 = 1'h0; // @[ICache.scala:361:46] wire _repl_way_T_10 = 1'h0; // @[ICache.scala:411:63] wire _repl_way_T_15 = 1'h0; // @[ICache.scala:413:11] wire s1_tag_disparity_0 = 1'h0; // @[ICache.scala:465:30] wire s1_tag_disparity_1 = 1'h0; // @[ICache.scala:465:30] wire s1_tag_disparity_2 = 1'h0; // @[ICache.scala:465:30] wire s1_tag_disparity_3 = 1'h0; // @[ICache.scala:465:30] wire s1_tag_disparity_4 = 1'h0; // @[ICache.scala:465:30] wire s1_tag_disparity_5 = 1'h0; // @[ICache.scala:465:30] wire s1_tag_disparity_6 = 1'h0; // @[ICache.scala:465:30] wire s1_tag_disparity_7 = 1'h0; // @[ICache.scala:465:30] wire _scratchpadHit_T_4 = 1'h0; // @[ICache.scala:503:58] wire _scratchpadHit_T_6 = 1'h0; // @[ICache.scala:302:66] wire _scratchpadHit_T_9 = 1'h0; // @[ICache.scala:507:39] wire _scratchpadHit_T_10 = 1'h0; // @[ICache.scala:498:10] wire scratchpadHit = 1'h0; // @[ICache.scala:497:49] wire _s1_tag_disparity_0_T = 1'h0; // @[ECC.scala:15:27] wire _s1_tag_disparity_0_T_1 = 1'h0; // @[ICache.scala:516:34] wire _scratchpadHit_T_15 = 1'h0; // @[ICache.scala:503:58] wire _scratchpadHit_T_17 = 1'h0; // @[ICache.scala:302:66] wire _scratchpadHit_T_20 = 1'h0; // @[ICache.scala:507:39] wire _scratchpadHit_T_21 = 1'h0; // @[ICache.scala:498:10] wire scratchpadHit_1 = 1'h0; // @[ICache.scala:497:49] wire _s1_tag_disparity_1_T = 1'h0; // @[ECC.scala:15:27] wire _s1_tag_disparity_1_T_1 = 1'h0; // @[ICache.scala:516:34] wire _scratchpadHit_T_26 = 1'h0; // @[ICache.scala:503:58] wire _scratchpadHit_T_28 = 1'h0; // @[ICache.scala:302:66] wire _scratchpadHit_T_31 = 1'h0; // @[ICache.scala:507:39] wire _scratchpadHit_T_32 = 1'h0; // @[ICache.scala:498:10] wire scratchpadHit_2 = 1'h0; // @[ICache.scala:497:49] wire _s1_tag_disparity_2_T = 1'h0; // @[ECC.scala:15:27] wire _s1_tag_disparity_2_T_1 = 1'h0; // @[ICache.scala:516:34] wire _scratchpadHit_T_37 = 1'h0; // @[ICache.scala:503:58] wire _scratchpadHit_T_39 = 1'h0; // @[ICache.scala:302:66] wire _scratchpadHit_T_42 = 1'h0; // @[ICache.scala:507:39] wire _scratchpadHit_T_43 = 1'h0; // @[ICache.scala:498:10] wire scratchpadHit_3 = 1'h0; // @[ICache.scala:497:49] wire _s1_tag_disparity_3_T = 1'h0; // @[ECC.scala:15:27] wire _s1_tag_disparity_3_T_1 = 1'h0; // @[ICache.scala:516:34] wire _scratchpadHit_T_48 = 1'h0; // @[ICache.scala:503:58] wire _scratchpadHit_T_50 = 1'h0; // @[ICache.scala:302:66] wire _scratchpadHit_T_53 = 1'h0; // @[ICache.scala:507:39] wire _scratchpadHit_T_54 = 1'h0; // @[ICache.scala:498:10] wire scratchpadHit_4 = 1'h0; // @[ICache.scala:497:49] wire _s1_tag_disparity_4_T = 1'h0; // @[ECC.scala:15:27] wire _s1_tag_disparity_4_T_1 = 1'h0; // @[ICache.scala:516:34] wire _scratchpadHit_T_59 = 1'h0; // @[ICache.scala:503:58] wire _scratchpadHit_T_61 = 1'h0; // @[ICache.scala:302:66] wire _scratchpadHit_T_64 = 1'h0; // @[ICache.scala:507:39] wire _scratchpadHit_T_65 = 1'h0; // @[ICache.scala:498:10] wire scratchpadHit_5 = 1'h0; // @[ICache.scala:497:49] wire _s1_tag_disparity_5_T = 1'h0; // @[ECC.scala:15:27] wire _s1_tag_disparity_5_T_1 = 1'h0; // @[ICache.scala:516:34] wire _scratchpadHit_T_70 = 1'h0; // @[ICache.scala:503:58] wire _scratchpadHit_T_72 = 1'h0; // @[ICache.scala:302:66] wire _scratchpadHit_T_75 = 1'h0; // @[ICache.scala:507:39] wire _scratchpadHit_T_76 = 1'h0; // @[ICache.scala:498:10] wire scratchpadHit_6 = 1'h0; // @[ICache.scala:497:49] wire _s1_tag_disparity_6_T = 1'h0; // @[ECC.scala:15:27] wire _s1_tag_disparity_6_T_1 = 1'h0; // @[ICache.scala:516:34] wire _scratchpadHit_T_77 = 1'h0; // @[ICache.scala:316:43] wire _scratchpadHit_T_81 = 1'h0; // @[ICache.scala:503:58] wire _scratchpadHit_T_83 = 1'h0; // @[ICache.scala:302:66] wire _scratchpadHit_T_86 = 1'h0; // @[ICache.scala:507:39] wire _scratchpadHit_T_87 = 1'h0; // @[ICache.scala:498:10] wire scratchpadHit_7 = 1'h0; // @[ICache.scala:497:49] wire _s1_tag_disparity_7_T = 1'h0; // @[ECC.scala:15:27] wire _s1_tag_disparity_7_T_1 = 1'h0; // @[ICache.scala:516:34] wire _s0_ren_T_4 = 1'h0; // @[ICache.scala:567:70] wire _wen_T_2 = 1'h0; // @[package.scala:163:13] wire _wen_T_4 = 1'h0; // @[ICache.scala:570:67] wire _s0_ren_T_8 = 1'h0; // @[ICache.scala:564:111] wire _s0_ren_T_9 = 1'h0; // @[ICache.scala:567:70] wire _wen_T_7 = 1'h0; // @[package.scala:163:13] wire _wen_T_9 = 1'h0; // @[ICache.scala:570:67] wire s1s2_full_word_write = 1'h0; // @[ICache.scala:600:41] wire s1_dont_read = 1'h0; // @[ICache.scala:601:36] wire _s2_tag_hit_WIRE_0 = 1'h0; // @[ICache.scala:605:60] wire _s2_tag_hit_WIRE_1 = 1'h0; // @[ICache.scala:605:60] wire _s2_tag_hit_WIRE_2 = 1'h0; // @[ICache.scala:605:60] wire _s2_tag_hit_WIRE_3 = 1'h0; // @[ICache.scala:605:60] wire _s2_tag_hit_WIRE_4 = 1'h0; // @[ICache.scala:605:60] wire _s2_tag_hit_WIRE_5 = 1'h0; // @[ICache.scala:605:60] wire _s2_tag_hit_WIRE_6 = 1'h0; // @[ICache.scala:605:60] wire _s2_tag_hit_WIRE_7 = 1'h0; // @[ICache.scala:605:60] wire s2_tag_disparity = 1'h0; // @[ICache.scala:614:72] wire _s2_disparity_T = 1'h0; // @[ECC.scala:15:27] wire s2_disparity = 1'h0; // @[ICache.scala:619:39] wire _s1_scratchpad_hit_T_2 = 1'h0; // @[ICache.scala:302:66] wire s1_scratchpad_hit = 1'h0; // @[ICache.scala:621:30] wire _s2_report_uncorrectable_error_T = 1'h0; // @[ICache.scala:632:57] wire _s2_report_uncorrectable_error_T_2 = 1'h0; // @[ICache.scala:632:121] wire s2_report_uncorrectable_error = 1'h0; // @[ICache.scala:632:90] wire masterNodeOut_a_bits_a_source = 1'h0; // @[Edges.scala:460:17] wire masterNodeOut_a_bits_a_corrupt = 1'h0; // @[Edges.scala:460:17] wire masterNodeOut_a_bits_a_mask_sub_size = 1'h0; // @[Misc.scala:209:26] wire _masterNodeOut_a_bits_a_mask_sub_acc_T = 1'h0; // @[Misc.scala:215:38] wire _masterNodeOut_a_bits_a_mask_sub_acc_T_1 = 1'h0; // @[Misc.scala:215:38] wire _masterNodeOut_a_bits_a_mask_sub_acc_T_2 = 1'h0; // @[Misc.scala:215:38] wire _masterNodeOut_a_bits_a_mask_sub_acc_T_3 = 1'h0; // @[Misc.scala:215:38] wire [7:0] _s2_tag_disparity_T = 8'h0; // @[ICache.scala:614:65] wire [3:0] s2_tag_disparity_lo = 4'h0; // @[ICache.scala:614:65] wire [3:0] s2_tag_disparity_hi = 4'h0; // @[ICache.scala:614:65] wire [1:0] _repl_way_T_6 = 2'h0; // @[ICache.scala:411:63] wire [1:0] s2_tag_disparity_lo_lo = 2'h0; // @[ICache.scala:614:65] wire [1:0] s2_tag_disparity_lo_hi = 2'h0; // @[ICache.scala:614:65] wire [1:0] s2_tag_disparity_hi_lo = 2'h0; // @[ICache.scala:614:65] wire [1:0] s2_tag_disparity_hi_hi = 2'h0; // @[ICache.scala:614:65] wire [2:0] auto_master_out_a_bits_opcode = 3'h4; // @[ICache.scala:251:7] wire [2:0] masterNodeOut_a_bits_opcode = 3'h4; // @[MixedNode.scala:542:17] wire [2:0] masterNodeOut_a_bits_a_opcode = 3'h4; // @[Edges.scala:460:17] wire [2:0] _masterNodeOut_a_bits_a_mask_sizeOH_T_2 = 3'h4; // @[OneHot.scala:65:27] wire [2:0] auto_master_out_a_bits_param = 3'h0; // @[ICache.scala:251:7] wire [2:0] masterNodeOut_a_bits_param = 3'h0; // @[MixedNode.scala:542:17] wire [2:0] _repl_way_T_2 = 3'h0; // @[ICache.scala:411:63] wire [2:0] _scratchpadHit_T_2 = 3'h0; // @[package.scala:163:13] wire [2:0] _scratchpadHit_T_13 = 3'h0; // @[package.scala:163:13] wire [2:0] _scratchpadHit_T_24 = 3'h0; // @[package.scala:163:13] wire [2:0] _scratchpadHit_T_35 = 3'h0; // @[package.scala:163:13] wire [2:0] _scratchpadHit_T_46 = 3'h0; // @[package.scala:163:13] wire [2:0] _scratchpadHit_T_57 = 3'h0; // @[package.scala:163:13] wire [2:0] _scratchpadHit_T_68 = 3'h0; // @[package.scala:163:13] wire [2:0] _scratchpadHit_T_79 = 3'h0; // @[package.scala:163:13] wire [2:0] _way_T = 3'h0; // @[package.scala:163:13] wire [2:0] _way_T_1 = 3'h0; // @[package.scala:163:13] wire [2:0] masterNodeOut_a_bits_a_param = 3'h0; // @[Edges.scala:460:17] wire [3:0] auto_master_out_a_bits_size = 4'h6; // @[ICache.scala:251:7] wire [3:0] masterNodeOut_a_bits_size = 4'h6; // @[MixedNode.scala:542:17] wire [3:0] masterNodeOut_a_bits_a_size = 4'h6; // @[Edges.scala:460:17] wire [7:0] auto_master_out_a_bits_mask = 8'hFF; // @[ICache.scala:251:7] wire [7:0] masterNodeOut_a_bits_mask = 8'hFF; // @[MixedNode.scala:542:17] wire [7:0] masterNodeOut_a_bits_a_mask = 8'hFF; // @[Edges.scala:460:17] wire [7:0] _masterNodeOut_a_bits_a_mask_T = 8'hFF; // @[Misc.scala:222:10] wire [63:0] auto_master_out_a_bits_data = 64'h0; // @[ICache.scala:251:7] wire [63:0] masterNodeOut_a_bits_data = 64'h0; // @[MixedNode.scala:542:17] wire [63:0] masterNodeOut_a_bits_a_data = 64'h0; // @[Edges.scala:460:17] wire [3:0] masterNodeOut_a_bits_a_mask_lo = 4'hF; // @[Misc.scala:222:10] wire [3:0] masterNodeOut_a_bits_a_mask_hi = 4'hF; // @[Misc.scala:222:10] wire [1:0] masterNodeOut_a_bits_a_mask_lo_lo = 2'h3; // @[Misc.scala:222:10] wire [1:0] masterNodeOut_a_bits_a_mask_lo_hi = 2'h3; // @[Misc.scala:222:10] wire [1:0] masterNodeOut_a_bits_a_mask_hi_lo = 2'h3; // @[Misc.scala:222:10] wire [1:0] masterNodeOut_a_bits_a_mask_hi_hi = 2'h3; // @[Misc.scala:222:10] wire [2:0] masterNodeOut_a_bits_a_mask_sizeOH = 3'h5; // @[Misc.scala:202:81] wire [3:0] _masterNodeOut_a_bits_a_mask_sizeOH_T_1 = 4'h4; // @[OneHot.scala:65:12] wire [1:0] masterNodeOut_a_bits_a_mask_sizeOH_shiftAmount = 2'h2; // @[OneHot.scala:64:49] wire [2:0] _masterNodeOut_a_bits_a_mask_sizeOH_T = 3'h6; // @[Misc.scala:202:34] wire [8:0] _scratchpadHit_T_1 = 9'h0; // @[ICache.scala:327:40] wire [8:0] _scratchpadHit_T_12 = 9'h0; // @[ICache.scala:327:40] wire [8:0] _scratchpadHit_T_23 = 9'h0; // @[ICache.scala:327:40] wire [8:0] _scratchpadHit_T_34 = 9'h0; // @[ICache.scala:327:40] wire [8:0] _scratchpadHit_T_45 = 9'h0; // @[ICache.scala:327:40] wire [8:0] _scratchpadHit_T_56 = 9'h0; // @[ICache.scala:327:40] wire [8:0] _scratchpadHit_T_67 = 9'h0; // @[ICache.scala:327:40] wire [8:0] _scratchpadHit_T_78 = 9'h0; // @[ICache.scala:327:40] wire [8:0] _mem_idx_T_2 = 9'h0; // @[ICache.scala:565:31] wire [8:0] _mem_idx_T_8 = 9'h0; // @[ICache.scala:565:31] wire [8:0] _s1_scratchpad_hit_T = 9'h0; // @[ICache.scala:327:40] wire masterNodeOut_a_ready = auto_master_out_a_ready_0; // @[ICache.scala:251:7] wire masterNodeOut_a_valid; // @[MixedNode.scala:542:17] wire [31:0] masterNodeOut_a_bits_address; // @[MixedNode.scala:542:17] wire masterNodeOut_d_valid = auto_master_out_d_valid_0; // @[ICache.scala:251:7] wire [2:0] masterNodeOut_d_bits_opcode = auto_master_out_d_bits_opcode_0; // @[ICache.scala:251:7] wire [1:0] masterNodeOut_d_bits_param = auto_master_out_d_bits_param_0; // @[ICache.scala:251:7] wire [3:0] masterNodeOut_d_bits_size = auto_master_out_d_bits_size_0; // @[ICache.scala:251:7] wire [2:0] masterNodeOut_d_bits_sink = auto_master_out_d_bits_sink_0; // @[ICache.scala:251:7] wire masterNodeOut_d_bits_denied = auto_master_out_d_bits_denied_0; // @[ICache.scala:251:7] wire [63:0] masterNodeOut_d_bits_data = auto_master_out_d_bits_data_0; // @[ICache.scala:251:7] wire masterNodeOut_d_bits_corrupt = auto_master_out_d_bits_corrupt_0; // @[ICache.scala:251:7] wire _io_req_ready_T_2; // @[ICache.scala:394:19] wire [38:0] _s2_scratchpad_word_addr_T = io_s2_vaddr_0; // @[ICache.scala:251:7, :611:52] wire _io_resp_valid_T; // @[ICache.scala:659:33] wire [31:0] s2_way_mux; // @[Mux.scala:30:73] wire _io_errors_bus_valid_T_2; // @[ICache.scala:441:40] wire invalidate = io_invalidate_0; // @[ICache.scala:251:7, :456:31] wire [31:0] _io_errors_bus_bits_T_1; // @[ICache.scala:442:57] wire refill_fire; // @[ICache.scala:374:35] wire _io_keep_clock_enabled_T_4; // @[ICache.scala:837:55] wire [31:0] auto_master_out_a_bits_address_0; // @[ICache.scala:251:7] wire auto_master_out_a_valid_0; // @[ICache.scala:251:7] wire io_req_ready; // @[ICache.scala:251:7] wire [31:0] io_resp_bits_data_0; // @[ICache.scala:251:7] wire io_resp_bits_ae_0; // @[ICache.scala:251:7] wire io_resp_valid_0; // @[ICache.scala:251:7] wire io_errors_bus_valid_0; // @[ICache.scala:251:7] wire [31:0] io_errors_bus_bits_0; // @[ICache.scala:251:7] wire io_perf_acquire_0; // @[ICache.scala:251:7] wire io_keep_clock_enabled; // @[ICache.scala:251:7] wire s2_request_refill; // @[ICache.scala:385:35] assign auto_master_out_a_valid_0 = masterNodeOut_a_valid; // @[ICache.scala:251:7] wire [31:0] masterNodeOut_a_bits_a_address; // @[Edges.scala:460:17] assign auto_master_out_a_bits_address_0 = masterNodeOut_a_bits_address; // @[ICache.scala:251:7] wire _refill_one_beat_T = masterNodeOut_d_valid; // @[Decoupled.scala:51:35] wire _io_errors_bus_valid_T = masterNodeOut_d_valid; // @[Decoupled.scala:51:35] wire s0_valid = io_req_ready & io_req_valid_0; // @[Decoupled.scala:51:35] reg s1_valid; // @[ICache.scala:341:25] wire s1_clk_en = s1_valid; // @[ICache.scala:341:25, :604:28] wire _io_keep_clock_enabled_T = s1_valid; // @[ICache.scala:341:25, :836:117] reg [38:0] s1_vaddr; // @[ICache.scala:343:27] wire _s1_tag_hit_0_T; // @[ICache.scala:519:31] wire _s1_tag_hit_1_T; // @[ICache.scala:519:31] wire _s2_tag_hit_T_0 = s1_tag_hit_0; // @[ICache.scala:345:24, :605:33] wire _s1_tag_hit_2_T; // @[ICache.scala:519:31] wire _s2_tag_hit_T_1 = s1_tag_hit_1; // @[ICache.scala:345:24, :605:33] wire _s1_tag_hit_3_T; // @[ICache.scala:519:31] wire _s2_tag_hit_T_2 = s1_tag_hit_2; // @[ICache.scala:345:24, :605:33] wire _s1_tag_hit_4_T; // @[ICache.scala:519:31] wire _s2_tag_hit_T_3 = s1_tag_hit_3; // @[ICache.scala:345:24, :605:33] wire _s1_tag_hit_5_T; // @[ICache.scala:519:31] wire _s2_tag_hit_T_4 = s1_tag_hit_4; // @[ICache.scala:345:24, :605:33] wire _s1_tag_hit_6_T; // @[ICache.scala:519:31] wire _s2_tag_hit_T_5 = s1_tag_hit_5; // @[ICache.scala:345:24, :605:33] wire _s1_tag_hit_7_T; // @[ICache.scala:519:31] wire _s2_tag_hit_T_6 = s1_tag_hit_6; // @[ICache.scala:345:24, :605:33] wire s1_tag_hit_7; // @[ICache.scala:345:24] wire _s2_tag_hit_T_7 = s1_tag_hit_7; // @[ICache.scala:345:24, :605:33] wire _s1_hit_T = s1_tag_hit_0 | s1_tag_hit_1; // @[ICache.scala:345:24, :361:35] wire _s1_hit_T_1 = _s1_hit_T | s1_tag_hit_2; // @[ICache.scala:345:24, :361:35] wire _s1_hit_T_2 = _s1_hit_T_1 | s1_tag_hit_3; // @[ICache.scala:345:24, :361:35] wire _s1_hit_T_3 = _s1_hit_T_2 | s1_tag_hit_4; // @[ICache.scala:345:24, :361:35] wire _s1_hit_T_4 = _s1_hit_T_3 | s1_tag_hit_5; // @[ICache.scala:345:24, :361:35] wire _s1_hit_T_5 = _s1_hit_T_4 | s1_tag_hit_6; // @[ICache.scala:345:24, :361:35] wire _s1_hit_T_6 = _s1_hit_T_5 | s1_tag_hit_7; // @[ICache.scala:345:24, :361:35] wire s1_hit = _s1_hit_T_6; // @[ICache.scala:361:{35,40}] wire _s2_valid_T = ~io_s1_kill_0; // @[ICache.scala:251:7, :363:38] wire _s2_valid_T_1 = s1_valid & _s2_valid_T; // @[ICache.scala:341:25, :363:{35,38}] reg s2_valid; // @[ICache.scala:363:25] wire _s2_report_uncorrectable_error_T_3 = s2_valid; // @[ICache.scala:363:25, :632:103] reg s2_hit; // @[ICache.scala:364:23] reg invalidated; // @[ICache.scala:367:24] reg refill_valid; // @[ICache.scala:368:29] wire _refill_fire_T = masterNodeOut_a_ready & masterNodeOut_a_valid; // @[Decoupled.scala:51:35] assign refill_fire = _refill_fire_T; // @[Decoupled.scala:51:35] assign io_perf_acquire_0 = refill_fire; // @[ICache.scala:251:7, :374:35] wire _s2_miss_T = ~s2_hit; // @[ICache.scala:364:23, :378:29] wire _s2_miss_T_1 = s2_valid & _s2_miss_T; // @[ICache.scala:363:25, :378:{26,29}] wire _s2_miss_T_2 = ~io_s2_kill_0; // @[ICache.scala:251:7, :378:40] wire s2_miss = _s2_miss_T_1 & _s2_miss_T_2; // @[ICache.scala:378:{26,37,40}] wire _s1_can_request_refill_T = s2_miss | refill_valid; // @[ICache.scala:368:29, :378:37, :380:41] wire s1_can_request_refill = ~_s1_can_request_refill_T; // @[ICache.scala:380:{31,41}] reg s2_request_refill_REG; // @[ICache.scala:385:45] assign s2_request_refill = s2_miss & s2_request_refill_REG; // @[ICache.scala:378:37, :385:{35,45}] assign masterNodeOut_a_valid = s2_request_refill; // @[ICache.scala:385:35] wire _GEN = s1_valid & s1_can_request_refill; // @[ICache.scala:341:25, :380:31, :386:54] wire _refill_paddr_T; // @[ICache.scala:386:54] assign _refill_paddr_T = _GEN; // @[ICache.scala:386:54] wire _refill_vaddr_T; // @[ICache.scala:387:51] assign _refill_vaddr_T = _GEN; // @[ICache.scala:386:54, :387:51] reg [31:0] refill_paddr; // @[ICache.scala:386:31] reg [38:0] refill_vaddr; // @[ICache.scala:387:31] wire [19:0] refill_tag = refill_paddr[31:12]; // @[ICache.scala:386:31, :388:33] wire [5:0] refill_idx = refill_paddr[11:6]; // @[ICache.scala:386:31, :859:21] wire refill_one_beat_opdata = masterNodeOut_d_bits_opcode[0]; // @[Edges.scala:106:36] wire r_beats1_opdata = masterNodeOut_d_bits_opcode[0]; // @[Edges.scala:106:36] wire refill_one_beat = _refill_one_beat_T & refill_one_beat_opdata; // @[Decoupled.scala:51:35] wire _io_req_ready_T = refill_one_beat; // @[ICache.scala:391:39, :394:37] wire _io_req_ready_T_1 = _io_req_ready_T; // @[ICache.scala:394:{37,54}] assign _io_req_ready_T_2 = ~_io_req_ready_T_1; // @[ICache.scala:394:{19,54}] assign io_req_ready = _io_req_ready_T_2; // @[ICache.scala:251:7, :394:19] wire [26:0] _r_beats1_decode_T = 27'hFFF << masterNodeOut_d_bits_size; // @[package.scala:243:71] wire [11:0] _r_beats1_decode_T_1 = _r_beats1_decode_T[11:0]; // @[package.scala:243:{71,76}] wire [11:0] _r_beats1_decode_T_2 = ~_r_beats1_decode_T_1; // @[package.scala:243:{46,76}] wire [8:0] r_beats1_decode = _r_beats1_decode_T_2[11:3]; // @[package.scala:243:46] wire [8:0] r_beats1 = r_beats1_opdata ? r_beats1_decode : 9'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [8:0] r_counter; // @[Edges.scala:229:27] wire [9:0] _r_counter1_T = {1'h0, r_counter} - 10'h1; // @[Edges.scala:229:27, :230:28] wire [8:0] r_counter1 = _r_counter1_T[8:0]; // @[Edges.scala:230:28] wire r_1 = r_counter == 9'h0; // @[Edges.scala:229:27, :231:25] wire _r_last_T = r_counter == 9'h1; // @[Edges.scala:229:27, :232:25] wire _r_last_T_1 = r_beats1 == 9'h0; // @[Edges.scala:221:14, :232:43] wire r_2 = _r_last_T | _r_last_T_1; // @[Edges.scala:232:{25,33,43}] wire d_done = r_2 & masterNodeOut_d_valid; // @[Edges.scala:232:33, :233:22] wire [8:0] _r_count_T = ~r_counter1; // @[Edges.scala:230:28, :234:27] wire [8:0] refill_cnt = r_beats1 & _r_count_T; // @[Edges.scala:221:14, :234:{25,27}] wire [8:0] _r_counter_T = r_1 ? r_beats1 : r_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire refill_done = refill_one_beat & d_done; // @[Edges.scala:233:22] wire [1:0] repl_way_v0_lo_lo_lo = {_repl_way_v0_prng_io_out_1, _repl_way_v0_prng_io_out_0}; // @[PRNG.scala:91:22, :95:17] wire [1:0] repl_way_v0_lo_lo_hi = {_repl_way_v0_prng_io_out_3, _repl_way_v0_prng_io_out_2}; // @[PRNG.scala:91:22, :95:17] wire [3:0] repl_way_v0_lo_lo = {repl_way_v0_lo_lo_hi, repl_way_v0_lo_lo_lo}; // @[PRNG.scala:95:17] wire [1:0] repl_way_v0_lo_hi_lo = {_repl_way_v0_prng_io_out_5, _repl_way_v0_prng_io_out_4}; // @[PRNG.scala:91:22, :95:17] wire [1:0] repl_way_v0_lo_hi_hi = {_repl_way_v0_prng_io_out_7, _repl_way_v0_prng_io_out_6}; // @[PRNG.scala:91:22, :95:17] wire [3:0] repl_way_v0_lo_hi = {repl_way_v0_lo_hi_hi, repl_way_v0_lo_hi_lo}; // @[PRNG.scala:95:17] wire [7:0] repl_way_v0_lo = {repl_way_v0_lo_hi, repl_way_v0_lo_lo}; // @[PRNG.scala:95:17] wire [1:0] repl_way_v0_hi_lo_lo = {_repl_way_v0_prng_io_out_9, _repl_way_v0_prng_io_out_8}; // @[PRNG.scala:91:22, :95:17] wire [1:0] repl_way_v0_hi_lo_hi = {_repl_way_v0_prng_io_out_11, _repl_way_v0_prng_io_out_10}; // @[PRNG.scala:91:22, :95:17] wire [3:0] repl_way_v0_hi_lo = {repl_way_v0_hi_lo_hi, repl_way_v0_hi_lo_lo}; // @[PRNG.scala:95:17] wire [1:0] repl_way_v0_hi_hi_lo = {_repl_way_v0_prng_io_out_13, _repl_way_v0_prng_io_out_12}; // @[PRNG.scala:91:22, :95:17] wire [1:0] repl_way_v0_hi_hi_hi = {_repl_way_v0_prng_io_out_15, _repl_way_v0_prng_io_out_14}; // @[PRNG.scala:91:22, :95:17] wire [3:0] repl_way_v0_hi_hi = {repl_way_v0_hi_hi_hi, repl_way_v0_hi_hi_lo}; // @[PRNG.scala:95:17] wire [7:0] repl_way_v0_hi = {repl_way_v0_hi_hi, repl_way_v0_hi_lo}; // @[PRNG.scala:95:17] wire [15:0] _repl_way_v0_T = {repl_way_v0_hi, repl_way_v0_lo}; // @[PRNG.scala:95:17] wire [2:0] repl_way_v0 = _repl_way_v0_T[2:0]; // @[PRNG.scala:95:17] wire [2:0] _repl_way_T = repl_way_v0; // @[ICache.scala:407:35, :411:40] wire [2:0] _repl_way_T_3 = repl_way_v0; // @[ICache.scala:407:35, :411:13] wire [8:0] _repl_way_T_1 = {_repl_way_T, refill_idx}; // @[ICache.scala:411:{36,40}, :859:21] wire [2:0] _repl_way_T_7 = _repl_way_T_3; // @[ICache.scala:411:13] wire [2:0] _repl_way_T_4 = repl_way_v0 | 3'h4; // @[ICache.scala:407:35, :411:40] wire [8:0] _repl_way_T_5 = {_repl_way_T_4, refill_idx}; // @[ICache.scala:411:{36,40}, :859:21] wire [2:0] repl_way = _repl_way_T_7; // @[ICache.scala:411:13] wire [2:0] _repl_way_T_8 = repl_way_v0 | 3'h6; // @[ICache.scala:407:35, :411:40] wire [8:0] _repl_way_T_9 = {_repl_way_T_8, refill_idx}; // @[ICache.scala:411:{36,40}, :859:21] wire [2:0] way = repl_way; // @[ICache.scala:411:13, :585:20] wire [2:0] way_1 = repl_way; // @[ICache.scala:411:13, :585:20] wire [8:0] _GEN_0 = {repl_way, refill_idx}; // @[ICache.scala:411:13, :413:33, :859:21] wire [8:0] _repl_way_T_11; // @[ICache.scala:413:33] assign _repl_way_T_11 = _GEN_0; // @[ICache.scala:413:33] wire [8:0] _vb_array_T; // @[ICache.scala:452:36] assign _vb_array_T = _GEN_0; // @[ICache.scala:413:33, :452:36] wire _repl_way_T_14 = ~_repl_way_T_13; // @[ICache.scala:413:11] wire [5:0] _tag_rdata_WIRE; // @[ICache.scala:426:33] wire _tag_rdata_T_2; // @[ICache.scala:426:83] wire [20:0] enc_tag; // @[ICache.scala:435:34] wire [5:0] _tag_rdata_T = io_req_bits_addr_0[11:6]; // @[ICache.scala:251:7, :426:42] assign _tag_rdata_WIRE = _tag_rdata_T; // @[ICache.scala:426:{33,42}] wire _tag_rdata_T_1 = ~refill_done; // @[ICache.scala:399:37, :426:70] assign _tag_rdata_T_2 = _tag_rdata_T_1 & s0_valid; // @[Decoupled.scala:51:35] reg accruedRefillError; // @[ICache.scala:428:31] wire _refillError_T = |refill_cnt; // @[Edges.scala:234:25] wire _refillError_T_1 = _refillError_T & accruedRefillError; // @[ICache.scala:428:31, :430:{58,64}] wire refillError = masterNodeOut_d_bits_corrupt | _refillError_T_1; // @[ICache.scala:430:{43,64}] assign enc_tag = {refillError, refill_tag}; // @[ICache.scala:388:33, :430:43, :435:34] assign rockettile_icache_tag_array_MPORT_mask_0 = repl_way == 3'h0; // @[ICache.scala:411:13, :436:97] assign rockettile_icache_tag_array_MPORT_mask_1 = repl_way == 3'h1; // @[ICache.scala:411:13, :436:97] assign rockettile_icache_tag_array_MPORT_mask_2 = repl_way == 3'h2; // @[ICache.scala:411:13, :436:97] assign rockettile_icache_tag_array_MPORT_mask_3 = repl_way == 3'h3; // @[ICache.scala:411:13, :436:97] assign rockettile_icache_tag_array_MPORT_mask_4 = repl_way == 3'h4; // @[ICache.scala:411:13, :436:97] assign rockettile_icache_tag_array_MPORT_mask_5 = repl_way == 3'h5; // @[ICache.scala:411:13, :436:97] assign rockettile_icache_tag_array_MPORT_mask_6 = repl_way == 3'h6; // @[ICache.scala:411:13, :436:97] assign rockettile_icache_tag_array_MPORT_mask_7 = &repl_way; // @[ICache.scala:411:13, :436:97] wire _io_errors_bus_valid_T_1 = masterNodeOut_d_bits_denied | masterNodeOut_d_bits_corrupt; // @[ICache.scala:441:65] assign _io_errors_bus_valid_T_2 = _io_errors_bus_valid_T & _io_errors_bus_valid_T_1; // @[Decoupled.scala:51:35] assign io_errors_bus_valid_0 = _io_errors_bus_valid_T_2; // @[ICache.scala:251:7, :441:40] wire [25:0] _io_errors_bus_bits_T = refill_paddr[31:6]; // @[ICache.scala:386:31, :442:40] wire [25:0] _masterNodeOut_a_bits_T = refill_paddr[31:6]; // @[ICache.scala:386:31, :442:40, :769:47] assign _io_errors_bus_bits_T_1 = {_io_errors_bus_bits_T, 6'h0}; // @[ICache.scala:442:{40,57}] assign io_errors_bus_bits_0 = _io_errors_bus_bits_T_1; // @[ICache.scala:251:7, :442:57] reg [511:0] vb_array; // @[ICache.scala:448:25] wire _vb_array_T_1 = ~invalidated; // @[ICache.scala:367:24, :452:75] wire _vb_array_T_2 = refill_done & _vb_array_T_1; // @[ICache.scala:399:37, :452:{72,75}] wire [511:0] _vb_array_T_3 = 512'h1 << _vb_array_T; // @[ICache.scala:452:{32,36}] wire [511:0] _vb_array_T_4 = vb_array | _vb_array_T_3; // @[ICache.scala:448:25, :452:32] wire [511:0] _vb_array_T_5 = ~vb_array; // @[ICache.scala:448:25, :452:32] wire [511:0] _vb_array_T_6 = _vb_array_T_5 | _vb_array_T_3; // @[ICache.scala:452:32] wire [511:0] _vb_array_T_7 = ~_vb_array_T_6; // @[ICache.scala:452:32] wire [511:0] _vb_array_T_8 = _vb_array_T_2 ? _vb_array_T_4 : _vb_array_T_7; // @[ICache.scala:452:{32,72}] wire _s1_tl_error_0_T_1; // @[ICache.scala:518:32] wire _s1_tl_error_1_T_1; // @[ICache.scala:518:32] wire _s1_tl_error_2_T_1; // @[ICache.scala:518:32] wire _s1_tl_error_3_T_1; // @[ICache.scala:518:32] wire _s1_tl_error_4_T_1; // @[ICache.scala:518:32] wire _s1_tl_error_5_T_1; // @[ICache.scala:518:32] wire _s1_tl_error_6_T_1; // @[ICache.scala:518:32] wire _s1_tl_error_7_T_1; // @[ICache.scala:518:32] wire s1_tl_error_0; // @[ICache.scala:469:25] wire s1_tl_error_1; // @[ICache.scala:469:25] wire s1_tl_error_2; // @[ICache.scala:469:25] wire s1_tl_error_3; // @[ICache.scala:469:25] wire s1_tl_error_4; // @[ICache.scala:469:25] wire s1_tl_error_5; // @[ICache.scala:469:25] wire s1_tl_error_6; // @[ICache.scala:469:25] wire s1_tl_error_7; // @[ICache.scala:469:25] wire [31:0] s1_dout_0; // @[ICache.scala:473:21] wire [31:0] s1_dout_1; // @[ICache.scala:473:21] wire [31:0] s1_dout_2; // @[ICache.scala:473:21] wire [31:0] s1_dout_3; // @[ICache.scala:473:21] wire [31:0] s1_dout_4; // @[ICache.scala:473:21] wire [31:0] s1_dout_5; // @[ICache.scala:473:21] wire [31:0] s1_dout_6; // @[ICache.scala:473:21] wire [31:0] s1_dout_7; // @[ICache.scala:473:21] wire [5:0] s1_idx = io_s1_paddr_0[11:6]; // @[ICache.scala:251:7, :859:21] wire [5:0] s1_idx_1 = io_s1_paddr_0[11:6]; // @[ICache.scala:251:7, :859:21] wire [5:0] s1_idx_2 = io_s1_paddr_0[11:6]; // @[ICache.scala:251:7, :859:21] wire [5:0] s1_idx_3 = io_s1_paddr_0[11:6]; // @[ICache.scala:251:7, :859:21] wire [5:0] s1_idx_4 = io_s1_paddr_0[11:6]; // @[ICache.scala:251:7, :859:21] wire [5:0] s1_idx_5 = io_s1_paddr_0[11:6]; // @[ICache.scala:251:7, :859:21] wire [5:0] s1_idx_6 = io_s1_paddr_0[11:6]; // @[ICache.scala:251:7, :859:21] wire [5:0] s1_idx_7 = io_s1_paddr_0[11:6]; // @[ICache.scala:251:7, :859:21] wire [19:0] s1_tag = io_s1_paddr_0[31:12]; // @[ICache.scala:251:7, :493:30] wire [19:0] s1_tag_1 = io_s1_paddr_0[31:12]; // @[ICache.scala:251:7, :493:30] wire [19:0] s1_tag_2 = io_s1_paddr_0[31:12]; // @[ICache.scala:251:7, :493:30] wire [19:0] s1_tag_3 = io_s1_paddr_0[31:12]; // @[ICache.scala:251:7, :493:30] wire [19:0] s1_tag_4 = io_s1_paddr_0[31:12]; // @[ICache.scala:251:7, :493:30] wire [19:0] s1_tag_5 = io_s1_paddr_0[31:12]; // @[ICache.scala:251:7, :493:30] wire [19:0] s1_tag_6 = io_s1_paddr_0[31:12]; // @[ICache.scala:251:7, :493:30] wire [19:0] s1_tag_7 = io_s1_paddr_0[31:12]; // @[ICache.scala:251:7, :493:30] wire _scratchpadHit_T_3 = _scratchpadHit_T_2 == 3'h0; // @[package.scala:163:13] wire [8:0] _scratchpadHit_T_5 = io_s1_paddr_0[14:6]; // @[ICache.scala:251:7, :302:90] wire [8:0] _scratchpadHit_T_16 = io_s1_paddr_0[14:6]; // @[ICache.scala:251:7, :302:90] wire [8:0] _scratchpadHit_T_27 = io_s1_paddr_0[14:6]; // @[ICache.scala:251:7, :302:90] wire [8:0] _scratchpadHit_T_38 = io_s1_paddr_0[14:6]; // @[ICache.scala:251:7, :302:90] wire [8:0] _scratchpadHit_T_49 = io_s1_paddr_0[14:6]; // @[ICache.scala:251:7, :302:90] wire [8:0] _scratchpadHit_T_60 = io_s1_paddr_0[14:6]; // @[ICache.scala:251:7, :302:90] wire [8:0] _scratchpadHit_T_71 = io_s1_paddr_0[14:6]; // @[ICache.scala:251:7, :302:90] wire [8:0] _scratchpadHit_T_82 = io_s1_paddr_0[14:6]; // @[ICache.scala:251:7, :302:90] wire [8:0] _s1_scratchpad_hit_T_1 = io_s1_paddr_0[14:6]; // @[ICache.scala:251:7, :302:90] wire [2:0] _scratchpadHit_T_7 = io_s1_paddr_0[14:12]; // @[package.scala:163:13] wire [2:0] _scratchpadHit_T_18 = io_s1_paddr_0[14:12]; // @[package.scala:163:13] wire [2:0] _scratchpadHit_T_29 = io_s1_paddr_0[14:12]; // @[package.scala:163:13] wire [2:0] _scratchpadHit_T_40 = io_s1_paddr_0[14:12]; // @[package.scala:163:13] wire [2:0] _scratchpadHit_T_51 = io_s1_paddr_0[14:12]; // @[package.scala:163:13] wire [2:0] _scratchpadHit_T_62 = io_s1_paddr_0[14:12]; // @[package.scala:163:13] wire [2:0] _scratchpadHit_T_73 = io_s1_paddr_0[14:12]; // @[package.scala:163:13] wire [2:0] _scratchpadHit_T_84 = io_s1_paddr_0[14:12]; // @[package.scala:163:13] wire _scratchpadHit_T_8 = _scratchpadHit_T_7 == 3'h0; // @[package.scala:163:13] wire [6:0] _s1_vb_T = {1'h0, s1_idx}; // @[ICache.scala:508:29, :859:21] wire [8:0] _s1_vb_T_1 = {2'h0, _s1_vb_T}; // @[ICache.scala:508:{29,46}] wire [511:0] _s1_vb_T_2 = vb_array >> _s1_vb_T_1; // @[ICache.scala:448:25, :508:{25,46}] wire _s1_vb_T_3 = _s1_vb_T_2[0]; // @[ICache.scala:508:25] wire s1_vb = _s1_vb_T_3; // @[ICache.scala:508:{25,71}] wire tl_error = _rockettile_icache_tag_array_RW0_rdata[20]; // @[package.scala:163:13] wire _s1_tl_error_0_T = tl_error; // @[package.scala:163:13] wire [19:0] tag = _rockettile_icache_tag_array_RW0_rdata[19:0]; // @[package.scala:163:13] wire _tagMatch_T = tag == s1_tag; // @[package.scala:163:13] wire tagMatch = s1_vb & _tagMatch_T; // @[ICache.scala:508:71, :514:{26,33}] assign _s1_tag_hit_0_T = tagMatch; // @[ICache.scala:514:26, :519:31] assign _s1_tl_error_0_T_1 = tagMatch & _s1_tl_error_0_T; // @[ICache.scala:514:26, :518:{32,44}] assign s1_tl_error_0 = _s1_tl_error_0_T_1; // @[ICache.scala:469:25, :518:32] assign s1_tag_hit_0 = _s1_tag_hit_0_T; // @[ICache.scala:345:24, :519:31] wire _scratchpadHit_T_14 = _scratchpadHit_T_13 == 3'h1; // @[package.scala:163:13] wire _scratchpadHit_T_19 = _scratchpadHit_T_18 == 3'h1; // @[package.scala:163:13] wire [6:0] _s1_vb_T_5 = {1'h1, s1_idx_1}; // @[ICache.scala:508:29, :859:21] wire [8:0] _s1_vb_T_6 = {2'h0, _s1_vb_T_5}; // @[ICache.scala:508:{29,46}] wire [511:0] _s1_vb_T_7 = vb_array >> _s1_vb_T_6; // @[ICache.scala:448:25, :508:{25,46}] wire _s1_vb_T_8 = _s1_vb_T_7[0]; // @[ICache.scala:508:25] wire s1_vb_1 = _s1_vb_T_8; // @[ICache.scala:508:{25,71}] wire tl_error_1 = _rockettile_icache_tag_array_RW0_rdata[41]; // @[package.scala:163:13] wire _s1_tl_error_1_T = tl_error_1; // @[package.scala:163:13] wire [19:0] tag_1 = _rockettile_icache_tag_array_RW0_rdata[40:21]; // @[package.scala:163:13] wire _tagMatch_T_1 = tag_1 == s1_tag_1; // @[package.scala:163:13] wire tagMatch_1 = s1_vb_1 & _tagMatch_T_1; // @[ICache.scala:508:71, :514:{26,33}] assign _s1_tag_hit_1_T = tagMatch_1; // @[ICache.scala:514:26, :519:31] assign _s1_tl_error_1_T_1 = tagMatch_1 & _s1_tl_error_1_T; // @[ICache.scala:514:26, :518:{32,44}] assign s1_tl_error_1 = _s1_tl_error_1_T_1; // @[ICache.scala:469:25, :518:32] assign s1_tag_hit_1 = _s1_tag_hit_1_T; // @[ICache.scala:345:24, :519:31] wire _scratchpadHit_T_25 = _scratchpadHit_T_24 == 3'h2; // @[package.scala:163:13] wire _scratchpadHit_T_30 = _scratchpadHit_T_29 == 3'h2; // @[package.scala:163:13] wire [7:0] _s1_vb_T_10 = {2'h2, s1_idx_2}; // @[ICache.scala:508:29, :859:21] wire [8:0] _s1_vb_T_11 = {1'h0, _s1_vb_T_10}; // @[ICache.scala:508:{29,46}] wire [511:0] _s1_vb_T_12 = vb_array >> _s1_vb_T_11; // @[ICache.scala:448:25, :508:{25,46}] wire _s1_vb_T_13 = _s1_vb_T_12[0]; // @[ICache.scala:508:25] wire s1_vb_2 = _s1_vb_T_13; // @[ICache.scala:508:{25,71}] wire tl_error_2 = _rockettile_icache_tag_array_RW0_rdata[62]; // @[package.scala:163:13] wire _s1_tl_error_2_T = tl_error_2; // @[package.scala:163:13] wire [19:0] tag_2 = _rockettile_icache_tag_array_RW0_rdata[61:42]; // @[package.scala:163:13] wire _tagMatch_T_2 = tag_2 == s1_tag_2; // @[package.scala:163:13] wire tagMatch_2 = s1_vb_2 & _tagMatch_T_2; // @[ICache.scala:508:71, :514:{26,33}] assign _s1_tag_hit_2_T = tagMatch_2; // @[ICache.scala:514:26, :519:31] assign _s1_tl_error_2_T_1 = tagMatch_2 & _s1_tl_error_2_T; // @[ICache.scala:514:26, :518:{32,44}] assign s1_tl_error_2 = _s1_tl_error_2_T_1; // @[ICache.scala:469:25, :518:32] assign s1_tag_hit_2 = _s1_tag_hit_2_T; // @[ICache.scala:345:24, :519:31] wire _scratchpadHit_T_36 = _scratchpadHit_T_35 == 3'h3; // @[package.scala:163:13] wire _scratchpadHit_T_41 = _scratchpadHit_T_40 == 3'h3; // @[package.scala:163:13] wire [7:0] _s1_vb_T_15 = {2'h3, s1_idx_3}; // @[ICache.scala:508:29, :859:21] wire [8:0] _s1_vb_T_16 = {1'h0, _s1_vb_T_15}; // @[ICache.scala:508:{29,46}] wire [511:0] _s1_vb_T_17 = vb_array >> _s1_vb_T_16; // @[ICache.scala:448:25, :508:{25,46}] wire _s1_vb_T_18 = _s1_vb_T_17[0]; // @[ICache.scala:508:25] wire s1_vb_3 = _s1_vb_T_18; // @[ICache.scala:508:{25,71}] wire tl_error_3 = _rockettile_icache_tag_array_RW0_rdata[83]; // @[package.scala:163:13] wire _s1_tl_error_3_T = tl_error_3; // @[package.scala:163:13] wire [19:0] tag_3 = _rockettile_icache_tag_array_RW0_rdata[82:63]; // @[package.scala:163:13] wire _tagMatch_T_3 = tag_3 == s1_tag_3; // @[package.scala:163:13] wire tagMatch_3 = s1_vb_3 & _tagMatch_T_3; // @[ICache.scala:508:71, :514:{26,33}] assign _s1_tag_hit_3_T = tagMatch_3; // @[ICache.scala:514:26, :519:31] assign _s1_tl_error_3_T_1 = tagMatch_3 & _s1_tl_error_3_T; // @[ICache.scala:514:26, :518:{32,44}] assign s1_tl_error_3 = _s1_tl_error_3_T_1; // @[ICache.scala:469:25, :518:32] assign s1_tag_hit_3 = _s1_tag_hit_3_T; // @[ICache.scala:345:24, :519:31] wire _scratchpadHit_T_47 = _scratchpadHit_T_46 == 3'h4; // @[package.scala:163:13] wire _scratchpadHit_T_52 = _scratchpadHit_T_51 == 3'h4; // @[package.scala:163:13] wire [8:0] _s1_vb_T_20 = {3'h4, s1_idx_4}; // @[ICache.scala:508:29, :859:21] wire [511:0] _s1_vb_T_21 = vb_array >> _s1_vb_T_20; // @[ICache.scala:448:25, :508:{25,29}] wire _s1_vb_T_22 = _s1_vb_T_21[0]; // @[ICache.scala:508:25] wire s1_vb_4 = _s1_vb_T_22; // @[ICache.scala:508:{25,71}] wire tl_error_4 = _rockettile_icache_tag_array_RW0_rdata[104]; // @[package.scala:163:13] wire _s1_tl_error_4_T = tl_error_4; // @[package.scala:163:13] wire [19:0] tag_4 = _rockettile_icache_tag_array_RW0_rdata[103:84]; // @[package.scala:163:13] wire _tagMatch_T_4 = tag_4 == s1_tag_4; // @[package.scala:163:13] wire tagMatch_4 = s1_vb_4 & _tagMatch_T_4; // @[ICache.scala:508:71, :514:{26,33}] assign _s1_tag_hit_4_T = tagMatch_4; // @[ICache.scala:514:26, :519:31] assign _s1_tl_error_4_T_1 = tagMatch_4 & _s1_tl_error_4_T; // @[ICache.scala:514:26, :518:{32,44}] assign s1_tl_error_4 = _s1_tl_error_4_T_1; // @[ICache.scala:469:25, :518:32] assign s1_tag_hit_4 = _s1_tag_hit_4_T; // @[ICache.scala:345:24, :519:31] wire _scratchpadHit_T_58 = _scratchpadHit_T_57 == 3'h5; // @[package.scala:163:13] wire _scratchpadHit_T_63 = _scratchpadHit_T_62 == 3'h5; // @[package.scala:163:13] wire [8:0] _s1_vb_T_24 = {3'h5, s1_idx_5}; // @[ICache.scala:508:29, :859:21] wire [511:0] _s1_vb_T_25 = vb_array >> _s1_vb_T_24; // @[ICache.scala:448:25, :508:{25,29}] wire _s1_vb_T_26 = _s1_vb_T_25[0]; // @[ICache.scala:508:25] wire s1_vb_5 = _s1_vb_T_26; // @[ICache.scala:508:{25,71}] wire tl_error_5 = _rockettile_icache_tag_array_RW0_rdata[125]; // @[package.scala:163:13] wire _s1_tl_error_5_T = tl_error_5; // @[package.scala:163:13] wire [19:0] tag_5 = _rockettile_icache_tag_array_RW0_rdata[124:105]; // @[package.scala:163:13] wire _tagMatch_T_5 = tag_5 == s1_tag_5; // @[package.scala:163:13] wire tagMatch_5 = s1_vb_5 & _tagMatch_T_5; // @[ICache.scala:508:71, :514:{26,33}] assign _s1_tag_hit_5_T = tagMatch_5; // @[ICache.scala:514:26, :519:31] assign _s1_tl_error_5_T_1 = tagMatch_5 & _s1_tl_error_5_T; // @[ICache.scala:514:26, :518:{32,44}] assign s1_tl_error_5 = _s1_tl_error_5_T_1; // @[ICache.scala:469:25, :518:32] assign s1_tag_hit_5 = _s1_tag_hit_5_T; // @[ICache.scala:345:24, :519:31] wire _scratchpadHit_T_69 = _scratchpadHit_T_68 == 3'h6; // @[package.scala:163:13] wire _scratchpadHit_T_74 = _scratchpadHit_T_73 == 3'h6; // @[package.scala:163:13] wire [8:0] _s1_vb_T_28 = {3'h6, s1_idx_6}; // @[ICache.scala:508:29, :859:21] wire [511:0] _s1_vb_T_29 = vb_array >> _s1_vb_T_28; // @[ICache.scala:448:25, :508:{25,29}] wire _s1_vb_T_30 = _s1_vb_T_29[0]; // @[ICache.scala:508:25] wire s1_vb_6 = _s1_vb_T_30; // @[ICache.scala:508:{25,71}] wire tl_error_6 = _rockettile_icache_tag_array_RW0_rdata[146]; // @[package.scala:163:13] wire _s1_tl_error_6_T = tl_error_6; // @[package.scala:163:13] wire [19:0] tag_6 = _rockettile_icache_tag_array_RW0_rdata[145:126]; // @[package.scala:163:13] wire _tagMatch_T_6 = tag_6 == s1_tag_6; // @[package.scala:163:13] wire tagMatch_6 = s1_vb_6 & _tagMatch_T_6; // @[ICache.scala:508:71, :514:{26,33}] assign _s1_tag_hit_6_T = tagMatch_6; // @[ICache.scala:514:26, :519:31] assign _s1_tl_error_6_T_1 = tagMatch_6 & _s1_tl_error_6_T; // @[ICache.scala:514:26, :518:{32,44}] assign s1_tl_error_6 = _s1_tl_error_6_T_1; // @[ICache.scala:469:25, :518:32] assign s1_tag_hit_6 = _s1_tag_hit_6_T; // @[ICache.scala:345:24, :519:31] wire _scratchpadHit_T_80 = &_scratchpadHit_T_79; // @[package.scala:163:13] wire _scratchpadHit_T_85 = &_scratchpadHit_T_84; // @[package.scala:163:13] wire [8:0] _s1_vb_T_32 = {3'h7, s1_idx_7}; // @[ICache.scala:508:29, :859:21] wire [511:0] _s1_vb_T_33 = vb_array >> _s1_vb_T_32; // @[ICache.scala:448:25, :508:{25,29}] wire _s1_vb_T_34 = _s1_vb_T_33[0]; // @[ICache.scala:508:25] wire s1_vb_7 = _s1_vb_T_34; // @[ICache.scala:508:{25,71}] wire tl_error_7 = _rockettile_icache_tag_array_RW0_rdata[167]; // @[package.scala:163:13] wire _s1_tl_error_7_T = tl_error_7; // @[package.scala:163:13] wire [19:0] tag_7 = _rockettile_icache_tag_array_RW0_rdata[166:147]; // @[package.scala:163:13] wire _tagMatch_T_7 = tag_7 == s1_tag_7; // @[package.scala:163:13] wire tagMatch_7 = s1_vb_7 & _tagMatch_T_7; // @[ICache.scala:508:71, :514:{26,33}] assign _s1_tag_hit_7_T = tagMatch_7; // @[ICache.scala:514:26, :519:31] assign _s1_tl_error_7_T_1 = tagMatch_7 & _s1_tl_error_7_T; // @[ICache.scala:514:26, :518:{32,44}] assign s1_tl_error_7 = _s1_tl_error_7_T_1; // @[ICache.scala:469:25, :518:32] assign s1_tag_hit_7 = _s1_tag_hit_7_T; // @[ICache.scala:345:24, :519:31]
Generate the Verilog code corresponding to the following Chisel files. File Monitor.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceLine import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import freechips.rocketchip.diplomacy.EnableMonitors import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode} import freechips.rocketchip.util.PlusArg case class TLMonitorArgs(edge: TLEdge) abstract class TLMonitorBase(args: TLMonitorArgs) extends Module { val io = IO(new Bundle { val in = Input(new TLBundle(args.edge.bundle)) }) def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit legalize(io.in, args.edge, reset) } object TLMonitor { def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = { if (enable) { EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) } } else { node } } } class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args) { require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal)) val cover_prop_class = PropertyClass.Default //Like assert but can flip to being an assumption for formal verification def monAssert(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir, cond, message, PropertyClass.Default) } def assume(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir.flip, cond, message, PropertyClass.Default) } def extra = { args.edge.sourceInfo match { case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)" case _ => "" } } def visible(address: UInt, source: UInt, edge: TLEdge) = edge.client.clients.map { c => !c.sourceId.contains(source) || c.visibility.map(_.contains(address)).reduce(_ || _) }.reduce(_ && _) def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = { //switch this flag to turn on diplomacy in error messages def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n" monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra) // Reuse these subexpressions to save some firrtl lines val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility") //The monitor doesn’t check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B //TODO: check for acquireT? when (bundle.opcode === TLMessages.AcquireBlock) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra) } when (bundle.opcode === TLMessages.AcquirePerm) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra) monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra) monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra) monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra) } } def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = { monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra) monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility") // Reuse these subexpressions to save some firrtl lines val address_ok = edge.manager.containsSafe(edge.address(bundle)) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source when (bundle.opcode === TLMessages.Probe) { assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra) assume (address_ok, "'B' channel Probe carries unmanaged address" + extra) assume (legal_source, "'B' channel Probe carries source that is not first source" + extra) assume (is_aligned, "'B' channel Probe address not aligned to size" + extra) assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra) assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra) assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra) monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra) monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra) monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra) monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra) } } def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = { monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val address_ok = edge.manager.containsSafe(edge.address(bundle)) monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility") when (bundle.opcode === TLMessages.ProbeAck) { monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra) } when (bundle.opcode === TLMessages.ProbeAckData) { monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.Release) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra) monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra) } when (bundle.opcode === TLMessages.ReleaseData) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.AccessAck) { monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra) } when (bundle.opcode === TLMessages.HintAck) { monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra) } } def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = { assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val sink_ok = bundle.sink < edge.manager.endSinkId.U val deny_put_ok = edge.manager.mayDenyPut.B val deny_get_ok = edge.manager.mayDenyGet.B when (bundle.opcode === TLMessages.ReleaseAck) { assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra) assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra) assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra) } when (bundle.opcode === TLMessages.Grant) { assume (source_ok, "'D' channel Grant carries invalid source ID" + extra) assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra) assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra) } when (bundle.opcode === TLMessages.GrantData) { assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra) assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra) } when (bundle.opcode === TLMessages.AccessAck) { assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra) } when (bundle.opcode === TLMessages.HintAck) { assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra) } } def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = { val sink_ok = bundle.sink < edge.manager.endSinkId.U monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra) } def legalizeFormat(bundle: TLBundle, edge: TLEdge) = { when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) } when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) } when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) } when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) } } else { monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra) monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra) monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra) } } def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = { val a_first = edge.first(a.bits, a.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (a.valid && !a_first) { monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra) monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra) monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra) monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra) monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra) } when (a.fire && a_first) { opcode := a.bits.opcode param := a.bits.param size := a.bits.size source := a.bits.source address := a.bits.address } } def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = { val b_first = edge.first(b.bits, b.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (b.valid && !b_first) { monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra) monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra) monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra) monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra) monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra) } when (b.fire && b_first) { opcode := b.bits.opcode param := b.bits.param size := b.bits.size source := b.bits.source address := b.bits.address } } def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = { // Symbolic variable val sym_source = Wire(UInt(edge.client.endSourceId.W)) // TODO: Connect sym_source to a fixed value for simulation and to a // free wire in formal sym_source := 0.U // Type casting Int to UInt val maxSourceId = Wire(UInt(edge.client.endSourceId.W)) maxSourceId := edge.client.endSourceId.U // Delayed verison of sym_source val sym_source_d = Reg(UInt(edge.client.endSourceId.W)) sym_source_d := sym_source // These will be constraints for FV setup Property( MonitorDirection.Monitor, (sym_source === sym_source_d), "sym_source should remain stable", PropertyClass.Default) Property( MonitorDirection.Monitor, (sym_source <= maxSourceId), "sym_source should take legal value", PropertyClass.Default) val my_resp_pend = RegInit(false.B) val my_opcode = Reg(UInt()) val my_size = Reg(UInt()) val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire) val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire) val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source) val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source) val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat) val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend) when (my_set_resp_pend) { my_resp_pend := true.B } .elsewhen (my_clr_resp_pend) { my_resp_pend := false.B } when (my_a_first_beat) { my_opcode := bundle.a.bits.opcode my_size := bundle.a.bits.size } val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size) val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode) val my_resp_opcode_legal = Wire(Bool()) when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) || (my_resp_opcode === TLMessages.LogicalData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData) } .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck) } .otherwise { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck) } monAssert (IfThen(my_resp_pend, !my_a_first_beat), "Request message should not be sent with a source ID, for which a response message" + "is already pending (not received until current cycle) for a prior request message" + "with the same source ID" + extra) assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)), "Response message should be accepted with a source ID only if a request message with the" + "same source ID has been accepted or is being accepted in the current cycle" + extra) assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)), "Response message should be sent with a source ID only if a request message with the" + "same source ID has been accepted or is being sent in the current cycle" + extra) assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)), "If d_valid is 1, then d_size should be same as a_size of the corresponding request" + "message" + extra) assume (IfThen(my_d_first_beat, my_resp_opcode_legal), "If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" + "request message" + extra) } def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = { val c_first = edge.first(c.bits, c.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (c.valid && !c_first) { monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra) monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra) monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra) monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra) monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra) } when (c.fire && c_first) { opcode := c.bits.opcode param := c.bits.param size := c.bits.size source := c.bits.source address := c.bits.address } } def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = { val d_first = edge.first(d.bits, d.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val sink = Reg(UInt()) val denied = Reg(Bool()) when (d.valid && !d_first) { assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra) assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra) assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra) assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra) assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra) assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra) } when (d.fire && d_first) { opcode := d.bits.opcode param := d.bits.param size := d.bits.size source := d.bits.source sink := d.bits.sink denied := d.bits.denied } } def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = { legalizeMultibeatA(bundle.a, edge) legalizeMultibeatD(bundle.d, edge) if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { legalizeMultibeatB(bundle.b, edge) legalizeMultibeatC(bundle.c, edge) } } //This is left in for almond which doesn't adhere to the tilelink protocol @deprecated("Use legalizeADSource instead if possible","") def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.client.endSourceId.W)) val a_first = edge.first(bundle.a.bits, bundle.a.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val a_set = WireInit(0.U(edge.client.endSourceId.W)) when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra) } if (edge.manager.minLatency > 0) { assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = { val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size) val log_a_size_bus_size = log2Ceil(a_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error inflight.suggestName("inflight") val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) inflight_opcodes.suggestName("inflight_opcodes") val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) inflight_sizes.suggestName("inflight_sizes") val a_first = edge.first(bundle.a.bits, bundle.a.fire) a_first.suggestName("a_first") val d_first = edge.first(bundle.d.bits, bundle.d.fire) d_first.suggestName("d_first") val a_set = WireInit(0.U(edge.client.endSourceId.W)) val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) a_set.suggestName("a_set") a_set_wo_ready.suggestName("a_set_wo_ready") val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) a_opcodes_set.suggestName("a_opcodes_set") val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) a_sizes_set.suggestName("a_sizes_set") val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W)) a_opcode_lookup.suggestName("a_opcode_lookup") a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W)) a_size_lookup.suggestName("a_size_lookup") a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant)) val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant)) val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W)) a_opcodes_set_interm.suggestName("a_opcodes_set_interm") val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W)) a_sizes_set_interm.suggestName("a_sizes_set_interm") when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) { a_set_wo_ready := UIntToOH(bundle.a.bits.source) } when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U) a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U) monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) d_opcodes_clr.suggestName("d_opcodes_clr") val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) || (bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra) assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) || (bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra) assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) { assume((!bundle.d.ready) || bundle.a.ready, "ready check") } if (edge.manager.minLatency > 0) { assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = { val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size) val log_c_size_bus_size = log2Ceil(c_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) inflight.suggestName("inflight") inflight_opcodes.suggestName("inflight_opcodes") inflight_sizes.suggestName("inflight_sizes") val c_first = edge.first(bundle.c.bits, bundle.c.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) c_first.suggestName("c_first") d_first.suggestName("d_first") val c_set = WireInit(0.U(edge.client.endSourceId.W)) val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) c_set.suggestName("c_set") c_set_wo_ready.suggestName("c_set_wo_ready") c_opcodes_set.suggestName("c_opcodes_set") c_sizes_set.suggestName("c_sizes_set") val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W)) val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W)) c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U c_opcode_lookup.suggestName("c_opcode_lookup") c_size_lookup.suggestName("c_size_lookup") val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W)) val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W)) c_opcodes_set_interm.suggestName("c_opcodes_set_interm") c_sizes_set_interm.suggestName("c_sizes_set_interm") when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) { c_set_wo_ready := UIntToOH(bundle.c.bits.source) } when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) { c_set := UIntToOH(bundle.c.bits.source) c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U) c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U) monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra) } val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") d_opcodes_clr.suggestName("d_opcodes_clr") d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) { assume((!bundle.d.ready) || bundle.c.ready, "ready check") } if (edge.manager.minLatency > 0) { when (c_set_wo_ready.orR) { assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra) } } inflight := (inflight | c_set) & ~d_clr inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.manager.endSinkId.W)) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val e_first = true.B val d_set = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) { d_set := UIntToOH(bundle.d.bits.sink) assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra) } val e_clr = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) { e_clr := UIntToOH(bundle.e.bits.sink) monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra) } // edge.client.minLatency applies to BC, not DE inflight := (inflight | d_set) & ~e_clr } def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = { val sourceBits = log2Ceil(edge.client.endSourceId) val tooBig = 14 // >16kB worth of flight information gets to be too much if (sourceBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked") } else { if (args.edge.params(TestplanTestType).simulation) { if (args.edge.params(TLMonitorStrictMode)) { legalizeADSource(bundle, edge) legalizeCDSource(bundle, edge) } else { legalizeADSourceOld(bundle, edge) } } if (args.edge.params(TestplanTestType).formal) { legalizeADSourceFormal(bundle, edge) } } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { // legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize... val sinkBits = log2Ceil(edge.manager.endSinkId) if (sinkBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked") } else { legalizeDESink(bundle, edge) } } } def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = { legalizeFormat (bundle, edge) legalizeMultibeat (bundle, edge) legalizeUnique (bundle, edge) } } File Misc.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ import chisel3.util.random.LFSR import org.chipsalliance.cde.config.Parameters import scala.math._ class ParameterizedBundle(implicit p: Parameters) extends Bundle trait Clocked extends Bundle { val clock = Clock() val reset = Bool() } object DecoupledHelper { def apply(rvs: Bool*) = new DecoupledHelper(rvs) } class DecoupledHelper(val rvs: Seq[Bool]) { def fire(exclude: Bool, includes: Bool*) = { require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!") (rvs.filter(_ ne exclude) ++ includes).reduce(_ && _) } def fire() = { rvs.reduce(_ && _) } } object MuxT { def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2)) def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3)) def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4)) } /** Creates a cascade of n MuxTs to search for a key value. */ object MuxTLookup { def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } } object ValidMux { def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = { apply(v1 +: v2.toSeq) } def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = { val out = Wire(Valid(valids.head.bits.cloneType)) out.valid := valids.map(_.valid).reduce(_ || _) out.bits := MuxCase(valids.head.bits, valids.map(v => (v.valid -> v.bits))) out } } object Str { def apply(s: String): UInt = { var i = BigInt(0) require(s.forall(validChar _)) for (c <- s) i = (i << 8) | c i.U((s.length*8).W) } def apply(x: Char): UInt = { require(validChar(x)) x.U(8.W) } def apply(x: UInt): UInt = apply(x, 10) def apply(x: UInt, radix: Int): UInt = { val rad = radix.U val w = x.getWidth require(w > 0) var q = x var s = digit(q % rad) for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s) } s } def apply(x: SInt): UInt = apply(x, 10) def apply(x: SInt, radix: Int): UInt = { val neg = x < 0.S val abs = x.abs.asUInt if (radix != 10) { Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix)) } else { val rad = radix.U val w = abs.getWidth require(w > 0) var q = abs var s = digit(q % rad) var needSign = neg for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad val placeSpace = q === 0.U val space = Mux(needSign, Str('-'), Str(' ')) needSign = needSign && !placeSpace s = Cat(Mux(placeSpace, space, digit(q % rad)), s) } Cat(Mux(needSign, Str('-'), Str(' ')), s) } } private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0) private def validChar(x: Char) = x == (x & 0xFF) } object Split { def apply(x: UInt, n0: Int) = { val w = x.getWidth (x.extract(w-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n2: Int, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } } object Random { def apply(mod: Int, random: UInt): UInt = { if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0) else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod)) } def apply(mod: Int): UInt = apply(mod, randomizer) def oneHot(mod: Int, random: UInt): UInt = { if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0)) else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt } def oneHot(mod: Int): UInt = oneHot(mod, randomizer) private def randomizer = LFSR(16) private def partition(value: UInt, slices: Int) = Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U) } object Majority { def apply(in: Set[Bool]): Bool = { val n = (in.size >> 1) + 1 val clauses = in.subsets(n).map(_.reduce(_ && _)) clauses.reduce(_ || _) } def apply(in: Seq[Bool]): Bool = apply(in.toSet) def apply(in: UInt): Bool = apply(in.asBools.toSet) } object PopCountAtLeast { private def two(x: UInt): (Bool, Bool) = x.getWidth match { case 1 => (x.asBool, false.B) case n => val half = x.getWidth / 2 val (leftOne, leftTwo) = two(x(half - 1, 0)) val (rightOne, rightTwo) = two(x(x.getWidth - 1, half)) (leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne)) } def apply(x: UInt, n: Int): Bool = n match { case 0 => true.B case 1 => x.orR case 2 => two(x)._2 case 3 => PopCount(x) >= n.U } } // This gets used everywhere, so make the smallest circuit possible ... // Given an address and size, create a mask of beatBytes size // eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111 // groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01 object MaskGen { def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = { require (groupBy >= 1 && beatBytes >= groupBy) require (isPow2(beatBytes) && isPow2(groupBy)) val lgBytes = log2Ceil(beatBytes) val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U def helper(i: Int): Seq[(Bool, Bool)] = { if (i == 0) { Seq((lgSize >= lgBytes.asUInt, true.B)) } else { val sub = helper(i-1) val size = sizeOH(lgBytes - i) val bit = addr_lo(lgBytes - i) val nbit = !bit Seq.tabulate (1 << i) { j => val (sub_acc, sub_eq) = sub(j/2) val eq = sub_eq && (if (j % 2 == 1) bit else nbit) val acc = sub_acc || (size && eq) (acc, eq) } } } if (groupBy == beatBytes) 1.U else Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse) } } File PlusArg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.experimental._ import chisel3.util.HasBlackBoxResource @deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05") case class PlusArgInfo(default: BigInt, docstring: String) /** Case class for PlusArg information * * @tparam A scala type of the PlusArg value * @param default optional default value * @param docstring text to include in the help * @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT) */ private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String) /** Typeclass for converting a type to a doctype string * @tparam A some type */ trait Doctypeable[A] { /** Return the doctype string for some option */ def toDoctype(a: Option[A]): String } /** Object containing implementations of the Doctypeable typeclass */ object Doctypes { /** Converts an Int => "INT" */ implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" } /** Converts a BigInt => "INT" */ implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" } /** Converts a String => "STRING" */ implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" } } class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map( "FORMAT" -> StringParam(format), "DEFAULT" -> IntParam(default), "WIDTH" -> IntParam(width) )) with HasBlackBoxResource { val io = IO(new Bundle { val out = Output(UInt(width.W)) }) addResource("/vsrc/plusarg_reader.v") } /* This wrapper class has no outputs, making it clear it is a simulation-only construct */ class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module { val io = IO(new Bundle { val count = Input(UInt(width.W)) }) val max = Module(new plusarg_reader(format, default, docstring, width)).io.out when (max > 0.U) { assert (io.count < max, s"Timeout exceeded: $docstring") } } import Doctypes._ object PlusArg { /** PlusArg("foo") will return 42.U if the simulation is run with +foo=42 * Do not use this as an initial register value. The value is set in an * initial block and thus accessing it from another initial is racey. * Add a docstring to document the arg, which can be dumped in an elaboration * pass. */ def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out } /** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert * to kill the simulation when count exceeds the specified integer argument. * Default 0 will never assert. */ def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count } } object PlusArgArtefacts { private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty /* Add a new PlusArg */ @deprecated( "Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05" ) def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring) /** Add a new PlusArg * * @tparam A scala type of the PlusArg value * @param name name for the PlusArg * @param default optional default value * @param docstring text to include in the help */ def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit = artefacts = artefacts ++ Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default))) /* From plus args, generate help text */ private def serializeHelp_cHeader(tab: String = ""): String = artefacts .map{ case(arg, info) => s"""|$tab+$arg=${info.doctype}\\n\\ |$tab${" "*20}${info.docstring}\\n\\ |""".stripMargin ++ info.default.map{ case default => s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("") }.toSeq.mkString("\\n\\\n") ++ "\"" /* From plus args, generate a char array of their names */ private def serializeArray_cHeader(tab: String = ""): String = { val prettyTab = tab + " " * 44 // Length of 'static const ...' s"${tab}static const char * verilog_plusargs [] = {\\\n" ++ artefacts .map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" } .mkString("")++ s"${prettyTab}0};" } /* Generate C code to be included in emulator.cc that helps with * argument parsing based on available Verilog PlusArgs */ def serialize_cHeader(): String = s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\ |${serializeHelp_cHeader(" "*7)} |${serializeArray_cHeader()} |""".stripMargin } File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag } File Bundles.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import freechips.rocketchip.util._ import scala.collection.immutable.ListMap import chisel3.util.Decoupled import chisel3.util.DecoupledIO import chisel3.reflect.DataMirror abstract class TLBundleBase(val params: TLBundleParameters) extends Bundle // common combos in lazy policy: // Put + Acquire // Release + AccessAck object TLMessages { // A B C D E def PutFullData = 0.U // . . => AccessAck def PutPartialData = 1.U // . . => AccessAck def ArithmeticData = 2.U // . . => AccessAckData def LogicalData = 3.U // . . => AccessAckData def Get = 4.U // . . => AccessAckData def Hint = 5.U // . . => HintAck def AcquireBlock = 6.U // . => Grant[Data] def AcquirePerm = 7.U // . => Grant[Data] def Probe = 6.U // . => ProbeAck[Data] def AccessAck = 0.U // . . def AccessAckData = 1.U // . . def HintAck = 2.U // . . def ProbeAck = 4.U // . def ProbeAckData = 5.U // . def Release = 6.U // . => ReleaseAck def ReleaseData = 7.U // . => ReleaseAck def Grant = 4.U // . => GrantAck def GrantData = 5.U // . => GrantAck def ReleaseAck = 6.U // . def GrantAck = 0.U // . def isA(x: UInt) = x <= AcquirePerm def isB(x: UInt) = x <= Probe def isC(x: UInt) = x <= ReleaseData def isD(x: UInt) = x <= ReleaseAck def adResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, Grant, Grant) def bcResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, ProbeAck, ProbeAck) def a = Seq( ("PutFullData",TLPermissions.PermMsgReserved), ("PutPartialData",TLPermissions.PermMsgReserved), ("ArithmeticData",TLAtomics.ArithMsg), ("LogicalData",TLAtomics.LogicMsg), ("Get",TLPermissions.PermMsgReserved), ("Hint",TLHints.HintsMsg), ("AcquireBlock",TLPermissions.PermMsgGrow), ("AcquirePerm",TLPermissions.PermMsgGrow)) def b = Seq( ("PutFullData",TLPermissions.PermMsgReserved), ("PutPartialData",TLPermissions.PermMsgReserved), ("ArithmeticData",TLAtomics.ArithMsg), ("LogicalData",TLAtomics.LogicMsg), ("Get",TLPermissions.PermMsgReserved), ("Hint",TLHints.HintsMsg), ("Probe",TLPermissions.PermMsgCap)) def c = Seq( ("AccessAck",TLPermissions.PermMsgReserved), ("AccessAckData",TLPermissions.PermMsgReserved), ("HintAck",TLPermissions.PermMsgReserved), ("Invalid Opcode",TLPermissions.PermMsgReserved), ("ProbeAck",TLPermissions.PermMsgReport), ("ProbeAckData",TLPermissions.PermMsgReport), ("Release",TLPermissions.PermMsgReport), ("ReleaseData",TLPermissions.PermMsgReport)) def d = Seq( ("AccessAck",TLPermissions.PermMsgReserved), ("AccessAckData",TLPermissions.PermMsgReserved), ("HintAck",TLPermissions.PermMsgReserved), ("Invalid Opcode",TLPermissions.PermMsgReserved), ("Grant",TLPermissions.PermMsgCap), ("GrantData",TLPermissions.PermMsgCap), ("ReleaseAck",TLPermissions.PermMsgReserved)) } /** * The three primary TileLink permissions are: * (T)runk: the agent is (or is on inwards path to) the global point of serialization. * (B)ranch: the agent is on an outwards path to * (N)one: * These permissions are permuted by transfer operations in various ways. * Operations can cap permissions, request for them to be grown or shrunk, * or for a report on their current status. */ object TLPermissions { val aWidth = 2 val bdWidth = 2 val cWidth = 3 // Cap types (Grant = new permissions, Probe = permisions <= target) def toT = 0.U(bdWidth.W) def toB = 1.U(bdWidth.W) def toN = 2.U(bdWidth.W) def isCap(x: UInt) = x <= toN // Grow types (Acquire = permissions >= target) def NtoB = 0.U(aWidth.W) def NtoT = 1.U(aWidth.W) def BtoT = 2.U(aWidth.W) def isGrow(x: UInt) = x <= BtoT // Shrink types (ProbeAck, Release) def TtoB = 0.U(cWidth.W) def TtoN = 1.U(cWidth.W) def BtoN = 2.U(cWidth.W) def isShrink(x: UInt) = x <= BtoN // Report types (ProbeAck, Release) def TtoT = 3.U(cWidth.W) def BtoB = 4.U(cWidth.W) def NtoN = 5.U(cWidth.W) def isReport(x: UInt) = x <= NtoN def PermMsgGrow:Seq[String] = Seq("Grow NtoB", "Grow NtoT", "Grow BtoT") def PermMsgCap:Seq[String] = Seq("Cap toT", "Cap toB", "Cap toN") def PermMsgReport:Seq[String] = Seq("Shrink TtoB", "Shrink TtoN", "Shrink BtoN", "Report TotT", "Report BtoB", "Report NtoN") def PermMsgReserved:Seq[String] = Seq("Reserved") } object TLAtomics { val width = 3 // Arithmetic types def MIN = 0.U(width.W) def MAX = 1.U(width.W) def MINU = 2.U(width.W) def MAXU = 3.U(width.W) def ADD = 4.U(width.W) def isArithmetic(x: UInt) = x <= ADD // Logical types def XOR = 0.U(width.W) def OR = 1.U(width.W) def AND = 2.U(width.W) def SWAP = 3.U(width.W) def isLogical(x: UInt) = x <= SWAP def ArithMsg:Seq[String] = Seq("MIN", "MAX", "MINU", "MAXU", "ADD") def LogicMsg:Seq[String] = Seq("XOR", "OR", "AND", "SWAP") } object TLHints { val width = 1 def PREFETCH_READ = 0.U(width.W) def PREFETCH_WRITE = 1.U(width.W) def isHints(x: UInt) = x <= PREFETCH_WRITE def HintsMsg:Seq[String] = Seq("PrefetchRead", "PrefetchWrite") } sealed trait TLChannel extends TLBundleBase { val channelName: String } sealed trait TLDataChannel extends TLChannel sealed trait TLAddrChannel extends TLDataChannel final class TLBundleA(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleA_${params.shortName}" val channelName = "'A' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(List(TLAtomics.width, TLPermissions.aWidth, TLHints.width).max.W) // amo_opcode || grow perms || hint val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // from val address = UInt(params.addressBits.W) // to val user = BundleMap(params.requestFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val mask = UInt((params.dataBits/8).W) val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleB(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleB_${params.shortName}" val channelName = "'B' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.bdWidth.W) // cap perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // to val address = UInt(params.addressBits.W) // from // variable fields during multibeat: val mask = UInt((params.dataBits/8).W) val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleC(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleC_${params.shortName}" val channelName = "'C' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.cWidth.W) // shrink or report perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // from val address = UInt(params.addressBits.W) // to val user = BundleMap(params.requestFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleD(params: TLBundleParameters) extends TLBundleBase(params) with TLDataChannel { override def typeName = s"TLBundleD_${params.shortName}" val channelName = "'D' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.bdWidth.W) // cap perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // to val sink = UInt(params.sinkBits.W) // from val denied = Bool() // implies corrupt iff *Data val user = BundleMap(params.responseFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleE(params: TLBundleParameters) extends TLBundleBase(params) with TLChannel { override def typeName = s"TLBundleE_${params.shortName}" val channelName = "'E' channel" val sink = UInt(params.sinkBits.W) // to } class TLBundle(val params: TLBundleParameters) extends Record { // Emulate a Bundle with elements abcde or ad depending on params.hasBCE private val optA = Some (Decoupled(new TLBundleA(params))) private val optB = params.hasBCE.option(Flipped(Decoupled(new TLBundleB(params)))) private val optC = params.hasBCE.option(Decoupled(new TLBundleC(params))) private val optD = Some (Flipped(Decoupled(new TLBundleD(params)))) private val optE = params.hasBCE.option(Decoupled(new TLBundleE(params))) def a: DecoupledIO[TLBundleA] = optA.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleA(params))))) def b: DecoupledIO[TLBundleB] = optB.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleB(params))))) def c: DecoupledIO[TLBundleC] = optC.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleC(params))))) def d: DecoupledIO[TLBundleD] = optD.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleD(params))))) def e: DecoupledIO[TLBundleE] = optE.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleE(params))))) val elements = if (params.hasBCE) ListMap("e" -> e, "d" -> d, "c" -> c, "b" -> b, "a" -> a) else ListMap("d" -> d, "a" -> a) def tieoff(): Unit = { DataMirror.specifiedDirectionOf(a.ready) match { case SpecifiedDirection.Input => a.ready := false.B c.ready := false.B e.ready := false.B b.valid := false.B d.valid := false.B case SpecifiedDirection.Output => a.valid := false.B c.valid := false.B e.valid := false.B b.ready := false.B d.ready := false.B case _ => } } } object TLBundle { def apply(params: TLBundleParameters) = new TLBundle(params) } class TLAsyncBundleBase(val params: TLAsyncBundleParameters) extends Bundle class TLAsyncBundle(params: TLAsyncBundleParameters) extends TLAsyncBundleBase(params) { val a = new AsyncBundle(new TLBundleA(params.base), params.async) val b = Flipped(new AsyncBundle(new TLBundleB(params.base), params.async)) val c = new AsyncBundle(new TLBundleC(params.base), params.async) val d = Flipped(new AsyncBundle(new TLBundleD(params.base), params.async)) val e = new AsyncBundle(new TLBundleE(params.base), params.async) } class TLRationalBundle(params: TLBundleParameters) extends TLBundleBase(params) { val a = RationalIO(new TLBundleA(params)) val b = Flipped(RationalIO(new TLBundleB(params))) val c = RationalIO(new TLBundleC(params)) val d = Flipped(RationalIO(new TLBundleD(params))) val e = RationalIO(new TLBundleE(params)) } class TLCreditedBundle(params: TLBundleParameters) extends TLBundleBase(params) { val a = CreditedIO(new TLBundleA(params)) val b = Flipped(CreditedIO(new TLBundleB(params))) val c = CreditedIO(new TLBundleC(params)) val d = Flipped(CreditedIO(new TLBundleD(params))) val e = CreditedIO(new TLBundleE(params)) } File Parameters.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy.nodes._ import freechips.rocketchip.diplomacy.{ AddressDecoder, AddressSet, BufferParams, DirectedBuffers, IdMap, IdMapEntry, IdRange, RegionType, TransferSizes } import freechips.rocketchip.resources.{Resource, ResourceAddress, ResourcePermissions} import freechips.rocketchip.util.{ AsyncQueueParams, BundleField, BundleFieldBase, BundleKeyBase, CreditedDelay, groupByIntoSeq, RationalDirection, SimpleProduct } import scala.math.max //These transfer sizes describe requests issued from masters on the A channel that will be responded by slaves on the D channel case class TLMasterToSlaveTransferSizes( // Supports both Acquire+Release of the following two sizes: acquireT: TransferSizes = TransferSizes.none, acquireB: TransferSizes = TransferSizes.none, arithmetic: TransferSizes = TransferSizes.none, logical: TransferSizes = TransferSizes.none, get: TransferSizes = TransferSizes.none, putFull: TransferSizes = TransferSizes.none, putPartial: TransferSizes = TransferSizes.none, hint: TransferSizes = TransferSizes.none) extends TLCommonTransferSizes { def intersect(rhs: TLMasterToSlaveTransferSizes) = TLMasterToSlaveTransferSizes( acquireT = acquireT .intersect(rhs.acquireT), acquireB = acquireB .intersect(rhs.acquireB), arithmetic = arithmetic.intersect(rhs.arithmetic), logical = logical .intersect(rhs.logical), get = get .intersect(rhs.get), putFull = putFull .intersect(rhs.putFull), putPartial = putPartial.intersect(rhs.putPartial), hint = hint .intersect(rhs.hint)) def mincover(rhs: TLMasterToSlaveTransferSizes) = TLMasterToSlaveTransferSizes( acquireT = acquireT .mincover(rhs.acquireT), acquireB = acquireB .mincover(rhs.acquireB), arithmetic = arithmetic.mincover(rhs.arithmetic), logical = logical .mincover(rhs.logical), get = get .mincover(rhs.get), putFull = putFull .mincover(rhs.putFull), putPartial = putPartial.mincover(rhs.putPartial), hint = hint .mincover(rhs.hint)) // Reduce rendering to a simple yes/no per field override def toString = { def str(x: TransferSizes, flag: String) = if (x.none) "" else flag def flags = Vector( str(acquireT, "T"), str(acquireB, "B"), str(arithmetic, "A"), str(logical, "L"), str(get, "G"), str(putFull, "F"), str(putPartial, "P"), str(hint, "H")) flags.mkString } // Prints out the actual information in a user readable way def infoString = { s"""acquireT = ${acquireT} |acquireB = ${acquireB} |arithmetic = ${arithmetic} |logical = ${logical} |get = ${get} |putFull = ${putFull} |putPartial = ${putPartial} |hint = ${hint} | |""".stripMargin } } object TLMasterToSlaveTransferSizes { def unknownEmits = TLMasterToSlaveTransferSizes( acquireT = TransferSizes(1, 4096), acquireB = TransferSizes(1, 4096), arithmetic = TransferSizes(1, 4096), logical = TransferSizes(1, 4096), get = TransferSizes(1, 4096), putFull = TransferSizes(1, 4096), putPartial = TransferSizes(1, 4096), hint = TransferSizes(1, 4096)) def unknownSupports = TLMasterToSlaveTransferSizes() } //These transfer sizes describe requests issued from slaves on the B channel that will be responded by masters on the C channel case class TLSlaveToMasterTransferSizes( probe: TransferSizes = TransferSizes.none, arithmetic: TransferSizes = TransferSizes.none, logical: TransferSizes = TransferSizes.none, get: TransferSizes = TransferSizes.none, putFull: TransferSizes = TransferSizes.none, putPartial: TransferSizes = TransferSizes.none, hint: TransferSizes = TransferSizes.none ) extends TLCommonTransferSizes { def intersect(rhs: TLSlaveToMasterTransferSizes) = TLSlaveToMasterTransferSizes( probe = probe .intersect(rhs.probe), arithmetic = arithmetic.intersect(rhs.arithmetic), logical = logical .intersect(rhs.logical), get = get .intersect(rhs.get), putFull = putFull .intersect(rhs.putFull), putPartial = putPartial.intersect(rhs.putPartial), hint = hint .intersect(rhs.hint) ) def mincover(rhs: TLSlaveToMasterTransferSizes) = TLSlaveToMasterTransferSizes( probe = probe .mincover(rhs.probe), arithmetic = arithmetic.mincover(rhs.arithmetic), logical = logical .mincover(rhs.logical), get = get .mincover(rhs.get), putFull = putFull .mincover(rhs.putFull), putPartial = putPartial.mincover(rhs.putPartial), hint = hint .mincover(rhs.hint) ) // Reduce rendering to a simple yes/no per field override def toString = { def str(x: TransferSizes, flag: String) = if (x.none) "" else flag def flags = Vector( str(probe, "P"), str(arithmetic, "A"), str(logical, "L"), str(get, "G"), str(putFull, "F"), str(putPartial, "P"), str(hint, "H")) flags.mkString } // Prints out the actual information in a user readable way def infoString = { s"""probe = ${probe} |arithmetic = ${arithmetic} |logical = ${logical} |get = ${get} |putFull = ${putFull} |putPartial = ${putPartial} |hint = ${hint} | |""".stripMargin } } object TLSlaveToMasterTransferSizes { def unknownEmits = TLSlaveToMasterTransferSizes( arithmetic = TransferSizes(1, 4096), logical = TransferSizes(1, 4096), get = TransferSizes(1, 4096), putFull = TransferSizes(1, 4096), putPartial = TransferSizes(1, 4096), hint = TransferSizes(1, 4096), probe = TransferSizes(1, 4096)) def unknownSupports = TLSlaveToMasterTransferSizes() } trait TLCommonTransferSizes { def arithmetic: TransferSizes def logical: TransferSizes def get: TransferSizes def putFull: TransferSizes def putPartial: TransferSizes def hint: TransferSizes } class TLSlaveParameters private( val nodePath: Seq[BaseNode], val resources: Seq[Resource], setName: Option[String], val address: Seq[AddressSet], val regionType: RegionType.T, val executable: Boolean, val fifoId: Option[Int], val supports: TLMasterToSlaveTransferSizes, val emits: TLSlaveToMasterTransferSizes, // By default, slaves are forbidden from issuing 'denied' responses (it prevents Fragmentation) val alwaysGrantsT: Boolean, // typically only true for CacheCork'd read-write devices; dual: neverReleaseData // If fifoId=Some, all accesses sent to the same fifoId are executed and ACK'd in FIFO order // Note: you can only rely on this FIFO behaviour if your TLMasterParameters include requestFifo val mayDenyGet: Boolean, // applies to: AccessAckData, GrantData val mayDenyPut: Boolean) // applies to: AccessAck, Grant, HintAck // ReleaseAck may NEVER be denied extends SimpleProduct { def sortedAddress = address.sorted override def canEqual(that: Any): Boolean = that.isInstanceOf[TLSlaveParameters] override def productPrefix = "TLSlaveParameters" // We intentionally omit nodePath for equality testing / formatting def productArity: Int = 11 def productElement(n: Int): Any = n match { case 0 => name case 1 => address case 2 => resources case 3 => regionType case 4 => executable case 5 => fifoId case 6 => supports case 7 => emits case 8 => alwaysGrantsT case 9 => mayDenyGet case 10 => mayDenyPut case _ => throw new IndexOutOfBoundsException(n.toString) } def supportsAcquireT: TransferSizes = supports.acquireT def supportsAcquireB: TransferSizes = supports.acquireB def supportsArithmetic: TransferSizes = supports.arithmetic def supportsLogical: TransferSizes = supports.logical def supportsGet: TransferSizes = supports.get def supportsPutFull: TransferSizes = supports.putFull def supportsPutPartial: TransferSizes = supports.putPartial def supportsHint: TransferSizes = supports.hint require (!address.isEmpty, "Address cannot be empty") address.foreach { a => require (a.finite, "Address must be finite") } address.combinations(2).foreach { case Seq(x,y) => require (!x.overlaps(y), s"$x and $y overlap.") } require (supportsPutFull.contains(supportsPutPartial), s"PutFull($supportsPutFull) < PutPartial($supportsPutPartial)") require (supportsPutFull.contains(supportsArithmetic), s"PutFull($supportsPutFull) < Arithmetic($supportsArithmetic)") require (supportsPutFull.contains(supportsLogical), s"PutFull($supportsPutFull) < Logical($supportsLogical)") require (supportsGet.contains(supportsArithmetic), s"Get($supportsGet) < Arithmetic($supportsArithmetic)") require (supportsGet.contains(supportsLogical), s"Get($supportsGet) < Logical($supportsLogical)") require (supportsAcquireB.contains(supportsAcquireT), s"AcquireB($supportsAcquireB) < AcquireT($supportsAcquireT)") require (!alwaysGrantsT || supportsAcquireT, s"Must supportAcquireT if promising to always grantT") // Make sure that the regionType agrees with the capabilities require (!supportsAcquireB || regionType >= RegionType.UNCACHED) // acquire -> uncached, tracked, cached require (regionType <= RegionType.UNCACHED || supportsAcquireB) // tracked, cached -> acquire require (regionType != RegionType.UNCACHED || supportsGet) // uncached -> supportsGet val name = setName.orElse(nodePath.lastOption.map(_.lazyModule.name)).getOrElse("disconnected") val maxTransfer = List( // Largest supported transfer of all types supportsAcquireT.max, supportsAcquireB.max, supportsArithmetic.max, supportsLogical.max, supportsGet.max, supportsPutFull.max, supportsPutPartial.max).max val maxAddress = address.map(_.max).max val minAlignment = address.map(_.alignment).min // The device had better not support a transfer larger than its alignment require (minAlignment >= maxTransfer, s"Bad $address: minAlignment ($minAlignment) must be >= maxTransfer ($maxTransfer)") def toResource: ResourceAddress = { ResourceAddress(address, ResourcePermissions( r = supportsAcquireB || supportsGet, w = supportsAcquireT || supportsPutFull, x = executable, c = supportsAcquireB, a = supportsArithmetic && supportsLogical)) } def findTreeViolation() = nodePath.find { case _: MixedAdapterNode[_, _, _, _, _, _, _, _] => false case _: SinkNode[_, _, _, _, _] => false case node => node.inputs.size != 1 } def isTree = findTreeViolation() == None def infoString = { s"""Slave Name = ${name} |Slave Address = ${address} |supports = ${supports.infoString} | |""".stripMargin } def v1copy( address: Seq[AddressSet] = address, resources: Seq[Resource] = resources, regionType: RegionType.T = regionType, executable: Boolean = executable, nodePath: Seq[BaseNode] = nodePath, supportsAcquireT: TransferSizes = supports.acquireT, supportsAcquireB: TransferSizes = supports.acquireB, supportsArithmetic: TransferSizes = supports.arithmetic, supportsLogical: TransferSizes = supports.logical, supportsGet: TransferSizes = supports.get, supportsPutFull: TransferSizes = supports.putFull, supportsPutPartial: TransferSizes = supports.putPartial, supportsHint: TransferSizes = supports.hint, mayDenyGet: Boolean = mayDenyGet, mayDenyPut: Boolean = mayDenyPut, alwaysGrantsT: Boolean = alwaysGrantsT, fifoId: Option[Int] = fifoId) = { new TLSlaveParameters( setName = setName, address = address, resources = resources, regionType = regionType, executable = executable, nodePath = nodePath, supports = TLMasterToSlaveTransferSizes( acquireT = supportsAcquireT, acquireB = supportsAcquireB, arithmetic = supportsArithmetic, logical = supportsLogical, get = supportsGet, putFull = supportsPutFull, putPartial = supportsPutPartial, hint = supportsHint), emits = emits, mayDenyGet = mayDenyGet, mayDenyPut = mayDenyPut, alwaysGrantsT = alwaysGrantsT, fifoId = fifoId) } def v2copy( nodePath: Seq[BaseNode] = nodePath, resources: Seq[Resource] = resources, name: Option[String] = setName, address: Seq[AddressSet] = address, regionType: RegionType.T = regionType, executable: Boolean = executable, fifoId: Option[Int] = fifoId, supports: TLMasterToSlaveTransferSizes = supports, emits: TLSlaveToMasterTransferSizes = emits, alwaysGrantsT: Boolean = alwaysGrantsT, mayDenyGet: Boolean = mayDenyGet, mayDenyPut: Boolean = mayDenyPut) = { new TLSlaveParameters( nodePath = nodePath, resources = resources, setName = name, address = address, regionType = regionType, executable = executable, fifoId = fifoId, supports = supports, emits = emits, alwaysGrantsT = alwaysGrantsT, mayDenyGet = mayDenyGet, mayDenyPut = mayDenyPut) } @deprecated("Use v1copy instead of copy","") def copy( address: Seq[AddressSet] = address, resources: Seq[Resource] = resources, regionType: RegionType.T = regionType, executable: Boolean = executable, nodePath: Seq[BaseNode] = nodePath, supportsAcquireT: TransferSizes = supports.acquireT, supportsAcquireB: TransferSizes = supports.acquireB, supportsArithmetic: TransferSizes = supports.arithmetic, supportsLogical: TransferSizes = supports.logical, supportsGet: TransferSizes = supports.get, supportsPutFull: TransferSizes = supports.putFull, supportsPutPartial: TransferSizes = supports.putPartial, supportsHint: TransferSizes = supports.hint, mayDenyGet: Boolean = mayDenyGet, mayDenyPut: Boolean = mayDenyPut, alwaysGrantsT: Boolean = alwaysGrantsT, fifoId: Option[Int] = fifoId) = { v1copy( address = address, resources = resources, regionType = regionType, executable = executable, nodePath = nodePath, supportsAcquireT = supportsAcquireT, supportsAcquireB = supportsAcquireB, supportsArithmetic = supportsArithmetic, supportsLogical = supportsLogical, supportsGet = supportsGet, supportsPutFull = supportsPutFull, supportsPutPartial = supportsPutPartial, supportsHint = supportsHint, mayDenyGet = mayDenyGet, mayDenyPut = mayDenyPut, alwaysGrantsT = alwaysGrantsT, fifoId = fifoId) } } object TLSlaveParameters { def v1( address: Seq[AddressSet], resources: Seq[Resource] = Seq(), regionType: RegionType.T = RegionType.GET_EFFECTS, executable: Boolean = false, nodePath: Seq[BaseNode] = Seq(), supportsAcquireT: TransferSizes = TransferSizes.none, supportsAcquireB: TransferSizes = TransferSizes.none, supportsArithmetic: TransferSizes = TransferSizes.none, supportsLogical: TransferSizes = TransferSizes.none, supportsGet: TransferSizes = TransferSizes.none, supportsPutFull: TransferSizes = TransferSizes.none, supportsPutPartial: TransferSizes = TransferSizes.none, supportsHint: TransferSizes = TransferSizes.none, mayDenyGet: Boolean = false, mayDenyPut: Boolean = false, alwaysGrantsT: Boolean = false, fifoId: Option[Int] = None) = { new TLSlaveParameters( setName = None, address = address, resources = resources, regionType = regionType, executable = executable, nodePath = nodePath, supports = TLMasterToSlaveTransferSizes( acquireT = supportsAcquireT, acquireB = supportsAcquireB, arithmetic = supportsArithmetic, logical = supportsLogical, get = supportsGet, putFull = supportsPutFull, putPartial = supportsPutPartial, hint = supportsHint), emits = TLSlaveToMasterTransferSizes.unknownEmits, mayDenyGet = mayDenyGet, mayDenyPut = mayDenyPut, alwaysGrantsT = alwaysGrantsT, fifoId = fifoId) } def v2( address: Seq[AddressSet], nodePath: Seq[BaseNode] = Seq(), resources: Seq[Resource] = Seq(), name: Option[String] = None, regionType: RegionType.T = RegionType.GET_EFFECTS, executable: Boolean = false, fifoId: Option[Int] = None, supports: TLMasterToSlaveTransferSizes = TLMasterToSlaveTransferSizes.unknownSupports, emits: TLSlaveToMasterTransferSizes = TLSlaveToMasterTransferSizes.unknownEmits, alwaysGrantsT: Boolean = false, mayDenyGet: Boolean = false, mayDenyPut: Boolean = false) = { new TLSlaveParameters( nodePath = nodePath, resources = resources, setName = name, address = address, regionType = regionType, executable = executable, fifoId = fifoId, supports = supports, emits = emits, alwaysGrantsT = alwaysGrantsT, mayDenyGet = mayDenyGet, mayDenyPut = mayDenyPut) } } object TLManagerParameters { @deprecated("Use TLSlaveParameters.v1 instead of TLManagerParameters","") def apply( address: Seq[AddressSet], resources: Seq[Resource] = Seq(), regionType: RegionType.T = RegionType.GET_EFFECTS, executable: Boolean = false, nodePath: Seq[BaseNode] = Seq(), supportsAcquireT: TransferSizes = TransferSizes.none, supportsAcquireB: TransferSizes = TransferSizes.none, supportsArithmetic: TransferSizes = TransferSizes.none, supportsLogical: TransferSizes = TransferSizes.none, supportsGet: TransferSizes = TransferSizes.none, supportsPutFull: TransferSizes = TransferSizes.none, supportsPutPartial: TransferSizes = TransferSizes.none, supportsHint: TransferSizes = TransferSizes.none, mayDenyGet: Boolean = false, mayDenyPut: Boolean = false, alwaysGrantsT: Boolean = false, fifoId: Option[Int] = None) = TLSlaveParameters.v1( address, resources, regionType, executable, nodePath, supportsAcquireT, supportsAcquireB, supportsArithmetic, supportsLogical, supportsGet, supportsPutFull, supportsPutPartial, supportsHint, mayDenyGet, mayDenyPut, alwaysGrantsT, fifoId, ) } case class TLChannelBeatBytes(a: Option[Int], b: Option[Int], c: Option[Int], d: Option[Int]) { def members = Seq(a, b, c, d) members.collect { case Some(beatBytes) => require (isPow2(beatBytes), "Data channel width must be a power of 2") } } object TLChannelBeatBytes{ def apply(beatBytes: Int): TLChannelBeatBytes = TLChannelBeatBytes( Some(beatBytes), Some(beatBytes), Some(beatBytes), Some(beatBytes)) def apply(): TLChannelBeatBytes = TLChannelBeatBytes( None, None, None, None) } class TLSlavePortParameters private( val slaves: Seq[TLSlaveParameters], val channelBytes: TLChannelBeatBytes, val endSinkId: Int, val minLatency: Int, val responseFields: Seq[BundleFieldBase], val requestKeys: Seq[BundleKeyBase]) extends SimpleProduct { def sortedSlaves = slaves.sortBy(_.sortedAddress.head) override def canEqual(that: Any): Boolean = that.isInstanceOf[TLSlavePortParameters] override def productPrefix = "TLSlavePortParameters" def productArity: Int = 6 def productElement(n: Int): Any = n match { case 0 => slaves case 1 => channelBytes case 2 => endSinkId case 3 => minLatency case 4 => responseFields case 5 => requestKeys case _ => throw new IndexOutOfBoundsException(n.toString) } require (!slaves.isEmpty, "Slave ports must have slaves") require (endSinkId >= 0, "Sink ids cannot be negative") require (minLatency >= 0, "Minimum required latency cannot be negative") // Using this API implies you cannot handle mixed-width busses def beatBytes = { channelBytes.members.foreach { width => require (width.isDefined && width == channelBytes.a) } channelBytes.a.get } // TODO this should be deprecated def managers = slaves def requireFifo(policy: TLFIFOFixer.Policy = TLFIFOFixer.allFIFO) = { val relevant = slaves.filter(m => policy(m)) relevant.foreach { m => require(m.fifoId == relevant.head.fifoId, s"${m.name} had fifoId ${m.fifoId}, which was not homogeneous (${slaves.map(s => (s.name, s.fifoId))}) ") } } // Bounds on required sizes def maxAddress = slaves.map(_.maxAddress).max def maxTransfer = slaves.map(_.maxTransfer).max def mayDenyGet = slaves.exists(_.mayDenyGet) def mayDenyPut = slaves.exists(_.mayDenyPut) // Diplomatically determined operation sizes emitted by all outward Slaves // as opposed to emits* which generate circuitry to check which specific addresses val allEmitClaims = slaves.map(_.emits).reduce( _ intersect _) // Operation Emitted by at least one outward Slaves // as opposed to emits* which generate circuitry to check which specific addresses val anyEmitClaims = slaves.map(_.emits).reduce(_ mincover _) // Diplomatically determined operation sizes supported by all outward Slaves // as opposed to supports* which generate circuitry to check which specific addresses val allSupportClaims = slaves.map(_.supports).reduce( _ intersect _) val allSupportAcquireT = allSupportClaims.acquireT val allSupportAcquireB = allSupportClaims.acquireB val allSupportArithmetic = allSupportClaims.arithmetic val allSupportLogical = allSupportClaims.logical val allSupportGet = allSupportClaims.get val allSupportPutFull = allSupportClaims.putFull val allSupportPutPartial = allSupportClaims.putPartial val allSupportHint = allSupportClaims.hint // Operation supported by at least one outward Slaves // as opposed to supports* which generate circuitry to check which specific addresses val anySupportClaims = slaves.map(_.supports).reduce(_ mincover _) val anySupportAcquireT = !anySupportClaims.acquireT.none val anySupportAcquireB = !anySupportClaims.acquireB.none val anySupportArithmetic = !anySupportClaims.arithmetic.none val anySupportLogical = !anySupportClaims.logical.none val anySupportGet = !anySupportClaims.get.none val anySupportPutFull = !anySupportClaims.putFull.none val anySupportPutPartial = !anySupportClaims.putPartial.none val anySupportHint = !anySupportClaims.hint.none // Supporting Acquire means being routable for GrantAck require ((endSinkId == 0) == !anySupportAcquireB) // These return Option[TLSlaveParameters] for your convenience def find(address: BigInt) = slaves.find(_.address.exists(_.contains(address))) // The safe version will check the entire address def findSafe(address: UInt) = VecInit(sortedSlaves.map(_.address.map(_.contains(address)).reduce(_ || _))) // The fast version assumes the address is valid (you probably want fastProperty instead of this function) def findFast(address: UInt) = { val routingMask = AddressDecoder(slaves.map(_.address)) VecInit(sortedSlaves.map(_.address.map(_.widen(~routingMask)).distinct.map(_.contains(address)).reduce(_ || _))) } // Compute the simplest AddressSets that decide a key def fastPropertyGroup[K](p: TLSlaveParameters => K): Seq[(K, Seq[AddressSet])] = { val groups = groupByIntoSeq(sortedSlaves.map(m => (p(m), m.address)))( _._1).map { case (k, vs) => k -> vs.flatMap(_._2) } val reductionMask = AddressDecoder(groups.map(_._2)) groups.map { case (k, seq) => k -> AddressSet.unify(seq.map(_.widen(~reductionMask)).distinct) } } // Select a property def fastProperty[K, D <: Data](address: UInt, p: TLSlaveParameters => K, d: K => D): D = Mux1H(fastPropertyGroup(p).map { case (v, a) => (a.map(_.contains(address)).reduce(_||_), d(v)) }) // Note: returns the actual fifoId + 1 or 0 if None def findFifoIdFast(address: UInt) = fastProperty(address, _.fifoId.map(_+1).getOrElse(0), (i:Int) => i.U) def hasFifoIdFast(address: UInt) = fastProperty(address, _.fifoId.isDefined, (b:Boolean) => b.B) // Does this Port manage this ID/address? def containsSafe(address: UInt) = findSafe(address).reduce(_ || _) private def addressHelper( // setting safe to false indicates that all addresses are expected to be legal, which might reduce circuit complexity safe: Boolean, // member filters out the sizes being checked based on the opcode being emitted or supported member: TLSlaveParameters => TransferSizes, address: UInt, lgSize: UInt, // range provides a limit on the sizes that are expected to be evaluated, which might reduce circuit complexity range: Option[TransferSizes]): Bool = { // trim reduces circuit complexity by intersecting checked sizes with the range argument def trim(x: TransferSizes) = range.map(_.intersect(x)).getOrElse(x) // groupBy returns an unordered map, convert back to Seq and sort the result for determinism // groupByIntoSeq is turning slaves into trimmed membership sizes // We are grouping all the slaves by their transfer size where // if they support the trimmed size then // member is the type of transfer that you are looking for (What you are trying to filter on) // When you consider membership, you are trimming the sizes to only the ones that you care about // you are filtering the slaves based on both whether they support a particular opcode and the size // Grouping the slaves based on the actual transfer size range they support // intersecting the range and checking their membership // FOR SUPPORTCASES instead of returning the list of slaves, // you are returning a map from transfer size to the set of // address sets that are supported for that transfer size // find all the slaves that support a certain type of operation and then group their addresses by the supported size // for every size there could be multiple address ranges // safety is a trade off between checking between all possible addresses vs only the addresses // that are known to have supported sizes // the trade off is 'checking all addresses is a more expensive circuit but will always give you // the right answer even if you give it an illegal address' // the not safe version is a cheaper circuit but if you give it an illegal address then it might produce the wrong answer // fast presumes address legality // This groupByIntoSeq deterministically groups all address sets for which a given `member` transfer size applies. // In the resulting Map of cases, the keys are transfer sizes and the values are all address sets which emit or support that size. val supportCases = groupByIntoSeq(slaves)(m => trim(member(m))).map { case (k: TransferSizes, vs: Seq[TLSlaveParameters]) => k -> vs.flatMap(_.address) } // safe produces a circuit that compares against all possible addresses, // whereas fast presumes that the address is legal but uses an efficient address decoder val mask = if (safe) ~BigInt(0) else AddressDecoder(supportCases.map(_._2)) // Simplified creates the most concise possible representation of each cases' address sets based on the mask. val simplified = supportCases.map { case (k, seq) => k -> AddressSet.unify(seq.map(_.widen(~mask)).distinct) } simplified.map { case (s, a) => // s is a size, you are checking for this size either the size of the operation is in s // We return an or-reduction of all the cases, checking whether any contains both the dynamic size and dynamic address on the wire. ((Some(s) == range).B || s.containsLg(lgSize)) && a.map(_.contains(address)).reduce(_||_) }.foldLeft(false.B)(_||_) } def supportsAcquireTSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.acquireT, address, lgSize, range) def supportsAcquireBSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.acquireB, address, lgSize, range) def supportsArithmeticSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.arithmetic, address, lgSize, range) def supportsLogicalSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.logical, address, lgSize, range) def supportsGetSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.get, address, lgSize, range) def supportsPutFullSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.putFull, address, lgSize, range) def supportsPutPartialSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.putPartial, address, lgSize, range) def supportsHintSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.hint, address, lgSize, range) def supportsAcquireTFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.acquireT, address, lgSize, range) def supportsAcquireBFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.acquireB, address, lgSize, range) def supportsArithmeticFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.arithmetic, address, lgSize, range) def supportsLogicalFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.logical, address, lgSize, range) def supportsGetFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.get, address, lgSize, range) def supportsPutFullFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.putFull, address, lgSize, range) def supportsPutPartialFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.putPartial, address, lgSize, range) def supportsHintFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.hint, address, lgSize, range) def emitsProbeSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.probe, address, lgSize, range) def emitsArithmeticSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.arithmetic, address, lgSize, range) def emitsLogicalSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.logical, address, lgSize, range) def emitsGetSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.get, address, lgSize, range) def emitsPutFullSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.putFull, address, lgSize, range) def emitsPutPartialSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.putPartial, address, lgSize, range) def emitsHintSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.hint, address, lgSize, range) def findTreeViolation() = slaves.flatMap(_.findTreeViolation()).headOption def isTree = !slaves.exists(!_.isTree) def infoString = "Slave Port Beatbytes = " + beatBytes + "\n" + "Slave Port MinLatency = " + minLatency + "\n\n" + slaves.map(_.infoString).mkString def v1copy( managers: Seq[TLSlaveParameters] = slaves, beatBytes: Int = -1, endSinkId: Int = endSinkId, minLatency: Int = minLatency, responseFields: Seq[BundleFieldBase] = responseFields, requestKeys: Seq[BundleKeyBase] = requestKeys) = { new TLSlavePortParameters( slaves = managers, channelBytes = if (beatBytes != -1) TLChannelBeatBytes(beatBytes) else channelBytes, endSinkId = endSinkId, minLatency = minLatency, responseFields = responseFields, requestKeys = requestKeys) } def v2copy( slaves: Seq[TLSlaveParameters] = slaves, channelBytes: TLChannelBeatBytes = channelBytes, endSinkId: Int = endSinkId, minLatency: Int = minLatency, responseFields: Seq[BundleFieldBase] = responseFields, requestKeys: Seq[BundleKeyBase] = requestKeys) = { new TLSlavePortParameters( slaves = slaves, channelBytes = channelBytes, endSinkId = endSinkId, minLatency = minLatency, responseFields = responseFields, requestKeys = requestKeys) } @deprecated("Use v1copy instead of copy","") def copy( managers: Seq[TLSlaveParameters] = slaves, beatBytes: Int = -1, endSinkId: Int = endSinkId, minLatency: Int = minLatency, responseFields: Seq[BundleFieldBase] = responseFields, requestKeys: Seq[BundleKeyBase] = requestKeys) = { v1copy( managers, beatBytes, endSinkId, minLatency, responseFields, requestKeys) } } object TLSlavePortParameters { def v1( managers: Seq[TLSlaveParameters], beatBytes: Int, endSinkId: Int = 0, minLatency: Int = 0, responseFields: Seq[BundleFieldBase] = Nil, requestKeys: Seq[BundleKeyBase] = Nil) = { new TLSlavePortParameters( slaves = managers, channelBytes = TLChannelBeatBytes(beatBytes), endSinkId = endSinkId, minLatency = minLatency, responseFields = responseFields, requestKeys = requestKeys) } } object TLManagerPortParameters { @deprecated("Use TLSlavePortParameters.v1 instead of TLManagerPortParameters","") def apply( managers: Seq[TLSlaveParameters], beatBytes: Int, endSinkId: Int = 0, minLatency: Int = 0, responseFields: Seq[BundleFieldBase] = Nil, requestKeys: Seq[BundleKeyBase] = Nil) = { TLSlavePortParameters.v1( managers, beatBytes, endSinkId, minLatency, responseFields, requestKeys) } } class TLMasterParameters private( val nodePath: Seq[BaseNode], val resources: Seq[Resource], val name: String, val visibility: Seq[AddressSet], val unusedRegionTypes: Set[RegionType.T], val executesOnly: Boolean, val requestFifo: Boolean, // only a request, not a requirement. applies to A, not C. val supports: TLSlaveToMasterTransferSizes, val emits: TLMasterToSlaveTransferSizes, val neverReleasesData: Boolean, val sourceId: IdRange) extends SimpleProduct { override def canEqual(that: Any): Boolean = that.isInstanceOf[TLMasterParameters] override def productPrefix = "TLMasterParameters" // We intentionally omit nodePath for equality testing / formatting def productArity: Int = 10 def productElement(n: Int): Any = n match { case 0 => name case 1 => sourceId case 2 => resources case 3 => visibility case 4 => unusedRegionTypes case 5 => executesOnly case 6 => requestFifo case 7 => supports case 8 => emits case 9 => neverReleasesData case _ => throw new IndexOutOfBoundsException(n.toString) } require (!sourceId.isEmpty) require (!visibility.isEmpty) require (supports.putFull.contains(supports.putPartial)) // We only support these operations if we support Probe (ie: we're a cache) require (supports.probe.contains(supports.arithmetic)) require (supports.probe.contains(supports.logical)) require (supports.probe.contains(supports.get)) require (supports.probe.contains(supports.putFull)) require (supports.probe.contains(supports.putPartial)) require (supports.probe.contains(supports.hint)) visibility.combinations(2).foreach { case Seq(x,y) => require (!x.overlaps(y), s"$x and $y overlap.") } val maxTransfer = List( supports.probe.max, supports.arithmetic.max, supports.logical.max, supports.get.max, supports.putFull.max, supports.putPartial.max).max def infoString = { s"""Master Name = ${name} |visibility = ${visibility} |emits = ${emits.infoString} |sourceId = ${sourceId} | |""".stripMargin } def v1copy( name: String = name, sourceId: IdRange = sourceId, nodePath: Seq[BaseNode] = nodePath, requestFifo: Boolean = requestFifo, visibility: Seq[AddressSet] = visibility, supportsProbe: TransferSizes = supports.probe, supportsArithmetic: TransferSizes = supports.arithmetic, supportsLogical: TransferSizes = supports.logical, supportsGet: TransferSizes = supports.get, supportsPutFull: TransferSizes = supports.putFull, supportsPutPartial: TransferSizes = supports.putPartial, supportsHint: TransferSizes = supports.hint) = { new TLMasterParameters( nodePath = nodePath, resources = this.resources, name = name, visibility = visibility, unusedRegionTypes = this.unusedRegionTypes, executesOnly = this.executesOnly, requestFifo = requestFifo, supports = TLSlaveToMasterTransferSizes( probe = supportsProbe, arithmetic = supportsArithmetic, logical = supportsLogical, get = supportsGet, putFull = supportsPutFull, putPartial = supportsPutPartial, hint = supportsHint), emits = this.emits, neverReleasesData = this.neverReleasesData, sourceId = sourceId) } def v2copy( nodePath: Seq[BaseNode] = nodePath, resources: Seq[Resource] = resources, name: String = name, visibility: Seq[AddressSet] = visibility, unusedRegionTypes: Set[RegionType.T] = unusedRegionTypes, executesOnly: Boolean = executesOnly, requestFifo: Boolean = requestFifo, supports: TLSlaveToMasterTransferSizes = supports, emits: TLMasterToSlaveTransferSizes = emits, neverReleasesData: Boolean = neverReleasesData, sourceId: IdRange = sourceId) = { new TLMasterParameters( nodePath = nodePath, resources = resources, name = name, visibility = visibility, unusedRegionTypes = unusedRegionTypes, executesOnly = executesOnly, requestFifo = requestFifo, supports = supports, emits = emits, neverReleasesData = neverReleasesData, sourceId = sourceId) } @deprecated("Use v1copy instead of copy","") def copy( name: String = name, sourceId: IdRange = sourceId, nodePath: Seq[BaseNode] = nodePath, requestFifo: Boolean = requestFifo, visibility: Seq[AddressSet] = visibility, supportsProbe: TransferSizes = supports.probe, supportsArithmetic: TransferSizes = supports.arithmetic, supportsLogical: TransferSizes = supports.logical, supportsGet: TransferSizes = supports.get, supportsPutFull: TransferSizes = supports.putFull, supportsPutPartial: TransferSizes = supports.putPartial, supportsHint: TransferSizes = supports.hint) = { v1copy( name = name, sourceId = sourceId, nodePath = nodePath, requestFifo = requestFifo, visibility = visibility, supportsProbe = supportsProbe, supportsArithmetic = supportsArithmetic, supportsLogical = supportsLogical, supportsGet = supportsGet, supportsPutFull = supportsPutFull, supportsPutPartial = supportsPutPartial, supportsHint = supportsHint) } } object TLMasterParameters { def v1( name: String, sourceId: IdRange = IdRange(0,1), nodePath: Seq[BaseNode] = Seq(), requestFifo: Boolean = false, visibility: Seq[AddressSet] = Seq(AddressSet(0, ~0)), supportsProbe: TransferSizes = TransferSizes.none, supportsArithmetic: TransferSizes = TransferSizes.none, supportsLogical: TransferSizes = TransferSizes.none, supportsGet: TransferSizes = TransferSizes.none, supportsPutFull: TransferSizes = TransferSizes.none, supportsPutPartial: TransferSizes = TransferSizes.none, supportsHint: TransferSizes = TransferSizes.none) = { new TLMasterParameters( nodePath = nodePath, resources = Nil, name = name, visibility = visibility, unusedRegionTypes = Set(), executesOnly = false, requestFifo = requestFifo, supports = TLSlaveToMasterTransferSizes( probe = supportsProbe, arithmetic = supportsArithmetic, logical = supportsLogical, get = supportsGet, putFull = supportsPutFull, putPartial = supportsPutPartial, hint = supportsHint), emits = TLMasterToSlaveTransferSizes.unknownEmits, neverReleasesData = false, sourceId = sourceId) } def v2( nodePath: Seq[BaseNode] = Seq(), resources: Seq[Resource] = Nil, name: String, visibility: Seq[AddressSet] = Seq(AddressSet(0, ~0)), unusedRegionTypes: Set[RegionType.T] = Set(), executesOnly: Boolean = false, requestFifo: Boolean = false, supports: TLSlaveToMasterTransferSizes = TLSlaveToMasterTransferSizes.unknownSupports, emits: TLMasterToSlaveTransferSizes = TLMasterToSlaveTransferSizes.unknownEmits, neverReleasesData: Boolean = false, sourceId: IdRange = IdRange(0,1)) = { new TLMasterParameters( nodePath = nodePath, resources = resources, name = name, visibility = visibility, unusedRegionTypes = unusedRegionTypes, executesOnly = executesOnly, requestFifo = requestFifo, supports = supports, emits = emits, neverReleasesData = neverReleasesData, sourceId = sourceId) } } object TLClientParameters { @deprecated("Use TLMasterParameters.v1 instead of TLClientParameters","") def apply( name: String, sourceId: IdRange = IdRange(0,1), nodePath: Seq[BaseNode] = Seq(), requestFifo: Boolean = false, visibility: Seq[AddressSet] = Seq(AddressSet.everything), supportsProbe: TransferSizes = TransferSizes.none, supportsArithmetic: TransferSizes = TransferSizes.none, supportsLogical: TransferSizes = TransferSizes.none, supportsGet: TransferSizes = TransferSizes.none, supportsPutFull: TransferSizes = TransferSizes.none, supportsPutPartial: TransferSizes = TransferSizes.none, supportsHint: TransferSizes = TransferSizes.none) = { TLMasterParameters.v1( name = name, sourceId = sourceId, nodePath = nodePath, requestFifo = requestFifo, visibility = visibility, supportsProbe = supportsProbe, supportsArithmetic = supportsArithmetic, supportsLogical = supportsLogical, supportsGet = supportsGet, supportsPutFull = supportsPutFull, supportsPutPartial = supportsPutPartial, supportsHint = supportsHint) } } class TLMasterPortParameters private( val masters: Seq[TLMasterParameters], val channelBytes: TLChannelBeatBytes, val minLatency: Int, val echoFields: Seq[BundleFieldBase], val requestFields: Seq[BundleFieldBase], val responseKeys: Seq[BundleKeyBase]) extends SimpleProduct { override def canEqual(that: Any): Boolean = that.isInstanceOf[TLMasterPortParameters] override def productPrefix = "TLMasterPortParameters" def productArity: Int = 6 def productElement(n: Int): Any = n match { case 0 => masters case 1 => channelBytes case 2 => minLatency case 3 => echoFields case 4 => requestFields case 5 => responseKeys case _ => throw new IndexOutOfBoundsException(n.toString) } require (!masters.isEmpty) require (minLatency >= 0) def clients = masters // Require disjoint ranges for Ids IdRange.overlaps(masters.map(_.sourceId)).foreach { case (x, y) => require (!x.overlaps(y), s"TLClientParameters.sourceId ${x} overlaps ${y}") } // Bounds on required sizes def endSourceId = masters.map(_.sourceId.end).max def maxTransfer = masters.map(_.maxTransfer).max // The unused sources < endSourceId def unusedSources: Seq[Int] = { val usedSources = masters.map(_.sourceId).sortBy(_.start) ((Seq(0) ++ usedSources.map(_.end)) zip usedSources.map(_.start)) flatMap { case (end, start) => end until start } } // Diplomatically determined operation sizes emitted by all inward Masters // as opposed to emits* which generate circuitry to check which specific addresses val allEmitClaims = masters.map(_.emits).reduce( _ intersect _) // Diplomatically determined operation sizes Emitted by at least one inward Masters // as opposed to emits* which generate circuitry to check which specific addresses val anyEmitClaims = masters.map(_.emits).reduce(_ mincover _) // Diplomatically determined operation sizes supported by all inward Masters // as opposed to supports* which generate circuitry to check which specific addresses val allSupportProbe = masters.map(_.supports.probe) .reduce(_ intersect _) val allSupportArithmetic = masters.map(_.supports.arithmetic).reduce(_ intersect _) val allSupportLogical = masters.map(_.supports.logical) .reduce(_ intersect _) val allSupportGet = masters.map(_.supports.get) .reduce(_ intersect _) val allSupportPutFull = masters.map(_.supports.putFull) .reduce(_ intersect _) val allSupportPutPartial = masters.map(_.supports.putPartial).reduce(_ intersect _) val allSupportHint = masters.map(_.supports.hint) .reduce(_ intersect _) // Diplomatically determined operation sizes supported by at least one master // as opposed to supports* which generate circuitry to check which specific addresses val anySupportProbe = masters.map(!_.supports.probe.none) .reduce(_ || _) val anySupportArithmetic = masters.map(!_.supports.arithmetic.none).reduce(_ || _) val anySupportLogical = masters.map(!_.supports.logical.none) .reduce(_ || _) val anySupportGet = masters.map(!_.supports.get.none) .reduce(_ || _) val anySupportPutFull = masters.map(!_.supports.putFull.none) .reduce(_ || _) val anySupportPutPartial = masters.map(!_.supports.putPartial.none).reduce(_ || _) val anySupportHint = masters.map(!_.supports.hint.none) .reduce(_ || _) // These return Option[TLMasterParameters] for your convenience def find(id: Int) = masters.find(_.sourceId.contains(id)) // Synthesizable lookup methods def find(id: UInt) = VecInit(masters.map(_.sourceId.contains(id))) def contains(id: UInt) = find(id).reduce(_ || _) def requestFifo(id: UInt) = Mux1H(find(id), masters.map(c => c.requestFifo.B)) // Available during RTL runtime, checks to see if (id, size) is supported by the master's (client's) diplomatic parameters private def sourceIdHelper(member: TLMasterParameters => TransferSizes)(id: UInt, lgSize: UInt) = { val allSame = masters.map(member(_) == member(masters(0))).reduce(_ && _) // this if statement is a coarse generalization of the groupBy in the sourceIdHelper2 version; // the case where there is only one group. if (allSame) member(masters(0)).containsLg(lgSize) else { // Find the master associated with ID and returns whether that particular master is able to receive transaction of lgSize Mux1H(find(id), masters.map(member(_).containsLg(lgSize))) } } // Check for support of a given operation at a specific id val supportsProbe = sourceIdHelper(_.supports.probe) _ val supportsArithmetic = sourceIdHelper(_.supports.arithmetic) _ val supportsLogical = sourceIdHelper(_.supports.logical) _ val supportsGet = sourceIdHelper(_.supports.get) _ val supportsPutFull = sourceIdHelper(_.supports.putFull) _ val supportsPutPartial = sourceIdHelper(_.supports.putPartial) _ val supportsHint = sourceIdHelper(_.supports.hint) _ // TODO: Merge sourceIdHelper2 with sourceIdHelper private def sourceIdHelper2( member: TLMasterParameters => TransferSizes, sourceId: UInt, lgSize: UInt): Bool = { // Because sourceIds are uniquely owned by each master, we use them to group the // cases that have to be checked. val emitCases = groupByIntoSeq(masters)(m => member(m)).map { case (k, vs) => k -> vs.map(_.sourceId) } emitCases.map { case (s, a) => (s.containsLg(lgSize)) && a.map(_.contains(sourceId)).reduce(_||_) }.foldLeft(false.B)(_||_) } // Check for emit of a given operation at a specific id def emitsAcquireT (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.acquireT, sourceId, lgSize) def emitsAcquireB (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.acquireB, sourceId, lgSize) def emitsArithmetic(sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.arithmetic, sourceId, lgSize) def emitsLogical (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.logical, sourceId, lgSize) def emitsGet (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.get, sourceId, lgSize) def emitsPutFull (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.putFull, sourceId, lgSize) def emitsPutPartial(sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.putPartial, sourceId, lgSize) def emitsHint (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.hint, sourceId, lgSize) def infoString = masters.map(_.infoString).mkString def v1copy( clients: Seq[TLMasterParameters] = masters, minLatency: Int = minLatency, echoFields: Seq[BundleFieldBase] = echoFields, requestFields: Seq[BundleFieldBase] = requestFields, responseKeys: Seq[BundleKeyBase] = responseKeys) = { new TLMasterPortParameters( masters = clients, channelBytes = channelBytes, minLatency = minLatency, echoFields = echoFields, requestFields = requestFields, responseKeys = responseKeys) } def v2copy( masters: Seq[TLMasterParameters] = masters, channelBytes: TLChannelBeatBytes = channelBytes, minLatency: Int = minLatency, echoFields: Seq[BundleFieldBase] = echoFields, requestFields: Seq[BundleFieldBase] = requestFields, responseKeys: Seq[BundleKeyBase] = responseKeys) = { new TLMasterPortParameters( masters = masters, channelBytes = channelBytes, minLatency = minLatency, echoFields = echoFields, requestFields = requestFields, responseKeys = responseKeys) } @deprecated("Use v1copy instead of copy","") def copy( clients: Seq[TLMasterParameters] = masters, minLatency: Int = minLatency, echoFields: Seq[BundleFieldBase] = echoFields, requestFields: Seq[BundleFieldBase] = requestFields, responseKeys: Seq[BundleKeyBase] = responseKeys) = { v1copy( clients, minLatency, echoFields, requestFields, responseKeys) } } object TLClientPortParameters { @deprecated("Use TLMasterPortParameters.v1 instead of TLClientPortParameters","") def apply( clients: Seq[TLMasterParameters], minLatency: Int = 0, echoFields: Seq[BundleFieldBase] = Nil, requestFields: Seq[BundleFieldBase] = Nil, responseKeys: Seq[BundleKeyBase] = Nil) = { TLMasterPortParameters.v1( clients, minLatency, echoFields, requestFields, responseKeys) } } object TLMasterPortParameters { def v1( clients: Seq[TLMasterParameters], minLatency: Int = 0, echoFields: Seq[BundleFieldBase] = Nil, requestFields: Seq[BundleFieldBase] = Nil, responseKeys: Seq[BundleKeyBase] = Nil) = { new TLMasterPortParameters( masters = clients, channelBytes = TLChannelBeatBytes(), minLatency = minLatency, echoFields = echoFields, requestFields = requestFields, responseKeys = responseKeys) } def v2( masters: Seq[TLMasterParameters], channelBytes: TLChannelBeatBytes = TLChannelBeatBytes(), minLatency: Int = 0, echoFields: Seq[BundleFieldBase] = Nil, requestFields: Seq[BundleFieldBase] = Nil, responseKeys: Seq[BundleKeyBase] = Nil) = { new TLMasterPortParameters( masters = masters, channelBytes = channelBytes, minLatency = minLatency, echoFields = echoFields, requestFields = requestFields, responseKeys = responseKeys) } } case class TLBundleParameters( addressBits: Int, dataBits: Int, sourceBits: Int, sinkBits: Int, sizeBits: Int, echoFields: Seq[BundleFieldBase], requestFields: Seq[BundleFieldBase], responseFields: Seq[BundleFieldBase], hasBCE: Boolean) { // Chisel has issues with 0-width wires require (addressBits >= 1) require (dataBits >= 8) require (sourceBits >= 1) require (sinkBits >= 1) require (sizeBits >= 1) require (isPow2(dataBits)) echoFields.foreach { f => require (f.key.isControl, s"${f} is not a legal echo field") } val addrLoBits = log2Up(dataBits/8) // Used to uniquify bus IP names def shortName = s"a${addressBits}d${dataBits}s${sourceBits}k${sinkBits}z${sizeBits}" + (if (hasBCE) "c" else "u") def union(x: TLBundleParameters) = TLBundleParameters( max(addressBits, x.addressBits), max(dataBits, x.dataBits), max(sourceBits, x.sourceBits), max(sinkBits, x.sinkBits), max(sizeBits, x.sizeBits), echoFields = BundleField.union(echoFields ++ x.echoFields), requestFields = BundleField.union(requestFields ++ x.requestFields), responseFields = BundleField.union(responseFields ++ x.responseFields), hasBCE || x.hasBCE) } object TLBundleParameters { val emptyBundleParams = TLBundleParameters( addressBits = 1, dataBits = 8, sourceBits = 1, sinkBits = 1, sizeBits = 1, echoFields = Nil, requestFields = Nil, responseFields = Nil, hasBCE = false) def union(x: Seq[TLBundleParameters]) = x.foldLeft(emptyBundleParams)((x,y) => x.union(y)) def apply(master: TLMasterPortParameters, slave: TLSlavePortParameters) = new TLBundleParameters( addressBits = log2Up(slave.maxAddress + 1), dataBits = slave.beatBytes * 8, sourceBits = log2Up(master.endSourceId), sinkBits = log2Up(slave.endSinkId), sizeBits = log2Up(log2Ceil(max(master.maxTransfer, slave.maxTransfer))+1), echoFields = master.echoFields, requestFields = BundleField.accept(master.requestFields, slave.requestKeys), responseFields = BundleField.accept(slave.responseFields, master.responseKeys), hasBCE = master.anySupportProbe && slave.anySupportAcquireB) } case class TLEdgeParameters( master: TLMasterPortParameters, slave: TLSlavePortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge { // legacy names: def manager = slave def client = master val maxTransfer = max(master.maxTransfer, slave.maxTransfer) val maxLgSize = log2Ceil(maxTransfer) // Sanity check the link... require (maxTransfer >= slave.beatBytes, s"Link's max transfer (${maxTransfer}) < ${slave.slaves.map(_.name)}'s beatBytes (${slave.beatBytes})") def diplomaticClaimsMasterToSlave = master.anyEmitClaims.intersect(slave.anySupportClaims) val bundle = TLBundleParameters(master, slave) def formatEdge = master.infoString + "\n" + slave.infoString } case class TLCreditedDelay( a: CreditedDelay, b: CreditedDelay, c: CreditedDelay, d: CreditedDelay, e: CreditedDelay) { def + (that: TLCreditedDelay): TLCreditedDelay = TLCreditedDelay( a = a + that.a, b = b + that.b, c = c + that.c, d = d + that.d, e = e + that.e) override def toString = s"(${a}, ${b}, ${c}, ${d}, ${e})" } object TLCreditedDelay { def apply(delay: CreditedDelay): TLCreditedDelay = apply(delay, delay.flip, delay, delay.flip, delay) } case class TLCreditedManagerPortParameters(delay: TLCreditedDelay, base: TLSlavePortParameters) {def infoString = base.infoString} case class TLCreditedClientPortParameters(delay: TLCreditedDelay, base: TLMasterPortParameters) {def infoString = base.infoString} case class TLCreditedEdgeParameters(client: TLCreditedClientPortParameters, manager: TLCreditedManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge { val delay = client.delay + manager.delay val bundle = TLBundleParameters(client.base, manager.base) def formatEdge = client.infoString + "\n" + manager.infoString } case class TLAsyncManagerPortParameters(async: AsyncQueueParams, base: TLSlavePortParameters) {def infoString = base.infoString} case class TLAsyncClientPortParameters(base: TLMasterPortParameters) {def infoString = base.infoString} case class TLAsyncBundleParameters(async: AsyncQueueParams, base: TLBundleParameters) case class TLAsyncEdgeParameters(client: TLAsyncClientPortParameters, manager: TLAsyncManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge { val bundle = TLAsyncBundleParameters(manager.async, TLBundleParameters(client.base, manager.base)) def formatEdge = client.infoString + "\n" + manager.infoString } case class TLRationalManagerPortParameters(direction: RationalDirection, base: TLSlavePortParameters) {def infoString = base.infoString} case class TLRationalClientPortParameters(base: TLMasterPortParameters) {def infoString = base.infoString} case class TLRationalEdgeParameters(client: TLRationalClientPortParameters, manager: TLRationalManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge { val bundle = TLBundleParameters(client.base, manager.base) def formatEdge = client.infoString + "\n" + manager.infoString } // To be unified, devices must agree on all of these terms case class ManagerUnificationKey( resources: Seq[Resource], regionType: RegionType.T, executable: Boolean, supportsAcquireT: TransferSizes, supportsAcquireB: TransferSizes, supportsArithmetic: TransferSizes, supportsLogical: TransferSizes, supportsGet: TransferSizes, supportsPutFull: TransferSizes, supportsPutPartial: TransferSizes, supportsHint: TransferSizes) object ManagerUnificationKey { def apply(x: TLSlaveParameters): ManagerUnificationKey = ManagerUnificationKey( resources = x.resources, regionType = x.regionType, executable = x.executable, supportsAcquireT = x.supportsAcquireT, supportsAcquireB = x.supportsAcquireB, supportsArithmetic = x.supportsArithmetic, supportsLogical = x.supportsLogical, supportsGet = x.supportsGet, supportsPutFull = x.supportsPutFull, supportsPutPartial = x.supportsPutPartial, supportsHint = x.supportsHint) } object ManagerUnification { def apply(slaves: Seq[TLSlaveParameters]): List[TLSlaveParameters] = { slaves.groupBy(ManagerUnificationKey.apply).values.map { seq => val agree = seq.forall(_.fifoId == seq.head.fifoId) seq(0).v1copy( address = AddressSet.unify(seq.flatMap(_.address)), fifoId = if (agree) seq(0).fifoId else None) }.toList } } case class TLBufferParams( a: BufferParams = BufferParams.none, b: BufferParams = BufferParams.none, c: BufferParams = BufferParams.none, d: BufferParams = BufferParams.none, e: BufferParams = BufferParams.none ) extends DirectedBuffers[TLBufferParams] { def copyIn(x: BufferParams) = this.copy(b = x, d = x) def copyOut(x: BufferParams) = this.copy(a = x, c = x, e = x) def copyInOut(x: BufferParams) = this.copyIn(x).copyOut(x) } /** Pretty printing of TL source id maps */ class TLSourceIdMap(tl: TLMasterPortParameters) extends IdMap[TLSourceIdMapEntry] { private val tlDigits = String.valueOf(tl.endSourceId-1).length() protected val fmt = s"\t[%${tlDigits}d, %${tlDigits}d) %s%s%s" private val sorted = tl.masters.sortBy(_.sourceId) val mapping: Seq[TLSourceIdMapEntry] = sorted.map { case c => TLSourceIdMapEntry(c.sourceId, c.name, c.supports.probe, c.requestFifo) } } case class TLSourceIdMapEntry(tlId: IdRange, name: String, isCache: Boolean, requestFifo: Boolean) extends IdMapEntry { val from = tlId val to = tlId val maxTransactionsInFlight = Some(tlId.size) } File Edges.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.util._ class TLEdge( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdgeParameters(client, manager, params, sourceInfo) { def isAligned(address: UInt, lgSize: UInt): Bool = { if (maxLgSize == 0) true.B else { val mask = UIntToOH1(lgSize, maxLgSize) (address & mask) === 0.U } } def mask(address: UInt, lgSize: UInt): UInt = MaskGen(address, lgSize, manager.beatBytes) def staticHasData(bundle: TLChannel): Option[Boolean] = { bundle match { case _:TLBundleA => { // Do there exist A messages with Data? val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial // Do there exist A messages without Data? val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint // Statically optimize the case where hasData is a constant if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None } case _:TLBundleB => { // Do there exist B messages with Data? val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial // Do there exist B messages without Data? val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint // Statically optimize the case where hasData is a constant if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None } case _:TLBundleC => { // Do there eixst C messages with Data? val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe // Do there exist C messages without Data? val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None } case _:TLBundleD => { // Do there eixst D messages with Data? val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB // Do there exist D messages without Data? val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None } case _:TLBundleE => Some(false) } } def isRequest(x: TLChannel): Bool = { x match { case a: TLBundleA => true.B case b: TLBundleB => true.B case c: TLBundleC => c.opcode(2) && c.opcode(1) // opcode === TLMessages.Release || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(2) && !d.opcode(1) // opcode === TLMessages.Grant || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } } def isResponse(x: TLChannel): Bool = { x match { case a: TLBundleA => false.B case b: TLBundleB => false.B case c: TLBundleC => !c.opcode(2) || !c.opcode(1) // opcode =/= TLMessages.Release && // opcode =/= TLMessages.ReleaseData case d: TLBundleD => true.B // Grant isResponse + isRequest case e: TLBundleE => true.B } } def hasData(x: TLChannel): Bool = { val opdata = x match { case a: TLBundleA => !a.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case b: TLBundleB => !b.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case c: TLBundleC => c.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.ProbeAckData || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } staticHasData(x).map(_.B).getOrElse(opdata) } def opcode(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.opcode case b: TLBundleB => b.opcode case c: TLBundleC => c.opcode case d: TLBundleD => d.opcode } } def param(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.param case b: TLBundleB => b.param case c: TLBundleC => c.param case d: TLBundleD => d.param } } def size(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.size case b: TLBundleB => b.size case c: TLBundleC => c.size case d: TLBundleD => d.size } } def data(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.data case b: TLBundleB => b.data case c: TLBundleC => c.data case d: TLBundleD => d.data } } def corrupt(x: TLDataChannel): Bool = { x match { case a: TLBundleA => a.corrupt case b: TLBundleB => b.corrupt case c: TLBundleC => c.corrupt case d: TLBundleD => d.corrupt } } def mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.mask case b: TLBundleB => b.mask case c: TLBundleC => mask(c.address, c.size) } } def full_mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => mask(a.address, a.size) case b: TLBundleB => mask(b.address, b.size) case c: TLBundleC => mask(c.address, c.size) } } def address(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.address case b: TLBundleB => b.address case c: TLBundleC => c.address } } def source(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.source case b: TLBundleB => b.source case c: TLBundleC => c.source case d: TLBundleD => d.source } } def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes) def addr_lo(x: UInt): UInt = if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0) def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x)) def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x)) def numBeats(x: TLChannel): UInt = { x match { case _: TLBundleE => 1.U case bundle: TLDataChannel => { val hasData = this.hasData(bundle) val size = this.size(bundle) val cutoff = log2Ceil(manager.beatBytes) val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U val decode = UIntToOH(size, maxLgSize+1) >> cutoff Mux(hasData, decode | small.asUInt, 1.U) } } } def numBeats1(x: TLChannel): UInt = { x match { case _: TLBundleE => 0.U case bundle: TLDataChannel => { if (maxLgSize == 0) { 0.U } else { val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes) Mux(hasData(bundle), decode, 0.U) } } } } def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val beats1 = numBeats1(bits) val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W)) val counter1 = counter - 1.U val first = counter === 0.U val last = counter === 1.U || beats1 === 0.U val done = last && fire val count = (beats1 & ~counter1) when (fire) { counter := Mux(first, beats1, counter1) } (first, last, done, count) } def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1 def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire) def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid) def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2 def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire) def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid) def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3 def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire) def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid) def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3) } def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire) def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid) def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4) } def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire) def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid) def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes)) } def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire) def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid) // Does the request need T permissions to be executed? def needT(a: TLBundleA): Bool = { val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLPermissions.NtoB -> false.B, TLPermissions.NtoT -> true.B, TLPermissions.BtoT -> true.B)) MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array( TLMessages.PutFullData -> true.B, TLMessages.PutPartialData -> true.B, TLMessages.ArithmeticData -> true.B, TLMessages.LogicalData -> true.B, TLMessages.Get -> false.B, TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLHints.PREFETCH_READ -> false.B, TLHints.PREFETCH_WRITE -> true.B)), TLMessages.AcquireBlock -> acq_needT, TLMessages.AcquirePerm -> acq_needT)) } // This is a very expensive circuit; use only if you really mean it! def inFlight(x: TLBundle): (UInt, UInt) = { val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W)) val bce = manager.anySupportAcquireB && client.anySupportProbe val (a_first, a_last, _) = firstlast(x.a) val (b_first, b_last, _) = firstlast(x.b) val (c_first, c_last, _) = firstlast(x.c) val (d_first, d_last, _) = firstlast(x.d) val (e_first, e_last, _) = firstlast(x.e) val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits)) val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits)) val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits)) val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits)) val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits)) val a_inc = x.a.fire && a_first && a_request val b_inc = x.b.fire && b_first && b_request val c_inc = x.c.fire && c_first && c_request val d_inc = x.d.fire && d_first && d_request val e_inc = x.e.fire && e_first && e_request val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil)) val a_dec = x.a.fire && a_last && a_response val b_dec = x.b.fire && b_last && b_response val c_dec = x.c.fire && c_last && c_response val d_dec = x.d.fire && d_last && d_response val e_dec = x.e.fire && e_last && e_response val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil)) val next_flight = flight + PopCount(inc) - PopCount(dec) flight := next_flight (flight, next_flight) } def prettySourceMapping(context: String): String = { s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n" } } class TLEdgeOut( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { // Transfers def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquireBlock a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquirePerm a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.Release c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ReleaseData c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) = Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B) def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAck c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions, data) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAckData c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B) def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink) def GrantAck(toSink: UInt): TLBundleE = { val e = Wire(new TLBundleE(bundle)) e.sink := toSink e } // Accesses def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsGetFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Get a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutFullFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutFullData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, mask, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutPartialFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutPartialData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask a.data := data a.corrupt := corrupt (legal, a) } def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = { require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsArithmeticFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.ArithmeticData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsLogicalFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.LogicalData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = { require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsHintFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Hint a.param := param a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data) def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAckData c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size) def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.HintAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } } class TLEdgeIn( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = { val todo = x.filter(!_.isEmpty) val heads = todo.map(_.head) val tails = todo.map(_.tail) if (todo.isEmpty) Nil else { heads +: myTranspose(tails) } } // Transfers def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = { require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}") val legal = client.supportsProbe(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Probe b.param := capPermissions b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.Grant d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.GrantData d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B) def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.ReleaseAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } // Accesses def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = { require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsGet(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Get b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsPutFull(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutFullData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, mask, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsPutPartial(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutPartialData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask b.data := data b.corrupt := corrupt (legal, b) } def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsArithmetic(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.ArithmeticData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsLogical(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.LogicalData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = { require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsHint(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Hint b.param := param b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size) def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied) def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B) def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data) def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAckData d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B) def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied) def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B) def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.HintAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } }
module TLMonitor_33( // @[Monitor.scala:36:7] input clock, // @[Monitor.scala:36:7] input reset, // @[Monitor.scala:36:7] input io_in_a_ready, // @[Monitor.scala:20:14] input io_in_a_valid, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14] input [6:0] io_in_a_bits_address, // @[Monitor.scala:20:14] input [31:0] io_in_a_bits_data, // @[Monitor.scala:20:14] input io_in_d_ready, // @[Monitor.scala:20:14] input io_in_d_valid, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14] input [31:0] io_in_d_bits_data // @[Monitor.scala:20:14] ); wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11] wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11] wire io_in_a_ready_0 = io_in_a_ready; // @[Monitor.scala:36:7] wire io_in_a_valid_0 = io_in_a_valid; // @[Monitor.scala:36:7] wire [2:0] io_in_a_bits_opcode_0 = io_in_a_bits_opcode; // @[Monitor.scala:36:7] wire [6:0] io_in_a_bits_address_0 = io_in_a_bits_address; // @[Monitor.scala:36:7] wire [31:0] io_in_a_bits_data_0 = io_in_a_bits_data; // @[Monitor.scala:36:7] wire io_in_d_ready_0 = io_in_d_ready; // @[Monitor.scala:36:7] wire io_in_d_valid_0 = io_in_d_valid; // @[Monitor.scala:36:7] wire [2:0] io_in_d_bits_opcode_0 = io_in_d_bits_opcode; // @[Monitor.scala:36:7] wire [31:0] io_in_d_bits_data_0 = io_in_d_bits_data; // @[Monitor.scala:36:7] wire io_in_a_bits_source = 1'h0; // @[Monitor.scala:36:7] wire io_in_a_bits_corrupt = 1'h0; // @[Monitor.scala:36:7] wire io_in_d_bits_source = 1'h0; // @[Monitor.scala:36:7] wire io_in_d_bits_sink = 1'h0; // @[Monitor.scala:36:7] wire io_in_d_bits_denied = 1'h0; // @[Monitor.scala:36:7] wire io_in_d_bits_corrupt = 1'h0; // @[Monitor.scala:36:7] wire mask_sizeOH_shiftAmount = 1'h0; // @[OneHot.scala:64:49] wire mask_sub_size = 1'h0; // @[Misc.scala:209:26] wire _mask_sub_acc_T = 1'h0; // @[Misc.scala:215:38] wire _mask_sub_acc_T_1 = 1'h0; // @[Misc.scala:215:38] wire sink_ok = 1'h0; // @[Monitor.scala:309:31] wire a_first_beats1_decode = 1'h0; // @[Edges.scala:220:59] wire a_first_beats1 = 1'h0; // @[Edges.scala:221:14] wire a_first_count = 1'h0; // @[Edges.scala:234:25] wire d_first_beats1_decode = 1'h0; // @[Edges.scala:220:59] wire d_first_beats1 = 1'h0; // @[Edges.scala:221:14] wire d_first_count = 1'h0; // @[Edges.scala:234:25] wire a_first_beats1_decode_1 = 1'h0; // @[Edges.scala:220:59] wire a_first_beats1_1 = 1'h0; // @[Edges.scala:221:14] wire a_first_count_1 = 1'h0; // @[Edges.scala:234:25] wire d_first_beats1_decode_1 = 1'h0; // @[Edges.scala:220:59] wire d_first_beats1_1 = 1'h0; // @[Edges.scala:221:14] wire d_first_count_1 = 1'h0; // @[Edges.scala:234:25] wire _c_first_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_2_bits_source = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_3_bits_source = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_first_T = 1'h0; // @[Decoupled.scala:51:35] wire c_first_beats1_decode = 1'h0; // @[Edges.scala:220:59] wire c_first_beats1_opdata = 1'h0; // @[Edges.scala:102:36] wire c_first_beats1 = 1'h0; // @[Edges.scala:221:14] wire _c_first_last_T = 1'h0; // @[Edges.scala:232:25] wire c_first_done = 1'h0; // @[Edges.scala:233:22] wire _c_first_count_T = 1'h0; // @[Edges.scala:234:27] wire c_first_count = 1'h0; // @[Edges.scala:234:25] wire _c_first_counter_T = 1'h0; // @[Edges.scala:236:21] wire d_first_beats1_decode_2 = 1'h0; // @[Edges.scala:220:59] wire d_first_beats1_2 = 1'h0; // @[Edges.scala:221:14] wire d_first_count_2 = 1'h0; // @[Edges.scala:234:25] wire c_set = 1'h0; // @[Monitor.scala:738:34] wire c_set_wo_ready = 1'h0; // @[Monitor.scala:739:34] wire _c_set_wo_ready_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_set_wo_ready_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_set_wo_ready_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61] wire _c_set_wo_ready_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_T = 1'h0; // @[Monitor.scala:772:47] wire _c_probe_ack_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_2_bits_source = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_3_bits_source = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_T_1 = 1'h0; // @[Monitor.scala:772:95] wire c_probe_ack = 1'h0; // @[Monitor.scala:772:71] wire _same_cycle_resp_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_T_3 = 1'h0; // @[Monitor.scala:795:44] wire _same_cycle_resp_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_2_bits_source = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_3_bits_source = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_T_4 = 1'h0; // @[Edges.scala:68:36] wire _same_cycle_resp_T_5 = 1'h0; // @[Edges.scala:68:51] wire _same_cycle_resp_T_6 = 1'h0; // @[Edges.scala:68:40] wire _same_cycle_resp_T_7 = 1'h0; // @[Monitor.scala:795:55] wire _same_cycle_resp_WIRE_4_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_4_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_4_bits_source = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_4_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_5_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_5_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_5_bits_source = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_5_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire same_cycle_resp_1 = 1'h0; // @[Monitor.scala:795:88] wire _source_ok_T = 1'h1; // @[Parameters.scala:46:9] wire _source_ok_WIRE_0 = 1'h1; // @[Parameters.scala:1138:31] wire mask_sub_sub_0_1 = 1'h1; // @[Misc.scala:206:21] wire mask_sub_0_1 = 1'h1; // @[Misc.scala:215:29] wire mask_sub_1_1 = 1'h1; // @[Misc.scala:215:29] wire mask_size = 1'h1; // @[Misc.scala:209:26] wire mask_acc = 1'h1; // @[Misc.scala:215:29] wire mask_acc_1 = 1'h1; // @[Misc.scala:215:29] wire mask_acc_2 = 1'h1; // @[Misc.scala:215:29] wire mask_acc_3 = 1'h1; // @[Misc.scala:215:29] wire _source_ok_T_1 = 1'h1; // @[Parameters.scala:46:9] wire _source_ok_WIRE_1_0 = 1'h1; // @[Parameters.scala:1138:31] wire _a_first_last_T_1 = 1'h1; // @[Edges.scala:232:43] wire a_first_last = 1'h1; // @[Edges.scala:232:33] wire _d_first_last_T_1 = 1'h1; // @[Edges.scala:232:43] wire d_first_last = 1'h1; // @[Edges.scala:232:33] wire _a_first_last_T_3 = 1'h1; // @[Edges.scala:232:43] wire a_first_last_1 = 1'h1; // @[Edges.scala:232:33] wire _d_first_last_T_3 = 1'h1; // @[Edges.scala:232:43] wire d_first_last_1 = 1'h1; // @[Edges.scala:232:33] wire _same_cycle_resp_T_2 = 1'h1; // @[Monitor.scala:684:113] wire c_first_counter1 = 1'h1; // @[Edges.scala:230:28] wire c_first = 1'h1; // @[Edges.scala:231:25] wire _c_first_last_T_1 = 1'h1; // @[Edges.scala:232:43] wire c_first_last = 1'h1; // @[Edges.scala:232:33] wire _d_first_last_T_5 = 1'h1; // @[Edges.scala:232:43] wire d_first_last_2 = 1'h1; // @[Edges.scala:232:33] wire _same_cycle_resp_T_8 = 1'h1; // @[Monitor.scala:795:113] wire [1:0] is_aligned_mask = 2'h3; // @[package.scala:243:46] wire [1:0] mask_lo = 2'h3; // @[Misc.scala:222:10] wire [1:0] mask_hi = 2'h3; // @[Misc.scala:222:10] wire [1:0] _a_first_beats1_decode_T_2 = 2'h3; // @[package.scala:243:46] wire [1:0] _d_first_beats1_decode_T_2 = 2'h3; // @[package.scala:243:46] wire [1:0] _a_first_beats1_decode_T_5 = 2'h3; // @[package.scala:243:46] wire [1:0] _d_first_beats1_decode_T_5 = 2'h3; // @[package.scala:243:46] wire [1:0] _c_first_beats1_decode_T_1 = 2'h3; // @[package.scala:243:76] wire [1:0] _c_first_counter1_T = 2'h3; // @[Edges.scala:230:28] wire [1:0] _d_first_beats1_decode_T_8 = 2'h3; // @[package.scala:243:46] wire [1:0] io_in_a_bits_size = 2'h2; // @[Monitor.scala:36:7] wire [1:0] io_in_d_bits_size = 2'h2; // @[Monitor.scala:36:7] wire [1:0] _mask_sizeOH_T = 2'h2; // @[Misc.scala:202:34] wire [1:0] io_in_d_bits_param = 2'h0; // @[Monitor.scala:36:7] wire [1:0] _is_aligned_mask_T_1 = 2'h0; // @[package.scala:243:76] wire [1:0] _a_first_beats1_decode_T_1 = 2'h0; // @[package.scala:243:76] wire [1:0] _d_first_beats1_decode_T_1 = 2'h0; // @[package.scala:243:76] wire [1:0] _a_first_beats1_decode_T_4 = 2'h0; // @[package.scala:243:76] wire [1:0] _d_first_beats1_decode_T_4 = 2'h0; // @[package.scala:243:76] wire [1:0] _c_first_WIRE_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _c_first_WIRE_1_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [1:0] _c_first_WIRE_2_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _c_first_WIRE_3_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [1:0] _c_first_beats1_decode_T_2 = 2'h0; // @[package.scala:243:46] wire [1:0] _d_first_beats1_decode_T_7 = 2'h0; // @[package.scala:243:76] wire [1:0] _c_set_wo_ready_WIRE_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _c_set_wo_ready_WIRE_1_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [1:0] _c_set_WIRE_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _c_set_WIRE_1_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [1:0] _c_opcodes_set_interm_WIRE_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _c_opcodes_set_interm_WIRE_1_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [1:0] _c_sizes_set_interm_WIRE_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _c_sizes_set_interm_WIRE_1_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [1:0] _c_opcodes_set_WIRE_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _c_opcodes_set_WIRE_1_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [1:0] _c_sizes_set_WIRE_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _c_sizes_set_WIRE_1_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [1:0] _c_probe_ack_WIRE_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _c_probe_ack_WIRE_1_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [1:0] _c_probe_ack_WIRE_2_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _c_probe_ack_WIRE_3_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [1:0] _same_cycle_resp_WIRE_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _same_cycle_resp_WIRE_1_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [1:0] _same_cycle_resp_WIRE_2_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _same_cycle_resp_WIRE_3_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [1:0] _same_cycle_resp_WIRE_4_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _same_cycle_resp_WIRE_5_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [2:0] io_in_a_bits_param = 3'h0; // @[Monitor.scala:36:7] wire [2:0] responseMap_0 = 3'h0; // @[Monitor.scala:643:42] wire [2:0] responseMap_1 = 3'h0; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_0 = 3'h0; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_1 = 3'h0; // @[Monitor.scala:644:42] wire [2:0] _c_first_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] c_sizes_set_interm = 3'h0; // @[Monitor.scala:755:40] wire [2:0] _c_set_wo_ready_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_wo_ready_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_T = 3'h0; // @[Monitor.scala:766:51] wire [2:0] _c_opcodes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_4_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_4_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_5_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_5_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [3:0] io_in_a_bits_mask = 4'hF; // @[Monitor.scala:36:7] wire [3:0] mask = 4'hF; // @[Misc.scala:222:10] wire [31:0] _c_first_WIRE_bits_data = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_first_WIRE_1_bits_data = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_first_WIRE_2_bits_data = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_first_WIRE_3_bits_data = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_set_wo_ready_WIRE_bits_data = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_set_wo_ready_WIRE_1_bits_data = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_set_WIRE_bits_data = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_set_WIRE_1_bits_data = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_opcodes_set_interm_WIRE_bits_data = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_opcodes_set_interm_WIRE_1_bits_data = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_sizes_set_interm_WIRE_bits_data = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_sizes_set_interm_WIRE_1_bits_data = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_opcodes_set_WIRE_bits_data = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_opcodes_set_WIRE_1_bits_data = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_sizes_set_WIRE_bits_data = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_sizes_set_WIRE_1_bits_data = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_probe_ack_WIRE_bits_data = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_probe_ack_WIRE_1_bits_data = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_probe_ack_WIRE_2_bits_data = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_probe_ack_WIRE_3_bits_data = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _same_cycle_resp_WIRE_bits_data = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _same_cycle_resp_WIRE_1_bits_data = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _same_cycle_resp_WIRE_2_bits_data = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _same_cycle_resp_WIRE_3_bits_data = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _same_cycle_resp_WIRE_4_bits_data = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _same_cycle_resp_WIRE_5_bits_data = 32'h0; // @[Bundles.scala:265:61] wire [6:0] _c_first_WIRE_bits_address = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_first_WIRE_1_bits_address = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_first_WIRE_2_bits_address = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_first_WIRE_3_bits_address = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_set_wo_ready_WIRE_bits_address = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_set_wo_ready_WIRE_1_bits_address = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_set_WIRE_bits_address = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_set_WIRE_1_bits_address = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_opcodes_set_interm_WIRE_bits_address = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_opcodes_set_interm_WIRE_1_bits_address = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_sizes_set_interm_WIRE_bits_address = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_sizes_set_interm_WIRE_1_bits_address = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_opcodes_set_WIRE_bits_address = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_opcodes_set_WIRE_1_bits_address = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_sizes_set_WIRE_bits_address = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_sizes_set_WIRE_1_bits_address = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_probe_ack_WIRE_bits_address = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_probe_ack_WIRE_1_bits_address = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_probe_ack_WIRE_2_bits_address = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_probe_ack_WIRE_3_bits_address = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _same_cycle_resp_WIRE_bits_address = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _same_cycle_resp_WIRE_1_bits_address = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _same_cycle_resp_WIRE_2_bits_address = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _same_cycle_resp_WIRE_3_bits_address = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _same_cycle_resp_WIRE_4_bits_address = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _same_cycle_resp_WIRE_5_bits_address = 7'h0; // @[Bundles.scala:265:61] wire [30:0] _d_opcodes_clr_T_5 = 31'hF; // @[Monitor.scala:680:76] wire [30:0] _d_sizes_clr_T_5 = 31'hF; // @[Monitor.scala:681:74] wire [30:0] _d_opcodes_clr_T_11 = 31'hF; // @[Monitor.scala:790:76] wire [30:0] _d_sizes_clr_T_11 = 31'hF; // @[Monitor.scala:791:74] wire [3:0] _a_opcode_lookup_T = 4'h0; // @[Monitor.scala:637:69] wire [3:0] _a_size_lookup_T = 4'h0; // @[Monitor.scala:641:65] wire [3:0] _a_opcodes_set_T = 4'h0; // @[Monitor.scala:659:79] wire [3:0] _a_sizes_set_T = 4'h0; // @[Monitor.scala:660:77] wire [3:0] _d_opcodes_clr_T_4 = 4'h0; // @[Monitor.scala:680:101] wire [3:0] _d_sizes_clr_T_4 = 4'h0; // @[Monitor.scala:681:99] wire [3:0] c_opcodes_set = 4'h0; // @[Monitor.scala:740:34] wire [3:0] c_sizes_set = 4'h0; // @[Monitor.scala:741:34] wire [3:0] _c_opcode_lookup_T = 4'h0; // @[Monitor.scala:749:69] wire [3:0] _c_size_lookup_T = 4'h0; // @[Monitor.scala:750:67] wire [3:0] c_opcodes_set_interm = 4'h0; // @[Monitor.scala:754:40] wire [3:0] _c_opcodes_set_interm_T = 4'h0; // @[Monitor.scala:765:53] wire [3:0] _c_opcodes_set_T = 4'h0; // @[Monitor.scala:767:79] wire [3:0] _c_sizes_set_T = 4'h0; // @[Monitor.scala:768:77] wire [3:0] _d_opcodes_clr_T_10 = 4'h0; // @[Monitor.scala:790:101] wire [3:0] _d_sizes_clr_T_10 = 4'h0; // @[Monitor.scala:791:99] wire [15:0] _a_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _a_size_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _d_opcodes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _d_sizes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _c_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57] wire [15:0] _c_size_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57] wire [15:0] _d_opcodes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57] wire [15:0] _d_sizes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57] wire [16:0] _a_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _a_size_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _d_opcodes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _d_sizes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _c_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57] wire [16:0] _c_size_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57] wire [16:0] _d_opcodes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57] wire [16:0] _d_sizes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57] wire [15:0] _a_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _a_size_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _d_opcodes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _d_sizes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _c_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51] wire [15:0] _c_size_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51] wire [15:0] _d_opcodes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51] wire [15:0] _d_sizes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51] wire [1:0] _mask_sizeOH_T_1 = 2'h1; // @[OneHot.scala:65:12] wire [1:0] _mask_sizeOH_T_2 = 2'h1; // @[OneHot.scala:65:27] wire [1:0] mask_sizeOH = 2'h1; // @[Misc.scala:202:81] wire [1:0] _a_set_wo_ready_T = 2'h1; // @[OneHot.scala:58:35] wire [1:0] _a_set_T = 2'h1; // @[OneHot.scala:58:35] wire [1:0] _d_clr_wo_ready_T = 2'h1; // @[OneHot.scala:58:35] wire [1:0] _d_clr_T = 2'h1; // @[OneHot.scala:58:35] wire [1:0] _c_set_wo_ready_T = 2'h1; // @[OneHot.scala:58:35] wire [1:0] _c_set_T = 2'h1; // @[OneHot.scala:58:35] wire [1:0] _d_clr_wo_ready_T_1 = 2'h1; // @[OneHot.scala:58:35] wire [1:0] _d_clr_T_1 = 2'h1; // @[OneHot.scala:58:35] wire [17:0] _c_sizes_set_T_1 = 18'h0; // @[Monitor.scala:768:52] wire [18:0] _c_opcodes_set_T_1 = 19'h0; // @[Monitor.scala:767:54] wire [2:0] responseMap_2 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMap_3 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMap_4 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_2 = 3'h1; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_3 = 3'h1; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_4 = 3'h1; // @[Monitor.scala:644:42] wire [2:0] _c_sizes_set_interm_T_1 = 3'h1; // @[Monitor.scala:766:59] wire [3:0] _c_opcodes_set_interm_T_1 = 4'h1; // @[Monitor.scala:765:61] wire [4:0] _is_aligned_mask_T = 5'hC; // @[package.scala:243:71] wire [4:0] _a_first_beats1_decode_T = 5'hC; // @[package.scala:243:71] wire [4:0] _d_first_beats1_decode_T = 5'hC; // @[package.scala:243:71] wire [4:0] _a_first_beats1_decode_T_3 = 5'hC; // @[package.scala:243:71] wire [4:0] _d_first_beats1_decode_T_3 = 5'hC; // @[package.scala:243:71] wire [4:0] _d_first_beats1_decode_T_6 = 5'hC; // @[package.scala:243:71] wire [4:0] _c_first_beats1_decode_T = 5'h3; // @[package.scala:243:71] wire [2:0] responseMapSecondOption_6 = 3'h5; // @[Monitor.scala:644:42] wire [2:0] _a_sizes_set_interm_T_1 = 3'h5; // @[Monitor.scala:658:59] wire [2:0] responseMap_6 = 3'h4; // @[Monitor.scala:643:42] wire [2:0] responseMap_7 = 3'h4; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_7 = 3'h4; // @[Monitor.scala:644:42] wire [2:0] _a_sizes_set_interm_T = 3'h4; // @[Monitor.scala:658:51] wire [2:0] responseMap_5 = 3'h2; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_5 = 3'h2; // @[Monitor.scala:644:42] wire [3:0] _a_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:637:123] wire [3:0] _a_size_lookup_T_2 = 4'h4; // @[Monitor.scala:641:117] wire [3:0] _d_opcodes_clr_T = 4'h4; // @[Monitor.scala:680:48] wire [3:0] _d_sizes_clr_T = 4'h4; // @[Monitor.scala:681:48] wire [3:0] _c_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:749:123] wire [3:0] _c_size_lookup_T_2 = 4'h4; // @[Monitor.scala:750:119] wire [3:0] _d_opcodes_clr_T_6 = 4'h4; // @[Monitor.scala:790:48] wire [3:0] _d_sizes_clr_T_6 = 4'h4; // @[Monitor.scala:791:48] wire [6:0] _is_aligned_T = {5'h0, io_in_a_bits_address_0[1:0]}; // @[Monitor.scala:36:7] wire is_aligned = _is_aligned_T == 7'h0; // @[Edges.scala:21:{16,24}] wire mask_sub_bit = io_in_a_bits_address_0[1]; // @[Misc.scala:210:26] wire mask_sub_1_2 = mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire mask_sub_nbit = ~mask_sub_bit; // @[Misc.scala:210:26, :211:20] wire mask_sub_0_2 = mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire mask_bit = io_in_a_bits_address_0[0]; // @[Misc.scala:210:26] wire mask_nbit = ~mask_bit; // @[Misc.scala:210:26, :211:20] wire mask_eq = mask_sub_0_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T = mask_eq; // @[Misc.scala:214:27, :215:38] wire mask_eq_1 = mask_sub_0_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_1 = mask_eq_1; // @[Misc.scala:214:27, :215:38] wire mask_eq_2 = mask_sub_1_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_2 = mask_eq_2; // @[Misc.scala:214:27, :215:38] wire mask_eq_3 = mask_sub_1_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_3 = mask_eq_3; // @[Misc.scala:214:27, :215:38] wire _T_658 = io_in_a_ready_0 & io_in_a_valid_0; // @[Decoupled.scala:51:35] wire _a_first_T; // @[Decoupled.scala:51:35] assign _a_first_T = _T_658; // @[Decoupled.scala:51:35] wire _a_first_T_1; // @[Decoupled.scala:51:35] assign _a_first_T_1 = _T_658; // @[Decoupled.scala:51:35] wire a_first_done = _a_first_T; // @[Decoupled.scala:51:35] wire _a_first_beats1_opdata_T = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7] wire _a_first_beats1_opdata_T_1 = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7] wire a_first_beats1_opdata = ~_a_first_beats1_opdata_T; // @[Edges.scala:92:{28,37}] reg a_first_counter; // @[Edges.scala:229:27] wire _a_first_last_T = a_first_counter; // @[Edges.scala:229:27, :232:25] wire [1:0] _a_first_counter1_T = {1'h0, a_first_counter} - 2'h1; // @[Edges.scala:229:27, :230:28] wire a_first_counter1 = _a_first_counter1_T[0]; // @[Edges.scala:230:28] wire a_first = ~a_first_counter; // @[Edges.scala:229:27, :231:25] wire _a_first_count_T = ~a_first_counter1; // @[Edges.scala:230:28, :234:27] wire _a_first_counter_T = ~a_first & a_first_counter1; // @[Edges.scala:230:28, :231:25, :236:21] reg [2:0] opcode; // @[Monitor.scala:387:22] reg [6:0] address; // @[Monitor.scala:391:22] wire _T_726 = io_in_d_ready_0 & io_in_d_valid_0; // @[Decoupled.scala:51:35] wire _d_first_T; // @[Decoupled.scala:51:35] assign _d_first_T = _T_726; // @[Decoupled.scala:51:35] wire _d_first_T_1; // @[Decoupled.scala:51:35] assign _d_first_T_1 = _T_726; // @[Decoupled.scala:51:35] wire _d_first_T_2; // @[Decoupled.scala:51:35] assign _d_first_T_2 = _T_726; // @[Decoupled.scala:51:35] wire d_first_done = _d_first_T; // @[Decoupled.scala:51:35] wire d_first_beats1_opdata = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire d_first_beats1_opdata_1 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire d_first_beats1_opdata_2 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] reg d_first_counter; // @[Edges.scala:229:27] wire _d_first_last_T = d_first_counter; // @[Edges.scala:229:27, :232:25] wire [1:0] _d_first_counter1_T = {1'h0, d_first_counter} - 2'h1; // @[Edges.scala:229:27, :230:28] wire d_first_counter1 = _d_first_counter1_T[0]; // @[Edges.scala:230:28] wire d_first = ~d_first_counter; // @[Edges.scala:229:27, :231:25] wire _d_first_count_T = ~d_first_counter1; // @[Edges.scala:230:28, :234:27] wire _d_first_counter_T = ~d_first & d_first_counter1; // @[Edges.scala:230:28, :231:25, :236:21] reg [2:0] opcode_1; // @[Monitor.scala:538:22] reg [1:0] inflight; // @[Monitor.scala:614:27] reg [3:0] inflight_opcodes; // @[Monitor.scala:616:35] wire [3:0] _a_opcode_lookup_T_1 = inflight_opcodes; // @[Monitor.scala:616:35, :637:44] reg [3:0] inflight_sizes; // @[Monitor.scala:618:33] wire [3:0] _a_size_lookup_T_1 = inflight_sizes; // @[Monitor.scala:618:33, :641:40] wire a_first_done_1 = _a_first_T_1; // @[Decoupled.scala:51:35] wire a_first_beats1_opdata_1 = ~_a_first_beats1_opdata_T_1; // @[Edges.scala:92:{28,37}] reg a_first_counter_1; // @[Edges.scala:229:27] wire _a_first_last_T_2 = a_first_counter_1; // @[Edges.scala:229:27, :232:25] wire [1:0] _a_first_counter1_T_1 = {1'h0, a_first_counter_1} - 2'h1; // @[Edges.scala:229:27, :230:28] wire a_first_counter1_1 = _a_first_counter1_T_1[0]; // @[Edges.scala:230:28] wire a_first_1 = ~a_first_counter_1; // @[Edges.scala:229:27, :231:25] wire _a_first_count_T_1 = ~a_first_counter1_1; // @[Edges.scala:230:28, :234:27] wire _a_first_counter_T_1 = ~a_first_1 & a_first_counter1_1; // @[Edges.scala:230:28, :231:25, :236:21] wire d_first_done_1 = _d_first_T_1; // @[Decoupled.scala:51:35] reg d_first_counter_1; // @[Edges.scala:229:27] wire _d_first_last_T_2 = d_first_counter_1; // @[Edges.scala:229:27, :232:25] wire [1:0] _d_first_counter1_T_1 = {1'h0, d_first_counter_1} - 2'h1; // @[Edges.scala:229:27, :230:28] wire d_first_counter1_1 = _d_first_counter1_T_1[0]; // @[Edges.scala:230:28] wire d_first_1 = ~d_first_counter_1; // @[Edges.scala:229:27, :231:25] wire _d_first_count_T_1 = ~d_first_counter1_1; // @[Edges.scala:230:28, :234:27] wire _d_first_counter_T_1 = ~d_first_1 & d_first_counter1_1; // @[Edges.scala:230:28, :231:25, :236:21] wire a_set; // @[Monitor.scala:626:34] wire a_set_wo_ready; // @[Monitor.scala:627:34] wire [3:0] a_opcodes_set; // @[Monitor.scala:630:33] wire [3:0] a_sizes_set; // @[Monitor.scala:632:31] wire [2:0] a_opcode_lookup; // @[Monitor.scala:635:35] wire [15:0] _a_opcode_lookup_T_6 = {12'h0, _a_opcode_lookup_T_1}; // @[Monitor.scala:637:{44,97}] wire [15:0] _a_opcode_lookup_T_7 = {1'h0, _a_opcode_lookup_T_6[15:1]}; // @[Monitor.scala:637:{97,152}] assign a_opcode_lookup = _a_opcode_lookup_T_7[2:0]; // @[Monitor.scala:635:35, :637:{21,152}] wire [3:0] a_size_lookup; // @[Monitor.scala:639:33] wire [15:0] _a_size_lookup_T_6 = {12'h0, _a_size_lookup_T_1}; // @[Monitor.scala:637:97, :641:{40,91}] wire [15:0] _a_size_lookup_T_7 = {1'h0, _a_size_lookup_T_6[15:1]}; // @[Monitor.scala:641:{91,144}] assign a_size_lookup = _a_size_lookup_T_7[3:0]; // @[Monitor.scala:639:33, :641:{19,144}] wire [3:0] a_opcodes_set_interm; // @[Monitor.scala:646:40] wire [2:0] a_sizes_set_interm; // @[Monitor.scala:648:38] wire _T_588 = io_in_a_valid_0 & a_first_1; // @[Monitor.scala:36:7, :651:26] assign a_set_wo_ready = _T_588; // @[Monitor.scala:627:34, :651:26] wire _same_cycle_resp_T; // @[Monitor.scala:684:44] assign _same_cycle_resp_T = _T_588; // @[Monitor.scala:651:26, :684:44] assign a_set = _T_658 & a_first_1; // @[Decoupled.scala:51:35] wire [3:0] _a_opcodes_set_interm_T = {io_in_a_bits_opcode_0, 1'h0}; // @[Monitor.scala:36:7, :657:53] wire [3:0] _a_opcodes_set_interm_T_1 = {_a_opcodes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:657:{53,61}] assign a_opcodes_set_interm = a_set ? _a_opcodes_set_interm_T_1 : 4'h0; // @[Monitor.scala:626:34, :646:40, :655:70, :657:{28,61}] assign a_sizes_set_interm = a_set ? 3'h5 : 3'h0; // @[Monitor.scala:626:34, :648:38, :655:70, :658:28] wire [18:0] _a_opcodes_set_T_1 = {15'h0, a_opcodes_set_interm}; // @[Monitor.scala:646:40, :659:54] assign a_opcodes_set = a_set ? _a_opcodes_set_T_1[3:0] : 4'h0; // @[Monitor.scala:626:34, :630:33, :655:70, :659:{28,54}] wire [17:0] _a_sizes_set_T_1 = {15'h0, a_sizes_set_interm}; // @[Monitor.scala:648:38, :659:54, :660:52] assign a_sizes_set = a_set ? _a_sizes_set_T_1[3:0] : 4'h0; // @[Monitor.scala:626:34, :632:31, :655:70, :660:{28,52}] wire d_clr; // @[Monitor.scala:664:34] wire d_clr_wo_ready; // @[Monitor.scala:665:34] wire [3:0] d_opcodes_clr; // @[Monitor.scala:668:33] wire [3:0] d_sizes_clr; // @[Monitor.scala:670:31] wire _GEN = io_in_d_bits_opcode_0 == 3'h6; // @[Monitor.scala:36:7, :673:46] wire d_release_ack; // @[Monitor.scala:673:46] assign d_release_ack = _GEN; // @[Monitor.scala:673:46] wire d_release_ack_1; // @[Monitor.scala:783:46] assign d_release_ack_1 = _GEN; // @[Monitor.scala:673:46, :783:46] wire _T_637 = io_in_d_valid_0 & d_first_1; // @[Monitor.scala:36:7, :674:26] assign d_clr_wo_ready = _T_637 & ~d_release_ack; // @[Monitor.scala:665:34, :673:46, :674:{26,71,74}] assign d_clr = _T_726 & d_first_1 & ~d_release_ack; // @[Decoupled.scala:51:35] wire [3:0] _GEN_0 = {4{d_clr}}; // @[Monitor.scala:664:34, :668:33, :678:89, :680:21] assign d_opcodes_clr = _GEN_0; // @[Monitor.scala:668:33, :678:89, :680:21] assign d_sizes_clr = _GEN_0; // @[Monitor.scala:668:33, :670:31, :678:89, :680:21] wire _same_cycle_resp_T_1 = _same_cycle_resp_T; // @[Monitor.scala:684:{44,55}] wire same_cycle_resp = _same_cycle_resp_T_1; // @[Monitor.scala:684:{55,88}] wire [1:0] _inflight_T = {inflight[1], inflight[0] | a_set}; // @[Monitor.scala:614:27, :626:34, :705:27] wire _inflight_T_1 = ~d_clr; // @[Monitor.scala:664:34, :705:38] wire [1:0] _inflight_T_2 = {1'h0, _inflight_T[0] & _inflight_T_1}; // @[Monitor.scala:705:{27,36,38}] wire [3:0] _inflight_opcodes_T = inflight_opcodes | a_opcodes_set; // @[Monitor.scala:616:35, :630:33, :706:43] wire [3:0] _inflight_opcodes_T_1 = ~d_opcodes_clr; // @[Monitor.scala:668:33, :706:62] wire [3:0] _inflight_opcodes_T_2 = _inflight_opcodes_T & _inflight_opcodes_T_1; // @[Monitor.scala:706:{43,60,62}] wire [3:0] _inflight_sizes_T = inflight_sizes | a_sizes_set; // @[Monitor.scala:618:33, :632:31, :707:39] wire [3:0] _inflight_sizes_T_1 = ~d_sizes_clr; // @[Monitor.scala:670:31, :707:56] wire [3:0] _inflight_sizes_T_2 = _inflight_sizes_T & _inflight_sizes_T_1; // @[Monitor.scala:707:{39,54,56}] reg [31:0] watchdog; // @[Monitor.scala:709:27] wire [32:0] _watchdog_T = {1'h0, watchdog} + 33'h1; // @[Monitor.scala:709:27, :714:26] wire [31:0] _watchdog_T_1 = _watchdog_T[31:0]; // @[Monitor.scala:714:26] reg [1:0] inflight_1; // @[Monitor.scala:726:35] wire [1:0] _inflight_T_3 = inflight_1; // @[Monitor.scala:726:35, :814:35] reg [3:0] inflight_opcodes_1; // @[Monitor.scala:727:35] wire [3:0] _c_opcode_lookup_T_1 = inflight_opcodes_1; // @[Monitor.scala:727:35, :749:44] wire [3:0] _inflight_opcodes_T_3 = inflight_opcodes_1; // @[Monitor.scala:727:35, :815:43] reg [3:0] inflight_sizes_1; // @[Monitor.scala:728:35] wire [3:0] _c_size_lookup_T_1 = inflight_sizes_1; // @[Monitor.scala:728:35, :750:42] wire [3:0] _inflight_sizes_T_3 = inflight_sizes_1; // @[Monitor.scala:728:35, :816:41] wire d_first_done_2 = _d_first_T_2; // @[Decoupled.scala:51:35] reg d_first_counter_2; // @[Edges.scala:229:27] wire _d_first_last_T_4 = d_first_counter_2; // @[Edges.scala:229:27, :232:25] wire [1:0] _d_first_counter1_T_2 = {1'h0, d_first_counter_2} - 2'h1; // @[Edges.scala:229:27, :230:28] wire d_first_counter1_2 = _d_first_counter1_T_2[0]; // @[Edges.scala:230:28] wire d_first_2 = ~d_first_counter_2; // @[Edges.scala:229:27, :231:25] wire _d_first_count_T_2 = ~d_first_counter1_2; // @[Edges.scala:230:28, :234:27] wire _d_first_counter_T_2 = ~d_first_2 & d_first_counter1_2; // @[Edges.scala:230:28, :231:25, :236:21] wire [3:0] c_opcode_lookup; // @[Monitor.scala:747:35] wire [3:0] c_size_lookup; // @[Monitor.scala:748:35] wire [15:0] _c_opcode_lookup_T_6 = {12'h0, _c_opcode_lookup_T_1}; // @[Monitor.scala:637:97, :749:{44,97}] wire [15:0] _c_opcode_lookup_T_7 = {1'h0, _c_opcode_lookup_T_6[15:1]}; // @[Monitor.scala:749:{97,152}] assign c_opcode_lookup = _c_opcode_lookup_T_7[3:0]; // @[Monitor.scala:747:35, :749:{21,152}] wire [15:0] _c_size_lookup_T_6 = {12'h0, _c_size_lookup_T_1}; // @[Monitor.scala:637:97, :750:{42,93}] wire [15:0] _c_size_lookup_T_7 = {1'h0, _c_size_lookup_T_6[15:1]}; // @[Monitor.scala:750:{93,146}] assign c_size_lookup = _c_size_lookup_T_7[3:0]; // @[Monitor.scala:748:35, :750:{21,146}] wire d_clr_1; // @[Monitor.scala:774:34] wire d_clr_wo_ready_1; // @[Monitor.scala:775:34] wire [3:0] d_opcodes_clr_1; // @[Monitor.scala:776:34] wire [3:0] d_sizes_clr_1; // @[Monitor.scala:777:34] wire _T_702 = io_in_d_valid_0 & d_first_2; // @[Monitor.scala:36:7, :784:26] assign d_clr_wo_ready_1 = _T_702 & d_release_ack_1; // @[Monitor.scala:775:34, :783:46, :784:{26,71}] assign d_clr_1 = _T_726 & d_first_2 & d_release_ack_1; // @[Decoupled.scala:51:35] wire [3:0] _GEN_1 = {4{d_clr_1}}; // @[Monitor.scala:774:34, :776:34, :788:88, :790:21] assign d_opcodes_clr_1 = _GEN_1; // @[Monitor.scala:776:34, :788:88, :790:21] assign d_sizes_clr_1 = _GEN_1; // @[Monitor.scala:776:34, :777:34, :788:88, :790:21] wire _inflight_T_4 = ~d_clr_1; // @[Monitor.scala:774:34, :814:46] wire [1:0] _inflight_T_5 = {1'h0, _inflight_T_3[0] & _inflight_T_4}; // @[Monitor.scala:814:{35,44,46}] wire [3:0] _inflight_opcodes_T_4 = ~d_opcodes_clr_1; // @[Monitor.scala:776:34, :815:62] wire [3:0] _inflight_opcodes_T_5 = _inflight_opcodes_T_3 & _inflight_opcodes_T_4; // @[Monitor.scala:815:{43,60,62}] wire [3:0] _inflight_sizes_T_4 = ~d_sizes_clr_1; // @[Monitor.scala:777:34, :816:58] wire [3:0] _inflight_sizes_T_5 = _inflight_sizes_T_3 & _inflight_sizes_T_4; // @[Monitor.scala:816:{41,56,58}] reg [31:0] watchdog_1; // @[Monitor.scala:818:27]
Generate the Verilog code corresponding to the following Chisel files. File Metadata.scala: // See LICENSE.SiFive for license details. // See LICENSE.Berkeley for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import freechips.rocketchip.rocket.constants.MemoryOpConstants import freechips.rocketchip.util._ object ClientStates { val width = 2 def Nothing = 0.U(width.W) def Branch = 1.U(width.W) def Trunk = 2.U(width.W) def Dirty = 3.U(width.W) def hasReadPermission(state: UInt): Bool = state > Nothing def hasWritePermission(state: UInt): Bool = state > Branch } object MemoryOpCategories extends MemoryOpConstants { def wr = Cat(true.B, true.B) // Op actually writes def wi = Cat(false.B, true.B) // Future op will write def rd = Cat(false.B, false.B) // Op only reads def categorize(cmd: UInt): UInt = { val cat = Cat(isWrite(cmd), isWriteIntent(cmd)) //assert(cat.isOneOf(wr,wi,rd), "Could not categorize command.") cat } } /** Stores the client-side coherence information, * such as permissions on the data and whether the data is dirty. * Its API can be used to make TileLink messages in response to * memory operations, cache control oeprations, or Probe messages. */ class ClientMetadata extends Bundle { /** Actual state information stored in this bundle */ val state = UInt(ClientStates.width.W) /** Metadata equality */ def ===(rhs: UInt): Bool = state === rhs def ===(rhs: ClientMetadata): Bool = state === rhs.state def =/=(rhs: ClientMetadata): Bool = !this.===(rhs) /** Is the block's data present in this cache */ def isValid(dummy: Int = 0): Bool = state > ClientStates.Nothing /** Determine whether this cmd misses, and the new state (on hit) or param to be sent (on miss) */ private def growStarter(cmd: UInt): (Bool, UInt) = { import MemoryOpCategories._ import TLPermissions._ import ClientStates._ val c = categorize(cmd) MuxTLookup(Cat(c, state), (false.B, 0.U), Seq( //(effect, am now) -> (was a hit, next) Cat(rd, Dirty) -> (true.B, Dirty), Cat(rd, Trunk) -> (true.B, Trunk), Cat(rd, Branch) -> (true.B, Branch), Cat(wi, Dirty) -> (true.B, Dirty), Cat(wi, Trunk) -> (true.B, Trunk), Cat(wr, Dirty) -> (true.B, Dirty), Cat(wr, Trunk) -> (true.B, Dirty), //(effect, am now) -> (was a miss, param) Cat(rd, Nothing) -> (false.B, NtoB), Cat(wi, Branch) -> (false.B, BtoT), Cat(wi, Nothing) -> (false.B, NtoT), Cat(wr, Branch) -> (false.B, BtoT), Cat(wr, Nothing) -> (false.B, NtoT))) } /** Determine what state to go to after miss based on Grant param * For now, doesn't depend on state (which may have been Probed). */ private def growFinisher(cmd: UInt, param: UInt): UInt = { import MemoryOpCategories._ import TLPermissions._ import ClientStates._ val c = categorize(cmd) //assert(c === rd || param === toT, "Client was expecting trunk permissions.") MuxLookup(Cat(c, param), Nothing)(Seq( //(effect param) -> (next) Cat(rd, toB) -> Branch, Cat(rd, toT) -> Trunk, Cat(wi, toT) -> Trunk, Cat(wr, toT) -> Dirty)) } /** Does this cache have permissions on this block sufficient to perform op, * and what to do next (Acquire message param or updated metadata). */ def onAccess(cmd: UInt): (Bool, UInt, ClientMetadata) = { val r = growStarter(cmd) (r._1, r._2, ClientMetadata(r._2)) } /** Does a secondary miss on the block require another Acquire message */ def onSecondaryAccess(first_cmd: UInt, second_cmd: UInt): (Bool, Bool, UInt, ClientMetadata, UInt) = { import MemoryOpCategories._ val r1 = growStarter(first_cmd) val r2 = growStarter(second_cmd) val needs_second_acq = isWriteIntent(second_cmd) && !isWriteIntent(first_cmd) val hit_again = r1._1 && r2._1 val dirties = categorize(second_cmd) === wr val biggest_grow_param = Mux(dirties, r2._2, r1._2) val dirtiest_state = ClientMetadata(biggest_grow_param) val dirtiest_cmd = Mux(dirties, second_cmd, first_cmd) (needs_second_acq, hit_again, biggest_grow_param, dirtiest_state, dirtiest_cmd) } /** Metadata change on a returned Grant */ def onGrant(cmd: UInt, param: UInt): ClientMetadata = ClientMetadata(growFinisher(cmd, param)) /** Determine what state to go to based on Probe param */ private def shrinkHelper(param: UInt): (Bool, UInt, UInt) = { import ClientStates._ import TLPermissions._ MuxTLookup(Cat(param, state), (false.B, 0.U, 0.U), Seq( //(wanted, am now) -> (hasDirtyData resp, next) Cat(toT, Dirty) -> (true.B, TtoT, Trunk), Cat(toT, Trunk) -> (false.B, TtoT, Trunk), Cat(toT, Branch) -> (false.B, BtoB, Branch), Cat(toT, Nothing) -> (false.B, NtoN, Nothing), Cat(toB, Dirty) -> (true.B, TtoB, Branch), Cat(toB, Trunk) -> (false.B, TtoB, Branch), // Policy: Don't notify on clean downgrade Cat(toB, Branch) -> (false.B, BtoB, Branch), Cat(toB, Nothing) -> (false.B, NtoN, Nothing), Cat(toN, Dirty) -> (true.B, TtoN, Nothing), Cat(toN, Trunk) -> (false.B, TtoN, Nothing), // Policy: Don't notify on clean downgrade Cat(toN, Branch) -> (false.B, BtoN, Nothing), // Policy: Don't notify on clean downgrade Cat(toN, Nothing) -> (false.B, NtoN, Nothing))) } /** Translate cache control cmds into Probe param */ private def cmdToPermCap(cmd: UInt): UInt = { import MemoryOpCategories._ import TLPermissions._ MuxLookup(cmd, toN)(Seq( M_FLUSH -> toN, M_PRODUCE -> toB, M_CLEAN -> toT)) } def onCacheControl(cmd: UInt): (Bool, UInt, ClientMetadata) = { val r = shrinkHelper(cmdToPermCap(cmd)) (r._1, r._2, ClientMetadata(r._3)) } def onProbe(param: UInt): (Bool, UInt, ClientMetadata) = { val r = shrinkHelper(param) (r._1, r._2, ClientMetadata(r._3)) } } /** Factories for ClientMetadata, including on reset */ object ClientMetadata { def apply(perm: UInt) = { val meta = Wire(new ClientMetadata) meta.state := perm meta } def onReset = ClientMetadata(ClientStates.Nothing) def maximum = ClientMetadata(ClientStates.Dirty) } File HellaCache.scala: // See LICENSE.SiFive for license details. // See LICENSE.Berkeley for license details. package freechips.rocketchip.rocket import chisel3.{dontTouch, _} import chisel3.util._ import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy.bundlebridge._ import org.chipsalliance.diplomacy.lazymodule._ import freechips.rocketchip.amba.AMBAProtField import freechips.rocketchip.diplomacy.{IdRange, TransferSizes, RegionType} import freechips.rocketchip.tile.{L1CacheParams, HasL1CacheParameters, HasCoreParameters, CoreBundle, HasNonDiplomaticTileParameters, BaseTile, HasTileParameters} import freechips.rocketchip.tilelink.{TLMasterParameters, TLClientNode, TLMasterPortParameters, TLEdgeOut, TLWidthWidget, TLFIFOFixer, ClientMetadata} import freechips.rocketchip.util.{Code, RandomReplacement, ParameterizedBundle} import freechips.rocketchip.util.{BooleanToAugmentedBoolean, IntToAugmentedInt} import scala.collection.mutable.ListBuffer case class DCacheParams( nSets: Int = 64, nWays: Int = 4, rowBits: Int = 64, subWordBits: Option[Int] = None, replacementPolicy: String = "random", nTLBSets: Int = 1, nTLBWays: Int = 32, nTLBBasePageSectors: Int = 4, nTLBSuperpages: Int = 4, tagECC: Option[String] = None, dataECC: Option[String] = None, dataECCBytes: Int = 1, nMSHRs: Int = 1, nSDQ: Int = 17, nRPQ: Int = 16, nMMIOs: Int = 1, blockBytes: Int = 64, separateUncachedResp: Boolean = false, acquireBeforeRelease: Boolean = false, pipelineWayMux: Boolean = false, clockGate: Boolean = false, scratch: Option[BigInt] = None) extends L1CacheParams { def tagCode: Code = Code.fromString(tagECC) def dataCode: Code = Code.fromString(dataECC) def dataScratchpadBytes: Int = scratch.map(_ => nSets*blockBytes).getOrElse(0) def replacement = new RandomReplacement(nWays) def silentDrop: Boolean = !acquireBeforeRelease require((!scratch.isDefined || nWays == 1), "Scratchpad only allowed in direct-mapped cache.") require((!scratch.isDefined || nMSHRs == 0), "Scratchpad only allowed in blocking cache.") if (scratch.isEmpty) require(isPow2(nSets), s"nSets($nSets) must be pow2") } trait HasL1HellaCacheParameters extends HasL1CacheParameters with HasCoreParameters { val cacheParams = tileParams.dcache.get val cfg = cacheParams def wordBits = coreDataBits def wordBytes = coreDataBytes def subWordBits = cacheParams.subWordBits.getOrElse(wordBits) def subWordBytes = subWordBits / 8 def wordOffBits = log2Up(wordBytes) def beatBytes = cacheBlockBytes / cacheDataBeats def beatWords = beatBytes / wordBytes def beatOffBits = log2Up(beatBytes) def idxMSB = untagBits-1 def idxLSB = blockOffBits def offsetmsb = idxLSB-1 def offsetlsb = wordOffBits def rowWords = rowBits/wordBits def doNarrowRead = coreDataBits * nWays % rowBits == 0 def eccBytes = cacheParams.dataECCBytes val eccBits = cacheParams.dataECCBytes * 8 val encBits = cacheParams.dataCode.width(eccBits) val encWordBits = encBits * (wordBits / eccBits) def encDataBits = cacheParams.dataCode.width(coreDataBits) // NBDCache only def encRowBits = encDataBits*rowWords def lrscCycles = coreParams.lrscCycles // ISA requires 16-insn LRSC sequences to succeed def lrscBackoff = 3 // disallow LRSC reacquisition briefly def blockProbeAfterGrantCycles = 8 // give the processor some time to issue a request after a grant def nIOMSHRs = cacheParams.nMMIOs def maxUncachedInFlight = cacheParams.nMMIOs def dataScratchpadSize = cacheParams.dataScratchpadBytes require(rowBits >= coreDataBits, s"rowBits($rowBits) < coreDataBits($coreDataBits)") if (!usingDataScratchpad) require(rowBits == cacheDataBits, s"rowBits($rowBits) != cacheDataBits($cacheDataBits)") // would need offset addr for puts if data width < xlen require(xLen <= cacheDataBits, s"xLen($xLen) > cacheDataBits($cacheDataBits)") } abstract class L1HellaCacheModule(implicit val p: Parameters) extends Module with HasL1HellaCacheParameters abstract class L1HellaCacheBundle(implicit val p: Parameters) extends ParameterizedBundle()(p) with HasL1HellaCacheParameters /** Bundle definitions for HellaCache interfaces */ trait HasCoreMemOp extends HasL1HellaCacheParameters { val addr = UInt(coreMaxAddrBits.W) val idx = (usingVM && untagBits > pgIdxBits).option(UInt(coreMaxAddrBits.W)) val tag = UInt((coreParams.dcacheReqTagBits + log2Ceil(dcacheArbPorts)).W) val cmd = UInt(M_SZ.W) val size = UInt(log2Ceil(coreDataBytes.log2 + 1).W) val signed = Bool() val dprv = UInt(PRV.SZ.W) val dv = Bool() } trait HasCoreData extends HasCoreParameters { val data = UInt(coreDataBits.W) val mask = UInt(coreDataBytes.W) } class HellaCacheReqInternal(implicit p: Parameters) extends CoreBundle()(p) with HasCoreMemOp { val phys = Bool() val no_resp = Bool() // The dcache may omit generating a response for this request val no_alloc = Bool() val no_xcpt = Bool() } class HellaCacheReq(implicit p: Parameters) extends HellaCacheReqInternal()(p) with HasCoreData class HellaCacheResp(implicit p: Parameters) extends CoreBundle()(p) with HasCoreMemOp with HasCoreData { val replay = Bool() val has_data = Bool() val data_word_bypass = UInt(coreDataBits.W) val data_raw = UInt(coreDataBits.W) val store_data = UInt(coreDataBits.W) } class AlignmentExceptions extends Bundle { val ld = Bool() val st = Bool() } class HellaCacheExceptions extends Bundle { val ma = new AlignmentExceptions val pf = new AlignmentExceptions val gf = new AlignmentExceptions val ae = new AlignmentExceptions } class HellaCacheWriteData(implicit p: Parameters) extends CoreBundle()(p) with HasCoreData class HellaCachePerfEvents extends Bundle { val acquire = Bool() val release = Bool() val grant = Bool() val tlbMiss = Bool() val blocked = Bool() val canAcceptStoreThenLoad = Bool() val canAcceptStoreThenRMW = Bool() val canAcceptLoadThenLoad = Bool() val storeBufferEmptyAfterLoad = Bool() val storeBufferEmptyAfterStore = Bool() } // interface between D$ and processor/DTLB class HellaCacheIO(implicit p: Parameters) extends CoreBundle()(p) { val req = Decoupled(new HellaCacheReq) val s1_kill = Output(Bool()) // kill previous cycle's req val s1_data = Output(new HellaCacheWriteData()) // data for previous cycle's req val s2_nack = Input(Bool()) // req from two cycles ago is rejected val s2_nack_cause_raw = Input(Bool()) // reason for nack is store-load RAW hazard (performance hint) val s2_kill = Output(Bool()) // kill req from two cycles ago val s2_uncached = Input(Bool()) // advisory signal that the access is MMIO val s2_paddr = Input(UInt(paddrBits.W)) // translated address val resp = Flipped(Valid(new HellaCacheResp)) val replay_next = Input(Bool()) val s2_xcpt = Input(new HellaCacheExceptions) val s2_gpa = Input(UInt(vaddrBitsExtended.W)) val s2_gpa_is_pte = Input(Bool()) val uncached_resp = tileParams.dcache.get.separateUncachedResp.option(Flipped(Decoupled(new HellaCacheResp))) val ordered = Input(Bool()) val store_pending = Input(Bool()) // there is a store in a store buffer somewhere val perf = Input(new HellaCachePerfEvents()) val keep_clock_enabled = Output(Bool()) // should D$ avoid clock-gating itself? val clock_enabled = Input(Bool()) // is D$ currently being clocked? } /** Base classes for Diplomatic TL2 HellaCaches */ abstract class HellaCache(tileId: Int)(implicit p: Parameters) extends LazyModule with HasNonDiplomaticTileParameters { protected val cfg = tileParams.dcache.get protected def cacheClientParameters = cfg.scratch.map(x => Seq()).getOrElse(Seq(TLMasterParameters.v1( name = s"Core ${tileId} DCache", sourceId = IdRange(0, 1 max cfg.nMSHRs), supportsProbe = TransferSizes(cfg.blockBytes, cfg.blockBytes)))) protected def mmioClientParameters = Seq(TLMasterParameters.v1( name = s"Core ${tileId} DCache MMIO", sourceId = IdRange(firstMMIO, firstMMIO + cfg.nMMIOs), requestFifo = true)) def firstMMIO = (cacheClientParameters.map(_.sourceId.end) :+ 0).max val node = TLClientNode(Seq(TLMasterPortParameters.v1( clients = cacheClientParameters ++ mmioClientParameters, minLatency = 1, requestFields = tileParams.core.useVM.option(Seq()).getOrElse(Seq(AMBAProtField()))))) val hartIdSinkNodeOpt = cfg.scratch.map(_ => BundleBridgeSink[UInt]()) val mmioAddressPrefixSinkNodeOpt = cfg.scratch.map(_ => BundleBridgeSink[UInt]()) val module: HellaCacheModule def flushOnFenceI = cfg.scratch.isEmpty && !node.edges.out(0).manager.managers.forall(m => !m.supportsAcquireB || !m.executable || m.regionType >= RegionType.TRACKED || m.regionType <= RegionType.IDEMPOTENT) def canSupportCFlushLine = !usingVM || cfg.blockBytes * cfg.nSets <= (1 << pgIdxBits) require(!tileParams.core.haveCFlush || cfg.scratch.isEmpty, "CFLUSH_D_L1 instruction requires a D$") } class HellaCacheBundle(implicit p: Parameters) extends CoreBundle()(p) { val cpu = Flipped(new HellaCacheIO) val ptw = new TLBPTWIO() val errors = new DCacheErrors val tlb_port = new DCacheTLBPort } class HellaCacheModule(outer: HellaCache) extends LazyModuleImp(outer) with HasL1HellaCacheParameters { implicit val edge: TLEdgeOut = outer.node.edges.out(0) val (tl_out, _) = outer.node.out(0) val io = IO(new HellaCacheBundle) val io_hartid = outer.hartIdSinkNodeOpt.map(_.bundle) val io_mmio_address_prefix = outer.mmioAddressPrefixSinkNodeOpt.map(_.bundle) dontTouch(io.cpu.resp) // Users like to monitor these fields even if the core ignores some signals dontTouch(io.cpu.s1_data) require(rowBits == edge.bundle.dataBits) private val fifoManagers = edge.manager.managers.filter(TLFIFOFixer.allVolatile) fifoManagers.foreach { m => require (m.fifoId == fifoManagers.head.fifoId, s"IOMSHRs must be FIFO for all regions with effects, but HellaCache sees\n"+ s"${m.nodePath.map(_.name)}\nversus\n${fifoManagers.head.nodePath.map(_.name)}") } } /** Support overriding which HellaCache is instantiated */ case object BuildHellaCache extends Field[BaseTile => Parameters => HellaCache](HellaCacheFactory.apply) object HellaCacheFactory { def apply(tile: BaseTile)(p: Parameters): HellaCache = { if (tile.tileParams.dcache.get.nMSHRs == 0) new DCache(tile.tileId, tile.crossing)(p) else new NonBlockingDCache(tile.tileId)(p) } } /** Mix-ins for constructing tiles that have a HellaCache */ trait HasHellaCache { this: BaseTile => val module: HasHellaCacheModule implicit val p: Parameters var nDCachePorts = 0 lazy val dcache: HellaCache = LazyModule(p(BuildHellaCache)(this)(p)) tlMasterXbar.node := TLWidthWidget(tileParams.dcache.get.rowBits/8) := dcache.node dcache.hartIdSinkNodeOpt.map { _ := hartIdNexusNode } dcache.mmioAddressPrefixSinkNodeOpt.map { _ := mmioAddressPrefixNexusNode } InModuleBody { dcache.module.io.tlb_port := DontCare } } trait HasHellaCacheModule { val outer: HasHellaCache with HasTileParameters implicit val p: Parameters val dcachePorts = ListBuffer[HellaCacheIO]() val dcacheArb = Module(new HellaCacheArbiter(outer.nDCachePorts)(outer.p)) outer.dcache.module.io.cpu <> dcacheArb.io.mem } /** Metadata array used for all HellaCaches */ class L1Metadata(implicit p: Parameters) extends L1HellaCacheBundle()(p) { val coh = new ClientMetadata val tag = UInt(tagBits.W) } object L1Metadata { def apply(tag: Bits, coh: ClientMetadata)(implicit p: Parameters) = { val meta = Wire(new L1Metadata) meta.tag := tag meta.coh := coh meta } } class L1MetaReadReq(implicit p: Parameters) extends L1HellaCacheBundle()(p) { val idx = UInt(idxBits.W) val way_en = UInt(nWays.W) val tag = UInt(tagBits.W) } class L1MetaWriteReq(implicit p: Parameters) extends L1MetaReadReq()(p) { val data = new L1Metadata } class L1MetadataArray[T <: L1Metadata](onReset: () => T)(implicit p: Parameters) extends L1HellaCacheModule()(p) { val rstVal = onReset() val io = IO(new Bundle { val read = Flipped(Decoupled(new L1MetaReadReq)) val write = Flipped(Decoupled(new L1MetaWriteReq)) val resp = Output(Vec(nWays, rstVal.cloneType)) }) val rst_cnt = RegInit(0.U(log2Up(nSets+1).W)) val rst = rst_cnt < nSets.U val waddr = Mux(rst, rst_cnt, io.write.bits.idx) val wdata = Mux(rst, rstVal, io.write.bits.data).asUInt val wmask = Mux(rst || (nWays == 1).B, (-1).S, io.write.bits.way_en.asSInt).asBools val rmask = Mux(rst || (nWays == 1).B, (-1).S, io.read.bits.way_en.asSInt).asBools when (rst) { rst_cnt := rst_cnt+1.U } val metabits = rstVal.getWidth val tag_array = SyncReadMem(nSets, Vec(nWays, UInt(metabits.W))) val wen = rst || io.write.valid when (wen) { tag_array.write(waddr, VecInit.fill(nWays)(wdata), wmask) } io.resp := tag_array.read(io.read.bits.idx, io.read.fire).map(_.asTypeOf(chiselTypeOf(rstVal))) io.read.ready := !wen // so really this could be a 6T RAM io.write.ready := !rst }
module L1MetadataArray( // @[HellaCache.scala:322:7] input clock, // @[HellaCache.scala:322:7] input reset, // @[HellaCache.scala:322:7] output io_read_ready, // @[HellaCache.scala:324:14] input io_read_valid, // @[HellaCache.scala:324:14] input [5:0] io_read_bits_idx, // @[HellaCache.scala:324:14] input [7:0] io_read_bits_way_en, // @[HellaCache.scala:324:14] input [19:0] io_read_bits_tag, // @[HellaCache.scala:324:14] output io_write_ready, // @[HellaCache.scala:324:14] input io_write_valid, // @[HellaCache.scala:324:14] input [5:0] io_write_bits_idx, // @[HellaCache.scala:324:14] input [7:0] io_write_bits_way_en, // @[HellaCache.scala:324:14] input [19:0] io_write_bits_tag, // @[HellaCache.scala:324:14] input [1:0] io_write_bits_data_coh_state, // @[HellaCache.scala:324:14] input [19:0] io_write_bits_data_tag, // @[HellaCache.scala:324:14] output [1:0] io_resp_0_coh_state, // @[HellaCache.scala:324:14] output [19:0] io_resp_0_tag, // @[HellaCache.scala:324:14] output [1:0] io_resp_1_coh_state, // @[HellaCache.scala:324:14] output [19:0] io_resp_1_tag, // @[HellaCache.scala:324:14] output [1:0] io_resp_2_coh_state, // @[HellaCache.scala:324:14] output [19:0] io_resp_2_tag, // @[HellaCache.scala:324:14] output [1:0] io_resp_3_coh_state, // @[HellaCache.scala:324:14] output [19:0] io_resp_3_tag, // @[HellaCache.scala:324:14] output [1:0] io_resp_4_coh_state, // @[HellaCache.scala:324:14] output [19:0] io_resp_4_tag, // @[HellaCache.scala:324:14] output [1:0] io_resp_5_coh_state, // @[HellaCache.scala:324:14] output [19:0] io_resp_5_tag, // @[HellaCache.scala:324:14] output [1:0] io_resp_6_coh_state, // @[HellaCache.scala:324:14] output [19:0] io_resp_6_tag, // @[HellaCache.scala:324:14] output [1:0] io_resp_7_coh_state, // @[HellaCache.scala:324:14] output [19:0] io_resp_7_tag // @[HellaCache.scala:324:14] ); wire tag_array_MPORT_1_en; // @[Decoupled.scala:51:35] wire [5:0] tag_array_MPORT_addr; // @[HellaCache.scala:342:20] wire [175:0] _tag_array_RW0_rdata; // @[HellaCache.scala:339:30] wire io_read_valid_0 = io_read_valid; // @[HellaCache.scala:322:7] wire [5:0] io_read_bits_idx_0 = io_read_bits_idx; // @[HellaCache.scala:322:7] wire [7:0] io_read_bits_way_en_0 = io_read_bits_way_en; // @[HellaCache.scala:322:7] wire [19:0] io_read_bits_tag_0 = io_read_bits_tag; // @[HellaCache.scala:322:7] wire io_write_valid_0 = io_write_valid; // @[HellaCache.scala:322:7] wire [5:0] io_write_bits_idx_0 = io_write_bits_idx; // @[HellaCache.scala:322:7] wire [7:0] io_write_bits_way_en_0 = io_write_bits_way_en; // @[HellaCache.scala:322:7] wire [19:0] io_write_bits_tag_0 = io_write_bits_tag; // @[HellaCache.scala:322:7] wire [1:0] io_write_bits_data_coh_state_0 = io_write_bits_data_coh_state; // @[HellaCache.scala:322:7] wire [19:0] io_write_bits_data_tag_0 = io_write_bits_data_tag; // @[HellaCache.scala:322:7] wire [1:0] rstVal_meta_state = 2'h0; // @[Metadata.scala:160:20] wire [1:0] rstVal_coh_state = 2'h0; // @[HellaCache.scala:305:20] wire [19:0] rstVal_tag = 20'h0; // @[HellaCache.scala:305:20] wire _io_read_ready_T; // @[HellaCache.scala:346:20] wire [7:0] _rmask_T_1 = io_read_bits_way_en_0; // @[HellaCache.scala:322:7, :335:70] wire _io_write_ready_T; // @[HellaCache.scala:347:21] wire [7:0] _wmask_T_1 = io_write_bits_way_en_0; // @[HellaCache.scala:322:7, :334:71] wire io_read_ready_0; // @[HellaCache.scala:322:7] wire io_write_ready_0; // @[HellaCache.scala:322:7] wire [1:0] io_resp_0_coh_state_0; // @[HellaCache.scala:322:7] wire [19:0] io_resp_0_tag_0; // @[HellaCache.scala:322:7] wire [1:0] io_resp_1_coh_state_0; // @[HellaCache.scala:322:7] wire [19:0] io_resp_1_tag_0; // @[HellaCache.scala:322:7] wire [1:0] io_resp_2_coh_state_0; // @[HellaCache.scala:322:7] wire [19:0] io_resp_2_tag_0; // @[HellaCache.scala:322:7] wire [1:0] io_resp_3_coh_state_0; // @[HellaCache.scala:322:7] wire [19:0] io_resp_3_tag_0; // @[HellaCache.scala:322:7] wire [1:0] io_resp_4_coh_state_0; // @[HellaCache.scala:322:7] wire [19:0] io_resp_4_tag_0; // @[HellaCache.scala:322:7] wire [1:0] io_resp_5_coh_state_0; // @[HellaCache.scala:322:7] wire [19:0] io_resp_5_tag_0; // @[HellaCache.scala:322:7] wire [1:0] io_resp_6_coh_state_0; // @[HellaCache.scala:322:7] wire [19:0] io_resp_6_tag_0; // @[HellaCache.scala:322:7] wire [1:0] io_resp_7_coh_state_0; // @[HellaCache.scala:322:7] wire [19:0] io_resp_7_tag_0; // @[HellaCache.scala:322:7] reg [6:0] rst_cnt; // @[HellaCache.scala:330:24] wire rst = ~(rst_cnt[6]); // @[HellaCache.scala:330:24, :331:21] wire _wmask_T = rst; // @[HellaCache.scala:331:21, :334:23] wire _rmask_T = rst; // @[HellaCache.scala:331:21, :335:23] wire [6:0] waddr = rst ? rst_cnt : {1'h0, io_write_bits_idx_0}; // @[HellaCache.scala:322:7, :330:24, :331:21, :332:18] wire [1:0] _wdata_T_coh_state = rst ? 2'h0 : io_write_bits_data_coh_state_0; // @[HellaCache.scala:322:7, :331:21, :333:18] wire [19:0] _wdata_T_tag = rst ? 20'h0 : io_write_bits_data_tag_0; // @[HellaCache.scala:322:7, :331:21, :333:18] wire [21:0] wdata = {_wdata_T_coh_state, _wdata_T_tag}; // @[HellaCache.scala:333:{18,52}] wire [7:0] _wmask_T_2 = _wmask_T ? 8'hFF : _wmask_T_1; // @[HellaCache.scala:334:{18,23,71}] wire wmask_0 = _wmask_T_2[0]; // @[HellaCache.scala:334:{18,79}] wire wmask_1 = _wmask_T_2[1]; // @[HellaCache.scala:334:{18,79}] wire wmask_2 = _wmask_T_2[2]; // @[HellaCache.scala:334:{18,79}] wire wmask_3 = _wmask_T_2[3]; // @[HellaCache.scala:334:{18,79}] wire wmask_4 = _wmask_T_2[4]; // @[HellaCache.scala:334:{18,79}] wire wmask_5 = _wmask_T_2[5]; // @[HellaCache.scala:334:{18,79}] wire wmask_6 = _wmask_T_2[6]; // @[HellaCache.scala:334:{18,79}] wire wmask_7 = _wmask_T_2[7]; // @[HellaCache.scala:334:{18,79}] wire [7:0] _rmask_T_2 = _rmask_T ? 8'hFF : _rmask_T_1; // @[HellaCache.scala:335:{18,23,70}] wire rmask_0 = _rmask_T_2[0]; // @[HellaCache.scala:335:{18,78}] wire rmask_1 = _rmask_T_2[1]; // @[HellaCache.scala:335:{18,78}] wire rmask_2 = _rmask_T_2[2]; // @[HellaCache.scala:335:{18,78}] wire rmask_3 = _rmask_T_2[3]; // @[HellaCache.scala:335:{18,78}] wire rmask_4 = _rmask_T_2[4]; // @[HellaCache.scala:335:{18,78}] wire rmask_5 = _rmask_T_2[5]; // @[HellaCache.scala:335:{18,78}] wire rmask_6 = _rmask_T_2[6]; // @[HellaCache.scala:335:{18,78}] wire rmask_7 = _rmask_T_2[7]; // @[HellaCache.scala:335:{18,78}] wire [7:0] _rst_cnt_T = {1'h0, rst_cnt} + 8'h1; // @[HellaCache.scala:330:24, :332:18, :336:34] wire [6:0] _rst_cnt_T_1 = _rst_cnt_T[6:0]; // @[HellaCache.scala:336:34] wire wen; // @[HellaCache.scala:340:17] assign wen = rst | io_write_valid_0; // @[HellaCache.scala:322:7, :331:21, :340:17] assign tag_array_MPORT_addr = waddr[5:0]; // @[HellaCache.scala:332:18, :342:20] assign tag_array_MPORT_1_en = io_read_ready_0 & io_read_valid_0; // @[Decoupled.scala:51:35] assign io_resp_0_tag_0 = _tag_array_RW0_rdata[19:0]; // @[HellaCache.scala:322:7, :339:30, :344:75] assign io_resp_0_coh_state_0 = _tag_array_RW0_rdata[21:20]; // @[HellaCache.scala:322:7, :339:30, :344:75] assign io_resp_1_tag_0 = _tag_array_RW0_rdata[41:22]; // @[HellaCache.scala:322:7, :339:30, :344:75] assign io_resp_1_coh_state_0 = _tag_array_RW0_rdata[43:42]; // @[HellaCache.scala:322:7, :339:30, :344:75] assign io_resp_2_tag_0 = _tag_array_RW0_rdata[63:44]; // @[HellaCache.scala:322:7, :339:30, :344:75] assign io_resp_2_coh_state_0 = _tag_array_RW0_rdata[65:64]; // @[HellaCache.scala:322:7, :339:30, :344:75] assign io_resp_3_tag_0 = _tag_array_RW0_rdata[85:66]; // @[HellaCache.scala:322:7, :339:30, :344:75] assign io_resp_3_coh_state_0 = _tag_array_RW0_rdata[87:86]; // @[HellaCache.scala:322:7, :339:30, :344:75] assign io_resp_4_tag_0 = _tag_array_RW0_rdata[107:88]; // @[HellaCache.scala:322:7, :339:30, :344:75] assign io_resp_4_coh_state_0 = _tag_array_RW0_rdata[109:108]; // @[HellaCache.scala:322:7, :339:30, :344:75] assign io_resp_5_tag_0 = _tag_array_RW0_rdata[129:110]; // @[HellaCache.scala:322:7, :339:30, :344:75] assign io_resp_5_coh_state_0 = _tag_array_RW0_rdata[131:130]; // @[HellaCache.scala:322:7, :339:30, :344:75] assign io_resp_6_tag_0 = _tag_array_RW0_rdata[151:132]; // @[HellaCache.scala:322:7, :339:30, :344:75] assign io_resp_6_coh_state_0 = _tag_array_RW0_rdata[153:152]; // @[HellaCache.scala:322:7, :339:30, :344:75] assign io_resp_7_tag_0 = _tag_array_RW0_rdata[173:154]; // @[HellaCache.scala:322:7, :339:30, :344:75] assign io_resp_7_coh_state_0 = _tag_array_RW0_rdata[175:174]; // @[HellaCache.scala:322:7, :339:30, :344:75] assign _io_read_ready_T = ~wen; // @[HellaCache.scala:340:17, :346:20] assign io_read_ready_0 = _io_read_ready_T; // @[HellaCache.scala:322:7, :346:20] assign _io_write_ready_T = ~rst; // @[HellaCache.scala:331:21, :347:21] assign io_write_ready_0 = _io_write_ready_T; // @[HellaCache.scala:322:7, :347:21] always @(posedge clock) begin // @[HellaCache.scala:322:7] if (reset) // @[HellaCache.scala:322:7] rst_cnt <= 7'h0; // @[HellaCache.scala:330:24] else if (rst) // @[HellaCache.scala:331:21] rst_cnt <= _rst_cnt_T_1; // @[HellaCache.scala:330:24, :336:34] always @(posedge) tag_array tag_array ( // @[HellaCache.scala:339:30] .RW0_addr (wen ? tag_array_MPORT_addr : io_read_bits_idx_0), // @[HellaCache.scala:322:7, :339:30, :340:17, :342:20] .RW0_en (tag_array_MPORT_1_en | wen), // @[Decoupled.scala:51:35] .RW0_clk (clock), .RW0_wmode (wen), // @[HellaCache.scala:340:17] .RW0_wdata ({8{wdata}}), // @[HellaCache.scala:333:52, :339:30] .RW0_rdata (_tag_array_RW0_rdata), .RW0_wmask ({wmask_7, wmask_6, wmask_5, wmask_4, wmask_3, wmask_2, wmask_1, wmask_0}) // @[HellaCache.scala:334:79, :339:30] ); // @[HellaCache.scala:339:30] assign io_read_ready = io_read_ready_0; // @[HellaCache.scala:322:7] assign io_write_ready = io_write_ready_0; // @[HellaCache.scala:322:7] assign io_resp_0_coh_state = io_resp_0_coh_state_0; // @[HellaCache.scala:322:7] assign io_resp_0_tag = io_resp_0_tag_0; // @[HellaCache.scala:322:7] assign io_resp_1_coh_state = io_resp_1_coh_state_0; // @[HellaCache.scala:322:7] assign io_resp_1_tag = io_resp_1_tag_0; // @[HellaCache.scala:322:7] assign io_resp_2_coh_state = io_resp_2_coh_state_0; // @[HellaCache.scala:322:7] assign io_resp_2_tag = io_resp_2_tag_0; // @[HellaCache.scala:322:7] assign io_resp_3_coh_state = io_resp_3_coh_state_0; // @[HellaCache.scala:322:7] assign io_resp_3_tag = io_resp_3_tag_0; // @[HellaCache.scala:322:7] assign io_resp_4_coh_state = io_resp_4_coh_state_0; // @[HellaCache.scala:322:7] assign io_resp_4_tag = io_resp_4_tag_0; // @[HellaCache.scala:322:7] assign io_resp_5_coh_state = io_resp_5_coh_state_0; // @[HellaCache.scala:322:7] assign io_resp_5_tag = io_resp_5_tag_0; // @[HellaCache.scala:322:7] assign io_resp_6_coh_state = io_resp_6_coh_state_0; // @[HellaCache.scala:322:7] assign io_resp_6_tag = io_resp_6_tag_0; // @[HellaCache.scala:322:7] assign io_resp_7_coh_state = io_resp_7_coh_state_0; // @[HellaCache.scala:322:7] assign io_resp_7_tag = io_resp_7_tag_0; // @[HellaCache.scala:322:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File UnsafeAXI4ToTL.scala: package ara import chisel3._ import chisel3.util._ import freechips.rocketchip.amba._ import freechips.rocketchip.amba.axi4._ import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.diplomacy._ import freechips.rocketchip.tilelink._ import freechips.rocketchip.util._ class ReorderData(val dataWidth: Int, val respWidth: Int, val userFields: Seq[BundleFieldBase]) extends Bundle { val data = UInt(dataWidth.W) val resp = UInt(respWidth.W) val last = Bool() val user = BundleMap(userFields) } /** Parameters for [[BaseReservableListBuffer]] and all child classes. * * @param numEntries Total number of elements that can be stored in the 'data' RAM * @param numLists Maximum number of linked lists * @param numBeats Maximum number of beats per entry */ case class ReservableListBufferParameters(numEntries: Int, numLists: Int, numBeats: Int) { // Avoid zero-width wires when we call 'log2Ceil' val entryBits = if (numEntries == 1) 1 else log2Ceil(numEntries) val listBits = if (numLists == 1) 1 else log2Ceil(numLists) val beatBits = if (numBeats == 1) 1 else log2Ceil(numBeats) } case class UnsafeAXI4ToTLNode(numTlTxns: Int, wcorrupt: Boolean)(implicit valName: ValName) extends MixedAdapterNode(AXI4Imp, TLImp)( dFn = { case mp => TLMasterPortParameters.v2( masters = mp.masters.zipWithIndex.map { case (m, i) => // Support 'numTlTxns' read requests and 'numTlTxns' write requests at once. val numSourceIds = numTlTxns * 2 TLMasterParameters.v2( name = m.name, sourceId = IdRange(i * numSourceIds, (i + 1) * numSourceIds), nodePath = m.nodePath ) }, echoFields = mp.echoFields, requestFields = AMBAProtField() +: mp.requestFields, responseKeys = mp.responseKeys ) }, uFn = { mp => AXI4SlavePortParameters( slaves = mp.managers.map { m => val maxXfer = TransferSizes(1, mp.beatBytes * (1 << AXI4Parameters.lenBits)) AXI4SlaveParameters( address = m.address, resources = m.resources, regionType = m.regionType, executable = m.executable, nodePath = m.nodePath, supportsWrite = m.supportsPutPartial.intersect(maxXfer), supportsRead = m.supportsGet.intersect(maxXfer), interleavedId = Some(0) // TL2 never interleaves D beats ) }, beatBytes = mp.beatBytes, minLatency = mp.minLatency, responseFields = mp.responseFields, requestKeys = (if (wcorrupt) Seq(AMBACorrupt) else Seq()) ++ mp.requestKeys.filter(_ != AMBAProt) ) } ) class UnsafeAXI4ToTL(numTlTxns: Int, wcorrupt: Boolean)(implicit p: Parameters) extends LazyModule { require(numTlTxns >= 1) require(isPow2(numTlTxns), s"Number of TileLink transactions ($numTlTxns) must be a power of 2") val node = UnsafeAXI4ToTLNode(numTlTxns, wcorrupt) lazy val module = new LazyModuleImp(this) { (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => edgeIn.master.masters.foreach { m => require(m.aligned, "AXI4ToTL requires aligned requests") } val numIds = edgeIn.master.endId val beatBytes = edgeOut.slave.beatBytes val maxTransfer = edgeOut.slave.maxTransfer val maxBeats = maxTransfer / beatBytes // Look for an Error device to redirect bad requests val errorDevs = edgeOut.slave.managers.filter(_.nodePath.last.lazyModule.className == "TLError") require(!errorDevs.isEmpty, "There is no TLError reachable from AXI4ToTL. One must be instantiated.") val errorDev = errorDevs.maxBy(_.maxTransfer) val errorDevAddr = errorDev.address.head.base require( errorDev.supportsPutPartial.contains(maxTransfer), s"Error device supports ${errorDev.supportsPutPartial} PutPartial but must support $maxTransfer" ) require( errorDev.supportsGet.contains(maxTransfer), s"Error device supports ${errorDev.supportsGet} Get but must support $maxTransfer" ) // All of the read-response reordering logic. val listBufData = new ReorderData(beatBytes * 8, edgeIn.bundle.respBits, out.d.bits.user.fields) val listBufParams = ReservableListBufferParameters(numTlTxns, numIds, maxBeats) val listBuffer = if (numTlTxns > 1) { Module(new ReservableListBuffer(listBufData, listBufParams)) } else { Module(new PassthroughListBuffer(listBufData, listBufParams)) } // To differentiate between read and write transaction IDs, we will set the MSB of the TileLink 'source' field to // 0 for read requests and 1 for write requests. val isReadSourceBit = 0.U(1.W) val isWriteSourceBit = 1.U(1.W) /* Read request logic */ val rOut = Wire(Decoupled(new TLBundleA(edgeOut.bundle))) val rBytes1 = in.ar.bits.bytes1() val rSize = OH1ToUInt(rBytes1) val rOk = edgeOut.slave.supportsGetSafe(in.ar.bits.addr, rSize) val rId = if (numTlTxns > 1) { Cat(isReadSourceBit, listBuffer.ioReservedIndex) } else { isReadSourceBit } val rAddr = Mux(rOk, in.ar.bits.addr, errorDevAddr.U | in.ar.bits.addr(log2Ceil(beatBytes) - 1, 0)) // Indicates if there are still valid TileLink source IDs left to use. val canIssueR = listBuffer.ioReserve.ready listBuffer.ioReserve.bits := in.ar.bits.id listBuffer.ioReserve.valid := in.ar.valid && rOut.ready in.ar.ready := rOut.ready && canIssueR rOut.valid := in.ar.valid && canIssueR rOut.bits :<= edgeOut.Get(rId, rAddr, rSize)._2 rOut.bits.user :<= in.ar.bits.user rOut.bits.user.lift(AMBAProt).foreach { rProt => rProt.privileged := in.ar.bits.prot(0) rProt.secure := !in.ar.bits.prot(1) rProt.fetch := in.ar.bits.prot(2) rProt.bufferable := in.ar.bits.cache(0) rProt.modifiable := in.ar.bits.cache(1) rProt.readalloc := in.ar.bits.cache(2) rProt.writealloc := in.ar.bits.cache(3) } /* Write request logic */ // Strip off the MSB, which identifies the transaction as read vs write. val strippedResponseSourceId = if (numTlTxns > 1) { out.d.bits.source((out.d.bits.source).getWidth - 2, 0) } else { // When there's only 1 TileLink transaction allowed for read/write, then this field is always 0. 0.U(1.W) } // Track when a write request burst is in progress. val writeBurstBusy = RegInit(false.B) when(in.w.fire) { writeBurstBusy := !in.w.bits.last } val usedWriteIds = RegInit(0.U(numTlTxns.W)) val canIssueW = !usedWriteIds.andR val usedWriteIdsSet = WireDefault(0.U(numTlTxns.W)) val usedWriteIdsClr = WireDefault(0.U(numTlTxns.W)) usedWriteIds := (usedWriteIds & ~usedWriteIdsClr) | usedWriteIdsSet // Since write responses can show up in the middle of a write burst, we need to ensure the write burst ID doesn't // change mid-burst. val freeWriteIdOHRaw = Wire(UInt(numTlTxns.W)) val freeWriteIdOH = freeWriteIdOHRaw holdUnless !writeBurstBusy val freeWriteIdIndex = OHToUInt(freeWriteIdOH) freeWriteIdOHRaw := ~(leftOR(~usedWriteIds) << 1) & ~usedWriteIds val wOut = Wire(Decoupled(new TLBundleA(edgeOut.bundle))) val wBytes1 = in.aw.bits.bytes1() val wSize = OH1ToUInt(wBytes1) val wOk = edgeOut.slave.supportsPutPartialSafe(in.aw.bits.addr, wSize) val wId = if (numTlTxns > 1) { Cat(isWriteSourceBit, freeWriteIdIndex) } else { isWriteSourceBit } val wAddr = Mux(wOk, in.aw.bits.addr, errorDevAddr.U | in.aw.bits.addr(log2Ceil(beatBytes) - 1, 0)) // Here, we're taking advantage of the Irrevocable behavior of AXI4 (once 'valid' is asserted it must remain // asserted until the handshake occurs). We will only accept W-channel beats when we have a valid AW beat, but // the AW-channel beat won't fire until the final W-channel beat fires. So, we have stable address/size/strb // bits during a W-channel burst. in.aw.ready := wOut.ready && in.w.valid && in.w.bits.last && canIssueW in.w.ready := wOut.ready && in.aw.valid && canIssueW wOut.valid := in.aw.valid && in.w.valid && canIssueW wOut.bits :<= edgeOut.Put(wId, wAddr, wSize, in.w.bits.data, in.w.bits.strb)._2 in.w.bits.user.lift(AMBACorrupt).foreach { wOut.bits.corrupt := _ } wOut.bits.user :<= in.aw.bits.user wOut.bits.user.lift(AMBAProt).foreach { wProt => wProt.privileged := in.aw.bits.prot(0) wProt.secure := !in.aw.bits.prot(1) wProt.fetch := in.aw.bits.prot(2) wProt.bufferable := in.aw.bits.cache(0) wProt.modifiable := in.aw.bits.cache(1) wProt.readalloc := in.aw.bits.cache(2) wProt.writealloc := in.aw.bits.cache(3) } // Merge the AXI4 read/write requests into the TL-A channel. TLArbiter(TLArbiter.roundRobin)(out.a, (0.U, rOut), (in.aw.bits.len, wOut)) /* Read/write response logic */ val okB = Wire(Irrevocable(new AXI4BundleB(edgeIn.bundle))) val okR = Wire(Irrevocable(new AXI4BundleR(edgeIn.bundle))) val dResp = Mux(out.d.bits.denied || out.d.bits.corrupt, AXI4Parameters.RESP_SLVERR, AXI4Parameters.RESP_OKAY) val dHasData = edgeOut.hasData(out.d.bits) val (_dFirst, dLast, _dDone, dCount) = edgeOut.count(out.d) val dNumBeats1 = edgeOut.numBeats1(out.d.bits) // Handle cases where writeack arrives before write is done val writeEarlyAck = (UIntToOH(strippedResponseSourceId) & usedWriteIds) === 0.U out.d.ready := Mux(dHasData, listBuffer.ioResponse.ready, okB.ready && !writeEarlyAck) listBuffer.ioDataOut.ready := okR.ready okR.valid := listBuffer.ioDataOut.valid okB.valid := out.d.valid && !dHasData && !writeEarlyAck listBuffer.ioResponse.valid := out.d.valid && dHasData listBuffer.ioResponse.bits.index := strippedResponseSourceId listBuffer.ioResponse.bits.data.data := out.d.bits.data listBuffer.ioResponse.bits.data.resp := dResp listBuffer.ioResponse.bits.data.last := dLast listBuffer.ioResponse.bits.data.user :<= out.d.bits.user listBuffer.ioResponse.bits.count := dCount listBuffer.ioResponse.bits.numBeats1 := dNumBeats1 okR.bits.id := listBuffer.ioDataOut.bits.listIndex okR.bits.data := listBuffer.ioDataOut.bits.payload.data okR.bits.resp := listBuffer.ioDataOut.bits.payload.resp okR.bits.last := listBuffer.ioDataOut.bits.payload.last okR.bits.user :<= listBuffer.ioDataOut.bits.payload.user // Upon the final beat in a write request, record a mapping from TileLink source ID to AXI write ID. Upon a write // response, mark the write transaction as complete. val writeIdMap = Mem(numTlTxns, UInt(log2Ceil(numIds).W)) val writeResponseId = writeIdMap.read(strippedResponseSourceId) when(wOut.fire) { writeIdMap.write(freeWriteIdIndex, in.aw.bits.id) } when(edgeOut.done(wOut)) { usedWriteIdsSet := freeWriteIdOH } when(okB.fire) { usedWriteIdsClr := UIntToOH(strippedResponseSourceId, numTlTxns) } okB.bits.id := writeResponseId okB.bits.resp := dResp okB.bits.user :<= out.d.bits.user // AXI4 needs irrevocable behaviour in.r <> Queue.irrevocable(okR, 1, flow = true) in.b <> Queue.irrevocable(okB, 1, flow = true) // Unused channels out.b.ready := true.B out.c.valid := false.B out.e.valid := false.B /* Alignment constraints. The AXI4Fragmenter should guarantee all of these constraints. */ def checkRequest[T <: AXI4BundleA](a: IrrevocableIO[T], reqType: String): Unit = { val lReqType = reqType.toLowerCase when(a.valid) { assert(a.bits.len < maxBeats.U, s"$reqType burst length (%d) must be less than $maxBeats", a.bits.len + 1.U) // Narrow transfers and FIXED bursts must be single-beat bursts. when(a.bits.len =/= 0.U) { assert( a.bits.size === log2Ceil(beatBytes).U, s"Narrow $lReqType transfers (%d < $beatBytes bytes) can't be multi-beat bursts (%d beats)", 1.U << a.bits.size, a.bits.len + 1.U ) assert( a.bits.burst =/= AXI4Parameters.BURST_FIXED, s"Fixed $lReqType bursts can't be multi-beat bursts (%d beats)", a.bits.len + 1.U ) } // Furthermore, the transfer size (a.bits.bytes1() + 1.U) must be naturally-aligned to the address (in // particular, during both WRAP and INCR bursts), but this constraint is already checked by TileLink // Monitors. Note that this alignment requirement means that WRAP bursts are identical to INCR bursts. } } checkRequest(in.ar, "Read") checkRequest(in.aw, "Write") } } } object UnsafeAXI4ToTL { def apply(numTlTxns: Int = 1, wcorrupt: Boolean = true)(implicit p: Parameters) = { val axi42tl = LazyModule(new UnsafeAXI4ToTL(numTlTxns, wcorrupt)) axi42tl.node } } /* ReservableListBuffer logic, and associated classes. */ class ResponsePayload[T <: Data](val data: T, val params: ReservableListBufferParameters) extends Bundle { val index = UInt(params.entryBits.W) val count = UInt(params.beatBits.W) val numBeats1 = UInt(params.beatBits.W) } class DataOutPayload[T <: Data](val payload: T, val params: ReservableListBufferParameters) extends Bundle { val listIndex = UInt(params.listBits.W) } /** Abstract base class to unify [[ReservableListBuffer]] and [[PassthroughListBuffer]]. */ abstract class BaseReservableListBuffer[T <: Data](gen: T, params: ReservableListBufferParameters) extends Module { require(params.numEntries > 0) require(params.numLists > 0) val ioReserve = IO(Flipped(Decoupled(UInt(params.listBits.W)))) val ioReservedIndex = IO(Output(UInt(params.entryBits.W))) val ioResponse = IO(Flipped(Decoupled(new ResponsePayload(gen, params)))) val ioDataOut = IO(Decoupled(new DataOutPayload(gen, params))) } /** A modified version of 'ListBuffer' from 'sifive/block-inclusivecache-sifive'. This module forces users to reserve * linked list entries (through the 'ioReserve' port) before writing data into those linked lists (through the * 'ioResponse' port). Each response is tagged to indicate which linked list it is written into. The responses for a * given linked list can come back out-of-order, but they will be read out through the 'ioDataOut' port in-order. * * ==Constructor== * @param gen Chisel type of linked list data element * @param params Other parameters * * ==Module IO== * @param ioReserve Index of list to reserve a new element in * @param ioReservedIndex Index of the entry that was reserved in the linked list, valid when 'ioReserve.fire' * @param ioResponse Payload containing response data and linked-list-entry index * @param ioDataOut Payload containing data read from response linked list and linked list index */ class ReservableListBuffer[T <: Data](gen: T, params: ReservableListBufferParameters) extends BaseReservableListBuffer(gen, params) { val valid = RegInit(0.U(params.numLists.W)) val head = Mem(params.numLists, UInt(params.entryBits.W)) val tail = Mem(params.numLists, UInt(params.entryBits.W)) val used = RegInit(0.U(params.numEntries.W)) val next = Mem(params.numEntries, UInt(params.entryBits.W)) val map = Mem(params.numEntries, UInt(params.listBits.W)) val dataMems = Seq.fill(params.numBeats) { SyncReadMem(params.numEntries, gen) } val dataIsPresent = RegInit(0.U(params.numEntries.W)) val beats = Mem(params.numEntries, UInt(params.beatBits.W)) // The 'data' SRAM should be single-ported (read-or-write), since dual-ported SRAMs are significantly slower. val dataMemReadEnable = WireDefault(false.B) val dataMemWriteEnable = WireDefault(false.B) assert(!(dataMemReadEnable && dataMemWriteEnable)) // 'freeOH' has a single bit set, which is the least-significant bit that is cleared in 'used'. So, it's the // lowest-index entry in the 'data' RAM which is free. val freeOH = Wire(UInt(params.numEntries.W)) val freeIndex = OHToUInt(freeOH) freeOH := ~(leftOR(~used) << 1) & ~used ioReservedIndex := freeIndex val validSet = WireDefault(0.U(params.numLists.W)) val validClr = WireDefault(0.U(params.numLists.W)) val usedSet = WireDefault(0.U(params.numEntries.W)) val usedClr = WireDefault(0.U(params.numEntries.W)) val dataIsPresentSet = WireDefault(0.U(params.numEntries.W)) val dataIsPresentClr = WireDefault(0.U(params.numEntries.W)) valid := (valid & ~validClr) | validSet used := (used & ~usedClr) | usedSet dataIsPresent := (dataIsPresent & ~dataIsPresentClr) | dataIsPresentSet /* Reservation logic signals */ val reserveTail = Wire(UInt(params.entryBits.W)) val reserveIsValid = Wire(Bool()) /* Response logic signals */ val responseIndex = Wire(UInt(params.entryBits.W)) val responseListIndex = Wire(UInt(params.listBits.W)) val responseHead = Wire(UInt(params.entryBits.W)) val responseTail = Wire(UInt(params.entryBits.W)) val nextResponseHead = Wire(UInt(params.entryBits.W)) val nextDataIsPresent = Wire(Bool()) val isResponseInOrder = Wire(Bool()) val isEndOfList = Wire(Bool()) val isLastBeat = Wire(Bool()) val isLastResponseBeat = Wire(Bool()) val isLastUnwindBeat = Wire(Bool()) /* Reservation logic */ reserveTail := tail.read(ioReserve.bits) reserveIsValid := valid(ioReserve.bits) ioReserve.ready := !used.andR // When we want to append-to and destroy the same linked list on the same cycle, we need to take special care that we // actually start a new list, rather than appending to a list that's about to disappear. val reserveResponseSameList = ioReserve.bits === responseListIndex val appendToAndDestroyList = ioReserve.fire && ioDataOut.fire && reserveResponseSameList && isEndOfList && isLastBeat when(ioReserve.fire) { validSet := UIntToOH(ioReserve.bits, params.numLists) usedSet := freeOH when(reserveIsValid && !appendToAndDestroyList) { next.write(reserveTail, freeIndex) }.otherwise { head.write(ioReserve.bits, freeIndex) } tail.write(ioReserve.bits, freeIndex) map.write(freeIndex, ioReserve.bits) } /* Response logic */ // The majority of the response logic (reading from and writing to the various RAMs) is common between the // response-from-IO case (ioResponse.fire) and the response-from-unwind case (unwindDataIsValid). // The read from the 'next' RAM should be performed at the address given by 'responseHead'. However, we only use the // 'nextResponseHead' signal when 'isResponseInOrder' is asserted (both in the response-from-IO and // response-from-unwind cases), which implies that 'responseHead' equals 'responseIndex'. 'responseHead' comes after // two back-to-back RAM reads, so indexing into the 'next' RAM with 'responseIndex' is much quicker. responseHead := head.read(responseListIndex) responseTail := tail.read(responseListIndex) nextResponseHead := next.read(responseIndex) nextDataIsPresent := dataIsPresent(nextResponseHead) // Note that when 'isEndOfList' is asserted, 'nextResponseHead' (and therefore 'nextDataIsPresent') is invalid, since // there isn't a next element in the linked list. isResponseInOrder := responseHead === responseIndex isEndOfList := responseHead === responseTail isLastResponseBeat := ioResponse.bits.count === ioResponse.bits.numBeats1 // When a response's last beat is sent to the output channel, mark it as completed. This can happen in two // situations: // 1. We receive an in-order response, which travels straight from 'ioResponse' to 'ioDataOut'. The 'data' SRAM // reservation was never needed. // 2. An entry is read out of the 'data' SRAM (within the unwind FSM). when(ioDataOut.fire && isLastBeat) { // Mark the reservation as no-longer-used. usedClr := UIntToOH(responseIndex, params.numEntries) // If the response is in-order, then we're popping an element from this linked list. when(isEndOfList) { // Once we pop the last element from a linked list, mark it as no-longer-present. validClr := UIntToOH(responseListIndex, params.numLists) }.otherwise { // Move the linked list's head pointer to the new head pointer. head.write(responseListIndex, nextResponseHead) } } // If we get an out-of-order response, then stash it in the 'data' SRAM for later unwinding. when(ioResponse.fire && !isResponseInOrder) { dataMemWriteEnable := true.B when(isLastResponseBeat) { dataIsPresentSet := UIntToOH(ioResponse.bits.index, params.numEntries) beats.write(ioResponse.bits.index, ioResponse.bits.numBeats1) } } // Use the 'ioResponse.bits.count' index (AKA the beat number) to select which 'data' SRAM to write to. val responseCountOH = UIntToOH(ioResponse.bits.count, params.numBeats) (responseCountOH.asBools zip dataMems) foreach { case (select, seqMem) => when(select && dataMemWriteEnable) { seqMem.write(ioResponse.bits.index, ioResponse.bits.data) } } /* Response unwind logic */ // Unwind FSM state definitions val sIdle :: sUnwinding :: Nil = Enum(2) val unwindState = RegInit(sIdle) val busyUnwinding = unwindState === sUnwinding val startUnwind = Wire(Bool()) val stopUnwind = Wire(Bool()) when(startUnwind) { unwindState := sUnwinding }.elsewhen(stopUnwind) { unwindState := sIdle } assert(!(startUnwind && stopUnwind)) // Start the unwind FSM when there is an old out-of-order response stored in the 'data' SRAM that is now about to // become the next in-order response. As noted previously, when 'isEndOfList' is asserted, 'nextDataIsPresent' is // invalid. // // Note that since an in-order response from 'ioResponse' to 'ioDataOut' starts the unwind FSM, we don't have to // worry about overwriting the 'data' SRAM's output when we start the unwind FSM. startUnwind := ioResponse.fire && isResponseInOrder && isLastResponseBeat && !isEndOfList && nextDataIsPresent // Stop the unwind FSM when the output channel consumes the final beat of an element from the unwind FSM, and one of // two things happens: // 1. We're still waiting for the next in-order response for this list (!nextDataIsPresent) // 2. There are no more outstanding responses in this list (isEndOfList) // // Including 'busyUnwinding' ensures this is a single-cycle pulse, and it never fires while in-order transactions are // passing from 'ioResponse' to 'ioDataOut'. stopUnwind := busyUnwinding && ioDataOut.fire && isLastUnwindBeat && (!nextDataIsPresent || isEndOfList) val isUnwindBurstOver = Wire(Bool()) val startNewBurst = startUnwind || (isUnwindBurstOver && dataMemReadEnable) // Track the number of beats left to unwind for each list entry. At the start of a new burst, we flop the number of // beats in this burst (minus 1) into 'unwindBeats1', and we reset the 'beatCounter' counter. With each beat, we // increment 'beatCounter' until it reaches 'unwindBeats1'. val unwindBeats1 = Reg(UInt(params.beatBits.W)) val nextBeatCounter = Wire(UInt(params.beatBits.W)) val beatCounter = RegNext(nextBeatCounter) isUnwindBurstOver := beatCounter === unwindBeats1 when(startNewBurst) { unwindBeats1 := beats.read(nextResponseHead) nextBeatCounter := 0.U }.elsewhen(dataMemReadEnable) { nextBeatCounter := beatCounter + 1.U }.otherwise { nextBeatCounter := beatCounter } // When unwinding, feed the next linked-list head pointer (read out of the 'next' RAM) back so we can unwind the next // entry in this linked list. Only update the pointer when we're actually moving to the next 'data' SRAM entry (which // happens at the start of reading a new stored burst). val unwindResponseIndex = RegEnable(nextResponseHead, startNewBurst) responseIndex := Mux(busyUnwinding, unwindResponseIndex, ioResponse.bits.index) // Hold 'nextResponseHead' static while we're in the middle of unwinding a multi-beat burst entry. We don't want the // SRAM read address to shift while reading beats from a burst. Note that this is identical to 'nextResponseHead // holdUnless startNewBurst', but 'unwindResponseIndex' already implements the 'RegEnable' signal in 'holdUnless'. val unwindReadAddress = Mux(startNewBurst, nextResponseHead, unwindResponseIndex) // The 'data' SRAM's output is valid if we read from the SRAM on the previous cycle. The SRAM's output stays valid // until it is consumed by the output channel (and if we don't read from the SRAM again on that same cycle). val unwindDataIsValid = RegInit(false.B) when(dataMemReadEnable) { unwindDataIsValid := true.B }.elsewhen(ioDataOut.fire) { unwindDataIsValid := false.B } isLastUnwindBeat := isUnwindBurstOver && unwindDataIsValid // Indicates if this is the last beat for both 'ioResponse'-to-'ioDataOut' and unwind-to-'ioDataOut' beats. isLastBeat := Mux(busyUnwinding, isLastUnwindBeat, isLastResponseBeat) // Select which SRAM to read from based on the beat counter. val dataOutputVec = Wire(Vec(params.numBeats, gen)) val nextBeatCounterOH = UIntToOH(nextBeatCounter, params.numBeats) (nextBeatCounterOH.asBools zip dataMems).zipWithIndex foreach { case ((select, seqMem), i) => dataOutputVec(i) := seqMem.read(unwindReadAddress, select && dataMemReadEnable) } // Select the current 'data' SRAM output beat, and save the output in a register in case we're being back-pressured // by 'ioDataOut'. This implements the functionality of 'readAndHold', but only on the single SRAM we're reading // from. val dataOutput = dataOutputVec(beatCounter) holdUnless RegNext(dataMemReadEnable) // Mark 'data' burst entries as no-longer-present as they get read out of the SRAM. when(dataMemReadEnable) { dataIsPresentClr := UIntToOH(unwindReadAddress, params.numEntries) } // As noted above, when starting the unwind FSM, we know the 'data' SRAM's output isn't valid, so it's safe to issue // a read command. Otherwise, only issue an SRAM read when the next 'unwindState' is 'sUnwinding', and if we know // we're not going to overwrite the SRAM's current output (the SRAM output is already valid, and it's not going to be // consumed by the output channel). val dontReadFromDataMem = unwindDataIsValid && !ioDataOut.ready dataMemReadEnable := startUnwind || (busyUnwinding && !stopUnwind && !dontReadFromDataMem) // While unwinding, prevent new reservations from overwriting the current 'map' entry that we're using. We need // 'responseListIndex' to be coherent for the entire unwind process. val rawResponseListIndex = map.read(responseIndex) val unwindResponseListIndex = RegEnable(rawResponseListIndex, startNewBurst) responseListIndex := Mux(busyUnwinding, unwindResponseListIndex, rawResponseListIndex) // Accept responses either when they can be passed through to the output channel, or if they're out-of-order and are // just going to be stashed in the 'data' SRAM. Never accept a response payload when we're busy unwinding, since that // could result in reading from and writing to the 'data' SRAM in the same cycle, and we want that SRAM to be // single-ported. ioResponse.ready := (ioDataOut.ready || !isResponseInOrder) && !busyUnwinding // Either pass an in-order response to the output channel, or data read from the unwind FSM. ioDataOut.valid := Mux(busyUnwinding, unwindDataIsValid, ioResponse.valid && isResponseInOrder) ioDataOut.bits.listIndex := responseListIndex ioDataOut.bits.payload := Mux(busyUnwinding, dataOutput, ioResponse.bits.data) // It's an error to get a response that isn't associated with a valid linked list. when(ioResponse.fire || unwindDataIsValid) { assert( valid(responseListIndex), "No linked list exists at index %d, mapped from %d", responseListIndex, responseIndex ) } when(busyUnwinding && dataMemReadEnable) { assert(isResponseInOrder, "Unwind FSM must read entries from SRAM in order") } } /** Specialized version of [[ReservableListBuffer]] for the case of numEntries == 1. * * Much of the complex logic in [[ReservableListBuffer]] can disappear in this case. For instance, we don't have to * reorder any responses, or store any linked lists. */ class PassthroughListBuffer[T <: Data](gen: T, params: ReservableListBufferParameters) extends BaseReservableListBuffer(gen, params) { require(params.numEntries == 1, s"PassthroughListBuffer is only valid when 'numEntries' (${params.numEntries}) is 1") val used = RegInit(0.U(params.numEntries.W)) val map = Mem(params.numEntries, UInt(params.listBits.W)) val usedSet = WireDefault(0.U(params.numEntries.W)) val usedClr = WireDefault(0.U(params.numEntries.W)) used := (used & ~usedClr) | usedSet ioReserve.ready := used === 0.U // Store which list index was reserved, we need to return this value when we get a response. when(ioReserve.fire) { usedSet := 1.U map.write(0.U, ioReserve.bits) } // There's only one valid linked list entry, which is at index 0. ioReservedIndex := 0.U val isLastResponseBeat = ioResponse.bits.count === ioResponse.bits.numBeats1 // Mark the linked list as empty when we get the last beat in a response. // Note that 'ioResponse.fire === ioDataOut.fire'. when(ioResponse.fire && isLastResponseBeat) { usedClr := 1.U } // Always pass the response data straight through, since we never need to reorder the response data. ioDataOut.bits.listIndex := map.read(0.U) ioDataOut.bits.payload := ioResponse.bits.data ioDataOut.valid := ioResponse.valid ioResponse.ready := ioDataOut.ready }
module dataMems_453( // @[UnsafeAXI4ToTL.scala:365:62] input [4:0] R0_addr, input R0_en, input R0_clk, output [66:0] R0_data, input [4:0] W0_addr, input W0_en, input W0_clk, input [66:0] W0_data ); dataMems_0_ext dataMems_0_ext ( // @[UnsafeAXI4ToTL.scala:365:62] .R0_addr (R0_addr), .R0_en (R0_en), .R0_clk (R0_clk), .R0_data (R0_data), .W0_addr (W0_addr), .W0_en (W0_en), .W0_clk (W0_clk), .W0_data (W0_data) ); // @[UnsafeAXI4ToTL.scala:365:62] endmodule
Generate the Verilog code corresponding to the following Chisel files. File ShiftReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ // Similar to the Chisel ShiftRegister but allows the user to suggest a // name to the registers that get instantiated, and // to provide a reset value. object ShiftRegInit { def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T = (0 until n).foldRight(in) { case (i, next) => { val r = RegNext(next, init) name.foreach { na => r.suggestName(s"${na}_${i}") } r } } } /** These wrap behavioral * shift registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * The different types vary in their reset behavior: * AsyncResetShiftReg -- Asynchronously reset register array * A W(width) x D(depth) sized array is constructed from D instantiations of a * W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg, * but only used for timing applications */ abstract class AbstractPipelineReg(w: Int = 1) extends Module { val io = IO(new Bundle { val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) } ) } object AbstractPipelineReg { def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = { val chain = Module(gen) name.foreach{ chain.suggestName(_) } chain.io.d := in.asUInt chain.io.q.asTypeOf(in) } } class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) { require(depth > 0, "Depth must be greater than 0.") override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}" val chain = List.tabulate(depth) { i => Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}") } chain.last.io.d := io.d chain.last.io.en := true.B (chain.init zip chain.tail).foreach { case (sink, source) => sink.io.d := source.io.q sink.io.en := true.B } io.q := chain.head.io.q } object AsyncResetShiftReg { def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name) def apply [T <: Data](in: T, depth: Int, name: Option[String]): T = apply(in, depth, 0, name) def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T = apply(in, depth, init.litValue.toInt, name) def apply [T <: Data](in: T, depth: Int, init: T): T = apply (in, depth, init.litValue.toInt, None) } File SynchronizerReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util.{RegEnable, Cat} /** These wrap behavioral * shift and next registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * * These are built up of *ResetSynchronizerPrimitiveShiftReg, * intended to be replaced by the integrator's metastable flops chains or replaced * at this level if they have a multi-bit wide synchronizer primitive. * The different types vary in their reset behavior: * NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin * AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep * 1-bit-wide shift registers. * SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg * * [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference. * * ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross * Clock Domains. */ object SynchronizerResetType extends Enumeration { val NonSync, Inferred, Sync, Async = Value } // Note: this should not be used directly. // Use the companion object to generate this with the correct reset type mixin. private class SynchronizerPrimitiveShiftReg( sync: Int, init: Boolean, resetType: SynchronizerResetType.Value) extends AbstractPipelineReg(1) { val initInt = if (init) 1 else 0 val initPostfix = resetType match { case SynchronizerResetType.NonSync => "" case _ => s"_i${initInt}" } override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}" val chain = List.tabulate(sync) { i => val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B) reg.suggestName(s"sync_$i") } chain.last := io.d.asBool (chain.init zip chain.tail).foreach { case (sink, source) => sink := source } io.q := chain.head.asUInt } private object SynchronizerPrimitiveShiftReg { def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = { val gen: () => SynchronizerPrimitiveShiftReg = resetType match { case SynchronizerResetType.NonSync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) case SynchronizerResetType.Async => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset case SynchronizerResetType.Sync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset case SynchronizerResetType.Inferred => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) } AbstractPipelineReg(gen(), in) } } // Note: This module may end up with a non-AsyncReset type reset. // But the Primitives within will always have AsyncReset type. class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asAsyncReset){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async) } } io.q := Cat(output.reverse) } object AsyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } // Note: This module may end up with a non-Bool type reset. // But the Primitives within will always have Bool reset type. @deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2") class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asBool){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync) } } io.q := Cat(output.reverse) } object SyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred) } io.q := Cat(output.reverse) } object ResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}" val output = Seq.tabulate(w) { i => SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync) } io.q := Cat(output.reverse) } object SynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, None) def apply [T <: Data](in: T): T = apply (in, 3, None) } class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module { override def desiredName = s"ClockCrossingReg_w${w}" val io = IO(new Bundle{ val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) val en = Input(Bool()) }) val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en) io.q := cdc_reg } object ClockCrossingReg { def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = { val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit)) name.foreach{ cdc_reg.suggestName(_) } cdc_reg.io.d := in.asUInt cdc_reg.io.en := en cdc_reg.io.q.asTypeOf(in) } }
module AsyncResetSynchronizerShiftReg_w1_d3_i0_90( // @[SynchronizerReg.scala:80:7] input clock, // @[SynchronizerReg.scala:80:7] input reset, // @[SynchronizerReg.scala:80:7] input io_d, // @[ShiftReg.scala:36:14] output io_q // @[ShiftReg.scala:36:14] ); wire io_d_0 = io_d; // @[SynchronizerReg.scala:80:7] wire _output_T = reset; // @[SynchronizerReg.scala:86:21] wire _output_T_1 = io_d_0; // @[SynchronizerReg.scala:80:7, :87:41] wire output_0; // @[ShiftReg.scala:48:24] wire io_q_0; // @[SynchronizerReg.scala:80:7] assign io_q_0 = output_0; // @[SynchronizerReg.scala:80:7] AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_178 output_chain ( // @[ShiftReg.scala:45:23] .clock (clock), .reset (_output_T), // @[SynchronizerReg.scala:86:21] .io_d (_output_T_1), // @[SynchronizerReg.scala:87:41] .io_q (output_0) ); // @[ShiftReg.scala:45:23] assign io_q = io_q_0; // @[SynchronizerReg.scala:80:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Crossing.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.interrupts import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy.lazymodule._ import freechips.rocketchip.util.{SynchronizerShiftReg, AsyncResetReg} @deprecated("IntXing does not ensure interrupt source is glitch free. Use IntSyncSource and IntSyncSink", "rocket-chip 1.2") class IntXing(sync: Int = 3)(implicit p: Parameters) extends LazyModule { val intnode = IntAdapterNode() lazy val module = new Impl class Impl extends LazyModuleImp(this) { (intnode.in zip intnode.out) foreach { case ((in, _), (out, _)) => out := SynchronizerShiftReg(in, sync) } } } object IntSyncCrossingSource { def apply(alreadyRegistered: Boolean = false)(implicit p: Parameters) = { val intsource = LazyModule(new IntSyncCrossingSource(alreadyRegistered)) intsource.node } } class IntSyncCrossingSource(alreadyRegistered: Boolean = false)(implicit p: Parameters) extends LazyModule { val node = IntSyncSourceNode(alreadyRegistered) lazy val module = if (alreadyRegistered) (new ImplRegistered) else (new Impl) class Impl extends LazyModuleImp(this) { def outSize = node.out.headOption.map(_._1.sync.size).getOrElse(0) override def desiredName = s"IntSyncCrossingSource_n${node.out.size}x${outSize}" (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => out.sync := AsyncResetReg(Cat(in.reverse)).asBools } } class ImplRegistered extends LazyRawModuleImp(this) { def outSize = node.out.headOption.map(_._1.sync.size).getOrElse(0) override def desiredName = s"IntSyncCrossingSource_n${node.out.size}x${outSize}_Registered" (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => out.sync := in } } } object IntSyncCrossingSink { @deprecated("IntSyncCrossingSink which used the `sync` parameter to determine crossing type is deprecated. Use IntSyncAsyncCrossingSink, IntSyncRationalCrossingSink, or IntSyncSyncCrossingSink instead for > 1, 1, and 0 sync values respectively", "rocket-chip 1.2") def apply(sync: Int = 3)(implicit p: Parameters) = { val intsink = LazyModule(new IntSyncAsyncCrossingSink(sync)) intsink.node } } class IntSyncAsyncCrossingSink(sync: Int = 3)(implicit p: Parameters) extends LazyModule { val node = IntSyncSinkNode(sync) lazy val module = new Impl class Impl extends LazyModuleImp(this) { override def desiredName = s"IntSyncAsyncCrossingSink_n${node.out.size}x${node.out.head._1.size}" (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => out := SynchronizerShiftReg(in.sync, sync) } } } object IntSyncAsyncCrossingSink { def apply(sync: Int = 3)(implicit p: Parameters) = { val intsink = LazyModule(new IntSyncAsyncCrossingSink(sync)) intsink.node } } class IntSyncSyncCrossingSink()(implicit p: Parameters) extends LazyModule { val node = IntSyncSinkNode(0) lazy val module = new Impl class Impl extends LazyRawModuleImp(this) { def outSize = node.out.headOption.map(_._1.size).getOrElse(0) override def desiredName = s"IntSyncSyncCrossingSink_n${node.out.size}x${outSize}" (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => out := in.sync } } } object IntSyncSyncCrossingSink { def apply()(implicit p: Parameters) = { val intsink = LazyModule(new IntSyncSyncCrossingSink()) intsink.node } } class IntSyncRationalCrossingSink()(implicit p: Parameters) extends LazyModule { val node = IntSyncSinkNode(1) lazy val module = new Impl class Impl extends LazyModuleImp(this) { def outSize = node.out.headOption.map(_._1.size).getOrElse(0) override def desiredName = s"IntSyncRationalCrossingSink_n${node.out.size}x${outSize}" (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => out := RegNext(in.sync) } } } object IntSyncRationalCrossingSink { def apply()(implicit p: Parameters) = { val intsink = LazyModule(new IntSyncRationalCrossingSink()) intsink.node } } File MixedNode.scala: package org.chipsalliance.diplomacy.nodes import chisel3.{Data, DontCare, Wire} import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.{Field, Parameters} import org.chipsalliance.diplomacy.ValName import org.chipsalliance.diplomacy.sourceLine /** One side metadata of a [[Dangle]]. * * Describes one side of an edge going into or out of a [[BaseNode]]. * * @param serial * the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to. * @param index * the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to. */ case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] { import scala.math.Ordered.orderingToOrdered def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that)) } /** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]] * connects. * * [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] , * [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]]. * * @param source * the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within * that [[BaseNode]]. * @param sink * sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that * [[BaseNode]]. * @param flipped * flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to * `danglesIn`. * @param dataOpt * actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module */ case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) { def data = dataOpt.get } /** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often * derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually * implement the protocol. */ case class Edges[EI, EO](in: Seq[EI], out: Seq[EO]) /** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */ case object MonitorsEnabled extends Field[Boolean](true) /** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented. * * For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but * [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink * nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the * [[LazyModule]]. */ case object RenderFlipped extends Field[Boolean](false) /** The sealed node class in the package, all node are derived from it. * * @param inner * Sink interface implementation. * @param outer * Source interface implementation. * @param valName * val name of this node. * @tparam DI * Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters * describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected * [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port * parameters. * @tparam UI * Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing * the protocol parameters of a sink. For an [[InwardNode]], it is determined itself. * @tparam EI * Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers * specified for a sink according to protocol. * @tparam BI * Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface. * It should extends from [[chisel3.Data]], which represents the real hardware. * @tparam DO * Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters * describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself. * @tparam UO * Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing * the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]]. * Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters. * @tparam EO * Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers * specified for a source according to protocol. * @tparam BO * Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source * interface. It should extends from [[chisel3.Data]], which represents the real hardware. * * @note * Call Graph of [[MixedNode]] * - line `─`: source is process by a function and generate pass to others * - Arrow `→`: target of arrow is generated by source * * {{{ * (from the other node) * ┌─────────────────────────────────────────────────────────[[InwardNode.uiParams]]─────────────┐ * ↓ │ * (binding node when elaboration) [[OutwardNode.uoParams]]────────────────────────[[MixedNode.mapParamsU]]→──────────┐ │ * [[InwardNode.accPI]] │ │ │ * │ │ (based on protocol) │ * │ │ [[MixedNode.inner.edgeI]] │ * │ │ ↓ │ * ↓ │ │ │ * (immobilize after elaboration) (inward port from [[OutwardNode]]) │ ↓ │ * [[InwardNode.iBindings]]──┐ [[MixedNode.iDirectPorts]]────────────────────→[[MixedNode.iPorts]] [[InwardNode.uiParams]] │ * │ │ ↑ │ │ │ * │ │ │ [[OutwardNode.doParams]] │ │ * │ │ │ (from the other node) │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * │ │ │ └────────┬──────────────┤ │ * │ │ │ │ │ │ * │ │ │ │ (based on protocol) │ * │ │ │ │ [[MixedNode.inner.edgeI]] │ * │ │ │ │ │ │ * │ │ (from the other node) │ ↓ │ * │ └───[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] │ [[MixedNode.edgesIn]]───┐ │ * │ ↑ ↑ │ │ ↓ │ * │ │ │ │ │ [[MixedNode.in]] │ * │ │ │ │ ↓ ↑ │ * │ (solve star connection) │ │ │ [[MixedNode.bundleIn]]──┘ │ * ├───[[MixedNode.resolveStar]]→─┼─────────────────────────────┤ └────────────────────────────────────┐ │ * │ │ │ [[MixedNode.bundleOut]]─┐ │ │ * │ │ │ ↑ ↓ │ │ * │ │ │ │ [[MixedNode.out]] │ │ * │ ↓ ↓ │ ↑ │ │ * │ ┌─────[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]──┘ │ │ * │ │ (from the other node) ↑ │ │ * │ │ │ │ │ │ * │ │ │ [[MixedNode.outer.edgeO]] │ │ * │ │ │ (based on protocol) │ │ * │ │ │ │ │ │ * │ │ │ ┌────────────────────────────────────────┤ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * (immobilize after elaboration)│ ↓ │ │ │ │ * [[OutwardNode.oBindings]]─┘ [[MixedNode.oDirectPorts]]───→[[MixedNode.oPorts]] [[OutwardNode.doParams]] │ │ * ↑ (inward port from [[OutwardNode]]) │ │ │ │ * │ ┌─────────────────────────────────────────┤ │ │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * [[OutwardNode.accPO]] │ ↓ │ │ │ * (binding node when elaboration) │ [[InwardNode.diParams]]─────→[[MixedNode.mapParamsD]]────────────────────────────┘ │ │ * │ ↑ │ │ * │ └──────────────────────────────────────────────────────────────────────────────────────────┘ │ * └──────────────────────────────────────────────────────────────────────────────────────────────────────────┘ * }}} */ abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data]( val inner: InwardNodeImp[DI, UI, EI, BI], val outer: OutwardNodeImp[DO, UO, EO, BO] )( implicit valName: ValName) extends BaseNode with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO] with InwardNode[DI, UI, BI] with OutwardNode[DO, UO, BO] { // Generate a [[NodeHandle]] with inward and outward node are both this node. val inward = this val outward = this /** Debug info of nodes binding. */ def bindingInfo: String = s"""$iBindingInfo |$oBindingInfo |""".stripMargin /** Debug info of ports connecting. */ def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}] |${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}] |""".stripMargin /** Debug info of parameters propagations. */ def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}] |${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}] |${diParams.size} downstream inward parameters: [${diParams.mkString(",")}] |${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}] |""".stripMargin /** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and * [[MixedNode.iPortMapping]]. * * Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward * stars and outward stars. * * This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type * of node. * * @param iKnown * Number of known-size ([[BIND_ONCE]]) input bindings. * @param oKnown * Number of known-size ([[BIND_ONCE]]) output bindings. * @param iStar * Number of unknown size ([[BIND_STAR]]) input bindings. * @param oStar * Number of unknown size ([[BIND_STAR]]) output bindings. * @return * A Tuple of the resolved number of input and output connections. */ protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int) /** Function to generate downward-flowing outward params from the downward-flowing input params and the current output * ports. * * @param n * The size of the output sequence to generate. * @param p * Sequence of downward-flowing input parameters of this node. * @return * A `n`-sized sequence of downward-flowing output edge parameters. */ protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO] /** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]]. * * @param n * Size of the output sequence. * @param p * Upward-flowing output edge parameters. * @return * A n-sized sequence of upward-flowing input edge parameters. */ protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI] /** @return * The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with * [[BIND_STAR]]. */ protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR) /** @return * The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of * output bindings bound with [[BIND_STAR]]. */ protected[diplomacy] lazy val sourceCard: Int = iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR) /** @return list of nodes involved in flex bindings with this node. */ protected[diplomacy] lazy val flexes: Seq[BaseNode] = oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2) /** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin * greedily taking up the remaining connections. * * @return * A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return * value is not relevant. */ protected[diplomacy] lazy val flexOffset: Int = { /** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex * operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a * connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of * each node in the current set and decide whether they should be added to the set or not. * * @return * the mapping of [[BaseNode]] indexed by their serial numbers. */ def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = { if (visited.contains(v.serial) || !v.flexibleArityDirection) { visited } else { v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum)) } } /** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node. * * @example * {{{ * a :*=* b :*=* c * d :*=* b * e :*=* f * }}} * * `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)` */ val flexSet = DFS(this, Map()).values /** The total number of :*= operators where we're on the left. */ val allSink = flexSet.map(_.sinkCard).sum /** The total number of :=* operators used when we're on the right. */ val allSource = flexSet.map(_.sourceCard).sum require( allSink == 0 || allSource == 0, s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction." ) allSink - allSource } /** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */ protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = { if (flexibleArityDirection) flexOffset else if (n.flexibleArityDirection) n.flexOffset else 0 } /** For a node which is connected between two nodes, select the one that will influence the direction of the flex * resolution. */ protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = { val dir = edgeArityDirection(n) if (dir < 0) l else if (dir > 0) r else 1 } /** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */ private var starCycleGuard = false /** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star" * connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also * need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct * edge parameters and later build up correct bundle connections. * * [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding * operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort * (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*= * bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N` */ protected[diplomacy] lazy val ( oPortMapping: Seq[(Int, Int)], iPortMapping: Seq[(Int, Int)], oStar: Int, iStar: Int ) = { try { if (starCycleGuard) throw StarCycleException() starCycleGuard = true // For a given node N... // Number of foo :=* N // + Number of bar :=* foo :*=* N val oStars = oBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0) } // Number of N :*= foo // + Number of N :*=* foo :*= bar val iStars = iBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0) } // 1 for foo := N // + bar.iStar for bar :*= foo :*=* N // + foo.iStar for foo :*= N // + 0 for foo :=* N val oKnown = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, 0, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => 0 } }.sum // 1 for N := foo // + bar.oStar for N :*=* foo :=* bar // + foo.oStar for N :=* foo // + 0 for N :*= foo val iKnown = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, 0) case BIND_QUERY => n.oStar case BIND_STAR => 0 } }.sum // Resolve star depends on the node subclass to implement the algorithm for this. val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars) // Cumulative list of resolved outward binding range starting points val oSum = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => oStar } }.scanLeft(0)(_ + _) // Cumulative list of resolved inward binding range starting points val iSum = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar) case BIND_QUERY => n.oStar case BIND_STAR => iStar } }.scanLeft(0)(_ + _) // Create ranges for each binding based on the running sums and return // those along with resolved values for the star operations. (oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar) } catch { case c: StarCycleException => throw c.copy(loop = context +: c.loop) } } /** Sequence of inward ports. * * This should be called after all star bindings are resolved. * * Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. * `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this * connection was made in the source code. */ protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oBindings.flatMap { case (i, n, _, p, s) => // for each binding operator in this node, look at what it connects to val (start, end) = n.iPortMapping(i) (start until end).map { j => (j, n, p, s) } } /** Sequence of outward ports. * * This should be called after all star bindings are resolved. * * `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of * outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection * was made in the source code. */ protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iBindings.flatMap { case (i, n, _, p, s) => // query this port index range of this node in the other side of node. val (start, end) = n.oPortMapping(i) (start until end).map { j => (j, n, p, s) } } // Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree // Thus, there must exist an Eulerian path and the below algorithms terminate @scala.annotation.tailrec private def oTrace( tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) ): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.iForward(i) match { case None => (i, n, p, s) case Some((j, m)) => oTrace((j, m, p, s)) } } @scala.annotation.tailrec private def iTrace( tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) ): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.oForward(i) match { case None => (i, n, p, s) case Some((j, m)) => iTrace((j, m, p, s)) } } /** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - Numeric index of this binding in the [[InwardNode]] on the other end. * - [[InwardNode]] on the other end of this binding. * - A view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace) /** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - numeric index of this binding in [[OutwardNode]] on the other end. * - [[OutwardNode]] on the other end of this binding. * - a view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace) private var oParamsCycleGuard = false protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) } protected[diplomacy] lazy val doParams: Seq[DO] = { try { if (oParamsCycleGuard) throw DownwardCycleException() oParamsCycleGuard = true val o = mapParamsD(oPorts.size, diParams) require( o.size == oPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of outward ports should equal the number of produced outward parameters. |$context |$connectedPortsInfo |Downstreamed inward parameters: [${diParams.mkString(",")}] |Produced outward parameters: [${o.mkString(",")}] |""".stripMargin ) o.map(outer.mixO(_, this)) } catch { case c: DownwardCycleException => throw c.copy(loop = context +: c.loop) } } private var iParamsCycleGuard = false protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) } protected[diplomacy] lazy val uiParams: Seq[UI] = { try { if (iParamsCycleGuard) throw UpwardCycleException() iParamsCycleGuard = true val i = mapParamsU(iPorts.size, uoParams) require( i.size == iPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of inward ports should equal the number of produced inward parameters. |$context |$connectedPortsInfo |Upstreamed outward parameters: [${uoParams.mkString(",")}] |Produced inward parameters: [${i.mkString(",")}] |""".stripMargin ) i.map(inner.mixI(_, this)) } catch { case c: UpwardCycleException => throw c.copy(loop = context +: c.loop) } } /** Outward edge parameters. */ protected[diplomacy] lazy val edgesOut: Seq[EO] = (oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) } /** Inward edge parameters. */ protected[diplomacy] lazy val edgesIn: Seq[EI] = (iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) } /** A tuple of the input edge parameters and output edge parameters for the edges bound to this node. * * If you need to access to the edges of a foreign Node, use this method (in/out create bundles). */ lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut) /** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */ protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e => val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } /** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */ protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e => val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(serial, i), sink = HalfEdge(n.serial, j), flipped = false, name = wirePrefix + "out", dataOpt = None ) } private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(n.serial, j), sink = HalfEdge(serial, i), flipped = true, name = wirePrefix + "in", dataOpt = None ) } /** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */ protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleOut(i))) } /** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */ protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleIn(i))) } private[diplomacy] var instantiated = false /** Gather Bundle and edge parameters of outward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def out: Seq[(BO, EO)] = { require( instantiated, s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleOut.zip(edgesOut) } /** Gather Bundle and edge parameters of inward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def in: Seq[(BI, EI)] = { require( instantiated, s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleIn.zip(edgesIn) } /** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires, * instantiate monitors on all input ports if appropriate, and return all the dangles of this node. */ protected[diplomacy] def instantiate(): Seq[Dangle] = { instantiated = true if (!circuitIdentity) { (iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) } } danglesOut ++ danglesIn } protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn /** Connects the outward part of a node with the inward part of this node. */ protected[diplomacy] def bind( h: OutwardNode[DI, UI, BI], binding: NodeBinding )( implicit p: Parameters, sourceInfo: SourceInfo ): Unit = { val x = this // x := y val y = h sourceLine(sourceInfo, " at ", "") val i = x.iPushed val o = y.oPushed y.oPush( i, x, binding match { case BIND_ONCE => BIND_ONCE case BIND_FLEX => BIND_FLEX case BIND_STAR => BIND_QUERY case BIND_QUERY => BIND_STAR } ) x.iPush(o, y, binding) } /* Metadata for printing the node graph. */ def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) => val re = inner.render(e) (n, re.copy(flipped = re.flipped != p(RenderFlipped))) } /** Metadata for printing the node graph */ def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) } } File AsyncResetReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ /** This black-boxes an Async Reset * (or Set) * Register. * * Because Chisel doesn't support * parameterized black boxes, * we unfortunately have to * instantiate a number of these. * * We also have to hard-code the set/ * reset behavior. * * Do not confuse an asynchronous * reset signal with an asynchronously * reset reg. You should still * properly synchronize your reset * deassertion. * * @param d Data input * @param q Data Output * @param clk Clock Input * @param rst Reset Input * @param en Write Enable Input * */ class AsyncResetReg(resetValue: Int = 0) extends RawModule { val io = IO(new Bundle { val d = Input(Bool()) val q = Output(Bool()) val en = Input(Bool()) val clk = Input(Clock()) val rst = Input(Reset()) }) val reg = withClockAndReset(io.clk, io.rst.asAsyncReset)(RegInit(resetValue.U(1.W))) when (io.en) { reg := io.d } io.q := reg } class SimpleRegIO(val w: Int) extends Bundle{ val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) val en = Input(Bool()) } class AsyncResetRegVec(val w: Int, val init: BigInt) extends Module { override def desiredName = s"AsyncResetRegVec_w${w}_i${init}" val io = IO(new SimpleRegIO(w)) val reg = withReset(reset.asAsyncReset)(RegInit(init.U(w.W))) when (io.en) { reg := io.d } io.q := reg } object AsyncResetReg { // Create Single Registers def apply(d: Bool, clk: Clock, rst: Bool, init: Boolean, name: Option[String]): Bool = { val reg = Module(new AsyncResetReg(if (init) 1 else 0)) reg.io.d := d reg.io.clk := clk reg.io.rst := rst reg.io.en := true.B name.foreach(reg.suggestName(_)) reg.io.q } def apply(d: Bool, clk: Clock, rst: Bool): Bool = apply(d, clk, rst, false, None) def apply(d: Bool, clk: Clock, rst: Bool, name: String): Bool = apply(d, clk, rst, false, Some(name)) // Create Vectors of Registers def apply(updateData: UInt, resetData: BigInt, enable: Bool, name: Option[String] = None): UInt = { val w = updateData.getWidth max resetData.bitLength val reg = Module(new AsyncResetRegVec(w, resetData)) name.foreach(reg.suggestName(_)) reg.io.d := updateData reg.io.en := enable reg.io.q } def apply(updateData: UInt, resetData: BigInt, enable: Bool, name: String): UInt = apply(updateData, resetData, enable, Some(name)) def apply(updateData: UInt, resetData: BigInt): UInt = apply(updateData, resetData, enable = true.B) def apply(updateData: UInt, resetData: BigInt, name: String): UInt = apply(updateData, resetData, enable = true.B, Some(name)) def apply(updateData: UInt, enable: Bool): UInt = apply(updateData, resetData=BigInt(0), enable) def apply(updateData: UInt, enable: Bool, name: String): UInt = apply(updateData, resetData = BigInt(0), enable, Some(name)) def apply(updateData: UInt): UInt = apply(updateData, resetData = BigInt(0), enable = true.B) def apply(updateData: UInt, name:String): UInt = apply(updateData, resetData = BigInt(0), enable = true.B, Some(name)) }
module IntSyncCrossingSource_n1x1_20( // @[Crossing.scala:41:9] input clock, // @[Crossing.scala:41:9] input reset // @[Crossing.scala:41:9] ); wire auto_in_0 = 1'h0; // @[Crossing.scala:41:9] wire auto_out_sync_0 = 1'h0; // @[Crossing.scala:41:9] wire nodeIn_0 = 1'h0; // @[MixedNode.scala:551:17] wire nodeOut_sync_0 = 1'h0; // @[MixedNode.scala:542:17] AsyncResetRegVec_w1_i0_20 reg_0 ( // @[AsyncResetReg.scala:86:21] .clock (clock), .reset (reset) ); // @[AsyncResetReg.scala:86:21] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Monitor.scala: package constellation.channel import chisel3._ import chisel3.util._ import freechips.rocketchip.diplomacy._ import org.chipsalliance.cde.config.{Parameters} import freechips.rocketchip.util._ import constellation.noc.{HasNoCParams} class NoCMonitor(val cParam: ChannelParams)(implicit val p: Parameters) extends Module with HasNoCParams { val io = IO(new Bundle { val in = Input(new Channel(cParam)) }) val in_flight = RegInit(VecInit(Seq.fill(cParam.nVirtualChannels) { false.B })) for (i <- 0 until cParam.srcSpeedup) { val flit = io.in.flit(i) when (flit.valid) { when (flit.bits.head) { in_flight(flit.bits.virt_channel_id) := true.B assert (!in_flight(flit.bits.virt_channel_id), "Flit head/tail sequencing is broken") } when (flit.bits.tail) { in_flight(flit.bits.virt_channel_id) := false.B } } val possibleFlows = cParam.possibleFlows when (flit.valid && flit.bits.head) { cParam match { case n: ChannelParams => n.virtualChannelParams.zipWithIndex.foreach { case (v,i) => assert(flit.bits.virt_channel_id =/= i.U || v.possibleFlows.toSeq.map(_.isFlow(flit.bits.flow)).orR) } case _ => assert(cParam.possibleFlows.toSeq.map(_.isFlow(flit.bits.flow)).orR) } } } } File Types.scala: package constellation.routing import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config.{Parameters} import constellation.noc.{HasNoCParams} import constellation.channel.{Flit} /** A representation for 1 specific virtual channel in wormhole routing * * @param src the source node * @param vc ID for the virtual channel * @param dst the destination node * @param n_vc the number of virtual channels */ // BEGIN: ChannelRoutingInfo case class ChannelRoutingInfo( src: Int, dst: Int, vc: Int, n_vc: Int ) { // END: ChannelRoutingInfo require (src >= -1 && dst >= -1 && vc >= 0, s"Illegal $this") require (!(src == -1 && dst == -1), s"Illegal $this") require (vc < n_vc, s"Illegal $this") val isIngress = src == -1 val isEgress = dst == -1 } /** Represents the properties of a packet that are relevant for routing * ingressId and egressId uniquely identify a flow, but vnet and dst are used here * to simplify the implementation of routingrelations * * @param ingressId packet's source ingress point * @param egressId packet's destination egress point * @param vNet virtual subnetwork identifier * @param dst packet's destination node ID */ // BEGIN: FlowRoutingInfo case class FlowRoutingInfo( ingressId: Int, egressId: Int, vNetId: Int, ingressNode: Int, ingressNodeId: Int, egressNode: Int, egressNodeId: Int, fifo: Boolean ) { // END: FlowRoutingInfo def isFlow(f: FlowRoutingBundle): Bool = { (f.ingress_node === ingressNode.U && f.egress_node === egressNode.U && f.ingress_node_id === ingressNodeId.U && f.egress_node_id === egressNodeId.U) } def asLiteral(b: FlowRoutingBundle): BigInt = { Seq( (vNetId , b.vnet_id), (ingressNode , b.ingress_node), (ingressNodeId , b.ingress_node_id), (egressNode , b.egress_node), (egressNodeId , b.egress_node_id) ).foldLeft(0)((l, t) => { (l << t._2.getWidth) | t._1 }) } } class FlowRoutingBundle(implicit val p: Parameters) extends Bundle with HasNoCParams { // Instead of tracking ingress/egress ID, track the physical destination id and the offset at the destination // This simplifies the routing tables val vnet_id = UInt(log2Ceil(nVirtualNetworks).W) val ingress_node = UInt(log2Ceil(nNodes).W) val ingress_node_id = UInt(log2Ceil(maxIngressesAtNode).W) val egress_node = UInt(log2Ceil(nNodes).W) val egress_node_id = UInt(log2Ceil(maxEgressesAtNode).W) }
module NoCMonitor_26( // @[Monitor.scala:11:7] input clock, // @[Monitor.scala:11:7] input reset, // @[Monitor.scala:11:7] input io_in_flit_0_valid, // @[Monitor.scala:12:14] input io_in_flit_0_bits_head, // @[Monitor.scala:12:14] input io_in_flit_0_bits_tail, // @[Monitor.scala:12:14] input [4:0] io_in_flit_0_bits_flow_ingress_node, // @[Monitor.scala:12:14] input [1:0] io_in_flit_0_bits_flow_ingress_node_id, // @[Monitor.scala:12:14] input [4:0] io_in_flit_0_bits_flow_egress_node, // @[Monitor.scala:12:14] input [1:0] io_in_flit_0_bits_flow_egress_node_id, // @[Monitor.scala:12:14] input [2:0] io_in_flit_0_bits_virt_channel_id // @[Monitor.scala:12:14] ); reg in_flight_0; // @[Monitor.scala:16:26] reg in_flight_1; // @[Monitor.scala:16:26] reg in_flight_2; // @[Monitor.scala:16:26] reg in_flight_3; // @[Monitor.scala:16:26] reg in_flight_4; // @[Monitor.scala:16:26] reg in_flight_5; // @[Monitor.scala:16:26] reg in_flight_6; // @[Monitor.scala:16:26] reg in_flight_7; // @[Monitor.scala:16:26] wire _GEN = io_in_flit_0_bits_virt_channel_id == 3'h0; // @[Monitor.scala:21:46] wire _GEN_0 = io_in_flit_0_bits_virt_channel_id == 3'h1; // @[Monitor.scala:21:46] wire _GEN_1 = io_in_flit_0_bits_virt_channel_id == 3'h2; // @[Monitor.scala:21:46] wire _GEN_2 = io_in_flit_0_bits_virt_channel_id == 3'h3; // @[Monitor.scala:21:46]
Generate the Verilog code corresponding to the following Chisel files. File InputUnit.scala: package constellation.router import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config.{Field, Parameters} import freechips.rocketchip.util._ import constellation.channel._ import constellation.routing.{FlowRoutingBundle} import constellation.noc.{HasNoCParams} class AbstractInputUnitIO( val cParam: BaseChannelParams, val outParams: Seq[ChannelParams], val egressParams: Seq[EgressChannelParams], )(implicit val p: Parameters) extends Bundle with HasRouterOutputParams { val nodeId = cParam.destId val router_req = Decoupled(new RouteComputerReq) val router_resp = Input(new RouteComputerResp(outParams, egressParams)) val vcalloc_req = Decoupled(new VCAllocReq(cParam, outParams, egressParams)) val vcalloc_resp = Input(new VCAllocResp(outParams, egressParams)) val out_credit_available = Input(MixedVec(allOutParams.map { u => Vec(u.nVirtualChannels, Bool()) })) val salloc_req = Vec(cParam.destSpeedup, Decoupled(new SwitchAllocReq(outParams, egressParams))) val out = Vec(cParam.destSpeedup, Valid(new SwitchBundle(outParams, egressParams))) val debug = Output(new Bundle { val va_stall = UInt(log2Ceil(cParam.nVirtualChannels).W) val sa_stall = UInt(log2Ceil(cParam.nVirtualChannels).W) }) val block = Input(Bool()) } abstract class AbstractInputUnit( val cParam: BaseChannelParams, val outParams: Seq[ChannelParams], val egressParams: Seq[EgressChannelParams] )(implicit val p: Parameters) extends Module with HasRouterOutputParams with HasNoCParams { val nodeId = cParam.destId def io: AbstractInputUnitIO } class InputBuffer(cParam: ChannelParams)(implicit p: Parameters) extends Module { val nVirtualChannels = cParam.nVirtualChannels val io = IO(new Bundle { val enq = Flipped(Vec(cParam.srcSpeedup, Valid(new Flit(cParam.payloadBits)))) val deq = Vec(cParam.nVirtualChannels, Decoupled(new BaseFlit(cParam.payloadBits))) }) val useOutputQueues = cParam.useOutputQueues val delims = if (useOutputQueues) { cParam.virtualChannelParams.map(u => if (u.traversable) u.bufferSize else 0).scanLeft(0)(_+_) } else { // If no queuing, have to add an additional slot since head == tail implies empty // TODO this should be fixed, should use all slots available cParam.virtualChannelParams.map(u => if (u.traversable) u.bufferSize + 1 else 0).scanLeft(0)(_+_) } val starts = delims.dropRight(1).zipWithIndex.map { case (s,i) => if (cParam.virtualChannelParams(i).traversable) s else 0 } val ends = delims.tail.zipWithIndex.map { case (s,i) => if (cParam.virtualChannelParams(i).traversable) s else 0 } val fullSize = delims.last // Ugly case. Use multiple queues if ((cParam.srcSpeedup > 1 || cParam.destSpeedup > 1 || fullSize <= 1) || !cParam.unifiedBuffer) { require(useOutputQueues) val qs = cParam.virtualChannelParams.map(v => Module(new Queue(new BaseFlit(cParam.payloadBits), v.bufferSize))) qs.zipWithIndex.foreach { case (q,i) => val sel = io.enq.map(f => f.valid && f.bits.virt_channel_id === i.U) q.io.enq.valid := sel.orR q.io.enq.bits.head := Mux1H(sel, io.enq.map(_.bits.head)) q.io.enq.bits.tail := Mux1H(sel, io.enq.map(_.bits.tail)) q.io.enq.bits.payload := Mux1H(sel, io.enq.map(_.bits.payload)) io.deq(i) <> q.io.deq } } else { val mem = Mem(fullSize, new BaseFlit(cParam.payloadBits)) val heads = RegInit(VecInit(starts.map(_.U(log2Ceil(fullSize).W)))) val tails = RegInit(VecInit(starts.map(_.U(log2Ceil(fullSize).W)))) val empty = (heads zip tails).map(t => t._1 === t._2) val qs = Seq.fill(nVirtualChannels) { Module(new Queue(new BaseFlit(cParam.payloadBits), 1, pipe=true)) } qs.foreach(_.io.enq.valid := false.B) qs.foreach(_.io.enq.bits := DontCare) val vc_sel = UIntToOH(io.enq(0).bits.virt_channel_id) val flit = Wire(new BaseFlit(cParam.payloadBits)) val direct_to_q = (Mux1H(vc_sel, qs.map(_.io.enq.ready)) && Mux1H(vc_sel, empty)) && useOutputQueues.B flit.head := io.enq(0).bits.head flit.tail := io.enq(0).bits.tail flit.payload := io.enq(0).bits.payload when (io.enq(0).valid && !direct_to_q) { val tail = tails(io.enq(0).bits.virt_channel_id) mem.write(tail, flit) tails(io.enq(0).bits.virt_channel_id) := Mux( tail === Mux1H(vc_sel, ends.map(_ - 1).map(_ max 0).map(_.U)), Mux1H(vc_sel, starts.map(_.U)), tail + 1.U) } .elsewhen (io.enq(0).valid && direct_to_q) { for (i <- 0 until nVirtualChannels) { when (io.enq(0).bits.virt_channel_id === i.U) { qs(i).io.enq.valid := true.B qs(i).io.enq.bits := flit } } } if (useOutputQueues) { val can_to_q = (0 until nVirtualChannels).map { i => !empty(i) && qs(i).io.enq.ready } val to_q_oh = PriorityEncoderOH(can_to_q) val to_q = OHToUInt(to_q_oh) when (can_to_q.orR) { val head = Mux1H(to_q_oh, heads) heads(to_q) := Mux( head === Mux1H(to_q_oh, ends.map(_ - 1).map(_ max 0).map(_.U)), Mux1H(to_q_oh, starts.map(_.U)), head + 1.U) for (i <- 0 until nVirtualChannels) { when (to_q_oh(i)) { qs(i).io.enq.valid := true.B qs(i).io.enq.bits := mem.read(head) } } } for (i <- 0 until nVirtualChannels) { io.deq(i) <> qs(i).io.deq } } else { qs.map(_.io.deq.ready := false.B) val ready_sel = io.deq.map(_.ready) val fire = io.deq.map(_.fire) assert(PopCount(fire) <= 1.U) val head = Mux1H(fire, heads) when (fire.orR) { val fire_idx = OHToUInt(fire) heads(fire_idx) := Mux( head === Mux1H(fire, ends.map(_ - 1).map(_ max 0).map(_.U)), Mux1H(fire, starts.map(_.U)), head + 1.U) } val read_flit = mem.read(head) for (i <- 0 until nVirtualChannels) { io.deq(i).valid := !empty(i) io.deq(i).bits := read_flit } } } } class InputUnit(cParam: ChannelParams, outParams: Seq[ChannelParams], egressParams: Seq[EgressChannelParams], combineRCVA: Boolean, combineSAST: Boolean ) (implicit p: Parameters) extends AbstractInputUnit(cParam, outParams, egressParams)(p) { val nVirtualChannels = cParam.nVirtualChannels val virtualChannelParams = cParam.virtualChannelParams class InputUnitIO extends AbstractInputUnitIO(cParam, outParams, egressParams) { val in = Flipped(new Channel(cParam.asInstanceOf[ChannelParams])) } val io = IO(new InputUnitIO) val g_i :: g_r :: g_v :: g_a :: g_c :: Nil = Enum(5) class InputState extends Bundle { val g = UInt(3.W) val vc_sel = MixedVec(allOutParams.map { u => Vec(u.nVirtualChannels, Bool()) }) val flow = new FlowRoutingBundle val fifo_deps = UInt(nVirtualChannels.W) } val input_buffer = Module(new InputBuffer(cParam)) for (i <- 0 until cParam.srcSpeedup) { input_buffer.io.enq(i) := io.in.flit(i) } input_buffer.io.deq.foreach(_.ready := false.B) val route_arbiter = Module(new Arbiter( new RouteComputerReq, nVirtualChannels )) io.router_req <> route_arbiter.io.out val states = Reg(Vec(nVirtualChannels, new InputState)) val anyFifo = cParam.possibleFlows.map(_.fifo).reduce(_||_) val allFifo = cParam.possibleFlows.map(_.fifo).reduce(_&&_) if (anyFifo) { val idle_mask = VecInit(states.map(_.g === g_i)).asUInt for (s <- states) for (i <- 0 until nVirtualChannels) s.fifo_deps := s.fifo_deps & ~idle_mask } for (i <- 0 until cParam.srcSpeedup) { when (io.in.flit(i).fire && io.in.flit(i).bits.head) { val id = io.in.flit(i).bits.virt_channel_id assert(id < nVirtualChannels.U) assert(states(id).g === g_i) val at_dest = io.in.flit(i).bits.flow.egress_node === nodeId.U states(id).g := Mux(at_dest, g_v, g_r) states(id).vc_sel.foreach(_.foreach(_ := false.B)) for (o <- 0 until nEgress) { when (o.U === io.in.flit(i).bits.flow.egress_node_id) { states(id).vc_sel(o+nOutputs)(0) := true.B } } states(id).flow := io.in.flit(i).bits.flow if (anyFifo) { val fifo = cParam.possibleFlows.filter(_.fifo).map(_.isFlow(io.in.flit(i).bits.flow)).toSeq.orR states(id).fifo_deps := VecInit(states.zipWithIndex.map { case (s, j) => s.g =/= g_i && s.flow.asUInt === io.in.flit(i).bits.flow.asUInt && j.U =/= id }).asUInt } } } (route_arbiter.io.in zip states).zipWithIndex.map { case ((i,s),idx) => if (virtualChannelParams(idx).traversable) { i.valid := s.g === g_r i.bits.flow := s.flow i.bits.src_virt_id := idx.U when (i.fire) { s.g := g_v } } else { i.valid := false.B i.bits := DontCare } } when (io.router_req.fire) { val id = io.router_req.bits.src_virt_id assert(states(id).g === g_r) states(id).g := g_v for (i <- 0 until nVirtualChannels) { when (i.U === id) { states(i).vc_sel := io.router_resp.vc_sel } } } val mask = RegInit(0.U(nVirtualChannels.W)) val vcalloc_reqs = Wire(Vec(nVirtualChannels, new VCAllocReq(cParam, outParams, egressParams))) val vcalloc_vals = Wire(Vec(nVirtualChannels, Bool())) val vcalloc_filter = PriorityEncoderOH(Cat(vcalloc_vals.asUInt, vcalloc_vals.asUInt & ~mask)) val vcalloc_sel = vcalloc_filter(nVirtualChannels-1,0) | (vcalloc_filter >> nVirtualChannels) // Prioritize incoming packetes when (io.router_req.fire) { mask := (1.U << io.router_req.bits.src_virt_id) - 1.U } .elsewhen (vcalloc_vals.orR) { mask := Mux1H(vcalloc_sel, (0 until nVirtualChannels).map { w => ~(0.U((w+1).W)) }) } io.vcalloc_req.valid := vcalloc_vals.orR io.vcalloc_req.bits := Mux1H(vcalloc_sel, vcalloc_reqs) states.zipWithIndex.map { case (s,idx) => if (virtualChannelParams(idx).traversable) { vcalloc_vals(idx) := s.g === g_v && s.fifo_deps === 0.U vcalloc_reqs(idx).in_vc := idx.U vcalloc_reqs(idx).vc_sel := s.vc_sel vcalloc_reqs(idx).flow := s.flow when (vcalloc_vals(idx) && vcalloc_sel(idx) && io.vcalloc_req.ready) { s.g := g_a } if (combineRCVA) { when (route_arbiter.io.in(idx).fire) { vcalloc_vals(idx) := true.B vcalloc_reqs(idx).vc_sel := io.router_resp.vc_sel } } } else { vcalloc_vals(idx) := false.B vcalloc_reqs(idx) := DontCare } } io.debug.va_stall := PopCount(vcalloc_vals) - io.vcalloc_req.ready when (io.vcalloc_req.fire) { for (i <- 0 until nVirtualChannels) { when (vcalloc_sel(i)) { states(i).vc_sel := io.vcalloc_resp.vc_sel states(i).g := g_a if (!combineRCVA) { assert(states(i).g === g_v) } } } } val salloc_arb = Module(new SwitchArbiter( nVirtualChannels, cParam.destSpeedup, outParams, egressParams )) (states zip salloc_arb.io.in).zipWithIndex.map { case ((s,r),i) => if (virtualChannelParams(i).traversable) { val credit_available = (s.vc_sel.asUInt & io.out_credit_available.asUInt) =/= 0.U r.valid := s.g === g_a && credit_available && input_buffer.io.deq(i).valid r.bits.vc_sel := s.vc_sel val deq_tail = input_buffer.io.deq(i).bits.tail r.bits.tail := deq_tail when (r.fire && deq_tail) { s.g := g_i } input_buffer.io.deq(i).ready := r.ready } else { r.valid := false.B r.bits := DontCare } } io.debug.sa_stall := PopCount(salloc_arb.io.in.map(r => r.valid && !r.ready)) io.salloc_req <> salloc_arb.io.out when (io.block) { salloc_arb.io.out.foreach(_.ready := false.B) io.salloc_req.foreach(_.valid := false.B) } class OutBundle extends Bundle { val valid = Bool() val vid = UInt(virtualChannelBits.W) val out_vid = UInt(log2Up(allOutParams.map(_.nVirtualChannels).max).W) val flit = new Flit(cParam.payloadBits) } val salloc_outs = if (combineSAST) { Wire(Vec(cParam.destSpeedup, new OutBundle)) } else { Reg(Vec(cParam.destSpeedup, new OutBundle)) } io.in.credit_return := salloc_arb.io.out.zipWithIndex.map { case (o, i) => Mux(o.fire, salloc_arb.io.chosen_oh(i), 0.U) }.reduce(_|_) io.in.vc_free := salloc_arb.io.out.zipWithIndex.map { case (o, i) => Mux(o.fire && Mux1H(salloc_arb.io.chosen_oh(i), input_buffer.io.deq.map(_.bits.tail)), salloc_arb.io.chosen_oh(i), 0.U) }.reduce(_|_) for (i <- 0 until cParam.destSpeedup) { val salloc_out = salloc_outs(i) salloc_out.valid := salloc_arb.io.out(i).fire salloc_out.vid := OHToUInt(salloc_arb.io.chosen_oh(i)) val vc_sel = Mux1H(salloc_arb.io.chosen_oh(i), states.map(_.vc_sel)) val channel_oh = vc_sel.map(_.reduce(_||_)).toSeq val virt_channel = Mux1H(channel_oh, vc_sel.map(v => OHToUInt(v)).toSeq) when (salloc_arb.io.out(i).fire) { salloc_out.out_vid := virt_channel salloc_out.flit.payload := Mux1H(salloc_arb.io.chosen_oh(i), input_buffer.io.deq.map(_.bits.payload)) salloc_out.flit.head := Mux1H(salloc_arb.io.chosen_oh(i), input_buffer.io.deq.map(_.bits.head)) salloc_out.flit.tail := Mux1H(salloc_arb.io.chosen_oh(i), input_buffer.io.deq.map(_.bits.tail)) salloc_out.flit.flow := Mux1H(salloc_arb.io.chosen_oh(i), states.map(_.flow)) } .otherwise { salloc_out.out_vid := DontCare salloc_out.flit := DontCare } salloc_out.flit.virt_channel_id := DontCare // this gets set in the switch io.out(i).valid := salloc_out.valid io.out(i).bits.flit := salloc_out.flit io.out(i).bits.out_virt_channel := salloc_out.out_vid } def filterVCSel(sel: MixedVec[Vec[Bool]], srcV: Int) = { if (virtualChannelParams(srcV).traversable) { outParams.zipWithIndex.map { case (oP, oI) => (0 until oP.nVirtualChannels).map { oV => var allow = false virtualChannelParams(srcV).possibleFlows.foreach { pI => allow = allow || routingRelation( cParam.channelRoutingInfos(srcV), oP.channelRoutingInfos(oV), pI ) } if (!allow) sel(oI)(oV) := false.B } } } } (0 until nVirtualChannels).map { i => if (!virtualChannelParams(i).traversable) states(i) := DontCare filterVCSel(states(i).vc_sel, i) } when (reset.asBool) { states.foreach(_.g := g_i) } }
module InputBuffer_34( // @[InputUnit.scala:49:7] input clock, // @[InputUnit.scala:49:7] input reset, // @[InputUnit.scala:49:7] input io_enq_0_valid, // @[InputUnit.scala:51:14] input io_enq_0_bits_head, // @[InputUnit.scala:51:14] input io_enq_0_bits_tail, // @[InputUnit.scala:51:14] input [72:0] io_enq_0_bits_payload, // @[InputUnit.scala:51:14] input [4:0] io_enq_0_bits_virt_channel_id, // @[InputUnit.scala:51:14] output io_deq_0_bits_head, // @[InputUnit.scala:51:14] output io_deq_0_bits_tail, // @[InputUnit.scala:51:14] output [72:0] io_deq_0_bits_payload, // @[InputUnit.scala:51:14] output io_deq_1_bits_head, // @[InputUnit.scala:51:14] output io_deq_1_bits_tail, // @[InputUnit.scala:51:14] output [72:0] io_deq_1_bits_payload, // @[InputUnit.scala:51:14] output io_deq_2_bits_head, // @[InputUnit.scala:51:14] output io_deq_2_bits_tail, // @[InputUnit.scala:51:14] output [72:0] io_deq_2_bits_payload, // @[InputUnit.scala:51:14] input io_deq_3_ready, // @[InputUnit.scala:51:14] output io_deq_3_valid, // @[InputUnit.scala:51:14] output io_deq_3_bits_head, // @[InputUnit.scala:51:14] output io_deq_3_bits_tail, // @[InputUnit.scala:51:14] output [72:0] io_deq_3_bits_payload, // @[InputUnit.scala:51:14] output io_deq_4_bits_head, // @[InputUnit.scala:51:14] output io_deq_4_bits_tail, // @[InputUnit.scala:51:14] output [72:0] io_deq_4_bits_payload, // @[InputUnit.scala:51:14] output io_deq_5_bits_head, // @[InputUnit.scala:51:14] output io_deq_5_bits_tail, // @[InputUnit.scala:51:14] output [72:0] io_deq_5_bits_payload, // @[InputUnit.scala:51:14] output io_deq_6_bits_head, // @[InputUnit.scala:51:14] output io_deq_6_bits_tail, // @[InputUnit.scala:51:14] output [72:0] io_deq_6_bits_payload, // @[InputUnit.scala:51:14] output io_deq_7_bits_head, // @[InputUnit.scala:51:14] output io_deq_7_bits_tail, // @[InputUnit.scala:51:14] output [72:0] io_deq_7_bits_payload, // @[InputUnit.scala:51:14] input io_deq_8_ready, // @[InputUnit.scala:51:14] output io_deq_8_valid, // @[InputUnit.scala:51:14] output io_deq_8_bits_head, // @[InputUnit.scala:51:14] output io_deq_8_bits_tail, // @[InputUnit.scala:51:14] output [72:0] io_deq_8_bits_payload, // @[InputUnit.scala:51:14] input io_deq_9_ready, // @[InputUnit.scala:51:14] output io_deq_9_valid, // @[InputUnit.scala:51:14] output io_deq_9_bits_head, // @[InputUnit.scala:51:14] output io_deq_9_bits_tail, // @[InputUnit.scala:51:14] output [72:0] io_deq_9_bits_payload, // @[InputUnit.scala:51:14] output io_deq_10_bits_head, // @[InputUnit.scala:51:14] output io_deq_10_bits_tail, // @[InputUnit.scala:51:14] output [72:0] io_deq_10_bits_payload, // @[InputUnit.scala:51:14] input io_deq_11_ready, // @[InputUnit.scala:51:14] output io_deq_11_valid, // @[InputUnit.scala:51:14] output io_deq_11_bits_head, // @[InputUnit.scala:51:14] output io_deq_11_bits_tail, // @[InputUnit.scala:51:14] output [72:0] io_deq_11_bits_payload, // @[InputUnit.scala:51:14] input io_deq_12_ready, // @[InputUnit.scala:51:14] output io_deq_12_valid, // @[InputUnit.scala:51:14] output io_deq_12_bits_head, // @[InputUnit.scala:51:14] output io_deq_12_bits_tail, // @[InputUnit.scala:51:14] output [72:0] io_deq_12_bits_payload, // @[InputUnit.scala:51:14] input io_deq_13_ready, // @[InputUnit.scala:51:14] output io_deq_13_valid, // @[InputUnit.scala:51:14] output io_deq_13_bits_head, // @[InputUnit.scala:51:14] output io_deq_13_bits_tail, // @[InputUnit.scala:51:14] output [72:0] io_deq_13_bits_payload, // @[InputUnit.scala:51:14] output io_deq_14_bits_head, // @[InputUnit.scala:51:14] output io_deq_14_bits_tail, // @[InputUnit.scala:51:14] output [72:0] io_deq_14_bits_payload, // @[InputUnit.scala:51:14] input io_deq_15_ready, // @[InputUnit.scala:51:14] output io_deq_15_valid, // @[InputUnit.scala:51:14] output io_deq_15_bits_head, // @[InputUnit.scala:51:14] output io_deq_15_bits_tail, // @[InputUnit.scala:51:14] output [72:0] io_deq_15_bits_payload, // @[InputUnit.scala:51:14] output io_deq_16_bits_head, // @[InputUnit.scala:51:14] output io_deq_16_bits_tail, // @[InputUnit.scala:51:14] output [72:0] io_deq_16_bits_payload, // @[InputUnit.scala:51:14] input io_deq_17_ready, // @[InputUnit.scala:51:14] output io_deq_17_valid, // @[InputUnit.scala:51:14] output io_deq_17_bits_head, // @[InputUnit.scala:51:14] output io_deq_17_bits_tail, // @[InputUnit.scala:51:14] output [72:0] io_deq_17_bits_payload, // @[InputUnit.scala:51:14] output io_deq_18_bits_head, // @[InputUnit.scala:51:14] output io_deq_18_bits_tail, // @[InputUnit.scala:51:14] output [72:0] io_deq_18_bits_payload, // @[InputUnit.scala:51:14] input io_deq_19_ready, // @[InputUnit.scala:51:14] output io_deq_19_valid, // @[InputUnit.scala:51:14] output io_deq_19_bits_head, // @[InputUnit.scala:51:14] output io_deq_19_bits_tail, // @[InputUnit.scala:51:14] output [72:0] io_deq_19_bits_payload, // @[InputUnit.scala:51:14] input io_deq_20_ready, // @[InputUnit.scala:51:14] output io_deq_20_valid, // @[InputUnit.scala:51:14] output io_deq_20_bits_head, // @[InputUnit.scala:51:14] output io_deq_20_bits_tail, // @[InputUnit.scala:51:14] output [72:0] io_deq_20_bits_payload, // @[InputUnit.scala:51:14] input io_deq_21_ready, // @[InputUnit.scala:51:14] output io_deq_21_valid, // @[InputUnit.scala:51:14] output io_deq_21_bits_head, // @[InputUnit.scala:51:14] output io_deq_21_bits_tail, // @[InputUnit.scala:51:14] output [72:0] io_deq_21_bits_payload // @[InputUnit.scala:51:14] ); wire _qs_21_io_enq_ready; // @[InputUnit.scala:90:49] wire _qs_20_io_enq_ready; // @[InputUnit.scala:90:49] wire _qs_19_io_enq_ready; // @[InputUnit.scala:90:49] wire _qs_18_io_enq_ready; // @[InputUnit.scala:90:49] wire _qs_17_io_enq_ready; // @[InputUnit.scala:90:49] wire _qs_16_io_enq_ready; // @[InputUnit.scala:90:49] wire _qs_15_io_enq_ready; // @[InputUnit.scala:90:49] wire _qs_14_io_enq_ready; // @[InputUnit.scala:90:49] wire _qs_13_io_enq_ready; // @[InputUnit.scala:90:49] wire _qs_12_io_enq_ready; // @[InputUnit.scala:90:49] wire _qs_11_io_enq_ready; // @[InputUnit.scala:90:49] wire _qs_10_io_enq_ready; // @[InputUnit.scala:90:49] wire _qs_9_io_enq_ready; // @[InputUnit.scala:90:49] wire _qs_8_io_enq_ready; // @[InputUnit.scala:90:49] wire _qs_7_io_enq_ready; // @[InputUnit.scala:90:49] wire _qs_6_io_enq_ready; // @[InputUnit.scala:90:49] wire _qs_5_io_enq_ready; // @[InputUnit.scala:90:49] wire _qs_4_io_enq_ready; // @[InputUnit.scala:90:49] wire _qs_3_io_enq_ready; // @[InputUnit.scala:90:49] wire _qs_2_io_enq_ready; // @[InputUnit.scala:90:49] wire _qs_1_io_enq_ready; // @[InputUnit.scala:90:49] wire _qs_0_io_enq_ready; // @[InputUnit.scala:90:49] wire [74:0] _mem_ext_R0_data; // @[InputUnit.scala:85:18] wire [74:0] _mem_ext_R1_data; // @[InputUnit.scala:85:18] wire [74:0] _mem_ext_R2_data; // @[InputUnit.scala:85:18] wire [74:0] _mem_ext_R3_data; // @[InputUnit.scala:85:18] wire [74:0] _mem_ext_R4_data; // @[InputUnit.scala:85:18] wire [74:0] _mem_ext_R5_data; // @[InputUnit.scala:85:18] wire [74:0] _mem_ext_R6_data; // @[InputUnit.scala:85:18] wire [74:0] _mem_ext_R7_data; // @[InputUnit.scala:85:18] wire [74:0] _mem_ext_R8_data; // @[InputUnit.scala:85:18] wire [74:0] _mem_ext_R9_data; // @[InputUnit.scala:85:18] wire [74:0] _mem_ext_R10_data; // @[InputUnit.scala:85:18] wire [74:0] _mem_ext_R11_data; // @[InputUnit.scala:85:18] wire [74:0] _mem_ext_R12_data; // @[InputUnit.scala:85:18] wire [74:0] _mem_ext_R13_data; // @[InputUnit.scala:85:18] wire [74:0] _mem_ext_R14_data; // @[InputUnit.scala:85:18] wire [74:0] _mem_ext_R15_data; // @[InputUnit.scala:85:18] wire [74:0] _mem_ext_R16_data; // @[InputUnit.scala:85:18] wire [74:0] _mem_ext_R17_data; // @[InputUnit.scala:85:18] wire [74:0] _mem_ext_R18_data; // @[InputUnit.scala:85:18] wire [74:0] _mem_ext_R19_data; // @[InputUnit.scala:85:18] wire [74:0] _mem_ext_R20_data; // @[InputUnit.scala:85:18] wire [74:0] _mem_ext_R21_data; // @[InputUnit.scala:85:18] reg [5:0] heads_0; // @[InputUnit.scala:86:24] reg [5:0] heads_1; // @[InputUnit.scala:86:24] reg [5:0] heads_2; // @[InputUnit.scala:86:24] reg [5:0] heads_3; // @[InputUnit.scala:86:24] reg [5:0] heads_4; // @[InputUnit.scala:86:24] reg [5:0] heads_5; // @[InputUnit.scala:86:24] reg [5:0] heads_6; // @[InputUnit.scala:86:24] reg [5:0] heads_7; // @[InputUnit.scala:86:24] reg [5:0] heads_8; // @[InputUnit.scala:86:24] reg [5:0] heads_9; // @[InputUnit.scala:86:24] reg [5:0] heads_10; // @[InputUnit.scala:86:24] reg [5:0] heads_11; // @[InputUnit.scala:86:24] reg [5:0] heads_12; // @[InputUnit.scala:86:24] reg [5:0] heads_13; // @[InputUnit.scala:86:24] reg [5:0] heads_14; // @[InputUnit.scala:86:24] reg [5:0] heads_15; // @[InputUnit.scala:86:24] reg [5:0] heads_16; // @[InputUnit.scala:86:24] reg [5:0] heads_17; // @[InputUnit.scala:86:24] reg [5:0] heads_18; // @[InputUnit.scala:86:24] reg [5:0] heads_19; // @[InputUnit.scala:86:24] reg [5:0] heads_20; // @[InputUnit.scala:86:24] reg [5:0] heads_21; // @[InputUnit.scala:86:24] reg [5:0] tails_0; // @[InputUnit.scala:87:24] reg [5:0] tails_1; // @[InputUnit.scala:87:24] reg [5:0] tails_2; // @[InputUnit.scala:87:24] reg [5:0] tails_3; // @[InputUnit.scala:87:24] reg [5:0] tails_4; // @[InputUnit.scala:87:24] reg [5:0] tails_5; // @[InputUnit.scala:87:24] reg [5:0] tails_6; // @[InputUnit.scala:87:24] reg [5:0] tails_7; // @[InputUnit.scala:87:24] reg [5:0] tails_8; // @[InputUnit.scala:87:24] reg [5:0] tails_9; // @[InputUnit.scala:87:24] reg [5:0] tails_10; // @[InputUnit.scala:87:24] reg [5:0] tails_11; // @[InputUnit.scala:87:24] reg [5:0] tails_12; // @[InputUnit.scala:87:24] reg [5:0] tails_13; // @[InputUnit.scala:87:24] reg [5:0] tails_14; // @[InputUnit.scala:87:24] reg [5:0] tails_15; // @[InputUnit.scala:87:24] reg [5:0] tails_16; // @[InputUnit.scala:87:24] reg [5:0] tails_17; // @[InputUnit.scala:87:24] reg [5:0] tails_18; // @[InputUnit.scala:87:24] reg [5:0] tails_19; // @[InputUnit.scala:87:24] reg [5:0] tails_20; // @[InputUnit.scala:87:24] reg [5:0] tails_21; // @[InputUnit.scala:87:24] wire _tails_T_66 = io_enq_0_bits_virt_channel_id == 5'h0; // @[Mux.scala:32:36] wire _tails_T_67 = io_enq_0_bits_virt_channel_id == 5'h1; // @[Mux.scala:32:36] wire _tails_T_68 = io_enq_0_bits_virt_channel_id == 5'h2; // @[Mux.scala:32:36] wire _tails_T_69 = io_enq_0_bits_virt_channel_id == 5'h3; // @[Mux.scala:32:36] wire _tails_T_70 = io_enq_0_bits_virt_channel_id == 5'h4; // @[Mux.scala:32:36] wire _tails_T_71 = io_enq_0_bits_virt_channel_id == 5'h5; // @[Mux.scala:32:36] wire _tails_T_72 = io_enq_0_bits_virt_channel_id == 5'h6; // @[Mux.scala:32:36] wire _tails_T_73 = io_enq_0_bits_virt_channel_id == 5'h7; // @[Mux.scala:32:36] wire _tails_T_74 = io_enq_0_bits_virt_channel_id == 5'h8; // @[Mux.scala:32:36] wire _tails_T_75 = io_enq_0_bits_virt_channel_id == 5'h9; // @[Mux.scala:32:36] wire _tails_T_76 = io_enq_0_bits_virt_channel_id == 5'hA; // @[Mux.scala:32:36] wire _tails_T_77 = io_enq_0_bits_virt_channel_id == 5'hB; // @[Mux.scala:32:36] wire _tails_T_78 = io_enq_0_bits_virt_channel_id == 5'hC; // @[Mux.scala:32:36] wire _tails_T_79 = io_enq_0_bits_virt_channel_id == 5'hD; // @[Mux.scala:32:36] wire _tails_T_80 = io_enq_0_bits_virt_channel_id == 5'hE; // @[Mux.scala:32:36] wire _tails_T_81 = io_enq_0_bits_virt_channel_id == 5'hF; // @[Mux.scala:32:36] wire _tails_T_82 = io_enq_0_bits_virt_channel_id == 5'h10; // @[Mux.scala:32:36] wire _tails_T_83 = io_enq_0_bits_virt_channel_id == 5'h11; // @[Mux.scala:32:36] wire _tails_T_84 = io_enq_0_bits_virt_channel_id == 5'h12; // @[Mux.scala:32:36] wire _tails_T_85 = io_enq_0_bits_virt_channel_id == 5'h13; // @[Mux.scala:32:36] wire _tails_T_86 = io_enq_0_bits_virt_channel_id == 5'h14; // @[Mux.scala:32:36] wire _tails_T_87 = io_enq_0_bits_virt_channel_id == 5'h15; // @[Mux.scala:32:36] wire direct_to_q = (_tails_T_66 & _qs_0_io_enq_ready | _tails_T_67 & _qs_1_io_enq_ready | _tails_T_68 & _qs_2_io_enq_ready | _tails_T_69 & _qs_3_io_enq_ready | _tails_T_70 & _qs_4_io_enq_ready | _tails_T_71 & _qs_5_io_enq_ready | _tails_T_72 & _qs_6_io_enq_ready | _tails_T_73 & _qs_7_io_enq_ready | _tails_T_74 & _qs_8_io_enq_ready | _tails_T_75 & _qs_9_io_enq_ready | _tails_T_76 & _qs_10_io_enq_ready | _tails_T_77 & _qs_11_io_enq_ready | _tails_T_78 & _qs_12_io_enq_ready | _tails_T_79 & _qs_13_io_enq_ready | _tails_T_80 & _qs_14_io_enq_ready | _tails_T_81 & _qs_15_io_enq_ready | _tails_T_82 & _qs_16_io_enq_ready | _tails_T_83 & _qs_17_io_enq_ready | _tails_T_84 & _qs_18_io_enq_ready | _tails_T_85 & _qs_19_io_enq_ready | _tails_T_86 & _qs_20_io_enq_ready | _tails_T_87 & _qs_21_io_enq_ready) & (_tails_T_66 & heads_0 == tails_0 | _tails_T_67 & heads_1 == tails_1 | _tails_T_68 & heads_2 == tails_2 | _tails_T_69 & heads_3 == tails_3 | _tails_T_70 & heads_4 == tails_4 | _tails_T_71 & heads_5 == tails_5 | _tails_T_72 & heads_6 == tails_6 | _tails_T_73 & heads_7 == tails_7 | _tails_T_74 & heads_8 == tails_8 | _tails_T_75 & heads_9 == tails_9 | _tails_T_76 & heads_10 == tails_10 | _tails_T_77 & heads_11 == tails_11 | _tails_T_78 & heads_12 == tails_12 | _tails_T_79 & heads_13 == tails_13 | _tails_T_80 & heads_14 == tails_14 | _tails_T_81 & heads_15 == tails_15 | _tails_T_82 & heads_16 == tails_16 | _tails_T_83 & heads_17 == tails_17 | _tails_T_84 & heads_18 == tails_18 | _tails_T_85 & heads_19 == tails_19 | _tails_T_86 & heads_20 == tails_20 | _tails_T_87 & heads_21 == tails_21); // @[Mux.scala:30:73, :32:36] wire mem_MPORT_en = io_enq_0_valid & ~direct_to_q; // @[InputUnit.scala:96:62, :100:{27,30}] wire [31:0][5:0] _GEN = {{tails_0}, {tails_0}, {tails_0}, {tails_0}, {tails_0}, {tails_0}, {tails_0}, {tails_0}, {tails_0}, {tails_0}, {tails_21}, {tails_20}, {tails_19}, {tails_18}, {tails_17}, {tails_16}, {tails_15}, {tails_14}, {tails_13}, {tails_12}, {tails_11}, {tails_10}, {tails_9}, {tails_8}, {tails_7}, {tails_6}, {tails_5}, {tails_4}, {tails_3}, {tails_2}, {tails_1}, {tails_0}}; // @[InputUnit.scala:87:24, :102:16] wire _GEN_0 = io_enq_0_bits_virt_channel_id == 5'h0; // @[InputUnit.scala:103:45] wire _GEN_1 = io_enq_0_bits_virt_channel_id == 5'h1; // @[InputUnit.scala:103:45] wire _GEN_2 = io_enq_0_bits_virt_channel_id == 5'h2; // @[InputUnit.scala:103:45] wire _GEN_3 = io_enq_0_bits_virt_channel_id == 5'h3; // @[InputUnit.scala:103:45] wire _GEN_4 = io_enq_0_bits_virt_channel_id == 5'h4; // @[InputUnit.scala:103:45] wire _GEN_5 = io_enq_0_bits_virt_channel_id == 5'h5; // @[InputUnit.scala:103:45] wire _GEN_6 = io_enq_0_bits_virt_channel_id == 5'h6; // @[InputUnit.scala:103:45] wire _GEN_7 = io_enq_0_bits_virt_channel_id == 5'h7; // @[InputUnit.scala:103:45] wire _GEN_8 = io_enq_0_bits_virt_channel_id == 5'h8; // @[InputUnit.scala:103:45] wire _GEN_9 = io_enq_0_bits_virt_channel_id == 5'h9; // @[InputUnit.scala:103:45] wire _GEN_10 = io_enq_0_bits_virt_channel_id == 5'hA; // @[InputUnit.scala:103:45] wire _GEN_11 = io_enq_0_bits_virt_channel_id == 5'hB; // @[InputUnit.scala:103:45] wire _GEN_12 = io_enq_0_bits_virt_channel_id == 5'hC; // @[InputUnit.scala:103:45] wire _GEN_13 = io_enq_0_bits_virt_channel_id == 5'hD; // @[InputUnit.scala:103:45] wire _GEN_14 = io_enq_0_bits_virt_channel_id == 5'hE; // @[InputUnit.scala:103:45] wire _GEN_15 = io_enq_0_bits_virt_channel_id == 5'hF; // @[InputUnit.scala:103:45] wire _GEN_16 = io_enq_0_bits_virt_channel_id == 5'h10; // @[InputUnit.scala:103:45] wire _GEN_17 = io_enq_0_bits_virt_channel_id == 5'h11; // @[InputUnit.scala:103:45] wire _GEN_18 = io_enq_0_bits_virt_channel_id == 5'h12; // @[InputUnit.scala:103:45] wire _GEN_19 = io_enq_0_bits_virt_channel_id == 5'h13; // @[InputUnit.scala:103:45] wire _GEN_20 = io_enq_0_bits_virt_channel_id == 5'h14; // @[InputUnit.scala:103:45] wire _GEN_21 = io_enq_0_bits_virt_channel_id == 5'h15; // @[InputUnit.scala:103:45] wire _GEN_22 = io_enq_0_valid & direct_to_q; // @[InputUnit.scala:96:62, :107:34] wire can_to_q_0 = heads_0 != tails_0 & _qs_0_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}] wire can_to_q_1 = heads_1 != tails_1 & _qs_1_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}] wire can_to_q_2 = heads_2 != tails_2 & _qs_2_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}] wire can_to_q_3 = heads_3 != tails_3 & _qs_3_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}] wire can_to_q_4 = heads_4 != tails_4 & _qs_4_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}] wire can_to_q_5 = heads_5 != tails_5 & _qs_5_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}] wire can_to_q_6 = heads_6 != tails_6 & _qs_6_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}] wire can_to_q_7 = heads_7 != tails_7 & _qs_7_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}] wire can_to_q_8 = heads_8 != tails_8 & _qs_8_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}] wire can_to_q_9 = heads_9 != tails_9 & _qs_9_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}] wire can_to_q_10 = heads_10 != tails_10 & _qs_10_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}] wire can_to_q_11 = heads_11 != tails_11 & _qs_11_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}] wire can_to_q_12 = heads_12 != tails_12 & _qs_12_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}] wire can_to_q_13 = heads_13 != tails_13 & _qs_13_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}] wire can_to_q_14 = heads_14 != tails_14 & _qs_14_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}] wire can_to_q_15 = heads_15 != tails_15 & _qs_15_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}] wire can_to_q_16 = heads_16 != tails_16 & _qs_16_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}] wire can_to_q_17 = heads_17 != tails_17 & _qs_17_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}] wire can_to_q_18 = heads_18 != tails_18 & _qs_18_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}] wire can_to_q_19 = heads_19 != tails_19 & _qs_19_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}] wire can_to_q_20 = heads_20 != tails_20 & _qs_20_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}] wire can_to_q_21 = heads_21 != tails_21 & _qs_21_io_enq_ready; // @[InputUnit.scala:86:24, :87:24, :88:49, :90:49, :117:{60,70}] wire [21:0] to_q_oh_enc = can_to_q_0 ? 22'h1 : can_to_q_1 ? 22'h2 : can_to_q_2 ? 22'h4 : can_to_q_3 ? 22'h8 : can_to_q_4 ? 22'h10 : can_to_q_5 ? 22'h20 : can_to_q_6 ? 22'h40 : can_to_q_7 ? 22'h80 : can_to_q_8 ? 22'h100 : can_to_q_9 ? 22'h200 : can_to_q_10 ? 22'h400 : can_to_q_11 ? 22'h800 : can_to_q_12 ? 22'h1000 : can_to_q_13 ? 22'h2000 : can_to_q_14 ? 22'h4000 : can_to_q_15 ? 22'h8000 : can_to_q_16 ? 22'h10000 : can_to_q_17 ? 22'h20000 : can_to_q_18 ? 22'h40000 : can_to_q_19 ? 22'h80000 : can_to_q_20 ? 22'h100000 : {can_to_q_21, 21'h0}; // @[Mux.scala:50:70] wire _GEN_23 = can_to_q_0 | can_to_q_1 | can_to_q_2 | can_to_q_3 | can_to_q_4 | can_to_q_5 | can_to_q_6 | can_to_q_7 | can_to_q_8 | can_to_q_9 | can_to_q_10 | can_to_q_11 | can_to_q_12 | can_to_q_13 | can_to_q_14 | can_to_q_15 | can_to_q_16 | can_to_q_17 | can_to_q_18 | can_to_q_19 | can_to_q_20 | can_to_q_21; // @[package.scala:81:59] wire [5:0] head = (to_q_oh_enc[0] ? heads_0 : 6'h0) | (to_q_oh_enc[1] ? heads_1 : 6'h0) | (to_q_oh_enc[2] ? heads_2 : 6'h0) | (to_q_oh_enc[3] ? heads_3 : 6'h0) | (to_q_oh_enc[4] ? heads_4 : 6'h0) | (to_q_oh_enc[5] ? heads_5 : 6'h0) | (to_q_oh_enc[6] ? heads_6 : 6'h0) | (to_q_oh_enc[7] ? heads_7 : 6'h0) | (to_q_oh_enc[8] ? heads_8 : 6'h0) | (to_q_oh_enc[9] ? heads_9 : 6'h0) | (to_q_oh_enc[10] ? heads_10 : 6'h0) | (to_q_oh_enc[11] ? heads_11 : 6'h0) | (to_q_oh_enc[12] ? heads_12 : 6'h0) | (to_q_oh_enc[13] ? heads_13 : 6'h0) | (to_q_oh_enc[14] ? heads_14 : 6'h0) | (to_q_oh_enc[15] ? heads_15 : 6'h0) | (to_q_oh_enc[16] ? heads_16 : 6'h0) | (to_q_oh_enc[17] ? heads_17 : 6'h0) | (to_q_oh_enc[18] ? heads_18 : 6'h0) | (to_q_oh_enc[19] ? heads_19 : 6'h0) | (to_q_oh_enc[20] ? heads_20 : 6'h0) | (to_q_oh_enc[21] ? heads_21 : 6'h0); // @[OneHot.scala:83:30] wire _GEN_24 = _GEN_23 & to_q_oh_enc[0]; // @[OneHot.scala:83:30] wire _GEN_25 = _GEN_23 & to_q_oh_enc[1]; // @[OneHot.scala:83:30] wire _GEN_26 = _GEN_23 & to_q_oh_enc[2]; // @[OneHot.scala:83:30] wire _GEN_27 = _GEN_23 & to_q_oh_enc[3]; // @[OneHot.scala:83:30] wire _GEN_28 = _GEN_23 & to_q_oh_enc[4]; // @[OneHot.scala:83:30] wire _GEN_29 = _GEN_23 & to_q_oh_enc[5]; // @[OneHot.scala:83:30] wire _GEN_30 = _GEN_23 & to_q_oh_enc[6]; // @[OneHot.scala:83:30] wire _GEN_31 = _GEN_23 & to_q_oh_enc[7]; // @[OneHot.scala:83:30] wire _GEN_32 = _GEN_23 & to_q_oh_enc[8]; // @[OneHot.scala:83:30] wire _GEN_33 = _GEN_23 & to_q_oh_enc[9]; // @[OneHot.scala:83:30] wire _GEN_34 = _GEN_23 & to_q_oh_enc[10]; // @[OneHot.scala:83:30] wire _GEN_35 = _GEN_23 & to_q_oh_enc[11]; // @[OneHot.scala:83:30] wire _GEN_36 = _GEN_23 & to_q_oh_enc[12]; // @[OneHot.scala:83:30] wire _GEN_37 = _GEN_23 & to_q_oh_enc[13]; // @[OneHot.scala:83:30] wire _GEN_38 = _GEN_23 & to_q_oh_enc[14]; // @[OneHot.scala:83:30] wire _GEN_39 = _GEN_23 & to_q_oh_enc[15]; // @[OneHot.scala:83:30] wire _GEN_40 = _GEN_23 & to_q_oh_enc[16]; // @[OneHot.scala:83:30] wire _GEN_41 = _GEN_23 & to_q_oh_enc[17]; // @[OneHot.scala:83:30] wire _GEN_42 = _GEN_23 & to_q_oh_enc[18]; // @[OneHot.scala:83:30] wire _GEN_43 = _GEN_23 & to_q_oh_enc[19]; // @[OneHot.scala:83:30] wire _GEN_44 = _GEN_23 & to_q_oh_enc[20]; // @[OneHot.scala:83:30] wire _GEN_45 = _GEN_23 & to_q_oh_enc[21]; // @[OneHot.scala:83:30] wire [5:0] _tails_T_133 = _GEN[io_enq_0_bits_virt_channel_id] == ({1'h0, {1'h0, {1'h0, {1'h0, {2{_tails_T_69}}} | {3{_tails_T_74}}} | (_tails_T_75 ? 4'hB : 4'h0) | {4{_tails_T_77}}} | (_tails_T_78 ? 5'h13 : 5'h0) | (_tails_T_79 ? 5'h17 : 5'h0) | (_tails_T_81 ? 5'h1B : 5'h0) | {5{_tails_T_83}}} | (_tails_T_85 ? 6'h23 : 6'h0) | (_tails_T_86 ? 6'h27 : 6'h0) | (_tails_T_87 ? 6'h2B : 6'h0)) ? {_tails_T_85, {_tails_T_78, {_tails_T_75, _tails_T_74, 2'h0} | (_tails_T_77 ? 4'hC : 4'h0)} | (_tails_T_79 ? 5'h14 : 5'h0) | (_tails_T_81 ? 5'h18 : 5'h0) | (_tails_T_83 ? 5'h1C : 5'h0)} | (_tails_T_86 ? 6'h24 : 6'h0) | (_tails_T_87 ? 6'h28 : 6'h0) : _GEN[io_enq_0_bits_virt_channel_id] + 6'h1; // @[Mux.scala:30:73, :32:36] wire [14:0] _to_q_T_2 = {10'h0, to_q_oh_enc[21:17]} | to_q_oh_enc[15:1]; // @[OneHot.scala:31:18, :32:28] wire [6:0] _to_q_T_4 = _to_q_T_2[14:8] | _to_q_T_2[6:0]; // @[OneHot.scala:30:18, :31:18, :32:28] wire [2:0] _to_q_T_6 = _to_q_T_4[6:4] | _to_q_T_4[2:0]; // @[OneHot.scala:30:18, :31:18, :32:28] wire _to_q_T_8 = _to_q_T_6[2] | _to_q_T_6[0]; // @[OneHot.scala:30:18, :31:18, :32:28] wire [4:0] to_q = {|(to_q_oh_enc[21:16]), |(_to_q_T_2[14:7]), |(_to_q_T_4[6:3]), |(_to_q_T_6[2:1]), _to_q_T_8}; // @[OneHot.scala:30:18, :32:{10,14,28}] wire [5:0] _heads_T_89 = head == ({1'h0, {1'h0, {1'h0, {1'h0, {2{to_q_oh_enc[3]}}} | {3{to_q_oh_enc[8]}}} | (to_q_oh_enc[9] ? 4'hB : 4'h0) | {4{to_q_oh_enc[11]}}} | (to_q_oh_enc[12] ? 5'h13 : 5'h0) | (to_q_oh_enc[13] ? 5'h17 : 5'h0) | (to_q_oh_enc[15] ? 5'h1B : 5'h0) | {5{to_q_oh_enc[17]}}} | (to_q_oh_enc[19] ? 6'h23 : 6'h0) | (to_q_oh_enc[20] ? 6'h27 : 6'h0) | (to_q_oh_enc[21] ? 6'h2B : 6'h0)) ? {to_q_oh_enc[19], {to_q_oh_enc[12], {to_q_oh_enc[9:8], 2'h0} | (to_q_oh_enc[11] ? 4'hC : 4'h0)} | (to_q_oh_enc[13] ? 5'h14 : 5'h0) | (to_q_oh_enc[15] ? 5'h18 : 5'h0) | (to_q_oh_enc[17] ? 5'h1C : 5'h0)} | (to_q_oh_enc[20] ? 6'h24 : 6'h0) | (to_q_oh_enc[21] ? 6'h28 : 6'h0) : head + 6'h1; // @[OneHot.scala:83:30] always @(posedge clock) begin // @[InputUnit.scala:49:7] if (reset) begin // @[InputUnit.scala:49:7] heads_0 <= 6'h0; // @[InputUnit.scala:86:24] heads_1 <= 6'h0; // @[InputUnit.scala:86:24] heads_2 <= 6'h0; // @[InputUnit.scala:86:24] heads_3 <= 6'h0; // @[InputUnit.scala:86:24] heads_4 <= 6'h0; // @[InputUnit.scala:86:24] heads_5 <= 6'h0; // @[InputUnit.scala:86:24] heads_6 <= 6'h0; // @[InputUnit.scala:86:24] heads_7 <= 6'h0; // @[InputUnit.scala:86:24] heads_8 <= 6'h4; // @[InputUnit.scala:86:24] heads_9 <= 6'h8; // @[InputUnit.scala:86:24] heads_10 <= 6'h0; // @[InputUnit.scala:86:24] heads_11 <= 6'hC; // @[InputUnit.scala:86:24] heads_12 <= 6'h10; // @[InputUnit.scala:86:24] heads_13 <= 6'h14; // @[InputUnit.scala:86:24] heads_14 <= 6'h0; // @[InputUnit.scala:86:24] heads_15 <= 6'h18; // @[InputUnit.scala:86:24] heads_16 <= 6'h0; // @[InputUnit.scala:86:24] heads_17 <= 6'h1C; // @[InputUnit.scala:86:24] heads_18 <= 6'h0; // @[InputUnit.scala:86:24] heads_19 <= 6'h20; // @[InputUnit.scala:86:24] heads_20 <= 6'h24; // @[InputUnit.scala:86:24] heads_21 <= 6'h28; // @[InputUnit.scala:86:24] tails_0 <= 6'h0; // @[InputUnit.scala:87:24] tails_1 <= 6'h0; // @[InputUnit.scala:87:24] tails_2 <= 6'h0; // @[InputUnit.scala:87:24] tails_3 <= 6'h0; // @[InputUnit.scala:87:24] tails_4 <= 6'h0; // @[InputUnit.scala:87:24] tails_5 <= 6'h0; // @[InputUnit.scala:87:24] tails_6 <= 6'h0; // @[InputUnit.scala:87:24] tails_7 <= 6'h0; // @[InputUnit.scala:87:24] tails_8 <= 6'h4; // @[InputUnit.scala:87:24] tails_9 <= 6'h8; // @[InputUnit.scala:87:24] tails_10 <= 6'h0; // @[InputUnit.scala:87:24] tails_11 <= 6'hC; // @[InputUnit.scala:87:24] tails_12 <= 6'h10; // @[InputUnit.scala:87:24] tails_13 <= 6'h14; // @[InputUnit.scala:87:24] tails_14 <= 6'h0; // @[InputUnit.scala:87:24] tails_15 <= 6'h18; // @[InputUnit.scala:87:24] tails_16 <= 6'h0; // @[InputUnit.scala:87:24] tails_17 <= 6'h1C; // @[InputUnit.scala:87:24] tails_18 <= 6'h0; // @[InputUnit.scala:87:24] tails_19 <= 6'h20; // @[InputUnit.scala:87:24] tails_20 <= 6'h24; // @[InputUnit.scala:87:24] tails_21 <= 6'h28; // @[InputUnit.scala:87:24] end else begin // @[InputUnit.scala:49:7] if (_GEN_23 & {to_q_oh_enc[21:16], |(_to_q_T_2[14:7]), |(_to_q_T_4[6:3]), |(_to_q_T_6[2:1]), _to_q_T_8} == 10'h0) // @[OneHot.scala:30:18, :32:{10,14,28}] heads_0 <= _heads_T_89; // @[InputUnit.scala:86:24, :122:27] if (_GEN_23 & to_q == 5'h1) // @[OneHot.scala:32:10] heads_1 <= _heads_T_89; // @[InputUnit.scala:86:24, :122:27] if (_GEN_23 & to_q == 5'h2) // @[OneHot.scala:32:10] heads_2 <= _heads_T_89; // @[InputUnit.scala:86:24, :122:27] if (_GEN_23 & to_q == 5'h3) // @[OneHot.scala:32:10] heads_3 <= _heads_T_89; // @[InputUnit.scala:86:24, :122:27] if (_GEN_23 & to_q == 5'h4) // @[OneHot.scala:32:10] heads_4 <= _heads_T_89; // @[InputUnit.scala:86:24, :122:27] if (_GEN_23 & to_q == 5'h5) // @[OneHot.scala:32:10] heads_5 <= _heads_T_89; // @[InputUnit.scala:86:24, :122:27] if (_GEN_23 & to_q == 5'h6) // @[OneHot.scala:32:10] heads_6 <= _heads_T_89; // @[InputUnit.scala:86:24, :122:27] if (_GEN_23 & to_q == 5'h7) // @[OneHot.scala:32:10] heads_7 <= _heads_T_89; // @[InputUnit.scala:86:24, :122:27] if (_GEN_23 & to_q == 5'h8) // @[OneHot.scala:32:10] heads_8 <= _heads_T_89; // @[InputUnit.scala:86:24, :122:27] if (_GEN_23 & to_q == 5'h9) // @[OneHot.scala:32:10] heads_9 <= _heads_T_89; // @[InputUnit.scala:86:24, :122:27] if (_GEN_23 & to_q == 5'hA) // @[OneHot.scala:32:10] heads_10 <= _heads_T_89; // @[InputUnit.scala:86:24, :122:27] if (_GEN_23 & to_q == 5'hB) // @[OneHot.scala:32:10] heads_11 <= _heads_T_89; // @[InputUnit.scala:86:24, :122:27] if (_GEN_23 & to_q == 5'hC) // @[OneHot.scala:32:10] heads_12 <= _heads_T_89; // @[InputUnit.scala:86:24, :122:27] if (_GEN_23 & to_q == 5'hD) // @[OneHot.scala:32:10] heads_13 <= _heads_T_89; // @[InputUnit.scala:86:24, :122:27] if (_GEN_23 & to_q == 5'hE) // @[OneHot.scala:32:10] heads_14 <= _heads_T_89; // @[InputUnit.scala:86:24, :122:27] if (_GEN_23 & to_q == 5'hF) // @[OneHot.scala:32:10] heads_15 <= _heads_T_89; // @[InputUnit.scala:86:24, :122:27] if (_GEN_23 & to_q == 5'h10) // @[OneHot.scala:32:10] heads_16 <= _heads_T_89; // @[InputUnit.scala:86:24, :122:27] if (_GEN_23 & to_q == 5'h11) // @[OneHot.scala:32:10] heads_17 <= _heads_T_89; // @[InputUnit.scala:86:24, :122:27] if (_GEN_23 & to_q == 5'h12) // @[OneHot.scala:32:10] heads_18 <= _heads_T_89; // @[InputUnit.scala:86:24, :122:27] if (_GEN_23 & to_q == 5'h13) // @[OneHot.scala:32:10] heads_19 <= _heads_T_89; // @[InputUnit.scala:86:24, :122:27] if (_GEN_23 & to_q == 5'h14) // @[OneHot.scala:32:10] heads_20 <= _heads_T_89; // @[InputUnit.scala:86:24, :122:27] if (_GEN_23 & to_q == 5'h15) // @[OneHot.scala:32:10] heads_21 <= _heads_T_89; // @[InputUnit.scala:86:24, :122:27] if (mem_MPORT_en & _GEN_0) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45] tails_0 <= _tails_T_133; // @[InputUnit.scala:87:24, :103:51] if (mem_MPORT_en & _GEN_1) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45] tails_1 <= _tails_T_133; // @[InputUnit.scala:87:24, :103:51] if (mem_MPORT_en & _GEN_2) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45] tails_2 <= _tails_T_133; // @[InputUnit.scala:87:24, :103:51] if (mem_MPORT_en & _GEN_3) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45] tails_3 <= _tails_T_133; // @[InputUnit.scala:87:24, :103:51] if (mem_MPORT_en & _GEN_4) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45] tails_4 <= _tails_T_133; // @[InputUnit.scala:87:24, :103:51] if (mem_MPORT_en & _GEN_5) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45] tails_5 <= _tails_T_133; // @[InputUnit.scala:87:24, :103:51] if (mem_MPORT_en & _GEN_6) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45] tails_6 <= _tails_T_133; // @[InputUnit.scala:87:24, :103:51] if (mem_MPORT_en & _GEN_7) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45] tails_7 <= _tails_T_133; // @[InputUnit.scala:87:24, :103:51] if (mem_MPORT_en & _GEN_8) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45] tails_8 <= _tails_T_133; // @[InputUnit.scala:87:24, :103:51] if (mem_MPORT_en & _GEN_9) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45] tails_9 <= _tails_T_133; // @[InputUnit.scala:87:24, :103:51] if (mem_MPORT_en & _GEN_10) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45] tails_10 <= _tails_T_133; // @[InputUnit.scala:87:24, :103:51] if (mem_MPORT_en & _GEN_11) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45] tails_11 <= _tails_T_133; // @[InputUnit.scala:87:24, :103:51] if (mem_MPORT_en & _GEN_12) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45] tails_12 <= _tails_T_133; // @[InputUnit.scala:87:24, :103:51] if (mem_MPORT_en & _GEN_13) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45] tails_13 <= _tails_T_133; // @[InputUnit.scala:87:24, :103:51] if (mem_MPORT_en & _GEN_14) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45] tails_14 <= _tails_T_133; // @[InputUnit.scala:87:24, :103:51] if (mem_MPORT_en & _GEN_15) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45] tails_15 <= _tails_T_133; // @[InputUnit.scala:87:24, :103:51] if (mem_MPORT_en & _GEN_16) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45] tails_16 <= _tails_T_133; // @[InputUnit.scala:87:24, :103:51] if (mem_MPORT_en & _GEN_17) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45] tails_17 <= _tails_T_133; // @[InputUnit.scala:87:24, :103:51] if (mem_MPORT_en & _GEN_18) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45] tails_18 <= _tails_T_133; // @[InputUnit.scala:87:24, :103:51] if (mem_MPORT_en & _GEN_19) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45] tails_19 <= _tails_T_133; // @[InputUnit.scala:87:24, :103:51] if (mem_MPORT_en & _GEN_20) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45] tails_20 <= _tails_T_133; // @[InputUnit.scala:87:24, :103:51] if (mem_MPORT_en & _GEN_21) // @[InputUnit.scala:87:24, :100:{27,44}, :103:45] tails_21 <= _tails_T_133; // @[InputUnit.scala:87:24, :103:51] end always @(posedge)
Generate the Verilog code corresponding to the following Chisel files. File primitives.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import chisel3.util._ //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object lowMask { def apply(in: UInt, topBound: BigInt, bottomBound: BigInt): UInt = { require(topBound != bottomBound) val numInVals = BigInt(1)<<in.getWidth if (topBound < bottomBound) { lowMask(~in, numInVals - 1 - topBound, numInVals - 1 - bottomBound) } else if (numInVals > 64 /* Empirical */) { // For simulation performance, we should avoid generating // exteremely wide shifters, so we divide and conquer. // Empirically, this does not impact synthesis QoR. val mid = numInVals / 2 val msb = in(in.getWidth - 1) val lsbs = in(in.getWidth - 2, 0) if (mid < topBound) { if (mid <= bottomBound) { Mux(msb, lowMask(lsbs, topBound - mid, bottomBound - mid), 0.U ) } else { Mux(msb, lowMask(lsbs, topBound - mid, 0) ## ((BigInt(1)<<(mid - bottomBound).toInt) - 1).U, lowMask(lsbs, mid, bottomBound) ) } } else { ~Mux(msb, 0.U, ~lowMask(lsbs, topBound, bottomBound)) } } else { val shift = (BigInt(-1)<<numInVals.toInt).S>>in Reverse( shift( (numInVals - 1 - bottomBound).toInt, (numInVals - topBound).toInt ) ) } } } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object countLeadingZeros { def apply(in: UInt): UInt = PriorityEncoder(in.asBools.reverse) } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object orReduceBy2 { def apply(in: UInt): UInt = { val reducedWidth = (in.getWidth + 1)>>1 val reducedVec = Wire(Vec(reducedWidth, Bool())) for (ix <- 0 until reducedWidth - 1) { reducedVec(ix) := in(ix * 2 + 1, ix * 2).orR } reducedVec(reducedWidth - 1) := in(in.getWidth - 1, (reducedWidth - 1) * 2).orR reducedVec.asUInt } } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object orReduceBy4 { def apply(in: UInt): UInt = { val reducedWidth = (in.getWidth + 3)>>2 val reducedVec = Wire(Vec(reducedWidth, Bool())) for (ix <- 0 until reducedWidth - 1) { reducedVec(ix) := in(ix * 4 + 3, ix * 4).orR } reducedVec(reducedWidth - 1) := in(in.getWidth - 1, (reducedWidth - 1) * 4).orR reducedVec.asUInt } } File RoundAnyRawFNToRecFN.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import chisel3.util.Fill import consts._ //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class RoundAnyRawFNToRecFN( inExpWidth: Int, inSigWidth: Int, outExpWidth: Int, outSigWidth: Int, options: Int ) extends RawModule { override def desiredName = s"RoundAnyRawFNToRecFN_ie${inExpWidth}_is${inSigWidth}_oe${outExpWidth}_os${outSigWidth}" val io = IO(new Bundle { val invalidExc = Input(Bool()) // overrides 'infiniteExc' and 'in' val infiniteExc = Input(Bool()) // overrides 'in' except for 'in.sign' val in = Input(new RawFloat(inExpWidth, inSigWidth)) // (allowed exponent range has limits) val roundingMode = Input(UInt(3.W)) val detectTininess = Input(UInt(1.W)) val out = Output(Bits((outExpWidth + outSigWidth + 1).W)) val exceptionFlags = Output(Bits(5.W)) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val sigMSBitAlwaysZero = ((options & flRoundOpt_sigMSBitAlwaysZero) != 0) val effectiveInSigWidth = if (sigMSBitAlwaysZero) inSigWidth else inSigWidth + 1 val neverUnderflows = ((options & (flRoundOpt_neverUnderflows | flRoundOpt_subnormsAlwaysExact) ) != 0) || (inExpWidth < outExpWidth) val neverOverflows = ((options & flRoundOpt_neverOverflows) != 0) || (inExpWidth < outExpWidth) val outNaNExp = BigInt(7)<<(outExpWidth - 2) val outInfExp = BigInt(6)<<(outExpWidth - 2) val outMaxFiniteExp = outInfExp - 1 val outMinNormExp = (BigInt(1)<<(outExpWidth - 1)) + 2 val outMinNonzeroExp = outMinNormExp - outSigWidth + 1 //------------------------------------------------------------------------ //------------------------------------------------------------------------ val roundingMode_near_even = (io.roundingMode === round_near_even) val roundingMode_minMag = (io.roundingMode === round_minMag) val roundingMode_min = (io.roundingMode === round_min) val roundingMode_max = (io.roundingMode === round_max) val roundingMode_near_maxMag = (io.roundingMode === round_near_maxMag) val roundingMode_odd = (io.roundingMode === round_odd) val roundMagUp = (roundingMode_min && io.in.sign) || (roundingMode_max && ! io.in.sign) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val sAdjustedExp = if (inExpWidth < outExpWidth) (io.in.sExp +& ((BigInt(1)<<outExpWidth) - (BigInt(1)<<inExpWidth)).S )(outExpWidth, 0).zext else if (inExpWidth == outExpWidth) io.in.sExp else io.in.sExp +& ((BigInt(1)<<outExpWidth) - (BigInt(1)<<inExpWidth)).S val adjustedSig = if (inSigWidth <= outSigWidth + 2) io.in.sig<<(outSigWidth - inSigWidth + 2) else (io.in.sig(inSigWidth, inSigWidth - outSigWidth - 1) ## io.in.sig(inSigWidth - outSigWidth - 2, 0).orR ) val doShiftSigDown1 = if (sigMSBitAlwaysZero) false.B else adjustedSig(outSigWidth + 2) val common_expOut = Wire(UInt((outExpWidth + 1).W)) val common_fractOut = Wire(UInt((outSigWidth - 1).W)) val common_overflow = Wire(Bool()) val common_totalUnderflow = Wire(Bool()) val common_underflow = Wire(Bool()) val common_inexact = Wire(Bool()) if ( neverOverflows && neverUnderflows && (effectiveInSigWidth <= outSigWidth) ) { //-------------------------------------------------------------------- //-------------------------------------------------------------------- common_expOut := sAdjustedExp(outExpWidth, 0) + doShiftSigDown1 common_fractOut := Mux(doShiftSigDown1, adjustedSig(outSigWidth + 1, 3), adjustedSig(outSigWidth, 2) ) common_overflow := false.B common_totalUnderflow := false.B common_underflow := false.B common_inexact := false.B } else { //-------------------------------------------------------------------- //-------------------------------------------------------------------- val roundMask = if (neverUnderflows) 0.U(outSigWidth.W) ## doShiftSigDown1 ## 3.U(2.W) else (lowMask( sAdjustedExp(outExpWidth, 0), outMinNormExp - outSigWidth - 1, outMinNormExp ) | doShiftSigDown1) ## 3.U(2.W) val shiftedRoundMask = 0.U(1.W) ## roundMask>>1 val roundPosMask = ~shiftedRoundMask & roundMask val roundPosBit = (adjustedSig & roundPosMask).orR val anyRoundExtra = (adjustedSig & shiftedRoundMask).orR val anyRound = roundPosBit || anyRoundExtra val roundIncr = ((roundingMode_near_even || roundingMode_near_maxMag) && roundPosBit) || (roundMagUp && anyRound) val roundedSig: Bits = Mux(roundIncr, (((adjustedSig | roundMask)>>2) +& 1.U) & ~Mux(roundingMode_near_even && roundPosBit && ! anyRoundExtra, roundMask>>1, 0.U((outSigWidth + 2).W) ), (adjustedSig & ~roundMask)>>2 | Mux(roundingMode_odd && anyRound, roundPosMask>>1, 0.U) ) //*** IF SIG WIDTH IS VERY NARROW, NEED TO ACCOUNT FOR ROUND-EVEN ZEROING //*** M.S. BIT OF SUBNORMAL SIG? val sRoundedExp = sAdjustedExp +& (roundedSig>>outSigWidth).asUInt.zext common_expOut := sRoundedExp(outExpWidth, 0) common_fractOut := Mux(doShiftSigDown1, roundedSig(outSigWidth - 1, 1), roundedSig(outSigWidth - 2, 0) ) common_overflow := (if (neverOverflows) false.B else //*** REWRITE BASED ON BEFORE-ROUNDING EXPONENT?: (sRoundedExp>>(outExpWidth - 1) >= 3.S)) common_totalUnderflow := (if (neverUnderflows) false.B else //*** WOULD BE GOOD ENOUGH TO USE EXPONENT BEFORE ROUNDING?: (sRoundedExp < outMinNonzeroExp.S)) val unboundedRange_roundPosBit = Mux(doShiftSigDown1, adjustedSig(2), adjustedSig(1)) val unboundedRange_anyRound = (doShiftSigDown1 && adjustedSig(2)) || adjustedSig(1, 0).orR val unboundedRange_roundIncr = ((roundingMode_near_even || roundingMode_near_maxMag) && unboundedRange_roundPosBit) || (roundMagUp && unboundedRange_anyRound) val roundCarry = Mux(doShiftSigDown1, roundedSig(outSigWidth + 1), roundedSig(outSigWidth) ) common_underflow := (if (neverUnderflows) false.B else common_totalUnderflow || //*** IF SIG WIDTH IS VERY NARROW, NEED TO ACCOUNT FOR ROUND-EVEN ZEROING //*** M.S. BIT OF SUBNORMAL SIG? (anyRound && ((sAdjustedExp>>outExpWidth) <= 0.S) && Mux(doShiftSigDown1, roundMask(3), roundMask(2)) && ! ((io.detectTininess === tininess_afterRounding) && ! Mux(doShiftSigDown1, roundMask(4), roundMask(3) ) && roundCarry && roundPosBit && unboundedRange_roundIncr))) common_inexact := common_totalUnderflow || anyRound } //------------------------------------------------------------------------ //------------------------------------------------------------------------ val isNaNOut = io.invalidExc || io.in.isNaN val notNaN_isSpecialInfOut = io.infiniteExc || io.in.isInf val commonCase = ! isNaNOut && ! notNaN_isSpecialInfOut && ! io.in.isZero val overflow = commonCase && common_overflow val underflow = commonCase && common_underflow val inexact = overflow || (commonCase && common_inexact) val overflow_roundMagUp = roundingMode_near_even || roundingMode_near_maxMag || roundMagUp val pegMinNonzeroMagOut = commonCase && common_totalUnderflow && (roundMagUp || roundingMode_odd) val pegMaxFiniteMagOut = overflow && ! overflow_roundMagUp val notNaN_isInfOut = notNaN_isSpecialInfOut || (overflow && overflow_roundMagUp) val signOut = Mux(isNaNOut, false.B, io.in.sign) val expOut = (common_expOut & ~Mux(io.in.isZero || common_totalUnderflow, (BigInt(7)<<(outExpWidth - 2)).U((outExpWidth + 1).W), 0.U ) & ~Mux(pegMinNonzeroMagOut, ~outMinNonzeroExp.U((outExpWidth + 1).W), 0.U ) & ~Mux(pegMaxFiniteMagOut, (BigInt(1)<<(outExpWidth - 1)).U((outExpWidth + 1).W), 0.U ) & ~Mux(notNaN_isInfOut, (BigInt(1)<<(outExpWidth - 2)).U((outExpWidth + 1).W), 0.U )) | Mux(pegMinNonzeroMagOut, outMinNonzeroExp.U((outExpWidth + 1).W), 0.U ) | Mux(pegMaxFiniteMagOut, outMaxFiniteExp.U((outExpWidth + 1).W), 0.U ) | Mux(notNaN_isInfOut, outInfExp.U((outExpWidth + 1).W), 0.U) | Mux(isNaNOut, outNaNExp.U((outExpWidth + 1).W), 0.U) val fractOut = Mux(isNaNOut || io.in.isZero || common_totalUnderflow, Mux(isNaNOut, (BigInt(1)<<(outSigWidth - 2)).U, 0.U), common_fractOut ) | Fill(outSigWidth - 1, pegMaxFiniteMagOut) io.out := signOut ## expOut ## fractOut io.exceptionFlags := io.invalidExc ## io.infiniteExc ## overflow ## underflow ## inexact } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class RoundRawFNToRecFN(expWidth: Int, sigWidth: Int, options: Int) extends RawModule { override def desiredName = s"RoundRawFNToRecFN_e${expWidth}_s${sigWidth}" val io = IO(new Bundle { val invalidExc = Input(Bool()) // overrides 'infiniteExc' and 'in' val infiniteExc = Input(Bool()) // overrides 'in' except for 'in.sign' val in = Input(new RawFloat(expWidth, sigWidth + 2)) val roundingMode = Input(UInt(3.W)) val detectTininess = Input(UInt(1.W)) val out = Output(Bits((expWidth + sigWidth + 1).W)) val exceptionFlags = Output(Bits(5.W)) }) val roundAnyRawFNToRecFN = Module( new RoundAnyRawFNToRecFN( expWidth, sigWidth + 2, expWidth, sigWidth, options)) roundAnyRawFNToRecFN.io.invalidExc := io.invalidExc roundAnyRawFNToRecFN.io.infiniteExc := io.infiniteExc roundAnyRawFNToRecFN.io.in := io.in roundAnyRawFNToRecFN.io.roundingMode := io.roundingMode roundAnyRawFNToRecFN.io.detectTininess := io.detectTininess io.out := roundAnyRawFNToRecFN.io.out io.exceptionFlags := roundAnyRawFNToRecFN.io.exceptionFlags }
module RoundAnyRawFNToRecFN_ie8_is26_oe8_os24_115( // @[RoundAnyRawFNToRecFN.scala:48:5] input io_invalidExc, // @[RoundAnyRawFNToRecFN.scala:58:16] input io_in_isNaN, // @[RoundAnyRawFNToRecFN.scala:58:16] input io_in_isInf, // @[RoundAnyRawFNToRecFN.scala:58:16] input io_in_isZero, // @[RoundAnyRawFNToRecFN.scala:58:16] input io_in_sign, // @[RoundAnyRawFNToRecFN.scala:58:16] input [9:0] io_in_sExp, // @[RoundAnyRawFNToRecFN.scala:58:16] input [26:0] io_in_sig, // @[RoundAnyRawFNToRecFN.scala:58:16] output [32:0] io_out, // @[RoundAnyRawFNToRecFN.scala:58:16] output [4:0] io_exceptionFlags // @[RoundAnyRawFNToRecFN.scala:58:16] ); wire io_invalidExc_0 = io_invalidExc; // @[RoundAnyRawFNToRecFN.scala:48:5] wire io_in_isNaN_0 = io_in_isNaN; // @[RoundAnyRawFNToRecFN.scala:48:5] wire io_in_isInf_0 = io_in_isInf; // @[RoundAnyRawFNToRecFN.scala:48:5] wire io_in_isZero_0 = io_in_isZero; // @[RoundAnyRawFNToRecFN.scala:48:5] wire io_in_sign_0 = io_in_sign; // @[RoundAnyRawFNToRecFN.scala:48:5] wire [9:0] io_in_sExp_0 = io_in_sExp; // @[RoundAnyRawFNToRecFN.scala:48:5] wire [26:0] io_in_sig_0 = io_in_sig; // @[RoundAnyRawFNToRecFN.scala:48:5] wire [8:0] _expOut_T_4 = 9'h194; // @[RoundAnyRawFNToRecFN.scala:258:19] wire [15:0] _roundMask_T_5 = 16'hFF; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_4 = 16'hFF00; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_10 = 16'hFF00; // @[primitives.scala:77:20] wire [11:0] _roundMask_T_13 = 12'hFF; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_14 = 16'hFF0; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_15 = 16'hF0F; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_20 = 16'hF0F0; // @[primitives.scala:77:20] wire [13:0] _roundMask_T_23 = 14'hF0F; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_24 = 16'h3C3C; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_25 = 16'h3333; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_30 = 16'hCCCC; // @[primitives.scala:77:20] wire [14:0] _roundMask_T_33 = 15'h3333; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_34 = 16'h6666; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_35 = 16'h5555; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_40 = 16'hAAAA; // @[primitives.scala:77:20] wire [25:0] _roundedSig_T_15 = 26'h0; // @[RoundAnyRawFNToRecFN.scala:181:24] wire [8:0] _expOut_T_6 = 9'h1FF; // @[RoundAnyRawFNToRecFN.scala:257:14, :261:14] wire [8:0] _expOut_T_9 = 9'h1FF; // @[RoundAnyRawFNToRecFN.scala:257:14, :261:14] wire [8:0] _expOut_T_5 = 9'h0; // @[RoundAnyRawFNToRecFN.scala:257:18] wire [8:0] _expOut_T_8 = 9'h0; // @[RoundAnyRawFNToRecFN.scala:261:18] wire [8:0] _expOut_T_14 = 9'h0; // @[RoundAnyRawFNToRecFN.scala:269:16] wire [8:0] _expOut_T_16 = 9'h0; // @[RoundAnyRawFNToRecFN.scala:273:16] wire [22:0] _fractOut_T_4 = 23'h0; // @[RoundAnyRawFNToRecFN.scala:284:13] wire io_detectTininess = 1'h1; // @[RoundAnyRawFNToRecFN.scala:48:5] wire roundingMode_near_even = 1'h1; // @[RoundAnyRawFNToRecFN.scala:90:53] wire _roundIncr_T = 1'h1; // @[RoundAnyRawFNToRecFN.scala:169:38] wire _unboundedRange_roundIncr_T = 1'h1; // @[RoundAnyRawFNToRecFN.scala:207:38] wire _common_underflow_T_7 = 1'h1; // @[RoundAnyRawFNToRecFN.scala:222:49] wire _overflow_roundMagUp_T = 1'h1; // @[RoundAnyRawFNToRecFN.scala:243:32] wire overflow_roundMagUp = 1'h1; // @[RoundAnyRawFNToRecFN.scala:243:60] wire [2:0] io_roundingMode = 3'h0; // @[RoundAnyRawFNToRecFN.scala:48:5] wire io_infiniteExc = 1'h0; // @[RoundAnyRawFNToRecFN.scala:48:5] wire roundingMode_minMag = 1'h0; // @[RoundAnyRawFNToRecFN.scala:91:53] wire roundingMode_min = 1'h0; // @[RoundAnyRawFNToRecFN.scala:92:53] wire roundingMode_max = 1'h0; // @[RoundAnyRawFNToRecFN.scala:93:53] wire roundingMode_near_maxMag = 1'h0; // @[RoundAnyRawFNToRecFN.scala:94:53] wire roundingMode_odd = 1'h0; // @[RoundAnyRawFNToRecFN.scala:95:53] wire _roundMagUp_T = 1'h0; // @[RoundAnyRawFNToRecFN.scala:98:27] wire _roundMagUp_T_2 = 1'h0; // @[RoundAnyRawFNToRecFN.scala:98:63] wire roundMagUp = 1'h0; // @[RoundAnyRawFNToRecFN.scala:98:42] wire _roundIncr_T_2 = 1'h0; // @[RoundAnyRawFNToRecFN.scala:171:29] wire _roundedSig_T_13 = 1'h0; // @[RoundAnyRawFNToRecFN.scala:181:42] wire _unboundedRange_roundIncr_T_2 = 1'h0; // @[RoundAnyRawFNToRecFN.scala:209:29] wire _pegMinNonzeroMagOut_T_1 = 1'h0; // @[RoundAnyRawFNToRecFN.scala:245:60] wire pegMinNonzeroMagOut = 1'h0; // @[RoundAnyRawFNToRecFN.scala:245:45] wire _pegMaxFiniteMagOut_T = 1'h0; // @[RoundAnyRawFNToRecFN.scala:246:42] wire pegMaxFiniteMagOut = 1'h0; // @[RoundAnyRawFNToRecFN.scala:246:39] wire notNaN_isSpecialInfOut = io_in_isInf_0; // @[RoundAnyRawFNToRecFN.scala:48:5, :236:49] wire [26:0] adjustedSig = io_in_sig_0; // @[RoundAnyRawFNToRecFN.scala:48:5, :114:22] wire [32:0] _io_out_T_1; // @[RoundAnyRawFNToRecFN.scala:286:33] wire [4:0] _io_exceptionFlags_T_3; // @[RoundAnyRawFNToRecFN.scala:288:66] wire [32:0] io_out_0; // @[RoundAnyRawFNToRecFN.scala:48:5] wire [4:0] io_exceptionFlags_0; // @[RoundAnyRawFNToRecFN.scala:48:5] wire _roundMagUp_T_1 = ~io_in_sign_0; // @[RoundAnyRawFNToRecFN.scala:48:5, :98:66] wire doShiftSigDown1 = adjustedSig[26]; // @[RoundAnyRawFNToRecFN.scala:114:22, :120:57] wire [8:0] _common_expOut_T; // @[RoundAnyRawFNToRecFN.scala:187:37] wire [8:0] common_expOut; // @[RoundAnyRawFNToRecFN.scala:122:31] wire [22:0] _common_fractOut_T_2; // @[RoundAnyRawFNToRecFN.scala:189:16] wire [22:0] common_fractOut; // @[RoundAnyRawFNToRecFN.scala:123:31] wire _common_overflow_T_1; // @[RoundAnyRawFNToRecFN.scala:196:50] wire common_overflow; // @[RoundAnyRawFNToRecFN.scala:124:37] wire _common_totalUnderflow_T; // @[RoundAnyRawFNToRecFN.scala:200:31] wire common_totalUnderflow; // @[RoundAnyRawFNToRecFN.scala:125:37] wire _common_underflow_T_18; // @[RoundAnyRawFNToRecFN.scala:217:40] wire common_underflow; // @[RoundAnyRawFNToRecFN.scala:126:37] wire _common_inexact_T; // @[RoundAnyRawFNToRecFN.scala:230:49] wire common_inexact; // @[RoundAnyRawFNToRecFN.scala:127:37] wire [8:0] _roundMask_T = io_in_sExp_0[8:0]; // @[RoundAnyRawFNToRecFN.scala:48:5, :156:37] wire [8:0] _roundMask_T_1 = ~_roundMask_T; // @[primitives.scala:52:21] wire roundMask_msb = _roundMask_T_1[8]; // @[primitives.scala:52:21, :58:25] wire [7:0] roundMask_lsbs = _roundMask_T_1[7:0]; // @[primitives.scala:52:21, :59:26] wire roundMask_msb_1 = roundMask_lsbs[7]; // @[primitives.scala:58:25, :59:26] wire [6:0] roundMask_lsbs_1 = roundMask_lsbs[6:0]; // @[primitives.scala:59:26] wire roundMask_msb_2 = roundMask_lsbs_1[6]; // @[primitives.scala:58:25, :59:26] wire roundMask_msb_3 = roundMask_lsbs_1[6]; // @[primitives.scala:58:25, :59:26] wire [5:0] roundMask_lsbs_2 = roundMask_lsbs_1[5:0]; // @[primitives.scala:59:26] wire [5:0] roundMask_lsbs_3 = roundMask_lsbs_1[5:0]; // @[primitives.scala:59:26] wire [64:0] roundMask_shift = $signed(65'sh10000000000000000 >>> roundMask_lsbs_2); // @[primitives.scala:59:26, :76:56] wire [21:0] _roundMask_T_2 = roundMask_shift[63:42]; // @[primitives.scala:76:56, :78:22] wire [15:0] _roundMask_T_3 = _roundMask_T_2[15:0]; // @[primitives.scala:77:20, :78:22] wire [7:0] _roundMask_T_6 = _roundMask_T_3[15:8]; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_7 = {8'h0, _roundMask_T_6}; // @[primitives.scala:77:20] wire [7:0] _roundMask_T_8 = _roundMask_T_3[7:0]; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_9 = {_roundMask_T_8, 8'h0}; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_11 = _roundMask_T_9 & 16'hFF00; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_12 = _roundMask_T_7 | _roundMask_T_11; // @[primitives.scala:77:20] wire [11:0] _roundMask_T_16 = _roundMask_T_12[15:4]; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_17 = {4'h0, _roundMask_T_16 & 12'hF0F}; // @[primitives.scala:77:20] wire [11:0] _roundMask_T_18 = _roundMask_T_12[11:0]; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_19 = {_roundMask_T_18, 4'h0}; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_21 = _roundMask_T_19 & 16'hF0F0; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_22 = _roundMask_T_17 | _roundMask_T_21; // @[primitives.scala:77:20] wire [13:0] _roundMask_T_26 = _roundMask_T_22[15:2]; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_27 = {2'h0, _roundMask_T_26 & 14'h3333}; // @[primitives.scala:77:20] wire [13:0] _roundMask_T_28 = _roundMask_T_22[13:0]; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_29 = {_roundMask_T_28, 2'h0}; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_31 = _roundMask_T_29 & 16'hCCCC; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_32 = _roundMask_T_27 | _roundMask_T_31; // @[primitives.scala:77:20] wire [14:0] _roundMask_T_36 = _roundMask_T_32[15:1]; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_37 = {1'h0, _roundMask_T_36 & 15'h5555}; // @[primitives.scala:77:20] wire [14:0] _roundMask_T_38 = _roundMask_T_32[14:0]; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_39 = {_roundMask_T_38, 1'h0}; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_41 = _roundMask_T_39 & 16'hAAAA; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_42 = _roundMask_T_37 | _roundMask_T_41; // @[primitives.scala:77:20] wire [5:0] _roundMask_T_43 = _roundMask_T_2[21:16]; // @[primitives.scala:77:20, :78:22] wire [3:0] _roundMask_T_44 = _roundMask_T_43[3:0]; // @[primitives.scala:77:20] wire [1:0] _roundMask_T_45 = _roundMask_T_44[1:0]; // @[primitives.scala:77:20] wire _roundMask_T_46 = _roundMask_T_45[0]; // @[primitives.scala:77:20] wire _roundMask_T_47 = _roundMask_T_45[1]; // @[primitives.scala:77:20] wire [1:0] _roundMask_T_48 = {_roundMask_T_46, _roundMask_T_47}; // @[primitives.scala:77:20] wire [1:0] _roundMask_T_49 = _roundMask_T_44[3:2]; // @[primitives.scala:77:20] wire _roundMask_T_50 = _roundMask_T_49[0]; // @[primitives.scala:77:20] wire _roundMask_T_51 = _roundMask_T_49[1]; // @[primitives.scala:77:20] wire [1:0] _roundMask_T_52 = {_roundMask_T_50, _roundMask_T_51}; // @[primitives.scala:77:20] wire [3:0] _roundMask_T_53 = {_roundMask_T_48, _roundMask_T_52}; // @[primitives.scala:77:20] wire [1:0] _roundMask_T_54 = _roundMask_T_43[5:4]; // @[primitives.scala:77:20] wire _roundMask_T_55 = _roundMask_T_54[0]; // @[primitives.scala:77:20] wire _roundMask_T_56 = _roundMask_T_54[1]; // @[primitives.scala:77:20] wire [1:0] _roundMask_T_57 = {_roundMask_T_55, _roundMask_T_56}; // @[primitives.scala:77:20] wire [5:0] _roundMask_T_58 = {_roundMask_T_53, _roundMask_T_57}; // @[primitives.scala:77:20] wire [21:0] _roundMask_T_59 = {_roundMask_T_42, _roundMask_T_58}; // @[primitives.scala:77:20] wire [21:0] _roundMask_T_60 = ~_roundMask_T_59; // @[primitives.scala:73:32, :77:20] wire [21:0] _roundMask_T_61 = roundMask_msb_2 ? 22'h0 : _roundMask_T_60; // @[primitives.scala:58:25, :73:{21,32}] wire [21:0] _roundMask_T_62 = ~_roundMask_T_61; // @[primitives.scala:73:{17,21}] wire [24:0] _roundMask_T_63 = {_roundMask_T_62, 3'h7}; // @[primitives.scala:68:58, :73:17] wire [64:0] roundMask_shift_1 = $signed(65'sh10000000000000000 >>> roundMask_lsbs_3); // @[primitives.scala:59:26, :76:56] wire [2:0] _roundMask_T_64 = roundMask_shift_1[2:0]; // @[primitives.scala:76:56, :78:22] wire [1:0] _roundMask_T_65 = _roundMask_T_64[1:0]; // @[primitives.scala:77:20, :78:22] wire _roundMask_T_66 = _roundMask_T_65[0]; // @[primitives.scala:77:20] wire _roundMask_T_67 = _roundMask_T_65[1]; // @[primitives.scala:77:20] wire [1:0] _roundMask_T_68 = {_roundMask_T_66, _roundMask_T_67}; // @[primitives.scala:77:20] wire _roundMask_T_69 = _roundMask_T_64[2]; // @[primitives.scala:77:20, :78:22] wire [2:0] _roundMask_T_70 = {_roundMask_T_68, _roundMask_T_69}; // @[primitives.scala:77:20] wire [2:0] _roundMask_T_71 = roundMask_msb_3 ? _roundMask_T_70 : 3'h0; // @[primitives.scala:58:25, :62:24, :77:20] wire [24:0] _roundMask_T_72 = roundMask_msb_1 ? _roundMask_T_63 : {22'h0, _roundMask_T_71}; // @[primitives.scala:58:25, :62:24, :67:24, :68:58] wire [24:0] _roundMask_T_73 = roundMask_msb ? _roundMask_T_72 : 25'h0; // @[primitives.scala:58:25, :62:24, :67:24] wire [24:0] _roundMask_T_74 = {_roundMask_T_73[24:1], _roundMask_T_73[0] | doShiftSigDown1}; // @[primitives.scala:62:24] wire [26:0] roundMask = {_roundMask_T_74, 2'h3}; // @[RoundAnyRawFNToRecFN.scala:159:{23,42}] wire [27:0] _shiftedRoundMask_T = {1'h0, roundMask}; // @[RoundAnyRawFNToRecFN.scala:159:42, :162:41] wire [26:0] shiftedRoundMask = _shiftedRoundMask_T[27:1]; // @[RoundAnyRawFNToRecFN.scala:162:{41,53}] wire [26:0] _roundPosMask_T = ~shiftedRoundMask; // @[RoundAnyRawFNToRecFN.scala:162:53, :163:28] wire [26:0] roundPosMask = _roundPosMask_T & roundMask; // @[RoundAnyRawFNToRecFN.scala:159:42, :163:{28,46}] wire [26:0] _roundPosBit_T = adjustedSig & roundPosMask; // @[RoundAnyRawFNToRecFN.scala:114:22, :163:46, :164:40] wire roundPosBit = |_roundPosBit_T; // @[RoundAnyRawFNToRecFN.scala:164:{40,56}] wire _roundIncr_T_1 = roundPosBit; // @[RoundAnyRawFNToRecFN.scala:164:56, :169:67] wire _roundedSig_T_3 = roundPosBit; // @[RoundAnyRawFNToRecFN.scala:164:56, :175:49] wire [26:0] _anyRoundExtra_T = adjustedSig & shiftedRoundMask; // @[RoundAnyRawFNToRecFN.scala:114:22, :162:53, :165:42] wire anyRoundExtra = |_anyRoundExtra_T; // @[RoundAnyRawFNToRecFN.scala:165:{42,62}] wire anyRound = roundPosBit | anyRoundExtra; // @[RoundAnyRawFNToRecFN.scala:164:56, :165:62, :166:36] wire roundIncr = _roundIncr_T_1; // @[RoundAnyRawFNToRecFN.scala:169:67, :170:31] wire [26:0] _roundedSig_T = adjustedSig | roundMask; // @[RoundAnyRawFNToRecFN.scala:114:22, :159:42, :174:32] wire [24:0] _roundedSig_T_1 = _roundedSig_T[26:2]; // @[RoundAnyRawFNToRecFN.scala:174:{32,44}] wire [25:0] _roundedSig_T_2 = {1'h0, _roundedSig_T_1} + 26'h1; // @[RoundAnyRawFNToRecFN.scala:174:{44,49}] wire _roundedSig_T_4 = ~anyRoundExtra; // @[RoundAnyRawFNToRecFN.scala:165:62, :176:30] wire _roundedSig_T_5 = _roundedSig_T_3 & _roundedSig_T_4; // @[RoundAnyRawFNToRecFN.scala:175:{49,64}, :176:30] wire [25:0] _roundedSig_T_6 = roundMask[26:1]; // @[RoundAnyRawFNToRecFN.scala:159:42, :177:35] wire [25:0] _roundedSig_T_7 = _roundedSig_T_5 ? _roundedSig_T_6 : 26'h0; // @[RoundAnyRawFNToRecFN.scala:175:{25,64}, :177:35] wire [25:0] _roundedSig_T_8 = ~_roundedSig_T_7; // @[RoundAnyRawFNToRecFN.scala:175:{21,25}] wire [25:0] _roundedSig_T_9 = _roundedSig_T_2 & _roundedSig_T_8; // @[RoundAnyRawFNToRecFN.scala:174:{49,57}, :175:21] wire [26:0] _roundedSig_T_10 = ~roundMask; // @[RoundAnyRawFNToRecFN.scala:159:42, :180:32] wire [26:0] _roundedSig_T_11 = adjustedSig & _roundedSig_T_10; // @[RoundAnyRawFNToRecFN.scala:114:22, :180:{30,32}] wire [24:0] _roundedSig_T_12 = _roundedSig_T_11[26:2]; // @[RoundAnyRawFNToRecFN.scala:180:{30,43}] wire [25:0] _roundedSig_T_14 = roundPosMask[26:1]; // @[RoundAnyRawFNToRecFN.scala:163:46, :181:67] wire [25:0] _roundedSig_T_16 = {1'h0, _roundedSig_T_12}; // @[RoundAnyRawFNToRecFN.scala:180:{43,47}] wire [25:0] roundedSig = roundIncr ? _roundedSig_T_9 : _roundedSig_T_16; // @[RoundAnyRawFNToRecFN.scala:170:31, :173:16, :174:57, :180:47] wire [1:0] _sRoundedExp_T = roundedSig[25:24]; // @[RoundAnyRawFNToRecFN.scala:173:16, :185:54] wire [2:0] _sRoundedExp_T_1 = {1'h0, _sRoundedExp_T}; // @[RoundAnyRawFNToRecFN.scala:185:{54,76}] wire [10:0] sRoundedExp = {io_in_sExp_0[9], io_in_sExp_0} + {{8{_sRoundedExp_T_1[2]}}, _sRoundedExp_T_1}; // @[RoundAnyRawFNToRecFN.scala:48:5, :185:{40,76}] assign _common_expOut_T = sRoundedExp[8:0]; // @[RoundAnyRawFNToRecFN.scala:185:40, :187:37] assign common_expOut = _common_expOut_T; // @[RoundAnyRawFNToRecFN.scala:122:31, :187:37] wire [22:0] _common_fractOut_T = roundedSig[23:1]; // @[RoundAnyRawFNToRecFN.scala:173:16, :190:27] wire [22:0] _common_fractOut_T_1 = roundedSig[22:0]; // @[RoundAnyRawFNToRecFN.scala:173:16, :191:27] assign _common_fractOut_T_2 = doShiftSigDown1 ? _common_fractOut_T : _common_fractOut_T_1; // @[RoundAnyRawFNToRecFN.scala:120:57, :189:16, :190:27, :191:27] assign common_fractOut = _common_fractOut_T_2; // @[RoundAnyRawFNToRecFN.scala:123:31, :189:16] wire [3:0] _common_overflow_T = sRoundedExp[10:7]; // @[RoundAnyRawFNToRecFN.scala:185:40, :196:30] assign _common_overflow_T_1 = $signed(_common_overflow_T) > 4'sh2; // @[RoundAnyRawFNToRecFN.scala:196:{30,50}] assign common_overflow = _common_overflow_T_1; // @[RoundAnyRawFNToRecFN.scala:124:37, :196:50] assign _common_totalUnderflow_T = $signed(sRoundedExp) < 11'sh6B; // @[RoundAnyRawFNToRecFN.scala:185:40, :200:31] assign common_totalUnderflow = _common_totalUnderflow_T; // @[RoundAnyRawFNToRecFN.scala:125:37, :200:31] wire _unboundedRange_roundPosBit_T = adjustedSig[2]; // @[RoundAnyRawFNToRecFN.scala:114:22, :203:45] wire _unboundedRange_anyRound_T = adjustedSig[2]; // @[RoundAnyRawFNToRecFN.scala:114:22, :203:45, :205:44] wire _unboundedRange_roundPosBit_T_1 = adjustedSig[1]; // @[RoundAnyRawFNToRecFN.scala:114:22, :203:61] wire unboundedRange_roundPosBit = doShiftSigDown1 ? _unboundedRange_roundPosBit_T : _unboundedRange_roundPosBit_T_1; // @[RoundAnyRawFNToRecFN.scala:120:57, :203:{16,45,61}] wire _unboundedRange_roundIncr_T_1 = unboundedRange_roundPosBit; // @[RoundAnyRawFNToRecFN.scala:203:16, :207:67] wire _unboundedRange_anyRound_T_1 = doShiftSigDown1 & _unboundedRange_anyRound_T; // @[RoundAnyRawFNToRecFN.scala:120:57, :205:{30,44}] wire [1:0] _unboundedRange_anyRound_T_2 = adjustedSig[1:0]; // @[RoundAnyRawFNToRecFN.scala:114:22, :205:63] wire _unboundedRange_anyRound_T_3 = |_unboundedRange_anyRound_T_2; // @[RoundAnyRawFNToRecFN.scala:205:{63,70}] wire unboundedRange_anyRound = _unboundedRange_anyRound_T_1 | _unboundedRange_anyRound_T_3; // @[RoundAnyRawFNToRecFN.scala:205:{30,49,70}] wire unboundedRange_roundIncr = _unboundedRange_roundIncr_T_1; // @[RoundAnyRawFNToRecFN.scala:207:67, :208:46] wire _roundCarry_T = roundedSig[25]; // @[RoundAnyRawFNToRecFN.scala:173:16, :212:27] wire _roundCarry_T_1 = roundedSig[24]; // @[RoundAnyRawFNToRecFN.scala:173:16, :213:27] wire roundCarry = doShiftSigDown1 ? _roundCarry_T : _roundCarry_T_1; // @[RoundAnyRawFNToRecFN.scala:120:57, :211:16, :212:27, :213:27] wire [1:0] _common_underflow_T = io_in_sExp_0[9:8]; // @[RoundAnyRawFNToRecFN.scala:48:5, :220:49] wire _common_underflow_T_1 = _common_underflow_T != 2'h1; // @[RoundAnyRawFNToRecFN.scala:220:{49,64}] wire _common_underflow_T_2 = anyRound & _common_underflow_T_1; // @[RoundAnyRawFNToRecFN.scala:166:36, :220:{32,64}] wire _common_underflow_T_3 = roundMask[3]; // @[RoundAnyRawFNToRecFN.scala:159:42, :221:57] wire _common_underflow_T_9 = roundMask[3]; // @[RoundAnyRawFNToRecFN.scala:159:42, :221:57, :225:49] wire _common_underflow_T_4 = roundMask[2]; // @[RoundAnyRawFNToRecFN.scala:159:42, :221:71] wire _common_underflow_T_5 = doShiftSigDown1 ? _common_underflow_T_3 : _common_underflow_T_4; // @[RoundAnyRawFNToRecFN.scala:120:57, :221:{30,57,71}] wire _common_underflow_T_6 = _common_underflow_T_2 & _common_underflow_T_5; // @[RoundAnyRawFNToRecFN.scala:220:{32,72}, :221:30] wire _common_underflow_T_8 = roundMask[4]; // @[RoundAnyRawFNToRecFN.scala:159:42, :224:49] wire _common_underflow_T_10 = doShiftSigDown1 ? _common_underflow_T_8 : _common_underflow_T_9; // @[RoundAnyRawFNToRecFN.scala:120:57, :223:39, :224:49, :225:49] wire _common_underflow_T_11 = ~_common_underflow_T_10; // @[RoundAnyRawFNToRecFN.scala:223:{34,39}] wire _common_underflow_T_12 = _common_underflow_T_11; // @[RoundAnyRawFNToRecFN.scala:222:77, :223:34] wire _common_underflow_T_13 = _common_underflow_T_12 & roundCarry; // @[RoundAnyRawFNToRecFN.scala:211:16, :222:77, :226:38] wire _common_underflow_T_14 = _common_underflow_T_13 & roundPosBit; // @[RoundAnyRawFNToRecFN.scala:164:56, :226:38, :227:45] wire _common_underflow_T_15 = _common_underflow_T_14 & unboundedRange_roundIncr; // @[RoundAnyRawFNToRecFN.scala:208:46, :227:{45,60}] wire _common_underflow_T_16 = ~_common_underflow_T_15; // @[RoundAnyRawFNToRecFN.scala:222:27, :227:60] wire _common_underflow_T_17 = _common_underflow_T_6 & _common_underflow_T_16; // @[RoundAnyRawFNToRecFN.scala:220:72, :221:76, :222:27] assign _common_underflow_T_18 = common_totalUnderflow | _common_underflow_T_17; // @[RoundAnyRawFNToRecFN.scala:125:37, :217:40, :221:76] assign common_underflow = _common_underflow_T_18; // @[RoundAnyRawFNToRecFN.scala:126:37, :217:40] assign _common_inexact_T = common_totalUnderflow | anyRound; // @[RoundAnyRawFNToRecFN.scala:125:37, :166:36, :230:49] assign common_inexact = _common_inexact_T; // @[RoundAnyRawFNToRecFN.scala:127:37, :230:49] wire isNaNOut = io_invalidExc_0 | io_in_isNaN_0; // @[RoundAnyRawFNToRecFN.scala:48:5, :235:34] wire _commonCase_T = ~isNaNOut; // @[RoundAnyRawFNToRecFN.scala:235:34, :237:22] wire _commonCase_T_1 = ~notNaN_isSpecialInfOut; // @[RoundAnyRawFNToRecFN.scala:236:49, :237:36] wire _commonCase_T_2 = _commonCase_T & _commonCase_T_1; // @[RoundAnyRawFNToRecFN.scala:237:{22,33,36}] wire _commonCase_T_3 = ~io_in_isZero_0; // @[RoundAnyRawFNToRecFN.scala:48:5, :237:64] wire commonCase = _commonCase_T_2 & _commonCase_T_3; // @[RoundAnyRawFNToRecFN.scala:237:{33,61,64}] wire overflow = commonCase & common_overflow; // @[RoundAnyRawFNToRecFN.scala:124:37, :237:61, :238:32] wire _notNaN_isInfOut_T = overflow; // @[RoundAnyRawFNToRecFN.scala:238:32, :248:45] wire underflow = commonCase & common_underflow; // @[RoundAnyRawFNToRecFN.scala:126:37, :237:61, :239:32] wire _inexact_T = commonCase & common_inexact; // @[RoundAnyRawFNToRecFN.scala:127:37, :237:61, :240:43] wire inexact = overflow | _inexact_T; // @[RoundAnyRawFNToRecFN.scala:238:32, :240:{28,43}] wire _pegMinNonzeroMagOut_T = commonCase & common_totalUnderflow; // @[RoundAnyRawFNToRecFN.scala:125:37, :237:61, :245:20] wire notNaN_isInfOut = notNaN_isSpecialInfOut | _notNaN_isInfOut_T; // @[RoundAnyRawFNToRecFN.scala:236:49, :248:{32,45}] wire signOut = ~isNaNOut & io_in_sign_0; // @[RoundAnyRawFNToRecFN.scala:48:5, :235:34, :250:22] wire _expOut_T = io_in_isZero_0 | common_totalUnderflow; // @[RoundAnyRawFNToRecFN.scala:48:5, :125:37, :253:32] wire [8:0] _expOut_T_1 = _expOut_T ? 9'h1C0 : 9'h0; // @[RoundAnyRawFNToRecFN.scala:253:{18,32}] wire [8:0] _expOut_T_2 = ~_expOut_T_1; // @[RoundAnyRawFNToRecFN.scala:253:{14,18}] wire [8:0] _expOut_T_3 = common_expOut & _expOut_T_2; // @[RoundAnyRawFNToRecFN.scala:122:31, :252:24, :253:14] wire [8:0] _expOut_T_7 = _expOut_T_3; // @[RoundAnyRawFNToRecFN.scala:252:24, :256:17] wire [8:0] _expOut_T_10 = _expOut_T_7; // @[RoundAnyRawFNToRecFN.scala:256:17, :260:17] wire [8:0] _expOut_T_11 = {2'h0, notNaN_isInfOut, 6'h0}; // @[RoundAnyRawFNToRecFN.scala:248:32, :265:18] wire [8:0] _expOut_T_12 = ~_expOut_T_11; // @[RoundAnyRawFNToRecFN.scala:265:{14,18}] wire [8:0] _expOut_T_13 = _expOut_T_10 & _expOut_T_12; // @[RoundAnyRawFNToRecFN.scala:260:17, :264:17, :265:14] wire [8:0] _expOut_T_15 = _expOut_T_13; // @[RoundAnyRawFNToRecFN.scala:264:17, :268:18] wire [8:0] _expOut_T_17 = _expOut_T_15; // @[RoundAnyRawFNToRecFN.scala:268:18, :272:15] wire [8:0] _expOut_T_18 = notNaN_isInfOut ? 9'h180 : 9'h0; // @[RoundAnyRawFNToRecFN.scala:248:32, :277:16] wire [8:0] _expOut_T_19 = _expOut_T_17 | _expOut_T_18; // @[RoundAnyRawFNToRecFN.scala:272:15, :276:15, :277:16] wire [8:0] _expOut_T_20 = isNaNOut ? 9'h1C0 : 9'h0; // @[RoundAnyRawFNToRecFN.scala:235:34, :278:16] wire [8:0] expOut = _expOut_T_19 | _expOut_T_20; // @[RoundAnyRawFNToRecFN.scala:276:15, :277:73, :278:16] wire _fractOut_T = isNaNOut | io_in_isZero_0; // @[RoundAnyRawFNToRecFN.scala:48:5, :235:34, :280:22] wire _fractOut_T_1 = _fractOut_T | common_totalUnderflow; // @[RoundAnyRawFNToRecFN.scala:125:37, :280:{22,38}] wire [22:0] _fractOut_T_2 = {isNaNOut, 22'h0}; // @[RoundAnyRawFNToRecFN.scala:235:34, :281:16] wire [22:0] _fractOut_T_3 = _fractOut_T_1 ? _fractOut_T_2 : common_fractOut; // @[RoundAnyRawFNToRecFN.scala:123:31, :280:{12,38}, :281:16] wire [22:0] fractOut = _fractOut_T_3; // @[RoundAnyRawFNToRecFN.scala:280:12, :283:11] wire [9:0] _io_out_T = {signOut, expOut}; // @[RoundAnyRawFNToRecFN.scala:250:22, :277:73, :286:23] assign _io_out_T_1 = {_io_out_T, fractOut}; // @[RoundAnyRawFNToRecFN.scala:283:11, :286:{23,33}] assign io_out_0 = _io_out_T_1; // @[RoundAnyRawFNToRecFN.scala:48:5, :286:33] wire [1:0] _io_exceptionFlags_T = {io_invalidExc_0, 1'h0}; // @[RoundAnyRawFNToRecFN.scala:48:5, :288:23] wire [2:0] _io_exceptionFlags_T_1 = {_io_exceptionFlags_T, overflow}; // @[RoundAnyRawFNToRecFN.scala:238:32, :288:{23,41}] wire [3:0] _io_exceptionFlags_T_2 = {_io_exceptionFlags_T_1, underflow}; // @[RoundAnyRawFNToRecFN.scala:239:32, :288:{41,53}] assign _io_exceptionFlags_T_3 = {_io_exceptionFlags_T_2, inexact}; // @[RoundAnyRawFNToRecFN.scala:240:28, :288:{53,66}] assign io_exceptionFlags_0 = _io_exceptionFlags_T_3; // @[RoundAnyRawFNToRecFN.scala:48:5, :288:66] assign io_out = io_out_0; // @[RoundAnyRawFNToRecFN.scala:48:5] assign io_exceptionFlags = io_exceptionFlags_0; // @[RoundAnyRawFNToRecFN.scala:48:5] endmodule
Generate the Verilog code corresponding to the following Chisel files. File HellaQueue.scala: // See LICENSE.Berkeley for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ class HellaFlowQueue[T <: Data](val entries: Int)(data: => T) extends Module { val io = IO(new QueueIO(data, entries)) require(entries > 1) val do_flow = Wire(Bool()) val do_enq = io.enq.fire && !do_flow val do_deq = io.deq.fire && !do_flow val maybe_full = RegInit(false.B) val enq_ptr = Counter(do_enq, entries)._1 val (deq_ptr, deq_done) = Counter(do_deq, entries) when (do_enq =/= do_deq) { maybe_full := do_enq } val ptr_match = enq_ptr === deq_ptr val empty = ptr_match && !maybe_full val full = ptr_match && maybe_full val atLeastTwo = full || enq_ptr - deq_ptr >= 2.U do_flow := empty && io.deq.ready val ram = SyncReadMem(entries, data) when (do_enq) { ram.write(enq_ptr, io.enq.bits) } // BUG! does not hold the output of the SRAM when !ready // ... However, HellaQueue is correct due to the pipe stage val ren = io.deq.ready && (atLeastTwo || !io.deq.valid && !empty) val raddr = Mux(io.deq.valid, Mux(deq_done, 0.U, deq_ptr + 1.U), deq_ptr) val ram_out_valid = RegNext(ren) io.deq.valid := Mux(empty, io.enq.valid, ram_out_valid) io.enq.ready := !full io.deq.bits := Mux(empty, io.enq.bits, ram.read(raddr, ren)) // Count was never correctly set. To keep the same behavior across chisel3 upgrade, we are explicitly setting it to DontCare io.count := DontCare } class HellaQueue[T <: Data](val entries: Int)(data: => T) extends Module { val io = IO(new QueueIO(data, entries)) val fq = Module(new HellaFlowQueue(entries)(data)) fq.io.enq <> io.enq io.deq <> Queue(fq.io.deq, 1, pipe = true) io.count := fq.io.count } object HellaQueue { def apply[T <: Data](enq: DecoupledIO[T], entries: Int) = { val q = Module((new HellaQueue(entries)) { enq.bits }) q.io.enq.valid := enq.valid // not using <> so that override is allowed q.io.enq.bits := enq.bits enq.ready := q.io.enq.ready q.io.deq } }
module HellaFlowQueue( // @[HellaQueue.scala:8:7] input clock, // @[HellaQueue.scala:8:7] input reset, // @[HellaQueue.scala:8:7] output io_enq_ready, // @[HellaQueue.scala:9:14] input io_enq_valid, // @[HellaQueue.scala:9:14] input [63:0] io_enq_bits, // @[HellaQueue.scala:9:14] input io_deq_ready, // @[HellaQueue.scala:9:14] output io_deq_valid, // @[HellaQueue.scala:9:14] output [63:0] io_deq_bits // @[HellaQueue.scala:9:14] ); wire [63:0] _ram_R0_data; // @[HellaQueue.scala:27:24] wire io_enq_valid_0 = io_enq_valid; // @[HellaQueue.scala:8:7] wire [63:0] io_enq_bits_0 = io_enq_bits; // @[HellaQueue.scala:8:7] wire io_deq_ready_0 = io_deq_ready; // @[HellaQueue.scala:8:7] wire [6:0] io_count = 7'h0; // @[HellaQueue.scala:8:7] wire _io_enq_ready_T; // @[HellaQueue.scala:37:19] wire _io_deq_valid_T; // @[HellaQueue.scala:36:22] wire [63:0] _io_deq_bits_T; // @[HellaQueue.scala:38:21] wire io_enq_ready_0; // @[HellaQueue.scala:8:7] wire io_deq_valid_0; // @[HellaQueue.scala:8:7] wire [63:0] io_deq_bits_0; // @[HellaQueue.scala:8:7] wire _do_flow_T; // @[HellaQueue.scala:25:20] wire do_flow; // @[HellaQueue.scala:12:21] wire _do_enq_T = io_enq_ready_0 & io_enq_valid_0; // @[Decoupled.scala:51:35] wire _do_enq_T_1 = ~do_flow; // @[HellaQueue.scala:12:21, :13:31] wire do_enq = _do_enq_T & _do_enq_T_1; // @[Decoupled.scala:51:35] wire _do_deq_T = io_deq_ready_0 & io_deq_valid_0; // @[Decoupled.scala:51:35] wire _do_deq_T_1 = ~do_flow; // @[HellaQueue.scala:12:21, :13:31, :14:31] wire do_deq = _do_deq_T & _do_deq_T_1; // @[Decoupled.scala:51:35] reg maybe_full; // @[HellaQueue.scala:16:27] reg [5:0] enq_ptr; // @[Counter.scala:61:40] wire enq_ptr_wrap; // @[Counter.scala:117:24] wire enq_ptr_wrap_wrap = &enq_ptr; // @[Counter.scala:61:40, :73:24] wire [6:0] _GEN = {1'h0, enq_ptr}; // @[Counter.scala:61:40, :77:24] wire [6:0] _enq_ptr_wrap_value_T = _GEN + 7'h1; // @[Counter.scala:77:24] wire [5:0] _enq_ptr_wrap_value_T_1 = _enq_ptr_wrap_value_T[5:0]; // @[Counter.scala:77:24] assign enq_ptr_wrap = do_enq & enq_ptr_wrap_wrap; // @[Counter.scala:73:24, :117:24, :118:{16,23}] reg [5:0] deq_ptr; // @[Counter.scala:61:40] wire deq_done; // @[Counter.scala:117:24] wire wrap_wrap = &deq_ptr; // @[Counter.scala:61:40, :73:24] wire [6:0] _GEN_0 = {1'h0, deq_ptr}; // @[Counter.scala:61:40, :77:24] wire [6:0] _GEN_1 = _GEN_0 + 7'h1; // @[Counter.scala:77:24] wire [6:0] _wrap_value_T; // @[Counter.scala:77:24] assign _wrap_value_T = _GEN_1; // @[Counter.scala:77:24] wire [6:0] _raddr_T; // @[HellaQueue.scala:33:60] assign _raddr_T = _GEN_1; // @[Counter.scala:77:24] wire [5:0] _wrap_value_T_1 = _wrap_value_T[5:0]; // @[Counter.scala:77:24] assign deq_done = do_deq & wrap_wrap; // @[Counter.scala:73:24, :117:24, :118:{16,23}] wire ptr_match = enq_ptr == deq_ptr; // @[Counter.scala:61:40] wire _empty_T = ~maybe_full; // @[HellaQueue.scala:16:27, :22:28] wire empty = ptr_match & _empty_T; // @[HellaQueue.scala:21:27, :22:{25,28}] wire full = ptr_match & maybe_full; // @[HellaQueue.scala:16:27, :21:27, :23:24] wire [6:0] _atLeastTwo_T = _GEN - _GEN_0; // @[Counter.scala:77:24] wire [5:0] _atLeastTwo_T_1 = _atLeastTwo_T[5:0]; // @[HellaQueue.scala:24:36] wire _atLeastTwo_T_2 = |(_atLeastTwo_T_1[5:1]); // @[HellaQueue.scala:24:{36,46}] wire atLeastTwo = full | _atLeastTwo_T_2; // @[HellaQueue.scala:23:24, :24:{25,46}] assign _do_flow_T = empty & io_deq_ready_0; // @[HellaQueue.scala:8:7, :22:25, :25:20] assign do_flow = _do_flow_T; // @[HellaQueue.scala:12:21, :25:20] wire _ren_T = ~io_deq_valid_0; // @[HellaQueue.scala:8:7, :32:44] wire _ren_T_1 = ~empty; // @[HellaQueue.scala:22:25, :32:61] wire _ren_T_2 = _ren_T & _ren_T_1; // @[HellaQueue.scala:32:{44,58,61}] wire _ren_T_3 = atLeastTwo | _ren_T_2; // @[HellaQueue.scala:24:25, :32:{41,58}] wire ren = io_deq_ready_0 & _ren_T_3; // @[HellaQueue.scala:8:7, :32:{26,41}] wire [5:0] _raddr_T_1 = _raddr_T[5:0]; // @[HellaQueue.scala:33:60] wire [5:0] _raddr_T_2 = deq_done ? 6'h0 : _raddr_T_1; // @[Counter.scala:117:24] wire [5:0] raddr = io_deq_valid_0 ? _raddr_T_2 : deq_ptr; // @[Counter.scala:61:40] wire [5:0] _io_deq_bits_WIRE = raddr; // @[HellaQueue.scala:33:18, :38:50] reg ram_out_valid; // @[HellaQueue.scala:34:30] assign _io_deq_valid_T = empty ? io_enq_valid_0 : ram_out_valid; // @[HellaQueue.scala:8:7, :22:25, :34:30, :36:22] assign io_deq_valid_0 = _io_deq_valid_T; // @[HellaQueue.scala:8:7, :36:22] assign _io_enq_ready_T = ~full; // @[HellaQueue.scala:23:24, :37:19] assign io_enq_ready_0 = _io_enq_ready_T; // @[HellaQueue.scala:8:7, :37:19] assign _io_deq_bits_T = empty ? io_enq_bits_0 : _ram_R0_data; // @[HellaQueue.scala:8:7, :22:25, :27:24, :38:21] assign io_deq_bits_0 = _io_deq_bits_T; // @[HellaQueue.scala:8:7, :38:21] always @(posedge clock) begin // @[HellaQueue.scala:8:7] if (reset) begin // @[HellaQueue.scala:8:7] maybe_full <= 1'h0; // @[HellaQueue.scala:16:27] enq_ptr <= 6'h0; // @[Counter.scala:61:40] deq_ptr <= 6'h0; // @[Counter.scala:61:40] end else begin // @[HellaQueue.scala:8:7] if (~(do_enq == do_deq)) // @[HellaQueue.scala:13:28, :14:28, :16:27, :19:{16,28,41}] maybe_full <= do_enq; // @[HellaQueue.scala:13:28, :16:27] if (do_enq) // @[HellaQueue.scala:13:28] enq_ptr <= _enq_ptr_wrap_value_T_1; // @[Counter.scala:61:40, :77:24] if (do_deq) // @[HellaQueue.scala:14:28] deq_ptr <= _wrap_value_T_1; // @[Counter.scala:61:40, :77:24] end ram_out_valid <= ren; // @[HellaQueue.scala:32:26, :34:30] always @(posedge) ram ram ( // @[HellaQueue.scala:27:24] .R0_addr (_io_deq_bits_WIRE), // @[HellaQueue.scala:38:50] .R0_en (ren), // @[HellaQueue.scala:32:26] .R0_clk (clock), .R0_data (_ram_R0_data), .W0_addr (enq_ptr), // @[Counter.scala:61:40] .W0_en (do_enq), // @[HellaQueue.scala:13:28] .W0_clk (clock), .W0_data (io_enq_bits_0) // @[HellaQueue.scala:8:7] ); // @[HellaQueue.scala:27:24] assign io_enq_ready = io_enq_ready_0; // @[HellaQueue.scala:8:7] assign io_deq_valid = io_deq_valid_0; // @[HellaQueue.scala:8:7] assign io_deq_bits = io_deq_bits_0; // @[HellaQueue.scala:8:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File primitives.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import chisel3.util._ //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object lowMask { def apply(in: UInt, topBound: BigInt, bottomBound: BigInt): UInt = { require(topBound != bottomBound) val numInVals = BigInt(1)<<in.getWidth if (topBound < bottomBound) { lowMask(~in, numInVals - 1 - topBound, numInVals - 1 - bottomBound) } else if (numInVals > 64 /* Empirical */) { // For simulation performance, we should avoid generating // exteremely wide shifters, so we divide and conquer. // Empirically, this does not impact synthesis QoR. val mid = numInVals / 2 val msb = in(in.getWidth - 1) val lsbs = in(in.getWidth - 2, 0) if (mid < topBound) { if (mid <= bottomBound) { Mux(msb, lowMask(lsbs, topBound - mid, bottomBound - mid), 0.U ) } else { Mux(msb, lowMask(lsbs, topBound - mid, 0) ## ((BigInt(1)<<(mid - bottomBound).toInt) - 1).U, lowMask(lsbs, mid, bottomBound) ) } } else { ~Mux(msb, 0.U, ~lowMask(lsbs, topBound, bottomBound)) } } else { val shift = (BigInt(-1)<<numInVals.toInt).S>>in Reverse( shift( (numInVals - 1 - bottomBound).toInt, (numInVals - topBound).toInt ) ) } } } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object countLeadingZeros { def apply(in: UInt): UInt = PriorityEncoder(in.asBools.reverse) } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object orReduceBy2 { def apply(in: UInt): UInt = { val reducedWidth = (in.getWidth + 1)>>1 val reducedVec = Wire(Vec(reducedWidth, Bool())) for (ix <- 0 until reducedWidth - 1) { reducedVec(ix) := in(ix * 2 + 1, ix * 2).orR } reducedVec(reducedWidth - 1) := in(in.getWidth - 1, (reducedWidth - 1) * 2).orR reducedVec.asUInt } } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object orReduceBy4 { def apply(in: UInt): UInt = { val reducedWidth = (in.getWidth + 3)>>2 val reducedVec = Wire(Vec(reducedWidth, Bool())) for (ix <- 0 until reducedWidth - 1) { reducedVec(ix) := in(ix * 4 + 3, ix * 4).orR } reducedVec(reducedWidth - 1) := in(in.getWidth - 1, (reducedWidth - 1) * 4).orR reducedVec.asUInt } } File MulAddRecFN.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import chisel3.util._ import consts._ //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class MulAddRecFN_interIo(expWidth: Int, sigWidth: Int) extends Bundle { //*** ENCODE SOME OF THESE CASES IN FEWER BITS?: val isSigNaNAny = Bool() val isNaNAOrB = Bool() val isInfA = Bool() val isZeroA = Bool() val isInfB = Bool() val isZeroB = Bool() val signProd = Bool() val isNaNC = Bool() val isInfC = Bool() val isZeroC = Bool() val sExpSum = SInt((expWidth + 2).W) val doSubMags = Bool() val CIsDominant = Bool() val CDom_CAlignDist = UInt(log2Ceil(sigWidth + 1).W) val highAlignedSigC = UInt((sigWidth + 2).W) val bit0AlignedSigC = UInt(1.W) } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class MulAddRecFNToRaw_preMul(expWidth: Int, sigWidth: Int) extends RawModule { override def desiredName = s"MulAddRecFNToRaw_preMul_e${expWidth}_s${sigWidth}" val io = IO(new Bundle { val op = Input(Bits(2.W)) val a = Input(Bits((expWidth + sigWidth + 1).W)) val b = Input(Bits((expWidth + sigWidth + 1).W)) val c = Input(Bits((expWidth + sigWidth + 1).W)) val mulAddA = Output(UInt(sigWidth.W)) val mulAddB = Output(UInt(sigWidth.W)) val mulAddC = Output(UInt((sigWidth * 2).W)) val toPostMul = Output(new MulAddRecFN_interIo(expWidth, sigWidth)) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ //*** POSSIBLE TO REDUCE THIS BY 1 OR 2 BITS? (CURRENTLY 2 BITS BETWEEN //*** UNSHIFTED C AND PRODUCT): val sigSumWidth = sigWidth * 3 + 3 //------------------------------------------------------------------------ //------------------------------------------------------------------------ val rawA = rawFloatFromRecFN(expWidth, sigWidth, io.a) val rawB = rawFloatFromRecFN(expWidth, sigWidth, io.b) val rawC = rawFloatFromRecFN(expWidth, sigWidth, io.c) val signProd = rawA.sign ^ rawB.sign ^ io.op(1) //*** REVIEW THE BIAS FOR 'sExpAlignedProd': val sExpAlignedProd = rawA.sExp +& rawB.sExp + (-(BigInt(1)<<expWidth) + sigWidth + 3).S val doSubMags = signProd ^ rawC.sign ^ io.op(0) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val sNatCAlignDist = sExpAlignedProd - rawC.sExp val posNatCAlignDist = sNatCAlignDist(expWidth + 1, 0) val isMinCAlign = rawA.isZero || rawB.isZero || (sNatCAlignDist < 0.S) val CIsDominant = ! rawC.isZero && (isMinCAlign || (posNatCAlignDist <= sigWidth.U)) val CAlignDist = Mux(isMinCAlign, 0.U, Mux(posNatCAlignDist < (sigSumWidth - 1).U, posNatCAlignDist(log2Ceil(sigSumWidth) - 1, 0), (sigSumWidth - 1).U ) ) val mainAlignedSigC = (Mux(doSubMags, ~rawC.sig, rawC.sig) ## Fill(sigSumWidth - sigWidth + 2, doSubMags)).asSInt>>CAlignDist val reduced4CExtra = (orReduceBy4(rawC.sig<<((sigSumWidth - sigWidth - 1) & 3)) & lowMask( CAlignDist>>2, //*** NOT NEEDED?: // (sigSumWidth + 2)>>2, (sigSumWidth - 1)>>2, (sigSumWidth - sigWidth - 1)>>2 ) ).orR val alignedSigC = Cat(mainAlignedSigC>>3, Mux(doSubMags, mainAlignedSigC(2, 0).andR && ! reduced4CExtra, mainAlignedSigC(2, 0).orR || reduced4CExtra ) ) //------------------------------------------------------------------------ //------------------------------------------------------------------------ io.mulAddA := rawA.sig io.mulAddB := rawB.sig io.mulAddC := alignedSigC(sigWidth * 2, 1) io.toPostMul.isSigNaNAny := isSigNaNRawFloat(rawA) || isSigNaNRawFloat(rawB) || isSigNaNRawFloat(rawC) io.toPostMul.isNaNAOrB := rawA.isNaN || rawB.isNaN io.toPostMul.isInfA := rawA.isInf io.toPostMul.isZeroA := rawA.isZero io.toPostMul.isInfB := rawB.isInf io.toPostMul.isZeroB := rawB.isZero io.toPostMul.signProd := signProd io.toPostMul.isNaNC := rawC.isNaN io.toPostMul.isInfC := rawC.isInf io.toPostMul.isZeroC := rawC.isZero io.toPostMul.sExpSum := Mux(CIsDominant, rawC.sExp, sExpAlignedProd - sigWidth.S) io.toPostMul.doSubMags := doSubMags io.toPostMul.CIsDominant := CIsDominant io.toPostMul.CDom_CAlignDist := CAlignDist(log2Ceil(sigWidth + 1) - 1, 0) io.toPostMul.highAlignedSigC := alignedSigC(sigSumWidth - 1, sigWidth * 2 + 1) io.toPostMul.bit0AlignedSigC := alignedSigC(0) } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class MulAddRecFNToRaw_postMul(expWidth: Int, sigWidth: Int) extends RawModule { override def desiredName = s"MulAddRecFNToRaw_postMul_e${expWidth}_s${sigWidth}" val io = IO(new Bundle { val fromPreMul = Input(new MulAddRecFN_interIo(expWidth, sigWidth)) val mulAddResult = Input(UInt((sigWidth * 2 + 1).W)) val roundingMode = Input(UInt(3.W)) val invalidExc = Output(Bool()) val rawOut = Output(new RawFloat(expWidth, sigWidth + 2)) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val sigSumWidth = sigWidth * 3 + 3 //------------------------------------------------------------------------ //------------------------------------------------------------------------ val roundingMode_min = (io.roundingMode === round_min) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val opSignC = io.fromPreMul.signProd ^ io.fromPreMul.doSubMags val sigSum = Cat(Mux(io.mulAddResult(sigWidth * 2), io.fromPreMul.highAlignedSigC + 1.U, io.fromPreMul.highAlignedSigC ), io.mulAddResult(sigWidth * 2 - 1, 0), io.fromPreMul.bit0AlignedSigC ) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val CDom_sign = opSignC val CDom_sExp = io.fromPreMul.sExpSum - io.fromPreMul.doSubMags.zext val CDom_absSigSum = Mux(io.fromPreMul.doSubMags, ~sigSum(sigSumWidth - 1, sigWidth + 1), 0.U(1.W) ## //*** IF GAP IS REDUCED TO 1 BIT, MUST REDUCE THIS COMPONENT TO 1 BIT TOO: io.fromPreMul.highAlignedSigC(sigWidth + 1, sigWidth) ## sigSum(sigSumWidth - 3, sigWidth + 2) ) val CDom_absSigSumExtra = Mux(io.fromPreMul.doSubMags, (~sigSum(sigWidth, 1)).orR, sigSum(sigWidth + 1, 1).orR ) val CDom_mainSig = (CDom_absSigSum<<io.fromPreMul.CDom_CAlignDist)( sigWidth * 2 + 1, sigWidth - 3) val CDom_reduced4SigExtra = (orReduceBy4(CDom_absSigSum(sigWidth - 1, 0)<<(~sigWidth & 3)) & lowMask(io.fromPreMul.CDom_CAlignDist>>2, 0, sigWidth>>2)).orR val CDom_sig = Cat(CDom_mainSig>>3, CDom_mainSig(2, 0).orR || CDom_reduced4SigExtra || CDom_absSigSumExtra ) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val notCDom_signSigSum = sigSum(sigWidth * 2 + 3) val notCDom_absSigSum = Mux(notCDom_signSigSum, ~sigSum(sigWidth * 2 + 2, 0), sigSum(sigWidth * 2 + 2, 0) + io.fromPreMul.doSubMags ) val notCDom_reduced2AbsSigSum = orReduceBy2(notCDom_absSigSum) val notCDom_normDistReduced2 = countLeadingZeros(notCDom_reduced2AbsSigSum) val notCDom_nearNormDist = notCDom_normDistReduced2<<1 val notCDom_sExp = io.fromPreMul.sExpSum - notCDom_nearNormDist.asUInt.zext val notCDom_mainSig = (notCDom_absSigSum<<notCDom_nearNormDist)( sigWidth * 2 + 3, sigWidth - 1) val notCDom_reduced4SigExtra = (orReduceBy2( notCDom_reduced2AbsSigSum(sigWidth>>1, 0)<<((sigWidth>>1) & 1)) & lowMask(notCDom_normDistReduced2>>1, 0, (sigWidth + 2)>>2) ).orR val notCDom_sig = Cat(notCDom_mainSig>>3, notCDom_mainSig(2, 0).orR || notCDom_reduced4SigExtra ) val notCDom_completeCancellation = (notCDom_sig(sigWidth + 2, sigWidth + 1) === 0.U) val notCDom_sign = Mux(notCDom_completeCancellation, roundingMode_min, io.fromPreMul.signProd ^ notCDom_signSigSum ) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val notNaN_isInfProd = io.fromPreMul.isInfA || io.fromPreMul.isInfB val notNaN_isInfOut = notNaN_isInfProd || io.fromPreMul.isInfC val notNaN_addZeros = (io.fromPreMul.isZeroA || io.fromPreMul.isZeroB) && io.fromPreMul.isZeroC io.invalidExc := io.fromPreMul.isSigNaNAny || (io.fromPreMul.isInfA && io.fromPreMul.isZeroB) || (io.fromPreMul.isZeroA && io.fromPreMul.isInfB) || (! io.fromPreMul.isNaNAOrB && (io.fromPreMul.isInfA || io.fromPreMul.isInfB) && io.fromPreMul.isInfC && io.fromPreMul.doSubMags) io.rawOut.isNaN := io.fromPreMul.isNaNAOrB || io.fromPreMul.isNaNC io.rawOut.isInf := notNaN_isInfOut //*** IMPROVE?: io.rawOut.isZero := notNaN_addZeros || (! io.fromPreMul.CIsDominant && notCDom_completeCancellation) io.rawOut.sign := (notNaN_isInfProd && io.fromPreMul.signProd) || (io.fromPreMul.isInfC && opSignC) || (notNaN_addZeros && ! roundingMode_min && io.fromPreMul.signProd && opSignC) || (notNaN_addZeros && roundingMode_min && (io.fromPreMul.signProd || opSignC)) || (! notNaN_isInfOut && ! notNaN_addZeros && Mux(io.fromPreMul.CIsDominant, CDom_sign, notCDom_sign)) io.rawOut.sExp := Mux(io.fromPreMul.CIsDominant, CDom_sExp, notCDom_sExp) io.rawOut.sig := Mux(io.fromPreMul.CIsDominant, CDom_sig, notCDom_sig) } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class MulAddRecFN(expWidth: Int, sigWidth: Int) extends RawModule { override def desiredName = s"MulAddRecFN_e${expWidth}_s${sigWidth}" val io = IO(new Bundle { val op = Input(Bits(2.W)) val a = Input(Bits((expWidth + sigWidth + 1).W)) val b = Input(Bits((expWidth + sigWidth + 1).W)) val c = Input(Bits((expWidth + sigWidth + 1).W)) val roundingMode = Input(UInt(3.W)) val detectTininess = Input(UInt(1.W)) val out = Output(Bits((expWidth + sigWidth + 1).W)) val exceptionFlags = Output(Bits(5.W)) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val mulAddRecFNToRaw_preMul = Module(new MulAddRecFNToRaw_preMul(expWidth, sigWidth)) val mulAddRecFNToRaw_postMul = Module(new MulAddRecFNToRaw_postMul(expWidth, sigWidth)) mulAddRecFNToRaw_preMul.io.op := io.op mulAddRecFNToRaw_preMul.io.a := io.a mulAddRecFNToRaw_preMul.io.b := io.b mulAddRecFNToRaw_preMul.io.c := io.c val mulAddResult = (mulAddRecFNToRaw_preMul.io.mulAddA * mulAddRecFNToRaw_preMul.io.mulAddB) +& mulAddRecFNToRaw_preMul.io.mulAddC mulAddRecFNToRaw_postMul.io.fromPreMul := mulAddRecFNToRaw_preMul.io.toPostMul mulAddRecFNToRaw_postMul.io.mulAddResult := mulAddResult mulAddRecFNToRaw_postMul.io.roundingMode := io.roundingMode //------------------------------------------------------------------------ //------------------------------------------------------------------------ val roundRawFNToRecFN = Module(new RoundRawFNToRecFN(expWidth, sigWidth, 0)) roundRawFNToRecFN.io.invalidExc := mulAddRecFNToRaw_postMul.io.invalidExc roundRawFNToRecFN.io.infiniteExc := false.B roundRawFNToRecFN.io.in := mulAddRecFNToRaw_postMul.io.rawOut roundRawFNToRecFN.io.roundingMode := io.roundingMode roundRawFNToRecFN.io.detectTininess := io.detectTininess io.out := roundRawFNToRecFN.io.out io.exceptionFlags := roundRawFNToRecFN.io.exceptionFlags } File rawFloatFromRecFN.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import chisel3.util._ /*---------------------------------------------------------------------------- | In the result, no more than one of 'isNaN', 'isInf', and 'isZero' will be | set. *----------------------------------------------------------------------------*/ object rawFloatFromRecFN { def apply(expWidth: Int, sigWidth: Int, in: Bits): RawFloat = { val exp = in(expWidth + sigWidth - 1, sigWidth - 1) val isZero = exp(expWidth, expWidth - 2) === 0.U val isSpecial = exp(expWidth, expWidth - 1) === 3.U val out = Wire(new RawFloat(expWidth, sigWidth)) out.isNaN := isSpecial && exp(expWidth - 2) out.isInf := isSpecial && ! exp(expWidth - 2) out.isZero := isZero out.sign := in(expWidth + sigWidth) out.sExp := exp.zext out.sig := 0.U(1.W) ## ! isZero ## in(sigWidth - 2, 0) out } }
module MulAddRecFNToRaw_preMul_e8_s24_68( // @[MulAddRecFN.scala:71:7] input [32:0] io_a, // @[MulAddRecFN.scala:74:16] input [32:0] io_b, // @[MulAddRecFN.scala:74:16] input [32:0] io_c, // @[MulAddRecFN.scala:74:16] output [23:0] io_mulAddA, // @[MulAddRecFN.scala:74:16] output [23:0] io_mulAddB, // @[MulAddRecFN.scala:74:16] output [47:0] io_mulAddC, // @[MulAddRecFN.scala:74:16] output io_toPostMul_isSigNaNAny, // @[MulAddRecFN.scala:74:16] output io_toPostMul_isNaNAOrB, // @[MulAddRecFN.scala:74:16] output io_toPostMul_isInfA, // @[MulAddRecFN.scala:74:16] output io_toPostMul_isZeroA, // @[MulAddRecFN.scala:74:16] output io_toPostMul_isInfB, // @[MulAddRecFN.scala:74:16] output io_toPostMul_isZeroB, // @[MulAddRecFN.scala:74:16] output io_toPostMul_signProd, // @[MulAddRecFN.scala:74:16] output io_toPostMul_isNaNC, // @[MulAddRecFN.scala:74:16] output io_toPostMul_isInfC, // @[MulAddRecFN.scala:74:16] output io_toPostMul_isZeroC, // @[MulAddRecFN.scala:74:16] output [9:0] io_toPostMul_sExpSum, // @[MulAddRecFN.scala:74:16] output io_toPostMul_doSubMags, // @[MulAddRecFN.scala:74:16] output io_toPostMul_CIsDominant, // @[MulAddRecFN.scala:74:16] output [4:0] io_toPostMul_CDom_CAlignDist, // @[MulAddRecFN.scala:74:16] output [25:0] io_toPostMul_highAlignedSigC, // @[MulAddRecFN.scala:74:16] output io_toPostMul_bit0AlignedSigC // @[MulAddRecFN.scala:74:16] ); wire [32:0] io_a_0 = io_a; // @[MulAddRecFN.scala:71:7] wire [32:0] io_b_0 = io_b; // @[MulAddRecFN.scala:71:7] wire [32:0] io_c_0 = io_c; // @[MulAddRecFN.scala:71:7] wire _signProd_T_1 = 1'h0; // @[MulAddRecFN.scala:97:49] wire _doSubMags_T_1 = 1'h0; // @[MulAddRecFN.scala:102:49] wire [1:0] io_op = 2'h0; // @[MulAddRecFN.scala:71:7, :74:16] wire [47:0] _io_mulAddC_T; // @[MulAddRecFN.scala:143:30] wire _io_toPostMul_isSigNaNAny_T_10; // @[MulAddRecFN.scala:146:58] wire _io_toPostMul_isNaNAOrB_T; // @[MulAddRecFN.scala:148:42] wire rawA_isInf; // @[rawFloatFromRecFN.scala:55:23] wire rawA_isZero; // @[rawFloatFromRecFN.scala:55:23] wire rawB_isInf; // @[rawFloatFromRecFN.scala:55:23] wire rawB_isZero; // @[rawFloatFromRecFN.scala:55:23] wire signProd; // @[MulAddRecFN.scala:97:42] wire rawC_isNaN; // @[rawFloatFromRecFN.scala:55:23] wire rawC_isInf; // @[rawFloatFromRecFN.scala:55:23] wire rawC_isZero; // @[rawFloatFromRecFN.scala:55:23] wire doSubMags; // @[MulAddRecFN.scala:102:42] wire CIsDominant; // @[MulAddRecFN.scala:110:23] wire [4:0] _io_toPostMul_CDom_CAlignDist_T; // @[MulAddRecFN.scala:161:47] wire [25:0] _io_toPostMul_highAlignedSigC_T; // @[MulAddRecFN.scala:163:20] wire _io_toPostMul_bit0AlignedSigC_T; // @[MulAddRecFN.scala:164:48] wire io_toPostMul_isSigNaNAny_0; // @[MulAddRecFN.scala:71:7] wire io_toPostMul_isNaNAOrB_0; // @[MulAddRecFN.scala:71:7] wire io_toPostMul_isInfA_0; // @[MulAddRecFN.scala:71:7] wire io_toPostMul_isZeroA_0; // @[MulAddRecFN.scala:71:7] wire io_toPostMul_isInfB_0; // @[MulAddRecFN.scala:71:7] wire io_toPostMul_isZeroB_0; // @[MulAddRecFN.scala:71:7] wire io_toPostMul_signProd_0; // @[MulAddRecFN.scala:71:7] wire io_toPostMul_isNaNC_0; // @[MulAddRecFN.scala:71:7] wire io_toPostMul_isInfC_0; // @[MulAddRecFN.scala:71:7] wire io_toPostMul_isZeroC_0; // @[MulAddRecFN.scala:71:7] wire [9:0] io_toPostMul_sExpSum_0; // @[MulAddRecFN.scala:71:7] wire io_toPostMul_doSubMags_0; // @[MulAddRecFN.scala:71:7] wire io_toPostMul_CIsDominant_0; // @[MulAddRecFN.scala:71:7] wire [4:0] io_toPostMul_CDom_CAlignDist_0; // @[MulAddRecFN.scala:71:7] wire [25:0] io_toPostMul_highAlignedSigC_0; // @[MulAddRecFN.scala:71:7] wire io_toPostMul_bit0AlignedSigC_0; // @[MulAddRecFN.scala:71:7] wire [23:0] io_mulAddA_0; // @[MulAddRecFN.scala:71:7] wire [23:0] io_mulAddB_0; // @[MulAddRecFN.scala:71:7] wire [47:0] io_mulAddC_0; // @[MulAddRecFN.scala:71:7] wire [8:0] rawA_exp = io_a_0[31:23]; // @[rawFloatFromRecFN.scala:51:21] wire [2:0] _rawA_isZero_T = rawA_exp[8:6]; // @[rawFloatFromRecFN.scala:51:21, :52:28] wire rawA_isZero_0 = _rawA_isZero_T == 3'h0; // @[rawFloatFromRecFN.scala:52:{28,53}] assign rawA_isZero = rawA_isZero_0; // @[rawFloatFromRecFN.scala:52:53, :55:23] wire [1:0] _rawA_isSpecial_T = rawA_exp[8:7]; // @[rawFloatFromRecFN.scala:51:21, :53:28] wire rawA_isSpecial = &_rawA_isSpecial_T; // @[rawFloatFromRecFN.scala:53:{28,53}] wire _rawA_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:56:33] wire _rawA_out_isInf_T_2; // @[rawFloatFromRecFN.scala:57:33] assign io_toPostMul_isInfA_0 = rawA_isInf; // @[rawFloatFromRecFN.scala:55:23] assign io_toPostMul_isZeroA_0 = rawA_isZero; // @[rawFloatFromRecFN.scala:55:23] wire _rawA_out_sign_T; // @[rawFloatFromRecFN.scala:59:25] wire [9:0] _rawA_out_sExp_T; // @[rawFloatFromRecFN.scala:60:27] wire [24:0] _rawA_out_sig_T_3; // @[rawFloatFromRecFN.scala:61:44] wire rawA_isNaN; // @[rawFloatFromRecFN.scala:55:23] wire rawA_sign; // @[rawFloatFromRecFN.scala:55:23] wire [9:0] rawA_sExp; // @[rawFloatFromRecFN.scala:55:23] wire [24:0] rawA_sig; // @[rawFloatFromRecFN.scala:55:23] wire _rawA_out_isNaN_T = rawA_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41] wire _rawA_out_isInf_T = rawA_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41, :57:41] assign _rawA_out_isNaN_T_1 = rawA_isSpecial & _rawA_out_isNaN_T; // @[rawFloatFromRecFN.scala:53:53, :56:{33,41}] assign rawA_isNaN = _rawA_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:55:23, :56:33] wire _rawA_out_isInf_T_1 = ~_rawA_out_isInf_T; // @[rawFloatFromRecFN.scala:57:{36,41}] assign _rawA_out_isInf_T_2 = rawA_isSpecial & _rawA_out_isInf_T_1; // @[rawFloatFromRecFN.scala:53:53, :57:{33,36}] assign rawA_isInf = _rawA_out_isInf_T_2; // @[rawFloatFromRecFN.scala:55:23, :57:33] assign _rawA_out_sign_T = io_a_0[32]; // @[rawFloatFromRecFN.scala:59:25] assign rawA_sign = _rawA_out_sign_T; // @[rawFloatFromRecFN.scala:55:23, :59:25] assign _rawA_out_sExp_T = {1'h0, rawA_exp}; // @[rawFloatFromRecFN.scala:51:21, :60:27] assign rawA_sExp = _rawA_out_sExp_T; // @[rawFloatFromRecFN.scala:55:23, :60:27] wire _rawA_out_sig_T = ~rawA_isZero_0; // @[rawFloatFromRecFN.scala:52:53, :61:35] wire [1:0] _rawA_out_sig_T_1 = {1'h0, _rawA_out_sig_T}; // @[rawFloatFromRecFN.scala:61:{32,35}] wire [22:0] _rawA_out_sig_T_2 = io_a_0[22:0]; // @[rawFloatFromRecFN.scala:61:49] assign _rawA_out_sig_T_3 = {_rawA_out_sig_T_1, _rawA_out_sig_T_2}; // @[rawFloatFromRecFN.scala:61:{32,44,49}] assign rawA_sig = _rawA_out_sig_T_3; // @[rawFloatFromRecFN.scala:55:23, :61:44] wire [8:0] rawB_exp = io_b_0[31:23]; // @[rawFloatFromRecFN.scala:51:21] wire [2:0] _rawB_isZero_T = rawB_exp[8:6]; // @[rawFloatFromRecFN.scala:51:21, :52:28] wire rawB_isZero_0 = _rawB_isZero_T == 3'h0; // @[rawFloatFromRecFN.scala:52:{28,53}] assign rawB_isZero = rawB_isZero_0; // @[rawFloatFromRecFN.scala:52:53, :55:23] wire [1:0] _rawB_isSpecial_T = rawB_exp[8:7]; // @[rawFloatFromRecFN.scala:51:21, :53:28] wire rawB_isSpecial = &_rawB_isSpecial_T; // @[rawFloatFromRecFN.scala:53:{28,53}] wire _rawB_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:56:33] wire _rawB_out_isInf_T_2; // @[rawFloatFromRecFN.scala:57:33] assign io_toPostMul_isInfB_0 = rawB_isInf; // @[rawFloatFromRecFN.scala:55:23] assign io_toPostMul_isZeroB_0 = rawB_isZero; // @[rawFloatFromRecFN.scala:55:23] wire _rawB_out_sign_T; // @[rawFloatFromRecFN.scala:59:25] wire [9:0] _rawB_out_sExp_T; // @[rawFloatFromRecFN.scala:60:27] wire [24:0] _rawB_out_sig_T_3; // @[rawFloatFromRecFN.scala:61:44] wire rawB_isNaN; // @[rawFloatFromRecFN.scala:55:23] wire rawB_sign; // @[rawFloatFromRecFN.scala:55:23] wire [9:0] rawB_sExp; // @[rawFloatFromRecFN.scala:55:23] wire [24:0] rawB_sig; // @[rawFloatFromRecFN.scala:55:23] wire _rawB_out_isNaN_T = rawB_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41] wire _rawB_out_isInf_T = rawB_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41, :57:41] assign _rawB_out_isNaN_T_1 = rawB_isSpecial & _rawB_out_isNaN_T; // @[rawFloatFromRecFN.scala:53:53, :56:{33,41}] assign rawB_isNaN = _rawB_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:55:23, :56:33] wire _rawB_out_isInf_T_1 = ~_rawB_out_isInf_T; // @[rawFloatFromRecFN.scala:57:{36,41}] assign _rawB_out_isInf_T_2 = rawB_isSpecial & _rawB_out_isInf_T_1; // @[rawFloatFromRecFN.scala:53:53, :57:{33,36}] assign rawB_isInf = _rawB_out_isInf_T_2; // @[rawFloatFromRecFN.scala:55:23, :57:33] assign _rawB_out_sign_T = io_b_0[32]; // @[rawFloatFromRecFN.scala:59:25] assign rawB_sign = _rawB_out_sign_T; // @[rawFloatFromRecFN.scala:55:23, :59:25] assign _rawB_out_sExp_T = {1'h0, rawB_exp}; // @[rawFloatFromRecFN.scala:51:21, :60:27] assign rawB_sExp = _rawB_out_sExp_T; // @[rawFloatFromRecFN.scala:55:23, :60:27] wire _rawB_out_sig_T = ~rawB_isZero_0; // @[rawFloatFromRecFN.scala:52:53, :61:35] wire [1:0] _rawB_out_sig_T_1 = {1'h0, _rawB_out_sig_T}; // @[rawFloatFromRecFN.scala:61:{32,35}] wire [22:0] _rawB_out_sig_T_2 = io_b_0[22:0]; // @[rawFloatFromRecFN.scala:61:49] assign _rawB_out_sig_T_3 = {_rawB_out_sig_T_1, _rawB_out_sig_T_2}; // @[rawFloatFromRecFN.scala:61:{32,44,49}] assign rawB_sig = _rawB_out_sig_T_3; // @[rawFloatFromRecFN.scala:55:23, :61:44] wire [8:0] rawC_exp = io_c_0[31:23]; // @[rawFloatFromRecFN.scala:51:21] wire [2:0] _rawC_isZero_T = rawC_exp[8:6]; // @[rawFloatFromRecFN.scala:51:21, :52:28] wire rawC_isZero_0 = _rawC_isZero_T == 3'h0; // @[rawFloatFromRecFN.scala:52:{28,53}] assign rawC_isZero = rawC_isZero_0; // @[rawFloatFromRecFN.scala:52:53, :55:23] wire [1:0] _rawC_isSpecial_T = rawC_exp[8:7]; // @[rawFloatFromRecFN.scala:51:21, :53:28] wire rawC_isSpecial = &_rawC_isSpecial_T; // @[rawFloatFromRecFN.scala:53:{28,53}] wire _rawC_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:56:33] assign io_toPostMul_isNaNC_0 = rawC_isNaN; // @[rawFloatFromRecFN.scala:55:23] wire _rawC_out_isInf_T_2; // @[rawFloatFromRecFN.scala:57:33] assign io_toPostMul_isInfC_0 = rawC_isInf; // @[rawFloatFromRecFN.scala:55:23] assign io_toPostMul_isZeroC_0 = rawC_isZero; // @[rawFloatFromRecFN.scala:55:23] wire _rawC_out_sign_T; // @[rawFloatFromRecFN.scala:59:25] wire [9:0] _rawC_out_sExp_T; // @[rawFloatFromRecFN.scala:60:27] wire [24:0] _rawC_out_sig_T_3; // @[rawFloatFromRecFN.scala:61:44] wire rawC_sign; // @[rawFloatFromRecFN.scala:55:23] wire [9:0] rawC_sExp; // @[rawFloatFromRecFN.scala:55:23] wire [24:0] rawC_sig; // @[rawFloatFromRecFN.scala:55:23] wire _rawC_out_isNaN_T = rawC_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41] wire _rawC_out_isInf_T = rawC_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41, :57:41] assign _rawC_out_isNaN_T_1 = rawC_isSpecial & _rawC_out_isNaN_T; // @[rawFloatFromRecFN.scala:53:53, :56:{33,41}] assign rawC_isNaN = _rawC_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:55:23, :56:33] wire _rawC_out_isInf_T_1 = ~_rawC_out_isInf_T; // @[rawFloatFromRecFN.scala:57:{36,41}] assign _rawC_out_isInf_T_2 = rawC_isSpecial & _rawC_out_isInf_T_1; // @[rawFloatFromRecFN.scala:53:53, :57:{33,36}] assign rawC_isInf = _rawC_out_isInf_T_2; // @[rawFloatFromRecFN.scala:55:23, :57:33] assign _rawC_out_sign_T = io_c_0[32]; // @[rawFloatFromRecFN.scala:59:25] assign rawC_sign = _rawC_out_sign_T; // @[rawFloatFromRecFN.scala:55:23, :59:25] assign _rawC_out_sExp_T = {1'h0, rawC_exp}; // @[rawFloatFromRecFN.scala:51:21, :60:27] assign rawC_sExp = _rawC_out_sExp_T; // @[rawFloatFromRecFN.scala:55:23, :60:27] wire _rawC_out_sig_T = ~rawC_isZero_0; // @[rawFloatFromRecFN.scala:52:53, :61:35] wire [1:0] _rawC_out_sig_T_1 = {1'h0, _rawC_out_sig_T}; // @[rawFloatFromRecFN.scala:61:{32,35}] wire [22:0] _rawC_out_sig_T_2 = io_c_0[22:0]; // @[rawFloatFromRecFN.scala:61:49] assign _rawC_out_sig_T_3 = {_rawC_out_sig_T_1, _rawC_out_sig_T_2}; // @[rawFloatFromRecFN.scala:61:{32,44,49}] assign rawC_sig = _rawC_out_sig_T_3; // @[rawFloatFromRecFN.scala:55:23, :61:44] wire _signProd_T = rawA_sign ^ rawB_sign; // @[rawFloatFromRecFN.scala:55:23] assign signProd = _signProd_T; // @[MulAddRecFN.scala:97:{30,42}] assign io_toPostMul_signProd_0 = signProd; // @[MulAddRecFN.scala:71:7, :97:42] wire [10:0] _sExpAlignedProd_T = {rawA_sExp[9], rawA_sExp} + {rawB_sExp[9], rawB_sExp}; // @[rawFloatFromRecFN.scala:55:23] wire [11:0] _sExpAlignedProd_T_1 = {_sExpAlignedProd_T[10], _sExpAlignedProd_T} - 12'hE5; // @[MulAddRecFN.scala:100:{19,32}] wire [10:0] _sExpAlignedProd_T_2 = _sExpAlignedProd_T_1[10:0]; // @[MulAddRecFN.scala:100:32] wire [10:0] sExpAlignedProd = _sExpAlignedProd_T_2; // @[MulAddRecFN.scala:100:32] wire _doSubMags_T = signProd ^ rawC_sign; // @[rawFloatFromRecFN.scala:55:23] assign doSubMags = _doSubMags_T; // @[MulAddRecFN.scala:102:{30,42}] assign io_toPostMul_doSubMags_0 = doSubMags; // @[MulAddRecFN.scala:71:7, :102:42] wire [11:0] _GEN = {sExpAlignedProd[10], sExpAlignedProd}; // @[MulAddRecFN.scala:100:32, :106:42] wire [11:0] _sNatCAlignDist_T = _GEN - {{2{rawC_sExp[9]}}, rawC_sExp}; // @[rawFloatFromRecFN.scala:55:23] wire [10:0] _sNatCAlignDist_T_1 = _sNatCAlignDist_T[10:0]; // @[MulAddRecFN.scala:106:42] wire [10:0] sNatCAlignDist = _sNatCAlignDist_T_1; // @[MulAddRecFN.scala:106:42] wire [9:0] posNatCAlignDist = sNatCAlignDist[9:0]; // @[MulAddRecFN.scala:106:42, :107:42] wire _isMinCAlign_T = rawA_isZero | rawB_isZero; // @[rawFloatFromRecFN.scala:55:23] wire _isMinCAlign_T_1 = $signed(sNatCAlignDist) < 11'sh0; // @[MulAddRecFN.scala:106:42, :108:69] wire isMinCAlign = _isMinCAlign_T | _isMinCAlign_T_1; // @[MulAddRecFN.scala:108:{35,50,69}] wire _CIsDominant_T = ~rawC_isZero; // @[rawFloatFromRecFN.scala:55:23] wire _CIsDominant_T_1 = posNatCAlignDist < 10'h19; // @[MulAddRecFN.scala:107:42, :110:60] wire _CIsDominant_T_2 = isMinCAlign | _CIsDominant_T_1; // @[MulAddRecFN.scala:108:50, :110:{39,60}] assign CIsDominant = _CIsDominant_T & _CIsDominant_T_2; // @[MulAddRecFN.scala:110:{9,23,39}] assign io_toPostMul_CIsDominant_0 = CIsDominant; // @[MulAddRecFN.scala:71:7, :110:23] wire _CAlignDist_T = posNatCAlignDist < 10'h4A; // @[MulAddRecFN.scala:107:42, :114:34] wire [6:0] _CAlignDist_T_1 = posNatCAlignDist[6:0]; // @[MulAddRecFN.scala:107:42, :115:33] wire [6:0] _CAlignDist_T_2 = _CAlignDist_T ? _CAlignDist_T_1 : 7'h4A; // @[MulAddRecFN.scala:114:{16,34}, :115:33] wire [6:0] CAlignDist = isMinCAlign ? 7'h0 : _CAlignDist_T_2; // @[MulAddRecFN.scala:108:50, :112:12, :114:16] wire [24:0] _mainAlignedSigC_T = ~rawC_sig; // @[rawFloatFromRecFN.scala:55:23] wire [24:0] _mainAlignedSigC_T_1 = doSubMags ? _mainAlignedSigC_T : rawC_sig; // @[rawFloatFromRecFN.scala:55:23] wire [52:0] _mainAlignedSigC_T_2 = {53{doSubMags}}; // @[MulAddRecFN.scala:102:42, :120:53] wire [77:0] _mainAlignedSigC_T_3 = {_mainAlignedSigC_T_1, _mainAlignedSigC_T_2}; // @[MulAddRecFN.scala:120:{13,46,53}] wire [77:0] _mainAlignedSigC_T_4 = _mainAlignedSigC_T_3; // @[MulAddRecFN.scala:120:{46,94}] wire [77:0] mainAlignedSigC = $signed($signed(_mainAlignedSigC_T_4) >>> CAlignDist); // @[MulAddRecFN.scala:112:12, :120:{94,100}] wire [26:0] _reduced4CExtra_T = {rawC_sig, 2'h0}; // @[rawFloatFromRecFN.scala:55:23] wire _reduced4CExtra_reducedVec_0_T_1; // @[primitives.scala:120:54] wire _reduced4CExtra_reducedVec_1_T_1; // @[primitives.scala:120:54] wire _reduced4CExtra_reducedVec_2_T_1; // @[primitives.scala:120:54] wire _reduced4CExtra_reducedVec_3_T_1; // @[primitives.scala:120:54] wire _reduced4CExtra_reducedVec_4_T_1; // @[primitives.scala:120:54] wire _reduced4CExtra_reducedVec_5_T_1; // @[primitives.scala:120:54] wire _reduced4CExtra_reducedVec_6_T_1; // @[primitives.scala:123:57] wire reduced4CExtra_reducedVec_0; // @[primitives.scala:118:30] wire reduced4CExtra_reducedVec_1; // @[primitives.scala:118:30] wire reduced4CExtra_reducedVec_2; // @[primitives.scala:118:30] wire reduced4CExtra_reducedVec_3; // @[primitives.scala:118:30] wire reduced4CExtra_reducedVec_4; // @[primitives.scala:118:30] wire reduced4CExtra_reducedVec_5; // @[primitives.scala:118:30] wire reduced4CExtra_reducedVec_6; // @[primitives.scala:118:30] wire [3:0] _reduced4CExtra_reducedVec_0_T = _reduced4CExtra_T[3:0]; // @[primitives.scala:120:33] assign _reduced4CExtra_reducedVec_0_T_1 = |_reduced4CExtra_reducedVec_0_T; // @[primitives.scala:120:{33,54}] assign reduced4CExtra_reducedVec_0 = _reduced4CExtra_reducedVec_0_T_1; // @[primitives.scala:118:30, :120:54] wire [3:0] _reduced4CExtra_reducedVec_1_T = _reduced4CExtra_T[7:4]; // @[primitives.scala:120:33] assign _reduced4CExtra_reducedVec_1_T_1 = |_reduced4CExtra_reducedVec_1_T; // @[primitives.scala:120:{33,54}] assign reduced4CExtra_reducedVec_1 = _reduced4CExtra_reducedVec_1_T_1; // @[primitives.scala:118:30, :120:54] wire [3:0] _reduced4CExtra_reducedVec_2_T = _reduced4CExtra_T[11:8]; // @[primitives.scala:120:33] assign _reduced4CExtra_reducedVec_2_T_1 = |_reduced4CExtra_reducedVec_2_T; // @[primitives.scala:120:{33,54}] assign reduced4CExtra_reducedVec_2 = _reduced4CExtra_reducedVec_2_T_1; // @[primitives.scala:118:30, :120:54] wire [3:0] _reduced4CExtra_reducedVec_3_T = _reduced4CExtra_T[15:12]; // @[primitives.scala:120:33] assign _reduced4CExtra_reducedVec_3_T_1 = |_reduced4CExtra_reducedVec_3_T; // @[primitives.scala:120:{33,54}] assign reduced4CExtra_reducedVec_3 = _reduced4CExtra_reducedVec_3_T_1; // @[primitives.scala:118:30, :120:54] wire [3:0] _reduced4CExtra_reducedVec_4_T = _reduced4CExtra_T[19:16]; // @[primitives.scala:120:33] assign _reduced4CExtra_reducedVec_4_T_1 = |_reduced4CExtra_reducedVec_4_T; // @[primitives.scala:120:{33,54}] assign reduced4CExtra_reducedVec_4 = _reduced4CExtra_reducedVec_4_T_1; // @[primitives.scala:118:30, :120:54] wire [3:0] _reduced4CExtra_reducedVec_5_T = _reduced4CExtra_T[23:20]; // @[primitives.scala:120:33] assign _reduced4CExtra_reducedVec_5_T_1 = |_reduced4CExtra_reducedVec_5_T; // @[primitives.scala:120:{33,54}] assign reduced4CExtra_reducedVec_5 = _reduced4CExtra_reducedVec_5_T_1; // @[primitives.scala:118:30, :120:54] wire [2:0] _reduced4CExtra_reducedVec_6_T = _reduced4CExtra_T[26:24]; // @[primitives.scala:123:15] assign _reduced4CExtra_reducedVec_6_T_1 = |_reduced4CExtra_reducedVec_6_T; // @[primitives.scala:123:{15,57}] assign reduced4CExtra_reducedVec_6 = _reduced4CExtra_reducedVec_6_T_1; // @[primitives.scala:118:30, :123:57] wire [1:0] reduced4CExtra_lo_hi = {reduced4CExtra_reducedVec_2, reduced4CExtra_reducedVec_1}; // @[primitives.scala:118:30, :124:20] wire [2:0] reduced4CExtra_lo = {reduced4CExtra_lo_hi, reduced4CExtra_reducedVec_0}; // @[primitives.scala:118:30, :124:20] wire [1:0] reduced4CExtra_hi_lo = {reduced4CExtra_reducedVec_4, reduced4CExtra_reducedVec_3}; // @[primitives.scala:118:30, :124:20] wire [1:0] reduced4CExtra_hi_hi = {reduced4CExtra_reducedVec_6, reduced4CExtra_reducedVec_5}; // @[primitives.scala:118:30, :124:20] wire [3:0] reduced4CExtra_hi = {reduced4CExtra_hi_hi, reduced4CExtra_hi_lo}; // @[primitives.scala:124:20] wire [6:0] _reduced4CExtra_T_1 = {reduced4CExtra_hi, reduced4CExtra_lo}; // @[primitives.scala:124:20] wire [4:0] _reduced4CExtra_T_2 = CAlignDist[6:2]; // @[MulAddRecFN.scala:112:12, :124:28] wire [32:0] reduced4CExtra_shift = $signed(33'sh100000000 >>> _reduced4CExtra_T_2); // @[primitives.scala:76:56] wire [5:0] _reduced4CExtra_T_3 = reduced4CExtra_shift[19:14]; // @[primitives.scala:76:56, :78:22] wire [3:0] _reduced4CExtra_T_4 = _reduced4CExtra_T_3[3:0]; // @[primitives.scala:77:20, :78:22] wire [1:0] _reduced4CExtra_T_5 = _reduced4CExtra_T_4[1:0]; // @[primitives.scala:77:20] wire _reduced4CExtra_T_6 = _reduced4CExtra_T_5[0]; // @[primitives.scala:77:20] wire _reduced4CExtra_T_7 = _reduced4CExtra_T_5[1]; // @[primitives.scala:77:20] wire [1:0] _reduced4CExtra_T_8 = {_reduced4CExtra_T_6, _reduced4CExtra_T_7}; // @[primitives.scala:77:20] wire [1:0] _reduced4CExtra_T_9 = _reduced4CExtra_T_4[3:2]; // @[primitives.scala:77:20] wire _reduced4CExtra_T_10 = _reduced4CExtra_T_9[0]; // @[primitives.scala:77:20] wire _reduced4CExtra_T_11 = _reduced4CExtra_T_9[1]; // @[primitives.scala:77:20] wire [1:0] _reduced4CExtra_T_12 = {_reduced4CExtra_T_10, _reduced4CExtra_T_11}; // @[primitives.scala:77:20] wire [3:0] _reduced4CExtra_T_13 = {_reduced4CExtra_T_8, _reduced4CExtra_T_12}; // @[primitives.scala:77:20] wire [1:0] _reduced4CExtra_T_14 = _reduced4CExtra_T_3[5:4]; // @[primitives.scala:77:20, :78:22] wire _reduced4CExtra_T_15 = _reduced4CExtra_T_14[0]; // @[primitives.scala:77:20] wire _reduced4CExtra_T_16 = _reduced4CExtra_T_14[1]; // @[primitives.scala:77:20] wire [1:0] _reduced4CExtra_T_17 = {_reduced4CExtra_T_15, _reduced4CExtra_T_16}; // @[primitives.scala:77:20] wire [5:0] _reduced4CExtra_T_18 = {_reduced4CExtra_T_13, _reduced4CExtra_T_17}; // @[primitives.scala:77:20] wire [6:0] _reduced4CExtra_T_19 = {1'h0, _reduced4CExtra_T_1[5:0] & _reduced4CExtra_T_18}; // @[primitives.scala:77:20, :124:20] wire reduced4CExtra = |_reduced4CExtra_T_19; // @[MulAddRecFN.scala:122:68, :130:11] wire [74:0] _alignedSigC_T = mainAlignedSigC[77:3]; // @[MulAddRecFN.scala:120:100, :132:28] wire [74:0] alignedSigC_hi = _alignedSigC_T; // @[MulAddRecFN.scala:132:{12,28}] wire [2:0] _alignedSigC_T_1 = mainAlignedSigC[2:0]; // @[MulAddRecFN.scala:120:100, :134:32] wire [2:0] _alignedSigC_T_5 = mainAlignedSigC[2:0]; // @[MulAddRecFN.scala:120:100, :134:32, :135:32] wire _alignedSigC_T_2 = &_alignedSigC_T_1; // @[MulAddRecFN.scala:134:{32,39}] wire _alignedSigC_T_3 = ~reduced4CExtra; // @[MulAddRecFN.scala:130:11, :134:47] wire _alignedSigC_T_4 = _alignedSigC_T_2 & _alignedSigC_T_3; // @[MulAddRecFN.scala:134:{39,44,47}] wire _alignedSigC_T_6 = |_alignedSigC_T_5; // @[MulAddRecFN.scala:135:{32,39}] wire _alignedSigC_T_7 = _alignedSigC_T_6 | reduced4CExtra; // @[MulAddRecFN.scala:130:11, :135:{39,44}] wire _alignedSigC_T_8 = doSubMags ? _alignedSigC_T_4 : _alignedSigC_T_7; // @[MulAddRecFN.scala:102:42, :133:16, :134:44, :135:44] wire [75:0] alignedSigC = {alignedSigC_hi, _alignedSigC_T_8}; // @[MulAddRecFN.scala:132:12, :133:16] assign io_mulAddA_0 = rawA_sig[23:0]; // @[rawFloatFromRecFN.scala:55:23] assign io_mulAddB_0 = rawB_sig[23:0]; // @[rawFloatFromRecFN.scala:55:23] assign _io_mulAddC_T = alignedSigC[48:1]; // @[MulAddRecFN.scala:132:12, :143:30] assign io_mulAddC_0 = _io_mulAddC_T; // @[MulAddRecFN.scala:71:7, :143:30] wire _io_toPostMul_isSigNaNAny_T = rawA_sig[22]; // @[rawFloatFromRecFN.scala:55:23] wire _io_toPostMul_isSigNaNAny_T_1 = ~_io_toPostMul_isSigNaNAny_T; // @[common.scala:82:{49,56}] wire _io_toPostMul_isSigNaNAny_T_2 = rawA_isNaN & _io_toPostMul_isSigNaNAny_T_1; // @[rawFloatFromRecFN.scala:55:23] wire _io_toPostMul_isSigNaNAny_T_3 = rawB_sig[22]; // @[rawFloatFromRecFN.scala:55:23] wire _io_toPostMul_isSigNaNAny_T_4 = ~_io_toPostMul_isSigNaNAny_T_3; // @[common.scala:82:{49,56}] wire _io_toPostMul_isSigNaNAny_T_5 = rawB_isNaN & _io_toPostMul_isSigNaNAny_T_4; // @[rawFloatFromRecFN.scala:55:23] wire _io_toPostMul_isSigNaNAny_T_6 = _io_toPostMul_isSigNaNAny_T_2 | _io_toPostMul_isSigNaNAny_T_5; // @[common.scala:82:46] wire _io_toPostMul_isSigNaNAny_T_7 = rawC_sig[22]; // @[rawFloatFromRecFN.scala:55:23] wire _io_toPostMul_isSigNaNAny_T_8 = ~_io_toPostMul_isSigNaNAny_T_7; // @[common.scala:82:{49,56}] wire _io_toPostMul_isSigNaNAny_T_9 = rawC_isNaN & _io_toPostMul_isSigNaNAny_T_8; // @[rawFloatFromRecFN.scala:55:23] assign _io_toPostMul_isSigNaNAny_T_10 = _io_toPostMul_isSigNaNAny_T_6 | _io_toPostMul_isSigNaNAny_T_9; // @[common.scala:82:46] assign io_toPostMul_isSigNaNAny_0 = _io_toPostMul_isSigNaNAny_T_10; // @[MulAddRecFN.scala:71:7, :146:58] assign _io_toPostMul_isNaNAOrB_T = rawA_isNaN | rawB_isNaN; // @[rawFloatFromRecFN.scala:55:23] assign io_toPostMul_isNaNAOrB_0 = _io_toPostMul_isNaNAOrB_T; // @[MulAddRecFN.scala:71:7, :148:42] wire [11:0] _io_toPostMul_sExpSum_T = _GEN - 12'h18; // @[MulAddRecFN.scala:106:42, :158:53] wire [10:0] _io_toPostMul_sExpSum_T_1 = _io_toPostMul_sExpSum_T[10:0]; // @[MulAddRecFN.scala:158:53] wire [10:0] _io_toPostMul_sExpSum_T_2 = _io_toPostMul_sExpSum_T_1; // @[MulAddRecFN.scala:158:53] wire [10:0] _io_toPostMul_sExpSum_T_3 = CIsDominant ? {rawC_sExp[9], rawC_sExp} : _io_toPostMul_sExpSum_T_2; // @[rawFloatFromRecFN.scala:55:23] assign io_toPostMul_sExpSum_0 = _io_toPostMul_sExpSum_T_3[9:0]; // @[MulAddRecFN.scala:71:7, :157:28, :158:12] assign _io_toPostMul_CDom_CAlignDist_T = CAlignDist[4:0]; // @[MulAddRecFN.scala:112:12, :161:47] assign io_toPostMul_CDom_CAlignDist_0 = _io_toPostMul_CDom_CAlignDist_T; // @[MulAddRecFN.scala:71:7, :161:47] assign _io_toPostMul_highAlignedSigC_T = alignedSigC[74:49]; // @[MulAddRecFN.scala:132:12, :163:20] assign io_toPostMul_highAlignedSigC_0 = _io_toPostMul_highAlignedSigC_T; // @[MulAddRecFN.scala:71:7, :163:20] assign _io_toPostMul_bit0AlignedSigC_T = alignedSigC[0]; // @[MulAddRecFN.scala:132:12, :164:48] assign io_toPostMul_bit0AlignedSigC_0 = _io_toPostMul_bit0AlignedSigC_T; // @[MulAddRecFN.scala:71:7, :164:48] assign io_mulAddA = io_mulAddA_0; // @[MulAddRecFN.scala:71:7] assign io_mulAddB = io_mulAddB_0; // @[MulAddRecFN.scala:71:7] assign io_mulAddC = io_mulAddC_0; // @[MulAddRecFN.scala:71:7] assign io_toPostMul_isSigNaNAny = io_toPostMul_isSigNaNAny_0; // @[MulAddRecFN.scala:71:7] assign io_toPostMul_isNaNAOrB = io_toPostMul_isNaNAOrB_0; // @[MulAddRecFN.scala:71:7] assign io_toPostMul_isInfA = io_toPostMul_isInfA_0; // @[MulAddRecFN.scala:71:7] assign io_toPostMul_isZeroA = io_toPostMul_isZeroA_0; // @[MulAddRecFN.scala:71:7] assign io_toPostMul_isInfB = io_toPostMul_isInfB_0; // @[MulAddRecFN.scala:71:7] assign io_toPostMul_isZeroB = io_toPostMul_isZeroB_0; // @[MulAddRecFN.scala:71:7] assign io_toPostMul_signProd = io_toPostMul_signProd_0; // @[MulAddRecFN.scala:71:7] assign io_toPostMul_isNaNC = io_toPostMul_isNaNC_0; // @[MulAddRecFN.scala:71:7] assign io_toPostMul_isInfC = io_toPostMul_isInfC_0; // @[MulAddRecFN.scala:71:7] assign io_toPostMul_isZeroC = io_toPostMul_isZeroC_0; // @[MulAddRecFN.scala:71:7] assign io_toPostMul_sExpSum = io_toPostMul_sExpSum_0; // @[MulAddRecFN.scala:71:7] assign io_toPostMul_doSubMags = io_toPostMul_doSubMags_0; // @[MulAddRecFN.scala:71:7] assign io_toPostMul_CIsDominant = io_toPostMul_CIsDominant_0; // @[MulAddRecFN.scala:71:7] assign io_toPostMul_CDom_CAlignDist = io_toPostMul_CDom_CAlignDist_0; // @[MulAddRecFN.scala:71:7] assign io_toPostMul_highAlignedSigC = io_toPostMul_highAlignedSigC_0; // @[MulAddRecFN.scala:71:7] assign io_toPostMul_bit0AlignedSigC = io_toPostMul_bit0AlignedSigC_0; // @[MulAddRecFN.scala:71:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Misc.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ import chisel3.util.random.LFSR import org.chipsalliance.cde.config.Parameters import scala.math._ class ParameterizedBundle(implicit p: Parameters) extends Bundle trait Clocked extends Bundle { val clock = Clock() val reset = Bool() } object DecoupledHelper { def apply(rvs: Bool*) = new DecoupledHelper(rvs) } class DecoupledHelper(val rvs: Seq[Bool]) { def fire(exclude: Bool, includes: Bool*) = { require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!") (rvs.filter(_ ne exclude) ++ includes).reduce(_ && _) } def fire() = { rvs.reduce(_ && _) } } object MuxT { def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2)) def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3)) def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4)) } /** Creates a cascade of n MuxTs to search for a key value. */ object MuxTLookup { def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } } object ValidMux { def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = { apply(v1 +: v2.toSeq) } def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = { val out = Wire(Valid(valids.head.bits.cloneType)) out.valid := valids.map(_.valid).reduce(_ || _) out.bits := MuxCase(valids.head.bits, valids.map(v => (v.valid -> v.bits))) out } } object Str { def apply(s: String): UInt = { var i = BigInt(0) require(s.forall(validChar _)) for (c <- s) i = (i << 8) | c i.U((s.length*8).W) } def apply(x: Char): UInt = { require(validChar(x)) x.U(8.W) } def apply(x: UInt): UInt = apply(x, 10) def apply(x: UInt, radix: Int): UInt = { val rad = radix.U val w = x.getWidth require(w > 0) var q = x var s = digit(q % rad) for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s) } s } def apply(x: SInt): UInt = apply(x, 10) def apply(x: SInt, radix: Int): UInt = { val neg = x < 0.S val abs = x.abs.asUInt if (radix != 10) { Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix)) } else { val rad = radix.U val w = abs.getWidth require(w > 0) var q = abs var s = digit(q % rad) var needSign = neg for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad val placeSpace = q === 0.U val space = Mux(needSign, Str('-'), Str(' ')) needSign = needSign && !placeSpace s = Cat(Mux(placeSpace, space, digit(q % rad)), s) } Cat(Mux(needSign, Str('-'), Str(' ')), s) } } private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0) private def validChar(x: Char) = x == (x & 0xFF) } object Split { def apply(x: UInt, n0: Int) = { val w = x.getWidth (x.extract(w-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n2: Int, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } } object Random { def apply(mod: Int, random: UInt): UInt = { if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0) else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod)) } def apply(mod: Int): UInt = apply(mod, randomizer) def oneHot(mod: Int, random: UInt): UInt = { if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0)) else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt } def oneHot(mod: Int): UInt = oneHot(mod, randomizer) private def randomizer = LFSR(16) private def partition(value: UInt, slices: Int) = Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U) } object Majority { def apply(in: Set[Bool]): Bool = { val n = (in.size >> 1) + 1 val clauses = in.subsets(n).map(_.reduce(_ && _)) clauses.reduce(_ || _) } def apply(in: Seq[Bool]): Bool = apply(in.toSet) def apply(in: UInt): Bool = apply(in.asBools.toSet) } object PopCountAtLeast { private def two(x: UInt): (Bool, Bool) = x.getWidth match { case 1 => (x.asBool, false.B) case n => val half = x.getWidth / 2 val (leftOne, leftTwo) = two(x(half - 1, 0)) val (rightOne, rightTwo) = two(x(x.getWidth - 1, half)) (leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne)) } def apply(x: UInt, n: Int): Bool = n match { case 0 => true.B case 1 => x.orR case 2 => two(x)._2 case 3 => PopCount(x) >= n.U } } // This gets used everywhere, so make the smallest circuit possible ... // Given an address and size, create a mask of beatBytes size // eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111 // groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01 object MaskGen { def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = { require (groupBy >= 1 && beatBytes >= groupBy) require (isPow2(beatBytes) && isPow2(groupBy)) val lgBytes = log2Ceil(beatBytes) val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U def helper(i: Int): Seq[(Bool, Bool)] = { if (i == 0) { Seq((lgSize >= lgBytes.asUInt, true.B)) } else { val sub = helper(i-1) val size = sizeOH(lgBytes - i) val bit = addr_lo(lgBytes - i) val nbit = !bit Seq.tabulate (1 << i) { j => val (sub_acc, sub_eq) = sub(j/2) val eq = sub_eq && (if (j % 2 == 1) bit else nbit) val acc = sub_acc || (size && eq) (acc, eq) } } } if (groupBy == beatBytes) 1.U else Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse) } } File LatencyInjectionQueue.scala: package compressacc import chisel3._ import chisel3.util._ import chisel3.util._ import freechips.rocketchip.util.DecoupledHelper class LatencyInjectionQueue[T <: Data](data: T, depth: Int) extends Module { val io = IO(new Bundle { val latency_cycles = Input(UInt(64.W)) val enq = Flipped(Decoupled(data)) val deq = Decoupled(data) }) val cur_cycle = RegInit(0.U(64.W)) cur_cycle := cur_cycle + 1.U val queue = Module(new Queue(data, depth)) val release_ready_cycle_q = Module(new Queue(UInt(64.W), depth)) release_ready_cycle_q.io.enq.bits := cur_cycle + io.latency_cycles queue.io.enq.bits := io.enq.bits io.deq.bits := queue.io.deq.bits val enq_fire = DecoupledHelper( queue.io.enq.ready, release_ready_cycle_q.io.enq.ready, io.enq.valid ) queue.io.enq.valid := enq_fire.fire(queue.io.enq.ready) release_ready_cycle_q.io.enq.valid := enq_fire.fire(release_ready_cycle_q.io.enq.ready) io.enq.ready := enq_fire.fire(io.enq.valid) val deq_fire = DecoupledHelper( queue.io.deq.valid, release_ready_cycle_q.io.deq.valid, release_ready_cycle_q.io.deq.bits <= cur_cycle, io.deq.ready ) queue.io.deq.ready := deq_fire.fire(queue.io.deq.valid) release_ready_cycle_q.io.deq.ready := deq_fire.fire(release_ready_cycle_q.io.deq.valid) io.deq.valid := deq_fire.fire(io.deq.ready) }
module LatencyInjectionQueue_16( // @[LatencyInjectionQueue.scala:9:7] input clock, // @[LatencyInjectionQueue.scala:9:7] input reset, // @[LatencyInjectionQueue.scala:9:7] input [63:0] io_latency_cycles, // @[LatencyInjectionQueue.scala:10:14] output io_enq_ready, // @[LatencyInjectionQueue.scala:10:14] input io_enq_valid, // @[LatencyInjectionQueue.scala:10:14] input [2:0] io_enq_bits_opcode, // @[LatencyInjectionQueue.scala:10:14] input [3:0] io_enq_bits_size, // @[LatencyInjectionQueue.scala:10:14] input [1:0] io_enq_bits_source, // @[LatencyInjectionQueue.scala:10:14] input [31:0] io_enq_bits_address, // @[LatencyInjectionQueue.scala:10:14] input [31:0] io_enq_bits_mask, // @[LatencyInjectionQueue.scala:10:14] input [255:0] io_enq_bits_data, // @[LatencyInjectionQueue.scala:10:14] input io_deq_ready, // @[LatencyInjectionQueue.scala:10:14] output io_deq_valid, // @[LatencyInjectionQueue.scala:10:14] output [2:0] io_deq_bits_opcode, // @[LatencyInjectionQueue.scala:10:14] output [2:0] io_deq_bits_param, // @[LatencyInjectionQueue.scala:10:14] output [3:0] io_deq_bits_size, // @[LatencyInjectionQueue.scala:10:14] output [1:0] io_deq_bits_source, // @[LatencyInjectionQueue.scala:10:14] output [31:0] io_deq_bits_address, // @[LatencyInjectionQueue.scala:10:14] output [31:0] io_deq_bits_mask, // @[LatencyInjectionQueue.scala:10:14] output [255:0] io_deq_bits_data, // @[LatencyInjectionQueue.scala:10:14] output io_deq_bits_corrupt // @[LatencyInjectionQueue.scala:10:14] ); wire _release_ready_cycle_q_io_enq_ready; // @[LatencyInjectionQueue.scala:19:37] wire _release_ready_cycle_q_io_deq_valid; // @[LatencyInjectionQueue.scala:19:37] wire [63:0] _release_ready_cycle_q_io_deq_bits; // @[LatencyInjectionQueue.scala:19:37] wire _queue_io_enq_ready; // @[LatencyInjectionQueue.scala:18:21] wire _queue_io_deq_valid; // @[LatencyInjectionQueue.scala:18:21] wire [63:0] io_latency_cycles_0 = io_latency_cycles; // @[LatencyInjectionQueue.scala:9:7] wire io_enq_valid_0 = io_enq_valid; // @[LatencyInjectionQueue.scala:9:7] wire [2:0] io_enq_bits_opcode_0 = io_enq_bits_opcode; // @[LatencyInjectionQueue.scala:9:7] wire [3:0] io_enq_bits_size_0 = io_enq_bits_size; // @[LatencyInjectionQueue.scala:9:7] wire [1:0] io_enq_bits_source_0 = io_enq_bits_source; // @[LatencyInjectionQueue.scala:9:7] wire [31:0] io_enq_bits_address_0 = io_enq_bits_address; // @[LatencyInjectionQueue.scala:9:7] wire [31:0] io_enq_bits_mask_0 = io_enq_bits_mask; // @[LatencyInjectionQueue.scala:9:7] wire [255:0] io_enq_bits_data_0 = io_enq_bits_data; // @[LatencyInjectionQueue.scala:9:7] wire io_deq_ready_0 = io_deq_ready; // @[LatencyInjectionQueue.scala:9:7] wire io_enq_bits_corrupt = 1'h0; // @[LatencyInjectionQueue.scala:9:7, :10:14, :18:21] wire [2:0] io_enq_bits_param = 3'h0; // @[LatencyInjectionQueue.scala:9:7, :10:14, :18:21] wire _io_enq_ready_T; // @[Misc.scala:26:53] wire _io_deq_valid_T_1; // @[Misc.scala:26:53] wire io_enq_ready_0; // @[LatencyInjectionQueue.scala:9:7] wire [2:0] io_deq_bits_opcode_0; // @[LatencyInjectionQueue.scala:9:7] wire [2:0] io_deq_bits_param_0; // @[LatencyInjectionQueue.scala:9:7] wire [3:0] io_deq_bits_size_0; // @[LatencyInjectionQueue.scala:9:7] wire [1:0] io_deq_bits_source_0; // @[LatencyInjectionQueue.scala:9:7] wire [31:0] io_deq_bits_address_0; // @[LatencyInjectionQueue.scala:9:7] wire [31:0] io_deq_bits_mask_0; // @[LatencyInjectionQueue.scala:9:7] wire [255:0] io_deq_bits_data_0; // @[LatencyInjectionQueue.scala:9:7] wire io_deq_bits_corrupt_0; // @[LatencyInjectionQueue.scala:9:7] wire io_deq_valid_0; // @[LatencyInjectionQueue.scala:9:7] reg [63:0] cur_cycle; // @[LatencyInjectionQueue.scala:16:26] wire [64:0] _GEN = {1'h0, cur_cycle}; // @[LatencyInjectionQueue.scala:9:7, :10:14, :16:26, :17:26, :18:21] wire [64:0] _cur_cycle_T = _GEN + 65'h1; // @[LatencyInjectionQueue.scala:17:26] wire [63:0] _cur_cycle_T_1 = _cur_cycle_T[63:0]; // @[LatencyInjectionQueue.scala:17:26] wire [64:0] _release_ready_cycle_q_io_enq_bits_T = _GEN + {1'h0, io_latency_cycles_0}; // @[LatencyInjectionQueue.scala:9:7, :10:14, :17:26, :18:21, :21:50] wire [63:0] _release_ready_cycle_q_io_enq_bits_T_1 = _release_ready_cycle_q_io_enq_bits_T[63:0]; // @[LatencyInjectionQueue.scala:21:50] wire _queue_io_enq_valid_T = _release_ready_cycle_q_io_enq_ready & io_enq_valid_0; // @[Misc.scala:26:53] wire _release_ready_cycle_q_io_enq_valid_T = _queue_io_enq_ready & io_enq_valid_0; // @[Misc.scala:26:53] assign _io_enq_ready_T = _queue_io_enq_ready & _release_ready_cycle_q_io_enq_ready; // @[Misc.scala:26:53] assign io_enq_ready_0 = _io_enq_ready_T; // @[Misc.scala:26:53] wire _T = _release_ready_cycle_q_io_deq_bits <= cur_cycle; // @[LatencyInjectionQueue.scala:16:26, :19:37, :38:39] wire _queue_io_deq_ready_T = _release_ready_cycle_q_io_deq_valid & _T; // @[Misc.scala:26:53] wire _queue_io_deq_ready_T_1 = _queue_io_deq_ready_T & io_deq_ready_0; // @[Misc.scala:26:53] wire _release_ready_cycle_q_io_deq_ready_T = _queue_io_deq_valid & _T; // @[Misc.scala:26:53] wire _release_ready_cycle_q_io_deq_ready_T_1 = _release_ready_cycle_q_io_deq_ready_T & io_deq_ready_0; // @[Misc.scala:26:53] wire _io_deq_valid_T = _queue_io_deq_valid & _release_ready_cycle_q_io_deq_valid; // @[Misc.scala:26:53] assign _io_deq_valid_T_1 = _io_deq_valid_T & _T; // @[Misc.scala:26:53] assign io_deq_valid_0 = _io_deq_valid_T_1; // @[Misc.scala:26:53] always @(posedge clock) begin // @[LatencyInjectionQueue.scala:9:7] if (reset) // @[LatencyInjectionQueue.scala:9:7] cur_cycle <= 64'h0; // @[LatencyInjectionQueue.scala:16:26] else // @[LatencyInjectionQueue.scala:9:7] cur_cycle <= _cur_cycle_T_1; // @[LatencyInjectionQueue.scala:16:26, :17:26] always @(posedge) Queue8_TLBundleA_a32d256s2k3z4u_2 queue ( // @[LatencyInjectionQueue.scala:18:21] .clock (clock), .reset (reset), .io_enq_ready (_queue_io_enq_ready), .io_enq_valid (_queue_io_enq_valid_T), // @[Misc.scala:26:53] .io_enq_bits_opcode (io_enq_bits_opcode_0), // @[LatencyInjectionQueue.scala:9:7] .io_enq_bits_size (io_enq_bits_size_0), // @[LatencyInjectionQueue.scala:9:7] .io_enq_bits_source (io_enq_bits_source_0), // @[LatencyInjectionQueue.scala:9:7] .io_enq_bits_address (io_enq_bits_address_0), // @[LatencyInjectionQueue.scala:9:7] .io_enq_bits_mask (io_enq_bits_mask_0), // @[LatencyInjectionQueue.scala:9:7] .io_enq_bits_data (io_enq_bits_data_0), // @[LatencyInjectionQueue.scala:9:7] .io_deq_ready (_queue_io_deq_ready_T_1), // @[Misc.scala:26:53] .io_deq_valid (_queue_io_deq_valid), .io_deq_bits_opcode (io_deq_bits_opcode_0), .io_deq_bits_param (io_deq_bits_param_0), .io_deq_bits_size (io_deq_bits_size_0), .io_deq_bits_source (io_deq_bits_source_0), .io_deq_bits_address (io_deq_bits_address_0), .io_deq_bits_mask (io_deq_bits_mask_0), .io_deq_bits_data (io_deq_bits_data_0), .io_deq_bits_corrupt (io_deq_bits_corrupt_0) ); // @[LatencyInjectionQueue.scala:18:21] Queue8_UInt64_4 release_ready_cycle_q ( // @[LatencyInjectionQueue.scala:19:37] .clock (clock), .reset (reset), .io_enq_ready (_release_ready_cycle_q_io_enq_ready), .io_enq_valid (_release_ready_cycle_q_io_enq_valid_T), // @[Misc.scala:26:53] .io_enq_bits (_release_ready_cycle_q_io_enq_bits_T_1), // @[LatencyInjectionQueue.scala:21:50] .io_deq_ready (_release_ready_cycle_q_io_deq_ready_T_1), // @[Misc.scala:26:53] .io_deq_valid (_release_ready_cycle_q_io_deq_valid), .io_deq_bits (_release_ready_cycle_q_io_deq_bits) ); // @[LatencyInjectionQueue.scala:19:37] assign io_enq_ready = io_enq_ready_0; // @[LatencyInjectionQueue.scala:9:7] assign io_deq_valid = io_deq_valid_0; // @[LatencyInjectionQueue.scala:9:7] assign io_deq_bits_opcode = io_deq_bits_opcode_0; // @[LatencyInjectionQueue.scala:9:7] assign io_deq_bits_param = io_deq_bits_param_0; // @[LatencyInjectionQueue.scala:9:7] assign io_deq_bits_size = io_deq_bits_size_0; // @[LatencyInjectionQueue.scala:9:7] assign io_deq_bits_source = io_deq_bits_source_0; // @[LatencyInjectionQueue.scala:9:7] assign io_deq_bits_address = io_deq_bits_address_0; // @[LatencyInjectionQueue.scala:9:7] assign io_deq_bits_mask = io_deq_bits_mask_0; // @[LatencyInjectionQueue.scala:9:7] assign io_deq_bits_data = io_deq_bits_data_0; // @[LatencyInjectionQueue.scala:9:7] assign io_deq_bits_corrupt = io_deq_bits_corrupt_0; // @[LatencyInjectionQueue.scala:9:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File DescribedSRAM.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3.{Data, SyncReadMem, Vec} import chisel3.util.log2Ceil object DescribedSRAM { def apply[T <: Data]( name: String, desc: String, size: BigInt, // depth data: T ): SyncReadMem[T] = { val mem = SyncReadMem(size, data) mem.suggestName(name) val granWidth = data match { case v: Vec[_] => v.head.getWidth case d => d.getWidth } val uid = 0 Annotated.srams( component = mem, name = name, address_width = log2Ceil(size), data_width = data.getWidth, depth = size, description = desc, write_mask_granularity = granWidth ) mem } }
module cc_banks_3( // @[DescribedSRAM.scala:17:26] input [14:0] RW0_addr, input RW0_en, input RW0_clk, input RW0_wmode, input [63:0] RW0_wdata, output [63:0] RW0_rdata ); cc_banks_0_ext cc_banks_0_ext ( // @[DescribedSRAM.scala:17:26] .RW0_addr (RW0_addr), .RW0_en (RW0_en), .RW0_clk (RW0_clk), .RW0_wmode (RW0_wmode), .RW0_wdata (RW0_wdata), .RW0_rdata (RW0_rdata) ); // @[DescribedSRAM.scala:17:26] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Monitor.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceLine import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import freechips.rocketchip.diplomacy.EnableMonitors import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode} import freechips.rocketchip.util.PlusArg case class TLMonitorArgs(edge: TLEdge) abstract class TLMonitorBase(args: TLMonitorArgs) extends Module { val io = IO(new Bundle { val in = Input(new TLBundle(args.edge.bundle)) }) def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit legalize(io.in, args.edge, reset) } object TLMonitor { def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = { if (enable) { EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) } } else { node } } } class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args) { require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal)) val cover_prop_class = PropertyClass.Default //Like assert but can flip to being an assumption for formal verification def monAssert(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir, cond, message, PropertyClass.Default) } def assume(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir.flip, cond, message, PropertyClass.Default) } def extra = { args.edge.sourceInfo match { case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)" case _ => "" } } def visible(address: UInt, source: UInt, edge: TLEdge) = edge.client.clients.map { c => !c.sourceId.contains(source) || c.visibility.map(_.contains(address)).reduce(_ || _) }.reduce(_ && _) def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = { //switch this flag to turn on diplomacy in error messages def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n" monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra) // Reuse these subexpressions to save some firrtl lines val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility") //The monitor doesn’t check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B //TODO: check for acquireT? when (bundle.opcode === TLMessages.AcquireBlock) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra) } when (bundle.opcode === TLMessages.AcquirePerm) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra) monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra) monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra) monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra) } } def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = { monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra) monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility") // Reuse these subexpressions to save some firrtl lines val address_ok = edge.manager.containsSafe(edge.address(bundle)) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source when (bundle.opcode === TLMessages.Probe) { assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra) assume (address_ok, "'B' channel Probe carries unmanaged address" + extra) assume (legal_source, "'B' channel Probe carries source that is not first source" + extra) assume (is_aligned, "'B' channel Probe address not aligned to size" + extra) assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra) assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra) assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra) monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra) monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra) monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra) monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra) } } def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = { monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val address_ok = edge.manager.containsSafe(edge.address(bundle)) monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility") when (bundle.opcode === TLMessages.ProbeAck) { monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra) } when (bundle.opcode === TLMessages.ProbeAckData) { monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.Release) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra) monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra) } when (bundle.opcode === TLMessages.ReleaseData) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.AccessAck) { monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra) } when (bundle.opcode === TLMessages.HintAck) { monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra) } } def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = { assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val sink_ok = bundle.sink < edge.manager.endSinkId.U val deny_put_ok = edge.manager.mayDenyPut.B val deny_get_ok = edge.manager.mayDenyGet.B when (bundle.opcode === TLMessages.ReleaseAck) { assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra) assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra) assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra) } when (bundle.opcode === TLMessages.Grant) { assume (source_ok, "'D' channel Grant carries invalid source ID" + extra) assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra) assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra) } when (bundle.opcode === TLMessages.GrantData) { assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra) assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra) } when (bundle.opcode === TLMessages.AccessAck) { assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra) } when (bundle.opcode === TLMessages.HintAck) { assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra) } } def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = { val sink_ok = bundle.sink < edge.manager.endSinkId.U monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra) } def legalizeFormat(bundle: TLBundle, edge: TLEdge) = { when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) } when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) } when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) } when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) } } else { monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra) monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra) monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra) } } def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = { val a_first = edge.first(a.bits, a.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (a.valid && !a_first) { monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra) monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra) monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra) monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra) monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra) } when (a.fire && a_first) { opcode := a.bits.opcode param := a.bits.param size := a.bits.size source := a.bits.source address := a.bits.address } } def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = { val b_first = edge.first(b.bits, b.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (b.valid && !b_first) { monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra) monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra) monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra) monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra) monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra) } when (b.fire && b_first) { opcode := b.bits.opcode param := b.bits.param size := b.bits.size source := b.bits.source address := b.bits.address } } def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = { // Symbolic variable val sym_source = Wire(UInt(edge.client.endSourceId.W)) // TODO: Connect sym_source to a fixed value for simulation and to a // free wire in formal sym_source := 0.U // Type casting Int to UInt val maxSourceId = Wire(UInt(edge.client.endSourceId.W)) maxSourceId := edge.client.endSourceId.U // Delayed verison of sym_source val sym_source_d = Reg(UInt(edge.client.endSourceId.W)) sym_source_d := sym_source // These will be constraints for FV setup Property( MonitorDirection.Monitor, (sym_source === sym_source_d), "sym_source should remain stable", PropertyClass.Default) Property( MonitorDirection.Monitor, (sym_source <= maxSourceId), "sym_source should take legal value", PropertyClass.Default) val my_resp_pend = RegInit(false.B) val my_opcode = Reg(UInt()) val my_size = Reg(UInt()) val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire) val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire) val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source) val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source) val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat) val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend) when (my_set_resp_pend) { my_resp_pend := true.B } .elsewhen (my_clr_resp_pend) { my_resp_pend := false.B } when (my_a_first_beat) { my_opcode := bundle.a.bits.opcode my_size := bundle.a.bits.size } val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size) val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode) val my_resp_opcode_legal = Wire(Bool()) when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) || (my_resp_opcode === TLMessages.LogicalData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData) } .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck) } .otherwise { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck) } monAssert (IfThen(my_resp_pend, !my_a_first_beat), "Request message should not be sent with a source ID, for which a response message" + "is already pending (not received until current cycle) for a prior request message" + "with the same source ID" + extra) assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)), "Response message should be accepted with a source ID only if a request message with the" + "same source ID has been accepted or is being accepted in the current cycle" + extra) assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)), "Response message should be sent with a source ID only if a request message with the" + "same source ID has been accepted or is being sent in the current cycle" + extra) assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)), "If d_valid is 1, then d_size should be same as a_size of the corresponding request" + "message" + extra) assume (IfThen(my_d_first_beat, my_resp_opcode_legal), "If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" + "request message" + extra) } def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = { val c_first = edge.first(c.bits, c.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (c.valid && !c_first) { monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra) monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra) monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra) monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra) monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra) } when (c.fire && c_first) { opcode := c.bits.opcode param := c.bits.param size := c.bits.size source := c.bits.source address := c.bits.address } } def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = { val d_first = edge.first(d.bits, d.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val sink = Reg(UInt()) val denied = Reg(Bool()) when (d.valid && !d_first) { assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra) assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra) assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra) assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra) assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra) assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra) } when (d.fire && d_first) { opcode := d.bits.opcode param := d.bits.param size := d.bits.size source := d.bits.source sink := d.bits.sink denied := d.bits.denied } } def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = { legalizeMultibeatA(bundle.a, edge) legalizeMultibeatD(bundle.d, edge) if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { legalizeMultibeatB(bundle.b, edge) legalizeMultibeatC(bundle.c, edge) } } //This is left in for almond which doesn't adhere to the tilelink protocol @deprecated("Use legalizeADSource instead if possible","") def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.client.endSourceId.W)) val a_first = edge.first(bundle.a.bits, bundle.a.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val a_set = WireInit(0.U(edge.client.endSourceId.W)) when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra) } if (edge.manager.minLatency > 0) { assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = { val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size) val log_a_size_bus_size = log2Ceil(a_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error inflight.suggestName("inflight") val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) inflight_opcodes.suggestName("inflight_opcodes") val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) inflight_sizes.suggestName("inflight_sizes") val a_first = edge.first(bundle.a.bits, bundle.a.fire) a_first.suggestName("a_first") val d_first = edge.first(bundle.d.bits, bundle.d.fire) d_first.suggestName("d_first") val a_set = WireInit(0.U(edge.client.endSourceId.W)) val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) a_set.suggestName("a_set") a_set_wo_ready.suggestName("a_set_wo_ready") val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) a_opcodes_set.suggestName("a_opcodes_set") val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) a_sizes_set.suggestName("a_sizes_set") val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W)) a_opcode_lookup.suggestName("a_opcode_lookup") a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W)) a_size_lookup.suggestName("a_size_lookup") a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant)) val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant)) val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W)) a_opcodes_set_interm.suggestName("a_opcodes_set_interm") val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W)) a_sizes_set_interm.suggestName("a_sizes_set_interm") when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) { a_set_wo_ready := UIntToOH(bundle.a.bits.source) } when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U) a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U) monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) d_opcodes_clr.suggestName("d_opcodes_clr") val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) || (bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra) assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) || (bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra) assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) { assume((!bundle.d.ready) || bundle.a.ready, "ready check") } if (edge.manager.minLatency > 0) { assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = { val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size) val log_c_size_bus_size = log2Ceil(c_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) inflight.suggestName("inflight") inflight_opcodes.suggestName("inflight_opcodes") inflight_sizes.suggestName("inflight_sizes") val c_first = edge.first(bundle.c.bits, bundle.c.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) c_first.suggestName("c_first") d_first.suggestName("d_first") val c_set = WireInit(0.U(edge.client.endSourceId.W)) val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) c_set.suggestName("c_set") c_set_wo_ready.suggestName("c_set_wo_ready") c_opcodes_set.suggestName("c_opcodes_set") c_sizes_set.suggestName("c_sizes_set") val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W)) val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W)) c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U c_opcode_lookup.suggestName("c_opcode_lookup") c_size_lookup.suggestName("c_size_lookup") val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W)) val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W)) c_opcodes_set_interm.suggestName("c_opcodes_set_interm") c_sizes_set_interm.suggestName("c_sizes_set_interm") when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) { c_set_wo_ready := UIntToOH(bundle.c.bits.source) } when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) { c_set := UIntToOH(bundle.c.bits.source) c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U) c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U) monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra) } val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") d_opcodes_clr.suggestName("d_opcodes_clr") d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) { assume((!bundle.d.ready) || bundle.c.ready, "ready check") } if (edge.manager.minLatency > 0) { when (c_set_wo_ready.orR) { assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra) } } inflight := (inflight | c_set) & ~d_clr inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.manager.endSinkId.W)) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val e_first = true.B val d_set = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) { d_set := UIntToOH(bundle.d.bits.sink) assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra) } val e_clr = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) { e_clr := UIntToOH(bundle.e.bits.sink) monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra) } // edge.client.minLatency applies to BC, not DE inflight := (inflight | d_set) & ~e_clr } def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = { val sourceBits = log2Ceil(edge.client.endSourceId) val tooBig = 14 // >16kB worth of flight information gets to be too much if (sourceBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked") } else { if (args.edge.params(TestplanTestType).simulation) { if (args.edge.params(TLMonitorStrictMode)) { legalizeADSource(bundle, edge) legalizeCDSource(bundle, edge) } else { legalizeADSourceOld(bundle, edge) } } if (args.edge.params(TestplanTestType).formal) { legalizeADSourceFormal(bundle, edge) } } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { // legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize... val sinkBits = log2Ceil(edge.manager.endSinkId) if (sinkBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked") } else { legalizeDESink(bundle, edge) } } } def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = { legalizeFormat (bundle, edge) legalizeMultibeat (bundle, edge) legalizeUnique (bundle, edge) } } File Misc.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ import chisel3.util.random.LFSR import org.chipsalliance.cde.config.Parameters import scala.math._ class ParameterizedBundle(implicit p: Parameters) extends Bundle trait Clocked extends Bundle { val clock = Clock() val reset = Bool() } object DecoupledHelper { def apply(rvs: Bool*) = new DecoupledHelper(rvs) } class DecoupledHelper(val rvs: Seq[Bool]) { def fire(exclude: Bool, includes: Bool*) = { require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!") (rvs.filter(_ ne exclude) ++ includes).reduce(_ && _) } def fire() = { rvs.reduce(_ && _) } } object MuxT { def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2)) def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3)) def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4)) } /** Creates a cascade of n MuxTs to search for a key value. */ object MuxTLookup { def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } } object ValidMux { def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = { apply(v1 +: v2.toSeq) } def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = { val out = Wire(Valid(valids.head.bits.cloneType)) out.valid := valids.map(_.valid).reduce(_ || _) out.bits := MuxCase(valids.head.bits, valids.map(v => (v.valid -> v.bits))) out } } object Str { def apply(s: String): UInt = { var i = BigInt(0) require(s.forall(validChar _)) for (c <- s) i = (i << 8) | c i.U((s.length*8).W) } def apply(x: Char): UInt = { require(validChar(x)) x.U(8.W) } def apply(x: UInt): UInt = apply(x, 10) def apply(x: UInt, radix: Int): UInt = { val rad = radix.U val w = x.getWidth require(w > 0) var q = x var s = digit(q % rad) for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s) } s } def apply(x: SInt): UInt = apply(x, 10) def apply(x: SInt, radix: Int): UInt = { val neg = x < 0.S val abs = x.abs.asUInt if (radix != 10) { Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix)) } else { val rad = radix.U val w = abs.getWidth require(w > 0) var q = abs var s = digit(q % rad) var needSign = neg for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad val placeSpace = q === 0.U val space = Mux(needSign, Str('-'), Str(' ')) needSign = needSign && !placeSpace s = Cat(Mux(placeSpace, space, digit(q % rad)), s) } Cat(Mux(needSign, Str('-'), Str(' ')), s) } } private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0) private def validChar(x: Char) = x == (x & 0xFF) } object Split { def apply(x: UInt, n0: Int) = { val w = x.getWidth (x.extract(w-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n2: Int, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } } object Random { def apply(mod: Int, random: UInt): UInt = { if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0) else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod)) } def apply(mod: Int): UInt = apply(mod, randomizer) def oneHot(mod: Int, random: UInt): UInt = { if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0)) else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt } def oneHot(mod: Int): UInt = oneHot(mod, randomizer) private def randomizer = LFSR(16) private def partition(value: UInt, slices: Int) = Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U) } object Majority { def apply(in: Set[Bool]): Bool = { val n = (in.size >> 1) + 1 val clauses = in.subsets(n).map(_.reduce(_ && _)) clauses.reduce(_ || _) } def apply(in: Seq[Bool]): Bool = apply(in.toSet) def apply(in: UInt): Bool = apply(in.asBools.toSet) } object PopCountAtLeast { private def two(x: UInt): (Bool, Bool) = x.getWidth match { case 1 => (x.asBool, false.B) case n => val half = x.getWidth / 2 val (leftOne, leftTwo) = two(x(half - 1, 0)) val (rightOne, rightTwo) = two(x(x.getWidth - 1, half)) (leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne)) } def apply(x: UInt, n: Int): Bool = n match { case 0 => true.B case 1 => x.orR case 2 => two(x)._2 case 3 => PopCount(x) >= n.U } } // This gets used everywhere, so make the smallest circuit possible ... // Given an address and size, create a mask of beatBytes size // eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111 // groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01 object MaskGen { def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = { require (groupBy >= 1 && beatBytes >= groupBy) require (isPow2(beatBytes) && isPow2(groupBy)) val lgBytes = log2Ceil(beatBytes) val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U def helper(i: Int): Seq[(Bool, Bool)] = { if (i == 0) { Seq((lgSize >= lgBytes.asUInt, true.B)) } else { val sub = helper(i-1) val size = sizeOH(lgBytes - i) val bit = addr_lo(lgBytes - i) val nbit = !bit Seq.tabulate (1 << i) { j => val (sub_acc, sub_eq) = sub(j/2) val eq = sub_eq && (if (j % 2 == 1) bit else nbit) val acc = sub_acc || (size && eq) (acc, eq) } } } if (groupBy == beatBytes) 1.U else Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse) } } File PlusArg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.experimental._ import chisel3.util.HasBlackBoxResource @deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05") case class PlusArgInfo(default: BigInt, docstring: String) /** Case class for PlusArg information * * @tparam A scala type of the PlusArg value * @param default optional default value * @param docstring text to include in the help * @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT) */ private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String) /** Typeclass for converting a type to a doctype string * @tparam A some type */ trait Doctypeable[A] { /** Return the doctype string for some option */ def toDoctype(a: Option[A]): String } /** Object containing implementations of the Doctypeable typeclass */ object Doctypes { /** Converts an Int => "INT" */ implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" } /** Converts a BigInt => "INT" */ implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" } /** Converts a String => "STRING" */ implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" } } class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map( "FORMAT" -> StringParam(format), "DEFAULT" -> IntParam(default), "WIDTH" -> IntParam(width) )) with HasBlackBoxResource { val io = IO(new Bundle { val out = Output(UInt(width.W)) }) addResource("/vsrc/plusarg_reader.v") } /* This wrapper class has no outputs, making it clear it is a simulation-only construct */ class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module { val io = IO(new Bundle { val count = Input(UInt(width.W)) }) val max = Module(new plusarg_reader(format, default, docstring, width)).io.out when (max > 0.U) { assert (io.count < max, s"Timeout exceeded: $docstring") } } import Doctypes._ object PlusArg { /** PlusArg("foo") will return 42.U if the simulation is run with +foo=42 * Do not use this as an initial register value. The value is set in an * initial block and thus accessing it from another initial is racey. * Add a docstring to document the arg, which can be dumped in an elaboration * pass. */ def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out } /** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert * to kill the simulation when count exceeds the specified integer argument. * Default 0 will never assert. */ def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count } } object PlusArgArtefacts { private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty /* Add a new PlusArg */ @deprecated( "Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05" ) def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring) /** Add a new PlusArg * * @tparam A scala type of the PlusArg value * @param name name for the PlusArg * @param default optional default value * @param docstring text to include in the help */ def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit = artefacts = artefacts ++ Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default))) /* From plus args, generate help text */ private def serializeHelp_cHeader(tab: String = ""): String = artefacts .map{ case(arg, info) => s"""|$tab+$arg=${info.doctype}\\n\\ |$tab${" "*20}${info.docstring}\\n\\ |""".stripMargin ++ info.default.map{ case default => s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("") }.toSeq.mkString("\\n\\\n") ++ "\"" /* From plus args, generate a char array of their names */ private def serializeArray_cHeader(tab: String = ""): String = { val prettyTab = tab + " " * 44 // Length of 'static const ...' s"${tab}static const char * verilog_plusargs [] = {\\\n" ++ artefacts .map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" } .mkString("")++ s"${prettyTab}0};" } /* Generate C code to be included in emulator.cc that helps with * argument parsing based on available Verilog PlusArgs */ def serialize_cHeader(): String = s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\ |${serializeHelp_cHeader(" "*7)} |${serializeArray_cHeader()} |""".stripMargin } File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag } File Parameters.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.diplomacy import chisel3._ import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor} import freechips.rocketchip.util.ShiftQueue /** Options for describing the attributes of memory regions */ object RegionType { // Define the 'more relaxed than' ordering val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS) sealed trait T extends Ordered[T] { def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this) } case object CACHED extends T // an intermediate agent may have cached a copy of the region for you case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively } // A non-empty half-open range; [start, end) case class IdRange(start: Int, end: Int) extends Ordered[IdRange] { require (start >= 0, s"Ids cannot be negative, but got: $start.") require (start <= end, "Id ranges cannot be negative.") def compare(x: IdRange) = { val primary = (this.start - x.start).signum val secondary = (x.end - this.end).signum if (primary != 0) primary else secondary } def overlaps(x: IdRange) = start < x.end && x.start < end def contains(x: IdRange) = start <= x.start && x.end <= end def contains(x: Int) = start <= x && x < end def contains(x: UInt) = if (size == 0) { false.B } else if (size == 1) { // simple comparison x === start.U } else { // find index of largest different bit val largestDeltaBit = log2Floor(start ^ (end-1)) val smallestCommonBit = largestDeltaBit + 1 // may not exist in x val uncommonMask = (1 << smallestCommonBit) - 1 val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0) // the prefix must match exactly (note: may shift ALL bits away) (x >> smallestCommonBit) === (start >> smallestCommonBit).U && // firrtl constant prop range analysis can eliminate these two: (start & uncommonMask).U <= uncommonBits && uncommonBits <= ((end-1) & uncommonMask).U } def shift(x: Int) = IdRange(start+x, end+x) def size = end - start def isEmpty = end == start def range = start until end } object IdRange { def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else { val ranges = s.sorted (ranges.tail zip ranges.init) find { case (a, b) => a overlaps b } } } // An potentially empty inclusive range of 2-powers [min, max] (in bytes) case class TransferSizes(min: Int, max: Int) { def this(x: Int) = this(x, x) require (min <= max, s"Min transfer $min > max transfer $max") require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)") require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max") require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min") require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)") def none = min == 0 def contains(x: Int) = isPow2(x) && min <= x && x <= max def containsLg(x: Int) = contains(1 << x) def containsLg(x: UInt) = if (none) false.B else if (min == max) { log2Ceil(min).U === x } else { log2Ceil(min).U <= x && x <= log2Ceil(max).U } def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max) def intersect(x: TransferSizes) = if (x.max < min || max < x.min) TransferSizes.none else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max)) // Not a union, because the result may contain sizes contained by neither term // NOT TO BE CONFUSED WITH COVERPOINTS def mincover(x: TransferSizes) = { if (none) { x } else if (x.none) { this } else { TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max)) } } override def toString() = "TransferSizes[%d, %d]".format(min, max) } object TransferSizes { def apply(x: Int) = new TransferSizes(x) val none = new TransferSizes(0) def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _) def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _) implicit def asBool(x: TransferSizes) = !x.none } // AddressSets specify the address space managed by the manager // Base is the base address, and mask are the bits consumed by the manager // e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff // e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ... case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet] { // Forbid misaligned base address (and empty sets) require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}") require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous // We do allow negative mask (=> ignore all high bits) def contains(x: BigInt) = ((x ^ base) & ~mask) == 0 def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S // turn x into an address contained in this set def legalize(x: UInt): UInt = base.U | (mask.U & x) // overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1) def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0 // contains iff bitwise: x.mask => mask && contains(x.base) def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0 // The number of bytes to which the manager must be aligned def alignment = ((mask + 1) & ~mask) // Is this a contiguous memory range def contiguous = alignment == mask+1 def finite = mask >= 0 def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask } // Widen the match function to ignore all bits in imask def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask) // Return an AddressSet that only contains the addresses both sets contain def intersect(x: AddressSet): Option[AddressSet] = { if (!overlaps(x)) { None } else { val r_mask = mask & x.mask val r_base = base | x.base Some(AddressSet(r_base, r_mask)) } } def subtract(x: AddressSet): Seq[AddressSet] = { intersect(x) match { case None => Seq(this) case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit => val nmask = (mask & (bit-1)) | remove.mask val nbase = (remove.base ^ bit) & ~nmask AddressSet(nbase, nmask) } } } // AddressSets have one natural Ordering (the containment order, if contiguous) def compare(x: AddressSet) = { val primary = (this.base - x.base).signum // smallest address first val secondary = (x.mask - this.mask).signum // largest mask first if (primary != 0) primary else secondary } // We always want to see things in hex override def toString() = { if (mask >= 0) { "AddressSet(0x%x, 0x%x)".format(base, mask) } else { "AddressSet(0x%x, ~0x%x)".format(base, ~mask) } } def toRanges = { require (finite, "Ranges cannot be calculated on infinite mask") val size = alignment val fragments = mask & ~(size-1) val bits = bitIndexes(fragments) (BigInt(0) until (BigInt(1) << bits.size)).map { i => val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) } AddressRange(off, size) } } } object AddressSet { val everything = AddressSet(0, -1) def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = { if (size == 0) tail.reverse else { val maxBaseAlignment = base & (-base) // 0 for infinite (LSB) val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size val step = if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment) maxSizeAlignment else maxBaseAlignment misaligned(base+step, size-step, AddressSet(base, step-1) +: tail) } } def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = { // Pair terms up by ignoring 'bit' seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) => if (seq.size == 1) { seq.head // singleton -> unaffected } else { key.copy(mask = key.mask | bit) // pair - widen mask by bit } }.toList } def unify(seq: Seq[AddressSet]): Seq[AddressSet] = { val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _) AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted } def enumerateMask(mask: BigInt): Seq[BigInt] = { def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] = if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail) helper(0, Nil) } def enumerateBits(mask: BigInt): Seq[BigInt] = { def helper(x: BigInt): Seq[BigInt] = { if (x == 0) { Nil } else { val bit = x & (-x) bit +: helper(x & ~bit) } } helper(mask) } } case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean) { require (depth >= 0, "Buffer depth must be >= 0") def isDefined = depth > 0 def latency = if (isDefined && !flow) 1 else 0 def apply[T <: Data](x: DecoupledIO[T]) = if (isDefined) Queue(x, depth, flow=flow, pipe=pipe) else x def irrevocable[T <: Data](x: ReadyValidIO[T]) = if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe) else x def sq[T <: Data](x: DecoupledIO[T]) = if (!isDefined) x else { val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe)) sq.io.enq <> x sq.io.deq } override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "") } object BufferParams { implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false) val default = BufferParams(2) val none = BufferParams(0) val flow = BufferParams(1, true, false) val pipe = BufferParams(1, false, true) } case class TriStateValue(value: Boolean, set: Boolean) { def update(orig: Boolean) = if (set) value else orig } object TriStateValue { implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true) def unset = TriStateValue(false, false) } trait DirectedBuffers[T] { def copyIn(x: BufferParams): T def copyOut(x: BufferParams): T def copyInOut(x: BufferParams): T } trait IdMapEntry { def name: String def from: IdRange def to: IdRange def isCache: Boolean def requestFifo: Boolean def maxTransactionsInFlight: Option[Int] def pretty(fmt: String) = if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5 fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } else { fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } } abstract class IdMap[T <: IdMapEntry] { protected val fmt: String val mapping: Seq[T] def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n") } File Edges.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.util._ class TLEdge( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdgeParameters(client, manager, params, sourceInfo) { def isAligned(address: UInt, lgSize: UInt): Bool = { if (maxLgSize == 0) true.B else { val mask = UIntToOH1(lgSize, maxLgSize) (address & mask) === 0.U } } def mask(address: UInt, lgSize: UInt): UInt = MaskGen(address, lgSize, manager.beatBytes) def staticHasData(bundle: TLChannel): Option[Boolean] = { bundle match { case _:TLBundleA => { // Do there exist A messages with Data? val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial // Do there exist A messages without Data? val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint // Statically optimize the case where hasData is a constant if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None } case _:TLBundleB => { // Do there exist B messages with Data? val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial // Do there exist B messages without Data? val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint // Statically optimize the case where hasData is a constant if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None } case _:TLBundleC => { // Do there eixst C messages with Data? val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe // Do there exist C messages without Data? val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None } case _:TLBundleD => { // Do there eixst D messages with Data? val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB // Do there exist D messages without Data? val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None } case _:TLBundleE => Some(false) } } def isRequest(x: TLChannel): Bool = { x match { case a: TLBundleA => true.B case b: TLBundleB => true.B case c: TLBundleC => c.opcode(2) && c.opcode(1) // opcode === TLMessages.Release || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(2) && !d.opcode(1) // opcode === TLMessages.Grant || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } } def isResponse(x: TLChannel): Bool = { x match { case a: TLBundleA => false.B case b: TLBundleB => false.B case c: TLBundleC => !c.opcode(2) || !c.opcode(1) // opcode =/= TLMessages.Release && // opcode =/= TLMessages.ReleaseData case d: TLBundleD => true.B // Grant isResponse + isRequest case e: TLBundleE => true.B } } def hasData(x: TLChannel): Bool = { val opdata = x match { case a: TLBundleA => !a.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case b: TLBundleB => !b.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case c: TLBundleC => c.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.ProbeAckData || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } staticHasData(x).map(_.B).getOrElse(opdata) } def opcode(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.opcode case b: TLBundleB => b.opcode case c: TLBundleC => c.opcode case d: TLBundleD => d.opcode } } def param(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.param case b: TLBundleB => b.param case c: TLBundleC => c.param case d: TLBundleD => d.param } } def size(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.size case b: TLBundleB => b.size case c: TLBundleC => c.size case d: TLBundleD => d.size } } def data(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.data case b: TLBundleB => b.data case c: TLBundleC => c.data case d: TLBundleD => d.data } } def corrupt(x: TLDataChannel): Bool = { x match { case a: TLBundleA => a.corrupt case b: TLBundleB => b.corrupt case c: TLBundleC => c.corrupt case d: TLBundleD => d.corrupt } } def mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.mask case b: TLBundleB => b.mask case c: TLBundleC => mask(c.address, c.size) } } def full_mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => mask(a.address, a.size) case b: TLBundleB => mask(b.address, b.size) case c: TLBundleC => mask(c.address, c.size) } } def address(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.address case b: TLBundleB => b.address case c: TLBundleC => c.address } } def source(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.source case b: TLBundleB => b.source case c: TLBundleC => c.source case d: TLBundleD => d.source } } def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes) def addr_lo(x: UInt): UInt = if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0) def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x)) def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x)) def numBeats(x: TLChannel): UInt = { x match { case _: TLBundleE => 1.U case bundle: TLDataChannel => { val hasData = this.hasData(bundle) val size = this.size(bundle) val cutoff = log2Ceil(manager.beatBytes) val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U val decode = UIntToOH(size, maxLgSize+1) >> cutoff Mux(hasData, decode | small.asUInt, 1.U) } } } def numBeats1(x: TLChannel): UInt = { x match { case _: TLBundleE => 0.U case bundle: TLDataChannel => { if (maxLgSize == 0) { 0.U } else { val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes) Mux(hasData(bundle), decode, 0.U) } } } } def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val beats1 = numBeats1(bits) val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W)) val counter1 = counter - 1.U val first = counter === 0.U val last = counter === 1.U || beats1 === 0.U val done = last && fire val count = (beats1 & ~counter1) when (fire) { counter := Mux(first, beats1, counter1) } (first, last, done, count) } def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1 def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire) def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid) def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2 def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire) def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid) def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3 def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire) def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid) def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3) } def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire) def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid) def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4) } def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire) def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid) def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes)) } def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire) def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid) // Does the request need T permissions to be executed? def needT(a: TLBundleA): Bool = { val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLPermissions.NtoB -> false.B, TLPermissions.NtoT -> true.B, TLPermissions.BtoT -> true.B)) MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array( TLMessages.PutFullData -> true.B, TLMessages.PutPartialData -> true.B, TLMessages.ArithmeticData -> true.B, TLMessages.LogicalData -> true.B, TLMessages.Get -> false.B, TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLHints.PREFETCH_READ -> false.B, TLHints.PREFETCH_WRITE -> true.B)), TLMessages.AcquireBlock -> acq_needT, TLMessages.AcquirePerm -> acq_needT)) } // This is a very expensive circuit; use only if you really mean it! def inFlight(x: TLBundle): (UInt, UInt) = { val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W)) val bce = manager.anySupportAcquireB && client.anySupportProbe val (a_first, a_last, _) = firstlast(x.a) val (b_first, b_last, _) = firstlast(x.b) val (c_first, c_last, _) = firstlast(x.c) val (d_first, d_last, _) = firstlast(x.d) val (e_first, e_last, _) = firstlast(x.e) val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits)) val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits)) val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits)) val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits)) val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits)) val a_inc = x.a.fire && a_first && a_request val b_inc = x.b.fire && b_first && b_request val c_inc = x.c.fire && c_first && c_request val d_inc = x.d.fire && d_first && d_request val e_inc = x.e.fire && e_first && e_request val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil)) val a_dec = x.a.fire && a_last && a_response val b_dec = x.b.fire && b_last && b_response val c_dec = x.c.fire && c_last && c_response val d_dec = x.d.fire && d_last && d_response val e_dec = x.e.fire && e_last && e_response val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil)) val next_flight = flight + PopCount(inc) - PopCount(dec) flight := next_flight (flight, next_flight) } def prettySourceMapping(context: String): String = { s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n" } } class TLEdgeOut( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { // Transfers def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquireBlock a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquirePerm a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.Release c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ReleaseData c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) = Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B) def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAck c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions, data) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAckData c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B) def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink) def GrantAck(toSink: UInt): TLBundleE = { val e = Wire(new TLBundleE(bundle)) e.sink := toSink e } // Accesses def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsGetFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Get a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutFullFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutFullData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, mask, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutPartialFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutPartialData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask a.data := data a.corrupt := corrupt (legal, a) } def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = { require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsArithmeticFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.ArithmeticData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsLogicalFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.LogicalData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = { require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsHintFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Hint a.param := param a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data) def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAckData c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size) def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.HintAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } } class TLEdgeIn( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = { val todo = x.filter(!_.isEmpty) val heads = todo.map(_.head) val tails = todo.map(_.tail) if (todo.isEmpty) Nil else { heads +: myTranspose(tails) } } // Transfers def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = { require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}") val legal = client.supportsProbe(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Probe b.param := capPermissions b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.Grant d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.GrantData d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B) def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.ReleaseAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } // Accesses def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = { require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsGet(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Get b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsPutFull(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutFullData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, mask, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsPutPartial(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutPartialData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask b.data := data b.corrupt := corrupt (legal, b) } def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsArithmetic(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.ArithmeticData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsLogical(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.LogicalData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = { require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsHint(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Hint b.param := param b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size) def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied) def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B) def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data) def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAckData d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B) def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied) def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B) def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.HintAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } }
module TLMonitor_63( // @[Monitor.scala:36:7] input clock, // @[Monitor.scala:36:7] input reset, // @[Monitor.scala:36:7] input io_in_a_ready, // @[Monitor.scala:20:14] input io_in_a_valid, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14] input [1:0] io_in_a_bits_size, // @[Monitor.scala:20:14] input [10:0] io_in_a_bits_source, // @[Monitor.scala:20:14] input [13:0] io_in_a_bits_address, // @[Monitor.scala:20:14] input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14] input io_in_a_bits_corrupt, // @[Monitor.scala:20:14] input io_in_d_ready, // @[Monitor.scala:20:14] input io_in_d_valid, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14] input [1:0] io_in_d_bits_size, // @[Monitor.scala:20:14] input [10:0] io_in_d_bits_source // @[Monitor.scala:20:14] ); wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11] wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11] wire a_first_done = io_in_a_ready & io_in_a_valid; // @[Decoupled.scala:51:35] reg a_first_counter; // @[Edges.scala:229:27] reg [2:0] opcode; // @[Monitor.scala:387:22] reg [2:0] param; // @[Monitor.scala:388:22] reg [1:0] size; // @[Monitor.scala:389:22] reg [10:0] source; // @[Monitor.scala:390:22] reg [13:0] address; // @[Monitor.scala:391:22] reg d_first_counter; // @[Edges.scala:229:27] reg [2:0] opcode_1; // @[Monitor.scala:538:22] reg [1:0] size_1; // @[Monitor.scala:540:22] reg [10:0] source_1; // @[Monitor.scala:541:22] reg [1039:0] inflight; // @[Monitor.scala:614:27] reg [4159:0] inflight_opcodes; // @[Monitor.scala:616:35] reg [4159:0] inflight_sizes; // @[Monitor.scala:618:33] reg a_first_counter_1; // @[Edges.scala:229:27] reg d_first_counter_1; // @[Edges.scala:229:27] wire _GEN = a_first_done & ~a_first_counter_1; // @[Decoupled.scala:51:35] wire d_release_ack = io_in_d_bits_opcode == 3'h6; // @[Monitor.scala:673:46] wire _GEN_0 = io_in_d_bits_opcode != 3'h6; // @[Monitor.scala:673:46, :674:74] reg [31:0] watchdog; // @[Monitor.scala:709:27] reg [1039:0] inflight_1; // @[Monitor.scala:726:35] reg [4159:0] inflight_sizes_1; // @[Monitor.scala:728:35] reg d_first_counter_2; // @[Edges.scala:229:27] reg [31:0] watchdog_1; // @[Monitor.scala:818:27]
Generate the Verilog code corresponding to the following Chisel files. File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag } File FPU.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.tile import chisel3._ import chisel3.util._ import chisel3.{DontCare, WireInit, withClock, withReset} import chisel3.experimental.SourceInfo import chisel3.experimental.dataview._ import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.rocket._ import freechips.rocketchip.rocket.Instructions._ import freechips.rocketchip.util._ import freechips.rocketchip.util.property case class FPUParams( minFLen: Int = 32, fLen: Int = 64, divSqrt: Boolean = true, sfmaLatency: Int = 3, dfmaLatency: Int = 4, fpmuLatency: Int = 2, ifpuLatency: Int = 2 ) object FPConstants { val RM_SZ = 3 val FLAGS_SZ = 5 } trait HasFPUCtrlSigs { val ldst = Bool() val wen = Bool() val ren1 = Bool() val ren2 = Bool() val ren3 = Bool() val swap12 = Bool() val swap23 = Bool() val typeTagIn = UInt(2.W) val typeTagOut = UInt(2.W) val fromint = Bool() val toint = Bool() val fastpipe = Bool() val fma = Bool() val div = Bool() val sqrt = Bool() val wflags = Bool() val vec = Bool() } class FPUCtrlSigs extends Bundle with HasFPUCtrlSigs class FPUDecoder(implicit p: Parameters) extends FPUModule()(p) { val io = IO(new Bundle { val inst = Input(Bits(32.W)) val sigs = Output(new FPUCtrlSigs()) }) private val X2 = BitPat.dontCare(2) val default = List(X,X,X,X,X,X,X,X2,X2,X,X,X,X,X,X,X,N) val h: Array[(BitPat, List[BitPat])] = Array(FLH -> List(Y,Y,N,N,N,X,X,X2,X2,N,N,N,N,N,N,N,N), FSH -> List(Y,N,N,Y,N,Y,X, I, H,N,Y,N,N,N,N,N,N), FMV_H_X -> List(N,Y,N,N,N,X,X, H, I,Y,N,N,N,N,N,N,N), FCVT_H_W -> List(N,Y,N,N,N,X,X, H, H,Y,N,N,N,N,N,Y,N), FCVT_H_WU-> List(N,Y,N,N,N,X,X, H, H,Y,N,N,N,N,N,Y,N), FCVT_H_L -> List(N,Y,N,N,N,X,X, H, H,Y,N,N,N,N,N,Y,N), FCVT_H_LU-> List(N,Y,N,N,N,X,X, H, H,Y,N,N,N,N,N,Y,N), FMV_X_H -> List(N,N,Y,N,N,N,X, I, H,N,Y,N,N,N,N,N,N), FCLASS_H -> List(N,N,Y,N,N,N,X, H, H,N,Y,N,N,N,N,N,N), FCVT_W_H -> List(N,N,Y,N,N,N,X, H,X2,N,Y,N,N,N,N,Y,N), FCVT_WU_H-> List(N,N,Y,N,N,N,X, H,X2,N,Y,N,N,N,N,Y,N), FCVT_L_H -> List(N,N,Y,N,N,N,X, H,X2,N,Y,N,N,N,N,Y,N), FCVT_LU_H-> List(N,N,Y,N,N,N,X, H,X2,N,Y,N,N,N,N,Y,N), FCVT_S_H -> List(N,Y,Y,N,N,N,X, H, S,N,N,Y,N,N,N,Y,N), FCVT_H_S -> List(N,Y,Y,N,N,N,X, S, H,N,N,Y,N,N,N,Y,N), FEQ_H -> List(N,N,Y,Y,N,N,N, H, H,N,Y,N,N,N,N,Y,N), FLT_H -> List(N,N,Y,Y,N,N,N, H, H,N,Y,N,N,N,N,Y,N), FLE_H -> List(N,N,Y,Y,N,N,N, H, H,N,Y,N,N,N,N,Y,N), FSGNJ_H -> List(N,Y,Y,Y,N,N,N, H, H,N,N,Y,N,N,N,N,N), FSGNJN_H -> List(N,Y,Y,Y,N,N,N, H, H,N,N,Y,N,N,N,N,N), FSGNJX_H -> List(N,Y,Y,Y,N,N,N, H, H,N,N,Y,N,N,N,N,N), FMIN_H -> List(N,Y,Y,Y,N,N,N, H, H,N,N,Y,N,N,N,Y,N), FMAX_H -> List(N,Y,Y,Y,N,N,N, H, H,N,N,Y,N,N,N,Y,N), FADD_H -> List(N,Y,Y,Y,N,N,Y, H, H,N,N,N,Y,N,N,Y,N), FSUB_H -> List(N,Y,Y,Y,N,N,Y, H, H,N,N,N,Y,N,N,Y,N), FMUL_H -> List(N,Y,Y,Y,N,N,N, H, H,N,N,N,Y,N,N,Y,N), FMADD_H -> List(N,Y,Y,Y,Y,N,N, H, H,N,N,N,Y,N,N,Y,N), FMSUB_H -> List(N,Y,Y,Y,Y,N,N, H, H,N,N,N,Y,N,N,Y,N), FNMADD_H -> List(N,Y,Y,Y,Y,N,N, H, H,N,N,N,Y,N,N,Y,N), FNMSUB_H -> List(N,Y,Y,Y,Y,N,N, H, H,N,N,N,Y,N,N,Y,N), FDIV_H -> List(N,Y,Y,Y,N,N,N, H, H,N,N,N,N,Y,N,Y,N), FSQRT_H -> List(N,Y,Y,N,N,N,X, H, H,N,N,N,N,N,Y,Y,N)) val f: Array[(BitPat, List[BitPat])] = Array(FLW -> List(Y,Y,N,N,N,X,X,X2,X2,N,N,N,N,N,N,N,N), FSW -> List(Y,N,N,Y,N,Y,X, I, S,N,Y,N,N,N,N,N,N), FMV_W_X -> List(N,Y,N,N,N,X,X, S, I,Y,N,N,N,N,N,N,N), FCVT_S_W -> List(N,Y,N,N,N,X,X, S, S,Y,N,N,N,N,N,Y,N), FCVT_S_WU-> List(N,Y,N,N,N,X,X, S, S,Y,N,N,N,N,N,Y,N), FCVT_S_L -> List(N,Y,N,N,N,X,X, S, S,Y,N,N,N,N,N,Y,N), FCVT_S_LU-> List(N,Y,N,N,N,X,X, S, S,Y,N,N,N,N,N,Y,N), FMV_X_W -> List(N,N,Y,N,N,N,X, I, S,N,Y,N,N,N,N,N,N), FCLASS_S -> List(N,N,Y,N,N,N,X, S, S,N,Y,N,N,N,N,N,N), FCVT_W_S -> List(N,N,Y,N,N,N,X, S,X2,N,Y,N,N,N,N,Y,N), FCVT_WU_S-> List(N,N,Y,N,N,N,X, S,X2,N,Y,N,N,N,N,Y,N), FCVT_L_S -> List(N,N,Y,N,N,N,X, S,X2,N,Y,N,N,N,N,Y,N), FCVT_LU_S-> List(N,N,Y,N,N,N,X, S,X2,N,Y,N,N,N,N,Y,N), FEQ_S -> List(N,N,Y,Y,N,N,N, S, S,N,Y,N,N,N,N,Y,N), FLT_S -> List(N,N,Y,Y,N,N,N, S, S,N,Y,N,N,N,N,Y,N), FLE_S -> List(N,N,Y,Y,N,N,N, S, S,N,Y,N,N,N,N,Y,N), FSGNJ_S -> List(N,Y,Y,Y,N,N,N, S, S,N,N,Y,N,N,N,N,N), FSGNJN_S -> List(N,Y,Y,Y,N,N,N, S, S,N,N,Y,N,N,N,N,N), FSGNJX_S -> List(N,Y,Y,Y,N,N,N, S, S,N,N,Y,N,N,N,N,N), FMIN_S -> List(N,Y,Y,Y,N,N,N, S, S,N,N,Y,N,N,N,Y,N), FMAX_S -> List(N,Y,Y,Y,N,N,N, S, S,N,N,Y,N,N,N,Y,N), FADD_S -> List(N,Y,Y,Y,N,N,Y, S, S,N,N,N,Y,N,N,Y,N), FSUB_S -> List(N,Y,Y,Y,N,N,Y, S, S,N,N,N,Y,N,N,Y,N), FMUL_S -> List(N,Y,Y,Y,N,N,N, S, S,N,N,N,Y,N,N,Y,N), FMADD_S -> List(N,Y,Y,Y,Y,N,N, S, S,N,N,N,Y,N,N,Y,N), FMSUB_S -> List(N,Y,Y,Y,Y,N,N, S, S,N,N,N,Y,N,N,Y,N), FNMADD_S -> List(N,Y,Y,Y,Y,N,N, S, S,N,N,N,Y,N,N,Y,N), FNMSUB_S -> List(N,Y,Y,Y,Y,N,N, S, S,N,N,N,Y,N,N,Y,N), FDIV_S -> List(N,Y,Y,Y,N,N,N, S, S,N,N,N,N,Y,N,Y,N), FSQRT_S -> List(N,Y,Y,N,N,N,X, S, S,N,N,N,N,N,Y,Y,N)) val d: Array[(BitPat, List[BitPat])] = Array(FLD -> List(Y,Y,N,N,N,X,X,X2,X2,N,N,N,N,N,N,N,N), FSD -> List(Y,N,N,Y,N,Y,X, I, D,N,Y,N,N,N,N,N,N), FMV_D_X -> List(N,Y,N,N,N,X,X, D, I,Y,N,N,N,N,N,N,N), FCVT_D_W -> List(N,Y,N,N,N,X,X, D, D,Y,N,N,N,N,N,Y,N), FCVT_D_WU-> List(N,Y,N,N,N,X,X, D, D,Y,N,N,N,N,N,Y,N), FCVT_D_L -> List(N,Y,N,N,N,X,X, D, D,Y,N,N,N,N,N,Y,N), FCVT_D_LU-> List(N,Y,N,N,N,X,X, D, D,Y,N,N,N,N,N,Y,N), FMV_X_D -> List(N,N,Y,N,N,N,X, I, D,N,Y,N,N,N,N,N,N), FCLASS_D -> List(N,N,Y,N,N,N,X, D, D,N,Y,N,N,N,N,N,N), FCVT_W_D -> List(N,N,Y,N,N,N,X, D,X2,N,Y,N,N,N,N,Y,N), FCVT_WU_D-> List(N,N,Y,N,N,N,X, D,X2,N,Y,N,N,N,N,Y,N), FCVT_L_D -> List(N,N,Y,N,N,N,X, D,X2,N,Y,N,N,N,N,Y,N), FCVT_LU_D-> List(N,N,Y,N,N,N,X, D,X2,N,Y,N,N,N,N,Y,N), FCVT_S_D -> List(N,Y,Y,N,N,N,X, D, S,N,N,Y,N,N,N,Y,N), FCVT_D_S -> List(N,Y,Y,N,N,N,X, S, D,N,N,Y,N,N,N,Y,N), FEQ_D -> List(N,N,Y,Y,N,N,N, D, D,N,Y,N,N,N,N,Y,N), FLT_D -> List(N,N,Y,Y,N,N,N, D, D,N,Y,N,N,N,N,Y,N), FLE_D -> List(N,N,Y,Y,N,N,N, D, D,N,Y,N,N,N,N,Y,N), FSGNJ_D -> List(N,Y,Y,Y,N,N,N, D, D,N,N,Y,N,N,N,N,N), FSGNJN_D -> List(N,Y,Y,Y,N,N,N, D, D,N,N,Y,N,N,N,N,N), FSGNJX_D -> List(N,Y,Y,Y,N,N,N, D, D,N,N,Y,N,N,N,N,N), FMIN_D -> List(N,Y,Y,Y,N,N,N, D, D,N,N,Y,N,N,N,Y,N), FMAX_D -> List(N,Y,Y,Y,N,N,N, D, D,N,N,Y,N,N,N,Y,N), FADD_D -> List(N,Y,Y,Y,N,N,Y, D, D,N,N,N,Y,N,N,Y,N), FSUB_D -> List(N,Y,Y,Y,N,N,Y, D, D,N,N,N,Y,N,N,Y,N), FMUL_D -> List(N,Y,Y,Y,N,N,N, D, D,N,N,N,Y,N,N,Y,N), FMADD_D -> List(N,Y,Y,Y,Y,N,N, D, D,N,N,N,Y,N,N,Y,N), FMSUB_D -> List(N,Y,Y,Y,Y,N,N, D, D,N,N,N,Y,N,N,Y,N), FNMADD_D -> List(N,Y,Y,Y,Y,N,N, D, D,N,N,N,Y,N,N,Y,N), FNMSUB_D -> List(N,Y,Y,Y,Y,N,N, D, D,N,N,N,Y,N,N,Y,N), FDIV_D -> List(N,Y,Y,Y,N,N,N, D, D,N,N,N,N,Y,N,Y,N), FSQRT_D -> List(N,Y,Y,N,N,N,X, D, D,N,N,N,N,N,Y,Y,N)) val fcvt_hd: Array[(BitPat, List[BitPat])] = Array(FCVT_H_D -> List(N,Y,Y,N,N,N,X, D, H,N,N,Y,N,N,N,Y,N), FCVT_D_H -> List(N,Y,Y,N,N,N,X, H, D,N,N,Y,N,N,N,Y,N)) val vfmv_f_s: Array[(BitPat, List[BitPat])] = Array(VFMV_F_S -> List(N,Y,N,N,N,N,X,X2,X2,N,N,N,N,N,N,N,Y)) val insns = ((minFLen, fLen) match { case (32, 32) => f case (16, 32) => h ++ f case (32, 64) => f ++ d case (16, 64) => h ++ f ++ d ++ fcvt_hd case other => throw new Exception(s"minFLen = ${minFLen} & fLen = ${fLen} is an unsupported configuration") }) ++ (if (usingVector) vfmv_f_s else Array[(BitPat, List[BitPat])]()) val decoder = DecodeLogic(io.inst, default, insns) val s = io.sigs val sigs = Seq(s.ldst, s.wen, s.ren1, s.ren2, s.ren3, s.swap12, s.swap23, s.typeTagIn, s.typeTagOut, s.fromint, s.toint, s.fastpipe, s.fma, s.div, s.sqrt, s.wflags, s.vec) sigs zip decoder map {case(s,d) => s := d} } class FPUCoreIO(implicit p: Parameters) extends CoreBundle()(p) { val hartid = Input(UInt(hartIdLen.W)) val time = Input(UInt(xLen.W)) val inst = Input(Bits(32.W)) val fromint_data = Input(Bits(xLen.W)) val fcsr_rm = Input(Bits(FPConstants.RM_SZ.W)) val fcsr_flags = Valid(Bits(FPConstants.FLAGS_SZ.W)) val v_sew = Input(UInt(3.W)) val store_data = Output(Bits(fLen.W)) val toint_data = Output(Bits(xLen.W)) val ll_resp_val = Input(Bool()) val ll_resp_type = Input(Bits(3.W)) val ll_resp_tag = Input(UInt(5.W)) val ll_resp_data = Input(Bits(fLen.W)) val valid = Input(Bool()) val fcsr_rdy = Output(Bool()) val nack_mem = Output(Bool()) val illegal_rm = Output(Bool()) val killx = Input(Bool()) val killm = Input(Bool()) val dec = Output(new FPUCtrlSigs()) val sboard_set = Output(Bool()) val sboard_clr = Output(Bool()) val sboard_clra = Output(UInt(5.W)) val keep_clock_enabled = Input(Bool()) } class FPUIO(implicit p: Parameters) extends FPUCoreIO ()(p) { val cp_req = Flipped(Decoupled(new FPInput())) //cp doesn't pay attn to kill sigs val cp_resp = Decoupled(new FPResult()) } class FPResult(implicit p: Parameters) extends CoreBundle()(p) { val data = Bits((fLen+1).W) val exc = Bits(FPConstants.FLAGS_SZ.W) } class IntToFPInput(implicit p: Parameters) extends CoreBundle()(p) with HasFPUCtrlSigs { val rm = Bits(FPConstants.RM_SZ.W) val typ = Bits(2.W) val in1 = Bits(xLen.W) } class FPInput(implicit p: Parameters) extends CoreBundle()(p) with HasFPUCtrlSigs { val rm = Bits(FPConstants.RM_SZ.W) val fmaCmd = Bits(2.W) val typ = Bits(2.W) val fmt = Bits(2.W) val in1 = Bits((fLen+1).W) val in2 = Bits((fLen+1).W) val in3 = Bits((fLen+1).W) } case class FType(exp: Int, sig: Int) { def ieeeWidth = exp + sig def recodedWidth = ieeeWidth + 1 def ieeeQNaN = ((BigInt(1) << (ieeeWidth - 1)) - (BigInt(1) << (sig - 2))).U(ieeeWidth.W) def qNaN = ((BigInt(7) << (exp + sig - 3)) + (BigInt(1) << (sig - 2))).U(recodedWidth.W) def isNaN(x: UInt) = x(sig + exp - 1, sig + exp - 3).andR def isSNaN(x: UInt) = isNaN(x) && !x(sig - 2) def classify(x: UInt) = { val sign = x(sig + exp) val code = x(exp + sig - 1, exp + sig - 3) val codeHi = code(2, 1) val isSpecial = codeHi === 3.U val isHighSubnormalIn = x(exp + sig - 3, sig - 1) < 2.U val isSubnormal = code === 1.U || codeHi === 1.U && isHighSubnormalIn val isNormal = codeHi === 1.U && !isHighSubnormalIn || codeHi === 2.U val isZero = code === 0.U val isInf = isSpecial && !code(0) val isNaN = code.andR val isSNaN = isNaN && !x(sig-2) val isQNaN = isNaN && x(sig-2) Cat(isQNaN, isSNaN, isInf && !sign, isNormal && !sign, isSubnormal && !sign, isZero && !sign, isZero && sign, isSubnormal && sign, isNormal && sign, isInf && sign) } // convert between formats, ignoring rounding, range, NaN def unsafeConvert(x: UInt, to: FType) = if (this == to) x else { val sign = x(sig + exp) val fractIn = x(sig - 2, 0) val expIn = x(sig + exp - 1, sig - 1) val fractOut = fractIn << to.sig >> sig val expOut = { val expCode = expIn(exp, exp - 2) val commonCase = (expIn + (1 << to.exp).U) - (1 << exp).U Mux(expCode === 0.U || expCode >= 6.U, Cat(expCode, commonCase(to.exp - 3, 0)), commonCase(to.exp, 0)) } Cat(sign, expOut, fractOut) } private def ieeeBundle = { val expWidth = exp class IEEEBundle extends Bundle { val sign = Bool() val exp = UInt(expWidth.W) val sig = UInt((ieeeWidth-expWidth-1).W) } new IEEEBundle } def unpackIEEE(x: UInt) = x.asTypeOf(ieeeBundle) def recode(x: UInt) = hardfloat.recFNFromFN(exp, sig, x) def ieee(x: UInt) = hardfloat.fNFromRecFN(exp, sig, x) } object FType { val H = new FType(5, 11) val S = new FType(8, 24) val D = new FType(11, 53) val all = List(H, S, D) } trait HasFPUParameters { require(fLen == 0 || FType.all.exists(_.ieeeWidth == fLen)) val minFLen: Int val fLen: Int def xLen: Int val minXLen = 32 val nIntTypes = log2Ceil(xLen/minXLen) + 1 def floatTypes = FType.all.filter(t => minFLen <= t.ieeeWidth && t.ieeeWidth <= fLen) def minType = floatTypes.head def maxType = floatTypes.last def prevType(t: FType) = floatTypes(typeTag(t) - 1) def maxExpWidth = maxType.exp def maxSigWidth = maxType.sig def typeTag(t: FType) = floatTypes.indexOf(t) def typeTagWbOffset = (FType.all.indexOf(minType) + 1).U def typeTagGroup(t: FType) = (if (floatTypes.contains(t)) typeTag(t) else typeTag(maxType)).U // typeTag def H = typeTagGroup(FType.H) def S = typeTagGroup(FType.S) def D = typeTagGroup(FType.D) def I = typeTag(maxType).U private def isBox(x: UInt, t: FType): Bool = x(t.sig + t.exp, t.sig + t.exp - 4).andR private def box(x: UInt, xt: FType, y: UInt, yt: FType): UInt = { require(xt.ieeeWidth == 2 * yt.ieeeWidth) val swizzledNaN = Cat( x(xt.sig + xt.exp, xt.sig + xt.exp - 3), x(xt.sig - 2, yt.recodedWidth - 1).andR, x(xt.sig + xt.exp - 5, xt.sig), y(yt.recodedWidth - 2), x(xt.sig - 2, yt.recodedWidth - 1), y(yt.recodedWidth - 1), y(yt.recodedWidth - 3, 0)) Mux(xt.isNaN(x), swizzledNaN, x) } // implement NaN unboxing for FU inputs def unbox(x: UInt, tag: UInt, exactType: Option[FType]): UInt = { val outType = exactType.getOrElse(maxType) def helper(x: UInt, t: FType): Seq[(Bool, UInt)] = { val prev = if (t == minType) { Seq() } else { val prevT = prevType(t) val unswizzled = Cat( x(prevT.sig + prevT.exp - 1), x(t.sig - 1), x(prevT.sig + prevT.exp - 2, 0)) val prev = helper(unswizzled, prevT) val isbox = isBox(x, t) prev.map(p => (isbox && p._1, p._2)) } prev :+ (true.B, t.unsafeConvert(x, outType)) } val (oks, floats) = helper(x, maxType).unzip if (exactType.isEmpty || floatTypes.size == 1) { Mux(oks(tag), floats(tag), maxType.qNaN) } else { val t = exactType.get floats(typeTag(t)) | Mux(oks(typeTag(t)), 0.U, t.qNaN) } } // make sure that the redundant bits in the NaN-boxed encoding are consistent def consistent(x: UInt): Bool = { def helper(x: UInt, t: FType): Bool = if (typeTag(t) == 0) true.B else { val prevT = prevType(t) val unswizzled = Cat( x(prevT.sig + prevT.exp - 1), x(t.sig - 1), x(prevT.sig + prevT.exp - 2, 0)) val prevOK = !isBox(x, t) || helper(unswizzled, prevT) val curOK = !t.isNaN(x) || x(t.sig + t.exp - 4) === x(t.sig - 2, prevT.recodedWidth - 1).andR prevOK && curOK } helper(x, maxType) } // generate a NaN box from an FU result def box(x: UInt, t: FType): UInt = { if (t == maxType) { x } else { val nt = floatTypes(typeTag(t) + 1) val bigger = box(((BigInt(1) << nt.recodedWidth)-1).U, nt, x, t) bigger | ((BigInt(1) << maxType.recodedWidth) - (BigInt(1) << nt.recodedWidth)).U } } // generate a NaN box from an FU result def box(x: UInt, tag: UInt): UInt = { val opts = floatTypes.map(t => box(x, t)) opts(tag) } // zap bits that hardfloat thinks are don't-cares, but we do care about def sanitizeNaN(x: UInt, t: FType): UInt = { if (typeTag(t) == 0) { x } else { val maskedNaN = x & ~((BigInt(1) << (t.sig-1)) | (BigInt(1) << (t.sig+t.exp-4))).U(t.recodedWidth.W) Mux(t.isNaN(x), maskedNaN, x) } } // implement NaN boxing and recoding for FL*/fmv.*.x def recode(x: UInt, tag: UInt): UInt = { def helper(x: UInt, t: FType): UInt = { if (typeTag(t) == 0) { t.recode(x) } else { val prevT = prevType(t) box(t.recode(x), t, helper(x, prevT), prevT) } } // fill MSBs of subword loads to emulate a wider load of a NaN-boxed value val boxes = floatTypes.map(t => ((BigInt(1) << maxType.ieeeWidth) - (BigInt(1) << t.ieeeWidth)).U) helper(boxes(tag) | x, maxType) } // implement NaN unboxing and un-recoding for FS*/fmv.x.* def ieee(x: UInt, t: FType = maxType): UInt = { if (typeTag(t) == 0) { t.ieee(x) } else { val unrecoded = t.ieee(x) val prevT = prevType(t) val prevRecoded = Cat( x(prevT.recodedWidth-2), x(t.sig-1), x(prevT.recodedWidth-3, 0)) val prevUnrecoded = ieee(prevRecoded, prevT) Cat(unrecoded >> prevT.ieeeWidth, Mux(t.isNaN(x), prevUnrecoded, unrecoded(prevT.ieeeWidth-1, 0))) } } } abstract class FPUModule(implicit val p: Parameters) extends Module with HasCoreParameters with HasFPUParameters class FPToInt(implicit p: Parameters) extends FPUModule()(p) with ShouldBeRetimed { class Output extends Bundle { val in = new FPInput val lt = Bool() val store = Bits(fLen.W) val toint = Bits(xLen.W) val exc = Bits(FPConstants.FLAGS_SZ.W) } val io = IO(new Bundle { val in = Flipped(Valid(new FPInput)) val out = Valid(new Output) }) val in = RegEnable(io.in.bits, io.in.valid) val valid = RegNext(io.in.valid) val dcmp = Module(new hardfloat.CompareRecFN(maxExpWidth, maxSigWidth)) dcmp.io.a := in.in1 dcmp.io.b := in.in2 dcmp.io.signaling := !in.rm(1) val tag = in.typeTagOut val toint_ieee = (floatTypes.map(t => if (t == FType.H) Fill(maxType.ieeeWidth / minXLen, ieee(in.in1)(15, 0).sextTo(minXLen)) else Fill(maxType.ieeeWidth / t.ieeeWidth, ieee(in.in1)(t.ieeeWidth - 1, 0))): Seq[UInt])(tag) val toint = WireDefault(toint_ieee) val intType = WireDefault(in.fmt(0)) io.out.bits.store := (floatTypes.map(t => Fill(fLen / t.ieeeWidth, ieee(in.in1)(t.ieeeWidth - 1, 0))): Seq[UInt])(tag) io.out.bits.toint := ((0 until nIntTypes).map(i => toint((minXLen << i) - 1, 0).sextTo(xLen)): Seq[UInt])(intType) io.out.bits.exc := 0.U when (in.rm(0)) { val classify_out = (floatTypes.map(t => t.classify(maxType.unsafeConvert(in.in1, t))): Seq[UInt])(tag) toint := classify_out | (toint_ieee >> minXLen << minXLen) intType := false.B } when (in.wflags) { // feq/flt/fle, fcvt toint := (~in.rm & Cat(dcmp.io.lt, dcmp.io.eq)).orR | (toint_ieee >> minXLen << minXLen) io.out.bits.exc := dcmp.io.exceptionFlags intType := false.B when (!in.ren2) { // fcvt val cvtType = in.typ.extract(log2Ceil(nIntTypes), 1) intType := cvtType val conv = Module(new hardfloat.RecFNToIN(maxExpWidth, maxSigWidth, xLen)) conv.io.in := in.in1 conv.io.roundingMode := in.rm conv.io.signedOut := ~in.typ(0) toint := conv.io.out io.out.bits.exc := Cat(conv.io.intExceptionFlags(2, 1).orR, 0.U(3.W), conv.io.intExceptionFlags(0)) for (i <- 0 until nIntTypes-1) { val w = minXLen << i when (cvtType === i.U) { val narrow = Module(new hardfloat.RecFNToIN(maxExpWidth, maxSigWidth, w)) narrow.io.in := in.in1 narrow.io.roundingMode := in.rm narrow.io.signedOut := ~in.typ(0) val excSign = in.in1(maxExpWidth + maxSigWidth) && !maxType.isNaN(in.in1) val excOut = Cat(conv.io.signedOut === excSign, Fill(w-1, !excSign)) val invalid = conv.io.intExceptionFlags(2) || narrow.io.intExceptionFlags(1) when (invalid) { toint := Cat(conv.io.out >> w, excOut) } io.out.bits.exc := Cat(invalid, 0.U(3.W), !invalid && conv.io.intExceptionFlags(0)) } } } } io.out.valid := valid io.out.bits.lt := dcmp.io.lt || (dcmp.io.a.asSInt < 0.S && dcmp.io.b.asSInt >= 0.S) io.out.bits.in := in } class IntToFP(val latency: Int)(implicit p: Parameters) extends FPUModule()(p) with ShouldBeRetimed { val io = IO(new Bundle { val in = Flipped(Valid(new IntToFPInput)) val out = Valid(new FPResult) }) val in = Pipe(io.in) val tag = in.bits.typeTagIn val mux = Wire(new FPResult) mux.exc := 0.U mux.data := recode(in.bits.in1, tag) val intValue = { val res = WireDefault(in.bits.in1.asSInt) for (i <- 0 until nIntTypes-1) { val smallInt = in.bits.in1((minXLen << i) - 1, 0) when (in.bits.typ.extract(log2Ceil(nIntTypes), 1) === i.U) { res := Mux(in.bits.typ(0), smallInt.zext, smallInt.asSInt) } } res.asUInt } when (in.bits.wflags) { // fcvt // could be improved for RVD/RVQ with a single variable-position rounding // unit, rather than N fixed-position ones val i2fResults = for (t <- floatTypes) yield { val i2f = Module(new hardfloat.INToRecFN(xLen, t.exp, t.sig)) i2f.io.signedIn := ~in.bits.typ(0) i2f.io.in := intValue i2f.io.roundingMode := in.bits.rm i2f.io.detectTininess := hardfloat.consts.tininess_afterRounding (sanitizeNaN(i2f.io.out, t), i2f.io.exceptionFlags) } val (data, exc) = i2fResults.unzip val dataPadded = data.init.map(d => Cat(data.last >> d.getWidth, d)) :+ data.last mux.data := dataPadded(tag) mux.exc := exc(tag) } io.out <> Pipe(in.valid, mux, latency-1) } class FPToFP(val latency: Int)(implicit p: Parameters) extends FPUModule()(p) with ShouldBeRetimed { val io = IO(new Bundle { val in = Flipped(Valid(new FPInput)) val out = Valid(new FPResult) val lt = Input(Bool()) // from FPToInt }) val in = Pipe(io.in) val signNum = Mux(in.bits.rm(1), in.bits.in1 ^ in.bits.in2, Mux(in.bits.rm(0), ~in.bits.in2, in.bits.in2)) val fsgnj = Cat(signNum(fLen), in.bits.in1(fLen-1, 0)) val fsgnjMux = Wire(new FPResult) fsgnjMux.exc := 0.U fsgnjMux.data := fsgnj when (in.bits.wflags) { // fmin/fmax val isnan1 = maxType.isNaN(in.bits.in1) val isnan2 = maxType.isNaN(in.bits.in2) val isInvalid = maxType.isSNaN(in.bits.in1) || maxType.isSNaN(in.bits.in2) val isNaNOut = isnan1 && isnan2 val isLHS = isnan2 || in.bits.rm(0) =/= io.lt && !isnan1 fsgnjMux.exc := isInvalid << 4 fsgnjMux.data := Mux(isNaNOut, maxType.qNaN, Mux(isLHS, in.bits.in1, in.bits.in2)) } val inTag = in.bits.typeTagIn val outTag = in.bits.typeTagOut val mux = WireDefault(fsgnjMux) for (t <- floatTypes.init) { when (outTag === typeTag(t).U) { mux.data := Cat(fsgnjMux.data >> t.recodedWidth, maxType.unsafeConvert(fsgnjMux.data, t)) } } when (in.bits.wflags && !in.bits.ren2) { // fcvt if (floatTypes.size > 1) { // widening conversions simply canonicalize NaN operands val widened = Mux(maxType.isNaN(in.bits.in1), maxType.qNaN, in.bits.in1) fsgnjMux.data := widened fsgnjMux.exc := maxType.isSNaN(in.bits.in1) << 4 // narrowing conversions require rounding (for RVQ, this could be // optimized to use a single variable-position rounding unit, rather // than two fixed-position ones) for (outType <- floatTypes.init) when (outTag === typeTag(outType).U && ((typeTag(outType) == 0).B || outTag < inTag)) { val narrower = Module(new hardfloat.RecFNToRecFN(maxType.exp, maxType.sig, outType.exp, outType.sig)) narrower.io.in := in.bits.in1 narrower.io.roundingMode := in.bits.rm narrower.io.detectTininess := hardfloat.consts.tininess_afterRounding val narrowed = sanitizeNaN(narrower.io.out, outType) mux.data := Cat(fsgnjMux.data >> narrowed.getWidth, narrowed) mux.exc := narrower.io.exceptionFlags } } } io.out <> Pipe(in.valid, mux, latency-1) } class MulAddRecFNPipe(latency: Int, expWidth: Int, sigWidth: Int) extends Module { override def desiredName = s"MulAddRecFNPipe_l${latency}_e${expWidth}_s${sigWidth}" require(latency<=2) val io = IO(new Bundle { val validin = Input(Bool()) val op = Input(Bits(2.W)) val a = Input(Bits((expWidth + sigWidth + 1).W)) val b = Input(Bits((expWidth + sigWidth + 1).W)) val c = Input(Bits((expWidth + sigWidth + 1).W)) val roundingMode = Input(UInt(3.W)) val detectTininess = Input(UInt(1.W)) val out = Output(Bits((expWidth + sigWidth + 1).W)) val exceptionFlags = Output(Bits(5.W)) val validout = Output(Bool()) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val mulAddRecFNToRaw_preMul = Module(new hardfloat.MulAddRecFNToRaw_preMul(expWidth, sigWidth)) val mulAddRecFNToRaw_postMul = Module(new hardfloat.MulAddRecFNToRaw_postMul(expWidth, sigWidth)) mulAddRecFNToRaw_preMul.io.op := io.op mulAddRecFNToRaw_preMul.io.a := io.a mulAddRecFNToRaw_preMul.io.b := io.b mulAddRecFNToRaw_preMul.io.c := io.c val mulAddResult = (mulAddRecFNToRaw_preMul.io.mulAddA * mulAddRecFNToRaw_preMul.io.mulAddB) +& mulAddRecFNToRaw_preMul.io.mulAddC val valid_stage0 = Wire(Bool()) val roundingMode_stage0 = Wire(UInt(3.W)) val detectTininess_stage0 = Wire(UInt(1.W)) val postmul_regs = if(latency>0) 1 else 0 mulAddRecFNToRaw_postMul.io.fromPreMul := Pipe(io.validin, mulAddRecFNToRaw_preMul.io.toPostMul, postmul_regs).bits mulAddRecFNToRaw_postMul.io.mulAddResult := Pipe(io.validin, mulAddResult, postmul_regs).bits mulAddRecFNToRaw_postMul.io.roundingMode := Pipe(io.validin, io.roundingMode, postmul_regs).bits roundingMode_stage0 := Pipe(io.validin, io.roundingMode, postmul_regs).bits detectTininess_stage0 := Pipe(io.validin, io.detectTininess, postmul_regs).bits valid_stage0 := Pipe(io.validin, false.B, postmul_regs).valid //------------------------------------------------------------------------ //------------------------------------------------------------------------ val roundRawFNToRecFN = Module(new hardfloat.RoundRawFNToRecFN(expWidth, sigWidth, 0)) val round_regs = if(latency==2) 1 else 0 roundRawFNToRecFN.io.invalidExc := Pipe(valid_stage0, mulAddRecFNToRaw_postMul.io.invalidExc, round_regs).bits roundRawFNToRecFN.io.in := Pipe(valid_stage0, mulAddRecFNToRaw_postMul.io.rawOut, round_regs).bits roundRawFNToRecFN.io.roundingMode := Pipe(valid_stage0, roundingMode_stage0, round_regs).bits roundRawFNToRecFN.io.detectTininess := Pipe(valid_stage0, detectTininess_stage0, round_regs).bits io.validout := Pipe(valid_stage0, false.B, round_regs).valid roundRawFNToRecFN.io.infiniteExc := false.B io.out := roundRawFNToRecFN.io.out io.exceptionFlags := roundRawFNToRecFN.io.exceptionFlags } class FPUFMAPipe(val latency: Int, val t: FType) (implicit p: Parameters) extends FPUModule()(p) with ShouldBeRetimed { override def desiredName = s"FPUFMAPipe_l${latency}_f${t.ieeeWidth}" require(latency>0) val io = IO(new Bundle { val in = Flipped(Valid(new FPInput)) val out = Valid(new FPResult) }) val valid = RegNext(io.in.valid) val in = Reg(new FPInput) when (io.in.valid) { val one = 1.U << (t.sig + t.exp - 1) val zero = (io.in.bits.in1 ^ io.in.bits.in2) & (1.U << (t.sig + t.exp)) val cmd_fma = io.in.bits.ren3 val cmd_addsub = io.in.bits.swap23 in := io.in.bits when (cmd_addsub) { in.in2 := one } when (!(cmd_fma || cmd_addsub)) { in.in3 := zero } } val fma = Module(new MulAddRecFNPipe((latency-1) min 2, t.exp, t.sig)) fma.io.validin := valid fma.io.op := in.fmaCmd fma.io.roundingMode := in.rm fma.io.detectTininess := hardfloat.consts.tininess_afterRounding fma.io.a := in.in1 fma.io.b := in.in2 fma.io.c := in.in3 val res = Wire(new FPResult) res.data := sanitizeNaN(fma.io.out, t) res.exc := fma.io.exceptionFlags io.out := Pipe(fma.io.validout, res, (latency-3) max 0) } class FPU(cfg: FPUParams)(implicit p: Parameters) extends FPUModule()(p) { val io = IO(new FPUIO) val (useClockGating, useDebugROB) = coreParams match { case r: RocketCoreParams => val sz = if (r.debugROB.isDefined) r.debugROB.get.size else 1 (r.clockGate, sz < 1) case _ => (false, false) } val clock_en_reg = Reg(Bool()) val clock_en = clock_en_reg || io.cp_req.valid val gated_clock = if (!useClockGating) clock else ClockGate(clock, clock_en, "fpu_clock_gate") val fp_decoder = Module(new FPUDecoder) fp_decoder.io.inst := io.inst val id_ctrl = WireInit(fp_decoder.io.sigs) coreParams match { case r: RocketCoreParams => r.vector.map(v => { val v_decode = v.decoder(p) // Only need to get ren1 v_decode.io.inst := io.inst v_decode.io.vconfig := DontCare // core deals with this when (v_decode.io.legal && v_decode.io.read_frs1) { id_ctrl.ren1 := true.B id_ctrl.swap12 := false.B id_ctrl.toint := true.B id_ctrl.typeTagIn := I id_ctrl.typeTagOut := Mux(io.v_sew === 3.U, D, S) } when (v_decode.io.write_frd) { id_ctrl.wen := true.B } })} val ex_reg_valid = RegNext(io.valid, false.B) val ex_reg_inst = RegEnable(io.inst, io.valid) val ex_reg_ctrl = RegEnable(id_ctrl, io.valid) val ex_ra = List.fill(3)(Reg(UInt())) // load/vector response val load_wb = RegNext(io.ll_resp_val) val load_wb_typeTag = RegEnable(io.ll_resp_type(1,0) - typeTagWbOffset, io.ll_resp_val) val load_wb_data = RegEnable(io.ll_resp_data, io.ll_resp_val) val load_wb_tag = RegEnable(io.ll_resp_tag, io.ll_resp_val) class FPUImpl { // entering gated-clock domain val req_valid = ex_reg_valid || io.cp_req.valid val ex_cp_valid = io.cp_req.fire val mem_cp_valid = RegNext(ex_cp_valid, false.B) val wb_cp_valid = RegNext(mem_cp_valid, false.B) val mem_reg_valid = RegInit(false.B) val killm = (io.killm || io.nack_mem) && !mem_cp_valid // Kill X-stage instruction if M-stage is killed. This prevents it from // speculatively being sent to the div-sqrt unit, which can cause priority // inversion for two back-to-back divides, the first of which is killed. val killx = io.killx || mem_reg_valid && killm mem_reg_valid := ex_reg_valid && !killx || ex_cp_valid val mem_reg_inst = RegEnable(ex_reg_inst, ex_reg_valid) val wb_reg_valid = RegNext(mem_reg_valid && (!killm || mem_cp_valid), false.B) val cp_ctrl = Wire(new FPUCtrlSigs) cp_ctrl :<>= io.cp_req.bits.viewAsSupertype(new FPUCtrlSigs) io.cp_resp.valid := false.B io.cp_resp.bits.data := 0.U io.cp_resp.bits.exc := DontCare val ex_ctrl = Mux(ex_cp_valid, cp_ctrl, ex_reg_ctrl) val mem_ctrl = RegEnable(ex_ctrl, req_valid) val wb_ctrl = RegEnable(mem_ctrl, mem_reg_valid) // CoreMonitorBundle to monitor fp register file writes val frfWriteBundle = Seq.fill(2)(WireInit(new CoreMonitorBundle(xLen, fLen), DontCare)) frfWriteBundle.foreach { i => i.clock := clock i.reset := reset i.hartid := io.hartid i.timer := io.time(31,0) i.valid := false.B i.wrenx := false.B i.wrenf := false.B i.excpt := false.B } // regfile val regfile = Mem(32, Bits((fLen+1).W)) when (load_wb) { val wdata = recode(load_wb_data, load_wb_typeTag) regfile(load_wb_tag) := wdata assert(consistent(wdata)) if (enableCommitLog) printf("f%d p%d 0x%x\n", load_wb_tag, load_wb_tag + 32.U, ieee(wdata)) if (useDebugROB) DebugROB.pushWb(clock, reset, io.hartid, load_wb, load_wb_tag + 32.U, ieee(wdata)) frfWriteBundle(0).wrdst := load_wb_tag frfWriteBundle(0).wrenf := true.B frfWriteBundle(0).wrdata := ieee(wdata) } val ex_rs = ex_ra.map(a => regfile(a)) when (io.valid) { when (id_ctrl.ren1) { when (!id_ctrl.swap12) { ex_ra(0) := io.inst(19,15) } when (id_ctrl.swap12) { ex_ra(1) := io.inst(19,15) } } when (id_ctrl.ren2) { when (id_ctrl.swap12) { ex_ra(0) := io.inst(24,20) } when (id_ctrl.swap23) { ex_ra(2) := io.inst(24,20) } when (!id_ctrl.swap12 && !id_ctrl.swap23) { ex_ra(1) := io.inst(24,20) } } when (id_ctrl.ren3) { ex_ra(2) := io.inst(31,27) } } val ex_rm = Mux(ex_reg_inst(14,12) === 7.U, io.fcsr_rm, ex_reg_inst(14,12)) def fuInput(minT: Option[FType]): FPInput = { val req = Wire(new FPInput) val tag = ex_ctrl.typeTagIn req.viewAsSupertype(new Bundle with HasFPUCtrlSigs) :#= ex_ctrl.viewAsSupertype(new Bundle with HasFPUCtrlSigs) req.rm := ex_rm req.in1 := unbox(ex_rs(0), tag, minT) req.in2 := unbox(ex_rs(1), tag, minT) req.in3 := unbox(ex_rs(2), tag, minT) req.typ := ex_reg_inst(21,20) req.fmt := ex_reg_inst(26,25) req.fmaCmd := ex_reg_inst(3,2) | (!ex_ctrl.ren3 && ex_reg_inst(27)) when (ex_cp_valid) { req := io.cp_req.bits when (io.cp_req.bits.swap12) { req.in1 := io.cp_req.bits.in2 req.in2 := io.cp_req.bits.in1 } when (io.cp_req.bits.swap23) { req.in2 := io.cp_req.bits.in3 req.in3 := io.cp_req.bits.in2 } } req } val sfma = Module(new FPUFMAPipe(cfg.sfmaLatency, FType.S)) sfma.io.in.valid := req_valid && ex_ctrl.fma && ex_ctrl.typeTagOut === S sfma.io.in.bits := fuInput(Some(sfma.t)) val fpiu = Module(new FPToInt) fpiu.io.in.valid := req_valid && (ex_ctrl.toint || ex_ctrl.div || ex_ctrl.sqrt || (ex_ctrl.fastpipe && ex_ctrl.wflags)) fpiu.io.in.bits := fuInput(None) io.store_data := fpiu.io.out.bits.store io.toint_data := fpiu.io.out.bits.toint when(fpiu.io.out.valid && mem_cp_valid && mem_ctrl.toint){ io.cp_resp.bits.data := fpiu.io.out.bits.toint io.cp_resp.valid := true.B } val ifpu = Module(new IntToFP(cfg.ifpuLatency)) ifpu.io.in.valid := req_valid && ex_ctrl.fromint ifpu.io.in.bits := fpiu.io.in.bits ifpu.io.in.bits.in1 := Mux(ex_cp_valid, io.cp_req.bits.in1, io.fromint_data) val fpmu = Module(new FPToFP(cfg.fpmuLatency)) fpmu.io.in.valid := req_valid && ex_ctrl.fastpipe fpmu.io.in.bits := fpiu.io.in.bits fpmu.io.lt := fpiu.io.out.bits.lt val divSqrt_wen = WireDefault(false.B) val divSqrt_inFlight = WireDefault(false.B) val divSqrt_waddr = Reg(UInt(5.W)) val divSqrt_cp = Reg(Bool()) val divSqrt_typeTag = Wire(UInt(log2Up(floatTypes.size).W)) val divSqrt_wdata = Wire(UInt((fLen+1).W)) val divSqrt_flags = Wire(UInt(FPConstants.FLAGS_SZ.W)) divSqrt_typeTag := DontCare divSqrt_wdata := DontCare divSqrt_flags := DontCare // writeback arbitration case class Pipe(p: Module, lat: Int, cond: (FPUCtrlSigs) => Bool, res: FPResult) val pipes = List( Pipe(fpmu, fpmu.latency, (c: FPUCtrlSigs) => c.fastpipe, fpmu.io.out.bits), Pipe(ifpu, ifpu.latency, (c: FPUCtrlSigs) => c.fromint, ifpu.io.out.bits), Pipe(sfma, sfma.latency, (c: FPUCtrlSigs) => c.fma && c.typeTagOut === S, sfma.io.out.bits)) ++ (fLen > 32).option({ val dfma = Module(new FPUFMAPipe(cfg.dfmaLatency, FType.D)) dfma.io.in.valid := req_valid && ex_ctrl.fma && ex_ctrl.typeTagOut === D dfma.io.in.bits := fuInput(Some(dfma.t)) Pipe(dfma, dfma.latency, (c: FPUCtrlSigs) => c.fma && c.typeTagOut === D, dfma.io.out.bits) }) ++ (minFLen == 16).option({ val hfma = Module(new FPUFMAPipe(cfg.sfmaLatency, FType.H)) hfma.io.in.valid := req_valid && ex_ctrl.fma && ex_ctrl.typeTagOut === H hfma.io.in.bits := fuInput(Some(hfma.t)) Pipe(hfma, hfma.latency, (c: FPUCtrlSigs) => c.fma && c.typeTagOut === H, hfma.io.out.bits) }) def latencyMask(c: FPUCtrlSigs, offset: Int) = { require(pipes.forall(_.lat >= offset)) pipes.map(p => Mux(p.cond(c), (1 << p.lat-offset).U, 0.U)).reduce(_|_) } def pipeid(c: FPUCtrlSigs) = pipes.zipWithIndex.map(p => Mux(p._1.cond(c), p._2.U, 0.U)).reduce(_|_) val maxLatency = pipes.map(_.lat).max val memLatencyMask = latencyMask(mem_ctrl, 2) class WBInfo extends Bundle { val rd = UInt(5.W) val typeTag = UInt(log2Up(floatTypes.size).W) val cp = Bool() val pipeid = UInt(log2Ceil(pipes.size).W) } val wen = RegInit(0.U((maxLatency-1).W)) val wbInfo = Reg(Vec(maxLatency-1, new WBInfo)) val mem_wen = mem_reg_valid && (mem_ctrl.fma || mem_ctrl.fastpipe || mem_ctrl.fromint) val write_port_busy = RegEnable(mem_wen && (memLatencyMask & latencyMask(ex_ctrl, 1)).orR || (wen & latencyMask(ex_ctrl, 0)).orR, req_valid) ccover(mem_reg_valid && write_port_busy, "WB_STRUCTURAL", "structural hazard on writeback") for (i <- 0 until maxLatency-2) { when (wen(i+1)) { wbInfo(i) := wbInfo(i+1) } } wen := wen >> 1 when (mem_wen) { when (!killm) { wen := wen >> 1 | memLatencyMask } for (i <- 0 until maxLatency-1) { when (!write_port_busy && memLatencyMask(i)) { wbInfo(i).cp := mem_cp_valid wbInfo(i).typeTag := mem_ctrl.typeTagOut wbInfo(i).pipeid := pipeid(mem_ctrl) wbInfo(i).rd := mem_reg_inst(11,7) } } } val waddr = Mux(divSqrt_wen, divSqrt_waddr, wbInfo(0).rd) val wb_cp = Mux(divSqrt_wen, divSqrt_cp, wbInfo(0).cp) val wtypeTag = Mux(divSqrt_wen, divSqrt_typeTag, wbInfo(0).typeTag) val wdata = box(Mux(divSqrt_wen, divSqrt_wdata, (pipes.map(_.res.data): Seq[UInt])(wbInfo(0).pipeid)), wtypeTag) val wexc = (pipes.map(_.res.exc): Seq[UInt])(wbInfo(0).pipeid) when ((!wbInfo(0).cp && wen(0)) || divSqrt_wen) { assert(consistent(wdata)) regfile(waddr) := wdata if (enableCommitLog) { printf("f%d p%d 0x%x\n", waddr, waddr + 32.U, ieee(wdata)) } frfWriteBundle(1).wrdst := waddr frfWriteBundle(1).wrenf := true.B frfWriteBundle(1).wrdata := ieee(wdata) } if (useDebugROB) { DebugROB.pushWb(clock, reset, io.hartid, (!wbInfo(0).cp && wen(0)) || divSqrt_wen, waddr + 32.U, ieee(wdata)) } when (wb_cp && (wen(0) || divSqrt_wen)) { io.cp_resp.bits.data := wdata io.cp_resp.valid := true.B } assert(!io.cp_req.valid || pipes.forall(_.lat == pipes.head.lat).B, s"FPU only supports coprocessor if FMA pipes have uniform latency ${pipes.map(_.lat)}") // Avoid structural hazards and nacking of external requests // toint responds in the MEM stage, so an incoming toint can induce a structural hazard against inflight FMAs io.cp_req.ready := !ex_reg_valid && !(cp_ctrl.toint && wen =/= 0.U) && !divSqrt_inFlight val wb_toint_valid = wb_reg_valid && wb_ctrl.toint val wb_toint_exc = RegEnable(fpiu.io.out.bits.exc, mem_ctrl.toint) io.fcsr_flags.valid := wb_toint_valid || divSqrt_wen || wen(0) io.fcsr_flags.bits := Mux(wb_toint_valid, wb_toint_exc, 0.U) | Mux(divSqrt_wen, divSqrt_flags, 0.U) | Mux(wen(0), wexc, 0.U) val divSqrt_write_port_busy = (mem_ctrl.div || mem_ctrl.sqrt) && wen.orR io.fcsr_rdy := !(ex_reg_valid && ex_ctrl.wflags || mem_reg_valid && mem_ctrl.wflags || wb_reg_valid && wb_ctrl.toint || wen.orR || divSqrt_inFlight) io.nack_mem := (write_port_busy || divSqrt_write_port_busy || divSqrt_inFlight) && !mem_cp_valid io.dec <> id_ctrl def useScoreboard(f: ((Pipe, Int)) => Bool) = pipes.zipWithIndex.filter(_._1.lat > 3).map(x => f(x)).fold(false.B)(_||_) io.sboard_set := wb_reg_valid && !wb_cp_valid && RegNext(useScoreboard(_._1.cond(mem_ctrl)) || mem_ctrl.div || mem_ctrl.sqrt || mem_ctrl.vec) io.sboard_clr := !wb_cp_valid && (divSqrt_wen || (wen(0) && useScoreboard(x => wbInfo(0).pipeid === x._2.U))) io.sboard_clra := waddr ccover(io.sboard_clr && load_wb, "DUAL_WRITEBACK", "load and FMA writeback on same cycle") // we don't currently support round-max-magnitude (rm=4) io.illegal_rm := io.inst(14,12).isOneOf(5.U, 6.U) || io.inst(14,12) === 7.U && io.fcsr_rm >= 5.U if (cfg.divSqrt) { val divSqrt_inValid = mem_reg_valid && (mem_ctrl.div || mem_ctrl.sqrt) && !divSqrt_inFlight val divSqrt_killed = RegNext(divSqrt_inValid && killm, true.B) when (divSqrt_inValid) { divSqrt_waddr := mem_reg_inst(11,7) divSqrt_cp := mem_cp_valid } ccover(divSqrt_inFlight && divSqrt_killed, "DIV_KILLED", "divide killed after issued to divider") ccover(divSqrt_inFlight && mem_reg_valid && (mem_ctrl.div || mem_ctrl.sqrt), "DIV_BUSY", "divider structural hazard") ccover(mem_reg_valid && divSqrt_write_port_busy, "DIV_WB_STRUCTURAL", "structural hazard on division writeback") for (t <- floatTypes) { val tag = mem_ctrl.typeTagOut val divSqrt = withReset(divSqrt_killed) { Module(new hardfloat.DivSqrtRecFN_small(t.exp, t.sig, 0)) } divSqrt.io.inValid := divSqrt_inValid && tag === typeTag(t).U divSqrt.io.sqrtOp := mem_ctrl.sqrt divSqrt.io.a := maxType.unsafeConvert(fpiu.io.out.bits.in.in1, t) divSqrt.io.b := maxType.unsafeConvert(fpiu.io.out.bits.in.in2, t) divSqrt.io.roundingMode := fpiu.io.out.bits.in.rm divSqrt.io.detectTininess := hardfloat.consts.tininess_afterRounding when (!divSqrt.io.inReady) { divSqrt_inFlight := true.B } // only 1 in flight when (divSqrt.io.outValid_div || divSqrt.io.outValid_sqrt) { divSqrt_wen := !divSqrt_killed divSqrt_wdata := sanitizeNaN(divSqrt.io.out, t) divSqrt_flags := divSqrt.io.exceptionFlags divSqrt_typeTag := typeTag(t).U } } when (divSqrt_killed) { divSqrt_inFlight := false.B } } else { when (id_ctrl.div || id_ctrl.sqrt) { io.illegal_rm := true.B } } // gate the clock clock_en_reg := !useClockGating.B || io.keep_clock_enabled || // chicken bit io.valid || // ID stage req_valid || // EX stage mem_reg_valid || mem_cp_valid || // MEM stage wb_reg_valid || wb_cp_valid || // WB stage wen.orR || divSqrt_inFlight || // post-WB stage io.ll_resp_val // load writeback } // leaving gated-clock domain val fpuImpl = withClock (gated_clock) { new FPUImpl } def ccover(cond: Bool, label: String, desc: String)(implicit sourceInfo: SourceInfo) = property.cover(cond, s"FPU_$label", "Core;;" + desc) } File util.scala: //****************************************************************************** // Copyright (c) 2015 - 2019, The Regents of the University of California (Regents). // All Rights Reserved. See LICENSE and LICENSE.SiFive for license details. //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ // Utility Functions //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ package boom.v3.util import chisel3._ import chisel3.util._ import freechips.rocketchip.rocket.Instructions._ import freechips.rocketchip.rocket._ import freechips.rocketchip.util.{Str} import org.chipsalliance.cde.config.{Parameters} import freechips.rocketchip.tile.{TileKey} import boom.v3.common.{MicroOp} import boom.v3.exu.{BrUpdateInfo} /** * Object to XOR fold a input register of fullLength into a compressedLength. */ object Fold { def apply(input: UInt, compressedLength: Int, fullLength: Int): UInt = { val clen = compressedLength val hlen = fullLength if (hlen <= clen) { input } else { var res = 0.U(clen.W) var remaining = input.asUInt for (i <- 0 to hlen-1 by clen) { val len = if (i + clen > hlen ) (hlen - i) else clen require(len > 0) res = res(clen-1,0) ^ remaining(len-1,0) remaining = remaining >> len.U } res } } } /** * Object to check if MicroOp was killed due to a branch mispredict. * Uses "Fast" branch masks */ object IsKilledByBranch { def apply(brupdate: BrUpdateInfo, uop: MicroOp): Bool = { return maskMatch(brupdate.b1.mispredict_mask, uop.br_mask) } def apply(brupdate: BrUpdateInfo, uop_mask: UInt): Bool = { return maskMatch(brupdate.b1.mispredict_mask, uop_mask) } } /** * Object to return new MicroOp with a new BR mask given a MicroOp mask * and old BR mask. */ object GetNewUopAndBrMask { def apply(uop: MicroOp, brupdate: BrUpdateInfo) (implicit p: Parameters): MicroOp = { val newuop = WireInit(uop) newuop.br_mask := uop.br_mask & ~brupdate.b1.resolve_mask newuop } } /** * Object to return a BR mask given a MicroOp mask and old BR mask. */ object GetNewBrMask { def apply(brupdate: BrUpdateInfo, uop: MicroOp): UInt = { return uop.br_mask & ~brupdate.b1.resolve_mask } def apply(brupdate: BrUpdateInfo, br_mask: UInt): UInt = { return br_mask & ~brupdate.b1.resolve_mask } } object UpdateBrMask { def apply(brupdate: BrUpdateInfo, uop: MicroOp): MicroOp = { val out = WireInit(uop) out.br_mask := GetNewBrMask(brupdate, uop) out } def apply[T <: boom.v3.common.HasBoomUOP](brupdate: BrUpdateInfo, bundle: T): T = { val out = WireInit(bundle) out.uop.br_mask := GetNewBrMask(brupdate, bundle.uop.br_mask) out } def apply[T <: boom.v3.common.HasBoomUOP](brupdate: BrUpdateInfo, bundle: Valid[T]): Valid[T] = { val out = WireInit(bundle) out.bits.uop.br_mask := GetNewBrMask(brupdate, bundle.bits.uop.br_mask) out.valid := bundle.valid && !IsKilledByBranch(brupdate, bundle.bits.uop.br_mask) out } } /** * Object to check if at least 1 bit matches in two masks */ object maskMatch { def apply(msk1: UInt, msk2: UInt): Bool = (msk1 & msk2) =/= 0.U } /** * Object to clear one bit in a mask given an index */ object clearMaskBit { def apply(msk: UInt, idx: UInt): UInt = (msk & ~(1.U << idx))(msk.getWidth-1, 0) } /** * Object to shift a register over by one bit and concat a new one */ object PerformShiftRegister { def apply(reg_val: UInt, new_bit: Bool): UInt = { reg_val := Cat(reg_val(reg_val.getWidth-1, 0).asUInt, new_bit.asUInt).asUInt reg_val } } /** * Object to shift a register over by one bit, wrapping the top bit around to the bottom * (XOR'ed with a new-bit), and evicting a bit at index HLEN. * This is used to simulate a longer HLEN-width shift register that is folded * down to a compressed CLEN. */ object PerformCircularShiftRegister { def apply(csr: UInt, new_bit: Bool, evict_bit: Bool, hlen: Int, clen: Int): UInt = { val carry = csr(clen-1) val newval = Cat(csr, new_bit ^ carry) ^ (evict_bit << (hlen % clen).U) newval } } /** * Object to increment an input value, wrapping it if * necessary. */ object WrapAdd { // "n" is the number of increments, so we wrap at n-1. def apply(value: UInt, amt: UInt, n: Int): UInt = { if (isPow2(n)) { (value + amt)(log2Ceil(n)-1,0) } else { val sum = Cat(0.U(1.W), value) + Cat(0.U(1.W), amt) Mux(sum >= n.U, sum - n.U, sum) } } } /** * Object to decrement an input value, wrapping it if * necessary. */ object WrapSub { // "n" is the number of increments, so we wrap to n-1. def apply(value: UInt, amt: Int, n: Int): UInt = { if (isPow2(n)) { (value - amt.U)(log2Ceil(n)-1,0) } else { val v = Cat(0.U(1.W), value) val b = Cat(0.U(1.W), amt.U) Mux(value >= amt.U, value - amt.U, n.U - amt.U + value) } } } /** * Object to increment an input value, wrapping it if * necessary. */ object WrapInc { // "n" is the number of increments, so we wrap at n-1. def apply(value: UInt, n: Int): UInt = { if (isPow2(n)) { (value + 1.U)(log2Ceil(n)-1,0) } else { val wrap = (value === (n-1).U) Mux(wrap, 0.U, value + 1.U) } } } /** * Object to decrement an input value, wrapping it if * necessary. */ object WrapDec { // "n" is the number of increments, so we wrap at n-1. def apply(value: UInt, n: Int): UInt = { if (isPow2(n)) { (value - 1.U)(log2Ceil(n)-1,0) } else { val wrap = (value === 0.U) Mux(wrap, (n-1).U, value - 1.U) } } } /** * Object to mask off lower bits of a PC to align to a "b" * Byte boundary. */ object AlignPCToBoundary { def apply(pc: UInt, b: Int): UInt = { // Invert for scenario where pc longer than b // (which would clear all bits above size(b)). ~(~pc | (b-1).U) } } /** * Object to rotate a signal left by one */ object RotateL1 { def apply(signal: UInt): UInt = { val w = signal.getWidth val out = Cat(signal(w-2,0), signal(w-1)) return out } } /** * Object to sext a value to a particular length. */ object Sext { def apply(x: UInt, length: Int): UInt = { if (x.getWidth == length) return x else return Cat(Fill(length-x.getWidth, x(x.getWidth-1)), x) } } /** * Object to translate from BOOM's special "packed immediate" to a 32b signed immediate * Asking for U-type gives it shifted up 12 bits. */ object ImmGen { import boom.v3.common.{LONGEST_IMM_SZ, IS_B, IS_I, IS_J, IS_S, IS_U} def apply(ip: UInt, isel: UInt): SInt = { val sign = ip(LONGEST_IMM_SZ-1).asSInt val i30_20 = Mux(isel === IS_U, ip(18,8).asSInt, sign) val i19_12 = Mux(isel === IS_U || isel === IS_J, ip(7,0).asSInt, sign) val i11 = Mux(isel === IS_U, 0.S, Mux(isel === IS_J || isel === IS_B, ip(8).asSInt, sign)) val i10_5 = Mux(isel === IS_U, 0.S, ip(18,14).asSInt) val i4_1 = Mux(isel === IS_U, 0.S, ip(13,9).asSInt) val i0 = Mux(isel === IS_S || isel === IS_I, ip(8).asSInt, 0.S) return Cat(sign, i30_20, i19_12, i11, i10_5, i4_1, i0).asSInt } } /** * Object to get the FP rounding mode out of a packed immediate. */ object ImmGenRm { def apply(ip: UInt): UInt = { return ip(2,0) } } /** * Object to get the FP function fype from a packed immediate. * Note: only works if !(IS_B or IS_S) */ object ImmGenTyp { def apply(ip: UInt): UInt = { return ip(9,8) } } /** * Object to see if an instruction is a JALR. */ object DebugIsJALR { def apply(inst: UInt): Bool = { // TODO Chisel not sure why this won't compile // val is_jalr = rocket.DecodeLogic(inst, List(Bool(false)), // Array( // JALR -> Bool(true))) inst(6,0) === "b1100111".U } } /** * Object to take an instruction and output its branch or jal target. Only used * for a debug assert (no where else would we jump straight from instruction * bits to a target). */ object DebugGetBJImm { def apply(inst: UInt): UInt = { // TODO Chisel not sure why this won't compile //val csignals = //rocket.DecodeLogic(inst, // List(Bool(false), Bool(false)), // Array( // BEQ -> List(Bool(true ), Bool(false)), // BNE -> List(Bool(true ), Bool(false)), // BGE -> List(Bool(true ), Bool(false)), // BGEU -> List(Bool(true ), Bool(false)), // BLT -> List(Bool(true ), Bool(false)), // BLTU -> List(Bool(true ), Bool(false)) // )) //val is_br :: nothing :: Nil = csignals val is_br = (inst(6,0) === "b1100011".U) val br_targ = Cat(Fill(12, inst(31)), Fill(8,inst(31)), inst(7), inst(30,25), inst(11,8), 0.U(1.W)) val jal_targ= Cat(Fill(12, inst(31)), inst(19,12), inst(20), inst(30,25), inst(24,21), 0.U(1.W)) Mux(is_br, br_targ, jal_targ) } } /** * Object to return the lowest bit position after the head. */ object AgePriorityEncoder { def apply(in: Seq[Bool], head: UInt): UInt = { val n = in.size val width = log2Ceil(in.size) val n_padded = 1 << width val temp_vec = (0 until n_padded).map(i => if (i < n) in(i) && i.U >= head else false.B) ++ in val idx = PriorityEncoder(temp_vec) idx(width-1, 0) //discard msb } } /** * Object to determine whether queue * index i0 is older than index i1. */ object IsOlder { def apply(i0: UInt, i1: UInt, head: UInt) = ((i0 < i1) ^ (i0 < head) ^ (i1 < head)) } /** * Set all bits at or below the highest order '1'. */ object MaskLower { def apply(in: UInt) = { val n = in.getWidth (0 until n).map(i => in >> i.U).reduce(_|_) } } /** * Set all bits at or above the lowest order '1'. */ object MaskUpper { def apply(in: UInt) = { val n = in.getWidth (0 until n).map(i => (in << i.U)(n-1,0)).reduce(_|_) } } /** * Transpose a matrix of Chisel Vecs. */ object Transpose { def apply[T <: chisel3.Data](in: Vec[Vec[T]]) = { val n = in(0).size VecInit((0 until n).map(i => VecInit(in.map(row => row(i))))) } } /** * N-wide one-hot priority encoder. */ object SelectFirstN { def apply(in: UInt, n: Int) = { val sels = Wire(Vec(n, UInt(in.getWidth.W))) var mask = in for (i <- 0 until n) { sels(i) := PriorityEncoderOH(mask) mask = mask & ~sels(i) } sels } } /** * Connect the first k of n valid input interfaces to k output interfaces. */ class Compactor[T <: chisel3.Data](n: Int, k: Int, gen: T) extends Module { require(n >= k) val io = IO(new Bundle { val in = Vec(n, Flipped(DecoupledIO(gen))) val out = Vec(k, DecoupledIO(gen)) }) if (n == k) { io.out <> io.in } else { val counts = io.in.map(_.valid).scanLeft(1.U(k.W)) ((c,e) => Mux(e, (c<<1)(k-1,0), c)) val sels = Transpose(VecInit(counts map (c => VecInit(c.asBools)))) map (col => (col zip io.in.map(_.valid)) map {case (c,v) => c && v}) val in_readys = counts map (row => (row.asBools zip io.out.map(_.ready)) map {case (c,r) => c && r} reduce (_||_)) val out_valids = sels map (col => col.reduce(_||_)) val out_data = sels map (s => Mux1H(s, io.in.map(_.bits))) in_readys zip io.in foreach {case (r,i) => i.ready := r} out_valids zip out_data zip io.out foreach {case ((v,d),o) => o.valid := v; o.bits := d} } } /** * Create a queue that can be killed with a branch kill signal. * Assumption: enq.valid only high if not killed by branch (so don't check IsKilled on io.enq). */ class BranchKillableQueue[T <: boom.v3.common.HasBoomUOP](gen: T, entries: Int, flush_fn: boom.v3.common.MicroOp => Bool = u => true.B, flow: Boolean = true) (implicit p: org.chipsalliance.cde.config.Parameters) extends boom.v3.common.BoomModule()(p) with boom.v3.common.HasBoomCoreParameters { val io = IO(new Bundle { val enq = Flipped(Decoupled(gen)) val deq = Decoupled(gen) val brupdate = Input(new BrUpdateInfo()) val flush = Input(Bool()) val empty = Output(Bool()) val count = Output(UInt(log2Ceil(entries).W)) }) val ram = Mem(entries, gen) val valids = RegInit(VecInit(Seq.fill(entries) {false.B})) val uops = Reg(Vec(entries, new MicroOp)) val enq_ptr = Counter(entries) val deq_ptr = Counter(entries) val maybe_full = RegInit(false.B) val ptr_match = enq_ptr.value === deq_ptr.value io.empty := ptr_match && !maybe_full val full = ptr_match && maybe_full val do_enq = WireInit(io.enq.fire) val do_deq = WireInit((io.deq.ready || !valids(deq_ptr.value)) && !io.empty) for (i <- 0 until entries) { val mask = uops(i).br_mask val uop = uops(i) valids(i) := valids(i) && !IsKilledByBranch(io.brupdate, mask) && !(io.flush && flush_fn(uop)) when (valids(i)) { uops(i).br_mask := GetNewBrMask(io.brupdate, mask) } } when (do_enq) { ram(enq_ptr.value) := io.enq.bits valids(enq_ptr.value) := true.B //!IsKilledByBranch(io.brupdate, io.enq.bits.uop) uops(enq_ptr.value) := io.enq.bits.uop uops(enq_ptr.value).br_mask := GetNewBrMask(io.brupdate, io.enq.bits.uop) enq_ptr.inc() } when (do_deq) { valids(deq_ptr.value) := false.B deq_ptr.inc() } when (do_enq =/= do_deq) { maybe_full := do_enq } io.enq.ready := !full val out = Wire(gen) out := ram(deq_ptr.value) out.uop := uops(deq_ptr.value) io.deq.valid := !io.empty && valids(deq_ptr.value) && !IsKilledByBranch(io.brupdate, out.uop) && !(io.flush && flush_fn(out.uop)) io.deq.bits := out io.deq.bits.uop.br_mask := GetNewBrMask(io.brupdate, out.uop) // For flow queue behavior. if (flow) { when (io.empty) { io.deq.valid := io.enq.valid //&& !IsKilledByBranch(io.brupdate, io.enq.bits.uop) io.deq.bits := io.enq.bits io.deq.bits.uop.br_mask := GetNewBrMask(io.brupdate, io.enq.bits.uop) do_deq := false.B when (io.deq.ready) { do_enq := false.B } } } private val ptr_diff = enq_ptr.value - deq_ptr.value if (isPow2(entries)) { io.count := Cat(maybe_full && ptr_match, ptr_diff) } else { io.count := Mux(ptr_match, Mux(maybe_full, entries.asUInt, 0.U), Mux(deq_ptr.value > enq_ptr.value, entries.asUInt + ptr_diff, ptr_diff)) } } // ------------------------------------------ // Printf helper functions // ------------------------------------------ object BoolToChar { /** * Take in a Chisel Bool and convert it into a Str * based on the Chars given * * @param c_bool Chisel Bool * @param trueChar Scala Char if bool is true * @param falseChar Scala Char if bool is false * @return UInt ASCII Char for "trueChar" or "falseChar" */ def apply(c_bool: Bool, trueChar: Char, falseChar: Char = '-'): UInt = { Mux(c_bool, Str(trueChar), Str(falseChar)) } } object CfiTypeToChars { /** * Get a Vec of Strs that can be used for printing * * @param cfi_type specific cfi type * @return Vec of Strs (must be indexed to get specific char) */ def apply(cfi_type: UInt) = { val strings = Seq("----", "BR ", "JAL ", "JALR") val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) }) multiVec(cfi_type) } } object BpdTypeToChars { /** * Get a Vec of Strs that can be used for printing * * @param bpd_type specific bpd type * @return Vec of Strs (must be indexed to get specific char) */ def apply(bpd_type: UInt) = { val strings = Seq("BR ", "JUMP", "----", "RET ", "----", "CALL", "----", "----") val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) }) multiVec(bpd_type) } } object RobTypeToChars { /** * Get a Vec of Strs that can be used for printing * * @param rob_type specific rob type * @return Vec of Strs (must be indexed to get specific char) */ def apply(rob_type: UInt) = { val strings = Seq("RST", "NML", "RBK", " WT") val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) }) multiVec(rob_type) } } object XRegToChars { /** * Get a Vec of Strs that can be used for printing * * @param xreg specific register number * @return Vec of Strs (must be indexed to get specific char) */ def apply(xreg: UInt) = { val strings = Seq(" x0", " ra", " sp", " gp", " tp", " t0", " t1", " t2", " s0", " s1", " a0", " a1", " a2", " a3", " a4", " a5", " a6", " a7", " s2", " s3", " s4", " s5", " s6", " s7", " s8", " s9", "s10", "s11", " t3", " t4", " t5", " t6") val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) }) multiVec(xreg) } } object FPRegToChars { /** * Get a Vec of Strs that can be used for printing * * @param fpreg specific register number * @return Vec of Strs (must be indexed to get specific char) */ def apply(fpreg: UInt) = { val strings = Seq(" ft0", " ft1", " ft2", " ft3", " ft4", " ft5", " ft6", " ft7", " fs0", " fs1", " fa0", " fa1", " fa2", " fa3", " fa4", " fa5", " fa6", " fa7", " fs2", " fs3", " fs4", " fs5", " fs6", " fs7", " fs8", " fs9", "fs10", "fs11", " ft8", " ft9", "ft10", "ft11") val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) }) multiVec(fpreg) } } object BoomCoreStringPrefix { /** * Add prefix to BOOM strings (currently only adds the hartId) * * @param strs list of strings * @return String combining the list with the prefix per line */ def apply(strs: String*)(implicit p: Parameters) = { val prefix = "[C" + s"${p(TileKey).tileId}" + "] " strs.map(str => prefix + str + "\n").mkString("") } } File fdiv.scala: //****************************************************************************** // Copyright (c) 2016 - 2018, The Regents of the University of California (Regents). // All Rights Reserved. See LICENSE and LICENSE.SiFive for license details. //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ // FDiv/FSqrt Unit //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ package boom.v3.exu import chisel3._ import chisel3.util._ import chisel3.experimental.dataview._ import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.tile.FPConstants._ import freechips.rocketchip.tile import boom.v3.common._ import boom.v3.util._ import freechips.rocketchip.tile.HasFPUParameters import freechips.rocketchip.util.uintToBitPat /** * Decoder for FPU divide and square root signals */ class UOPCodeFDivDecoder(implicit p: Parameters) extends BoomModule with HasFPUParameters { val io = IO(new Bundle { val uopc = Input(Bits(UOPC_SZ.W)) val sigs = Output(new tile.FPUCtrlSigs()) }) val N = BitPat("b0") val Y = BitPat("b1") val X = BitPat("b?") val decoder = freechips.rocketchip.rocket.DecodeLogic(io.uopc, // Note: not all of these signals are used or necessary, but we're // constrained by the need to fit the rocket.FPU units' ctrl signals. // swap12 fma // | swap32 | div // | | typeTagIn | | sqrt // ldst | | | typeTagOut | | wflags // | wen | | | | from_int | | | // | | ren1 | | | | | to_int | | | // | | | ren2 | | | | | | fast | | | // | | | | ren3 | | | | | | | | | | // | | | | | | | | | | | | | | | | /* Default */ List(X,X,X,X,X, X,X,X,X,X,X,X, X,X,X,X), Array( BitPat(uopFDIV_S) -> List(X,X,Y,Y,X, X,X,S,S,X,X,X, X,Y,N,Y), BitPat(uopFDIV_D) -> List(X,X,Y,Y,X, X,X,D,D,X,X,X, X,Y,N,Y), BitPat(uopFSQRT_S) -> List(X,X,Y,N,X, X,X,S,S,X,X,X, X,N,Y,Y), BitPat(uopFSQRT_D) -> List(X,X,Y,N,X, X,X,D,D,X,X,X, X,N,Y,Y) ): Array[(BitPat, List[BitPat])]) val s = io.sigs val sigs = Seq(s.ldst, s.wen, s.ren1, s.ren2, s.ren3, s.swap12, s.swap23, s.typeTagIn, s.typeTagOut, s.fromint, s.toint, s.fastpipe, s.fma, s.div, s.sqrt, s.wflags) s.vec := false.B sigs zip decoder map {case(s,d) => s := d} } /** * fdiv/fsqrt is douple-precision. Must upconvert inputs and downconvert outputs * as necessary. Must wait till killed uop finishes before we're ready again. * fdiv/fsqrt unit uses an unstable FIFO interface, and thus we must spend a * cycle buffering up an uop to provide slack between the issue queue and the * fdiv/fsqrt unit. FDivUnit inherents directly from FunctionalUnit, because * UnpipelinedFunctionalUnit can only handle 1 inflight uop, whereas FDivUnit * contains up to 2 inflight uops due to the need to buffer the input as the * fdiv unit uses an unstable FIFO interface. * TODO extend UnpipelinedFunctionalUnit to handle a >1 uops inflight. * * @param isPipelined is the functional unit pipelined * @param numStages number of stages for the functional unit * @param numBypassStages number of bypass stages * @param dataWidth width of the data out of the functional unit */ class FDivSqrtUnit(implicit p: Parameters) extends FunctionalUnit( isPipelined = false, numStages = 1, numBypassStages = 0, dataWidth = 65, needsFcsr = true) with tile.HasFPUParameters { //-------------------------------------- // buffer inputs and upconvert as needed // provide a one-entry queue to store incoming uops while waiting for the fdiv/fsqrt unit to become available. val r_buffer_val = RegInit(false.B) val r_buffer_req = Reg(new FuncUnitReq(dataWidth=65)) val r_buffer_fin = Reg(new tile.FPInput) val fdiv_decoder = Module(new UOPCodeFDivDecoder) fdiv_decoder.io.uopc := io.req.bits.uop.uopc // handle branch kill on queued entry r_buffer_val := !IsKilledByBranch(io.brupdate, r_buffer_req.uop) && !io.req.bits.kill && r_buffer_val r_buffer_req.uop.br_mask := GetNewBrMask(io.brupdate, r_buffer_req.uop) // handle incoming uop, including upconversion as needed, and push back if our input queue is already occupied io.req.ready := !r_buffer_val def upconvert(x: UInt) = { val s2d = Module(new hardfloat.RecFNToRecFN(inExpWidth = 8, inSigWidth = 24, outExpWidth = 11, outSigWidth = 53)) s2d.io.in := x s2d.io.roundingMode := 0.U s2d.io.detectTininess := DontCare s2d.io.out } val in1_upconvert = upconvert(unbox(io.req.bits.rs1_data, false.B, Some(tile.FType.S))) val in2_upconvert = upconvert(unbox(io.req.bits.rs2_data, false.B, Some(tile.FType.S))) when (io.req.valid && !IsKilledByBranch(io.brupdate, io.req.bits.uop) && !io.req.bits.kill) { r_buffer_val := true.B r_buffer_req := io.req.bits r_buffer_req.uop.br_mask := GetNewBrMask(io.brupdate, io.req.bits.uop) r_buffer_fin.viewAsSupertype(new tile.FPUCtrlSigs) := fdiv_decoder.io.sigs r_buffer_fin.rm := Mux(ImmGenRm(io.req.bits.uop.imm_packed) === 7.U, io.fcsr_rm, ImmGenRm(io.req.bits.uop.imm_packed)) r_buffer_fin.typ := 0.U // unused for fdivsqrt val tag = fdiv_decoder.io.sigs.typeTagIn r_buffer_fin.in1 := unbox(io.req.bits.rs1_data, tag, Some(tile.FType.D)) r_buffer_fin.in2 := unbox(io.req.bits.rs2_data, tag, Some(tile.FType.D)) when (tag === S) { r_buffer_fin.in1 := in1_upconvert r_buffer_fin.in2 := in2_upconvert } } assert (!(r_buffer_val && io.req.valid), "[fdiv] a request is incoming while the buffer is already full.") //----------- // fdiv/fsqrt val divsqrt = Module(new hardfloat.DivSqrtRecF64) val r_divsqrt_val = RegInit(false.B) // inflight uop? val r_divsqrt_killed = Reg(Bool()) // has inflight uop been killed? val r_divsqrt_fin = Reg(new tile.FPInput) val r_divsqrt_uop = Reg(new MicroOp) // Need to buffer output until RF writeport is available. val output_buffer_available = Wire(Bool()) val may_fire_input = r_buffer_val && (r_buffer_fin.div || r_buffer_fin.sqrt) && !r_divsqrt_val && output_buffer_available val divsqrt_ready = Mux(divsqrt.io.sqrtOp, divsqrt.io.inReady_sqrt, divsqrt.io.inReady_div) divsqrt.io.inValid := may_fire_input // must be setup early divsqrt.io.sqrtOp := r_buffer_fin.sqrt divsqrt.io.a := r_buffer_fin.in1 divsqrt.io.b := Mux(divsqrt.io.sqrtOp, r_buffer_fin.in1, r_buffer_fin.in2) divsqrt.io.roundingMode := r_buffer_fin.rm divsqrt.io.detectTininess := DontCare r_divsqrt_killed := r_divsqrt_killed || IsKilledByBranch(io.brupdate, r_divsqrt_uop) || io.req.bits.kill r_divsqrt_uop.br_mask := GetNewBrMask(io.brupdate, r_divsqrt_uop) when (may_fire_input && divsqrt_ready) { // Remove entry from the input buffer. // We don't have time to kill divsqrt request so must track if killed on entry. r_buffer_val := false.B r_divsqrt_val := true.B r_divsqrt_fin := r_buffer_fin r_divsqrt_uop := r_buffer_req.uop r_divsqrt_killed := IsKilledByBranch(io.brupdate, r_buffer_req.uop) || io.req.bits.kill r_divsqrt_uop.br_mask := GetNewBrMask(io.brupdate, r_buffer_req.uop) } //----------------------------------------- // buffer output and down-convert as needed val r_out_val = RegInit(false.B) val r_out_uop = Reg(new MicroOp) val r_out_flags_double = Reg(Bits()) val r_out_wdata_double = Reg(Bits()) output_buffer_available := !r_out_val r_out_uop.br_mask := GetNewBrMask(io.brupdate, r_out_uop) when (io.resp.ready || IsKilledByBranch(io.brupdate, r_out_uop) || io.req.bits.kill) { r_out_val := false.B } when (divsqrt.io.outValid_div || divsqrt.io.outValid_sqrt) { r_divsqrt_val := false.B r_out_val := !r_divsqrt_killed && !IsKilledByBranch(io.brupdate, r_divsqrt_uop) && !io.req.bits.kill r_out_uop := r_divsqrt_uop r_out_uop.br_mask := GetNewBrMask(io.brupdate, r_divsqrt_uop) r_out_wdata_double := sanitizeNaN(divsqrt.io.out, tile.FType.D) r_out_flags_double := divsqrt.io.exceptionFlags assert (r_divsqrt_val, "[fdiv] a response is being generated for no request.") } assert (!(r_out_val && (divsqrt.io.outValid_div || divsqrt.io.outValid_sqrt)), "[fdiv] Buffered output being overwritten by another output from the fdiv/fsqrt unit.") val downvert_d2s = Module(new hardfloat.RecFNToRecFN( inExpWidth = 11, inSigWidth = 53, outExpWidth = 8, outSigWidth = 24)) downvert_d2s.io.in := r_out_wdata_double downvert_d2s.io.roundingMode := r_divsqrt_fin.rm downvert_d2s.io.detectTininess := DontCare val out_flags = r_out_flags_double | Mux(r_divsqrt_fin.typeTagIn === S, downvert_d2s.io.exceptionFlags, 0.U) io.resp.valid := r_out_val && !IsKilledByBranch(io.brupdate, r_out_uop) io.resp.bits.uop := r_out_uop io.resp.bits.data := Mux(r_divsqrt_fin.typeTagIn === S, box(downvert_d2s.io.out, false.B), box(r_out_wdata_double, true.B)) io.resp.bits.fflags.valid := io.resp.valid io.resp.bits.fflags.bits.uop := r_out_uop io.resp.bits.fflags.bits.uop.br_mask := GetNewBrMask(io.brupdate, r_out_uop) io.resp.bits.fflags.bits.flags := out_flags } File functional-unit.scala: //****************************************************************************** // Copyright (c) 2013 - 2018, The Regents of the University of California (Regents). // All Rights Reserved. See LICENSE and LICENSE.SiFive for license details. //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ // Functional Units //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ // // If regfile bypassing is disabled, then the functional unit must do its own // bypassing in here on the WB stage (i.e., bypassing the io.resp.data) // // TODO: explore possibility of conditional IO fields? if a branch unit... how to add extra to IO in subclass? package boom.v3.exu import chisel3._ import chisel3.util._ import chisel3.experimental.dataview._ import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.util._ import freechips.rocketchip.tile import freechips.rocketchip.rocket.{PipelinedMultiplier,BP,BreakpointUnit,Causes,CSR} import boom.v3.common._ import boom.v3.ifu._ import boom.v3.util._ /**t * Functional unit constants */ object FUConstants { // bit mask, since a given execution pipeline may support multiple functional units val FUC_SZ = 10 val FU_X = BitPat.dontCare(FUC_SZ) val FU_ALU = 1.U(FUC_SZ.W) val FU_JMP = 2.U(FUC_SZ.W) val FU_MEM = 4.U(FUC_SZ.W) val FU_MUL = 8.U(FUC_SZ.W) val FU_DIV = 16.U(FUC_SZ.W) val FU_CSR = 32.U(FUC_SZ.W) val FU_FPU = 64.U(FUC_SZ.W) val FU_FDV = 128.U(FUC_SZ.W) val FU_I2F = 256.U(FUC_SZ.W) val FU_F2I = 512.U(FUC_SZ.W) // FP stores generate data through FP F2I, and generate address through MemAddrCalc val FU_F2IMEM = 516.U(FUC_SZ.W) } import FUConstants._ /** * Class to tell the FUDecoders what units it needs to support * * @param alu support alu unit? * @param bru support br unit? * @param mem support mem unit? * @param muld support multiple div unit? * @param fpu support FP unit? * @param csr support csr writing unit? * @param fdiv support FP div unit? * @param ifpu support int to FP unit? */ class SupportedFuncUnits( val alu: Boolean = false, val jmp: Boolean = false, val mem: Boolean = false, val muld: Boolean = false, val fpu: Boolean = false, val csr: Boolean = false, val fdiv: Boolean = false, val ifpu: Boolean = false) { } /** * Bundle for signals sent to the functional unit * * @param dataWidth width of the data sent to the functional unit */ class FuncUnitReq(val dataWidth: Int)(implicit p: Parameters) extends BoomBundle with HasBoomUOP { val numOperands = 3 val rs1_data = UInt(dataWidth.W) val rs2_data = UInt(dataWidth.W) val rs3_data = UInt(dataWidth.W) // only used for FMA units val pred_data = Bool() val kill = Bool() // kill everything } /** * Bundle for the signals sent out of the function unit * * @param dataWidth data sent from the functional unit */ class FuncUnitResp(val dataWidth: Int)(implicit p: Parameters) extends BoomBundle with HasBoomUOP { val predicated = Bool() // Was this response from a predicated-off instruction val data = UInt(dataWidth.W) val fflags = new ValidIO(new FFlagsResp) val addr = UInt((vaddrBits+1).W) // only for maddr -> LSU val mxcpt = new ValidIO(UInt((freechips.rocketchip.rocket.Causes.all.max+2).W)) //only for maddr->LSU val sfence = Valid(new freechips.rocketchip.rocket.SFenceReq) // only for mcalc } /** * Branch resolution information given from the branch unit */ class BrResolutionInfo(implicit p: Parameters) extends BoomBundle { val uop = new MicroOp val valid = Bool() val mispredict = Bool() val taken = Bool() // which direction did the branch go? val cfi_type = UInt(CFI_SZ.W) // Info for recalculating the pc for this branch val pc_sel = UInt(2.W) val jalr_target = UInt(vaddrBitsExtended.W) val target_offset = SInt() } class BrUpdateInfo(implicit p: Parameters) extends BoomBundle { // On the first cycle we get masks to kill registers val b1 = new BrUpdateMasks // On the second cycle we get indices to reset pointers val b2 = new BrResolutionInfo } class BrUpdateMasks(implicit p: Parameters) extends BoomBundle { val resolve_mask = UInt(maxBrCount.W) val mispredict_mask = UInt(maxBrCount.W) } /** * Abstract top level functional unit class that wraps a lower level hand made functional unit * * @param isPipelined is the functional unit pipelined? * @param numStages how many pipeline stages does the functional unit have * @param numBypassStages how many bypass stages does the function unit have * @param dataWidth width of the data being operated on in the functional unit * @param hasBranchUnit does this functional unit have a branch unit? */ abstract class FunctionalUnit( val isPipelined: Boolean, val numStages: Int, val numBypassStages: Int, val dataWidth: Int, val isJmpUnit: Boolean = false, val isAluUnit: Boolean = false, val isMemAddrCalcUnit: Boolean = false, val needsFcsr: Boolean = false) (implicit p: Parameters) extends BoomModule { val io = IO(new Bundle { val req = Flipped(new DecoupledIO(new FuncUnitReq(dataWidth))) val resp = (new DecoupledIO(new FuncUnitResp(dataWidth))) val brupdate = Input(new BrUpdateInfo()) val bypass = Output(Vec(numBypassStages, Valid(new ExeUnitResp(dataWidth)))) // only used by the fpu unit val fcsr_rm = if (needsFcsr) Input(UInt(tile.FPConstants.RM_SZ.W)) else null // only used by branch unit val brinfo = if (isAluUnit) Output(new BrResolutionInfo()) else null val get_ftq_pc = if (isJmpUnit) Flipped(new GetPCFromFtqIO()) else null val status = if (isMemAddrCalcUnit) Input(new freechips.rocketchip.rocket.MStatus()) else null // only used by memaddr calc unit val bp = if (isMemAddrCalcUnit) Input(Vec(nBreakpoints, new BP)) else null val mcontext = if (isMemAddrCalcUnit) Input(UInt(coreParams.mcontextWidth.W)) else null val scontext = if (isMemAddrCalcUnit) Input(UInt(coreParams.scontextWidth.W)) else null }) io.bypass.foreach { b => b.valid := false.B; b.bits := DontCare } io.resp.valid := false.B io.resp.bits := DontCare if (isJmpUnit) { io.get_ftq_pc.ftq_idx := DontCare } } /** * Abstract top level pipelined functional unit * * Note: this helps track which uops get killed while in intermediate stages, * but it is the job of the consumer to check for kills on the same cycle as consumption!!! * * @param numStages how many pipeline stages does the functional unit have * @param numBypassStages how many bypass stages does the function unit have * @param earliestBypassStage first stage that you can start bypassing from * @param dataWidth width of the data being operated on in the functional unit * @param hasBranchUnit does this functional unit have a branch unit? */ abstract class PipelinedFunctionalUnit( numStages: Int, numBypassStages: Int, earliestBypassStage: Int, dataWidth: Int, isJmpUnit: Boolean = false, isAluUnit: Boolean = false, isMemAddrCalcUnit: Boolean = false, needsFcsr: Boolean = false )(implicit p: Parameters) extends FunctionalUnit( isPipelined = true, numStages = numStages, numBypassStages = numBypassStages, dataWidth = dataWidth, isJmpUnit = isJmpUnit, isAluUnit = isAluUnit, isMemAddrCalcUnit = isMemAddrCalcUnit, needsFcsr = needsFcsr) { // Pipelined functional unit is always ready. io.req.ready := true.B if (numStages > 0) { val r_valids = RegInit(VecInit(Seq.fill(numStages) { false.B })) val r_uops = Reg(Vec(numStages, new MicroOp())) // handle incoming request r_valids(0) := io.req.valid && !IsKilledByBranch(io.brupdate, io.req.bits.uop) && !io.req.bits.kill r_uops(0) := io.req.bits.uop r_uops(0).br_mask := GetNewBrMask(io.brupdate, io.req.bits.uop) // handle middle of the pipeline for (i <- 1 until numStages) { r_valids(i) := r_valids(i-1) && !IsKilledByBranch(io.brupdate, r_uops(i-1)) && !io.req.bits.kill r_uops(i) := r_uops(i-1) r_uops(i).br_mask := GetNewBrMask(io.brupdate, r_uops(i-1)) if (numBypassStages > 0) { io.bypass(i-1).bits.uop := r_uops(i-1) } } // handle outgoing (branch could still kill it) // consumer must also check for pipeline flushes (kills) io.resp.valid := r_valids(numStages-1) && !IsKilledByBranch(io.brupdate, r_uops(numStages-1)) io.resp.bits.predicated := false.B io.resp.bits.uop := r_uops(numStages-1) io.resp.bits.uop.br_mask := GetNewBrMask(io.brupdate, r_uops(numStages-1)) // bypassing (TODO allow bypass vector to have a different size from numStages) if (numBypassStages > 0 && earliestBypassStage == 0) { io.bypass(0).bits.uop := io.req.bits.uop for (i <- 1 until numBypassStages) { io.bypass(i).bits.uop := r_uops(i-1) } } } else { require (numStages == 0) // pass req straight through to response // valid doesn't check kill signals, let consumer deal with it. // The LSU already handles it and this hurts critical path. io.resp.valid := io.req.valid && !IsKilledByBranch(io.brupdate, io.req.bits.uop) io.resp.bits.predicated := false.B io.resp.bits.uop := io.req.bits.uop io.resp.bits.uop.br_mask := GetNewBrMask(io.brupdate, io.req.bits.uop) } } /** * Functional unit that wraps RocketChips ALU * * @param isBranchUnit is this a branch unit? * @param numStages how many pipeline stages does the functional unit have * @param dataWidth width of the data being operated on in the functional unit */ class ALUUnit(isJmpUnit: Boolean = false, numStages: Int = 1, dataWidth: Int)(implicit p: Parameters) extends PipelinedFunctionalUnit( numStages = numStages, numBypassStages = numStages, isAluUnit = true, earliestBypassStage = 0, dataWidth = dataWidth, isJmpUnit = isJmpUnit) with boom.v3.ifu.HasBoomFrontendParameters { val uop = io.req.bits.uop // immediate generation val imm_xprlen = ImmGen(uop.imm_packed, uop.ctrl.imm_sel) // operand 1 select var op1_data: UInt = null if (isJmpUnit) { // Get the uop PC for jumps val block_pc = AlignPCToBoundary(io.get_ftq_pc.pc, icBlockBytes) val uop_pc = (block_pc | uop.pc_lob) - Mux(uop.edge_inst, 2.U, 0.U) op1_data = Mux(uop.ctrl.op1_sel.asUInt === OP1_RS1 , io.req.bits.rs1_data, Mux(uop.ctrl.op1_sel.asUInt === OP1_PC , Sext(uop_pc, xLen), 0.U)) } else { op1_data = Mux(uop.ctrl.op1_sel.asUInt === OP1_RS1 , io.req.bits.rs1_data, 0.U) } // operand 2 select val op2_data = Mux(uop.ctrl.op2_sel === OP2_IMM, Sext(imm_xprlen.asUInt, xLen), Mux(uop.ctrl.op2_sel === OP2_IMMC, io.req.bits.uop.prs1(4,0), Mux(uop.ctrl.op2_sel === OP2_RS2 , io.req.bits.rs2_data, Mux(uop.ctrl.op2_sel === OP2_NEXT, Mux(uop.is_rvc, 2.U, 4.U), 0.U)))) val alu = Module(new freechips.rocketchip.rocket.ALU()) alu.io.in1 := op1_data.asUInt alu.io.in2 := op2_data.asUInt alu.io.fn := uop.ctrl.op_fcn alu.io.dw := uop.ctrl.fcn_dw // Did I just get killed by the previous cycle's branch, // or by a flush pipeline? val killed = WireInit(false.B) when (io.req.bits.kill || IsKilledByBranch(io.brupdate, uop)) { killed := true.B } val rs1 = io.req.bits.rs1_data val rs2 = io.req.bits.rs2_data val br_eq = (rs1 === rs2) val br_ltu = (rs1.asUInt < rs2.asUInt) val br_lt = (~(rs1(xLen-1) ^ rs2(xLen-1)) & br_ltu | rs1(xLen-1) & ~rs2(xLen-1)).asBool val pc_sel = MuxLookup(uop.ctrl.br_type, PC_PLUS4)( Seq( BR_N -> PC_PLUS4, BR_NE -> Mux(!br_eq, PC_BRJMP, PC_PLUS4), BR_EQ -> Mux( br_eq, PC_BRJMP, PC_PLUS4), BR_GE -> Mux(!br_lt, PC_BRJMP, PC_PLUS4), BR_GEU -> Mux(!br_ltu, PC_BRJMP, PC_PLUS4), BR_LT -> Mux( br_lt, PC_BRJMP, PC_PLUS4), BR_LTU -> Mux( br_ltu, PC_BRJMP, PC_PLUS4), BR_J -> PC_BRJMP, BR_JR -> PC_JALR )) val is_taken = io.req.valid && !killed && (uop.is_br || uop.is_jalr || uop.is_jal) && (pc_sel =/= PC_PLUS4) // "mispredict" means that a branch has been resolved and it must be killed val mispredict = WireInit(false.B) val is_br = io.req.valid && !killed && uop.is_br && !uop.is_sfb val is_jal = io.req.valid && !killed && uop.is_jal val is_jalr = io.req.valid && !killed && uop.is_jalr when (is_br || is_jalr) { if (!isJmpUnit) { assert (pc_sel =/= PC_JALR) } when (pc_sel === PC_PLUS4) { mispredict := uop.taken } when (pc_sel === PC_BRJMP) { mispredict := !uop.taken } } val brinfo = Wire(new BrResolutionInfo) // note: jal doesn't allocate a branch-mask, so don't clear a br-mask bit brinfo.valid := is_br || is_jalr brinfo.mispredict := mispredict brinfo.uop := uop brinfo.cfi_type := Mux(is_jalr, CFI_JALR, Mux(is_br , CFI_BR, CFI_X)) brinfo.taken := is_taken brinfo.pc_sel := pc_sel brinfo.jalr_target := DontCare // Branch/Jump Target Calculation // For jumps we read the FTQ, and can calculate the target // For branches we emit the offset for the core to redirect if necessary val target_offset = imm_xprlen(20,0).asSInt brinfo.jalr_target := DontCare if (isJmpUnit) { def encodeVirtualAddress(a0: UInt, ea: UInt) = if (vaddrBitsExtended == vaddrBits) { ea } else { // Efficient means to compress 64-bit VA into vaddrBits+1 bits. // (VA is bad if VA(vaddrBits) != VA(vaddrBits-1)). val a = a0.asSInt >> vaddrBits val msb = Mux(a === 0.S || a === -1.S, ea(vaddrBits), !ea(vaddrBits-1)) Cat(msb, ea(vaddrBits-1,0)) } val jalr_target_base = io.req.bits.rs1_data.asSInt val jalr_target_xlen = Wire(UInt(xLen.W)) jalr_target_xlen := (jalr_target_base + target_offset).asUInt val jalr_target = (encodeVirtualAddress(jalr_target_xlen, jalr_target_xlen).asSInt & -2.S).asUInt brinfo.jalr_target := jalr_target val cfi_idx = ((uop.pc_lob ^ Mux(io.get_ftq_pc.entry.start_bank === 1.U, 1.U << log2Ceil(bankBytes), 0.U)))(log2Ceil(fetchWidth),1) when (pc_sel === PC_JALR) { mispredict := !io.get_ftq_pc.next_val || (io.get_ftq_pc.next_pc =/= jalr_target) || !io.get_ftq_pc.entry.cfi_idx.valid || (io.get_ftq_pc.entry.cfi_idx.bits =/= cfi_idx) } } brinfo.target_offset := target_offset io.brinfo := brinfo // Response // TODO add clock gate on resp bits from functional units // io.resp.bits.data := RegEnable(alu.io.out, io.req.valid) // val reg_data = Reg(outType = Bits(width = xLen)) // reg_data := alu.io.out // io.resp.bits.data := reg_data val r_val = RegInit(VecInit(Seq.fill(numStages) { false.B })) val r_data = Reg(Vec(numStages, UInt(xLen.W))) val r_pred = Reg(Vec(numStages, Bool())) val alu_out = Mux(io.req.bits.uop.is_sfb_shadow && io.req.bits.pred_data, Mux(io.req.bits.uop.ldst_is_rs1, io.req.bits.rs1_data, io.req.bits.rs2_data), Mux(io.req.bits.uop.uopc === uopMOV, io.req.bits.rs2_data, alu.io.out)) r_val (0) := io.req.valid r_data(0) := Mux(io.req.bits.uop.is_sfb_br, pc_sel === PC_BRJMP, alu_out) r_pred(0) := io.req.bits.uop.is_sfb_shadow && io.req.bits.pred_data for (i <- 1 until numStages) { r_val(i) := r_val(i-1) r_data(i) := r_data(i-1) r_pred(i) := r_pred(i-1) } io.resp.bits.data := r_data(numStages-1) io.resp.bits.predicated := r_pred(numStages-1) // Bypass // for the ALU, we can bypass same cycle as compute require (numStages >= 1) require (numBypassStages >= 1) io.bypass(0).valid := io.req.valid io.bypass(0).bits.data := Mux(io.req.bits.uop.is_sfb_br, pc_sel === PC_BRJMP, alu_out) for (i <- 1 until numStages) { io.bypass(i).valid := r_val(i-1) io.bypass(i).bits.data := r_data(i-1) } // Exceptions io.resp.bits.fflags.valid := false.B } /** * Functional unit that passes in base+imm to calculate addresses, and passes store data * to the LSU. * For floating point, 65bit FP store-data needs to be decoded into 64bit FP form */ class MemAddrCalcUnit(implicit p: Parameters) extends PipelinedFunctionalUnit( numStages = 0, numBypassStages = 0, earliestBypassStage = 0, dataWidth = 65, // TODO enable this only if FP is enabled? isMemAddrCalcUnit = true) with freechips.rocketchip.rocket.constants.MemoryOpConstants with freechips.rocketchip.rocket.constants.ScalarOpConstants { // perform address calculation val sum = (io.req.bits.rs1_data.asSInt + io.req.bits.uop.imm_packed(19,8).asSInt).asUInt val ea_sign = Mux(sum(vaddrBits-1), ~sum(63,vaddrBits) === 0.U, sum(63,vaddrBits) =/= 0.U) val effective_address = Cat(ea_sign, sum(vaddrBits-1,0)).asUInt val store_data = io.req.bits.rs2_data io.resp.bits.addr := effective_address io.resp.bits.data := store_data if (dataWidth > 63) { assert (!(io.req.valid && io.req.bits.uop.ctrl.is_std && io.resp.bits.data(64).asBool === true.B), "65th bit set in MemAddrCalcUnit.") assert (!(io.req.valid && io.req.bits.uop.ctrl.is_std && io.req.bits.uop.fp_val), "FP store-data should now be going through a different unit.") } assert (!(io.req.bits.uop.fp_val && io.req.valid && io.req.bits.uop.uopc =/= uopLD && io.req.bits.uop.uopc =/= uopSTA), "[maddrcalc] assert we never get store data in here.") // Handle misaligned exceptions val size = io.req.bits.uop.mem_size val misaligned = (size === 1.U && (effective_address(0) =/= 0.U)) || (size === 2.U && (effective_address(1,0) =/= 0.U)) || (size === 3.U && (effective_address(2,0) =/= 0.U)) val bkptu = Module(new BreakpointUnit(nBreakpoints)) bkptu.io.status := io.status bkptu.io.bp := io.bp bkptu.io.pc := DontCare bkptu.io.ea := effective_address bkptu.io.mcontext := io.mcontext bkptu.io.scontext := io.scontext val ma_ld = io.req.valid && io.req.bits.uop.uopc === uopLD && misaligned val ma_st = io.req.valid && (io.req.bits.uop.uopc === uopSTA || io.req.bits.uop.uopc === uopAMO_AG) && misaligned val dbg_bp = io.req.valid && ((io.req.bits.uop.uopc === uopLD && bkptu.io.debug_ld) || (io.req.bits.uop.uopc === uopSTA && bkptu.io.debug_st)) val bp = io.req.valid && ((io.req.bits.uop.uopc === uopLD && bkptu.io.xcpt_ld) || (io.req.bits.uop.uopc === uopSTA && bkptu.io.xcpt_st)) def checkExceptions(x: Seq[(Bool, UInt)]) = (x.map(_._1).reduce(_||_), PriorityMux(x)) val (xcpt_val, xcpt_cause) = checkExceptions(List( (ma_ld, (Causes.misaligned_load).U), (ma_st, (Causes.misaligned_store).U), (dbg_bp, (CSR.debugTriggerCause).U), (bp, (Causes.breakpoint).U))) io.resp.bits.mxcpt.valid := xcpt_val io.resp.bits.mxcpt.bits := xcpt_cause assert (!(ma_ld && ma_st), "Mutually-exclusive exceptions are firing.") io.resp.bits.sfence.valid := io.req.valid && io.req.bits.uop.mem_cmd === M_SFENCE io.resp.bits.sfence.bits.rs1 := io.req.bits.uop.mem_size(0) io.resp.bits.sfence.bits.rs2 := io.req.bits.uop.mem_size(1) io.resp.bits.sfence.bits.addr := io.req.bits.rs1_data io.resp.bits.sfence.bits.asid := io.req.bits.rs2_data } /** * Functional unit to wrap lower level FPU * * Currently, bypassing is unsupported! * All FP instructions are padded out to the max latency unit for easy * write-port scheduling. */ class FPUUnit(implicit p: Parameters) extends PipelinedFunctionalUnit( numStages = p(tile.TileKey).core.fpu.get.dfmaLatency, numBypassStages = 0, earliestBypassStage = 0, dataWidth = 65, needsFcsr = true) { val fpu = Module(new FPU()) fpu.io.req.valid := io.req.valid fpu.io.req.bits.uop := io.req.bits.uop fpu.io.req.bits.rs1_data := io.req.bits.rs1_data fpu.io.req.bits.rs2_data := io.req.bits.rs2_data fpu.io.req.bits.rs3_data := io.req.bits.rs3_data fpu.io.req.bits.fcsr_rm := io.fcsr_rm io.resp.bits.data := fpu.io.resp.bits.data io.resp.bits.fflags.valid := fpu.io.resp.bits.fflags.valid io.resp.bits.fflags.bits.uop := io.resp.bits.uop io.resp.bits.fflags.bits.flags := fpu.io.resp.bits.fflags.bits.flags // kill me now } /** * Int to FP conversion functional unit * * @param latency the amount of stages to delay by */ class IntToFPUnit(latency: Int)(implicit p: Parameters) extends PipelinedFunctionalUnit( numStages = latency, numBypassStages = 0, earliestBypassStage = 0, dataWidth = 65, needsFcsr = true) with tile.HasFPUParameters { val fp_decoder = Module(new UOPCodeFPUDecoder) // TODO use a simpler decoder val io_req = io.req.bits fp_decoder.io.uopc := io_req.uop.uopc val fp_ctrl = fp_decoder.io.sigs val fp_rm = Mux(ImmGenRm(io_req.uop.imm_packed) === 7.U, io.fcsr_rm, ImmGenRm(io_req.uop.imm_packed)) val req = Wire(new tile.FPInput) val tag = fp_ctrl.typeTagIn req.viewAsSupertype(new tile.FPUCtrlSigs) := fp_ctrl req.rm := fp_rm req.in1 := unbox(io_req.rs1_data, tag, None) req.in2 := unbox(io_req.rs2_data, tag, None) req.in3 := DontCare req.typ := ImmGenTyp(io_req.uop.imm_packed) req.fmt := DontCare // FIXME: this may not be the right thing to do here req.fmaCmd := DontCare assert (!(io.req.valid && fp_ctrl.fromint && req.in1(xLen).asBool), "[func] IntToFP integer input has 65th high-order bit set!") assert (!(io.req.valid && !fp_ctrl.fromint), "[func] Only support fromInt micro-ops.") val ifpu = Module(new tile.IntToFP(intToFpLatency)) ifpu.io.in.valid := io.req.valid ifpu.io.in.bits := req ifpu.io.in.bits.in1 := io_req.rs1_data val out_double = Pipe(io.req.valid, fp_ctrl.typeTagOut === D, intToFpLatency).bits //io.resp.bits.data := box(ifpu.io.out.bits.data, !io.resp.bits.uop.fp_single) io.resp.bits.data := box(ifpu.io.out.bits.data, out_double) io.resp.bits.fflags.valid := ifpu.io.out.valid io.resp.bits.fflags.bits.uop := io.resp.bits.uop io.resp.bits.fflags.bits.flags := ifpu.io.out.bits.exc } /** * Iterative/unpipelined functional unit, can only hold a single MicroOp at a time * assumes at least one register between request and response * * TODO allow up to N micro-ops simultaneously. * * @param dataWidth width of the data to be passed into the functional unit */ abstract class IterativeFunctionalUnit(dataWidth: Int)(implicit p: Parameters) extends FunctionalUnit( isPipelined = false, numStages = 1, numBypassStages = 0, dataWidth = dataWidth) { val r_uop = Reg(new MicroOp()) val do_kill = Wire(Bool()) do_kill := io.req.bits.kill // irrelevant default when (io.req.fire) { // update incoming uop do_kill := IsKilledByBranch(io.brupdate, io.req.bits.uop) || io.req.bits.kill r_uop := io.req.bits.uop r_uop.br_mask := GetNewBrMask(io.brupdate, io.req.bits.uop) } .otherwise { do_kill := IsKilledByBranch(io.brupdate, r_uop) || io.req.bits.kill r_uop.br_mask := GetNewBrMask(io.brupdate, r_uop) } // assumes at least one pipeline register between request and response io.resp.bits.uop := r_uop } /** * Divide functional unit. * * @param dataWidth data to be passed into the functional unit */ class DivUnit(dataWidth: Int)(implicit p: Parameters) extends IterativeFunctionalUnit(dataWidth) { // We don't use the iterative multiply functionality here. // Instead we use the PipelinedMultiplier val div = Module(new freechips.rocketchip.rocket.MulDiv(mulDivParams, width = dataWidth)) // request div.io.req.valid := io.req.valid && !this.do_kill div.io.req.bits.dw := io.req.bits.uop.ctrl.fcn_dw div.io.req.bits.fn := io.req.bits.uop.ctrl.op_fcn div.io.req.bits.in1 := io.req.bits.rs1_data div.io.req.bits.in2 := io.req.bits.rs2_data div.io.req.bits.tag := DontCare io.req.ready := div.io.req.ready // handle pipeline kills and branch misspeculations div.io.kill := this.do_kill // response io.resp.valid := div.io.resp.valid && !this.do_kill div.io.resp.ready := io.resp.ready io.resp.bits.data := div.io.resp.bits.data } /** * Pipelined multiplier functional unit that wraps around the RocketChip pipelined multiplier * * @param numStages number of pipeline stages * @param dataWidth size of the data being passed into the functional unit */ class PipelinedMulUnit(numStages: Int, dataWidth: Int)(implicit p: Parameters) extends PipelinedFunctionalUnit( numStages = numStages, numBypassStages = 0, earliestBypassStage = 0, dataWidth = dataWidth) { val imul = Module(new PipelinedMultiplier(xLen, numStages)) // request imul.io.req.valid := io.req.valid imul.io.req.bits.fn := io.req.bits.uop.ctrl.op_fcn imul.io.req.bits.dw := io.req.bits.uop.ctrl.fcn_dw imul.io.req.bits.in1 := io.req.bits.rs1_data imul.io.req.bits.in2 := io.req.bits.rs2_data imul.io.req.bits.tag := DontCare // response io.resp.bits.data := imul.io.resp.bits.data }
module FDivSqrtUnit( // @[fdiv.scala:84:7] input clock, // @[fdiv.scala:84:7] input reset, // @[fdiv.scala:84:7] output io_req_ready, // @[functional-unit.scala:168:14] input io_req_valid, // @[functional-unit.scala:168:14] input [6:0] io_req_bits_uop_uopc, // @[functional-unit.scala:168:14] input [31:0] io_req_bits_uop_inst, // @[functional-unit.scala:168:14] input [31:0] io_req_bits_uop_debug_inst, // @[functional-unit.scala:168:14] input io_req_bits_uop_is_rvc, // @[functional-unit.scala:168:14] input [39:0] io_req_bits_uop_debug_pc, // @[functional-unit.scala:168:14] input [2:0] io_req_bits_uop_iq_type, // @[functional-unit.scala:168:14] input [9:0] io_req_bits_uop_fu_code, // @[functional-unit.scala:168:14] input [3:0] io_req_bits_uop_ctrl_br_type, // @[functional-unit.scala:168:14] input [1:0] io_req_bits_uop_ctrl_op1_sel, // @[functional-unit.scala:168:14] input [2:0] io_req_bits_uop_ctrl_op2_sel, // @[functional-unit.scala:168:14] input [2:0] io_req_bits_uop_ctrl_imm_sel, // @[functional-unit.scala:168:14] input [4:0] io_req_bits_uop_ctrl_op_fcn, // @[functional-unit.scala:168:14] input io_req_bits_uop_ctrl_fcn_dw, // @[functional-unit.scala:168:14] input [2:0] io_req_bits_uop_ctrl_csr_cmd, // @[functional-unit.scala:168:14] input io_req_bits_uop_ctrl_is_load, // @[functional-unit.scala:168:14] input io_req_bits_uop_ctrl_is_sta, // @[functional-unit.scala:168:14] input io_req_bits_uop_ctrl_is_std, // @[functional-unit.scala:168:14] input [1:0] io_req_bits_uop_iw_state, // @[functional-unit.scala:168:14] input io_req_bits_uop_iw_p1_poisoned, // @[functional-unit.scala:168:14] input io_req_bits_uop_iw_p2_poisoned, // @[functional-unit.scala:168:14] input io_req_bits_uop_is_br, // @[functional-unit.scala:168:14] input io_req_bits_uop_is_jalr, // @[functional-unit.scala:168:14] input io_req_bits_uop_is_jal, // @[functional-unit.scala:168:14] input io_req_bits_uop_is_sfb, // @[functional-unit.scala:168:14] input [15:0] io_req_bits_uop_br_mask, // @[functional-unit.scala:168:14] input [3:0] io_req_bits_uop_br_tag, // @[functional-unit.scala:168:14] input [4:0] io_req_bits_uop_ftq_idx, // @[functional-unit.scala:168:14] input io_req_bits_uop_edge_inst, // @[functional-unit.scala:168:14] input [5:0] io_req_bits_uop_pc_lob, // @[functional-unit.scala:168:14] input io_req_bits_uop_taken, // @[functional-unit.scala:168:14] input [19:0] io_req_bits_uop_imm_packed, // @[functional-unit.scala:168:14] input [11:0] io_req_bits_uop_csr_addr, // @[functional-unit.scala:168:14] input [6:0] io_req_bits_uop_rob_idx, // @[functional-unit.scala:168:14] input [4:0] io_req_bits_uop_ldq_idx, // @[functional-unit.scala:168:14] input [4:0] io_req_bits_uop_stq_idx, // @[functional-unit.scala:168:14] input [1:0] io_req_bits_uop_rxq_idx, // @[functional-unit.scala:168:14] input [6:0] io_req_bits_uop_pdst, // @[functional-unit.scala:168:14] input [6:0] io_req_bits_uop_prs1, // @[functional-unit.scala:168:14] input [6:0] io_req_bits_uop_prs2, // @[functional-unit.scala:168:14] input [6:0] io_req_bits_uop_prs3, // @[functional-unit.scala:168:14] input [4:0] io_req_bits_uop_ppred, // @[functional-unit.scala:168:14] input io_req_bits_uop_prs1_busy, // @[functional-unit.scala:168:14] input io_req_bits_uop_prs2_busy, // @[functional-unit.scala:168:14] input io_req_bits_uop_prs3_busy, // @[functional-unit.scala:168:14] input io_req_bits_uop_ppred_busy, // @[functional-unit.scala:168:14] input [6:0] io_req_bits_uop_stale_pdst, // @[functional-unit.scala:168:14] input io_req_bits_uop_exception, // @[functional-unit.scala:168:14] input [63:0] io_req_bits_uop_exc_cause, // @[functional-unit.scala:168:14] input io_req_bits_uop_bypassable, // @[functional-unit.scala:168:14] input [4:0] io_req_bits_uop_mem_cmd, // @[functional-unit.scala:168:14] input [1:0] io_req_bits_uop_mem_size, // @[functional-unit.scala:168:14] input io_req_bits_uop_mem_signed, // @[functional-unit.scala:168:14] input io_req_bits_uop_is_fence, // @[functional-unit.scala:168:14] input io_req_bits_uop_is_fencei, // @[functional-unit.scala:168:14] input io_req_bits_uop_is_amo, // @[functional-unit.scala:168:14] input io_req_bits_uop_uses_ldq, // @[functional-unit.scala:168:14] input io_req_bits_uop_uses_stq, // @[functional-unit.scala:168:14] input io_req_bits_uop_is_sys_pc2epc, // @[functional-unit.scala:168:14] input io_req_bits_uop_is_unique, // @[functional-unit.scala:168:14] input io_req_bits_uop_flush_on_commit, // @[functional-unit.scala:168:14] input io_req_bits_uop_ldst_is_rs1, // @[functional-unit.scala:168:14] input [5:0] io_req_bits_uop_ldst, // @[functional-unit.scala:168:14] input [5:0] io_req_bits_uop_lrs1, // @[functional-unit.scala:168:14] input [5:0] io_req_bits_uop_lrs2, // @[functional-unit.scala:168:14] input [5:0] io_req_bits_uop_lrs3, // @[functional-unit.scala:168:14] input io_req_bits_uop_ldst_val, // @[functional-unit.scala:168:14] input [1:0] io_req_bits_uop_dst_rtype, // @[functional-unit.scala:168:14] input [1:0] io_req_bits_uop_lrs1_rtype, // @[functional-unit.scala:168:14] input [1:0] io_req_bits_uop_lrs2_rtype, // @[functional-unit.scala:168:14] input io_req_bits_uop_frs3_en, // @[functional-unit.scala:168:14] input io_req_bits_uop_fp_val, // @[functional-unit.scala:168:14] input io_req_bits_uop_fp_single, // @[functional-unit.scala:168:14] input io_req_bits_uop_xcpt_pf_if, // @[functional-unit.scala:168:14] input io_req_bits_uop_xcpt_ae_if, // @[functional-unit.scala:168:14] input io_req_bits_uop_xcpt_ma_if, // @[functional-unit.scala:168:14] input io_req_bits_uop_bp_debug_if, // @[functional-unit.scala:168:14] input io_req_bits_uop_bp_xcpt_if, // @[functional-unit.scala:168:14] input [1:0] io_req_bits_uop_debug_fsrc, // @[functional-unit.scala:168:14] input [1:0] io_req_bits_uop_debug_tsrc, // @[functional-unit.scala:168:14] input [64:0] io_req_bits_rs1_data, // @[functional-unit.scala:168:14] input [64:0] io_req_bits_rs2_data, // @[functional-unit.scala:168:14] input io_req_bits_kill, // @[functional-unit.scala:168:14] input io_resp_ready, // @[functional-unit.scala:168:14] output io_resp_valid, // @[functional-unit.scala:168:14] output [6:0] io_resp_bits_uop_uopc, // @[functional-unit.scala:168:14] output [31:0] io_resp_bits_uop_inst, // @[functional-unit.scala:168:14] output [31:0] io_resp_bits_uop_debug_inst, // @[functional-unit.scala:168:14] output io_resp_bits_uop_is_rvc, // @[functional-unit.scala:168:14] output [39:0] io_resp_bits_uop_debug_pc, // @[functional-unit.scala:168:14] output [2:0] io_resp_bits_uop_iq_type, // @[functional-unit.scala:168:14] output [9:0] io_resp_bits_uop_fu_code, // @[functional-unit.scala:168:14] output [3:0] io_resp_bits_uop_ctrl_br_type, // @[functional-unit.scala:168:14] output [1:0] io_resp_bits_uop_ctrl_op1_sel, // @[functional-unit.scala:168:14] output [2:0] io_resp_bits_uop_ctrl_op2_sel, // @[functional-unit.scala:168:14] output [2:0] io_resp_bits_uop_ctrl_imm_sel, // @[functional-unit.scala:168:14] output [4:0] io_resp_bits_uop_ctrl_op_fcn, // @[functional-unit.scala:168:14] output io_resp_bits_uop_ctrl_fcn_dw, // @[functional-unit.scala:168:14] output [2:0] io_resp_bits_uop_ctrl_csr_cmd, // @[functional-unit.scala:168:14] output io_resp_bits_uop_ctrl_is_load, // @[functional-unit.scala:168:14] output io_resp_bits_uop_ctrl_is_sta, // @[functional-unit.scala:168:14] output io_resp_bits_uop_ctrl_is_std, // @[functional-unit.scala:168:14] output [1:0] io_resp_bits_uop_iw_state, // @[functional-unit.scala:168:14] output io_resp_bits_uop_iw_p1_poisoned, // @[functional-unit.scala:168:14] output io_resp_bits_uop_iw_p2_poisoned, // @[functional-unit.scala:168:14] output io_resp_bits_uop_is_br, // @[functional-unit.scala:168:14] output io_resp_bits_uop_is_jalr, // @[functional-unit.scala:168:14] output io_resp_bits_uop_is_jal, // @[functional-unit.scala:168:14] output io_resp_bits_uop_is_sfb, // @[functional-unit.scala:168:14] output [15:0] io_resp_bits_uop_br_mask, // @[functional-unit.scala:168:14] output [3:0] io_resp_bits_uop_br_tag, // @[functional-unit.scala:168:14] output [4:0] io_resp_bits_uop_ftq_idx, // @[functional-unit.scala:168:14] output io_resp_bits_uop_edge_inst, // @[functional-unit.scala:168:14] output [5:0] io_resp_bits_uop_pc_lob, // @[functional-unit.scala:168:14] output io_resp_bits_uop_taken, // @[functional-unit.scala:168:14] output [19:0] io_resp_bits_uop_imm_packed, // @[functional-unit.scala:168:14] output [11:0] io_resp_bits_uop_csr_addr, // @[functional-unit.scala:168:14] output [6:0] io_resp_bits_uop_rob_idx, // @[functional-unit.scala:168:14] output [4:0] io_resp_bits_uop_ldq_idx, // @[functional-unit.scala:168:14] output [4:0] io_resp_bits_uop_stq_idx, // @[functional-unit.scala:168:14] output [1:0] io_resp_bits_uop_rxq_idx, // @[functional-unit.scala:168:14] output [6:0] io_resp_bits_uop_pdst, // @[functional-unit.scala:168:14] output [6:0] io_resp_bits_uop_prs1, // @[functional-unit.scala:168:14] output [6:0] io_resp_bits_uop_prs2, // @[functional-unit.scala:168:14] output [6:0] io_resp_bits_uop_prs3, // @[functional-unit.scala:168:14] output [4:0] io_resp_bits_uop_ppred, // @[functional-unit.scala:168:14] output io_resp_bits_uop_prs1_busy, // @[functional-unit.scala:168:14] output io_resp_bits_uop_prs2_busy, // @[functional-unit.scala:168:14] output io_resp_bits_uop_prs3_busy, // @[functional-unit.scala:168:14] output io_resp_bits_uop_ppred_busy, // @[functional-unit.scala:168:14] output [6:0] io_resp_bits_uop_stale_pdst, // @[functional-unit.scala:168:14] output io_resp_bits_uop_exception, // @[functional-unit.scala:168:14] output [63:0] io_resp_bits_uop_exc_cause, // @[functional-unit.scala:168:14] output io_resp_bits_uop_bypassable, // @[functional-unit.scala:168:14] output [4:0] io_resp_bits_uop_mem_cmd, // @[functional-unit.scala:168:14] output [1:0] io_resp_bits_uop_mem_size, // @[functional-unit.scala:168:14] output io_resp_bits_uop_mem_signed, // @[functional-unit.scala:168:14] output io_resp_bits_uop_is_fence, // @[functional-unit.scala:168:14] output io_resp_bits_uop_is_fencei, // @[functional-unit.scala:168:14] output io_resp_bits_uop_is_amo, // @[functional-unit.scala:168:14] output io_resp_bits_uop_uses_ldq, // @[functional-unit.scala:168:14] output io_resp_bits_uop_uses_stq, // @[functional-unit.scala:168:14] output io_resp_bits_uop_is_sys_pc2epc, // @[functional-unit.scala:168:14] output io_resp_bits_uop_is_unique, // @[functional-unit.scala:168:14] output io_resp_bits_uop_flush_on_commit, // @[functional-unit.scala:168:14] output io_resp_bits_uop_ldst_is_rs1, // @[functional-unit.scala:168:14] output [5:0] io_resp_bits_uop_ldst, // @[functional-unit.scala:168:14] output [5:0] io_resp_bits_uop_lrs1, // @[functional-unit.scala:168:14] output [5:0] io_resp_bits_uop_lrs2, // @[functional-unit.scala:168:14] output [5:0] io_resp_bits_uop_lrs3, // @[functional-unit.scala:168:14] output io_resp_bits_uop_ldst_val, // @[functional-unit.scala:168:14] output [1:0] io_resp_bits_uop_dst_rtype, // @[functional-unit.scala:168:14] output [1:0] io_resp_bits_uop_lrs1_rtype, // @[functional-unit.scala:168:14] output [1:0] io_resp_bits_uop_lrs2_rtype, // @[functional-unit.scala:168:14] output io_resp_bits_uop_frs3_en, // @[functional-unit.scala:168:14] output io_resp_bits_uop_fp_val, // @[functional-unit.scala:168:14] output io_resp_bits_uop_fp_single, // @[functional-unit.scala:168:14] output io_resp_bits_uop_xcpt_pf_if, // @[functional-unit.scala:168:14] output io_resp_bits_uop_xcpt_ae_if, // @[functional-unit.scala:168:14] output io_resp_bits_uop_xcpt_ma_if, // @[functional-unit.scala:168:14] output io_resp_bits_uop_bp_debug_if, // @[functional-unit.scala:168:14] output io_resp_bits_uop_bp_xcpt_if, // @[functional-unit.scala:168:14] output [1:0] io_resp_bits_uop_debug_fsrc, // @[functional-unit.scala:168:14] output [1:0] io_resp_bits_uop_debug_tsrc, // @[functional-unit.scala:168:14] output [64:0] io_resp_bits_data, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_valid, // @[functional-unit.scala:168:14] output [6:0] io_resp_bits_fflags_bits_uop_uopc, // @[functional-unit.scala:168:14] output [31:0] io_resp_bits_fflags_bits_uop_inst, // @[functional-unit.scala:168:14] output [31:0] io_resp_bits_fflags_bits_uop_debug_inst, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_is_rvc, // @[functional-unit.scala:168:14] output [39:0] io_resp_bits_fflags_bits_uop_debug_pc, // @[functional-unit.scala:168:14] output [2:0] io_resp_bits_fflags_bits_uop_iq_type, // @[functional-unit.scala:168:14] output [9:0] io_resp_bits_fflags_bits_uop_fu_code, // @[functional-unit.scala:168:14] output [3:0] io_resp_bits_fflags_bits_uop_ctrl_br_type, // @[functional-unit.scala:168:14] output [1:0] io_resp_bits_fflags_bits_uop_ctrl_op1_sel, // @[functional-unit.scala:168:14] output [2:0] io_resp_bits_fflags_bits_uop_ctrl_op2_sel, // @[functional-unit.scala:168:14] output [2:0] io_resp_bits_fflags_bits_uop_ctrl_imm_sel, // @[functional-unit.scala:168:14] output [4:0] io_resp_bits_fflags_bits_uop_ctrl_op_fcn, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_ctrl_fcn_dw, // @[functional-unit.scala:168:14] output [2:0] io_resp_bits_fflags_bits_uop_ctrl_csr_cmd, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_ctrl_is_load, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_ctrl_is_sta, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_ctrl_is_std, // @[functional-unit.scala:168:14] output [1:0] io_resp_bits_fflags_bits_uop_iw_state, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_iw_p1_poisoned, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_iw_p2_poisoned, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_is_br, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_is_jalr, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_is_jal, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_is_sfb, // @[functional-unit.scala:168:14] output [15:0] io_resp_bits_fflags_bits_uop_br_mask, // @[functional-unit.scala:168:14] output [3:0] io_resp_bits_fflags_bits_uop_br_tag, // @[functional-unit.scala:168:14] output [4:0] io_resp_bits_fflags_bits_uop_ftq_idx, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_edge_inst, // @[functional-unit.scala:168:14] output [5:0] io_resp_bits_fflags_bits_uop_pc_lob, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_taken, // @[functional-unit.scala:168:14] output [19:0] io_resp_bits_fflags_bits_uop_imm_packed, // @[functional-unit.scala:168:14] output [11:0] io_resp_bits_fflags_bits_uop_csr_addr, // @[functional-unit.scala:168:14] output [6:0] io_resp_bits_fflags_bits_uop_rob_idx, // @[functional-unit.scala:168:14] output [4:0] io_resp_bits_fflags_bits_uop_ldq_idx, // @[functional-unit.scala:168:14] output [4:0] io_resp_bits_fflags_bits_uop_stq_idx, // @[functional-unit.scala:168:14] output [1:0] io_resp_bits_fflags_bits_uop_rxq_idx, // @[functional-unit.scala:168:14] output [6:0] io_resp_bits_fflags_bits_uop_pdst, // @[functional-unit.scala:168:14] output [6:0] io_resp_bits_fflags_bits_uop_prs1, // @[functional-unit.scala:168:14] output [6:0] io_resp_bits_fflags_bits_uop_prs2, // @[functional-unit.scala:168:14] output [6:0] io_resp_bits_fflags_bits_uop_prs3, // @[functional-unit.scala:168:14] output [4:0] io_resp_bits_fflags_bits_uop_ppred, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_prs1_busy, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_prs2_busy, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_prs3_busy, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_ppred_busy, // @[functional-unit.scala:168:14] output [6:0] io_resp_bits_fflags_bits_uop_stale_pdst, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_exception, // @[functional-unit.scala:168:14] output [63:0] io_resp_bits_fflags_bits_uop_exc_cause, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_bypassable, // @[functional-unit.scala:168:14] output [4:0] io_resp_bits_fflags_bits_uop_mem_cmd, // @[functional-unit.scala:168:14] output [1:0] io_resp_bits_fflags_bits_uop_mem_size, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_mem_signed, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_is_fence, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_is_fencei, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_is_amo, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_uses_ldq, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_uses_stq, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_is_sys_pc2epc, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_is_unique, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_flush_on_commit, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_ldst_is_rs1, // @[functional-unit.scala:168:14] output [5:0] io_resp_bits_fflags_bits_uop_ldst, // @[functional-unit.scala:168:14] output [5:0] io_resp_bits_fflags_bits_uop_lrs1, // @[functional-unit.scala:168:14] output [5:0] io_resp_bits_fflags_bits_uop_lrs2, // @[functional-unit.scala:168:14] output [5:0] io_resp_bits_fflags_bits_uop_lrs3, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_ldst_val, // @[functional-unit.scala:168:14] output [1:0] io_resp_bits_fflags_bits_uop_dst_rtype, // @[functional-unit.scala:168:14] output [1:0] io_resp_bits_fflags_bits_uop_lrs1_rtype, // @[functional-unit.scala:168:14] output [1:0] io_resp_bits_fflags_bits_uop_lrs2_rtype, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_frs3_en, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_fp_val, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_fp_single, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_xcpt_pf_if, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_xcpt_ae_if, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_xcpt_ma_if, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_bp_debug_if, // @[functional-unit.scala:168:14] output io_resp_bits_fflags_bits_uop_bp_xcpt_if, // @[functional-unit.scala:168:14] output [1:0] io_resp_bits_fflags_bits_uop_debug_fsrc, // @[functional-unit.scala:168:14] output [1:0] io_resp_bits_fflags_bits_uop_debug_tsrc, // @[functional-unit.scala:168:14] output [4:0] io_resp_bits_fflags_bits_flags, // @[functional-unit.scala:168:14] input [15:0] io_brupdate_b1_resolve_mask, // @[functional-unit.scala:168:14] input [15:0] io_brupdate_b1_mispredict_mask, // @[functional-unit.scala:168:14] input [6:0] io_brupdate_b2_uop_uopc, // @[functional-unit.scala:168:14] input [31:0] io_brupdate_b2_uop_inst, // @[functional-unit.scala:168:14] input [31:0] io_brupdate_b2_uop_debug_inst, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_is_rvc, // @[functional-unit.scala:168:14] input [39:0] io_brupdate_b2_uop_debug_pc, // @[functional-unit.scala:168:14] input [2:0] io_brupdate_b2_uop_iq_type, // @[functional-unit.scala:168:14] input [9:0] io_brupdate_b2_uop_fu_code, // @[functional-unit.scala:168:14] input [3:0] io_brupdate_b2_uop_ctrl_br_type, // @[functional-unit.scala:168:14] input [1:0] io_brupdate_b2_uop_ctrl_op1_sel, // @[functional-unit.scala:168:14] input [2:0] io_brupdate_b2_uop_ctrl_op2_sel, // @[functional-unit.scala:168:14] input [2:0] io_brupdate_b2_uop_ctrl_imm_sel, // @[functional-unit.scala:168:14] input [4:0] io_brupdate_b2_uop_ctrl_op_fcn, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_ctrl_fcn_dw, // @[functional-unit.scala:168:14] input [2:0] io_brupdate_b2_uop_ctrl_csr_cmd, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_ctrl_is_load, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_ctrl_is_sta, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_ctrl_is_std, // @[functional-unit.scala:168:14] input [1:0] io_brupdate_b2_uop_iw_state, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_iw_p1_poisoned, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_iw_p2_poisoned, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_is_br, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_is_jalr, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_is_jal, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_is_sfb, // @[functional-unit.scala:168:14] input [15:0] io_brupdate_b2_uop_br_mask, // @[functional-unit.scala:168:14] input [3:0] io_brupdate_b2_uop_br_tag, // @[functional-unit.scala:168:14] input [4:0] io_brupdate_b2_uop_ftq_idx, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_edge_inst, // @[functional-unit.scala:168:14] input [5:0] io_brupdate_b2_uop_pc_lob, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_taken, // @[functional-unit.scala:168:14] input [19:0] io_brupdate_b2_uop_imm_packed, // @[functional-unit.scala:168:14] input [11:0] io_brupdate_b2_uop_csr_addr, // @[functional-unit.scala:168:14] input [6:0] io_brupdate_b2_uop_rob_idx, // @[functional-unit.scala:168:14] input [4:0] io_brupdate_b2_uop_ldq_idx, // @[functional-unit.scala:168:14] input [4:0] io_brupdate_b2_uop_stq_idx, // @[functional-unit.scala:168:14] input [1:0] io_brupdate_b2_uop_rxq_idx, // @[functional-unit.scala:168:14] input [6:0] io_brupdate_b2_uop_pdst, // @[functional-unit.scala:168:14] input [6:0] io_brupdate_b2_uop_prs1, // @[functional-unit.scala:168:14] input [6:0] io_brupdate_b2_uop_prs2, // @[functional-unit.scala:168:14] input [6:0] io_brupdate_b2_uop_prs3, // @[functional-unit.scala:168:14] input [4:0] io_brupdate_b2_uop_ppred, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_prs1_busy, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_prs2_busy, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_prs3_busy, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_ppred_busy, // @[functional-unit.scala:168:14] input [6:0] io_brupdate_b2_uop_stale_pdst, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_exception, // @[functional-unit.scala:168:14] input [63:0] io_brupdate_b2_uop_exc_cause, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_bypassable, // @[functional-unit.scala:168:14] input [4:0] io_brupdate_b2_uop_mem_cmd, // @[functional-unit.scala:168:14] input [1:0] io_brupdate_b2_uop_mem_size, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_mem_signed, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_is_fence, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_is_fencei, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_is_amo, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_uses_ldq, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_uses_stq, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_is_sys_pc2epc, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_is_unique, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_flush_on_commit, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_ldst_is_rs1, // @[functional-unit.scala:168:14] input [5:0] io_brupdate_b2_uop_ldst, // @[functional-unit.scala:168:14] input [5:0] io_brupdate_b2_uop_lrs1, // @[functional-unit.scala:168:14] input [5:0] io_brupdate_b2_uop_lrs2, // @[functional-unit.scala:168:14] input [5:0] io_brupdate_b2_uop_lrs3, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_ldst_val, // @[functional-unit.scala:168:14] input [1:0] io_brupdate_b2_uop_dst_rtype, // @[functional-unit.scala:168:14] input [1:0] io_brupdate_b2_uop_lrs1_rtype, // @[functional-unit.scala:168:14] input [1:0] io_brupdate_b2_uop_lrs2_rtype, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_frs3_en, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_fp_val, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_fp_single, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_xcpt_pf_if, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_xcpt_ae_if, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_xcpt_ma_if, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_bp_debug_if, // @[functional-unit.scala:168:14] input io_brupdate_b2_uop_bp_xcpt_if, // @[functional-unit.scala:168:14] input [1:0] io_brupdate_b2_uop_debug_fsrc, // @[functional-unit.scala:168:14] input [1:0] io_brupdate_b2_uop_debug_tsrc, // @[functional-unit.scala:168:14] input io_brupdate_b2_valid, // @[functional-unit.scala:168:14] input io_brupdate_b2_mispredict, // @[functional-unit.scala:168:14] input io_brupdate_b2_taken, // @[functional-unit.scala:168:14] input [2:0] io_brupdate_b2_cfi_type, // @[functional-unit.scala:168:14] input [1:0] io_brupdate_b2_pc_sel, // @[functional-unit.scala:168:14] input [39:0] io_brupdate_b2_jalr_target, // @[functional-unit.scala:168:14] input [20:0] io_brupdate_b2_target_offset, // @[functional-unit.scala:168:14] input [2:0] io_fcsr_rm // @[functional-unit.scala:168:14] ); wire io_resp_valid_0; // @[fdiv.scala:84:7] wire [32:0] _downvert_d2s_io_out; // @[fdiv.scala:211:28] wire [4:0] _downvert_d2s_io_exceptionFlags; // @[fdiv.scala:211:28] wire _divsqrt_io_inReady_div; // @[fdiv.scala:143:23] wire _divsqrt_io_inReady_sqrt; // @[fdiv.scala:143:23] wire _divsqrt_io_outValid_div; // @[fdiv.scala:143:23] wire _divsqrt_io_outValid_sqrt; // @[fdiv.scala:143:23] wire [64:0] _divsqrt_io_out; // @[fdiv.scala:143:23] wire [4:0] _divsqrt_io_exceptionFlags; // @[fdiv.scala:143:23] wire [64:0] _in2_upconvert_s2d_io_out; // @[fdiv.scala:112:21] wire [64:0] _in1_upconvert_s2d_io_out; // @[fdiv.scala:112:21] wire _fdiv_decoder_io_sigs_ldst; // @[fdiv.scala:101:28] wire _fdiv_decoder_io_sigs_wen; // @[fdiv.scala:101:28] wire _fdiv_decoder_io_sigs_ren1; // @[fdiv.scala:101:28] wire _fdiv_decoder_io_sigs_ren2; // @[fdiv.scala:101:28] wire _fdiv_decoder_io_sigs_ren3; // @[fdiv.scala:101:28] wire _fdiv_decoder_io_sigs_swap12; // @[fdiv.scala:101:28] wire _fdiv_decoder_io_sigs_swap23; // @[fdiv.scala:101:28] wire [1:0] _fdiv_decoder_io_sigs_typeTagIn; // @[fdiv.scala:101:28] wire [1:0] _fdiv_decoder_io_sigs_typeTagOut; // @[fdiv.scala:101:28] wire _fdiv_decoder_io_sigs_fromint; // @[fdiv.scala:101:28] wire _fdiv_decoder_io_sigs_toint; // @[fdiv.scala:101:28] wire _fdiv_decoder_io_sigs_fastpipe; // @[fdiv.scala:101:28] wire _fdiv_decoder_io_sigs_fma; // @[fdiv.scala:101:28] wire _fdiv_decoder_io_sigs_div; // @[fdiv.scala:101:28] wire _fdiv_decoder_io_sigs_sqrt; // @[fdiv.scala:101:28] wire _fdiv_decoder_io_sigs_wflags; // @[fdiv.scala:101:28] wire io_req_valid_0 = io_req_valid; // @[fdiv.scala:84:7] wire [6:0] io_req_bits_uop_uopc_0 = io_req_bits_uop_uopc; // @[fdiv.scala:84:7] wire [31:0] io_req_bits_uop_inst_0 = io_req_bits_uop_inst; // @[fdiv.scala:84:7] wire [31:0] io_req_bits_uop_debug_inst_0 = io_req_bits_uop_debug_inst; // @[fdiv.scala:84:7] wire io_req_bits_uop_is_rvc_0 = io_req_bits_uop_is_rvc; // @[fdiv.scala:84:7] wire [39:0] io_req_bits_uop_debug_pc_0 = io_req_bits_uop_debug_pc; // @[fdiv.scala:84:7] wire [2:0] io_req_bits_uop_iq_type_0 = io_req_bits_uop_iq_type; // @[fdiv.scala:84:7] wire [9:0] io_req_bits_uop_fu_code_0 = io_req_bits_uop_fu_code; // @[fdiv.scala:84:7] wire [3:0] io_req_bits_uop_ctrl_br_type_0 = io_req_bits_uop_ctrl_br_type; // @[fdiv.scala:84:7] wire [1:0] io_req_bits_uop_ctrl_op1_sel_0 = io_req_bits_uop_ctrl_op1_sel; // @[fdiv.scala:84:7] wire [2:0] io_req_bits_uop_ctrl_op2_sel_0 = io_req_bits_uop_ctrl_op2_sel; // @[fdiv.scala:84:7] wire [2:0] io_req_bits_uop_ctrl_imm_sel_0 = io_req_bits_uop_ctrl_imm_sel; // @[fdiv.scala:84:7] wire [4:0] io_req_bits_uop_ctrl_op_fcn_0 = io_req_bits_uop_ctrl_op_fcn; // @[fdiv.scala:84:7] wire io_req_bits_uop_ctrl_fcn_dw_0 = io_req_bits_uop_ctrl_fcn_dw; // @[fdiv.scala:84:7] wire [2:0] io_req_bits_uop_ctrl_csr_cmd_0 = io_req_bits_uop_ctrl_csr_cmd; // @[fdiv.scala:84:7] wire io_req_bits_uop_ctrl_is_load_0 = io_req_bits_uop_ctrl_is_load; // @[fdiv.scala:84:7] wire io_req_bits_uop_ctrl_is_sta_0 = io_req_bits_uop_ctrl_is_sta; // @[fdiv.scala:84:7] wire io_req_bits_uop_ctrl_is_std_0 = io_req_bits_uop_ctrl_is_std; // @[fdiv.scala:84:7] wire [1:0] io_req_bits_uop_iw_state_0 = io_req_bits_uop_iw_state; // @[fdiv.scala:84:7] wire io_req_bits_uop_iw_p1_poisoned_0 = io_req_bits_uop_iw_p1_poisoned; // @[fdiv.scala:84:7] wire io_req_bits_uop_iw_p2_poisoned_0 = io_req_bits_uop_iw_p2_poisoned; // @[fdiv.scala:84:7] wire io_req_bits_uop_is_br_0 = io_req_bits_uop_is_br; // @[fdiv.scala:84:7] wire io_req_bits_uop_is_jalr_0 = io_req_bits_uop_is_jalr; // @[fdiv.scala:84:7] wire io_req_bits_uop_is_jal_0 = io_req_bits_uop_is_jal; // @[fdiv.scala:84:7] wire io_req_bits_uop_is_sfb_0 = io_req_bits_uop_is_sfb; // @[fdiv.scala:84:7] wire [15:0] io_req_bits_uop_br_mask_0 = io_req_bits_uop_br_mask; // @[fdiv.scala:84:7] wire [3:0] io_req_bits_uop_br_tag_0 = io_req_bits_uop_br_tag; // @[fdiv.scala:84:7] wire [4:0] io_req_bits_uop_ftq_idx_0 = io_req_bits_uop_ftq_idx; // @[fdiv.scala:84:7] wire io_req_bits_uop_edge_inst_0 = io_req_bits_uop_edge_inst; // @[fdiv.scala:84:7] wire [5:0] io_req_bits_uop_pc_lob_0 = io_req_bits_uop_pc_lob; // @[fdiv.scala:84:7] wire io_req_bits_uop_taken_0 = io_req_bits_uop_taken; // @[fdiv.scala:84:7] wire [19:0] io_req_bits_uop_imm_packed_0 = io_req_bits_uop_imm_packed; // @[fdiv.scala:84:7] wire [11:0] io_req_bits_uop_csr_addr_0 = io_req_bits_uop_csr_addr; // @[fdiv.scala:84:7] wire [6:0] io_req_bits_uop_rob_idx_0 = io_req_bits_uop_rob_idx; // @[fdiv.scala:84:7] wire [4:0] io_req_bits_uop_ldq_idx_0 = io_req_bits_uop_ldq_idx; // @[fdiv.scala:84:7] wire [4:0] io_req_bits_uop_stq_idx_0 = io_req_bits_uop_stq_idx; // @[fdiv.scala:84:7] wire [1:0] io_req_bits_uop_rxq_idx_0 = io_req_bits_uop_rxq_idx; // @[fdiv.scala:84:7] wire [6:0] io_req_bits_uop_pdst_0 = io_req_bits_uop_pdst; // @[fdiv.scala:84:7] wire [6:0] io_req_bits_uop_prs1_0 = io_req_bits_uop_prs1; // @[fdiv.scala:84:7] wire [6:0] io_req_bits_uop_prs2_0 = io_req_bits_uop_prs2; // @[fdiv.scala:84:7] wire [6:0] io_req_bits_uop_prs3_0 = io_req_bits_uop_prs3; // @[fdiv.scala:84:7] wire [4:0] io_req_bits_uop_ppred_0 = io_req_bits_uop_ppred; // @[fdiv.scala:84:7] wire io_req_bits_uop_prs1_busy_0 = io_req_bits_uop_prs1_busy; // @[fdiv.scala:84:7] wire io_req_bits_uop_prs2_busy_0 = io_req_bits_uop_prs2_busy; // @[fdiv.scala:84:7] wire io_req_bits_uop_prs3_busy_0 = io_req_bits_uop_prs3_busy; // @[fdiv.scala:84:7] wire io_req_bits_uop_ppred_busy_0 = io_req_bits_uop_ppred_busy; // @[fdiv.scala:84:7] wire [6:0] io_req_bits_uop_stale_pdst_0 = io_req_bits_uop_stale_pdst; // @[fdiv.scala:84:7] wire io_req_bits_uop_exception_0 = io_req_bits_uop_exception; // @[fdiv.scala:84:7] wire [63:0] io_req_bits_uop_exc_cause_0 = io_req_bits_uop_exc_cause; // @[fdiv.scala:84:7] wire io_req_bits_uop_bypassable_0 = io_req_bits_uop_bypassable; // @[fdiv.scala:84:7] wire [4:0] io_req_bits_uop_mem_cmd_0 = io_req_bits_uop_mem_cmd; // @[fdiv.scala:84:7] wire [1:0] io_req_bits_uop_mem_size_0 = io_req_bits_uop_mem_size; // @[fdiv.scala:84:7] wire io_req_bits_uop_mem_signed_0 = io_req_bits_uop_mem_signed; // @[fdiv.scala:84:7] wire io_req_bits_uop_is_fence_0 = io_req_bits_uop_is_fence; // @[fdiv.scala:84:7] wire io_req_bits_uop_is_fencei_0 = io_req_bits_uop_is_fencei; // @[fdiv.scala:84:7] wire io_req_bits_uop_is_amo_0 = io_req_bits_uop_is_amo; // @[fdiv.scala:84:7] wire io_req_bits_uop_uses_ldq_0 = io_req_bits_uop_uses_ldq; // @[fdiv.scala:84:7] wire io_req_bits_uop_uses_stq_0 = io_req_bits_uop_uses_stq; // @[fdiv.scala:84:7] wire io_req_bits_uop_is_sys_pc2epc_0 = io_req_bits_uop_is_sys_pc2epc; // @[fdiv.scala:84:7] wire io_req_bits_uop_is_unique_0 = io_req_bits_uop_is_unique; // @[fdiv.scala:84:7] wire io_req_bits_uop_flush_on_commit_0 = io_req_bits_uop_flush_on_commit; // @[fdiv.scala:84:7] wire io_req_bits_uop_ldst_is_rs1_0 = io_req_bits_uop_ldst_is_rs1; // @[fdiv.scala:84:7] wire [5:0] io_req_bits_uop_ldst_0 = io_req_bits_uop_ldst; // @[fdiv.scala:84:7] wire [5:0] io_req_bits_uop_lrs1_0 = io_req_bits_uop_lrs1; // @[fdiv.scala:84:7] wire [5:0] io_req_bits_uop_lrs2_0 = io_req_bits_uop_lrs2; // @[fdiv.scala:84:7] wire [5:0] io_req_bits_uop_lrs3_0 = io_req_bits_uop_lrs3; // @[fdiv.scala:84:7] wire io_req_bits_uop_ldst_val_0 = io_req_bits_uop_ldst_val; // @[fdiv.scala:84:7] wire [1:0] io_req_bits_uop_dst_rtype_0 = io_req_bits_uop_dst_rtype; // @[fdiv.scala:84:7] wire [1:0] io_req_bits_uop_lrs1_rtype_0 = io_req_bits_uop_lrs1_rtype; // @[fdiv.scala:84:7] wire [1:0] io_req_bits_uop_lrs2_rtype_0 = io_req_bits_uop_lrs2_rtype; // @[fdiv.scala:84:7] wire io_req_bits_uop_frs3_en_0 = io_req_bits_uop_frs3_en; // @[fdiv.scala:84:7] wire io_req_bits_uop_fp_val_0 = io_req_bits_uop_fp_val; // @[fdiv.scala:84:7] wire io_req_bits_uop_fp_single_0 = io_req_bits_uop_fp_single; // @[fdiv.scala:84:7] wire io_req_bits_uop_xcpt_pf_if_0 = io_req_bits_uop_xcpt_pf_if; // @[fdiv.scala:84:7] wire io_req_bits_uop_xcpt_ae_if_0 = io_req_bits_uop_xcpt_ae_if; // @[fdiv.scala:84:7] wire io_req_bits_uop_xcpt_ma_if_0 = io_req_bits_uop_xcpt_ma_if; // @[fdiv.scala:84:7] wire io_req_bits_uop_bp_debug_if_0 = io_req_bits_uop_bp_debug_if; // @[fdiv.scala:84:7] wire io_req_bits_uop_bp_xcpt_if_0 = io_req_bits_uop_bp_xcpt_if; // @[fdiv.scala:84:7] wire [1:0] io_req_bits_uop_debug_fsrc_0 = io_req_bits_uop_debug_fsrc; // @[fdiv.scala:84:7] wire [1:0] io_req_bits_uop_debug_tsrc_0 = io_req_bits_uop_debug_tsrc; // @[fdiv.scala:84:7] wire [64:0] io_req_bits_rs1_data_0 = io_req_bits_rs1_data; // @[fdiv.scala:84:7] wire [64:0] io_req_bits_rs2_data_0 = io_req_bits_rs2_data; // @[fdiv.scala:84:7] wire io_req_bits_kill_0 = io_req_bits_kill; // @[fdiv.scala:84:7] wire io_resp_ready_0 = io_resp_ready; // @[fdiv.scala:84:7] wire [15:0] io_brupdate_b1_resolve_mask_0 = io_brupdate_b1_resolve_mask; // @[fdiv.scala:84:7] wire [15:0] io_brupdate_b1_mispredict_mask_0 = io_brupdate_b1_mispredict_mask; // @[fdiv.scala:84:7] wire [6:0] io_brupdate_b2_uop_uopc_0 = io_brupdate_b2_uop_uopc; // @[fdiv.scala:84:7] wire [31:0] io_brupdate_b2_uop_inst_0 = io_brupdate_b2_uop_inst; // @[fdiv.scala:84:7] wire [31:0] io_brupdate_b2_uop_debug_inst_0 = io_brupdate_b2_uop_debug_inst; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_is_rvc_0 = io_brupdate_b2_uop_is_rvc; // @[fdiv.scala:84:7] wire [39:0] io_brupdate_b2_uop_debug_pc_0 = io_brupdate_b2_uop_debug_pc; // @[fdiv.scala:84:7] wire [2:0] io_brupdate_b2_uop_iq_type_0 = io_brupdate_b2_uop_iq_type; // @[fdiv.scala:84:7] wire [9:0] io_brupdate_b2_uop_fu_code_0 = io_brupdate_b2_uop_fu_code; // @[fdiv.scala:84:7] wire [3:0] io_brupdate_b2_uop_ctrl_br_type_0 = io_brupdate_b2_uop_ctrl_br_type; // @[fdiv.scala:84:7] wire [1:0] io_brupdate_b2_uop_ctrl_op1_sel_0 = io_brupdate_b2_uop_ctrl_op1_sel; // @[fdiv.scala:84:7] wire [2:0] io_brupdate_b2_uop_ctrl_op2_sel_0 = io_brupdate_b2_uop_ctrl_op2_sel; // @[fdiv.scala:84:7] wire [2:0] io_brupdate_b2_uop_ctrl_imm_sel_0 = io_brupdate_b2_uop_ctrl_imm_sel; // @[fdiv.scala:84:7] wire [4:0] io_brupdate_b2_uop_ctrl_op_fcn_0 = io_brupdate_b2_uop_ctrl_op_fcn; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_ctrl_fcn_dw_0 = io_brupdate_b2_uop_ctrl_fcn_dw; // @[fdiv.scala:84:7] wire [2:0] io_brupdate_b2_uop_ctrl_csr_cmd_0 = io_brupdate_b2_uop_ctrl_csr_cmd; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_ctrl_is_load_0 = io_brupdate_b2_uop_ctrl_is_load; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_ctrl_is_sta_0 = io_brupdate_b2_uop_ctrl_is_sta; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_ctrl_is_std_0 = io_brupdate_b2_uop_ctrl_is_std; // @[fdiv.scala:84:7] wire [1:0] io_brupdate_b2_uop_iw_state_0 = io_brupdate_b2_uop_iw_state; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_iw_p1_poisoned_0 = io_brupdate_b2_uop_iw_p1_poisoned; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_iw_p2_poisoned_0 = io_brupdate_b2_uop_iw_p2_poisoned; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_is_br_0 = io_brupdate_b2_uop_is_br; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_is_jalr_0 = io_brupdate_b2_uop_is_jalr; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_is_jal_0 = io_brupdate_b2_uop_is_jal; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_is_sfb_0 = io_brupdate_b2_uop_is_sfb; // @[fdiv.scala:84:7] wire [15:0] io_brupdate_b2_uop_br_mask_0 = io_brupdate_b2_uop_br_mask; // @[fdiv.scala:84:7] wire [3:0] io_brupdate_b2_uop_br_tag_0 = io_brupdate_b2_uop_br_tag; // @[fdiv.scala:84:7] wire [4:0] io_brupdate_b2_uop_ftq_idx_0 = io_brupdate_b2_uop_ftq_idx; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_edge_inst_0 = io_brupdate_b2_uop_edge_inst; // @[fdiv.scala:84:7] wire [5:0] io_brupdate_b2_uop_pc_lob_0 = io_brupdate_b2_uop_pc_lob; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_taken_0 = io_brupdate_b2_uop_taken; // @[fdiv.scala:84:7] wire [19:0] io_brupdate_b2_uop_imm_packed_0 = io_brupdate_b2_uop_imm_packed; // @[fdiv.scala:84:7] wire [11:0] io_brupdate_b2_uop_csr_addr_0 = io_brupdate_b2_uop_csr_addr; // @[fdiv.scala:84:7] wire [6:0] io_brupdate_b2_uop_rob_idx_0 = io_brupdate_b2_uop_rob_idx; // @[fdiv.scala:84:7] wire [4:0] io_brupdate_b2_uop_ldq_idx_0 = io_brupdate_b2_uop_ldq_idx; // @[fdiv.scala:84:7] wire [4:0] io_brupdate_b2_uop_stq_idx_0 = io_brupdate_b2_uop_stq_idx; // @[fdiv.scala:84:7] wire [1:0] io_brupdate_b2_uop_rxq_idx_0 = io_brupdate_b2_uop_rxq_idx; // @[fdiv.scala:84:7] wire [6:0] io_brupdate_b2_uop_pdst_0 = io_brupdate_b2_uop_pdst; // @[fdiv.scala:84:7] wire [6:0] io_brupdate_b2_uop_prs1_0 = io_brupdate_b2_uop_prs1; // @[fdiv.scala:84:7] wire [6:0] io_brupdate_b2_uop_prs2_0 = io_brupdate_b2_uop_prs2; // @[fdiv.scala:84:7] wire [6:0] io_brupdate_b2_uop_prs3_0 = io_brupdate_b2_uop_prs3; // @[fdiv.scala:84:7] wire [4:0] io_brupdate_b2_uop_ppred_0 = io_brupdate_b2_uop_ppred; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_prs1_busy_0 = io_brupdate_b2_uop_prs1_busy; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_prs2_busy_0 = io_brupdate_b2_uop_prs2_busy; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_prs3_busy_0 = io_brupdate_b2_uop_prs3_busy; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_ppred_busy_0 = io_brupdate_b2_uop_ppred_busy; // @[fdiv.scala:84:7] wire [6:0] io_brupdate_b2_uop_stale_pdst_0 = io_brupdate_b2_uop_stale_pdst; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_exception_0 = io_brupdate_b2_uop_exception; // @[fdiv.scala:84:7] wire [63:0] io_brupdate_b2_uop_exc_cause_0 = io_brupdate_b2_uop_exc_cause; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_bypassable_0 = io_brupdate_b2_uop_bypassable; // @[fdiv.scala:84:7] wire [4:0] io_brupdate_b2_uop_mem_cmd_0 = io_brupdate_b2_uop_mem_cmd; // @[fdiv.scala:84:7] wire [1:0] io_brupdate_b2_uop_mem_size_0 = io_brupdate_b2_uop_mem_size; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_mem_signed_0 = io_brupdate_b2_uop_mem_signed; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_is_fence_0 = io_brupdate_b2_uop_is_fence; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_is_fencei_0 = io_brupdate_b2_uop_is_fencei; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_is_amo_0 = io_brupdate_b2_uop_is_amo; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_uses_ldq_0 = io_brupdate_b2_uop_uses_ldq; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_uses_stq_0 = io_brupdate_b2_uop_uses_stq; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_is_sys_pc2epc_0 = io_brupdate_b2_uop_is_sys_pc2epc; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_is_unique_0 = io_brupdate_b2_uop_is_unique; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_flush_on_commit_0 = io_brupdate_b2_uop_flush_on_commit; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_ldst_is_rs1_0 = io_brupdate_b2_uop_ldst_is_rs1; // @[fdiv.scala:84:7] wire [5:0] io_brupdate_b2_uop_ldst_0 = io_brupdate_b2_uop_ldst; // @[fdiv.scala:84:7] wire [5:0] io_brupdate_b2_uop_lrs1_0 = io_brupdate_b2_uop_lrs1; // @[fdiv.scala:84:7] wire [5:0] io_brupdate_b2_uop_lrs2_0 = io_brupdate_b2_uop_lrs2; // @[fdiv.scala:84:7] wire [5:0] io_brupdate_b2_uop_lrs3_0 = io_brupdate_b2_uop_lrs3; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_ldst_val_0 = io_brupdate_b2_uop_ldst_val; // @[fdiv.scala:84:7] wire [1:0] io_brupdate_b2_uop_dst_rtype_0 = io_brupdate_b2_uop_dst_rtype; // @[fdiv.scala:84:7] wire [1:0] io_brupdate_b2_uop_lrs1_rtype_0 = io_brupdate_b2_uop_lrs1_rtype; // @[fdiv.scala:84:7] wire [1:0] io_brupdate_b2_uop_lrs2_rtype_0 = io_brupdate_b2_uop_lrs2_rtype; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_frs3_en_0 = io_brupdate_b2_uop_frs3_en; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_fp_val_0 = io_brupdate_b2_uop_fp_val; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_fp_single_0 = io_brupdate_b2_uop_fp_single; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_xcpt_pf_if_0 = io_brupdate_b2_uop_xcpt_pf_if; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_xcpt_ae_if_0 = io_brupdate_b2_uop_xcpt_ae_if; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_xcpt_ma_if_0 = io_brupdate_b2_uop_xcpt_ma_if; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_bp_debug_if_0 = io_brupdate_b2_uop_bp_debug_if; // @[fdiv.scala:84:7] wire io_brupdate_b2_uop_bp_xcpt_if_0 = io_brupdate_b2_uop_bp_xcpt_if; // @[fdiv.scala:84:7] wire [1:0] io_brupdate_b2_uop_debug_fsrc_0 = io_brupdate_b2_uop_debug_fsrc; // @[fdiv.scala:84:7] wire [1:0] io_brupdate_b2_uop_debug_tsrc_0 = io_brupdate_b2_uop_debug_tsrc; // @[fdiv.scala:84:7] wire io_brupdate_b2_valid_0 = io_brupdate_b2_valid; // @[fdiv.scala:84:7] wire io_brupdate_b2_mispredict_0 = io_brupdate_b2_mispredict; // @[fdiv.scala:84:7] wire io_brupdate_b2_taken_0 = io_brupdate_b2_taken; // @[fdiv.scala:84:7] wire [2:0] io_brupdate_b2_cfi_type_0 = io_brupdate_b2_cfi_type; // @[fdiv.scala:84:7] wire [1:0] io_brupdate_b2_pc_sel_0 = io_brupdate_b2_pc_sel; // @[fdiv.scala:84:7] wire [39:0] io_brupdate_b2_jalr_target_0 = io_brupdate_b2_jalr_target; // @[fdiv.scala:84:7] wire [20:0] io_brupdate_b2_target_offset_0 = io_brupdate_b2_target_offset; // @[fdiv.scala:84:7] wire [2:0] io_fcsr_rm_0 = io_fcsr_rm; // @[fdiv.scala:84:7] wire io_req_bits_pred_data = 1'h0; // @[fdiv.scala:84:7] wire io_resp_bits_predicated = 1'h0; // @[fdiv.scala:84:7] wire io_resp_bits_mxcpt_valid = 1'h0; // @[fdiv.scala:84:7] wire io_resp_bits_sfence_valid = 1'h0; // @[fdiv.scala:84:7] wire io_resp_bits_sfence_bits_rs1 = 1'h0; // @[fdiv.scala:84:7] wire io_resp_bits_sfence_bits_rs2 = 1'h0; // @[fdiv.scala:84:7] wire io_resp_bits_sfence_bits_asid = 1'h0; // @[fdiv.scala:84:7] wire io_resp_bits_sfence_bits_hv = 1'h0; // @[fdiv.scala:84:7] wire io_resp_bits_sfence_bits_hg = 1'h0; // @[fdiv.scala:84:7] wire _io_resp_bits_data_T_1 = 1'h0; // @[package.scala:39:86] wire [64:0] io_req_bits_rs3_data = 65'h0; // @[fdiv.scala:84:7] wire [64:0] _r_buffer_fin_in1_T = 65'h0; // @[FPU.scala:372:31] wire [64:0] _r_buffer_fin_in2_T = 65'h0; // @[FPU.scala:372:31] wire [39:0] io_resp_bits_addr = 40'h0; // @[fdiv.scala:84:7] wire [24:0] io_resp_bits_mxcpt_bits = 25'h0; // @[fdiv.scala:84:7] wire [38:0] io_resp_bits_sfence_bits_addr = 39'h0; // @[fdiv.scala:84:7] wire _io_resp_bits_data_opts_bigger_swizzledNaN_T = 1'h1; // @[FPU.scala:338:42] wire _io_resp_bits_data_opts_bigger_T = 1'h1; // @[FPU.scala:249:56] wire _io_resp_bits_data_opts_bigger_swizzledNaN_T_4 = 1'h1; // @[FPU.scala:338:42] wire _io_resp_bits_data_opts_bigger_T_1 = 1'h1; // @[FPU.scala:249:56] wire _io_resp_bits_data_T_3 = 1'h1; // @[package.scala:39:86] wire [4:0] io_resp_bits_data_opts_bigger_swizzledNaN_hi_hi = 5'h1F; // @[FPU.scala:336:26] wire [4:0] io_resp_bits_data_opts_bigger_swizzledNaN_hi_hi_1 = 5'h1F; // @[FPU.scala:336:26] wire [64:0] _r_out_wdata_double_maskedNaN_T = 65'h1EFEFFFFFFFFFFFFF; // @[FPU.scala:413:27] wire _io_req_ready_T; // @[fdiv.scala:109:19] wire [64:0] _r_buffer_fin_in1_T_1 = io_req_bits_rs1_data_0; // @[FPU.scala:372:26] wire [64:0] _r_buffer_fin_in2_T_1 = io_req_bits_rs2_data_0; // @[FPU.scala:372:26] wire _io_resp_valid_T_3; // @[fdiv.scala:218:30] wire io_resp_bits_fflags_valid_0 = io_resp_valid_0; // @[fdiv.scala:84:7] wire [64:0] _io_resp_bits_data_T_5; // @[fdiv.scala:221:8] wire [15:0] _io_resp_bits_fflags_bits_uop_br_mask_T_1; // @[util.scala:85:25] wire [4:0] out_flags; // @[fdiv.scala:216:38] wire io_req_ready_0; // @[fdiv.scala:84:7] wire [3:0] io_resp_bits_uop_ctrl_br_type_0; // @[fdiv.scala:84:7] wire [1:0] io_resp_bits_uop_ctrl_op1_sel_0; // @[fdiv.scala:84:7] wire [2:0] io_resp_bits_uop_ctrl_op2_sel_0; // @[fdiv.scala:84:7] wire [2:0] io_resp_bits_uop_ctrl_imm_sel_0; // @[fdiv.scala:84:7] wire [4:0] io_resp_bits_uop_ctrl_op_fcn_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_ctrl_fcn_dw_0; // @[fdiv.scala:84:7] wire [2:0] io_resp_bits_uop_ctrl_csr_cmd_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_ctrl_is_load_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_ctrl_is_sta_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_ctrl_is_std_0; // @[fdiv.scala:84:7] wire [6:0] io_resp_bits_uop_uopc_0; // @[fdiv.scala:84:7] wire [31:0] io_resp_bits_uop_inst_0; // @[fdiv.scala:84:7] wire [31:0] io_resp_bits_uop_debug_inst_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_is_rvc_0; // @[fdiv.scala:84:7] wire [39:0] io_resp_bits_uop_debug_pc_0; // @[fdiv.scala:84:7] wire [2:0] io_resp_bits_uop_iq_type_0; // @[fdiv.scala:84:7] wire [9:0] io_resp_bits_uop_fu_code_0; // @[fdiv.scala:84:7] wire [1:0] io_resp_bits_uop_iw_state_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_iw_p1_poisoned_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_iw_p2_poisoned_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_is_br_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_is_jalr_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_is_jal_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_is_sfb_0; // @[fdiv.scala:84:7] wire [15:0] io_resp_bits_uop_br_mask_0; // @[fdiv.scala:84:7] wire [3:0] io_resp_bits_uop_br_tag_0; // @[fdiv.scala:84:7] wire [4:0] io_resp_bits_uop_ftq_idx_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_edge_inst_0; // @[fdiv.scala:84:7] wire [5:0] io_resp_bits_uop_pc_lob_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_taken_0; // @[fdiv.scala:84:7] wire [19:0] io_resp_bits_uop_imm_packed_0; // @[fdiv.scala:84:7] wire [11:0] io_resp_bits_uop_csr_addr_0; // @[fdiv.scala:84:7] wire [6:0] io_resp_bits_uop_rob_idx_0; // @[fdiv.scala:84:7] wire [4:0] io_resp_bits_uop_ldq_idx_0; // @[fdiv.scala:84:7] wire [4:0] io_resp_bits_uop_stq_idx_0; // @[fdiv.scala:84:7] wire [1:0] io_resp_bits_uop_rxq_idx_0; // @[fdiv.scala:84:7] wire [6:0] io_resp_bits_uop_pdst_0; // @[fdiv.scala:84:7] wire [6:0] io_resp_bits_uop_prs1_0; // @[fdiv.scala:84:7] wire [6:0] io_resp_bits_uop_prs2_0; // @[fdiv.scala:84:7] wire [6:0] io_resp_bits_uop_prs3_0; // @[fdiv.scala:84:7] wire [4:0] io_resp_bits_uop_ppred_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_prs1_busy_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_prs2_busy_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_prs3_busy_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_ppred_busy_0; // @[fdiv.scala:84:7] wire [6:0] io_resp_bits_uop_stale_pdst_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_exception_0; // @[fdiv.scala:84:7] wire [63:0] io_resp_bits_uop_exc_cause_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_bypassable_0; // @[fdiv.scala:84:7] wire [4:0] io_resp_bits_uop_mem_cmd_0; // @[fdiv.scala:84:7] wire [1:0] io_resp_bits_uop_mem_size_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_mem_signed_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_is_fence_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_is_fencei_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_is_amo_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_uses_ldq_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_uses_stq_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_is_sys_pc2epc_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_is_unique_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_flush_on_commit_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_ldst_is_rs1_0; // @[fdiv.scala:84:7] wire [5:0] io_resp_bits_uop_ldst_0; // @[fdiv.scala:84:7] wire [5:0] io_resp_bits_uop_lrs1_0; // @[fdiv.scala:84:7] wire [5:0] io_resp_bits_uop_lrs2_0; // @[fdiv.scala:84:7] wire [5:0] io_resp_bits_uop_lrs3_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_ldst_val_0; // @[fdiv.scala:84:7] wire [1:0] io_resp_bits_uop_dst_rtype_0; // @[fdiv.scala:84:7] wire [1:0] io_resp_bits_uop_lrs1_rtype_0; // @[fdiv.scala:84:7] wire [1:0] io_resp_bits_uop_lrs2_rtype_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_frs3_en_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_fp_val_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_fp_single_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_xcpt_pf_if_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_xcpt_ae_if_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_xcpt_ma_if_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_bp_debug_if_0; // @[fdiv.scala:84:7] wire io_resp_bits_uop_bp_xcpt_if_0; // @[fdiv.scala:84:7] wire [1:0] io_resp_bits_uop_debug_fsrc_0; // @[fdiv.scala:84:7] wire [1:0] io_resp_bits_uop_debug_tsrc_0; // @[fdiv.scala:84:7] wire [3:0] io_resp_bits_fflags_bits_uop_ctrl_br_type_0; // @[fdiv.scala:84:7] wire [1:0] io_resp_bits_fflags_bits_uop_ctrl_op1_sel_0; // @[fdiv.scala:84:7] wire [2:0] io_resp_bits_fflags_bits_uop_ctrl_op2_sel_0; // @[fdiv.scala:84:7] wire [2:0] io_resp_bits_fflags_bits_uop_ctrl_imm_sel_0; // @[fdiv.scala:84:7] wire [4:0] io_resp_bits_fflags_bits_uop_ctrl_op_fcn_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_ctrl_fcn_dw_0; // @[fdiv.scala:84:7] wire [2:0] io_resp_bits_fflags_bits_uop_ctrl_csr_cmd_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_ctrl_is_load_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_ctrl_is_sta_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_ctrl_is_std_0; // @[fdiv.scala:84:7] wire [6:0] io_resp_bits_fflags_bits_uop_uopc_0; // @[fdiv.scala:84:7] wire [31:0] io_resp_bits_fflags_bits_uop_inst_0; // @[fdiv.scala:84:7] wire [31:0] io_resp_bits_fflags_bits_uop_debug_inst_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_is_rvc_0; // @[fdiv.scala:84:7] wire [39:0] io_resp_bits_fflags_bits_uop_debug_pc_0; // @[fdiv.scala:84:7] wire [2:0] io_resp_bits_fflags_bits_uop_iq_type_0; // @[fdiv.scala:84:7] wire [9:0] io_resp_bits_fflags_bits_uop_fu_code_0; // @[fdiv.scala:84:7] wire [1:0] io_resp_bits_fflags_bits_uop_iw_state_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_iw_p1_poisoned_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_iw_p2_poisoned_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_is_br_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_is_jalr_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_is_jal_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_is_sfb_0; // @[fdiv.scala:84:7] wire [15:0] io_resp_bits_fflags_bits_uop_br_mask_0; // @[fdiv.scala:84:7] wire [3:0] io_resp_bits_fflags_bits_uop_br_tag_0; // @[fdiv.scala:84:7] wire [4:0] io_resp_bits_fflags_bits_uop_ftq_idx_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_edge_inst_0; // @[fdiv.scala:84:7] wire [5:0] io_resp_bits_fflags_bits_uop_pc_lob_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_taken_0; // @[fdiv.scala:84:7] wire [19:0] io_resp_bits_fflags_bits_uop_imm_packed_0; // @[fdiv.scala:84:7] wire [11:0] io_resp_bits_fflags_bits_uop_csr_addr_0; // @[fdiv.scala:84:7] wire [6:0] io_resp_bits_fflags_bits_uop_rob_idx_0; // @[fdiv.scala:84:7] wire [4:0] io_resp_bits_fflags_bits_uop_ldq_idx_0; // @[fdiv.scala:84:7] wire [4:0] io_resp_bits_fflags_bits_uop_stq_idx_0; // @[fdiv.scala:84:7] wire [1:0] io_resp_bits_fflags_bits_uop_rxq_idx_0; // @[fdiv.scala:84:7] wire [6:0] io_resp_bits_fflags_bits_uop_pdst_0; // @[fdiv.scala:84:7] wire [6:0] io_resp_bits_fflags_bits_uop_prs1_0; // @[fdiv.scala:84:7] wire [6:0] io_resp_bits_fflags_bits_uop_prs2_0; // @[fdiv.scala:84:7] wire [6:0] io_resp_bits_fflags_bits_uop_prs3_0; // @[fdiv.scala:84:7] wire [4:0] io_resp_bits_fflags_bits_uop_ppred_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_prs1_busy_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_prs2_busy_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_prs3_busy_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_ppred_busy_0; // @[fdiv.scala:84:7] wire [6:0] io_resp_bits_fflags_bits_uop_stale_pdst_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_exception_0; // @[fdiv.scala:84:7] wire [63:0] io_resp_bits_fflags_bits_uop_exc_cause_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_bypassable_0; // @[fdiv.scala:84:7] wire [4:0] io_resp_bits_fflags_bits_uop_mem_cmd_0; // @[fdiv.scala:84:7] wire [1:0] io_resp_bits_fflags_bits_uop_mem_size_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_mem_signed_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_is_fence_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_is_fencei_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_is_amo_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_uses_ldq_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_uses_stq_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_is_sys_pc2epc_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_is_unique_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_flush_on_commit_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_ldst_is_rs1_0; // @[fdiv.scala:84:7] wire [5:0] io_resp_bits_fflags_bits_uop_ldst_0; // @[fdiv.scala:84:7] wire [5:0] io_resp_bits_fflags_bits_uop_lrs1_0; // @[fdiv.scala:84:7] wire [5:0] io_resp_bits_fflags_bits_uop_lrs2_0; // @[fdiv.scala:84:7] wire [5:0] io_resp_bits_fflags_bits_uop_lrs3_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_ldst_val_0; // @[fdiv.scala:84:7] wire [1:0] io_resp_bits_fflags_bits_uop_dst_rtype_0; // @[fdiv.scala:84:7] wire [1:0] io_resp_bits_fflags_bits_uop_lrs1_rtype_0; // @[fdiv.scala:84:7] wire [1:0] io_resp_bits_fflags_bits_uop_lrs2_rtype_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_frs3_en_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_fp_val_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_fp_single_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_xcpt_pf_if_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_xcpt_ae_if_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_xcpt_ma_if_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_bp_debug_if_0; // @[fdiv.scala:84:7] wire io_resp_bits_fflags_bits_uop_bp_xcpt_if_0; // @[fdiv.scala:84:7] wire [1:0] io_resp_bits_fflags_bits_uop_debug_fsrc_0; // @[fdiv.scala:84:7] wire [1:0] io_resp_bits_fflags_bits_uop_debug_tsrc_0; // @[fdiv.scala:84:7] wire [4:0] io_resp_bits_fflags_bits_flags_0; // @[fdiv.scala:84:7] wire [64:0] io_resp_bits_data_0; // @[fdiv.scala:84:7] reg r_buffer_val; // @[fdiv.scala:97:29] reg [6:0] r_buffer_req_uop_uopc; // @[fdiv.scala:98:25] reg [31:0] r_buffer_req_uop_inst; // @[fdiv.scala:98:25] reg [31:0] r_buffer_req_uop_debug_inst; // @[fdiv.scala:98:25] reg r_buffer_req_uop_is_rvc; // @[fdiv.scala:98:25] reg [39:0] r_buffer_req_uop_debug_pc; // @[fdiv.scala:98:25] reg [2:0] r_buffer_req_uop_iq_type; // @[fdiv.scala:98:25] reg [9:0] r_buffer_req_uop_fu_code; // @[fdiv.scala:98:25] reg [3:0] r_buffer_req_uop_ctrl_br_type; // @[fdiv.scala:98:25] reg [1:0] r_buffer_req_uop_ctrl_op1_sel; // @[fdiv.scala:98:25] reg [2:0] r_buffer_req_uop_ctrl_op2_sel; // @[fdiv.scala:98:25] reg [2:0] r_buffer_req_uop_ctrl_imm_sel; // @[fdiv.scala:98:25] reg [4:0] r_buffer_req_uop_ctrl_op_fcn; // @[fdiv.scala:98:25] reg r_buffer_req_uop_ctrl_fcn_dw; // @[fdiv.scala:98:25] reg [2:0] r_buffer_req_uop_ctrl_csr_cmd; // @[fdiv.scala:98:25] reg r_buffer_req_uop_ctrl_is_load; // @[fdiv.scala:98:25] reg r_buffer_req_uop_ctrl_is_sta; // @[fdiv.scala:98:25] reg r_buffer_req_uop_ctrl_is_std; // @[fdiv.scala:98:25] reg [1:0] r_buffer_req_uop_iw_state; // @[fdiv.scala:98:25] reg r_buffer_req_uop_iw_p1_poisoned; // @[fdiv.scala:98:25] reg r_buffer_req_uop_iw_p2_poisoned; // @[fdiv.scala:98:25] reg r_buffer_req_uop_is_br; // @[fdiv.scala:98:25] reg r_buffer_req_uop_is_jalr; // @[fdiv.scala:98:25] reg r_buffer_req_uop_is_jal; // @[fdiv.scala:98:25] reg r_buffer_req_uop_is_sfb; // @[fdiv.scala:98:25] reg [15:0] r_buffer_req_uop_br_mask; // @[fdiv.scala:98:25] reg [3:0] r_buffer_req_uop_br_tag; // @[fdiv.scala:98:25] reg [4:0] r_buffer_req_uop_ftq_idx; // @[fdiv.scala:98:25] reg r_buffer_req_uop_edge_inst; // @[fdiv.scala:98:25] reg [5:0] r_buffer_req_uop_pc_lob; // @[fdiv.scala:98:25] reg r_buffer_req_uop_taken; // @[fdiv.scala:98:25] reg [19:0] r_buffer_req_uop_imm_packed; // @[fdiv.scala:98:25] reg [11:0] r_buffer_req_uop_csr_addr; // @[fdiv.scala:98:25] reg [6:0] r_buffer_req_uop_rob_idx; // @[fdiv.scala:98:25] reg [4:0] r_buffer_req_uop_ldq_idx; // @[fdiv.scala:98:25] reg [4:0] r_buffer_req_uop_stq_idx; // @[fdiv.scala:98:25] reg [1:0] r_buffer_req_uop_rxq_idx; // @[fdiv.scala:98:25] reg [6:0] r_buffer_req_uop_pdst; // @[fdiv.scala:98:25] reg [6:0] r_buffer_req_uop_prs1; // @[fdiv.scala:98:25] reg [6:0] r_buffer_req_uop_prs2; // @[fdiv.scala:98:25] reg [6:0] r_buffer_req_uop_prs3; // @[fdiv.scala:98:25] reg [4:0] r_buffer_req_uop_ppred; // @[fdiv.scala:98:25] reg r_buffer_req_uop_prs1_busy; // @[fdiv.scala:98:25] reg r_buffer_req_uop_prs2_busy; // @[fdiv.scala:98:25] reg r_buffer_req_uop_prs3_busy; // @[fdiv.scala:98:25] reg r_buffer_req_uop_ppred_busy; // @[fdiv.scala:98:25] reg [6:0] r_buffer_req_uop_stale_pdst; // @[fdiv.scala:98:25] reg r_buffer_req_uop_exception; // @[fdiv.scala:98:25] reg [63:0] r_buffer_req_uop_exc_cause; // @[fdiv.scala:98:25] reg r_buffer_req_uop_bypassable; // @[fdiv.scala:98:25] reg [4:0] r_buffer_req_uop_mem_cmd; // @[fdiv.scala:98:25] reg [1:0] r_buffer_req_uop_mem_size; // @[fdiv.scala:98:25] reg r_buffer_req_uop_mem_signed; // @[fdiv.scala:98:25] reg r_buffer_req_uop_is_fence; // @[fdiv.scala:98:25] reg r_buffer_req_uop_is_fencei; // @[fdiv.scala:98:25] reg r_buffer_req_uop_is_amo; // @[fdiv.scala:98:25] reg r_buffer_req_uop_uses_ldq; // @[fdiv.scala:98:25] reg r_buffer_req_uop_uses_stq; // @[fdiv.scala:98:25] reg r_buffer_req_uop_is_sys_pc2epc; // @[fdiv.scala:98:25] reg r_buffer_req_uop_is_unique; // @[fdiv.scala:98:25] reg r_buffer_req_uop_flush_on_commit; // @[fdiv.scala:98:25] reg r_buffer_req_uop_ldst_is_rs1; // @[fdiv.scala:98:25] reg [5:0] r_buffer_req_uop_ldst; // @[fdiv.scala:98:25] reg [5:0] r_buffer_req_uop_lrs1; // @[fdiv.scala:98:25] reg [5:0] r_buffer_req_uop_lrs2; // @[fdiv.scala:98:25] reg [5:0] r_buffer_req_uop_lrs3; // @[fdiv.scala:98:25] reg r_buffer_req_uop_ldst_val; // @[fdiv.scala:98:25] reg [1:0] r_buffer_req_uop_dst_rtype; // @[fdiv.scala:98:25] reg [1:0] r_buffer_req_uop_lrs1_rtype; // @[fdiv.scala:98:25] reg [1:0] r_buffer_req_uop_lrs2_rtype; // @[fdiv.scala:98:25] reg r_buffer_req_uop_frs3_en; // @[fdiv.scala:98:25] reg r_buffer_req_uop_fp_val; // @[fdiv.scala:98:25] reg r_buffer_req_uop_fp_single; // @[fdiv.scala:98:25] reg r_buffer_req_uop_xcpt_pf_if; // @[fdiv.scala:98:25] reg r_buffer_req_uop_xcpt_ae_if; // @[fdiv.scala:98:25] reg r_buffer_req_uop_xcpt_ma_if; // @[fdiv.scala:98:25] reg r_buffer_req_uop_bp_debug_if; // @[fdiv.scala:98:25] reg r_buffer_req_uop_bp_xcpt_if; // @[fdiv.scala:98:25] reg [1:0] r_buffer_req_uop_debug_fsrc; // @[fdiv.scala:98:25] reg [1:0] r_buffer_req_uop_debug_tsrc; // @[fdiv.scala:98:25] reg [64:0] r_buffer_req_rs1_data; // @[fdiv.scala:98:25] reg [64:0] r_buffer_req_rs2_data; // @[fdiv.scala:98:25] reg r_buffer_req_kill; // @[fdiv.scala:98:25] reg r_buffer_fin_ldst; // @[fdiv.scala:99:25] reg r_buffer_fin_wen; // @[fdiv.scala:99:25] reg r_buffer_fin_ren1; // @[fdiv.scala:99:25] reg r_buffer_fin_ren2; // @[fdiv.scala:99:25] reg r_buffer_fin_ren3; // @[fdiv.scala:99:25] reg r_buffer_fin_swap12; // @[fdiv.scala:99:25] reg r_buffer_fin_swap23; // @[fdiv.scala:99:25] reg [1:0] r_buffer_fin_typeTagIn; // @[fdiv.scala:99:25] reg [1:0] r_buffer_fin_typeTagOut; // @[fdiv.scala:99:25] reg r_buffer_fin_fromint; // @[fdiv.scala:99:25] reg r_buffer_fin_toint; // @[fdiv.scala:99:25] reg r_buffer_fin_fastpipe; // @[fdiv.scala:99:25] reg r_buffer_fin_fma; // @[fdiv.scala:99:25] reg r_buffer_fin_div; // @[fdiv.scala:99:25] reg r_buffer_fin_sqrt; // @[fdiv.scala:99:25] reg r_buffer_fin_wflags; // @[fdiv.scala:99:25] reg [2:0] r_buffer_fin_rm; // @[fdiv.scala:99:25] reg [64:0] r_buffer_fin_in1; // @[fdiv.scala:99:25] reg [64:0] r_buffer_fin_in2; // @[fdiv.scala:99:25] wire [15:0] _GEN = io_brupdate_b1_mispredict_mask_0 & r_buffer_req_uop_br_mask; // @[util.scala:118:51] wire [15:0] _r_buffer_val_T; // @[util.scala:118:51] assign _r_buffer_val_T = _GEN; // @[util.scala:118:51] wire [15:0] _r_divsqrt_killed_T_4; // @[util.scala:118:51] assign _r_divsqrt_killed_T_4 = _GEN; // @[util.scala:118:51] wire _r_buffer_val_T_1 = |_r_buffer_val_T; // @[util.scala:118:{51,59}] wire _r_buffer_val_T_2 = ~_r_buffer_val_T_1; // @[util.scala:118:59] wire _r_buffer_val_T_3 = ~io_req_bits_kill_0; // @[fdiv.scala:84:7, :105:71] wire _r_buffer_val_T_4 = _r_buffer_val_T_2 & _r_buffer_val_T_3; // @[fdiv.scala:105:{19,68,71}] wire _r_buffer_val_T_5 = _r_buffer_val_T_4 & r_buffer_val; // @[fdiv.scala:97:29, :105:{68,89}] wire [15:0] _r_buffer_req_uop_br_mask_T = ~io_brupdate_b1_resolve_mask_0; // @[util.scala:85:27] wire [15:0] _r_buffer_req_uop_br_mask_T_1 = r_buffer_req_uop_br_mask & _r_buffer_req_uop_br_mask_T; // @[util.scala:85:{25,27}] assign _io_req_ready_T = ~r_buffer_val; // @[fdiv.scala:97:29, :109:19] assign io_req_ready_0 = _io_req_ready_T; // @[fdiv.scala:84:7, :109:19] wire _in1_upconvert_prev_unswizzled_T = io_req_bits_rs1_data_0[31]; // @[FPU.scala:357:14] wire _r_buffer_fin_in1_prev_unswizzled_T = io_req_bits_rs1_data_0[31]; // @[FPU.scala:357:14] wire _in1_upconvert_prev_unswizzled_T_1 = io_req_bits_rs1_data_0[52]; // @[FPU.scala:358:14] wire _r_buffer_fin_in1_prev_unswizzled_T_1 = io_req_bits_rs1_data_0[52]; // @[FPU.scala:358:14] wire [30:0] _in1_upconvert_prev_unswizzled_T_2 = io_req_bits_rs1_data_0[30:0]; // @[FPU.scala:359:14] wire [30:0] _r_buffer_fin_in1_prev_unswizzled_T_2 = io_req_bits_rs1_data_0[30:0]; // @[FPU.scala:359:14] wire [1:0] in1_upconvert_prev_unswizzled_hi = {_in1_upconvert_prev_unswizzled_T, _in1_upconvert_prev_unswizzled_T_1}; // @[FPU.scala:356:31, :357:14, :358:14] wire [32:0] in1_upconvert_floats_0 = {in1_upconvert_prev_unswizzled_hi, _in1_upconvert_prev_unswizzled_T_2}; // @[FPU.scala:356:31, :359:14] wire [4:0] _in1_upconvert_prev_isbox_T = io_req_bits_rs1_data_0[64:60]; // @[FPU.scala:332:49] wire [4:0] _r_buffer_fin_in1_prev_isbox_T = io_req_bits_rs1_data_0[64:60]; // @[FPU.scala:332:49] wire in1_upconvert_prev_isbox = &_in1_upconvert_prev_isbox_T; // @[FPU.scala:332:{49,84}] wire in1_upconvert_oks_0 = in1_upconvert_prev_isbox; // @[FPU.scala:332:84, :362:32] wire in1_upconvert_sign = io_req_bits_rs1_data_0[64]; // @[FPU.scala:274:17] wire [51:0] in1_upconvert_fractIn = io_req_bits_rs1_data_0[51:0]; // @[FPU.scala:275:20] wire [11:0] in1_upconvert_expIn = io_req_bits_rs1_data_0[63:52]; // @[FPU.scala:276:18] wire [75:0] _in1_upconvert_fractOut_T = {in1_upconvert_fractIn, 24'h0}; // @[FPU.scala:275:20, :277:28] wire [22:0] in1_upconvert_fractOut = _in1_upconvert_fractOut_T[75:53]; // @[FPU.scala:277:{28,38}] wire [2:0] in1_upconvert_expOut_expCode = in1_upconvert_expIn[11:9]; // @[FPU.scala:276:18, :279:26] wire [12:0] _in1_upconvert_expOut_commonCase_T = {1'h0, in1_upconvert_expIn} + 13'h100; // @[FPU.scala:276:18, :280:31] wire [11:0] _in1_upconvert_expOut_commonCase_T_1 = _in1_upconvert_expOut_commonCase_T[11:0]; // @[FPU.scala:280:31] wire [12:0] _in1_upconvert_expOut_commonCase_T_2 = {1'h0, _in1_upconvert_expOut_commonCase_T_1} - 13'h800; // @[FPU.scala:280:{31,50}] wire [11:0] in1_upconvert_expOut_commonCase = _in1_upconvert_expOut_commonCase_T_2[11:0]; // @[FPU.scala:280:50] wire _in1_upconvert_expOut_T = in1_upconvert_expOut_expCode == 3'h0; // @[FPU.scala:279:26, :281:19] wire _in1_upconvert_expOut_T_1 = in1_upconvert_expOut_expCode > 3'h5; // @[FPU.scala:279:26, :281:38] wire _in1_upconvert_expOut_T_2 = _in1_upconvert_expOut_T | _in1_upconvert_expOut_T_1; // @[FPU.scala:281:{19,27,38}] wire [5:0] _in1_upconvert_expOut_T_3 = in1_upconvert_expOut_commonCase[5:0]; // @[FPU.scala:280:50, :281:69] wire [8:0] _in1_upconvert_expOut_T_4 = {in1_upconvert_expOut_expCode, _in1_upconvert_expOut_T_3}; // @[FPU.scala:279:26, :281:{49,69}] wire [8:0] _in1_upconvert_expOut_T_5 = in1_upconvert_expOut_commonCase[8:0]; // @[FPU.scala:280:50, :281:97] wire [8:0] in1_upconvert_expOut = _in1_upconvert_expOut_T_2 ? _in1_upconvert_expOut_T_4 : _in1_upconvert_expOut_T_5; // @[FPU.scala:281:{10,27,49,97}] wire [9:0] in1_upconvert_hi = {in1_upconvert_sign, in1_upconvert_expOut}; // @[FPU.scala:274:17, :281:10, :283:8] wire [32:0] in1_upconvert_floats_1 = {in1_upconvert_hi, in1_upconvert_fractOut}; // @[FPU.scala:277:38, :283:8] wire [32:0] _in1_upconvert_T = in1_upconvert_oks_0 ? 33'h0 : 33'hE0400000; // @[FPU.scala:362:32, :372:31] wire [32:0] _in1_upconvert_T_1 = in1_upconvert_floats_0 | _in1_upconvert_T; // @[FPU.scala:356:31, :372:{26,31}] wire _in2_upconvert_prev_unswizzled_T = io_req_bits_rs2_data_0[31]; // @[FPU.scala:357:14] wire _r_buffer_fin_in2_prev_unswizzled_T = io_req_bits_rs2_data_0[31]; // @[FPU.scala:357:14] wire _in2_upconvert_prev_unswizzled_T_1 = io_req_bits_rs2_data_0[52]; // @[FPU.scala:358:14] wire _r_buffer_fin_in2_prev_unswizzled_T_1 = io_req_bits_rs2_data_0[52]; // @[FPU.scala:358:14] wire [30:0] _in2_upconvert_prev_unswizzled_T_2 = io_req_bits_rs2_data_0[30:0]; // @[FPU.scala:359:14] wire [30:0] _r_buffer_fin_in2_prev_unswizzled_T_2 = io_req_bits_rs2_data_0[30:0]; // @[FPU.scala:359:14] wire [1:0] in2_upconvert_prev_unswizzled_hi = {_in2_upconvert_prev_unswizzled_T, _in2_upconvert_prev_unswizzled_T_1}; // @[FPU.scala:356:31, :357:14, :358:14] wire [32:0] in2_upconvert_floats_0 = {in2_upconvert_prev_unswizzled_hi, _in2_upconvert_prev_unswizzled_T_2}; // @[FPU.scala:356:31, :359:14] wire [4:0] _in2_upconvert_prev_isbox_T = io_req_bits_rs2_data_0[64:60]; // @[FPU.scala:332:49] wire [4:0] _r_buffer_fin_in2_prev_isbox_T = io_req_bits_rs2_data_0[64:60]; // @[FPU.scala:332:49] wire in2_upconvert_prev_isbox = &_in2_upconvert_prev_isbox_T; // @[FPU.scala:332:{49,84}] wire in2_upconvert_oks_0 = in2_upconvert_prev_isbox; // @[FPU.scala:332:84, :362:32] wire in2_upconvert_sign = io_req_bits_rs2_data_0[64]; // @[FPU.scala:274:17] wire [51:0] in2_upconvert_fractIn = io_req_bits_rs2_data_0[51:0]; // @[FPU.scala:275:20] wire [11:0] in2_upconvert_expIn = io_req_bits_rs2_data_0[63:52]; // @[FPU.scala:276:18] wire [75:0] _in2_upconvert_fractOut_T = {in2_upconvert_fractIn, 24'h0}; // @[FPU.scala:275:20, :277:28] wire [22:0] in2_upconvert_fractOut = _in2_upconvert_fractOut_T[75:53]; // @[FPU.scala:277:{28,38}] wire [2:0] in2_upconvert_expOut_expCode = in2_upconvert_expIn[11:9]; // @[FPU.scala:276:18, :279:26] wire [12:0] _in2_upconvert_expOut_commonCase_T = {1'h0, in2_upconvert_expIn} + 13'h100; // @[FPU.scala:276:18, :280:31] wire [11:0] _in2_upconvert_expOut_commonCase_T_1 = _in2_upconvert_expOut_commonCase_T[11:0]; // @[FPU.scala:280:31] wire [12:0] _in2_upconvert_expOut_commonCase_T_2 = {1'h0, _in2_upconvert_expOut_commonCase_T_1} - 13'h800; // @[FPU.scala:280:{31,50}] wire [11:0] in2_upconvert_expOut_commonCase = _in2_upconvert_expOut_commonCase_T_2[11:0]; // @[FPU.scala:280:50] wire _in2_upconvert_expOut_T = in2_upconvert_expOut_expCode == 3'h0; // @[FPU.scala:279:26, :281:19] wire _in2_upconvert_expOut_T_1 = in2_upconvert_expOut_expCode > 3'h5; // @[FPU.scala:279:26, :281:38] wire _in2_upconvert_expOut_T_2 = _in2_upconvert_expOut_T | _in2_upconvert_expOut_T_1; // @[FPU.scala:281:{19,27,38}] wire [5:0] _in2_upconvert_expOut_T_3 = in2_upconvert_expOut_commonCase[5:0]; // @[FPU.scala:280:50, :281:69] wire [8:0] _in2_upconvert_expOut_T_4 = {in2_upconvert_expOut_expCode, _in2_upconvert_expOut_T_3}; // @[FPU.scala:279:26, :281:{49,69}] wire [8:0] _in2_upconvert_expOut_T_5 = in2_upconvert_expOut_commonCase[8:0]; // @[FPU.scala:280:50, :281:97] wire [8:0] in2_upconvert_expOut = _in2_upconvert_expOut_T_2 ? _in2_upconvert_expOut_T_4 : _in2_upconvert_expOut_T_5; // @[FPU.scala:281:{10,27,49,97}] wire [9:0] in2_upconvert_hi = {in2_upconvert_sign, in2_upconvert_expOut}; // @[FPU.scala:274:17, :281:10, :283:8] wire [32:0] in2_upconvert_floats_1 = {in2_upconvert_hi, in2_upconvert_fractOut}; // @[FPU.scala:277:38, :283:8] wire [32:0] _in2_upconvert_T = in2_upconvert_oks_0 ? 33'h0 : 33'hE0400000; // @[FPU.scala:362:32, :372:31] wire [32:0] _in2_upconvert_T_1 = in2_upconvert_floats_0 | _in2_upconvert_T; // @[FPU.scala:356:31, :372:{26,31}] wire [15:0] _r_buffer_req_uop_br_mask_T_2 = ~io_brupdate_b1_resolve_mask_0; // @[util.scala:85:27] wire [15:0] _r_buffer_req_uop_br_mask_T_3 = io_req_bits_uop_br_mask_0 & _r_buffer_req_uop_br_mask_T_2; // @[util.scala:85:{25,27}] wire [2:0] _r_buffer_fin_rm_T = io_req_bits_uop_imm_packed_0[2:0]; // @[util.scala:289:58] wire [2:0] _r_buffer_fin_rm_T_2 = io_req_bits_uop_imm_packed_0[2:0]; // @[util.scala:289:58] wire _r_buffer_fin_rm_T_1 = &_r_buffer_fin_rm_T; // @[util.scala:289:58] wire [2:0] _r_buffer_fin_rm_T_3 = _r_buffer_fin_rm_T_1 ? io_fcsr_rm_0 : _r_buffer_fin_rm_T_2; // @[util.scala:289:58] wire [1:0] r_buffer_fin_in1_prev_unswizzled_hi = {_r_buffer_fin_in1_prev_unswizzled_T, _r_buffer_fin_in1_prev_unswizzled_T_1}; // @[FPU.scala:356:31, :357:14, :358:14] wire [32:0] r_buffer_fin_in1_prev_unswizzled = {r_buffer_fin_in1_prev_unswizzled_hi, _r_buffer_fin_in1_prev_unswizzled_T_2}; // @[FPU.scala:356:31, :359:14] wire r_buffer_fin_in1_prev_prev_sign = r_buffer_fin_in1_prev_unswizzled[32]; // @[FPU.scala:274:17, :356:31] wire [22:0] r_buffer_fin_in1_prev_prev_fractIn = r_buffer_fin_in1_prev_unswizzled[22:0]; // @[FPU.scala:275:20, :356:31] wire [8:0] r_buffer_fin_in1_prev_prev_expIn = r_buffer_fin_in1_prev_unswizzled[31:23]; // @[FPU.scala:276:18, :356:31] wire [75:0] _r_buffer_fin_in1_prev_prev_fractOut_T = {r_buffer_fin_in1_prev_prev_fractIn, 53'h0}; // @[FPU.scala:275:20, :277:28] wire [51:0] r_buffer_fin_in1_prev_prev_fractOut = _r_buffer_fin_in1_prev_prev_fractOut_T[75:24]; // @[FPU.scala:277:{28,38}] wire [2:0] r_buffer_fin_in1_prev_prev_expOut_expCode = r_buffer_fin_in1_prev_prev_expIn[8:6]; // @[FPU.scala:276:18, :279:26] wire [12:0] _r_buffer_fin_in1_prev_prev_expOut_commonCase_T = {4'h0, r_buffer_fin_in1_prev_prev_expIn} + 13'h800; // @[FPU.scala:276:18, :280:31] wire [11:0] _r_buffer_fin_in1_prev_prev_expOut_commonCase_T_1 = _r_buffer_fin_in1_prev_prev_expOut_commonCase_T[11:0]; // @[FPU.scala:280:31] wire [12:0] _r_buffer_fin_in1_prev_prev_expOut_commonCase_T_2 = {1'h0, _r_buffer_fin_in1_prev_prev_expOut_commonCase_T_1} - 13'h100; // @[FPU.scala:280:{31,50}] wire [11:0] r_buffer_fin_in1_prev_prev_expOut_commonCase = _r_buffer_fin_in1_prev_prev_expOut_commonCase_T_2[11:0]; // @[FPU.scala:280:50] wire [11:0] _r_buffer_fin_in1_prev_prev_expOut_T_5 = r_buffer_fin_in1_prev_prev_expOut_commonCase; // @[FPU.scala:280:50, :281:97] wire _r_buffer_fin_in1_prev_prev_expOut_T = r_buffer_fin_in1_prev_prev_expOut_expCode == 3'h0; // @[FPU.scala:279:26, :281:19] wire _r_buffer_fin_in1_prev_prev_expOut_T_1 = r_buffer_fin_in1_prev_prev_expOut_expCode > 3'h5; // @[FPU.scala:279:26, :281:38] wire _r_buffer_fin_in1_prev_prev_expOut_T_2 = _r_buffer_fin_in1_prev_prev_expOut_T | _r_buffer_fin_in1_prev_prev_expOut_T_1; // @[FPU.scala:281:{19,27,38}] wire [8:0] _r_buffer_fin_in1_prev_prev_expOut_T_3 = r_buffer_fin_in1_prev_prev_expOut_commonCase[8:0]; // @[FPU.scala:280:50, :281:69] wire [11:0] _r_buffer_fin_in1_prev_prev_expOut_T_4 = {r_buffer_fin_in1_prev_prev_expOut_expCode, _r_buffer_fin_in1_prev_prev_expOut_T_3}; // @[FPU.scala:279:26, :281:{49,69}] wire [11:0] r_buffer_fin_in1_prev_prev_expOut = _r_buffer_fin_in1_prev_prev_expOut_T_2 ? _r_buffer_fin_in1_prev_prev_expOut_T_4 : _r_buffer_fin_in1_prev_prev_expOut_T_5; // @[FPU.scala:281:{10,27,49,97}] wire [12:0] r_buffer_fin_in1_prev_prev_hi = {r_buffer_fin_in1_prev_prev_sign, r_buffer_fin_in1_prev_prev_expOut}; // @[FPU.scala:274:17, :281:10, :283:8] wire [64:0] r_buffer_fin_in1_floats_0 = {r_buffer_fin_in1_prev_prev_hi, r_buffer_fin_in1_prev_prev_fractOut}; // @[FPU.scala:277:38, :283:8] wire r_buffer_fin_in1_prev_isbox = &_r_buffer_fin_in1_prev_isbox_T; // @[FPU.scala:332:{49,84}] wire r_buffer_fin_in1_oks_0 = r_buffer_fin_in1_prev_isbox; // @[FPU.scala:332:84, :362:32] wire [1:0] r_buffer_fin_in2_prev_unswizzled_hi = {_r_buffer_fin_in2_prev_unswizzled_T, _r_buffer_fin_in2_prev_unswizzled_T_1}; // @[FPU.scala:356:31, :357:14, :358:14] wire [32:0] r_buffer_fin_in2_prev_unswizzled = {r_buffer_fin_in2_prev_unswizzled_hi, _r_buffer_fin_in2_prev_unswizzled_T_2}; // @[FPU.scala:356:31, :359:14] wire r_buffer_fin_in2_prev_prev_sign = r_buffer_fin_in2_prev_unswizzled[32]; // @[FPU.scala:274:17, :356:31] wire [22:0] r_buffer_fin_in2_prev_prev_fractIn = r_buffer_fin_in2_prev_unswizzled[22:0]; // @[FPU.scala:275:20, :356:31] wire [8:0] r_buffer_fin_in2_prev_prev_expIn = r_buffer_fin_in2_prev_unswizzled[31:23]; // @[FPU.scala:276:18, :356:31] wire [75:0] _r_buffer_fin_in2_prev_prev_fractOut_T = {r_buffer_fin_in2_prev_prev_fractIn, 53'h0}; // @[FPU.scala:275:20, :277:28] wire [51:0] r_buffer_fin_in2_prev_prev_fractOut = _r_buffer_fin_in2_prev_prev_fractOut_T[75:24]; // @[FPU.scala:277:{28,38}] wire [2:0] r_buffer_fin_in2_prev_prev_expOut_expCode = r_buffer_fin_in2_prev_prev_expIn[8:6]; // @[FPU.scala:276:18, :279:26] wire [12:0] _r_buffer_fin_in2_prev_prev_expOut_commonCase_T = {4'h0, r_buffer_fin_in2_prev_prev_expIn} + 13'h800; // @[FPU.scala:276:18, :280:31] wire [11:0] _r_buffer_fin_in2_prev_prev_expOut_commonCase_T_1 = _r_buffer_fin_in2_prev_prev_expOut_commonCase_T[11:0]; // @[FPU.scala:280:31] wire [12:0] _r_buffer_fin_in2_prev_prev_expOut_commonCase_T_2 = {1'h0, _r_buffer_fin_in2_prev_prev_expOut_commonCase_T_1} - 13'h100; // @[FPU.scala:280:{31,50}] wire [11:0] r_buffer_fin_in2_prev_prev_expOut_commonCase = _r_buffer_fin_in2_prev_prev_expOut_commonCase_T_2[11:0]; // @[FPU.scala:280:50] wire [11:0] _r_buffer_fin_in2_prev_prev_expOut_T_5 = r_buffer_fin_in2_prev_prev_expOut_commonCase; // @[FPU.scala:280:50, :281:97] wire _r_buffer_fin_in2_prev_prev_expOut_T = r_buffer_fin_in2_prev_prev_expOut_expCode == 3'h0; // @[FPU.scala:279:26, :281:19] wire _r_buffer_fin_in2_prev_prev_expOut_T_1 = r_buffer_fin_in2_prev_prev_expOut_expCode > 3'h5; // @[FPU.scala:279:26, :281:38] wire _r_buffer_fin_in2_prev_prev_expOut_T_2 = _r_buffer_fin_in2_prev_prev_expOut_T | _r_buffer_fin_in2_prev_prev_expOut_T_1; // @[FPU.scala:281:{19,27,38}] wire [8:0] _r_buffer_fin_in2_prev_prev_expOut_T_3 = r_buffer_fin_in2_prev_prev_expOut_commonCase[8:0]; // @[FPU.scala:280:50, :281:69] wire [11:0] _r_buffer_fin_in2_prev_prev_expOut_T_4 = {r_buffer_fin_in2_prev_prev_expOut_expCode, _r_buffer_fin_in2_prev_prev_expOut_T_3}; // @[FPU.scala:279:26, :281:{49,69}] wire [11:0] r_buffer_fin_in2_prev_prev_expOut = _r_buffer_fin_in2_prev_prev_expOut_T_2 ? _r_buffer_fin_in2_prev_prev_expOut_T_4 : _r_buffer_fin_in2_prev_prev_expOut_T_5; // @[FPU.scala:281:{10,27,49,97}] wire [12:0] r_buffer_fin_in2_prev_prev_hi = {r_buffer_fin_in2_prev_prev_sign, r_buffer_fin_in2_prev_prev_expOut}; // @[FPU.scala:274:17, :281:10, :283:8] wire [64:0] r_buffer_fin_in2_floats_0 = {r_buffer_fin_in2_prev_prev_hi, r_buffer_fin_in2_prev_prev_fractOut}; // @[FPU.scala:277:38, :283:8] wire r_buffer_fin_in2_prev_isbox = &_r_buffer_fin_in2_prev_isbox_T; // @[FPU.scala:332:{49,84}] wire r_buffer_fin_in2_oks_0 = r_buffer_fin_in2_prev_isbox; // @[FPU.scala:332:84, :362:32] reg r_divsqrt_val; // @[fdiv.scala:145:30] reg r_divsqrt_killed; // @[fdiv.scala:146:29] reg r_divsqrt_fin_ldst; // @[fdiv.scala:147:26] reg r_divsqrt_fin_wen; // @[fdiv.scala:147:26] reg r_divsqrt_fin_ren1; // @[fdiv.scala:147:26] reg r_divsqrt_fin_ren2; // @[fdiv.scala:147:26] reg r_divsqrt_fin_ren3; // @[fdiv.scala:147:26] reg r_divsqrt_fin_swap12; // @[fdiv.scala:147:26] reg r_divsqrt_fin_swap23; // @[fdiv.scala:147:26] reg [1:0] r_divsqrt_fin_typeTagIn; // @[fdiv.scala:147:26] reg [1:0] r_divsqrt_fin_typeTagOut; // @[fdiv.scala:147:26] reg r_divsqrt_fin_fromint; // @[fdiv.scala:147:26] reg r_divsqrt_fin_toint; // @[fdiv.scala:147:26] reg r_divsqrt_fin_fastpipe; // @[fdiv.scala:147:26] reg r_divsqrt_fin_fma; // @[fdiv.scala:147:26] reg r_divsqrt_fin_div; // @[fdiv.scala:147:26] reg r_divsqrt_fin_sqrt; // @[fdiv.scala:147:26] reg r_divsqrt_fin_wflags; // @[fdiv.scala:147:26] reg r_divsqrt_fin_vec; // @[fdiv.scala:147:26] reg [2:0] r_divsqrt_fin_rm; // @[fdiv.scala:147:26] reg [1:0] r_divsqrt_fin_fmaCmd; // @[fdiv.scala:147:26] reg [1:0] r_divsqrt_fin_typ; // @[fdiv.scala:147:26] reg [1:0] r_divsqrt_fin_fmt; // @[fdiv.scala:147:26] reg [64:0] r_divsqrt_fin_in1; // @[fdiv.scala:147:26] reg [64:0] r_divsqrt_fin_in2; // @[fdiv.scala:147:26] reg [64:0] r_divsqrt_fin_in3; // @[fdiv.scala:147:26] reg [6:0] r_divsqrt_uop_uopc; // @[fdiv.scala:148:26] reg [31:0] r_divsqrt_uop_inst; // @[fdiv.scala:148:26] reg [31:0] r_divsqrt_uop_debug_inst; // @[fdiv.scala:148:26] reg r_divsqrt_uop_is_rvc; // @[fdiv.scala:148:26] reg [39:0] r_divsqrt_uop_debug_pc; // @[fdiv.scala:148:26] reg [2:0] r_divsqrt_uop_iq_type; // @[fdiv.scala:148:26] reg [9:0] r_divsqrt_uop_fu_code; // @[fdiv.scala:148:26] reg [3:0] r_divsqrt_uop_ctrl_br_type; // @[fdiv.scala:148:26] reg [1:0] r_divsqrt_uop_ctrl_op1_sel; // @[fdiv.scala:148:26] reg [2:0] r_divsqrt_uop_ctrl_op2_sel; // @[fdiv.scala:148:26] reg [2:0] r_divsqrt_uop_ctrl_imm_sel; // @[fdiv.scala:148:26] reg [4:0] r_divsqrt_uop_ctrl_op_fcn; // @[fdiv.scala:148:26] reg r_divsqrt_uop_ctrl_fcn_dw; // @[fdiv.scala:148:26] reg [2:0] r_divsqrt_uop_ctrl_csr_cmd; // @[fdiv.scala:148:26] reg r_divsqrt_uop_ctrl_is_load; // @[fdiv.scala:148:26] reg r_divsqrt_uop_ctrl_is_sta; // @[fdiv.scala:148:26] reg r_divsqrt_uop_ctrl_is_std; // @[fdiv.scala:148:26] reg [1:0] r_divsqrt_uop_iw_state; // @[fdiv.scala:148:26] reg r_divsqrt_uop_iw_p1_poisoned; // @[fdiv.scala:148:26] reg r_divsqrt_uop_iw_p2_poisoned; // @[fdiv.scala:148:26] reg r_divsqrt_uop_is_br; // @[fdiv.scala:148:26] reg r_divsqrt_uop_is_jalr; // @[fdiv.scala:148:26] reg r_divsqrt_uop_is_jal; // @[fdiv.scala:148:26] reg r_divsqrt_uop_is_sfb; // @[fdiv.scala:148:26] reg [15:0] r_divsqrt_uop_br_mask; // @[fdiv.scala:148:26] reg [3:0] r_divsqrt_uop_br_tag; // @[fdiv.scala:148:26] reg [4:0] r_divsqrt_uop_ftq_idx; // @[fdiv.scala:148:26] reg r_divsqrt_uop_edge_inst; // @[fdiv.scala:148:26] reg [5:0] r_divsqrt_uop_pc_lob; // @[fdiv.scala:148:26] reg r_divsqrt_uop_taken; // @[fdiv.scala:148:26] reg [19:0] r_divsqrt_uop_imm_packed; // @[fdiv.scala:148:26] reg [11:0] r_divsqrt_uop_csr_addr; // @[fdiv.scala:148:26] reg [6:0] r_divsqrt_uop_rob_idx; // @[fdiv.scala:148:26] reg [4:0] r_divsqrt_uop_ldq_idx; // @[fdiv.scala:148:26] reg [4:0] r_divsqrt_uop_stq_idx; // @[fdiv.scala:148:26] reg [1:0] r_divsqrt_uop_rxq_idx; // @[fdiv.scala:148:26] reg [6:0] r_divsqrt_uop_pdst; // @[fdiv.scala:148:26] reg [6:0] r_divsqrt_uop_prs1; // @[fdiv.scala:148:26] reg [6:0] r_divsqrt_uop_prs2; // @[fdiv.scala:148:26] reg [6:0] r_divsqrt_uop_prs3; // @[fdiv.scala:148:26] reg [4:0] r_divsqrt_uop_ppred; // @[fdiv.scala:148:26] reg r_divsqrt_uop_prs1_busy; // @[fdiv.scala:148:26] reg r_divsqrt_uop_prs2_busy; // @[fdiv.scala:148:26] reg r_divsqrt_uop_prs3_busy; // @[fdiv.scala:148:26] reg r_divsqrt_uop_ppred_busy; // @[fdiv.scala:148:26] reg [6:0] r_divsqrt_uop_stale_pdst; // @[fdiv.scala:148:26] reg r_divsqrt_uop_exception; // @[fdiv.scala:148:26] reg [63:0] r_divsqrt_uop_exc_cause; // @[fdiv.scala:148:26] reg r_divsqrt_uop_bypassable; // @[fdiv.scala:148:26] reg [4:0] r_divsqrt_uop_mem_cmd; // @[fdiv.scala:148:26] reg [1:0] r_divsqrt_uop_mem_size; // @[fdiv.scala:148:26] reg r_divsqrt_uop_mem_signed; // @[fdiv.scala:148:26] reg r_divsqrt_uop_is_fence; // @[fdiv.scala:148:26] reg r_divsqrt_uop_is_fencei; // @[fdiv.scala:148:26] reg r_divsqrt_uop_is_amo; // @[fdiv.scala:148:26] reg r_divsqrt_uop_uses_ldq; // @[fdiv.scala:148:26] reg r_divsqrt_uop_uses_stq; // @[fdiv.scala:148:26] reg r_divsqrt_uop_is_sys_pc2epc; // @[fdiv.scala:148:26] reg r_divsqrt_uop_is_unique; // @[fdiv.scala:148:26] reg r_divsqrt_uop_flush_on_commit; // @[fdiv.scala:148:26] reg r_divsqrt_uop_ldst_is_rs1; // @[fdiv.scala:148:26] reg [5:0] r_divsqrt_uop_ldst; // @[fdiv.scala:148:26] reg [5:0] r_divsqrt_uop_lrs1; // @[fdiv.scala:148:26] reg [5:0] r_divsqrt_uop_lrs2; // @[fdiv.scala:148:26] reg [5:0] r_divsqrt_uop_lrs3; // @[fdiv.scala:148:26] reg r_divsqrt_uop_ldst_val; // @[fdiv.scala:148:26] reg [1:0] r_divsqrt_uop_dst_rtype; // @[fdiv.scala:148:26] reg [1:0] r_divsqrt_uop_lrs1_rtype; // @[fdiv.scala:148:26] reg [1:0] r_divsqrt_uop_lrs2_rtype; // @[fdiv.scala:148:26] reg r_divsqrt_uop_frs3_en; // @[fdiv.scala:148:26] reg r_divsqrt_uop_fp_val; // @[fdiv.scala:148:26] reg r_divsqrt_uop_fp_single; // @[fdiv.scala:148:26] reg r_divsqrt_uop_xcpt_pf_if; // @[fdiv.scala:148:26] reg r_divsqrt_uop_xcpt_ae_if; // @[fdiv.scala:148:26] reg r_divsqrt_uop_xcpt_ma_if; // @[fdiv.scala:148:26] reg r_divsqrt_uop_bp_debug_if; // @[fdiv.scala:148:26] reg r_divsqrt_uop_bp_xcpt_if; // @[fdiv.scala:148:26] reg [1:0] r_divsqrt_uop_debug_fsrc; // @[fdiv.scala:148:26] reg [1:0] r_divsqrt_uop_debug_tsrc; // @[fdiv.scala:148:26] wire _output_buffer_available_T; // @[fdiv.scala:189:30] wire output_buffer_available; // @[fdiv.scala:151:37] wire _may_fire_input_T = r_buffer_fin_div | r_buffer_fin_sqrt; // @[fdiv.scala:99:25, :155:23] wire _may_fire_input_T_1 = r_buffer_val & _may_fire_input_T; // @[fdiv.scala:97:29, :154:18, :155:23] wire _may_fire_input_T_2 = ~r_divsqrt_val; // @[fdiv.scala:145:30, :156:5] wire _may_fire_input_T_3 = _may_fire_input_T_1 & _may_fire_input_T_2; // @[fdiv.scala:154:18, :155:45, :156:5] wire may_fire_input = _may_fire_input_T_3 & output_buffer_available; // @[fdiv.scala:151:37, :155:45, :156:20] wire divsqrt_ready = r_buffer_fin_sqrt ? _divsqrt_io_inReady_sqrt : _divsqrt_io_inReady_div; // @[fdiv.scala:99:25, :143:23, :159:26] wire [64:0] _divsqrt_io_b_T = r_buffer_fin_sqrt ? r_buffer_fin_in1 : r_buffer_fin_in2; // @[fdiv.scala:99:25, :163:22] wire [15:0] _GEN_0 = io_brupdate_b1_mispredict_mask_0 & r_divsqrt_uop_br_mask; // @[util.scala:118:51] wire [15:0] _r_divsqrt_killed_T; // @[util.scala:118:51] assign _r_divsqrt_killed_T = _GEN_0; // @[util.scala:118:51] wire [15:0] _r_out_val_T_1; // @[util.scala:118:51] assign _r_out_val_T_1 = _GEN_0; // @[util.scala:118:51] wire _r_divsqrt_killed_T_1 = |_r_divsqrt_killed_T; // @[util.scala:118:{51,59}] wire _r_divsqrt_killed_T_2 = r_divsqrt_killed | _r_divsqrt_killed_T_1; // @[util.scala:118:59] wire _r_divsqrt_killed_T_3 = _r_divsqrt_killed_T_2 | io_req_bits_kill_0; // @[fdiv.scala:84:7, :167:{40,88}] wire [15:0] _r_divsqrt_uop_br_mask_T = ~io_brupdate_b1_resolve_mask_0; // @[util.scala:85:27] wire [15:0] _r_divsqrt_uop_br_mask_T_1 = r_divsqrt_uop_br_mask & _r_divsqrt_uop_br_mask_T; // @[util.scala:85:{25,27}] wire _r_divsqrt_killed_T_5 = |_r_divsqrt_killed_T_4; // @[util.scala:118:{51,59}] wire _r_divsqrt_killed_T_6 = _r_divsqrt_killed_T_5 | io_req_bits_kill_0; // @[util.scala:118:59] wire [15:0] _r_divsqrt_uop_br_mask_T_2 = ~io_brupdate_b1_resolve_mask_0; // @[util.scala:85:27] wire [15:0] _r_divsqrt_uop_br_mask_T_3 = r_buffer_req_uop_br_mask & _r_divsqrt_uop_br_mask_T_2; // @[util.scala:85:{25,27}] reg r_out_val; // @[fdiv.scala:184:26] reg [6:0] r_out_uop_uopc; // @[fdiv.scala:185:22] assign io_resp_bits_uop_uopc_0 = r_out_uop_uopc; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_uopc_0 = r_out_uop_uopc; // @[fdiv.scala:84:7, :185:22] reg [31:0] r_out_uop_inst; // @[fdiv.scala:185:22] assign io_resp_bits_uop_inst_0 = r_out_uop_inst; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_inst_0 = r_out_uop_inst; // @[fdiv.scala:84:7, :185:22] reg [31:0] r_out_uop_debug_inst; // @[fdiv.scala:185:22] assign io_resp_bits_uop_debug_inst_0 = r_out_uop_debug_inst; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_debug_inst_0 = r_out_uop_debug_inst; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_is_rvc; // @[fdiv.scala:185:22] assign io_resp_bits_uop_is_rvc_0 = r_out_uop_is_rvc; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_is_rvc_0 = r_out_uop_is_rvc; // @[fdiv.scala:84:7, :185:22] reg [39:0] r_out_uop_debug_pc; // @[fdiv.scala:185:22] assign io_resp_bits_uop_debug_pc_0 = r_out_uop_debug_pc; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_debug_pc_0 = r_out_uop_debug_pc; // @[fdiv.scala:84:7, :185:22] reg [2:0] r_out_uop_iq_type; // @[fdiv.scala:185:22] assign io_resp_bits_uop_iq_type_0 = r_out_uop_iq_type; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_iq_type_0 = r_out_uop_iq_type; // @[fdiv.scala:84:7, :185:22] reg [9:0] r_out_uop_fu_code; // @[fdiv.scala:185:22] assign io_resp_bits_uop_fu_code_0 = r_out_uop_fu_code; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_fu_code_0 = r_out_uop_fu_code; // @[fdiv.scala:84:7, :185:22] reg [3:0] r_out_uop_ctrl_br_type; // @[fdiv.scala:185:22] assign io_resp_bits_uop_ctrl_br_type_0 = r_out_uop_ctrl_br_type; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_ctrl_br_type_0 = r_out_uop_ctrl_br_type; // @[fdiv.scala:84:7, :185:22] reg [1:0] r_out_uop_ctrl_op1_sel; // @[fdiv.scala:185:22] assign io_resp_bits_uop_ctrl_op1_sel_0 = r_out_uop_ctrl_op1_sel; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_ctrl_op1_sel_0 = r_out_uop_ctrl_op1_sel; // @[fdiv.scala:84:7, :185:22] reg [2:0] r_out_uop_ctrl_op2_sel; // @[fdiv.scala:185:22] assign io_resp_bits_uop_ctrl_op2_sel_0 = r_out_uop_ctrl_op2_sel; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_ctrl_op2_sel_0 = r_out_uop_ctrl_op2_sel; // @[fdiv.scala:84:7, :185:22] reg [2:0] r_out_uop_ctrl_imm_sel; // @[fdiv.scala:185:22] assign io_resp_bits_uop_ctrl_imm_sel_0 = r_out_uop_ctrl_imm_sel; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_ctrl_imm_sel_0 = r_out_uop_ctrl_imm_sel; // @[fdiv.scala:84:7, :185:22] reg [4:0] r_out_uop_ctrl_op_fcn; // @[fdiv.scala:185:22] assign io_resp_bits_uop_ctrl_op_fcn_0 = r_out_uop_ctrl_op_fcn; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_ctrl_op_fcn_0 = r_out_uop_ctrl_op_fcn; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_ctrl_fcn_dw; // @[fdiv.scala:185:22] assign io_resp_bits_uop_ctrl_fcn_dw_0 = r_out_uop_ctrl_fcn_dw; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_ctrl_fcn_dw_0 = r_out_uop_ctrl_fcn_dw; // @[fdiv.scala:84:7, :185:22] reg [2:0] r_out_uop_ctrl_csr_cmd; // @[fdiv.scala:185:22] assign io_resp_bits_uop_ctrl_csr_cmd_0 = r_out_uop_ctrl_csr_cmd; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_ctrl_csr_cmd_0 = r_out_uop_ctrl_csr_cmd; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_ctrl_is_load; // @[fdiv.scala:185:22] assign io_resp_bits_uop_ctrl_is_load_0 = r_out_uop_ctrl_is_load; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_ctrl_is_load_0 = r_out_uop_ctrl_is_load; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_ctrl_is_sta; // @[fdiv.scala:185:22] assign io_resp_bits_uop_ctrl_is_sta_0 = r_out_uop_ctrl_is_sta; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_ctrl_is_sta_0 = r_out_uop_ctrl_is_sta; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_ctrl_is_std; // @[fdiv.scala:185:22] assign io_resp_bits_uop_ctrl_is_std_0 = r_out_uop_ctrl_is_std; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_ctrl_is_std_0 = r_out_uop_ctrl_is_std; // @[fdiv.scala:84:7, :185:22] reg [1:0] r_out_uop_iw_state; // @[fdiv.scala:185:22] assign io_resp_bits_uop_iw_state_0 = r_out_uop_iw_state; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_iw_state_0 = r_out_uop_iw_state; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_iw_p1_poisoned; // @[fdiv.scala:185:22] assign io_resp_bits_uop_iw_p1_poisoned_0 = r_out_uop_iw_p1_poisoned; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_iw_p1_poisoned_0 = r_out_uop_iw_p1_poisoned; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_iw_p2_poisoned; // @[fdiv.scala:185:22] assign io_resp_bits_uop_iw_p2_poisoned_0 = r_out_uop_iw_p2_poisoned; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_iw_p2_poisoned_0 = r_out_uop_iw_p2_poisoned; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_is_br; // @[fdiv.scala:185:22] assign io_resp_bits_uop_is_br_0 = r_out_uop_is_br; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_is_br_0 = r_out_uop_is_br; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_is_jalr; // @[fdiv.scala:185:22] assign io_resp_bits_uop_is_jalr_0 = r_out_uop_is_jalr; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_is_jalr_0 = r_out_uop_is_jalr; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_is_jal; // @[fdiv.scala:185:22] assign io_resp_bits_uop_is_jal_0 = r_out_uop_is_jal; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_is_jal_0 = r_out_uop_is_jal; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_is_sfb; // @[fdiv.scala:185:22] assign io_resp_bits_uop_is_sfb_0 = r_out_uop_is_sfb; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_is_sfb_0 = r_out_uop_is_sfb; // @[fdiv.scala:84:7, :185:22] reg [15:0] r_out_uop_br_mask; // @[fdiv.scala:185:22] assign io_resp_bits_uop_br_mask_0 = r_out_uop_br_mask; // @[fdiv.scala:84:7, :185:22] reg [3:0] r_out_uop_br_tag; // @[fdiv.scala:185:22] assign io_resp_bits_uop_br_tag_0 = r_out_uop_br_tag; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_br_tag_0 = r_out_uop_br_tag; // @[fdiv.scala:84:7, :185:22] reg [4:0] r_out_uop_ftq_idx; // @[fdiv.scala:185:22] assign io_resp_bits_uop_ftq_idx_0 = r_out_uop_ftq_idx; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_ftq_idx_0 = r_out_uop_ftq_idx; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_edge_inst; // @[fdiv.scala:185:22] assign io_resp_bits_uop_edge_inst_0 = r_out_uop_edge_inst; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_edge_inst_0 = r_out_uop_edge_inst; // @[fdiv.scala:84:7, :185:22] reg [5:0] r_out_uop_pc_lob; // @[fdiv.scala:185:22] assign io_resp_bits_uop_pc_lob_0 = r_out_uop_pc_lob; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_pc_lob_0 = r_out_uop_pc_lob; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_taken; // @[fdiv.scala:185:22] assign io_resp_bits_uop_taken_0 = r_out_uop_taken; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_taken_0 = r_out_uop_taken; // @[fdiv.scala:84:7, :185:22] reg [19:0] r_out_uop_imm_packed; // @[fdiv.scala:185:22] assign io_resp_bits_uop_imm_packed_0 = r_out_uop_imm_packed; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_imm_packed_0 = r_out_uop_imm_packed; // @[fdiv.scala:84:7, :185:22] reg [11:0] r_out_uop_csr_addr; // @[fdiv.scala:185:22] assign io_resp_bits_uop_csr_addr_0 = r_out_uop_csr_addr; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_csr_addr_0 = r_out_uop_csr_addr; // @[fdiv.scala:84:7, :185:22] reg [6:0] r_out_uop_rob_idx; // @[fdiv.scala:185:22] assign io_resp_bits_uop_rob_idx_0 = r_out_uop_rob_idx; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_rob_idx_0 = r_out_uop_rob_idx; // @[fdiv.scala:84:7, :185:22] reg [4:0] r_out_uop_ldq_idx; // @[fdiv.scala:185:22] assign io_resp_bits_uop_ldq_idx_0 = r_out_uop_ldq_idx; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_ldq_idx_0 = r_out_uop_ldq_idx; // @[fdiv.scala:84:7, :185:22] reg [4:0] r_out_uop_stq_idx; // @[fdiv.scala:185:22] assign io_resp_bits_uop_stq_idx_0 = r_out_uop_stq_idx; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_stq_idx_0 = r_out_uop_stq_idx; // @[fdiv.scala:84:7, :185:22] reg [1:0] r_out_uop_rxq_idx; // @[fdiv.scala:185:22] assign io_resp_bits_uop_rxq_idx_0 = r_out_uop_rxq_idx; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_rxq_idx_0 = r_out_uop_rxq_idx; // @[fdiv.scala:84:7, :185:22] reg [6:0] r_out_uop_pdst; // @[fdiv.scala:185:22] assign io_resp_bits_uop_pdst_0 = r_out_uop_pdst; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_pdst_0 = r_out_uop_pdst; // @[fdiv.scala:84:7, :185:22] reg [6:0] r_out_uop_prs1; // @[fdiv.scala:185:22] assign io_resp_bits_uop_prs1_0 = r_out_uop_prs1; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_prs1_0 = r_out_uop_prs1; // @[fdiv.scala:84:7, :185:22] reg [6:0] r_out_uop_prs2; // @[fdiv.scala:185:22] assign io_resp_bits_uop_prs2_0 = r_out_uop_prs2; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_prs2_0 = r_out_uop_prs2; // @[fdiv.scala:84:7, :185:22] reg [6:0] r_out_uop_prs3; // @[fdiv.scala:185:22] assign io_resp_bits_uop_prs3_0 = r_out_uop_prs3; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_prs3_0 = r_out_uop_prs3; // @[fdiv.scala:84:7, :185:22] reg [4:0] r_out_uop_ppred; // @[fdiv.scala:185:22] assign io_resp_bits_uop_ppred_0 = r_out_uop_ppred; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_ppred_0 = r_out_uop_ppred; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_prs1_busy; // @[fdiv.scala:185:22] assign io_resp_bits_uop_prs1_busy_0 = r_out_uop_prs1_busy; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_prs1_busy_0 = r_out_uop_prs1_busy; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_prs2_busy; // @[fdiv.scala:185:22] assign io_resp_bits_uop_prs2_busy_0 = r_out_uop_prs2_busy; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_prs2_busy_0 = r_out_uop_prs2_busy; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_prs3_busy; // @[fdiv.scala:185:22] assign io_resp_bits_uop_prs3_busy_0 = r_out_uop_prs3_busy; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_prs3_busy_0 = r_out_uop_prs3_busy; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_ppred_busy; // @[fdiv.scala:185:22] assign io_resp_bits_uop_ppred_busy_0 = r_out_uop_ppred_busy; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_ppred_busy_0 = r_out_uop_ppred_busy; // @[fdiv.scala:84:7, :185:22] reg [6:0] r_out_uop_stale_pdst; // @[fdiv.scala:185:22] assign io_resp_bits_uop_stale_pdst_0 = r_out_uop_stale_pdst; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_stale_pdst_0 = r_out_uop_stale_pdst; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_exception; // @[fdiv.scala:185:22] assign io_resp_bits_uop_exception_0 = r_out_uop_exception; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_exception_0 = r_out_uop_exception; // @[fdiv.scala:84:7, :185:22] reg [63:0] r_out_uop_exc_cause; // @[fdiv.scala:185:22] assign io_resp_bits_uop_exc_cause_0 = r_out_uop_exc_cause; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_exc_cause_0 = r_out_uop_exc_cause; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_bypassable; // @[fdiv.scala:185:22] assign io_resp_bits_uop_bypassable_0 = r_out_uop_bypassable; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_bypassable_0 = r_out_uop_bypassable; // @[fdiv.scala:84:7, :185:22] reg [4:0] r_out_uop_mem_cmd; // @[fdiv.scala:185:22] assign io_resp_bits_uop_mem_cmd_0 = r_out_uop_mem_cmd; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_mem_cmd_0 = r_out_uop_mem_cmd; // @[fdiv.scala:84:7, :185:22] reg [1:0] r_out_uop_mem_size; // @[fdiv.scala:185:22] assign io_resp_bits_uop_mem_size_0 = r_out_uop_mem_size; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_mem_size_0 = r_out_uop_mem_size; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_mem_signed; // @[fdiv.scala:185:22] assign io_resp_bits_uop_mem_signed_0 = r_out_uop_mem_signed; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_mem_signed_0 = r_out_uop_mem_signed; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_is_fence; // @[fdiv.scala:185:22] assign io_resp_bits_uop_is_fence_0 = r_out_uop_is_fence; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_is_fence_0 = r_out_uop_is_fence; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_is_fencei; // @[fdiv.scala:185:22] assign io_resp_bits_uop_is_fencei_0 = r_out_uop_is_fencei; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_is_fencei_0 = r_out_uop_is_fencei; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_is_amo; // @[fdiv.scala:185:22] assign io_resp_bits_uop_is_amo_0 = r_out_uop_is_amo; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_is_amo_0 = r_out_uop_is_amo; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_uses_ldq; // @[fdiv.scala:185:22] assign io_resp_bits_uop_uses_ldq_0 = r_out_uop_uses_ldq; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_uses_ldq_0 = r_out_uop_uses_ldq; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_uses_stq; // @[fdiv.scala:185:22] assign io_resp_bits_uop_uses_stq_0 = r_out_uop_uses_stq; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_uses_stq_0 = r_out_uop_uses_stq; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_is_sys_pc2epc; // @[fdiv.scala:185:22] assign io_resp_bits_uop_is_sys_pc2epc_0 = r_out_uop_is_sys_pc2epc; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_is_sys_pc2epc_0 = r_out_uop_is_sys_pc2epc; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_is_unique; // @[fdiv.scala:185:22] assign io_resp_bits_uop_is_unique_0 = r_out_uop_is_unique; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_is_unique_0 = r_out_uop_is_unique; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_flush_on_commit; // @[fdiv.scala:185:22] assign io_resp_bits_uop_flush_on_commit_0 = r_out_uop_flush_on_commit; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_flush_on_commit_0 = r_out_uop_flush_on_commit; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_ldst_is_rs1; // @[fdiv.scala:185:22] assign io_resp_bits_uop_ldst_is_rs1_0 = r_out_uop_ldst_is_rs1; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_ldst_is_rs1_0 = r_out_uop_ldst_is_rs1; // @[fdiv.scala:84:7, :185:22] reg [5:0] r_out_uop_ldst; // @[fdiv.scala:185:22] assign io_resp_bits_uop_ldst_0 = r_out_uop_ldst; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_ldst_0 = r_out_uop_ldst; // @[fdiv.scala:84:7, :185:22] reg [5:0] r_out_uop_lrs1; // @[fdiv.scala:185:22] assign io_resp_bits_uop_lrs1_0 = r_out_uop_lrs1; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_lrs1_0 = r_out_uop_lrs1; // @[fdiv.scala:84:7, :185:22] reg [5:0] r_out_uop_lrs2; // @[fdiv.scala:185:22] assign io_resp_bits_uop_lrs2_0 = r_out_uop_lrs2; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_lrs2_0 = r_out_uop_lrs2; // @[fdiv.scala:84:7, :185:22] reg [5:0] r_out_uop_lrs3; // @[fdiv.scala:185:22] assign io_resp_bits_uop_lrs3_0 = r_out_uop_lrs3; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_lrs3_0 = r_out_uop_lrs3; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_ldst_val; // @[fdiv.scala:185:22] assign io_resp_bits_uop_ldst_val_0 = r_out_uop_ldst_val; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_ldst_val_0 = r_out_uop_ldst_val; // @[fdiv.scala:84:7, :185:22] reg [1:0] r_out_uop_dst_rtype; // @[fdiv.scala:185:22] assign io_resp_bits_uop_dst_rtype_0 = r_out_uop_dst_rtype; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_dst_rtype_0 = r_out_uop_dst_rtype; // @[fdiv.scala:84:7, :185:22] reg [1:0] r_out_uop_lrs1_rtype; // @[fdiv.scala:185:22] assign io_resp_bits_uop_lrs1_rtype_0 = r_out_uop_lrs1_rtype; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_lrs1_rtype_0 = r_out_uop_lrs1_rtype; // @[fdiv.scala:84:7, :185:22] reg [1:0] r_out_uop_lrs2_rtype; // @[fdiv.scala:185:22] assign io_resp_bits_uop_lrs2_rtype_0 = r_out_uop_lrs2_rtype; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_lrs2_rtype_0 = r_out_uop_lrs2_rtype; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_frs3_en; // @[fdiv.scala:185:22] assign io_resp_bits_uop_frs3_en_0 = r_out_uop_frs3_en; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_frs3_en_0 = r_out_uop_frs3_en; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_fp_val; // @[fdiv.scala:185:22] assign io_resp_bits_uop_fp_val_0 = r_out_uop_fp_val; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_fp_val_0 = r_out_uop_fp_val; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_fp_single; // @[fdiv.scala:185:22] assign io_resp_bits_uop_fp_single_0 = r_out_uop_fp_single; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_fp_single_0 = r_out_uop_fp_single; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_xcpt_pf_if; // @[fdiv.scala:185:22] assign io_resp_bits_uop_xcpt_pf_if_0 = r_out_uop_xcpt_pf_if; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_xcpt_pf_if_0 = r_out_uop_xcpt_pf_if; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_xcpt_ae_if; // @[fdiv.scala:185:22] assign io_resp_bits_uop_xcpt_ae_if_0 = r_out_uop_xcpt_ae_if; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_xcpt_ae_if_0 = r_out_uop_xcpt_ae_if; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_xcpt_ma_if; // @[fdiv.scala:185:22] assign io_resp_bits_uop_xcpt_ma_if_0 = r_out_uop_xcpt_ma_if; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_xcpt_ma_if_0 = r_out_uop_xcpt_ma_if; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_bp_debug_if; // @[fdiv.scala:185:22] assign io_resp_bits_uop_bp_debug_if_0 = r_out_uop_bp_debug_if; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_bp_debug_if_0 = r_out_uop_bp_debug_if; // @[fdiv.scala:84:7, :185:22] reg r_out_uop_bp_xcpt_if; // @[fdiv.scala:185:22] assign io_resp_bits_uop_bp_xcpt_if_0 = r_out_uop_bp_xcpt_if; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_bp_xcpt_if_0 = r_out_uop_bp_xcpt_if; // @[fdiv.scala:84:7, :185:22] reg [1:0] r_out_uop_debug_fsrc; // @[fdiv.scala:185:22] assign io_resp_bits_uop_debug_fsrc_0 = r_out_uop_debug_fsrc; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_debug_fsrc_0 = r_out_uop_debug_fsrc; // @[fdiv.scala:84:7, :185:22] reg [1:0] r_out_uop_debug_tsrc; // @[fdiv.scala:185:22] assign io_resp_bits_uop_debug_tsrc_0 = r_out_uop_debug_tsrc; // @[fdiv.scala:84:7, :185:22] assign io_resp_bits_fflags_bits_uop_debug_tsrc_0 = r_out_uop_debug_tsrc; // @[fdiv.scala:84:7, :185:22] reg [4:0] r_out_flags_double; // @[fdiv.scala:186:31] reg [64:0] r_out_wdata_double; // @[fdiv.scala:187:31] wire [64:0] _io_resp_bits_data_T_4 = r_out_wdata_double; // @[package.scala:39:76] assign _output_buffer_available_T = ~r_out_val; // @[fdiv.scala:184:26, :189:30] assign output_buffer_available = _output_buffer_available_T; // @[fdiv.scala:151:37, :189:30] wire [15:0] _r_out_uop_br_mask_T = ~io_brupdate_b1_resolve_mask_0; // @[util.scala:85:27] wire [15:0] _r_out_uop_br_mask_T_1 = r_out_uop_br_mask & _r_out_uop_br_mask_T; // @[util.scala:85:{25,27}] wire [15:0] _io_resp_valid_T = io_brupdate_b1_mispredict_mask_0 & r_out_uop_br_mask; // @[util.scala:118:51] wire _T_21 = _divsqrt_io_outValid_div | _divsqrt_io_outValid_sqrt; // @[fdiv.scala:143:23, :196:33] wire _r_out_val_T = ~r_divsqrt_killed; // @[fdiv.scala:146:29, :199:18] wire _r_out_val_T_2 = |_r_out_val_T_1; // @[util.scala:118:{51,59}] wire _r_out_val_T_3 = ~_r_out_val_T_2; // @[util.scala:118:59] wire _r_out_val_T_4 = _r_out_val_T & _r_out_val_T_3; // @[fdiv.scala:199:{18,36,39}] wire _r_out_val_T_5 = ~io_req_bits_kill_0; // @[fdiv.scala:84:7, :105:71, :199:88] wire _r_out_val_T_6 = _r_out_val_T_4 & _r_out_val_T_5; // @[fdiv.scala:199:{36,85,88}] wire [15:0] _r_out_uop_br_mask_T_2 = ~io_brupdate_b1_resolve_mask_0; // @[util.scala:85:27] wire [15:0] _r_out_uop_br_mask_T_3 = r_divsqrt_uop_br_mask & _r_out_uop_br_mask_T_2; // @[util.scala:85:{25,27}] wire [64:0] r_out_wdata_double_maskedNaN = _divsqrt_io_out & 65'h1EFEFFFFFFFFFFFFF; // @[FPU.scala:413:25] wire [2:0] _r_out_wdata_double_T = _divsqrt_io_out[63:61]; // @[FPU.scala:249:25] wire _r_out_wdata_double_T_1 = &_r_out_wdata_double_T; // @[FPU.scala:249:{25,56}] wire [64:0] _r_out_wdata_double_T_2 = _r_out_wdata_double_T_1 ? r_out_wdata_double_maskedNaN : _divsqrt_io_out; // @[FPU.scala:249:56, :413:25, :414:10]
Generate the Verilog code corresponding to the following Chisel files. File Buffer.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import org.chipsalliance.diplomacy.lazymodule._ import freechips.rocketchip.diplomacy.BufferParams class TLBufferNode ( a: BufferParams, b: BufferParams, c: BufferParams, d: BufferParams, e: BufferParams)(implicit valName: ValName) extends TLAdapterNode( clientFn = { p => p.v1copy(minLatency = p.minLatency + b.latency + c.latency) }, managerFn = { p => p.v1copy(minLatency = p.minLatency + a.latency + d.latency) } ) { override lazy val nodedebugstring = s"a:${a.toString}, b:${b.toString}, c:${c.toString}, d:${d.toString}, e:${e.toString}" override def circuitIdentity = List(a,b,c,d,e).forall(_ == BufferParams.none) } class TLBuffer( a: BufferParams, b: BufferParams, c: BufferParams, d: BufferParams, e: BufferParams)(implicit p: Parameters) extends LazyModule { def this(ace: BufferParams, bd: BufferParams)(implicit p: Parameters) = this(ace, bd, ace, bd, ace) def this(abcde: BufferParams)(implicit p: Parameters) = this(abcde, abcde) def this()(implicit p: Parameters) = this(BufferParams.default) val node = new TLBufferNode(a, b, c, d, e) lazy val module = new Impl class Impl extends LazyModuleImp(this) { def headBundle = node.out.head._2.bundle override def desiredName = (Seq("TLBuffer") ++ node.out.headOption.map(_._2.bundle.shortName)).mkString("_") (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => out.a <> a(in .a) in .d <> d(out.d) if (edgeOut.manager.anySupportAcquireB && edgeOut.client.anySupportProbe) { in .b <> b(out.b) out.c <> c(in .c) out.e <> e(in .e) } else { in.b.valid := false.B in.c.ready := true.B in.e.ready := true.B out.b.ready := true.B out.c.valid := false.B out.e.valid := false.B } } } } object TLBuffer { def apply() (implicit p: Parameters): TLNode = apply(BufferParams.default) def apply(abcde: BufferParams) (implicit p: Parameters): TLNode = apply(abcde, abcde) def apply(ace: BufferParams, bd: BufferParams)(implicit p: Parameters): TLNode = apply(ace, bd, ace, bd, ace) def apply( a: BufferParams, b: BufferParams, c: BufferParams, d: BufferParams, e: BufferParams)(implicit p: Parameters): TLNode = { val buffer = LazyModule(new TLBuffer(a, b, c, d, e)) buffer.node } def chain(depth: Int, name: Option[String] = None)(implicit p: Parameters): Seq[TLNode] = { val buffers = Seq.fill(depth) { LazyModule(new TLBuffer()) } name.foreach { n => buffers.zipWithIndex.foreach { case (b, i) => b.suggestName(s"${n}_${i}") } } buffers.map(_.node) } def chainNode(depth: Int, name: Option[String] = None)(implicit p: Parameters): TLNode = { chain(depth, name) .reduceLeftOption(_ :*=* _) .getOrElse(TLNameNode("no_buffer")) } } File Nodes.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import org.chipsalliance.diplomacy.nodes._ import freechips.rocketchip.util.{AsyncQueueParams,RationalDirection} case object TLMonitorBuilder extends Field[TLMonitorArgs => TLMonitorBase](args => new TLMonitor(args)) object TLImp extends NodeImp[TLMasterPortParameters, TLSlavePortParameters, TLEdgeOut, TLEdgeIn, TLBundle] { def edgeO(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeOut(pd, pu, p, sourceInfo) def edgeI(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeIn (pd, pu, p, sourceInfo) def bundleO(eo: TLEdgeOut) = TLBundle(eo.bundle) def bundleI(ei: TLEdgeIn) = TLBundle(ei.bundle) def render(ei: TLEdgeIn) = RenderedEdge(colour = "#000000" /* black */, label = (ei.manager.beatBytes * 8).toString) override def monitor(bundle: TLBundle, edge: TLEdgeIn): Unit = { val monitor = Module(edge.params(TLMonitorBuilder)(TLMonitorArgs(edge))) monitor.io.in := bundle } override def mixO(pd: TLMasterPortParameters, node: OutwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLMasterPortParameters = pd.v1copy(clients = pd.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }) override def mixI(pu: TLSlavePortParameters, node: InwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLSlavePortParameters = pu.v1copy(managers = pu.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }) } trait TLFormatNode extends FormatNode[TLEdgeIn, TLEdgeOut] case class TLClientNode(portParams: Seq[TLMasterPortParameters])(implicit valName: ValName) extends SourceNode(TLImp)(portParams) with TLFormatNode case class TLManagerNode(portParams: Seq[TLSlavePortParameters])(implicit valName: ValName) extends SinkNode(TLImp)(portParams) with TLFormatNode case class TLAdapterNode( clientFn: TLMasterPortParameters => TLMasterPortParameters = { s => s }, managerFn: TLSlavePortParameters => TLSlavePortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLImp)(clientFn, managerFn) with TLFormatNode case class TLJunctionNode( clientFn: Seq[TLMasterPortParameters] => Seq[TLMasterPortParameters], managerFn: Seq[TLSlavePortParameters] => Seq[TLSlavePortParameters])( implicit valName: ValName) extends JunctionNode(TLImp)(clientFn, managerFn) with TLFormatNode case class TLIdentityNode()(implicit valName: ValName) extends IdentityNode(TLImp)() with TLFormatNode object TLNameNode { def apply(name: ValName) = TLIdentityNode()(name) def apply(name: Option[String]): TLIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLIdentityNode = apply(Some(name)) } case class TLEphemeralNode()(implicit valName: ValName) extends EphemeralNode(TLImp)() object TLTempNode { def apply(): TLEphemeralNode = TLEphemeralNode()(ValName("temp")) } case class TLNexusNode( clientFn: Seq[TLMasterPortParameters] => TLMasterPortParameters, managerFn: Seq[TLSlavePortParameters] => TLSlavePortParameters)( implicit valName: ValName) extends NexusNode(TLImp)(clientFn, managerFn) with TLFormatNode abstract class TLCustomNode(implicit valName: ValName) extends CustomNode(TLImp) with TLFormatNode // Asynchronous crossings trait TLAsyncFormatNode extends FormatNode[TLAsyncEdgeParameters, TLAsyncEdgeParameters] object TLAsyncImp extends SimpleNodeImp[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncEdgeParameters, TLAsyncBundle] { def edge(pd: TLAsyncClientPortParameters, pu: TLAsyncManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLAsyncEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLAsyncEdgeParameters) = new TLAsyncBundle(e.bundle) def render(e: TLAsyncEdgeParameters) = RenderedEdge(colour = "#ff0000" /* red */, label = e.manager.async.depth.toString) override def mixO(pd: TLAsyncClientPortParameters, node: OutwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLAsyncManagerPortParameters, node: InwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLAsyncAdapterNode( clientFn: TLAsyncClientPortParameters => TLAsyncClientPortParameters = { s => s }, managerFn: TLAsyncManagerPortParameters => TLAsyncManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLAsyncImp)(clientFn, managerFn) with TLAsyncFormatNode case class TLAsyncIdentityNode()(implicit valName: ValName) extends IdentityNode(TLAsyncImp)() with TLAsyncFormatNode object TLAsyncNameNode { def apply(name: ValName) = TLAsyncIdentityNode()(name) def apply(name: Option[String]): TLAsyncIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLAsyncIdentityNode = apply(Some(name)) } case class TLAsyncSourceNode(sync: Option[Int])(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLAsyncImp)( dFn = { p => TLAsyncClientPortParameters(p) }, uFn = { p => p.base.v1copy(minLatency = p.base.minLatency + sync.getOrElse(p.async.sync)) }) with FormatNode[TLEdgeIn, TLAsyncEdgeParameters] // discard cycles in other clock domain case class TLAsyncSinkNode(async: AsyncQueueParams)(implicit valName: ValName) extends MixedAdapterNode(TLAsyncImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = p.base.minLatency + async.sync) }, uFn = { p => TLAsyncManagerPortParameters(async, p) }) with FormatNode[TLAsyncEdgeParameters, TLEdgeOut] // Rationally related crossings trait TLRationalFormatNode extends FormatNode[TLRationalEdgeParameters, TLRationalEdgeParameters] object TLRationalImp extends SimpleNodeImp[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalEdgeParameters, TLRationalBundle] { def edge(pd: TLRationalClientPortParameters, pu: TLRationalManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLRationalEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLRationalEdgeParameters) = new TLRationalBundle(e.bundle) def render(e: TLRationalEdgeParameters) = RenderedEdge(colour = "#00ff00" /* green */) override def mixO(pd: TLRationalClientPortParameters, node: OutwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLRationalManagerPortParameters, node: InwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLRationalAdapterNode( clientFn: TLRationalClientPortParameters => TLRationalClientPortParameters = { s => s }, managerFn: TLRationalManagerPortParameters => TLRationalManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLRationalImp)(clientFn, managerFn) with TLRationalFormatNode case class TLRationalIdentityNode()(implicit valName: ValName) extends IdentityNode(TLRationalImp)() with TLRationalFormatNode object TLRationalNameNode { def apply(name: ValName) = TLRationalIdentityNode()(name) def apply(name: Option[String]): TLRationalIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLRationalIdentityNode = apply(Some(name)) } case class TLRationalSourceNode()(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLRationalImp)( dFn = { p => TLRationalClientPortParameters(p) }, uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLRationalEdgeParameters] // discard cycles from other clock domain case class TLRationalSinkNode(direction: RationalDirection)(implicit valName: ValName) extends MixedAdapterNode(TLRationalImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = 1) }, uFn = { p => TLRationalManagerPortParameters(direction, p) }) with FormatNode[TLRationalEdgeParameters, TLEdgeOut] // Credited version of TileLink channels trait TLCreditedFormatNode extends FormatNode[TLCreditedEdgeParameters, TLCreditedEdgeParameters] object TLCreditedImp extends SimpleNodeImp[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedEdgeParameters, TLCreditedBundle] { def edge(pd: TLCreditedClientPortParameters, pu: TLCreditedManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLCreditedEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLCreditedEdgeParameters) = new TLCreditedBundle(e.bundle) def render(e: TLCreditedEdgeParameters) = RenderedEdge(colour = "#ffff00" /* yellow */, e.delay.toString) override def mixO(pd: TLCreditedClientPortParameters, node: OutwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLCreditedManagerPortParameters, node: InwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLCreditedAdapterNode( clientFn: TLCreditedClientPortParameters => TLCreditedClientPortParameters = { s => s }, managerFn: TLCreditedManagerPortParameters => TLCreditedManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLCreditedImp)(clientFn, managerFn) with TLCreditedFormatNode case class TLCreditedIdentityNode()(implicit valName: ValName) extends IdentityNode(TLCreditedImp)() with TLCreditedFormatNode object TLCreditedNameNode { def apply(name: ValName) = TLCreditedIdentityNode()(name) def apply(name: Option[String]): TLCreditedIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLCreditedIdentityNode = apply(Some(name)) } case class TLCreditedSourceNode(delay: TLCreditedDelay)(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLCreditedImp)( dFn = { p => TLCreditedClientPortParameters(delay, p) }, uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLCreditedEdgeParameters] // discard cycles from other clock domain case class TLCreditedSinkNode(delay: TLCreditedDelay)(implicit valName: ValName) extends MixedAdapterNode(TLCreditedImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = 1) }, uFn = { p => TLCreditedManagerPortParameters(delay, p) }) with FormatNode[TLCreditedEdgeParameters, TLEdgeOut] File LazyModuleImp.scala: package org.chipsalliance.diplomacy.lazymodule import chisel3.{withClockAndReset, Module, RawModule, Reset, _} import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo} import firrtl.passes.InlineAnnotation import org.chipsalliance.cde.config.Parameters import org.chipsalliance.diplomacy.nodes.Dangle import scala.collection.immutable.SortedMap /** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]]. * * This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy. */ sealed trait LazyModuleImpLike extends RawModule { /** [[LazyModule]] that contains this instance. */ val wrapper: LazyModule /** IOs that will be automatically "punched" for this instance. */ val auto: AutoBundle /** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */ protected[diplomacy] val dangles: Seq[Dangle] // [[wrapper.module]] had better not be accessed while LazyModules are still being built! require( LazyModule.scope.isEmpty, s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}" ) /** Set module name. Defaults to the containing LazyModule's desiredName. */ override def desiredName: String = wrapper.desiredName suggestName(wrapper.suggestedName) /** [[Parameters]] for chisel [[Module]]s. */ implicit val p: Parameters = wrapper.p /** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and * submodules. */ protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = { // 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]], // 2. return [[Dangle]]s from each module. val childDangles = wrapper.children.reverse.flatMap { c => implicit val sourceInfo: SourceInfo = c.info c.cloneProto.map { cp => // If the child is a clone, then recursively set cloneProto of its children as well def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = { require(bases.size == clones.size) (bases.zip(clones)).map { case (l, r) => require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}") l.cloneProto = Some(r) assignCloneProtos(l.children, r.children) } } assignCloneProtos(c.children, cp.children) // Clone the child module as a record, and get its [[AutoBundle]] val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName) val clonedAuto = clone("auto").asInstanceOf[AutoBundle] // Get the empty [[Dangle]]'s of the cloned child val rawDangles = c.cloneDangles() require(rawDangles.size == clonedAuto.elements.size) // Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) } dangles }.getOrElse { // For non-clones, instantiate the child module val mod = try { Module(c.module) } catch { case e: ChiselException => { println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}") throw e } } mod.dangles } } // Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]]. // This will result in a sequence of [[Dangle]] from these [[BaseNode]]s. val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate()) // Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]] val allDangles = nodeDangles ++ childDangles // Group [[allDangles]] by their [[source]]. val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*) // For each [[source]] set of [[Dangle]]s of size 2, ensure that these // can be connected as a source-sink pair (have opposite flipped value). // Make the connection and mark them as [[done]]. val done = Set() ++ pairing.values.filter(_.size == 2).map { case Seq(a, b) => require(a.flipped != b.flipped) // @todo <> in chisel3 makes directionless connection. if (a.flipped) { a.data <> b.data } else { b.data <> a.data } a.source case _ => None } // Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module. val forward = allDangles.filter(d => !done(d.source)) // Generate [[AutoBundle]] IO from [[forward]]. val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*)) // Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]] val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) => if (d.flipped) { d.data <> io } else { io <> d.data } d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name) } // Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]]. wrapper.inModuleBody.reverse.foreach { _() } if (wrapper.shouldBeInlined) { chisel3.experimental.annotate(new ChiselAnnotation { def toFirrtl = InlineAnnotation(toNamed) }) } // Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]]. (auto, dangles) } } /** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike { /** Instantiate hardware of this `Module`. */ val (auto, dangles) = instantiate() } /** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike { // These wires are the default clock+reset for all LazyModule children. // It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the // [[LazyRawModuleImp]] children. // Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly. /** drive clock explicitly. */ val childClock: Clock = Wire(Clock()) /** drive reset explicitly. */ val childReset: Reset = Wire(Reset()) // the default is that these are disabled childClock := false.B.asClock childReset := chisel3.DontCare def provideImplicitClockToLazyChildren: Boolean = false val (auto, dangles) = if (provideImplicitClockToLazyChildren) { withClockAndReset(childClock, childReset) { instantiate() } } else { instantiate() } }
module TLBuffer_a32d64s4k6z4u( // @[Buffer.scala:40:9] input clock, // @[Buffer.scala:40:9] input reset, // @[Buffer.scala:40:9] output auto_in_a_ready, // @[LazyModuleImp.scala:107:25] input auto_in_a_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25] input [2:0] auto_in_a_bits_param, // @[LazyModuleImp.scala:107:25] input [3:0] auto_in_a_bits_size, // @[LazyModuleImp.scala:107:25] input [3:0] auto_in_a_bits_source, // @[LazyModuleImp.scala:107:25] input [31:0] auto_in_a_bits_address, // @[LazyModuleImp.scala:107:25] input [7:0] auto_in_a_bits_mask, // @[LazyModuleImp.scala:107:25] input [63:0] auto_in_a_bits_data, // @[LazyModuleImp.scala:107:25] input auto_in_a_bits_corrupt, // @[LazyModuleImp.scala:107:25] input auto_in_d_ready, // @[LazyModuleImp.scala:107:25] output auto_in_d_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25] output [1:0] auto_in_d_bits_param, // @[LazyModuleImp.scala:107:25] output [3:0] auto_in_d_bits_size, // @[LazyModuleImp.scala:107:25] output [3:0] auto_in_d_bits_source, // @[LazyModuleImp.scala:107:25] output [5:0] auto_in_d_bits_sink, // @[LazyModuleImp.scala:107:25] output auto_in_d_bits_denied, // @[LazyModuleImp.scala:107:25] output [63:0] auto_in_d_bits_data, // @[LazyModuleImp.scala:107:25] output auto_in_d_bits_corrupt, // @[LazyModuleImp.scala:107:25] input auto_out_a_ready, // @[LazyModuleImp.scala:107:25] output auto_out_a_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25] output [2:0] auto_out_a_bits_param, // @[LazyModuleImp.scala:107:25] output [3:0] auto_out_a_bits_size, // @[LazyModuleImp.scala:107:25] output [3:0] auto_out_a_bits_source, // @[LazyModuleImp.scala:107:25] output [31:0] auto_out_a_bits_address, // @[LazyModuleImp.scala:107:25] output [7:0] auto_out_a_bits_mask, // @[LazyModuleImp.scala:107:25] output [63:0] auto_out_a_bits_data, // @[LazyModuleImp.scala:107:25] output auto_out_a_bits_corrupt, // @[LazyModuleImp.scala:107:25] output auto_out_d_ready, // @[LazyModuleImp.scala:107:25] input auto_out_d_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25] input [1:0] auto_out_d_bits_param, // @[LazyModuleImp.scala:107:25] input [3:0] auto_out_d_bits_size, // @[LazyModuleImp.scala:107:25] input [3:0] auto_out_d_bits_source, // @[LazyModuleImp.scala:107:25] input [5:0] auto_out_d_bits_sink, // @[LazyModuleImp.scala:107:25] input auto_out_d_bits_denied, // @[LazyModuleImp.scala:107:25] input [63:0] auto_out_d_bits_data, // @[LazyModuleImp.scala:107:25] input auto_out_d_bits_corrupt // @[LazyModuleImp.scala:107:25] ); wire _nodeIn_d_q_io_deq_valid; // @[Decoupled.scala:362:21] wire [2:0] _nodeIn_d_q_io_deq_bits_opcode; // @[Decoupled.scala:362:21] wire [1:0] _nodeIn_d_q_io_deq_bits_param; // @[Decoupled.scala:362:21] wire [3:0] _nodeIn_d_q_io_deq_bits_size; // @[Decoupled.scala:362:21] wire [3:0] _nodeIn_d_q_io_deq_bits_source; // @[Decoupled.scala:362:21] wire [5:0] _nodeIn_d_q_io_deq_bits_sink; // @[Decoupled.scala:362:21] wire _nodeIn_d_q_io_deq_bits_denied; // @[Decoupled.scala:362:21] wire _nodeIn_d_q_io_deq_bits_corrupt; // @[Decoupled.scala:362:21] wire _nodeOut_a_q_io_enq_ready; // @[Decoupled.scala:362:21] TLMonitor_26 monitor ( // @[Nodes.scala:27:25] .clock (clock), .reset (reset), .io_in_a_ready (_nodeOut_a_q_io_enq_ready), // @[Decoupled.scala:362:21] .io_in_a_valid (auto_in_a_valid), .io_in_a_bits_opcode (auto_in_a_bits_opcode), .io_in_a_bits_param (auto_in_a_bits_param), .io_in_a_bits_size (auto_in_a_bits_size), .io_in_a_bits_source (auto_in_a_bits_source), .io_in_a_bits_address (auto_in_a_bits_address), .io_in_a_bits_mask (auto_in_a_bits_mask), .io_in_a_bits_corrupt (auto_in_a_bits_corrupt), .io_in_d_ready (auto_in_d_ready), .io_in_d_valid (_nodeIn_d_q_io_deq_valid), // @[Decoupled.scala:362:21] .io_in_d_bits_opcode (_nodeIn_d_q_io_deq_bits_opcode), // @[Decoupled.scala:362:21] .io_in_d_bits_param (_nodeIn_d_q_io_deq_bits_param), // @[Decoupled.scala:362:21] .io_in_d_bits_size (_nodeIn_d_q_io_deq_bits_size), // @[Decoupled.scala:362:21] .io_in_d_bits_source (_nodeIn_d_q_io_deq_bits_source), // @[Decoupled.scala:362:21] .io_in_d_bits_sink (_nodeIn_d_q_io_deq_bits_sink), // @[Decoupled.scala:362:21] .io_in_d_bits_denied (_nodeIn_d_q_io_deq_bits_denied), // @[Decoupled.scala:362:21] .io_in_d_bits_corrupt (_nodeIn_d_q_io_deq_bits_corrupt) // @[Decoupled.scala:362:21] ); // @[Nodes.scala:27:25] Queue2_TLBundleA_a32d64s4k6z4u nodeOut_a_q ( // @[Decoupled.scala:362:21] .clock (clock), .reset (reset), .io_enq_ready (_nodeOut_a_q_io_enq_ready), .io_enq_valid (auto_in_a_valid), .io_enq_bits_opcode (auto_in_a_bits_opcode), .io_enq_bits_param (auto_in_a_bits_param), .io_enq_bits_size (auto_in_a_bits_size), .io_enq_bits_source (auto_in_a_bits_source), .io_enq_bits_address (auto_in_a_bits_address), .io_enq_bits_mask (auto_in_a_bits_mask), .io_enq_bits_data (auto_in_a_bits_data), .io_enq_bits_corrupt (auto_in_a_bits_corrupt), .io_deq_ready (auto_out_a_ready), .io_deq_valid (auto_out_a_valid), .io_deq_bits_opcode (auto_out_a_bits_opcode), .io_deq_bits_param (auto_out_a_bits_param), .io_deq_bits_size (auto_out_a_bits_size), .io_deq_bits_source (auto_out_a_bits_source), .io_deq_bits_address (auto_out_a_bits_address), .io_deq_bits_mask (auto_out_a_bits_mask), .io_deq_bits_data (auto_out_a_bits_data), .io_deq_bits_corrupt (auto_out_a_bits_corrupt) ); // @[Decoupled.scala:362:21] Queue2_TLBundleD_a32d64s4k6z4u nodeIn_d_q ( // @[Decoupled.scala:362:21] .clock (clock), .reset (reset), .io_enq_ready (auto_out_d_ready), .io_enq_valid (auto_out_d_valid), .io_enq_bits_opcode (auto_out_d_bits_opcode), .io_enq_bits_param (auto_out_d_bits_param), .io_enq_bits_size (auto_out_d_bits_size), .io_enq_bits_source (auto_out_d_bits_source), .io_enq_bits_sink (auto_out_d_bits_sink), .io_enq_bits_denied (auto_out_d_bits_denied), .io_enq_bits_data (auto_out_d_bits_data), .io_enq_bits_corrupt (auto_out_d_bits_corrupt), .io_deq_ready (auto_in_d_ready), .io_deq_valid (_nodeIn_d_q_io_deq_valid), .io_deq_bits_opcode (_nodeIn_d_q_io_deq_bits_opcode), .io_deq_bits_param (_nodeIn_d_q_io_deq_bits_param), .io_deq_bits_size (_nodeIn_d_q_io_deq_bits_size), .io_deq_bits_source (_nodeIn_d_q_io_deq_bits_source), .io_deq_bits_sink (_nodeIn_d_q_io_deq_bits_sink), .io_deq_bits_denied (_nodeIn_d_q_io_deq_bits_denied), .io_deq_bits_data (auto_in_d_bits_data), .io_deq_bits_corrupt (_nodeIn_d_q_io_deq_bits_corrupt) ); // @[Decoupled.scala:362:21] assign auto_in_a_ready = _nodeOut_a_q_io_enq_ready; // @[Decoupled.scala:362:21] assign auto_in_d_valid = _nodeIn_d_q_io_deq_valid; // @[Decoupled.scala:362:21] assign auto_in_d_bits_opcode = _nodeIn_d_q_io_deq_bits_opcode; // @[Decoupled.scala:362:21] assign auto_in_d_bits_param = _nodeIn_d_q_io_deq_bits_param; // @[Decoupled.scala:362:21] assign auto_in_d_bits_size = _nodeIn_d_q_io_deq_bits_size; // @[Decoupled.scala:362:21] assign auto_in_d_bits_source = _nodeIn_d_q_io_deq_bits_source; // @[Decoupled.scala:362:21] assign auto_in_d_bits_sink = _nodeIn_d_q_io_deq_bits_sink; // @[Decoupled.scala:362:21] assign auto_in_d_bits_denied = _nodeIn_d_q_io_deq_bits_denied; // @[Decoupled.scala:362:21] assign auto_in_d_bits_corrupt = _nodeIn_d_q_io_deq_bits_corrupt; // @[Decoupled.scala:362:21] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Monitor.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceLine import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import freechips.rocketchip.diplomacy.EnableMonitors import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode} import freechips.rocketchip.util.PlusArg case class TLMonitorArgs(edge: TLEdge) abstract class TLMonitorBase(args: TLMonitorArgs) extends Module { val io = IO(new Bundle { val in = Input(new TLBundle(args.edge.bundle)) }) def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit legalize(io.in, args.edge, reset) } object TLMonitor { def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = { if (enable) { EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) } } else { node } } } class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args) { require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal)) val cover_prop_class = PropertyClass.Default //Like assert but can flip to being an assumption for formal verification def monAssert(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir, cond, message, PropertyClass.Default) } def assume(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir.flip, cond, message, PropertyClass.Default) } def extra = { args.edge.sourceInfo match { case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)" case _ => "" } } def visible(address: UInt, source: UInt, edge: TLEdge) = edge.client.clients.map { c => !c.sourceId.contains(source) || c.visibility.map(_.contains(address)).reduce(_ || _) }.reduce(_ && _) def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = { //switch this flag to turn on diplomacy in error messages def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n" monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra) // Reuse these subexpressions to save some firrtl lines val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility") //The monitor doesn’t check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B //TODO: check for acquireT? when (bundle.opcode === TLMessages.AcquireBlock) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra) } when (bundle.opcode === TLMessages.AcquirePerm) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra) monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra) monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra) monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra) } } def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = { monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra) monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility") // Reuse these subexpressions to save some firrtl lines val address_ok = edge.manager.containsSafe(edge.address(bundle)) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source when (bundle.opcode === TLMessages.Probe) { assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra) assume (address_ok, "'B' channel Probe carries unmanaged address" + extra) assume (legal_source, "'B' channel Probe carries source that is not first source" + extra) assume (is_aligned, "'B' channel Probe address not aligned to size" + extra) assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra) assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra) assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra) monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra) monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra) monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra) monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra) } } def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = { monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val address_ok = edge.manager.containsSafe(edge.address(bundle)) monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility") when (bundle.opcode === TLMessages.ProbeAck) { monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra) } when (bundle.opcode === TLMessages.ProbeAckData) { monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.Release) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra) monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra) } when (bundle.opcode === TLMessages.ReleaseData) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.AccessAck) { monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra) } when (bundle.opcode === TLMessages.HintAck) { monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra) } } def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = { assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val sink_ok = bundle.sink < edge.manager.endSinkId.U val deny_put_ok = edge.manager.mayDenyPut.B val deny_get_ok = edge.manager.mayDenyGet.B when (bundle.opcode === TLMessages.ReleaseAck) { assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra) assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra) assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra) } when (bundle.opcode === TLMessages.Grant) { assume (source_ok, "'D' channel Grant carries invalid source ID" + extra) assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra) assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra) } when (bundle.opcode === TLMessages.GrantData) { assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra) assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra) } when (bundle.opcode === TLMessages.AccessAck) { assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra) } when (bundle.opcode === TLMessages.HintAck) { assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra) } } def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = { val sink_ok = bundle.sink < edge.manager.endSinkId.U monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra) } def legalizeFormat(bundle: TLBundle, edge: TLEdge) = { when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) } when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) } when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) } when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) } } else { monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra) monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra) monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra) } } def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = { val a_first = edge.first(a.bits, a.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (a.valid && !a_first) { monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra) monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra) monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra) monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra) monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra) } when (a.fire && a_first) { opcode := a.bits.opcode param := a.bits.param size := a.bits.size source := a.bits.source address := a.bits.address } } def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = { val b_first = edge.first(b.bits, b.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (b.valid && !b_first) { monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra) monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra) monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra) monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra) monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra) } when (b.fire && b_first) { opcode := b.bits.opcode param := b.bits.param size := b.bits.size source := b.bits.source address := b.bits.address } } def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = { // Symbolic variable val sym_source = Wire(UInt(edge.client.endSourceId.W)) // TODO: Connect sym_source to a fixed value for simulation and to a // free wire in formal sym_source := 0.U // Type casting Int to UInt val maxSourceId = Wire(UInt(edge.client.endSourceId.W)) maxSourceId := edge.client.endSourceId.U // Delayed verison of sym_source val sym_source_d = Reg(UInt(edge.client.endSourceId.W)) sym_source_d := sym_source // These will be constraints for FV setup Property( MonitorDirection.Monitor, (sym_source === sym_source_d), "sym_source should remain stable", PropertyClass.Default) Property( MonitorDirection.Monitor, (sym_source <= maxSourceId), "sym_source should take legal value", PropertyClass.Default) val my_resp_pend = RegInit(false.B) val my_opcode = Reg(UInt()) val my_size = Reg(UInt()) val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire) val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire) val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source) val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source) val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat) val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend) when (my_set_resp_pend) { my_resp_pend := true.B } .elsewhen (my_clr_resp_pend) { my_resp_pend := false.B } when (my_a_first_beat) { my_opcode := bundle.a.bits.opcode my_size := bundle.a.bits.size } val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size) val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode) val my_resp_opcode_legal = Wire(Bool()) when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) || (my_resp_opcode === TLMessages.LogicalData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData) } .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck) } .otherwise { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck) } monAssert (IfThen(my_resp_pend, !my_a_first_beat), "Request message should not be sent with a source ID, for which a response message" + "is already pending (not received until current cycle) for a prior request message" + "with the same source ID" + extra) assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)), "Response message should be accepted with a source ID only if a request message with the" + "same source ID has been accepted or is being accepted in the current cycle" + extra) assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)), "Response message should be sent with a source ID only if a request message with the" + "same source ID has been accepted or is being sent in the current cycle" + extra) assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)), "If d_valid is 1, then d_size should be same as a_size of the corresponding request" + "message" + extra) assume (IfThen(my_d_first_beat, my_resp_opcode_legal), "If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" + "request message" + extra) } def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = { val c_first = edge.first(c.bits, c.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (c.valid && !c_first) { monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra) monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra) monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra) monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra) monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra) } when (c.fire && c_first) { opcode := c.bits.opcode param := c.bits.param size := c.bits.size source := c.bits.source address := c.bits.address } } def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = { val d_first = edge.first(d.bits, d.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val sink = Reg(UInt()) val denied = Reg(Bool()) when (d.valid && !d_first) { assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra) assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra) assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra) assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra) assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra) assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra) } when (d.fire && d_first) { opcode := d.bits.opcode param := d.bits.param size := d.bits.size source := d.bits.source sink := d.bits.sink denied := d.bits.denied } } def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = { legalizeMultibeatA(bundle.a, edge) legalizeMultibeatD(bundle.d, edge) if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { legalizeMultibeatB(bundle.b, edge) legalizeMultibeatC(bundle.c, edge) } } //This is left in for almond which doesn't adhere to the tilelink protocol @deprecated("Use legalizeADSource instead if possible","") def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.client.endSourceId.W)) val a_first = edge.first(bundle.a.bits, bundle.a.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val a_set = WireInit(0.U(edge.client.endSourceId.W)) when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra) } if (edge.manager.minLatency > 0) { assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = { val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size) val log_a_size_bus_size = log2Ceil(a_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error inflight.suggestName("inflight") val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) inflight_opcodes.suggestName("inflight_opcodes") val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) inflight_sizes.suggestName("inflight_sizes") val a_first = edge.first(bundle.a.bits, bundle.a.fire) a_first.suggestName("a_first") val d_first = edge.first(bundle.d.bits, bundle.d.fire) d_first.suggestName("d_first") val a_set = WireInit(0.U(edge.client.endSourceId.W)) val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) a_set.suggestName("a_set") a_set_wo_ready.suggestName("a_set_wo_ready") val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) a_opcodes_set.suggestName("a_opcodes_set") val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) a_sizes_set.suggestName("a_sizes_set") val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W)) a_opcode_lookup.suggestName("a_opcode_lookup") a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W)) a_size_lookup.suggestName("a_size_lookup") a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant)) val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant)) val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W)) a_opcodes_set_interm.suggestName("a_opcodes_set_interm") val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W)) a_sizes_set_interm.suggestName("a_sizes_set_interm") when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) { a_set_wo_ready := UIntToOH(bundle.a.bits.source) } when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U) a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U) monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) d_opcodes_clr.suggestName("d_opcodes_clr") val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) || (bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra) assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) || (bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra) assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) { assume((!bundle.d.ready) || bundle.a.ready, "ready check") } if (edge.manager.minLatency > 0) { assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = { val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size) val log_c_size_bus_size = log2Ceil(c_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) inflight.suggestName("inflight") inflight_opcodes.suggestName("inflight_opcodes") inflight_sizes.suggestName("inflight_sizes") val c_first = edge.first(bundle.c.bits, bundle.c.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) c_first.suggestName("c_first") d_first.suggestName("d_first") val c_set = WireInit(0.U(edge.client.endSourceId.W)) val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) c_set.suggestName("c_set") c_set_wo_ready.suggestName("c_set_wo_ready") c_opcodes_set.suggestName("c_opcodes_set") c_sizes_set.suggestName("c_sizes_set") val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W)) val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W)) c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U c_opcode_lookup.suggestName("c_opcode_lookup") c_size_lookup.suggestName("c_size_lookup") val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W)) val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W)) c_opcodes_set_interm.suggestName("c_opcodes_set_interm") c_sizes_set_interm.suggestName("c_sizes_set_interm") when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) { c_set_wo_ready := UIntToOH(bundle.c.bits.source) } when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) { c_set := UIntToOH(bundle.c.bits.source) c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U) c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U) monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra) } val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") d_opcodes_clr.suggestName("d_opcodes_clr") d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) { assume((!bundle.d.ready) || bundle.c.ready, "ready check") } if (edge.manager.minLatency > 0) { when (c_set_wo_ready.orR) { assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra) } } inflight := (inflight | c_set) & ~d_clr inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.manager.endSinkId.W)) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val e_first = true.B val d_set = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) { d_set := UIntToOH(bundle.d.bits.sink) assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra) } val e_clr = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) { e_clr := UIntToOH(bundle.e.bits.sink) monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra) } // edge.client.minLatency applies to BC, not DE inflight := (inflight | d_set) & ~e_clr } def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = { val sourceBits = log2Ceil(edge.client.endSourceId) val tooBig = 14 // >16kB worth of flight information gets to be too much if (sourceBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked") } else { if (args.edge.params(TestplanTestType).simulation) { if (args.edge.params(TLMonitorStrictMode)) { legalizeADSource(bundle, edge) legalizeCDSource(bundle, edge) } else { legalizeADSourceOld(bundle, edge) } } if (args.edge.params(TestplanTestType).formal) { legalizeADSourceFormal(bundle, edge) } } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { // legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize... val sinkBits = log2Ceil(edge.manager.endSinkId) if (sinkBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked") } else { legalizeDESink(bundle, edge) } } } def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = { legalizeFormat (bundle, edge) legalizeMultibeat (bundle, edge) legalizeUnique (bundle, edge) } } File Misc.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ import chisel3.util.random.LFSR import org.chipsalliance.cde.config.Parameters import scala.math._ class ParameterizedBundle(implicit p: Parameters) extends Bundle trait Clocked extends Bundle { val clock = Clock() val reset = Bool() } object DecoupledHelper { def apply(rvs: Bool*) = new DecoupledHelper(rvs) } class DecoupledHelper(val rvs: Seq[Bool]) { def fire(exclude: Bool, includes: Bool*) = { require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!") (rvs.filter(_ ne exclude) ++ includes).reduce(_ && _) } def fire() = { rvs.reduce(_ && _) } } object MuxT { def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2)) def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3)) def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4)) } /** Creates a cascade of n MuxTs to search for a key value. */ object MuxTLookup { def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } } object ValidMux { def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = { apply(v1 +: v2.toSeq) } def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = { val out = Wire(Valid(valids.head.bits.cloneType)) out.valid := valids.map(_.valid).reduce(_ || _) out.bits := MuxCase(valids.head.bits, valids.map(v => (v.valid -> v.bits))) out } } object Str { def apply(s: String): UInt = { var i = BigInt(0) require(s.forall(validChar _)) for (c <- s) i = (i << 8) | c i.U((s.length*8).W) } def apply(x: Char): UInt = { require(validChar(x)) x.U(8.W) } def apply(x: UInt): UInt = apply(x, 10) def apply(x: UInt, radix: Int): UInt = { val rad = radix.U val w = x.getWidth require(w > 0) var q = x var s = digit(q % rad) for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s) } s } def apply(x: SInt): UInt = apply(x, 10) def apply(x: SInt, radix: Int): UInt = { val neg = x < 0.S val abs = x.abs.asUInt if (radix != 10) { Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix)) } else { val rad = radix.U val w = abs.getWidth require(w > 0) var q = abs var s = digit(q % rad) var needSign = neg for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad val placeSpace = q === 0.U val space = Mux(needSign, Str('-'), Str(' ')) needSign = needSign && !placeSpace s = Cat(Mux(placeSpace, space, digit(q % rad)), s) } Cat(Mux(needSign, Str('-'), Str(' ')), s) } } private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0) private def validChar(x: Char) = x == (x & 0xFF) } object Split { def apply(x: UInt, n0: Int) = { val w = x.getWidth (x.extract(w-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n2: Int, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } } object Random { def apply(mod: Int, random: UInt): UInt = { if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0) else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod)) } def apply(mod: Int): UInt = apply(mod, randomizer) def oneHot(mod: Int, random: UInt): UInt = { if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0)) else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt } def oneHot(mod: Int): UInt = oneHot(mod, randomizer) private def randomizer = LFSR(16) private def partition(value: UInt, slices: Int) = Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U) } object Majority { def apply(in: Set[Bool]): Bool = { val n = (in.size >> 1) + 1 val clauses = in.subsets(n).map(_.reduce(_ && _)) clauses.reduce(_ || _) } def apply(in: Seq[Bool]): Bool = apply(in.toSet) def apply(in: UInt): Bool = apply(in.asBools.toSet) } object PopCountAtLeast { private def two(x: UInt): (Bool, Bool) = x.getWidth match { case 1 => (x.asBool, false.B) case n => val half = x.getWidth / 2 val (leftOne, leftTwo) = two(x(half - 1, 0)) val (rightOne, rightTwo) = two(x(x.getWidth - 1, half)) (leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne)) } def apply(x: UInt, n: Int): Bool = n match { case 0 => true.B case 1 => x.orR case 2 => two(x)._2 case 3 => PopCount(x) >= n.U } } // This gets used everywhere, so make the smallest circuit possible ... // Given an address and size, create a mask of beatBytes size // eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111 // groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01 object MaskGen { def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = { require (groupBy >= 1 && beatBytes >= groupBy) require (isPow2(beatBytes) && isPow2(groupBy)) val lgBytes = log2Ceil(beatBytes) val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U def helper(i: Int): Seq[(Bool, Bool)] = { if (i == 0) { Seq((lgSize >= lgBytes.asUInt, true.B)) } else { val sub = helper(i-1) val size = sizeOH(lgBytes - i) val bit = addr_lo(lgBytes - i) val nbit = !bit Seq.tabulate (1 << i) { j => val (sub_acc, sub_eq) = sub(j/2) val eq = sub_eq && (if (j % 2 == 1) bit else nbit) val acc = sub_acc || (size && eq) (acc, eq) } } } if (groupBy == beatBytes) 1.U else Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse) } } File PlusArg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.experimental._ import chisel3.util.HasBlackBoxResource @deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05") case class PlusArgInfo(default: BigInt, docstring: String) /** Case class for PlusArg information * * @tparam A scala type of the PlusArg value * @param default optional default value * @param docstring text to include in the help * @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT) */ private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String) /** Typeclass for converting a type to a doctype string * @tparam A some type */ trait Doctypeable[A] { /** Return the doctype string for some option */ def toDoctype(a: Option[A]): String } /** Object containing implementations of the Doctypeable typeclass */ object Doctypes { /** Converts an Int => "INT" */ implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" } /** Converts a BigInt => "INT" */ implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" } /** Converts a String => "STRING" */ implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" } } class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map( "FORMAT" -> StringParam(format), "DEFAULT" -> IntParam(default), "WIDTH" -> IntParam(width) )) with HasBlackBoxResource { val io = IO(new Bundle { val out = Output(UInt(width.W)) }) addResource("/vsrc/plusarg_reader.v") } /* This wrapper class has no outputs, making it clear it is a simulation-only construct */ class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module { val io = IO(new Bundle { val count = Input(UInt(width.W)) }) val max = Module(new plusarg_reader(format, default, docstring, width)).io.out when (max > 0.U) { assert (io.count < max, s"Timeout exceeded: $docstring") } } import Doctypes._ object PlusArg { /** PlusArg("foo") will return 42.U if the simulation is run with +foo=42 * Do not use this as an initial register value. The value is set in an * initial block and thus accessing it from another initial is racey. * Add a docstring to document the arg, which can be dumped in an elaboration * pass. */ def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out } /** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert * to kill the simulation when count exceeds the specified integer argument. * Default 0 will never assert. */ def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count } } object PlusArgArtefacts { private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty /* Add a new PlusArg */ @deprecated( "Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05" ) def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring) /** Add a new PlusArg * * @tparam A scala type of the PlusArg value * @param name name for the PlusArg * @param default optional default value * @param docstring text to include in the help */ def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit = artefacts = artefacts ++ Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default))) /* From plus args, generate help text */ private def serializeHelp_cHeader(tab: String = ""): String = artefacts .map{ case(arg, info) => s"""|$tab+$arg=${info.doctype}\\n\\ |$tab${" "*20}${info.docstring}\\n\\ |""".stripMargin ++ info.default.map{ case default => s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("") }.toSeq.mkString("\\n\\\n") ++ "\"" /* From plus args, generate a char array of their names */ private def serializeArray_cHeader(tab: String = ""): String = { val prettyTab = tab + " " * 44 // Length of 'static const ...' s"${tab}static const char * verilog_plusargs [] = {\\\n" ++ artefacts .map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" } .mkString("")++ s"${prettyTab}0};" } /* Generate C code to be included in emulator.cc that helps with * argument parsing based on available Verilog PlusArgs */ def serialize_cHeader(): String = s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\ |${serializeHelp_cHeader(" "*7)} |${serializeArray_cHeader()} |""".stripMargin } File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag } File Parameters.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.diplomacy import chisel3._ import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor} import freechips.rocketchip.util.ShiftQueue /** Options for describing the attributes of memory regions */ object RegionType { // Define the 'more relaxed than' ordering val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS) sealed trait T extends Ordered[T] { def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this) } case object CACHED extends T // an intermediate agent may have cached a copy of the region for you case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively } // A non-empty half-open range; [start, end) case class IdRange(start: Int, end: Int) extends Ordered[IdRange] { require (start >= 0, s"Ids cannot be negative, but got: $start.") require (start <= end, "Id ranges cannot be negative.") def compare(x: IdRange) = { val primary = (this.start - x.start).signum val secondary = (x.end - this.end).signum if (primary != 0) primary else secondary } def overlaps(x: IdRange) = start < x.end && x.start < end def contains(x: IdRange) = start <= x.start && x.end <= end def contains(x: Int) = start <= x && x < end def contains(x: UInt) = if (size == 0) { false.B } else if (size == 1) { // simple comparison x === start.U } else { // find index of largest different bit val largestDeltaBit = log2Floor(start ^ (end-1)) val smallestCommonBit = largestDeltaBit + 1 // may not exist in x val uncommonMask = (1 << smallestCommonBit) - 1 val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0) // the prefix must match exactly (note: may shift ALL bits away) (x >> smallestCommonBit) === (start >> smallestCommonBit).U && // firrtl constant prop range analysis can eliminate these two: (start & uncommonMask).U <= uncommonBits && uncommonBits <= ((end-1) & uncommonMask).U } def shift(x: Int) = IdRange(start+x, end+x) def size = end - start def isEmpty = end == start def range = start until end } object IdRange { def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else { val ranges = s.sorted (ranges.tail zip ranges.init) find { case (a, b) => a overlaps b } } } // An potentially empty inclusive range of 2-powers [min, max] (in bytes) case class TransferSizes(min: Int, max: Int) { def this(x: Int) = this(x, x) require (min <= max, s"Min transfer $min > max transfer $max") require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)") require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max") require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min") require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)") def none = min == 0 def contains(x: Int) = isPow2(x) && min <= x && x <= max def containsLg(x: Int) = contains(1 << x) def containsLg(x: UInt) = if (none) false.B else if (min == max) { log2Ceil(min).U === x } else { log2Ceil(min).U <= x && x <= log2Ceil(max).U } def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max) def intersect(x: TransferSizes) = if (x.max < min || max < x.min) TransferSizes.none else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max)) // Not a union, because the result may contain sizes contained by neither term // NOT TO BE CONFUSED WITH COVERPOINTS def mincover(x: TransferSizes) = { if (none) { x } else if (x.none) { this } else { TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max)) } } override def toString() = "TransferSizes[%d, %d]".format(min, max) } object TransferSizes { def apply(x: Int) = new TransferSizes(x) val none = new TransferSizes(0) def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _) def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _) implicit def asBool(x: TransferSizes) = !x.none } // AddressSets specify the address space managed by the manager // Base is the base address, and mask are the bits consumed by the manager // e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff // e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ... case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet] { // Forbid misaligned base address (and empty sets) require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}") require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous // We do allow negative mask (=> ignore all high bits) def contains(x: BigInt) = ((x ^ base) & ~mask) == 0 def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S // turn x into an address contained in this set def legalize(x: UInt): UInt = base.U | (mask.U & x) // overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1) def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0 // contains iff bitwise: x.mask => mask && contains(x.base) def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0 // The number of bytes to which the manager must be aligned def alignment = ((mask + 1) & ~mask) // Is this a contiguous memory range def contiguous = alignment == mask+1 def finite = mask >= 0 def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask } // Widen the match function to ignore all bits in imask def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask) // Return an AddressSet that only contains the addresses both sets contain def intersect(x: AddressSet): Option[AddressSet] = { if (!overlaps(x)) { None } else { val r_mask = mask & x.mask val r_base = base | x.base Some(AddressSet(r_base, r_mask)) } } def subtract(x: AddressSet): Seq[AddressSet] = { intersect(x) match { case None => Seq(this) case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit => val nmask = (mask & (bit-1)) | remove.mask val nbase = (remove.base ^ bit) & ~nmask AddressSet(nbase, nmask) } } } // AddressSets have one natural Ordering (the containment order, if contiguous) def compare(x: AddressSet) = { val primary = (this.base - x.base).signum // smallest address first val secondary = (x.mask - this.mask).signum // largest mask first if (primary != 0) primary else secondary } // We always want to see things in hex override def toString() = { if (mask >= 0) { "AddressSet(0x%x, 0x%x)".format(base, mask) } else { "AddressSet(0x%x, ~0x%x)".format(base, ~mask) } } def toRanges = { require (finite, "Ranges cannot be calculated on infinite mask") val size = alignment val fragments = mask & ~(size-1) val bits = bitIndexes(fragments) (BigInt(0) until (BigInt(1) << bits.size)).map { i => val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) } AddressRange(off, size) } } } object AddressSet { val everything = AddressSet(0, -1) def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = { if (size == 0) tail.reverse else { val maxBaseAlignment = base & (-base) // 0 for infinite (LSB) val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size val step = if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment) maxSizeAlignment else maxBaseAlignment misaligned(base+step, size-step, AddressSet(base, step-1) +: tail) } } def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = { // Pair terms up by ignoring 'bit' seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) => if (seq.size == 1) { seq.head // singleton -> unaffected } else { key.copy(mask = key.mask | bit) // pair - widen mask by bit } }.toList } def unify(seq: Seq[AddressSet]): Seq[AddressSet] = { val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _) AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted } def enumerateMask(mask: BigInt): Seq[BigInt] = { def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] = if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail) helper(0, Nil) } def enumerateBits(mask: BigInt): Seq[BigInt] = { def helper(x: BigInt): Seq[BigInt] = { if (x == 0) { Nil } else { val bit = x & (-x) bit +: helper(x & ~bit) } } helper(mask) } } case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean) { require (depth >= 0, "Buffer depth must be >= 0") def isDefined = depth > 0 def latency = if (isDefined && !flow) 1 else 0 def apply[T <: Data](x: DecoupledIO[T]) = if (isDefined) Queue(x, depth, flow=flow, pipe=pipe) else x def irrevocable[T <: Data](x: ReadyValidIO[T]) = if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe) else x def sq[T <: Data](x: DecoupledIO[T]) = if (!isDefined) x else { val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe)) sq.io.enq <> x sq.io.deq } override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "") } object BufferParams { implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false) val default = BufferParams(2) val none = BufferParams(0) val flow = BufferParams(1, true, false) val pipe = BufferParams(1, false, true) } case class TriStateValue(value: Boolean, set: Boolean) { def update(orig: Boolean) = if (set) value else orig } object TriStateValue { implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true) def unset = TriStateValue(false, false) } trait DirectedBuffers[T] { def copyIn(x: BufferParams): T def copyOut(x: BufferParams): T def copyInOut(x: BufferParams): T } trait IdMapEntry { def name: String def from: IdRange def to: IdRange def isCache: Boolean def requestFifo: Boolean def maxTransactionsInFlight: Option[Int] def pretty(fmt: String) = if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5 fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } else { fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } } abstract class IdMap[T <: IdMapEntry] { protected val fmt: String val mapping: Seq[T] def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n") } File Edges.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.util._ class TLEdge( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdgeParameters(client, manager, params, sourceInfo) { def isAligned(address: UInt, lgSize: UInt): Bool = { if (maxLgSize == 0) true.B else { val mask = UIntToOH1(lgSize, maxLgSize) (address & mask) === 0.U } } def mask(address: UInt, lgSize: UInt): UInt = MaskGen(address, lgSize, manager.beatBytes) def staticHasData(bundle: TLChannel): Option[Boolean] = { bundle match { case _:TLBundleA => { // Do there exist A messages with Data? val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial // Do there exist A messages without Data? val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint // Statically optimize the case where hasData is a constant if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None } case _:TLBundleB => { // Do there exist B messages with Data? val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial // Do there exist B messages without Data? val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint // Statically optimize the case where hasData is a constant if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None } case _:TLBundleC => { // Do there eixst C messages with Data? val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe // Do there exist C messages without Data? val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None } case _:TLBundleD => { // Do there eixst D messages with Data? val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB // Do there exist D messages without Data? val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None } case _:TLBundleE => Some(false) } } def isRequest(x: TLChannel): Bool = { x match { case a: TLBundleA => true.B case b: TLBundleB => true.B case c: TLBundleC => c.opcode(2) && c.opcode(1) // opcode === TLMessages.Release || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(2) && !d.opcode(1) // opcode === TLMessages.Grant || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } } def isResponse(x: TLChannel): Bool = { x match { case a: TLBundleA => false.B case b: TLBundleB => false.B case c: TLBundleC => !c.opcode(2) || !c.opcode(1) // opcode =/= TLMessages.Release && // opcode =/= TLMessages.ReleaseData case d: TLBundleD => true.B // Grant isResponse + isRequest case e: TLBundleE => true.B } } def hasData(x: TLChannel): Bool = { val opdata = x match { case a: TLBundleA => !a.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case b: TLBundleB => !b.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case c: TLBundleC => c.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.ProbeAckData || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } staticHasData(x).map(_.B).getOrElse(opdata) } def opcode(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.opcode case b: TLBundleB => b.opcode case c: TLBundleC => c.opcode case d: TLBundleD => d.opcode } } def param(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.param case b: TLBundleB => b.param case c: TLBundleC => c.param case d: TLBundleD => d.param } } def size(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.size case b: TLBundleB => b.size case c: TLBundleC => c.size case d: TLBundleD => d.size } } def data(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.data case b: TLBundleB => b.data case c: TLBundleC => c.data case d: TLBundleD => d.data } } def corrupt(x: TLDataChannel): Bool = { x match { case a: TLBundleA => a.corrupt case b: TLBundleB => b.corrupt case c: TLBundleC => c.corrupt case d: TLBundleD => d.corrupt } } def mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.mask case b: TLBundleB => b.mask case c: TLBundleC => mask(c.address, c.size) } } def full_mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => mask(a.address, a.size) case b: TLBundleB => mask(b.address, b.size) case c: TLBundleC => mask(c.address, c.size) } } def address(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.address case b: TLBundleB => b.address case c: TLBundleC => c.address } } def source(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.source case b: TLBundleB => b.source case c: TLBundleC => c.source case d: TLBundleD => d.source } } def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes) def addr_lo(x: UInt): UInt = if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0) def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x)) def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x)) def numBeats(x: TLChannel): UInt = { x match { case _: TLBundleE => 1.U case bundle: TLDataChannel => { val hasData = this.hasData(bundle) val size = this.size(bundle) val cutoff = log2Ceil(manager.beatBytes) val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U val decode = UIntToOH(size, maxLgSize+1) >> cutoff Mux(hasData, decode | small.asUInt, 1.U) } } } def numBeats1(x: TLChannel): UInt = { x match { case _: TLBundleE => 0.U case bundle: TLDataChannel => { if (maxLgSize == 0) { 0.U } else { val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes) Mux(hasData(bundle), decode, 0.U) } } } } def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val beats1 = numBeats1(bits) val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W)) val counter1 = counter - 1.U val first = counter === 0.U val last = counter === 1.U || beats1 === 0.U val done = last && fire val count = (beats1 & ~counter1) when (fire) { counter := Mux(first, beats1, counter1) } (first, last, done, count) } def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1 def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire) def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid) def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2 def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire) def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid) def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3 def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire) def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid) def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3) } def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire) def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid) def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4) } def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire) def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid) def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes)) } def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire) def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid) // Does the request need T permissions to be executed? def needT(a: TLBundleA): Bool = { val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLPermissions.NtoB -> false.B, TLPermissions.NtoT -> true.B, TLPermissions.BtoT -> true.B)) MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array( TLMessages.PutFullData -> true.B, TLMessages.PutPartialData -> true.B, TLMessages.ArithmeticData -> true.B, TLMessages.LogicalData -> true.B, TLMessages.Get -> false.B, TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLHints.PREFETCH_READ -> false.B, TLHints.PREFETCH_WRITE -> true.B)), TLMessages.AcquireBlock -> acq_needT, TLMessages.AcquirePerm -> acq_needT)) } // This is a very expensive circuit; use only if you really mean it! def inFlight(x: TLBundle): (UInt, UInt) = { val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W)) val bce = manager.anySupportAcquireB && client.anySupportProbe val (a_first, a_last, _) = firstlast(x.a) val (b_first, b_last, _) = firstlast(x.b) val (c_first, c_last, _) = firstlast(x.c) val (d_first, d_last, _) = firstlast(x.d) val (e_first, e_last, _) = firstlast(x.e) val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits)) val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits)) val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits)) val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits)) val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits)) val a_inc = x.a.fire && a_first && a_request val b_inc = x.b.fire && b_first && b_request val c_inc = x.c.fire && c_first && c_request val d_inc = x.d.fire && d_first && d_request val e_inc = x.e.fire && e_first && e_request val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil)) val a_dec = x.a.fire && a_last && a_response val b_dec = x.b.fire && b_last && b_response val c_dec = x.c.fire && c_last && c_response val d_dec = x.d.fire && d_last && d_response val e_dec = x.e.fire && e_last && e_response val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil)) val next_flight = flight + PopCount(inc) - PopCount(dec) flight := next_flight (flight, next_flight) } def prettySourceMapping(context: String): String = { s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n" } } class TLEdgeOut( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { // Transfers def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquireBlock a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquirePerm a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.Release c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ReleaseData c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) = Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B) def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAck c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions, data) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAckData c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B) def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink) def GrantAck(toSink: UInt): TLBundleE = { val e = Wire(new TLBundleE(bundle)) e.sink := toSink e } // Accesses def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsGetFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Get a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutFullFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutFullData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, mask, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutPartialFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutPartialData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask a.data := data a.corrupt := corrupt (legal, a) } def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = { require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsArithmeticFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.ArithmeticData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsLogicalFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.LogicalData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = { require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsHintFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Hint a.param := param a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data) def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAckData c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size) def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.HintAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } } class TLEdgeIn( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = { val todo = x.filter(!_.isEmpty) val heads = todo.map(_.head) val tails = todo.map(_.tail) if (todo.isEmpty) Nil else { heads +: myTranspose(tails) } } // Transfers def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = { require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}") val legal = client.supportsProbe(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Probe b.param := capPermissions b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.Grant d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.GrantData d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B) def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.ReleaseAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } // Accesses def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = { require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsGet(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Get b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsPutFull(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutFullData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, mask, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsPutPartial(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutPartialData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask b.data := data b.corrupt := corrupt (legal, b) } def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsArithmetic(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.ArithmeticData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsLogical(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.LogicalData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = { require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsHint(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Hint b.param := param b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size) def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied) def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B) def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data) def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAckData d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B) def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied) def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B) def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.HintAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } }
module TLMonitor_18( // @[Monitor.scala:36:7] input clock, // @[Monitor.scala:36:7] input reset, // @[Monitor.scala:36:7] input io_in_a_ready, // @[Monitor.scala:20:14] input io_in_a_valid, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14] input [3:0] io_in_a_bits_size, // @[Monitor.scala:20:14] input [4:0] io_in_a_bits_source, // @[Monitor.scala:20:14] input [31:0] io_in_a_bits_address, // @[Monitor.scala:20:14] input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14] input io_in_a_bits_corrupt, // @[Monitor.scala:20:14] input io_in_d_ready, // @[Monitor.scala:20:14] input io_in_d_valid, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14] input [1:0] io_in_d_bits_param, // @[Monitor.scala:20:14] input [3:0] io_in_d_bits_size, // @[Monitor.scala:20:14] input [4:0] io_in_d_bits_source, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_sink, // @[Monitor.scala:20:14] input io_in_d_bits_denied, // @[Monitor.scala:20:14] input io_in_d_bits_corrupt // @[Monitor.scala:20:14] ); wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11] wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11] wire [26:0] _GEN = {23'h0, io_in_a_bits_size}; // @[package.scala:243:71] wire _a_first_T_1 = io_in_a_ready & io_in_a_valid; // @[Decoupled.scala:51:35] reg [8:0] a_first_counter; // @[Edges.scala:229:27] reg [2:0] opcode; // @[Monitor.scala:387:22] reg [2:0] param; // @[Monitor.scala:388:22] reg [3:0] size; // @[Monitor.scala:389:22] reg [4:0] source; // @[Monitor.scala:390:22] reg [31:0] address; // @[Monitor.scala:391:22] reg [8:0] d_first_counter; // @[Edges.scala:229:27] reg [2:0] opcode_1; // @[Monitor.scala:538:22] reg [1:0] param_1; // @[Monitor.scala:539:22] reg [3:0] size_1; // @[Monitor.scala:540:22] reg [4:0] source_1; // @[Monitor.scala:541:22] reg [2:0] sink; // @[Monitor.scala:542:22] reg denied; // @[Monitor.scala:543:22] reg [16:0] inflight; // @[Monitor.scala:614:27] reg [67:0] inflight_opcodes; // @[Monitor.scala:616:35] reg [135:0] inflight_sizes; // @[Monitor.scala:618:33] reg [8:0] a_first_counter_1; // @[Edges.scala:229:27] wire a_first_1 = a_first_counter_1 == 9'h0; // @[Edges.scala:229:27, :231:25] reg [8:0] d_first_counter_1; // @[Edges.scala:229:27] wire d_first_1 = d_first_counter_1 == 9'h0; // @[Edges.scala:229:27, :231:25] wire [31:0] _GEN_0 = {27'h0, io_in_a_bits_source}; // @[OneHot.scala:58:35] wire _GEN_1 = _a_first_T_1 & a_first_1; // @[Decoupled.scala:51:35] wire d_release_ack = io_in_d_bits_opcode == 3'h6; // @[Monitor.scala:673:46] wire _GEN_2 = io_in_d_bits_opcode != 3'h6; // @[Monitor.scala:673:46, :674:74] wire [31:0] _GEN_3 = {27'h0, io_in_d_bits_source}; // @[OneHot.scala:58:35] reg [31:0] watchdog; // @[Monitor.scala:709:27] reg [16:0] inflight_1; // @[Monitor.scala:726:35] reg [135:0] inflight_sizes_1; // @[Monitor.scala:728:35] reg [8:0] d_first_counter_2; // @[Edges.scala:229:27] wire d_first_2 = d_first_counter_2 == 9'h0; // @[Edges.scala:229:27, :231:25] reg [31:0] watchdog_1; // @[Monitor.scala:818:27]
Generate the Verilog code corresponding to the following Chisel files. File Monitor.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceLine import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import freechips.rocketchip.diplomacy.EnableMonitors import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode} import freechips.rocketchip.util.PlusArg case class TLMonitorArgs(edge: TLEdge) abstract class TLMonitorBase(args: TLMonitorArgs) extends Module { val io = IO(new Bundle { val in = Input(new TLBundle(args.edge.bundle)) }) def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit legalize(io.in, args.edge, reset) } object TLMonitor { def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = { if (enable) { EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) } } else { node } } } class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args) { require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal)) val cover_prop_class = PropertyClass.Default //Like assert but can flip to being an assumption for formal verification def monAssert(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir, cond, message, PropertyClass.Default) } def assume(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir.flip, cond, message, PropertyClass.Default) } def extra = { args.edge.sourceInfo match { case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)" case _ => "" } } def visible(address: UInt, source: UInt, edge: TLEdge) = edge.client.clients.map { c => !c.sourceId.contains(source) || c.visibility.map(_.contains(address)).reduce(_ || _) }.reduce(_ && _) def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = { //switch this flag to turn on diplomacy in error messages def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n" monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra) // Reuse these subexpressions to save some firrtl lines val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility") //The monitor doesn’t check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B //TODO: check for acquireT? when (bundle.opcode === TLMessages.AcquireBlock) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra) } when (bundle.opcode === TLMessages.AcquirePerm) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra) monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra) monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra) monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra) } } def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = { monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra) monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility") // Reuse these subexpressions to save some firrtl lines val address_ok = edge.manager.containsSafe(edge.address(bundle)) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source when (bundle.opcode === TLMessages.Probe) { assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra) assume (address_ok, "'B' channel Probe carries unmanaged address" + extra) assume (legal_source, "'B' channel Probe carries source that is not first source" + extra) assume (is_aligned, "'B' channel Probe address not aligned to size" + extra) assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra) assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra) assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra) monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra) monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra) monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra) monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra) } } def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = { monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val address_ok = edge.manager.containsSafe(edge.address(bundle)) monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility") when (bundle.opcode === TLMessages.ProbeAck) { monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra) } when (bundle.opcode === TLMessages.ProbeAckData) { monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.Release) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra) monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra) } when (bundle.opcode === TLMessages.ReleaseData) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.AccessAck) { monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra) } when (bundle.opcode === TLMessages.HintAck) { monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra) } } def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = { assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val sink_ok = bundle.sink < edge.manager.endSinkId.U val deny_put_ok = edge.manager.mayDenyPut.B val deny_get_ok = edge.manager.mayDenyGet.B when (bundle.opcode === TLMessages.ReleaseAck) { assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra) assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra) assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra) } when (bundle.opcode === TLMessages.Grant) { assume (source_ok, "'D' channel Grant carries invalid source ID" + extra) assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra) assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra) } when (bundle.opcode === TLMessages.GrantData) { assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra) assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra) } when (bundle.opcode === TLMessages.AccessAck) { assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra) } when (bundle.opcode === TLMessages.HintAck) { assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra) } } def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = { val sink_ok = bundle.sink < edge.manager.endSinkId.U monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra) } def legalizeFormat(bundle: TLBundle, edge: TLEdge) = { when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) } when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) } when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) } when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) } } else { monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra) monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra) monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra) } } def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = { val a_first = edge.first(a.bits, a.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (a.valid && !a_first) { monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra) monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra) monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra) monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra) monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra) } when (a.fire && a_first) { opcode := a.bits.opcode param := a.bits.param size := a.bits.size source := a.bits.source address := a.bits.address } } def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = { val b_first = edge.first(b.bits, b.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (b.valid && !b_first) { monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra) monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra) monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra) monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra) monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra) } when (b.fire && b_first) { opcode := b.bits.opcode param := b.bits.param size := b.bits.size source := b.bits.source address := b.bits.address } } def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = { // Symbolic variable val sym_source = Wire(UInt(edge.client.endSourceId.W)) // TODO: Connect sym_source to a fixed value for simulation and to a // free wire in formal sym_source := 0.U // Type casting Int to UInt val maxSourceId = Wire(UInt(edge.client.endSourceId.W)) maxSourceId := edge.client.endSourceId.U // Delayed verison of sym_source val sym_source_d = Reg(UInt(edge.client.endSourceId.W)) sym_source_d := sym_source // These will be constraints for FV setup Property( MonitorDirection.Monitor, (sym_source === sym_source_d), "sym_source should remain stable", PropertyClass.Default) Property( MonitorDirection.Monitor, (sym_source <= maxSourceId), "sym_source should take legal value", PropertyClass.Default) val my_resp_pend = RegInit(false.B) val my_opcode = Reg(UInt()) val my_size = Reg(UInt()) val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire) val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire) val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source) val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source) val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat) val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend) when (my_set_resp_pend) { my_resp_pend := true.B } .elsewhen (my_clr_resp_pend) { my_resp_pend := false.B } when (my_a_first_beat) { my_opcode := bundle.a.bits.opcode my_size := bundle.a.bits.size } val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size) val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode) val my_resp_opcode_legal = Wire(Bool()) when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) || (my_resp_opcode === TLMessages.LogicalData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData) } .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck) } .otherwise { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck) } monAssert (IfThen(my_resp_pend, !my_a_first_beat), "Request message should not be sent with a source ID, for which a response message" + "is already pending (not received until current cycle) for a prior request message" + "with the same source ID" + extra) assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)), "Response message should be accepted with a source ID only if a request message with the" + "same source ID has been accepted or is being accepted in the current cycle" + extra) assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)), "Response message should be sent with a source ID only if a request message with the" + "same source ID has been accepted or is being sent in the current cycle" + extra) assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)), "If d_valid is 1, then d_size should be same as a_size of the corresponding request" + "message" + extra) assume (IfThen(my_d_first_beat, my_resp_opcode_legal), "If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" + "request message" + extra) } def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = { val c_first = edge.first(c.bits, c.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (c.valid && !c_first) { monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra) monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra) monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra) monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra) monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra) } when (c.fire && c_first) { opcode := c.bits.opcode param := c.bits.param size := c.bits.size source := c.bits.source address := c.bits.address } } def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = { val d_first = edge.first(d.bits, d.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val sink = Reg(UInt()) val denied = Reg(Bool()) when (d.valid && !d_first) { assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra) assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra) assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra) assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra) assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra) assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra) } when (d.fire && d_first) { opcode := d.bits.opcode param := d.bits.param size := d.bits.size source := d.bits.source sink := d.bits.sink denied := d.bits.denied } } def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = { legalizeMultibeatA(bundle.a, edge) legalizeMultibeatD(bundle.d, edge) if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { legalizeMultibeatB(bundle.b, edge) legalizeMultibeatC(bundle.c, edge) } } //This is left in for almond which doesn't adhere to the tilelink protocol @deprecated("Use legalizeADSource instead if possible","") def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.client.endSourceId.W)) val a_first = edge.first(bundle.a.bits, bundle.a.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val a_set = WireInit(0.U(edge.client.endSourceId.W)) when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra) } if (edge.manager.minLatency > 0) { assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = { val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size) val log_a_size_bus_size = log2Ceil(a_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error inflight.suggestName("inflight") val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) inflight_opcodes.suggestName("inflight_opcodes") val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) inflight_sizes.suggestName("inflight_sizes") val a_first = edge.first(bundle.a.bits, bundle.a.fire) a_first.suggestName("a_first") val d_first = edge.first(bundle.d.bits, bundle.d.fire) d_first.suggestName("d_first") val a_set = WireInit(0.U(edge.client.endSourceId.W)) val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) a_set.suggestName("a_set") a_set_wo_ready.suggestName("a_set_wo_ready") val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) a_opcodes_set.suggestName("a_opcodes_set") val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) a_sizes_set.suggestName("a_sizes_set") val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W)) a_opcode_lookup.suggestName("a_opcode_lookup") a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W)) a_size_lookup.suggestName("a_size_lookup") a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant)) val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant)) val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W)) a_opcodes_set_interm.suggestName("a_opcodes_set_interm") val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W)) a_sizes_set_interm.suggestName("a_sizes_set_interm") when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) { a_set_wo_ready := UIntToOH(bundle.a.bits.source) } when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U) a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U) monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) d_opcodes_clr.suggestName("d_opcodes_clr") val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) || (bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra) assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) || (bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra) assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) { assume((!bundle.d.ready) || bundle.a.ready, "ready check") } if (edge.manager.minLatency > 0) { assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = { val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size) val log_c_size_bus_size = log2Ceil(c_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) inflight.suggestName("inflight") inflight_opcodes.suggestName("inflight_opcodes") inflight_sizes.suggestName("inflight_sizes") val c_first = edge.first(bundle.c.bits, bundle.c.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) c_first.suggestName("c_first") d_first.suggestName("d_first") val c_set = WireInit(0.U(edge.client.endSourceId.W)) val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) c_set.suggestName("c_set") c_set_wo_ready.suggestName("c_set_wo_ready") c_opcodes_set.suggestName("c_opcodes_set") c_sizes_set.suggestName("c_sizes_set") val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W)) val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W)) c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U c_opcode_lookup.suggestName("c_opcode_lookup") c_size_lookup.suggestName("c_size_lookup") val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W)) val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W)) c_opcodes_set_interm.suggestName("c_opcodes_set_interm") c_sizes_set_interm.suggestName("c_sizes_set_interm") when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) { c_set_wo_ready := UIntToOH(bundle.c.bits.source) } when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) { c_set := UIntToOH(bundle.c.bits.source) c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U) c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U) monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra) } val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") d_opcodes_clr.suggestName("d_opcodes_clr") d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) { assume((!bundle.d.ready) || bundle.c.ready, "ready check") } if (edge.manager.minLatency > 0) { when (c_set_wo_ready.orR) { assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra) } } inflight := (inflight | c_set) & ~d_clr inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.manager.endSinkId.W)) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val e_first = true.B val d_set = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) { d_set := UIntToOH(bundle.d.bits.sink) assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra) } val e_clr = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) { e_clr := UIntToOH(bundle.e.bits.sink) monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra) } // edge.client.minLatency applies to BC, not DE inflight := (inflight | d_set) & ~e_clr } def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = { val sourceBits = log2Ceil(edge.client.endSourceId) val tooBig = 14 // >16kB worth of flight information gets to be too much if (sourceBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked") } else { if (args.edge.params(TestplanTestType).simulation) { if (args.edge.params(TLMonitorStrictMode)) { legalizeADSource(bundle, edge) legalizeCDSource(bundle, edge) } else { legalizeADSourceOld(bundle, edge) } } if (args.edge.params(TestplanTestType).formal) { legalizeADSourceFormal(bundle, edge) } } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { // legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize... val sinkBits = log2Ceil(edge.manager.endSinkId) if (sinkBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked") } else { legalizeDESink(bundle, edge) } } } def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = { legalizeFormat (bundle, edge) legalizeMultibeat (bundle, edge) legalizeUnique (bundle, edge) } } File Misc.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ import chisel3.util.random.LFSR import org.chipsalliance.cde.config.Parameters import scala.math._ class ParameterizedBundle(implicit p: Parameters) extends Bundle trait Clocked extends Bundle { val clock = Clock() val reset = Bool() } object DecoupledHelper { def apply(rvs: Bool*) = new DecoupledHelper(rvs) } class DecoupledHelper(val rvs: Seq[Bool]) { def fire(exclude: Bool, includes: Bool*) = { require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!") (rvs.filter(_ ne exclude) ++ includes).reduce(_ && _) } def fire() = { rvs.reduce(_ && _) } } object MuxT { def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2)) def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3)) def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4)) } /** Creates a cascade of n MuxTs to search for a key value. */ object MuxTLookup { def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } } object ValidMux { def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = { apply(v1 +: v2.toSeq) } def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = { val out = Wire(Valid(valids.head.bits.cloneType)) out.valid := valids.map(_.valid).reduce(_ || _) out.bits := MuxCase(valids.head.bits, valids.map(v => (v.valid -> v.bits))) out } } object Str { def apply(s: String): UInt = { var i = BigInt(0) require(s.forall(validChar _)) for (c <- s) i = (i << 8) | c i.U((s.length*8).W) } def apply(x: Char): UInt = { require(validChar(x)) x.U(8.W) } def apply(x: UInt): UInt = apply(x, 10) def apply(x: UInt, radix: Int): UInt = { val rad = radix.U val w = x.getWidth require(w > 0) var q = x var s = digit(q % rad) for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s) } s } def apply(x: SInt): UInt = apply(x, 10) def apply(x: SInt, radix: Int): UInt = { val neg = x < 0.S val abs = x.abs.asUInt if (radix != 10) { Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix)) } else { val rad = radix.U val w = abs.getWidth require(w > 0) var q = abs var s = digit(q % rad) var needSign = neg for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad val placeSpace = q === 0.U val space = Mux(needSign, Str('-'), Str(' ')) needSign = needSign && !placeSpace s = Cat(Mux(placeSpace, space, digit(q % rad)), s) } Cat(Mux(needSign, Str('-'), Str(' ')), s) } } private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0) private def validChar(x: Char) = x == (x & 0xFF) } object Split { def apply(x: UInt, n0: Int) = { val w = x.getWidth (x.extract(w-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n2: Int, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } } object Random { def apply(mod: Int, random: UInt): UInt = { if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0) else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod)) } def apply(mod: Int): UInt = apply(mod, randomizer) def oneHot(mod: Int, random: UInt): UInt = { if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0)) else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt } def oneHot(mod: Int): UInt = oneHot(mod, randomizer) private def randomizer = LFSR(16) private def partition(value: UInt, slices: Int) = Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U) } object Majority { def apply(in: Set[Bool]): Bool = { val n = (in.size >> 1) + 1 val clauses = in.subsets(n).map(_.reduce(_ && _)) clauses.reduce(_ || _) } def apply(in: Seq[Bool]): Bool = apply(in.toSet) def apply(in: UInt): Bool = apply(in.asBools.toSet) } object PopCountAtLeast { private def two(x: UInt): (Bool, Bool) = x.getWidth match { case 1 => (x.asBool, false.B) case n => val half = x.getWidth / 2 val (leftOne, leftTwo) = two(x(half - 1, 0)) val (rightOne, rightTwo) = two(x(x.getWidth - 1, half)) (leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne)) } def apply(x: UInt, n: Int): Bool = n match { case 0 => true.B case 1 => x.orR case 2 => two(x)._2 case 3 => PopCount(x) >= n.U } } // This gets used everywhere, so make the smallest circuit possible ... // Given an address and size, create a mask of beatBytes size // eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111 // groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01 object MaskGen { def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = { require (groupBy >= 1 && beatBytes >= groupBy) require (isPow2(beatBytes) && isPow2(groupBy)) val lgBytes = log2Ceil(beatBytes) val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U def helper(i: Int): Seq[(Bool, Bool)] = { if (i == 0) { Seq((lgSize >= lgBytes.asUInt, true.B)) } else { val sub = helper(i-1) val size = sizeOH(lgBytes - i) val bit = addr_lo(lgBytes - i) val nbit = !bit Seq.tabulate (1 << i) { j => val (sub_acc, sub_eq) = sub(j/2) val eq = sub_eq && (if (j % 2 == 1) bit else nbit) val acc = sub_acc || (size && eq) (acc, eq) } } } if (groupBy == beatBytes) 1.U else Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse) } } File PlusArg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.experimental._ import chisel3.util.HasBlackBoxResource @deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05") case class PlusArgInfo(default: BigInt, docstring: String) /** Case class for PlusArg information * * @tparam A scala type of the PlusArg value * @param default optional default value * @param docstring text to include in the help * @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT) */ private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String) /** Typeclass for converting a type to a doctype string * @tparam A some type */ trait Doctypeable[A] { /** Return the doctype string for some option */ def toDoctype(a: Option[A]): String } /** Object containing implementations of the Doctypeable typeclass */ object Doctypes { /** Converts an Int => "INT" */ implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" } /** Converts a BigInt => "INT" */ implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" } /** Converts a String => "STRING" */ implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" } } class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map( "FORMAT" -> StringParam(format), "DEFAULT" -> IntParam(default), "WIDTH" -> IntParam(width) )) with HasBlackBoxResource { val io = IO(new Bundle { val out = Output(UInt(width.W)) }) addResource("/vsrc/plusarg_reader.v") } /* This wrapper class has no outputs, making it clear it is a simulation-only construct */ class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module { val io = IO(new Bundle { val count = Input(UInt(width.W)) }) val max = Module(new plusarg_reader(format, default, docstring, width)).io.out when (max > 0.U) { assert (io.count < max, s"Timeout exceeded: $docstring") } } import Doctypes._ object PlusArg { /** PlusArg("foo") will return 42.U if the simulation is run with +foo=42 * Do not use this as an initial register value. The value is set in an * initial block and thus accessing it from another initial is racey. * Add a docstring to document the arg, which can be dumped in an elaboration * pass. */ def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out } /** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert * to kill the simulation when count exceeds the specified integer argument. * Default 0 will never assert. */ def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count } } object PlusArgArtefacts { private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty /* Add a new PlusArg */ @deprecated( "Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05" ) def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring) /** Add a new PlusArg * * @tparam A scala type of the PlusArg value * @param name name for the PlusArg * @param default optional default value * @param docstring text to include in the help */ def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit = artefacts = artefacts ++ Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default))) /* From plus args, generate help text */ private def serializeHelp_cHeader(tab: String = ""): String = artefacts .map{ case(arg, info) => s"""|$tab+$arg=${info.doctype}\\n\\ |$tab${" "*20}${info.docstring}\\n\\ |""".stripMargin ++ info.default.map{ case default => s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("") }.toSeq.mkString("\\n\\\n") ++ "\"" /* From plus args, generate a char array of their names */ private def serializeArray_cHeader(tab: String = ""): String = { val prettyTab = tab + " " * 44 // Length of 'static const ...' s"${tab}static const char * verilog_plusargs [] = {\\\n" ++ artefacts .map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" } .mkString("")++ s"${prettyTab}0};" } /* Generate C code to be included in emulator.cc that helps with * argument parsing based on available Verilog PlusArgs */ def serialize_cHeader(): String = s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\ |${serializeHelp_cHeader(" "*7)} |${serializeArray_cHeader()} |""".stripMargin } File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag } File Bundles.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import freechips.rocketchip.util._ import scala.collection.immutable.ListMap import chisel3.util.Decoupled import chisel3.util.DecoupledIO import chisel3.reflect.DataMirror abstract class TLBundleBase(val params: TLBundleParameters) extends Bundle // common combos in lazy policy: // Put + Acquire // Release + AccessAck object TLMessages { // A B C D E def PutFullData = 0.U // . . => AccessAck def PutPartialData = 1.U // . . => AccessAck def ArithmeticData = 2.U // . . => AccessAckData def LogicalData = 3.U // . . => AccessAckData def Get = 4.U // . . => AccessAckData def Hint = 5.U // . . => HintAck def AcquireBlock = 6.U // . => Grant[Data] def AcquirePerm = 7.U // . => Grant[Data] def Probe = 6.U // . => ProbeAck[Data] def AccessAck = 0.U // . . def AccessAckData = 1.U // . . def HintAck = 2.U // . . def ProbeAck = 4.U // . def ProbeAckData = 5.U // . def Release = 6.U // . => ReleaseAck def ReleaseData = 7.U // . => ReleaseAck def Grant = 4.U // . => GrantAck def GrantData = 5.U // . => GrantAck def ReleaseAck = 6.U // . def GrantAck = 0.U // . def isA(x: UInt) = x <= AcquirePerm def isB(x: UInt) = x <= Probe def isC(x: UInt) = x <= ReleaseData def isD(x: UInt) = x <= ReleaseAck def adResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, Grant, Grant) def bcResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, ProbeAck, ProbeAck) def a = Seq( ("PutFullData",TLPermissions.PermMsgReserved), ("PutPartialData",TLPermissions.PermMsgReserved), ("ArithmeticData",TLAtomics.ArithMsg), ("LogicalData",TLAtomics.LogicMsg), ("Get",TLPermissions.PermMsgReserved), ("Hint",TLHints.HintsMsg), ("AcquireBlock",TLPermissions.PermMsgGrow), ("AcquirePerm",TLPermissions.PermMsgGrow)) def b = Seq( ("PutFullData",TLPermissions.PermMsgReserved), ("PutPartialData",TLPermissions.PermMsgReserved), ("ArithmeticData",TLAtomics.ArithMsg), ("LogicalData",TLAtomics.LogicMsg), ("Get",TLPermissions.PermMsgReserved), ("Hint",TLHints.HintsMsg), ("Probe",TLPermissions.PermMsgCap)) def c = Seq( ("AccessAck",TLPermissions.PermMsgReserved), ("AccessAckData",TLPermissions.PermMsgReserved), ("HintAck",TLPermissions.PermMsgReserved), ("Invalid Opcode",TLPermissions.PermMsgReserved), ("ProbeAck",TLPermissions.PermMsgReport), ("ProbeAckData",TLPermissions.PermMsgReport), ("Release",TLPermissions.PermMsgReport), ("ReleaseData",TLPermissions.PermMsgReport)) def d = Seq( ("AccessAck",TLPermissions.PermMsgReserved), ("AccessAckData",TLPermissions.PermMsgReserved), ("HintAck",TLPermissions.PermMsgReserved), ("Invalid Opcode",TLPermissions.PermMsgReserved), ("Grant",TLPermissions.PermMsgCap), ("GrantData",TLPermissions.PermMsgCap), ("ReleaseAck",TLPermissions.PermMsgReserved)) } /** * The three primary TileLink permissions are: * (T)runk: the agent is (or is on inwards path to) the global point of serialization. * (B)ranch: the agent is on an outwards path to * (N)one: * These permissions are permuted by transfer operations in various ways. * Operations can cap permissions, request for them to be grown or shrunk, * or for a report on their current status. */ object TLPermissions { val aWidth = 2 val bdWidth = 2 val cWidth = 3 // Cap types (Grant = new permissions, Probe = permisions <= target) def toT = 0.U(bdWidth.W) def toB = 1.U(bdWidth.W) def toN = 2.U(bdWidth.W) def isCap(x: UInt) = x <= toN // Grow types (Acquire = permissions >= target) def NtoB = 0.U(aWidth.W) def NtoT = 1.U(aWidth.W) def BtoT = 2.U(aWidth.W) def isGrow(x: UInt) = x <= BtoT // Shrink types (ProbeAck, Release) def TtoB = 0.U(cWidth.W) def TtoN = 1.U(cWidth.W) def BtoN = 2.U(cWidth.W) def isShrink(x: UInt) = x <= BtoN // Report types (ProbeAck, Release) def TtoT = 3.U(cWidth.W) def BtoB = 4.U(cWidth.W) def NtoN = 5.U(cWidth.W) def isReport(x: UInt) = x <= NtoN def PermMsgGrow:Seq[String] = Seq("Grow NtoB", "Grow NtoT", "Grow BtoT") def PermMsgCap:Seq[String] = Seq("Cap toT", "Cap toB", "Cap toN") def PermMsgReport:Seq[String] = Seq("Shrink TtoB", "Shrink TtoN", "Shrink BtoN", "Report TotT", "Report BtoB", "Report NtoN") def PermMsgReserved:Seq[String] = Seq("Reserved") } object TLAtomics { val width = 3 // Arithmetic types def MIN = 0.U(width.W) def MAX = 1.U(width.W) def MINU = 2.U(width.W) def MAXU = 3.U(width.W) def ADD = 4.U(width.W) def isArithmetic(x: UInt) = x <= ADD // Logical types def XOR = 0.U(width.W) def OR = 1.U(width.W) def AND = 2.U(width.W) def SWAP = 3.U(width.W) def isLogical(x: UInt) = x <= SWAP def ArithMsg:Seq[String] = Seq("MIN", "MAX", "MINU", "MAXU", "ADD") def LogicMsg:Seq[String] = Seq("XOR", "OR", "AND", "SWAP") } object TLHints { val width = 1 def PREFETCH_READ = 0.U(width.W) def PREFETCH_WRITE = 1.U(width.W) def isHints(x: UInt) = x <= PREFETCH_WRITE def HintsMsg:Seq[String] = Seq("PrefetchRead", "PrefetchWrite") } sealed trait TLChannel extends TLBundleBase { val channelName: String } sealed trait TLDataChannel extends TLChannel sealed trait TLAddrChannel extends TLDataChannel final class TLBundleA(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleA_${params.shortName}" val channelName = "'A' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(List(TLAtomics.width, TLPermissions.aWidth, TLHints.width).max.W) // amo_opcode || grow perms || hint val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // from val address = UInt(params.addressBits.W) // to val user = BundleMap(params.requestFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val mask = UInt((params.dataBits/8).W) val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleB(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleB_${params.shortName}" val channelName = "'B' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.bdWidth.W) // cap perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // to val address = UInt(params.addressBits.W) // from // variable fields during multibeat: val mask = UInt((params.dataBits/8).W) val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleC(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleC_${params.shortName}" val channelName = "'C' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.cWidth.W) // shrink or report perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // from val address = UInt(params.addressBits.W) // to val user = BundleMap(params.requestFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleD(params: TLBundleParameters) extends TLBundleBase(params) with TLDataChannel { override def typeName = s"TLBundleD_${params.shortName}" val channelName = "'D' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.bdWidth.W) // cap perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // to val sink = UInt(params.sinkBits.W) // from val denied = Bool() // implies corrupt iff *Data val user = BundleMap(params.responseFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleE(params: TLBundleParameters) extends TLBundleBase(params) with TLChannel { override def typeName = s"TLBundleE_${params.shortName}" val channelName = "'E' channel" val sink = UInt(params.sinkBits.W) // to } class TLBundle(val params: TLBundleParameters) extends Record { // Emulate a Bundle with elements abcde or ad depending on params.hasBCE private val optA = Some (Decoupled(new TLBundleA(params))) private val optB = params.hasBCE.option(Flipped(Decoupled(new TLBundleB(params)))) private val optC = params.hasBCE.option(Decoupled(new TLBundleC(params))) private val optD = Some (Flipped(Decoupled(new TLBundleD(params)))) private val optE = params.hasBCE.option(Decoupled(new TLBundleE(params))) def a: DecoupledIO[TLBundleA] = optA.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleA(params))))) def b: DecoupledIO[TLBundleB] = optB.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleB(params))))) def c: DecoupledIO[TLBundleC] = optC.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleC(params))))) def d: DecoupledIO[TLBundleD] = optD.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleD(params))))) def e: DecoupledIO[TLBundleE] = optE.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleE(params))))) val elements = if (params.hasBCE) ListMap("e" -> e, "d" -> d, "c" -> c, "b" -> b, "a" -> a) else ListMap("d" -> d, "a" -> a) def tieoff(): Unit = { DataMirror.specifiedDirectionOf(a.ready) match { case SpecifiedDirection.Input => a.ready := false.B c.ready := false.B e.ready := false.B b.valid := false.B d.valid := false.B case SpecifiedDirection.Output => a.valid := false.B c.valid := false.B e.valid := false.B b.ready := false.B d.ready := false.B case _ => } } } object TLBundle { def apply(params: TLBundleParameters) = new TLBundle(params) } class TLAsyncBundleBase(val params: TLAsyncBundleParameters) extends Bundle class TLAsyncBundle(params: TLAsyncBundleParameters) extends TLAsyncBundleBase(params) { val a = new AsyncBundle(new TLBundleA(params.base), params.async) val b = Flipped(new AsyncBundle(new TLBundleB(params.base), params.async)) val c = new AsyncBundle(new TLBundleC(params.base), params.async) val d = Flipped(new AsyncBundle(new TLBundleD(params.base), params.async)) val e = new AsyncBundle(new TLBundleE(params.base), params.async) } class TLRationalBundle(params: TLBundleParameters) extends TLBundleBase(params) { val a = RationalIO(new TLBundleA(params)) val b = Flipped(RationalIO(new TLBundleB(params))) val c = RationalIO(new TLBundleC(params)) val d = Flipped(RationalIO(new TLBundleD(params))) val e = RationalIO(new TLBundleE(params)) } class TLCreditedBundle(params: TLBundleParameters) extends TLBundleBase(params) { val a = CreditedIO(new TLBundleA(params)) val b = Flipped(CreditedIO(new TLBundleB(params))) val c = CreditedIO(new TLBundleC(params)) val d = Flipped(CreditedIO(new TLBundleD(params))) val e = CreditedIO(new TLBundleE(params)) } File Parameters.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.diplomacy import chisel3._ import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor} import freechips.rocketchip.util.ShiftQueue /** Options for describing the attributes of memory regions */ object RegionType { // Define the 'more relaxed than' ordering val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS) sealed trait T extends Ordered[T] { def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this) } case object CACHED extends T // an intermediate agent may have cached a copy of the region for you case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively } // A non-empty half-open range; [start, end) case class IdRange(start: Int, end: Int) extends Ordered[IdRange] { require (start >= 0, s"Ids cannot be negative, but got: $start.") require (start <= end, "Id ranges cannot be negative.") def compare(x: IdRange) = { val primary = (this.start - x.start).signum val secondary = (x.end - this.end).signum if (primary != 0) primary else secondary } def overlaps(x: IdRange) = start < x.end && x.start < end def contains(x: IdRange) = start <= x.start && x.end <= end def contains(x: Int) = start <= x && x < end def contains(x: UInt) = if (size == 0) { false.B } else if (size == 1) { // simple comparison x === start.U } else { // find index of largest different bit val largestDeltaBit = log2Floor(start ^ (end-1)) val smallestCommonBit = largestDeltaBit + 1 // may not exist in x val uncommonMask = (1 << smallestCommonBit) - 1 val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0) // the prefix must match exactly (note: may shift ALL bits away) (x >> smallestCommonBit) === (start >> smallestCommonBit).U && // firrtl constant prop range analysis can eliminate these two: (start & uncommonMask).U <= uncommonBits && uncommonBits <= ((end-1) & uncommonMask).U } def shift(x: Int) = IdRange(start+x, end+x) def size = end - start def isEmpty = end == start def range = start until end } object IdRange { def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else { val ranges = s.sorted (ranges.tail zip ranges.init) find { case (a, b) => a overlaps b } } } // An potentially empty inclusive range of 2-powers [min, max] (in bytes) case class TransferSizes(min: Int, max: Int) { def this(x: Int) = this(x, x) require (min <= max, s"Min transfer $min > max transfer $max") require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)") require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max") require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min") require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)") def none = min == 0 def contains(x: Int) = isPow2(x) && min <= x && x <= max def containsLg(x: Int) = contains(1 << x) def containsLg(x: UInt) = if (none) false.B else if (min == max) { log2Ceil(min).U === x } else { log2Ceil(min).U <= x && x <= log2Ceil(max).U } def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max) def intersect(x: TransferSizes) = if (x.max < min || max < x.min) TransferSizes.none else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max)) // Not a union, because the result may contain sizes contained by neither term // NOT TO BE CONFUSED WITH COVERPOINTS def mincover(x: TransferSizes) = { if (none) { x } else if (x.none) { this } else { TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max)) } } override def toString() = "TransferSizes[%d, %d]".format(min, max) } object TransferSizes { def apply(x: Int) = new TransferSizes(x) val none = new TransferSizes(0) def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _) def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _) implicit def asBool(x: TransferSizes) = !x.none } // AddressSets specify the address space managed by the manager // Base is the base address, and mask are the bits consumed by the manager // e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff // e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ... case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet] { // Forbid misaligned base address (and empty sets) require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}") require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous // We do allow negative mask (=> ignore all high bits) def contains(x: BigInt) = ((x ^ base) & ~mask) == 0 def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S // turn x into an address contained in this set def legalize(x: UInt): UInt = base.U | (mask.U & x) // overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1) def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0 // contains iff bitwise: x.mask => mask && contains(x.base) def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0 // The number of bytes to which the manager must be aligned def alignment = ((mask + 1) & ~mask) // Is this a contiguous memory range def contiguous = alignment == mask+1 def finite = mask >= 0 def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask } // Widen the match function to ignore all bits in imask def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask) // Return an AddressSet that only contains the addresses both sets contain def intersect(x: AddressSet): Option[AddressSet] = { if (!overlaps(x)) { None } else { val r_mask = mask & x.mask val r_base = base | x.base Some(AddressSet(r_base, r_mask)) } } def subtract(x: AddressSet): Seq[AddressSet] = { intersect(x) match { case None => Seq(this) case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit => val nmask = (mask & (bit-1)) | remove.mask val nbase = (remove.base ^ bit) & ~nmask AddressSet(nbase, nmask) } } } // AddressSets have one natural Ordering (the containment order, if contiguous) def compare(x: AddressSet) = { val primary = (this.base - x.base).signum // smallest address first val secondary = (x.mask - this.mask).signum // largest mask first if (primary != 0) primary else secondary } // We always want to see things in hex override def toString() = { if (mask >= 0) { "AddressSet(0x%x, 0x%x)".format(base, mask) } else { "AddressSet(0x%x, ~0x%x)".format(base, ~mask) } } def toRanges = { require (finite, "Ranges cannot be calculated on infinite mask") val size = alignment val fragments = mask & ~(size-1) val bits = bitIndexes(fragments) (BigInt(0) until (BigInt(1) << bits.size)).map { i => val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) } AddressRange(off, size) } } } object AddressSet { val everything = AddressSet(0, -1) def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = { if (size == 0) tail.reverse else { val maxBaseAlignment = base & (-base) // 0 for infinite (LSB) val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size val step = if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment) maxSizeAlignment else maxBaseAlignment misaligned(base+step, size-step, AddressSet(base, step-1) +: tail) } } def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = { // Pair terms up by ignoring 'bit' seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) => if (seq.size == 1) { seq.head // singleton -> unaffected } else { key.copy(mask = key.mask | bit) // pair - widen mask by bit } }.toList } def unify(seq: Seq[AddressSet]): Seq[AddressSet] = { val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _) AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted } def enumerateMask(mask: BigInt): Seq[BigInt] = { def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] = if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail) helper(0, Nil) } def enumerateBits(mask: BigInt): Seq[BigInt] = { def helper(x: BigInt): Seq[BigInt] = { if (x == 0) { Nil } else { val bit = x & (-x) bit +: helper(x & ~bit) } } helper(mask) } } case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean) { require (depth >= 0, "Buffer depth must be >= 0") def isDefined = depth > 0 def latency = if (isDefined && !flow) 1 else 0 def apply[T <: Data](x: DecoupledIO[T]) = if (isDefined) Queue(x, depth, flow=flow, pipe=pipe) else x def irrevocable[T <: Data](x: ReadyValidIO[T]) = if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe) else x def sq[T <: Data](x: DecoupledIO[T]) = if (!isDefined) x else { val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe)) sq.io.enq <> x sq.io.deq } override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "") } object BufferParams { implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false) val default = BufferParams(2) val none = BufferParams(0) val flow = BufferParams(1, true, false) val pipe = BufferParams(1, false, true) } case class TriStateValue(value: Boolean, set: Boolean) { def update(orig: Boolean) = if (set) value else orig } object TriStateValue { implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true) def unset = TriStateValue(false, false) } trait DirectedBuffers[T] { def copyIn(x: BufferParams): T def copyOut(x: BufferParams): T def copyInOut(x: BufferParams): T } trait IdMapEntry { def name: String def from: IdRange def to: IdRange def isCache: Boolean def requestFifo: Boolean def maxTransactionsInFlight: Option[Int] def pretty(fmt: String) = if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5 fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } else { fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } } abstract class IdMap[T <: IdMapEntry] { protected val fmt: String val mapping: Seq[T] def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n") } File Edges.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.util._ class TLEdge( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdgeParameters(client, manager, params, sourceInfo) { def isAligned(address: UInt, lgSize: UInt): Bool = { if (maxLgSize == 0) true.B else { val mask = UIntToOH1(lgSize, maxLgSize) (address & mask) === 0.U } } def mask(address: UInt, lgSize: UInt): UInt = MaskGen(address, lgSize, manager.beatBytes) def staticHasData(bundle: TLChannel): Option[Boolean] = { bundle match { case _:TLBundleA => { // Do there exist A messages with Data? val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial // Do there exist A messages without Data? val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint // Statically optimize the case where hasData is a constant if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None } case _:TLBundleB => { // Do there exist B messages with Data? val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial // Do there exist B messages without Data? val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint // Statically optimize the case where hasData is a constant if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None } case _:TLBundleC => { // Do there eixst C messages with Data? val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe // Do there exist C messages without Data? val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None } case _:TLBundleD => { // Do there eixst D messages with Data? val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB // Do there exist D messages without Data? val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None } case _:TLBundleE => Some(false) } } def isRequest(x: TLChannel): Bool = { x match { case a: TLBundleA => true.B case b: TLBundleB => true.B case c: TLBundleC => c.opcode(2) && c.opcode(1) // opcode === TLMessages.Release || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(2) && !d.opcode(1) // opcode === TLMessages.Grant || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } } def isResponse(x: TLChannel): Bool = { x match { case a: TLBundleA => false.B case b: TLBundleB => false.B case c: TLBundleC => !c.opcode(2) || !c.opcode(1) // opcode =/= TLMessages.Release && // opcode =/= TLMessages.ReleaseData case d: TLBundleD => true.B // Grant isResponse + isRequest case e: TLBundleE => true.B } } def hasData(x: TLChannel): Bool = { val opdata = x match { case a: TLBundleA => !a.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case b: TLBundleB => !b.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case c: TLBundleC => c.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.ProbeAckData || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } staticHasData(x).map(_.B).getOrElse(opdata) } def opcode(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.opcode case b: TLBundleB => b.opcode case c: TLBundleC => c.opcode case d: TLBundleD => d.opcode } } def param(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.param case b: TLBundleB => b.param case c: TLBundleC => c.param case d: TLBundleD => d.param } } def size(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.size case b: TLBundleB => b.size case c: TLBundleC => c.size case d: TLBundleD => d.size } } def data(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.data case b: TLBundleB => b.data case c: TLBundleC => c.data case d: TLBundleD => d.data } } def corrupt(x: TLDataChannel): Bool = { x match { case a: TLBundleA => a.corrupt case b: TLBundleB => b.corrupt case c: TLBundleC => c.corrupt case d: TLBundleD => d.corrupt } } def mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.mask case b: TLBundleB => b.mask case c: TLBundleC => mask(c.address, c.size) } } def full_mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => mask(a.address, a.size) case b: TLBundleB => mask(b.address, b.size) case c: TLBundleC => mask(c.address, c.size) } } def address(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.address case b: TLBundleB => b.address case c: TLBundleC => c.address } } def source(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.source case b: TLBundleB => b.source case c: TLBundleC => c.source case d: TLBundleD => d.source } } def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes) def addr_lo(x: UInt): UInt = if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0) def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x)) def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x)) def numBeats(x: TLChannel): UInt = { x match { case _: TLBundleE => 1.U case bundle: TLDataChannel => { val hasData = this.hasData(bundle) val size = this.size(bundle) val cutoff = log2Ceil(manager.beatBytes) val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U val decode = UIntToOH(size, maxLgSize+1) >> cutoff Mux(hasData, decode | small.asUInt, 1.U) } } } def numBeats1(x: TLChannel): UInt = { x match { case _: TLBundleE => 0.U case bundle: TLDataChannel => { if (maxLgSize == 0) { 0.U } else { val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes) Mux(hasData(bundle), decode, 0.U) } } } } def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val beats1 = numBeats1(bits) val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W)) val counter1 = counter - 1.U val first = counter === 0.U val last = counter === 1.U || beats1 === 0.U val done = last && fire val count = (beats1 & ~counter1) when (fire) { counter := Mux(first, beats1, counter1) } (first, last, done, count) } def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1 def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire) def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid) def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2 def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire) def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid) def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3 def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire) def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid) def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3) } def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire) def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid) def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4) } def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire) def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid) def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes)) } def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire) def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid) // Does the request need T permissions to be executed? def needT(a: TLBundleA): Bool = { val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLPermissions.NtoB -> false.B, TLPermissions.NtoT -> true.B, TLPermissions.BtoT -> true.B)) MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array( TLMessages.PutFullData -> true.B, TLMessages.PutPartialData -> true.B, TLMessages.ArithmeticData -> true.B, TLMessages.LogicalData -> true.B, TLMessages.Get -> false.B, TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLHints.PREFETCH_READ -> false.B, TLHints.PREFETCH_WRITE -> true.B)), TLMessages.AcquireBlock -> acq_needT, TLMessages.AcquirePerm -> acq_needT)) } // This is a very expensive circuit; use only if you really mean it! def inFlight(x: TLBundle): (UInt, UInt) = { val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W)) val bce = manager.anySupportAcquireB && client.anySupportProbe val (a_first, a_last, _) = firstlast(x.a) val (b_first, b_last, _) = firstlast(x.b) val (c_first, c_last, _) = firstlast(x.c) val (d_first, d_last, _) = firstlast(x.d) val (e_first, e_last, _) = firstlast(x.e) val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits)) val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits)) val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits)) val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits)) val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits)) val a_inc = x.a.fire && a_first && a_request val b_inc = x.b.fire && b_first && b_request val c_inc = x.c.fire && c_first && c_request val d_inc = x.d.fire && d_first && d_request val e_inc = x.e.fire && e_first && e_request val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil)) val a_dec = x.a.fire && a_last && a_response val b_dec = x.b.fire && b_last && b_response val c_dec = x.c.fire && c_last && c_response val d_dec = x.d.fire && d_last && d_response val e_dec = x.e.fire && e_last && e_response val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil)) val next_flight = flight + PopCount(inc) - PopCount(dec) flight := next_flight (flight, next_flight) } def prettySourceMapping(context: String): String = { s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n" } } class TLEdgeOut( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { // Transfers def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquireBlock a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquirePerm a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.Release c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ReleaseData c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) = Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B) def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAck c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions, data) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAckData c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B) def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink) def GrantAck(toSink: UInt): TLBundleE = { val e = Wire(new TLBundleE(bundle)) e.sink := toSink e } // Accesses def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsGetFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Get a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutFullFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutFullData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, mask, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutPartialFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutPartialData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask a.data := data a.corrupt := corrupt (legal, a) } def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = { require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsArithmeticFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.ArithmeticData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsLogicalFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.LogicalData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = { require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsHintFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Hint a.param := param a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data) def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAckData c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size) def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.HintAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } } class TLEdgeIn( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = { val todo = x.filter(!_.isEmpty) val heads = todo.map(_.head) val tails = todo.map(_.tail) if (todo.isEmpty) Nil else { heads +: myTranspose(tails) } } // Transfers def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = { require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}") val legal = client.supportsProbe(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Probe b.param := capPermissions b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.Grant d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.GrantData d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B) def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.ReleaseAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } // Accesses def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = { require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsGet(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Get b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsPutFull(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutFullData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, mask, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsPutPartial(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutPartialData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask b.data := data b.corrupt := corrupt (legal, b) } def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsArithmetic(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.ArithmeticData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsLogical(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.LogicalData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = { require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsHint(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Hint b.param := param b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size) def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied) def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B) def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data) def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAckData d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B) def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied) def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B) def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.HintAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } }
module TLMonitor_11( // @[Monitor.scala:36:7] input clock, // @[Monitor.scala:36:7] input reset, // @[Monitor.scala:36:7] input io_in_a_ready, // @[Monitor.scala:20:14] input io_in_a_valid, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_size, // @[Monitor.scala:20:14] input [7:0] io_in_a_bits_source, // @[Monitor.scala:20:14] input [12:0] io_in_a_bits_address, // @[Monitor.scala:20:14] input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14] input [63:0] io_in_a_bits_data, // @[Monitor.scala:20:14] input io_in_a_bits_corrupt, // @[Monitor.scala:20:14] input io_in_d_ready, // @[Monitor.scala:20:14] input io_in_d_valid, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_size, // @[Monitor.scala:20:14] input [7:0] io_in_d_bits_source, // @[Monitor.scala:20:14] input [63:0] io_in_d_bits_data // @[Monitor.scala:20:14] ); wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11] wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11] wire io_in_a_ready_0 = io_in_a_ready; // @[Monitor.scala:36:7] wire io_in_a_valid_0 = io_in_a_valid; // @[Monitor.scala:36:7] wire [2:0] io_in_a_bits_opcode_0 = io_in_a_bits_opcode; // @[Monitor.scala:36:7] wire [2:0] io_in_a_bits_param_0 = io_in_a_bits_param; // @[Monitor.scala:36:7] wire [2:0] io_in_a_bits_size_0 = io_in_a_bits_size; // @[Monitor.scala:36:7] wire [7:0] io_in_a_bits_source_0 = io_in_a_bits_source; // @[Monitor.scala:36:7] wire [12:0] io_in_a_bits_address_0 = io_in_a_bits_address; // @[Monitor.scala:36:7] wire [7:0] io_in_a_bits_mask_0 = io_in_a_bits_mask; // @[Monitor.scala:36:7] wire [63:0] io_in_a_bits_data_0 = io_in_a_bits_data; // @[Monitor.scala:36:7] wire io_in_a_bits_corrupt_0 = io_in_a_bits_corrupt; // @[Monitor.scala:36:7] wire io_in_d_ready_0 = io_in_d_ready; // @[Monitor.scala:36:7] wire io_in_d_valid_0 = io_in_d_valid; // @[Monitor.scala:36:7] wire [2:0] io_in_d_bits_opcode_0 = io_in_d_bits_opcode; // @[Monitor.scala:36:7] wire [2:0] io_in_d_bits_size_0 = io_in_d_bits_size; // @[Monitor.scala:36:7] wire [7:0] io_in_d_bits_source_0 = io_in_d_bits_source; // @[Monitor.scala:36:7] wire [63:0] io_in_d_bits_data_0 = io_in_d_bits_data; // @[Monitor.scala:36:7] wire io_in_d_bits_sink = 1'h0; // @[Monitor.scala:36:7] wire io_in_d_bits_denied = 1'h0; // @[Monitor.scala:36:7] wire io_in_d_bits_corrupt = 1'h0; // @[Monitor.scala:36:7] wire sink_ok = 1'h0; // @[Monitor.scala:309:31] wire _c_first_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_first_T = 1'h0; // @[Decoupled.scala:51:35] wire c_first_beats1_opdata = 1'h0; // @[Edges.scala:102:36] wire _c_first_last_T = 1'h0; // @[Edges.scala:232:25] wire c_first_done = 1'h0; // @[Edges.scala:233:22] wire _c_set_wo_ready_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_set_wo_ready_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_set_wo_ready_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_T = 1'h0; // @[Monitor.scala:772:47] wire _c_probe_ack_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_T_1 = 1'h0; // @[Monitor.scala:772:95] wire c_probe_ack = 1'h0; // @[Monitor.scala:772:71] wire _same_cycle_resp_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_T_3 = 1'h0; // @[Monitor.scala:795:44] wire _same_cycle_resp_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_T_4 = 1'h0; // @[Edges.scala:68:36] wire _same_cycle_resp_T_5 = 1'h0; // @[Edges.scala:68:51] wire _same_cycle_resp_T_6 = 1'h0; // @[Edges.scala:68:40] wire _same_cycle_resp_T_7 = 1'h0; // @[Monitor.scala:795:55] wire _same_cycle_resp_WIRE_4_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_4_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_4_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_5_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_5_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_5_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire same_cycle_resp_1 = 1'h0; // @[Monitor.scala:795:88] wire [2:0] responseMap_0 = 3'h0; // @[Monitor.scala:643:42] wire [2:0] responseMap_1 = 3'h0; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_0 = 3'h0; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_1 = 3'h0; // @[Monitor.scala:644:42] wire [2:0] _c_first_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] c_first_beats1_decode = 3'h0; // @[Edges.scala:220:59] wire [2:0] c_first_beats1 = 3'h0; // @[Edges.scala:221:14] wire [2:0] _c_first_count_T = 3'h0; // @[Edges.scala:234:27] wire [2:0] c_first_count = 3'h0; // @[Edges.scala:234:25] wire [2:0] _c_first_counter_T = 3'h0; // @[Edges.scala:236:21] wire [2:0] _c_set_wo_ready_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_wo_ready_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_wo_ready_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_4_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_4_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_4_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_5_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_5_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_5_bits_size = 3'h0; // @[Bundles.scala:265:61] wire _source_ok_T_3 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_5 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_9 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_11 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_15 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_17 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_21 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_23 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_33 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_41 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_67 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_69 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_73 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_75 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_79 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_81 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_85 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_87 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_97 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_105 = 1'h1; // @[Parameters.scala:56:32] wire c_first = 1'h1; // @[Edges.scala:231:25] wire _c_first_last_T_1 = 1'h1; // @[Edges.scala:232:43] wire c_first_last = 1'h1; // @[Edges.scala:232:33] wire [2:0] c_first_counter1 = 3'h7; // @[Edges.scala:230:28] wire [3:0] _c_first_counter1_T = 4'hF; // @[Edges.scala:230:28] wire [1:0] io_in_d_bits_param = 2'h0; // @[Monitor.scala:36:7] wire [63:0] _c_first_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_first_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_first_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_first_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_set_wo_ready_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_set_wo_ready_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_opcodes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_opcodes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_sizes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_sizes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_opcodes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_opcodes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_sizes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_sizes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_probe_ack_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_probe_ack_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_probe_ack_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_probe_ack_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _same_cycle_resp_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _same_cycle_resp_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _same_cycle_resp_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _same_cycle_resp_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _same_cycle_resp_WIRE_4_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _same_cycle_resp_WIRE_5_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [12:0] _c_first_WIRE_bits_address = 13'h0; // @[Bundles.scala:265:74] wire [12:0] _c_first_WIRE_1_bits_address = 13'h0; // @[Bundles.scala:265:61] wire [12:0] _c_first_WIRE_2_bits_address = 13'h0; // @[Bundles.scala:265:74] wire [12:0] _c_first_WIRE_3_bits_address = 13'h0; // @[Bundles.scala:265:61] wire [12:0] _c_set_wo_ready_WIRE_bits_address = 13'h0; // @[Bundles.scala:265:74] wire [12:0] _c_set_wo_ready_WIRE_1_bits_address = 13'h0; // @[Bundles.scala:265:61] wire [12:0] _c_set_WIRE_bits_address = 13'h0; // @[Bundles.scala:265:74] wire [12:0] _c_set_WIRE_1_bits_address = 13'h0; // @[Bundles.scala:265:61] wire [12:0] _c_opcodes_set_interm_WIRE_bits_address = 13'h0; // @[Bundles.scala:265:74] wire [12:0] _c_opcodes_set_interm_WIRE_1_bits_address = 13'h0; // @[Bundles.scala:265:61] wire [12:0] _c_sizes_set_interm_WIRE_bits_address = 13'h0; // @[Bundles.scala:265:74] wire [12:0] _c_sizes_set_interm_WIRE_1_bits_address = 13'h0; // @[Bundles.scala:265:61] wire [12:0] _c_opcodes_set_WIRE_bits_address = 13'h0; // @[Bundles.scala:265:74] wire [12:0] _c_opcodes_set_WIRE_1_bits_address = 13'h0; // @[Bundles.scala:265:61] wire [12:0] _c_sizes_set_WIRE_bits_address = 13'h0; // @[Bundles.scala:265:74] wire [12:0] _c_sizes_set_WIRE_1_bits_address = 13'h0; // @[Bundles.scala:265:61] wire [12:0] _c_probe_ack_WIRE_bits_address = 13'h0; // @[Bundles.scala:265:74] wire [12:0] _c_probe_ack_WIRE_1_bits_address = 13'h0; // @[Bundles.scala:265:61] wire [12:0] _c_probe_ack_WIRE_2_bits_address = 13'h0; // @[Bundles.scala:265:74] wire [12:0] _c_probe_ack_WIRE_3_bits_address = 13'h0; // @[Bundles.scala:265:61] wire [12:0] _same_cycle_resp_WIRE_bits_address = 13'h0; // @[Bundles.scala:265:74] wire [12:0] _same_cycle_resp_WIRE_1_bits_address = 13'h0; // @[Bundles.scala:265:61] wire [12:0] _same_cycle_resp_WIRE_2_bits_address = 13'h0; // @[Bundles.scala:265:74] wire [12:0] _same_cycle_resp_WIRE_3_bits_address = 13'h0; // @[Bundles.scala:265:61] wire [12:0] _same_cycle_resp_WIRE_4_bits_address = 13'h0; // @[Bundles.scala:265:74] wire [12:0] _same_cycle_resp_WIRE_5_bits_address = 13'h0; // @[Bundles.scala:265:61] wire [7:0] _c_first_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74] wire [7:0] _c_first_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61] wire [7:0] _c_first_WIRE_2_bits_source = 8'h0; // @[Bundles.scala:265:74] wire [7:0] _c_first_WIRE_3_bits_source = 8'h0; // @[Bundles.scala:265:61] wire [7:0] _c_set_wo_ready_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74] wire [7:0] _c_set_wo_ready_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61] wire [7:0] _c_set_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74] wire [7:0] _c_set_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61] wire [7:0] _c_opcodes_set_interm_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74] wire [7:0] _c_opcodes_set_interm_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61] wire [7:0] _c_sizes_set_interm_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74] wire [7:0] _c_sizes_set_interm_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61] wire [7:0] _c_opcodes_set_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74] wire [7:0] _c_opcodes_set_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61] wire [7:0] _c_sizes_set_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74] wire [7:0] _c_sizes_set_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61] wire [7:0] _c_probe_ack_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74] wire [7:0] _c_probe_ack_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61] wire [7:0] _c_probe_ack_WIRE_2_bits_source = 8'h0; // @[Bundles.scala:265:74] wire [7:0] _c_probe_ack_WIRE_3_bits_source = 8'h0; // @[Bundles.scala:265:61] wire [7:0] _same_cycle_resp_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74] wire [7:0] _same_cycle_resp_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61] wire [7:0] _same_cycle_resp_WIRE_2_bits_source = 8'h0; // @[Bundles.scala:265:74] wire [7:0] _same_cycle_resp_WIRE_3_bits_source = 8'h0; // @[Bundles.scala:265:61] wire [7:0] _same_cycle_resp_WIRE_4_bits_source = 8'h0; // @[Bundles.scala:265:74] wire [7:0] _same_cycle_resp_WIRE_5_bits_source = 8'h0; // @[Bundles.scala:265:61] wire [15:0] _a_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _a_size_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _d_opcodes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _d_sizes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _c_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57] wire [15:0] _c_size_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57] wire [15:0] _d_opcodes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57] wire [15:0] _d_sizes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57] wire [16:0] _a_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _a_size_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _d_opcodes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _d_sizes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _c_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57] wire [16:0] _c_size_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57] wire [16:0] _d_opcodes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57] wire [16:0] _d_sizes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57] wire [15:0] _a_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _a_size_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _d_opcodes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _d_sizes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _c_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51] wire [15:0] _c_size_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51] wire [15:0] _d_opcodes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51] wire [15:0] _d_sizes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51] wire [2050:0] _c_opcodes_set_T_1 = 2051'h0; // @[Monitor.scala:767:54] wire [2050:0] _c_sizes_set_T_1 = 2051'h0; // @[Monitor.scala:768:52] wire [10:0] _c_opcodes_set_T = 11'h0; // @[Monitor.scala:767:79] wire [10:0] _c_sizes_set_T = 11'h0; // @[Monitor.scala:768:77] wire [3:0] _c_opcodes_set_interm_T_1 = 4'h1; // @[Monitor.scala:765:61] wire [3:0] _c_sizes_set_interm_T_1 = 4'h1; // @[Monitor.scala:766:59] wire [3:0] c_opcodes_set_interm = 4'h0; // @[Monitor.scala:754:40] wire [3:0] c_sizes_set_interm = 4'h0; // @[Monitor.scala:755:40] wire [3:0] _c_opcodes_set_interm_T = 4'h0; // @[Monitor.scala:765:53] wire [3:0] _c_sizes_set_interm_T = 4'h0; // @[Monitor.scala:766:51] wire [255:0] _c_set_wo_ready_T = 256'h1; // @[OneHot.scala:58:35] wire [255:0] _c_set_T = 256'h1; // @[OneHot.scala:58:35] wire [515:0] c_opcodes_set = 516'h0; // @[Monitor.scala:740:34] wire [515:0] c_sizes_set = 516'h0; // @[Monitor.scala:741:34] wire [128:0] c_set = 129'h0; // @[Monitor.scala:738:34] wire [128:0] c_set_wo_ready = 129'h0; // @[Monitor.scala:739:34] wire [5:0] _c_first_beats1_decode_T_2 = 6'h0; // @[package.scala:243:46] wire [5:0] _c_first_beats1_decode_T_1 = 6'h3F; // @[package.scala:243:76] wire [12:0] _c_first_beats1_decode_T = 13'h3F; // @[package.scala:243:71] wire [2:0] responseMap_6 = 3'h4; // @[Monitor.scala:643:42] wire [2:0] responseMap_7 = 3'h4; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_7 = 3'h4; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_6 = 3'h5; // @[Monitor.scala:644:42] wire [2:0] responseMap_5 = 3'h2; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_5 = 3'h2; // @[Monitor.scala:644:42] wire [2:0] responseMap_2 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMap_3 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMap_4 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_2 = 3'h1; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_3 = 3'h1; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_4 = 3'h1; // @[Monitor.scala:644:42] wire [3:0] _a_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:637:123] wire [3:0] _a_size_lookup_T_2 = 4'h4; // @[Monitor.scala:641:117] wire [3:0] _d_opcodes_clr_T = 4'h4; // @[Monitor.scala:680:48] wire [3:0] _d_sizes_clr_T = 4'h4; // @[Monitor.scala:681:48] wire [3:0] _c_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:749:123] wire [3:0] _c_size_lookup_T_2 = 4'h4; // @[Monitor.scala:750:119] wire [3:0] _d_opcodes_clr_T_6 = 4'h4; // @[Monitor.scala:790:48] wire [3:0] _d_sizes_clr_T_6 = 4'h4; // @[Monitor.scala:791:48] wire [2:0] _mask_sizeOH_T = io_in_a_bits_size_0; // @[Misc.scala:202:34] wire [7:0] _source_ok_uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _source_ok_uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _source_ok_uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _source_ok_uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _source_ok_uncommonBits_T_4 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _source_ok_uncommonBits_T_5 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_4 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_5 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_6 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_7 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_8 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_9 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_10 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_11 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_12 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_13 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_14 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_15 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_16 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_17 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_18 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_19 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_20 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_21 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_22 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_23 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_24 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_25 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_26 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_27 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_28 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_29 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_30 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_31 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_32 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_33 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_34 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_35 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_36 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_37 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_38 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_39 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_40 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_41 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_42 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_43 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_44 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_45 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_46 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_47 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_48 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_49 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_50 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_51 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_52 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_53 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_54 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_55 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_56 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_57 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_58 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_59 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_60 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_61 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_62 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_63 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_64 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_65 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _source_ok_uncommonBits_T_6 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _source_ok_uncommonBits_T_7 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _source_ok_uncommonBits_T_8 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _source_ok_uncommonBits_T_9 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _source_ok_uncommonBits_T_10 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _source_ok_uncommonBits_T_11 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire _source_ok_T = io_in_a_bits_source_0 == 8'h10; // @[Monitor.scala:36:7] wire _source_ok_WIRE_0 = _source_ok_T; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits = _source_ok_uncommonBits_T[1:0]; // @[Parameters.scala:52:{29,56}] wire [5:0] _source_ok_T_1 = io_in_a_bits_source_0[7:2]; // @[Monitor.scala:36:7] wire [5:0] _source_ok_T_7 = io_in_a_bits_source_0[7:2]; // @[Monitor.scala:36:7] wire [5:0] _source_ok_T_13 = io_in_a_bits_source_0[7:2]; // @[Monitor.scala:36:7] wire [5:0] _source_ok_T_19 = io_in_a_bits_source_0[7:2]; // @[Monitor.scala:36:7] wire _source_ok_T_2 = _source_ok_T_1 == 6'h0; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_4 = _source_ok_T_2; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_6 = _source_ok_T_4; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1 = _source_ok_T_6; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_1 = _source_ok_uncommonBits_T_1[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_8 = _source_ok_T_7 == 6'h1; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_10 = _source_ok_T_8; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_12 = _source_ok_T_10; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_2 = _source_ok_T_12; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_2 = _source_ok_uncommonBits_T_2[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_14 = _source_ok_T_13 == 6'h2; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_16 = _source_ok_T_14; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_18 = _source_ok_T_16; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_3 = _source_ok_T_18; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_3 = _source_ok_uncommonBits_T_3[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_20 = _source_ok_T_19 == 6'h3; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_22 = _source_ok_T_20; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_24 = _source_ok_T_22; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_4 = _source_ok_T_24; // @[Parameters.scala:1138:31] wire _source_ok_T_25 = io_in_a_bits_source_0 == 8'h44; // @[Monitor.scala:36:7] wire _source_ok_WIRE_5 = _source_ok_T_25; // @[Parameters.scala:1138:31] wire _source_ok_T_26 = io_in_a_bits_source_0 == 8'h45; // @[Monitor.scala:36:7] wire _source_ok_WIRE_6 = _source_ok_T_26; // @[Parameters.scala:1138:31] wire _source_ok_T_27 = io_in_a_bits_source_0 == 8'h46; // @[Monitor.scala:36:7] wire _source_ok_WIRE_7 = _source_ok_T_27; // @[Parameters.scala:1138:31] wire _source_ok_T_28 = io_in_a_bits_source_0 == 8'h40; // @[Monitor.scala:36:7] wire _source_ok_WIRE_8 = _source_ok_T_28; // @[Parameters.scala:1138:31] wire _source_ok_T_29 = io_in_a_bits_source_0 == 8'h41; // @[Monitor.scala:36:7] wire _source_ok_WIRE_9 = _source_ok_T_29; // @[Parameters.scala:1138:31] wire _source_ok_T_30 = io_in_a_bits_source_0 == 8'h42; // @[Monitor.scala:36:7] wire _source_ok_WIRE_10 = _source_ok_T_30; // @[Parameters.scala:1138:31] wire [2:0] source_ok_uncommonBits_4 = _source_ok_uncommonBits_T_4[2:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] _source_ok_T_31 = io_in_a_bits_source_0[7:3]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_39 = io_in_a_bits_source_0[7:3]; // @[Monitor.scala:36:7] wire _source_ok_T_32 = _source_ok_T_31 == 5'h6; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_34 = _source_ok_T_32; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_35 = source_ok_uncommonBits_4 < 3'h5; // @[Parameters.scala:52:56, :57:20] wire _source_ok_T_36 = _source_ok_T_34 & _source_ok_T_35; // @[Parameters.scala:54:67, :56:48, :57:20] wire _source_ok_WIRE_11 = _source_ok_T_36; // @[Parameters.scala:1138:31] wire _source_ok_T_37 = io_in_a_bits_source_0 == 8'h35; // @[Monitor.scala:36:7] wire _source_ok_WIRE_12 = _source_ok_T_37; // @[Parameters.scala:1138:31] wire _source_ok_T_38 = io_in_a_bits_source_0 == 8'h38; // @[Monitor.scala:36:7] wire _source_ok_WIRE_13 = _source_ok_T_38; // @[Parameters.scala:1138:31] wire [2:0] source_ok_uncommonBits_5 = _source_ok_uncommonBits_T_5[2:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_40 = _source_ok_T_39 == 5'h4; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_42 = _source_ok_T_40; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_43 = source_ok_uncommonBits_5 < 3'h5; // @[Parameters.scala:52:56, :57:20] wire _source_ok_T_44 = _source_ok_T_42 & _source_ok_T_43; // @[Parameters.scala:54:67, :56:48, :57:20] wire _source_ok_WIRE_14 = _source_ok_T_44; // @[Parameters.scala:1138:31] wire _source_ok_T_45 = io_in_a_bits_source_0 == 8'h25; // @[Monitor.scala:36:7] wire _source_ok_WIRE_15 = _source_ok_T_45; // @[Parameters.scala:1138:31] wire _source_ok_T_46 = io_in_a_bits_source_0 == 8'h28; // @[Monitor.scala:36:7] wire _source_ok_WIRE_16 = _source_ok_T_46; // @[Parameters.scala:1138:31] wire _source_ok_T_47 = io_in_a_bits_source_0 == 8'h80; // @[Monitor.scala:36:7] wire _source_ok_WIRE_17 = _source_ok_T_47; // @[Parameters.scala:1138:31] wire _source_ok_T_48 = _source_ok_WIRE_0 | _source_ok_WIRE_1; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_49 = _source_ok_T_48 | _source_ok_WIRE_2; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_50 = _source_ok_T_49 | _source_ok_WIRE_3; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_51 = _source_ok_T_50 | _source_ok_WIRE_4; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_52 = _source_ok_T_51 | _source_ok_WIRE_5; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_53 = _source_ok_T_52 | _source_ok_WIRE_6; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_54 = _source_ok_T_53 | _source_ok_WIRE_7; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_55 = _source_ok_T_54 | _source_ok_WIRE_8; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_56 = _source_ok_T_55 | _source_ok_WIRE_9; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_57 = _source_ok_T_56 | _source_ok_WIRE_10; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_58 = _source_ok_T_57 | _source_ok_WIRE_11; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_59 = _source_ok_T_58 | _source_ok_WIRE_12; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_60 = _source_ok_T_59 | _source_ok_WIRE_13; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_61 = _source_ok_T_60 | _source_ok_WIRE_14; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_62 = _source_ok_T_61 | _source_ok_WIRE_15; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_63 = _source_ok_T_62 | _source_ok_WIRE_16; // @[Parameters.scala:1138:31, :1139:46] wire source_ok = _source_ok_T_63 | _source_ok_WIRE_17; // @[Parameters.scala:1138:31, :1139:46] wire [12:0] _GEN = 13'h3F << io_in_a_bits_size_0; // @[package.scala:243:71] wire [12:0] _is_aligned_mask_T; // @[package.scala:243:71] assign _is_aligned_mask_T = _GEN; // @[package.scala:243:71] wire [12:0] _a_first_beats1_decode_T; // @[package.scala:243:71] assign _a_first_beats1_decode_T = _GEN; // @[package.scala:243:71] wire [12:0] _a_first_beats1_decode_T_3; // @[package.scala:243:71] assign _a_first_beats1_decode_T_3 = _GEN; // @[package.scala:243:71] wire [5:0] _is_aligned_mask_T_1 = _is_aligned_mask_T[5:0]; // @[package.scala:243:{71,76}] wire [5:0] is_aligned_mask = ~_is_aligned_mask_T_1; // @[package.scala:243:{46,76}] wire [12:0] _is_aligned_T = {7'h0, io_in_a_bits_address_0[5:0] & is_aligned_mask}; // @[package.scala:243:46] wire is_aligned = _is_aligned_T == 13'h0; // @[Edges.scala:21:{16,24}] wire [1:0] mask_sizeOH_shiftAmount = _mask_sizeOH_T[1:0]; // @[OneHot.scala:64:49] wire [3:0] _mask_sizeOH_T_1 = 4'h1 << mask_sizeOH_shiftAmount; // @[OneHot.scala:64:49, :65:12] wire [2:0] _mask_sizeOH_T_2 = _mask_sizeOH_T_1[2:0]; // @[OneHot.scala:65:{12,27}] wire [2:0] mask_sizeOH = {_mask_sizeOH_T_2[2:1], 1'h1}; // @[OneHot.scala:65:27] wire mask_sub_sub_sub_0_1 = io_in_a_bits_size_0 > 3'h2; // @[Misc.scala:206:21] wire mask_sub_sub_size = mask_sizeOH[2]; // @[Misc.scala:202:81, :209:26] wire mask_sub_sub_bit = io_in_a_bits_address_0[2]; // @[Misc.scala:210:26] wire mask_sub_sub_1_2 = mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27] wire mask_sub_sub_nbit = ~mask_sub_sub_bit; // @[Misc.scala:210:26, :211:20] wire mask_sub_sub_0_2 = mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_sub_acc_T = mask_sub_sub_size & mask_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_0_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T; // @[Misc.scala:206:21, :215:{29,38}] wire _mask_sub_sub_acc_T_1 = mask_sub_sub_size & mask_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_1_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T_1; // @[Misc.scala:206:21, :215:{29,38}] wire mask_sub_size = mask_sizeOH[1]; // @[Misc.scala:202:81, :209:26] wire mask_sub_bit = io_in_a_bits_address_0[1]; // @[Misc.scala:210:26] wire mask_sub_nbit = ~mask_sub_bit; // @[Misc.scala:210:26, :211:20] wire mask_sub_0_2 = mask_sub_sub_0_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_acc_T = mask_sub_size & mask_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_0_1 = mask_sub_sub_0_1 | _mask_sub_acc_T; // @[Misc.scala:215:{29,38}] wire mask_sub_1_2 = mask_sub_sub_0_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_acc_T_1 = mask_sub_size & mask_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_1_1 = mask_sub_sub_0_1 | _mask_sub_acc_T_1; // @[Misc.scala:215:{29,38}] wire mask_sub_2_2 = mask_sub_sub_1_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_acc_T_2 = mask_sub_size & mask_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_2_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_2; // @[Misc.scala:215:{29,38}] wire mask_sub_3_2 = mask_sub_sub_1_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_acc_T_3 = mask_sub_size & mask_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_3_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_3; // @[Misc.scala:215:{29,38}] wire mask_size = mask_sizeOH[0]; // @[Misc.scala:202:81, :209:26] wire mask_bit = io_in_a_bits_address_0[0]; // @[Misc.scala:210:26] wire mask_nbit = ~mask_bit; // @[Misc.scala:210:26, :211:20] wire mask_eq = mask_sub_0_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T = mask_size & mask_eq; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc = mask_sub_0_1 | _mask_acc_T; // @[Misc.scala:215:{29,38}] wire mask_eq_1 = mask_sub_0_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_1 = mask_size & mask_eq_1; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_1 = mask_sub_0_1 | _mask_acc_T_1; // @[Misc.scala:215:{29,38}] wire mask_eq_2 = mask_sub_1_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_2 = mask_size & mask_eq_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_2 = mask_sub_1_1 | _mask_acc_T_2; // @[Misc.scala:215:{29,38}] wire mask_eq_3 = mask_sub_1_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_3 = mask_size & mask_eq_3; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_3 = mask_sub_1_1 | _mask_acc_T_3; // @[Misc.scala:215:{29,38}] wire mask_eq_4 = mask_sub_2_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_4 = mask_size & mask_eq_4; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_4 = mask_sub_2_1 | _mask_acc_T_4; // @[Misc.scala:215:{29,38}] wire mask_eq_5 = mask_sub_2_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_5 = mask_size & mask_eq_5; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_5 = mask_sub_2_1 | _mask_acc_T_5; // @[Misc.scala:215:{29,38}] wire mask_eq_6 = mask_sub_3_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_6 = mask_size & mask_eq_6; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_6 = mask_sub_3_1 | _mask_acc_T_6; // @[Misc.scala:215:{29,38}] wire mask_eq_7 = mask_sub_3_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_7 = mask_size & mask_eq_7; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_7 = mask_sub_3_1 | _mask_acc_T_7; // @[Misc.scala:215:{29,38}] wire [1:0] mask_lo_lo = {mask_acc_1, mask_acc}; // @[Misc.scala:215:29, :222:10] wire [1:0] mask_lo_hi = {mask_acc_3, mask_acc_2}; // @[Misc.scala:215:29, :222:10] wire [3:0] mask_lo = {mask_lo_hi, mask_lo_lo}; // @[Misc.scala:222:10] wire [1:0] mask_hi_lo = {mask_acc_5, mask_acc_4}; // @[Misc.scala:215:29, :222:10] wire [1:0] mask_hi_hi = {mask_acc_7, mask_acc_6}; // @[Misc.scala:215:29, :222:10] wire [3:0] mask_hi = {mask_hi_hi, mask_hi_lo}; // @[Misc.scala:222:10] wire [7:0] mask = {mask_hi, mask_lo}; // @[Misc.scala:222:10] wire [1:0] uncommonBits = _uncommonBits_T[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_1 = _uncommonBits_T_1[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_2 = _uncommonBits_T_2[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_3 = _uncommonBits_T_3[1:0]; // @[Parameters.scala:52:{29,56}] wire [2:0] uncommonBits_4 = _uncommonBits_T_4[2:0]; // @[Parameters.scala:52:{29,56}] wire [2:0] uncommonBits_5 = _uncommonBits_T_5[2:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_6 = _uncommonBits_T_6[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_7 = _uncommonBits_T_7[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_8 = _uncommonBits_T_8[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_9 = _uncommonBits_T_9[1:0]; // @[Parameters.scala:52:{29,56}] wire [2:0] uncommonBits_10 = _uncommonBits_T_10[2:0]; // @[Parameters.scala:52:{29,56}] wire [2:0] uncommonBits_11 = _uncommonBits_T_11[2:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_12 = _uncommonBits_T_12[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_13 = _uncommonBits_T_13[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_14 = _uncommonBits_T_14[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_15 = _uncommonBits_T_15[1:0]; // @[Parameters.scala:52:{29,56}] wire [2:0] uncommonBits_16 = _uncommonBits_T_16[2:0]; // @[Parameters.scala:52:{29,56}] wire [2:0] uncommonBits_17 = _uncommonBits_T_17[2:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_18 = _uncommonBits_T_18[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_19 = _uncommonBits_T_19[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_20 = _uncommonBits_T_20[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_21 = _uncommonBits_T_21[1:0]; // @[Parameters.scala:52:{29,56}] wire [2:0] uncommonBits_22 = _uncommonBits_T_22[2:0]; // @[Parameters.scala:52:{29,56}] wire [2:0] uncommonBits_23 = _uncommonBits_T_23[2:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_24 = _uncommonBits_T_24[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_25 = _uncommonBits_T_25[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_26 = _uncommonBits_T_26[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_27 = _uncommonBits_T_27[1:0]; // @[Parameters.scala:52:{29,56}] wire [2:0] uncommonBits_28 = _uncommonBits_T_28[2:0]; // @[Parameters.scala:52:{29,56}] wire [2:0] uncommonBits_29 = _uncommonBits_T_29[2:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_30 = _uncommonBits_T_30[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_31 = _uncommonBits_T_31[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_32 = _uncommonBits_T_32[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_33 = _uncommonBits_T_33[1:0]; // @[Parameters.scala:52:{29,56}] wire [2:0] uncommonBits_34 = _uncommonBits_T_34[2:0]; // @[Parameters.scala:52:{29,56}] wire [2:0] uncommonBits_35 = _uncommonBits_T_35[2:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_36 = _uncommonBits_T_36[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_37 = _uncommonBits_T_37[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_38 = _uncommonBits_T_38[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_39 = _uncommonBits_T_39[1:0]; // @[Parameters.scala:52:{29,56}] wire [2:0] uncommonBits_40 = _uncommonBits_T_40[2:0]; // @[Parameters.scala:52:{29,56}] wire [2:0] uncommonBits_41 = _uncommonBits_T_41[2:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_42 = _uncommonBits_T_42[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_43 = _uncommonBits_T_43[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_44 = _uncommonBits_T_44[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_45 = _uncommonBits_T_45[1:0]; // @[Parameters.scala:52:{29,56}] wire [2:0] uncommonBits_46 = _uncommonBits_T_46[2:0]; // @[Parameters.scala:52:{29,56}] wire [2:0] uncommonBits_47 = _uncommonBits_T_47[2:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_48 = _uncommonBits_T_48[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_49 = _uncommonBits_T_49[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_50 = _uncommonBits_T_50[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_51 = _uncommonBits_T_51[1:0]; // @[Parameters.scala:52:{29,56}] wire [2:0] uncommonBits_52 = _uncommonBits_T_52[2:0]; // @[Parameters.scala:52:{29,56}] wire [2:0] uncommonBits_53 = _uncommonBits_T_53[2:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_54 = _uncommonBits_T_54[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_55 = _uncommonBits_T_55[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_56 = _uncommonBits_T_56[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_57 = _uncommonBits_T_57[1:0]; // @[Parameters.scala:52:{29,56}] wire [2:0] uncommonBits_58 = _uncommonBits_T_58[2:0]; // @[Parameters.scala:52:{29,56}] wire [2:0] uncommonBits_59 = _uncommonBits_T_59[2:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_60 = _uncommonBits_T_60[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_61 = _uncommonBits_T_61[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_62 = _uncommonBits_T_62[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_63 = _uncommonBits_T_63[1:0]; // @[Parameters.scala:52:{29,56}] wire [2:0] uncommonBits_64 = _uncommonBits_T_64[2:0]; // @[Parameters.scala:52:{29,56}] wire [2:0] uncommonBits_65 = _uncommonBits_T_65[2:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_64 = io_in_d_bits_source_0 == 8'h10; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_0 = _source_ok_T_64; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_6 = _source_ok_uncommonBits_T_6[1:0]; // @[Parameters.scala:52:{29,56}] wire [5:0] _source_ok_T_65 = io_in_d_bits_source_0[7:2]; // @[Monitor.scala:36:7] wire [5:0] _source_ok_T_71 = io_in_d_bits_source_0[7:2]; // @[Monitor.scala:36:7] wire [5:0] _source_ok_T_77 = io_in_d_bits_source_0[7:2]; // @[Monitor.scala:36:7] wire [5:0] _source_ok_T_83 = io_in_d_bits_source_0[7:2]; // @[Monitor.scala:36:7] wire _source_ok_T_66 = _source_ok_T_65 == 6'h0; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_68 = _source_ok_T_66; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_70 = _source_ok_T_68; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_1 = _source_ok_T_70; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_7 = _source_ok_uncommonBits_T_7[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_72 = _source_ok_T_71 == 6'h1; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_74 = _source_ok_T_72; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_76 = _source_ok_T_74; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_2 = _source_ok_T_76; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_8 = _source_ok_uncommonBits_T_8[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_78 = _source_ok_T_77 == 6'h2; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_80 = _source_ok_T_78; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_82 = _source_ok_T_80; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_3 = _source_ok_T_82; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_9 = _source_ok_uncommonBits_T_9[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_84 = _source_ok_T_83 == 6'h3; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_86 = _source_ok_T_84; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_88 = _source_ok_T_86; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_4 = _source_ok_T_88; // @[Parameters.scala:1138:31] wire _source_ok_T_89 = io_in_d_bits_source_0 == 8'h44; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_5 = _source_ok_T_89; // @[Parameters.scala:1138:31] wire _source_ok_T_90 = io_in_d_bits_source_0 == 8'h45; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_6 = _source_ok_T_90; // @[Parameters.scala:1138:31] wire _source_ok_T_91 = io_in_d_bits_source_0 == 8'h46; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_7 = _source_ok_T_91; // @[Parameters.scala:1138:31] wire _source_ok_T_92 = io_in_d_bits_source_0 == 8'h40; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_8 = _source_ok_T_92; // @[Parameters.scala:1138:31] wire _source_ok_T_93 = io_in_d_bits_source_0 == 8'h41; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_9 = _source_ok_T_93; // @[Parameters.scala:1138:31] wire _source_ok_T_94 = io_in_d_bits_source_0 == 8'h42; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_10 = _source_ok_T_94; // @[Parameters.scala:1138:31] wire [2:0] source_ok_uncommonBits_10 = _source_ok_uncommonBits_T_10[2:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] _source_ok_T_95 = io_in_d_bits_source_0[7:3]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_103 = io_in_d_bits_source_0[7:3]; // @[Monitor.scala:36:7] wire _source_ok_T_96 = _source_ok_T_95 == 5'h6; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_98 = _source_ok_T_96; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_99 = source_ok_uncommonBits_10 < 3'h5; // @[Parameters.scala:52:56, :57:20] wire _source_ok_T_100 = _source_ok_T_98 & _source_ok_T_99; // @[Parameters.scala:54:67, :56:48, :57:20] wire _source_ok_WIRE_1_11 = _source_ok_T_100; // @[Parameters.scala:1138:31] wire _source_ok_T_101 = io_in_d_bits_source_0 == 8'h35; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_12 = _source_ok_T_101; // @[Parameters.scala:1138:31] wire _source_ok_T_102 = io_in_d_bits_source_0 == 8'h38; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_13 = _source_ok_T_102; // @[Parameters.scala:1138:31] wire [2:0] source_ok_uncommonBits_11 = _source_ok_uncommonBits_T_11[2:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_104 = _source_ok_T_103 == 5'h4; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_106 = _source_ok_T_104; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_107 = source_ok_uncommonBits_11 < 3'h5; // @[Parameters.scala:52:56, :57:20] wire _source_ok_T_108 = _source_ok_T_106 & _source_ok_T_107; // @[Parameters.scala:54:67, :56:48, :57:20] wire _source_ok_WIRE_1_14 = _source_ok_T_108; // @[Parameters.scala:1138:31] wire _source_ok_T_109 = io_in_d_bits_source_0 == 8'h25; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_15 = _source_ok_T_109; // @[Parameters.scala:1138:31] wire _source_ok_T_110 = io_in_d_bits_source_0 == 8'h28; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_16 = _source_ok_T_110; // @[Parameters.scala:1138:31] wire _source_ok_T_111 = io_in_d_bits_source_0 == 8'h80; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_17 = _source_ok_T_111; // @[Parameters.scala:1138:31] wire _source_ok_T_112 = _source_ok_WIRE_1_0 | _source_ok_WIRE_1_1; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_113 = _source_ok_T_112 | _source_ok_WIRE_1_2; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_114 = _source_ok_T_113 | _source_ok_WIRE_1_3; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_115 = _source_ok_T_114 | _source_ok_WIRE_1_4; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_116 = _source_ok_T_115 | _source_ok_WIRE_1_5; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_117 = _source_ok_T_116 | _source_ok_WIRE_1_6; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_118 = _source_ok_T_117 | _source_ok_WIRE_1_7; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_119 = _source_ok_T_118 | _source_ok_WIRE_1_8; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_120 = _source_ok_T_119 | _source_ok_WIRE_1_9; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_121 = _source_ok_T_120 | _source_ok_WIRE_1_10; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_122 = _source_ok_T_121 | _source_ok_WIRE_1_11; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_123 = _source_ok_T_122 | _source_ok_WIRE_1_12; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_124 = _source_ok_T_123 | _source_ok_WIRE_1_13; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_125 = _source_ok_T_124 | _source_ok_WIRE_1_14; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_126 = _source_ok_T_125 | _source_ok_WIRE_1_15; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_127 = _source_ok_T_126 | _source_ok_WIRE_1_16; // @[Parameters.scala:1138:31, :1139:46] wire source_ok_1 = _source_ok_T_127 | _source_ok_WIRE_1_17; // @[Parameters.scala:1138:31, :1139:46] wire _T_1489 = io_in_a_ready_0 & io_in_a_valid_0; // @[Decoupled.scala:51:35] wire _a_first_T; // @[Decoupled.scala:51:35] assign _a_first_T = _T_1489; // @[Decoupled.scala:51:35] wire _a_first_T_1; // @[Decoupled.scala:51:35] assign _a_first_T_1 = _T_1489; // @[Decoupled.scala:51:35] wire [5:0] _a_first_beats1_decode_T_1 = _a_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}] wire [5:0] _a_first_beats1_decode_T_2 = ~_a_first_beats1_decode_T_1; // @[package.scala:243:{46,76}] wire [2:0] a_first_beats1_decode = _a_first_beats1_decode_T_2[5:3]; // @[package.scala:243:46] wire _a_first_beats1_opdata_T = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7] wire _a_first_beats1_opdata_T_1 = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7] wire a_first_beats1_opdata = ~_a_first_beats1_opdata_T; // @[Edges.scala:92:{28,37}] wire [2:0] a_first_beats1 = a_first_beats1_opdata ? a_first_beats1_decode : 3'h0; // @[Edges.scala:92:28, :220:59, :221:14] reg [2:0] a_first_counter; // @[Edges.scala:229:27] wire [3:0] _a_first_counter1_T = {1'h0, a_first_counter} - 4'h1; // @[Edges.scala:229:27, :230:28] wire [2:0] a_first_counter1 = _a_first_counter1_T[2:0]; // @[Edges.scala:230:28] wire a_first = a_first_counter == 3'h0; // @[Edges.scala:229:27, :231:25] wire _a_first_last_T = a_first_counter == 3'h1; // @[Edges.scala:229:27, :232:25] wire _a_first_last_T_1 = a_first_beats1 == 3'h0; // @[Edges.scala:221:14, :232:43] wire a_first_last = _a_first_last_T | _a_first_last_T_1; // @[Edges.scala:232:{25,33,43}] wire a_first_done = a_first_last & _a_first_T; // @[Decoupled.scala:51:35] wire [2:0] _a_first_count_T = ~a_first_counter1; // @[Edges.scala:230:28, :234:27] wire [2:0] a_first_count = a_first_beats1 & _a_first_count_T; // @[Edges.scala:221:14, :234:{25,27}] wire [2:0] _a_first_counter_T = a_first ? a_first_beats1 : a_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] reg [2:0] opcode; // @[Monitor.scala:387:22] reg [2:0] param; // @[Monitor.scala:388:22] reg [2:0] size; // @[Monitor.scala:389:22] reg [7:0] source; // @[Monitor.scala:390:22] reg [12:0] address; // @[Monitor.scala:391:22] wire _T_1557 = io_in_d_ready_0 & io_in_d_valid_0; // @[Decoupled.scala:51:35] wire _d_first_T; // @[Decoupled.scala:51:35] assign _d_first_T = _T_1557; // @[Decoupled.scala:51:35] wire _d_first_T_1; // @[Decoupled.scala:51:35] assign _d_first_T_1 = _T_1557; // @[Decoupled.scala:51:35] wire _d_first_T_2; // @[Decoupled.scala:51:35] assign _d_first_T_2 = _T_1557; // @[Decoupled.scala:51:35] wire [12:0] _GEN_0 = 13'h3F << io_in_d_bits_size_0; // @[package.scala:243:71] wire [12:0] _d_first_beats1_decode_T; // @[package.scala:243:71] assign _d_first_beats1_decode_T = _GEN_0; // @[package.scala:243:71] wire [12:0] _d_first_beats1_decode_T_3; // @[package.scala:243:71] assign _d_first_beats1_decode_T_3 = _GEN_0; // @[package.scala:243:71] wire [12:0] _d_first_beats1_decode_T_6; // @[package.scala:243:71] assign _d_first_beats1_decode_T_6 = _GEN_0; // @[package.scala:243:71] wire [5:0] _d_first_beats1_decode_T_1 = _d_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}] wire [5:0] _d_first_beats1_decode_T_2 = ~_d_first_beats1_decode_T_1; // @[package.scala:243:{46,76}] wire [2:0] d_first_beats1_decode = _d_first_beats1_decode_T_2[5:3]; // @[package.scala:243:46] wire d_first_beats1_opdata = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire d_first_beats1_opdata_1 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire d_first_beats1_opdata_2 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire [2:0] d_first_beats1 = d_first_beats1_opdata ? d_first_beats1_decode : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [2:0] d_first_counter; // @[Edges.scala:229:27] wire [3:0] _d_first_counter1_T = {1'h0, d_first_counter} - 4'h1; // @[Edges.scala:229:27, :230:28] wire [2:0] d_first_counter1 = _d_first_counter1_T[2:0]; // @[Edges.scala:230:28] wire d_first = d_first_counter == 3'h0; // @[Edges.scala:229:27, :231:25] wire _d_first_last_T = d_first_counter == 3'h1; // @[Edges.scala:229:27, :232:25] wire _d_first_last_T_1 = d_first_beats1 == 3'h0; // @[Edges.scala:221:14, :232:43] wire d_first_last = _d_first_last_T | _d_first_last_T_1; // @[Edges.scala:232:{25,33,43}] wire d_first_done = d_first_last & _d_first_T; // @[Decoupled.scala:51:35] wire [2:0] _d_first_count_T = ~d_first_counter1; // @[Edges.scala:230:28, :234:27] wire [2:0] d_first_count = d_first_beats1 & _d_first_count_T; // @[Edges.scala:221:14, :234:{25,27}] wire [2:0] _d_first_counter_T = d_first ? d_first_beats1 : d_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] reg [2:0] opcode_1; // @[Monitor.scala:538:22] reg [2:0] size_1; // @[Monitor.scala:540:22] reg [7:0] source_1; // @[Monitor.scala:541:22] reg [128:0] inflight; // @[Monitor.scala:614:27] reg [515:0] inflight_opcodes; // @[Monitor.scala:616:35] reg [515:0] inflight_sizes; // @[Monitor.scala:618:33] wire [5:0] _a_first_beats1_decode_T_4 = _a_first_beats1_decode_T_3[5:0]; // @[package.scala:243:{71,76}] wire [5:0] _a_first_beats1_decode_T_5 = ~_a_first_beats1_decode_T_4; // @[package.scala:243:{46,76}] wire [2:0] a_first_beats1_decode_1 = _a_first_beats1_decode_T_5[5:3]; // @[package.scala:243:46] wire a_first_beats1_opdata_1 = ~_a_first_beats1_opdata_T_1; // @[Edges.scala:92:{28,37}] wire [2:0] a_first_beats1_1 = a_first_beats1_opdata_1 ? a_first_beats1_decode_1 : 3'h0; // @[Edges.scala:92:28, :220:59, :221:14] reg [2:0] a_first_counter_1; // @[Edges.scala:229:27] wire [3:0] _a_first_counter1_T_1 = {1'h0, a_first_counter_1} - 4'h1; // @[Edges.scala:229:27, :230:28] wire [2:0] a_first_counter1_1 = _a_first_counter1_T_1[2:0]; // @[Edges.scala:230:28] wire a_first_1 = a_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25] wire _a_first_last_T_2 = a_first_counter_1 == 3'h1; // @[Edges.scala:229:27, :232:25] wire _a_first_last_T_3 = a_first_beats1_1 == 3'h0; // @[Edges.scala:221:14, :232:43] wire a_first_last_1 = _a_first_last_T_2 | _a_first_last_T_3; // @[Edges.scala:232:{25,33,43}] wire a_first_done_1 = a_first_last_1 & _a_first_T_1; // @[Decoupled.scala:51:35] wire [2:0] _a_first_count_T_1 = ~a_first_counter1_1; // @[Edges.scala:230:28, :234:27] wire [2:0] a_first_count_1 = a_first_beats1_1 & _a_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}] wire [2:0] _a_first_counter_T_1 = a_first_1 ? a_first_beats1_1 : a_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [5:0] _d_first_beats1_decode_T_4 = _d_first_beats1_decode_T_3[5:0]; // @[package.scala:243:{71,76}] wire [5:0] _d_first_beats1_decode_T_5 = ~_d_first_beats1_decode_T_4; // @[package.scala:243:{46,76}] wire [2:0] d_first_beats1_decode_1 = _d_first_beats1_decode_T_5[5:3]; // @[package.scala:243:46] wire [2:0] d_first_beats1_1 = d_first_beats1_opdata_1 ? d_first_beats1_decode_1 : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [2:0] d_first_counter_1; // @[Edges.scala:229:27] wire [3:0] _d_first_counter1_T_1 = {1'h0, d_first_counter_1} - 4'h1; // @[Edges.scala:229:27, :230:28] wire [2:0] d_first_counter1_1 = _d_first_counter1_T_1[2:0]; // @[Edges.scala:230:28] wire d_first_1 = d_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25] wire _d_first_last_T_2 = d_first_counter_1 == 3'h1; // @[Edges.scala:229:27, :232:25] wire _d_first_last_T_3 = d_first_beats1_1 == 3'h0; // @[Edges.scala:221:14, :232:43] wire d_first_last_1 = _d_first_last_T_2 | _d_first_last_T_3; // @[Edges.scala:232:{25,33,43}] wire d_first_done_1 = d_first_last_1 & _d_first_T_1; // @[Decoupled.scala:51:35] wire [2:0] _d_first_count_T_1 = ~d_first_counter1_1; // @[Edges.scala:230:28, :234:27] wire [2:0] d_first_count_1 = d_first_beats1_1 & _d_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}] wire [2:0] _d_first_counter_T_1 = d_first_1 ? d_first_beats1_1 : d_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [128:0] a_set; // @[Monitor.scala:626:34] wire [128:0] a_set_wo_ready; // @[Monitor.scala:627:34] wire [515:0] a_opcodes_set; // @[Monitor.scala:630:33] wire [515:0] a_sizes_set; // @[Monitor.scala:632:31] wire [2:0] a_opcode_lookup; // @[Monitor.scala:635:35] wire [10:0] _GEN_1 = {1'h0, io_in_d_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :637:69] wire [10:0] _a_opcode_lookup_T; // @[Monitor.scala:637:69] assign _a_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69] wire [10:0] _a_size_lookup_T; // @[Monitor.scala:641:65] assign _a_size_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :641:65] wire [10:0] _d_opcodes_clr_T_4; // @[Monitor.scala:680:101] assign _d_opcodes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :680:101] wire [10:0] _d_sizes_clr_T_4; // @[Monitor.scala:681:99] assign _d_sizes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :681:99] wire [10:0] _c_opcode_lookup_T; // @[Monitor.scala:749:69] assign _c_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :749:69] wire [10:0] _c_size_lookup_T; // @[Monitor.scala:750:67] assign _c_size_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :750:67] wire [10:0] _d_opcodes_clr_T_10; // @[Monitor.scala:790:101] assign _d_opcodes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :790:101] wire [10:0] _d_sizes_clr_T_10; // @[Monitor.scala:791:99] assign _d_sizes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :791:99] wire [515:0] _a_opcode_lookup_T_1 = inflight_opcodes >> _a_opcode_lookup_T; // @[Monitor.scala:616:35, :637:{44,69}] wire [515:0] _a_opcode_lookup_T_6 = {512'h0, _a_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:637:{44,97}] wire [515:0] _a_opcode_lookup_T_7 = {1'h0, _a_opcode_lookup_T_6[515:1]}; // @[Monitor.scala:637:{97,152}] assign a_opcode_lookup = _a_opcode_lookup_T_7[2:0]; // @[Monitor.scala:635:35, :637:{21,152}] wire [3:0] a_size_lookup; // @[Monitor.scala:639:33] wire [515:0] _a_size_lookup_T_1 = inflight_sizes >> _a_size_lookup_T; // @[Monitor.scala:618:33, :641:{40,65}] wire [515:0] _a_size_lookup_T_6 = {512'h0, _a_size_lookup_T_1[3:0]}; // @[Monitor.scala:641:{40,91}] wire [515:0] _a_size_lookup_T_7 = {1'h0, _a_size_lookup_T_6[515:1]}; // @[Monitor.scala:641:{91,144}] assign a_size_lookup = _a_size_lookup_T_7[3:0]; // @[Monitor.scala:639:33, :641:{19,144}] wire [3:0] a_opcodes_set_interm; // @[Monitor.scala:646:40] wire [3:0] a_sizes_set_interm; // @[Monitor.scala:648:38] wire _same_cycle_resp_T = io_in_a_valid_0 & a_first_1; // @[Monitor.scala:36:7, :651:26, :684:44] wire [255:0] _GEN_2 = 256'h1 << io_in_a_bits_source_0; // @[OneHot.scala:58:35] wire [255:0] _a_set_wo_ready_T; // @[OneHot.scala:58:35] assign _a_set_wo_ready_T = _GEN_2; // @[OneHot.scala:58:35] wire [255:0] _a_set_T; // @[OneHot.scala:58:35] assign _a_set_T = _GEN_2; // @[OneHot.scala:58:35] assign a_set_wo_ready = _same_cycle_resp_T ? _a_set_wo_ready_T[128:0] : 129'h0; // @[OneHot.scala:58:35] wire _T_1422 = _T_1489 & a_first_1; // @[Decoupled.scala:51:35] assign a_set = _T_1422 ? _a_set_T[128:0] : 129'h0; // @[OneHot.scala:58:35] wire [3:0] _a_opcodes_set_interm_T = {io_in_a_bits_opcode_0, 1'h0}; // @[Monitor.scala:36:7, :657:53] wire [3:0] _a_opcodes_set_interm_T_1 = {_a_opcodes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:657:{53,61}] assign a_opcodes_set_interm = _T_1422 ? _a_opcodes_set_interm_T_1 : 4'h0; // @[Monitor.scala:646:40, :655:{25,70}, :657:{28,61}] wire [3:0] _a_sizes_set_interm_T = {io_in_a_bits_size_0, 1'h0}; // @[Monitor.scala:36:7, :658:51] wire [3:0] _a_sizes_set_interm_T_1 = {_a_sizes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:658:{51,59}] assign a_sizes_set_interm = _T_1422 ? _a_sizes_set_interm_T_1 : 4'h0; // @[Monitor.scala:648:38, :655:{25,70}, :658:{28,59}] wire [10:0] _GEN_3 = {1'h0, io_in_a_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :659:79] wire [10:0] _a_opcodes_set_T; // @[Monitor.scala:659:79] assign _a_opcodes_set_T = _GEN_3; // @[Monitor.scala:659:79] wire [10:0] _a_sizes_set_T; // @[Monitor.scala:660:77] assign _a_sizes_set_T = _GEN_3; // @[Monitor.scala:659:79, :660:77] wire [2050:0] _a_opcodes_set_T_1 = {2047'h0, a_opcodes_set_interm} << _a_opcodes_set_T; // @[Monitor.scala:646:40, :659:{54,79}] assign a_opcodes_set = _T_1422 ? _a_opcodes_set_T_1[515:0] : 516'h0; // @[Monitor.scala:630:33, :655:{25,70}, :659:{28,54}] wire [2050:0] _a_sizes_set_T_1 = {2047'h0, a_sizes_set_interm} << _a_sizes_set_T; // @[Monitor.scala:648:38, :659:54, :660:{52,77}] assign a_sizes_set = _T_1422 ? _a_sizes_set_T_1[515:0] : 516'h0; // @[Monitor.scala:632:31, :655:{25,70}, :660:{28,52}] wire [128:0] d_clr; // @[Monitor.scala:664:34] wire [128:0] d_clr_wo_ready; // @[Monitor.scala:665:34] wire [515:0] d_opcodes_clr; // @[Monitor.scala:668:33] wire [515:0] d_sizes_clr; // @[Monitor.scala:670:31] wire _GEN_4 = io_in_d_bits_opcode_0 == 3'h6; // @[Monitor.scala:36:7, :673:46] wire d_release_ack; // @[Monitor.scala:673:46] assign d_release_ack = _GEN_4; // @[Monitor.scala:673:46] wire d_release_ack_1; // @[Monitor.scala:783:46] assign d_release_ack_1 = _GEN_4; // @[Monitor.scala:673:46, :783:46] wire _T_1468 = io_in_d_valid_0 & d_first_1; // @[Monitor.scala:36:7, :674:26] wire [255:0] _GEN_5 = 256'h1 << io_in_d_bits_source_0; // @[OneHot.scala:58:35] wire [255:0] _d_clr_wo_ready_T; // @[OneHot.scala:58:35] assign _d_clr_wo_ready_T = _GEN_5; // @[OneHot.scala:58:35] wire [255:0] _d_clr_T; // @[OneHot.scala:58:35] assign _d_clr_T = _GEN_5; // @[OneHot.scala:58:35] wire [255:0] _d_clr_wo_ready_T_1; // @[OneHot.scala:58:35] assign _d_clr_wo_ready_T_1 = _GEN_5; // @[OneHot.scala:58:35] wire [255:0] _d_clr_T_1; // @[OneHot.scala:58:35] assign _d_clr_T_1 = _GEN_5; // @[OneHot.scala:58:35] assign d_clr_wo_ready = _T_1468 & ~d_release_ack ? _d_clr_wo_ready_T[128:0] : 129'h0; // @[OneHot.scala:58:35] wire _T_1437 = _T_1557 & d_first_1 & ~d_release_ack; // @[Decoupled.scala:51:35] assign d_clr = _T_1437 ? _d_clr_T[128:0] : 129'h0; // @[OneHot.scala:58:35] wire [2062:0] _d_opcodes_clr_T_5 = 2063'hF << _d_opcodes_clr_T_4; // @[Monitor.scala:680:{76,101}] assign d_opcodes_clr = _T_1437 ? _d_opcodes_clr_T_5[515:0] : 516'h0; // @[Monitor.scala:668:33, :678:{25,70,89}, :680:{21,76}] wire [2062:0] _d_sizes_clr_T_5 = 2063'hF << _d_sizes_clr_T_4; // @[Monitor.scala:681:{74,99}] assign d_sizes_clr = _T_1437 ? _d_sizes_clr_T_5[515:0] : 516'h0; // @[Monitor.scala:670:31, :678:{25,70,89}, :681:{21,74}] wire _same_cycle_resp_T_1 = _same_cycle_resp_T; // @[Monitor.scala:684:{44,55}] wire _same_cycle_resp_T_2 = io_in_a_bits_source_0 == io_in_d_bits_source_0; // @[Monitor.scala:36:7, :684:113] wire same_cycle_resp = _same_cycle_resp_T_1 & _same_cycle_resp_T_2; // @[Monitor.scala:684:{55,88,113}] wire [128:0] _inflight_T = inflight | a_set; // @[Monitor.scala:614:27, :626:34, :705:27] wire [128:0] _inflight_T_1 = ~d_clr; // @[Monitor.scala:664:34, :705:38] wire [128:0] _inflight_T_2 = _inflight_T & _inflight_T_1; // @[Monitor.scala:705:{27,36,38}] wire [515:0] _inflight_opcodes_T = inflight_opcodes | a_opcodes_set; // @[Monitor.scala:616:35, :630:33, :706:43] wire [515:0] _inflight_opcodes_T_1 = ~d_opcodes_clr; // @[Monitor.scala:668:33, :706:62] wire [515:0] _inflight_opcodes_T_2 = _inflight_opcodes_T & _inflight_opcodes_T_1; // @[Monitor.scala:706:{43,60,62}] wire [515:0] _inflight_sizes_T = inflight_sizes | a_sizes_set; // @[Monitor.scala:618:33, :632:31, :707:39] wire [515:0] _inflight_sizes_T_1 = ~d_sizes_clr; // @[Monitor.scala:670:31, :707:56] wire [515:0] _inflight_sizes_T_2 = _inflight_sizes_T & _inflight_sizes_T_1; // @[Monitor.scala:707:{39,54,56}] reg [31:0] watchdog; // @[Monitor.scala:709:27] wire [32:0] _watchdog_T = {1'h0, watchdog} + 33'h1; // @[Monitor.scala:709:27, :714:26] wire [31:0] _watchdog_T_1 = _watchdog_T[31:0]; // @[Monitor.scala:714:26] reg [128:0] inflight_1; // @[Monitor.scala:726:35] wire [128:0] _inflight_T_3 = inflight_1; // @[Monitor.scala:726:35, :814:35] reg [515:0] inflight_opcodes_1; // @[Monitor.scala:727:35] wire [515:0] _inflight_opcodes_T_3 = inflight_opcodes_1; // @[Monitor.scala:727:35, :815:43] reg [515:0] inflight_sizes_1; // @[Monitor.scala:728:35] wire [515:0] _inflight_sizes_T_3 = inflight_sizes_1; // @[Monitor.scala:728:35, :816:41] wire [5:0] _d_first_beats1_decode_T_7 = _d_first_beats1_decode_T_6[5:0]; // @[package.scala:243:{71,76}] wire [5:0] _d_first_beats1_decode_T_8 = ~_d_first_beats1_decode_T_7; // @[package.scala:243:{46,76}] wire [2:0] d_first_beats1_decode_2 = _d_first_beats1_decode_T_8[5:3]; // @[package.scala:243:46] wire [2:0] d_first_beats1_2 = d_first_beats1_opdata_2 ? d_first_beats1_decode_2 : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [2:0] d_first_counter_2; // @[Edges.scala:229:27] wire [3:0] _d_first_counter1_T_2 = {1'h0, d_first_counter_2} - 4'h1; // @[Edges.scala:229:27, :230:28] wire [2:0] d_first_counter1_2 = _d_first_counter1_T_2[2:0]; // @[Edges.scala:230:28] wire d_first_2 = d_first_counter_2 == 3'h0; // @[Edges.scala:229:27, :231:25] wire _d_first_last_T_4 = d_first_counter_2 == 3'h1; // @[Edges.scala:229:27, :232:25] wire _d_first_last_T_5 = d_first_beats1_2 == 3'h0; // @[Edges.scala:221:14, :232:43] wire d_first_last_2 = _d_first_last_T_4 | _d_first_last_T_5; // @[Edges.scala:232:{25,33,43}] wire d_first_done_2 = d_first_last_2 & _d_first_T_2; // @[Decoupled.scala:51:35] wire [2:0] _d_first_count_T_2 = ~d_first_counter1_2; // @[Edges.scala:230:28, :234:27] wire [2:0] d_first_count_2 = d_first_beats1_2 & _d_first_count_T_2; // @[Edges.scala:221:14, :234:{25,27}] wire [2:0] _d_first_counter_T_2 = d_first_2 ? d_first_beats1_2 : d_first_counter1_2; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [3:0] c_opcode_lookup; // @[Monitor.scala:747:35] wire [3:0] c_size_lookup; // @[Monitor.scala:748:35] wire [515:0] _c_opcode_lookup_T_1 = inflight_opcodes_1 >> _c_opcode_lookup_T; // @[Monitor.scala:727:35, :749:{44,69}] wire [515:0] _c_opcode_lookup_T_6 = {512'h0, _c_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:749:{44,97}] wire [515:0] _c_opcode_lookup_T_7 = {1'h0, _c_opcode_lookup_T_6[515:1]}; // @[Monitor.scala:749:{97,152}] assign c_opcode_lookup = _c_opcode_lookup_T_7[3:0]; // @[Monitor.scala:747:35, :749:{21,152}] wire [515:0] _c_size_lookup_T_1 = inflight_sizes_1 >> _c_size_lookup_T; // @[Monitor.scala:728:35, :750:{42,67}] wire [515:0] _c_size_lookup_T_6 = {512'h0, _c_size_lookup_T_1[3:0]}; // @[Monitor.scala:750:{42,93}] wire [515:0] _c_size_lookup_T_7 = {1'h0, _c_size_lookup_T_6[515:1]}; // @[Monitor.scala:750:{93,146}] assign c_size_lookup = _c_size_lookup_T_7[3:0]; // @[Monitor.scala:748:35, :750:{21,146}] wire [128:0] d_clr_1; // @[Monitor.scala:774:34] wire [128:0] d_clr_wo_ready_1; // @[Monitor.scala:775:34] wire [515:0] d_opcodes_clr_1; // @[Monitor.scala:776:34] wire [515:0] d_sizes_clr_1; // @[Monitor.scala:777:34] wire _T_1533 = io_in_d_valid_0 & d_first_2; // @[Monitor.scala:36:7, :784:26] assign d_clr_wo_ready_1 = _T_1533 & d_release_ack_1 ? _d_clr_wo_ready_T_1[128:0] : 129'h0; // @[OneHot.scala:58:35] wire _T_1515 = _T_1557 & d_first_2 & d_release_ack_1; // @[Decoupled.scala:51:35] assign d_clr_1 = _T_1515 ? _d_clr_T_1[128:0] : 129'h0; // @[OneHot.scala:58:35] wire [2062:0] _d_opcodes_clr_T_11 = 2063'hF << _d_opcodes_clr_T_10; // @[Monitor.scala:790:{76,101}] assign d_opcodes_clr_1 = _T_1515 ? _d_opcodes_clr_T_11[515:0] : 516'h0; // @[Monitor.scala:776:34, :788:{25,70,88}, :790:{21,76}] wire [2062:0] _d_sizes_clr_T_11 = 2063'hF << _d_sizes_clr_T_10; // @[Monitor.scala:791:{74,99}] assign d_sizes_clr_1 = _T_1515 ? _d_sizes_clr_T_11[515:0] : 516'h0; // @[Monitor.scala:777:34, :788:{25,70,88}, :791:{21,74}] wire _same_cycle_resp_T_8 = io_in_d_bits_source_0 == 8'h0; // @[Monitor.scala:36:7, :795:113] wire [128:0] _inflight_T_4 = ~d_clr_1; // @[Monitor.scala:774:34, :814:46] wire [128:0] _inflight_T_5 = _inflight_T_3 & _inflight_T_4; // @[Monitor.scala:814:{35,44,46}] wire [515:0] _inflight_opcodes_T_4 = ~d_opcodes_clr_1; // @[Monitor.scala:776:34, :815:62] wire [515:0] _inflight_opcodes_T_5 = _inflight_opcodes_T_3 & _inflight_opcodes_T_4; // @[Monitor.scala:815:{43,60,62}] wire [515:0] _inflight_sizes_T_4 = ~d_sizes_clr_1; // @[Monitor.scala:777:34, :816:58] wire [515:0] _inflight_sizes_T_5 = _inflight_sizes_T_3 & _inflight_sizes_T_4; // @[Monitor.scala:816:{41,56,58}] reg [31:0] watchdog_1; // @[Monitor.scala:818:27]
Generate the Verilog code corresponding to the following Chisel files. File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag }
module OptimizationBarrier_EntryData_37( // @[package.scala:267:30] input clock, // @[package.scala:267:30] input reset, // @[package.scala:267:30] input [19:0] io_x_ppn, // @[package.scala:268:18] input io_x_u, // @[package.scala:268:18] input io_x_g, // @[package.scala:268:18] input io_x_ae, // @[package.scala:268:18] input io_x_sw, // @[package.scala:268:18] input io_x_sx, // @[package.scala:268:18] input io_x_sr, // @[package.scala:268:18] input io_x_pw, // @[package.scala:268:18] input io_x_px, // @[package.scala:268:18] input io_x_pr, // @[package.scala:268:18] input io_x_pal, // @[package.scala:268:18] input io_x_paa, // @[package.scala:268:18] input io_x_eff, // @[package.scala:268:18] input io_x_c, // @[package.scala:268:18] input io_x_fragmented_superpage, // @[package.scala:268:18] output [19:0] io_y_ppn, // @[package.scala:268:18] output io_y_u, // @[package.scala:268:18] output io_y_g, // @[package.scala:268:18] output io_y_ae, // @[package.scala:268:18] output io_y_sw, // @[package.scala:268:18] output io_y_sx, // @[package.scala:268:18] output io_y_sr, // @[package.scala:268:18] output io_y_pw, // @[package.scala:268:18] output io_y_px, // @[package.scala:268:18] output io_y_pr, // @[package.scala:268:18] output io_y_pal, // @[package.scala:268:18] output io_y_paa, // @[package.scala:268:18] output io_y_eff, // @[package.scala:268:18] output io_y_c, // @[package.scala:268:18] output io_y_fragmented_superpage // @[package.scala:268:18] ); wire [19:0] io_x_ppn_0 = io_x_ppn; // @[package.scala:267:30] wire io_x_u_0 = io_x_u; // @[package.scala:267:30] wire io_x_g_0 = io_x_g; // @[package.scala:267:30] wire io_x_ae_0 = io_x_ae; // @[package.scala:267:30] wire io_x_sw_0 = io_x_sw; // @[package.scala:267:30] wire io_x_sx_0 = io_x_sx; // @[package.scala:267:30] wire io_x_sr_0 = io_x_sr; // @[package.scala:267:30] wire io_x_pw_0 = io_x_pw; // @[package.scala:267:30] wire io_x_px_0 = io_x_px; // @[package.scala:267:30] wire io_x_pr_0 = io_x_pr; // @[package.scala:267:30] wire io_x_pal_0 = io_x_pal; // @[package.scala:267:30] wire io_x_paa_0 = io_x_paa; // @[package.scala:267:30] wire io_x_eff_0 = io_x_eff; // @[package.scala:267:30] wire io_x_c_0 = io_x_c; // @[package.scala:267:30] wire io_x_fragmented_superpage_0 = io_x_fragmented_superpage; // @[package.scala:267:30] wire [19:0] io_y_ppn_0 = io_x_ppn_0; // @[package.scala:267:30] wire io_y_u_0 = io_x_u_0; // @[package.scala:267:30] wire io_y_g_0 = io_x_g_0; // @[package.scala:267:30] wire io_y_ae_0 = io_x_ae_0; // @[package.scala:267:30] wire io_y_sw_0 = io_x_sw_0; // @[package.scala:267:30] wire io_y_sx_0 = io_x_sx_0; // @[package.scala:267:30] wire io_y_sr_0 = io_x_sr_0; // @[package.scala:267:30] wire io_y_pw_0 = io_x_pw_0; // @[package.scala:267:30] wire io_y_px_0 = io_x_px_0; // @[package.scala:267:30] wire io_y_pr_0 = io_x_pr_0; // @[package.scala:267:30] wire io_y_pal_0 = io_x_pal_0; // @[package.scala:267:30] wire io_y_paa_0 = io_x_paa_0; // @[package.scala:267:30] wire io_y_eff_0 = io_x_eff_0; // @[package.scala:267:30] wire io_y_c_0 = io_x_c_0; // @[package.scala:267:30] wire io_y_fragmented_superpage_0 = io_x_fragmented_superpage_0; // @[package.scala:267:30] assign io_y_ppn = io_y_ppn_0; // @[package.scala:267:30] assign io_y_u = io_y_u_0; // @[package.scala:267:30] assign io_y_g = io_y_g_0; // @[package.scala:267:30] assign io_y_ae = io_y_ae_0; // @[package.scala:267:30] assign io_y_sw = io_y_sw_0; // @[package.scala:267:30] assign io_y_sx = io_y_sx_0; // @[package.scala:267:30] assign io_y_sr = io_y_sr_0; // @[package.scala:267:30] assign io_y_pw = io_y_pw_0; // @[package.scala:267:30] assign io_y_px = io_y_px_0; // @[package.scala:267:30] assign io_y_pr = io_y_pr_0; // @[package.scala:267:30] assign io_y_pal = io_y_pal_0; // @[package.scala:267:30] assign io_y_paa = io_y_paa_0; // @[package.scala:267:30] assign io_y_eff = io_y_eff_0; // @[package.scala:267:30] assign io_y_c = io_y_c_0; // @[package.scala:267:30] assign io_y_fragmented_superpage = io_y_fragmented_superpage_0; // @[package.scala:267:30] endmodule
Generate the Verilog code corresponding to the following Chisel files. File InputUnit.scala: package constellation.router import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config.{Field, Parameters} import freechips.rocketchip.util._ import constellation.channel._ import constellation.routing.{FlowRoutingBundle} import constellation.noc.{HasNoCParams} class AbstractInputUnitIO( val cParam: BaseChannelParams, val outParams: Seq[ChannelParams], val egressParams: Seq[EgressChannelParams], )(implicit val p: Parameters) extends Bundle with HasRouterOutputParams { val nodeId = cParam.destId val router_req = Decoupled(new RouteComputerReq) val router_resp = Input(new RouteComputerResp(outParams, egressParams)) val vcalloc_req = Decoupled(new VCAllocReq(cParam, outParams, egressParams)) val vcalloc_resp = Input(new VCAllocResp(outParams, egressParams)) val out_credit_available = Input(MixedVec(allOutParams.map { u => Vec(u.nVirtualChannels, Bool()) })) val salloc_req = Vec(cParam.destSpeedup, Decoupled(new SwitchAllocReq(outParams, egressParams))) val out = Vec(cParam.destSpeedup, Valid(new SwitchBundle(outParams, egressParams))) val debug = Output(new Bundle { val va_stall = UInt(log2Ceil(cParam.nVirtualChannels).W) val sa_stall = UInt(log2Ceil(cParam.nVirtualChannels).W) }) val block = Input(Bool()) } abstract class AbstractInputUnit( val cParam: BaseChannelParams, val outParams: Seq[ChannelParams], val egressParams: Seq[EgressChannelParams] )(implicit val p: Parameters) extends Module with HasRouterOutputParams with HasNoCParams { val nodeId = cParam.destId def io: AbstractInputUnitIO } class InputBuffer(cParam: ChannelParams)(implicit p: Parameters) extends Module { val nVirtualChannels = cParam.nVirtualChannels val io = IO(new Bundle { val enq = Flipped(Vec(cParam.srcSpeedup, Valid(new Flit(cParam.payloadBits)))) val deq = Vec(cParam.nVirtualChannels, Decoupled(new BaseFlit(cParam.payloadBits))) }) val useOutputQueues = cParam.useOutputQueues val delims = if (useOutputQueues) { cParam.virtualChannelParams.map(u => if (u.traversable) u.bufferSize else 0).scanLeft(0)(_+_) } else { // If no queuing, have to add an additional slot since head == tail implies empty // TODO this should be fixed, should use all slots available cParam.virtualChannelParams.map(u => if (u.traversable) u.bufferSize + 1 else 0).scanLeft(0)(_+_) } val starts = delims.dropRight(1).zipWithIndex.map { case (s,i) => if (cParam.virtualChannelParams(i).traversable) s else 0 } val ends = delims.tail.zipWithIndex.map { case (s,i) => if (cParam.virtualChannelParams(i).traversable) s else 0 } val fullSize = delims.last // Ugly case. Use multiple queues if ((cParam.srcSpeedup > 1 || cParam.destSpeedup > 1 || fullSize <= 1) || !cParam.unifiedBuffer) { require(useOutputQueues) val qs = cParam.virtualChannelParams.map(v => Module(new Queue(new BaseFlit(cParam.payloadBits), v.bufferSize))) qs.zipWithIndex.foreach { case (q,i) => val sel = io.enq.map(f => f.valid && f.bits.virt_channel_id === i.U) q.io.enq.valid := sel.orR q.io.enq.bits.head := Mux1H(sel, io.enq.map(_.bits.head)) q.io.enq.bits.tail := Mux1H(sel, io.enq.map(_.bits.tail)) q.io.enq.bits.payload := Mux1H(sel, io.enq.map(_.bits.payload)) io.deq(i) <> q.io.deq } } else { val mem = Mem(fullSize, new BaseFlit(cParam.payloadBits)) val heads = RegInit(VecInit(starts.map(_.U(log2Ceil(fullSize).W)))) val tails = RegInit(VecInit(starts.map(_.U(log2Ceil(fullSize).W)))) val empty = (heads zip tails).map(t => t._1 === t._2) val qs = Seq.fill(nVirtualChannels) { Module(new Queue(new BaseFlit(cParam.payloadBits), 1, pipe=true)) } qs.foreach(_.io.enq.valid := false.B) qs.foreach(_.io.enq.bits := DontCare) val vc_sel = UIntToOH(io.enq(0).bits.virt_channel_id) val flit = Wire(new BaseFlit(cParam.payloadBits)) val direct_to_q = (Mux1H(vc_sel, qs.map(_.io.enq.ready)) && Mux1H(vc_sel, empty)) && useOutputQueues.B flit.head := io.enq(0).bits.head flit.tail := io.enq(0).bits.tail flit.payload := io.enq(0).bits.payload when (io.enq(0).valid && !direct_to_q) { val tail = tails(io.enq(0).bits.virt_channel_id) mem.write(tail, flit) tails(io.enq(0).bits.virt_channel_id) := Mux( tail === Mux1H(vc_sel, ends.map(_ - 1).map(_ max 0).map(_.U)), Mux1H(vc_sel, starts.map(_.U)), tail + 1.U) } .elsewhen (io.enq(0).valid && direct_to_q) { for (i <- 0 until nVirtualChannels) { when (io.enq(0).bits.virt_channel_id === i.U) { qs(i).io.enq.valid := true.B qs(i).io.enq.bits := flit } } } if (useOutputQueues) { val can_to_q = (0 until nVirtualChannels).map { i => !empty(i) && qs(i).io.enq.ready } val to_q_oh = PriorityEncoderOH(can_to_q) val to_q = OHToUInt(to_q_oh) when (can_to_q.orR) { val head = Mux1H(to_q_oh, heads) heads(to_q) := Mux( head === Mux1H(to_q_oh, ends.map(_ - 1).map(_ max 0).map(_.U)), Mux1H(to_q_oh, starts.map(_.U)), head + 1.U) for (i <- 0 until nVirtualChannels) { when (to_q_oh(i)) { qs(i).io.enq.valid := true.B qs(i).io.enq.bits := mem.read(head) } } } for (i <- 0 until nVirtualChannels) { io.deq(i) <> qs(i).io.deq } } else { qs.map(_.io.deq.ready := false.B) val ready_sel = io.deq.map(_.ready) val fire = io.deq.map(_.fire) assert(PopCount(fire) <= 1.U) val head = Mux1H(fire, heads) when (fire.orR) { val fire_idx = OHToUInt(fire) heads(fire_idx) := Mux( head === Mux1H(fire, ends.map(_ - 1).map(_ max 0).map(_.U)), Mux1H(fire, starts.map(_.U)), head + 1.U) } val read_flit = mem.read(head) for (i <- 0 until nVirtualChannels) { io.deq(i).valid := !empty(i) io.deq(i).bits := read_flit } } } } class InputUnit(cParam: ChannelParams, outParams: Seq[ChannelParams], egressParams: Seq[EgressChannelParams], combineRCVA: Boolean, combineSAST: Boolean ) (implicit p: Parameters) extends AbstractInputUnit(cParam, outParams, egressParams)(p) { val nVirtualChannels = cParam.nVirtualChannels val virtualChannelParams = cParam.virtualChannelParams class InputUnitIO extends AbstractInputUnitIO(cParam, outParams, egressParams) { val in = Flipped(new Channel(cParam.asInstanceOf[ChannelParams])) } val io = IO(new InputUnitIO) val g_i :: g_r :: g_v :: g_a :: g_c :: Nil = Enum(5) class InputState extends Bundle { val g = UInt(3.W) val vc_sel = MixedVec(allOutParams.map { u => Vec(u.nVirtualChannels, Bool()) }) val flow = new FlowRoutingBundle val fifo_deps = UInt(nVirtualChannels.W) } val input_buffer = Module(new InputBuffer(cParam)) for (i <- 0 until cParam.srcSpeedup) { input_buffer.io.enq(i) := io.in.flit(i) } input_buffer.io.deq.foreach(_.ready := false.B) val route_arbiter = Module(new Arbiter( new RouteComputerReq, nVirtualChannels )) io.router_req <> route_arbiter.io.out val states = Reg(Vec(nVirtualChannels, new InputState)) val anyFifo = cParam.possibleFlows.map(_.fifo).reduce(_||_) val allFifo = cParam.possibleFlows.map(_.fifo).reduce(_&&_) if (anyFifo) { val idle_mask = VecInit(states.map(_.g === g_i)).asUInt for (s <- states) for (i <- 0 until nVirtualChannels) s.fifo_deps := s.fifo_deps & ~idle_mask } for (i <- 0 until cParam.srcSpeedup) { when (io.in.flit(i).fire && io.in.flit(i).bits.head) { val id = io.in.flit(i).bits.virt_channel_id assert(id < nVirtualChannels.U) assert(states(id).g === g_i) val at_dest = io.in.flit(i).bits.flow.egress_node === nodeId.U states(id).g := Mux(at_dest, g_v, g_r) states(id).vc_sel.foreach(_.foreach(_ := false.B)) for (o <- 0 until nEgress) { when (o.U === io.in.flit(i).bits.flow.egress_node_id) { states(id).vc_sel(o+nOutputs)(0) := true.B } } states(id).flow := io.in.flit(i).bits.flow if (anyFifo) { val fifo = cParam.possibleFlows.filter(_.fifo).map(_.isFlow(io.in.flit(i).bits.flow)).toSeq.orR states(id).fifo_deps := VecInit(states.zipWithIndex.map { case (s, j) => s.g =/= g_i && s.flow.asUInt === io.in.flit(i).bits.flow.asUInt && j.U =/= id }).asUInt } } } (route_arbiter.io.in zip states).zipWithIndex.map { case ((i,s),idx) => if (virtualChannelParams(idx).traversable) { i.valid := s.g === g_r i.bits.flow := s.flow i.bits.src_virt_id := idx.U when (i.fire) { s.g := g_v } } else { i.valid := false.B i.bits := DontCare } } when (io.router_req.fire) { val id = io.router_req.bits.src_virt_id assert(states(id).g === g_r) states(id).g := g_v for (i <- 0 until nVirtualChannels) { when (i.U === id) { states(i).vc_sel := io.router_resp.vc_sel } } } val mask = RegInit(0.U(nVirtualChannels.W)) val vcalloc_reqs = Wire(Vec(nVirtualChannels, new VCAllocReq(cParam, outParams, egressParams))) val vcalloc_vals = Wire(Vec(nVirtualChannels, Bool())) val vcalloc_filter = PriorityEncoderOH(Cat(vcalloc_vals.asUInt, vcalloc_vals.asUInt & ~mask)) val vcalloc_sel = vcalloc_filter(nVirtualChannels-1,0) | (vcalloc_filter >> nVirtualChannels) // Prioritize incoming packetes when (io.router_req.fire) { mask := (1.U << io.router_req.bits.src_virt_id) - 1.U } .elsewhen (vcalloc_vals.orR) { mask := Mux1H(vcalloc_sel, (0 until nVirtualChannels).map { w => ~(0.U((w+1).W)) }) } io.vcalloc_req.valid := vcalloc_vals.orR io.vcalloc_req.bits := Mux1H(vcalloc_sel, vcalloc_reqs) states.zipWithIndex.map { case (s,idx) => if (virtualChannelParams(idx).traversable) { vcalloc_vals(idx) := s.g === g_v && s.fifo_deps === 0.U vcalloc_reqs(idx).in_vc := idx.U vcalloc_reqs(idx).vc_sel := s.vc_sel vcalloc_reqs(idx).flow := s.flow when (vcalloc_vals(idx) && vcalloc_sel(idx) && io.vcalloc_req.ready) { s.g := g_a } if (combineRCVA) { when (route_arbiter.io.in(idx).fire) { vcalloc_vals(idx) := true.B vcalloc_reqs(idx).vc_sel := io.router_resp.vc_sel } } } else { vcalloc_vals(idx) := false.B vcalloc_reqs(idx) := DontCare } } io.debug.va_stall := PopCount(vcalloc_vals) - io.vcalloc_req.ready when (io.vcalloc_req.fire) { for (i <- 0 until nVirtualChannels) { when (vcalloc_sel(i)) { states(i).vc_sel := io.vcalloc_resp.vc_sel states(i).g := g_a if (!combineRCVA) { assert(states(i).g === g_v) } } } } val salloc_arb = Module(new SwitchArbiter( nVirtualChannels, cParam.destSpeedup, outParams, egressParams )) (states zip salloc_arb.io.in).zipWithIndex.map { case ((s,r),i) => if (virtualChannelParams(i).traversable) { val credit_available = (s.vc_sel.asUInt & io.out_credit_available.asUInt) =/= 0.U r.valid := s.g === g_a && credit_available && input_buffer.io.deq(i).valid r.bits.vc_sel := s.vc_sel val deq_tail = input_buffer.io.deq(i).bits.tail r.bits.tail := deq_tail when (r.fire && deq_tail) { s.g := g_i } input_buffer.io.deq(i).ready := r.ready } else { r.valid := false.B r.bits := DontCare } } io.debug.sa_stall := PopCount(salloc_arb.io.in.map(r => r.valid && !r.ready)) io.salloc_req <> salloc_arb.io.out when (io.block) { salloc_arb.io.out.foreach(_.ready := false.B) io.salloc_req.foreach(_.valid := false.B) } class OutBundle extends Bundle { val valid = Bool() val vid = UInt(virtualChannelBits.W) val out_vid = UInt(log2Up(allOutParams.map(_.nVirtualChannels).max).W) val flit = new Flit(cParam.payloadBits) } val salloc_outs = if (combineSAST) { Wire(Vec(cParam.destSpeedup, new OutBundle)) } else { Reg(Vec(cParam.destSpeedup, new OutBundle)) } io.in.credit_return := salloc_arb.io.out.zipWithIndex.map { case (o, i) => Mux(o.fire, salloc_arb.io.chosen_oh(i), 0.U) }.reduce(_|_) io.in.vc_free := salloc_arb.io.out.zipWithIndex.map { case (o, i) => Mux(o.fire && Mux1H(salloc_arb.io.chosen_oh(i), input_buffer.io.deq.map(_.bits.tail)), salloc_arb.io.chosen_oh(i), 0.U) }.reduce(_|_) for (i <- 0 until cParam.destSpeedup) { val salloc_out = salloc_outs(i) salloc_out.valid := salloc_arb.io.out(i).fire salloc_out.vid := OHToUInt(salloc_arb.io.chosen_oh(i)) val vc_sel = Mux1H(salloc_arb.io.chosen_oh(i), states.map(_.vc_sel)) val channel_oh = vc_sel.map(_.reduce(_||_)).toSeq val virt_channel = Mux1H(channel_oh, vc_sel.map(v => OHToUInt(v)).toSeq) when (salloc_arb.io.out(i).fire) { salloc_out.out_vid := virt_channel salloc_out.flit.payload := Mux1H(salloc_arb.io.chosen_oh(i), input_buffer.io.deq.map(_.bits.payload)) salloc_out.flit.head := Mux1H(salloc_arb.io.chosen_oh(i), input_buffer.io.deq.map(_.bits.head)) salloc_out.flit.tail := Mux1H(salloc_arb.io.chosen_oh(i), input_buffer.io.deq.map(_.bits.tail)) salloc_out.flit.flow := Mux1H(salloc_arb.io.chosen_oh(i), states.map(_.flow)) } .otherwise { salloc_out.out_vid := DontCare salloc_out.flit := DontCare } salloc_out.flit.virt_channel_id := DontCare // this gets set in the switch io.out(i).valid := salloc_out.valid io.out(i).bits.flit := salloc_out.flit io.out(i).bits.out_virt_channel := salloc_out.out_vid } def filterVCSel(sel: MixedVec[Vec[Bool]], srcV: Int) = { if (virtualChannelParams(srcV).traversable) { outParams.zipWithIndex.map { case (oP, oI) => (0 until oP.nVirtualChannels).map { oV => var allow = false virtualChannelParams(srcV).possibleFlows.foreach { pI => allow = allow || routingRelation( cParam.channelRoutingInfos(srcV), oP.channelRoutingInfos(oV), pI ) } if (!allow) sel(oI)(oV) := false.B } } } } (0 until nVirtualChannels).map { i => if (!virtualChannelParams(i).traversable) states(i) := DontCare filterVCSel(states(i).vc_sel, i) } when (reset.asBool) { states.foreach(_.g := g_i) } }
module InputUnit_38( // @[InputUnit.scala:158:7] input clock, // @[InputUnit.scala:158:7] input reset, // @[InputUnit.scala:158:7] output [1:0] io_router_req_bits_src_virt_id, // @[InputUnit.scala:170:14] output [1:0] io_router_req_bits_flow_vnet_id, // @[InputUnit.scala:170:14] output [3:0] io_router_req_bits_flow_ingress_node, // @[InputUnit.scala:170:14] output [2:0] io_router_req_bits_flow_ingress_node_id, // @[InputUnit.scala:170:14] output [3:0] io_router_req_bits_flow_egress_node, // @[InputUnit.scala:170:14] output [1:0] io_router_req_bits_flow_egress_node_id, // @[InputUnit.scala:170:14] input io_router_resp_vc_sel_1_0, // @[InputUnit.scala:170:14] input io_router_resp_vc_sel_1_1, // @[InputUnit.scala:170:14] input io_router_resp_vc_sel_1_2, // @[InputUnit.scala:170:14] input io_router_resp_vc_sel_0_0, // @[InputUnit.scala:170:14] input io_router_resp_vc_sel_0_1, // @[InputUnit.scala:170:14] input io_router_resp_vc_sel_0_2, // @[InputUnit.scala:170:14] input io_vcalloc_req_ready, // @[InputUnit.scala:170:14] output io_vcalloc_req_valid, // @[InputUnit.scala:170:14] output io_vcalloc_req_bits_vc_sel_2_0, // @[InputUnit.scala:170:14] output io_vcalloc_req_bits_vc_sel_1_0, // @[InputUnit.scala:170:14] output io_vcalloc_req_bits_vc_sel_1_1, // @[InputUnit.scala:170:14] output io_vcalloc_req_bits_vc_sel_1_2, // @[InputUnit.scala:170:14] output io_vcalloc_req_bits_vc_sel_0_0, // @[InputUnit.scala:170:14] output io_vcalloc_req_bits_vc_sel_0_1, // @[InputUnit.scala:170:14] output io_vcalloc_req_bits_vc_sel_0_2, // @[InputUnit.scala:170:14] input io_vcalloc_resp_vc_sel_2_0, // @[InputUnit.scala:170:14] input io_vcalloc_resp_vc_sel_0_2, // @[InputUnit.scala:170:14] input io_out_credit_available_2_0, // @[InputUnit.scala:170:14] input io_out_credit_available_1_1, // @[InputUnit.scala:170:14] input io_out_credit_available_1_2, // @[InputUnit.scala:170:14] input io_out_credit_available_0_2, // @[InputUnit.scala:170:14] input io_salloc_req_0_ready, // @[InputUnit.scala:170:14] output io_salloc_req_0_valid, // @[InputUnit.scala:170:14] output io_salloc_req_0_bits_vc_sel_2_0, // @[InputUnit.scala:170:14] output io_salloc_req_0_bits_vc_sel_1_0, // @[InputUnit.scala:170:14] output io_salloc_req_0_bits_vc_sel_1_1, // @[InputUnit.scala:170:14] output io_salloc_req_0_bits_vc_sel_1_2, // @[InputUnit.scala:170:14] output io_salloc_req_0_bits_vc_sel_0_1, // @[InputUnit.scala:170:14] output io_salloc_req_0_bits_vc_sel_0_2, // @[InputUnit.scala:170:14] output io_salloc_req_0_bits_tail, // @[InputUnit.scala:170:14] output io_out_0_valid, // @[InputUnit.scala:170:14] output io_out_0_bits_flit_head, // @[InputUnit.scala:170:14] output io_out_0_bits_flit_tail, // @[InputUnit.scala:170:14] output [144:0] io_out_0_bits_flit_payload, // @[InputUnit.scala:170:14] output [1:0] io_out_0_bits_flit_flow_vnet_id, // @[InputUnit.scala:170:14] output [3:0] io_out_0_bits_flit_flow_ingress_node, // @[InputUnit.scala:170:14] output [2:0] io_out_0_bits_flit_flow_ingress_node_id, // @[InputUnit.scala:170:14] output [3:0] io_out_0_bits_flit_flow_egress_node, // @[InputUnit.scala:170:14] output [1:0] io_out_0_bits_flit_flow_egress_node_id, // @[InputUnit.scala:170:14] output [1:0] io_out_0_bits_out_virt_channel, // @[InputUnit.scala:170:14] output [1:0] io_debug_va_stall, // @[InputUnit.scala:170:14] output [1:0] io_debug_sa_stall, // @[InputUnit.scala:170:14] input io_in_flit_0_valid, // @[InputUnit.scala:170:14] input io_in_flit_0_bits_head, // @[InputUnit.scala:170:14] input io_in_flit_0_bits_tail, // @[InputUnit.scala:170:14] input [144:0] io_in_flit_0_bits_payload, // @[InputUnit.scala:170:14] input [1:0] io_in_flit_0_bits_flow_vnet_id, // @[InputUnit.scala:170:14] input [3:0] io_in_flit_0_bits_flow_ingress_node, // @[InputUnit.scala:170:14] input [2:0] io_in_flit_0_bits_flow_ingress_node_id, // @[InputUnit.scala:170:14] input [3:0] io_in_flit_0_bits_flow_egress_node, // @[InputUnit.scala:170:14] input [1:0] io_in_flit_0_bits_flow_egress_node_id, // @[InputUnit.scala:170:14] input [1:0] io_in_flit_0_bits_virt_channel_id, // @[InputUnit.scala:170:14] output [2:0] io_in_credit_return, // @[InputUnit.scala:170:14] output [2:0] io_in_vc_free // @[InputUnit.scala:170:14] ); wire _GEN; // @[MixedVec.scala:116:9] wire vcalloc_reqs_2_vc_sel_0_2; // @[MixedVec.scala:116:9] wire vcalloc_vals_2; // @[InputUnit.scala:266:25, :272:46, :273:29] wire _salloc_arb_io_in_2_ready; // @[InputUnit.scala:296:26] wire _salloc_arb_io_out_0_valid; // @[InputUnit.scala:296:26] wire [2:0] _salloc_arb_io_chosen_oh_0; // @[InputUnit.scala:296:26] wire _route_arbiter_io_in_2_ready; // @[InputUnit.scala:187:29] wire _route_arbiter_io_out_valid; // @[InputUnit.scala:187:29] wire [1:0] _route_arbiter_io_out_bits_src_virt_id; // @[InputUnit.scala:187:29] wire _input_buffer_io_deq_0_bits_head; // @[InputUnit.scala:181:28] wire _input_buffer_io_deq_0_bits_tail; // @[InputUnit.scala:181:28] wire [144:0] _input_buffer_io_deq_0_bits_payload; // @[InputUnit.scala:181:28] wire _input_buffer_io_deq_1_bits_head; // @[InputUnit.scala:181:28] wire _input_buffer_io_deq_1_bits_tail; // @[InputUnit.scala:181:28] wire [144:0] _input_buffer_io_deq_1_bits_payload; // @[InputUnit.scala:181:28] wire _input_buffer_io_deq_2_valid; // @[InputUnit.scala:181:28] wire _input_buffer_io_deq_2_bits_head; // @[InputUnit.scala:181:28] wire _input_buffer_io_deq_2_bits_tail; // @[InputUnit.scala:181:28] wire [144:0] _input_buffer_io_deq_2_bits_payload; // @[InputUnit.scala:181:28] reg [2:0] states_2_g; // @[InputUnit.scala:192:19] reg states_2_vc_sel_2_0; // @[InputUnit.scala:192:19] reg states_2_vc_sel_0_2; // @[InputUnit.scala:192:19] reg [1:0] states_2_flow_vnet_id; // @[InputUnit.scala:192:19] reg [3:0] states_2_flow_ingress_node; // @[InputUnit.scala:192:19] reg [2:0] states_2_flow_ingress_node_id; // @[InputUnit.scala:192:19] reg [3:0] states_2_flow_egress_node; // @[InputUnit.scala:192:19] reg [1:0] states_2_flow_egress_node_id; // @[InputUnit.scala:192:19] wire _GEN_0 = io_in_flit_0_valid & io_in_flit_0_bits_head; // @[InputUnit.scala:205:30] wire route_arbiter_io_in_2_valid = states_2_g == 3'h1; // @[InputUnit.scala:192:19, :229:22] wire _GEN_1 = _route_arbiter_io_in_2_ready & route_arbiter_io_in_2_valid; // @[Decoupled.scala:51:35]
Generate the Verilog code corresponding to the following Chisel files. File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag }
module OptimizationBarrier_TLBEntryData_298( // @[package.scala:267:30] input clock, // @[package.scala:267:30] input reset, // @[package.scala:267:30] input [19:0] io_x_ppn, // @[package.scala:268:18] input io_x_u, // @[package.scala:268:18] input io_x_g, // @[package.scala:268:18] input io_x_ae_ptw, // @[package.scala:268:18] input io_x_ae_final, // @[package.scala:268:18] input io_x_ae_stage2, // @[package.scala:268:18] input io_x_pf, // @[package.scala:268:18] input io_x_gf, // @[package.scala:268:18] input io_x_sw, // @[package.scala:268:18] input io_x_sx, // @[package.scala:268:18] input io_x_sr, // @[package.scala:268:18] input io_x_hw, // @[package.scala:268:18] input io_x_hx, // @[package.scala:268:18] input io_x_hr, // @[package.scala:268:18] input io_x_pw, // @[package.scala:268:18] input io_x_px, // @[package.scala:268:18] input io_x_pr, // @[package.scala:268:18] input io_x_ppp, // @[package.scala:268:18] input io_x_pal, // @[package.scala:268:18] input io_x_paa, // @[package.scala:268:18] input io_x_eff, // @[package.scala:268:18] input io_x_c, // @[package.scala:268:18] input io_x_fragmented_superpage, // @[package.scala:268:18] output [19:0] io_y_ppn, // @[package.scala:268:18] output io_y_u, // @[package.scala:268:18] output io_y_ae_ptw, // @[package.scala:268:18] output io_y_ae_final, // @[package.scala:268:18] output io_y_ae_stage2, // @[package.scala:268:18] output io_y_pf, // @[package.scala:268:18] output io_y_gf, // @[package.scala:268:18] output io_y_sw, // @[package.scala:268:18] output io_y_sx, // @[package.scala:268:18] output io_y_sr, // @[package.scala:268:18] output io_y_hw, // @[package.scala:268:18] output io_y_hx, // @[package.scala:268:18] output io_y_hr, // @[package.scala:268:18] output io_y_pw, // @[package.scala:268:18] output io_y_px, // @[package.scala:268:18] output io_y_pr, // @[package.scala:268:18] output io_y_ppp, // @[package.scala:268:18] output io_y_pal, // @[package.scala:268:18] output io_y_paa, // @[package.scala:268:18] output io_y_eff, // @[package.scala:268:18] output io_y_c // @[package.scala:268:18] ); wire [19:0] io_x_ppn_0 = io_x_ppn; // @[package.scala:267:30] wire io_x_u_0 = io_x_u; // @[package.scala:267:30] wire io_x_g_0 = io_x_g; // @[package.scala:267:30] wire io_x_ae_ptw_0 = io_x_ae_ptw; // @[package.scala:267:30] wire io_x_ae_final_0 = io_x_ae_final; // @[package.scala:267:30] wire io_x_ae_stage2_0 = io_x_ae_stage2; // @[package.scala:267:30] wire io_x_pf_0 = io_x_pf; // @[package.scala:267:30] wire io_x_gf_0 = io_x_gf; // @[package.scala:267:30] wire io_x_sw_0 = io_x_sw; // @[package.scala:267:30] wire io_x_sx_0 = io_x_sx; // @[package.scala:267:30] wire io_x_sr_0 = io_x_sr; // @[package.scala:267:30] wire io_x_hw_0 = io_x_hw; // @[package.scala:267:30] wire io_x_hx_0 = io_x_hx; // @[package.scala:267:30] wire io_x_hr_0 = io_x_hr; // @[package.scala:267:30] wire io_x_pw_0 = io_x_pw; // @[package.scala:267:30] wire io_x_px_0 = io_x_px; // @[package.scala:267:30] wire io_x_pr_0 = io_x_pr; // @[package.scala:267:30] wire io_x_ppp_0 = io_x_ppp; // @[package.scala:267:30] wire io_x_pal_0 = io_x_pal; // @[package.scala:267:30] wire io_x_paa_0 = io_x_paa; // @[package.scala:267:30] wire io_x_eff_0 = io_x_eff; // @[package.scala:267:30] wire io_x_c_0 = io_x_c; // @[package.scala:267:30] wire io_x_fragmented_superpage_0 = io_x_fragmented_superpage; // @[package.scala:267:30] wire [19:0] io_y_ppn_0 = io_x_ppn_0; // @[package.scala:267:30] wire io_y_u_0 = io_x_u_0; // @[package.scala:267:30] wire io_y_g = io_x_g_0; // @[package.scala:267:30] wire io_y_ae_ptw_0 = io_x_ae_ptw_0; // @[package.scala:267:30] wire io_y_ae_final_0 = io_x_ae_final_0; // @[package.scala:267:30] wire io_y_ae_stage2_0 = io_x_ae_stage2_0; // @[package.scala:267:30] wire io_y_pf_0 = io_x_pf_0; // @[package.scala:267:30] wire io_y_gf_0 = io_x_gf_0; // @[package.scala:267:30] wire io_y_sw_0 = io_x_sw_0; // @[package.scala:267:30] wire io_y_sx_0 = io_x_sx_0; // @[package.scala:267:30] wire io_y_sr_0 = io_x_sr_0; // @[package.scala:267:30] wire io_y_hw_0 = io_x_hw_0; // @[package.scala:267:30] wire io_y_hx_0 = io_x_hx_0; // @[package.scala:267:30] wire io_y_hr_0 = io_x_hr_0; // @[package.scala:267:30] wire io_y_pw_0 = io_x_pw_0; // @[package.scala:267:30] wire io_y_px_0 = io_x_px_0; // @[package.scala:267:30] wire io_y_pr_0 = io_x_pr_0; // @[package.scala:267:30] wire io_y_ppp_0 = io_x_ppp_0; // @[package.scala:267:30] wire io_y_pal_0 = io_x_pal_0; // @[package.scala:267:30] wire io_y_paa_0 = io_x_paa_0; // @[package.scala:267:30] wire io_y_eff_0 = io_x_eff_0; // @[package.scala:267:30] wire io_y_c_0 = io_x_c_0; // @[package.scala:267:30] wire io_y_fragmented_superpage = io_x_fragmented_superpage_0; // @[package.scala:267:30] assign io_y_ppn = io_y_ppn_0; // @[package.scala:267:30] assign io_y_u = io_y_u_0; // @[package.scala:267:30] assign io_y_ae_ptw = io_y_ae_ptw_0; // @[package.scala:267:30] assign io_y_ae_final = io_y_ae_final_0; // @[package.scala:267:30] assign io_y_ae_stage2 = io_y_ae_stage2_0; // @[package.scala:267:30] assign io_y_pf = io_y_pf_0; // @[package.scala:267:30] assign io_y_gf = io_y_gf_0; // @[package.scala:267:30] assign io_y_sw = io_y_sw_0; // @[package.scala:267:30] assign io_y_sx = io_y_sx_0; // @[package.scala:267:30] assign io_y_sr = io_y_sr_0; // @[package.scala:267:30] assign io_y_hw = io_y_hw_0; // @[package.scala:267:30] assign io_y_hx = io_y_hx_0; // @[package.scala:267:30] assign io_y_hr = io_y_hr_0; // @[package.scala:267:30] assign io_y_pw = io_y_pw_0; // @[package.scala:267:30] assign io_y_px = io_y_px_0; // @[package.scala:267:30] assign io_y_pr = io_y_pr_0; // @[package.scala:267:30] assign io_y_ppp = io_y_ppp_0; // @[package.scala:267:30] assign io_y_pal = io_y_pal_0; // @[package.scala:267:30] assign io_y_paa = io_y_paa_0; // @[package.scala:267:30] assign io_y_eff = io_y_eff_0; // @[package.scala:267:30] assign io_y_c = io_y_c_0; // @[package.scala:267:30] endmodule
Generate the Verilog code corresponding to the following Chisel files. File AsyncResetReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ /** This black-boxes an Async Reset * (or Set) * Register. * * Because Chisel doesn't support * parameterized black boxes, * we unfortunately have to * instantiate a number of these. * * We also have to hard-code the set/ * reset behavior. * * Do not confuse an asynchronous * reset signal with an asynchronously * reset reg. You should still * properly synchronize your reset * deassertion. * * @param d Data input * @param q Data Output * @param clk Clock Input * @param rst Reset Input * @param en Write Enable Input * */ class AsyncResetReg(resetValue: Int = 0) extends RawModule { val io = IO(new Bundle { val d = Input(Bool()) val q = Output(Bool()) val en = Input(Bool()) val clk = Input(Clock()) val rst = Input(Reset()) }) val reg = withClockAndReset(io.clk, io.rst.asAsyncReset)(RegInit(resetValue.U(1.W))) when (io.en) { reg := io.d } io.q := reg } class SimpleRegIO(val w: Int) extends Bundle{ val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) val en = Input(Bool()) } class AsyncResetRegVec(val w: Int, val init: BigInt) extends Module { override def desiredName = s"AsyncResetRegVec_w${w}_i${init}" val io = IO(new SimpleRegIO(w)) val reg = withReset(reset.asAsyncReset)(RegInit(init.U(w.W))) when (io.en) { reg := io.d } io.q := reg } object AsyncResetReg { // Create Single Registers def apply(d: Bool, clk: Clock, rst: Bool, init: Boolean, name: Option[String]): Bool = { val reg = Module(new AsyncResetReg(if (init) 1 else 0)) reg.io.d := d reg.io.clk := clk reg.io.rst := rst reg.io.en := true.B name.foreach(reg.suggestName(_)) reg.io.q } def apply(d: Bool, clk: Clock, rst: Bool): Bool = apply(d, clk, rst, false, None) def apply(d: Bool, clk: Clock, rst: Bool, name: String): Bool = apply(d, clk, rst, false, Some(name)) // Create Vectors of Registers def apply(updateData: UInt, resetData: BigInt, enable: Bool, name: Option[String] = None): UInt = { val w = updateData.getWidth max resetData.bitLength val reg = Module(new AsyncResetRegVec(w, resetData)) name.foreach(reg.suggestName(_)) reg.io.d := updateData reg.io.en := enable reg.io.q } def apply(updateData: UInt, resetData: BigInt, enable: Bool, name: String): UInt = apply(updateData, resetData, enable, Some(name)) def apply(updateData: UInt, resetData: BigInt): UInt = apply(updateData, resetData, enable = true.B) def apply(updateData: UInt, resetData: BigInt, name: String): UInt = apply(updateData, resetData, enable = true.B, Some(name)) def apply(updateData: UInt, enable: Bool): UInt = apply(updateData, resetData=BigInt(0), enable) def apply(updateData: UInt, enable: Bool, name: String): UInt = apply(updateData, resetData = BigInt(0), enable, Some(name)) def apply(updateData: UInt): UInt = apply(updateData, resetData = BigInt(0), enable = true.B) def apply(updateData: UInt, name:String): UInt = apply(updateData, resetData = BigInt(0), enable = true.B, Some(name)) }
module AsyncResetRegVec_w2_i0_7( // @[AsyncResetReg.scala:56:7] input clock, // @[AsyncResetReg.scala:56:7] input reset, // @[AsyncResetReg.scala:56:7] input [1:0] io_d, // @[AsyncResetReg.scala:59:14] output [1:0] io_q // @[AsyncResetReg.scala:59:14] ); wire [1:0] io_d_0 = io_d; // @[AsyncResetReg.scala:56:7] wire _reg_T = reset; // @[AsyncResetReg.scala:61:29] wire io_en = 1'h1; // @[AsyncResetReg.scala:56:7, :59:14] wire [1:0] io_q_0; // @[AsyncResetReg.scala:56:7] reg [1:0] reg_0; // @[AsyncResetReg.scala:61:50] assign io_q_0 = reg_0; // @[AsyncResetReg.scala:56:7, :61:50] always @(posedge clock or posedge _reg_T) begin // @[AsyncResetReg.scala:56:7, :61:29] if (_reg_T) // @[AsyncResetReg.scala:56:7, :61:29] reg_0 <= 2'h0; // @[AsyncResetReg.scala:61:50] else // @[AsyncResetReg.scala:56:7] reg_0 <= io_d_0; // @[AsyncResetReg.scala:56:7, :61:50] always @(posedge, posedge)
Generate the Verilog code corresponding to the following Chisel files. File ShiftReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ // Similar to the Chisel ShiftRegister but allows the user to suggest a // name to the registers that get instantiated, and // to provide a reset value. object ShiftRegInit { def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T = (0 until n).foldRight(in) { case (i, next) => { val r = RegNext(next, init) name.foreach { na => r.suggestName(s"${na}_${i}") } r } } } /** These wrap behavioral * shift registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * The different types vary in their reset behavior: * AsyncResetShiftReg -- Asynchronously reset register array * A W(width) x D(depth) sized array is constructed from D instantiations of a * W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg, * but only used for timing applications */ abstract class AbstractPipelineReg(w: Int = 1) extends Module { val io = IO(new Bundle { val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) } ) } object AbstractPipelineReg { def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = { val chain = Module(gen) name.foreach{ chain.suggestName(_) } chain.io.d := in.asUInt chain.io.q.asTypeOf(in) } } class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) { require(depth > 0, "Depth must be greater than 0.") override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}" val chain = List.tabulate(depth) { i => Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}") } chain.last.io.d := io.d chain.last.io.en := true.B (chain.init zip chain.tail).foreach { case (sink, source) => sink.io.d := source.io.q sink.io.en := true.B } io.q := chain.head.io.q } object AsyncResetShiftReg { def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name) def apply [T <: Data](in: T, depth: Int, name: Option[String]): T = apply(in, depth, 0, name) def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T = apply(in, depth, init.litValue.toInt, name) def apply [T <: Data](in: T, depth: Int, init: T): T = apply (in, depth, init.litValue.toInt, None) } File SynchronizerReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util.{RegEnable, Cat} /** These wrap behavioral * shift and next registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * * These are built up of *ResetSynchronizerPrimitiveShiftReg, * intended to be replaced by the integrator's metastable flops chains or replaced * at this level if they have a multi-bit wide synchronizer primitive. * The different types vary in their reset behavior: * NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin * AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep * 1-bit-wide shift registers. * SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg * * [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference. * * ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross * Clock Domains. */ object SynchronizerResetType extends Enumeration { val NonSync, Inferred, Sync, Async = Value } // Note: this should not be used directly. // Use the companion object to generate this with the correct reset type mixin. private class SynchronizerPrimitiveShiftReg( sync: Int, init: Boolean, resetType: SynchronizerResetType.Value) extends AbstractPipelineReg(1) { val initInt = if (init) 1 else 0 val initPostfix = resetType match { case SynchronizerResetType.NonSync => "" case _ => s"_i${initInt}" } override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}" val chain = List.tabulate(sync) { i => val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B) reg.suggestName(s"sync_$i") } chain.last := io.d.asBool (chain.init zip chain.tail).foreach { case (sink, source) => sink := source } io.q := chain.head.asUInt } private object SynchronizerPrimitiveShiftReg { def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = { val gen: () => SynchronizerPrimitiveShiftReg = resetType match { case SynchronizerResetType.NonSync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) case SynchronizerResetType.Async => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset case SynchronizerResetType.Sync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset case SynchronizerResetType.Inferred => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) } AbstractPipelineReg(gen(), in) } } // Note: This module may end up with a non-AsyncReset type reset. // But the Primitives within will always have AsyncReset type. class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asAsyncReset){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async) } } io.q := Cat(output.reverse) } object AsyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } // Note: This module may end up with a non-Bool type reset. // But the Primitives within will always have Bool reset type. @deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2") class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asBool){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync) } } io.q := Cat(output.reverse) } object SyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred) } io.q := Cat(output.reverse) } object ResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}" val output = Seq.tabulate(w) { i => SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync) } io.q := Cat(output.reverse) } object SynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, None) def apply [T <: Data](in: T): T = apply (in, 3, None) } class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module { override def desiredName = s"ClockCrossingReg_w${w}" val io = IO(new Bundle{ val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) val en = Input(Bool()) }) val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en) io.q := cdc_reg } object ClockCrossingReg { def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = { val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit)) name.foreach{ cdc_reg.suggestName(_) } cdc_reg.io.d := in.asUInt cdc_reg.io.en := en cdc_reg.io.q.asTypeOf(in) } }
module AsyncResetSynchronizerShiftReg_w1_d3_i0_44( // @[SynchronizerReg.scala:80:7] input clock, // @[SynchronizerReg.scala:80:7] input reset, // @[SynchronizerReg.scala:80:7] input io_d, // @[ShiftReg.scala:36:14] output io_q // @[ShiftReg.scala:36:14] ); wire io_d_0 = io_d; // @[SynchronizerReg.scala:80:7] wire _output_T = reset; // @[SynchronizerReg.scala:86:21] wire _output_T_1 = io_d_0; // @[SynchronizerReg.scala:80:7, :87:41] wire output_0; // @[ShiftReg.scala:48:24] wire io_q_0; // @[SynchronizerReg.scala:80:7] assign io_q_0 = output_0; // @[SynchronizerReg.scala:80:7] AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_52 output_chain ( // @[ShiftReg.scala:45:23] .clock (clock), .reset (_output_T), // @[SynchronizerReg.scala:86:21] .io_d (_output_T_1), // @[SynchronizerReg.scala:87:41] .io_q (output_0) ); // @[ShiftReg.scala:45:23] assign io_q = io_q_0; // @[SynchronizerReg.scala:80:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File primitives.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import chisel3.util._ //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object lowMask { def apply(in: UInt, topBound: BigInt, bottomBound: BigInt): UInt = { require(topBound != bottomBound) val numInVals = BigInt(1)<<in.getWidth if (topBound < bottomBound) { lowMask(~in, numInVals - 1 - topBound, numInVals - 1 - bottomBound) } else if (numInVals > 64 /* Empirical */) { // For simulation performance, we should avoid generating // exteremely wide shifters, so we divide and conquer. // Empirically, this does not impact synthesis QoR. val mid = numInVals / 2 val msb = in(in.getWidth - 1) val lsbs = in(in.getWidth - 2, 0) if (mid < topBound) { if (mid <= bottomBound) { Mux(msb, lowMask(lsbs, topBound - mid, bottomBound - mid), 0.U ) } else { Mux(msb, lowMask(lsbs, topBound - mid, 0) ## ((BigInt(1)<<(mid - bottomBound).toInt) - 1).U, lowMask(lsbs, mid, bottomBound) ) } } else { ~Mux(msb, 0.U, ~lowMask(lsbs, topBound, bottomBound)) } } else { val shift = (BigInt(-1)<<numInVals.toInt).S>>in Reverse( shift( (numInVals - 1 - bottomBound).toInt, (numInVals - topBound).toInt ) ) } } } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object countLeadingZeros { def apply(in: UInt): UInt = PriorityEncoder(in.asBools.reverse) } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object orReduceBy2 { def apply(in: UInt): UInt = { val reducedWidth = (in.getWidth + 1)>>1 val reducedVec = Wire(Vec(reducedWidth, Bool())) for (ix <- 0 until reducedWidth - 1) { reducedVec(ix) := in(ix * 2 + 1, ix * 2).orR } reducedVec(reducedWidth - 1) := in(in.getWidth - 1, (reducedWidth - 1) * 2).orR reducedVec.asUInt } } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object orReduceBy4 { def apply(in: UInt): UInt = { val reducedWidth = (in.getWidth + 3)>>2 val reducedVec = Wire(Vec(reducedWidth, Bool())) for (ix <- 0 until reducedWidth - 1) { reducedVec(ix) := in(ix * 4 + 3, ix * 4).orR } reducedVec(reducedWidth - 1) := in(in.getWidth - 1, (reducedWidth - 1) * 4).orR reducedVec.asUInt } } File MulAddRecFN.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import chisel3.util._ import consts._ //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class MulAddRecFN_interIo(expWidth: Int, sigWidth: Int) extends Bundle { //*** ENCODE SOME OF THESE CASES IN FEWER BITS?: val isSigNaNAny = Bool() val isNaNAOrB = Bool() val isInfA = Bool() val isZeroA = Bool() val isInfB = Bool() val isZeroB = Bool() val signProd = Bool() val isNaNC = Bool() val isInfC = Bool() val isZeroC = Bool() val sExpSum = SInt((expWidth + 2).W) val doSubMags = Bool() val CIsDominant = Bool() val CDom_CAlignDist = UInt(log2Ceil(sigWidth + 1).W) val highAlignedSigC = UInt((sigWidth + 2).W) val bit0AlignedSigC = UInt(1.W) } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class MulAddRecFNToRaw_preMul(expWidth: Int, sigWidth: Int) extends RawModule { override def desiredName = s"MulAddRecFNToRaw_preMul_e${expWidth}_s${sigWidth}" val io = IO(new Bundle { val op = Input(Bits(2.W)) val a = Input(Bits((expWidth + sigWidth + 1).W)) val b = Input(Bits((expWidth + sigWidth + 1).W)) val c = Input(Bits((expWidth + sigWidth + 1).W)) val mulAddA = Output(UInt(sigWidth.W)) val mulAddB = Output(UInt(sigWidth.W)) val mulAddC = Output(UInt((sigWidth * 2).W)) val toPostMul = Output(new MulAddRecFN_interIo(expWidth, sigWidth)) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ //*** POSSIBLE TO REDUCE THIS BY 1 OR 2 BITS? (CURRENTLY 2 BITS BETWEEN //*** UNSHIFTED C AND PRODUCT): val sigSumWidth = sigWidth * 3 + 3 //------------------------------------------------------------------------ //------------------------------------------------------------------------ val rawA = rawFloatFromRecFN(expWidth, sigWidth, io.a) val rawB = rawFloatFromRecFN(expWidth, sigWidth, io.b) val rawC = rawFloatFromRecFN(expWidth, sigWidth, io.c) val signProd = rawA.sign ^ rawB.sign ^ io.op(1) //*** REVIEW THE BIAS FOR 'sExpAlignedProd': val sExpAlignedProd = rawA.sExp +& rawB.sExp + (-(BigInt(1)<<expWidth) + sigWidth + 3).S val doSubMags = signProd ^ rawC.sign ^ io.op(0) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val sNatCAlignDist = sExpAlignedProd - rawC.sExp val posNatCAlignDist = sNatCAlignDist(expWidth + 1, 0) val isMinCAlign = rawA.isZero || rawB.isZero || (sNatCAlignDist < 0.S) val CIsDominant = ! rawC.isZero && (isMinCAlign || (posNatCAlignDist <= sigWidth.U)) val CAlignDist = Mux(isMinCAlign, 0.U, Mux(posNatCAlignDist < (sigSumWidth - 1).U, posNatCAlignDist(log2Ceil(sigSumWidth) - 1, 0), (sigSumWidth - 1).U ) ) val mainAlignedSigC = (Mux(doSubMags, ~rawC.sig, rawC.sig) ## Fill(sigSumWidth - sigWidth + 2, doSubMags)).asSInt>>CAlignDist val reduced4CExtra = (orReduceBy4(rawC.sig<<((sigSumWidth - sigWidth - 1) & 3)) & lowMask( CAlignDist>>2, //*** NOT NEEDED?: // (sigSumWidth + 2)>>2, (sigSumWidth - 1)>>2, (sigSumWidth - sigWidth - 1)>>2 ) ).orR val alignedSigC = Cat(mainAlignedSigC>>3, Mux(doSubMags, mainAlignedSigC(2, 0).andR && ! reduced4CExtra, mainAlignedSigC(2, 0).orR || reduced4CExtra ) ) //------------------------------------------------------------------------ //------------------------------------------------------------------------ io.mulAddA := rawA.sig io.mulAddB := rawB.sig io.mulAddC := alignedSigC(sigWidth * 2, 1) io.toPostMul.isSigNaNAny := isSigNaNRawFloat(rawA) || isSigNaNRawFloat(rawB) || isSigNaNRawFloat(rawC) io.toPostMul.isNaNAOrB := rawA.isNaN || rawB.isNaN io.toPostMul.isInfA := rawA.isInf io.toPostMul.isZeroA := rawA.isZero io.toPostMul.isInfB := rawB.isInf io.toPostMul.isZeroB := rawB.isZero io.toPostMul.signProd := signProd io.toPostMul.isNaNC := rawC.isNaN io.toPostMul.isInfC := rawC.isInf io.toPostMul.isZeroC := rawC.isZero io.toPostMul.sExpSum := Mux(CIsDominant, rawC.sExp, sExpAlignedProd - sigWidth.S) io.toPostMul.doSubMags := doSubMags io.toPostMul.CIsDominant := CIsDominant io.toPostMul.CDom_CAlignDist := CAlignDist(log2Ceil(sigWidth + 1) - 1, 0) io.toPostMul.highAlignedSigC := alignedSigC(sigSumWidth - 1, sigWidth * 2 + 1) io.toPostMul.bit0AlignedSigC := alignedSigC(0) } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class MulAddRecFNToRaw_postMul(expWidth: Int, sigWidth: Int) extends RawModule { override def desiredName = s"MulAddRecFNToRaw_postMul_e${expWidth}_s${sigWidth}" val io = IO(new Bundle { val fromPreMul = Input(new MulAddRecFN_interIo(expWidth, sigWidth)) val mulAddResult = Input(UInt((sigWidth * 2 + 1).W)) val roundingMode = Input(UInt(3.W)) val invalidExc = Output(Bool()) val rawOut = Output(new RawFloat(expWidth, sigWidth + 2)) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val sigSumWidth = sigWidth * 3 + 3 //------------------------------------------------------------------------ //------------------------------------------------------------------------ val roundingMode_min = (io.roundingMode === round_min) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val opSignC = io.fromPreMul.signProd ^ io.fromPreMul.doSubMags val sigSum = Cat(Mux(io.mulAddResult(sigWidth * 2), io.fromPreMul.highAlignedSigC + 1.U, io.fromPreMul.highAlignedSigC ), io.mulAddResult(sigWidth * 2 - 1, 0), io.fromPreMul.bit0AlignedSigC ) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val CDom_sign = opSignC val CDom_sExp = io.fromPreMul.sExpSum - io.fromPreMul.doSubMags.zext val CDom_absSigSum = Mux(io.fromPreMul.doSubMags, ~sigSum(sigSumWidth - 1, sigWidth + 1), 0.U(1.W) ## //*** IF GAP IS REDUCED TO 1 BIT, MUST REDUCE THIS COMPONENT TO 1 BIT TOO: io.fromPreMul.highAlignedSigC(sigWidth + 1, sigWidth) ## sigSum(sigSumWidth - 3, sigWidth + 2) ) val CDom_absSigSumExtra = Mux(io.fromPreMul.doSubMags, (~sigSum(sigWidth, 1)).orR, sigSum(sigWidth + 1, 1).orR ) val CDom_mainSig = (CDom_absSigSum<<io.fromPreMul.CDom_CAlignDist)( sigWidth * 2 + 1, sigWidth - 3) val CDom_reduced4SigExtra = (orReduceBy4(CDom_absSigSum(sigWidth - 1, 0)<<(~sigWidth & 3)) & lowMask(io.fromPreMul.CDom_CAlignDist>>2, 0, sigWidth>>2)).orR val CDom_sig = Cat(CDom_mainSig>>3, CDom_mainSig(2, 0).orR || CDom_reduced4SigExtra || CDom_absSigSumExtra ) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val notCDom_signSigSum = sigSum(sigWidth * 2 + 3) val notCDom_absSigSum = Mux(notCDom_signSigSum, ~sigSum(sigWidth * 2 + 2, 0), sigSum(sigWidth * 2 + 2, 0) + io.fromPreMul.doSubMags ) val notCDom_reduced2AbsSigSum = orReduceBy2(notCDom_absSigSum) val notCDom_normDistReduced2 = countLeadingZeros(notCDom_reduced2AbsSigSum) val notCDom_nearNormDist = notCDom_normDistReduced2<<1 val notCDom_sExp = io.fromPreMul.sExpSum - notCDom_nearNormDist.asUInt.zext val notCDom_mainSig = (notCDom_absSigSum<<notCDom_nearNormDist)( sigWidth * 2 + 3, sigWidth - 1) val notCDom_reduced4SigExtra = (orReduceBy2( notCDom_reduced2AbsSigSum(sigWidth>>1, 0)<<((sigWidth>>1) & 1)) & lowMask(notCDom_normDistReduced2>>1, 0, (sigWidth + 2)>>2) ).orR val notCDom_sig = Cat(notCDom_mainSig>>3, notCDom_mainSig(2, 0).orR || notCDom_reduced4SigExtra ) val notCDom_completeCancellation = (notCDom_sig(sigWidth + 2, sigWidth + 1) === 0.U) val notCDom_sign = Mux(notCDom_completeCancellation, roundingMode_min, io.fromPreMul.signProd ^ notCDom_signSigSum ) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val notNaN_isInfProd = io.fromPreMul.isInfA || io.fromPreMul.isInfB val notNaN_isInfOut = notNaN_isInfProd || io.fromPreMul.isInfC val notNaN_addZeros = (io.fromPreMul.isZeroA || io.fromPreMul.isZeroB) && io.fromPreMul.isZeroC io.invalidExc := io.fromPreMul.isSigNaNAny || (io.fromPreMul.isInfA && io.fromPreMul.isZeroB) || (io.fromPreMul.isZeroA && io.fromPreMul.isInfB) || (! io.fromPreMul.isNaNAOrB && (io.fromPreMul.isInfA || io.fromPreMul.isInfB) && io.fromPreMul.isInfC && io.fromPreMul.doSubMags) io.rawOut.isNaN := io.fromPreMul.isNaNAOrB || io.fromPreMul.isNaNC io.rawOut.isInf := notNaN_isInfOut //*** IMPROVE?: io.rawOut.isZero := notNaN_addZeros || (! io.fromPreMul.CIsDominant && notCDom_completeCancellation) io.rawOut.sign := (notNaN_isInfProd && io.fromPreMul.signProd) || (io.fromPreMul.isInfC && opSignC) || (notNaN_addZeros && ! roundingMode_min && io.fromPreMul.signProd && opSignC) || (notNaN_addZeros && roundingMode_min && (io.fromPreMul.signProd || opSignC)) || (! notNaN_isInfOut && ! notNaN_addZeros && Mux(io.fromPreMul.CIsDominant, CDom_sign, notCDom_sign)) io.rawOut.sExp := Mux(io.fromPreMul.CIsDominant, CDom_sExp, notCDom_sExp) io.rawOut.sig := Mux(io.fromPreMul.CIsDominant, CDom_sig, notCDom_sig) } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class MulAddRecFN(expWidth: Int, sigWidth: Int) extends RawModule { override def desiredName = s"MulAddRecFN_e${expWidth}_s${sigWidth}" val io = IO(new Bundle { val op = Input(Bits(2.W)) val a = Input(Bits((expWidth + sigWidth + 1).W)) val b = Input(Bits((expWidth + sigWidth + 1).W)) val c = Input(Bits((expWidth + sigWidth + 1).W)) val roundingMode = Input(UInt(3.W)) val detectTininess = Input(UInt(1.W)) val out = Output(Bits((expWidth + sigWidth + 1).W)) val exceptionFlags = Output(Bits(5.W)) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val mulAddRecFNToRaw_preMul = Module(new MulAddRecFNToRaw_preMul(expWidth, sigWidth)) val mulAddRecFNToRaw_postMul = Module(new MulAddRecFNToRaw_postMul(expWidth, sigWidth)) mulAddRecFNToRaw_preMul.io.op := io.op mulAddRecFNToRaw_preMul.io.a := io.a mulAddRecFNToRaw_preMul.io.b := io.b mulAddRecFNToRaw_preMul.io.c := io.c val mulAddResult = (mulAddRecFNToRaw_preMul.io.mulAddA * mulAddRecFNToRaw_preMul.io.mulAddB) +& mulAddRecFNToRaw_preMul.io.mulAddC mulAddRecFNToRaw_postMul.io.fromPreMul := mulAddRecFNToRaw_preMul.io.toPostMul mulAddRecFNToRaw_postMul.io.mulAddResult := mulAddResult mulAddRecFNToRaw_postMul.io.roundingMode := io.roundingMode //------------------------------------------------------------------------ //------------------------------------------------------------------------ val roundRawFNToRecFN = Module(new RoundRawFNToRecFN(expWidth, sigWidth, 0)) roundRawFNToRecFN.io.invalidExc := mulAddRecFNToRaw_postMul.io.invalidExc roundRawFNToRecFN.io.infiniteExc := false.B roundRawFNToRecFN.io.in := mulAddRecFNToRaw_postMul.io.rawOut roundRawFNToRecFN.io.roundingMode := io.roundingMode roundRawFNToRecFN.io.detectTininess := io.detectTininess io.out := roundRawFNToRecFN.io.out io.exceptionFlags := roundRawFNToRecFN.io.exceptionFlags } File rawFloatFromRecFN.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import chisel3.util._ /*---------------------------------------------------------------------------- | In the result, no more than one of 'isNaN', 'isInf', and 'isZero' will be | set. *----------------------------------------------------------------------------*/ object rawFloatFromRecFN { def apply(expWidth: Int, sigWidth: Int, in: Bits): RawFloat = { val exp = in(expWidth + sigWidth - 1, sigWidth - 1) val isZero = exp(expWidth, expWidth - 2) === 0.U val isSpecial = exp(expWidth, expWidth - 1) === 3.U val out = Wire(new RawFloat(expWidth, sigWidth)) out.isNaN := isSpecial && exp(expWidth - 2) out.isInf := isSpecial && ! exp(expWidth - 2) out.isZero := isZero out.sign := in(expWidth + sigWidth) out.sExp := exp.zext out.sig := 0.U(1.W) ## ! isZero ## in(sigWidth - 2, 0) out } } File common.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ object consts { /*------------------------------------------------------------------------ | For rounding to integer values, rounding mode 'odd' rounds to minimum | magnitude instead, same as 'minMag'. *------------------------------------------------------------------------*/ def round_near_even = "b000".U(3.W) def round_minMag = "b001".U(3.W) def round_min = "b010".U(3.W) def round_max = "b011".U(3.W) def round_near_maxMag = "b100".U(3.W) def round_odd = "b110".U(3.W) /*------------------------------------------------------------------------ *------------------------------------------------------------------------*/ def tininess_beforeRounding = 0.U def tininess_afterRounding = 1.U /*------------------------------------------------------------------------ *------------------------------------------------------------------------*/ def flRoundOpt_sigMSBitAlwaysZero = 1 def flRoundOpt_subnormsAlwaysExact = 2 def flRoundOpt_neverUnderflows = 4 def flRoundOpt_neverOverflows = 8 /*------------------------------------------------------------------------ *------------------------------------------------------------------------*/ def divSqrtOpt_twoBitsPerCycle = 16 } class RawFloat(val expWidth: Int, val sigWidth: Int) extends Bundle { val isNaN: Bool = Bool() // overrides all other fields val isInf: Bool = Bool() // overrides 'isZero', 'sExp', and 'sig' val isZero: Bool = Bool() // overrides 'sExp' and 'sig' val sign: Bool = Bool() val sExp: SInt = SInt((expWidth + 2).W) val sig: UInt = UInt((sigWidth + 1).W) // 2 m.s. bits cannot both be 0 } //*** CHANGE THIS INTO A '.isSigNaN' METHOD OF THE 'RawFloat' CLASS: object isSigNaNRawFloat { def apply(in: RawFloat): Bool = in.isNaN && !in.sig(in.sigWidth - 2) }
module MulAddRecFNToRaw_preMul_e8_s24_55( // @[MulAddRecFN.scala:71:7] input [32:0] io_a, // @[MulAddRecFN.scala:74:16] output [23:0] io_mulAddA, // @[MulAddRecFN.scala:74:16] output [47:0] io_mulAddC, // @[MulAddRecFN.scala:74:16] output io_toPostMul_isSigNaNAny, // @[MulAddRecFN.scala:74:16] output io_toPostMul_isNaNAOrB, // @[MulAddRecFN.scala:74:16] output io_toPostMul_isInfA, // @[MulAddRecFN.scala:74:16] output io_toPostMul_isZeroA, // @[MulAddRecFN.scala:74:16] output io_toPostMul_signProd, // @[MulAddRecFN.scala:74:16] output [9:0] io_toPostMul_sExpSum, // @[MulAddRecFN.scala:74:16] output io_toPostMul_doSubMags, // @[MulAddRecFN.scala:74:16] output [4:0] io_toPostMul_CDom_CAlignDist, // @[MulAddRecFN.scala:74:16] output [25:0] io_toPostMul_highAlignedSigC, // @[MulAddRecFN.scala:74:16] output io_toPostMul_bit0AlignedSigC // @[MulAddRecFN.scala:74:16] ); wire rawA_sign; // @[rawFloatFromRecFN.scala:55:23] wire rawA_isNaN; // @[rawFloatFromRecFN.scala:55:23] wire [32:0] io_a_0 = io_a; // @[MulAddRecFN.scala:71:7] wire [8:0] rawB_exp = 9'h100; // @[rawFloatFromRecFN.scala:51:21] wire [2:0] _rawB_isZero_T = 3'h4; // @[rawFloatFromRecFN.scala:52:28] wire [1:0] _rawB_isSpecial_T = 2'h2; // @[rawFloatFromRecFN.scala:53:28] wire [9:0] rawB_sExp = 10'h100; // @[rawFloatFromRecFN.scala:55:23, :60:27] wire [9:0] _rawB_out_sExp_T = 10'h100; // @[rawFloatFromRecFN.scala:55:23, :60:27] wire [1:0] _rawB_out_sig_T_1 = 2'h1; // @[rawFloatFromRecFN.scala:61:32] wire [24:0] rawB_sig = 25'h800000; // @[rawFloatFromRecFN.scala:55:23, :61:44] wire [24:0] _rawB_out_sig_T_3 = 25'h800000; // @[rawFloatFromRecFN.scala:55:23, :61:44] wire [8:0] rawC_exp = 9'h2B; // @[rawFloatFromRecFN.scala:51:21] wire [9:0] rawC_sExp = 10'h2B; // @[rawFloatFromRecFN.scala:55:23, :60:27] wire [9:0] _rawC_out_sExp_T = 10'h2B; // @[rawFloatFromRecFN.scala:55:23, :60:27] wire [22:0] _rawB_out_sig_T_2 = 23'h0; // @[rawFloatFromRecFN.scala:61:49] wire [22:0] _rawC_out_sig_T_2 = 23'h0; // @[rawFloatFromRecFN.scala:61:49] wire [24:0] rawC_sig = 25'h0; // @[rawFloatFromRecFN.scala:55:23, :61:44] wire [24:0] _rawC_out_sig_T_3 = 25'h0; // @[rawFloatFromRecFN.scala:55:23, :61:44] wire [24:0] _mainAlignedSigC_T = 25'h1FFFFFF; // @[MulAddRecFN.scala:120:25] wire [26:0] _reduced4CExtra_T = 27'h0; // @[MulAddRecFN.scala:122:30] wire [2:0] _rawC_isZero_T = 3'h0; // @[rawFloatFromRecFN.scala:52:28] wire [2:0] _reduced4CExtra_reducedVec_6_T = 3'h0; // @[rawFloatFromRecFN.scala:52:28] wire [2:0] reduced4CExtra_lo = 3'h0; // @[rawFloatFromRecFN.scala:52:28] wire [3:0] _reduced4CExtra_reducedVec_0_T = 4'h0; // @[primitives.scala:120:33, :124:20] wire [3:0] _reduced4CExtra_reducedVec_1_T = 4'h0; // @[primitives.scala:120:33, :124:20] wire [3:0] _reduced4CExtra_reducedVec_2_T = 4'h0; // @[primitives.scala:120:33, :124:20] wire [3:0] _reduced4CExtra_reducedVec_3_T = 4'h0; // @[primitives.scala:120:33, :124:20] wire [3:0] _reduced4CExtra_reducedVec_4_T = 4'h0; // @[primitives.scala:120:33, :124:20] wire [3:0] _reduced4CExtra_reducedVec_5_T = 4'h0; // @[primitives.scala:120:33, :124:20] wire [3:0] reduced4CExtra_hi = 4'h0; // @[primitives.scala:120:33, :124:20] wire [6:0] _reduced4CExtra_T_1 = 7'h0; // @[primitives.scala:124:20] wire [6:0] _reduced4CExtra_T_19 = 7'h0; // @[MulAddRecFN.scala:122:68] wire io_toPostMul_isZeroC = 1'h1; // @[rawFloatFromRecFN.scala:52:53, :55:23, :57:36, :61:35] wire _rawB_out_isInf_T_1 = 1'h1; // @[rawFloatFromRecFN.scala:52:53, :55:23, :57:36, :61:35] wire _rawB_out_sig_T = 1'h1; // @[rawFloatFromRecFN.scala:52:53, :55:23, :57:36, :61:35] wire rawC_isZero = 1'h1; // @[rawFloatFromRecFN.scala:52:53, :55:23, :57:36, :61:35] wire rawC_isZero_0 = 1'h1; // @[rawFloatFromRecFN.scala:52:53, :55:23, :57:36, :61:35] wire _rawC_out_isInf_T_1 = 1'h1; // @[rawFloatFromRecFN.scala:52:53, :55:23, :57:36, :61:35] wire _alignedSigC_T_3 = 1'h1; // @[rawFloatFromRecFN.scala:52:53, :55:23, :57:36, :61:35] wire _io_toPostMul_isSigNaNAny_T_4 = 1'h1; // @[rawFloatFromRecFN.scala:52:53, :55:23, :57:36, :61:35] wire _io_toPostMul_isSigNaNAny_T_8 = 1'h1; // @[rawFloatFromRecFN.scala:52:53, :55:23, :57:36, :61:35] wire io_toPostMul_isInfB = 1'h0; // @[MulAddRecFN.scala:71:7] wire io_toPostMul_isZeroB = 1'h0; // @[MulAddRecFN.scala:71:7] wire io_toPostMul_isNaNC = 1'h0; // @[MulAddRecFN.scala:71:7] wire io_toPostMul_isInfC = 1'h0; // @[MulAddRecFN.scala:71:7] wire io_toPostMul_CIsDominant = 1'h0; // @[MulAddRecFN.scala:71:7] wire rawB_isZero = 1'h0; // @[rawFloatFromRecFN.scala:52:53] wire rawB_isSpecial = 1'h0; // @[rawFloatFromRecFN.scala:53:53] wire rawB_isNaN = 1'h0; // @[rawFloatFromRecFN.scala:55:23] wire rawB_isInf = 1'h0; // @[rawFloatFromRecFN.scala:55:23] wire rawB_isZero_0 = 1'h0; // @[rawFloatFromRecFN.scala:55:23] wire rawB_sign = 1'h0; // @[rawFloatFromRecFN.scala:55:23] wire _rawB_out_isNaN_T = 1'h0; // @[rawFloatFromRecFN.scala:56:41] wire _rawB_out_isNaN_T_1 = 1'h0; // @[rawFloatFromRecFN.scala:56:33] wire _rawB_out_isInf_T = 1'h0; // @[rawFloatFromRecFN.scala:57:41] wire _rawB_out_isInf_T_2 = 1'h0; // @[rawFloatFromRecFN.scala:57:33] wire _rawB_out_sign_T = 1'h0; // @[rawFloatFromRecFN.scala:59:25] wire rawC_isSpecial = 1'h0; // @[rawFloatFromRecFN.scala:53:53] wire rawC_isNaN = 1'h0; // @[rawFloatFromRecFN.scala:55:23] wire rawC_isInf = 1'h0; // @[rawFloatFromRecFN.scala:55:23] wire rawC_sign = 1'h0; // @[rawFloatFromRecFN.scala:55:23] wire _rawC_out_isNaN_T = 1'h0; // @[rawFloatFromRecFN.scala:56:41] wire _rawC_out_isNaN_T_1 = 1'h0; // @[rawFloatFromRecFN.scala:56:33] wire _rawC_out_isInf_T = 1'h0; // @[rawFloatFromRecFN.scala:57:41] wire _rawC_out_isInf_T_2 = 1'h0; // @[rawFloatFromRecFN.scala:57:33] wire _rawC_out_sign_T = 1'h0; // @[rawFloatFromRecFN.scala:59:25] wire _rawC_out_sig_T = 1'h0; // @[rawFloatFromRecFN.scala:61:35] wire _signProd_T_1 = 1'h0; // @[MulAddRecFN.scala:97:49] wire _doSubMags_T_1 = 1'h0; // @[MulAddRecFN.scala:102:49] wire _CIsDominant_T = 1'h0; // @[MulAddRecFN.scala:110:9] wire CIsDominant = 1'h0; // @[MulAddRecFN.scala:110:23] wire reduced4CExtra_reducedVec_0 = 1'h0; // @[primitives.scala:118:30] wire reduced4CExtra_reducedVec_1 = 1'h0; // @[primitives.scala:118:30] wire reduced4CExtra_reducedVec_2 = 1'h0; // @[primitives.scala:118:30] wire reduced4CExtra_reducedVec_3 = 1'h0; // @[primitives.scala:118:30] wire reduced4CExtra_reducedVec_4 = 1'h0; // @[primitives.scala:118:30] wire reduced4CExtra_reducedVec_5 = 1'h0; // @[primitives.scala:118:30] wire reduced4CExtra_reducedVec_6 = 1'h0; // @[primitives.scala:118:30] wire _reduced4CExtra_reducedVec_0_T_1 = 1'h0; // @[primitives.scala:120:54] wire _reduced4CExtra_reducedVec_1_T_1 = 1'h0; // @[primitives.scala:120:54] wire _reduced4CExtra_reducedVec_2_T_1 = 1'h0; // @[primitives.scala:120:54] wire _reduced4CExtra_reducedVec_3_T_1 = 1'h0; // @[primitives.scala:120:54] wire _reduced4CExtra_reducedVec_4_T_1 = 1'h0; // @[primitives.scala:120:54] wire _reduced4CExtra_reducedVec_5_T_1 = 1'h0; // @[primitives.scala:120:54] wire _reduced4CExtra_reducedVec_6_T_1 = 1'h0; // @[primitives.scala:123:57] wire reduced4CExtra = 1'h0; // @[MulAddRecFN.scala:130:11] wire _io_toPostMul_isSigNaNAny_T_3 = 1'h0; // @[common.scala:82:56] wire _io_toPostMul_isSigNaNAny_T_5 = 1'h0; // @[common.scala:82:46] wire _io_toPostMul_isSigNaNAny_T_7 = 1'h0; // @[common.scala:82:56] wire _io_toPostMul_isSigNaNAny_T_9 = 1'h0; // @[common.scala:82:46] wire [23:0] io_mulAddB = 24'h800000; // @[MulAddRecFN.scala:71:7, :74:16, :142:16] wire [32:0] io_c = 33'h15800000; // @[MulAddRecFN.scala:71:7, :74:16] wire [32:0] io_b = 33'h80000000; // @[MulAddRecFN.scala:71:7, :74:16] wire [1:0] io_op = 2'h0; // @[rawFloatFromRecFN.scala:53:28, :61:32] wire [1:0] _rawC_isSpecial_T = 2'h0; // @[rawFloatFromRecFN.scala:53:28, :61:32] wire [1:0] _rawC_out_sig_T_1 = 2'h0; // @[rawFloatFromRecFN.scala:53:28, :61:32] wire [1:0] reduced4CExtra_lo_hi = 2'h0; // @[rawFloatFromRecFN.scala:53:28, :61:32] wire [1:0] reduced4CExtra_hi_lo = 2'h0; // @[rawFloatFromRecFN.scala:53:28, :61:32] wire [1:0] reduced4CExtra_hi_hi = 2'h0; // @[rawFloatFromRecFN.scala:53:28, :61:32] wire [47:0] _io_mulAddC_T; // @[MulAddRecFN.scala:143:30] wire _io_toPostMul_isSigNaNAny_T_10; // @[MulAddRecFN.scala:146:58] wire _io_toPostMul_isNaNAOrB_T; // @[MulAddRecFN.scala:148:42] wire rawA_isInf; // @[rawFloatFromRecFN.scala:55:23] wire rawA_isZero; // @[rawFloatFromRecFN.scala:55:23] wire signProd; // @[MulAddRecFN.scala:97:42] wire doSubMags; // @[MulAddRecFN.scala:102:42] wire [4:0] _io_toPostMul_CDom_CAlignDist_T; // @[MulAddRecFN.scala:161:47] wire [25:0] _io_toPostMul_highAlignedSigC_T; // @[MulAddRecFN.scala:163:20] wire _io_toPostMul_bit0AlignedSigC_T; // @[MulAddRecFN.scala:164:48] wire io_toPostMul_isSigNaNAny_0; // @[MulAddRecFN.scala:71:7] wire io_toPostMul_isNaNAOrB_0; // @[MulAddRecFN.scala:71:7] wire io_toPostMul_isInfA_0; // @[MulAddRecFN.scala:71:7] wire io_toPostMul_isZeroA_0; // @[MulAddRecFN.scala:71:7] wire io_toPostMul_signProd_0; // @[MulAddRecFN.scala:71:7] wire [9:0] io_toPostMul_sExpSum_0; // @[MulAddRecFN.scala:71:7] wire io_toPostMul_doSubMags_0; // @[MulAddRecFN.scala:71:7] wire [4:0] io_toPostMul_CDom_CAlignDist_0; // @[MulAddRecFN.scala:71:7] wire [25:0] io_toPostMul_highAlignedSigC_0; // @[MulAddRecFN.scala:71:7] wire io_toPostMul_bit0AlignedSigC_0; // @[MulAddRecFN.scala:71:7] wire [23:0] io_mulAddA_0; // @[MulAddRecFN.scala:71:7] wire [47:0] io_mulAddC_0; // @[MulAddRecFN.scala:71:7] wire [8:0] rawA_exp = io_a_0[31:23]; // @[rawFloatFromRecFN.scala:51:21] wire [2:0] _rawA_isZero_T = rawA_exp[8:6]; // @[rawFloatFromRecFN.scala:51:21, :52:28] wire rawA_isZero_0 = _rawA_isZero_T == 3'h0; // @[rawFloatFromRecFN.scala:52:{28,53}] assign rawA_isZero = rawA_isZero_0; // @[rawFloatFromRecFN.scala:52:53, :55:23] wire [1:0] _rawA_isSpecial_T = rawA_exp[8:7]; // @[rawFloatFromRecFN.scala:51:21, :53:28] wire rawA_isSpecial = &_rawA_isSpecial_T; // @[rawFloatFromRecFN.scala:53:{28,53}] wire _rawA_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:56:33] wire _rawA_out_isInf_T_2; // @[rawFloatFromRecFN.scala:57:33] assign _io_toPostMul_isNaNAOrB_T = rawA_isNaN; // @[rawFloatFromRecFN.scala:55:23] assign io_toPostMul_isInfA_0 = rawA_isInf; // @[rawFloatFromRecFN.scala:55:23] assign io_toPostMul_isZeroA_0 = rawA_isZero; // @[rawFloatFromRecFN.scala:55:23] wire _rawA_out_sign_T; // @[rawFloatFromRecFN.scala:59:25] wire _isMinCAlign_T = rawA_isZero; // @[rawFloatFromRecFN.scala:55:23] wire [9:0] _rawA_out_sExp_T; // @[rawFloatFromRecFN.scala:60:27] wire _signProd_T = rawA_sign; // @[rawFloatFromRecFN.scala:55:23] wire [24:0] _rawA_out_sig_T_3; // @[rawFloatFromRecFN.scala:61:44] wire [9:0] rawA_sExp; // @[rawFloatFromRecFN.scala:55:23] wire [24:0] rawA_sig; // @[rawFloatFromRecFN.scala:55:23] wire _rawA_out_isNaN_T = rawA_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41] wire _rawA_out_isInf_T = rawA_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41, :57:41] assign _rawA_out_isNaN_T_1 = rawA_isSpecial & _rawA_out_isNaN_T; // @[rawFloatFromRecFN.scala:53:53, :56:{33,41}] assign rawA_isNaN = _rawA_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:55:23, :56:33] wire _rawA_out_isInf_T_1 = ~_rawA_out_isInf_T; // @[rawFloatFromRecFN.scala:57:{36,41}] assign _rawA_out_isInf_T_2 = rawA_isSpecial & _rawA_out_isInf_T_1; // @[rawFloatFromRecFN.scala:53:53, :57:{33,36}] assign rawA_isInf = _rawA_out_isInf_T_2; // @[rawFloatFromRecFN.scala:55:23, :57:33] assign _rawA_out_sign_T = io_a_0[32]; // @[rawFloatFromRecFN.scala:59:25] assign rawA_sign = _rawA_out_sign_T; // @[rawFloatFromRecFN.scala:55:23, :59:25] assign _rawA_out_sExp_T = {1'h0, rawA_exp}; // @[rawFloatFromRecFN.scala:51:21, :60:27] assign rawA_sExp = _rawA_out_sExp_T; // @[rawFloatFromRecFN.scala:55:23, :60:27] wire _rawA_out_sig_T = ~rawA_isZero_0; // @[rawFloatFromRecFN.scala:52:53, :61:35] wire [1:0] _rawA_out_sig_T_1 = {1'h0, _rawA_out_sig_T}; // @[rawFloatFromRecFN.scala:61:{32,35}] wire [22:0] _rawA_out_sig_T_2 = io_a_0[22:0]; // @[rawFloatFromRecFN.scala:61:49] assign _rawA_out_sig_T_3 = {_rawA_out_sig_T_1, _rawA_out_sig_T_2}; // @[rawFloatFromRecFN.scala:61:{32,44,49}] assign rawA_sig = _rawA_out_sig_T_3; // @[rawFloatFromRecFN.scala:55:23, :61:44] assign signProd = _signProd_T; // @[MulAddRecFN.scala:97:{30,42}] assign io_toPostMul_signProd_0 = signProd; // @[MulAddRecFN.scala:71:7, :97:42] wire _doSubMags_T = signProd; // @[MulAddRecFN.scala:97:42, :102:30] wire [10:0] _sExpAlignedProd_T = {rawA_sExp[9], rawA_sExp} + 11'h100; // @[rawFloatFromRecFN.scala:55:23] wire [11:0] _sExpAlignedProd_T_1 = {_sExpAlignedProd_T[10], _sExpAlignedProd_T} - 12'hE5; // @[MulAddRecFN.scala:100:{19,32}] wire [10:0] _sExpAlignedProd_T_2 = _sExpAlignedProd_T_1[10:0]; // @[MulAddRecFN.scala:100:32] wire [10:0] sExpAlignedProd = _sExpAlignedProd_T_2; // @[MulAddRecFN.scala:100:32] assign doSubMags = _doSubMags_T; // @[MulAddRecFN.scala:102:{30,42}] assign io_toPostMul_doSubMags_0 = doSubMags; // @[MulAddRecFN.scala:71:7, :102:42] wire [11:0] _GEN = {sExpAlignedProd[10], sExpAlignedProd}; // @[MulAddRecFN.scala:100:32, :106:42] wire [11:0] _sNatCAlignDist_T = _GEN - 12'h2B; // @[MulAddRecFN.scala:106:42] wire [10:0] _sNatCAlignDist_T_1 = _sNatCAlignDist_T[10:0]; // @[MulAddRecFN.scala:106:42] wire [10:0] sNatCAlignDist = _sNatCAlignDist_T_1; // @[MulAddRecFN.scala:106:42] wire [9:0] posNatCAlignDist = sNatCAlignDist[9:0]; // @[MulAddRecFN.scala:106:42, :107:42] wire _isMinCAlign_T_1 = $signed(sNatCAlignDist) < 11'sh0; // @[MulAddRecFN.scala:106:42, :108:69] wire isMinCAlign = _isMinCAlign_T | _isMinCAlign_T_1; // @[MulAddRecFN.scala:108:{35,50,69}] wire _CIsDominant_T_1 = posNatCAlignDist < 10'h19; // @[MulAddRecFN.scala:107:42, :110:60] wire _CIsDominant_T_2 = isMinCAlign | _CIsDominant_T_1; // @[MulAddRecFN.scala:108:50, :110:{39,60}] wire _CAlignDist_T = posNatCAlignDist < 10'h4A; // @[MulAddRecFN.scala:107:42, :114:34] wire [6:0] _CAlignDist_T_1 = posNatCAlignDist[6:0]; // @[MulAddRecFN.scala:107:42, :115:33] wire [6:0] _CAlignDist_T_2 = _CAlignDist_T ? _CAlignDist_T_1 : 7'h4A; // @[MulAddRecFN.scala:114:{16,34}, :115:33] wire [6:0] CAlignDist = isMinCAlign ? 7'h0 : _CAlignDist_T_2; // @[MulAddRecFN.scala:108:50, :112:12, :114:16] wire [24:0] _mainAlignedSigC_T_1 = {25{doSubMags}}; // @[MulAddRecFN.scala:102:42, :120:13] wire [52:0] _mainAlignedSigC_T_2 = {53{doSubMags}}; // @[MulAddRecFN.scala:102:42, :120:53] wire [77:0] _mainAlignedSigC_T_3 = {_mainAlignedSigC_T_1, _mainAlignedSigC_T_2}; // @[MulAddRecFN.scala:120:{13,46,53}] wire [77:0] _mainAlignedSigC_T_4 = _mainAlignedSigC_T_3; // @[MulAddRecFN.scala:120:{46,94}] wire [77:0] mainAlignedSigC = $signed($signed(_mainAlignedSigC_T_4) >>> CAlignDist); // @[MulAddRecFN.scala:112:12, :120:{94,100}] wire [4:0] _reduced4CExtra_T_2 = CAlignDist[6:2]; // @[MulAddRecFN.scala:112:12, :124:28] wire [32:0] reduced4CExtra_shift = $signed(33'sh100000000 >>> _reduced4CExtra_T_2); // @[primitives.scala:76:56] wire [5:0] _reduced4CExtra_T_3 = reduced4CExtra_shift[19:14]; // @[primitives.scala:76:56, :78:22] wire [3:0] _reduced4CExtra_T_4 = _reduced4CExtra_T_3[3:0]; // @[primitives.scala:77:20, :78:22] wire [1:0] _reduced4CExtra_T_5 = _reduced4CExtra_T_4[1:0]; // @[primitives.scala:77:20] wire _reduced4CExtra_T_6 = _reduced4CExtra_T_5[0]; // @[primitives.scala:77:20] wire _reduced4CExtra_T_7 = _reduced4CExtra_T_5[1]; // @[primitives.scala:77:20] wire [1:0] _reduced4CExtra_T_8 = {_reduced4CExtra_T_6, _reduced4CExtra_T_7}; // @[primitives.scala:77:20] wire [1:0] _reduced4CExtra_T_9 = _reduced4CExtra_T_4[3:2]; // @[primitives.scala:77:20] wire _reduced4CExtra_T_10 = _reduced4CExtra_T_9[0]; // @[primitives.scala:77:20] wire _reduced4CExtra_T_11 = _reduced4CExtra_T_9[1]; // @[primitives.scala:77:20] wire [1:0] _reduced4CExtra_T_12 = {_reduced4CExtra_T_10, _reduced4CExtra_T_11}; // @[primitives.scala:77:20] wire [3:0] _reduced4CExtra_T_13 = {_reduced4CExtra_T_8, _reduced4CExtra_T_12}; // @[primitives.scala:77:20] wire [1:0] _reduced4CExtra_T_14 = _reduced4CExtra_T_3[5:4]; // @[primitives.scala:77:20, :78:22] wire _reduced4CExtra_T_15 = _reduced4CExtra_T_14[0]; // @[primitives.scala:77:20] wire _reduced4CExtra_T_16 = _reduced4CExtra_T_14[1]; // @[primitives.scala:77:20] wire [1:0] _reduced4CExtra_T_17 = {_reduced4CExtra_T_15, _reduced4CExtra_T_16}; // @[primitives.scala:77:20] wire [5:0] _reduced4CExtra_T_18 = {_reduced4CExtra_T_13, _reduced4CExtra_T_17}; // @[primitives.scala:77:20] wire [74:0] _alignedSigC_T = mainAlignedSigC[77:3]; // @[MulAddRecFN.scala:120:100, :132:28] wire [74:0] alignedSigC_hi = _alignedSigC_T; // @[MulAddRecFN.scala:132:{12,28}] wire [2:0] _alignedSigC_T_1 = mainAlignedSigC[2:0]; // @[MulAddRecFN.scala:120:100, :134:32] wire [2:0] _alignedSigC_T_5 = mainAlignedSigC[2:0]; // @[MulAddRecFN.scala:120:100, :134:32, :135:32] wire _alignedSigC_T_2 = &_alignedSigC_T_1; // @[MulAddRecFN.scala:134:{32,39}] wire _alignedSigC_T_4 = _alignedSigC_T_2; // @[MulAddRecFN.scala:134:{39,44}] wire _alignedSigC_T_6 = |_alignedSigC_T_5; // @[MulAddRecFN.scala:135:{32,39}] wire _alignedSigC_T_7 = _alignedSigC_T_6; // @[MulAddRecFN.scala:135:{39,44}] wire _alignedSigC_T_8 = doSubMags ? _alignedSigC_T_4 : _alignedSigC_T_7; // @[MulAddRecFN.scala:102:42, :133:16, :134:44, :135:44] wire [75:0] alignedSigC = {alignedSigC_hi, _alignedSigC_T_8}; // @[MulAddRecFN.scala:132:12, :133:16] assign io_mulAddA_0 = rawA_sig[23:0]; // @[rawFloatFromRecFN.scala:55:23] assign _io_mulAddC_T = alignedSigC[48:1]; // @[MulAddRecFN.scala:132:12, :143:30] assign io_mulAddC_0 = _io_mulAddC_T; // @[MulAddRecFN.scala:71:7, :143:30] wire _io_toPostMul_isSigNaNAny_T = rawA_sig[22]; // @[rawFloatFromRecFN.scala:55:23] wire _io_toPostMul_isSigNaNAny_T_1 = ~_io_toPostMul_isSigNaNAny_T; // @[common.scala:82:{49,56}] wire _io_toPostMul_isSigNaNAny_T_2 = rawA_isNaN & _io_toPostMul_isSigNaNAny_T_1; // @[rawFloatFromRecFN.scala:55:23] wire _io_toPostMul_isSigNaNAny_T_6 = _io_toPostMul_isSigNaNAny_T_2; // @[common.scala:82:46] assign _io_toPostMul_isSigNaNAny_T_10 = _io_toPostMul_isSigNaNAny_T_6; // @[MulAddRecFN.scala:146:{32,58}] assign io_toPostMul_isSigNaNAny_0 = _io_toPostMul_isSigNaNAny_T_10; // @[MulAddRecFN.scala:71:7, :146:58] assign io_toPostMul_isNaNAOrB_0 = _io_toPostMul_isNaNAOrB_T; // @[MulAddRecFN.scala:71:7, :148:42] wire [11:0] _io_toPostMul_sExpSum_T = _GEN - 12'h18; // @[MulAddRecFN.scala:106:42, :158:53] wire [10:0] _io_toPostMul_sExpSum_T_1 = _io_toPostMul_sExpSum_T[10:0]; // @[MulAddRecFN.scala:158:53] wire [10:0] _io_toPostMul_sExpSum_T_2 = _io_toPostMul_sExpSum_T_1; // @[MulAddRecFN.scala:158:53] wire [10:0] _io_toPostMul_sExpSum_T_3 = _io_toPostMul_sExpSum_T_2; // @[MulAddRecFN.scala:158:{12,53}] assign io_toPostMul_sExpSum_0 = _io_toPostMul_sExpSum_T_3[9:0]; // @[MulAddRecFN.scala:71:7, :157:28, :158:12] assign _io_toPostMul_CDom_CAlignDist_T = CAlignDist[4:0]; // @[MulAddRecFN.scala:112:12, :161:47] assign io_toPostMul_CDom_CAlignDist_0 = _io_toPostMul_CDom_CAlignDist_T; // @[MulAddRecFN.scala:71:7, :161:47] assign _io_toPostMul_highAlignedSigC_T = alignedSigC[74:49]; // @[MulAddRecFN.scala:132:12, :163:20] assign io_toPostMul_highAlignedSigC_0 = _io_toPostMul_highAlignedSigC_T; // @[MulAddRecFN.scala:71:7, :163:20] assign _io_toPostMul_bit0AlignedSigC_T = alignedSigC[0]; // @[MulAddRecFN.scala:132:12, :164:48] assign io_toPostMul_bit0AlignedSigC_0 = _io_toPostMul_bit0AlignedSigC_T; // @[MulAddRecFN.scala:71:7, :164:48] assign io_mulAddA = io_mulAddA_0; // @[MulAddRecFN.scala:71:7] assign io_mulAddC = io_mulAddC_0; // @[MulAddRecFN.scala:71:7] assign io_toPostMul_isSigNaNAny = io_toPostMul_isSigNaNAny_0; // @[MulAddRecFN.scala:71:7] assign io_toPostMul_isNaNAOrB = io_toPostMul_isNaNAOrB_0; // @[MulAddRecFN.scala:71:7] assign io_toPostMul_isInfA = io_toPostMul_isInfA_0; // @[MulAddRecFN.scala:71:7] assign io_toPostMul_isZeroA = io_toPostMul_isZeroA_0; // @[MulAddRecFN.scala:71:7] assign io_toPostMul_signProd = io_toPostMul_signProd_0; // @[MulAddRecFN.scala:71:7] assign io_toPostMul_sExpSum = io_toPostMul_sExpSum_0; // @[MulAddRecFN.scala:71:7] assign io_toPostMul_doSubMags = io_toPostMul_doSubMags_0; // @[MulAddRecFN.scala:71:7] assign io_toPostMul_CDom_CAlignDist = io_toPostMul_CDom_CAlignDist_0; // @[MulAddRecFN.scala:71:7] assign io_toPostMul_highAlignedSigC = io_toPostMul_highAlignedSigC_0; // @[MulAddRecFN.scala:71:7] assign io_toPostMul_bit0AlignedSigC = io_toPostMul_bit0AlignedSigC_0; // @[MulAddRecFN.scala:71:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File primitives.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import chisel3.util._ //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object lowMask { def apply(in: UInt, topBound: BigInt, bottomBound: BigInt): UInt = { require(topBound != bottomBound) val numInVals = BigInt(1)<<in.getWidth if (topBound < bottomBound) { lowMask(~in, numInVals - 1 - topBound, numInVals - 1 - bottomBound) } else if (numInVals > 64 /* Empirical */) { // For simulation performance, we should avoid generating // exteremely wide shifters, so we divide and conquer. // Empirically, this does not impact synthesis QoR. val mid = numInVals / 2 val msb = in(in.getWidth - 1) val lsbs = in(in.getWidth - 2, 0) if (mid < topBound) { if (mid <= bottomBound) { Mux(msb, lowMask(lsbs, topBound - mid, bottomBound - mid), 0.U ) } else { Mux(msb, lowMask(lsbs, topBound - mid, 0) ## ((BigInt(1)<<(mid - bottomBound).toInt) - 1).U, lowMask(lsbs, mid, bottomBound) ) } } else { ~Mux(msb, 0.U, ~lowMask(lsbs, topBound, bottomBound)) } } else { val shift = (BigInt(-1)<<numInVals.toInt).S>>in Reverse( shift( (numInVals - 1 - bottomBound).toInt, (numInVals - topBound).toInt ) ) } } } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object countLeadingZeros { def apply(in: UInt): UInt = PriorityEncoder(in.asBools.reverse) } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object orReduceBy2 { def apply(in: UInt): UInt = { val reducedWidth = (in.getWidth + 1)>>1 val reducedVec = Wire(Vec(reducedWidth, Bool())) for (ix <- 0 until reducedWidth - 1) { reducedVec(ix) := in(ix * 2 + 1, ix * 2).orR } reducedVec(reducedWidth - 1) := in(in.getWidth - 1, (reducedWidth - 1) * 2).orR reducedVec.asUInt } } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object orReduceBy4 { def apply(in: UInt): UInt = { val reducedWidth = (in.getWidth + 3)>>2 val reducedVec = Wire(Vec(reducedWidth, Bool())) for (ix <- 0 until reducedWidth - 1) { reducedVec(ix) := in(ix * 4 + 3, ix * 4).orR } reducedVec(reducedWidth - 1) := in(in.getWidth - 1, (reducedWidth - 1) * 4).orR reducedVec.asUInt } } File MulAddRecFN.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import chisel3.util._ import consts._ //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class MulAddRecFN_interIo(expWidth: Int, sigWidth: Int) extends Bundle { //*** ENCODE SOME OF THESE CASES IN FEWER BITS?: val isSigNaNAny = Bool() val isNaNAOrB = Bool() val isInfA = Bool() val isZeroA = Bool() val isInfB = Bool() val isZeroB = Bool() val signProd = Bool() val isNaNC = Bool() val isInfC = Bool() val isZeroC = Bool() val sExpSum = SInt((expWidth + 2).W) val doSubMags = Bool() val CIsDominant = Bool() val CDom_CAlignDist = UInt(log2Ceil(sigWidth + 1).W) val highAlignedSigC = UInt((sigWidth + 2).W) val bit0AlignedSigC = UInt(1.W) } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class MulAddRecFNToRaw_preMul(expWidth: Int, sigWidth: Int) extends RawModule { override def desiredName = s"MulAddRecFNToRaw_preMul_e${expWidth}_s${sigWidth}" val io = IO(new Bundle { val op = Input(Bits(2.W)) val a = Input(Bits((expWidth + sigWidth + 1).W)) val b = Input(Bits((expWidth + sigWidth + 1).W)) val c = Input(Bits((expWidth + sigWidth + 1).W)) val mulAddA = Output(UInt(sigWidth.W)) val mulAddB = Output(UInt(sigWidth.W)) val mulAddC = Output(UInt((sigWidth * 2).W)) val toPostMul = Output(new MulAddRecFN_interIo(expWidth, sigWidth)) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ //*** POSSIBLE TO REDUCE THIS BY 1 OR 2 BITS? (CURRENTLY 2 BITS BETWEEN //*** UNSHIFTED C AND PRODUCT): val sigSumWidth = sigWidth * 3 + 3 //------------------------------------------------------------------------ //------------------------------------------------------------------------ val rawA = rawFloatFromRecFN(expWidth, sigWidth, io.a) val rawB = rawFloatFromRecFN(expWidth, sigWidth, io.b) val rawC = rawFloatFromRecFN(expWidth, sigWidth, io.c) val signProd = rawA.sign ^ rawB.sign ^ io.op(1) //*** REVIEW THE BIAS FOR 'sExpAlignedProd': val sExpAlignedProd = rawA.sExp +& rawB.sExp + (-(BigInt(1)<<expWidth) + sigWidth + 3).S val doSubMags = signProd ^ rawC.sign ^ io.op(0) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val sNatCAlignDist = sExpAlignedProd - rawC.sExp val posNatCAlignDist = sNatCAlignDist(expWidth + 1, 0) val isMinCAlign = rawA.isZero || rawB.isZero || (sNatCAlignDist < 0.S) val CIsDominant = ! rawC.isZero && (isMinCAlign || (posNatCAlignDist <= sigWidth.U)) val CAlignDist = Mux(isMinCAlign, 0.U, Mux(posNatCAlignDist < (sigSumWidth - 1).U, posNatCAlignDist(log2Ceil(sigSumWidth) - 1, 0), (sigSumWidth - 1).U ) ) val mainAlignedSigC = (Mux(doSubMags, ~rawC.sig, rawC.sig) ## Fill(sigSumWidth - sigWidth + 2, doSubMags)).asSInt>>CAlignDist val reduced4CExtra = (orReduceBy4(rawC.sig<<((sigSumWidth - sigWidth - 1) & 3)) & lowMask( CAlignDist>>2, //*** NOT NEEDED?: // (sigSumWidth + 2)>>2, (sigSumWidth - 1)>>2, (sigSumWidth - sigWidth - 1)>>2 ) ).orR val alignedSigC = Cat(mainAlignedSigC>>3, Mux(doSubMags, mainAlignedSigC(2, 0).andR && ! reduced4CExtra, mainAlignedSigC(2, 0).orR || reduced4CExtra ) ) //------------------------------------------------------------------------ //------------------------------------------------------------------------ io.mulAddA := rawA.sig io.mulAddB := rawB.sig io.mulAddC := alignedSigC(sigWidth * 2, 1) io.toPostMul.isSigNaNAny := isSigNaNRawFloat(rawA) || isSigNaNRawFloat(rawB) || isSigNaNRawFloat(rawC) io.toPostMul.isNaNAOrB := rawA.isNaN || rawB.isNaN io.toPostMul.isInfA := rawA.isInf io.toPostMul.isZeroA := rawA.isZero io.toPostMul.isInfB := rawB.isInf io.toPostMul.isZeroB := rawB.isZero io.toPostMul.signProd := signProd io.toPostMul.isNaNC := rawC.isNaN io.toPostMul.isInfC := rawC.isInf io.toPostMul.isZeroC := rawC.isZero io.toPostMul.sExpSum := Mux(CIsDominant, rawC.sExp, sExpAlignedProd - sigWidth.S) io.toPostMul.doSubMags := doSubMags io.toPostMul.CIsDominant := CIsDominant io.toPostMul.CDom_CAlignDist := CAlignDist(log2Ceil(sigWidth + 1) - 1, 0) io.toPostMul.highAlignedSigC := alignedSigC(sigSumWidth - 1, sigWidth * 2 + 1) io.toPostMul.bit0AlignedSigC := alignedSigC(0) } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class MulAddRecFNToRaw_postMul(expWidth: Int, sigWidth: Int) extends RawModule { override def desiredName = s"MulAddRecFNToRaw_postMul_e${expWidth}_s${sigWidth}" val io = IO(new Bundle { val fromPreMul = Input(new MulAddRecFN_interIo(expWidth, sigWidth)) val mulAddResult = Input(UInt((sigWidth * 2 + 1).W)) val roundingMode = Input(UInt(3.W)) val invalidExc = Output(Bool()) val rawOut = Output(new RawFloat(expWidth, sigWidth + 2)) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val sigSumWidth = sigWidth * 3 + 3 //------------------------------------------------------------------------ //------------------------------------------------------------------------ val roundingMode_min = (io.roundingMode === round_min) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val opSignC = io.fromPreMul.signProd ^ io.fromPreMul.doSubMags val sigSum = Cat(Mux(io.mulAddResult(sigWidth * 2), io.fromPreMul.highAlignedSigC + 1.U, io.fromPreMul.highAlignedSigC ), io.mulAddResult(sigWidth * 2 - 1, 0), io.fromPreMul.bit0AlignedSigC ) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val CDom_sign = opSignC val CDom_sExp = io.fromPreMul.sExpSum - io.fromPreMul.doSubMags.zext val CDom_absSigSum = Mux(io.fromPreMul.doSubMags, ~sigSum(sigSumWidth - 1, sigWidth + 1), 0.U(1.W) ## //*** IF GAP IS REDUCED TO 1 BIT, MUST REDUCE THIS COMPONENT TO 1 BIT TOO: io.fromPreMul.highAlignedSigC(sigWidth + 1, sigWidth) ## sigSum(sigSumWidth - 3, sigWidth + 2) ) val CDom_absSigSumExtra = Mux(io.fromPreMul.doSubMags, (~sigSum(sigWidth, 1)).orR, sigSum(sigWidth + 1, 1).orR ) val CDom_mainSig = (CDom_absSigSum<<io.fromPreMul.CDom_CAlignDist)( sigWidth * 2 + 1, sigWidth - 3) val CDom_reduced4SigExtra = (orReduceBy4(CDom_absSigSum(sigWidth - 1, 0)<<(~sigWidth & 3)) & lowMask(io.fromPreMul.CDom_CAlignDist>>2, 0, sigWidth>>2)).orR val CDom_sig = Cat(CDom_mainSig>>3, CDom_mainSig(2, 0).orR || CDom_reduced4SigExtra || CDom_absSigSumExtra ) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val notCDom_signSigSum = sigSum(sigWidth * 2 + 3) val notCDom_absSigSum = Mux(notCDom_signSigSum, ~sigSum(sigWidth * 2 + 2, 0), sigSum(sigWidth * 2 + 2, 0) + io.fromPreMul.doSubMags ) val notCDom_reduced2AbsSigSum = orReduceBy2(notCDom_absSigSum) val notCDom_normDistReduced2 = countLeadingZeros(notCDom_reduced2AbsSigSum) val notCDom_nearNormDist = notCDom_normDistReduced2<<1 val notCDom_sExp = io.fromPreMul.sExpSum - notCDom_nearNormDist.asUInt.zext val notCDom_mainSig = (notCDom_absSigSum<<notCDom_nearNormDist)( sigWidth * 2 + 3, sigWidth - 1) val notCDom_reduced4SigExtra = (orReduceBy2( notCDom_reduced2AbsSigSum(sigWidth>>1, 0)<<((sigWidth>>1) & 1)) & lowMask(notCDom_normDistReduced2>>1, 0, (sigWidth + 2)>>2) ).orR val notCDom_sig = Cat(notCDom_mainSig>>3, notCDom_mainSig(2, 0).orR || notCDom_reduced4SigExtra ) val notCDom_completeCancellation = (notCDom_sig(sigWidth + 2, sigWidth + 1) === 0.U) val notCDom_sign = Mux(notCDom_completeCancellation, roundingMode_min, io.fromPreMul.signProd ^ notCDom_signSigSum ) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val notNaN_isInfProd = io.fromPreMul.isInfA || io.fromPreMul.isInfB val notNaN_isInfOut = notNaN_isInfProd || io.fromPreMul.isInfC val notNaN_addZeros = (io.fromPreMul.isZeroA || io.fromPreMul.isZeroB) && io.fromPreMul.isZeroC io.invalidExc := io.fromPreMul.isSigNaNAny || (io.fromPreMul.isInfA && io.fromPreMul.isZeroB) || (io.fromPreMul.isZeroA && io.fromPreMul.isInfB) || (! io.fromPreMul.isNaNAOrB && (io.fromPreMul.isInfA || io.fromPreMul.isInfB) && io.fromPreMul.isInfC && io.fromPreMul.doSubMags) io.rawOut.isNaN := io.fromPreMul.isNaNAOrB || io.fromPreMul.isNaNC io.rawOut.isInf := notNaN_isInfOut //*** IMPROVE?: io.rawOut.isZero := notNaN_addZeros || (! io.fromPreMul.CIsDominant && notCDom_completeCancellation) io.rawOut.sign := (notNaN_isInfProd && io.fromPreMul.signProd) || (io.fromPreMul.isInfC && opSignC) || (notNaN_addZeros && ! roundingMode_min && io.fromPreMul.signProd && opSignC) || (notNaN_addZeros && roundingMode_min && (io.fromPreMul.signProd || opSignC)) || (! notNaN_isInfOut && ! notNaN_addZeros && Mux(io.fromPreMul.CIsDominant, CDom_sign, notCDom_sign)) io.rawOut.sExp := Mux(io.fromPreMul.CIsDominant, CDom_sExp, notCDom_sExp) io.rawOut.sig := Mux(io.fromPreMul.CIsDominant, CDom_sig, notCDom_sig) } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class MulAddRecFN(expWidth: Int, sigWidth: Int) extends RawModule { override def desiredName = s"MulAddRecFN_e${expWidth}_s${sigWidth}" val io = IO(new Bundle { val op = Input(Bits(2.W)) val a = Input(Bits((expWidth + sigWidth + 1).W)) val b = Input(Bits((expWidth + sigWidth + 1).W)) val c = Input(Bits((expWidth + sigWidth + 1).W)) val roundingMode = Input(UInt(3.W)) val detectTininess = Input(UInt(1.W)) val out = Output(Bits((expWidth + sigWidth + 1).W)) val exceptionFlags = Output(Bits(5.W)) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val mulAddRecFNToRaw_preMul = Module(new MulAddRecFNToRaw_preMul(expWidth, sigWidth)) val mulAddRecFNToRaw_postMul = Module(new MulAddRecFNToRaw_postMul(expWidth, sigWidth)) mulAddRecFNToRaw_preMul.io.op := io.op mulAddRecFNToRaw_preMul.io.a := io.a mulAddRecFNToRaw_preMul.io.b := io.b mulAddRecFNToRaw_preMul.io.c := io.c val mulAddResult = (mulAddRecFNToRaw_preMul.io.mulAddA * mulAddRecFNToRaw_preMul.io.mulAddB) +& mulAddRecFNToRaw_preMul.io.mulAddC mulAddRecFNToRaw_postMul.io.fromPreMul := mulAddRecFNToRaw_preMul.io.toPostMul mulAddRecFNToRaw_postMul.io.mulAddResult := mulAddResult mulAddRecFNToRaw_postMul.io.roundingMode := io.roundingMode //------------------------------------------------------------------------ //------------------------------------------------------------------------ val roundRawFNToRecFN = Module(new RoundRawFNToRecFN(expWidth, sigWidth, 0)) roundRawFNToRecFN.io.invalidExc := mulAddRecFNToRaw_postMul.io.invalidExc roundRawFNToRecFN.io.infiniteExc := false.B roundRawFNToRecFN.io.in := mulAddRecFNToRaw_postMul.io.rawOut roundRawFNToRecFN.io.roundingMode := io.roundingMode roundRawFNToRecFN.io.detectTininess := io.detectTininess io.out := roundRawFNToRecFN.io.out io.exceptionFlags := roundRawFNToRecFN.io.exceptionFlags }
module MulAddRecFNToRaw_postMul_e8_s24_40( // @[MulAddRecFN.scala:169:7] input io_fromPreMul_isSigNaNAny, // @[MulAddRecFN.scala:172:16] input io_fromPreMul_isNaNAOrB, // @[MulAddRecFN.scala:172:16] input io_fromPreMul_isInfA, // @[MulAddRecFN.scala:172:16] input io_fromPreMul_isZeroA, // @[MulAddRecFN.scala:172:16] input io_fromPreMul_signProd, // @[MulAddRecFN.scala:172:16] input [9:0] io_fromPreMul_sExpSum, // @[MulAddRecFN.scala:172:16] input io_fromPreMul_doSubMags, // @[MulAddRecFN.scala:172:16] input [4:0] io_fromPreMul_CDom_CAlignDist, // @[MulAddRecFN.scala:172:16] input [25:0] io_fromPreMul_highAlignedSigC, // @[MulAddRecFN.scala:172:16] input io_fromPreMul_bit0AlignedSigC, // @[MulAddRecFN.scala:172:16] input [48:0] io_mulAddResult, // @[MulAddRecFN.scala:172:16] output io_invalidExc, // @[MulAddRecFN.scala:172:16] output io_rawOut_isNaN, // @[MulAddRecFN.scala:172:16] output io_rawOut_isInf, // @[MulAddRecFN.scala:172:16] output io_rawOut_isZero, // @[MulAddRecFN.scala:172:16] output io_rawOut_sign, // @[MulAddRecFN.scala:172:16] output [9:0] io_rawOut_sExp, // @[MulAddRecFN.scala:172:16] output [26:0] io_rawOut_sig // @[MulAddRecFN.scala:172:16] ); wire io_fromPreMul_isSigNaNAny_0 = io_fromPreMul_isSigNaNAny; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_isNaNAOrB_0 = io_fromPreMul_isNaNAOrB; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_isInfA_0 = io_fromPreMul_isInfA; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_isZeroA_0 = io_fromPreMul_isZeroA; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_signProd_0 = io_fromPreMul_signProd; // @[MulAddRecFN.scala:169:7] wire [9:0] io_fromPreMul_sExpSum_0 = io_fromPreMul_sExpSum; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_doSubMags_0 = io_fromPreMul_doSubMags; // @[MulAddRecFN.scala:169:7] wire [4:0] io_fromPreMul_CDom_CAlignDist_0 = io_fromPreMul_CDom_CAlignDist; // @[MulAddRecFN.scala:169:7] wire [25:0] io_fromPreMul_highAlignedSigC_0 = io_fromPreMul_highAlignedSigC; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_bit0AlignedSigC_0 = io_fromPreMul_bit0AlignedSigC; // @[MulAddRecFN.scala:169:7] wire [48:0] io_mulAddResult_0 = io_mulAddResult; // @[MulAddRecFN.scala:169:7] wire [2:0] io_roundingMode = 3'h0; // @[MulAddRecFN.scala:169:7, :172:16] wire io_fromPreMul_isZeroC = 1'h1; // @[MulAddRecFN.scala:169:7] wire _io_rawOut_isZero_T = 1'h1; // @[MulAddRecFN.scala:283:14] wire _io_rawOut_sign_T_3 = 1'h1; // @[MulAddRecFN.scala:287:29] wire io_fromPreMul_isInfB = 1'h0; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_isZeroB = 1'h0; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_isNaNC = 1'h0; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_isInfC = 1'h0; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_CIsDominant = 1'h0; // @[MulAddRecFN.scala:169:7] wire roundingMode_min = 1'h0; // @[MulAddRecFN.scala:186:45] wire _io_invalidExc_T = 1'h0; // @[MulAddRecFN.scala:272:31] wire _io_invalidExc_T_2 = 1'h0; // @[MulAddRecFN.scala:273:32] wire _io_invalidExc_T_7 = 1'h0; // @[MulAddRecFN.scala:275:61] wire _io_invalidExc_T_8 = 1'h0; // @[MulAddRecFN.scala:276:35] wire _io_rawOut_sign_T_1 = 1'h0; // @[MulAddRecFN.scala:286:31] wire _io_rawOut_sign_T_8 = 1'h0; // @[MulAddRecFN.scala:289:26] wire _io_rawOut_sign_T_10 = 1'h0; // @[MulAddRecFN.scala:289:46] wire _io_invalidExc_T_1 = io_fromPreMul_isSigNaNAny_0; // @[MulAddRecFN.scala:169:7, :271:35] wire _io_rawOut_isNaN_T = io_fromPreMul_isNaNAOrB_0; // @[MulAddRecFN.scala:169:7, :278:48] wire notNaN_isInfProd = io_fromPreMul_isInfA_0; // @[MulAddRecFN.scala:169:7, :264:49] wire _io_invalidExc_T_5 = io_fromPreMul_isInfA_0; // @[MulAddRecFN.scala:169:7, :275:36] wire _notNaN_addZeros_T = io_fromPreMul_isZeroA_0; // @[MulAddRecFN.scala:169:7, :267:32] wire _io_invalidExc_T_9; // @[MulAddRecFN.scala:273:57] wire notNaN_isInfOut; // @[MulAddRecFN.scala:265:44] wire _io_rawOut_isZero_T_2; // @[MulAddRecFN.scala:282:25] wire _io_rawOut_sign_T_17; // @[MulAddRecFN.scala:290:50] wire [9:0] _io_rawOut_sExp_T; // @[MulAddRecFN.scala:293:26] wire [26:0] _io_rawOut_sig_T; // @[MulAddRecFN.scala:294:25] wire io_rawOut_isNaN_0; // @[MulAddRecFN.scala:169:7] wire io_rawOut_isInf_0; // @[MulAddRecFN.scala:169:7] wire io_rawOut_isZero_0; // @[MulAddRecFN.scala:169:7] wire io_rawOut_sign_0; // @[MulAddRecFN.scala:169:7] wire [9:0] io_rawOut_sExp_0; // @[MulAddRecFN.scala:169:7] wire [26:0] io_rawOut_sig_0; // @[MulAddRecFN.scala:169:7] wire io_invalidExc_0; // @[MulAddRecFN.scala:169:7] wire opSignC = io_fromPreMul_signProd_0 ^ io_fromPreMul_doSubMags_0; // @[MulAddRecFN.scala:169:7, :190:42] wire _sigSum_T = io_mulAddResult_0[48]; // @[MulAddRecFN.scala:169:7, :192:32] wire [26:0] _sigSum_T_1 = {1'h0, io_fromPreMul_highAlignedSigC_0} + 27'h1; // @[MulAddRecFN.scala:169:7, :193:47] wire [25:0] _sigSum_T_2 = _sigSum_T_1[25:0]; // @[MulAddRecFN.scala:193:47] wire [25:0] _sigSum_T_3 = _sigSum_T ? _sigSum_T_2 : io_fromPreMul_highAlignedSigC_0; // @[MulAddRecFN.scala:169:7, :192:{16,32}, :193:47] wire [47:0] _sigSum_T_4 = io_mulAddResult_0[47:0]; // @[MulAddRecFN.scala:169:7, :196:28] wire [73:0] sigSum_hi = {_sigSum_T_3, _sigSum_T_4}; // @[MulAddRecFN.scala:192:{12,16}, :196:28] wire [74:0] sigSum = {sigSum_hi, io_fromPreMul_bit0AlignedSigC_0}; // @[MulAddRecFN.scala:169:7, :192:12] wire [1:0] _CDom_sExp_T = {1'h0, io_fromPreMul_doSubMags_0}; // @[MulAddRecFN.scala:169:7, :203:69] wire [10:0] _GEN = {io_fromPreMul_sExpSum_0[9], io_fromPreMul_sExpSum_0}; // @[MulAddRecFN.scala:169:7, :203:43] wire [10:0] _CDom_sExp_T_1 = _GEN - {{9{_CDom_sExp_T[1]}}, _CDom_sExp_T}; // @[MulAddRecFN.scala:203:{43,69}] wire [9:0] _CDom_sExp_T_2 = _CDom_sExp_T_1[9:0]; // @[MulAddRecFN.scala:203:43] wire [9:0] CDom_sExp = _CDom_sExp_T_2; // @[MulAddRecFN.scala:203:43] wire [49:0] _CDom_absSigSum_T = sigSum[74:25]; // @[MulAddRecFN.scala:192:12, :206:20] wire [49:0] _CDom_absSigSum_T_1 = ~_CDom_absSigSum_T; // @[MulAddRecFN.scala:206:{13,20}] wire [1:0] _CDom_absSigSum_T_2 = io_fromPreMul_highAlignedSigC_0[25:24]; // @[MulAddRecFN.scala:169:7, :209:46] wire [2:0] _CDom_absSigSum_T_3 = {1'h0, _CDom_absSigSum_T_2}; // @[MulAddRecFN.scala:207:22, :209:46] wire [46:0] _CDom_absSigSum_T_4 = sigSum[72:26]; // @[MulAddRecFN.scala:192:12, :210:23] wire [49:0] _CDom_absSigSum_T_5 = {_CDom_absSigSum_T_3, _CDom_absSigSum_T_4}; // @[MulAddRecFN.scala:207:22, :209:71, :210:23] wire [49:0] CDom_absSigSum = io_fromPreMul_doSubMags_0 ? _CDom_absSigSum_T_1 : _CDom_absSigSum_T_5; // @[MulAddRecFN.scala:169:7, :205:12, :206:13, :209:71] wire [23:0] _CDom_absSigSumExtra_T = sigSum[24:1]; // @[MulAddRecFN.scala:192:12, :215:21] wire [23:0] _CDom_absSigSumExtra_T_1 = ~_CDom_absSigSumExtra_T; // @[MulAddRecFN.scala:215:{14,21}] wire _CDom_absSigSumExtra_T_2 = |_CDom_absSigSumExtra_T_1; // @[MulAddRecFN.scala:215:{14,36}] wire [24:0] _CDom_absSigSumExtra_T_3 = sigSum[25:1]; // @[MulAddRecFN.scala:192:12, :216:19] wire _CDom_absSigSumExtra_T_4 = |_CDom_absSigSumExtra_T_3; // @[MulAddRecFN.scala:216:{19,37}] wire CDom_absSigSumExtra = io_fromPreMul_doSubMags_0 ? _CDom_absSigSumExtra_T_2 : _CDom_absSigSumExtra_T_4; // @[MulAddRecFN.scala:169:7, :214:12, :215:36, :216:37] wire [80:0] _CDom_mainSig_T = {31'h0, CDom_absSigSum} << io_fromPreMul_CDom_CAlignDist_0; // @[MulAddRecFN.scala:169:7, :205:12, :219:24] wire [28:0] CDom_mainSig = _CDom_mainSig_T[49:21]; // @[MulAddRecFN.scala:219:{24,56}] wire [23:0] _CDom_reduced4SigExtra_T = CDom_absSigSum[23:0]; // @[MulAddRecFN.scala:205:12, :222:36] wire [26:0] _CDom_reduced4SigExtra_T_1 = {_CDom_reduced4SigExtra_T, 3'h0}; // @[MulAddRecFN.scala:169:7, :172:16, :222:{36,53}] wire _CDom_reduced4SigExtra_reducedVec_0_T_1; // @[primitives.scala:120:54] wire _CDom_reduced4SigExtra_reducedVec_1_T_1; // @[primitives.scala:120:54] wire _CDom_reduced4SigExtra_reducedVec_2_T_1; // @[primitives.scala:120:54] wire _CDom_reduced4SigExtra_reducedVec_3_T_1; // @[primitives.scala:120:54] wire _CDom_reduced4SigExtra_reducedVec_4_T_1; // @[primitives.scala:120:54] wire _CDom_reduced4SigExtra_reducedVec_5_T_1; // @[primitives.scala:120:54] wire _CDom_reduced4SigExtra_reducedVec_6_T_1; // @[primitives.scala:123:57] wire CDom_reduced4SigExtra_reducedVec_0; // @[primitives.scala:118:30] wire CDom_reduced4SigExtra_reducedVec_1; // @[primitives.scala:118:30] wire CDom_reduced4SigExtra_reducedVec_2; // @[primitives.scala:118:30] wire CDom_reduced4SigExtra_reducedVec_3; // @[primitives.scala:118:30] wire CDom_reduced4SigExtra_reducedVec_4; // @[primitives.scala:118:30] wire CDom_reduced4SigExtra_reducedVec_5; // @[primitives.scala:118:30] wire CDom_reduced4SigExtra_reducedVec_6; // @[primitives.scala:118:30] wire [3:0] _CDom_reduced4SigExtra_reducedVec_0_T = _CDom_reduced4SigExtra_T_1[3:0]; // @[primitives.scala:120:33] assign _CDom_reduced4SigExtra_reducedVec_0_T_1 = |_CDom_reduced4SigExtra_reducedVec_0_T; // @[primitives.scala:120:{33,54}] assign CDom_reduced4SigExtra_reducedVec_0 = _CDom_reduced4SigExtra_reducedVec_0_T_1; // @[primitives.scala:118:30, :120:54] wire [3:0] _CDom_reduced4SigExtra_reducedVec_1_T = _CDom_reduced4SigExtra_T_1[7:4]; // @[primitives.scala:120:33] assign _CDom_reduced4SigExtra_reducedVec_1_T_1 = |_CDom_reduced4SigExtra_reducedVec_1_T; // @[primitives.scala:120:{33,54}] assign CDom_reduced4SigExtra_reducedVec_1 = _CDom_reduced4SigExtra_reducedVec_1_T_1; // @[primitives.scala:118:30, :120:54] wire [3:0] _CDom_reduced4SigExtra_reducedVec_2_T = _CDom_reduced4SigExtra_T_1[11:8]; // @[primitives.scala:120:33] assign _CDom_reduced4SigExtra_reducedVec_2_T_1 = |_CDom_reduced4SigExtra_reducedVec_2_T; // @[primitives.scala:120:{33,54}] assign CDom_reduced4SigExtra_reducedVec_2 = _CDom_reduced4SigExtra_reducedVec_2_T_1; // @[primitives.scala:118:30, :120:54] wire [3:0] _CDom_reduced4SigExtra_reducedVec_3_T = _CDom_reduced4SigExtra_T_1[15:12]; // @[primitives.scala:120:33] assign _CDom_reduced4SigExtra_reducedVec_3_T_1 = |_CDom_reduced4SigExtra_reducedVec_3_T; // @[primitives.scala:120:{33,54}] assign CDom_reduced4SigExtra_reducedVec_3 = _CDom_reduced4SigExtra_reducedVec_3_T_1; // @[primitives.scala:118:30, :120:54] wire [3:0] _CDom_reduced4SigExtra_reducedVec_4_T = _CDom_reduced4SigExtra_T_1[19:16]; // @[primitives.scala:120:33] assign _CDom_reduced4SigExtra_reducedVec_4_T_1 = |_CDom_reduced4SigExtra_reducedVec_4_T; // @[primitives.scala:120:{33,54}] assign CDom_reduced4SigExtra_reducedVec_4 = _CDom_reduced4SigExtra_reducedVec_4_T_1; // @[primitives.scala:118:30, :120:54] wire [3:0] _CDom_reduced4SigExtra_reducedVec_5_T = _CDom_reduced4SigExtra_T_1[23:20]; // @[primitives.scala:120:33] assign _CDom_reduced4SigExtra_reducedVec_5_T_1 = |_CDom_reduced4SigExtra_reducedVec_5_T; // @[primitives.scala:120:{33,54}] assign CDom_reduced4SigExtra_reducedVec_5 = _CDom_reduced4SigExtra_reducedVec_5_T_1; // @[primitives.scala:118:30, :120:54] wire [2:0] _CDom_reduced4SigExtra_reducedVec_6_T = _CDom_reduced4SigExtra_T_1[26:24]; // @[primitives.scala:123:15] assign _CDom_reduced4SigExtra_reducedVec_6_T_1 = |_CDom_reduced4SigExtra_reducedVec_6_T; // @[primitives.scala:123:{15,57}] assign CDom_reduced4SigExtra_reducedVec_6 = _CDom_reduced4SigExtra_reducedVec_6_T_1; // @[primitives.scala:118:30, :123:57] wire [1:0] CDom_reduced4SigExtra_lo_hi = {CDom_reduced4SigExtra_reducedVec_2, CDom_reduced4SigExtra_reducedVec_1}; // @[primitives.scala:118:30, :124:20] wire [2:0] CDom_reduced4SigExtra_lo = {CDom_reduced4SigExtra_lo_hi, CDom_reduced4SigExtra_reducedVec_0}; // @[primitives.scala:118:30, :124:20] wire [1:0] CDom_reduced4SigExtra_hi_lo = {CDom_reduced4SigExtra_reducedVec_4, CDom_reduced4SigExtra_reducedVec_3}; // @[primitives.scala:118:30, :124:20] wire [1:0] CDom_reduced4SigExtra_hi_hi = {CDom_reduced4SigExtra_reducedVec_6, CDom_reduced4SigExtra_reducedVec_5}; // @[primitives.scala:118:30, :124:20] wire [3:0] CDom_reduced4SigExtra_hi = {CDom_reduced4SigExtra_hi_hi, CDom_reduced4SigExtra_hi_lo}; // @[primitives.scala:124:20] wire [6:0] _CDom_reduced4SigExtra_T_2 = {CDom_reduced4SigExtra_hi, CDom_reduced4SigExtra_lo}; // @[primitives.scala:124:20] wire [2:0] _CDom_reduced4SigExtra_T_3 = io_fromPreMul_CDom_CAlignDist_0[4:2]; // @[MulAddRecFN.scala:169:7, :223:51] wire [2:0] _CDom_reduced4SigExtra_T_4 = ~_CDom_reduced4SigExtra_T_3; // @[primitives.scala:52:21] wire [8:0] CDom_reduced4SigExtra_shift = $signed(9'sh100 >>> _CDom_reduced4SigExtra_T_4); // @[primitives.scala:52:21, :76:56] wire [5:0] _CDom_reduced4SigExtra_T_5 = CDom_reduced4SigExtra_shift[6:1]; // @[primitives.scala:76:56, :78:22] wire [3:0] _CDom_reduced4SigExtra_T_6 = _CDom_reduced4SigExtra_T_5[3:0]; // @[primitives.scala:77:20, :78:22] wire [1:0] _CDom_reduced4SigExtra_T_7 = _CDom_reduced4SigExtra_T_6[1:0]; // @[primitives.scala:77:20] wire _CDom_reduced4SigExtra_T_8 = _CDom_reduced4SigExtra_T_7[0]; // @[primitives.scala:77:20] wire _CDom_reduced4SigExtra_T_9 = _CDom_reduced4SigExtra_T_7[1]; // @[primitives.scala:77:20] wire [1:0] _CDom_reduced4SigExtra_T_10 = {_CDom_reduced4SigExtra_T_8, _CDom_reduced4SigExtra_T_9}; // @[primitives.scala:77:20] wire [1:0] _CDom_reduced4SigExtra_T_11 = _CDom_reduced4SigExtra_T_6[3:2]; // @[primitives.scala:77:20] wire _CDom_reduced4SigExtra_T_12 = _CDom_reduced4SigExtra_T_11[0]; // @[primitives.scala:77:20] wire _CDom_reduced4SigExtra_T_13 = _CDom_reduced4SigExtra_T_11[1]; // @[primitives.scala:77:20] wire [1:0] _CDom_reduced4SigExtra_T_14 = {_CDom_reduced4SigExtra_T_12, _CDom_reduced4SigExtra_T_13}; // @[primitives.scala:77:20] wire [3:0] _CDom_reduced4SigExtra_T_15 = {_CDom_reduced4SigExtra_T_10, _CDom_reduced4SigExtra_T_14}; // @[primitives.scala:77:20] wire [1:0] _CDom_reduced4SigExtra_T_16 = _CDom_reduced4SigExtra_T_5[5:4]; // @[primitives.scala:77:20, :78:22] wire _CDom_reduced4SigExtra_T_17 = _CDom_reduced4SigExtra_T_16[0]; // @[primitives.scala:77:20] wire _CDom_reduced4SigExtra_T_18 = _CDom_reduced4SigExtra_T_16[1]; // @[primitives.scala:77:20] wire [1:0] _CDom_reduced4SigExtra_T_19 = {_CDom_reduced4SigExtra_T_17, _CDom_reduced4SigExtra_T_18}; // @[primitives.scala:77:20] wire [5:0] _CDom_reduced4SigExtra_T_20 = {_CDom_reduced4SigExtra_T_15, _CDom_reduced4SigExtra_T_19}; // @[primitives.scala:77:20] wire [6:0] _CDom_reduced4SigExtra_T_21 = {1'h0, _CDom_reduced4SigExtra_T_2[5:0] & _CDom_reduced4SigExtra_T_20}; // @[primitives.scala:77:20, :124:20] wire CDom_reduced4SigExtra = |_CDom_reduced4SigExtra_T_21; // @[MulAddRecFN.scala:222:72, :223:73] wire [25:0] _CDom_sig_T = CDom_mainSig[28:3]; // @[MulAddRecFN.scala:219:56, :225:25] wire [2:0] _CDom_sig_T_1 = CDom_mainSig[2:0]; // @[MulAddRecFN.scala:219:56, :226:25] wire _CDom_sig_T_2 = |_CDom_sig_T_1; // @[MulAddRecFN.scala:226:{25,32}] wire _CDom_sig_T_3 = _CDom_sig_T_2 | CDom_reduced4SigExtra; // @[MulAddRecFN.scala:223:73, :226:{32,36}] wire _CDom_sig_T_4 = _CDom_sig_T_3 | CDom_absSigSumExtra; // @[MulAddRecFN.scala:214:12, :226:{36,61}] wire [26:0] CDom_sig = {_CDom_sig_T, _CDom_sig_T_4}; // @[MulAddRecFN.scala:225:{12,25}, :226:61] wire notCDom_signSigSum = sigSum[51]; // @[MulAddRecFN.scala:192:12, :232:36] wire [50:0] _notCDom_absSigSum_T = sigSum[50:0]; // @[MulAddRecFN.scala:192:12, :235:20] wire [50:0] _notCDom_absSigSum_T_2 = sigSum[50:0]; // @[MulAddRecFN.scala:192:12, :235:20, :236:19] wire [50:0] _notCDom_absSigSum_T_1 = ~_notCDom_absSigSum_T; // @[MulAddRecFN.scala:235:{13,20}] wire [51:0] _notCDom_absSigSum_T_3 = {1'h0, _notCDom_absSigSum_T_2} + {51'h0, io_fromPreMul_doSubMags_0}; // @[MulAddRecFN.scala:169:7, :236:{19,41}] wire [50:0] _notCDom_absSigSum_T_4 = _notCDom_absSigSum_T_3[50:0]; // @[MulAddRecFN.scala:236:41] wire [50:0] notCDom_absSigSum = notCDom_signSigSum ? _notCDom_absSigSum_T_1 : _notCDom_absSigSum_T_4; // @[MulAddRecFN.scala:232:36, :234:12, :235:13, :236:41] wire _notCDom_reduced2AbsSigSum_reducedVec_0_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_1_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_2_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_3_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_4_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_5_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_6_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_7_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_8_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_9_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_10_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_11_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_12_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_13_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_14_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_15_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_16_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_17_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_18_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_19_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_20_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_21_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_22_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_23_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_24_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_25_T_1; // @[primitives.scala:106:57] wire notCDom_reduced2AbsSigSum_reducedVec_0; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_1; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_2; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_3; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_4; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_5; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_6; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_7; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_8; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_9; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_10; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_11; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_12; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_13; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_14; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_15; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_16; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_17; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_18; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_19; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_20; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_21; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_22; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_23; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_24; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_25; // @[primitives.scala:101:30] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_0_T = notCDom_absSigSum[1:0]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_0_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_0_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_0 = _notCDom_reduced2AbsSigSum_reducedVec_0_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_1_T = notCDom_absSigSum[3:2]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_1_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_1_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_1 = _notCDom_reduced2AbsSigSum_reducedVec_1_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_2_T = notCDom_absSigSum[5:4]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_2_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_2_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_2 = _notCDom_reduced2AbsSigSum_reducedVec_2_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_3_T = notCDom_absSigSum[7:6]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_3_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_3_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_3 = _notCDom_reduced2AbsSigSum_reducedVec_3_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_4_T = notCDom_absSigSum[9:8]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_4_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_4_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_4 = _notCDom_reduced2AbsSigSum_reducedVec_4_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_5_T = notCDom_absSigSum[11:10]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_5_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_5_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_5 = _notCDom_reduced2AbsSigSum_reducedVec_5_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_6_T = notCDom_absSigSum[13:12]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_6_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_6_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_6 = _notCDom_reduced2AbsSigSum_reducedVec_6_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_7_T = notCDom_absSigSum[15:14]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_7_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_7_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_7 = _notCDom_reduced2AbsSigSum_reducedVec_7_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_8_T = notCDom_absSigSum[17:16]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_8_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_8_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_8 = _notCDom_reduced2AbsSigSum_reducedVec_8_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_9_T = notCDom_absSigSum[19:18]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_9_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_9_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_9 = _notCDom_reduced2AbsSigSum_reducedVec_9_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_10_T = notCDom_absSigSum[21:20]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_10_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_10_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_10 = _notCDom_reduced2AbsSigSum_reducedVec_10_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_11_T = notCDom_absSigSum[23:22]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_11_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_11_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_11 = _notCDom_reduced2AbsSigSum_reducedVec_11_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_12_T = notCDom_absSigSum[25:24]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_12_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_12_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_12 = _notCDom_reduced2AbsSigSum_reducedVec_12_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_13_T = notCDom_absSigSum[27:26]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_13_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_13_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_13 = _notCDom_reduced2AbsSigSum_reducedVec_13_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_14_T = notCDom_absSigSum[29:28]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_14_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_14_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_14 = _notCDom_reduced2AbsSigSum_reducedVec_14_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_15_T = notCDom_absSigSum[31:30]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_15_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_15_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_15 = _notCDom_reduced2AbsSigSum_reducedVec_15_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_16_T = notCDom_absSigSum[33:32]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_16_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_16_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_16 = _notCDom_reduced2AbsSigSum_reducedVec_16_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_17_T = notCDom_absSigSum[35:34]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_17_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_17_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_17 = _notCDom_reduced2AbsSigSum_reducedVec_17_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_18_T = notCDom_absSigSum[37:36]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_18_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_18_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_18 = _notCDom_reduced2AbsSigSum_reducedVec_18_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_19_T = notCDom_absSigSum[39:38]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_19_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_19_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_19 = _notCDom_reduced2AbsSigSum_reducedVec_19_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_20_T = notCDom_absSigSum[41:40]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_20_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_20_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_20 = _notCDom_reduced2AbsSigSum_reducedVec_20_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_21_T = notCDom_absSigSum[43:42]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_21_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_21_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_21 = _notCDom_reduced2AbsSigSum_reducedVec_21_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_22_T = notCDom_absSigSum[45:44]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_22_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_22_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_22 = _notCDom_reduced2AbsSigSum_reducedVec_22_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_23_T = notCDom_absSigSum[47:46]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_23_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_23_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_23 = _notCDom_reduced2AbsSigSum_reducedVec_23_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_24_T = notCDom_absSigSum[49:48]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_24_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_24_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_24 = _notCDom_reduced2AbsSigSum_reducedVec_24_T_1; // @[primitives.scala:101:30, :103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_25_T = notCDom_absSigSum[50]; // @[primitives.scala:106:15] assign _notCDom_reduced2AbsSigSum_reducedVec_25_T_1 = _notCDom_reduced2AbsSigSum_reducedVec_25_T; // @[primitives.scala:106:{15,57}] assign notCDom_reduced2AbsSigSum_reducedVec_25 = _notCDom_reduced2AbsSigSum_reducedVec_25_T_1; // @[primitives.scala:101:30, :106:57] wire [1:0] notCDom_reduced2AbsSigSum_lo_lo_lo_hi = {notCDom_reduced2AbsSigSum_reducedVec_2, notCDom_reduced2AbsSigSum_reducedVec_1}; // @[primitives.scala:101:30, :107:20] wire [2:0] notCDom_reduced2AbsSigSum_lo_lo_lo = {notCDom_reduced2AbsSigSum_lo_lo_lo_hi, notCDom_reduced2AbsSigSum_reducedVec_0}; // @[primitives.scala:101:30, :107:20] wire [1:0] notCDom_reduced2AbsSigSum_lo_lo_hi_hi = {notCDom_reduced2AbsSigSum_reducedVec_5, notCDom_reduced2AbsSigSum_reducedVec_4}; // @[primitives.scala:101:30, :107:20] wire [2:0] notCDom_reduced2AbsSigSum_lo_lo_hi = {notCDom_reduced2AbsSigSum_lo_lo_hi_hi, notCDom_reduced2AbsSigSum_reducedVec_3}; // @[primitives.scala:101:30, :107:20] wire [5:0] notCDom_reduced2AbsSigSum_lo_lo = {notCDom_reduced2AbsSigSum_lo_lo_hi, notCDom_reduced2AbsSigSum_lo_lo_lo}; // @[primitives.scala:107:20] wire [1:0] notCDom_reduced2AbsSigSum_lo_hi_lo_hi = {notCDom_reduced2AbsSigSum_reducedVec_8, notCDom_reduced2AbsSigSum_reducedVec_7}; // @[primitives.scala:101:30, :107:20] wire [2:0] notCDom_reduced2AbsSigSum_lo_hi_lo = {notCDom_reduced2AbsSigSum_lo_hi_lo_hi, notCDom_reduced2AbsSigSum_reducedVec_6}; // @[primitives.scala:101:30, :107:20] wire [1:0] notCDom_reduced2AbsSigSum_lo_hi_hi_lo = {notCDom_reduced2AbsSigSum_reducedVec_10, notCDom_reduced2AbsSigSum_reducedVec_9}; // @[primitives.scala:101:30, :107:20] wire [1:0] notCDom_reduced2AbsSigSum_lo_hi_hi_hi = {notCDom_reduced2AbsSigSum_reducedVec_12, notCDom_reduced2AbsSigSum_reducedVec_11}; // @[primitives.scala:101:30, :107:20] wire [3:0] notCDom_reduced2AbsSigSum_lo_hi_hi = {notCDom_reduced2AbsSigSum_lo_hi_hi_hi, notCDom_reduced2AbsSigSum_lo_hi_hi_lo}; // @[primitives.scala:107:20] wire [6:0] notCDom_reduced2AbsSigSum_lo_hi = {notCDom_reduced2AbsSigSum_lo_hi_hi, notCDom_reduced2AbsSigSum_lo_hi_lo}; // @[primitives.scala:107:20] wire [12:0] notCDom_reduced2AbsSigSum_lo = {notCDom_reduced2AbsSigSum_lo_hi, notCDom_reduced2AbsSigSum_lo_lo}; // @[primitives.scala:107:20] wire [1:0] notCDom_reduced2AbsSigSum_hi_lo_lo_hi = {notCDom_reduced2AbsSigSum_reducedVec_15, notCDom_reduced2AbsSigSum_reducedVec_14}; // @[primitives.scala:101:30, :107:20] wire [2:0] notCDom_reduced2AbsSigSum_hi_lo_lo = {notCDom_reduced2AbsSigSum_hi_lo_lo_hi, notCDom_reduced2AbsSigSum_reducedVec_13}; // @[primitives.scala:101:30, :107:20] wire [1:0] notCDom_reduced2AbsSigSum_hi_lo_hi_hi = {notCDom_reduced2AbsSigSum_reducedVec_18, notCDom_reduced2AbsSigSum_reducedVec_17}; // @[primitives.scala:101:30, :107:20] wire [2:0] notCDom_reduced2AbsSigSum_hi_lo_hi = {notCDom_reduced2AbsSigSum_hi_lo_hi_hi, notCDom_reduced2AbsSigSum_reducedVec_16}; // @[primitives.scala:101:30, :107:20] wire [5:0] notCDom_reduced2AbsSigSum_hi_lo = {notCDom_reduced2AbsSigSum_hi_lo_hi, notCDom_reduced2AbsSigSum_hi_lo_lo}; // @[primitives.scala:107:20] wire [1:0] notCDom_reduced2AbsSigSum_hi_hi_lo_hi = {notCDom_reduced2AbsSigSum_reducedVec_21, notCDom_reduced2AbsSigSum_reducedVec_20}; // @[primitives.scala:101:30, :107:20] wire [2:0] notCDom_reduced2AbsSigSum_hi_hi_lo = {notCDom_reduced2AbsSigSum_hi_hi_lo_hi, notCDom_reduced2AbsSigSum_reducedVec_19}; // @[primitives.scala:101:30, :107:20] wire [1:0] notCDom_reduced2AbsSigSum_hi_hi_hi_lo = {notCDom_reduced2AbsSigSum_reducedVec_23, notCDom_reduced2AbsSigSum_reducedVec_22}; // @[primitives.scala:101:30, :107:20] wire [1:0] notCDom_reduced2AbsSigSum_hi_hi_hi_hi = {notCDom_reduced2AbsSigSum_reducedVec_25, notCDom_reduced2AbsSigSum_reducedVec_24}; // @[primitives.scala:101:30, :107:20] wire [3:0] notCDom_reduced2AbsSigSum_hi_hi_hi = {notCDom_reduced2AbsSigSum_hi_hi_hi_hi, notCDom_reduced2AbsSigSum_hi_hi_hi_lo}; // @[primitives.scala:107:20] wire [6:0] notCDom_reduced2AbsSigSum_hi_hi = {notCDom_reduced2AbsSigSum_hi_hi_hi, notCDom_reduced2AbsSigSum_hi_hi_lo}; // @[primitives.scala:107:20] wire [12:0] notCDom_reduced2AbsSigSum_hi = {notCDom_reduced2AbsSigSum_hi_hi, notCDom_reduced2AbsSigSum_hi_lo}; // @[primitives.scala:107:20] wire [25:0] notCDom_reduced2AbsSigSum = {notCDom_reduced2AbsSigSum_hi, notCDom_reduced2AbsSigSum_lo}; // @[primitives.scala:107:20] wire _notCDom_normDistReduced2_T = notCDom_reduced2AbsSigSum[0]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_1 = notCDom_reduced2AbsSigSum[1]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_2 = notCDom_reduced2AbsSigSum[2]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_3 = notCDom_reduced2AbsSigSum[3]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_4 = notCDom_reduced2AbsSigSum[4]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_5 = notCDom_reduced2AbsSigSum[5]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_6 = notCDom_reduced2AbsSigSum[6]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_7 = notCDom_reduced2AbsSigSum[7]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_8 = notCDom_reduced2AbsSigSum[8]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_9 = notCDom_reduced2AbsSigSum[9]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_10 = notCDom_reduced2AbsSigSum[10]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_11 = notCDom_reduced2AbsSigSum[11]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_12 = notCDom_reduced2AbsSigSum[12]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_13 = notCDom_reduced2AbsSigSum[13]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_14 = notCDom_reduced2AbsSigSum[14]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_15 = notCDom_reduced2AbsSigSum[15]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_16 = notCDom_reduced2AbsSigSum[16]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_17 = notCDom_reduced2AbsSigSum[17]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_18 = notCDom_reduced2AbsSigSum[18]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_19 = notCDom_reduced2AbsSigSum[19]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_20 = notCDom_reduced2AbsSigSum[20]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_21 = notCDom_reduced2AbsSigSum[21]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_22 = notCDom_reduced2AbsSigSum[22]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_23 = notCDom_reduced2AbsSigSum[23]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_24 = notCDom_reduced2AbsSigSum[24]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_25 = notCDom_reduced2AbsSigSum[25]; // @[primitives.scala:91:52, :107:20] wire [4:0] _notCDom_normDistReduced2_T_26 = {4'hC, ~_notCDom_normDistReduced2_T_1}; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_27 = _notCDom_normDistReduced2_T_2 ? 5'h17 : _notCDom_normDistReduced2_T_26; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_28 = _notCDom_normDistReduced2_T_3 ? 5'h16 : _notCDom_normDistReduced2_T_27; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_29 = _notCDom_normDistReduced2_T_4 ? 5'h15 : _notCDom_normDistReduced2_T_28; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_30 = _notCDom_normDistReduced2_T_5 ? 5'h14 : _notCDom_normDistReduced2_T_29; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_31 = _notCDom_normDistReduced2_T_6 ? 5'h13 : _notCDom_normDistReduced2_T_30; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_32 = _notCDom_normDistReduced2_T_7 ? 5'h12 : _notCDom_normDistReduced2_T_31; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_33 = _notCDom_normDistReduced2_T_8 ? 5'h11 : _notCDom_normDistReduced2_T_32; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_34 = _notCDom_normDistReduced2_T_9 ? 5'h10 : _notCDom_normDistReduced2_T_33; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_35 = _notCDom_normDistReduced2_T_10 ? 5'hF : _notCDom_normDistReduced2_T_34; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_36 = _notCDom_normDistReduced2_T_11 ? 5'hE : _notCDom_normDistReduced2_T_35; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_37 = _notCDom_normDistReduced2_T_12 ? 5'hD : _notCDom_normDistReduced2_T_36; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_38 = _notCDom_normDistReduced2_T_13 ? 5'hC : _notCDom_normDistReduced2_T_37; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_39 = _notCDom_normDistReduced2_T_14 ? 5'hB : _notCDom_normDistReduced2_T_38; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_40 = _notCDom_normDistReduced2_T_15 ? 5'hA : _notCDom_normDistReduced2_T_39; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_41 = _notCDom_normDistReduced2_T_16 ? 5'h9 : _notCDom_normDistReduced2_T_40; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_42 = _notCDom_normDistReduced2_T_17 ? 5'h8 : _notCDom_normDistReduced2_T_41; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_43 = _notCDom_normDistReduced2_T_18 ? 5'h7 : _notCDom_normDistReduced2_T_42; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_44 = _notCDom_normDistReduced2_T_19 ? 5'h6 : _notCDom_normDistReduced2_T_43; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_45 = _notCDom_normDistReduced2_T_20 ? 5'h5 : _notCDom_normDistReduced2_T_44; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_46 = _notCDom_normDistReduced2_T_21 ? 5'h4 : _notCDom_normDistReduced2_T_45; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_47 = _notCDom_normDistReduced2_T_22 ? 5'h3 : _notCDom_normDistReduced2_T_46; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_48 = _notCDom_normDistReduced2_T_23 ? 5'h2 : _notCDom_normDistReduced2_T_47; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_49 = _notCDom_normDistReduced2_T_24 ? 5'h1 : _notCDom_normDistReduced2_T_48; // @[Mux.scala:50:70] wire [4:0] notCDom_normDistReduced2 = _notCDom_normDistReduced2_T_25 ? 5'h0 : _notCDom_normDistReduced2_T_49; // @[Mux.scala:50:70] wire [5:0] notCDom_nearNormDist = {notCDom_normDistReduced2, 1'h0}; // @[Mux.scala:50:70] wire [6:0] _notCDom_sExp_T = {1'h0, notCDom_nearNormDist}; // @[MulAddRecFN.scala:240:56, :241:76] wire [10:0] _notCDom_sExp_T_1 = _GEN - {{4{_notCDom_sExp_T[6]}}, _notCDom_sExp_T}; // @[MulAddRecFN.scala:203:43, :241:{46,76}] wire [9:0] _notCDom_sExp_T_2 = _notCDom_sExp_T_1[9:0]; // @[MulAddRecFN.scala:241:46] wire [9:0] notCDom_sExp = _notCDom_sExp_T_2; // @[MulAddRecFN.scala:241:46] assign _io_rawOut_sExp_T = notCDom_sExp; // @[MulAddRecFN.scala:241:46, :293:26] wire [113:0] _notCDom_mainSig_T = {63'h0, notCDom_absSigSum} << notCDom_nearNormDist; // @[MulAddRecFN.scala:234:12, :240:56, :243:27] wire [28:0] notCDom_mainSig = _notCDom_mainSig_T[51:23]; // @[MulAddRecFN.scala:243:{27,50}] wire [12:0] _notCDom_reduced4SigExtra_T = notCDom_reduced2AbsSigSum[12:0]; // @[primitives.scala:107:20] wire [12:0] _notCDom_reduced4SigExtra_T_1 = _notCDom_reduced4SigExtra_T; // @[MulAddRecFN.scala:247:{39,55}] wire _notCDom_reduced4SigExtra_reducedVec_0_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced4SigExtra_reducedVec_1_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced4SigExtra_reducedVec_2_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced4SigExtra_reducedVec_3_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced4SigExtra_reducedVec_4_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced4SigExtra_reducedVec_5_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced4SigExtra_reducedVec_6_T_1; // @[primitives.scala:106:57] wire notCDom_reduced4SigExtra_reducedVec_0; // @[primitives.scala:101:30] wire notCDom_reduced4SigExtra_reducedVec_1; // @[primitives.scala:101:30] wire notCDom_reduced4SigExtra_reducedVec_2; // @[primitives.scala:101:30] wire notCDom_reduced4SigExtra_reducedVec_3; // @[primitives.scala:101:30] wire notCDom_reduced4SigExtra_reducedVec_4; // @[primitives.scala:101:30] wire notCDom_reduced4SigExtra_reducedVec_5; // @[primitives.scala:101:30] wire notCDom_reduced4SigExtra_reducedVec_6; // @[primitives.scala:101:30] wire [1:0] _notCDom_reduced4SigExtra_reducedVec_0_T = _notCDom_reduced4SigExtra_T_1[1:0]; // @[primitives.scala:103:33] assign _notCDom_reduced4SigExtra_reducedVec_0_T_1 = |_notCDom_reduced4SigExtra_reducedVec_0_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced4SigExtra_reducedVec_0 = _notCDom_reduced4SigExtra_reducedVec_0_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced4SigExtra_reducedVec_1_T = _notCDom_reduced4SigExtra_T_1[3:2]; // @[primitives.scala:103:33] assign _notCDom_reduced4SigExtra_reducedVec_1_T_1 = |_notCDom_reduced4SigExtra_reducedVec_1_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced4SigExtra_reducedVec_1 = _notCDom_reduced4SigExtra_reducedVec_1_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced4SigExtra_reducedVec_2_T = _notCDom_reduced4SigExtra_T_1[5:4]; // @[primitives.scala:103:33] assign _notCDom_reduced4SigExtra_reducedVec_2_T_1 = |_notCDom_reduced4SigExtra_reducedVec_2_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced4SigExtra_reducedVec_2 = _notCDom_reduced4SigExtra_reducedVec_2_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced4SigExtra_reducedVec_3_T = _notCDom_reduced4SigExtra_T_1[7:6]; // @[primitives.scala:103:33] assign _notCDom_reduced4SigExtra_reducedVec_3_T_1 = |_notCDom_reduced4SigExtra_reducedVec_3_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced4SigExtra_reducedVec_3 = _notCDom_reduced4SigExtra_reducedVec_3_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced4SigExtra_reducedVec_4_T = _notCDom_reduced4SigExtra_T_1[9:8]; // @[primitives.scala:103:33] assign _notCDom_reduced4SigExtra_reducedVec_4_T_1 = |_notCDom_reduced4SigExtra_reducedVec_4_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced4SigExtra_reducedVec_4 = _notCDom_reduced4SigExtra_reducedVec_4_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced4SigExtra_reducedVec_5_T = _notCDom_reduced4SigExtra_T_1[11:10]; // @[primitives.scala:103:33] assign _notCDom_reduced4SigExtra_reducedVec_5_T_1 = |_notCDom_reduced4SigExtra_reducedVec_5_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced4SigExtra_reducedVec_5 = _notCDom_reduced4SigExtra_reducedVec_5_T_1; // @[primitives.scala:101:30, :103:54] wire _notCDom_reduced4SigExtra_reducedVec_6_T = _notCDom_reduced4SigExtra_T_1[12]; // @[primitives.scala:106:15] assign _notCDom_reduced4SigExtra_reducedVec_6_T_1 = _notCDom_reduced4SigExtra_reducedVec_6_T; // @[primitives.scala:106:{15,57}] assign notCDom_reduced4SigExtra_reducedVec_6 = _notCDom_reduced4SigExtra_reducedVec_6_T_1; // @[primitives.scala:101:30, :106:57] wire [1:0] notCDom_reduced4SigExtra_lo_hi = {notCDom_reduced4SigExtra_reducedVec_2, notCDom_reduced4SigExtra_reducedVec_1}; // @[primitives.scala:101:30, :107:20] wire [2:0] notCDom_reduced4SigExtra_lo = {notCDom_reduced4SigExtra_lo_hi, notCDom_reduced4SigExtra_reducedVec_0}; // @[primitives.scala:101:30, :107:20] wire [1:0] notCDom_reduced4SigExtra_hi_lo = {notCDom_reduced4SigExtra_reducedVec_4, notCDom_reduced4SigExtra_reducedVec_3}; // @[primitives.scala:101:30, :107:20] wire [1:0] notCDom_reduced4SigExtra_hi_hi = {notCDom_reduced4SigExtra_reducedVec_6, notCDom_reduced4SigExtra_reducedVec_5}; // @[primitives.scala:101:30, :107:20] wire [3:0] notCDom_reduced4SigExtra_hi = {notCDom_reduced4SigExtra_hi_hi, notCDom_reduced4SigExtra_hi_lo}; // @[primitives.scala:107:20] wire [6:0] _notCDom_reduced4SigExtra_T_2 = {notCDom_reduced4SigExtra_hi, notCDom_reduced4SigExtra_lo}; // @[primitives.scala:107:20] wire [3:0] _notCDom_reduced4SigExtra_T_3 = notCDom_normDistReduced2[4:1]; // @[Mux.scala:50:70] wire [3:0] _notCDom_reduced4SigExtra_T_4 = ~_notCDom_reduced4SigExtra_T_3; // @[primitives.scala:52:21] wire [16:0] notCDom_reduced4SigExtra_shift = $signed(17'sh10000 >>> _notCDom_reduced4SigExtra_T_4); // @[primitives.scala:52:21, :76:56] wire [5:0] _notCDom_reduced4SigExtra_T_5 = notCDom_reduced4SigExtra_shift[6:1]; // @[primitives.scala:76:56, :78:22] wire [3:0] _notCDom_reduced4SigExtra_T_6 = _notCDom_reduced4SigExtra_T_5[3:0]; // @[primitives.scala:77:20, :78:22] wire [1:0] _notCDom_reduced4SigExtra_T_7 = _notCDom_reduced4SigExtra_T_6[1:0]; // @[primitives.scala:77:20] wire _notCDom_reduced4SigExtra_T_8 = _notCDom_reduced4SigExtra_T_7[0]; // @[primitives.scala:77:20] wire _notCDom_reduced4SigExtra_T_9 = _notCDom_reduced4SigExtra_T_7[1]; // @[primitives.scala:77:20] wire [1:0] _notCDom_reduced4SigExtra_T_10 = {_notCDom_reduced4SigExtra_T_8, _notCDom_reduced4SigExtra_T_9}; // @[primitives.scala:77:20] wire [1:0] _notCDom_reduced4SigExtra_T_11 = _notCDom_reduced4SigExtra_T_6[3:2]; // @[primitives.scala:77:20] wire _notCDom_reduced4SigExtra_T_12 = _notCDom_reduced4SigExtra_T_11[0]; // @[primitives.scala:77:20] wire _notCDom_reduced4SigExtra_T_13 = _notCDom_reduced4SigExtra_T_11[1]; // @[primitives.scala:77:20] wire [1:0] _notCDom_reduced4SigExtra_T_14 = {_notCDom_reduced4SigExtra_T_12, _notCDom_reduced4SigExtra_T_13}; // @[primitives.scala:77:20] wire [3:0] _notCDom_reduced4SigExtra_T_15 = {_notCDom_reduced4SigExtra_T_10, _notCDom_reduced4SigExtra_T_14}; // @[primitives.scala:77:20] wire [1:0] _notCDom_reduced4SigExtra_T_16 = _notCDom_reduced4SigExtra_T_5[5:4]; // @[primitives.scala:77:20, :78:22] wire _notCDom_reduced4SigExtra_T_17 = _notCDom_reduced4SigExtra_T_16[0]; // @[primitives.scala:77:20] wire _notCDom_reduced4SigExtra_T_18 = _notCDom_reduced4SigExtra_T_16[1]; // @[primitives.scala:77:20] wire [1:0] _notCDom_reduced4SigExtra_T_19 = {_notCDom_reduced4SigExtra_T_17, _notCDom_reduced4SigExtra_T_18}; // @[primitives.scala:77:20] wire [5:0] _notCDom_reduced4SigExtra_T_20 = {_notCDom_reduced4SigExtra_T_15, _notCDom_reduced4SigExtra_T_19}; // @[primitives.scala:77:20] wire [6:0] _notCDom_reduced4SigExtra_T_21 = {1'h0, _notCDom_reduced4SigExtra_T_2[5:0] & _notCDom_reduced4SigExtra_T_20}; // @[primitives.scala:77:20, :107:20] wire notCDom_reduced4SigExtra = |_notCDom_reduced4SigExtra_T_21; // @[MulAddRecFN.scala:247:78, :249:11] wire [25:0] _notCDom_sig_T = notCDom_mainSig[28:3]; // @[MulAddRecFN.scala:243:50, :251:28] wire [2:0] _notCDom_sig_T_1 = notCDom_mainSig[2:0]; // @[MulAddRecFN.scala:243:50, :252:28] wire _notCDom_sig_T_2 = |_notCDom_sig_T_1; // @[MulAddRecFN.scala:252:{28,35}] wire _notCDom_sig_T_3 = _notCDom_sig_T_2 | notCDom_reduced4SigExtra; // @[MulAddRecFN.scala:249:11, :252:{35,39}] wire [26:0] notCDom_sig = {_notCDom_sig_T, _notCDom_sig_T_3}; // @[MulAddRecFN.scala:251:{12,28}, :252:39] assign _io_rawOut_sig_T = notCDom_sig; // @[MulAddRecFN.scala:251:12, :294:25] wire [1:0] _notCDom_completeCancellation_T = notCDom_sig[26:25]; // @[MulAddRecFN.scala:251:12, :255:21] wire notCDom_completeCancellation = _notCDom_completeCancellation_T == 2'h0; // @[primitives.scala:103:54] wire _io_rawOut_isZero_T_1 = notCDom_completeCancellation; // @[MulAddRecFN.scala:255:50, :283:42] wire _notCDom_sign_T = io_fromPreMul_signProd_0 ^ notCDom_signSigSum; // @[MulAddRecFN.scala:169:7, :232:36, :259:36] wire notCDom_sign = ~notCDom_completeCancellation & _notCDom_sign_T; // @[MulAddRecFN.scala:255:50, :257:12, :259:36] wire _io_rawOut_sign_T_15 = notCDom_sign; // @[MulAddRecFN.scala:257:12, :292:17] assign notNaN_isInfOut = notNaN_isInfProd; // @[MulAddRecFN.scala:264:49, :265:44] assign io_rawOut_isInf_0 = notNaN_isInfOut; // @[MulAddRecFN.scala:169:7, :265:44] wire notNaN_addZeros = _notNaN_addZeros_T; // @[MulAddRecFN.scala:267:{32,58}] wire _io_rawOut_sign_T_4 = notNaN_addZeros; // @[MulAddRecFN.scala:267:58, :287:26] wire _io_invalidExc_T_3 = _io_invalidExc_T_1; // @[MulAddRecFN.scala:271:35, :272:57] assign _io_invalidExc_T_9 = _io_invalidExc_T_3; // @[MulAddRecFN.scala:272:57, :273:57] wire _io_invalidExc_T_4 = ~io_fromPreMul_isNaNAOrB_0; // @[MulAddRecFN.scala:169:7, :274:10] wire _io_invalidExc_T_6 = _io_invalidExc_T_4 & _io_invalidExc_T_5; // @[MulAddRecFN.scala:274:{10,36}, :275:36] assign io_invalidExc_0 = _io_invalidExc_T_9; // @[MulAddRecFN.scala:169:7, :273:57] assign io_rawOut_isNaN_0 = _io_rawOut_isNaN_T; // @[MulAddRecFN.scala:169:7, :278:48] assign _io_rawOut_isZero_T_2 = notNaN_addZeros | _io_rawOut_isZero_T_1; // @[MulAddRecFN.scala:267:58, :282:25, :283:42] assign io_rawOut_isZero_0 = _io_rawOut_isZero_T_2; // @[MulAddRecFN.scala:169:7, :282:25] wire _io_rawOut_sign_T = notNaN_isInfProd & io_fromPreMul_signProd_0; // @[MulAddRecFN.scala:169:7, :264:49, :285:27] wire _io_rawOut_sign_T_2 = _io_rawOut_sign_T; // @[MulAddRecFN.scala:285:{27,54}] wire _io_rawOut_sign_T_5 = _io_rawOut_sign_T_4 & io_fromPreMul_signProd_0; // @[MulAddRecFN.scala:169:7, :287:{26,48}] wire _io_rawOut_sign_T_6 = _io_rawOut_sign_T_5 & opSignC; // @[MulAddRecFN.scala:190:42, :287:48, :288:36] wire _io_rawOut_sign_T_7 = _io_rawOut_sign_T_2 | _io_rawOut_sign_T_6; // @[MulAddRecFN.scala:285:54, :286:43, :288:36] wire _io_rawOut_sign_T_11 = _io_rawOut_sign_T_7; // @[MulAddRecFN.scala:286:43, :288:48] wire _io_rawOut_sign_T_9 = io_fromPreMul_signProd_0 | opSignC; // @[MulAddRecFN.scala:169:7, :190:42, :290:37] wire _io_rawOut_sign_T_12 = ~notNaN_isInfOut; // @[MulAddRecFN.scala:265:44, :291:10] wire _io_rawOut_sign_T_13 = ~notNaN_addZeros; // @[MulAddRecFN.scala:267:58, :291:31] wire _io_rawOut_sign_T_14 = _io_rawOut_sign_T_12 & _io_rawOut_sign_T_13; // @[MulAddRecFN.scala:291:{10,28,31}] wire _io_rawOut_sign_T_16 = _io_rawOut_sign_T_14 & _io_rawOut_sign_T_15; // @[MulAddRecFN.scala:291:{28,49}, :292:17] assign _io_rawOut_sign_T_17 = _io_rawOut_sign_T_11 | _io_rawOut_sign_T_16; // @[MulAddRecFN.scala:288:48, :290:50, :291:49] assign io_rawOut_sign_0 = _io_rawOut_sign_T_17; // @[MulAddRecFN.scala:169:7, :290:50] assign io_rawOut_sExp_0 = _io_rawOut_sExp_T; // @[MulAddRecFN.scala:169:7, :293:26] assign io_rawOut_sig_0 = _io_rawOut_sig_T; // @[MulAddRecFN.scala:169:7, :294:25] assign io_invalidExc = io_invalidExc_0; // @[MulAddRecFN.scala:169:7] assign io_rawOut_isNaN = io_rawOut_isNaN_0; // @[MulAddRecFN.scala:169:7] assign io_rawOut_isInf = io_rawOut_isInf_0; // @[MulAddRecFN.scala:169:7] assign io_rawOut_isZero = io_rawOut_isZero_0; // @[MulAddRecFN.scala:169:7] assign io_rawOut_sign = io_rawOut_sign_0; // @[MulAddRecFN.scala:169:7] assign io_rawOut_sExp = io_rawOut_sExp_0; // @[MulAddRecFN.scala:169:7] assign io_rawOut_sig = io_rawOut_sig_0; // @[MulAddRecFN.scala:169:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag } File SourceD.scala: /* * Copyright 2019 SiFive, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You should have received a copy of LICENSE.Apache2 along with * this software. If not, you may obtain a copy at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package sifive.blocks.inclusivecache import chisel3._ import chisel3.util._ import freechips.rocketchip.tilelink._ import freechips.rocketchip.util._ import TLMessages._ import TLAtomics._ import TLPermissions._ class SourceDRequest(params: InclusiveCacheParameters) extends FullRequest(params) { val sink = UInt(params.inner.bundle.sinkBits.W) val way = UInt(params.wayBits.W) val bad = Bool() } class SourceDHazard(params: InclusiveCacheParameters) extends InclusiveCacheBundle(params) { val set = UInt(params.setBits.W) val way = UInt(params.wayBits.W) } class PutBufferACEntry(params: InclusiveCacheParameters) extends InclusiveCacheBundle(params) { val data = UInt(params.inner.bundle.dataBits.W) val mask = UInt((params.inner.bundle.dataBits/8).W) val corrupt = Bool() } class SourceD(params: InclusiveCacheParameters) extends Module { val io = IO(new Bundle { val req = Flipped(Decoupled(new SourceDRequest(params))) val d = Decoupled(new TLBundleD(params.inner.bundle)) // Put data from SinkA val pb_pop = Decoupled(new PutBufferPop(params)) val pb_beat = Flipped(new PutBufferAEntry(params)) // Release data from SinkC val rel_pop = Decoupled(new PutBufferPop(params)) val rel_beat = Flipped(new PutBufferCEntry(params)) // Access to the BankedStore val bs_radr = Decoupled(new BankedStoreInnerAddress(params)) val bs_rdat = Flipped(new BankedStoreInnerDecoded(params)) val bs_wadr = Decoupled(new BankedStoreInnerAddress(params)) val bs_wdat = new BankedStoreInnerPoison(params) // Is it safe to evict/replace this way? val evict_req = Flipped(new SourceDHazard(params)) val evict_safe = Bool() val grant_req = Flipped(new SourceDHazard(params)) val grant_safe = Bool() }) val beatBytes = params.inner.manager.beatBytes val writeBytes = params.micro.writeBytes val s1_valid = Wire(Bool()) val s2_valid = Wire(Bool()) val s3_valid = Wire(Bool()) val s2_ready = Wire(Bool()) val s3_ready = Wire(Bool()) val s4_ready = Wire(Bool()) ////////////////////////////////////// STAGE 1 ////////////////////////////////////// // Reform the request beats val busy = RegInit(false.B) val s1_block_r = RegInit(false.B) val s1_counter = RegInit(0.U(params.innerBeatBits.W)) val s1_req_reg = RegEnable(io.req.bits, !busy && io.req.valid) val s1_req = Mux(!busy, io.req.bits, s1_req_reg) val s1_x_bypass = Wire(UInt((beatBytes/writeBytes).W)) // might go from high=>low during stall val s1_latch_bypass = RegNext(!(busy || io.req.valid) || s2_ready) val s1_bypass = Mux(s1_latch_bypass, s1_x_bypass, RegEnable(s1_x_bypass, s1_latch_bypass)) val s1_mask = MaskGen(s1_req.offset, s1_req.size, beatBytes, writeBytes) & ~s1_bypass val s1_grant = (s1_req.opcode === AcquireBlock && s1_req.param === BtoT) || s1_req.opcode === AcquirePerm val s1_need_r = s1_mask.orR && s1_req.prio(0) && s1_req.opcode =/= Hint && !s1_grant && (s1_req.opcode =/= PutFullData || s1_req.size < log2Ceil(writeBytes).U ) val s1_valid_r = (busy || io.req.valid) && s1_need_r && !s1_block_r val s1_need_pb = Mux(s1_req.prio(0), !s1_req.opcode(2), s1_req.opcode(0)) // hasData val s1_single = Mux(s1_req.prio(0), s1_req.opcode === Hint || s1_grant, s1_req.opcode === Release) val s1_retires = !s1_single // retire all operations with data in s3 for bypass (saves energy) // Alternatively: val s1_retires = s1_need_pb // retire only updates for bypass (less backpressure from WB) val s1_beats1 = Mux(s1_single, 0.U, UIntToOH1(s1_req.size, log2Up(params.cache.blockBytes)) >> log2Ceil(beatBytes)) val s1_beat = (s1_req.offset >> log2Ceil(beatBytes)) | s1_counter val s1_last = s1_counter === s1_beats1 val s1_first = s1_counter === 0.U params.ccover(s1_block_r, "SOURCED_1_SRAM_HOLD", "SRAM read-out successful, but stalled by stage 2") params.ccover(!s1_latch_bypass, "SOURCED_1_BYPASS_HOLD", "Bypass match successful, but stalled by stage 2") params.ccover((busy || io.req.valid) && !s1_need_r, "SOURCED_1_NO_MODIFY", "Transaction servicable without SRAM") io.bs_radr.valid := s1_valid_r io.bs_radr.bits.noop := false.B io.bs_radr.bits.way := s1_req.way io.bs_radr.bits.set := s1_req.set io.bs_radr.bits.beat := s1_beat io.bs_radr.bits.mask := s1_mask params.ccover(io.bs_radr.valid && !io.bs_radr.ready, "SOURCED_1_READ_STALL", "Data readout stalled") // Make a queue to catch BS readout during stalls val queue = Module(new Queue(chiselTypeOf(io.bs_rdat), 3, flow=true)) queue.io.enq.valid := RegNext(RegNext(io.bs_radr.fire)) queue.io.enq.bits := io.bs_rdat assert (!queue.io.enq.valid || queue.io.enq.ready) params.ccover(!queue.io.enq.ready, "SOURCED_1_QUEUE_FULL", "Filled SRAM skidpad queue completely") when (io.bs_radr.fire) { s1_block_r := true.B } when (io.req.valid) { busy := true.B } when (s1_valid && s2_ready) { s1_counter := s1_counter + 1.U s1_block_r := false.B when (s1_last) { s1_counter := 0.U busy := false.B } } params.ccover(s1_valid && !s2_ready, "SOURCED_1_STALL", "Stage 1 pipeline blocked") io.req.ready := !busy s1_valid := (busy || io.req.valid) && (!s1_valid_r || io.bs_radr.ready) ////////////////////////////////////// STAGE 2 ////////////////////////////////////// // Fetch the request data val s2_latch = s1_valid && s2_ready val s2_full = RegInit(false.B) val s2_valid_pb = RegInit(false.B) val s2_beat = RegEnable(s1_beat, s2_latch) val s2_bypass = RegEnable(s1_bypass, s2_latch) val s2_req = RegEnable(s1_req, s2_latch) val s2_last = RegEnable(s1_last, s2_latch) val s2_need_r = RegEnable(s1_need_r, s2_latch) val s2_need_pb = RegEnable(s1_need_pb, s2_latch) val s2_retires = RegEnable(s1_retires, s2_latch) val s2_need_d = RegEnable(!s1_need_pb || s1_first, s2_latch) val s2_pdata_raw = Wire(new PutBufferACEntry(params)) val s2_pdata = s2_pdata_raw holdUnless s2_valid_pb s2_pdata_raw.data := Mux(s2_req.prio(0), io.pb_beat.data, io.rel_beat.data) s2_pdata_raw.mask := Mux(s2_req.prio(0), io.pb_beat.mask, ~0.U(params.inner.manager.beatBytes.W)) s2_pdata_raw.corrupt := Mux(s2_req.prio(0), io.pb_beat.corrupt, io.rel_beat.corrupt) io.pb_pop.valid := s2_valid_pb && s2_req.prio(0) io.pb_pop.bits.index := s2_req.put io.pb_pop.bits.last := s2_last io.rel_pop.valid := s2_valid_pb && !s2_req.prio(0) io.rel_pop.bits.index := s2_req.put io.rel_pop.bits.last := s2_last params.ccover(io.pb_pop.valid && !io.pb_pop.ready, "SOURCED_2_PUTA_STALL", "Channel A put buffer was not ready in time") if (!params.firstLevel) params.ccover(io.rel_pop.valid && !io.rel_pop.ready, "SOURCED_2_PUTC_STALL", "Channel C put buffer was not ready in time") val pb_ready = Mux(s2_req.prio(0), io.pb_pop.ready, io.rel_pop.ready) when (pb_ready) { s2_valid_pb := false.B } when (s2_valid && s3_ready) { s2_full := false.B } when (s2_latch) { s2_valid_pb := s1_need_pb } when (s2_latch) { s2_full := true.B } params.ccover(s2_valid && !s3_ready, "SOURCED_2_STALL", "Stage 2 pipeline blocked") s2_valid := s2_full && (!s2_valid_pb || pb_ready) s2_ready := !s2_full || (s3_ready && (!s2_valid_pb || pb_ready)) ////////////////////////////////////// STAGE 3 ////////////////////////////////////// // Send D response val s3_latch = s2_valid && s3_ready val s3_full = RegInit(false.B) val s3_valid_d = RegInit(false.B) val s3_beat = RegEnable(s2_beat, s3_latch) val s3_bypass = RegEnable(s2_bypass, s3_latch) val s3_req = RegEnable(s2_req, s3_latch) val s3_adjusted_opcode = Mux(s3_req.bad, Get, s3_req.opcode) // kill update when denied val s3_last = RegEnable(s2_last, s3_latch) val s3_pdata = RegEnable(s2_pdata, s3_latch) val s3_need_pb = RegEnable(s2_need_pb, s3_latch) val s3_retires = RegEnable(s2_retires, s3_latch) val s3_need_r = RegEnable(s2_need_r, s3_latch) val s3_need_bs = s3_need_pb val s3_acq = s3_req.opcode === AcquireBlock || s3_req.opcode === AcquirePerm // Collect s3's data from either the BankedStore or bypass // NOTE: we use the s3_bypass passed down from s1_bypass, because s2-s4 were guarded by the hazard checks and not stale val s3_bypass_data = Wire(UInt()) def chunk(x: UInt): Seq[UInt] = Seq.tabulate(beatBytes/writeBytes) { i => x((i+1)*writeBytes*8-1, i*writeBytes*8) } def chop (x: UInt): Seq[Bool] = Seq.tabulate(beatBytes/writeBytes) { i => x(i) } def bypass(sel: UInt, x: UInt, y: UInt) = (chop(sel) zip (chunk(x) zip chunk(y))) .map { case (s, (x, y)) => Mux(s, x, y) } .asUInt val s3_rdata = bypass(s3_bypass, s3_bypass_data, queue.io.deq.bits.data) // Lookup table for response codes val grant = Mux(s3_req.param === BtoT, Grant, GrantData) val resp_opcode = VecInit(Seq(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, grant, Grant)) // No restrictions on the type of buffer used here val d = Wire(chiselTypeOf(io.d)) io.d <> params.micro.innerBuf.d(d) d.valid := s3_valid_d d.bits.opcode := Mux(s3_req.prio(0), resp_opcode(s3_req.opcode), ReleaseAck) d.bits.param := Mux(s3_req.prio(0) && s3_acq, Mux(s3_req.param =/= NtoB, toT, toB), 0.U) d.bits.size := s3_req.size d.bits.source := s3_req.source d.bits.sink := s3_req.sink d.bits.denied := s3_req.bad d.bits.data := s3_rdata d.bits.corrupt := s3_req.bad && d.bits.opcode(0) queue.io.deq.ready := s3_valid && s4_ready && s3_need_r assert (!s3_full || !s3_need_r || queue.io.deq.valid) when (d.ready) { s3_valid_d := false.B } when (s3_valid && s4_ready) { s3_full := false.B } when (s3_latch) { s3_valid_d := s2_need_d } when (s3_latch) { s3_full := true.B } params.ccover(s3_valid && !s4_ready, "SOURCED_3_STALL", "Stage 3 pipeline blocked") s3_valid := s3_full && (!s3_valid_d || d.ready) s3_ready := !s3_full || (s4_ready && (!s3_valid_d || d.ready)) ////////////////////////////////////// STAGE 4 ////////////////////////////////////// // Writeback updated data val s4_latch = s3_valid && s3_retires && s4_ready val s4_full = RegInit(false.B) val s4_beat = RegEnable(s3_beat, s4_latch) val s4_need_r = RegEnable(s3_need_r, s4_latch) val s4_need_bs = RegEnable(s3_need_bs, s4_latch) val s4_need_pb = RegEnable(s3_need_pb, s4_latch) val s4_req = RegEnable(s3_req, s4_latch) val s4_adjusted_opcode = RegEnable(s3_adjusted_opcode, s4_latch) val s4_pdata = RegEnable(s3_pdata, s4_latch) val s4_rdata = RegEnable(s3_rdata, s4_latch) val atomics = Module(new Atomics(params.inner.bundle)) atomics.io.write := s4_req.prio(2) atomics.io.a.opcode := s4_adjusted_opcode atomics.io.a.param := s4_req.param atomics.io.a.size := 0.U atomics.io.a.source := 0.U atomics.io.a.address := 0.U atomics.io.a.mask := s4_pdata.mask atomics.io.a.data := s4_pdata.data atomics.io.a.corrupt := DontCare atomics.io.data_in := s4_rdata io.bs_wadr.valid := s4_full && s4_need_bs io.bs_wadr.bits.noop := false.B io.bs_wadr.bits.way := s4_req.way io.bs_wadr.bits.set := s4_req.set io.bs_wadr.bits.beat := s4_beat io.bs_wadr.bits.mask := Cat(s4_pdata.mask.asBools.grouped(writeBytes).map(_.reduce(_||_)).toList.reverse) io.bs_wdat.data := atomics.io.data_out assert (!(s4_full && s4_need_pb && s4_pdata.corrupt), "Data poisoning unsupported") params.ccover(io.bs_wadr.valid && !io.bs_wadr.ready, "SOURCED_4_WRITEBACK_STALL", "Data writeback stalled") params.ccover(s4_req.prio(0) && s4_req.opcode === ArithmeticData && s4_req.param === MIN, "SOURCED_4_ATOMIC_MIN", "Evaluated a signed minimum atomic") params.ccover(s4_req.prio(0) && s4_req.opcode === ArithmeticData && s4_req.param === MAX, "SOURCED_4_ATOMIC_MAX", "Evaluated a signed maximum atomic") params.ccover(s4_req.prio(0) && s4_req.opcode === ArithmeticData && s4_req.param === MINU, "SOURCED_4_ATOMIC_MINU", "Evaluated an unsigned minimum atomic") params.ccover(s4_req.prio(0) && s4_req.opcode === ArithmeticData && s4_req.param === MAXU, "SOURCED_4_ATOMIC_MAXU", "Evaluated an unsigned minimum atomic") params.ccover(s4_req.prio(0) && s4_req.opcode === ArithmeticData && s4_req.param === ADD, "SOURCED_4_ATOMIC_ADD", "Evaluated an addition atomic") params.ccover(s4_req.prio(0) && s4_req.opcode === LogicalData && s4_req.param === XOR, "SOURCED_4_ATOMIC_XOR", "Evaluated a bitwise XOR atomic") params.ccover(s4_req.prio(0) && s4_req.opcode === LogicalData && s4_req.param === OR, "SOURCED_4_ATOMIC_OR", "Evaluated a bitwise OR atomic") params.ccover(s4_req.prio(0) && s4_req.opcode === LogicalData && s4_req.param === AND, "SOURCED_4_ATOMIC_AND", "Evaluated a bitwise AND atomic") params.ccover(s4_req.prio(0) && s4_req.opcode === LogicalData && s4_req.param === SWAP, "SOURCED_4_ATOMIC_SWAP", "Evaluated a bitwise SWAP atomic") when (io.bs_wadr.ready || !s4_need_bs) { s4_full := false.B } when (s4_latch) { s4_full := true.B } s4_ready := !s3_retires || !s4_full || io.bs_wadr.ready || !s4_need_bs ////////////////////////////////////// RETIRED ////////////////////////////////////// // Record for bypass the last three retired writebacks // We need 3 slots to collect what was in s2, s3, s4 when the request was in s1 // ... you can't rely on s4 being full if bubbles got introduced between s1 and s2 val retire = s4_full && (io.bs_wadr.ready || !s4_need_bs) val s5_req = RegEnable(s4_req, retire) val s5_beat = RegEnable(s4_beat, retire) val s5_dat = RegEnable(atomics.io.data_out, retire) val s6_req = RegEnable(s5_req, retire) val s6_beat = RegEnable(s5_beat, retire) val s6_dat = RegEnable(s5_dat, retire) val s7_dat = RegEnable(s6_dat, retire) ////////////////////////////////////// BYPASSS ////////////////////////////////////// // Manually retime this circuit to pull a register stage forward val pre_s3_req = Mux(s3_latch, s2_req, s3_req) val pre_s4_req = Mux(s4_latch, s3_req, s4_req) val pre_s5_req = Mux(retire, s4_req, s5_req) val pre_s6_req = Mux(retire, s5_req, s6_req) val pre_s3_beat = Mux(s3_latch, s2_beat, s3_beat) val pre_s4_beat = Mux(s4_latch, s3_beat, s4_beat) val pre_s5_beat = Mux(retire, s4_beat, s5_beat) val pre_s6_beat = Mux(retire, s5_beat, s6_beat) val pre_s5_dat = Mux(retire, atomics.io.data_out, s5_dat) val pre_s6_dat = Mux(retire, s5_dat, s6_dat) val pre_s7_dat = Mux(retire, s6_dat, s7_dat) val pre_s4_full = s4_latch || (!(io.bs_wadr.ready || !s4_need_bs) && s4_full) val pre_s3_4_match = pre_s4_req.set === pre_s3_req.set && pre_s4_req.way === pre_s3_req.way && pre_s4_beat === pre_s3_beat && pre_s4_full val pre_s3_5_match = pre_s5_req.set === pre_s3_req.set && pre_s5_req.way === pre_s3_req.way && pre_s5_beat === pre_s3_beat val pre_s3_6_match = pre_s6_req.set === pre_s3_req.set && pre_s6_req.way === pre_s3_req.way && pre_s6_beat === pre_s3_beat val pre_s3_4_bypass = Mux(pre_s3_4_match, MaskGen(pre_s4_req.offset, pre_s4_req.size, beatBytes, writeBytes), 0.U) val pre_s3_5_bypass = Mux(pre_s3_5_match, MaskGen(pre_s5_req.offset, pre_s5_req.size, beatBytes, writeBytes), 0.U) val pre_s3_6_bypass = Mux(pre_s3_6_match, MaskGen(pre_s6_req.offset, pre_s6_req.size, beatBytes, writeBytes), 0.U) s3_bypass_data := bypass(RegNext(pre_s3_4_bypass), atomics.io.data_out, RegNext( bypass(pre_s3_5_bypass, pre_s5_dat, bypass(pre_s3_6_bypass, pre_s6_dat, pre_s7_dat)))) // Detect which parts of s1 will be bypassed from later pipeline stages (s1-s4) // Note: we also bypass from reads ahead in the pipeline to save power val s1_2_match = s2_req.set === s1_req.set && s2_req.way === s1_req.way && s2_beat === s1_beat && s2_full && s2_retires val s1_3_match = s3_req.set === s1_req.set && s3_req.way === s1_req.way && s3_beat === s1_beat && s3_full && s3_retires val s1_4_match = s4_req.set === s1_req.set && s4_req.way === s1_req.way && s4_beat === s1_beat && s4_full for (i <- 0 until 8) { val cover = 1.U val s2 = s1_2_match === cover(0) val s3 = s1_3_match === cover(1) val s4 = s1_4_match === cover(2) params.ccover(io.req.valid && s2 && s3 && s4, "SOURCED_BYPASS_CASE_" + i, "Bypass data from all subsets of pipeline stages") } val s1_2_bypass = Mux(s1_2_match, MaskGen(s2_req.offset, s2_req.size, beatBytes, writeBytes), 0.U) val s1_3_bypass = Mux(s1_3_match, MaskGen(s3_req.offset, s3_req.size, beatBytes, writeBytes), 0.U) val s1_4_bypass = Mux(s1_4_match, MaskGen(s4_req.offset, s4_req.size, beatBytes, writeBytes), 0.U) s1_x_bypass := s1_2_bypass | s1_3_bypass | s1_4_bypass ////////////////////////////////////// HAZARDS ////////////////////////////////////// // SinkC, SourceC, and SinkD can never interfer with each other because their operation // is fully contained with an execution plan of an MSHR. That MSHR owns the entire set, so // there is no way for a data race. // However, SourceD is special. We allow it to run ahead after the MSHR and scheduler have // released control of a set+way. This is necessary to allow single cycle occupancy for // hits. Thus, we need to be careful about data hazards between SourceD and the other ports // of the BankedStore. We can at least compare to registers 's1_req_reg', because the first // cycle of SourceD falls within the occupancy of the MSHR's plan. // Must ReleaseData=> be interlocked? RaW hazard io.evict_safe := (!busy || io.evict_req.way =/= s1_req_reg.way || io.evict_req.set =/= s1_req_reg.set) && (!s2_full || io.evict_req.way =/= s2_req.way || io.evict_req.set =/= s2_req.set) && (!s3_full || io.evict_req.way =/= s3_req.way || io.evict_req.set =/= s3_req.set) && (!s4_full || io.evict_req.way =/= s4_req.way || io.evict_req.set =/= s4_req.set) // Must =>GrantData be interlocked? WaR hazard io.grant_safe := (!busy || io.grant_req.way =/= s1_req_reg.way || io.grant_req.set =/= s1_req_reg.set) && (!s2_full || io.grant_req.way =/= s2_req.way || io.grant_req.set =/= s2_req.set) && (!s3_full || io.grant_req.way =/= s3_req.way || io.grant_req.set =/= s3_req.set) && (!s4_full || io.grant_req.way =/= s4_req.way || io.grant_req.set =/= s4_req.set) // SourceD cannot overlap with SinkC b/c the only way inner caches could become // dirty such that they want to put data in via SinkC is if we Granted them permissions, // which must flow through the SourecD pipeline. }
module SourceD( // @[SourceD.scala:48:7] input clock, // @[SourceD.scala:48:7] input reset, // @[SourceD.scala:48:7] output io_req_ready, // @[SourceD.scala:50:14] input io_req_valid, // @[SourceD.scala:50:14] input io_req_bits_prio_0, // @[SourceD.scala:50:14] input io_req_bits_prio_2, // @[SourceD.scala:50:14] input [2:0] io_req_bits_opcode, // @[SourceD.scala:50:14] input [2:0] io_req_bits_param, // @[SourceD.scala:50:14] input [2:0] io_req_bits_size, // @[SourceD.scala:50:14] input [6:0] io_req_bits_source, // @[SourceD.scala:50:14] input [5:0] io_req_bits_offset, // @[SourceD.scala:50:14] input [5:0] io_req_bits_put, // @[SourceD.scala:50:14] input [9:0] io_req_bits_set, // @[SourceD.scala:50:14] input [2:0] io_req_bits_sink, // @[SourceD.scala:50:14] input [2:0] io_req_bits_way, // @[SourceD.scala:50:14] input io_req_bits_bad, // @[SourceD.scala:50:14] input io_d_ready, // @[SourceD.scala:50:14] output io_d_valid, // @[SourceD.scala:50:14] output [2:0] io_d_bits_opcode, // @[SourceD.scala:50:14] output [1:0] io_d_bits_param, // @[SourceD.scala:50:14] output [2:0] io_d_bits_size, // @[SourceD.scala:50:14] output [6:0] io_d_bits_source, // @[SourceD.scala:50:14] output [2:0] io_d_bits_sink, // @[SourceD.scala:50:14] output io_d_bits_denied, // @[SourceD.scala:50:14] output [63:0] io_d_bits_data, // @[SourceD.scala:50:14] output io_d_bits_corrupt, // @[SourceD.scala:50:14] input io_pb_pop_ready, // @[SourceD.scala:50:14] output io_pb_pop_valid, // @[SourceD.scala:50:14] output [5:0] io_pb_pop_bits_index, // @[SourceD.scala:50:14] output io_pb_pop_bits_last, // @[SourceD.scala:50:14] input [63:0] io_pb_beat_data, // @[SourceD.scala:50:14] input [7:0] io_pb_beat_mask, // @[SourceD.scala:50:14] input io_pb_beat_corrupt, // @[SourceD.scala:50:14] input io_rel_pop_ready, // @[SourceD.scala:50:14] output io_rel_pop_valid, // @[SourceD.scala:50:14] output [5:0] io_rel_pop_bits_index, // @[SourceD.scala:50:14] output io_rel_pop_bits_last, // @[SourceD.scala:50:14] input [63:0] io_rel_beat_data, // @[SourceD.scala:50:14] input io_rel_beat_corrupt, // @[SourceD.scala:50:14] input io_bs_radr_ready, // @[SourceD.scala:50:14] output io_bs_radr_valid, // @[SourceD.scala:50:14] output [2:0] io_bs_radr_bits_way, // @[SourceD.scala:50:14] output [9:0] io_bs_radr_bits_set, // @[SourceD.scala:50:14] output [2:0] io_bs_radr_bits_beat, // @[SourceD.scala:50:14] output io_bs_radr_bits_mask, // @[SourceD.scala:50:14] input [63:0] io_bs_rdat_data, // @[SourceD.scala:50:14] input io_bs_wadr_ready, // @[SourceD.scala:50:14] output io_bs_wadr_valid, // @[SourceD.scala:50:14] output [2:0] io_bs_wadr_bits_way, // @[SourceD.scala:50:14] output [9:0] io_bs_wadr_bits_set, // @[SourceD.scala:50:14] output [2:0] io_bs_wadr_bits_beat, // @[SourceD.scala:50:14] output io_bs_wadr_bits_mask, // @[SourceD.scala:50:14] output [63:0] io_bs_wdat_data, // @[SourceD.scala:50:14] input [9:0] io_evict_req_set, // @[SourceD.scala:50:14] input [2:0] io_evict_req_way, // @[SourceD.scala:50:14] output io_evict_safe, // @[SourceD.scala:50:14] input [9:0] io_grant_req_set, // @[SourceD.scala:50:14] input [2:0] io_grant_req_way, // @[SourceD.scala:50:14] output io_grant_safe // @[SourceD.scala:50:14] ); wire s1_x_bypass; // @[SourceD.scala:360:{30,44}] wire [63:0] s3_bypass_data; // @[SourceD.scala:210:75] wire s4_ready; // @[SourceD.scala:293:{27,39,59}] wire s3_ready; // @[SourceD.scala:242:24] wire s3_valid; // @[SourceD.scala:241:23] wire [63:0] _atomics_io_data_out; // @[SourceD.scala:258:23] wire _queue_io_enq_ready; // @[SourceD.scala:120:21] wire _queue_io_deq_valid; // @[SourceD.scala:120:21] wire [63:0] _queue_io_deq_bits_data; // @[SourceD.scala:120:21] reg busy; // @[SourceD.scala:84:21] reg s1_block_r; // @[SourceD.scala:85:27] reg [2:0] s1_counter; // @[SourceD.scala:86:27] reg s1_req_reg_prio_0; // @[SourceD.scala:87:29] reg s1_req_reg_prio_2; // @[SourceD.scala:87:29] reg [2:0] s1_req_reg_opcode; // @[SourceD.scala:87:29] reg [2:0] s1_req_reg_param; // @[SourceD.scala:87:29] reg [2:0] s1_req_reg_size; // @[SourceD.scala:87:29] reg [6:0] s1_req_reg_source; // @[SourceD.scala:87:29] reg [5:0] s1_req_reg_offset; // @[SourceD.scala:87:29] reg [5:0] s1_req_reg_put; // @[SourceD.scala:87:29] reg [9:0] s1_req_reg_set; // @[SourceD.scala:87:29] reg [2:0] s1_req_reg_sink; // @[SourceD.scala:87:29] reg [2:0] s1_req_reg_way; // @[SourceD.scala:87:29] reg s1_req_reg_bad; // @[SourceD.scala:87:29] wire s1_req_prio_0 = busy ? s1_req_reg_prio_0 : io_req_bits_prio_0; // @[SourceD.scala:84:21, :87:29, :88:19] wire [2:0] s1_req_opcode = busy ? s1_req_reg_opcode : io_req_bits_opcode; // @[SourceD.scala:84:21, :87:29, :88:19] wire [2:0] s1_req_param = busy ? s1_req_reg_param : io_req_bits_param; // @[SourceD.scala:84:21, :87:29, :88:19] wire [2:0] s1_req_size = busy ? s1_req_reg_size : io_req_bits_size; // @[SourceD.scala:84:21, :87:29, :88:19] wire [9:0] s1_req_set = busy ? s1_req_reg_set : io_req_bits_set; // @[SourceD.scala:84:21, :87:29, :88:19] wire [2:0] s1_req_way = busy ? s1_req_reg_way : io_req_bits_way; // @[SourceD.scala:84:21, :87:29, :88:19] wire _s1_valid_T = busy | io_req_valid; // @[SourceD.scala:84:21, :90:40] reg s1_latch_bypass; // @[SourceD.scala:90:32] reg s1_bypass_r; // @[SourceD.scala:91:62] wire s1_bypass = s1_latch_bypass ? s1_x_bypass : s1_bypass_r; // @[SourceD.scala:90:32, :91:{22,62}, :360:{30,44}] wire _s1_single_T_2 = s1_req_opcode == 3'h6; // @[SourceD.scala:88:19, :93:33] wire s1_grant = _s1_single_T_2 & s1_req_param == 3'h2 | (&s1_req_opcode); // @[SourceD.scala:88:19, :93:{33,50,66,76,93}] wire s1_need_r = ~s1_bypass & s1_req_prio_0 & s1_req_opcode != 3'h5 & ~s1_grant & ((|s1_req_opcode) | s1_req_size < 3'h3); // @[SourceD.scala:88:19, :91:22, :92:78, :93:76, :94:{31,49,66,75,78,88}, :95:{34,50,65}] wire s1_valid_r = _s1_valid_T & s1_need_r & ~s1_block_r; // @[SourceD.scala:85:27, :90:40, :94:{31,49,75,88}, :96:{43,56,59}] wire [2:0] s1_beat = (busy ? s1_req_reg_offset[5:3] : io_req_bits_offset[5:3]) | s1_counter; // @[SourceD.scala:50:14, :84:21, :86:27, :87:29, :88:19, :102:56] reg queue_io_enq_valid_REG; // @[SourceD.scala:121:40] reg queue_io_enq_valid_REG_1; // @[SourceD.scala:121:32] reg s2_full; // @[SourceD.scala:147:24] reg s2_valid_pb; // @[SourceD.scala:148:28] reg [2:0] s2_beat; // @[SourceD.scala:149:26] reg s2_bypass; // @[SourceD.scala:150:28] reg s2_req_prio_0; // @[SourceD.scala:151:25] reg s2_req_prio_2; // @[SourceD.scala:151:25] reg [2:0] s2_req_opcode; // @[SourceD.scala:151:25] reg [2:0] s2_req_param; // @[SourceD.scala:151:25] reg [2:0] s2_req_size; // @[SourceD.scala:151:25] reg [6:0] s2_req_source; // @[SourceD.scala:151:25] reg [5:0] s2_req_put; // @[SourceD.scala:151:25] reg [9:0] s2_req_set; // @[SourceD.scala:151:25] reg [2:0] s2_req_sink; // @[SourceD.scala:151:25] reg [2:0] s2_req_way; // @[SourceD.scala:151:25] reg s2_req_bad; // @[SourceD.scala:151:25] reg s2_last; // @[SourceD.scala:152:26] reg s2_need_r; // @[SourceD.scala:153:28] reg s2_need_pb; // @[SourceD.scala:154:29] reg s2_retires; // @[SourceD.scala:155:29] reg s2_need_d; // @[SourceD.scala:156:28] reg [63:0] s2_pdata_r_data; // @[package.scala:88:63] reg [7:0] s2_pdata_r_mask; // @[package.scala:88:63] reg s2_pdata_r_corrupt; // @[package.scala:88:63] wire [63:0] s2_pdata_raw_data = s2_req_prio_0 ? io_pb_beat_data : io_rel_beat_data; // @[SourceD.scala:151:25, :160:30] wire [7:0] s2_pdata_raw_mask = s2_req_prio_0 ? io_pb_beat_mask : 8'hFF; // @[SourceD.scala:151:25, :161:30] wire s2_pdata_raw_corrupt = s2_req_prio_0 ? io_pb_beat_corrupt : io_rel_beat_corrupt; // @[SourceD.scala:151:25, :162:30] wire pb_ready = s2_req_prio_0 ? io_pb_pop_ready : io_rel_pop_ready; // @[SourceD.scala:151:25, :175:21] wire s2_ready = ~s2_full | s3_ready & (~s2_valid_pb | pb_ready); // @[SourceD.scala:147:24, :148:28, :175:21, :183:27, :184:{15,24,37,54}, :242:24] reg s3_full; // @[SourceD.scala:190:24] reg s3_valid_d; // @[SourceD.scala:191:27] reg [2:0] s3_beat; // @[SourceD.scala:192:26] reg s3_bypass; // @[SourceD.scala:193:28] reg s3_req_prio_0; // @[SourceD.scala:194:25] reg s3_req_prio_2; // @[SourceD.scala:194:25] reg [2:0] s3_req_opcode; // @[SourceD.scala:194:25] reg [2:0] s3_req_param; // @[SourceD.scala:194:25] reg [2:0] s3_req_size; // @[SourceD.scala:194:25] reg [6:0] s3_req_source; // @[SourceD.scala:194:25] reg [9:0] s3_req_set; // @[SourceD.scala:194:25] reg [2:0] s3_req_sink; // @[SourceD.scala:194:25] reg [2:0] s3_req_way; // @[SourceD.scala:194:25] reg s3_req_bad; // @[SourceD.scala:194:25] reg [63:0] s3_pdata_data; // @[SourceD.scala:197:27] reg [7:0] s3_pdata_mask; // @[SourceD.scala:197:27] reg s3_pdata_corrupt; // @[SourceD.scala:197:27] reg s3_need_pb; // @[SourceD.scala:198:29] reg s3_retires; // @[SourceD.scala:199:29] reg s3_need_r; // @[SourceD.scala:200:28] wire [63:0] s3_rdata = s3_bypass ? s3_bypass_data : _queue_io_deq_bits_data; // @[SourceD.scala:120:21, :193:28, :210:75] wire [7:0][2:0] _GEN = {{3'h4}, {{2'h2, s3_req_param != 3'h2}}, {3'h2}, {3'h1}, {3'h1}, {3'h1}, {3'h0}, {3'h0}}; // @[SourceD.scala:194:25, :214:{18,32}, :222:24] wire [2:0] d_bits_opcode = s3_req_prio_0 ? _GEN[s3_req_opcode] : 3'h6; // @[SourceD.scala:194:25, :222:24] wire _queue_io_deq_ready_T = s3_valid & s4_ready; // @[SourceD.scala:231:34, :241:23, :293:{27,39,59}] assign s3_valid = s3_full & (~s3_valid_d | io_d_ready); // @[SourceD.scala:190:24, :191:27, :241:{23,27,39}] assign s3_ready = ~s3_full | s4_ready & (~s3_valid_d | io_d_ready); // @[SourceD.scala:190:24, :191:27, :232:11, :241:27, :242:{24,37,53}, :293:{27,39,59}] reg s4_full; // @[SourceD.scala:248:24] reg [2:0] s4_beat; // @[SourceD.scala:249:26] reg s4_need_bs; // @[SourceD.scala:251:29] reg s4_need_pb; // @[SourceD.scala:252:29] reg s4_req_prio_2; // @[SourceD.scala:253:25] reg [2:0] s4_req_param; // @[SourceD.scala:253:25] reg [9:0] s4_req_set; // @[SourceD.scala:253:25] reg [2:0] s4_req_way; // @[SourceD.scala:253:25] reg [2:0] s4_adjusted_opcode; // @[SourceD.scala:254:37] reg [63:0] s4_pdata_data; // @[SourceD.scala:255:27] reg [7:0] s4_pdata_mask; // @[SourceD.scala:255:27] reg s4_pdata_corrupt; // @[SourceD.scala:255:27] reg [63:0] s4_rdata; // @[SourceD.scala:256:27]
Generate the Verilog code corresponding to the following Chisel files. File ShiftReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ // Similar to the Chisel ShiftRegister but allows the user to suggest a // name to the registers that get instantiated, and // to provide a reset value. object ShiftRegInit { def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T = (0 until n).foldRight(in) { case (i, next) => { val r = RegNext(next, init) name.foreach { na => r.suggestName(s"${na}_${i}") } r } } } /** These wrap behavioral * shift registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * The different types vary in their reset behavior: * AsyncResetShiftReg -- Asynchronously reset register array * A W(width) x D(depth) sized array is constructed from D instantiations of a * W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg, * but only used for timing applications */ abstract class AbstractPipelineReg(w: Int = 1) extends Module { val io = IO(new Bundle { val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) } ) } object AbstractPipelineReg { def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = { val chain = Module(gen) name.foreach{ chain.suggestName(_) } chain.io.d := in.asUInt chain.io.q.asTypeOf(in) } } class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) { require(depth > 0, "Depth must be greater than 0.") override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}" val chain = List.tabulate(depth) { i => Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}") } chain.last.io.d := io.d chain.last.io.en := true.B (chain.init zip chain.tail).foreach { case (sink, source) => sink.io.d := source.io.q sink.io.en := true.B } io.q := chain.head.io.q } object AsyncResetShiftReg { def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name) def apply [T <: Data](in: T, depth: Int, name: Option[String]): T = apply(in, depth, 0, name) def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T = apply(in, depth, init.litValue.toInt, name) def apply [T <: Data](in: T, depth: Int, init: T): T = apply (in, depth, init.litValue.toInt, None) } File SynchronizerReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util.{RegEnable, Cat} /** These wrap behavioral * shift and next registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * * These are built up of *ResetSynchronizerPrimitiveShiftReg, * intended to be replaced by the integrator's metastable flops chains or replaced * at this level if they have a multi-bit wide synchronizer primitive. * The different types vary in their reset behavior: * NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin * AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep * 1-bit-wide shift registers. * SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg * * [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference. * * ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross * Clock Domains. */ object SynchronizerResetType extends Enumeration { val NonSync, Inferred, Sync, Async = Value } // Note: this should not be used directly. // Use the companion object to generate this with the correct reset type mixin. private class SynchronizerPrimitiveShiftReg( sync: Int, init: Boolean, resetType: SynchronizerResetType.Value) extends AbstractPipelineReg(1) { val initInt = if (init) 1 else 0 val initPostfix = resetType match { case SynchronizerResetType.NonSync => "" case _ => s"_i${initInt}" } override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}" val chain = List.tabulate(sync) { i => val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B) reg.suggestName(s"sync_$i") } chain.last := io.d.asBool (chain.init zip chain.tail).foreach { case (sink, source) => sink := source } io.q := chain.head.asUInt } private object SynchronizerPrimitiveShiftReg { def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = { val gen: () => SynchronizerPrimitiveShiftReg = resetType match { case SynchronizerResetType.NonSync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) case SynchronizerResetType.Async => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset case SynchronizerResetType.Sync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset case SynchronizerResetType.Inferred => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) } AbstractPipelineReg(gen(), in) } } // Note: This module may end up with a non-AsyncReset type reset. // But the Primitives within will always have AsyncReset type. class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asAsyncReset){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async) } } io.q := Cat(output.reverse) } object AsyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } // Note: This module may end up with a non-Bool type reset. // But the Primitives within will always have Bool reset type. @deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2") class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asBool){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync) } } io.q := Cat(output.reverse) } object SyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred) } io.q := Cat(output.reverse) } object ResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}" val output = Seq.tabulate(w) { i => SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync) } io.q := Cat(output.reverse) } object SynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, None) def apply [T <: Data](in: T): T = apply (in, 3, None) } class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module { override def desiredName = s"ClockCrossingReg_w${w}" val io = IO(new Bundle{ val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) val en = Input(Bool()) }) val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en) io.q := cdc_reg } object ClockCrossingReg { def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = { val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit)) name.foreach{ cdc_reg.suggestName(_) } cdc_reg.io.d := in.asUInt cdc_reg.io.en := en cdc_reg.io.q.asTypeOf(in) } }
module AsyncResetSynchronizerShiftReg_w1_d3_i0_80( // @[SynchronizerReg.scala:80:7] input clock, // @[SynchronizerReg.scala:80:7] input reset, // @[SynchronizerReg.scala:80:7] input io_d, // @[ShiftReg.scala:36:14] output io_q // @[ShiftReg.scala:36:14] ); wire io_d_0 = io_d; // @[SynchronizerReg.scala:80:7] wire _output_T = reset; // @[SynchronizerReg.scala:86:21] wire _output_T_1 = io_d_0; // @[SynchronizerReg.scala:80:7, :87:41] wire output_0; // @[ShiftReg.scala:48:24] wire io_q_0; // @[SynchronizerReg.scala:80:7] assign io_q_0 = output_0; // @[SynchronizerReg.scala:80:7] AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_124 output_chain ( // @[ShiftReg.scala:45:23] .clock (clock), .reset (_output_T), // @[SynchronizerReg.scala:86:21] .io_d (_output_T_1), // @[SynchronizerReg.scala:87:41] .io_q (output_0) ); // @[ShiftReg.scala:45:23] assign io_q = io_q_0; // @[SynchronizerReg.scala:80:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag }
module OptimizationBarrier_TLBEntryData_279( // @[package.scala:267:30] input clock, // @[package.scala:267:30] input reset, // @[package.scala:267:30] input [19:0] io_x_ppn, // @[package.scala:268:18] input io_x_u, // @[package.scala:268:18] input io_x_g, // @[package.scala:268:18] input io_x_ae_ptw, // @[package.scala:268:18] input io_x_ae_final, // @[package.scala:268:18] input io_x_ae_stage2, // @[package.scala:268:18] input io_x_pf, // @[package.scala:268:18] input io_x_gf, // @[package.scala:268:18] input io_x_sw, // @[package.scala:268:18] input io_x_sx, // @[package.scala:268:18] input io_x_sr, // @[package.scala:268:18] input io_x_hw, // @[package.scala:268:18] input io_x_hx, // @[package.scala:268:18] input io_x_hr, // @[package.scala:268:18] input io_x_pw, // @[package.scala:268:18] input io_x_px, // @[package.scala:268:18] input io_x_pr, // @[package.scala:268:18] input io_x_ppp, // @[package.scala:268:18] input io_x_pal, // @[package.scala:268:18] input io_x_paa, // @[package.scala:268:18] input io_x_eff, // @[package.scala:268:18] input io_x_c, // @[package.scala:268:18] input io_x_fragmented_superpage, // @[package.scala:268:18] output [19:0] io_y_ppn, // @[package.scala:268:18] output io_y_u, // @[package.scala:268:18] output io_y_ae_ptw, // @[package.scala:268:18] output io_y_ae_final, // @[package.scala:268:18] output io_y_ae_stage2, // @[package.scala:268:18] output io_y_pf, // @[package.scala:268:18] output io_y_gf, // @[package.scala:268:18] output io_y_sw, // @[package.scala:268:18] output io_y_sx, // @[package.scala:268:18] output io_y_sr, // @[package.scala:268:18] output io_y_hw, // @[package.scala:268:18] output io_y_hx, // @[package.scala:268:18] output io_y_hr // @[package.scala:268:18] ); wire [19:0] io_x_ppn_0 = io_x_ppn; // @[package.scala:267:30] wire io_x_u_0 = io_x_u; // @[package.scala:267:30] wire io_x_g_0 = io_x_g; // @[package.scala:267:30] wire io_x_ae_ptw_0 = io_x_ae_ptw; // @[package.scala:267:30] wire io_x_ae_final_0 = io_x_ae_final; // @[package.scala:267:30] wire io_x_ae_stage2_0 = io_x_ae_stage2; // @[package.scala:267:30] wire io_x_pf_0 = io_x_pf; // @[package.scala:267:30] wire io_x_gf_0 = io_x_gf; // @[package.scala:267:30] wire io_x_sw_0 = io_x_sw; // @[package.scala:267:30] wire io_x_sx_0 = io_x_sx; // @[package.scala:267:30] wire io_x_sr_0 = io_x_sr; // @[package.scala:267:30] wire io_x_hw_0 = io_x_hw; // @[package.scala:267:30] wire io_x_hx_0 = io_x_hx; // @[package.scala:267:30] wire io_x_hr_0 = io_x_hr; // @[package.scala:267:30] wire io_x_pw_0 = io_x_pw; // @[package.scala:267:30] wire io_x_px_0 = io_x_px; // @[package.scala:267:30] wire io_x_pr_0 = io_x_pr; // @[package.scala:267:30] wire io_x_ppp_0 = io_x_ppp; // @[package.scala:267:30] wire io_x_pal_0 = io_x_pal; // @[package.scala:267:30] wire io_x_paa_0 = io_x_paa; // @[package.scala:267:30] wire io_x_eff_0 = io_x_eff; // @[package.scala:267:30] wire io_x_c_0 = io_x_c; // @[package.scala:267:30] wire io_x_fragmented_superpage_0 = io_x_fragmented_superpage; // @[package.scala:267:30] wire [19:0] io_y_ppn_0 = io_x_ppn_0; // @[package.scala:267:30] wire io_y_u_0 = io_x_u_0; // @[package.scala:267:30] wire io_y_g = io_x_g_0; // @[package.scala:267:30] wire io_y_ae_ptw_0 = io_x_ae_ptw_0; // @[package.scala:267:30] wire io_y_ae_final_0 = io_x_ae_final_0; // @[package.scala:267:30] wire io_y_ae_stage2_0 = io_x_ae_stage2_0; // @[package.scala:267:30] wire io_y_pf_0 = io_x_pf_0; // @[package.scala:267:30] wire io_y_gf_0 = io_x_gf_0; // @[package.scala:267:30] wire io_y_sw_0 = io_x_sw_0; // @[package.scala:267:30] wire io_y_sx_0 = io_x_sx_0; // @[package.scala:267:30] wire io_y_sr_0 = io_x_sr_0; // @[package.scala:267:30] wire io_y_hw_0 = io_x_hw_0; // @[package.scala:267:30] wire io_y_hx_0 = io_x_hx_0; // @[package.scala:267:30] wire io_y_hr_0 = io_x_hr_0; // @[package.scala:267:30] wire io_y_pw = io_x_pw_0; // @[package.scala:267:30] wire io_y_px = io_x_px_0; // @[package.scala:267:30] wire io_y_pr = io_x_pr_0; // @[package.scala:267:30] wire io_y_ppp = io_x_ppp_0; // @[package.scala:267:30] wire io_y_pal = io_x_pal_0; // @[package.scala:267:30] wire io_y_paa = io_x_paa_0; // @[package.scala:267:30] wire io_y_eff = io_x_eff_0; // @[package.scala:267:30] wire io_y_c = io_x_c_0; // @[package.scala:267:30] wire io_y_fragmented_superpage = io_x_fragmented_superpage_0; // @[package.scala:267:30] assign io_y_ppn = io_y_ppn_0; // @[package.scala:267:30] assign io_y_u = io_y_u_0; // @[package.scala:267:30] assign io_y_ae_ptw = io_y_ae_ptw_0; // @[package.scala:267:30] assign io_y_ae_final = io_y_ae_final_0; // @[package.scala:267:30] assign io_y_ae_stage2 = io_y_ae_stage2_0; // @[package.scala:267:30] assign io_y_pf = io_y_pf_0; // @[package.scala:267:30] assign io_y_gf = io_y_gf_0; // @[package.scala:267:30] assign io_y_sw = io_y_sw_0; // @[package.scala:267:30] assign io_y_sx = io_y_sx_0; // @[package.scala:267:30] assign io_y_sr = io_y_sr_0; // @[package.scala:267:30] assign io_y_hw = io_y_hw_0; // @[package.scala:267:30] assign io_y_hx = io_y_hx_0; // @[package.scala:267:30] assign io_y_hr = io_y_hr_0; // @[package.scala:267:30] endmodule
Generate the Verilog code corresponding to the following Chisel files. File PE.scala: // See README.md for license details. package gemmini import chisel3._ import chisel3.util._ class PEControl[T <: Data : Arithmetic](accType: T) extends Bundle { val dataflow = UInt(1.W) // TODO make this an Enum val propagate = UInt(1.W) // Which register should be propagated (and which should be accumulated)? val shift = UInt(log2Up(accType.getWidth).W) // TODO this isn't correct for Floats } class MacUnit[T <: Data](inputType: T, cType: T, dType: T) (implicit ev: Arithmetic[T]) extends Module { import ev._ val io = IO(new Bundle { val in_a = Input(inputType) val in_b = Input(inputType) val in_c = Input(cType) val out_d = Output(dType) }) io.out_d := io.in_c.mac(io.in_a, io.in_b) } // TODO update documentation /** * A PE implementing a MAC operation. Configured as fully combinational when integrated into a Mesh. * @param width Data width of operands */ class PE[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, max_simultaneous_matmuls: Int) (implicit ev: Arithmetic[T]) extends Module { // Debugging variables import ev._ val io = IO(new Bundle { val in_a = Input(inputType) val in_b = Input(outputType) val in_d = Input(outputType) val out_a = Output(inputType) val out_b = Output(outputType) val out_c = Output(outputType) val in_control = Input(new PEControl(accType)) val out_control = Output(new PEControl(accType)) val in_id = Input(UInt(log2Up(max_simultaneous_matmuls).W)) val out_id = Output(UInt(log2Up(max_simultaneous_matmuls).W)) val in_last = Input(Bool()) val out_last = Output(Bool()) val in_valid = Input(Bool()) val out_valid = Output(Bool()) val bad_dataflow = Output(Bool()) }) val cType = if (df == Dataflow.WS) inputType else accType // When creating PEs that support multiple dataflows, the // elaboration/synthesis tools often fail to consolidate and de-duplicate // MAC units. To force mac circuitry to be re-used, we create a "mac_unit" // module here which just performs a single MAC operation val mac_unit = Module(new MacUnit(inputType, if (df == Dataflow.WS) outputType else accType, outputType)) val a = io.in_a val b = io.in_b val d = io.in_d val c1 = Reg(cType) val c2 = Reg(cType) val dataflow = io.in_control.dataflow val prop = io.in_control.propagate val shift = io.in_control.shift val id = io.in_id val last = io.in_last val valid = io.in_valid io.out_a := a io.out_control.dataflow := dataflow io.out_control.propagate := prop io.out_control.shift := shift io.out_id := id io.out_last := last io.out_valid := valid mac_unit.io.in_a := a val last_s = RegEnable(prop, valid) val flip = last_s =/= prop val shift_offset = Mux(flip, shift, 0.U) // Which dataflow are we using? val OUTPUT_STATIONARY = Dataflow.OS.id.U(1.W) val WEIGHT_STATIONARY = Dataflow.WS.id.U(1.W) // Is c1 being computed on, or propagated forward (in the output-stationary dataflow)? val COMPUTE = 0.U(1.W) val PROPAGATE = 1.U(1.W) io.bad_dataflow := false.B when ((df == Dataflow.OS).B || ((df == Dataflow.BOTH).B && dataflow === OUTPUT_STATIONARY)) { when(prop === PROPAGATE) { io.out_c := (c1 >> shift_offset).clippedToWidthOf(outputType) io.out_b := b mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c2 c2 := mac_unit.io.out_d c1 := d.withWidthOf(cType) }.otherwise { io.out_c := (c2 >> shift_offset).clippedToWidthOf(outputType) io.out_b := b mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c1 c1 := mac_unit.io.out_d c2 := d.withWidthOf(cType) } }.elsewhen ((df == Dataflow.WS).B || ((df == Dataflow.BOTH).B && dataflow === WEIGHT_STATIONARY)) { when(prop === PROPAGATE) { io.out_c := c1 mac_unit.io.in_b := c2.asTypeOf(inputType) mac_unit.io.in_c := b io.out_b := mac_unit.io.out_d c1 := d }.otherwise { io.out_c := c2 mac_unit.io.in_b := c1.asTypeOf(inputType) mac_unit.io.in_c := b io.out_b := mac_unit.io.out_d c2 := d } }.otherwise { io.bad_dataflow := true.B //assert(false.B, "unknown dataflow") io.out_c := DontCare io.out_b := DontCare mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c2 } when (!valid) { c1 := c1 c2 := c2 mac_unit.io.in_b := DontCare mac_unit.io.in_c := DontCare } } File Arithmetic.scala: // A simple type class for Chisel datatypes that can add and multiply. To add your own type, simply create your own: // implicit MyTypeArithmetic extends Arithmetic[MyType] { ... } package gemmini import chisel3._ import chisel3.util._ import hardfloat._ // Bundles that represent the raw bits of custom datatypes case class Float(expWidth: Int, sigWidth: Int) extends Bundle { val bits = UInt((expWidth + sigWidth).W) val bias: Int = (1 << (expWidth-1)) - 1 } case class DummySInt(w: Int) extends Bundle { val bits = UInt(w.W) def dontCare: DummySInt = { val o = Wire(new DummySInt(w)) o.bits := 0.U o } } // The Arithmetic typeclass which implements various arithmetic operations on custom datatypes abstract class Arithmetic[T <: Data] { implicit def cast(t: T): ArithmeticOps[T] } abstract class ArithmeticOps[T <: Data](self: T) { def *(t: T): T def mac(m1: T, m2: T): T // Returns (m1 * m2 + self) def +(t: T): T def -(t: T): T def >>(u: UInt): T // This is a rounding shift! Rounds away from 0 def >(t: T): Bool def identity: T def withWidthOf(t: T): T def clippedToWidthOf(t: T): T // Like "withWidthOf", except that it saturates def relu: T def zero: T def minimum: T // Optional parameters, which only need to be defined if you want to enable various optimizations for transformers def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[T])] = None def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[T])] = None def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = None def mult_with_reciprocal[U <: Data](reciprocal: U) = self } object Arithmetic { implicit object UIntArithmetic extends Arithmetic[UInt] { override implicit def cast(self: UInt) = new ArithmeticOps(self) { override def *(t: UInt) = self * t override def mac(m1: UInt, m2: UInt) = m1 * m2 + self override def +(t: UInt) = self + t override def -(t: UInt) = self - t override def >>(u: UInt) = { // The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm // TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here? val point_five = Mux(u === 0.U, 0.U, self(u - 1.U)) val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U val ones_digit = self(u) val r = point_five & (zeros | ones_digit) (self >> u).asUInt + r } override def >(t: UInt): Bool = self > t override def withWidthOf(t: UInt) = self.asTypeOf(t) override def clippedToWidthOf(t: UInt) = { val sat = ((1 << (t.getWidth-1))-1).U Mux(self > sat, sat, self)(t.getWidth-1, 0) } override def relu: UInt = self override def zero: UInt = 0.U override def identity: UInt = 1.U override def minimum: UInt = 0.U } } implicit object SIntArithmetic extends Arithmetic[SInt] { override implicit def cast(self: SInt) = new ArithmeticOps(self) { override def *(t: SInt) = self * t override def mac(m1: SInt, m2: SInt) = m1 * m2 + self override def +(t: SInt) = self + t override def -(t: SInt) = self - t override def >>(u: UInt) = { // The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm // TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here? val point_five = Mux(u === 0.U, 0.U, self(u - 1.U)) val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U val ones_digit = self(u) val r = (point_five & (zeros | ones_digit)).asBool (self >> u).asSInt + Mux(r, 1.S, 0.S) } override def >(t: SInt): Bool = self > t override def withWidthOf(t: SInt) = { if (self.getWidth >= t.getWidth) self(t.getWidth-1, 0).asSInt else { val sign_bits = t.getWidth - self.getWidth val sign = self(self.getWidth-1) Cat(Cat(Seq.fill(sign_bits)(sign)), self).asTypeOf(t) } } override def clippedToWidthOf(t: SInt): SInt = { val maxsat = ((1 << (t.getWidth-1))-1).S val minsat = (-(1 << (t.getWidth-1))).S MuxCase(self, Seq((self > maxsat) -> maxsat, (self < minsat) -> minsat))(t.getWidth-1, 0).asSInt } override def relu: SInt = Mux(self >= 0.S, self, 0.S) override def zero: SInt = 0.S override def identity: SInt = 1.S override def minimum: SInt = (-(1 << (self.getWidth-1))).S override def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = { // TODO this uses a floating point divider, but we should use an integer divider instead val input = Wire(Decoupled(denom_t.cloneType)) val output = Wire(Decoupled(self.cloneType)) // We translate our integer to floating-point form so that we can use the hardfloat divider val expWidth = log2Up(self.getWidth) + 1 val sigWidth = self.getWidth def sin_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def uin_to_float(x: UInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := false.B in_to_rec_fn.io.in := x in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag rec_fn_to_in.io.out.asSInt } val self_rec = sin_to_float(self) val denom_rec = uin_to_float(input.bits) // Instantiate the hardloat divider val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options)) input.ready := divider.io.inReady divider.io.inValid := input.valid divider.io.sqrtOp := false.B divider.io.a := self_rec divider.io.b := denom_rec divider.io.roundingMode := consts.round_minMag divider.io.detectTininess := consts.tininess_afterRounding output.valid := divider.io.outValid_div output.bits := float_to_in(divider.io.out) assert(!output.valid || output.ready) Some((input, output)) } override def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = { // TODO this uses a floating point divider, but we should use an integer divider instead val input = Wire(Decoupled(UInt(0.W))) val output = Wire(Decoupled(self.cloneType)) input.bits := DontCare // We translate our integer to floating-point form so that we can use the hardfloat divider val expWidth = log2Up(self.getWidth) + 1 val sigWidth = self.getWidth def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag rec_fn_to_in.io.out.asSInt } val self_rec = in_to_float(self) // Instantiate the hardloat sqrt val sqrter = Module(new DivSqrtRecFN_small(expWidth, sigWidth, 0)) input.ready := sqrter.io.inReady sqrter.io.inValid := input.valid sqrter.io.sqrtOp := true.B sqrter.io.a := self_rec sqrter.io.b := DontCare sqrter.io.roundingMode := consts.round_minMag sqrter.io.detectTininess := consts.tininess_afterRounding output.valid := sqrter.io.outValid_sqrt output.bits := float_to_in(sqrter.io.out) assert(!output.valid || output.ready) Some((input, output)) } override def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = u match { case Float(expWidth, sigWidth) => val input = Wire(Decoupled(UInt(0.W))) val output = Wire(Decoupled(u.cloneType)) input.bits := DontCare // We translate our integer to floating-point form so that we can use the hardfloat divider def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } val self_rec = in_to_float(self) val one_rec = in_to_float(1.S) // Instantiate the hardloat divider val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options)) input.ready := divider.io.inReady divider.io.inValid := input.valid divider.io.sqrtOp := false.B divider.io.a := one_rec divider.io.b := self_rec divider.io.roundingMode := consts.round_near_even divider.io.detectTininess := consts.tininess_afterRounding output.valid := divider.io.outValid_div output.bits := fNFromRecFN(expWidth, sigWidth, divider.io.out).asTypeOf(u) assert(!output.valid || output.ready) Some((input, output)) case _ => None } override def mult_with_reciprocal[U <: Data](reciprocal: U): SInt = reciprocal match { case recip @ Float(expWidth, sigWidth) => def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag rec_fn_to_in.io.out.asSInt } val self_rec = in_to_float(self) val reciprocal_rec = recFNFromFN(expWidth, sigWidth, recip.bits) // Instantiate the hardloat divider val muladder = Module(new MulRecFN(expWidth, sigWidth)) muladder.io.roundingMode := consts.round_near_even muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := reciprocal_rec float_to_in(muladder.io.out) case _ => self } } } implicit object FloatArithmetic extends Arithmetic[Float] { // TODO Floating point arithmetic currently switches between recoded and standard formats for every operation. However, it should stay in the recoded format as it travels through the systolic array override implicit def cast(self: Float): ArithmeticOps[Float] = new ArithmeticOps(self) { override def *(t: Float): Float = { val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth)) muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := t_rec_resized val out = Wire(Float(self.expWidth, self.sigWidth)) out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) out } override def mac(m1: Float, m2: Float): Float = { // Recode all operands val m1_rec = recFNFromFN(m1.expWidth, m1.sigWidth, m1.bits) val m2_rec = recFNFromFN(m2.expWidth, m2.sigWidth, m2.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Resize m1 to self's width val m1_resizer = Module(new RecFNToRecFN(m1.expWidth, m1.sigWidth, self.expWidth, self.sigWidth)) m1_resizer.io.in := m1_rec m1_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag m1_resizer.io.detectTininess := consts.tininess_afterRounding val m1_rec_resized = m1_resizer.io.out // Resize m2 to self's width val m2_resizer = Module(new RecFNToRecFN(m2.expWidth, m2.sigWidth, self.expWidth, self.sigWidth)) m2_resizer.io.in := m2_rec m2_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag m2_resizer.io.detectTininess := consts.tininess_afterRounding val m2_rec_resized = m2_resizer.io.out // Perform multiply-add val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth)) muladder.io.op := 0.U muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := m1_rec_resized muladder.io.b := m2_rec_resized muladder.io.c := self_rec // Convert result to standard format // TODO remove these intermediate recodings val out = Wire(Float(self.expWidth, self.sigWidth)) out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) out } override def +(t: Float): Float = { require(self.getWidth >= t.getWidth) // This just makes it easier to write the resizing code // Recode all operands val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Generate 1 as a float val in_to_rec_fn = Module(new INToRecFN(1, self.expWidth, self.sigWidth)) in_to_rec_fn.io.signedIn := false.B in_to_rec_fn.io.in := 1.U in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding val one_rec = in_to_rec_fn.io.out // Resize t val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out // Perform addition val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth)) muladder.io.op := 0.U muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := t_rec_resized muladder.io.b := one_rec muladder.io.c := self_rec val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) result } override def -(t: Float): Float = { val t_sgn = t.bits(t.getWidth-1) val neg_t = Cat(~t_sgn, t.bits(t.getWidth-2,0)).asTypeOf(t) self + neg_t } override def >>(u: UInt): Float = { // Recode self val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Get 2^(-u) as a recoded float val shift_exp = Wire(UInt(self.expWidth.W)) shift_exp := self.bias.U - u val shift_fn = Cat(0.U(1.W), shift_exp, 0.U((self.sigWidth-1).W)) val shift_rec = recFNFromFN(self.expWidth, self.sigWidth, shift_fn) assert(shift_exp =/= 0.U, "scaling by denormalized numbers is not currently supported") // Multiply self and 2^(-u) val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth)) muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := shift_rec val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) result } override def >(t: Float): Bool = { // Recode all operands val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Resize t to self's width val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out val comparator = Module(new CompareRecFN(self.expWidth, self.sigWidth)) comparator.io.a := self_rec comparator.io.b := t_rec_resized comparator.io.signaling := false.B comparator.io.gt } override def withWidthOf(t: Float): Float = { val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth)) resizer.io.in := self_rec resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag resizer.io.detectTininess := consts.tininess_afterRounding val result = Wire(Float(t.expWidth, t.sigWidth)) result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out) result } override def clippedToWidthOf(t: Float): Float = { // TODO check for overflow. Right now, we just assume that overflow doesn't happen val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth)) resizer.io.in := self_rec resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag resizer.io.detectTininess := consts.tininess_afterRounding val result = Wire(Float(t.expWidth, t.sigWidth)) result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out) result } override def relu: Float = { val raw = rawFloatFromFN(self.expWidth, self.sigWidth, self.bits) val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := Mux(!raw.isZero && raw.sign, 0.U, self.bits) result } override def zero: Float = 0.U.asTypeOf(self) override def identity: Float = Cat(0.U(2.W), ~(0.U((self.expWidth-1).W)), 0.U((self.sigWidth-1).W)).asTypeOf(self) override def minimum: Float = Cat(1.U, ~(0.U(self.expWidth.W)), 0.U((self.sigWidth-1).W)).asTypeOf(self) } } implicit object DummySIntArithmetic extends Arithmetic[DummySInt] { override implicit def cast(self: DummySInt) = new ArithmeticOps(self) { override def *(t: DummySInt) = self.dontCare override def mac(m1: DummySInt, m2: DummySInt) = self.dontCare override def +(t: DummySInt) = self.dontCare override def -(t: DummySInt) = self.dontCare override def >>(t: UInt) = self.dontCare override def >(t: DummySInt): Bool = false.B override def identity = self.dontCare override def withWidthOf(t: DummySInt) = self.dontCare override def clippedToWidthOf(t: DummySInt) = self.dontCare override def relu = self.dontCare override def zero = self.dontCare override def minimum: DummySInt = self.dontCare } } }
module MacUnit_10( // @[PE.scala:14:7] input clock, // @[PE.scala:14:7] input reset, // @[PE.scala:14:7] input [7:0] io_in_a, // @[PE.scala:16:14] input [7:0] io_in_b, // @[PE.scala:16:14] input [19:0] io_in_c, // @[PE.scala:16:14] output [19:0] io_out_d // @[PE.scala:16:14] ); wire [7:0] io_in_a_0 = io_in_a; // @[PE.scala:14:7] wire [7:0] io_in_b_0 = io_in_b; // @[PE.scala:14:7] wire [19:0] io_in_c_0 = io_in_c; // @[PE.scala:14:7] wire [19:0] _io_out_d_T_3; // @[Arithmetic.scala:93:54] wire [19:0] io_out_d_0; // @[PE.scala:14:7] wire [15:0] _io_out_d_T = {{8{io_in_a_0[7]}}, io_in_a_0} * {{8{io_in_b_0[7]}}, io_in_b_0}; // @[PE.scala:14:7] wire [20:0] _io_out_d_T_1 = {{5{_io_out_d_T[15]}}, _io_out_d_T} + {io_in_c_0[19], io_in_c_0}; // @[PE.scala:14:7] wire [19:0] _io_out_d_T_2 = _io_out_d_T_1[19:0]; // @[Arithmetic.scala:93:54] assign _io_out_d_T_3 = _io_out_d_T_2; // @[Arithmetic.scala:93:54] assign io_out_d_0 = _io_out_d_T_3; // @[PE.scala:14:7] assign io_out_d = io_out_d_0; // @[PE.scala:14:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File primitives.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import chisel3.util._ //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object lowMask { def apply(in: UInt, topBound: BigInt, bottomBound: BigInt): UInt = { require(topBound != bottomBound) val numInVals = BigInt(1)<<in.getWidth if (topBound < bottomBound) { lowMask(~in, numInVals - 1 - topBound, numInVals - 1 - bottomBound) } else if (numInVals > 64 /* Empirical */) { // For simulation performance, we should avoid generating // exteremely wide shifters, so we divide and conquer. // Empirically, this does not impact synthesis QoR. val mid = numInVals / 2 val msb = in(in.getWidth - 1) val lsbs = in(in.getWidth - 2, 0) if (mid < topBound) { if (mid <= bottomBound) { Mux(msb, lowMask(lsbs, topBound - mid, bottomBound - mid), 0.U ) } else { Mux(msb, lowMask(lsbs, topBound - mid, 0) ## ((BigInt(1)<<(mid - bottomBound).toInt) - 1).U, lowMask(lsbs, mid, bottomBound) ) } } else { ~Mux(msb, 0.U, ~lowMask(lsbs, topBound, bottomBound)) } } else { val shift = (BigInt(-1)<<numInVals.toInt).S>>in Reverse( shift( (numInVals - 1 - bottomBound).toInt, (numInVals - topBound).toInt ) ) } } } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object countLeadingZeros { def apply(in: UInt): UInt = PriorityEncoder(in.asBools.reverse) } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object orReduceBy2 { def apply(in: UInt): UInt = { val reducedWidth = (in.getWidth + 1)>>1 val reducedVec = Wire(Vec(reducedWidth, Bool())) for (ix <- 0 until reducedWidth - 1) { reducedVec(ix) := in(ix * 2 + 1, ix * 2).orR } reducedVec(reducedWidth - 1) := in(in.getWidth - 1, (reducedWidth - 1) * 2).orR reducedVec.asUInt } } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object orReduceBy4 { def apply(in: UInt): UInt = { val reducedWidth = (in.getWidth + 3)>>2 val reducedVec = Wire(Vec(reducedWidth, Bool())) for (ix <- 0 until reducedWidth - 1) { reducedVec(ix) := in(ix * 4 + 3, ix * 4).orR } reducedVec(reducedWidth - 1) := in(in.getWidth - 1, (reducedWidth - 1) * 4).orR reducedVec.asUInt } } File RoundAnyRawFNToRecFN.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import chisel3.util.Fill import consts._ //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class RoundAnyRawFNToRecFN( inExpWidth: Int, inSigWidth: Int, outExpWidth: Int, outSigWidth: Int, options: Int ) extends RawModule { override def desiredName = s"RoundAnyRawFNToRecFN_ie${inExpWidth}_is${inSigWidth}_oe${outExpWidth}_os${outSigWidth}" val io = IO(new Bundle { val invalidExc = Input(Bool()) // overrides 'infiniteExc' and 'in' val infiniteExc = Input(Bool()) // overrides 'in' except for 'in.sign' val in = Input(new RawFloat(inExpWidth, inSigWidth)) // (allowed exponent range has limits) val roundingMode = Input(UInt(3.W)) val detectTininess = Input(UInt(1.W)) val out = Output(Bits((outExpWidth + outSigWidth + 1).W)) val exceptionFlags = Output(Bits(5.W)) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val sigMSBitAlwaysZero = ((options & flRoundOpt_sigMSBitAlwaysZero) != 0) val effectiveInSigWidth = if (sigMSBitAlwaysZero) inSigWidth else inSigWidth + 1 val neverUnderflows = ((options & (flRoundOpt_neverUnderflows | flRoundOpt_subnormsAlwaysExact) ) != 0) || (inExpWidth < outExpWidth) val neverOverflows = ((options & flRoundOpt_neverOverflows) != 0) || (inExpWidth < outExpWidth) val outNaNExp = BigInt(7)<<(outExpWidth - 2) val outInfExp = BigInt(6)<<(outExpWidth - 2) val outMaxFiniteExp = outInfExp - 1 val outMinNormExp = (BigInt(1)<<(outExpWidth - 1)) + 2 val outMinNonzeroExp = outMinNormExp - outSigWidth + 1 //------------------------------------------------------------------------ //------------------------------------------------------------------------ val roundingMode_near_even = (io.roundingMode === round_near_even) val roundingMode_minMag = (io.roundingMode === round_minMag) val roundingMode_min = (io.roundingMode === round_min) val roundingMode_max = (io.roundingMode === round_max) val roundingMode_near_maxMag = (io.roundingMode === round_near_maxMag) val roundingMode_odd = (io.roundingMode === round_odd) val roundMagUp = (roundingMode_min && io.in.sign) || (roundingMode_max && ! io.in.sign) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val sAdjustedExp = if (inExpWidth < outExpWidth) (io.in.sExp +& ((BigInt(1)<<outExpWidth) - (BigInt(1)<<inExpWidth)).S )(outExpWidth, 0).zext else if (inExpWidth == outExpWidth) io.in.sExp else io.in.sExp +& ((BigInt(1)<<outExpWidth) - (BigInt(1)<<inExpWidth)).S val adjustedSig = if (inSigWidth <= outSigWidth + 2) io.in.sig<<(outSigWidth - inSigWidth + 2) else (io.in.sig(inSigWidth, inSigWidth - outSigWidth - 1) ## io.in.sig(inSigWidth - outSigWidth - 2, 0).orR ) val doShiftSigDown1 = if (sigMSBitAlwaysZero) false.B else adjustedSig(outSigWidth + 2) val common_expOut = Wire(UInt((outExpWidth + 1).W)) val common_fractOut = Wire(UInt((outSigWidth - 1).W)) val common_overflow = Wire(Bool()) val common_totalUnderflow = Wire(Bool()) val common_underflow = Wire(Bool()) val common_inexact = Wire(Bool()) if ( neverOverflows && neverUnderflows && (effectiveInSigWidth <= outSigWidth) ) { //-------------------------------------------------------------------- //-------------------------------------------------------------------- common_expOut := sAdjustedExp(outExpWidth, 0) + doShiftSigDown1 common_fractOut := Mux(doShiftSigDown1, adjustedSig(outSigWidth + 1, 3), adjustedSig(outSigWidth, 2) ) common_overflow := false.B common_totalUnderflow := false.B common_underflow := false.B common_inexact := false.B } else { //-------------------------------------------------------------------- //-------------------------------------------------------------------- val roundMask = if (neverUnderflows) 0.U(outSigWidth.W) ## doShiftSigDown1 ## 3.U(2.W) else (lowMask( sAdjustedExp(outExpWidth, 0), outMinNormExp - outSigWidth - 1, outMinNormExp ) | doShiftSigDown1) ## 3.U(2.W) val shiftedRoundMask = 0.U(1.W) ## roundMask>>1 val roundPosMask = ~shiftedRoundMask & roundMask val roundPosBit = (adjustedSig & roundPosMask).orR val anyRoundExtra = (adjustedSig & shiftedRoundMask).orR val anyRound = roundPosBit || anyRoundExtra val roundIncr = ((roundingMode_near_even || roundingMode_near_maxMag) && roundPosBit) || (roundMagUp && anyRound) val roundedSig: Bits = Mux(roundIncr, (((adjustedSig | roundMask)>>2) +& 1.U) & ~Mux(roundingMode_near_even && roundPosBit && ! anyRoundExtra, roundMask>>1, 0.U((outSigWidth + 2).W) ), (adjustedSig & ~roundMask)>>2 | Mux(roundingMode_odd && anyRound, roundPosMask>>1, 0.U) ) //*** IF SIG WIDTH IS VERY NARROW, NEED TO ACCOUNT FOR ROUND-EVEN ZEROING //*** M.S. BIT OF SUBNORMAL SIG? val sRoundedExp = sAdjustedExp +& (roundedSig>>outSigWidth).asUInt.zext common_expOut := sRoundedExp(outExpWidth, 0) common_fractOut := Mux(doShiftSigDown1, roundedSig(outSigWidth - 1, 1), roundedSig(outSigWidth - 2, 0) ) common_overflow := (if (neverOverflows) false.B else //*** REWRITE BASED ON BEFORE-ROUNDING EXPONENT?: (sRoundedExp>>(outExpWidth - 1) >= 3.S)) common_totalUnderflow := (if (neverUnderflows) false.B else //*** WOULD BE GOOD ENOUGH TO USE EXPONENT BEFORE ROUNDING?: (sRoundedExp < outMinNonzeroExp.S)) val unboundedRange_roundPosBit = Mux(doShiftSigDown1, adjustedSig(2), adjustedSig(1)) val unboundedRange_anyRound = (doShiftSigDown1 && adjustedSig(2)) || adjustedSig(1, 0).orR val unboundedRange_roundIncr = ((roundingMode_near_even || roundingMode_near_maxMag) && unboundedRange_roundPosBit) || (roundMagUp && unboundedRange_anyRound) val roundCarry = Mux(doShiftSigDown1, roundedSig(outSigWidth + 1), roundedSig(outSigWidth) ) common_underflow := (if (neverUnderflows) false.B else common_totalUnderflow || //*** IF SIG WIDTH IS VERY NARROW, NEED TO ACCOUNT FOR ROUND-EVEN ZEROING //*** M.S. BIT OF SUBNORMAL SIG? (anyRound && ((sAdjustedExp>>outExpWidth) <= 0.S) && Mux(doShiftSigDown1, roundMask(3), roundMask(2)) && ! ((io.detectTininess === tininess_afterRounding) && ! Mux(doShiftSigDown1, roundMask(4), roundMask(3) ) && roundCarry && roundPosBit && unboundedRange_roundIncr))) common_inexact := common_totalUnderflow || anyRound } //------------------------------------------------------------------------ //------------------------------------------------------------------------ val isNaNOut = io.invalidExc || io.in.isNaN val notNaN_isSpecialInfOut = io.infiniteExc || io.in.isInf val commonCase = ! isNaNOut && ! notNaN_isSpecialInfOut && ! io.in.isZero val overflow = commonCase && common_overflow val underflow = commonCase && common_underflow val inexact = overflow || (commonCase && common_inexact) val overflow_roundMagUp = roundingMode_near_even || roundingMode_near_maxMag || roundMagUp val pegMinNonzeroMagOut = commonCase && common_totalUnderflow && (roundMagUp || roundingMode_odd) val pegMaxFiniteMagOut = overflow && ! overflow_roundMagUp val notNaN_isInfOut = notNaN_isSpecialInfOut || (overflow && overflow_roundMagUp) val signOut = Mux(isNaNOut, false.B, io.in.sign) val expOut = (common_expOut & ~Mux(io.in.isZero || common_totalUnderflow, (BigInt(7)<<(outExpWidth - 2)).U((outExpWidth + 1).W), 0.U ) & ~Mux(pegMinNonzeroMagOut, ~outMinNonzeroExp.U((outExpWidth + 1).W), 0.U ) & ~Mux(pegMaxFiniteMagOut, (BigInt(1)<<(outExpWidth - 1)).U((outExpWidth + 1).W), 0.U ) & ~Mux(notNaN_isInfOut, (BigInt(1)<<(outExpWidth - 2)).U((outExpWidth + 1).W), 0.U )) | Mux(pegMinNonzeroMagOut, outMinNonzeroExp.U((outExpWidth + 1).W), 0.U ) | Mux(pegMaxFiniteMagOut, outMaxFiniteExp.U((outExpWidth + 1).W), 0.U ) | Mux(notNaN_isInfOut, outInfExp.U((outExpWidth + 1).W), 0.U) | Mux(isNaNOut, outNaNExp.U((outExpWidth + 1).W), 0.U) val fractOut = Mux(isNaNOut || io.in.isZero || common_totalUnderflow, Mux(isNaNOut, (BigInt(1)<<(outSigWidth - 2)).U, 0.U), common_fractOut ) | Fill(outSigWidth - 1, pegMaxFiniteMagOut) io.out := signOut ## expOut ## fractOut io.exceptionFlags := io.invalidExc ## io.infiniteExc ## overflow ## underflow ## inexact } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class RoundRawFNToRecFN(expWidth: Int, sigWidth: Int, options: Int) extends RawModule { override def desiredName = s"RoundRawFNToRecFN_e${expWidth}_s${sigWidth}" val io = IO(new Bundle { val invalidExc = Input(Bool()) // overrides 'infiniteExc' and 'in' val infiniteExc = Input(Bool()) // overrides 'in' except for 'in.sign' val in = Input(new RawFloat(expWidth, sigWidth + 2)) val roundingMode = Input(UInt(3.W)) val detectTininess = Input(UInt(1.W)) val out = Output(Bits((expWidth + sigWidth + 1).W)) val exceptionFlags = Output(Bits(5.W)) }) val roundAnyRawFNToRecFN = Module( new RoundAnyRawFNToRecFN( expWidth, sigWidth + 2, expWidth, sigWidth, options)) roundAnyRawFNToRecFN.io.invalidExc := io.invalidExc roundAnyRawFNToRecFN.io.infiniteExc := io.infiniteExc roundAnyRawFNToRecFN.io.in := io.in roundAnyRawFNToRecFN.io.roundingMode := io.roundingMode roundAnyRawFNToRecFN.io.detectTininess := io.detectTininess io.out := roundAnyRawFNToRecFN.io.out io.exceptionFlags := roundAnyRawFNToRecFN.io.exceptionFlags }
module RoundAnyRawFNToRecFN_ie8_is26_oe8_os24_129( // @[RoundAnyRawFNToRecFN.scala:48:5] input io_invalidExc, // @[RoundAnyRawFNToRecFN.scala:58:16] input io_in_isNaN, // @[RoundAnyRawFNToRecFN.scala:58:16] input io_in_isInf, // @[RoundAnyRawFNToRecFN.scala:58:16] input io_in_isZero, // @[RoundAnyRawFNToRecFN.scala:58:16] input io_in_sign, // @[RoundAnyRawFNToRecFN.scala:58:16] input [9:0] io_in_sExp, // @[RoundAnyRawFNToRecFN.scala:58:16] input [26:0] io_in_sig, // @[RoundAnyRawFNToRecFN.scala:58:16] output [32:0] io_out, // @[RoundAnyRawFNToRecFN.scala:58:16] output [4:0] io_exceptionFlags // @[RoundAnyRawFNToRecFN.scala:58:16] ); wire io_invalidExc_0 = io_invalidExc; // @[RoundAnyRawFNToRecFN.scala:48:5] wire io_in_isNaN_0 = io_in_isNaN; // @[RoundAnyRawFNToRecFN.scala:48:5] wire io_in_isInf_0 = io_in_isInf; // @[RoundAnyRawFNToRecFN.scala:48:5] wire io_in_isZero_0 = io_in_isZero; // @[RoundAnyRawFNToRecFN.scala:48:5] wire io_in_sign_0 = io_in_sign; // @[RoundAnyRawFNToRecFN.scala:48:5] wire [9:0] io_in_sExp_0 = io_in_sExp; // @[RoundAnyRawFNToRecFN.scala:48:5] wire [26:0] io_in_sig_0 = io_in_sig; // @[RoundAnyRawFNToRecFN.scala:48:5] wire [8:0] _expOut_T_4 = 9'h194; // @[RoundAnyRawFNToRecFN.scala:258:19] wire [15:0] _roundMask_T_5 = 16'hFF; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_4 = 16'hFF00; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_10 = 16'hFF00; // @[primitives.scala:77:20] wire [11:0] _roundMask_T_13 = 12'hFF; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_14 = 16'hFF0; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_15 = 16'hF0F; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_20 = 16'hF0F0; // @[primitives.scala:77:20] wire [13:0] _roundMask_T_23 = 14'hF0F; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_24 = 16'h3C3C; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_25 = 16'h3333; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_30 = 16'hCCCC; // @[primitives.scala:77:20] wire [14:0] _roundMask_T_33 = 15'h3333; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_34 = 16'h6666; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_35 = 16'h5555; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_40 = 16'hAAAA; // @[primitives.scala:77:20] wire [25:0] _roundedSig_T_15 = 26'h0; // @[RoundAnyRawFNToRecFN.scala:181:24] wire [8:0] _expOut_T_6 = 9'h1FF; // @[RoundAnyRawFNToRecFN.scala:257:14, :261:14] wire [8:0] _expOut_T_9 = 9'h1FF; // @[RoundAnyRawFNToRecFN.scala:257:14, :261:14] wire [8:0] _expOut_T_5 = 9'h0; // @[RoundAnyRawFNToRecFN.scala:257:18] wire [8:0] _expOut_T_8 = 9'h0; // @[RoundAnyRawFNToRecFN.scala:261:18] wire [8:0] _expOut_T_14 = 9'h0; // @[RoundAnyRawFNToRecFN.scala:269:16] wire [8:0] _expOut_T_16 = 9'h0; // @[RoundAnyRawFNToRecFN.scala:273:16] wire [22:0] _fractOut_T_4 = 23'h0; // @[RoundAnyRawFNToRecFN.scala:284:13] wire io_detectTininess = 1'h1; // @[RoundAnyRawFNToRecFN.scala:48:5] wire roundingMode_near_even = 1'h1; // @[RoundAnyRawFNToRecFN.scala:90:53] wire _roundIncr_T = 1'h1; // @[RoundAnyRawFNToRecFN.scala:169:38] wire _unboundedRange_roundIncr_T = 1'h1; // @[RoundAnyRawFNToRecFN.scala:207:38] wire _common_underflow_T_7 = 1'h1; // @[RoundAnyRawFNToRecFN.scala:222:49] wire _overflow_roundMagUp_T = 1'h1; // @[RoundAnyRawFNToRecFN.scala:243:32] wire overflow_roundMagUp = 1'h1; // @[RoundAnyRawFNToRecFN.scala:243:60] wire [2:0] io_roundingMode = 3'h0; // @[RoundAnyRawFNToRecFN.scala:48:5] wire io_infiniteExc = 1'h0; // @[RoundAnyRawFNToRecFN.scala:48:5] wire roundingMode_minMag = 1'h0; // @[RoundAnyRawFNToRecFN.scala:91:53] wire roundingMode_min = 1'h0; // @[RoundAnyRawFNToRecFN.scala:92:53] wire roundingMode_max = 1'h0; // @[RoundAnyRawFNToRecFN.scala:93:53] wire roundingMode_near_maxMag = 1'h0; // @[RoundAnyRawFNToRecFN.scala:94:53] wire roundingMode_odd = 1'h0; // @[RoundAnyRawFNToRecFN.scala:95:53] wire _roundMagUp_T = 1'h0; // @[RoundAnyRawFNToRecFN.scala:98:27] wire _roundMagUp_T_2 = 1'h0; // @[RoundAnyRawFNToRecFN.scala:98:63] wire roundMagUp = 1'h0; // @[RoundAnyRawFNToRecFN.scala:98:42] wire _roundIncr_T_2 = 1'h0; // @[RoundAnyRawFNToRecFN.scala:171:29] wire _roundedSig_T_13 = 1'h0; // @[RoundAnyRawFNToRecFN.scala:181:42] wire _unboundedRange_roundIncr_T_2 = 1'h0; // @[RoundAnyRawFNToRecFN.scala:209:29] wire _pegMinNonzeroMagOut_T_1 = 1'h0; // @[RoundAnyRawFNToRecFN.scala:245:60] wire pegMinNonzeroMagOut = 1'h0; // @[RoundAnyRawFNToRecFN.scala:245:45] wire _pegMaxFiniteMagOut_T = 1'h0; // @[RoundAnyRawFNToRecFN.scala:246:42] wire pegMaxFiniteMagOut = 1'h0; // @[RoundAnyRawFNToRecFN.scala:246:39] wire notNaN_isSpecialInfOut = io_in_isInf_0; // @[RoundAnyRawFNToRecFN.scala:48:5, :236:49] wire [26:0] adjustedSig = io_in_sig_0; // @[RoundAnyRawFNToRecFN.scala:48:5, :114:22] wire [32:0] _io_out_T_1; // @[RoundAnyRawFNToRecFN.scala:286:33] wire [4:0] _io_exceptionFlags_T_3; // @[RoundAnyRawFNToRecFN.scala:288:66] wire [32:0] io_out_0; // @[RoundAnyRawFNToRecFN.scala:48:5] wire [4:0] io_exceptionFlags_0; // @[RoundAnyRawFNToRecFN.scala:48:5] wire _roundMagUp_T_1 = ~io_in_sign_0; // @[RoundAnyRawFNToRecFN.scala:48:5, :98:66] wire doShiftSigDown1 = adjustedSig[26]; // @[RoundAnyRawFNToRecFN.scala:114:22, :120:57] wire [8:0] _common_expOut_T; // @[RoundAnyRawFNToRecFN.scala:187:37] wire [8:0] common_expOut; // @[RoundAnyRawFNToRecFN.scala:122:31] wire [22:0] _common_fractOut_T_2; // @[RoundAnyRawFNToRecFN.scala:189:16] wire [22:0] common_fractOut; // @[RoundAnyRawFNToRecFN.scala:123:31] wire _common_overflow_T_1; // @[RoundAnyRawFNToRecFN.scala:196:50] wire common_overflow; // @[RoundAnyRawFNToRecFN.scala:124:37] wire _common_totalUnderflow_T; // @[RoundAnyRawFNToRecFN.scala:200:31] wire common_totalUnderflow; // @[RoundAnyRawFNToRecFN.scala:125:37] wire _common_underflow_T_18; // @[RoundAnyRawFNToRecFN.scala:217:40] wire common_underflow; // @[RoundAnyRawFNToRecFN.scala:126:37] wire _common_inexact_T; // @[RoundAnyRawFNToRecFN.scala:230:49] wire common_inexact; // @[RoundAnyRawFNToRecFN.scala:127:37] wire [8:0] _roundMask_T = io_in_sExp_0[8:0]; // @[RoundAnyRawFNToRecFN.scala:48:5, :156:37] wire [8:0] _roundMask_T_1 = ~_roundMask_T; // @[primitives.scala:52:21] wire roundMask_msb = _roundMask_T_1[8]; // @[primitives.scala:52:21, :58:25] wire [7:0] roundMask_lsbs = _roundMask_T_1[7:0]; // @[primitives.scala:52:21, :59:26] wire roundMask_msb_1 = roundMask_lsbs[7]; // @[primitives.scala:58:25, :59:26] wire [6:0] roundMask_lsbs_1 = roundMask_lsbs[6:0]; // @[primitives.scala:59:26] wire roundMask_msb_2 = roundMask_lsbs_1[6]; // @[primitives.scala:58:25, :59:26] wire roundMask_msb_3 = roundMask_lsbs_1[6]; // @[primitives.scala:58:25, :59:26] wire [5:0] roundMask_lsbs_2 = roundMask_lsbs_1[5:0]; // @[primitives.scala:59:26] wire [5:0] roundMask_lsbs_3 = roundMask_lsbs_1[5:0]; // @[primitives.scala:59:26] wire [64:0] roundMask_shift = $signed(65'sh10000000000000000 >>> roundMask_lsbs_2); // @[primitives.scala:59:26, :76:56] wire [21:0] _roundMask_T_2 = roundMask_shift[63:42]; // @[primitives.scala:76:56, :78:22] wire [15:0] _roundMask_T_3 = _roundMask_T_2[15:0]; // @[primitives.scala:77:20, :78:22] wire [7:0] _roundMask_T_6 = _roundMask_T_3[15:8]; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_7 = {8'h0, _roundMask_T_6}; // @[primitives.scala:77:20] wire [7:0] _roundMask_T_8 = _roundMask_T_3[7:0]; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_9 = {_roundMask_T_8, 8'h0}; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_11 = _roundMask_T_9 & 16'hFF00; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_12 = _roundMask_T_7 | _roundMask_T_11; // @[primitives.scala:77:20] wire [11:0] _roundMask_T_16 = _roundMask_T_12[15:4]; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_17 = {4'h0, _roundMask_T_16 & 12'hF0F}; // @[primitives.scala:77:20] wire [11:0] _roundMask_T_18 = _roundMask_T_12[11:0]; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_19 = {_roundMask_T_18, 4'h0}; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_21 = _roundMask_T_19 & 16'hF0F0; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_22 = _roundMask_T_17 | _roundMask_T_21; // @[primitives.scala:77:20] wire [13:0] _roundMask_T_26 = _roundMask_T_22[15:2]; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_27 = {2'h0, _roundMask_T_26 & 14'h3333}; // @[primitives.scala:77:20] wire [13:0] _roundMask_T_28 = _roundMask_T_22[13:0]; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_29 = {_roundMask_T_28, 2'h0}; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_31 = _roundMask_T_29 & 16'hCCCC; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_32 = _roundMask_T_27 | _roundMask_T_31; // @[primitives.scala:77:20] wire [14:0] _roundMask_T_36 = _roundMask_T_32[15:1]; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_37 = {1'h0, _roundMask_T_36 & 15'h5555}; // @[primitives.scala:77:20] wire [14:0] _roundMask_T_38 = _roundMask_T_32[14:0]; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_39 = {_roundMask_T_38, 1'h0}; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_41 = _roundMask_T_39 & 16'hAAAA; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_42 = _roundMask_T_37 | _roundMask_T_41; // @[primitives.scala:77:20] wire [5:0] _roundMask_T_43 = _roundMask_T_2[21:16]; // @[primitives.scala:77:20, :78:22] wire [3:0] _roundMask_T_44 = _roundMask_T_43[3:0]; // @[primitives.scala:77:20] wire [1:0] _roundMask_T_45 = _roundMask_T_44[1:0]; // @[primitives.scala:77:20] wire _roundMask_T_46 = _roundMask_T_45[0]; // @[primitives.scala:77:20] wire _roundMask_T_47 = _roundMask_T_45[1]; // @[primitives.scala:77:20] wire [1:0] _roundMask_T_48 = {_roundMask_T_46, _roundMask_T_47}; // @[primitives.scala:77:20] wire [1:0] _roundMask_T_49 = _roundMask_T_44[3:2]; // @[primitives.scala:77:20] wire _roundMask_T_50 = _roundMask_T_49[0]; // @[primitives.scala:77:20] wire _roundMask_T_51 = _roundMask_T_49[1]; // @[primitives.scala:77:20] wire [1:0] _roundMask_T_52 = {_roundMask_T_50, _roundMask_T_51}; // @[primitives.scala:77:20] wire [3:0] _roundMask_T_53 = {_roundMask_T_48, _roundMask_T_52}; // @[primitives.scala:77:20] wire [1:0] _roundMask_T_54 = _roundMask_T_43[5:4]; // @[primitives.scala:77:20] wire _roundMask_T_55 = _roundMask_T_54[0]; // @[primitives.scala:77:20] wire _roundMask_T_56 = _roundMask_T_54[1]; // @[primitives.scala:77:20] wire [1:0] _roundMask_T_57 = {_roundMask_T_55, _roundMask_T_56}; // @[primitives.scala:77:20] wire [5:0] _roundMask_T_58 = {_roundMask_T_53, _roundMask_T_57}; // @[primitives.scala:77:20] wire [21:0] _roundMask_T_59 = {_roundMask_T_42, _roundMask_T_58}; // @[primitives.scala:77:20] wire [21:0] _roundMask_T_60 = ~_roundMask_T_59; // @[primitives.scala:73:32, :77:20] wire [21:0] _roundMask_T_61 = roundMask_msb_2 ? 22'h0 : _roundMask_T_60; // @[primitives.scala:58:25, :73:{21,32}] wire [21:0] _roundMask_T_62 = ~_roundMask_T_61; // @[primitives.scala:73:{17,21}] wire [24:0] _roundMask_T_63 = {_roundMask_T_62, 3'h7}; // @[primitives.scala:68:58, :73:17] wire [64:0] roundMask_shift_1 = $signed(65'sh10000000000000000 >>> roundMask_lsbs_3); // @[primitives.scala:59:26, :76:56] wire [2:0] _roundMask_T_64 = roundMask_shift_1[2:0]; // @[primitives.scala:76:56, :78:22] wire [1:0] _roundMask_T_65 = _roundMask_T_64[1:0]; // @[primitives.scala:77:20, :78:22] wire _roundMask_T_66 = _roundMask_T_65[0]; // @[primitives.scala:77:20] wire _roundMask_T_67 = _roundMask_T_65[1]; // @[primitives.scala:77:20] wire [1:0] _roundMask_T_68 = {_roundMask_T_66, _roundMask_T_67}; // @[primitives.scala:77:20] wire _roundMask_T_69 = _roundMask_T_64[2]; // @[primitives.scala:77:20, :78:22] wire [2:0] _roundMask_T_70 = {_roundMask_T_68, _roundMask_T_69}; // @[primitives.scala:77:20] wire [2:0] _roundMask_T_71 = roundMask_msb_3 ? _roundMask_T_70 : 3'h0; // @[primitives.scala:58:25, :62:24, :77:20] wire [24:0] _roundMask_T_72 = roundMask_msb_1 ? _roundMask_T_63 : {22'h0, _roundMask_T_71}; // @[primitives.scala:58:25, :62:24, :67:24, :68:58] wire [24:0] _roundMask_T_73 = roundMask_msb ? _roundMask_T_72 : 25'h0; // @[primitives.scala:58:25, :62:24, :67:24] wire [24:0] _roundMask_T_74 = {_roundMask_T_73[24:1], _roundMask_T_73[0] | doShiftSigDown1}; // @[primitives.scala:62:24] wire [26:0] roundMask = {_roundMask_T_74, 2'h3}; // @[RoundAnyRawFNToRecFN.scala:159:{23,42}] wire [27:0] _shiftedRoundMask_T = {1'h0, roundMask}; // @[RoundAnyRawFNToRecFN.scala:159:42, :162:41] wire [26:0] shiftedRoundMask = _shiftedRoundMask_T[27:1]; // @[RoundAnyRawFNToRecFN.scala:162:{41,53}] wire [26:0] _roundPosMask_T = ~shiftedRoundMask; // @[RoundAnyRawFNToRecFN.scala:162:53, :163:28] wire [26:0] roundPosMask = _roundPosMask_T & roundMask; // @[RoundAnyRawFNToRecFN.scala:159:42, :163:{28,46}] wire [26:0] _roundPosBit_T = adjustedSig & roundPosMask; // @[RoundAnyRawFNToRecFN.scala:114:22, :163:46, :164:40] wire roundPosBit = |_roundPosBit_T; // @[RoundAnyRawFNToRecFN.scala:164:{40,56}] wire _roundIncr_T_1 = roundPosBit; // @[RoundAnyRawFNToRecFN.scala:164:56, :169:67] wire _roundedSig_T_3 = roundPosBit; // @[RoundAnyRawFNToRecFN.scala:164:56, :175:49] wire [26:0] _anyRoundExtra_T = adjustedSig & shiftedRoundMask; // @[RoundAnyRawFNToRecFN.scala:114:22, :162:53, :165:42] wire anyRoundExtra = |_anyRoundExtra_T; // @[RoundAnyRawFNToRecFN.scala:165:{42,62}] wire anyRound = roundPosBit | anyRoundExtra; // @[RoundAnyRawFNToRecFN.scala:164:56, :165:62, :166:36] wire roundIncr = _roundIncr_T_1; // @[RoundAnyRawFNToRecFN.scala:169:67, :170:31] wire [26:0] _roundedSig_T = adjustedSig | roundMask; // @[RoundAnyRawFNToRecFN.scala:114:22, :159:42, :174:32] wire [24:0] _roundedSig_T_1 = _roundedSig_T[26:2]; // @[RoundAnyRawFNToRecFN.scala:174:{32,44}] wire [25:0] _roundedSig_T_2 = {1'h0, _roundedSig_T_1} + 26'h1; // @[RoundAnyRawFNToRecFN.scala:174:{44,49}] wire _roundedSig_T_4 = ~anyRoundExtra; // @[RoundAnyRawFNToRecFN.scala:165:62, :176:30] wire _roundedSig_T_5 = _roundedSig_T_3 & _roundedSig_T_4; // @[RoundAnyRawFNToRecFN.scala:175:{49,64}, :176:30] wire [25:0] _roundedSig_T_6 = roundMask[26:1]; // @[RoundAnyRawFNToRecFN.scala:159:42, :177:35] wire [25:0] _roundedSig_T_7 = _roundedSig_T_5 ? _roundedSig_T_6 : 26'h0; // @[RoundAnyRawFNToRecFN.scala:175:{25,64}, :177:35] wire [25:0] _roundedSig_T_8 = ~_roundedSig_T_7; // @[RoundAnyRawFNToRecFN.scala:175:{21,25}] wire [25:0] _roundedSig_T_9 = _roundedSig_T_2 & _roundedSig_T_8; // @[RoundAnyRawFNToRecFN.scala:174:{49,57}, :175:21] wire [26:0] _roundedSig_T_10 = ~roundMask; // @[RoundAnyRawFNToRecFN.scala:159:42, :180:32] wire [26:0] _roundedSig_T_11 = adjustedSig & _roundedSig_T_10; // @[RoundAnyRawFNToRecFN.scala:114:22, :180:{30,32}] wire [24:0] _roundedSig_T_12 = _roundedSig_T_11[26:2]; // @[RoundAnyRawFNToRecFN.scala:180:{30,43}] wire [25:0] _roundedSig_T_14 = roundPosMask[26:1]; // @[RoundAnyRawFNToRecFN.scala:163:46, :181:67] wire [25:0] _roundedSig_T_16 = {1'h0, _roundedSig_T_12}; // @[RoundAnyRawFNToRecFN.scala:180:{43,47}] wire [25:0] roundedSig = roundIncr ? _roundedSig_T_9 : _roundedSig_T_16; // @[RoundAnyRawFNToRecFN.scala:170:31, :173:16, :174:57, :180:47] wire [1:0] _sRoundedExp_T = roundedSig[25:24]; // @[RoundAnyRawFNToRecFN.scala:173:16, :185:54] wire [2:0] _sRoundedExp_T_1 = {1'h0, _sRoundedExp_T}; // @[RoundAnyRawFNToRecFN.scala:185:{54,76}] wire [10:0] sRoundedExp = {io_in_sExp_0[9], io_in_sExp_0} + {{8{_sRoundedExp_T_1[2]}}, _sRoundedExp_T_1}; // @[RoundAnyRawFNToRecFN.scala:48:5, :185:{40,76}] assign _common_expOut_T = sRoundedExp[8:0]; // @[RoundAnyRawFNToRecFN.scala:185:40, :187:37] assign common_expOut = _common_expOut_T; // @[RoundAnyRawFNToRecFN.scala:122:31, :187:37] wire [22:0] _common_fractOut_T = roundedSig[23:1]; // @[RoundAnyRawFNToRecFN.scala:173:16, :190:27] wire [22:0] _common_fractOut_T_1 = roundedSig[22:0]; // @[RoundAnyRawFNToRecFN.scala:173:16, :191:27] assign _common_fractOut_T_2 = doShiftSigDown1 ? _common_fractOut_T : _common_fractOut_T_1; // @[RoundAnyRawFNToRecFN.scala:120:57, :189:16, :190:27, :191:27] assign common_fractOut = _common_fractOut_T_2; // @[RoundAnyRawFNToRecFN.scala:123:31, :189:16] wire [3:0] _common_overflow_T = sRoundedExp[10:7]; // @[RoundAnyRawFNToRecFN.scala:185:40, :196:30] assign _common_overflow_T_1 = $signed(_common_overflow_T) > 4'sh2; // @[RoundAnyRawFNToRecFN.scala:196:{30,50}] assign common_overflow = _common_overflow_T_1; // @[RoundAnyRawFNToRecFN.scala:124:37, :196:50] assign _common_totalUnderflow_T = $signed(sRoundedExp) < 11'sh6B; // @[RoundAnyRawFNToRecFN.scala:185:40, :200:31] assign common_totalUnderflow = _common_totalUnderflow_T; // @[RoundAnyRawFNToRecFN.scala:125:37, :200:31] wire _unboundedRange_roundPosBit_T = adjustedSig[2]; // @[RoundAnyRawFNToRecFN.scala:114:22, :203:45] wire _unboundedRange_anyRound_T = adjustedSig[2]; // @[RoundAnyRawFNToRecFN.scala:114:22, :203:45, :205:44] wire _unboundedRange_roundPosBit_T_1 = adjustedSig[1]; // @[RoundAnyRawFNToRecFN.scala:114:22, :203:61] wire unboundedRange_roundPosBit = doShiftSigDown1 ? _unboundedRange_roundPosBit_T : _unboundedRange_roundPosBit_T_1; // @[RoundAnyRawFNToRecFN.scala:120:57, :203:{16,45,61}] wire _unboundedRange_roundIncr_T_1 = unboundedRange_roundPosBit; // @[RoundAnyRawFNToRecFN.scala:203:16, :207:67] wire _unboundedRange_anyRound_T_1 = doShiftSigDown1 & _unboundedRange_anyRound_T; // @[RoundAnyRawFNToRecFN.scala:120:57, :205:{30,44}] wire [1:0] _unboundedRange_anyRound_T_2 = adjustedSig[1:0]; // @[RoundAnyRawFNToRecFN.scala:114:22, :205:63] wire _unboundedRange_anyRound_T_3 = |_unboundedRange_anyRound_T_2; // @[RoundAnyRawFNToRecFN.scala:205:{63,70}] wire unboundedRange_anyRound = _unboundedRange_anyRound_T_1 | _unboundedRange_anyRound_T_3; // @[RoundAnyRawFNToRecFN.scala:205:{30,49,70}] wire unboundedRange_roundIncr = _unboundedRange_roundIncr_T_1; // @[RoundAnyRawFNToRecFN.scala:207:67, :208:46] wire _roundCarry_T = roundedSig[25]; // @[RoundAnyRawFNToRecFN.scala:173:16, :212:27] wire _roundCarry_T_1 = roundedSig[24]; // @[RoundAnyRawFNToRecFN.scala:173:16, :213:27] wire roundCarry = doShiftSigDown1 ? _roundCarry_T : _roundCarry_T_1; // @[RoundAnyRawFNToRecFN.scala:120:57, :211:16, :212:27, :213:27] wire [1:0] _common_underflow_T = io_in_sExp_0[9:8]; // @[RoundAnyRawFNToRecFN.scala:48:5, :220:49] wire _common_underflow_T_1 = _common_underflow_T != 2'h1; // @[RoundAnyRawFNToRecFN.scala:220:{49,64}] wire _common_underflow_T_2 = anyRound & _common_underflow_T_1; // @[RoundAnyRawFNToRecFN.scala:166:36, :220:{32,64}] wire _common_underflow_T_3 = roundMask[3]; // @[RoundAnyRawFNToRecFN.scala:159:42, :221:57] wire _common_underflow_T_9 = roundMask[3]; // @[RoundAnyRawFNToRecFN.scala:159:42, :221:57, :225:49] wire _common_underflow_T_4 = roundMask[2]; // @[RoundAnyRawFNToRecFN.scala:159:42, :221:71] wire _common_underflow_T_5 = doShiftSigDown1 ? _common_underflow_T_3 : _common_underflow_T_4; // @[RoundAnyRawFNToRecFN.scala:120:57, :221:{30,57,71}] wire _common_underflow_T_6 = _common_underflow_T_2 & _common_underflow_T_5; // @[RoundAnyRawFNToRecFN.scala:220:{32,72}, :221:30] wire _common_underflow_T_8 = roundMask[4]; // @[RoundAnyRawFNToRecFN.scala:159:42, :224:49] wire _common_underflow_T_10 = doShiftSigDown1 ? _common_underflow_T_8 : _common_underflow_T_9; // @[RoundAnyRawFNToRecFN.scala:120:57, :223:39, :224:49, :225:49] wire _common_underflow_T_11 = ~_common_underflow_T_10; // @[RoundAnyRawFNToRecFN.scala:223:{34,39}] wire _common_underflow_T_12 = _common_underflow_T_11; // @[RoundAnyRawFNToRecFN.scala:222:77, :223:34] wire _common_underflow_T_13 = _common_underflow_T_12 & roundCarry; // @[RoundAnyRawFNToRecFN.scala:211:16, :222:77, :226:38] wire _common_underflow_T_14 = _common_underflow_T_13 & roundPosBit; // @[RoundAnyRawFNToRecFN.scala:164:56, :226:38, :227:45] wire _common_underflow_T_15 = _common_underflow_T_14 & unboundedRange_roundIncr; // @[RoundAnyRawFNToRecFN.scala:208:46, :227:{45,60}] wire _common_underflow_T_16 = ~_common_underflow_T_15; // @[RoundAnyRawFNToRecFN.scala:222:27, :227:60] wire _common_underflow_T_17 = _common_underflow_T_6 & _common_underflow_T_16; // @[RoundAnyRawFNToRecFN.scala:220:72, :221:76, :222:27] assign _common_underflow_T_18 = common_totalUnderflow | _common_underflow_T_17; // @[RoundAnyRawFNToRecFN.scala:125:37, :217:40, :221:76] assign common_underflow = _common_underflow_T_18; // @[RoundAnyRawFNToRecFN.scala:126:37, :217:40] assign _common_inexact_T = common_totalUnderflow | anyRound; // @[RoundAnyRawFNToRecFN.scala:125:37, :166:36, :230:49] assign common_inexact = _common_inexact_T; // @[RoundAnyRawFNToRecFN.scala:127:37, :230:49] wire isNaNOut = io_invalidExc_0 | io_in_isNaN_0; // @[RoundAnyRawFNToRecFN.scala:48:5, :235:34] wire _commonCase_T = ~isNaNOut; // @[RoundAnyRawFNToRecFN.scala:235:34, :237:22] wire _commonCase_T_1 = ~notNaN_isSpecialInfOut; // @[RoundAnyRawFNToRecFN.scala:236:49, :237:36] wire _commonCase_T_2 = _commonCase_T & _commonCase_T_1; // @[RoundAnyRawFNToRecFN.scala:237:{22,33,36}] wire _commonCase_T_3 = ~io_in_isZero_0; // @[RoundAnyRawFNToRecFN.scala:48:5, :237:64] wire commonCase = _commonCase_T_2 & _commonCase_T_3; // @[RoundAnyRawFNToRecFN.scala:237:{33,61,64}] wire overflow = commonCase & common_overflow; // @[RoundAnyRawFNToRecFN.scala:124:37, :237:61, :238:32] wire _notNaN_isInfOut_T = overflow; // @[RoundAnyRawFNToRecFN.scala:238:32, :248:45] wire underflow = commonCase & common_underflow; // @[RoundAnyRawFNToRecFN.scala:126:37, :237:61, :239:32] wire _inexact_T = commonCase & common_inexact; // @[RoundAnyRawFNToRecFN.scala:127:37, :237:61, :240:43] wire inexact = overflow | _inexact_T; // @[RoundAnyRawFNToRecFN.scala:238:32, :240:{28,43}] wire _pegMinNonzeroMagOut_T = commonCase & common_totalUnderflow; // @[RoundAnyRawFNToRecFN.scala:125:37, :237:61, :245:20] wire notNaN_isInfOut = notNaN_isSpecialInfOut | _notNaN_isInfOut_T; // @[RoundAnyRawFNToRecFN.scala:236:49, :248:{32,45}] wire signOut = ~isNaNOut & io_in_sign_0; // @[RoundAnyRawFNToRecFN.scala:48:5, :235:34, :250:22] wire _expOut_T = io_in_isZero_0 | common_totalUnderflow; // @[RoundAnyRawFNToRecFN.scala:48:5, :125:37, :253:32] wire [8:0] _expOut_T_1 = _expOut_T ? 9'h1C0 : 9'h0; // @[RoundAnyRawFNToRecFN.scala:253:{18,32}] wire [8:0] _expOut_T_2 = ~_expOut_T_1; // @[RoundAnyRawFNToRecFN.scala:253:{14,18}] wire [8:0] _expOut_T_3 = common_expOut & _expOut_T_2; // @[RoundAnyRawFNToRecFN.scala:122:31, :252:24, :253:14] wire [8:0] _expOut_T_7 = _expOut_T_3; // @[RoundAnyRawFNToRecFN.scala:252:24, :256:17] wire [8:0] _expOut_T_10 = _expOut_T_7; // @[RoundAnyRawFNToRecFN.scala:256:17, :260:17] wire [8:0] _expOut_T_11 = {2'h0, notNaN_isInfOut, 6'h0}; // @[RoundAnyRawFNToRecFN.scala:248:32, :265:18] wire [8:0] _expOut_T_12 = ~_expOut_T_11; // @[RoundAnyRawFNToRecFN.scala:265:{14,18}] wire [8:0] _expOut_T_13 = _expOut_T_10 & _expOut_T_12; // @[RoundAnyRawFNToRecFN.scala:260:17, :264:17, :265:14] wire [8:0] _expOut_T_15 = _expOut_T_13; // @[RoundAnyRawFNToRecFN.scala:264:17, :268:18] wire [8:0] _expOut_T_17 = _expOut_T_15; // @[RoundAnyRawFNToRecFN.scala:268:18, :272:15] wire [8:0] _expOut_T_18 = notNaN_isInfOut ? 9'h180 : 9'h0; // @[RoundAnyRawFNToRecFN.scala:248:32, :277:16] wire [8:0] _expOut_T_19 = _expOut_T_17 | _expOut_T_18; // @[RoundAnyRawFNToRecFN.scala:272:15, :276:15, :277:16] wire [8:0] _expOut_T_20 = isNaNOut ? 9'h1C0 : 9'h0; // @[RoundAnyRawFNToRecFN.scala:235:34, :278:16] wire [8:0] expOut = _expOut_T_19 | _expOut_T_20; // @[RoundAnyRawFNToRecFN.scala:276:15, :277:73, :278:16] wire _fractOut_T = isNaNOut | io_in_isZero_0; // @[RoundAnyRawFNToRecFN.scala:48:5, :235:34, :280:22] wire _fractOut_T_1 = _fractOut_T | common_totalUnderflow; // @[RoundAnyRawFNToRecFN.scala:125:37, :280:{22,38}] wire [22:0] _fractOut_T_2 = {isNaNOut, 22'h0}; // @[RoundAnyRawFNToRecFN.scala:235:34, :281:16] wire [22:0] _fractOut_T_3 = _fractOut_T_1 ? _fractOut_T_2 : common_fractOut; // @[RoundAnyRawFNToRecFN.scala:123:31, :280:{12,38}, :281:16] wire [22:0] fractOut = _fractOut_T_3; // @[RoundAnyRawFNToRecFN.scala:280:12, :283:11] wire [9:0] _io_out_T = {signOut, expOut}; // @[RoundAnyRawFNToRecFN.scala:250:22, :277:73, :286:23] assign _io_out_T_1 = {_io_out_T, fractOut}; // @[RoundAnyRawFNToRecFN.scala:283:11, :286:{23,33}] assign io_out_0 = _io_out_T_1; // @[RoundAnyRawFNToRecFN.scala:48:5, :286:33] wire [1:0] _io_exceptionFlags_T = {io_invalidExc_0, 1'h0}; // @[RoundAnyRawFNToRecFN.scala:48:5, :288:23] wire [2:0] _io_exceptionFlags_T_1 = {_io_exceptionFlags_T, overflow}; // @[RoundAnyRawFNToRecFN.scala:238:32, :288:{23,41}] wire [3:0] _io_exceptionFlags_T_2 = {_io_exceptionFlags_T_1, underflow}; // @[RoundAnyRawFNToRecFN.scala:239:32, :288:{41,53}] assign _io_exceptionFlags_T_3 = {_io_exceptionFlags_T_2, inexact}; // @[RoundAnyRawFNToRecFN.scala:240:28, :288:{53,66}] assign io_exceptionFlags_0 = _io_exceptionFlags_T_3; // @[RoundAnyRawFNToRecFN.scala:48:5, :288:66] assign io_out = io_out_0; // @[RoundAnyRawFNToRecFN.scala:48:5] assign io_exceptionFlags = io_exceptionFlags_0; // @[RoundAnyRawFNToRecFN.scala:48:5] endmodule
Generate the Verilog code corresponding to the following Chisel files. File RegMapper.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.regmapper import chisel3._ import chisel3.experimental.SourceInfo import chisel3.util._ import freechips.rocketchip.diplomacy.AddressDecoder import freechips.rocketchip.util.{BundleFieldBase, BundleMap, MuxSeq, ReduceOthers, property} // A bus agnostic register interface to a register-based device case class RegMapperParams(indexBits: Int, maskBits: Int, extraFields: Seq[BundleFieldBase] = Nil) class RegMapperInput(val params: RegMapperParams) extends Bundle { val read = Bool() val index = UInt((params.indexBits).W) val data = UInt((params.maskBits*8).W) val mask = UInt((params.maskBits).W) val extra = BundleMap(params.extraFields) } class RegMapperOutput(val params: RegMapperParams) extends Bundle { val read = Bool() val data = UInt((params.maskBits*8).W) val extra = BundleMap(params.extraFields) } object RegMapper { // Create a generic register-based device def apply(bytes: Int, concurrency: Int, undefZero: Boolean, in: DecoupledIO[RegMapperInput], mapping: RegField.Map*)(implicit sourceInfo: SourceInfo) = { // Filter out zero-width fields val bytemap = mapping.toList.map { case (offset, fields) => (offset, fields.filter(_.width != 0)) } // Negative addresses are bad bytemap.foreach { byte => require (byte._1 >= 0) } // Transform all fields into bit offsets Seq[(bit, field)] val bitmap = bytemap.map { case (byte, fields) => val bits = fields.scanLeft(byte * 8)(_ + _.width).init bits zip fields }.flatten.sortBy(_._1) // Detect overlaps (bitmap.init zip bitmap.tail) foreach { case ((lbit, lfield), (rbit, rfield)) => require (lbit + lfield.width <= rbit, s"Register map overlaps at bit ${rbit}.") } // Group those fields into bus words Map[word, List[(bit, field)]] val wordmap = bitmap.groupBy(_._1 / (8*bytes)) // Make sure registers fit val inParams = in.bits.params val inBits = inParams.indexBits assert (wordmap.keySet.max < (1 << inBits), "Register map does not fit in device") val out = Wire(Decoupled(new RegMapperOutput(inParams))) val front = Wire(Decoupled(new RegMapperInput(inParams))) front.bits := in.bits // Must this device pipeline the control channel? val pipelined = wordmap.values.map(_.map(_._2.pipelined)).flatten.reduce(_ || _) val depth = concurrency require (depth >= 0) require (!pipelined || depth > 0, "Register-based device with request/response handshaking needs concurrency > 0") val back = if (depth > 0) { val front_q = Module(new Queue(new RegMapperInput(inParams), depth) { override def desiredName = s"Queue${depth}_${front.bits.typeName}_i${inParams.indexBits}_m${inParams.maskBits}" }) front_q.io.enq <> front front_q.io.deq } else front // Convert to and from Bits def toBits(x: Int, tail: List[Boolean] = List.empty): List[Boolean] = if (x == 0) tail.reverse else toBits(x >> 1, ((x & 1) == 1) :: tail) def ofBits(bits: List[Boolean]) = bits.foldRight(0){ case (x,y) => (if (x) 1 else 0) | y << 1 } // Find the minimal mask that can decide the register map val mask = AddressDecoder(wordmap.keySet.toList) val maskMatch = ~mask.U(inBits.W) val maskFilter = toBits(mask) val maskBits = maskFilter.filter(x => x).size // Calculate size and indexes into the register map val regSize = 1 << maskBits def regIndexI(x: Int) = ofBits((maskFilter zip toBits(x)).filter(_._1).map(_._2)) def regIndexU(x: UInt) = if (maskBits == 0) 0.U else Cat((maskFilter zip x.asBools).filter(_._1).map(_._2).reverse) val findex = front.bits.index & maskMatch val bindex = back .bits.index & maskMatch // Protection flag for undefined registers val iRightReg = Array.fill(regSize) { true.B } val oRightReg = Array.fill(regSize) { true.B } // Transform the wordmap into minimal decoded indexes, Seq[(index, bit, field)] val flat = wordmap.toList.map { case (word, fields) => val index = regIndexI(word) if (undefZero) { val uint = (word & ~mask).U(inBits.W) iRightReg(index) = findex === uint oRightReg(index) = bindex === uint } // Confirm that no field spans a word boundary fields foreach { case (bit, field) => val off = bit - 8*bytes*word // println(s"Reg ${word}: [${off}, ${off+field.width})") require (off + field.width <= bytes * 8, s"Field at word ${word}*(${bytes}B) has bits [${off}, ${off+field.width}), which exceeds word limit.") } // println("mapping 0x%x -> 0x%x for 0x%x/%d".format(word, index, mask, maskBits)) fields.map { case (bit, field) => (index, bit-8*bytes*word, field) } }.flatten // Forward declaration of all flow control signals val rivalid = Wire(Vec(flat.size, Bool())) val wivalid = Wire(Vec(flat.size, Bool())) val roready = Wire(Vec(flat.size, Bool())) val woready = Wire(Vec(flat.size, Bool())) // Per-register list of all control signals needed for data to flow val rifire = Array.fill(regSize) { Nil:List[(Bool, Bool)] } val wifire = Array.fill(regSize) { Nil:List[(Bool, Bool)] } val rofire = Array.fill(regSize) { Nil:List[(Bool, Bool)] } val wofire = Array.fill(regSize) { Nil:List[(Bool, Bool)] } // The output values for each register val dataOut = Array.fill(regSize) { 0.U } // Which bits are touched? val frontMask = FillInterleaved(8, front.bits.mask) val backMask = FillInterleaved(8, back .bits.mask) // Connect the fields for (i <- 0 until flat.size) { val (reg, low, field) = flat(i) val high = low + field.width - 1 // Confirm that no register is too big require (high < 8*bytes) val rimask = frontMask(high, low).orR val wimask = frontMask(high, low).andR val romask = backMask(high, low).orR val womask = backMask(high, low).andR val data = if (field.write.combinational) back.bits.data else front.bits.data val f_rivalid = rivalid(i) && rimask val f_roready = roready(i) && romask val f_wivalid = wivalid(i) && wimask val f_woready = woready(i) && womask val (f_riready, f_rovalid, f_data) = field.read.fn(f_rivalid, f_roready) val (f_wiready, f_wovalid) = field.write.fn(f_wivalid, f_woready, data(high, low)) // cover reads and writes to register val fname = field.desc.map{_.name}.getOrElse("") val fdesc = field.desc.map{_.desc + ":"}.getOrElse("") val facct = field.desc.map{_.access}.getOrElse("") if((facct == RegFieldAccessType.R) || (facct == RegFieldAccessType.RW)) { property.cover(f_rivalid && f_riready, fname + "_Reg_read_start", fdesc + " RegField Read Request Initiate") property.cover(f_rovalid && f_roready, fname + "_Reg_read_out", fdesc + " RegField Read Request Complete") } if((facct == RegFieldAccessType.W) || (facct == RegFieldAccessType.RW)) { property.cover(f_wivalid && f_wiready, fname + "_Reg_write_start", fdesc + " RegField Write Request Initiate") property.cover(f_wovalid && f_woready, fname + "_Reg_write_out", fdesc + " RegField Write Request Complete") } def litOR(x: Bool, y: Bool) = if (x.isLit && x.litValue == 1) true.B else x || y // Add this field to the ready-valid signals for the register rifire(reg) = (rivalid(i), litOR(f_riready, !rimask)) +: rifire(reg) wifire(reg) = (wivalid(i), litOR(f_wiready, !wimask)) +: wifire(reg) rofire(reg) = (roready(i), litOR(f_rovalid, !romask)) +: rofire(reg) wofire(reg) = (woready(i), litOR(f_wovalid, !womask)) +: wofire(reg) // ... this loop iterates from smallest to largest bit offset val prepend = if (low == 0) { f_data } else { Cat(f_data, dataOut(reg) | 0.U(low.W)) } dataOut(reg) = (prepend | 0.U((high+1).W))(high, 0) } // Which register is touched? val iindex = regIndexU(front.bits.index) val oindex = regIndexU(back .bits.index) val frontSel = UIntToOH(iindex).asBools val backSel = UIntToOH(oindex).asBools // Compute: is the selected register ready? ... and cross-connect all ready-valids def mux(index: UInt, valid: Bool, select: Seq[Bool], guard: Seq[Bool], flow: Seq[Seq[(Bool, Bool)]]): Bool = MuxSeq(index, true.B, ((select zip guard) zip flow).map { case ((s, g), f) => val out = Wire(Bool()) ReduceOthers((out, valid && s && g) +: f) out || !g }) // Include the per-register one-hot selected criteria val rifireMux = mux(iindex, in.valid && front.ready && front.bits.read, frontSel, iRightReg, rifire) val wifireMux = mux(iindex, in.valid && front.ready && !front.bits.read, frontSel, iRightReg, wifire) val rofireMux = mux(oindex, back.valid && out.ready && back .bits.read, backSel, oRightReg, rofire) val wofireMux = mux(oindex, back.valid && out.ready && !back .bits.read, backSel, oRightReg, wofire) val iready = Mux(front.bits.read, rifireMux, wifireMux) val oready = Mux(back .bits.read, rofireMux, wofireMux) // Connect the pipeline in.ready := front.ready && iready front.valid := in.valid && iready back.ready := out.ready && oready out.valid := back.valid && oready out.bits.read := back.bits.read out.bits.data := Mux(MuxSeq(oindex, true.B, oRightReg), MuxSeq(oindex, 0.U, dataOut), 0.U) out.bits.extra := back.bits.extra out } }
module Queue1_RegMapperInput_i9_m8( // @[RegMapper.scala:71:32] input clock, // @[RegMapper.scala:71:32] input reset, // @[RegMapper.scala:71:32] output io_enq_ready, // @[Decoupled.scala:255:14] input io_enq_valid, // @[Decoupled.scala:255:14] input io_enq_bits_read, // @[Decoupled.scala:255:14] input [8:0] io_enq_bits_index, // @[Decoupled.scala:255:14] input [63:0] io_enq_bits_data, // @[Decoupled.scala:255:14] input [7:0] io_enq_bits_mask, // @[Decoupled.scala:255:14] input [8:0] io_enq_bits_extra_tlrr_extra_source, // @[Decoupled.scala:255:14] input [1:0] io_enq_bits_extra_tlrr_extra_size, // @[Decoupled.scala:255:14] input io_deq_ready, // @[Decoupled.scala:255:14] output io_deq_valid, // @[Decoupled.scala:255:14] output io_deq_bits_read, // @[Decoupled.scala:255:14] output [8:0] io_deq_bits_index, // @[Decoupled.scala:255:14] output [63:0] io_deq_bits_data, // @[Decoupled.scala:255:14] output [7:0] io_deq_bits_mask, // @[Decoupled.scala:255:14] output [8:0] io_deq_bits_extra_tlrr_extra_source, // @[Decoupled.scala:255:14] output [1:0] io_deq_bits_extra_tlrr_extra_size // @[Decoupled.scala:255:14] ); wire io_enq_valid_0 = io_enq_valid; // @[RegMapper.scala:71:32] wire io_enq_bits_read_0 = io_enq_bits_read; // @[RegMapper.scala:71:32] wire [8:0] io_enq_bits_index_0 = io_enq_bits_index; // @[RegMapper.scala:71:32] wire [63:0] io_enq_bits_data_0 = io_enq_bits_data; // @[RegMapper.scala:71:32] wire [7:0] io_enq_bits_mask_0 = io_enq_bits_mask; // @[RegMapper.scala:71:32] wire [8:0] io_enq_bits_extra_tlrr_extra_source_0 = io_enq_bits_extra_tlrr_extra_source; // @[RegMapper.scala:71:32] wire [1:0] io_enq_bits_extra_tlrr_extra_size_0 = io_enq_bits_extra_tlrr_extra_size; // @[RegMapper.scala:71:32] wire io_deq_ready_0 = io_deq_ready; // @[RegMapper.scala:71:32] wire ptr_match = 1'h1; // @[Decoupled.scala:260:33] wire [1:0] _ptr_diff_T = 2'h0; // @[Decoupled.scala:309:32] wire enq_ptr_value = 1'h0; // @[Counter.scala:61:73] wire deq_ptr_value = 1'h0; // @[Counter.scala:61:73] wire _io_enq_ready_T; // @[Decoupled.scala:286:19] wire _io_deq_bits_WIRE = 1'h0; // @[Decoupled.scala:293:23] wire ptr_diff = 1'h0; // @[Decoupled.scala:309:32] wire _io_deq_valid_T; // @[Decoupled.scala:285:19] wire _io_count_T_2; // @[Decoupled.scala:312:62] wire io_enq_ready_0; // @[RegMapper.scala:71:32] wire [8:0] io_deq_bits_extra_tlrr_extra_source_0; // @[RegMapper.scala:71:32] wire [1:0] io_deq_bits_extra_tlrr_extra_size_0; // @[RegMapper.scala:71:32] wire io_deq_bits_read_0; // @[RegMapper.scala:71:32] wire [8:0] io_deq_bits_index_0; // @[RegMapper.scala:71:32] wire [63:0] io_deq_bits_data_0; // @[RegMapper.scala:71:32] wire [7:0] io_deq_bits_mask_0; // @[RegMapper.scala:71:32] wire io_deq_valid_0; // @[RegMapper.scala:71:32] wire io_count; // @[RegMapper.scala:71:32] reg [92:0] ram; // @[Decoupled.scala:256:91] assign io_deq_bits_read_0 = ram[0]; // @[Decoupled.scala:256:91] assign io_deq_bits_index_0 = ram[9:1]; // @[Decoupled.scala:256:91] assign io_deq_bits_data_0 = ram[73:10]; // @[Decoupled.scala:256:91] assign io_deq_bits_mask_0 = ram[81:74]; // @[Decoupled.scala:256:91] assign io_deq_bits_extra_tlrr_extra_source_0 = ram[90:82]; // @[Decoupled.scala:256:91] assign io_deq_bits_extra_tlrr_extra_size_0 = ram[92:91]; // @[Decoupled.scala:256:91] reg maybe_full; // @[Decoupled.scala:259:27] wire full = maybe_full; // @[Decoupled.scala:259:27, :262:24] wire _io_count_T = maybe_full; // @[Decoupled.scala:259:27, :312:32] wire _empty_T = ~maybe_full; // @[Decoupled.scala:259:27, :261:28] wire empty = _empty_T; // @[Decoupled.scala:261:{25,28}] wire _do_enq_T = io_enq_ready_0 & io_enq_valid_0; // @[Decoupled.scala:51:35] wire do_enq = _do_enq_T; // @[Decoupled.scala:51:35, :263:27] wire _do_deq_T = io_deq_ready_0 & io_deq_valid_0; // @[Decoupled.scala:51:35] wire do_deq = _do_deq_T; // @[Decoupled.scala:51:35, :264:27] assign _io_deq_valid_T = ~empty; // @[Decoupled.scala:261:25, :285:19] assign io_deq_valid_0 = _io_deq_valid_T; // @[Decoupled.scala:285:19] assign _io_enq_ready_T = ~full; // @[Decoupled.scala:262:24, :286:19] assign io_enq_ready_0 = _io_enq_ready_T; // @[Decoupled.scala:286:19] wire _io_count_T_1 = _io_count_T; // @[Decoupled.scala:312:{20,32}] assign _io_count_T_2 = _io_count_T_1; // @[Decoupled.scala:312:{20,62}] assign io_count = _io_count_T_2; // @[Decoupled.scala:312:62] always @(posedge clock) begin // @[RegMapper.scala:71:32] if (do_enq) // @[Decoupled.scala:263:27] ram <= {io_enq_bits_extra_tlrr_extra_size_0, io_enq_bits_extra_tlrr_extra_source_0, io_enq_bits_mask_0, io_enq_bits_data_0, io_enq_bits_index_0, io_enq_bits_read_0}; // @[Decoupled.scala:256:91] if (reset) // @[RegMapper.scala:71:32] maybe_full <= 1'h0; // @[Decoupled.scala:259:27] else if (~(do_enq == do_deq)) // @[Decoupled.scala:259:27, :263:27, :264:27, :276:{15,27}, :277:16] maybe_full <= do_enq; // @[Decoupled.scala:259:27, :263:27] always @(posedge) assign io_enq_ready = io_enq_ready_0; // @[RegMapper.scala:71:32] assign io_deq_valid = io_deq_valid_0; // @[RegMapper.scala:71:32] assign io_deq_bits_read = io_deq_bits_read_0; // @[RegMapper.scala:71:32] assign io_deq_bits_index = io_deq_bits_index_0; // @[RegMapper.scala:71:32] assign io_deq_bits_data = io_deq_bits_data_0; // @[RegMapper.scala:71:32] assign io_deq_bits_mask = io_deq_bits_mask_0; // @[RegMapper.scala:71:32] assign io_deq_bits_extra_tlrr_extra_source = io_deq_bits_extra_tlrr_extra_source_0; // @[RegMapper.scala:71:32] assign io_deq_bits_extra_tlrr_extra_size = io_deq_bits_extra_tlrr_extra_size_0; // @[RegMapper.scala:71:32] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Monitor.scala: package constellation.channel import chisel3._ import chisel3.util._ import freechips.rocketchip.diplomacy._ import org.chipsalliance.cde.config.{Parameters} import freechips.rocketchip.util._ import constellation.noc.{HasNoCParams} class NoCMonitor(val cParam: ChannelParams)(implicit val p: Parameters) extends Module with HasNoCParams { val io = IO(new Bundle { val in = Input(new Channel(cParam)) }) val in_flight = RegInit(VecInit(Seq.fill(cParam.nVirtualChannels) { false.B })) for (i <- 0 until cParam.srcSpeedup) { val flit = io.in.flit(i) when (flit.valid) { when (flit.bits.head) { in_flight(flit.bits.virt_channel_id) := true.B assert (!in_flight(flit.bits.virt_channel_id), "Flit head/tail sequencing is broken") } when (flit.bits.tail) { in_flight(flit.bits.virt_channel_id) := false.B } } val possibleFlows = cParam.possibleFlows when (flit.valid && flit.bits.head) { cParam match { case n: ChannelParams => n.virtualChannelParams.zipWithIndex.foreach { case (v,i) => assert(flit.bits.virt_channel_id =/= i.U || v.possibleFlows.toSeq.map(_.isFlow(flit.bits.flow)).orR) } case _ => assert(cParam.possibleFlows.toSeq.map(_.isFlow(flit.bits.flow)).orR) } } } } File Types.scala: package constellation.routing import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config.{Parameters} import constellation.noc.{HasNoCParams} import constellation.channel.{Flit} /** A representation for 1 specific virtual channel in wormhole routing * * @param src the source node * @param vc ID for the virtual channel * @param dst the destination node * @param n_vc the number of virtual channels */ // BEGIN: ChannelRoutingInfo case class ChannelRoutingInfo( src: Int, dst: Int, vc: Int, n_vc: Int ) { // END: ChannelRoutingInfo require (src >= -1 && dst >= -1 && vc >= 0, s"Illegal $this") require (!(src == -1 && dst == -1), s"Illegal $this") require (vc < n_vc, s"Illegal $this") val isIngress = src == -1 val isEgress = dst == -1 } /** Represents the properties of a packet that are relevant for routing * ingressId and egressId uniquely identify a flow, but vnet and dst are used here * to simplify the implementation of routingrelations * * @param ingressId packet's source ingress point * @param egressId packet's destination egress point * @param vNet virtual subnetwork identifier * @param dst packet's destination node ID */ // BEGIN: FlowRoutingInfo case class FlowRoutingInfo( ingressId: Int, egressId: Int, vNetId: Int, ingressNode: Int, ingressNodeId: Int, egressNode: Int, egressNodeId: Int, fifo: Boolean ) { // END: FlowRoutingInfo def isFlow(f: FlowRoutingBundle): Bool = { (f.ingress_node === ingressNode.U && f.egress_node === egressNode.U && f.ingress_node_id === ingressNodeId.U && f.egress_node_id === egressNodeId.U) } def asLiteral(b: FlowRoutingBundle): BigInt = { Seq( (vNetId , b.vnet_id), (ingressNode , b.ingress_node), (ingressNodeId , b.ingress_node_id), (egressNode , b.egress_node), (egressNodeId , b.egress_node_id) ).foldLeft(0)((l, t) => { (l << t._2.getWidth) | t._1 }) } } class FlowRoutingBundle(implicit val p: Parameters) extends Bundle with HasNoCParams { // Instead of tracking ingress/egress ID, track the physical destination id and the offset at the destination // This simplifies the routing tables val vnet_id = UInt(log2Ceil(nVirtualNetworks).W) val ingress_node = UInt(log2Ceil(nNodes).W) val ingress_node_id = UInt(log2Ceil(maxIngressesAtNode).W) val egress_node = UInt(log2Ceil(nNodes).W) val egress_node_id = UInt(log2Ceil(maxEgressesAtNode).W) }
module NoCMonitor_1( // @[Monitor.scala:11:7] input clock, // @[Monitor.scala:11:7] input reset, // @[Monitor.scala:11:7] input io_in_flit_0_valid, // @[Monitor.scala:12:14] input io_in_flit_0_bits_head, // @[Monitor.scala:12:14] input io_in_flit_0_bits_tail, // @[Monitor.scala:12:14] input [4:0] io_in_flit_0_bits_flow_ingress_node, // @[Monitor.scala:12:14] input [1:0] io_in_flit_0_bits_flow_ingress_node_id, // @[Monitor.scala:12:14] input [4:0] io_in_flit_0_bits_flow_egress_node, // @[Monitor.scala:12:14] input [1:0] io_in_flit_0_bits_flow_egress_node_id, // @[Monitor.scala:12:14] input [2:0] io_in_flit_0_bits_virt_channel_id // @[Monitor.scala:12:14] ); reg in_flight_0; // @[Monitor.scala:16:26] reg in_flight_1; // @[Monitor.scala:16:26] reg in_flight_2; // @[Monitor.scala:16:26] reg in_flight_3; // @[Monitor.scala:16:26] reg in_flight_4; // @[Monitor.scala:16:26] reg in_flight_5; // @[Monitor.scala:16:26] reg in_flight_6; // @[Monitor.scala:16:26] reg in_flight_7; // @[Monitor.scala:16:26] wire _GEN = io_in_flit_0_bits_virt_channel_id == 3'h0; // @[Monitor.scala:21:46]
Generate the Verilog code corresponding to the following Chisel files. File Repeater.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util.{Decoupled, DecoupledIO} // A Repeater passes its input to its output, unless repeat is asserted. // When repeat is asserted, the Repeater copies the input and repeats it next cycle. class Repeater[T <: Data](gen: T) extends Module { override def desiredName = s"Repeater_${gen.typeName}" val io = IO( new Bundle { val repeat = Input(Bool()) val full = Output(Bool()) val enq = Flipped(Decoupled(gen.cloneType)) val deq = Decoupled(gen.cloneType) } ) val full = RegInit(false.B) val saved = Reg(gen.cloneType) // When !full, a repeater is pass-through io.deq.valid := io.enq.valid || full io.enq.ready := io.deq.ready && !full io.deq.bits := Mux(full, saved, io.enq.bits) io.full := full when (io.enq.fire && io.repeat) { full := true.B; saved := io.enq.bits } when (io.deq.fire && !io.repeat) { full := false.B } } object Repeater { def apply[T <: Data](enq: DecoupledIO[T], repeat: Bool): DecoupledIO[T] = { val repeater = Module(new Repeater(chiselTypeOf(enq.bits))) repeater.io.repeat := repeat repeater.io.enq <> enq repeater.io.deq } }
module Repeater_TLBundleA_a21d64s9k1z3u( // @[Repeater.scala:10:7] input clock, // @[Repeater.scala:10:7] input reset, // @[Repeater.scala:10:7] input io_repeat, // @[Repeater.scala:13:14] output io_full, // @[Repeater.scala:13:14] output io_enq_ready, // @[Repeater.scala:13:14] input io_enq_valid, // @[Repeater.scala:13:14] input [2:0] io_enq_bits_opcode, // @[Repeater.scala:13:14] input [2:0] io_enq_bits_param, // @[Repeater.scala:13:14] input [2:0] io_enq_bits_size, // @[Repeater.scala:13:14] input [8:0] io_enq_bits_source, // @[Repeater.scala:13:14] input [20:0] io_enq_bits_address, // @[Repeater.scala:13:14] input [7:0] io_enq_bits_mask, // @[Repeater.scala:13:14] input [63:0] io_enq_bits_data, // @[Repeater.scala:13:14] input io_enq_bits_corrupt, // @[Repeater.scala:13:14] input io_deq_ready, // @[Repeater.scala:13:14] output io_deq_valid, // @[Repeater.scala:13:14] output [2:0] io_deq_bits_opcode, // @[Repeater.scala:13:14] output [2:0] io_deq_bits_param, // @[Repeater.scala:13:14] output [2:0] io_deq_bits_size, // @[Repeater.scala:13:14] output [8:0] io_deq_bits_source, // @[Repeater.scala:13:14] output [20:0] io_deq_bits_address, // @[Repeater.scala:13:14] output [7:0] io_deq_bits_mask, // @[Repeater.scala:13:14] output io_deq_bits_corrupt // @[Repeater.scala:13:14] ); wire io_repeat_0 = io_repeat; // @[Repeater.scala:10:7] wire io_enq_valid_0 = io_enq_valid; // @[Repeater.scala:10:7] wire [2:0] io_enq_bits_opcode_0 = io_enq_bits_opcode; // @[Repeater.scala:10:7] wire [2:0] io_enq_bits_param_0 = io_enq_bits_param; // @[Repeater.scala:10:7] wire [2:0] io_enq_bits_size_0 = io_enq_bits_size; // @[Repeater.scala:10:7] wire [8:0] io_enq_bits_source_0 = io_enq_bits_source; // @[Repeater.scala:10:7] wire [20:0] io_enq_bits_address_0 = io_enq_bits_address; // @[Repeater.scala:10:7] wire [7:0] io_enq_bits_mask_0 = io_enq_bits_mask; // @[Repeater.scala:10:7] wire [63:0] io_enq_bits_data_0 = io_enq_bits_data; // @[Repeater.scala:10:7] wire io_enq_bits_corrupt_0 = io_enq_bits_corrupt; // @[Repeater.scala:10:7] wire io_deq_ready_0 = io_deq_ready; // @[Repeater.scala:10:7] wire _io_enq_ready_T_1; // @[Repeater.scala:25:32] wire _io_deq_valid_T; // @[Repeater.scala:24:32] wire [2:0] _io_deq_bits_T_opcode; // @[Repeater.scala:26:21] wire [2:0] _io_deq_bits_T_param; // @[Repeater.scala:26:21] wire [2:0] _io_deq_bits_T_size; // @[Repeater.scala:26:21] wire [8:0] _io_deq_bits_T_source; // @[Repeater.scala:26:21] wire [20:0] _io_deq_bits_T_address; // @[Repeater.scala:26:21] wire [7:0] _io_deq_bits_T_mask; // @[Repeater.scala:26:21] wire [63:0] _io_deq_bits_T_data; // @[Repeater.scala:26:21] wire _io_deq_bits_T_corrupt; // @[Repeater.scala:26:21] wire io_enq_ready_0; // @[Repeater.scala:10:7] wire [2:0] io_deq_bits_opcode_0; // @[Repeater.scala:10:7] wire [2:0] io_deq_bits_param_0; // @[Repeater.scala:10:7] wire [2:0] io_deq_bits_size_0; // @[Repeater.scala:10:7] wire [8:0] io_deq_bits_source_0; // @[Repeater.scala:10:7] wire [20:0] io_deq_bits_address_0; // @[Repeater.scala:10:7] wire [7:0] io_deq_bits_mask_0; // @[Repeater.scala:10:7] wire [63:0] io_deq_bits_data; // @[Repeater.scala:10:7] wire io_deq_bits_corrupt_0; // @[Repeater.scala:10:7] wire io_deq_valid_0; // @[Repeater.scala:10:7] wire io_full_0; // @[Repeater.scala:10:7] reg full; // @[Repeater.scala:20:21] assign io_full_0 = full; // @[Repeater.scala:10:7, :20:21] reg [2:0] saved_opcode; // @[Repeater.scala:21:18] reg [2:0] saved_param; // @[Repeater.scala:21:18] reg [2:0] saved_size; // @[Repeater.scala:21:18] reg [8:0] saved_source; // @[Repeater.scala:21:18] reg [20:0] saved_address; // @[Repeater.scala:21:18] reg [7:0] saved_mask; // @[Repeater.scala:21:18] reg [63:0] saved_data; // @[Repeater.scala:21:18] reg saved_corrupt; // @[Repeater.scala:21:18] assign _io_deq_valid_T = io_enq_valid_0 | full; // @[Repeater.scala:10:7, :20:21, :24:32] assign io_deq_valid_0 = _io_deq_valid_T; // @[Repeater.scala:10:7, :24:32] wire _io_enq_ready_T = ~full; // @[Repeater.scala:20:21, :25:35] assign _io_enq_ready_T_1 = io_deq_ready_0 & _io_enq_ready_T; // @[Repeater.scala:10:7, :25:{32,35}] assign io_enq_ready_0 = _io_enq_ready_T_1; // @[Repeater.scala:10:7, :25:32] assign _io_deq_bits_T_opcode = full ? saved_opcode : io_enq_bits_opcode_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21] assign _io_deq_bits_T_param = full ? saved_param : io_enq_bits_param_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21] assign _io_deq_bits_T_size = full ? saved_size : io_enq_bits_size_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21] assign _io_deq_bits_T_source = full ? saved_source : io_enq_bits_source_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21] assign _io_deq_bits_T_address = full ? saved_address : io_enq_bits_address_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21] assign _io_deq_bits_T_mask = full ? saved_mask : io_enq_bits_mask_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21] assign _io_deq_bits_T_data = full ? saved_data : io_enq_bits_data_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21] assign _io_deq_bits_T_corrupt = full ? saved_corrupt : io_enq_bits_corrupt_0; // @[Repeater.scala:10:7, :20:21, :21:18, :26:21] assign io_deq_bits_opcode_0 = _io_deq_bits_T_opcode; // @[Repeater.scala:10:7, :26:21] assign io_deq_bits_param_0 = _io_deq_bits_T_param; // @[Repeater.scala:10:7, :26:21] assign io_deq_bits_size_0 = _io_deq_bits_T_size; // @[Repeater.scala:10:7, :26:21] assign io_deq_bits_source_0 = _io_deq_bits_T_source; // @[Repeater.scala:10:7, :26:21] assign io_deq_bits_address_0 = _io_deq_bits_T_address; // @[Repeater.scala:10:7, :26:21] assign io_deq_bits_mask_0 = _io_deq_bits_T_mask; // @[Repeater.scala:10:7, :26:21] assign io_deq_bits_data = _io_deq_bits_T_data; // @[Repeater.scala:10:7, :26:21] assign io_deq_bits_corrupt_0 = _io_deq_bits_T_corrupt; // @[Repeater.scala:10:7, :26:21] wire _T_1 = io_enq_ready_0 & io_enq_valid_0 & io_repeat_0; // @[Decoupled.scala:51:35] always @(posedge clock) begin // @[Repeater.scala:10:7] if (reset) // @[Repeater.scala:10:7] full <= 1'h0; // @[Repeater.scala:20:21] else // @[Repeater.scala:10:7] full <= ~(io_deq_ready_0 & io_deq_valid_0 & ~io_repeat_0) & (_T_1 | full); // @[Decoupled.scala:51:35] if (_T_1) begin // @[Decoupled.scala:51:35] saved_opcode <= io_enq_bits_opcode_0; // @[Repeater.scala:10:7, :21:18] saved_param <= io_enq_bits_param_0; // @[Repeater.scala:10:7, :21:18] saved_size <= io_enq_bits_size_0; // @[Repeater.scala:10:7, :21:18] saved_source <= io_enq_bits_source_0; // @[Repeater.scala:10:7, :21:18] saved_address <= io_enq_bits_address_0; // @[Repeater.scala:10:7, :21:18] saved_mask <= io_enq_bits_mask_0; // @[Repeater.scala:10:7, :21:18] saved_data <= io_enq_bits_data_0; // @[Repeater.scala:10:7, :21:18] saved_corrupt <= io_enq_bits_corrupt_0; // @[Repeater.scala:10:7, :21:18] end always @(posedge) assign io_full = io_full_0; // @[Repeater.scala:10:7] assign io_enq_ready = io_enq_ready_0; // @[Repeater.scala:10:7] assign io_deq_valid = io_deq_valid_0; // @[Repeater.scala:10:7] assign io_deq_bits_opcode = io_deq_bits_opcode_0; // @[Repeater.scala:10:7] assign io_deq_bits_param = io_deq_bits_param_0; // @[Repeater.scala:10:7] assign io_deq_bits_size = io_deq_bits_size_0; // @[Repeater.scala:10:7] assign io_deq_bits_source = io_deq_bits_source_0; // @[Repeater.scala:10:7] assign io_deq_bits_address = io_deq_bits_address_0; // @[Repeater.scala:10:7] assign io_deq_bits_mask = io_deq_bits_mask_0; // @[Repeater.scala:10:7] assign io_deq_bits_corrupt = io_deq_bits_corrupt_0; // @[Repeater.scala:10:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File RecFNToRecFN.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import consts._ class RecFNToRecFN( inExpWidth: Int, inSigWidth: Int, outExpWidth: Int, outSigWidth: Int) extends chisel3.RawModule { val io = IO(new Bundle { val in = Input(Bits((inExpWidth + inSigWidth + 1).W)) val roundingMode = Input(UInt(3.W)) val detectTininess = Input(UInt(1.W)) val out = Output(Bits((outExpWidth + outSigWidth + 1).W)) val exceptionFlags = Output(Bits(5.W)) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val rawIn = rawFloatFromRecFN(inExpWidth, inSigWidth, io.in); if ((inExpWidth == outExpWidth) && (inSigWidth <= outSigWidth)) { //-------------------------------------------------------------------- //-------------------------------------------------------------------- io.out := io.in<<(outSigWidth - inSigWidth) io.exceptionFlags := isSigNaNRawFloat(rawIn) ## 0.U(4.W) } else { //-------------------------------------------------------------------- //-------------------------------------------------------------------- val roundAnyRawFNToRecFN = Module( new RoundAnyRawFNToRecFN( inExpWidth, inSigWidth, outExpWidth, outSigWidth, flRoundOpt_sigMSBitAlwaysZero )) roundAnyRawFNToRecFN.io.invalidExc := isSigNaNRawFloat(rawIn) roundAnyRawFNToRecFN.io.infiniteExc := false.B roundAnyRawFNToRecFN.io.in := rawIn roundAnyRawFNToRecFN.io.roundingMode := io.roundingMode roundAnyRawFNToRecFN.io.detectTininess := io.detectTininess io.out := roundAnyRawFNToRecFN.io.out io.exceptionFlags := roundAnyRawFNToRecFN.io.exceptionFlags } } File rawFloatFromRecFN.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import chisel3.util._ /*---------------------------------------------------------------------------- | In the result, no more than one of 'isNaN', 'isInf', and 'isZero' will be | set. *----------------------------------------------------------------------------*/ object rawFloatFromRecFN { def apply(expWidth: Int, sigWidth: Int, in: Bits): RawFloat = { val exp = in(expWidth + sigWidth - 1, sigWidth - 1) val isZero = exp(expWidth, expWidth - 2) === 0.U val isSpecial = exp(expWidth, expWidth - 1) === 3.U val out = Wire(new RawFloat(expWidth, sigWidth)) out.isNaN := isSpecial && exp(expWidth - 2) out.isInf := isSpecial && ! exp(expWidth - 2) out.isZero := isZero out.sign := in(expWidth + sigWidth) out.sExp := exp.zext out.sig := 0.U(1.W) ## ! isZero ## in(sigWidth - 2, 0) out } }
module RecFNToRecFN_6( // @[RecFNToRecFN.scala:44:5] input [32:0] io_in, // @[RecFNToRecFN.scala:48:16] output [32:0] io_out // @[RecFNToRecFN.scala:48:16] ); wire [32:0] io_in_0 = io_in; // @[RecFNToRecFN.scala:44:5] wire io_detectTininess = 1'h1; // @[RecFNToRecFN.scala:44:5, :48:16] wire [2:0] io_roundingMode = 3'h0; // @[RecFNToRecFN.scala:44:5, :48:16] wire [32:0] _io_out_T = io_in_0; // @[RecFNToRecFN.scala:44:5, :64:35] wire [4:0] _io_exceptionFlags_T_3; // @[RecFNToRecFN.scala:65:54] wire [32:0] io_out_0; // @[RecFNToRecFN.scala:44:5] wire [4:0] io_exceptionFlags; // @[RecFNToRecFN.scala:44:5] wire [8:0] rawIn_exp = io_in_0[31:23]; // @[rawFloatFromRecFN.scala:51:21] wire [2:0] _rawIn_isZero_T = rawIn_exp[8:6]; // @[rawFloatFromRecFN.scala:51:21, :52:28] wire rawIn_isZero = _rawIn_isZero_T == 3'h0; // @[rawFloatFromRecFN.scala:52:{28,53}] wire rawIn_isZero_0 = rawIn_isZero; // @[rawFloatFromRecFN.scala:52:53, :55:23] wire [1:0] _rawIn_isSpecial_T = rawIn_exp[8:7]; // @[rawFloatFromRecFN.scala:51:21, :53:28] wire rawIn_isSpecial = &_rawIn_isSpecial_T; // @[rawFloatFromRecFN.scala:53:{28,53}] wire _rawIn_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:56:33] wire _rawIn_out_isInf_T_2; // @[rawFloatFromRecFN.scala:57:33] wire _rawIn_out_sign_T; // @[rawFloatFromRecFN.scala:59:25] wire [9:0] _rawIn_out_sExp_T; // @[rawFloatFromRecFN.scala:60:27] wire [24:0] _rawIn_out_sig_T_3; // @[rawFloatFromRecFN.scala:61:44] wire rawIn_isNaN; // @[rawFloatFromRecFN.scala:55:23] wire rawIn_isInf; // @[rawFloatFromRecFN.scala:55:23] wire rawIn_sign; // @[rawFloatFromRecFN.scala:55:23] wire [9:0] rawIn_sExp; // @[rawFloatFromRecFN.scala:55:23] wire [24:0] rawIn_sig; // @[rawFloatFromRecFN.scala:55:23] wire _rawIn_out_isNaN_T = rawIn_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41] wire _rawIn_out_isInf_T = rawIn_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41, :57:41] assign _rawIn_out_isNaN_T_1 = rawIn_isSpecial & _rawIn_out_isNaN_T; // @[rawFloatFromRecFN.scala:53:53, :56:{33,41}] assign rawIn_isNaN = _rawIn_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:55:23, :56:33] wire _rawIn_out_isInf_T_1 = ~_rawIn_out_isInf_T; // @[rawFloatFromRecFN.scala:57:{36,41}] assign _rawIn_out_isInf_T_2 = rawIn_isSpecial & _rawIn_out_isInf_T_1; // @[rawFloatFromRecFN.scala:53:53, :57:{33,36}] assign rawIn_isInf = _rawIn_out_isInf_T_2; // @[rawFloatFromRecFN.scala:55:23, :57:33] assign _rawIn_out_sign_T = io_in_0[32]; // @[rawFloatFromRecFN.scala:59:25] assign rawIn_sign = _rawIn_out_sign_T; // @[rawFloatFromRecFN.scala:55:23, :59:25] assign _rawIn_out_sExp_T = {1'h0, rawIn_exp}; // @[rawFloatFromRecFN.scala:51:21, :60:27] assign rawIn_sExp = _rawIn_out_sExp_T; // @[rawFloatFromRecFN.scala:55:23, :60:27] wire _rawIn_out_sig_T = ~rawIn_isZero; // @[rawFloatFromRecFN.scala:52:53, :61:35] wire [1:0] _rawIn_out_sig_T_1 = {1'h0, _rawIn_out_sig_T}; // @[rawFloatFromRecFN.scala:61:{32,35}] wire [22:0] _rawIn_out_sig_T_2 = io_in_0[22:0]; // @[rawFloatFromRecFN.scala:61:49] assign _rawIn_out_sig_T_3 = {_rawIn_out_sig_T_1, _rawIn_out_sig_T_2}; // @[rawFloatFromRecFN.scala:61:{32,44,49}] assign rawIn_sig = _rawIn_out_sig_T_3; // @[rawFloatFromRecFN.scala:55:23, :61:44] assign io_out_0 = _io_out_T; // @[RecFNToRecFN.scala:44:5, :64:35] wire _io_exceptionFlags_T = rawIn_sig[22]; // @[rawFloatFromRecFN.scala:55:23] wire _io_exceptionFlags_T_1 = ~_io_exceptionFlags_T; // @[common.scala:82:{49,56}] wire _io_exceptionFlags_T_2 = rawIn_isNaN & _io_exceptionFlags_T_1; // @[rawFloatFromRecFN.scala:55:23] assign _io_exceptionFlags_T_3 = {_io_exceptionFlags_T_2, 4'h0}; // @[common.scala:82:46] assign io_exceptionFlags = _io_exceptionFlags_T_3; // @[RecFNToRecFN.scala:44:5, :65:54] assign io_out = io_out_0; // @[RecFNToRecFN.scala:44:5] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Monitor.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceLine import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import freechips.rocketchip.diplomacy.EnableMonitors import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode} import freechips.rocketchip.util.PlusArg case class TLMonitorArgs(edge: TLEdge) abstract class TLMonitorBase(args: TLMonitorArgs) extends Module { val io = IO(new Bundle { val in = Input(new TLBundle(args.edge.bundle)) }) def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit legalize(io.in, args.edge, reset) } object TLMonitor { def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = { if (enable) { EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) } } else { node } } } class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args) { require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal)) val cover_prop_class = PropertyClass.Default //Like assert but can flip to being an assumption for formal verification def monAssert(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir, cond, message, PropertyClass.Default) } def assume(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir.flip, cond, message, PropertyClass.Default) } def extra = { args.edge.sourceInfo match { case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)" case _ => "" } } def visible(address: UInt, source: UInt, edge: TLEdge) = edge.client.clients.map { c => !c.sourceId.contains(source) || c.visibility.map(_.contains(address)).reduce(_ || _) }.reduce(_ && _) def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = { //switch this flag to turn on diplomacy in error messages def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n" monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra) // Reuse these subexpressions to save some firrtl lines val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility") //The monitor doesn’t check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B //TODO: check for acquireT? when (bundle.opcode === TLMessages.AcquireBlock) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra) } when (bundle.opcode === TLMessages.AcquirePerm) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra) monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra) monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra) monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra) } } def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = { monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra) monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility") // Reuse these subexpressions to save some firrtl lines val address_ok = edge.manager.containsSafe(edge.address(bundle)) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source when (bundle.opcode === TLMessages.Probe) { assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra) assume (address_ok, "'B' channel Probe carries unmanaged address" + extra) assume (legal_source, "'B' channel Probe carries source that is not first source" + extra) assume (is_aligned, "'B' channel Probe address not aligned to size" + extra) assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra) assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra) assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra) monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra) monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra) monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra) monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra) } } def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = { monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val address_ok = edge.manager.containsSafe(edge.address(bundle)) monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility") when (bundle.opcode === TLMessages.ProbeAck) { monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra) } when (bundle.opcode === TLMessages.ProbeAckData) { monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.Release) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra) monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra) } when (bundle.opcode === TLMessages.ReleaseData) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.AccessAck) { monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra) } when (bundle.opcode === TLMessages.HintAck) { monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra) } } def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = { assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val sink_ok = bundle.sink < edge.manager.endSinkId.U val deny_put_ok = edge.manager.mayDenyPut.B val deny_get_ok = edge.manager.mayDenyGet.B when (bundle.opcode === TLMessages.ReleaseAck) { assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra) assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra) assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra) } when (bundle.opcode === TLMessages.Grant) { assume (source_ok, "'D' channel Grant carries invalid source ID" + extra) assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra) assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra) } when (bundle.opcode === TLMessages.GrantData) { assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra) assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra) } when (bundle.opcode === TLMessages.AccessAck) { assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra) } when (bundle.opcode === TLMessages.HintAck) { assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra) } } def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = { val sink_ok = bundle.sink < edge.manager.endSinkId.U monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra) } def legalizeFormat(bundle: TLBundle, edge: TLEdge) = { when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) } when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) } when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) } when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) } } else { monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra) monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra) monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra) } } def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = { val a_first = edge.first(a.bits, a.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (a.valid && !a_first) { monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra) monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra) monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra) monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra) monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra) } when (a.fire && a_first) { opcode := a.bits.opcode param := a.bits.param size := a.bits.size source := a.bits.source address := a.bits.address } } def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = { val b_first = edge.first(b.bits, b.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (b.valid && !b_first) { monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra) monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra) monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra) monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra) monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra) } when (b.fire && b_first) { opcode := b.bits.opcode param := b.bits.param size := b.bits.size source := b.bits.source address := b.bits.address } } def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = { // Symbolic variable val sym_source = Wire(UInt(edge.client.endSourceId.W)) // TODO: Connect sym_source to a fixed value for simulation and to a // free wire in formal sym_source := 0.U // Type casting Int to UInt val maxSourceId = Wire(UInt(edge.client.endSourceId.W)) maxSourceId := edge.client.endSourceId.U // Delayed verison of sym_source val sym_source_d = Reg(UInt(edge.client.endSourceId.W)) sym_source_d := sym_source // These will be constraints for FV setup Property( MonitorDirection.Monitor, (sym_source === sym_source_d), "sym_source should remain stable", PropertyClass.Default) Property( MonitorDirection.Monitor, (sym_source <= maxSourceId), "sym_source should take legal value", PropertyClass.Default) val my_resp_pend = RegInit(false.B) val my_opcode = Reg(UInt()) val my_size = Reg(UInt()) val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire) val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire) val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source) val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source) val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat) val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend) when (my_set_resp_pend) { my_resp_pend := true.B } .elsewhen (my_clr_resp_pend) { my_resp_pend := false.B } when (my_a_first_beat) { my_opcode := bundle.a.bits.opcode my_size := bundle.a.bits.size } val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size) val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode) val my_resp_opcode_legal = Wire(Bool()) when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) || (my_resp_opcode === TLMessages.LogicalData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData) } .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck) } .otherwise { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck) } monAssert (IfThen(my_resp_pend, !my_a_first_beat), "Request message should not be sent with a source ID, for which a response message" + "is already pending (not received until current cycle) for a prior request message" + "with the same source ID" + extra) assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)), "Response message should be accepted with a source ID only if a request message with the" + "same source ID has been accepted or is being accepted in the current cycle" + extra) assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)), "Response message should be sent with a source ID only if a request message with the" + "same source ID has been accepted or is being sent in the current cycle" + extra) assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)), "If d_valid is 1, then d_size should be same as a_size of the corresponding request" + "message" + extra) assume (IfThen(my_d_first_beat, my_resp_opcode_legal), "If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" + "request message" + extra) } def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = { val c_first = edge.first(c.bits, c.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (c.valid && !c_first) { monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra) monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra) monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra) monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra) monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra) } when (c.fire && c_first) { opcode := c.bits.opcode param := c.bits.param size := c.bits.size source := c.bits.source address := c.bits.address } } def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = { val d_first = edge.first(d.bits, d.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val sink = Reg(UInt()) val denied = Reg(Bool()) when (d.valid && !d_first) { assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra) assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra) assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra) assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra) assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra) assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra) } when (d.fire && d_first) { opcode := d.bits.opcode param := d.bits.param size := d.bits.size source := d.bits.source sink := d.bits.sink denied := d.bits.denied } } def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = { legalizeMultibeatA(bundle.a, edge) legalizeMultibeatD(bundle.d, edge) if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { legalizeMultibeatB(bundle.b, edge) legalizeMultibeatC(bundle.c, edge) } } //This is left in for almond which doesn't adhere to the tilelink protocol @deprecated("Use legalizeADSource instead if possible","") def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.client.endSourceId.W)) val a_first = edge.first(bundle.a.bits, bundle.a.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val a_set = WireInit(0.U(edge.client.endSourceId.W)) when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra) } if (edge.manager.minLatency > 0) { assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = { val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size) val log_a_size_bus_size = log2Ceil(a_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error inflight.suggestName("inflight") val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) inflight_opcodes.suggestName("inflight_opcodes") val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) inflight_sizes.suggestName("inflight_sizes") val a_first = edge.first(bundle.a.bits, bundle.a.fire) a_first.suggestName("a_first") val d_first = edge.first(bundle.d.bits, bundle.d.fire) d_first.suggestName("d_first") val a_set = WireInit(0.U(edge.client.endSourceId.W)) val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) a_set.suggestName("a_set") a_set_wo_ready.suggestName("a_set_wo_ready") val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) a_opcodes_set.suggestName("a_opcodes_set") val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) a_sizes_set.suggestName("a_sizes_set") val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W)) a_opcode_lookup.suggestName("a_opcode_lookup") a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W)) a_size_lookup.suggestName("a_size_lookup") a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant)) val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant)) val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W)) a_opcodes_set_interm.suggestName("a_opcodes_set_interm") val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W)) a_sizes_set_interm.suggestName("a_sizes_set_interm") when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) { a_set_wo_ready := UIntToOH(bundle.a.bits.source) } when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U) a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U) monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) d_opcodes_clr.suggestName("d_opcodes_clr") val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) || (bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra) assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) || (bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra) assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) { assume((!bundle.d.ready) || bundle.a.ready, "ready check") } if (edge.manager.minLatency > 0) { assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = { val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size) val log_c_size_bus_size = log2Ceil(c_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) inflight.suggestName("inflight") inflight_opcodes.suggestName("inflight_opcodes") inflight_sizes.suggestName("inflight_sizes") val c_first = edge.first(bundle.c.bits, bundle.c.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) c_first.suggestName("c_first") d_first.suggestName("d_first") val c_set = WireInit(0.U(edge.client.endSourceId.W)) val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) c_set.suggestName("c_set") c_set_wo_ready.suggestName("c_set_wo_ready") c_opcodes_set.suggestName("c_opcodes_set") c_sizes_set.suggestName("c_sizes_set") val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W)) val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W)) c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U c_opcode_lookup.suggestName("c_opcode_lookup") c_size_lookup.suggestName("c_size_lookup") val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W)) val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W)) c_opcodes_set_interm.suggestName("c_opcodes_set_interm") c_sizes_set_interm.suggestName("c_sizes_set_interm") when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) { c_set_wo_ready := UIntToOH(bundle.c.bits.source) } when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) { c_set := UIntToOH(bundle.c.bits.source) c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U) c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U) monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra) } val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") d_opcodes_clr.suggestName("d_opcodes_clr") d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) { assume((!bundle.d.ready) || bundle.c.ready, "ready check") } if (edge.manager.minLatency > 0) { when (c_set_wo_ready.orR) { assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra) } } inflight := (inflight | c_set) & ~d_clr inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.manager.endSinkId.W)) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val e_first = true.B val d_set = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) { d_set := UIntToOH(bundle.d.bits.sink) assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra) } val e_clr = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) { e_clr := UIntToOH(bundle.e.bits.sink) monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra) } // edge.client.minLatency applies to BC, not DE inflight := (inflight | d_set) & ~e_clr } def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = { val sourceBits = log2Ceil(edge.client.endSourceId) val tooBig = 14 // >16kB worth of flight information gets to be too much if (sourceBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked") } else { if (args.edge.params(TestplanTestType).simulation) { if (args.edge.params(TLMonitorStrictMode)) { legalizeADSource(bundle, edge) legalizeCDSource(bundle, edge) } else { legalizeADSourceOld(bundle, edge) } } if (args.edge.params(TestplanTestType).formal) { legalizeADSourceFormal(bundle, edge) } } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { // legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize... val sinkBits = log2Ceil(edge.manager.endSinkId) if (sinkBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked") } else { legalizeDESink(bundle, edge) } } } def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = { legalizeFormat (bundle, edge) legalizeMultibeat (bundle, edge) legalizeUnique (bundle, edge) } } File Misc.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ import chisel3.util.random.LFSR import org.chipsalliance.cde.config.Parameters import scala.math._ class ParameterizedBundle(implicit p: Parameters) extends Bundle trait Clocked extends Bundle { val clock = Clock() val reset = Bool() } object DecoupledHelper { def apply(rvs: Bool*) = new DecoupledHelper(rvs) } class DecoupledHelper(val rvs: Seq[Bool]) { def fire(exclude: Bool, includes: Bool*) = { require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!") (rvs.filter(_ ne exclude) ++ includes).reduce(_ && _) } def fire() = { rvs.reduce(_ && _) } } object MuxT { def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2)) def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3)) def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4)) } /** Creates a cascade of n MuxTs to search for a key value. */ object MuxTLookup { def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } } object ValidMux { def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = { apply(v1 +: v2.toSeq) } def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = { val out = Wire(Valid(valids.head.bits.cloneType)) out.valid := valids.map(_.valid).reduce(_ || _) out.bits := MuxCase(valids.head.bits, valids.map(v => (v.valid -> v.bits))) out } } object Str { def apply(s: String): UInt = { var i = BigInt(0) require(s.forall(validChar _)) for (c <- s) i = (i << 8) | c i.U((s.length*8).W) } def apply(x: Char): UInt = { require(validChar(x)) x.U(8.W) } def apply(x: UInt): UInt = apply(x, 10) def apply(x: UInt, radix: Int): UInt = { val rad = radix.U val w = x.getWidth require(w > 0) var q = x var s = digit(q % rad) for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s) } s } def apply(x: SInt): UInt = apply(x, 10) def apply(x: SInt, radix: Int): UInt = { val neg = x < 0.S val abs = x.abs.asUInt if (radix != 10) { Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix)) } else { val rad = radix.U val w = abs.getWidth require(w > 0) var q = abs var s = digit(q % rad) var needSign = neg for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad val placeSpace = q === 0.U val space = Mux(needSign, Str('-'), Str(' ')) needSign = needSign && !placeSpace s = Cat(Mux(placeSpace, space, digit(q % rad)), s) } Cat(Mux(needSign, Str('-'), Str(' ')), s) } } private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0) private def validChar(x: Char) = x == (x & 0xFF) } object Split { def apply(x: UInt, n0: Int) = { val w = x.getWidth (x.extract(w-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n2: Int, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } } object Random { def apply(mod: Int, random: UInt): UInt = { if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0) else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod)) } def apply(mod: Int): UInt = apply(mod, randomizer) def oneHot(mod: Int, random: UInt): UInt = { if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0)) else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt } def oneHot(mod: Int): UInt = oneHot(mod, randomizer) private def randomizer = LFSR(16) private def partition(value: UInt, slices: Int) = Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U) } object Majority { def apply(in: Set[Bool]): Bool = { val n = (in.size >> 1) + 1 val clauses = in.subsets(n).map(_.reduce(_ && _)) clauses.reduce(_ || _) } def apply(in: Seq[Bool]): Bool = apply(in.toSet) def apply(in: UInt): Bool = apply(in.asBools.toSet) } object PopCountAtLeast { private def two(x: UInt): (Bool, Bool) = x.getWidth match { case 1 => (x.asBool, false.B) case n => val half = x.getWidth / 2 val (leftOne, leftTwo) = two(x(half - 1, 0)) val (rightOne, rightTwo) = two(x(x.getWidth - 1, half)) (leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne)) } def apply(x: UInt, n: Int): Bool = n match { case 0 => true.B case 1 => x.orR case 2 => two(x)._2 case 3 => PopCount(x) >= n.U } } // This gets used everywhere, so make the smallest circuit possible ... // Given an address and size, create a mask of beatBytes size // eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111 // groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01 object MaskGen { def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = { require (groupBy >= 1 && beatBytes >= groupBy) require (isPow2(beatBytes) && isPow2(groupBy)) val lgBytes = log2Ceil(beatBytes) val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U def helper(i: Int): Seq[(Bool, Bool)] = { if (i == 0) { Seq((lgSize >= lgBytes.asUInt, true.B)) } else { val sub = helper(i-1) val size = sizeOH(lgBytes - i) val bit = addr_lo(lgBytes - i) val nbit = !bit Seq.tabulate (1 << i) { j => val (sub_acc, sub_eq) = sub(j/2) val eq = sub_eq && (if (j % 2 == 1) bit else nbit) val acc = sub_acc || (size && eq) (acc, eq) } } } if (groupBy == beatBytes) 1.U else Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse) } } File PlusArg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.experimental._ import chisel3.util.HasBlackBoxResource @deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05") case class PlusArgInfo(default: BigInt, docstring: String) /** Case class for PlusArg information * * @tparam A scala type of the PlusArg value * @param default optional default value * @param docstring text to include in the help * @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT) */ private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String) /** Typeclass for converting a type to a doctype string * @tparam A some type */ trait Doctypeable[A] { /** Return the doctype string for some option */ def toDoctype(a: Option[A]): String } /** Object containing implementations of the Doctypeable typeclass */ object Doctypes { /** Converts an Int => "INT" */ implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" } /** Converts a BigInt => "INT" */ implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" } /** Converts a String => "STRING" */ implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" } } class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map( "FORMAT" -> StringParam(format), "DEFAULT" -> IntParam(default), "WIDTH" -> IntParam(width) )) with HasBlackBoxResource { val io = IO(new Bundle { val out = Output(UInt(width.W)) }) addResource("/vsrc/plusarg_reader.v") } /* This wrapper class has no outputs, making it clear it is a simulation-only construct */ class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module { val io = IO(new Bundle { val count = Input(UInt(width.W)) }) val max = Module(new plusarg_reader(format, default, docstring, width)).io.out when (max > 0.U) { assert (io.count < max, s"Timeout exceeded: $docstring") } } import Doctypes._ object PlusArg { /** PlusArg("foo") will return 42.U if the simulation is run with +foo=42 * Do not use this as an initial register value. The value is set in an * initial block and thus accessing it from another initial is racey. * Add a docstring to document the arg, which can be dumped in an elaboration * pass. */ def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out } /** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert * to kill the simulation when count exceeds the specified integer argument. * Default 0 will never assert. */ def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count } } object PlusArgArtefacts { private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty /* Add a new PlusArg */ @deprecated( "Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05" ) def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring) /** Add a new PlusArg * * @tparam A scala type of the PlusArg value * @param name name for the PlusArg * @param default optional default value * @param docstring text to include in the help */ def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit = artefacts = artefacts ++ Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default))) /* From plus args, generate help text */ private def serializeHelp_cHeader(tab: String = ""): String = artefacts .map{ case(arg, info) => s"""|$tab+$arg=${info.doctype}\\n\\ |$tab${" "*20}${info.docstring}\\n\\ |""".stripMargin ++ info.default.map{ case default => s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("") }.toSeq.mkString("\\n\\\n") ++ "\"" /* From plus args, generate a char array of their names */ private def serializeArray_cHeader(tab: String = ""): String = { val prettyTab = tab + " " * 44 // Length of 'static const ...' s"${tab}static const char * verilog_plusargs [] = {\\\n" ++ artefacts .map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" } .mkString("")++ s"${prettyTab}0};" } /* Generate C code to be included in emulator.cc that helps with * argument parsing based on available Verilog PlusArgs */ def serialize_cHeader(): String = s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\ |${serializeHelp_cHeader(" "*7)} |${serializeArray_cHeader()} |""".stripMargin } File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag } File Parameters.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.diplomacy import chisel3._ import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor} import freechips.rocketchip.util.ShiftQueue /** Options for describing the attributes of memory regions */ object RegionType { // Define the 'more relaxed than' ordering val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS) sealed trait T extends Ordered[T] { def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this) } case object CACHED extends T // an intermediate agent may have cached a copy of the region for you case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively } // A non-empty half-open range; [start, end) case class IdRange(start: Int, end: Int) extends Ordered[IdRange] { require (start >= 0, s"Ids cannot be negative, but got: $start.") require (start <= end, "Id ranges cannot be negative.") def compare(x: IdRange) = { val primary = (this.start - x.start).signum val secondary = (x.end - this.end).signum if (primary != 0) primary else secondary } def overlaps(x: IdRange) = start < x.end && x.start < end def contains(x: IdRange) = start <= x.start && x.end <= end def contains(x: Int) = start <= x && x < end def contains(x: UInt) = if (size == 0) { false.B } else if (size == 1) { // simple comparison x === start.U } else { // find index of largest different bit val largestDeltaBit = log2Floor(start ^ (end-1)) val smallestCommonBit = largestDeltaBit + 1 // may not exist in x val uncommonMask = (1 << smallestCommonBit) - 1 val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0) // the prefix must match exactly (note: may shift ALL bits away) (x >> smallestCommonBit) === (start >> smallestCommonBit).U && // firrtl constant prop range analysis can eliminate these two: (start & uncommonMask).U <= uncommonBits && uncommonBits <= ((end-1) & uncommonMask).U } def shift(x: Int) = IdRange(start+x, end+x) def size = end - start def isEmpty = end == start def range = start until end } object IdRange { def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else { val ranges = s.sorted (ranges.tail zip ranges.init) find { case (a, b) => a overlaps b } } } // An potentially empty inclusive range of 2-powers [min, max] (in bytes) case class TransferSizes(min: Int, max: Int) { def this(x: Int) = this(x, x) require (min <= max, s"Min transfer $min > max transfer $max") require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)") require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max") require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min") require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)") def none = min == 0 def contains(x: Int) = isPow2(x) && min <= x && x <= max def containsLg(x: Int) = contains(1 << x) def containsLg(x: UInt) = if (none) false.B else if (min == max) { log2Ceil(min).U === x } else { log2Ceil(min).U <= x && x <= log2Ceil(max).U } def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max) def intersect(x: TransferSizes) = if (x.max < min || max < x.min) TransferSizes.none else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max)) // Not a union, because the result may contain sizes contained by neither term // NOT TO BE CONFUSED WITH COVERPOINTS def mincover(x: TransferSizes) = { if (none) { x } else if (x.none) { this } else { TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max)) } } override def toString() = "TransferSizes[%d, %d]".format(min, max) } object TransferSizes { def apply(x: Int) = new TransferSizes(x) val none = new TransferSizes(0) def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _) def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _) implicit def asBool(x: TransferSizes) = !x.none } // AddressSets specify the address space managed by the manager // Base is the base address, and mask are the bits consumed by the manager // e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff // e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ... case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet] { // Forbid misaligned base address (and empty sets) require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}") require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous // We do allow negative mask (=> ignore all high bits) def contains(x: BigInt) = ((x ^ base) & ~mask) == 0 def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S // turn x into an address contained in this set def legalize(x: UInt): UInt = base.U | (mask.U & x) // overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1) def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0 // contains iff bitwise: x.mask => mask && contains(x.base) def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0 // The number of bytes to which the manager must be aligned def alignment = ((mask + 1) & ~mask) // Is this a contiguous memory range def contiguous = alignment == mask+1 def finite = mask >= 0 def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask } // Widen the match function to ignore all bits in imask def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask) // Return an AddressSet that only contains the addresses both sets contain def intersect(x: AddressSet): Option[AddressSet] = { if (!overlaps(x)) { None } else { val r_mask = mask & x.mask val r_base = base | x.base Some(AddressSet(r_base, r_mask)) } } def subtract(x: AddressSet): Seq[AddressSet] = { intersect(x) match { case None => Seq(this) case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit => val nmask = (mask & (bit-1)) | remove.mask val nbase = (remove.base ^ bit) & ~nmask AddressSet(nbase, nmask) } } } // AddressSets have one natural Ordering (the containment order, if contiguous) def compare(x: AddressSet) = { val primary = (this.base - x.base).signum // smallest address first val secondary = (x.mask - this.mask).signum // largest mask first if (primary != 0) primary else secondary } // We always want to see things in hex override def toString() = { if (mask >= 0) { "AddressSet(0x%x, 0x%x)".format(base, mask) } else { "AddressSet(0x%x, ~0x%x)".format(base, ~mask) } } def toRanges = { require (finite, "Ranges cannot be calculated on infinite mask") val size = alignment val fragments = mask & ~(size-1) val bits = bitIndexes(fragments) (BigInt(0) until (BigInt(1) << bits.size)).map { i => val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) } AddressRange(off, size) } } } object AddressSet { val everything = AddressSet(0, -1) def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = { if (size == 0) tail.reverse else { val maxBaseAlignment = base & (-base) // 0 for infinite (LSB) val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size val step = if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment) maxSizeAlignment else maxBaseAlignment misaligned(base+step, size-step, AddressSet(base, step-1) +: tail) } } def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = { // Pair terms up by ignoring 'bit' seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) => if (seq.size == 1) { seq.head // singleton -> unaffected } else { key.copy(mask = key.mask | bit) // pair - widen mask by bit } }.toList } def unify(seq: Seq[AddressSet]): Seq[AddressSet] = { val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _) AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted } def enumerateMask(mask: BigInt): Seq[BigInt] = { def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] = if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail) helper(0, Nil) } def enumerateBits(mask: BigInt): Seq[BigInt] = { def helper(x: BigInt): Seq[BigInt] = { if (x == 0) { Nil } else { val bit = x & (-x) bit +: helper(x & ~bit) } } helper(mask) } } case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean) { require (depth >= 0, "Buffer depth must be >= 0") def isDefined = depth > 0 def latency = if (isDefined && !flow) 1 else 0 def apply[T <: Data](x: DecoupledIO[T]) = if (isDefined) Queue(x, depth, flow=flow, pipe=pipe) else x def irrevocable[T <: Data](x: ReadyValidIO[T]) = if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe) else x def sq[T <: Data](x: DecoupledIO[T]) = if (!isDefined) x else { val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe)) sq.io.enq <> x sq.io.deq } override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "") } object BufferParams { implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false) val default = BufferParams(2) val none = BufferParams(0) val flow = BufferParams(1, true, false) val pipe = BufferParams(1, false, true) } case class TriStateValue(value: Boolean, set: Boolean) { def update(orig: Boolean) = if (set) value else orig } object TriStateValue { implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true) def unset = TriStateValue(false, false) } trait DirectedBuffers[T] { def copyIn(x: BufferParams): T def copyOut(x: BufferParams): T def copyInOut(x: BufferParams): T } trait IdMapEntry { def name: String def from: IdRange def to: IdRange def isCache: Boolean def requestFifo: Boolean def maxTransactionsInFlight: Option[Int] def pretty(fmt: String) = if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5 fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } else { fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } } abstract class IdMap[T <: IdMapEntry] { protected val fmt: String val mapping: Seq[T] def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n") } File Edges.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.util._ class TLEdge( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdgeParameters(client, manager, params, sourceInfo) { def isAligned(address: UInt, lgSize: UInt): Bool = { if (maxLgSize == 0) true.B else { val mask = UIntToOH1(lgSize, maxLgSize) (address & mask) === 0.U } } def mask(address: UInt, lgSize: UInt): UInt = MaskGen(address, lgSize, manager.beatBytes) def staticHasData(bundle: TLChannel): Option[Boolean] = { bundle match { case _:TLBundleA => { // Do there exist A messages with Data? val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial // Do there exist A messages without Data? val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint // Statically optimize the case where hasData is a constant if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None } case _:TLBundleB => { // Do there exist B messages with Data? val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial // Do there exist B messages without Data? val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint // Statically optimize the case where hasData is a constant if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None } case _:TLBundleC => { // Do there eixst C messages with Data? val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe // Do there exist C messages without Data? val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None } case _:TLBundleD => { // Do there eixst D messages with Data? val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB // Do there exist D messages without Data? val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None } case _:TLBundleE => Some(false) } } def isRequest(x: TLChannel): Bool = { x match { case a: TLBundleA => true.B case b: TLBundleB => true.B case c: TLBundleC => c.opcode(2) && c.opcode(1) // opcode === TLMessages.Release || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(2) && !d.opcode(1) // opcode === TLMessages.Grant || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } } def isResponse(x: TLChannel): Bool = { x match { case a: TLBundleA => false.B case b: TLBundleB => false.B case c: TLBundleC => !c.opcode(2) || !c.opcode(1) // opcode =/= TLMessages.Release && // opcode =/= TLMessages.ReleaseData case d: TLBundleD => true.B // Grant isResponse + isRequest case e: TLBundleE => true.B } } def hasData(x: TLChannel): Bool = { val opdata = x match { case a: TLBundleA => !a.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case b: TLBundleB => !b.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case c: TLBundleC => c.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.ProbeAckData || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } staticHasData(x).map(_.B).getOrElse(opdata) } def opcode(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.opcode case b: TLBundleB => b.opcode case c: TLBundleC => c.opcode case d: TLBundleD => d.opcode } } def param(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.param case b: TLBundleB => b.param case c: TLBundleC => c.param case d: TLBundleD => d.param } } def size(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.size case b: TLBundleB => b.size case c: TLBundleC => c.size case d: TLBundleD => d.size } } def data(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.data case b: TLBundleB => b.data case c: TLBundleC => c.data case d: TLBundleD => d.data } } def corrupt(x: TLDataChannel): Bool = { x match { case a: TLBundleA => a.corrupt case b: TLBundleB => b.corrupt case c: TLBundleC => c.corrupt case d: TLBundleD => d.corrupt } } def mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.mask case b: TLBundleB => b.mask case c: TLBundleC => mask(c.address, c.size) } } def full_mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => mask(a.address, a.size) case b: TLBundleB => mask(b.address, b.size) case c: TLBundleC => mask(c.address, c.size) } } def address(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.address case b: TLBundleB => b.address case c: TLBundleC => c.address } } def source(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.source case b: TLBundleB => b.source case c: TLBundleC => c.source case d: TLBundleD => d.source } } def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes) def addr_lo(x: UInt): UInt = if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0) def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x)) def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x)) def numBeats(x: TLChannel): UInt = { x match { case _: TLBundleE => 1.U case bundle: TLDataChannel => { val hasData = this.hasData(bundle) val size = this.size(bundle) val cutoff = log2Ceil(manager.beatBytes) val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U val decode = UIntToOH(size, maxLgSize+1) >> cutoff Mux(hasData, decode | small.asUInt, 1.U) } } } def numBeats1(x: TLChannel): UInt = { x match { case _: TLBundleE => 0.U case bundle: TLDataChannel => { if (maxLgSize == 0) { 0.U } else { val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes) Mux(hasData(bundle), decode, 0.U) } } } } def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val beats1 = numBeats1(bits) val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W)) val counter1 = counter - 1.U val first = counter === 0.U val last = counter === 1.U || beats1 === 0.U val done = last && fire val count = (beats1 & ~counter1) when (fire) { counter := Mux(first, beats1, counter1) } (first, last, done, count) } def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1 def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire) def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid) def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2 def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire) def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid) def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3 def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire) def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid) def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3) } def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire) def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid) def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4) } def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire) def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid) def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes)) } def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire) def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid) // Does the request need T permissions to be executed? def needT(a: TLBundleA): Bool = { val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLPermissions.NtoB -> false.B, TLPermissions.NtoT -> true.B, TLPermissions.BtoT -> true.B)) MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array( TLMessages.PutFullData -> true.B, TLMessages.PutPartialData -> true.B, TLMessages.ArithmeticData -> true.B, TLMessages.LogicalData -> true.B, TLMessages.Get -> false.B, TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLHints.PREFETCH_READ -> false.B, TLHints.PREFETCH_WRITE -> true.B)), TLMessages.AcquireBlock -> acq_needT, TLMessages.AcquirePerm -> acq_needT)) } // This is a very expensive circuit; use only if you really mean it! def inFlight(x: TLBundle): (UInt, UInt) = { val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W)) val bce = manager.anySupportAcquireB && client.anySupportProbe val (a_first, a_last, _) = firstlast(x.a) val (b_first, b_last, _) = firstlast(x.b) val (c_first, c_last, _) = firstlast(x.c) val (d_first, d_last, _) = firstlast(x.d) val (e_first, e_last, _) = firstlast(x.e) val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits)) val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits)) val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits)) val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits)) val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits)) val a_inc = x.a.fire && a_first && a_request val b_inc = x.b.fire && b_first && b_request val c_inc = x.c.fire && c_first && c_request val d_inc = x.d.fire && d_first && d_request val e_inc = x.e.fire && e_first && e_request val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil)) val a_dec = x.a.fire && a_last && a_response val b_dec = x.b.fire && b_last && b_response val c_dec = x.c.fire && c_last && c_response val d_dec = x.d.fire && d_last && d_response val e_dec = x.e.fire && e_last && e_response val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil)) val next_flight = flight + PopCount(inc) - PopCount(dec) flight := next_flight (flight, next_flight) } def prettySourceMapping(context: String): String = { s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n" } } class TLEdgeOut( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { // Transfers def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquireBlock a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquirePerm a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.Release c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ReleaseData c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) = Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B) def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAck c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions, data) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAckData c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B) def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink) def GrantAck(toSink: UInt): TLBundleE = { val e = Wire(new TLBundleE(bundle)) e.sink := toSink e } // Accesses def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsGetFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Get a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutFullFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutFullData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, mask, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutPartialFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutPartialData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask a.data := data a.corrupt := corrupt (legal, a) } def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = { require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsArithmeticFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.ArithmeticData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsLogicalFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.LogicalData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = { require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsHintFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Hint a.param := param a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data) def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAckData c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size) def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.HintAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } } class TLEdgeIn( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = { val todo = x.filter(!_.isEmpty) val heads = todo.map(_.head) val tails = todo.map(_.tail) if (todo.isEmpty) Nil else { heads +: myTranspose(tails) } } // Transfers def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = { require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}") val legal = client.supportsProbe(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Probe b.param := capPermissions b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.Grant d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.GrantData d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B) def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.ReleaseAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } // Accesses def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = { require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsGet(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Get b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsPutFull(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutFullData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, mask, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsPutPartial(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutPartialData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask b.data := data b.corrupt := corrupt (legal, b) } def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsArithmetic(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.ArithmeticData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsLogical(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.LogicalData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = { require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsHint(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Hint b.param := param b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size) def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied) def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B) def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data) def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAckData d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B) def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied) def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B) def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.HintAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } }
module TLMonitor_18( // @[Monitor.scala:36:7] input clock, // @[Monitor.scala:36:7] input reset, // @[Monitor.scala:36:7] input io_in_a_ready, // @[Monitor.scala:20:14] input io_in_a_valid, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14] input [3:0] io_in_a_bits_size, // @[Monitor.scala:20:14] input [6:0] io_in_a_bits_source, // @[Monitor.scala:20:14] input [28:0] io_in_a_bits_address, // @[Monitor.scala:20:14] input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14] input io_in_a_bits_corrupt, // @[Monitor.scala:20:14] input io_in_d_ready, // @[Monitor.scala:20:14] input io_in_d_valid, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14] input [1:0] io_in_d_bits_param, // @[Monitor.scala:20:14] input [3:0] io_in_d_bits_size, // @[Monitor.scala:20:14] input [6:0] io_in_d_bits_source, // @[Monitor.scala:20:14] input io_in_d_bits_sink, // @[Monitor.scala:20:14] input io_in_d_bits_denied, // @[Monitor.scala:20:14] input io_in_d_bits_corrupt // @[Monitor.scala:20:14] ); wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11] wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11] wire [26:0] _GEN = {23'h0, io_in_a_bits_size}; // @[package.scala:243:71] wire _a_first_T_1 = io_in_a_ready & io_in_a_valid; // @[Decoupled.scala:51:35] reg [8:0] a_first_counter; // @[Edges.scala:229:27] reg [2:0] opcode; // @[Monitor.scala:387:22] reg [2:0] param; // @[Monitor.scala:388:22] reg [3:0] size; // @[Monitor.scala:389:22] reg [6:0] source; // @[Monitor.scala:390:22] reg [28:0] address; // @[Monitor.scala:391:22] reg [8:0] d_first_counter; // @[Edges.scala:229:27] reg [2:0] opcode_1; // @[Monitor.scala:538:22] reg [1:0] param_1; // @[Monitor.scala:539:22] reg [3:0] size_1; // @[Monitor.scala:540:22] reg [6:0] source_1; // @[Monitor.scala:541:22] reg sink; // @[Monitor.scala:542:22] reg denied; // @[Monitor.scala:543:22] reg [64:0] inflight; // @[Monitor.scala:614:27] reg [259:0] inflight_opcodes; // @[Monitor.scala:616:35] reg [519:0] inflight_sizes; // @[Monitor.scala:618:33] reg [8:0] a_first_counter_1; // @[Edges.scala:229:27] wire a_first_1 = a_first_counter_1 == 9'h0; // @[Edges.scala:229:27, :231:25] reg [8:0] d_first_counter_1; // @[Edges.scala:229:27] wire d_first_1 = d_first_counter_1 == 9'h0; // @[Edges.scala:229:27, :231:25] wire [127:0] _GEN_0 = {121'h0, io_in_a_bits_source}; // @[OneHot.scala:58:35] wire _GEN_1 = _a_first_T_1 & a_first_1; // @[Decoupled.scala:51:35] wire d_release_ack = io_in_d_bits_opcode == 3'h6; // @[Monitor.scala:673:46] wire _GEN_2 = io_in_d_bits_opcode != 3'h6; // @[Monitor.scala:673:46, :674:74] wire [127:0] _GEN_3 = {121'h0, io_in_d_bits_source}; // @[OneHot.scala:58:35] reg [31:0] watchdog; // @[Monitor.scala:709:27] reg [64:0] inflight_1; // @[Monitor.scala:726:35] reg [519:0] inflight_sizes_1; // @[Monitor.scala:728:35] reg [8:0] d_first_counter_2; // @[Edges.scala:229:27] wire d_first_2 = d_first_counter_2 == 9'h0; // @[Edges.scala:229:27, :231:25] reg [31:0] watchdog_1; // @[Monitor.scala:818:27]
Generate the Verilog code corresponding to the following Chisel files. File ShiftReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ // Similar to the Chisel ShiftRegister but allows the user to suggest a // name to the registers that get instantiated, and // to provide a reset value. object ShiftRegInit { def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T = (0 until n).foldRight(in) { case (i, next) => { val r = RegNext(next, init) name.foreach { na => r.suggestName(s"${na}_${i}") } r } } } /** These wrap behavioral * shift registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * The different types vary in their reset behavior: * AsyncResetShiftReg -- Asynchronously reset register array * A W(width) x D(depth) sized array is constructed from D instantiations of a * W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg, * but only used for timing applications */ abstract class AbstractPipelineReg(w: Int = 1) extends Module { val io = IO(new Bundle { val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) } ) } object AbstractPipelineReg { def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = { val chain = Module(gen) name.foreach{ chain.suggestName(_) } chain.io.d := in.asUInt chain.io.q.asTypeOf(in) } } class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) { require(depth > 0, "Depth must be greater than 0.") override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}" val chain = List.tabulate(depth) { i => Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}") } chain.last.io.d := io.d chain.last.io.en := true.B (chain.init zip chain.tail).foreach { case (sink, source) => sink.io.d := source.io.q sink.io.en := true.B } io.q := chain.head.io.q } object AsyncResetShiftReg { def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name) def apply [T <: Data](in: T, depth: Int, name: Option[String]): T = apply(in, depth, 0, name) def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T = apply(in, depth, init.litValue.toInt, name) def apply [T <: Data](in: T, depth: Int, init: T): T = apply (in, depth, init.litValue.toInt, None) } File AsyncQueue.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ case class AsyncQueueParams( depth: Int = 8, sync: Int = 3, safe: Boolean = true, // If safe is true, then effort is made to resynchronize the crossing indices when either side is reset. // This makes it safe/possible to reset one side of the crossing (but not the other) when the queue is empty. narrow: Boolean = false) // If narrow is true then the read mux is moved to the source side of the crossing. // This reduces the number of level shifters in the case where the clock crossing is also a voltage crossing, // at the expense of a combinational path from the sink to the source and back to the sink. { require (depth > 0 && isPow2(depth)) require (sync >= 2) val bits = log2Ceil(depth) val wires = if (narrow) 1 else depth } object AsyncQueueParams { // When there is only one entry, we don't need narrow. def singleton(sync: Int = 3, safe: Boolean = true) = AsyncQueueParams(1, sync, safe, false) } class AsyncBundleSafety extends Bundle { val ridx_valid = Input (Bool()) val widx_valid = Output(Bool()) val source_reset_n = Output(Bool()) val sink_reset_n = Input (Bool()) } class AsyncBundle[T <: Data](private val gen: T, val params: AsyncQueueParams = AsyncQueueParams()) extends Bundle { // Data-path synchronization val mem = Output(Vec(params.wires, gen)) val ridx = Input (UInt((params.bits+1).W)) val widx = Output(UInt((params.bits+1).W)) val index = params.narrow.option(Input(UInt(params.bits.W))) // Signals used to self-stabilize a safe AsyncQueue val safe = params.safe.option(new AsyncBundleSafety) } object GrayCounter { def apply(bits: Int, increment: Bool = true.B, clear: Bool = false.B, name: String = "binary"): UInt = { val incremented = Wire(UInt(bits.W)) val binary = RegNext(next=incremented, init=0.U).suggestName(name) incremented := Mux(clear, 0.U, binary + increment.asUInt) incremented ^ (incremented >> 1) } } class AsyncValidSync(sync: Int, desc: String) extends RawModule { val io = IO(new Bundle { val in = Input(Bool()) val out = Output(Bool()) }) val clock = IO(Input(Clock())) val reset = IO(Input(AsyncReset())) withClockAndReset(clock, reset){ io.out := AsyncResetSynchronizerShiftReg(io.in, sync, Some(desc)) } } class AsyncQueueSource[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module { override def desiredName = s"AsyncQueueSource_${gen.typeName}" val io = IO(new Bundle { // These come from the source domain val enq = Flipped(Decoupled(gen)) // These cross to the sink clock domain val async = new AsyncBundle(gen, params) }) val bits = params.bits val sink_ready = WireInit(true.B) val mem = Reg(Vec(params.depth, gen)) // This does NOT need to be reset at all. val widx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.enq.fire, !sink_ready, "widx_bin")) val ridx = AsyncResetSynchronizerShiftReg(io.async.ridx, params.sync, Some("ridx_gray")) val ready = sink_ready && widx =/= (ridx ^ (params.depth | params.depth >> 1).U) val index = if (bits == 0) 0.U else io.async.widx(bits-1, 0) ^ (io.async.widx(bits, bits) << (bits-1)) when (io.enq.fire) { mem(index) := io.enq.bits } val ready_reg = withReset(reset.asAsyncReset)(RegNext(next=ready, init=false.B).suggestName("ready_reg")) io.enq.ready := ready_reg && sink_ready val widx_reg = withReset(reset.asAsyncReset)(RegNext(next=widx, init=0.U).suggestName("widx_gray")) io.async.widx := widx_reg io.async.index match { case Some(index) => io.async.mem(0) := mem(index) case None => io.async.mem := mem } io.async.safe.foreach { sio => val source_valid_0 = Module(new AsyncValidSync(params.sync, "source_valid_0")) val source_valid_1 = Module(new AsyncValidSync(params.sync, "source_valid_1")) val sink_extend = Module(new AsyncValidSync(params.sync, "sink_extend")) val sink_valid = Module(new AsyncValidSync(params.sync, "sink_valid")) source_valid_0.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset source_valid_1.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset sink_extend .reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset sink_valid .reset := reset.asAsyncReset source_valid_0.clock := clock source_valid_1.clock := clock sink_extend .clock := clock sink_valid .clock := clock source_valid_0.io.in := true.B source_valid_1.io.in := source_valid_0.io.out sio.widx_valid := source_valid_1.io.out sink_extend.io.in := sio.ridx_valid sink_valid.io.in := sink_extend.io.out sink_ready := sink_valid.io.out sio.source_reset_n := !reset.asBool // Assert that if there is stuff in the queue, then reset cannot happen // Impossible to write because dequeue can occur on the receiving side, // then reset allowed to happen, but write side cannot know that dequeue // occurred. // TODO: write some sort of sanity check assertion for users // that denote don't reset when there is activity // assert (!(reset || !sio.sink_reset_n) || !io.enq.valid, "Enqueue while sink is reset and AsyncQueueSource is unprotected") // assert (!reset_rise || prev_idx_match.asBool, "Sink reset while AsyncQueueSource not empty") } } class AsyncQueueSink[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module { override def desiredName = s"AsyncQueueSink_${gen.typeName}" val io = IO(new Bundle { // These come from the sink domain val deq = Decoupled(gen) // These cross to the source clock domain val async = Flipped(new AsyncBundle(gen, params)) }) val bits = params.bits val source_ready = WireInit(true.B) val ridx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.deq.fire, !source_ready, "ridx_bin")) val widx = AsyncResetSynchronizerShiftReg(io.async.widx, params.sync, Some("widx_gray")) val valid = source_ready && ridx =/= widx // The mux is safe because timing analysis ensures ridx has reached the register // On an ASIC, changes to the unread location cannot affect the selected value // On an FPGA, only one input changes at a time => mem updates don't cause glitches // The register only latches when the selected valued is not being written val index = if (bits == 0) 0.U else ridx(bits-1, 0) ^ (ridx(bits, bits) << (bits-1)) io.async.index.foreach { _ := index } // This register does not NEED to be reset, as its contents will not // be considered unless the asynchronously reset deq valid register is set. // It is possible that bits latches when the source domain is reset / has power cut // This is safe, because isolation gates brought mem low before the zeroed widx reached us val deq_bits_nxt = io.async.mem(if (params.narrow) 0.U else index) io.deq.bits := ClockCrossingReg(deq_bits_nxt, en = valid, doInit = false, name = Some("deq_bits_reg")) val valid_reg = withReset(reset.asAsyncReset)(RegNext(next=valid, init=false.B).suggestName("valid_reg")) io.deq.valid := valid_reg && source_ready val ridx_reg = withReset(reset.asAsyncReset)(RegNext(next=ridx, init=0.U).suggestName("ridx_gray")) io.async.ridx := ridx_reg io.async.safe.foreach { sio => val sink_valid_0 = Module(new AsyncValidSync(params.sync, "sink_valid_0")) val sink_valid_1 = Module(new AsyncValidSync(params.sync, "sink_valid_1")) val source_extend = Module(new AsyncValidSync(params.sync, "source_extend")) val source_valid = Module(new AsyncValidSync(params.sync, "source_valid")) sink_valid_0 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset sink_valid_1 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset source_extend.reset := (reset.asBool || !sio.source_reset_n).asAsyncReset source_valid .reset := reset.asAsyncReset sink_valid_0 .clock := clock sink_valid_1 .clock := clock source_extend.clock := clock source_valid .clock := clock sink_valid_0.io.in := true.B sink_valid_1.io.in := sink_valid_0.io.out sio.ridx_valid := sink_valid_1.io.out source_extend.io.in := sio.widx_valid source_valid.io.in := source_extend.io.out source_ready := source_valid.io.out sio.sink_reset_n := !reset.asBool // TODO: write some sort of sanity check assertion for users // that denote don't reset when there is activity // // val reset_and_extend = !source_ready || !sio.source_reset_n || reset.asBool // val reset_and_extend_prev = RegNext(reset_and_extend, true.B) // val reset_rise = !reset_and_extend_prev && reset_and_extend // val prev_idx_match = AsyncResetReg(updateData=(io.async.widx===io.async.ridx), resetData=0) // assert (!reset_rise || prev_idx_match.asBool, "Source reset while AsyncQueueSink not empty") } } object FromAsyncBundle { // Sometimes it makes sense for the sink to have different sync than the source def apply[T <: Data](x: AsyncBundle[T]): DecoupledIO[T] = apply(x, x.params.sync) def apply[T <: Data](x: AsyncBundle[T], sync: Int): DecoupledIO[T] = { val sink = Module(new AsyncQueueSink(chiselTypeOf(x.mem(0)), x.params.copy(sync = sync))) sink.io.async <> x sink.io.deq } } object ToAsyncBundle { def apply[T <: Data](x: ReadyValidIO[T], params: AsyncQueueParams = AsyncQueueParams()): AsyncBundle[T] = { val source = Module(new AsyncQueueSource(chiselTypeOf(x.bits), params)) source.io.enq <> x source.io.async } } class AsyncQueue[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Crossing[T] { val io = IO(new CrossingIO(gen)) val source = withClockAndReset(io.enq_clock, io.enq_reset) { Module(new AsyncQueueSource(gen, params)) } val sink = withClockAndReset(io.deq_clock, io.deq_reset) { Module(new AsyncQueueSink (gen, params)) } source.io.enq <> io.enq io.deq <> sink.io.deq sink.io.async <> source.io.async }
module AsyncValidSync_55( // @[AsyncQueue.scala:58:7] input io_in, // @[AsyncQueue.scala:59:14] output io_out, // @[AsyncQueue.scala:59:14] input clock, // @[AsyncQueue.scala:63:17] input reset // @[AsyncQueue.scala:64:17] ); wire io_in_0 = io_in; // @[AsyncQueue.scala:58:7] wire _io_out_WIRE; // @[ShiftReg.scala:48:24] wire io_out_0; // @[AsyncQueue.scala:58:7] assign io_out_0 = _io_out_WIRE; // @[ShiftReg.scala:48:24] AsyncResetSynchronizerShiftReg_w1_d3_i0_68 io_out_source_valid ( // @[ShiftReg.scala:45:23] .clock (clock), .reset (reset), .io_d (io_in_0), // @[AsyncQueue.scala:58:7] .io_q (_io_out_WIRE) ); // @[ShiftReg.scala:45:23] assign io_out = io_out_0; // @[AsyncQueue.scala:58:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Transposer.scala: package gemmini import chisel3._ import chisel3.util._ import Util._ trait Transposer[T <: Data] extends Module { def dim: Int def dataType: T val io = IO(new Bundle { val inRow = Flipped(Decoupled(Vec(dim, dataType))) val outCol = Decoupled(Vec(dim, dataType)) }) } class PipelinedTransposer[T <: Data](val dim: Int, val dataType: T) extends Transposer[T] { require(isPow2(dim)) val regArray = Seq.fill(dim, dim)(Reg(dataType)) val regArrayT = regArray.transpose val sMoveUp :: sMoveLeft :: Nil = Enum(2) val state = RegInit(sMoveUp) val leftCounter = RegInit(0.U(log2Ceil(dim+1).W)) //(io.inRow.fire && state === sMoveLeft, dim+1) val upCounter = RegInit(0.U(log2Ceil(dim+1).W)) //Counter(io.inRow.fire && state === sMoveUp, dim+1) io.outCol.valid := 0.U io.inRow.ready := 0.U switch(state) { is(sMoveUp) { io.inRow.ready := upCounter <= dim.U io.outCol.valid := leftCounter > 0.U when(io.inRow.fire) { upCounter := upCounter + 1.U } when(upCounter === (dim-1).U) { state := sMoveLeft leftCounter := 0.U } when(io.outCol.fire) { leftCounter := leftCounter - 1.U } } is(sMoveLeft) { io.inRow.ready := leftCounter <= dim.U // TODO: this is naive io.outCol.valid := upCounter > 0.U when(leftCounter === (dim-1).U) { state := sMoveUp } when(io.inRow.fire) { leftCounter := leftCounter + 1.U upCounter := 0.U } when(io.outCol.fire) { upCounter := upCounter - 1.U } } } // Propagate input from bottom row to top row systolically in the move up phase // TODO: need to iterate over columns to connect Chisel values of type T // Should be able to operate directly on the Vec, but Seq and Vec don't mix (try Array?) for (colIdx <- 0 until dim) { regArray.foldRight(io.inRow.bits(colIdx)) { case (regRow, prevReg) => when (state === sMoveUp) { regRow(colIdx) := prevReg } regRow(colIdx) } } // Propagate input from right side to left side systolically in the move left phase for (rowIdx <- 0 until dim) { regArrayT.foldRight(io.inRow.bits(rowIdx)) { case (regCol, prevReg) => when (state === sMoveLeft) { regCol(rowIdx) := prevReg } regCol(rowIdx) } } // Pull from the left side or the top side based on the state for (idx <- 0 until dim) { when (state === sMoveUp) { io.outCol.bits(idx) := regArray(0)(idx) }.elsewhen(state === sMoveLeft) { io.outCol.bits(idx) := regArrayT(0)(idx) }.otherwise { io.outCol.bits(idx) := DontCare } } } class AlwaysOutTransposer[T <: Data](val dim: Int, val dataType: T) extends Transposer[T] { require(isPow2(dim)) val LEFT_DIR = 0.U(1.W) val UP_DIR = 1.U(1.W) class PE extends Module { val io = IO(new Bundle { val inR = Input(dataType) val inD = Input(dataType) val outL = Output(dataType) val outU = Output(dataType) val dir = Input(UInt(1.W)) val en = Input(Bool()) }) val reg = RegEnable(Mux(io.dir === LEFT_DIR, io.inR, io.inD), io.en) io.outU := reg io.outL := reg } val pes = Seq.fill(dim,dim)(Module(new PE)) val counter = RegInit(0.U((log2Ceil(dim) max 1).W)) // TODO replace this with a standard Chisel counter val dir = RegInit(LEFT_DIR) // Wire up horizontal signals for (row <- 0 until dim; col <- 0 until dim) { val right_in = if (col == dim-1) io.inRow.bits(row) else pes(row)(col+1).io.outL pes(row)(col).io.inR := right_in } // Wire up vertical signals for (row <- 0 until dim; col <- 0 until dim) { val down_in = if (row == dim-1) io.inRow.bits(col) else pes(row+1)(col).io.outU pes(row)(col).io.inD := down_in } // Wire up global signals pes.flatten.foreach(_.io.dir := dir) pes.flatten.foreach(_.io.en := io.inRow.fire) io.outCol.valid := true.B io.inRow.ready := true.B val left_out = VecInit(pes.transpose.head.map(_.io.outL)) val up_out = VecInit(pes.head.map(_.io.outU)) io.outCol.bits := Mux(dir === LEFT_DIR, left_out, up_out) when (io.inRow.fire) { counter := wrappingAdd(counter, 1.U, dim) } when (counter === (dim-1).U && io.inRow.fire) { dir := ~dir } } class NaiveTransposer[T <: Data](val dim: Int, val dataType: T) extends Transposer[T] { val regArray = Seq.fill(dim, dim)(Reg(dataType)) val regArrayT = regArray.transpose // state = 0 => filling regArray row-wise, state = 1 => draining regArray column-wise val state = RegInit(0.U(1.W)) val countInc = io.inRow.fire || io.outCol.fire val (countValue, countWrap) = Counter(countInc, dim) io.inRow.ready := state === 0.U io.outCol.valid := state === 1.U for (i <- 0 until dim) { for (j <- 0 until dim) { when(countValue === i.U && io.inRow.fire) { regArray(i)(j) := io.inRow.bits(j) } } } for (i <- 0 until dim) { io.outCol.bits(i) := 0.U for (j <- 0 until dim) { when(countValue === j.U) { io.outCol.bits(i) := regArrayT(j)(i) } } } when (io.inRow.fire && countWrap) { state := 1.U } when (io.outCol.fire && countWrap) { state := 0.U } assert(!(state === 0.U) || !io.outCol.fire) assert(!(state === 1.U) || !io.inRow.fire) }
module PE_157( // @[Transposer.scala:100:9] input clock, // @[Transposer.scala:100:9] input reset, // @[Transposer.scala:100:9] input [7:0] io_inR, // @[Transposer.scala:101:16] input [7:0] io_inD, // @[Transposer.scala:101:16] output [7:0] io_outL, // @[Transposer.scala:101:16] output [7:0] io_outU, // @[Transposer.scala:101:16] input io_dir, // @[Transposer.scala:101:16] input io_en // @[Transposer.scala:101:16] ); wire [7:0] io_inR_0 = io_inR; // @[Transposer.scala:100:9] wire [7:0] io_inD_0 = io_inD; // @[Transposer.scala:100:9] wire io_dir_0 = io_dir; // @[Transposer.scala:100:9] wire io_en_0 = io_en; // @[Transposer.scala:100:9] wire [7:0] io_outL_0; // @[Transposer.scala:100:9] wire [7:0] io_outU_0; // @[Transposer.scala:100:9] wire _reg_T = ~io_dir_0; // @[Transposer.scala:100:9, :110:36] wire [7:0] _reg_T_1 = _reg_T ? io_inR_0 : io_inD_0; // @[Transposer.scala:100:9, :110:{28,36}] reg [7:0] reg_0; // @[Transposer.scala:110:24] assign io_outL_0 = reg_0; // @[Transposer.scala:100:9, :110:24] assign io_outU_0 = reg_0; // @[Transposer.scala:100:9, :110:24] always @(posedge clock) begin // @[Transposer.scala:100:9] if (io_en_0) // @[Transposer.scala:100:9] reg_0 <= _reg_T_1; // @[Transposer.scala:110:{24,28}] always @(posedge) assign io_outL = io_outL_0; // @[Transposer.scala:100:9] assign io_outU = io_outU_0; // @[Transposer.scala:100:9] endmodule
Generate the Verilog code corresponding to the following Chisel files. File PE.scala: // See README.md for license details. package gemmini import chisel3._ import chisel3.util._ class PEControl[T <: Data : Arithmetic](accType: T) extends Bundle { val dataflow = UInt(1.W) // TODO make this an Enum val propagate = UInt(1.W) // Which register should be propagated (and which should be accumulated)? val shift = UInt(log2Up(accType.getWidth).W) // TODO this isn't correct for Floats } class MacUnit[T <: Data](inputType: T, cType: T, dType: T) (implicit ev: Arithmetic[T]) extends Module { import ev._ val io = IO(new Bundle { val in_a = Input(inputType) val in_b = Input(inputType) val in_c = Input(cType) val out_d = Output(dType) }) io.out_d := io.in_c.mac(io.in_a, io.in_b) } // TODO update documentation /** * A PE implementing a MAC operation. Configured as fully combinational when integrated into a Mesh. * @param width Data width of operands */ class PE[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, max_simultaneous_matmuls: Int) (implicit ev: Arithmetic[T]) extends Module { // Debugging variables import ev._ val io = IO(new Bundle { val in_a = Input(inputType) val in_b = Input(outputType) val in_d = Input(outputType) val out_a = Output(inputType) val out_b = Output(outputType) val out_c = Output(outputType) val in_control = Input(new PEControl(accType)) val out_control = Output(new PEControl(accType)) val in_id = Input(UInt(log2Up(max_simultaneous_matmuls).W)) val out_id = Output(UInt(log2Up(max_simultaneous_matmuls).W)) val in_last = Input(Bool()) val out_last = Output(Bool()) val in_valid = Input(Bool()) val out_valid = Output(Bool()) val bad_dataflow = Output(Bool()) }) val cType = if (df == Dataflow.WS) inputType else accType // When creating PEs that support multiple dataflows, the // elaboration/synthesis tools often fail to consolidate and de-duplicate // MAC units. To force mac circuitry to be re-used, we create a "mac_unit" // module here which just performs a single MAC operation val mac_unit = Module(new MacUnit(inputType, if (df == Dataflow.WS) outputType else accType, outputType)) val a = io.in_a val b = io.in_b val d = io.in_d val c1 = Reg(cType) val c2 = Reg(cType) val dataflow = io.in_control.dataflow val prop = io.in_control.propagate val shift = io.in_control.shift val id = io.in_id val last = io.in_last val valid = io.in_valid io.out_a := a io.out_control.dataflow := dataflow io.out_control.propagate := prop io.out_control.shift := shift io.out_id := id io.out_last := last io.out_valid := valid mac_unit.io.in_a := a val last_s = RegEnable(prop, valid) val flip = last_s =/= prop val shift_offset = Mux(flip, shift, 0.U) // Which dataflow are we using? val OUTPUT_STATIONARY = Dataflow.OS.id.U(1.W) val WEIGHT_STATIONARY = Dataflow.WS.id.U(1.W) // Is c1 being computed on, or propagated forward (in the output-stationary dataflow)? val COMPUTE = 0.U(1.W) val PROPAGATE = 1.U(1.W) io.bad_dataflow := false.B when ((df == Dataflow.OS).B || ((df == Dataflow.BOTH).B && dataflow === OUTPUT_STATIONARY)) { when(prop === PROPAGATE) { io.out_c := (c1 >> shift_offset).clippedToWidthOf(outputType) io.out_b := b mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c2 c2 := mac_unit.io.out_d c1 := d.withWidthOf(cType) }.otherwise { io.out_c := (c2 >> shift_offset).clippedToWidthOf(outputType) io.out_b := b mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c1 c1 := mac_unit.io.out_d c2 := d.withWidthOf(cType) } }.elsewhen ((df == Dataflow.WS).B || ((df == Dataflow.BOTH).B && dataflow === WEIGHT_STATIONARY)) { when(prop === PROPAGATE) { io.out_c := c1 mac_unit.io.in_b := c2.asTypeOf(inputType) mac_unit.io.in_c := b io.out_b := mac_unit.io.out_d c1 := d }.otherwise { io.out_c := c2 mac_unit.io.in_b := c1.asTypeOf(inputType) mac_unit.io.in_c := b io.out_b := mac_unit.io.out_d c2 := d } }.otherwise { io.bad_dataflow := true.B //assert(false.B, "unknown dataflow") io.out_c := DontCare io.out_b := DontCare mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c2 } when (!valid) { c1 := c1 c2 := c2 mac_unit.io.in_b := DontCare mac_unit.io.in_c := DontCare } } File Arithmetic.scala: // A simple type class for Chisel datatypes that can add and multiply. To add your own type, simply create your own: // implicit MyTypeArithmetic extends Arithmetic[MyType] { ... } package gemmini import chisel3._ import chisel3.util._ import hardfloat._ // Bundles that represent the raw bits of custom datatypes case class Float(expWidth: Int, sigWidth: Int) extends Bundle { val bits = UInt((expWidth + sigWidth).W) val bias: Int = (1 << (expWidth-1)) - 1 } case class DummySInt(w: Int) extends Bundle { val bits = UInt(w.W) def dontCare: DummySInt = { val o = Wire(new DummySInt(w)) o.bits := 0.U o } } // The Arithmetic typeclass which implements various arithmetic operations on custom datatypes abstract class Arithmetic[T <: Data] { implicit def cast(t: T): ArithmeticOps[T] } abstract class ArithmeticOps[T <: Data](self: T) { def *(t: T): T def mac(m1: T, m2: T): T // Returns (m1 * m2 + self) def +(t: T): T def -(t: T): T def >>(u: UInt): T // This is a rounding shift! Rounds away from 0 def >(t: T): Bool def identity: T def withWidthOf(t: T): T def clippedToWidthOf(t: T): T // Like "withWidthOf", except that it saturates def relu: T def zero: T def minimum: T // Optional parameters, which only need to be defined if you want to enable various optimizations for transformers def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[T])] = None def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[T])] = None def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = None def mult_with_reciprocal[U <: Data](reciprocal: U) = self } object Arithmetic { implicit object UIntArithmetic extends Arithmetic[UInt] { override implicit def cast(self: UInt) = new ArithmeticOps(self) { override def *(t: UInt) = self * t override def mac(m1: UInt, m2: UInt) = m1 * m2 + self override def +(t: UInt) = self + t override def -(t: UInt) = self - t override def >>(u: UInt) = { // The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm // TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here? val point_five = Mux(u === 0.U, 0.U, self(u - 1.U)) val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U val ones_digit = self(u) val r = point_five & (zeros | ones_digit) (self >> u).asUInt + r } override def >(t: UInt): Bool = self > t override def withWidthOf(t: UInt) = self.asTypeOf(t) override def clippedToWidthOf(t: UInt) = { val sat = ((1 << (t.getWidth-1))-1).U Mux(self > sat, sat, self)(t.getWidth-1, 0) } override def relu: UInt = self override def zero: UInt = 0.U override def identity: UInt = 1.U override def minimum: UInt = 0.U } } implicit object SIntArithmetic extends Arithmetic[SInt] { override implicit def cast(self: SInt) = new ArithmeticOps(self) { override def *(t: SInt) = self * t override def mac(m1: SInt, m2: SInt) = m1 * m2 + self override def +(t: SInt) = self + t override def -(t: SInt) = self - t override def >>(u: UInt) = { // The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm // TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here? val point_five = Mux(u === 0.U, 0.U, self(u - 1.U)) val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U val ones_digit = self(u) val r = (point_five & (zeros | ones_digit)).asBool (self >> u).asSInt + Mux(r, 1.S, 0.S) } override def >(t: SInt): Bool = self > t override def withWidthOf(t: SInt) = { if (self.getWidth >= t.getWidth) self(t.getWidth-1, 0).asSInt else { val sign_bits = t.getWidth - self.getWidth val sign = self(self.getWidth-1) Cat(Cat(Seq.fill(sign_bits)(sign)), self).asTypeOf(t) } } override def clippedToWidthOf(t: SInt): SInt = { val maxsat = ((1 << (t.getWidth-1))-1).S val minsat = (-(1 << (t.getWidth-1))).S MuxCase(self, Seq((self > maxsat) -> maxsat, (self < minsat) -> minsat))(t.getWidth-1, 0).asSInt } override def relu: SInt = Mux(self >= 0.S, self, 0.S) override def zero: SInt = 0.S override def identity: SInt = 1.S override def minimum: SInt = (-(1 << (self.getWidth-1))).S override def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = { // TODO this uses a floating point divider, but we should use an integer divider instead val input = Wire(Decoupled(denom_t.cloneType)) val output = Wire(Decoupled(self.cloneType)) // We translate our integer to floating-point form so that we can use the hardfloat divider val expWidth = log2Up(self.getWidth) + 1 val sigWidth = self.getWidth def sin_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def uin_to_float(x: UInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := false.B in_to_rec_fn.io.in := x in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag rec_fn_to_in.io.out.asSInt } val self_rec = sin_to_float(self) val denom_rec = uin_to_float(input.bits) // Instantiate the hardloat divider val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options)) input.ready := divider.io.inReady divider.io.inValid := input.valid divider.io.sqrtOp := false.B divider.io.a := self_rec divider.io.b := denom_rec divider.io.roundingMode := consts.round_minMag divider.io.detectTininess := consts.tininess_afterRounding output.valid := divider.io.outValid_div output.bits := float_to_in(divider.io.out) assert(!output.valid || output.ready) Some((input, output)) } override def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = { // TODO this uses a floating point divider, but we should use an integer divider instead val input = Wire(Decoupled(UInt(0.W))) val output = Wire(Decoupled(self.cloneType)) input.bits := DontCare // We translate our integer to floating-point form so that we can use the hardfloat divider val expWidth = log2Up(self.getWidth) + 1 val sigWidth = self.getWidth def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag rec_fn_to_in.io.out.asSInt } val self_rec = in_to_float(self) // Instantiate the hardloat sqrt val sqrter = Module(new DivSqrtRecFN_small(expWidth, sigWidth, 0)) input.ready := sqrter.io.inReady sqrter.io.inValid := input.valid sqrter.io.sqrtOp := true.B sqrter.io.a := self_rec sqrter.io.b := DontCare sqrter.io.roundingMode := consts.round_minMag sqrter.io.detectTininess := consts.tininess_afterRounding output.valid := sqrter.io.outValid_sqrt output.bits := float_to_in(sqrter.io.out) assert(!output.valid || output.ready) Some((input, output)) } override def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = u match { case Float(expWidth, sigWidth) => val input = Wire(Decoupled(UInt(0.W))) val output = Wire(Decoupled(u.cloneType)) input.bits := DontCare // We translate our integer to floating-point form so that we can use the hardfloat divider def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } val self_rec = in_to_float(self) val one_rec = in_to_float(1.S) // Instantiate the hardloat divider val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options)) input.ready := divider.io.inReady divider.io.inValid := input.valid divider.io.sqrtOp := false.B divider.io.a := one_rec divider.io.b := self_rec divider.io.roundingMode := consts.round_near_even divider.io.detectTininess := consts.tininess_afterRounding output.valid := divider.io.outValid_div output.bits := fNFromRecFN(expWidth, sigWidth, divider.io.out).asTypeOf(u) assert(!output.valid || output.ready) Some((input, output)) case _ => None } override def mult_with_reciprocal[U <: Data](reciprocal: U): SInt = reciprocal match { case recip @ Float(expWidth, sigWidth) => def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag rec_fn_to_in.io.out.asSInt } val self_rec = in_to_float(self) val reciprocal_rec = recFNFromFN(expWidth, sigWidth, recip.bits) // Instantiate the hardloat divider val muladder = Module(new MulRecFN(expWidth, sigWidth)) muladder.io.roundingMode := consts.round_near_even muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := reciprocal_rec float_to_in(muladder.io.out) case _ => self } } } implicit object FloatArithmetic extends Arithmetic[Float] { // TODO Floating point arithmetic currently switches between recoded and standard formats for every operation. However, it should stay in the recoded format as it travels through the systolic array override implicit def cast(self: Float): ArithmeticOps[Float] = new ArithmeticOps(self) { override def *(t: Float): Float = { val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth)) muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := t_rec_resized val out = Wire(Float(self.expWidth, self.sigWidth)) out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) out } override def mac(m1: Float, m2: Float): Float = { // Recode all operands val m1_rec = recFNFromFN(m1.expWidth, m1.sigWidth, m1.bits) val m2_rec = recFNFromFN(m2.expWidth, m2.sigWidth, m2.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Resize m1 to self's width val m1_resizer = Module(new RecFNToRecFN(m1.expWidth, m1.sigWidth, self.expWidth, self.sigWidth)) m1_resizer.io.in := m1_rec m1_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag m1_resizer.io.detectTininess := consts.tininess_afterRounding val m1_rec_resized = m1_resizer.io.out // Resize m2 to self's width val m2_resizer = Module(new RecFNToRecFN(m2.expWidth, m2.sigWidth, self.expWidth, self.sigWidth)) m2_resizer.io.in := m2_rec m2_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag m2_resizer.io.detectTininess := consts.tininess_afterRounding val m2_rec_resized = m2_resizer.io.out // Perform multiply-add val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth)) muladder.io.op := 0.U muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := m1_rec_resized muladder.io.b := m2_rec_resized muladder.io.c := self_rec // Convert result to standard format // TODO remove these intermediate recodings val out = Wire(Float(self.expWidth, self.sigWidth)) out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) out } override def +(t: Float): Float = { require(self.getWidth >= t.getWidth) // This just makes it easier to write the resizing code // Recode all operands val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Generate 1 as a float val in_to_rec_fn = Module(new INToRecFN(1, self.expWidth, self.sigWidth)) in_to_rec_fn.io.signedIn := false.B in_to_rec_fn.io.in := 1.U in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding val one_rec = in_to_rec_fn.io.out // Resize t val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out // Perform addition val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth)) muladder.io.op := 0.U muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := t_rec_resized muladder.io.b := one_rec muladder.io.c := self_rec val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) result } override def -(t: Float): Float = { val t_sgn = t.bits(t.getWidth-1) val neg_t = Cat(~t_sgn, t.bits(t.getWidth-2,0)).asTypeOf(t) self + neg_t } override def >>(u: UInt): Float = { // Recode self val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Get 2^(-u) as a recoded float val shift_exp = Wire(UInt(self.expWidth.W)) shift_exp := self.bias.U - u val shift_fn = Cat(0.U(1.W), shift_exp, 0.U((self.sigWidth-1).W)) val shift_rec = recFNFromFN(self.expWidth, self.sigWidth, shift_fn) assert(shift_exp =/= 0.U, "scaling by denormalized numbers is not currently supported") // Multiply self and 2^(-u) val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth)) muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := shift_rec val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) result } override def >(t: Float): Bool = { // Recode all operands val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Resize t to self's width val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out val comparator = Module(new CompareRecFN(self.expWidth, self.sigWidth)) comparator.io.a := self_rec comparator.io.b := t_rec_resized comparator.io.signaling := false.B comparator.io.gt } override def withWidthOf(t: Float): Float = { val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth)) resizer.io.in := self_rec resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag resizer.io.detectTininess := consts.tininess_afterRounding val result = Wire(Float(t.expWidth, t.sigWidth)) result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out) result } override def clippedToWidthOf(t: Float): Float = { // TODO check for overflow. Right now, we just assume that overflow doesn't happen val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth)) resizer.io.in := self_rec resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag resizer.io.detectTininess := consts.tininess_afterRounding val result = Wire(Float(t.expWidth, t.sigWidth)) result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out) result } override def relu: Float = { val raw = rawFloatFromFN(self.expWidth, self.sigWidth, self.bits) val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := Mux(!raw.isZero && raw.sign, 0.U, self.bits) result } override def zero: Float = 0.U.asTypeOf(self) override def identity: Float = Cat(0.U(2.W), ~(0.U((self.expWidth-1).W)), 0.U((self.sigWidth-1).W)).asTypeOf(self) override def minimum: Float = Cat(1.U, ~(0.U(self.expWidth.W)), 0.U((self.sigWidth-1).W)).asTypeOf(self) } } implicit object DummySIntArithmetic extends Arithmetic[DummySInt] { override implicit def cast(self: DummySInt) = new ArithmeticOps(self) { override def *(t: DummySInt) = self.dontCare override def mac(m1: DummySInt, m2: DummySInt) = self.dontCare override def +(t: DummySInt) = self.dontCare override def -(t: DummySInt) = self.dontCare override def >>(t: UInt) = self.dontCare override def >(t: DummySInt): Bool = false.B override def identity = self.dontCare override def withWidthOf(t: DummySInt) = self.dontCare override def clippedToWidthOf(t: DummySInt) = self.dontCare override def relu = self.dontCare override def zero = self.dontCare override def minimum: DummySInt = self.dontCare } } }
module MacUnit_72( // @[PE.scala:14:7] input clock, // @[PE.scala:14:7] input reset, // @[PE.scala:14:7] input [7:0] io_in_a, // @[PE.scala:16:14] input [7:0] io_in_b, // @[PE.scala:16:14] input [19:0] io_in_c, // @[PE.scala:16:14] output [19:0] io_out_d // @[PE.scala:16:14] ); wire [7:0] io_in_a_0 = io_in_a; // @[PE.scala:14:7] wire [7:0] io_in_b_0 = io_in_b; // @[PE.scala:14:7] wire [19:0] io_in_c_0 = io_in_c; // @[PE.scala:14:7] wire [19:0] _io_out_d_T_3; // @[Arithmetic.scala:93:54] wire [19:0] io_out_d_0; // @[PE.scala:14:7] wire [15:0] _io_out_d_T = {{8{io_in_a_0[7]}}, io_in_a_0} * {{8{io_in_b_0[7]}}, io_in_b_0}; // @[PE.scala:14:7] wire [20:0] _io_out_d_T_1 = {{5{_io_out_d_T[15]}}, _io_out_d_T} + {io_in_c_0[19], io_in_c_0}; // @[PE.scala:14:7] wire [19:0] _io_out_d_T_2 = _io_out_d_T_1[19:0]; // @[Arithmetic.scala:93:54] assign _io_out_d_T_3 = _io_out_d_T_2; // @[Arithmetic.scala:93:54] assign io_out_d_0 = _io_out_d_T_3; // @[PE.scala:14:7] assign io_out_d = io_out_d_0; // @[PE.scala:14:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File UnsafeAXI4ToTL.scala: package ara import chisel3._ import chisel3.util._ import freechips.rocketchip.amba._ import freechips.rocketchip.amba.axi4._ import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.diplomacy._ import freechips.rocketchip.tilelink._ import freechips.rocketchip.util._ class ReorderData(val dataWidth: Int, val respWidth: Int, val userFields: Seq[BundleFieldBase]) extends Bundle { val data = UInt(dataWidth.W) val resp = UInt(respWidth.W) val last = Bool() val user = BundleMap(userFields) } /** Parameters for [[BaseReservableListBuffer]] and all child classes. * * @param numEntries Total number of elements that can be stored in the 'data' RAM * @param numLists Maximum number of linked lists * @param numBeats Maximum number of beats per entry */ case class ReservableListBufferParameters(numEntries: Int, numLists: Int, numBeats: Int) { // Avoid zero-width wires when we call 'log2Ceil' val entryBits = if (numEntries == 1) 1 else log2Ceil(numEntries) val listBits = if (numLists == 1) 1 else log2Ceil(numLists) val beatBits = if (numBeats == 1) 1 else log2Ceil(numBeats) } case class UnsafeAXI4ToTLNode(numTlTxns: Int, wcorrupt: Boolean)(implicit valName: ValName) extends MixedAdapterNode(AXI4Imp, TLImp)( dFn = { case mp => TLMasterPortParameters.v2( masters = mp.masters.zipWithIndex.map { case (m, i) => // Support 'numTlTxns' read requests and 'numTlTxns' write requests at once. val numSourceIds = numTlTxns * 2 TLMasterParameters.v2( name = m.name, sourceId = IdRange(i * numSourceIds, (i + 1) * numSourceIds), nodePath = m.nodePath ) }, echoFields = mp.echoFields, requestFields = AMBAProtField() +: mp.requestFields, responseKeys = mp.responseKeys ) }, uFn = { mp => AXI4SlavePortParameters( slaves = mp.managers.map { m => val maxXfer = TransferSizes(1, mp.beatBytes * (1 << AXI4Parameters.lenBits)) AXI4SlaveParameters( address = m.address, resources = m.resources, regionType = m.regionType, executable = m.executable, nodePath = m.nodePath, supportsWrite = m.supportsPutPartial.intersect(maxXfer), supportsRead = m.supportsGet.intersect(maxXfer), interleavedId = Some(0) // TL2 never interleaves D beats ) }, beatBytes = mp.beatBytes, minLatency = mp.minLatency, responseFields = mp.responseFields, requestKeys = (if (wcorrupt) Seq(AMBACorrupt) else Seq()) ++ mp.requestKeys.filter(_ != AMBAProt) ) } ) class UnsafeAXI4ToTL(numTlTxns: Int, wcorrupt: Boolean)(implicit p: Parameters) extends LazyModule { require(numTlTxns >= 1) require(isPow2(numTlTxns), s"Number of TileLink transactions ($numTlTxns) must be a power of 2") val node = UnsafeAXI4ToTLNode(numTlTxns, wcorrupt) lazy val module = new LazyModuleImp(this) { (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => edgeIn.master.masters.foreach { m => require(m.aligned, "AXI4ToTL requires aligned requests") } val numIds = edgeIn.master.endId val beatBytes = edgeOut.slave.beatBytes val maxTransfer = edgeOut.slave.maxTransfer val maxBeats = maxTransfer / beatBytes // Look for an Error device to redirect bad requests val errorDevs = edgeOut.slave.managers.filter(_.nodePath.last.lazyModule.className == "TLError") require(!errorDevs.isEmpty, "There is no TLError reachable from AXI4ToTL. One must be instantiated.") val errorDev = errorDevs.maxBy(_.maxTransfer) val errorDevAddr = errorDev.address.head.base require( errorDev.supportsPutPartial.contains(maxTransfer), s"Error device supports ${errorDev.supportsPutPartial} PutPartial but must support $maxTransfer" ) require( errorDev.supportsGet.contains(maxTransfer), s"Error device supports ${errorDev.supportsGet} Get but must support $maxTransfer" ) // All of the read-response reordering logic. val listBufData = new ReorderData(beatBytes * 8, edgeIn.bundle.respBits, out.d.bits.user.fields) val listBufParams = ReservableListBufferParameters(numTlTxns, numIds, maxBeats) val listBuffer = if (numTlTxns > 1) { Module(new ReservableListBuffer(listBufData, listBufParams)) } else { Module(new PassthroughListBuffer(listBufData, listBufParams)) } // To differentiate between read and write transaction IDs, we will set the MSB of the TileLink 'source' field to // 0 for read requests and 1 for write requests. val isReadSourceBit = 0.U(1.W) val isWriteSourceBit = 1.U(1.W) /* Read request logic */ val rOut = Wire(Decoupled(new TLBundleA(edgeOut.bundle))) val rBytes1 = in.ar.bits.bytes1() val rSize = OH1ToUInt(rBytes1) val rOk = edgeOut.slave.supportsGetSafe(in.ar.bits.addr, rSize) val rId = if (numTlTxns > 1) { Cat(isReadSourceBit, listBuffer.ioReservedIndex) } else { isReadSourceBit } val rAddr = Mux(rOk, in.ar.bits.addr, errorDevAddr.U | in.ar.bits.addr(log2Ceil(beatBytes) - 1, 0)) // Indicates if there are still valid TileLink source IDs left to use. val canIssueR = listBuffer.ioReserve.ready listBuffer.ioReserve.bits := in.ar.bits.id listBuffer.ioReserve.valid := in.ar.valid && rOut.ready in.ar.ready := rOut.ready && canIssueR rOut.valid := in.ar.valid && canIssueR rOut.bits :<= edgeOut.Get(rId, rAddr, rSize)._2 rOut.bits.user :<= in.ar.bits.user rOut.bits.user.lift(AMBAProt).foreach { rProt => rProt.privileged := in.ar.bits.prot(0) rProt.secure := !in.ar.bits.prot(1) rProt.fetch := in.ar.bits.prot(2) rProt.bufferable := in.ar.bits.cache(0) rProt.modifiable := in.ar.bits.cache(1) rProt.readalloc := in.ar.bits.cache(2) rProt.writealloc := in.ar.bits.cache(3) } /* Write request logic */ // Strip off the MSB, which identifies the transaction as read vs write. val strippedResponseSourceId = if (numTlTxns > 1) { out.d.bits.source((out.d.bits.source).getWidth - 2, 0) } else { // When there's only 1 TileLink transaction allowed for read/write, then this field is always 0. 0.U(1.W) } // Track when a write request burst is in progress. val writeBurstBusy = RegInit(false.B) when(in.w.fire) { writeBurstBusy := !in.w.bits.last } val usedWriteIds = RegInit(0.U(numTlTxns.W)) val canIssueW = !usedWriteIds.andR val usedWriteIdsSet = WireDefault(0.U(numTlTxns.W)) val usedWriteIdsClr = WireDefault(0.U(numTlTxns.W)) usedWriteIds := (usedWriteIds & ~usedWriteIdsClr) | usedWriteIdsSet // Since write responses can show up in the middle of a write burst, we need to ensure the write burst ID doesn't // change mid-burst. val freeWriteIdOHRaw = Wire(UInt(numTlTxns.W)) val freeWriteIdOH = freeWriteIdOHRaw holdUnless !writeBurstBusy val freeWriteIdIndex = OHToUInt(freeWriteIdOH) freeWriteIdOHRaw := ~(leftOR(~usedWriteIds) << 1) & ~usedWriteIds val wOut = Wire(Decoupled(new TLBundleA(edgeOut.bundle))) val wBytes1 = in.aw.bits.bytes1() val wSize = OH1ToUInt(wBytes1) val wOk = edgeOut.slave.supportsPutPartialSafe(in.aw.bits.addr, wSize) val wId = if (numTlTxns > 1) { Cat(isWriteSourceBit, freeWriteIdIndex) } else { isWriteSourceBit } val wAddr = Mux(wOk, in.aw.bits.addr, errorDevAddr.U | in.aw.bits.addr(log2Ceil(beatBytes) - 1, 0)) // Here, we're taking advantage of the Irrevocable behavior of AXI4 (once 'valid' is asserted it must remain // asserted until the handshake occurs). We will only accept W-channel beats when we have a valid AW beat, but // the AW-channel beat won't fire until the final W-channel beat fires. So, we have stable address/size/strb // bits during a W-channel burst. in.aw.ready := wOut.ready && in.w.valid && in.w.bits.last && canIssueW in.w.ready := wOut.ready && in.aw.valid && canIssueW wOut.valid := in.aw.valid && in.w.valid && canIssueW wOut.bits :<= edgeOut.Put(wId, wAddr, wSize, in.w.bits.data, in.w.bits.strb)._2 in.w.bits.user.lift(AMBACorrupt).foreach { wOut.bits.corrupt := _ } wOut.bits.user :<= in.aw.bits.user wOut.bits.user.lift(AMBAProt).foreach { wProt => wProt.privileged := in.aw.bits.prot(0) wProt.secure := !in.aw.bits.prot(1) wProt.fetch := in.aw.bits.prot(2) wProt.bufferable := in.aw.bits.cache(0) wProt.modifiable := in.aw.bits.cache(1) wProt.readalloc := in.aw.bits.cache(2) wProt.writealloc := in.aw.bits.cache(3) } // Merge the AXI4 read/write requests into the TL-A channel. TLArbiter(TLArbiter.roundRobin)(out.a, (0.U, rOut), (in.aw.bits.len, wOut)) /* Read/write response logic */ val okB = Wire(Irrevocable(new AXI4BundleB(edgeIn.bundle))) val okR = Wire(Irrevocable(new AXI4BundleR(edgeIn.bundle))) val dResp = Mux(out.d.bits.denied || out.d.bits.corrupt, AXI4Parameters.RESP_SLVERR, AXI4Parameters.RESP_OKAY) val dHasData = edgeOut.hasData(out.d.bits) val (_dFirst, dLast, _dDone, dCount) = edgeOut.count(out.d) val dNumBeats1 = edgeOut.numBeats1(out.d.bits) // Handle cases where writeack arrives before write is done val writeEarlyAck = (UIntToOH(strippedResponseSourceId) & usedWriteIds) === 0.U out.d.ready := Mux(dHasData, listBuffer.ioResponse.ready, okB.ready && !writeEarlyAck) listBuffer.ioDataOut.ready := okR.ready okR.valid := listBuffer.ioDataOut.valid okB.valid := out.d.valid && !dHasData && !writeEarlyAck listBuffer.ioResponse.valid := out.d.valid && dHasData listBuffer.ioResponse.bits.index := strippedResponseSourceId listBuffer.ioResponse.bits.data.data := out.d.bits.data listBuffer.ioResponse.bits.data.resp := dResp listBuffer.ioResponse.bits.data.last := dLast listBuffer.ioResponse.bits.data.user :<= out.d.bits.user listBuffer.ioResponse.bits.count := dCount listBuffer.ioResponse.bits.numBeats1 := dNumBeats1 okR.bits.id := listBuffer.ioDataOut.bits.listIndex okR.bits.data := listBuffer.ioDataOut.bits.payload.data okR.bits.resp := listBuffer.ioDataOut.bits.payload.resp okR.bits.last := listBuffer.ioDataOut.bits.payload.last okR.bits.user :<= listBuffer.ioDataOut.bits.payload.user // Upon the final beat in a write request, record a mapping from TileLink source ID to AXI write ID. Upon a write // response, mark the write transaction as complete. val writeIdMap = Mem(numTlTxns, UInt(log2Ceil(numIds).W)) val writeResponseId = writeIdMap.read(strippedResponseSourceId) when(wOut.fire) { writeIdMap.write(freeWriteIdIndex, in.aw.bits.id) } when(edgeOut.done(wOut)) { usedWriteIdsSet := freeWriteIdOH } when(okB.fire) { usedWriteIdsClr := UIntToOH(strippedResponseSourceId, numTlTxns) } okB.bits.id := writeResponseId okB.bits.resp := dResp okB.bits.user :<= out.d.bits.user // AXI4 needs irrevocable behaviour in.r <> Queue.irrevocable(okR, 1, flow = true) in.b <> Queue.irrevocable(okB, 1, flow = true) // Unused channels out.b.ready := true.B out.c.valid := false.B out.e.valid := false.B /* Alignment constraints. The AXI4Fragmenter should guarantee all of these constraints. */ def checkRequest[T <: AXI4BundleA](a: IrrevocableIO[T], reqType: String): Unit = { val lReqType = reqType.toLowerCase when(a.valid) { assert(a.bits.len < maxBeats.U, s"$reqType burst length (%d) must be less than $maxBeats", a.bits.len + 1.U) // Narrow transfers and FIXED bursts must be single-beat bursts. when(a.bits.len =/= 0.U) { assert( a.bits.size === log2Ceil(beatBytes).U, s"Narrow $lReqType transfers (%d < $beatBytes bytes) can't be multi-beat bursts (%d beats)", 1.U << a.bits.size, a.bits.len + 1.U ) assert( a.bits.burst =/= AXI4Parameters.BURST_FIXED, s"Fixed $lReqType bursts can't be multi-beat bursts (%d beats)", a.bits.len + 1.U ) } // Furthermore, the transfer size (a.bits.bytes1() + 1.U) must be naturally-aligned to the address (in // particular, during both WRAP and INCR bursts), but this constraint is already checked by TileLink // Monitors. Note that this alignment requirement means that WRAP bursts are identical to INCR bursts. } } checkRequest(in.ar, "Read") checkRequest(in.aw, "Write") } } } object UnsafeAXI4ToTL { def apply(numTlTxns: Int = 1, wcorrupt: Boolean = true)(implicit p: Parameters) = { val axi42tl = LazyModule(new UnsafeAXI4ToTL(numTlTxns, wcorrupt)) axi42tl.node } } /* ReservableListBuffer logic, and associated classes. */ class ResponsePayload[T <: Data](val data: T, val params: ReservableListBufferParameters) extends Bundle { val index = UInt(params.entryBits.W) val count = UInt(params.beatBits.W) val numBeats1 = UInt(params.beatBits.W) } class DataOutPayload[T <: Data](val payload: T, val params: ReservableListBufferParameters) extends Bundle { val listIndex = UInt(params.listBits.W) } /** Abstract base class to unify [[ReservableListBuffer]] and [[PassthroughListBuffer]]. */ abstract class BaseReservableListBuffer[T <: Data](gen: T, params: ReservableListBufferParameters) extends Module { require(params.numEntries > 0) require(params.numLists > 0) val ioReserve = IO(Flipped(Decoupled(UInt(params.listBits.W)))) val ioReservedIndex = IO(Output(UInt(params.entryBits.W))) val ioResponse = IO(Flipped(Decoupled(new ResponsePayload(gen, params)))) val ioDataOut = IO(Decoupled(new DataOutPayload(gen, params))) } /** A modified version of 'ListBuffer' from 'sifive/block-inclusivecache-sifive'. This module forces users to reserve * linked list entries (through the 'ioReserve' port) before writing data into those linked lists (through the * 'ioResponse' port). Each response is tagged to indicate which linked list it is written into. The responses for a * given linked list can come back out-of-order, but they will be read out through the 'ioDataOut' port in-order. * * ==Constructor== * @param gen Chisel type of linked list data element * @param params Other parameters * * ==Module IO== * @param ioReserve Index of list to reserve a new element in * @param ioReservedIndex Index of the entry that was reserved in the linked list, valid when 'ioReserve.fire' * @param ioResponse Payload containing response data and linked-list-entry index * @param ioDataOut Payload containing data read from response linked list and linked list index */ class ReservableListBuffer[T <: Data](gen: T, params: ReservableListBufferParameters) extends BaseReservableListBuffer(gen, params) { val valid = RegInit(0.U(params.numLists.W)) val head = Mem(params.numLists, UInt(params.entryBits.W)) val tail = Mem(params.numLists, UInt(params.entryBits.W)) val used = RegInit(0.U(params.numEntries.W)) val next = Mem(params.numEntries, UInt(params.entryBits.W)) val map = Mem(params.numEntries, UInt(params.listBits.W)) val dataMems = Seq.fill(params.numBeats) { SyncReadMem(params.numEntries, gen) } val dataIsPresent = RegInit(0.U(params.numEntries.W)) val beats = Mem(params.numEntries, UInt(params.beatBits.W)) // The 'data' SRAM should be single-ported (read-or-write), since dual-ported SRAMs are significantly slower. val dataMemReadEnable = WireDefault(false.B) val dataMemWriteEnable = WireDefault(false.B) assert(!(dataMemReadEnable && dataMemWriteEnable)) // 'freeOH' has a single bit set, which is the least-significant bit that is cleared in 'used'. So, it's the // lowest-index entry in the 'data' RAM which is free. val freeOH = Wire(UInt(params.numEntries.W)) val freeIndex = OHToUInt(freeOH) freeOH := ~(leftOR(~used) << 1) & ~used ioReservedIndex := freeIndex val validSet = WireDefault(0.U(params.numLists.W)) val validClr = WireDefault(0.U(params.numLists.W)) val usedSet = WireDefault(0.U(params.numEntries.W)) val usedClr = WireDefault(0.U(params.numEntries.W)) val dataIsPresentSet = WireDefault(0.U(params.numEntries.W)) val dataIsPresentClr = WireDefault(0.U(params.numEntries.W)) valid := (valid & ~validClr) | validSet used := (used & ~usedClr) | usedSet dataIsPresent := (dataIsPresent & ~dataIsPresentClr) | dataIsPresentSet /* Reservation logic signals */ val reserveTail = Wire(UInt(params.entryBits.W)) val reserveIsValid = Wire(Bool()) /* Response logic signals */ val responseIndex = Wire(UInt(params.entryBits.W)) val responseListIndex = Wire(UInt(params.listBits.W)) val responseHead = Wire(UInt(params.entryBits.W)) val responseTail = Wire(UInt(params.entryBits.W)) val nextResponseHead = Wire(UInt(params.entryBits.W)) val nextDataIsPresent = Wire(Bool()) val isResponseInOrder = Wire(Bool()) val isEndOfList = Wire(Bool()) val isLastBeat = Wire(Bool()) val isLastResponseBeat = Wire(Bool()) val isLastUnwindBeat = Wire(Bool()) /* Reservation logic */ reserveTail := tail.read(ioReserve.bits) reserveIsValid := valid(ioReserve.bits) ioReserve.ready := !used.andR // When we want to append-to and destroy the same linked list on the same cycle, we need to take special care that we // actually start a new list, rather than appending to a list that's about to disappear. val reserveResponseSameList = ioReserve.bits === responseListIndex val appendToAndDestroyList = ioReserve.fire && ioDataOut.fire && reserveResponseSameList && isEndOfList && isLastBeat when(ioReserve.fire) { validSet := UIntToOH(ioReserve.bits, params.numLists) usedSet := freeOH when(reserveIsValid && !appendToAndDestroyList) { next.write(reserveTail, freeIndex) }.otherwise { head.write(ioReserve.bits, freeIndex) } tail.write(ioReserve.bits, freeIndex) map.write(freeIndex, ioReserve.bits) } /* Response logic */ // The majority of the response logic (reading from and writing to the various RAMs) is common between the // response-from-IO case (ioResponse.fire) and the response-from-unwind case (unwindDataIsValid). // The read from the 'next' RAM should be performed at the address given by 'responseHead'. However, we only use the // 'nextResponseHead' signal when 'isResponseInOrder' is asserted (both in the response-from-IO and // response-from-unwind cases), which implies that 'responseHead' equals 'responseIndex'. 'responseHead' comes after // two back-to-back RAM reads, so indexing into the 'next' RAM with 'responseIndex' is much quicker. responseHead := head.read(responseListIndex) responseTail := tail.read(responseListIndex) nextResponseHead := next.read(responseIndex) nextDataIsPresent := dataIsPresent(nextResponseHead) // Note that when 'isEndOfList' is asserted, 'nextResponseHead' (and therefore 'nextDataIsPresent') is invalid, since // there isn't a next element in the linked list. isResponseInOrder := responseHead === responseIndex isEndOfList := responseHead === responseTail isLastResponseBeat := ioResponse.bits.count === ioResponse.bits.numBeats1 // When a response's last beat is sent to the output channel, mark it as completed. This can happen in two // situations: // 1. We receive an in-order response, which travels straight from 'ioResponse' to 'ioDataOut'. The 'data' SRAM // reservation was never needed. // 2. An entry is read out of the 'data' SRAM (within the unwind FSM). when(ioDataOut.fire && isLastBeat) { // Mark the reservation as no-longer-used. usedClr := UIntToOH(responseIndex, params.numEntries) // If the response is in-order, then we're popping an element from this linked list. when(isEndOfList) { // Once we pop the last element from a linked list, mark it as no-longer-present. validClr := UIntToOH(responseListIndex, params.numLists) }.otherwise { // Move the linked list's head pointer to the new head pointer. head.write(responseListIndex, nextResponseHead) } } // If we get an out-of-order response, then stash it in the 'data' SRAM for later unwinding. when(ioResponse.fire && !isResponseInOrder) { dataMemWriteEnable := true.B when(isLastResponseBeat) { dataIsPresentSet := UIntToOH(ioResponse.bits.index, params.numEntries) beats.write(ioResponse.bits.index, ioResponse.bits.numBeats1) } } // Use the 'ioResponse.bits.count' index (AKA the beat number) to select which 'data' SRAM to write to. val responseCountOH = UIntToOH(ioResponse.bits.count, params.numBeats) (responseCountOH.asBools zip dataMems) foreach { case (select, seqMem) => when(select && dataMemWriteEnable) { seqMem.write(ioResponse.bits.index, ioResponse.bits.data) } } /* Response unwind logic */ // Unwind FSM state definitions val sIdle :: sUnwinding :: Nil = Enum(2) val unwindState = RegInit(sIdle) val busyUnwinding = unwindState === sUnwinding val startUnwind = Wire(Bool()) val stopUnwind = Wire(Bool()) when(startUnwind) { unwindState := sUnwinding }.elsewhen(stopUnwind) { unwindState := sIdle } assert(!(startUnwind && stopUnwind)) // Start the unwind FSM when there is an old out-of-order response stored in the 'data' SRAM that is now about to // become the next in-order response. As noted previously, when 'isEndOfList' is asserted, 'nextDataIsPresent' is // invalid. // // Note that since an in-order response from 'ioResponse' to 'ioDataOut' starts the unwind FSM, we don't have to // worry about overwriting the 'data' SRAM's output when we start the unwind FSM. startUnwind := ioResponse.fire && isResponseInOrder && isLastResponseBeat && !isEndOfList && nextDataIsPresent // Stop the unwind FSM when the output channel consumes the final beat of an element from the unwind FSM, and one of // two things happens: // 1. We're still waiting for the next in-order response for this list (!nextDataIsPresent) // 2. There are no more outstanding responses in this list (isEndOfList) // // Including 'busyUnwinding' ensures this is a single-cycle pulse, and it never fires while in-order transactions are // passing from 'ioResponse' to 'ioDataOut'. stopUnwind := busyUnwinding && ioDataOut.fire && isLastUnwindBeat && (!nextDataIsPresent || isEndOfList) val isUnwindBurstOver = Wire(Bool()) val startNewBurst = startUnwind || (isUnwindBurstOver && dataMemReadEnable) // Track the number of beats left to unwind for each list entry. At the start of a new burst, we flop the number of // beats in this burst (minus 1) into 'unwindBeats1', and we reset the 'beatCounter' counter. With each beat, we // increment 'beatCounter' until it reaches 'unwindBeats1'. val unwindBeats1 = Reg(UInt(params.beatBits.W)) val nextBeatCounter = Wire(UInt(params.beatBits.W)) val beatCounter = RegNext(nextBeatCounter) isUnwindBurstOver := beatCounter === unwindBeats1 when(startNewBurst) { unwindBeats1 := beats.read(nextResponseHead) nextBeatCounter := 0.U }.elsewhen(dataMemReadEnable) { nextBeatCounter := beatCounter + 1.U }.otherwise { nextBeatCounter := beatCounter } // When unwinding, feed the next linked-list head pointer (read out of the 'next' RAM) back so we can unwind the next // entry in this linked list. Only update the pointer when we're actually moving to the next 'data' SRAM entry (which // happens at the start of reading a new stored burst). val unwindResponseIndex = RegEnable(nextResponseHead, startNewBurst) responseIndex := Mux(busyUnwinding, unwindResponseIndex, ioResponse.bits.index) // Hold 'nextResponseHead' static while we're in the middle of unwinding a multi-beat burst entry. We don't want the // SRAM read address to shift while reading beats from a burst. Note that this is identical to 'nextResponseHead // holdUnless startNewBurst', but 'unwindResponseIndex' already implements the 'RegEnable' signal in 'holdUnless'. val unwindReadAddress = Mux(startNewBurst, nextResponseHead, unwindResponseIndex) // The 'data' SRAM's output is valid if we read from the SRAM on the previous cycle. The SRAM's output stays valid // until it is consumed by the output channel (and if we don't read from the SRAM again on that same cycle). val unwindDataIsValid = RegInit(false.B) when(dataMemReadEnable) { unwindDataIsValid := true.B }.elsewhen(ioDataOut.fire) { unwindDataIsValid := false.B } isLastUnwindBeat := isUnwindBurstOver && unwindDataIsValid // Indicates if this is the last beat for both 'ioResponse'-to-'ioDataOut' and unwind-to-'ioDataOut' beats. isLastBeat := Mux(busyUnwinding, isLastUnwindBeat, isLastResponseBeat) // Select which SRAM to read from based on the beat counter. val dataOutputVec = Wire(Vec(params.numBeats, gen)) val nextBeatCounterOH = UIntToOH(nextBeatCounter, params.numBeats) (nextBeatCounterOH.asBools zip dataMems).zipWithIndex foreach { case ((select, seqMem), i) => dataOutputVec(i) := seqMem.read(unwindReadAddress, select && dataMemReadEnable) } // Select the current 'data' SRAM output beat, and save the output in a register in case we're being back-pressured // by 'ioDataOut'. This implements the functionality of 'readAndHold', but only on the single SRAM we're reading // from. val dataOutput = dataOutputVec(beatCounter) holdUnless RegNext(dataMemReadEnable) // Mark 'data' burst entries as no-longer-present as they get read out of the SRAM. when(dataMemReadEnable) { dataIsPresentClr := UIntToOH(unwindReadAddress, params.numEntries) } // As noted above, when starting the unwind FSM, we know the 'data' SRAM's output isn't valid, so it's safe to issue // a read command. Otherwise, only issue an SRAM read when the next 'unwindState' is 'sUnwinding', and if we know // we're not going to overwrite the SRAM's current output (the SRAM output is already valid, and it's not going to be // consumed by the output channel). val dontReadFromDataMem = unwindDataIsValid && !ioDataOut.ready dataMemReadEnable := startUnwind || (busyUnwinding && !stopUnwind && !dontReadFromDataMem) // While unwinding, prevent new reservations from overwriting the current 'map' entry that we're using. We need // 'responseListIndex' to be coherent for the entire unwind process. val rawResponseListIndex = map.read(responseIndex) val unwindResponseListIndex = RegEnable(rawResponseListIndex, startNewBurst) responseListIndex := Mux(busyUnwinding, unwindResponseListIndex, rawResponseListIndex) // Accept responses either when they can be passed through to the output channel, or if they're out-of-order and are // just going to be stashed in the 'data' SRAM. Never accept a response payload when we're busy unwinding, since that // could result in reading from and writing to the 'data' SRAM in the same cycle, and we want that SRAM to be // single-ported. ioResponse.ready := (ioDataOut.ready || !isResponseInOrder) && !busyUnwinding // Either pass an in-order response to the output channel, or data read from the unwind FSM. ioDataOut.valid := Mux(busyUnwinding, unwindDataIsValid, ioResponse.valid && isResponseInOrder) ioDataOut.bits.listIndex := responseListIndex ioDataOut.bits.payload := Mux(busyUnwinding, dataOutput, ioResponse.bits.data) // It's an error to get a response that isn't associated with a valid linked list. when(ioResponse.fire || unwindDataIsValid) { assert( valid(responseListIndex), "No linked list exists at index %d, mapped from %d", responseListIndex, responseIndex ) } when(busyUnwinding && dataMemReadEnable) { assert(isResponseInOrder, "Unwind FSM must read entries from SRAM in order") } } /** Specialized version of [[ReservableListBuffer]] for the case of numEntries == 1. * * Much of the complex logic in [[ReservableListBuffer]] can disappear in this case. For instance, we don't have to * reorder any responses, or store any linked lists. */ class PassthroughListBuffer[T <: Data](gen: T, params: ReservableListBufferParameters) extends BaseReservableListBuffer(gen, params) { require(params.numEntries == 1, s"PassthroughListBuffer is only valid when 'numEntries' (${params.numEntries}) is 1") val used = RegInit(0.U(params.numEntries.W)) val map = Mem(params.numEntries, UInt(params.listBits.W)) val usedSet = WireDefault(0.U(params.numEntries.W)) val usedClr = WireDefault(0.U(params.numEntries.W)) used := (used & ~usedClr) | usedSet ioReserve.ready := used === 0.U // Store which list index was reserved, we need to return this value when we get a response. when(ioReserve.fire) { usedSet := 1.U map.write(0.U, ioReserve.bits) } // There's only one valid linked list entry, which is at index 0. ioReservedIndex := 0.U val isLastResponseBeat = ioResponse.bits.count === ioResponse.bits.numBeats1 // Mark the linked list as empty when we get the last beat in a response. // Note that 'ioResponse.fire === ioDataOut.fire'. when(ioResponse.fire && isLastResponseBeat) { usedClr := 1.U } // Always pass the response data straight through, since we never need to reorder the response data. ioDataOut.bits.listIndex := map.read(0.U) ioDataOut.bits.payload := ioResponse.bits.data ioDataOut.valid := ioResponse.valid ioResponse.ready := ioDataOut.ready }
module dataMems_23( // @[UnsafeAXI4ToTL.scala:365:62] input [4:0] R0_addr, input R0_en, input R0_clk, output [66:0] R0_data, input [4:0] W0_addr, input W0_en, input W0_clk, input [66:0] W0_data ); dataMems_0_ext dataMems_0_ext ( // @[UnsafeAXI4ToTL.scala:365:62] .R0_addr (R0_addr), .R0_en (R0_en), .R0_clk (R0_clk), .R0_data (R0_data), .W0_addr (W0_addr), .W0_en (W0_en), .W0_clk (W0_clk), .W0_data (W0_data) ); // @[UnsafeAXI4ToTL.scala:365:62] endmodule
Generate the Verilog code corresponding to the following Chisel files. File ShiftReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ // Similar to the Chisel ShiftRegister but allows the user to suggest a // name to the registers that get instantiated, and // to provide a reset value. object ShiftRegInit { def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T = (0 until n).foldRight(in) { case (i, next) => { val r = RegNext(next, init) name.foreach { na => r.suggestName(s"${na}_${i}") } r } } } /** These wrap behavioral * shift registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * The different types vary in their reset behavior: * AsyncResetShiftReg -- Asynchronously reset register array * A W(width) x D(depth) sized array is constructed from D instantiations of a * W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg, * but only used for timing applications */ abstract class AbstractPipelineReg(w: Int = 1) extends Module { val io = IO(new Bundle { val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) } ) } object AbstractPipelineReg { def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = { val chain = Module(gen) name.foreach{ chain.suggestName(_) } chain.io.d := in.asUInt chain.io.q.asTypeOf(in) } } class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) { require(depth > 0, "Depth must be greater than 0.") override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}" val chain = List.tabulate(depth) { i => Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}") } chain.last.io.d := io.d chain.last.io.en := true.B (chain.init zip chain.tail).foreach { case (sink, source) => sink.io.d := source.io.q sink.io.en := true.B } io.q := chain.head.io.q } object AsyncResetShiftReg { def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name) def apply [T <: Data](in: T, depth: Int, name: Option[String]): T = apply(in, depth, 0, name) def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T = apply(in, depth, init.litValue.toInt, name) def apply [T <: Data](in: T, depth: Int, init: T): T = apply (in, depth, init.litValue.toInt, None) } File AsyncQueue.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ case class AsyncQueueParams( depth: Int = 8, sync: Int = 3, safe: Boolean = true, // If safe is true, then effort is made to resynchronize the crossing indices when either side is reset. // This makes it safe/possible to reset one side of the crossing (but not the other) when the queue is empty. narrow: Boolean = false) // If narrow is true then the read mux is moved to the source side of the crossing. // This reduces the number of level shifters in the case where the clock crossing is also a voltage crossing, // at the expense of a combinational path from the sink to the source and back to the sink. { require (depth > 0 && isPow2(depth)) require (sync >= 2) val bits = log2Ceil(depth) val wires = if (narrow) 1 else depth } object AsyncQueueParams { // When there is only one entry, we don't need narrow. def singleton(sync: Int = 3, safe: Boolean = true) = AsyncQueueParams(1, sync, safe, false) } class AsyncBundleSafety extends Bundle { val ridx_valid = Input (Bool()) val widx_valid = Output(Bool()) val source_reset_n = Output(Bool()) val sink_reset_n = Input (Bool()) } class AsyncBundle[T <: Data](private val gen: T, val params: AsyncQueueParams = AsyncQueueParams()) extends Bundle { // Data-path synchronization val mem = Output(Vec(params.wires, gen)) val ridx = Input (UInt((params.bits+1).W)) val widx = Output(UInt((params.bits+1).W)) val index = params.narrow.option(Input(UInt(params.bits.W))) // Signals used to self-stabilize a safe AsyncQueue val safe = params.safe.option(new AsyncBundleSafety) } object GrayCounter { def apply(bits: Int, increment: Bool = true.B, clear: Bool = false.B, name: String = "binary"): UInt = { val incremented = Wire(UInt(bits.W)) val binary = RegNext(next=incremented, init=0.U).suggestName(name) incremented := Mux(clear, 0.U, binary + increment.asUInt) incremented ^ (incremented >> 1) } } class AsyncValidSync(sync: Int, desc: String) extends RawModule { val io = IO(new Bundle { val in = Input(Bool()) val out = Output(Bool()) }) val clock = IO(Input(Clock())) val reset = IO(Input(AsyncReset())) withClockAndReset(clock, reset){ io.out := AsyncResetSynchronizerShiftReg(io.in, sync, Some(desc)) } } class AsyncQueueSource[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module { override def desiredName = s"AsyncQueueSource_${gen.typeName}" val io = IO(new Bundle { // These come from the source domain val enq = Flipped(Decoupled(gen)) // These cross to the sink clock domain val async = new AsyncBundle(gen, params) }) val bits = params.bits val sink_ready = WireInit(true.B) val mem = Reg(Vec(params.depth, gen)) // This does NOT need to be reset at all. val widx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.enq.fire, !sink_ready, "widx_bin")) val ridx = AsyncResetSynchronizerShiftReg(io.async.ridx, params.sync, Some("ridx_gray")) val ready = sink_ready && widx =/= (ridx ^ (params.depth | params.depth >> 1).U) val index = if (bits == 0) 0.U else io.async.widx(bits-1, 0) ^ (io.async.widx(bits, bits) << (bits-1)) when (io.enq.fire) { mem(index) := io.enq.bits } val ready_reg = withReset(reset.asAsyncReset)(RegNext(next=ready, init=false.B).suggestName("ready_reg")) io.enq.ready := ready_reg && sink_ready val widx_reg = withReset(reset.asAsyncReset)(RegNext(next=widx, init=0.U).suggestName("widx_gray")) io.async.widx := widx_reg io.async.index match { case Some(index) => io.async.mem(0) := mem(index) case None => io.async.mem := mem } io.async.safe.foreach { sio => val source_valid_0 = Module(new AsyncValidSync(params.sync, "source_valid_0")) val source_valid_1 = Module(new AsyncValidSync(params.sync, "source_valid_1")) val sink_extend = Module(new AsyncValidSync(params.sync, "sink_extend")) val sink_valid = Module(new AsyncValidSync(params.sync, "sink_valid")) source_valid_0.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset source_valid_1.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset sink_extend .reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset sink_valid .reset := reset.asAsyncReset source_valid_0.clock := clock source_valid_1.clock := clock sink_extend .clock := clock sink_valid .clock := clock source_valid_0.io.in := true.B source_valid_1.io.in := source_valid_0.io.out sio.widx_valid := source_valid_1.io.out sink_extend.io.in := sio.ridx_valid sink_valid.io.in := sink_extend.io.out sink_ready := sink_valid.io.out sio.source_reset_n := !reset.asBool // Assert that if there is stuff in the queue, then reset cannot happen // Impossible to write because dequeue can occur on the receiving side, // then reset allowed to happen, but write side cannot know that dequeue // occurred. // TODO: write some sort of sanity check assertion for users // that denote don't reset when there is activity // assert (!(reset || !sio.sink_reset_n) || !io.enq.valid, "Enqueue while sink is reset and AsyncQueueSource is unprotected") // assert (!reset_rise || prev_idx_match.asBool, "Sink reset while AsyncQueueSource not empty") } } class AsyncQueueSink[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module { override def desiredName = s"AsyncQueueSink_${gen.typeName}" val io = IO(new Bundle { // These come from the sink domain val deq = Decoupled(gen) // These cross to the source clock domain val async = Flipped(new AsyncBundle(gen, params)) }) val bits = params.bits val source_ready = WireInit(true.B) val ridx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.deq.fire, !source_ready, "ridx_bin")) val widx = AsyncResetSynchronizerShiftReg(io.async.widx, params.sync, Some("widx_gray")) val valid = source_ready && ridx =/= widx // The mux is safe because timing analysis ensures ridx has reached the register // On an ASIC, changes to the unread location cannot affect the selected value // On an FPGA, only one input changes at a time => mem updates don't cause glitches // The register only latches when the selected valued is not being written val index = if (bits == 0) 0.U else ridx(bits-1, 0) ^ (ridx(bits, bits) << (bits-1)) io.async.index.foreach { _ := index } // This register does not NEED to be reset, as its contents will not // be considered unless the asynchronously reset deq valid register is set. // It is possible that bits latches when the source domain is reset / has power cut // This is safe, because isolation gates brought mem low before the zeroed widx reached us val deq_bits_nxt = io.async.mem(if (params.narrow) 0.U else index) io.deq.bits := ClockCrossingReg(deq_bits_nxt, en = valid, doInit = false, name = Some("deq_bits_reg")) val valid_reg = withReset(reset.asAsyncReset)(RegNext(next=valid, init=false.B).suggestName("valid_reg")) io.deq.valid := valid_reg && source_ready val ridx_reg = withReset(reset.asAsyncReset)(RegNext(next=ridx, init=0.U).suggestName("ridx_gray")) io.async.ridx := ridx_reg io.async.safe.foreach { sio => val sink_valid_0 = Module(new AsyncValidSync(params.sync, "sink_valid_0")) val sink_valid_1 = Module(new AsyncValidSync(params.sync, "sink_valid_1")) val source_extend = Module(new AsyncValidSync(params.sync, "source_extend")) val source_valid = Module(new AsyncValidSync(params.sync, "source_valid")) sink_valid_0 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset sink_valid_1 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset source_extend.reset := (reset.asBool || !sio.source_reset_n).asAsyncReset source_valid .reset := reset.asAsyncReset sink_valid_0 .clock := clock sink_valid_1 .clock := clock source_extend.clock := clock source_valid .clock := clock sink_valid_0.io.in := true.B sink_valid_1.io.in := sink_valid_0.io.out sio.ridx_valid := sink_valid_1.io.out source_extend.io.in := sio.widx_valid source_valid.io.in := source_extend.io.out source_ready := source_valid.io.out sio.sink_reset_n := !reset.asBool // TODO: write some sort of sanity check assertion for users // that denote don't reset when there is activity // // val reset_and_extend = !source_ready || !sio.source_reset_n || reset.asBool // val reset_and_extend_prev = RegNext(reset_and_extend, true.B) // val reset_rise = !reset_and_extend_prev && reset_and_extend // val prev_idx_match = AsyncResetReg(updateData=(io.async.widx===io.async.ridx), resetData=0) // assert (!reset_rise || prev_idx_match.asBool, "Source reset while AsyncQueueSink not empty") } } object FromAsyncBundle { // Sometimes it makes sense for the sink to have different sync than the source def apply[T <: Data](x: AsyncBundle[T]): DecoupledIO[T] = apply(x, x.params.sync) def apply[T <: Data](x: AsyncBundle[T], sync: Int): DecoupledIO[T] = { val sink = Module(new AsyncQueueSink(chiselTypeOf(x.mem(0)), x.params.copy(sync = sync))) sink.io.async <> x sink.io.deq } } object ToAsyncBundle { def apply[T <: Data](x: ReadyValidIO[T], params: AsyncQueueParams = AsyncQueueParams()): AsyncBundle[T] = { val source = Module(new AsyncQueueSource(chiselTypeOf(x.bits), params)) source.io.enq <> x source.io.async } } class AsyncQueue[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Crossing[T] { val io = IO(new CrossingIO(gen)) val source = withClockAndReset(io.enq_clock, io.enq_reset) { Module(new AsyncQueueSource(gen, params)) } val sink = withClockAndReset(io.deq_clock, io.deq_reset) { Module(new AsyncQueueSink (gen, params)) } source.io.enq <> io.enq io.deq <> sink.io.deq sink.io.async <> source.io.async }
module AsyncValidSync_69( // @[AsyncQueue.scala:58:7] input io_in, // @[AsyncQueue.scala:59:14] output io_out, // @[AsyncQueue.scala:59:14] input clock, // @[AsyncQueue.scala:63:17] input reset // @[AsyncQueue.scala:64:17] ); wire io_in_0 = io_in; // @[AsyncQueue.scala:58:7] wire _io_out_WIRE; // @[ShiftReg.scala:48:24] wire io_out_0; // @[AsyncQueue.scala:58:7] assign io_out_0 = _io_out_WIRE; // @[ShiftReg.scala:48:24] AsyncResetSynchronizerShiftReg_w1_d3_i0_69 io_out_source_valid_1 ( // @[ShiftReg.scala:45:23] .clock (clock), .reset (reset), .io_d (io_in_0), // @[AsyncQueue.scala:58:7] .io_q (_io_out_WIRE) ); // @[ShiftReg.scala:45:23] assign io_out = io_out_0; // @[AsyncQueue.scala:58:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Monitor.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceLine import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import freechips.rocketchip.diplomacy.EnableMonitors import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode} import freechips.rocketchip.util.PlusArg case class TLMonitorArgs(edge: TLEdge) abstract class TLMonitorBase(args: TLMonitorArgs) extends Module { val io = IO(new Bundle { val in = Input(new TLBundle(args.edge.bundle)) }) def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit legalize(io.in, args.edge, reset) } object TLMonitor { def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = { if (enable) { EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) } } else { node } } } class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args) { require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal)) val cover_prop_class = PropertyClass.Default //Like assert but can flip to being an assumption for formal verification def monAssert(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir, cond, message, PropertyClass.Default) } def assume(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir.flip, cond, message, PropertyClass.Default) } def extra = { args.edge.sourceInfo match { case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)" case _ => "" } } def visible(address: UInt, source: UInt, edge: TLEdge) = edge.client.clients.map { c => !c.sourceId.contains(source) || c.visibility.map(_.contains(address)).reduce(_ || _) }.reduce(_ && _) def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = { //switch this flag to turn on diplomacy in error messages def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n" monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra) // Reuse these subexpressions to save some firrtl lines val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility") //The monitor doesn’t check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B //TODO: check for acquireT? when (bundle.opcode === TLMessages.AcquireBlock) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra) } when (bundle.opcode === TLMessages.AcquirePerm) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra) monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra) monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra) monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra) } } def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = { monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra) monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility") // Reuse these subexpressions to save some firrtl lines val address_ok = edge.manager.containsSafe(edge.address(bundle)) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source when (bundle.opcode === TLMessages.Probe) { assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra) assume (address_ok, "'B' channel Probe carries unmanaged address" + extra) assume (legal_source, "'B' channel Probe carries source that is not first source" + extra) assume (is_aligned, "'B' channel Probe address not aligned to size" + extra) assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra) assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra) assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra) monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra) monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra) monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra) monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra) } } def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = { monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val address_ok = edge.manager.containsSafe(edge.address(bundle)) monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility") when (bundle.opcode === TLMessages.ProbeAck) { monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra) } when (bundle.opcode === TLMessages.ProbeAckData) { monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.Release) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra) monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra) } when (bundle.opcode === TLMessages.ReleaseData) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.AccessAck) { monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra) } when (bundle.opcode === TLMessages.HintAck) { monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra) } } def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = { assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val sink_ok = bundle.sink < edge.manager.endSinkId.U val deny_put_ok = edge.manager.mayDenyPut.B val deny_get_ok = edge.manager.mayDenyGet.B when (bundle.opcode === TLMessages.ReleaseAck) { assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra) assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra) assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra) } when (bundle.opcode === TLMessages.Grant) { assume (source_ok, "'D' channel Grant carries invalid source ID" + extra) assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra) assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra) } when (bundle.opcode === TLMessages.GrantData) { assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra) assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra) } when (bundle.opcode === TLMessages.AccessAck) { assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra) } when (bundle.opcode === TLMessages.HintAck) { assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra) } } def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = { val sink_ok = bundle.sink < edge.manager.endSinkId.U monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra) } def legalizeFormat(bundle: TLBundle, edge: TLEdge) = { when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) } when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) } when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) } when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) } } else { monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra) monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra) monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra) } } def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = { val a_first = edge.first(a.bits, a.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (a.valid && !a_first) { monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra) monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra) monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra) monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra) monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra) } when (a.fire && a_first) { opcode := a.bits.opcode param := a.bits.param size := a.bits.size source := a.bits.source address := a.bits.address } } def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = { val b_first = edge.first(b.bits, b.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (b.valid && !b_first) { monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra) monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra) monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra) monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra) monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra) } when (b.fire && b_first) { opcode := b.bits.opcode param := b.bits.param size := b.bits.size source := b.bits.source address := b.bits.address } } def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = { // Symbolic variable val sym_source = Wire(UInt(edge.client.endSourceId.W)) // TODO: Connect sym_source to a fixed value for simulation and to a // free wire in formal sym_source := 0.U // Type casting Int to UInt val maxSourceId = Wire(UInt(edge.client.endSourceId.W)) maxSourceId := edge.client.endSourceId.U // Delayed verison of sym_source val sym_source_d = Reg(UInt(edge.client.endSourceId.W)) sym_source_d := sym_source // These will be constraints for FV setup Property( MonitorDirection.Monitor, (sym_source === sym_source_d), "sym_source should remain stable", PropertyClass.Default) Property( MonitorDirection.Monitor, (sym_source <= maxSourceId), "sym_source should take legal value", PropertyClass.Default) val my_resp_pend = RegInit(false.B) val my_opcode = Reg(UInt()) val my_size = Reg(UInt()) val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire) val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire) val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source) val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source) val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat) val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend) when (my_set_resp_pend) { my_resp_pend := true.B } .elsewhen (my_clr_resp_pend) { my_resp_pend := false.B } when (my_a_first_beat) { my_opcode := bundle.a.bits.opcode my_size := bundle.a.bits.size } val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size) val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode) val my_resp_opcode_legal = Wire(Bool()) when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) || (my_resp_opcode === TLMessages.LogicalData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData) } .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck) } .otherwise { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck) } monAssert (IfThen(my_resp_pend, !my_a_first_beat), "Request message should not be sent with a source ID, for which a response message" + "is already pending (not received until current cycle) for a prior request message" + "with the same source ID" + extra) assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)), "Response message should be accepted with a source ID only if a request message with the" + "same source ID has been accepted or is being accepted in the current cycle" + extra) assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)), "Response message should be sent with a source ID only if a request message with the" + "same source ID has been accepted or is being sent in the current cycle" + extra) assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)), "If d_valid is 1, then d_size should be same as a_size of the corresponding request" + "message" + extra) assume (IfThen(my_d_first_beat, my_resp_opcode_legal), "If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" + "request message" + extra) } def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = { val c_first = edge.first(c.bits, c.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (c.valid && !c_first) { monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra) monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra) monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra) monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra) monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra) } when (c.fire && c_first) { opcode := c.bits.opcode param := c.bits.param size := c.bits.size source := c.bits.source address := c.bits.address } } def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = { val d_first = edge.first(d.bits, d.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val sink = Reg(UInt()) val denied = Reg(Bool()) when (d.valid && !d_first) { assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra) assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra) assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra) assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra) assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra) assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra) } when (d.fire && d_first) { opcode := d.bits.opcode param := d.bits.param size := d.bits.size source := d.bits.source sink := d.bits.sink denied := d.bits.denied } } def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = { legalizeMultibeatA(bundle.a, edge) legalizeMultibeatD(bundle.d, edge) if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { legalizeMultibeatB(bundle.b, edge) legalizeMultibeatC(bundle.c, edge) } } //This is left in for almond which doesn't adhere to the tilelink protocol @deprecated("Use legalizeADSource instead if possible","") def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.client.endSourceId.W)) val a_first = edge.first(bundle.a.bits, bundle.a.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val a_set = WireInit(0.U(edge.client.endSourceId.W)) when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra) } if (edge.manager.minLatency > 0) { assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = { val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size) val log_a_size_bus_size = log2Ceil(a_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error inflight.suggestName("inflight") val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) inflight_opcodes.suggestName("inflight_opcodes") val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) inflight_sizes.suggestName("inflight_sizes") val a_first = edge.first(bundle.a.bits, bundle.a.fire) a_first.suggestName("a_first") val d_first = edge.first(bundle.d.bits, bundle.d.fire) d_first.suggestName("d_first") val a_set = WireInit(0.U(edge.client.endSourceId.W)) val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) a_set.suggestName("a_set") a_set_wo_ready.suggestName("a_set_wo_ready") val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) a_opcodes_set.suggestName("a_opcodes_set") val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) a_sizes_set.suggestName("a_sizes_set") val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W)) a_opcode_lookup.suggestName("a_opcode_lookup") a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W)) a_size_lookup.suggestName("a_size_lookup") a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant)) val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant)) val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W)) a_opcodes_set_interm.suggestName("a_opcodes_set_interm") val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W)) a_sizes_set_interm.suggestName("a_sizes_set_interm") when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) { a_set_wo_ready := UIntToOH(bundle.a.bits.source) } when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U) a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U) monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) d_opcodes_clr.suggestName("d_opcodes_clr") val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) || (bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra) assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) || (bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra) assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) { assume((!bundle.d.ready) || bundle.a.ready, "ready check") } if (edge.manager.minLatency > 0) { assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = { val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size) val log_c_size_bus_size = log2Ceil(c_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) inflight.suggestName("inflight") inflight_opcodes.suggestName("inflight_opcodes") inflight_sizes.suggestName("inflight_sizes") val c_first = edge.first(bundle.c.bits, bundle.c.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) c_first.suggestName("c_first") d_first.suggestName("d_first") val c_set = WireInit(0.U(edge.client.endSourceId.W)) val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) c_set.suggestName("c_set") c_set_wo_ready.suggestName("c_set_wo_ready") c_opcodes_set.suggestName("c_opcodes_set") c_sizes_set.suggestName("c_sizes_set") val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W)) val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W)) c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U c_opcode_lookup.suggestName("c_opcode_lookup") c_size_lookup.suggestName("c_size_lookup") val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W)) val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W)) c_opcodes_set_interm.suggestName("c_opcodes_set_interm") c_sizes_set_interm.suggestName("c_sizes_set_interm") when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) { c_set_wo_ready := UIntToOH(bundle.c.bits.source) } when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) { c_set := UIntToOH(bundle.c.bits.source) c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U) c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U) monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra) } val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") d_opcodes_clr.suggestName("d_opcodes_clr") d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) { assume((!bundle.d.ready) || bundle.c.ready, "ready check") } if (edge.manager.minLatency > 0) { when (c_set_wo_ready.orR) { assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra) } } inflight := (inflight | c_set) & ~d_clr inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.manager.endSinkId.W)) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val e_first = true.B val d_set = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) { d_set := UIntToOH(bundle.d.bits.sink) assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra) } val e_clr = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) { e_clr := UIntToOH(bundle.e.bits.sink) monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra) } // edge.client.minLatency applies to BC, not DE inflight := (inflight | d_set) & ~e_clr } def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = { val sourceBits = log2Ceil(edge.client.endSourceId) val tooBig = 14 // >16kB worth of flight information gets to be too much if (sourceBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked") } else { if (args.edge.params(TestplanTestType).simulation) { if (args.edge.params(TLMonitorStrictMode)) { legalizeADSource(bundle, edge) legalizeCDSource(bundle, edge) } else { legalizeADSourceOld(bundle, edge) } } if (args.edge.params(TestplanTestType).formal) { legalizeADSourceFormal(bundle, edge) } } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { // legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize... val sinkBits = log2Ceil(edge.manager.endSinkId) if (sinkBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked") } else { legalizeDESink(bundle, edge) } } } def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = { legalizeFormat (bundle, edge) legalizeMultibeat (bundle, edge) legalizeUnique (bundle, edge) } } File Misc.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ import chisel3.util.random.LFSR import org.chipsalliance.cde.config.Parameters import scala.math._ class ParameterizedBundle(implicit p: Parameters) extends Bundle trait Clocked extends Bundle { val clock = Clock() val reset = Bool() } object DecoupledHelper { def apply(rvs: Bool*) = new DecoupledHelper(rvs) } class DecoupledHelper(val rvs: Seq[Bool]) { def fire(exclude: Bool, includes: Bool*) = { require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!") (rvs.filter(_ ne exclude) ++ includes).reduce(_ && _) } def fire() = { rvs.reduce(_ && _) } } object MuxT { def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2)) def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3)) def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4)) } /** Creates a cascade of n MuxTs to search for a key value. */ object MuxTLookup { def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } } object ValidMux { def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = { apply(v1 +: v2.toSeq) } def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = { val out = Wire(Valid(valids.head.bits.cloneType)) out.valid := valids.map(_.valid).reduce(_ || _) out.bits := MuxCase(valids.head.bits, valids.map(v => (v.valid -> v.bits))) out } } object Str { def apply(s: String): UInt = { var i = BigInt(0) require(s.forall(validChar _)) for (c <- s) i = (i << 8) | c i.U((s.length*8).W) } def apply(x: Char): UInt = { require(validChar(x)) x.U(8.W) } def apply(x: UInt): UInt = apply(x, 10) def apply(x: UInt, radix: Int): UInt = { val rad = radix.U val w = x.getWidth require(w > 0) var q = x var s = digit(q % rad) for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s) } s } def apply(x: SInt): UInt = apply(x, 10) def apply(x: SInt, radix: Int): UInt = { val neg = x < 0.S val abs = x.abs.asUInt if (radix != 10) { Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix)) } else { val rad = radix.U val w = abs.getWidth require(w > 0) var q = abs var s = digit(q % rad) var needSign = neg for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad val placeSpace = q === 0.U val space = Mux(needSign, Str('-'), Str(' ')) needSign = needSign && !placeSpace s = Cat(Mux(placeSpace, space, digit(q % rad)), s) } Cat(Mux(needSign, Str('-'), Str(' ')), s) } } private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0) private def validChar(x: Char) = x == (x & 0xFF) } object Split { def apply(x: UInt, n0: Int) = { val w = x.getWidth (x.extract(w-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n2: Int, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } } object Random { def apply(mod: Int, random: UInt): UInt = { if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0) else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod)) } def apply(mod: Int): UInt = apply(mod, randomizer) def oneHot(mod: Int, random: UInt): UInt = { if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0)) else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt } def oneHot(mod: Int): UInt = oneHot(mod, randomizer) private def randomizer = LFSR(16) private def partition(value: UInt, slices: Int) = Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U) } object Majority { def apply(in: Set[Bool]): Bool = { val n = (in.size >> 1) + 1 val clauses = in.subsets(n).map(_.reduce(_ && _)) clauses.reduce(_ || _) } def apply(in: Seq[Bool]): Bool = apply(in.toSet) def apply(in: UInt): Bool = apply(in.asBools.toSet) } object PopCountAtLeast { private def two(x: UInt): (Bool, Bool) = x.getWidth match { case 1 => (x.asBool, false.B) case n => val half = x.getWidth / 2 val (leftOne, leftTwo) = two(x(half - 1, 0)) val (rightOne, rightTwo) = two(x(x.getWidth - 1, half)) (leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne)) } def apply(x: UInt, n: Int): Bool = n match { case 0 => true.B case 1 => x.orR case 2 => two(x)._2 case 3 => PopCount(x) >= n.U } } // This gets used everywhere, so make the smallest circuit possible ... // Given an address and size, create a mask of beatBytes size // eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111 // groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01 object MaskGen { def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = { require (groupBy >= 1 && beatBytes >= groupBy) require (isPow2(beatBytes) && isPow2(groupBy)) val lgBytes = log2Ceil(beatBytes) val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U def helper(i: Int): Seq[(Bool, Bool)] = { if (i == 0) { Seq((lgSize >= lgBytes.asUInt, true.B)) } else { val sub = helper(i-1) val size = sizeOH(lgBytes - i) val bit = addr_lo(lgBytes - i) val nbit = !bit Seq.tabulate (1 << i) { j => val (sub_acc, sub_eq) = sub(j/2) val eq = sub_eq && (if (j % 2 == 1) bit else nbit) val acc = sub_acc || (size && eq) (acc, eq) } } } if (groupBy == beatBytes) 1.U else Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse) } } File PlusArg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.experimental._ import chisel3.util.HasBlackBoxResource @deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05") case class PlusArgInfo(default: BigInt, docstring: String) /** Case class for PlusArg information * * @tparam A scala type of the PlusArg value * @param default optional default value * @param docstring text to include in the help * @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT) */ private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String) /** Typeclass for converting a type to a doctype string * @tparam A some type */ trait Doctypeable[A] { /** Return the doctype string for some option */ def toDoctype(a: Option[A]): String } /** Object containing implementations of the Doctypeable typeclass */ object Doctypes { /** Converts an Int => "INT" */ implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" } /** Converts a BigInt => "INT" */ implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" } /** Converts a String => "STRING" */ implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" } } class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map( "FORMAT" -> StringParam(format), "DEFAULT" -> IntParam(default), "WIDTH" -> IntParam(width) )) with HasBlackBoxResource { val io = IO(new Bundle { val out = Output(UInt(width.W)) }) addResource("/vsrc/plusarg_reader.v") } /* This wrapper class has no outputs, making it clear it is a simulation-only construct */ class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module { val io = IO(new Bundle { val count = Input(UInt(width.W)) }) val max = Module(new plusarg_reader(format, default, docstring, width)).io.out when (max > 0.U) { assert (io.count < max, s"Timeout exceeded: $docstring") } } import Doctypes._ object PlusArg { /** PlusArg("foo") will return 42.U if the simulation is run with +foo=42 * Do not use this as an initial register value. The value is set in an * initial block and thus accessing it from another initial is racey. * Add a docstring to document the arg, which can be dumped in an elaboration * pass. */ def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out } /** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert * to kill the simulation when count exceeds the specified integer argument. * Default 0 will never assert. */ def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count } } object PlusArgArtefacts { private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty /* Add a new PlusArg */ @deprecated( "Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05" ) def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring) /** Add a new PlusArg * * @tparam A scala type of the PlusArg value * @param name name for the PlusArg * @param default optional default value * @param docstring text to include in the help */ def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit = artefacts = artefacts ++ Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default))) /* From plus args, generate help text */ private def serializeHelp_cHeader(tab: String = ""): String = artefacts .map{ case(arg, info) => s"""|$tab+$arg=${info.doctype}\\n\\ |$tab${" "*20}${info.docstring}\\n\\ |""".stripMargin ++ info.default.map{ case default => s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("") }.toSeq.mkString("\\n\\\n") ++ "\"" /* From plus args, generate a char array of their names */ private def serializeArray_cHeader(tab: String = ""): String = { val prettyTab = tab + " " * 44 // Length of 'static const ...' s"${tab}static const char * verilog_plusargs [] = {\\\n" ++ artefacts .map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" } .mkString("")++ s"${prettyTab}0};" } /* Generate C code to be included in emulator.cc that helps with * argument parsing based on available Verilog PlusArgs */ def serialize_cHeader(): String = s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\ |${serializeHelp_cHeader(" "*7)} |${serializeArray_cHeader()} |""".stripMargin } File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag } File Bundles.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import freechips.rocketchip.util._ import scala.collection.immutable.ListMap import chisel3.util.Decoupled import chisel3.util.DecoupledIO import chisel3.reflect.DataMirror abstract class TLBundleBase(val params: TLBundleParameters) extends Bundle // common combos in lazy policy: // Put + Acquire // Release + AccessAck object TLMessages { // A B C D E def PutFullData = 0.U // . . => AccessAck def PutPartialData = 1.U // . . => AccessAck def ArithmeticData = 2.U // . . => AccessAckData def LogicalData = 3.U // . . => AccessAckData def Get = 4.U // . . => AccessAckData def Hint = 5.U // . . => HintAck def AcquireBlock = 6.U // . => Grant[Data] def AcquirePerm = 7.U // . => Grant[Data] def Probe = 6.U // . => ProbeAck[Data] def AccessAck = 0.U // . . def AccessAckData = 1.U // . . def HintAck = 2.U // . . def ProbeAck = 4.U // . def ProbeAckData = 5.U // . def Release = 6.U // . => ReleaseAck def ReleaseData = 7.U // . => ReleaseAck def Grant = 4.U // . => GrantAck def GrantData = 5.U // . => GrantAck def ReleaseAck = 6.U // . def GrantAck = 0.U // . def isA(x: UInt) = x <= AcquirePerm def isB(x: UInt) = x <= Probe def isC(x: UInt) = x <= ReleaseData def isD(x: UInt) = x <= ReleaseAck def adResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, Grant, Grant) def bcResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, ProbeAck, ProbeAck) def a = Seq( ("PutFullData",TLPermissions.PermMsgReserved), ("PutPartialData",TLPermissions.PermMsgReserved), ("ArithmeticData",TLAtomics.ArithMsg), ("LogicalData",TLAtomics.LogicMsg), ("Get",TLPermissions.PermMsgReserved), ("Hint",TLHints.HintsMsg), ("AcquireBlock",TLPermissions.PermMsgGrow), ("AcquirePerm",TLPermissions.PermMsgGrow)) def b = Seq( ("PutFullData",TLPermissions.PermMsgReserved), ("PutPartialData",TLPermissions.PermMsgReserved), ("ArithmeticData",TLAtomics.ArithMsg), ("LogicalData",TLAtomics.LogicMsg), ("Get",TLPermissions.PermMsgReserved), ("Hint",TLHints.HintsMsg), ("Probe",TLPermissions.PermMsgCap)) def c = Seq( ("AccessAck",TLPermissions.PermMsgReserved), ("AccessAckData",TLPermissions.PermMsgReserved), ("HintAck",TLPermissions.PermMsgReserved), ("Invalid Opcode",TLPermissions.PermMsgReserved), ("ProbeAck",TLPermissions.PermMsgReport), ("ProbeAckData",TLPermissions.PermMsgReport), ("Release",TLPermissions.PermMsgReport), ("ReleaseData",TLPermissions.PermMsgReport)) def d = Seq( ("AccessAck",TLPermissions.PermMsgReserved), ("AccessAckData",TLPermissions.PermMsgReserved), ("HintAck",TLPermissions.PermMsgReserved), ("Invalid Opcode",TLPermissions.PermMsgReserved), ("Grant",TLPermissions.PermMsgCap), ("GrantData",TLPermissions.PermMsgCap), ("ReleaseAck",TLPermissions.PermMsgReserved)) } /** * The three primary TileLink permissions are: * (T)runk: the agent is (or is on inwards path to) the global point of serialization. * (B)ranch: the agent is on an outwards path to * (N)one: * These permissions are permuted by transfer operations in various ways. * Operations can cap permissions, request for them to be grown or shrunk, * or for a report on their current status. */ object TLPermissions { val aWidth = 2 val bdWidth = 2 val cWidth = 3 // Cap types (Grant = new permissions, Probe = permisions <= target) def toT = 0.U(bdWidth.W) def toB = 1.U(bdWidth.W) def toN = 2.U(bdWidth.W) def isCap(x: UInt) = x <= toN // Grow types (Acquire = permissions >= target) def NtoB = 0.U(aWidth.W) def NtoT = 1.U(aWidth.W) def BtoT = 2.U(aWidth.W) def isGrow(x: UInt) = x <= BtoT // Shrink types (ProbeAck, Release) def TtoB = 0.U(cWidth.W) def TtoN = 1.U(cWidth.W) def BtoN = 2.U(cWidth.W) def isShrink(x: UInt) = x <= BtoN // Report types (ProbeAck, Release) def TtoT = 3.U(cWidth.W) def BtoB = 4.U(cWidth.W) def NtoN = 5.U(cWidth.W) def isReport(x: UInt) = x <= NtoN def PermMsgGrow:Seq[String] = Seq("Grow NtoB", "Grow NtoT", "Grow BtoT") def PermMsgCap:Seq[String] = Seq("Cap toT", "Cap toB", "Cap toN") def PermMsgReport:Seq[String] = Seq("Shrink TtoB", "Shrink TtoN", "Shrink BtoN", "Report TotT", "Report BtoB", "Report NtoN") def PermMsgReserved:Seq[String] = Seq("Reserved") } object TLAtomics { val width = 3 // Arithmetic types def MIN = 0.U(width.W) def MAX = 1.U(width.W) def MINU = 2.U(width.W) def MAXU = 3.U(width.W) def ADD = 4.U(width.W) def isArithmetic(x: UInt) = x <= ADD // Logical types def XOR = 0.U(width.W) def OR = 1.U(width.W) def AND = 2.U(width.W) def SWAP = 3.U(width.W) def isLogical(x: UInt) = x <= SWAP def ArithMsg:Seq[String] = Seq("MIN", "MAX", "MINU", "MAXU", "ADD") def LogicMsg:Seq[String] = Seq("XOR", "OR", "AND", "SWAP") } object TLHints { val width = 1 def PREFETCH_READ = 0.U(width.W) def PREFETCH_WRITE = 1.U(width.W) def isHints(x: UInt) = x <= PREFETCH_WRITE def HintsMsg:Seq[String] = Seq("PrefetchRead", "PrefetchWrite") } sealed trait TLChannel extends TLBundleBase { val channelName: String } sealed trait TLDataChannel extends TLChannel sealed trait TLAddrChannel extends TLDataChannel final class TLBundleA(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleA_${params.shortName}" val channelName = "'A' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(List(TLAtomics.width, TLPermissions.aWidth, TLHints.width).max.W) // amo_opcode || grow perms || hint val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // from val address = UInt(params.addressBits.W) // to val user = BundleMap(params.requestFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val mask = UInt((params.dataBits/8).W) val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleB(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleB_${params.shortName}" val channelName = "'B' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.bdWidth.W) // cap perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // to val address = UInt(params.addressBits.W) // from // variable fields during multibeat: val mask = UInt((params.dataBits/8).W) val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleC(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleC_${params.shortName}" val channelName = "'C' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.cWidth.W) // shrink or report perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // from val address = UInt(params.addressBits.W) // to val user = BundleMap(params.requestFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleD(params: TLBundleParameters) extends TLBundleBase(params) with TLDataChannel { override def typeName = s"TLBundleD_${params.shortName}" val channelName = "'D' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.bdWidth.W) // cap perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // to val sink = UInt(params.sinkBits.W) // from val denied = Bool() // implies corrupt iff *Data val user = BundleMap(params.responseFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleE(params: TLBundleParameters) extends TLBundleBase(params) with TLChannel { override def typeName = s"TLBundleE_${params.shortName}" val channelName = "'E' channel" val sink = UInt(params.sinkBits.W) // to } class TLBundle(val params: TLBundleParameters) extends Record { // Emulate a Bundle with elements abcde or ad depending on params.hasBCE private val optA = Some (Decoupled(new TLBundleA(params))) private val optB = params.hasBCE.option(Flipped(Decoupled(new TLBundleB(params)))) private val optC = params.hasBCE.option(Decoupled(new TLBundleC(params))) private val optD = Some (Flipped(Decoupled(new TLBundleD(params)))) private val optE = params.hasBCE.option(Decoupled(new TLBundleE(params))) def a: DecoupledIO[TLBundleA] = optA.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleA(params))))) def b: DecoupledIO[TLBundleB] = optB.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleB(params))))) def c: DecoupledIO[TLBundleC] = optC.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleC(params))))) def d: DecoupledIO[TLBundleD] = optD.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleD(params))))) def e: DecoupledIO[TLBundleE] = optE.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleE(params))))) val elements = if (params.hasBCE) ListMap("e" -> e, "d" -> d, "c" -> c, "b" -> b, "a" -> a) else ListMap("d" -> d, "a" -> a) def tieoff(): Unit = { DataMirror.specifiedDirectionOf(a.ready) match { case SpecifiedDirection.Input => a.ready := false.B c.ready := false.B e.ready := false.B b.valid := false.B d.valid := false.B case SpecifiedDirection.Output => a.valid := false.B c.valid := false.B e.valid := false.B b.ready := false.B d.ready := false.B case _ => } } } object TLBundle { def apply(params: TLBundleParameters) = new TLBundle(params) } class TLAsyncBundleBase(val params: TLAsyncBundleParameters) extends Bundle class TLAsyncBundle(params: TLAsyncBundleParameters) extends TLAsyncBundleBase(params) { val a = new AsyncBundle(new TLBundleA(params.base), params.async) val b = Flipped(new AsyncBundle(new TLBundleB(params.base), params.async)) val c = new AsyncBundle(new TLBundleC(params.base), params.async) val d = Flipped(new AsyncBundle(new TLBundleD(params.base), params.async)) val e = new AsyncBundle(new TLBundleE(params.base), params.async) } class TLRationalBundle(params: TLBundleParameters) extends TLBundleBase(params) { val a = RationalIO(new TLBundleA(params)) val b = Flipped(RationalIO(new TLBundleB(params))) val c = RationalIO(new TLBundleC(params)) val d = Flipped(RationalIO(new TLBundleD(params))) val e = RationalIO(new TLBundleE(params)) } class TLCreditedBundle(params: TLBundleParameters) extends TLBundleBase(params) { val a = CreditedIO(new TLBundleA(params)) val b = Flipped(CreditedIO(new TLBundleB(params))) val c = CreditedIO(new TLBundleC(params)) val d = Flipped(CreditedIO(new TLBundleD(params))) val e = CreditedIO(new TLBundleE(params)) } File Parameters.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.diplomacy import chisel3._ import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor} import freechips.rocketchip.util.ShiftQueue /** Options for describing the attributes of memory regions */ object RegionType { // Define the 'more relaxed than' ordering val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS) sealed trait T extends Ordered[T] { def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this) } case object CACHED extends T // an intermediate agent may have cached a copy of the region for you case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively } // A non-empty half-open range; [start, end) case class IdRange(start: Int, end: Int) extends Ordered[IdRange] { require (start >= 0, s"Ids cannot be negative, but got: $start.") require (start <= end, "Id ranges cannot be negative.") def compare(x: IdRange) = { val primary = (this.start - x.start).signum val secondary = (x.end - this.end).signum if (primary != 0) primary else secondary } def overlaps(x: IdRange) = start < x.end && x.start < end def contains(x: IdRange) = start <= x.start && x.end <= end def contains(x: Int) = start <= x && x < end def contains(x: UInt) = if (size == 0) { false.B } else if (size == 1) { // simple comparison x === start.U } else { // find index of largest different bit val largestDeltaBit = log2Floor(start ^ (end-1)) val smallestCommonBit = largestDeltaBit + 1 // may not exist in x val uncommonMask = (1 << smallestCommonBit) - 1 val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0) // the prefix must match exactly (note: may shift ALL bits away) (x >> smallestCommonBit) === (start >> smallestCommonBit).U && // firrtl constant prop range analysis can eliminate these two: (start & uncommonMask).U <= uncommonBits && uncommonBits <= ((end-1) & uncommonMask).U } def shift(x: Int) = IdRange(start+x, end+x) def size = end - start def isEmpty = end == start def range = start until end } object IdRange { def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else { val ranges = s.sorted (ranges.tail zip ranges.init) find { case (a, b) => a overlaps b } } } // An potentially empty inclusive range of 2-powers [min, max] (in bytes) case class TransferSizes(min: Int, max: Int) { def this(x: Int) = this(x, x) require (min <= max, s"Min transfer $min > max transfer $max") require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)") require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max") require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min") require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)") def none = min == 0 def contains(x: Int) = isPow2(x) && min <= x && x <= max def containsLg(x: Int) = contains(1 << x) def containsLg(x: UInt) = if (none) false.B else if (min == max) { log2Ceil(min).U === x } else { log2Ceil(min).U <= x && x <= log2Ceil(max).U } def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max) def intersect(x: TransferSizes) = if (x.max < min || max < x.min) TransferSizes.none else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max)) // Not a union, because the result may contain sizes contained by neither term // NOT TO BE CONFUSED WITH COVERPOINTS def mincover(x: TransferSizes) = { if (none) { x } else if (x.none) { this } else { TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max)) } } override def toString() = "TransferSizes[%d, %d]".format(min, max) } object TransferSizes { def apply(x: Int) = new TransferSizes(x) val none = new TransferSizes(0) def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _) def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _) implicit def asBool(x: TransferSizes) = !x.none } // AddressSets specify the address space managed by the manager // Base is the base address, and mask are the bits consumed by the manager // e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff // e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ... case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet] { // Forbid misaligned base address (and empty sets) require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}") require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous // We do allow negative mask (=> ignore all high bits) def contains(x: BigInt) = ((x ^ base) & ~mask) == 0 def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S // turn x into an address contained in this set def legalize(x: UInt): UInt = base.U | (mask.U & x) // overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1) def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0 // contains iff bitwise: x.mask => mask && contains(x.base) def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0 // The number of bytes to which the manager must be aligned def alignment = ((mask + 1) & ~mask) // Is this a contiguous memory range def contiguous = alignment == mask+1 def finite = mask >= 0 def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask } // Widen the match function to ignore all bits in imask def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask) // Return an AddressSet that only contains the addresses both sets contain def intersect(x: AddressSet): Option[AddressSet] = { if (!overlaps(x)) { None } else { val r_mask = mask & x.mask val r_base = base | x.base Some(AddressSet(r_base, r_mask)) } } def subtract(x: AddressSet): Seq[AddressSet] = { intersect(x) match { case None => Seq(this) case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit => val nmask = (mask & (bit-1)) | remove.mask val nbase = (remove.base ^ bit) & ~nmask AddressSet(nbase, nmask) } } } // AddressSets have one natural Ordering (the containment order, if contiguous) def compare(x: AddressSet) = { val primary = (this.base - x.base).signum // smallest address first val secondary = (x.mask - this.mask).signum // largest mask first if (primary != 0) primary else secondary } // We always want to see things in hex override def toString() = { if (mask >= 0) { "AddressSet(0x%x, 0x%x)".format(base, mask) } else { "AddressSet(0x%x, ~0x%x)".format(base, ~mask) } } def toRanges = { require (finite, "Ranges cannot be calculated on infinite mask") val size = alignment val fragments = mask & ~(size-1) val bits = bitIndexes(fragments) (BigInt(0) until (BigInt(1) << bits.size)).map { i => val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) } AddressRange(off, size) } } } object AddressSet { val everything = AddressSet(0, -1) def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = { if (size == 0) tail.reverse else { val maxBaseAlignment = base & (-base) // 0 for infinite (LSB) val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size val step = if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment) maxSizeAlignment else maxBaseAlignment misaligned(base+step, size-step, AddressSet(base, step-1) +: tail) } } def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = { // Pair terms up by ignoring 'bit' seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) => if (seq.size == 1) { seq.head // singleton -> unaffected } else { key.copy(mask = key.mask | bit) // pair - widen mask by bit } }.toList } def unify(seq: Seq[AddressSet]): Seq[AddressSet] = { val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _) AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted } def enumerateMask(mask: BigInt): Seq[BigInt] = { def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] = if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail) helper(0, Nil) } def enumerateBits(mask: BigInt): Seq[BigInt] = { def helper(x: BigInt): Seq[BigInt] = { if (x == 0) { Nil } else { val bit = x & (-x) bit +: helper(x & ~bit) } } helper(mask) } } case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean) { require (depth >= 0, "Buffer depth must be >= 0") def isDefined = depth > 0 def latency = if (isDefined && !flow) 1 else 0 def apply[T <: Data](x: DecoupledIO[T]) = if (isDefined) Queue(x, depth, flow=flow, pipe=pipe) else x def irrevocable[T <: Data](x: ReadyValidIO[T]) = if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe) else x def sq[T <: Data](x: DecoupledIO[T]) = if (!isDefined) x else { val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe)) sq.io.enq <> x sq.io.deq } override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "") } object BufferParams { implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false) val default = BufferParams(2) val none = BufferParams(0) val flow = BufferParams(1, true, false) val pipe = BufferParams(1, false, true) } case class TriStateValue(value: Boolean, set: Boolean) { def update(orig: Boolean) = if (set) value else orig } object TriStateValue { implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true) def unset = TriStateValue(false, false) } trait DirectedBuffers[T] { def copyIn(x: BufferParams): T def copyOut(x: BufferParams): T def copyInOut(x: BufferParams): T } trait IdMapEntry { def name: String def from: IdRange def to: IdRange def isCache: Boolean def requestFifo: Boolean def maxTransactionsInFlight: Option[Int] def pretty(fmt: String) = if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5 fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } else { fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } } abstract class IdMap[T <: IdMapEntry] { protected val fmt: String val mapping: Seq[T] def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n") } File Edges.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.util._ class TLEdge( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdgeParameters(client, manager, params, sourceInfo) { def isAligned(address: UInt, lgSize: UInt): Bool = { if (maxLgSize == 0) true.B else { val mask = UIntToOH1(lgSize, maxLgSize) (address & mask) === 0.U } } def mask(address: UInt, lgSize: UInt): UInt = MaskGen(address, lgSize, manager.beatBytes) def staticHasData(bundle: TLChannel): Option[Boolean] = { bundle match { case _:TLBundleA => { // Do there exist A messages with Data? val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial // Do there exist A messages without Data? val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint // Statically optimize the case where hasData is a constant if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None } case _:TLBundleB => { // Do there exist B messages with Data? val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial // Do there exist B messages without Data? val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint // Statically optimize the case where hasData is a constant if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None } case _:TLBundleC => { // Do there eixst C messages with Data? val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe // Do there exist C messages without Data? val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None } case _:TLBundleD => { // Do there eixst D messages with Data? val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB // Do there exist D messages without Data? val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None } case _:TLBundleE => Some(false) } } def isRequest(x: TLChannel): Bool = { x match { case a: TLBundleA => true.B case b: TLBundleB => true.B case c: TLBundleC => c.opcode(2) && c.opcode(1) // opcode === TLMessages.Release || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(2) && !d.opcode(1) // opcode === TLMessages.Grant || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } } def isResponse(x: TLChannel): Bool = { x match { case a: TLBundleA => false.B case b: TLBundleB => false.B case c: TLBundleC => !c.opcode(2) || !c.opcode(1) // opcode =/= TLMessages.Release && // opcode =/= TLMessages.ReleaseData case d: TLBundleD => true.B // Grant isResponse + isRequest case e: TLBundleE => true.B } } def hasData(x: TLChannel): Bool = { val opdata = x match { case a: TLBundleA => !a.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case b: TLBundleB => !b.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case c: TLBundleC => c.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.ProbeAckData || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } staticHasData(x).map(_.B).getOrElse(opdata) } def opcode(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.opcode case b: TLBundleB => b.opcode case c: TLBundleC => c.opcode case d: TLBundleD => d.opcode } } def param(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.param case b: TLBundleB => b.param case c: TLBundleC => c.param case d: TLBundleD => d.param } } def size(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.size case b: TLBundleB => b.size case c: TLBundleC => c.size case d: TLBundleD => d.size } } def data(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.data case b: TLBundleB => b.data case c: TLBundleC => c.data case d: TLBundleD => d.data } } def corrupt(x: TLDataChannel): Bool = { x match { case a: TLBundleA => a.corrupt case b: TLBundleB => b.corrupt case c: TLBundleC => c.corrupt case d: TLBundleD => d.corrupt } } def mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.mask case b: TLBundleB => b.mask case c: TLBundleC => mask(c.address, c.size) } } def full_mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => mask(a.address, a.size) case b: TLBundleB => mask(b.address, b.size) case c: TLBundleC => mask(c.address, c.size) } } def address(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.address case b: TLBundleB => b.address case c: TLBundleC => c.address } } def source(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.source case b: TLBundleB => b.source case c: TLBundleC => c.source case d: TLBundleD => d.source } } def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes) def addr_lo(x: UInt): UInt = if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0) def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x)) def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x)) def numBeats(x: TLChannel): UInt = { x match { case _: TLBundleE => 1.U case bundle: TLDataChannel => { val hasData = this.hasData(bundle) val size = this.size(bundle) val cutoff = log2Ceil(manager.beatBytes) val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U val decode = UIntToOH(size, maxLgSize+1) >> cutoff Mux(hasData, decode | small.asUInt, 1.U) } } } def numBeats1(x: TLChannel): UInt = { x match { case _: TLBundleE => 0.U case bundle: TLDataChannel => { if (maxLgSize == 0) { 0.U } else { val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes) Mux(hasData(bundle), decode, 0.U) } } } } def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val beats1 = numBeats1(bits) val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W)) val counter1 = counter - 1.U val first = counter === 0.U val last = counter === 1.U || beats1 === 0.U val done = last && fire val count = (beats1 & ~counter1) when (fire) { counter := Mux(first, beats1, counter1) } (first, last, done, count) } def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1 def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire) def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid) def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2 def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire) def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid) def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3 def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire) def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid) def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3) } def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire) def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid) def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4) } def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire) def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid) def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes)) } def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire) def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid) // Does the request need T permissions to be executed? def needT(a: TLBundleA): Bool = { val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLPermissions.NtoB -> false.B, TLPermissions.NtoT -> true.B, TLPermissions.BtoT -> true.B)) MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array( TLMessages.PutFullData -> true.B, TLMessages.PutPartialData -> true.B, TLMessages.ArithmeticData -> true.B, TLMessages.LogicalData -> true.B, TLMessages.Get -> false.B, TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLHints.PREFETCH_READ -> false.B, TLHints.PREFETCH_WRITE -> true.B)), TLMessages.AcquireBlock -> acq_needT, TLMessages.AcquirePerm -> acq_needT)) } // This is a very expensive circuit; use only if you really mean it! def inFlight(x: TLBundle): (UInt, UInt) = { val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W)) val bce = manager.anySupportAcquireB && client.anySupportProbe val (a_first, a_last, _) = firstlast(x.a) val (b_first, b_last, _) = firstlast(x.b) val (c_first, c_last, _) = firstlast(x.c) val (d_first, d_last, _) = firstlast(x.d) val (e_first, e_last, _) = firstlast(x.e) val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits)) val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits)) val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits)) val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits)) val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits)) val a_inc = x.a.fire && a_first && a_request val b_inc = x.b.fire && b_first && b_request val c_inc = x.c.fire && c_first && c_request val d_inc = x.d.fire && d_first && d_request val e_inc = x.e.fire && e_first && e_request val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil)) val a_dec = x.a.fire && a_last && a_response val b_dec = x.b.fire && b_last && b_response val c_dec = x.c.fire && c_last && c_response val d_dec = x.d.fire && d_last && d_response val e_dec = x.e.fire && e_last && e_response val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil)) val next_flight = flight + PopCount(inc) - PopCount(dec) flight := next_flight (flight, next_flight) } def prettySourceMapping(context: String): String = { s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n" } } class TLEdgeOut( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { // Transfers def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquireBlock a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquirePerm a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.Release c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ReleaseData c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) = Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B) def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAck c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions, data) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAckData c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B) def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink) def GrantAck(toSink: UInt): TLBundleE = { val e = Wire(new TLBundleE(bundle)) e.sink := toSink e } // Accesses def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsGetFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Get a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutFullFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutFullData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, mask, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutPartialFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutPartialData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask a.data := data a.corrupt := corrupt (legal, a) } def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = { require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsArithmeticFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.ArithmeticData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsLogicalFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.LogicalData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = { require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsHintFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Hint a.param := param a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data) def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAckData c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size) def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.HintAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } } class TLEdgeIn( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = { val todo = x.filter(!_.isEmpty) val heads = todo.map(_.head) val tails = todo.map(_.tail) if (todo.isEmpty) Nil else { heads +: myTranspose(tails) } } // Transfers def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = { require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}") val legal = client.supportsProbe(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Probe b.param := capPermissions b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.Grant d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.GrantData d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B) def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.ReleaseAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } // Accesses def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = { require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsGet(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Get b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsPutFull(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutFullData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, mask, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsPutPartial(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutPartialData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask b.data := data b.corrupt := corrupt (legal, b) } def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsArithmetic(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.ArithmeticData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsLogical(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.LogicalData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = { require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsHint(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Hint b.param := param b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size) def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied) def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B) def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data) def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAckData d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B) def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied) def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B) def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.HintAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } }
module TLMonitor_61( // @[Monitor.scala:36:7] input clock, // @[Monitor.scala:36:7] input reset, // @[Monitor.scala:36:7] input io_in_a_ready, // @[Monitor.scala:20:14] input io_in_a_valid, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_size, // @[Monitor.scala:20:14] input [8:0] io_in_a_bits_source, // @[Monitor.scala:20:14] input [20:0] io_in_a_bits_address, // @[Monitor.scala:20:14] input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14] input [63:0] io_in_a_bits_data, // @[Monitor.scala:20:14] input io_in_a_bits_corrupt, // @[Monitor.scala:20:14] input io_in_d_ready, // @[Monitor.scala:20:14] input io_in_d_valid, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_size, // @[Monitor.scala:20:14] input [8:0] io_in_d_bits_source, // @[Monitor.scala:20:14] input [63:0] io_in_d_bits_data // @[Monitor.scala:20:14] ); wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11] wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11] wire io_in_a_ready_0 = io_in_a_ready; // @[Monitor.scala:36:7] wire io_in_a_valid_0 = io_in_a_valid; // @[Monitor.scala:36:7] wire [2:0] io_in_a_bits_opcode_0 = io_in_a_bits_opcode; // @[Monitor.scala:36:7] wire [2:0] io_in_a_bits_param_0 = io_in_a_bits_param; // @[Monitor.scala:36:7] wire [2:0] io_in_a_bits_size_0 = io_in_a_bits_size; // @[Monitor.scala:36:7] wire [8:0] io_in_a_bits_source_0 = io_in_a_bits_source; // @[Monitor.scala:36:7] wire [20:0] io_in_a_bits_address_0 = io_in_a_bits_address; // @[Monitor.scala:36:7] wire [7:0] io_in_a_bits_mask_0 = io_in_a_bits_mask; // @[Monitor.scala:36:7] wire [63:0] io_in_a_bits_data_0 = io_in_a_bits_data; // @[Monitor.scala:36:7] wire io_in_a_bits_corrupt_0 = io_in_a_bits_corrupt; // @[Monitor.scala:36:7] wire io_in_d_ready_0 = io_in_d_ready; // @[Monitor.scala:36:7] wire io_in_d_valid_0 = io_in_d_valid; // @[Monitor.scala:36:7] wire [2:0] io_in_d_bits_opcode_0 = io_in_d_bits_opcode; // @[Monitor.scala:36:7] wire [2:0] io_in_d_bits_size_0 = io_in_d_bits_size; // @[Monitor.scala:36:7] wire [8:0] io_in_d_bits_source_0 = io_in_d_bits_source; // @[Monitor.scala:36:7] wire [63:0] io_in_d_bits_data_0 = io_in_d_bits_data; // @[Monitor.scala:36:7] wire io_in_d_bits_sink = 1'h0; // @[Monitor.scala:36:7] wire io_in_d_bits_denied = 1'h0; // @[Monitor.scala:36:7] wire io_in_d_bits_corrupt = 1'h0; // @[Monitor.scala:36:7] wire sink_ok = 1'h0; // @[Monitor.scala:309:31] wire _c_first_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_first_T = 1'h0; // @[Decoupled.scala:51:35] wire c_first_beats1_opdata = 1'h0; // @[Edges.scala:102:36] wire _c_first_last_T = 1'h0; // @[Edges.scala:232:25] wire c_first_done = 1'h0; // @[Edges.scala:233:22] wire _c_set_wo_ready_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_set_wo_ready_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_set_wo_ready_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_T = 1'h0; // @[Monitor.scala:772:47] wire _c_probe_ack_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_T_1 = 1'h0; // @[Monitor.scala:772:95] wire c_probe_ack = 1'h0; // @[Monitor.scala:772:71] wire _same_cycle_resp_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_T_3 = 1'h0; // @[Monitor.scala:795:44] wire _same_cycle_resp_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_T_4 = 1'h0; // @[Edges.scala:68:36] wire _same_cycle_resp_T_5 = 1'h0; // @[Edges.scala:68:51] wire _same_cycle_resp_T_6 = 1'h0; // @[Edges.scala:68:40] wire _same_cycle_resp_T_7 = 1'h0; // @[Monitor.scala:795:55] wire _same_cycle_resp_WIRE_4_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_4_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_4_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_5_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_5_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_5_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire same_cycle_resp_1 = 1'h0; // @[Monitor.scala:795:88] wire [2:0] responseMap_0 = 3'h0; // @[Monitor.scala:643:42] wire [2:0] responseMap_1 = 3'h0; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_0 = 3'h0; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_1 = 3'h0; // @[Monitor.scala:644:42] wire [2:0] _c_first_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] c_first_beats1_decode = 3'h0; // @[Edges.scala:220:59] wire [2:0] c_first_beats1 = 3'h0; // @[Edges.scala:221:14] wire [2:0] _c_first_count_T = 3'h0; // @[Edges.scala:234:27] wire [2:0] c_first_count = 3'h0; // @[Edges.scala:234:25] wire [2:0] _c_first_counter_T = 3'h0; // @[Edges.scala:236:21] wire [2:0] _c_set_wo_ready_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_wo_ready_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_wo_ready_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_4_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_4_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_4_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_5_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_5_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_5_bits_size = 3'h0; // @[Bundles.scala:265:61] wire _source_ok_T_3 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_5 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_9 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_11 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_15 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_17 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_21 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_23 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_29 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_31 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_35 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_37 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_53 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_55 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_59 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_61 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_65 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_67 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_71 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_73 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_79 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_81 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_85 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_87 = 1'h1; // @[Parameters.scala:57:20] wire c_first = 1'h1; // @[Edges.scala:231:25] wire _c_first_last_T_1 = 1'h1; // @[Edges.scala:232:43] wire c_first_last = 1'h1; // @[Edges.scala:232:33] wire [2:0] c_first_counter1 = 3'h7; // @[Edges.scala:230:28] wire [3:0] _c_first_counter1_T = 4'hF; // @[Edges.scala:230:28] wire [1:0] io_in_d_bits_param = 2'h0; // @[Monitor.scala:36:7] wire [63:0] _c_first_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_first_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_first_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_first_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_set_wo_ready_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_set_wo_ready_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_opcodes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_opcodes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_sizes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_sizes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_opcodes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_opcodes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_sizes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_sizes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_probe_ack_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_probe_ack_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_probe_ack_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_probe_ack_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _same_cycle_resp_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _same_cycle_resp_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _same_cycle_resp_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _same_cycle_resp_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _same_cycle_resp_WIRE_4_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _same_cycle_resp_WIRE_5_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [20:0] _c_first_WIRE_bits_address = 21'h0; // @[Bundles.scala:265:74] wire [20:0] _c_first_WIRE_1_bits_address = 21'h0; // @[Bundles.scala:265:61] wire [20:0] _c_first_WIRE_2_bits_address = 21'h0; // @[Bundles.scala:265:74] wire [20:0] _c_first_WIRE_3_bits_address = 21'h0; // @[Bundles.scala:265:61] wire [20:0] _c_set_wo_ready_WIRE_bits_address = 21'h0; // @[Bundles.scala:265:74] wire [20:0] _c_set_wo_ready_WIRE_1_bits_address = 21'h0; // @[Bundles.scala:265:61] wire [20:0] _c_set_WIRE_bits_address = 21'h0; // @[Bundles.scala:265:74] wire [20:0] _c_set_WIRE_1_bits_address = 21'h0; // @[Bundles.scala:265:61] wire [20:0] _c_opcodes_set_interm_WIRE_bits_address = 21'h0; // @[Bundles.scala:265:74] wire [20:0] _c_opcodes_set_interm_WIRE_1_bits_address = 21'h0; // @[Bundles.scala:265:61] wire [20:0] _c_sizes_set_interm_WIRE_bits_address = 21'h0; // @[Bundles.scala:265:74] wire [20:0] _c_sizes_set_interm_WIRE_1_bits_address = 21'h0; // @[Bundles.scala:265:61] wire [20:0] _c_opcodes_set_WIRE_bits_address = 21'h0; // @[Bundles.scala:265:74] wire [20:0] _c_opcodes_set_WIRE_1_bits_address = 21'h0; // @[Bundles.scala:265:61] wire [20:0] _c_sizes_set_WIRE_bits_address = 21'h0; // @[Bundles.scala:265:74] wire [20:0] _c_sizes_set_WIRE_1_bits_address = 21'h0; // @[Bundles.scala:265:61] wire [20:0] _c_probe_ack_WIRE_bits_address = 21'h0; // @[Bundles.scala:265:74] wire [20:0] _c_probe_ack_WIRE_1_bits_address = 21'h0; // @[Bundles.scala:265:61] wire [20:0] _c_probe_ack_WIRE_2_bits_address = 21'h0; // @[Bundles.scala:265:74] wire [20:0] _c_probe_ack_WIRE_3_bits_address = 21'h0; // @[Bundles.scala:265:61] wire [20:0] _same_cycle_resp_WIRE_bits_address = 21'h0; // @[Bundles.scala:265:74] wire [20:0] _same_cycle_resp_WIRE_1_bits_address = 21'h0; // @[Bundles.scala:265:61] wire [20:0] _same_cycle_resp_WIRE_2_bits_address = 21'h0; // @[Bundles.scala:265:74] wire [20:0] _same_cycle_resp_WIRE_3_bits_address = 21'h0; // @[Bundles.scala:265:61] wire [20:0] _same_cycle_resp_WIRE_4_bits_address = 21'h0; // @[Bundles.scala:265:74] wire [20:0] _same_cycle_resp_WIRE_5_bits_address = 21'h0; // @[Bundles.scala:265:61] wire [8:0] _c_first_WIRE_bits_source = 9'h0; // @[Bundles.scala:265:74] wire [8:0] _c_first_WIRE_1_bits_source = 9'h0; // @[Bundles.scala:265:61] wire [8:0] _c_first_WIRE_2_bits_source = 9'h0; // @[Bundles.scala:265:74] wire [8:0] _c_first_WIRE_3_bits_source = 9'h0; // @[Bundles.scala:265:61] wire [8:0] _c_set_wo_ready_WIRE_bits_source = 9'h0; // @[Bundles.scala:265:74] wire [8:0] _c_set_wo_ready_WIRE_1_bits_source = 9'h0; // @[Bundles.scala:265:61] wire [8:0] _c_set_WIRE_bits_source = 9'h0; // @[Bundles.scala:265:74] wire [8:0] _c_set_WIRE_1_bits_source = 9'h0; // @[Bundles.scala:265:61] wire [8:0] _c_opcodes_set_interm_WIRE_bits_source = 9'h0; // @[Bundles.scala:265:74] wire [8:0] _c_opcodes_set_interm_WIRE_1_bits_source = 9'h0; // @[Bundles.scala:265:61] wire [8:0] _c_sizes_set_interm_WIRE_bits_source = 9'h0; // @[Bundles.scala:265:74] wire [8:0] _c_sizes_set_interm_WIRE_1_bits_source = 9'h0; // @[Bundles.scala:265:61] wire [8:0] _c_opcodes_set_WIRE_bits_source = 9'h0; // @[Bundles.scala:265:74] wire [8:0] _c_opcodes_set_WIRE_1_bits_source = 9'h0; // @[Bundles.scala:265:61] wire [8:0] _c_sizes_set_WIRE_bits_source = 9'h0; // @[Bundles.scala:265:74] wire [8:0] _c_sizes_set_WIRE_1_bits_source = 9'h0; // @[Bundles.scala:265:61] wire [8:0] _c_probe_ack_WIRE_bits_source = 9'h0; // @[Bundles.scala:265:74] wire [8:0] _c_probe_ack_WIRE_1_bits_source = 9'h0; // @[Bundles.scala:265:61] wire [8:0] _c_probe_ack_WIRE_2_bits_source = 9'h0; // @[Bundles.scala:265:74] wire [8:0] _c_probe_ack_WIRE_3_bits_source = 9'h0; // @[Bundles.scala:265:61] wire [8:0] _same_cycle_resp_WIRE_bits_source = 9'h0; // @[Bundles.scala:265:74] wire [8:0] _same_cycle_resp_WIRE_1_bits_source = 9'h0; // @[Bundles.scala:265:61] wire [8:0] _same_cycle_resp_WIRE_2_bits_source = 9'h0; // @[Bundles.scala:265:74] wire [8:0] _same_cycle_resp_WIRE_3_bits_source = 9'h0; // @[Bundles.scala:265:61] wire [8:0] _same_cycle_resp_WIRE_4_bits_source = 9'h0; // @[Bundles.scala:265:74] wire [8:0] _same_cycle_resp_WIRE_5_bits_source = 9'h0; // @[Bundles.scala:265:61] wire [15:0] _a_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _a_size_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _d_opcodes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _d_sizes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _c_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57] wire [15:0] _c_size_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57] wire [15:0] _d_opcodes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57] wire [15:0] _d_sizes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57] wire [16:0] _a_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _a_size_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _d_opcodes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _d_sizes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _c_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57] wire [16:0] _c_size_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57] wire [16:0] _d_opcodes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57] wire [16:0] _d_sizes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57] wire [15:0] _a_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _a_size_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _d_opcodes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _d_sizes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _c_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51] wire [15:0] _c_size_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51] wire [15:0] _d_opcodes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51] wire [15:0] _d_sizes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51] wire [4098:0] _c_opcodes_set_T_1 = 4099'h0; // @[Monitor.scala:767:54] wire [4098:0] _c_sizes_set_T_1 = 4099'h0; // @[Monitor.scala:768:52] wire [11:0] _c_opcodes_set_T = 12'h0; // @[Monitor.scala:767:79] wire [11:0] _c_sizes_set_T = 12'h0; // @[Monitor.scala:768:77] wire [3:0] _c_opcodes_set_interm_T_1 = 4'h1; // @[Monitor.scala:765:61] wire [3:0] _c_sizes_set_interm_T_1 = 4'h1; // @[Monitor.scala:766:59] wire [3:0] c_opcodes_set_interm = 4'h0; // @[Monitor.scala:754:40] wire [3:0] c_sizes_set_interm = 4'h0; // @[Monitor.scala:755:40] wire [3:0] _c_opcodes_set_interm_T = 4'h0; // @[Monitor.scala:765:53] wire [3:0] _c_sizes_set_interm_T = 4'h0; // @[Monitor.scala:766:51] wire [511:0] _c_set_wo_ready_T = 512'h1; // @[OneHot.scala:58:35] wire [511:0] _c_set_T = 512'h1; // @[OneHot.scala:58:35] wire [1027:0] c_opcodes_set = 1028'h0; // @[Monitor.scala:740:34] wire [1027:0] c_sizes_set = 1028'h0; // @[Monitor.scala:741:34] wire [256:0] c_set = 257'h0; // @[Monitor.scala:738:34] wire [256:0] c_set_wo_ready = 257'h0; // @[Monitor.scala:739:34] wire [5:0] _c_first_beats1_decode_T_2 = 6'h0; // @[package.scala:243:46] wire [5:0] _c_first_beats1_decode_T_1 = 6'h3F; // @[package.scala:243:76] wire [12:0] _c_first_beats1_decode_T = 13'h3F; // @[package.scala:243:71] wire [2:0] responseMap_6 = 3'h4; // @[Monitor.scala:643:42] wire [2:0] responseMap_7 = 3'h4; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_7 = 3'h4; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_6 = 3'h5; // @[Monitor.scala:644:42] wire [2:0] responseMap_5 = 3'h2; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_5 = 3'h2; // @[Monitor.scala:644:42] wire [2:0] responseMap_2 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMap_3 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMap_4 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_2 = 3'h1; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_3 = 3'h1; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_4 = 3'h1; // @[Monitor.scala:644:42] wire [3:0] _a_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:637:123] wire [3:0] _a_size_lookup_T_2 = 4'h4; // @[Monitor.scala:641:117] wire [3:0] _d_opcodes_clr_T = 4'h4; // @[Monitor.scala:680:48] wire [3:0] _d_sizes_clr_T = 4'h4; // @[Monitor.scala:681:48] wire [3:0] _c_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:749:123] wire [3:0] _c_size_lookup_T_2 = 4'h4; // @[Monitor.scala:750:119] wire [3:0] _d_opcodes_clr_T_6 = 4'h4; // @[Monitor.scala:790:48] wire [3:0] _d_sizes_clr_T_6 = 4'h4; // @[Monitor.scala:791:48] wire [2:0] _mask_sizeOH_T = io_in_a_bits_size_0; // @[Misc.scala:202:34] wire [8:0] _source_ok_uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _source_ok_uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _source_ok_uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _source_ok_uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _source_ok_uncommonBits_T_4 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _source_ok_uncommonBits_T_5 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_4 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_5 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_6 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_7 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_8 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_9 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_10 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_11 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_12 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_13 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_14 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_15 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_16 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_17 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_18 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_19 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_20 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_21 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_22 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_23 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_24 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_25 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_26 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_27 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_28 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_29 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_30 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_31 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_32 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_33 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_34 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_35 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_36 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_37 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_38 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_39 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_40 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_41 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_42 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_43 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_44 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_45 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_46 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_47 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_48 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_49 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_50 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_51 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_52 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_53 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_54 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_55 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_56 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_57 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_58 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_59 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_60 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_61 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_62 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_63 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_64 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _uncommonBits_T_65 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _source_ok_uncommonBits_T_6 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _source_ok_uncommonBits_T_7 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _source_ok_uncommonBits_T_8 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _source_ok_uncommonBits_T_9 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _source_ok_uncommonBits_T_10 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [8:0] _source_ok_uncommonBits_T_11 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire _source_ok_T = io_in_a_bits_source_0 == 9'h90; // @[Monitor.scala:36:7] wire _source_ok_WIRE_0 = _source_ok_T; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits = _source_ok_uncommonBits_T[1:0]; // @[Parameters.scala:52:{29,56}] wire [6:0] _source_ok_T_1 = io_in_a_bits_source_0[8:2]; // @[Monitor.scala:36:7] wire [6:0] _source_ok_T_7 = io_in_a_bits_source_0[8:2]; // @[Monitor.scala:36:7] wire [6:0] _source_ok_T_13 = io_in_a_bits_source_0[8:2]; // @[Monitor.scala:36:7] wire [6:0] _source_ok_T_19 = io_in_a_bits_source_0[8:2]; // @[Monitor.scala:36:7] wire _source_ok_T_2 = _source_ok_T_1 == 7'h20; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_4 = _source_ok_T_2; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_6 = _source_ok_T_4; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1 = _source_ok_T_6; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_1 = _source_ok_uncommonBits_T_1[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_8 = _source_ok_T_7 == 7'h21; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_10 = _source_ok_T_8; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_12 = _source_ok_T_10; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_2 = _source_ok_T_12; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_2 = _source_ok_uncommonBits_T_2[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_14 = _source_ok_T_13 == 7'h22; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_16 = _source_ok_T_14; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_18 = _source_ok_T_16; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_3 = _source_ok_T_18; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_3 = _source_ok_uncommonBits_T_3[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_20 = _source_ok_T_19 == 7'h23; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_22 = _source_ok_T_20; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_24 = _source_ok_T_22; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_4 = _source_ok_T_24; // @[Parameters.scala:1138:31] wire _source_ok_T_25 = io_in_a_bits_source_0 == 9'h40; // @[Monitor.scala:36:7] wire _source_ok_WIRE_5 = _source_ok_T_25; // @[Parameters.scala:1138:31] wire _source_ok_T_26 = io_in_a_bits_source_0 == 9'h41; // @[Monitor.scala:36:7] wire _source_ok_WIRE_6 = _source_ok_T_26; // @[Parameters.scala:1138:31] wire [4:0] source_ok_uncommonBits_4 = _source_ok_uncommonBits_T_4[4:0]; // @[Parameters.scala:52:{29,56}] wire [3:0] _source_ok_T_27 = io_in_a_bits_source_0[8:5]; // @[Monitor.scala:36:7] wire [3:0] _source_ok_T_33 = io_in_a_bits_source_0[8:5]; // @[Monitor.scala:36:7] wire _source_ok_T_28 = _source_ok_T_27 == 4'h1; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_30 = _source_ok_T_28; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_32 = _source_ok_T_30; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_7 = _source_ok_T_32; // @[Parameters.scala:1138:31] wire [4:0] source_ok_uncommonBits_5 = _source_ok_uncommonBits_T_5[4:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_34 = _source_ok_T_33 == 4'h0; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_36 = _source_ok_T_34; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_38 = _source_ok_T_36; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_8 = _source_ok_T_38; // @[Parameters.scala:1138:31] wire _source_ok_T_39 = io_in_a_bits_source_0 == 9'h42; // @[Monitor.scala:36:7] wire _source_ok_WIRE_9 = _source_ok_T_39; // @[Parameters.scala:1138:31] wire _source_ok_T_40 = io_in_a_bits_source_0 == 9'h100; // @[Monitor.scala:36:7] wire _source_ok_WIRE_10 = _source_ok_T_40; // @[Parameters.scala:1138:31] wire _source_ok_T_41 = _source_ok_WIRE_0 | _source_ok_WIRE_1; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_42 = _source_ok_T_41 | _source_ok_WIRE_2; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_43 = _source_ok_T_42 | _source_ok_WIRE_3; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_44 = _source_ok_T_43 | _source_ok_WIRE_4; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_45 = _source_ok_T_44 | _source_ok_WIRE_5; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_46 = _source_ok_T_45 | _source_ok_WIRE_6; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_47 = _source_ok_T_46 | _source_ok_WIRE_7; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_48 = _source_ok_T_47 | _source_ok_WIRE_8; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_49 = _source_ok_T_48 | _source_ok_WIRE_9; // @[Parameters.scala:1138:31, :1139:46] wire source_ok = _source_ok_T_49 | _source_ok_WIRE_10; // @[Parameters.scala:1138:31, :1139:46] wire [12:0] _GEN = 13'h3F << io_in_a_bits_size_0; // @[package.scala:243:71] wire [12:0] _is_aligned_mask_T; // @[package.scala:243:71] assign _is_aligned_mask_T = _GEN; // @[package.scala:243:71] wire [12:0] _a_first_beats1_decode_T; // @[package.scala:243:71] assign _a_first_beats1_decode_T = _GEN; // @[package.scala:243:71] wire [12:0] _a_first_beats1_decode_T_3; // @[package.scala:243:71] assign _a_first_beats1_decode_T_3 = _GEN; // @[package.scala:243:71] wire [5:0] _is_aligned_mask_T_1 = _is_aligned_mask_T[5:0]; // @[package.scala:243:{71,76}] wire [5:0] is_aligned_mask = ~_is_aligned_mask_T_1; // @[package.scala:243:{46,76}] wire [20:0] _is_aligned_T = {15'h0, io_in_a_bits_address_0[5:0] & is_aligned_mask}; // @[package.scala:243:46] wire is_aligned = _is_aligned_T == 21'h0; // @[Edges.scala:21:{16,24}] wire [1:0] mask_sizeOH_shiftAmount = _mask_sizeOH_T[1:0]; // @[OneHot.scala:64:49] wire [3:0] _mask_sizeOH_T_1 = 4'h1 << mask_sizeOH_shiftAmount; // @[OneHot.scala:64:49, :65:12] wire [2:0] _mask_sizeOH_T_2 = _mask_sizeOH_T_1[2:0]; // @[OneHot.scala:65:{12,27}] wire [2:0] mask_sizeOH = {_mask_sizeOH_T_2[2:1], 1'h1}; // @[OneHot.scala:65:27] wire mask_sub_sub_sub_0_1 = io_in_a_bits_size_0 > 3'h2; // @[Misc.scala:206:21] wire mask_sub_sub_size = mask_sizeOH[2]; // @[Misc.scala:202:81, :209:26] wire mask_sub_sub_bit = io_in_a_bits_address_0[2]; // @[Misc.scala:210:26] wire mask_sub_sub_1_2 = mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27] wire mask_sub_sub_nbit = ~mask_sub_sub_bit; // @[Misc.scala:210:26, :211:20] wire mask_sub_sub_0_2 = mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_sub_acc_T = mask_sub_sub_size & mask_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_0_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T; // @[Misc.scala:206:21, :215:{29,38}] wire _mask_sub_sub_acc_T_1 = mask_sub_sub_size & mask_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_1_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T_1; // @[Misc.scala:206:21, :215:{29,38}] wire mask_sub_size = mask_sizeOH[1]; // @[Misc.scala:202:81, :209:26] wire mask_sub_bit = io_in_a_bits_address_0[1]; // @[Misc.scala:210:26] wire mask_sub_nbit = ~mask_sub_bit; // @[Misc.scala:210:26, :211:20] wire mask_sub_0_2 = mask_sub_sub_0_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_acc_T = mask_sub_size & mask_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_0_1 = mask_sub_sub_0_1 | _mask_sub_acc_T; // @[Misc.scala:215:{29,38}] wire mask_sub_1_2 = mask_sub_sub_0_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_acc_T_1 = mask_sub_size & mask_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_1_1 = mask_sub_sub_0_1 | _mask_sub_acc_T_1; // @[Misc.scala:215:{29,38}] wire mask_sub_2_2 = mask_sub_sub_1_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_acc_T_2 = mask_sub_size & mask_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_2_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_2; // @[Misc.scala:215:{29,38}] wire mask_sub_3_2 = mask_sub_sub_1_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_acc_T_3 = mask_sub_size & mask_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_3_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_3; // @[Misc.scala:215:{29,38}] wire mask_size = mask_sizeOH[0]; // @[Misc.scala:202:81, :209:26] wire mask_bit = io_in_a_bits_address_0[0]; // @[Misc.scala:210:26] wire mask_nbit = ~mask_bit; // @[Misc.scala:210:26, :211:20] wire mask_eq = mask_sub_0_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T = mask_size & mask_eq; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc = mask_sub_0_1 | _mask_acc_T; // @[Misc.scala:215:{29,38}] wire mask_eq_1 = mask_sub_0_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_1 = mask_size & mask_eq_1; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_1 = mask_sub_0_1 | _mask_acc_T_1; // @[Misc.scala:215:{29,38}] wire mask_eq_2 = mask_sub_1_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_2 = mask_size & mask_eq_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_2 = mask_sub_1_1 | _mask_acc_T_2; // @[Misc.scala:215:{29,38}] wire mask_eq_3 = mask_sub_1_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_3 = mask_size & mask_eq_3; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_3 = mask_sub_1_1 | _mask_acc_T_3; // @[Misc.scala:215:{29,38}] wire mask_eq_4 = mask_sub_2_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_4 = mask_size & mask_eq_4; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_4 = mask_sub_2_1 | _mask_acc_T_4; // @[Misc.scala:215:{29,38}] wire mask_eq_5 = mask_sub_2_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_5 = mask_size & mask_eq_5; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_5 = mask_sub_2_1 | _mask_acc_T_5; // @[Misc.scala:215:{29,38}] wire mask_eq_6 = mask_sub_3_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_6 = mask_size & mask_eq_6; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_6 = mask_sub_3_1 | _mask_acc_T_6; // @[Misc.scala:215:{29,38}] wire mask_eq_7 = mask_sub_3_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_7 = mask_size & mask_eq_7; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_7 = mask_sub_3_1 | _mask_acc_T_7; // @[Misc.scala:215:{29,38}] wire [1:0] mask_lo_lo = {mask_acc_1, mask_acc}; // @[Misc.scala:215:29, :222:10] wire [1:0] mask_lo_hi = {mask_acc_3, mask_acc_2}; // @[Misc.scala:215:29, :222:10] wire [3:0] mask_lo = {mask_lo_hi, mask_lo_lo}; // @[Misc.scala:222:10] wire [1:0] mask_hi_lo = {mask_acc_5, mask_acc_4}; // @[Misc.scala:215:29, :222:10] wire [1:0] mask_hi_hi = {mask_acc_7, mask_acc_6}; // @[Misc.scala:215:29, :222:10] wire [3:0] mask_hi = {mask_hi_hi, mask_hi_lo}; // @[Misc.scala:222:10] wire [7:0] mask = {mask_hi, mask_lo}; // @[Misc.scala:222:10] wire [1:0] uncommonBits = _uncommonBits_T[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_1 = _uncommonBits_T_1[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_2 = _uncommonBits_T_2[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_3 = _uncommonBits_T_3[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_4 = _uncommonBits_T_4[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_5 = _uncommonBits_T_5[4:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_6 = _uncommonBits_T_6[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_7 = _uncommonBits_T_7[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_8 = _uncommonBits_T_8[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_9 = _uncommonBits_T_9[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_10 = _uncommonBits_T_10[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_11 = _uncommonBits_T_11[4:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_12 = _uncommonBits_T_12[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_13 = _uncommonBits_T_13[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_14 = _uncommonBits_T_14[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_15 = _uncommonBits_T_15[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_16 = _uncommonBits_T_16[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_17 = _uncommonBits_T_17[4:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_18 = _uncommonBits_T_18[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_19 = _uncommonBits_T_19[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_20 = _uncommonBits_T_20[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_21 = _uncommonBits_T_21[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_22 = _uncommonBits_T_22[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_23 = _uncommonBits_T_23[4:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_24 = _uncommonBits_T_24[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_25 = _uncommonBits_T_25[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_26 = _uncommonBits_T_26[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_27 = _uncommonBits_T_27[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_28 = _uncommonBits_T_28[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_29 = _uncommonBits_T_29[4:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_30 = _uncommonBits_T_30[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_31 = _uncommonBits_T_31[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_32 = _uncommonBits_T_32[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_33 = _uncommonBits_T_33[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_34 = _uncommonBits_T_34[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_35 = _uncommonBits_T_35[4:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_36 = _uncommonBits_T_36[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_37 = _uncommonBits_T_37[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_38 = _uncommonBits_T_38[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_39 = _uncommonBits_T_39[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_40 = _uncommonBits_T_40[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_41 = _uncommonBits_T_41[4:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_42 = _uncommonBits_T_42[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_43 = _uncommonBits_T_43[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_44 = _uncommonBits_T_44[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_45 = _uncommonBits_T_45[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_46 = _uncommonBits_T_46[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_47 = _uncommonBits_T_47[4:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_48 = _uncommonBits_T_48[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_49 = _uncommonBits_T_49[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_50 = _uncommonBits_T_50[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_51 = _uncommonBits_T_51[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_52 = _uncommonBits_T_52[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_53 = _uncommonBits_T_53[4:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_54 = _uncommonBits_T_54[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_55 = _uncommonBits_T_55[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_56 = _uncommonBits_T_56[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_57 = _uncommonBits_T_57[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_58 = _uncommonBits_T_58[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_59 = _uncommonBits_T_59[4:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_60 = _uncommonBits_T_60[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_61 = _uncommonBits_T_61[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_62 = _uncommonBits_T_62[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_63 = _uncommonBits_T_63[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_64 = _uncommonBits_T_64[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_65 = _uncommonBits_T_65[4:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_50 = io_in_d_bits_source_0 == 9'h90; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_0 = _source_ok_T_50; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_6 = _source_ok_uncommonBits_T_6[1:0]; // @[Parameters.scala:52:{29,56}] wire [6:0] _source_ok_T_51 = io_in_d_bits_source_0[8:2]; // @[Monitor.scala:36:7] wire [6:0] _source_ok_T_57 = io_in_d_bits_source_0[8:2]; // @[Monitor.scala:36:7] wire [6:0] _source_ok_T_63 = io_in_d_bits_source_0[8:2]; // @[Monitor.scala:36:7] wire [6:0] _source_ok_T_69 = io_in_d_bits_source_0[8:2]; // @[Monitor.scala:36:7] wire _source_ok_T_52 = _source_ok_T_51 == 7'h20; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_54 = _source_ok_T_52; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_56 = _source_ok_T_54; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_1 = _source_ok_T_56; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_7 = _source_ok_uncommonBits_T_7[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_58 = _source_ok_T_57 == 7'h21; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_60 = _source_ok_T_58; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_62 = _source_ok_T_60; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_2 = _source_ok_T_62; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_8 = _source_ok_uncommonBits_T_8[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_64 = _source_ok_T_63 == 7'h22; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_66 = _source_ok_T_64; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_68 = _source_ok_T_66; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_3 = _source_ok_T_68; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_9 = _source_ok_uncommonBits_T_9[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_70 = _source_ok_T_69 == 7'h23; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_72 = _source_ok_T_70; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_74 = _source_ok_T_72; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_4 = _source_ok_T_74; // @[Parameters.scala:1138:31] wire _source_ok_T_75 = io_in_d_bits_source_0 == 9'h40; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_5 = _source_ok_T_75; // @[Parameters.scala:1138:31] wire _source_ok_T_76 = io_in_d_bits_source_0 == 9'h41; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_6 = _source_ok_T_76; // @[Parameters.scala:1138:31] wire [4:0] source_ok_uncommonBits_10 = _source_ok_uncommonBits_T_10[4:0]; // @[Parameters.scala:52:{29,56}] wire [3:0] _source_ok_T_77 = io_in_d_bits_source_0[8:5]; // @[Monitor.scala:36:7] wire [3:0] _source_ok_T_83 = io_in_d_bits_source_0[8:5]; // @[Monitor.scala:36:7] wire _source_ok_T_78 = _source_ok_T_77 == 4'h1; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_80 = _source_ok_T_78; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_82 = _source_ok_T_80; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_7 = _source_ok_T_82; // @[Parameters.scala:1138:31] wire [4:0] source_ok_uncommonBits_11 = _source_ok_uncommonBits_T_11[4:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_84 = _source_ok_T_83 == 4'h0; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_86 = _source_ok_T_84; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_88 = _source_ok_T_86; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_8 = _source_ok_T_88; // @[Parameters.scala:1138:31] wire _source_ok_T_89 = io_in_d_bits_source_0 == 9'h42; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_9 = _source_ok_T_89; // @[Parameters.scala:1138:31] wire _source_ok_T_90 = io_in_d_bits_source_0 == 9'h100; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_10 = _source_ok_T_90; // @[Parameters.scala:1138:31] wire _source_ok_T_91 = _source_ok_WIRE_1_0 | _source_ok_WIRE_1_1; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_92 = _source_ok_T_91 | _source_ok_WIRE_1_2; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_93 = _source_ok_T_92 | _source_ok_WIRE_1_3; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_94 = _source_ok_T_93 | _source_ok_WIRE_1_4; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_95 = _source_ok_T_94 | _source_ok_WIRE_1_5; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_96 = _source_ok_T_95 | _source_ok_WIRE_1_6; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_97 = _source_ok_T_96 | _source_ok_WIRE_1_7; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_98 = _source_ok_T_97 | _source_ok_WIRE_1_8; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_99 = _source_ok_T_98 | _source_ok_WIRE_1_9; // @[Parameters.scala:1138:31, :1139:46] wire source_ok_1 = _source_ok_T_99 | _source_ok_WIRE_1_10; // @[Parameters.scala:1138:31, :1139:46] wire _T_1266 = io_in_a_ready_0 & io_in_a_valid_0; // @[Decoupled.scala:51:35] wire _a_first_T; // @[Decoupled.scala:51:35] assign _a_first_T = _T_1266; // @[Decoupled.scala:51:35] wire _a_first_T_1; // @[Decoupled.scala:51:35] assign _a_first_T_1 = _T_1266; // @[Decoupled.scala:51:35] wire [5:0] _a_first_beats1_decode_T_1 = _a_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}] wire [5:0] _a_first_beats1_decode_T_2 = ~_a_first_beats1_decode_T_1; // @[package.scala:243:{46,76}] wire [2:0] a_first_beats1_decode = _a_first_beats1_decode_T_2[5:3]; // @[package.scala:243:46] wire _a_first_beats1_opdata_T = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7] wire _a_first_beats1_opdata_T_1 = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7] wire a_first_beats1_opdata = ~_a_first_beats1_opdata_T; // @[Edges.scala:92:{28,37}] wire [2:0] a_first_beats1 = a_first_beats1_opdata ? a_first_beats1_decode : 3'h0; // @[Edges.scala:92:28, :220:59, :221:14] reg [2:0] a_first_counter; // @[Edges.scala:229:27] wire [3:0] _a_first_counter1_T = {1'h0, a_first_counter} - 4'h1; // @[Edges.scala:229:27, :230:28] wire [2:0] a_first_counter1 = _a_first_counter1_T[2:0]; // @[Edges.scala:230:28] wire a_first = a_first_counter == 3'h0; // @[Edges.scala:229:27, :231:25] wire _a_first_last_T = a_first_counter == 3'h1; // @[Edges.scala:229:27, :232:25] wire _a_first_last_T_1 = a_first_beats1 == 3'h0; // @[Edges.scala:221:14, :232:43] wire a_first_last = _a_first_last_T | _a_first_last_T_1; // @[Edges.scala:232:{25,33,43}] wire a_first_done = a_first_last & _a_first_T; // @[Decoupled.scala:51:35] wire [2:0] _a_first_count_T = ~a_first_counter1; // @[Edges.scala:230:28, :234:27] wire [2:0] a_first_count = a_first_beats1 & _a_first_count_T; // @[Edges.scala:221:14, :234:{25,27}] wire [2:0] _a_first_counter_T = a_first ? a_first_beats1 : a_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] reg [2:0] opcode; // @[Monitor.scala:387:22] reg [2:0] param; // @[Monitor.scala:388:22] reg [2:0] size; // @[Monitor.scala:389:22] reg [8:0] source; // @[Monitor.scala:390:22] reg [20:0] address; // @[Monitor.scala:391:22] wire _T_1334 = io_in_d_ready_0 & io_in_d_valid_0; // @[Decoupled.scala:51:35] wire _d_first_T; // @[Decoupled.scala:51:35] assign _d_first_T = _T_1334; // @[Decoupled.scala:51:35] wire _d_first_T_1; // @[Decoupled.scala:51:35] assign _d_first_T_1 = _T_1334; // @[Decoupled.scala:51:35] wire _d_first_T_2; // @[Decoupled.scala:51:35] assign _d_first_T_2 = _T_1334; // @[Decoupled.scala:51:35] wire [12:0] _GEN_0 = 13'h3F << io_in_d_bits_size_0; // @[package.scala:243:71] wire [12:0] _d_first_beats1_decode_T; // @[package.scala:243:71] assign _d_first_beats1_decode_T = _GEN_0; // @[package.scala:243:71] wire [12:0] _d_first_beats1_decode_T_3; // @[package.scala:243:71] assign _d_first_beats1_decode_T_3 = _GEN_0; // @[package.scala:243:71] wire [12:0] _d_first_beats1_decode_T_6; // @[package.scala:243:71] assign _d_first_beats1_decode_T_6 = _GEN_0; // @[package.scala:243:71] wire [5:0] _d_first_beats1_decode_T_1 = _d_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}] wire [5:0] _d_first_beats1_decode_T_2 = ~_d_first_beats1_decode_T_1; // @[package.scala:243:{46,76}] wire [2:0] d_first_beats1_decode = _d_first_beats1_decode_T_2[5:3]; // @[package.scala:243:46] wire d_first_beats1_opdata = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire d_first_beats1_opdata_1 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire d_first_beats1_opdata_2 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire [2:0] d_first_beats1 = d_first_beats1_opdata ? d_first_beats1_decode : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [2:0] d_first_counter; // @[Edges.scala:229:27] wire [3:0] _d_first_counter1_T = {1'h0, d_first_counter} - 4'h1; // @[Edges.scala:229:27, :230:28] wire [2:0] d_first_counter1 = _d_first_counter1_T[2:0]; // @[Edges.scala:230:28] wire d_first = d_first_counter == 3'h0; // @[Edges.scala:229:27, :231:25] wire _d_first_last_T = d_first_counter == 3'h1; // @[Edges.scala:229:27, :232:25] wire _d_first_last_T_1 = d_first_beats1 == 3'h0; // @[Edges.scala:221:14, :232:43] wire d_first_last = _d_first_last_T | _d_first_last_T_1; // @[Edges.scala:232:{25,33,43}] wire d_first_done = d_first_last & _d_first_T; // @[Decoupled.scala:51:35] wire [2:0] _d_first_count_T = ~d_first_counter1; // @[Edges.scala:230:28, :234:27] wire [2:0] d_first_count = d_first_beats1 & _d_first_count_T; // @[Edges.scala:221:14, :234:{25,27}] wire [2:0] _d_first_counter_T = d_first ? d_first_beats1 : d_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] reg [2:0] opcode_1; // @[Monitor.scala:538:22] reg [2:0] size_1; // @[Monitor.scala:540:22] reg [8:0] source_1; // @[Monitor.scala:541:22] reg [256:0] inflight; // @[Monitor.scala:614:27] reg [1027:0] inflight_opcodes; // @[Monitor.scala:616:35] reg [1027:0] inflight_sizes; // @[Monitor.scala:618:33] wire [5:0] _a_first_beats1_decode_T_4 = _a_first_beats1_decode_T_3[5:0]; // @[package.scala:243:{71,76}] wire [5:0] _a_first_beats1_decode_T_5 = ~_a_first_beats1_decode_T_4; // @[package.scala:243:{46,76}] wire [2:0] a_first_beats1_decode_1 = _a_first_beats1_decode_T_5[5:3]; // @[package.scala:243:46] wire a_first_beats1_opdata_1 = ~_a_first_beats1_opdata_T_1; // @[Edges.scala:92:{28,37}] wire [2:0] a_first_beats1_1 = a_first_beats1_opdata_1 ? a_first_beats1_decode_1 : 3'h0; // @[Edges.scala:92:28, :220:59, :221:14] reg [2:0] a_first_counter_1; // @[Edges.scala:229:27] wire [3:0] _a_first_counter1_T_1 = {1'h0, a_first_counter_1} - 4'h1; // @[Edges.scala:229:27, :230:28] wire [2:0] a_first_counter1_1 = _a_first_counter1_T_1[2:0]; // @[Edges.scala:230:28] wire a_first_1 = a_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25] wire _a_first_last_T_2 = a_first_counter_1 == 3'h1; // @[Edges.scala:229:27, :232:25] wire _a_first_last_T_3 = a_first_beats1_1 == 3'h0; // @[Edges.scala:221:14, :232:43] wire a_first_last_1 = _a_first_last_T_2 | _a_first_last_T_3; // @[Edges.scala:232:{25,33,43}] wire a_first_done_1 = a_first_last_1 & _a_first_T_1; // @[Decoupled.scala:51:35] wire [2:0] _a_first_count_T_1 = ~a_first_counter1_1; // @[Edges.scala:230:28, :234:27] wire [2:0] a_first_count_1 = a_first_beats1_1 & _a_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}] wire [2:0] _a_first_counter_T_1 = a_first_1 ? a_first_beats1_1 : a_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [5:0] _d_first_beats1_decode_T_4 = _d_first_beats1_decode_T_3[5:0]; // @[package.scala:243:{71,76}] wire [5:0] _d_first_beats1_decode_T_5 = ~_d_first_beats1_decode_T_4; // @[package.scala:243:{46,76}] wire [2:0] d_first_beats1_decode_1 = _d_first_beats1_decode_T_5[5:3]; // @[package.scala:243:46] wire [2:0] d_first_beats1_1 = d_first_beats1_opdata_1 ? d_first_beats1_decode_1 : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [2:0] d_first_counter_1; // @[Edges.scala:229:27] wire [3:0] _d_first_counter1_T_1 = {1'h0, d_first_counter_1} - 4'h1; // @[Edges.scala:229:27, :230:28] wire [2:0] d_first_counter1_1 = _d_first_counter1_T_1[2:0]; // @[Edges.scala:230:28] wire d_first_1 = d_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25] wire _d_first_last_T_2 = d_first_counter_1 == 3'h1; // @[Edges.scala:229:27, :232:25] wire _d_first_last_T_3 = d_first_beats1_1 == 3'h0; // @[Edges.scala:221:14, :232:43] wire d_first_last_1 = _d_first_last_T_2 | _d_first_last_T_3; // @[Edges.scala:232:{25,33,43}] wire d_first_done_1 = d_first_last_1 & _d_first_T_1; // @[Decoupled.scala:51:35] wire [2:0] _d_first_count_T_1 = ~d_first_counter1_1; // @[Edges.scala:230:28, :234:27] wire [2:0] d_first_count_1 = d_first_beats1_1 & _d_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}] wire [2:0] _d_first_counter_T_1 = d_first_1 ? d_first_beats1_1 : d_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [256:0] a_set; // @[Monitor.scala:626:34] wire [256:0] a_set_wo_ready; // @[Monitor.scala:627:34] wire [1027:0] a_opcodes_set; // @[Monitor.scala:630:33] wire [1027:0] a_sizes_set; // @[Monitor.scala:632:31] wire [2:0] a_opcode_lookup; // @[Monitor.scala:635:35] wire [11:0] _GEN_1 = {1'h0, io_in_d_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :637:69] wire [11:0] _a_opcode_lookup_T; // @[Monitor.scala:637:69] assign _a_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69] wire [11:0] _a_size_lookup_T; // @[Monitor.scala:641:65] assign _a_size_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :641:65] wire [11:0] _d_opcodes_clr_T_4; // @[Monitor.scala:680:101] assign _d_opcodes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :680:101] wire [11:0] _d_sizes_clr_T_4; // @[Monitor.scala:681:99] assign _d_sizes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :681:99] wire [11:0] _c_opcode_lookup_T; // @[Monitor.scala:749:69] assign _c_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :749:69] wire [11:0] _c_size_lookup_T; // @[Monitor.scala:750:67] assign _c_size_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :750:67] wire [11:0] _d_opcodes_clr_T_10; // @[Monitor.scala:790:101] assign _d_opcodes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :790:101] wire [11:0] _d_sizes_clr_T_10; // @[Monitor.scala:791:99] assign _d_sizes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :791:99] wire [1027:0] _a_opcode_lookup_T_1 = inflight_opcodes >> _a_opcode_lookup_T; // @[Monitor.scala:616:35, :637:{44,69}] wire [1027:0] _a_opcode_lookup_T_6 = {1024'h0, _a_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:637:{44,97}] wire [1027:0] _a_opcode_lookup_T_7 = {1'h0, _a_opcode_lookup_T_6[1027:1]}; // @[Monitor.scala:637:{97,152}] assign a_opcode_lookup = _a_opcode_lookup_T_7[2:0]; // @[Monitor.scala:635:35, :637:{21,152}] wire [3:0] a_size_lookup; // @[Monitor.scala:639:33] wire [1027:0] _a_size_lookup_T_1 = inflight_sizes >> _a_size_lookup_T; // @[Monitor.scala:618:33, :641:{40,65}] wire [1027:0] _a_size_lookup_T_6 = {1024'h0, _a_size_lookup_T_1[3:0]}; // @[Monitor.scala:641:{40,91}] wire [1027:0] _a_size_lookup_T_7 = {1'h0, _a_size_lookup_T_6[1027:1]}; // @[Monitor.scala:641:{91,144}] assign a_size_lookup = _a_size_lookup_T_7[3:0]; // @[Monitor.scala:639:33, :641:{19,144}] wire [3:0] a_opcodes_set_interm; // @[Monitor.scala:646:40] wire [3:0] a_sizes_set_interm; // @[Monitor.scala:648:38] wire _same_cycle_resp_T = io_in_a_valid_0 & a_first_1; // @[Monitor.scala:36:7, :651:26, :684:44] wire [511:0] _GEN_2 = 512'h1 << io_in_a_bits_source_0; // @[OneHot.scala:58:35] wire [511:0] _a_set_wo_ready_T; // @[OneHot.scala:58:35] assign _a_set_wo_ready_T = _GEN_2; // @[OneHot.scala:58:35] wire [511:0] _a_set_T; // @[OneHot.scala:58:35] assign _a_set_T = _GEN_2; // @[OneHot.scala:58:35] assign a_set_wo_ready = _same_cycle_resp_T ? _a_set_wo_ready_T[256:0] : 257'h0; // @[OneHot.scala:58:35] wire _T_1199 = _T_1266 & a_first_1; // @[Decoupled.scala:51:35] assign a_set = _T_1199 ? _a_set_T[256:0] : 257'h0; // @[OneHot.scala:58:35] wire [3:0] _a_opcodes_set_interm_T = {io_in_a_bits_opcode_0, 1'h0}; // @[Monitor.scala:36:7, :657:53] wire [3:0] _a_opcodes_set_interm_T_1 = {_a_opcodes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:657:{53,61}] assign a_opcodes_set_interm = _T_1199 ? _a_opcodes_set_interm_T_1 : 4'h0; // @[Monitor.scala:646:40, :655:{25,70}, :657:{28,61}] wire [3:0] _a_sizes_set_interm_T = {io_in_a_bits_size_0, 1'h0}; // @[Monitor.scala:36:7, :658:51] wire [3:0] _a_sizes_set_interm_T_1 = {_a_sizes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:658:{51,59}] assign a_sizes_set_interm = _T_1199 ? _a_sizes_set_interm_T_1 : 4'h0; // @[Monitor.scala:648:38, :655:{25,70}, :658:{28,59}] wire [11:0] _GEN_3 = {1'h0, io_in_a_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :659:79] wire [11:0] _a_opcodes_set_T; // @[Monitor.scala:659:79] assign _a_opcodes_set_T = _GEN_3; // @[Monitor.scala:659:79] wire [11:0] _a_sizes_set_T; // @[Monitor.scala:660:77] assign _a_sizes_set_T = _GEN_3; // @[Monitor.scala:659:79, :660:77] wire [4098:0] _a_opcodes_set_T_1 = {4095'h0, a_opcodes_set_interm} << _a_opcodes_set_T; // @[Monitor.scala:646:40, :659:{54,79}] assign a_opcodes_set = _T_1199 ? _a_opcodes_set_T_1[1027:0] : 1028'h0; // @[Monitor.scala:630:33, :655:{25,70}, :659:{28,54}] wire [4098:0] _a_sizes_set_T_1 = {4095'h0, a_sizes_set_interm} << _a_sizes_set_T; // @[Monitor.scala:648:38, :659:54, :660:{52,77}] assign a_sizes_set = _T_1199 ? _a_sizes_set_T_1[1027:0] : 1028'h0; // @[Monitor.scala:632:31, :655:{25,70}, :660:{28,52}] wire [256:0] d_clr; // @[Monitor.scala:664:34] wire [256:0] d_clr_wo_ready; // @[Monitor.scala:665:34] wire [1027:0] d_opcodes_clr; // @[Monitor.scala:668:33] wire [1027:0] d_sizes_clr; // @[Monitor.scala:670:31] wire _GEN_4 = io_in_d_bits_opcode_0 == 3'h6; // @[Monitor.scala:36:7, :673:46] wire d_release_ack; // @[Monitor.scala:673:46] assign d_release_ack = _GEN_4; // @[Monitor.scala:673:46] wire d_release_ack_1; // @[Monitor.scala:783:46] assign d_release_ack_1 = _GEN_4; // @[Monitor.scala:673:46, :783:46] wire _T_1245 = io_in_d_valid_0 & d_first_1; // @[Monitor.scala:36:7, :674:26] wire [511:0] _GEN_5 = 512'h1 << io_in_d_bits_source_0; // @[OneHot.scala:58:35] wire [511:0] _d_clr_wo_ready_T; // @[OneHot.scala:58:35] assign _d_clr_wo_ready_T = _GEN_5; // @[OneHot.scala:58:35] wire [511:0] _d_clr_T; // @[OneHot.scala:58:35] assign _d_clr_T = _GEN_5; // @[OneHot.scala:58:35] wire [511:0] _d_clr_wo_ready_T_1; // @[OneHot.scala:58:35] assign _d_clr_wo_ready_T_1 = _GEN_5; // @[OneHot.scala:58:35] wire [511:0] _d_clr_T_1; // @[OneHot.scala:58:35] assign _d_clr_T_1 = _GEN_5; // @[OneHot.scala:58:35] assign d_clr_wo_ready = _T_1245 & ~d_release_ack ? _d_clr_wo_ready_T[256:0] : 257'h0; // @[OneHot.scala:58:35] wire _T_1214 = _T_1334 & d_first_1 & ~d_release_ack; // @[Decoupled.scala:51:35] assign d_clr = _T_1214 ? _d_clr_T[256:0] : 257'h0; // @[OneHot.scala:58:35] wire [4110:0] _d_opcodes_clr_T_5 = 4111'hF << _d_opcodes_clr_T_4; // @[Monitor.scala:680:{76,101}] assign d_opcodes_clr = _T_1214 ? _d_opcodes_clr_T_5[1027:0] : 1028'h0; // @[Monitor.scala:668:33, :678:{25,70,89}, :680:{21,76}] wire [4110:0] _d_sizes_clr_T_5 = 4111'hF << _d_sizes_clr_T_4; // @[Monitor.scala:681:{74,99}] assign d_sizes_clr = _T_1214 ? _d_sizes_clr_T_5[1027:0] : 1028'h0; // @[Monitor.scala:670:31, :678:{25,70,89}, :681:{21,74}] wire _same_cycle_resp_T_1 = _same_cycle_resp_T; // @[Monitor.scala:684:{44,55}] wire _same_cycle_resp_T_2 = io_in_a_bits_source_0 == io_in_d_bits_source_0; // @[Monitor.scala:36:7, :684:113] wire same_cycle_resp = _same_cycle_resp_T_1 & _same_cycle_resp_T_2; // @[Monitor.scala:684:{55,88,113}] wire [256:0] _inflight_T = inflight | a_set; // @[Monitor.scala:614:27, :626:34, :705:27] wire [256:0] _inflight_T_1 = ~d_clr; // @[Monitor.scala:664:34, :705:38] wire [256:0] _inflight_T_2 = _inflight_T & _inflight_T_1; // @[Monitor.scala:705:{27,36,38}] wire [1027:0] _inflight_opcodes_T = inflight_opcodes | a_opcodes_set; // @[Monitor.scala:616:35, :630:33, :706:43] wire [1027:0] _inflight_opcodes_T_1 = ~d_opcodes_clr; // @[Monitor.scala:668:33, :706:62] wire [1027:0] _inflight_opcodes_T_2 = _inflight_opcodes_T & _inflight_opcodes_T_1; // @[Monitor.scala:706:{43,60,62}] wire [1027:0] _inflight_sizes_T = inflight_sizes | a_sizes_set; // @[Monitor.scala:618:33, :632:31, :707:39] wire [1027:0] _inflight_sizes_T_1 = ~d_sizes_clr; // @[Monitor.scala:670:31, :707:56] wire [1027:0] _inflight_sizes_T_2 = _inflight_sizes_T & _inflight_sizes_T_1; // @[Monitor.scala:707:{39,54,56}] reg [31:0] watchdog; // @[Monitor.scala:709:27] wire [32:0] _watchdog_T = {1'h0, watchdog} + 33'h1; // @[Monitor.scala:709:27, :714:26] wire [31:0] _watchdog_T_1 = _watchdog_T[31:0]; // @[Monitor.scala:714:26] reg [256:0] inflight_1; // @[Monitor.scala:726:35] wire [256:0] _inflight_T_3 = inflight_1; // @[Monitor.scala:726:35, :814:35] reg [1027:0] inflight_opcodes_1; // @[Monitor.scala:727:35] wire [1027:0] _inflight_opcodes_T_3 = inflight_opcodes_1; // @[Monitor.scala:727:35, :815:43] reg [1027:0] inflight_sizes_1; // @[Monitor.scala:728:35] wire [1027:0] _inflight_sizes_T_3 = inflight_sizes_1; // @[Monitor.scala:728:35, :816:41] wire [5:0] _d_first_beats1_decode_T_7 = _d_first_beats1_decode_T_6[5:0]; // @[package.scala:243:{71,76}] wire [5:0] _d_first_beats1_decode_T_8 = ~_d_first_beats1_decode_T_7; // @[package.scala:243:{46,76}] wire [2:0] d_first_beats1_decode_2 = _d_first_beats1_decode_T_8[5:3]; // @[package.scala:243:46] wire [2:0] d_first_beats1_2 = d_first_beats1_opdata_2 ? d_first_beats1_decode_2 : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [2:0] d_first_counter_2; // @[Edges.scala:229:27] wire [3:0] _d_first_counter1_T_2 = {1'h0, d_first_counter_2} - 4'h1; // @[Edges.scala:229:27, :230:28] wire [2:0] d_first_counter1_2 = _d_first_counter1_T_2[2:0]; // @[Edges.scala:230:28] wire d_first_2 = d_first_counter_2 == 3'h0; // @[Edges.scala:229:27, :231:25] wire _d_first_last_T_4 = d_first_counter_2 == 3'h1; // @[Edges.scala:229:27, :232:25] wire _d_first_last_T_5 = d_first_beats1_2 == 3'h0; // @[Edges.scala:221:14, :232:43] wire d_first_last_2 = _d_first_last_T_4 | _d_first_last_T_5; // @[Edges.scala:232:{25,33,43}] wire d_first_done_2 = d_first_last_2 & _d_first_T_2; // @[Decoupled.scala:51:35] wire [2:0] _d_first_count_T_2 = ~d_first_counter1_2; // @[Edges.scala:230:28, :234:27] wire [2:0] d_first_count_2 = d_first_beats1_2 & _d_first_count_T_2; // @[Edges.scala:221:14, :234:{25,27}] wire [2:0] _d_first_counter_T_2 = d_first_2 ? d_first_beats1_2 : d_first_counter1_2; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [3:0] c_opcode_lookup; // @[Monitor.scala:747:35] wire [3:0] c_size_lookup; // @[Monitor.scala:748:35] wire [1027:0] _c_opcode_lookup_T_1 = inflight_opcodes_1 >> _c_opcode_lookup_T; // @[Monitor.scala:727:35, :749:{44,69}] wire [1027:0] _c_opcode_lookup_T_6 = {1024'h0, _c_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:749:{44,97}] wire [1027:0] _c_opcode_lookup_T_7 = {1'h0, _c_opcode_lookup_T_6[1027:1]}; // @[Monitor.scala:749:{97,152}] assign c_opcode_lookup = _c_opcode_lookup_T_7[3:0]; // @[Monitor.scala:747:35, :749:{21,152}] wire [1027:0] _c_size_lookup_T_1 = inflight_sizes_1 >> _c_size_lookup_T; // @[Monitor.scala:728:35, :750:{42,67}] wire [1027:0] _c_size_lookup_T_6 = {1024'h0, _c_size_lookup_T_1[3:0]}; // @[Monitor.scala:750:{42,93}] wire [1027:0] _c_size_lookup_T_7 = {1'h0, _c_size_lookup_T_6[1027:1]}; // @[Monitor.scala:750:{93,146}] assign c_size_lookup = _c_size_lookup_T_7[3:0]; // @[Monitor.scala:748:35, :750:{21,146}] wire [256:0] d_clr_1; // @[Monitor.scala:774:34] wire [256:0] d_clr_wo_ready_1; // @[Monitor.scala:775:34] wire [1027:0] d_opcodes_clr_1; // @[Monitor.scala:776:34] wire [1027:0] d_sizes_clr_1; // @[Monitor.scala:777:34] wire _T_1310 = io_in_d_valid_0 & d_first_2; // @[Monitor.scala:36:7, :784:26] assign d_clr_wo_ready_1 = _T_1310 & d_release_ack_1 ? _d_clr_wo_ready_T_1[256:0] : 257'h0; // @[OneHot.scala:58:35] wire _T_1292 = _T_1334 & d_first_2 & d_release_ack_1; // @[Decoupled.scala:51:35] assign d_clr_1 = _T_1292 ? _d_clr_T_1[256:0] : 257'h0; // @[OneHot.scala:58:35] wire [4110:0] _d_opcodes_clr_T_11 = 4111'hF << _d_opcodes_clr_T_10; // @[Monitor.scala:790:{76,101}] assign d_opcodes_clr_1 = _T_1292 ? _d_opcodes_clr_T_11[1027:0] : 1028'h0; // @[Monitor.scala:776:34, :788:{25,70,88}, :790:{21,76}] wire [4110:0] _d_sizes_clr_T_11 = 4111'hF << _d_sizes_clr_T_10; // @[Monitor.scala:791:{74,99}] assign d_sizes_clr_1 = _T_1292 ? _d_sizes_clr_T_11[1027:0] : 1028'h0; // @[Monitor.scala:777:34, :788:{25,70,88}, :791:{21,74}] wire _same_cycle_resp_T_8 = io_in_d_bits_source_0 == 9'h0; // @[Monitor.scala:36:7, :795:113] wire [256:0] _inflight_T_4 = ~d_clr_1; // @[Monitor.scala:774:34, :814:46] wire [256:0] _inflight_T_5 = _inflight_T_3 & _inflight_T_4; // @[Monitor.scala:814:{35,44,46}] wire [1027:0] _inflight_opcodes_T_4 = ~d_opcodes_clr_1; // @[Monitor.scala:776:34, :815:62] wire [1027:0] _inflight_opcodes_T_5 = _inflight_opcodes_T_3 & _inflight_opcodes_T_4; // @[Monitor.scala:815:{43,60,62}] wire [1027:0] _inflight_sizes_T_4 = ~d_sizes_clr_1; // @[Monitor.scala:777:34, :816:58] wire [1027:0] _inflight_sizes_T_5 = _inflight_sizes_T_3 & _inflight_sizes_T_4; // @[Monitor.scala:816:{41,56,58}] reg [31:0] watchdog_1; // @[Monitor.scala:818:27]
Generate the Verilog code corresponding to the following Chisel files. File Misc.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ import chisel3.util.random.LFSR import org.chipsalliance.cde.config.Parameters import scala.math._ class ParameterizedBundle(implicit p: Parameters) extends Bundle trait Clocked extends Bundle { val clock = Clock() val reset = Bool() } object DecoupledHelper { def apply(rvs: Bool*) = new DecoupledHelper(rvs) } class DecoupledHelper(val rvs: Seq[Bool]) { def fire(exclude: Bool, includes: Bool*) = { require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!") (rvs.filter(_ ne exclude) ++ includes).reduce(_ && _) } def fire() = { rvs.reduce(_ && _) } } object MuxT { def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2)) def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3)) def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4)) } /** Creates a cascade of n MuxTs to search for a key value. */ object MuxTLookup { def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } } object ValidMux { def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = { apply(v1 +: v2.toSeq) } def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = { val out = Wire(Valid(valids.head.bits.cloneType)) out.valid := valids.map(_.valid).reduce(_ || _) out.bits := MuxCase(valids.head.bits, valids.map(v => (v.valid -> v.bits))) out } } object Str { def apply(s: String): UInt = { var i = BigInt(0) require(s.forall(validChar _)) for (c <- s) i = (i << 8) | c i.U((s.length*8).W) } def apply(x: Char): UInt = { require(validChar(x)) x.U(8.W) } def apply(x: UInt): UInt = apply(x, 10) def apply(x: UInt, radix: Int): UInt = { val rad = radix.U val w = x.getWidth require(w > 0) var q = x var s = digit(q % rad) for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s) } s } def apply(x: SInt): UInt = apply(x, 10) def apply(x: SInt, radix: Int): UInt = { val neg = x < 0.S val abs = x.abs.asUInt if (radix != 10) { Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix)) } else { val rad = radix.U val w = abs.getWidth require(w > 0) var q = abs var s = digit(q % rad) var needSign = neg for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad val placeSpace = q === 0.U val space = Mux(needSign, Str('-'), Str(' ')) needSign = needSign && !placeSpace s = Cat(Mux(placeSpace, space, digit(q % rad)), s) } Cat(Mux(needSign, Str('-'), Str(' ')), s) } } private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0) private def validChar(x: Char) = x == (x & 0xFF) } object Split { def apply(x: UInt, n0: Int) = { val w = x.getWidth (x.extract(w-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n2: Int, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } } object Random { def apply(mod: Int, random: UInt): UInt = { if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0) else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod)) } def apply(mod: Int): UInt = apply(mod, randomizer) def oneHot(mod: Int, random: UInt): UInt = { if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0)) else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt } def oneHot(mod: Int): UInt = oneHot(mod, randomizer) private def randomizer = LFSR(16) private def partition(value: UInt, slices: Int) = Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U) } object Majority { def apply(in: Set[Bool]): Bool = { val n = (in.size >> 1) + 1 val clauses = in.subsets(n).map(_.reduce(_ && _)) clauses.reduce(_ || _) } def apply(in: Seq[Bool]): Bool = apply(in.toSet) def apply(in: UInt): Bool = apply(in.asBools.toSet) } object PopCountAtLeast { private def two(x: UInt): (Bool, Bool) = x.getWidth match { case 1 => (x.asBool, false.B) case n => val half = x.getWidth / 2 val (leftOne, leftTwo) = two(x(half - 1, 0)) val (rightOne, rightTwo) = two(x(x.getWidth - 1, half)) (leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne)) } def apply(x: UInt, n: Int): Bool = n match { case 0 => true.B case 1 => x.orR case 2 => two(x)._2 case 3 => PopCount(x) >= n.U } } // This gets used everywhere, so make the smallest circuit possible ... // Given an address and size, create a mask of beatBytes size // eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111 // groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01 object MaskGen { def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = { require (groupBy >= 1 && beatBytes >= groupBy) require (isPow2(beatBytes) && isPow2(groupBy)) val lgBytes = log2Ceil(beatBytes) val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U def helper(i: Int): Seq[(Bool, Bool)] = { if (i == 0) { Seq((lgSize >= lgBytes.asUInt, true.B)) } else { val sub = helper(i-1) val size = sizeOH(lgBytes - i) val bit = addr_lo(lgBytes - i) val nbit = !bit Seq.tabulate (1 << i) { j => val (sub_acc, sub_eq) = sub(j/2) val eq = sub_eq && (if (j % 2 == 1) bit else nbit) val acc = sub_acc || (size && eq) (acc, eq) } } } if (groupBy == beatBytes) 1.U else Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse) } } File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag } File Replacement.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ import chisel3.util.random.LFSR import freechips.rocketchip.util.property.cover abstract class ReplacementPolicy { def nBits: Int def perSet: Boolean def way: UInt def miss: Unit def hit: Unit def access(touch_way: UInt): Unit def access(touch_ways: Seq[Valid[UInt]]): Unit def state_read: UInt def get_next_state(state: UInt, touch_way: UInt): UInt def get_next_state(state: UInt, touch_ways: Seq[Valid[UInt]]): UInt = { touch_ways.foldLeft(state)((prev, touch_way) => Mux(touch_way.valid, get_next_state(prev, touch_way.bits), prev)) } def get_replace_way(state: UInt): UInt } object ReplacementPolicy { def fromString(s: String, n_ways: Int): ReplacementPolicy = s.toLowerCase match { case "random" => new RandomReplacement(n_ways) case "lru" => new TrueLRU(n_ways) case "plru" => new PseudoLRU(n_ways) case t => throw new IllegalArgumentException(s"unknown Replacement Policy type $t") } } class RandomReplacement(n_ways: Int) extends ReplacementPolicy { private val replace = Wire(Bool()) replace := false.B def nBits = 16 def perSet = false private val lfsr = LFSR(nBits, replace) def state_read = WireDefault(lfsr) def way = Random(n_ways, lfsr) def miss = replace := true.B def hit = {} def access(touch_way: UInt) = {} def access(touch_ways: Seq[Valid[UInt]]) = {} def get_next_state(state: UInt, touch_way: UInt) = 0.U //DontCare def get_replace_way(state: UInt) = way } abstract class SeqReplacementPolicy { def access(set: UInt): Unit def update(valid: Bool, hit: Bool, set: UInt, way: UInt): Unit def way: UInt } abstract class SetAssocReplacementPolicy { def access(set: UInt, touch_way: UInt): Unit def access(sets: Seq[UInt], touch_ways: Seq[Valid[UInt]]): Unit def way(set: UInt): UInt } class SeqRandom(n_ways: Int) extends SeqReplacementPolicy { val logic = new RandomReplacement(n_ways) def access(set: UInt) = { } def update(valid: Bool, hit: Bool, set: UInt, way: UInt) = { when (valid && !hit) { logic.miss } } def way = logic.way } class TrueLRU(n_ways: Int) extends ReplacementPolicy { // True LRU replacement policy, using a triangular matrix to track which sets are more recently used than others. // The matrix is packed into a single UInt (or Bits). Example 4-way (6-bits): // [5] - 3 more recent than 2 // [4] - 3 more recent than 1 // [3] - 2 more recent than 1 // [2] - 3 more recent than 0 // [1] - 2 more recent than 0 // [0] - 1 more recent than 0 def nBits = (n_ways * (n_ways-1)) / 2 def perSet = true private val state_reg = RegInit(0.U(nBits.W)) def state_read = WireDefault(state_reg) private def extractMRUVec(state: UInt): Seq[UInt] = { // Extract per-way information about which higher-indexed ways are more recently used val moreRecentVec = Wire(Vec(n_ways-1, UInt(n_ways.W))) var lsb = 0 for (i <- 0 until n_ways-1) { moreRecentVec(i) := Cat(state(lsb+n_ways-i-2,lsb), 0.U((i+1).W)) lsb = lsb + (n_ways - i - 1) } moreRecentVec } def get_next_state(state: UInt, touch_way: UInt): UInt = { val nextState = Wire(Vec(n_ways-1, UInt(n_ways.W))) val moreRecentVec = extractMRUVec(state) // reconstruct lower triangular matrix val wayDec = UIntToOH(touch_way, n_ways) // Compute next value of triangular matrix // set the touched way as more recent than every other way nextState.zipWithIndex.map { case (e, i) => e := Mux(i.U === touch_way, 0.U(n_ways.W), moreRecentVec(i) | wayDec) } nextState.zipWithIndex.tail.foldLeft((nextState.head.apply(n_ways-1,1),0)) { case ((pe,pi),(ce,ci)) => (Cat(ce.apply(n_ways-1,ci+1), pe), ci) }._1 } def access(touch_way: UInt): Unit = { state_reg := get_next_state(state_reg, touch_way) } def access(touch_ways: Seq[Valid[UInt]]): Unit = { when (touch_ways.map(_.valid).orR) { state_reg := get_next_state(state_reg, touch_ways) } for (i <- 1 until touch_ways.size) { cover(PopCount(touch_ways.map(_.valid)) === i.U, s"LRU_UpdateCount$i", s"LRU Update $i simultaneous") } } def get_replace_way(state: UInt): UInt = { val moreRecentVec = extractMRUVec(state) // reconstruct lower triangular matrix // For each way, determine if all other ways are more recent val mruWayDec = (0 until n_ways).map { i => val upperMoreRecent = (if (i == n_ways-1) true.B else moreRecentVec(i).apply(n_ways-1,i+1).andR) val lowerMoreRecent = (if (i == 0) true.B else moreRecentVec.map(e => !e(i)).reduce(_ && _)) upperMoreRecent && lowerMoreRecent } OHToUInt(mruWayDec) } def way = get_replace_way(state_reg) def miss = access(way) def hit = {} @deprecated("replace 'replace' with 'way' from abstract class ReplacementPolicy","Rocket Chip 2020.05") def replace: UInt = way } class PseudoLRU(n_ways: Int) extends ReplacementPolicy { // Pseudo-LRU tree algorithm: https://en.wikipedia.org/wiki/Pseudo-LRU#Tree-PLRU // // // - bits storage example for 4-way PLRU binary tree: // bit[2]: ways 3+2 older than ways 1+0 // / \ // bit[1]: way 3 older than way 2 bit[0]: way 1 older than way 0 // // // - bits storage example for 3-way PLRU binary tree: // bit[1]: way 2 older than ways 1+0 // \ // bit[0]: way 1 older than way 0 // // // - bits storage example for 8-way PLRU binary tree: // bit[6]: ways 7-4 older than ways 3-0 // / \ // bit[5]: ways 7+6 > 5+4 bit[2]: ways 3+2 > 1+0 // / \ / \ // bit[4]: way 7>6 bit[3]: way 5>4 bit[1]: way 3>2 bit[0]: way 1>0 def nBits = n_ways - 1 def perSet = true private val state_reg = if (nBits == 0) Reg(UInt(0.W)) else RegInit(0.U(nBits.W)) def state_read = WireDefault(state_reg) def access(touch_way: UInt): Unit = { state_reg := get_next_state(state_reg, touch_way) } def access(touch_ways: Seq[Valid[UInt]]): Unit = { when (touch_ways.map(_.valid).orR) { state_reg := get_next_state(state_reg, touch_ways) } for (i <- 1 until touch_ways.size) { cover(PopCount(touch_ways.map(_.valid)) === i.U, s"PLRU_UpdateCount$i", s"PLRU Update $i simultaneous") } } /** @param state state_reg bits for this sub-tree * @param touch_way touched way encoded value bits for this sub-tree * @param tree_nways number of ways in this sub-tree */ def get_next_state(state: UInt, touch_way: UInt, tree_nways: Int): UInt = { require(state.getWidth == (tree_nways-1), s"wrong state bits width ${state.getWidth} for $tree_nways ways") require(touch_way.getWidth == (log2Ceil(tree_nways) max 1), s"wrong encoded way width ${touch_way.getWidth} for $tree_nways ways") if (tree_nways > 2) { // we are at a branching node in the tree, so recurse val right_nways: Int = 1 << (log2Ceil(tree_nways) - 1) // number of ways in the right sub-tree val left_nways: Int = tree_nways - right_nways // number of ways in the left sub-tree val set_left_older = !touch_way(log2Ceil(tree_nways)-1) val left_subtree_state = state.extract(tree_nways-3, right_nways-1) val right_subtree_state = state(right_nways-2, 0) if (left_nways > 1) { // we are at a branching node in the tree with both left and right sub-trees, so recurse both sub-trees Cat(set_left_older, Mux(set_left_older, left_subtree_state, // if setting left sub-tree as older, do NOT recurse into left sub-tree get_next_state(left_subtree_state, touch_way.extract(log2Ceil(left_nways)-1,0), left_nways)), // recurse left if newer Mux(set_left_older, get_next_state(right_subtree_state, touch_way(log2Ceil(right_nways)-1,0), right_nways), // recurse right if newer right_subtree_state)) // if setting right sub-tree as older, do NOT recurse into right sub-tree } else { // we are at a branching node in the tree with only a right sub-tree, so recurse only right sub-tree Cat(set_left_older, Mux(set_left_older, get_next_state(right_subtree_state, touch_way(log2Ceil(right_nways)-1,0), right_nways), // recurse right if newer right_subtree_state)) // if setting right sub-tree as older, do NOT recurse into right sub-tree } } else if (tree_nways == 2) { // we are at a leaf node at the end of the tree, so set the single state bit opposite of the lsb of the touched way encoded value !touch_way(0) } else { // tree_nways <= 1 // we are at an empty node in an empty tree for 1 way, so return single zero bit for Chisel (no zero-width wires) 0.U(1.W) } } def get_next_state(state: UInt, touch_way: UInt): UInt = { val touch_way_sized = if (touch_way.getWidth < log2Ceil(n_ways)) touch_way.padTo (log2Ceil(n_ways)) else touch_way.extract(log2Ceil(n_ways)-1,0) get_next_state(state, touch_way_sized, n_ways) } /** @param state state_reg bits for this sub-tree * @param tree_nways number of ways in this sub-tree */ def get_replace_way(state: UInt, tree_nways: Int): UInt = { require(state.getWidth == (tree_nways-1), s"wrong state bits width ${state.getWidth} for $tree_nways ways") // this algorithm recursively descends the binary tree, filling in the way-to-replace encoded value from msb to lsb if (tree_nways > 2) { // we are at a branching node in the tree, so recurse val right_nways: Int = 1 << (log2Ceil(tree_nways) - 1) // number of ways in the right sub-tree val left_nways: Int = tree_nways - right_nways // number of ways in the left sub-tree val left_subtree_older = state(tree_nways-2) val left_subtree_state = state.extract(tree_nways-3, right_nways-1) val right_subtree_state = state(right_nways-2, 0) if (left_nways > 1) { // we are at a branching node in the tree with both left and right sub-trees, so recurse both sub-trees Cat(left_subtree_older, // return the top state bit (current tree node) as msb of the way-to-replace encoded value Mux(left_subtree_older, // if left sub-tree is older, recurse left, else recurse right get_replace_way(left_subtree_state, left_nways), // recurse left get_replace_way(right_subtree_state, right_nways))) // recurse right } else { // we are at a branching node in the tree with only a right sub-tree, so recurse only right sub-tree Cat(left_subtree_older, // return the top state bit (current tree node) as msb of the way-to-replace encoded value Mux(left_subtree_older, // if left sub-tree is older, return and do not recurse right 0.U(1.W), get_replace_way(right_subtree_state, right_nways))) // recurse right } } else if (tree_nways == 2) { // we are at a leaf node at the end of the tree, so just return the single state bit as lsb of the way-to-replace encoded value state(0) } else { // tree_nways <= 1 // we are at an empty node in an unbalanced tree for non-power-of-2 ways, so return single zero bit as lsb of the way-to-replace encoded value 0.U(1.W) } } def get_replace_way(state: UInt): UInt = get_replace_way(state, n_ways) def way = get_replace_way(state_reg) def miss = access(way) def hit = {} } class SeqPLRU(n_sets: Int, n_ways: Int) extends SeqReplacementPolicy { val logic = new PseudoLRU(n_ways) val state = SyncReadMem(n_sets, UInt(logic.nBits.W)) val current_state = Wire(UInt(logic.nBits.W)) val next_state = Wire(UInt(logic.nBits.W)) val plru_way = logic.get_replace_way(current_state) def access(set: UInt) = { current_state := state.read(set) } def update(valid: Bool, hit: Bool, set: UInt, way: UInt) = { val update_way = Mux(hit, way, plru_way) next_state := logic.get_next_state(current_state, update_way) when (valid) { state.write(set, next_state) } } def way = plru_way } class SetAssocLRU(n_sets: Int, n_ways: Int, policy: String) extends SetAssocReplacementPolicy { val logic = policy.toLowerCase match { case "plru" => new PseudoLRU(n_ways) case "lru" => new TrueLRU(n_ways) case t => throw new IllegalArgumentException(s"unknown Replacement Policy type $t") } val state_vec = if (logic.nBits == 0) Reg(Vec(n_sets, UInt(logic.nBits.W))) // Work around elaboration error on following line else RegInit(VecInit(Seq.fill(n_sets)(0.U(logic.nBits.W)))) def access(set: UInt, touch_way: UInt) = { state_vec(set) := logic.get_next_state(state_vec(set), touch_way) } def access(sets: Seq[UInt], touch_ways: Seq[Valid[UInt]]) = { require(sets.size == touch_ways.size, "internal consistency check: should be same number of simultaneous updates for sets and touch_ways") for (set <- 0 until n_sets) { val set_touch_ways = (sets zip touch_ways).map { case (touch_set, touch_way) => Pipe(touch_way.valid && (touch_set === set.U), touch_way.bits, 0)} when (set_touch_ways.map(_.valid).orR) { state_vec(set) := logic.get_next_state(state_vec(set), set_touch_ways) } } } def way(set: UInt) = logic.get_replace_way(state_vec(set)) } // Synthesizable unit tests import freechips.rocketchip.unittest._ class PLRUTest(n_ways: Int, timeout: Int = 500) extends UnitTest(timeout) { val plru = new PseudoLRU(n_ways) // step io.finished := RegNext(true.B, false.B) val get_replace_ways = (0 until (1 << (n_ways-1))).map(state => plru.get_replace_way(state = state.U((n_ways-1).W))) val get_next_states = (0 until (1 << (n_ways-1))).map(state => (0 until n_ways).map(way => plru.get_next_state (state = state.U((n_ways-1).W), touch_way = way.U(log2Ceil(n_ways).W)))) n_ways match { case 2 => { assert(get_replace_ways(0) === 0.U(log2Ceil(n_ways).W), s"get_replace_way state=0: expected=0 actual=%d", get_replace_ways(0)) assert(get_replace_ways(1) === 1.U(log2Ceil(n_ways).W), s"get_replace_way state=1: expected=1 actual=%d", get_replace_ways(1)) assert(get_next_states(0)(0) === 1.U(plru.nBits.W), s"get_next_state state=0 way=0: expected=1 actual=%d", get_next_states(0)(0)) assert(get_next_states(0)(1) === 0.U(plru.nBits.W), s"get_next_state state=0 way=1: expected=0 actual=%d", get_next_states(0)(1)) assert(get_next_states(1)(0) === 1.U(plru.nBits.W), s"get_next_state state=1 way=0: expected=1 actual=%d", get_next_states(1)(0)) assert(get_next_states(1)(1) === 0.U(plru.nBits.W), s"get_next_state state=1 way=1: expected=0 actual=%d", get_next_states(1)(1)) } case 3 => { assert(get_replace_ways(0) === 0.U(log2Ceil(n_ways).W), s"get_replace_way state=0: expected=0 actual=%d", get_replace_ways(0)) assert(get_replace_ways(1) === 1.U(log2Ceil(n_ways).W), s"get_replace_way state=1: expected=1 actual=%d", get_replace_ways(1)) assert(get_replace_ways(2) === 2.U(log2Ceil(n_ways).W), s"get_replace_way state=2: expected=2 actual=%d", get_replace_ways(2)) assert(get_replace_ways(3) === 2.U(log2Ceil(n_ways).W), s"get_replace_way state=3: expected=2 actual=%d", get_replace_ways(3)) assert(get_next_states(0)(0) === 3.U(plru.nBits.W), s"get_next_state state=0 way=0: expected=3 actual=%d", get_next_states(0)(0)) assert(get_next_states(0)(1) === 2.U(plru.nBits.W), s"get_next_state state=0 way=1: expected=2 actual=%d", get_next_states(0)(1)) assert(get_next_states(0)(2) === 0.U(plru.nBits.W), s"get_next_state state=0 way=2: expected=0 actual=%d", get_next_states(0)(2)) assert(get_next_states(1)(0) === 3.U(plru.nBits.W), s"get_next_state state=1 way=0: expected=3 actual=%d", get_next_states(1)(0)) assert(get_next_states(1)(1) === 2.U(plru.nBits.W), s"get_next_state state=1 way=1: expected=2 actual=%d", get_next_states(1)(1)) assert(get_next_states(1)(2) === 1.U(plru.nBits.W), s"get_next_state state=1 way=2: expected=1 actual=%d", get_next_states(1)(2)) assert(get_next_states(2)(0) === 3.U(plru.nBits.W), s"get_next_state state=2 way=0: expected=3 actual=%d", get_next_states(2)(0)) assert(get_next_states(2)(1) === 2.U(plru.nBits.W), s"get_next_state state=2 way=1: expected=2 actual=%d", get_next_states(2)(1)) assert(get_next_states(2)(2) === 0.U(plru.nBits.W), s"get_next_state state=2 way=2: expected=0 actual=%d", get_next_states(2)(2)) assert(get_next_states(3)(0) === 3.U(plru.nBits.W), s"get_next_state state=3 way=0: expected=3 actual=%d", get_next_states(3)(0)) assert(get_next_states(3)(1) === 2.U(plru.nBits.W), s"get_next_state state=3 way=1: expected=2 actual=%d", get_next_states(3)(1)) assert(get_next_states(3)(2) === 1.U(plru.nBits.W), s"get_next_state state=3 way=2: expected=1 actual=%d", get_next_states(3)(2)) } case 4 => { assert(get_replace_ways(0) === 0.U(log2Ceil(n_ways).W), s"get_replace_way state=0: expected=0 actual=%d", get_replace_ways(0)) assert(get_replace_ways(1) === 1.U(log2Ceil(n_ways).W), s"get_replace_way state=1: expected=1 actual=%d", get_replace_ways(1)) assert(get_replace_ways(2) === 0.U(log2Ceil(n_ways).W), s"get_replace_way state=2: expected=0 actual=%d", get_replace_ways(2)) assert(get_replace_ways(3) === 1.U(log2Ceil(n_ways).W), s"get_replace_way state=3: expected=1 actual=%d", get_replace_ways(3)) assert(get_replace_ways(4) === 2.U(log2Ceil(n_ways).W), s"get_replace_way state=4: expected=2 actual=%d", get_replace_ways(4)) assert(get_replace_ways(5) === 2.U(log2Ceil(n_ways).W), s"get_replace_way state=5: expected=2 actual=%d", get_replace_ways(5)) assert(get_replace_ways(6) === 3.U(log2Ceil(n_ways).W), s"get_replace_way state=6: expected=3 actual=%d", get_replace_ways(6)) assert(get_replace_ways(7) === 3.U(log2Ceil(n_ways).W), s"get_replace_way state=7: expected=3 actual=%d", get_replace_ways(7)) assert(get_next_states(0)(0) === 5.U(plru.nBits.W), s"get_next_state state=0 way=0: expected=5 actual=%d", get_next_states(0)(0)) assert(get_next_states(0)(1) === 4.U(plru.nBits.W), s"get_next_state state=0 way=1: expected=4 actual=%d", get_next_states(0)(1)) assert(get_next_states(0)(2) === 2.U(plru.nBits.W), s"get_next_state state=0 way=2: expected=2 actual=%d", get_next_states(0)(2)) assert(get_next_states(0)(3) === 0.U(plru.nBits.W), s"get_next_state state=0 way=3: expected=0 actual=%d", get_next_states(0)(3)) assert(get_next_states(1)(0) === 5.U(plru.nBits.W), s"get_next_state state=1 way=0: expected=5 actual=%d", get_next_states(1)(0)) assert(get_next_states(1)(1) === 4.U(plru.nBits.W), s"get_next_state state=1 way=1: expected=4 actual=%d", get_next_states(1)(1)) assert(get_next_states(1)(2) === 3.U(plru.nBits.W), s"get_next_state state=1 way=2: expected=3 actual=%d", get_next_states(1)(2)) assert(get_next_states(1)(3) === 1.U(plru.nBits.W), s"get_next_state state=1 way=3: expected=1 actual=%d", get_next_states(1)(3)) assert(get_next_states(2)(0) === 7.U(plru.nBits.W), s"get_next_state state=2 way=0: expected=7 actual=%d", get_next_states(2)(0)) assert(get_next_states(2)(1) === 6.U(plru.nBits.W), s"get_next_state state=2 way=1: expected=6 actual=%d", get_next_states(2)(1)) assert(get_next_states(2)(2) === 2.U(plru.nBits.W), s"get_next_state state=2 way=2: expected=2 actual=%d", get_next_states(2)(2)) assert(get_next_states(2)(3) === 0.U(plru.nBits.W), s"get_next_state state=2 way=3: expected=0 actual=%d", get_next_states(2)(3)) assert(get_next_states(3)(0) === 7.U(plru.nBits.W), s"get_next_state state=3 way=0: expected=7 actual=%d", get_next_states(3)(0)) assert(get_next_states(3)(1) === 6.U(plru.nBits.W), s"get_next_state state=3 way=1: expected=6 actual=%d", get_next_states(3)(1)) assert(get_next_states(3)(2) === 3.U(plru.nBits.W), s"get_next_state state=3 way=2: expected=3 actual=%d", get_next_states(3)(2)) assert(get_next_states(3)(3) === 1.U(plru.nBits.W), s"get_next_state state=3 way=3: expected=1 actual=%d", get_next_states(3)(3)) assert(get_next_states(4)(0) === 5.U(plru.nBits.W), s"get_next_state state=4 way=0: expected=5 actual=%d", get_next_states(4)(0)) assert(get_next_states(4)(1) === 4.U(plru.nBits.W), s"get_next_state state=4 way=1: expected=4 actual=%d", get_next_states(4)(1)) assert(get_next_states(4)(2) === 2.U(plru.nBits.W), s"get_next_state state=4 way=2: expected=2 actual=%d", get_next_states(4)(2)) assert(get_next_states(4)(3) === 0.U(plru.nBits.W), s"get_next_state state=4 way=3: expected=0 actual=%d", get_next_states(4)(3)) assert(get_next_states(5)(0) === 5.U(plru.nBits.W), s"get_next_state state=5 way=0: expected=5 actual=%d", get_next_states(5)(0)) assert(get_next_states(5)(1) === 4.U(plru.nBits.W), s"get_next_state state=5 way=1: expected=4 actual=%d", get_next_states(5)(1)) assert(get_next_states(5)(2) === 3.U(plru.nBits.W), s"get_next_state state=5 way=2: expected=3 actual=%d", get_next_states(5)(2)) assert(get_next_states(5)(3) === 1.U(plru.nBits.W), s"get_next_state state=5 way=3: expected=1 actual=%d", get_next_states(5)(3)) assert(get_next_states(6)(0) === 7.U(plru.nBits.W), s"get_next_state state=6 way=0: expected=7 actual=%d", get_next_states(6)(0)) assert(get_next_states(6)(1) === 6.U(plru.nBits.W), s"get_next_state state=6 way=1: expected=6 actual=%d", get_next_states(6)(1)) assert(get_next_states(6)(2) === 2.U(plru.nBits.W), s"get_next_state state=6 way=2: expected=2 actual=%d", get_next_states(6)(2)) assert(get_next_states(6)(3) === 0.U(plru.nBits.W), s"get_next_state state=6 way=3: expected=0 actual=%d", get_next_states(6)(3)) assert(get_next_states(7)(0) === 7.U(plru.nBits.W), s"get_next_state state=7 way=0: expected=7 actual=%d", get_next_states(7)(0)) assert(get_next_states(7)(1) === 6.U(plru.nBits.W), s"get_next_state state=7 way=5: expected=6 actual=%d", get_next_states(7)(1)) assert(get_next_states(7)(2) === 3.U(plru.nBits.W), s"get_next_state state=7 way=2: expected=3 actual=%d", get_next_states(7)(2)) assert(get_next_states(7)(3) === 1.U(plru.nBits.W), s"get_next_state state=7 way=3: expected=1 actual=%d", get_next_states(7)(3)) } case 5 => { assert(get_replace_ways( 0) === 0.U(log2Ceil(n_ways).W), s"get_replace_way state=00: expected=0 actual=%d", get_replace_ways( 0)) assert(get_replace_ways( 1) === 1.U(log2Ceil(n_ways).W), s"get_replace_way state=01: expected=1 actual=%d", get_replace_ways( 1)) assert(get_replace_ways( 2) === 0.U(log2Ceil(n_ways).W), s"get_replace_way state=02: expected=0 actual=%d", get_replace_ways( 2)) assert(get_replace_ways( 3) === 1.U(log2Ceil(n_ways).W), s"get_replace_way state=03: expected=1 actual=%d", get_replace_ways( 3)) assert(get_replace_ways( 4) === 2.U(log2Ceil(n_ways).W), s"get_replace_way state=04: expected=2 actual=%d", get_replace_ways( 4)) assert(get_replace_ways( 5) === 2.U(log2Ceil(n_ways).W), s"get_replace_way state=05: expected=2 actual=%d", get_replace_ways( 5)) assert(get_replace_ways( 6) === 3.U(log2Ceil(n_ways).W), s"get_replace_way state=06: expected=3 actual=%d", get_replace_ways( 6)) assert(get_replace_ways( 7) === 3.U(log2Ceil(n_ways).W), s"get_replace_way state=07: expected=3 actual=%d", get_replace_ways( 7)) assert(get_replace_ways( 8) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=08: expected=4 actual=%d", get_replace_ways( 8)) assert(get_replace_ways( 9) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=09: expected=4 actual=%d", get_replace_ways( 9)) assert(get_replace_ways(10) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=10: expected=4 actual=%d", get_replace_ways(10)) assert(get_replace_ways(11) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=11: expected=4 actual=%d", get_replace_ways(11)) assert(get_replace_ways(12) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=12: expected=4 actual=%d", get_replace_ways(12)) assert(get_replace_ways(13) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=13: expected=4 actual=%d", get_replace_ways(13)) assert(get_replace_ways(14) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=14: expected=4 actual=%d", get_replace_ways(14)) assert(get_replace_ways(15) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=15: expected=4 actual=%d", get_replace_ways(15)) assert(get_next_states( 0)(0) === 13.U(plru.nBits.W), s"get_next_state state=00 way=0: expected=13 actual=%d", get_next_states( 0)(0)) assert(get_next_states( 0)(1) === 12.U(plru.nBits.W), s"get_next_state state=00 way=1: expected=12 actual=%d", get_next_states( 0)(1)) assert(get_next_states( 0)(2) === 10.U(plru.nBits.W), s"get_next_state state=00 way=2: expected=10 actual=%d", get_next_states( 0)(2)) assert(get_next_states( 0)(3) === 8.U(plru.nBits.W), s"get_next_state state=00 way=3: expected=08 actual=%d", get_next_states( 0)(3)) assert(get_next_states( 0)(4) === 0.U(plru.nBits.W), s"get_next_state state=00 way=4: expected=00 actual=%d", get_next_states( 0)(4)) assert(get_next_states( 1)(0) === 13.U(plru.nBits.W), s"get_next_state state=01 way=0: expected=13 actual=%d", get_next_states( 1)(0)) assert(get_next_states( 1)(1) === 12.U(plru.nBits.W), s"get_next_state state=01 way=1: expected=12 actual=%d", get_next_states( 1)(1)) assert(get_next_states( 1)(2) === 11.U(plru.nBits.W), s"get_next_state state=01 way=2: expected=11 actual=%d", get_next_states( 1)(2)) assert(get_next_states( 1)(3) === 9.U(plru.nBits.W), s"get_next_state state=01 way=3: expected=09 actual=%d", get_next_states( 1)(3)) assert(get_next_states( 1)(4) === 1.U(plru.nBits.W), s"get_next_state state=01 way=4: expected=01 actual=%d", get_next_states( 1)(4)) assert(get_next_states( 2)(0) === 15.U(plru.nBits.W), s"get_next_state state=02 way=0: expected=15 actual=%d", get_next_states( 2)(0)) assert(get_next_states( 2)(1) === 14.U(plru.nBits.W), s"get_next_state state=02 way=1: expected=14 actual=%d", get_next_states( 2)(1)) assert(get_next_states( 2)(2) === 10.U(plru.nBits.W), s"get_next_state state=02 way=2: expected=10 actual=%d", get_next_states( 2)(2)) assert(get_next_states( 2)(3) === 8.U(plru.nBits.W), s"get_next_state state=02 way=3: expected=08 actual=%d", get_next_states( 2)(3)) assert(get_next_states( 2)(4) === 2.U(plru.nBits.W), s"get_next_state state=02 way=4: expected=02 actual=%d", get_next_states( 2)(4)) assert(get_next_states( 3)(0) === 15.U(plru.nBits.W), s"get_next_state state=03 way=0: expected=15 actual=%d", get_next_states( 3)(0)) assert(get_next_states( 3)(1) === 14.U(plru.nBits.W), s"get_next_state state=03 way=1: expected=14 actual=%d", get_next_states( 3)(1)) assert(get_next_states( 3)(2) === 11.U(plru.nBits.W), s"get_next_state state=03 way=2: expected=11 actual=%d", get_next_states( 3)(2)) assert(get_next_states( 3)(3) === 9.U(plru.nBits.W), s"get_next_state state=03 way=3: expected=09 actual=%d", get_next_states( 3)(3)) assert(get_next_states( 3)(4) === 3.U(plru.nBits.W), s"get_next_state state=03 way=4: expected=03 actual=%d", get_next_states( 3)(4)) assert(get_next_states( 4)(0) === 13.U(plru.nBits.W), s"get_next_state state=04 way=0: expected=13 actual=%d", get_next_states( 4)(0)) assert(get_next_states( 4)(1) === 12.U(plru.nBits.W), s"get_next_state state=04 way=1: expected=12 actual=%d", get_next_states( 4)(1)) assert(get_next_states( 4)(2) === 10.U(plru.nBits.W), s"get_next_state state=04 way=2: expected=10 actual=%d", get_next_states( 4)(2)) assert(get_next_states( 4)(3) === 8.U(plru.nBits.W), s"get_next_state state=04 way=3: expected=08 actual=%d", get_next_states( 4)(3)) assert(get_next_states( 4)(4) === 4.U(plru.nBits.W), s"get_next_state state=04 way=4: expected=04 actual=%d", get_next_states( 4)(4)) assert(get_next_states( 5)(0) === 13.U(plru.nBits.W), s"get_next_state state=05 way=0: expected=13 actual=%d", get_next_states( 5)(0)) assert(get_next_states( 5)(1) === 12.U(plru.nBits.W), s"get_next_state state=05 way=1: expected=12 actual=%d", get_next_states( 5)(1)) assert(get_next_states( 5)(2) === 11.U(plru.nBits.W), s"get_next_state state=05 way=2: expected=11 actual=%d", get_next_states( 5)(2)) assert(get_next_states( 5)(3) === 9.U(plru.nBits.W), s"get_next_state state=05 way=3: expected=09 actual=%d", get_next_states( 5)(3)) assert(get_next_states( 5)(4) === 5.U(plru.nBits.W), s"get_next_state state=05 way=4: expected=05 actual=%d", get_next_states( 5)(4)) assert(get_next_states( 6)(0) === 15.U(plru.nBits.W), s"get_next_state state=06 way=0: expected=15 actual=%d", get_next_states( 6)(0)) assert(get_next_states( 6)(1) === 14.U(plru.nBits.W), s"get_next_state state=06 way=1: expected=14 actual=%d", get_next_states( 6)(1)) assert(get_next_states( 6)(2) === 10.U(plru.nBits.W), s"get_next_state state=06 way=2: expected=10 actual=%d", get_next_states( 6)(2)) assert(get_next_states( 6)(3) === 8.U(plru.nBits.W), s"get_next_state state=06 way=3: expected=08 actual=%d", get_next_states( 6)(3)) assert(get_next_states( 6)(4) === 6.U(plru.nBits.W), s"get_next_state state=06 way=4: expected=06 actual=%d", get_next_states( 6)(4)) assert(get_next_states( 7)(0) === 15.U(plru.nBits.W), s"get_next_state state=07 way=0: expected=15 actual=%d", get_next_states( 7)(0)) assert(get_next_states( 7)(1) === 14.U(plru.nBits.W), s"get_next_state state=07 way=5: expected=14 actual=%d", get_next_states( 7)(1)) assert(get_next_states( 7)(2) === 11.U(plru.nBits.W), s"get_next_state state=07 way=2: expected=11 actual=%d", get_next_states( 7)(2)) assert(get_next_states( 7)(3) === 9.U(plru.nBits.W), s"get_next_state state=07 way=3: expected=09 actual=%d", get_next_states( 7)(3)) assert(get_next_states( 7)(4) === 7.U(plru.nBits.W), s"get_next_state state=07 way=4: expected=07 actual=%d", get_next_states( 7)(4)) assert(get_next_states( 8)(0) === 13.U(plru.nBits.W), s"get_next_state state=08 way=0: expected=13 actual=%d", get_next_states( 8)(0)) assert(get_next_states( 8)(1) === 12.U(plru.nBits.W), s"get_next_state state=08 way=1: expected=12 actual=%d", get_next_states( 8)(1)) assert(get_next_states( 8)(2) === 10.U(plru.nBits.W), s"get_next_state state=08 way=2: expected=10 actual=%d", get_next_states( 8)(2)) assert(get_next_states( 8)(3) === 8.U(plru.nBits.W), s"get_next_state state=08 way=3: expected=08 actual=%d", get_next_states( 8)(3)) assert(get_next_states( 8)(4) === 0.U(plru.nBits.W), s"get_next_state state=08 way=4: expected=00 actual=%d", get_next_states( 8)(4)) assert(get_next_states( 9)(0) === 13.U(plru.nBits.W), s"get_next_state state=09 way=0: expected=13 actual=%d", get_next_states( 9)(0)) assert(get_next_states( 9)(1) === 12.U(plru.nBits.W), s"get_next_state state=09 way=1: expected=12 actual=%d", get_next_states( 9)(1)) assert(get_next_states( 9)(2) === 11.U(plru.nBits.W), s"get_next_state state=09 way=2: expected=11 actual=%d", get_next_states( 9)(2)) assert(get_next_states( 9)(3) === 9.U(plru.nBits.W), s"get_next_state state=09 way=3: expected=09 actual=%d", get_next_states( 9)(3)) assert(get_next_states( 9)(4) === 1.U(plru.nBits.W), s"get_next_state state=09 way=4: expected=01 actual=%d", get_next_states( 9)(4)) assert(get_next_states(10)(0) === 15.U(plru.nBits.W), s"get_next_state state=10 way=0: expected=15 actual=%d", get_next_states(10)(0)) assert(get_next_states(10)(1) === 14.U(plru.nBits.W), s"get_next_state state=10 way=1: expected=14 actual=%d", get_next_states(10)(1)) assert(get_next_states(10)(2) === 10.U(plru.nBits.W), s"get_next_state state=10 way=2: expected=10 actual=%d", get_next_states(10)(2)) assert(get_next_states(10)(3) === 8.U(plru.nBits.W), s"get_next_state state=10 way=3: expected=08 actual=%d", get_next_states(10)(3)) assert(get_next_states(10)(4) === 2.U(plru.nBits.W), s"get_next_state state=10 way=4: expected=02 actual=%d", get_next_states(10)(4)) assert(get_next_states(11)(0) === 15.U(plru.nBits.W), s"get_next_state state=11 way=0: expected=15 actual=%d", get_next_states(11)(0)) assert(get_next_states(11)(1) === 14.U(plru.nBits.W), s"get_next_state state=11 way=1: expected=14 actual=%d", get_next_states(11)(1)) assert(get_next_states(11)(2) === 11.U(plru.nBits.W), s"get_next_state state=11 way=2: expected=11 actual=%d", get_next_states(11)(2)) assert(get_next_states(11)(3) === 9.U(plru.nBits.W), s"get_next_state state=11 way=3: expected=09 actual=%d", get_next_states(11)(3)) assert(get_next_states(11)(4) === 3.U(plru.nBits.W), s"get_next_state state=11 way=4: expected=03 actual=%d", get_next_states(11)(4)) assert(get_next_states(12)(0) === 13.U(plru.nBits.W), s"get_next_state state=12 way=0: expected=13 actual=%d", get_next_states(12)(0)) assert(get_next_states(12)(1) === 12.U(plru.nBits.W), s"get_next_state state=12 way=1: expected=12 actual=%d", get_next_states(12)(1)) assert(get_next_states(12)(2) === 10.U(plru.nBits.W), s"get_next_state state=12 way=2: expected=10 actual=%d", get_next_states(12)(2)) assert(get_next_states(12)(3) === 8.U(plru.nBits.W), s"get_next_state state=12 way=3: expected=08 actual=%d", get_next_states(12)(3)) assert(get_next_states(12)(4) === 4.U(plru.nBits.W), s"get_next_state state=12 way=4: expected=04 actual=%d", get_next_states(12)(4)) assert(get_next_states(13)(0) === 13.U(plru.nBits.W), s"get_next_state state=13 way=0: expected=13 actual=%d", get_next_states(13)(0)) assert(get_next_states(13)(1) === 12.U(plru.nBits.W), s"get_next_state state=13 way=1: expected=12 actual=%d", get_next_states(13)(1)) assert(get_next_states(13)(2) === 11.U(plru.nBits.W), s"get_next_state state=13 way=2: expected=11 actual=%d", get_next_states(13)(2)) assert(get_next_states(13)(3) === 9.U(plru.nBits.W), s"get_next_state state=13 way=3: expected=09 actual=%d", get_next_states(13)(3)) assert(get_next_states(13)(4) === 5.U(plru.nBits.W), s"get_next_state state=13 way=4: expected=05 actual=%d", get_next_states(13)(4)) assert(get_next_states(14)(0) === 15.U(plru.nBits.W), s"get_next_state state=14 way=0: expected=15 actual=%d", get_next_states(14)(0)) assert(get_next_states(14)(1) === 14.U(plru.nBits.W), s"get_next_state state=14 way=1: expected=14 actual=%d", get_next_states(14)(1)) assert(get_next_states(14)(2) === 10.U(plru.nBits.W), s"get_next_state state=14 way=2: expected=10 actual=%d", get_next_states(14)(2)) assert(get_next_states(14)(3) === 8.U(plru.nBits.W), s"get_next_state state=14 way=3: expected=08 actual=%d", get_next_states(14)(3)) assert(get_next_states(14)(4) === 6.U(plru.nBits.W), s"get_next_state state=14 way=4: expected=06 actual=%d", get_next_states(14)(4)) assert(get_next_states(15)(0) === 15.U(plru.nBits.W), s"get_next_state state=15 way=0: expected=15 actual=%d", get_next_states(15)(0)) assert(get_next_states(15)(1) === 14.U(plru.nBits.W), s"get_next_state state=15 way=5: expected=14 actual=%d", get_next_states(15)(1)) assert(get_next_states(15)(2) === 11.U(plru.nBits.W), s"get_next_state state=15 way=2: expected=11 actual=%d", get_next_states(15)(2)) assert(get_next_states(15)(3) === 9.U(plru.nBits.W), s"get_next_state state=15 way=3: expected=09 actual=%d", get_next_states(15)(3)) assert(get_next_states(15)(4) === 7.U(plru.nBits.W), s"get_next_state state=15 way=4: expected=07 actual=%d", get_next_states(15)(4)) } case 6 => { assert(get_replace_ways( 0) === 0.U(log2Ceil(n_ways).W), s"get_replace_way state=00: expected=0 actual=%d", get_replace_ways( 0)) assert(get_replace_ways( 1) === 1.U(log2Ceil(n_ways).W), s"get_replace_way state=01: expected=1 actual=%d", get_replace_ways( 1)) assert(get_replace_ways( 2) === 0.U(log2Ceil(n_ways).W), s"get_replace_way state=02: expected=0 actual=%d", get_replace_ways( 2)) assert(get_replace_ways( 3) === 1.U(log2Ceil(n_ways).W), s"get_replace_way state=03: expected=1 actual=%d", get_replace_ways( 3)) assert(get_replace_ways( 4) === 2.U(log2Ceil(n_ways).W), s"get_replace_way state=04: expected=2 actual=%d", get_replace_ways( 4)) assert(get_replace_ways( 5) === 2.U(log2Ceil(n_ways).W), s"get_replace_way state=05: expected=2 actual=%d", get_replace_ways( 5)) assert(get_replace_ways( 6) === 3.U(log2Ceil(n_ways).W), s"get_replace_way state=06: expected=3 actual=%d", get_replace_ways( 6)) assert(get_replace_ways( 7) === 3.U(log2Ceil(n_ways).W), s"get_replace_way state=07: expected=3 actual=%d", get_replace_ways( 7)) assert(get_replace_ways( 8) === 0.U(log2Ceil(n_ways).W), s"get_replace_way state=08: expected=0 actual=%d", get_replace_ways( 8)) assert(get_replace_ways( 9) === 1.U(log2Ceil(n_ways).W), s"get_replace_way state=09: expected=1 actual=%d", get_replace_ways( 9)) assert(get_replace_ways(10) === 0.U(log2Ceil(n_ways).W), s"get_replace_way state=10: expected=0 actual=%d", get_replace_ways(10)) assert(get_replace_ways(11) === 1.U(log2Ceil(n_ways).W), s"get_replace_way state=11: expected=1 actual=%d", get_replace_ways(11)) assert(get_replace_ways(12) === 2.U(log2Ceil(n_ways).W), s"get_replace_way state=12: expected=2 actual=%d", get_replace_ways(12)) assert(get_replace_ways(13) === 2.U(log2Ceil(n_ways).W), s"get_replace_way state=13: expected=2 actual=%d", get_replace_ways(13)) assert(get_replace_ways(14) === 3.U(log2Ceil(n_ways).W), s"get_replace_way state=14: expected=3 actual=%d", get_replace_ways(14)) assert(get_replace_ways(15) === 3.U(log2Ceil(n_ways).W), s"get_replace_way state=15: expected=3 actual=%d", get_replace_ways(15)) assert(get_replace_ways(16) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=16: expected=4 actual=%d", get_replace_ways(16)) assert(get_replace_ways(17) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=17: expected=4 actual=%d", get_replace_ways(17)) assert(get_replace_ways(18) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=18: expected=4 actual=%d", get_replace_ways(18)) assert(get_replace_ways(19) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=19: expected=4 actual=%d", get_replace_ways(19)) assert(get_replace_ways(20) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=20: expected=4 actual=%d", get_replace_ways(20)) assert(get_replace_ways(21) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=21: expected=4 actual=%d", get_replace_ways(21)) assert(get_replace_ways(22) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=22: expected=4 actual=%d", get_replace_ways(22)) assert(get_replace_ways(23) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=23: expected=4 actual=%d", get_replace_ways(23)) assert(get_replace_ways(24) === 5.U(log2Ceil(n_ways).W), s"get_replace_way state=24: expected=5 actual=%d", get_replace_ways(24)) assert(get_replace_ways(25) === 5.U(log2Ceil(n_ways).W), s"get_replace_way state=25: expected=5 actual=%d", get_replace_ways(25)) assert(get_replace_ways(26) === 5.U(log2Ceil(n_ways).W), s"get_replace_way state=26: expected=5 actual=%d", get_replace_ways(26)) assert(get_replace_ways(27) === 5.U(log2Ceil(n_ways).W), s"get_replace_way state=27: expected=5 actual=%d", get_replace_ways(27)) assert(get_replace_ways(28) === 5.U(log2Ceil(n_ways).W), s"get_replace_way state=28: expected=5 actual=%d", get_replace_ways(28)) assert(get_replace_ways(29) === 5.U(log2Ceil(n_ways).W), s"get_replace_way state=29: expected=5 actual=%d", get_replace_ways(29)) assert(get_replace_ways(30) === 5.U(log2Ceil(n_ways).W), s"get_replace_way state=30: expected=5 actual=%d", get_replace_ways(30)) assert(get_replace_ways(31) === 5.U(log2Ceil(n_ways).W), s"get_replace_way state=31: expected=5 actual=%d", get_replace_ways(31)) } case _ => throw new IllegalArgumentException(s"no test pattern found for n_ways=$n_ways") } } File Consts.scala: // See LICENSE.Berkeley for license details. package freechips.rocketchip.rocket.constants import chisel3._ import chisel3.util._ import freechips.rocketchip.util._ trait ScalarOpConstants { val SZ_BR = 3 def BR_X = BitPat("b???") def BR_EQ = 0.U(3.W) def BR_NE = 1.U(3.W) def BR_J = 2.U(3.W) def BR_N = 3.U(3.W) def BR_LT = 4.U(3.W) def BR_GE = 5.U(3.W) def BR_LTU = 6.U(3.W) def BR_GEU = 7.U(3.W) def A1_X = BitPat("b??") def A1_ZERO = 0.U(2.W) def A1_RS1 = 1.U(2.W) def A1_PC = 2.U(2.W) def A1_RS1SHL = 3.U(2.W) def IMM_X = BitPat("b???") def IMM_S = 0.U(3.W) def IMM_SB = 1.U(3.W) def IMM_U = 2.U(3.W) def IMM_UJ = 3.U(3.W) def IMM_I = 4.U(3.W) def IMM_Z = 5.U(3.W) def A2_X = BitPat("b???") def A2_ZERO = 0.U(3.W) def A2_SIZE = 1.U(3.W) def A2_RS2 = 2.U(3.W) def A2_IMM = 3.U(3.W) def A2_RS2OH = 4.U(3.W) def A2_IMMOH = 5.U(3.W) def X = BitPat("b?") def N = BitPat("b0") def Y = BitPat("b1") val SZ_DW = 1 def DW_X = X def DW_32 = false.B def DW_64 = true.B def DW_XPR = DW_64 } trait MemoryOpConstants { val NUM_XA_OPS = 9 val M_SZ = 5 def M_X = BitPat("b?????"); def M_XRD = "b00000".U; // int load def M_XWR = "b00001".U; // int store def M_PFR = "b00010".U; // prefetch with intent to read def M_PFW = "b00011".U; // prefetch with intent to write def M_XA_SWAP = "b00100".U def M_FLUSH_ALL = "b00101".U // flush all lines def M_XLR = "b00110".U def M_XSC = "b00111".U def M_XA_ADD = "b01000".U def M_XA_XOR = "b01001".U def M_XA_OR = "b01010".U def M_XA_AND = "b01011".U def M_XA_MIN = "b01100".U def M_XA_MAX = "b01101".U def M_XA_MINU = "b01110".U def M_XA_MAXU = "b01111".U def M_FLUSH = "b10000".U // write back dirty data and cede R/W permissions def M_PWR = "b10001".U // partial (masked) store def M_PRODUCE = "b10010".U // write back dirty data and cede W permissions def M_CLEAN = "b10011".U // write back dirty data and retain R/W permissions def M_SFENCE = "b10100".U // SFENCE.VMA def M_HFENCEV = "b10101".U // HFENCE.VVMA def M_HFENCEG = "b10110".U // HFENCE.GVMA def M_WOK = "b10111".U // check write permissions but don't perform a write def M_HLVX = "b10000".U // HLVX instruction def isAMOLogical(cmd: UInt) = cmd.isOneOf(M_XA_SWAP, M_XA_XOR, M_XA_OR, M_XA_AND) def isAMOArithmetic(cmd: UInt) = cmd.isOneOf(M_XA_ADD, M_XA_MIN, M_XA_MAX, M_XA_MINU, M_XA_MAXU) def isAMO(cmd: UInt) = isAMOLogical(cmd) || isAMOArithmetic(cmd) def isPrefetch(cmd: UInt) = cmd === M_PFR || cmd === M_PFW def isRead(cmd: UInt) = cmd.isOneOf(M_XRD, M_HLVX, M_XLR, M_XSC) || isAMO(cmd) def isWrite(cmd: UInt) = cmd === M_XWR || cmd === M_PWR || cmd === M_XSC || isAMO(cmd) def isWriteIntent(cmd: UInt) = isWrite(cmd) || cmd === M_PFW || cmd === M_XLR } File TLB.scala: // See LICENSE.SiFive for license details. // See LICENSE.Berkeley for license details. package freechips.rocketchip.rocket import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config._ import freechips.rocketchip.devices.debug.DebugModuleKey import freechips.rocketchip.diplomacy.RegionType import freechips.rocketchip.subsystem.CacheBlockBytes import freechips.rocketchip.tile.{CoreModule, CoreBundle} import freechips.rocketchip.tilelink._ import freechips.rocketchip.util.{OptimizationBarrier, SetAssocLRU, PseudoLRU, PopCountAtLeast, property} import freechips.rocketchip.util.BooleanToAugmentedBoolean import freechips.rocketchip.util.IntToAugmentedInt import freechips.rocketchip.util.UIntToAugmentedUInt import freechips.rocketchip.util.UIntIsOneOf import freechips.rocketchip.util.SeqToAugmentedSeq import freechips.rocketchip.util.SeqBoolBitwiseOps case object ASIdBits extends Field[Int](0) case object VMIdBits extends Field[Int](0) /** =SFENCE= * rs1 rs2 * {{{ * 0 0 -> flush All * 0 1 -> flush by ASID * 1 1 -> flush by ADDR * 1 0 -> flush by ADDR and ASID * }}} * {{{ * If rs1=x0 and rs2=x0, the fence orders all reads and writes made to any level of the page tables, for all address spaces. * If rs1=x0 and rs2!=x0, the fence orders all reads and writes made to any level of the page tables, but only for the address space identified by integer register rs2. Accesses to global mappings (see Section 4.3.1) are not ordered. * If rs1!=x0 and rs2=x0, the fence orders only reads and writes made to the leaf page table entry corresponding to the virtual address in rs1, for all address spaces. * If rs1!=x0 and rs2!=x0, the fence orders only reads and writes made to the leaf page table entry corresponding to the virtual address in rs1, for the address space identified by integer register rs2. Accesses to global mappings are not ordered. * }}} */ class SFenceReq(implicit p: Parameters) extends CoreBundle()(p) { val rs1 = Bool() val rs2 = Bool() val addr = UInt(vaddrBits.W) val asid = UInt((asIdBits max 1).W) // TODO zero-width val hv = Bool() val hg = Bool() } class TLBReq(lgMaxSize: Int)(implicit p: Parameters) extends CoreBundle()(p) { /** request address from CPU. */ val vaddr = UInt(vaddrBitsExtended.W) /** don't lookup TLB, bypass vaddr as paddr */ val passthrough = Bool() /** granularity */ val size = UInt(log2Ceil(lgMaxSize + 1).W) /** memory command. */ val cmd = Bits(M_SZ.W) val prv = UInt(PRV.SZ.W) /** virtualization mode */ val v = Bool() } class TLBExceptions extends Bundle { val ld = Bool() val st = Bool() val inst = Bool() } class TLBResp(lgMaxSize: Int = 3)(implicit p: Parameters) extends CoreBundle()(p) { // lookup responses val miss = Bool() /** physical address */ val paddr = UInt(paddrBits.W) val gpa = UInt(vaddrBitsExtended.W) val gpa_is_pte = Bool() /** page fault exception */ val pf = new TLBExceptions /** guest page fault exception */ val gf = new TLBExceptions /** access exception */ val ae = new TLBExceptions /** misaligned access exception */ val ma = new TLBExceptions /** if this address is cacheable */ val cacheable = Bool() /** if caches must allocate this address */ val must_alloc = Bool() /** if this address is prefetchable for caches*/ val prefetchable = Bool() /** size/cmd of request that generated this response*/ val size = UInt(log2Ceil(lgMaxSize + 1).W) val cmd = UInt(M_SZ.W) } class TLBEntryData(implicit p: Parameters) extends CoreBundle()(p) { val ppn = UInt(ppnBits.W) /** pte.u user */ val u = Bool() /** pte.g global */ val g = Bool() /** access exception. * D$ -> PTW -> TLB AE * Alignment failed. */ val ae_ptw = Bool() val ae_final = Bool() val ae_stage2 = Bool() /** page fault */ val pf = Bool() /** guest page fault */ val gf = Bool() /** supervisor write */ val sw = Bool() /** supervisor execute */ val sx = Bool() /** supervisor read */ val sr = Bool() /** hypervisor write */ val hw = Bool() /** hypervisor excute */ val hx = Bool() /** hypervisor read */ val hr = Bool() /** prot_w */ val pw = Bool() /** prot_x */ val px = Bool() /** prot_r */ val pr = Bool() /** PutPartial */ val ppp = Bool() /** AMO logical */ val pal = Bool() /** AMO arithmetic */ val paa = Bool() /** get/put effects */ val eff = Bool() /** cacheable */ val c = Bool() /** fragmented_superpage support */ val fragmented_superpage = Bool() } /** basic cell for TLB data */ class TLBEntry(val nSectors: Int, val superpage: Boolean, val superpageOnly: Boolean)(implicit p: Parameters) extends CoreBundle()(p) { require(nSectors == 1 || !superpage) require(!superpageOnly || superpage) val level = UInt(log2Ceil(pgLevels).W) /** use vpn as tag */ val tag_vpn = UInt(vpnBits.W) /** tag in vitualization mode */ val tag_v = Bool() /** entry data */ val data = Vec(nSectors, UInt(new TLBEntryData().getWidth.W)) /** valid bit */ val valid = Vec(nSectors, Bool()) /** returns all entry data in this entry */ def entry_data = data.map(_.asTypeOf(new TLBEntryData)) /** returns the index of sector */ private def sectorIdx(vpn: UInt) = vpn.extract(nSectors.log2-1, 0) /** returns the entry data matched with this vpn*/ def getData(vpn: UInt) = OptimizationBarrier(data(sectorIdx(vpn)).asTypeOf(new TLBEntryData)) /** returns whether a sector hits */ def sectorHit(vpn: UInt, virtual: Bool) = valid.orR && sectorTagMatch(vpn, virtual) /** returns whether tag matches vpn */ def sectorTagMatch(vpn: UInt, virtual: Bool) = (((tag_vpn ^ vpn) >> nSectors.log2) === 0.U) && (tag_v === virtual) /** returns hit signal */ def hit(vpn: UInt, virtual: Bool): Bool = { if (superpage && usingVM) { var tagMatch = valid.head && (tag_v === virtual) for (j <- 0 until pgLevels) { val base = (pgLevels - 1 - j) * pgLevelBits val n = pgLevelBits + (if (j == 0) hypervisorExtraAddrBits else 0) val ignore = level < j.U || (superpageOnly && j == pgLevels - 1).B tagMatch = tagMatch && (ignore || (tag_vpn ^ vpn)(base + n - 1, base) === 0.U) } tagMatch } else { val idx = sectorIdx(vpn) valid(idx) && sectorTagMatch(vpn, virtual) } } /** returns the ppn of the input TLBEntryData */ def ppn(vpn: UInt, data: TLBEntryData) = { val supervisorVPNBits = pgLevels * pgLevelBits if (superpage && usingVM) { var res = data.ppn >> pgLevelBits*(pgLevels - 1) for (j <- 1 until pgLevels) { val ignore = level < j.U || (superpageOnly && j == pgLevels - 1).B res = Cat(res, (Mux(ignore, vpn, 0.U) | data.ppn)(supervisorVPNBits - j*pgLevelBits - 1, supervisorVPNBits - (j + 1)*pgLevelBits)) } res } else { data.ppn } } /** does the refill * * find the target entry with vpn tag * and replace the target entry with the input entry data */ def insert(vpn: UInt, virtual: Bool, level: UInt, entry: TLBEntryData): Unit = { this.tag_vpn := vpn this.tag_v := virtual this.level := level.extract(log2Ceil(pgLevels - superpageOnly.toInt)-1, 0) val idx = sectorIdx(vpn) valid(idx) := true.B data(idx) := entry.asUInt } def invalidate(): Unit = { valid.foreach(_ := false.B) } def invalidate(virtual: Bool): Unit = { for ((v, e) <- valid zip entry_data) when (tag_v === virtual) { v := false.B } } def invalidateVPN(vpn: UInt, virtual: Bool): Unit = { if (superpage) { when (hit(vpn, virtual)) { invalidate() } } else { when (sectorTagMatch(vpn, virtual)) { for (((v, e), i) <- (valid zip entry_data).zipWithIndex) when (tag_v === virtual && i.U === sectorIdx(vpn)) { v := false.B } } } // For fragmented superpage mappings, we assume the worst (largest) // case, and zap entries whose most-significant VPNs match when (((tag_vpn ^ vpn) >> (pgLevelBits * (pgLevels - 1))) === 0.U) { for ((v, e) <- valid zip entry_data) when (tag_v === virtual && e.fragmented_superpage) { v := false.B } } } def invalidateNonGlobal(virtual: Bool): Unit = { for ((v, e) <- valid zip entry_data) when (tag_v === virtual && !e.g) { v := false.B } } } /** TLB config * * @param nSets the number of sets of PTE, follow [[ICacheParams.nSets]] * @param nWays the total number of wayss of PTE, follow [[ICacheParams.nWays]] * @param nSectors the number of ways in a single PTE TLBEntry * @param nSuperpageEntries the number of SuperpageEntries */ case class TLBConfig( nSets: Int, nWays: Int, nSectors: Int = 4, nSuperpageEntries: Int = 4) /** =Overview= * [[TLB]] is a TLB template which contains PMA logic and PMP checker. * * TLB caches PTE and accelerates the address translation process. * When tlb miss happens, ask PTW(L2TLB) for Page Table Walk. * Perform PMP and PMA check during the translation and throw exception if there were any. * * ==Cache Structure== * - Sectored Entry (PTE) * - set-associative or direct-mapped * - nsets = [[TLBConfig.nSets]] * - nways = [[TLBConfig.nWays]] / [[TLBConfig.nSectors]] * - PTEEntry( sectors = [[TLBConfig.nSectors]] ) * - LRU(if set-associative) * * - Superpage Entry(superpage PTE) * - fully associative * - nsets = [[TLBConfig.nSuperpageEntries]] * - PTEEntry(sectors = 1) * - PseudoLRU * * - Special Entry(PTE across PMP) * - nsets = 1 * - PTEEntry(sectors = 1) * * ==Address structure== * {{{ * |vaddr | * |ppn/vpn | pgIndex | * | | | * | |nSets |nSector | |}}} * * ==State Machine== * {{{ * s_ready: ready to accept request from CPU. * s_request: when L1TLB(this) miss, send request to PTW(L2TLB), . * s_wait: wait for PTW to refill L1TLB. * s_wait_invalidate: L1TLB is waiting for respond from PTW, but L1TLB will invalidate respond from PTW.}}} * * ==PMP== * pmp check * - special_entry: always check * - other entry: check on refill * * ==Note== * PMA consume diplomacy parameter generate physical memory address checking logic * * Boom use Rocket ITLB, and its own DTLB. * * Accelerators:{{{ * sha3: DTLB * gemmini: DTLB * hwacha: DTLB*2+ITLB}}} * @param instruction true for ITLB, false for DTLB * @param lgMaxSize @todo seems granularity * @param cfg [[TLBConfig]] * @param edge collect SoC metadata. */ class TLB(instruction: Boolean, lgMaxSize: Int, cfg: TLBConfig)(implicit edge: TLEdgeOut, p: Parameters) extends CoreModule()(p) { override def desiredName = if (instruction) "ITLB" else "DTLB" val io = IO(new Bundle { /** request from Core */ val req = Flipped(Decoupled(new TLBReq(lgMaxSize))) /** response to Core */ val resp = Output(new TLBResp(lgMaxSize)) /** SFence Input */ val sfence = Flipped(Valid(new SFenceReq)) /** IO to PTW */ val ptw = new TLBPTWIO /** suppress a TLB refill, one cycle after a miss */ val kill = Input(Bool()) }) io.ptw.customCSRs := DontCare val pageGranularityPMPs = pmpGranularity >= (1 << pgIdxBits) val vpn = io.req.bits.vaddr(vaddrBits-1, pgIdxBits) /** index for sectored_Entry */ val memIdx = vpn.extract(cfg.nSectors.log2 + cfg.nSets.log2 - 1, cfg.nSectors.log2) /** TLB Entry */ val sectored_entries = Reg(Vec(cfg.nSets, Vec(cfg.nWays / cfg.nSectors, new TLBEntry(cfg.nSectors, false, false)))) /** Superpage Entry */ val superpage_entries = Reg(Vec(cfg.nSuperpageEntries, new TLBEntry(1, true, true))) /** Special Entry * * If PMP granularity is less than page size, thus need additional "special" entry manage PMP. */ val special_entry = (!pageGranularityPMPs).option(Reg(new TLBEntry(1, true, false))) def ordinary_entries = sectored_entries(memIdx) ++ superpage_entries def all_entries = ordinary_entries ++ special_entry def all_real_entries = sectored_entries.flatten ++ superpage_entries ++ special_entry val s_ready :: s_request :: s_wait :: s_wait_invalidate :: Nil = Enum(4) val state = RegInit(s_ready) // use vpn as refill_tag val r_refill_tag = Reg(UInt(vpnBits.W)) val r_superpage_repl_addr = Reg(UInt(log2Ceil(superpage_entries.size).W)) val r_sectored_repl_addr = Reg(UInt(log2Ceil(sectored_entries.head.size).W)) val r_sectored_hit = Reg(Valid(UInt(log2Ceil(sectored_entries.head.size).W))) val r_superpage_hit = Reg(Valid(UInt(log2Ceil(superpage_entries.size).W))) val r_vstage1_en = Reg(Bool()) val r_stage2_en = Reg(Bool()) val r_need_gpa = Reg(Bool()) val r_gpa_valid = Reg(Bool()) val r_gpa = Reg(UInt(vaddrBits.W)) val r_gpa_vpn = Reg(UInt(vpnBits.W)) val r_gpa_is_pte = Reg(Bool()) /** privilege mode */ val priv = io.req.bits.prv val priv_v = usingHypervisor.B && io.req.bits.v val priv_s = priv(0) // user mode and supervisor mode val priv_uses_vm = priv <= PRV.S.U val satp = Mux(priv_v, io.ptw.vsatp, io.ptw.ptbr) val stage1_en = usingVM.B && satp.mode(satp.mode.getWidth-1) /** VS-stage translation enable */ val vstage1_en = usingHypervisor.B && priv_v && io.ptw.vsatp.mode(io.ptw.vsatp.mode.getWidth-1) /** G-stage translation enable */ val stage2_en = usingHypervisor.B && priv_v && io.ptw.hgatp.mode(io.ptw.hgatp.mode.getWidth-1) /** Enable Virtual Memory when: * 1. statically configured * 1. satp highest bits enabled * i. RV32: * - 0 -> Bare * - 1 -> SV32 * i. RV64: * - 0000 -> Bare * - 1000 -> SV39 * - 1001 -> SV48 * - 1010 -> SV57 * - 1011 -> SV64 * 1. In virtualization mode, vsatp highest bits enabled * 1. priv mode in U and S. * 1. in H & M mode, disable VM. * 1. no passthrough(micro-arch defined.) * * @see RV-priv spec 4.1.11 Supervisor Address Translation and Protection (satp) Register * @see RV-priv spec 8.2.18 Virtual Supervisor Address Translation and Protection Register (vsatp) */ val vm_enabled = (stage1_en || stage2_en) && priv_uses_vm && !io.req.bits.passthrough // flush guest entries on vsatp.MODE Bare <-> SvXX transitions val v_entries_use_stage1 = RegInit(false.B) val vsatp_mode_mismatch = priv_v && (vstage1_en =/= v_entries_use_stage1) && !io.req.bits.passthrough // share a single physical memory attribute checker (unshare if critical path) val refill_ppn = io.ptw.resp.bits.pte.ppn(ppnBits-1, 0) /** refill signal */ val do_refill = usingVM.B && io.ptw.resp.valid /** sfence invalidate refill */ val invalidate_refill = state.isOneOf(s_request /* don't care */, s_wait_invalidate) || io.sfence.valid // PMP val mpu_ppn = Mux(do_refill, refill_ppn, Mux(vm_enabled && special_entry.nonEmpty.B, special_entry.map(e => e.ppn(vpn, e.getData(vpn))).getOrElse(0.U), io.req.bits.vaddr >> pgIdxBits)) val mpu_physaddr = Cat(mpu_ppn, io.req.bits.vaddr(pgIdxBits-1, 0)) val mpu_priv = Mux[UInt](usingVM.B && (do_refill || io.req.bits.passthrough /* PTW */), PRV.S.U, Cat(io.ptw.status.debug, priv)) val pmp = Module(new PMPChecker(lgMaxSize)) pmp.io.addr := mpu_physaddr pmp.io.size := io.req.bits.size pmp.io.pmp := (io.ptw.pmp: Seq[PMP]) pmp.io.prv := mpu_priv val pma = Module(new PMAChecker(edge.manager)(p)) pma.io.paddr := mpu_physaddr // todo: using DataScratchpad doesn't support cacheable. val cacheable = pma.io.resp.cacheable && (instruction || !usingDataScratchpad).B val homogeneous = TLBPageLookup(edge.manager.managers, xLen, p(CacheBlockBytes), BigInt(1) << pgIdxBits, 1 << lgMaxSize)(mpu_physaddr).homogeneous // In M mode, if access DM address(debug module program buffer) val deny_access_to_debug = mpu_priv <= PRV.M.U && p(DebugModuleKey).map(dmp => dmp.address.contains(mpu_physaddr)).getOrElse(false.B) val prot_r = pma.io.resp.r && !deny_access_to_debug && pmp.io.r val prot_w = pma.io.resp.w && !deny_access_to_debug && pmp.io.w val prot_pp = pma.io.resp.pp val prot_al = pma.io.resp.al val prot_aa = pma.io.resp.aa val prot_x = pma.io.resp.x && !deny_access_to_debug && pmp.io.x val prot_eff = pma.io.resp.eff // hit check val sector_hits = sectored_entries(memIdx).map(_.sectorHit(vpn, priv_v)) val superpage_hits = superpage_entries.map(_.hit(vpn, priv_v)) val hitsVec = all_entries.map(vm_enabled && _.hit(vpn, priv_v)) val real_hits = hitsVec.asUInt val hits = Cat(!vm_enabled, real_hits) // use ptw response to refill // permission bit arrays when (do_refill) { val pte = io.ptw.resp.bits.pte val refill_v = r_vstage1_en || r_stage2_en val newEntry = Wire(new TLBEntryData) newEntry.ppn := pte.ppn newEntry.c := cacheable newEntry.u := pte.u newEntry.g := pte.g && pte.v newEntry.ae_ptw := io.ptw.resp.bits.ae_ptw newEntry.ae_final := io.ptw.resp.bits.ae_final newEntry.ae_stage2 := io.ptw.resp.bits.ae_final && io.ptw.resp.bits.gpa_is_pte && r_stage2_en newEntry.pf := io.ptw.resp.bits.pf newEntry.gf := io.ptw.resp.bits.gf newEntry.hr := io.ptw.resp.bits.hr newEntry.hw := io.ptw.resp.bits.hw newEntry.hx := io.ptw.resp.bits.hx newEntry.sr := pte.sr() newEntry.sw := pte.sw() newEntry.sx := pte.sx() newEntry.pr := prot_r newEntry.pw := prot_w newEntry.px := prot_x newEntry.ppp := prot_pp newEntry.pal := prot_al newEntry.paa := prot_aa newEntry.eff := prot_eff newEntry.fragmented_superpage := io.ptw.resp.bits.fragmented_superpage // refill special_entry when (special_entry.nonEmpty.B && !io.ptw.resp.bits.homogeneous) { special_entry.foreach(_.insert(r_refill_tag, refill_v, io.ptw.resp.bits.level, newEntry)) }.elsewhen (io.ptw.resp.bits.level < (pgLevels-1).U) { val waddr = Mux(r_superpage_hit.valid && usingHypervisor.B, r_superpage_hit.bits, r_superpage_repl_addr) for ((e, i) <- superpage_entries.zipWithIndex) when (r_superpage_repl_addr === i.U) { e.insert(r_refill_tag, refill_v, io.ptw.resp.bits.level, newEntry) when (invalidate_refill) { e.invalidate() } } // refill sectored_hit }.otherwise { val r_memIdx = r_refill_tag.extract(cfg.nSectors.log2 + cfg.nSets.log2 - 1, cfg.nSectors.log2) val waddr = Mux(r_sectored_hit.valid, r_sectored_hit.bits, r_sectored_repl_addr) for ((e, i) <- sectored_entries(r_memIdx).zipWithIndex) when (waddr === i.U) { when (!r_sectored_hit.valid) { e.invalidate() } e.insert(r_refill_tag, refill_v, 0.U, newEntry) when (invalidate_refill) { e.invalidate() } } } r_gpa_valid := io.ptw.resp.bits.gpa.valid r_gpa := io.ptw.resp.bits.gpa.bits r_gpa_is_pte := io.ptw.resp.bits.gpa_is_pte } // get all entries data. val entries = all_entries.map(_.getData(vpn)) val normal_entries = entries.take(ordinary_entries.size) // parallel query PPN from [[all_entries]], if VM not enabled return VPN instead val ppn = Mux1H(hitsVec :+ !vm_enabled, (all_entries zip entries).map{ case (entry, data) => entry.ppn(vpn, data) } :+ vpn(ppnBits-1, 0)) val nPhysicalEntries = 1 + special_entry.size // generally PTW misaligned load exception. val ptw_ae_array = Cat(false.B, entries.map(_.ae_ptw).asUInt) val final_ae_array = Cat(false.B, entries.map(_.ae_final).asUInt) val ptw_pf_array = Cat(false.B, entries.map(_.pf).asUInt) val ptw_gf_array = Cat(false.B, entries.map(_.gf).asUInt) val sum = Mux(priv_v, io.ptw.gstatus.sum, io.ptw.status.sum) // if in hypervisor/machine mode, cannot read/write user entries. // if in superviosr/user mode, "If the SUM bit in the sstatus register is set, supervisor mode software may also access pages with U=1.(from spec)" val priv_rw_ok = Mux(!priv_s || sum, entries.map(_.u).asUInt, 0.U) | Mux(priv_s, ~entries.map(_.u).asUInt, 0.U) // if in hypervisor/machine mode, other than user pages, all pages are executable. // if in superviosr/user mode, only user page can execute. val priv_x_ok = Mux(priv_s, ~entries.map(_.u).asUInt, entries.map(_.u).asUInt) val stage1_bypass = Fill(entries.size, usingHypervisor.B) & (Fill(entries.size, !stage1_en) | entries.map(_.ae_stage2).asUInt) val mxr = io.ptw.status.mxr | Mux(priv_v, io.ptw.gstatus.mxr, false.B) // "The vsstatus field MXR, which makes execute-only pages readable, only overrides VS-stage page protection.(from spec)" val r_array = Cat(true.B, (priv_rw_ok & (entries.map(_.sr).asUInt | Mux(mxr, entries.map(_.sx).asUInt, 0.U))) | stage1_bypass) val w_array = Cat(true.B, (priv_rw_ok & entries.map(_.sw).asUInt) | stage1_bypass) val x_array = Cat(true.B, (priv_x_ok & entries.map(_.sx).asUInt) | stage1_bypass) val stage2_bypass = Fill(entries.size, !stage2_en) val hr_array = Cat(true.B, entries.map(_.hr).asUInt | Mux(io.ptw.status.mxr, entries.map(_.hx).asUInt, 0.U) | stage2_bypass) val hw_array = Cat(true.B, entries.map(_.hw).asUInt | stage2_bypass) val hx_array = Cat(true.B, entries.map(_.hx).asUInt | stage2_bypass) // These array is for each TLB entries. // user mode can read: PMA OK, TLB OK, AE OK val pr_array = Cat(Fill(nPhysicalEntries, prot_r), normal_entries.map(_.pr).asUInt) & ~(ptw_ae_array | final_ae_array) // user mode can write: PMA OK, TLB OK, AE OK val pw_array = Cat(Fill(nPhysicalEntries, prot_w), normal_entries.map(_.pw).asUInt) & ~(ptw_ae_array | final_ae_array) // user mode can write: PMA OK, TLB OK, AE OK val px_array = Cat(Fill(nPhysicalEntries, prot_x), normal_entries.map(_.px).asUInt) & ~(ptw_ae_array | final_ae_array) // put effect val eff_array = Cat(Fill(nPhysicalEntries, prot_eff), normal_entries.map(_.eff).asUInt) // cacheable val c_array = Cat(Fill(nPhysicalEntries, cacheable), normal_entries.map(_.c).asUInt) // put partial val ppp_array = Cat(Fill(nPhysicalEntries, prot_pp), normal_entries.map(_.ppp).asUInt) // atomic arithmetic val paa_array = Cat(Fill(nPhysicalEntries, prot_aa), normal_entries.map(_.paa).asUInt) // atomic logic val pal_array = Cat(Fill(nPhysicalEntries, prot_al), normal_entries.map(_.pal).asUInt) val ppp_array_if_cached = ppp_array | c_array val paa_array_if_cached = paa_array | (if(usingAtomicsInCache) c_array else 0.U) val pal_array_if_cached = pal_array | (if(usingAtomicsInCache) c_array else 0.U) val prefetchable_array = Cat((cacheable && homogeneous) << (nPhysicalEntries-1), normal_entries.map(_.c).asUInt) // vaddr misaligned: vaddr[1:0]=b00 val misaligned = (io.req.bits.vaddr & (UIntToOH(io.req.bits.size) - 1.U)).orR def badVA(guestPA: Boolean): Bool = { val additionalPgLevels = (if (guestPA) io.ptw.hgatp else satp).additionalPgLevels val extraBits = if (guestPA) hypervisorExtraAddrBits else 0 val signed = !guestPA val nPgLevelChoices = pgLevels - minPgLevels + 1 val minVAddrBits = pgIdxBits + minPgLevels * pgLevelBits + extraBits (for (i <- 0 until nPgLevelChoices) yield { val mask = ((BigInt(1) << vaddrBitsExtended) - (BigInt(1) << (minVAddrBits + i * pgLevelBits - signed.toInt))).U val maskedVAddr = io.req.bits.vaddr & mask additionalPgLevels === i.U && !(maskedVAddr === 0.U || signed.B && maskedVAddr === mask) }).orR } val bad_gpa = if (!usingHypervisor) false.B else vm_enabled && !stage1_en && badVA(true) val bad_va = if (!usingVM || (minPgLevels == pgLevels && vaddrBits == vaddrBitsExtended)) false.B else vm_enabled && stage1_en && badVA(false) val cmd_lrsc = usingAtomics.B && io.req.bits.cmd.isOneOf(M_XLR, M_XSC) val cmd_amo_logical = usingAtomics.B && isAMOLogical(io.req.bits.cmd) val cmd_amo_arithmetic = usingAtomics.B && isAMOArithmetic(io.req.bits.cmd) val cmd_put_partial = io.req.bits.cmd === M_PWR val cmd_read = isRead(io.req.bits.cmd) val cmd_readx = usingHypervisor.B && io.req.bits.cmd === M_HLVX val cmd_write = isWrite(io.req.bits.cmd) val cmd_write_perms = cmd_write || io.req.bits.cmd.isOneOf(M_FLUSH_ALL, M_WOK) // not a write, but needs write permissions val lrscAllowed = Mux((usingDataScratchpad || usingAtomicsOnlyForIO).B, 0.U, c_array) val ae_array = Mux(misaligned, eff_array, 0.U) | Mux(cmd_lrsc, ~lrscAllowed, 0.U) // access exception needs SoC information from PMA val ae_ld_array = Mux(cmd_read, ae_array | ~pr_array, 0.U) val ae_st_array = Mux(cmd_write_perms, ae_array | ~pw_array, 0.U) | Mux(cmd_put_partial, ~ppp_array_if_cached, 0.U) | Mux(cmd_amo_logical, ~pal_array_if_cached, 0.U) | Mux(cmd_amo_arithmetic, ~paa_array_if_cached, 0.U) val must_alloc_array = Mux(cmd_put_partial, ~ppp_array, 0.U) | Mux(cmd_amo_logical, ~pal_array, 0.U) | Mux(cmd_amo_arithmetic, ~paa_array, 0.U) | Mux(cmd_lrsc, ~0.U(pal_array.getWidth.W), 0.U) val pf_ld_array = Mux(cmd_read, ((~Mux(cmd_readx, x_array, r_array) & ~ptw_ae_array) | ptw_pf_array) & ~ptw_gf_array, 0.U) val pf_st_array = Mux(cmd_write_perms, ((~w_array & ~ptw_ae_array) | ptw_pf_array) & ~ptw_gf_array, 0.U) val pf_inst_array = ((~x_array & ~ptw_ae_array) | ptw_pf_array) & ~ptw_gf_array val gf_ld_array = Mux(priv_v && cmd_read, (~Mux(cmd_readx, hx_array, hr_array) | ptw_gf_array) & ~ptw_ae_array, 0.U) val gf_st_array = Mux(priv_v && cmd_write_perms, (~hw_array | ptw_gf_array) & ~ptw_ae_array, 0.U) val gf_inst_array = Mux(priv_v, (~hx_array | ptw_gf_array) & ~ptw_ae_array, 0.U) val gpa_hits = { val need_gpa_mask = if (instruction) gf_inst_array else gf_ld_array | gf_st_array val hit_mask = Fill(ordinary_entries.size, r_gpa_valid && r_gpa_vpn === vpn) | Fill(all_entries.size, !vstage1_en) hit_mask | ~need_gpa_mask(all_entries.size-1, 0) } val tlb_hit_if_not_gpa_miss = real_hits.orR val tlb_hit = (real_hits & gpa_hits).orR // leads to s_request val tlb_miss = vm_enabled && !vsatp_mode_mismatch && !bad_va && !tlb_hit val sectored_plru = new SetAssocLRU(cfg.nSets, sectored_entries.head.size, "plru") val superpage_plru = new PseudoLRU(superpage_entries.size) when (io.req.valid && vm_enabled) { // replace when (sector_hits.orR) { sectored_plru.access(memIdx, OHToUInt(sector_hits)) } when (superpage_hits.orR) { superpage_plru.access(OHToUInt(superpage_hits)) } } // Superpages create the possibility that two entries in the TLB may match. // This corresponds to a software bug, but we can't return complete garbage; // we must return either the old translation or the new translation. This // isn't compatible with the Mux1H approach. So, flush the TLB and report // a miss on duplicate entries. val multipleHits = PopCountAtLeast(real_hits, 2) // only pull up req.ready when this is s_ready state. io.req.ready := state === s_ready // page fault io.resp.pf.ld := (bad_va && cmd_read) || (pf_ld_array & hits).orR io.resp.pf.st := (bad_va && cmd_write_perms) || (pf_st_array & hits).orR io.resp.pf.inst := bad_va || (pf_inst_array & hits).orR // guest page fault io.resp.gf.ld := (bad_gpa && cmd_read) || (gf_ld_array & hits).orR io.resp.gf.st := (bad_gpa && cmd_write_perms) || (gf_st_array & hits).orR io.resp.gf.inst := bad_gpa || (gf_inst_array & hits).orR // access exception io.resp.ae.ld := (ae_ld_array & hits).orR io.resp.ae.st := (ae_st_array & hits).orR io.resp.ae.inst := (~px_array & hits).orR // misaligned io.resp.ma.ld := misaligned && cmd_read io.resp.ma.st := misaligned && cmd_write io.resp.ma.inst := false.B // this is up to the pipeline to figure out io.resp.cacheable := (c_array & hits).orR io.resp.must_alloc := (must_alloc_array & hits).orR io.resp.prefetchable := (prefetchable_array & hits).orR && edge.manager.managers.forall(m => !m.supportsAcquireB || m.supportsHint).B io.resp.miss := do_refill || vsatp_mode_mismatch || tlb_miss || multipleHits io.resp.paddr := Cat(ppn, io.req.bits.vaddr(pgIdxBits-1, 0)) io.resp.size := io.req.bits.size io.resp.cmd := io.req.bits.cmd io.resp.gpa_is_pte := vstage1_en && r_gpa_is_pte io.resp.gpa := { val page = Mux(!vstage1_en, Cat(bad_gpa, vpn), r_gpa >> pgIdxBits) val offset = Mux(io.resp.gpa_is_pte, r_gpa(pgIdxBits-1, 0), io.req.bits.vaddr(pgIdxBits-1, 0)) Cat(page, offset) } io.ptw.req.valid := state === s_request io.ptw.req.bits.valid := !io.kill io.ptw.req.bits.bits.addr := r_refill_tag io.ptw.req.bits.bits.vstage1 := r_vstage1_en io.ptw.req.bits.bits.stage2 := r_stage2_en io.ptw.req.bits.bits.need_gpa := r_need_gpa if (usingVM) { when(io.ptw.req.fire && io.ptw.req.bits.valid) { r_gpa_valid := false.B r_gpa_vpn := r_refill_tag } val sfence = io.sfence.valid // this is [[s_ready]] // handle miss/hit at the first cycle. // if miss, request PTW(L2TLB). when (io.req.fire && tlb_miss) { state := s_request r_refill_tag := vpn r_need_gpa := tlb_hit_if_not_gpa_miss r_vstage1_en := vstage1_en r_stage2_en := stage2_en r_superpage_repl_addr := replacementEntry(superpage_entries, superpage_plru.way) r_sectored_repl_addr := replacementEntry(sectored_entries(memIdx), sectored_plru.way(memIdx)) r_sectored_hit.valid := sector_hits.orR r_sectored_hit.bits := OHToUInt(sector_hits) r_superpage_hit.valid := superpage_hits.orR r_superpage_hit.bits := OHToUInt(superpage_hits) } // Handle SFENCE.VMA when send request to PTW. // SFENCE.VMA io.ptw.req.ready kill // ? ? 1 // 0 0 0 // 0 1 0 -> s_wait // 1 0 0 -> s_wait_invalidate // 1 0 0 -> s_ready when (state === s_request) { // SFENCE.VMA will kill TLB entries based on rs1 and rs2. It will take 1 cycle. when (sfence) { state := s_ready } // here should be io.ptw.req.fire, but assert(io.ptw.req.ready === true.B) // fire -> s_wait when (io.ptw.req.ready) { state := Mux(sfence, s_wait_invalidate, s_wait) } // If CPU kills request(frontend.s2_redirect) when (io.kill) { state := s_ready } } // sfence in refill will results in invalidate when (state === s_wait && sfence) { state := s_wait_invalidate } // after CPU acquire response, go back to s_ready. when (io.ptw.resp.valid) { state := s_ready } // SFENCE processing logic. when (sfence) { assert(!io.sfence.bits.rs1 || (io.sfence.bits.addr >> pgIdxBits) === vpn) for (e <- all_real_entries) { val hv = usingHypervisor.B && io.sfence.bits.hv val hg = usingHypervisor.B && io.sfence.bits.hg when (!hg && io.sfence.bits.rs1) { e.invalidateVPN(vpn, hv) } .elsewhen (!hg && io.sfence.bits.rs2) { e.invalidateNonGlobal(hv) } .otherwise { e.invalidate(hv || hg) } } } when(io.req.fire && vsatp_mode_mismatch) { all_real_entries.foreach(_.invalidate(true.B)) v_entries_use_stage1 := vstage1_en } when (multipleHits || reset.asBool) { all_real_entries.foreach(_.invalidate()) } ccover(io.ptw.req.fire, "MISS", "TLB miss") ccover(io.ptw.req.valid && !io.ptw.req.ready, "PTW_STALL", "TLB miss, but PTW busy") ccover(state === s_wait_invalidate, "SFENCE_DURING_REFILL", "flush TLB during TLB refill") ccover(sfence && !io.sfence.bits.rs1 && !io.sfence.bits.rs2, "SFENCE_ALL", "flush TLB") ccover(sfence && !io.sfence.bits.rs1 && io.sfence.bits.rs2, "SFENCE_ASID", "flush TLB ASID") ccover(sfence && io.sfence.bits.rs1 && !io.sfence.bits.rs2, "SFENCE_LINE", "flush TLB line") ccover(sfence && io.sfence.bits.rs1 && io.sfence.bits.rs2, "SFENCE_LINE_ASID", "flush TLB line/ASID") ccover(multipleHits, "MULTIPLE_HITS", "Two matching translations in TLB") } def ccover(cond: Bool, label: String, desc: String)(implicit sourceInfo: SourceInfo) = property.cover(cond, s"${if (instruction) "I" else "D"}TLB_$label", "MemorySystem;;" + desc) /** Decides which entry to be replaced * * If there is a invalid entry, replace it with priorityencoder; * if not, replace the alt entry * * @return mask for TLBEntry replacement */ def replacementEntry(set: Seq[TLBEntry], alt: UInt) = { val valids = set.map(_.valid.orR).asUInt Mux(valids.andR, alt, PriorityEncoder(~valids)) } } File TLBPermissions.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.rocket import chisel3._ import chisel3.util._ import freechips.rocketchip.diplomacy.{AddressSet, TransferSizes, RegionType, AddressDecoder} import freechips.rocketchip.tilelink.TLManagerParameters case class TLBPermissions( homogeneous: Bool, // if false, the below are undefined r: Bool, // readable w: Bool, // writeable x: Bool, // executable c: Bool, // cacheable a: Bool, // arithmetic ops l: Bool) // logical ops object TLBPageLookup { private case class TLBFixedPermissions( e: Boolean, // get-/put-effects r: Boolean, // readable w: Boolean, // writeable x: Boolean, // executable c: Boolean, // cacheable a: Boolean, // arithmetic ops l: Boolean) { // logical ops val useful = r || w || x || c || a || l } private def groupRegions(managers: Seq[TLManagerParameters]): Map[TLBFixedPermissions, Seq[AddressSet]] = { val permissions = managers.map { m => (m.address, TLBFixedPermissions( e = Seq(RegionType.PUT_EFFECTS, RegionType.GET_EFFECTS) contains m.regionType, r = m.supportsGet || m.supportsAcquireB, // if cached, never uses Get w = m.supportsPutFull || m.supportsAcquireT, // if cached, never uses Put x = m.executable, c = m.supportsAcquireB, a = m.supportsArithmetic, l = m.supportsLogical)) } permissions .filter(_._2.useful) // get rid of no-permission devices .groupBy(_._2) // group by permission type .mapValues(seq => AddressSet.unify(seq.flatMap(_._1))) // coalesce same-permission regions .toMap } // Unmapped memory is considered to be inhomogeneous def apply(managers: Seq[TLManagerParameters], xLen: Int, cacheBlockBytes: Int, pageSize: BigInt, maxRequestBytes: Int): UInt => TLBPermissions = { require (isPow2(xLen) && xLen >= 8) require (isPow2(cacheBlockBytes) && cacheBlockBytes >= xLen/8) require (isPow2(pageSize) && pageSize >= cacheBlockBytes) val xferSizes = TransferSizes(cacheBlockBytes, cacheBlockBytes) val allSizes = TransferSizes(1, maxRequestBytes) val amoSizes = TransferSizes(4, xLen/8) val permissions = managers.foreach { m => require (!m.supportsGet || m.supportsGet .contains(allSizes), s"Memory region '${m.name}' at ${m.address} only supports ${m.supportsGet} Get, but must support ${allSizes}") require (!m.supportsPutFull || m.supportsPutFull .contains(allSizes), s"Memory region '${m.name}' at ${m.address} only supports ${m.supportsPutFull} PutFull, but must support ${allSizes}") require (!m.supportsPutPartial || m.supportsPutPartial.contains(allSizes), s"Memory region '${m.name}' at ${m.address} only supports ${m.supportsPutPartial} PutPartial, but must support ${allSizes}") require (!m.supportsAcquireB || m.supportsAcquireB .contains(xferSizes), s"Memory region '${m.name}' at ${m.address} only supports ${m.supportsAcquireB} AcquireB, but must support ${xferSizes}") require (!m.supportsAcquireT || m.supportsAcquireT .contains(xferSizes), s"Memory region '${m.name}' at ${m.address} only supports ${m.supportsAcquireT} AcquireT, but must support ${xferSizes}") require (!m.supportsLogical || m.supportsLogical .contains(amoSizes), s"Memory region '${m.name}' at ${m.address} only supports ${m.supportsLogical} Logical, but must support ${amoSizes}") require (!m.supportsArithmetic || m.supportsArithmetic.contains(amoSizes), s"Memory region '${m.name}' at ${m.address} only supports ${m.supportsArithmetic} Arithmetic, but must support ${amoSizes}") require (!(m.supportsAcquireB && m.supportsPutFull && !m.supportsAcquireT), s"Memory region '${m.name}' supports AcquireB (cached read) and PutFull (un-cached write) but not AcquireT (cached write)") } val grouped = groupRegions(managers) .mapValues(_.filter(_.alignment >= pageSize)) // discard any region that's not big enough def lowCostProperty(prop: TLBFixedPermissions => Boolean): UInt => Bool = { val (yesm, nom) = grouped.partition { case (k, eq) => prop(k) } val (yes, no) = (yesm.values.flatten.toList, nom.values.flatten.toList) // Find the minimal bits needed to distinguish between yes and no val decisionMask = AddressDecoder(Seq(yes, no)) def simplify(x: Seq[AddressSet]) = AddressSet.unify(x.map(_.widen(~decisionMask)).distinct) val (yesf, nof) = (simplify(yes), simplify(no)) if (yesf.size < no.size) { (x: UInt) => yesf.map(_.contains(x)).foldLeft(false.B)(_ || _) } else { (x: UInt) => !nof.map(_.contains(x)).foldLeft(false.B)(_ || _) } } // Derive simplified property circuits (don't care when !homo) val rfn = lowCostProperty(_.r) val wfn = lowCostProperty(_.w) val xfn = lowCostProperty(_.x) val cfn = lowCostProperty(_.c) val afn = lowCostProperty(_.a) val lfn = lowCostProperty(_.l) val homo = AddressSet.unify(grouped.values.flatten.toList) (x: UInt) => TLBPermissions( homogeneous = homo.map(_.contains(x)).foldLeft(false.B)(_ || _), r = rfn(x), w = wfn(x), x = xfn(x), c = cfn(x), a = afn(x), l = lfn(x)) } // Are all pageSize intervals of mapped regions homogeneous? def homogeneous(managers: Seq[TLManagerParameters], pageSize: BigInt): Boolean = { groupRegions(managers).values.forall(_.forall(_.alignment >= pageSize)) } } File Parameters.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.diplomacy import chisel3._ import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor} import freechips.rocketchip.util.ShiftQueue /** Options for describing the attributes of memory regions */ object RegionType { // Define the 'more relaxed than' ordering val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS) sealed trait T extends Ordered[T] { def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this) } case object CACHED extends T // an intermediate agent may have cached a copy of the region for you case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively } // A non-empty half-open range; [start, end) case class IdRange(start: Int, end: Int) extends Ordered[IdRange] { require (start >= 0, s"Ids cannot be negative, but got: $start.") require (start <= end, "Id ranges cannot be negative.") def compare(x: IdRange) = { val primary = (this.start - x.start).signum val secondary = (x.end - this.end).signum if (primary != 0) primary else secondary } def overlaps(x: IdRange) = start < x.end && x.start < end def contains(x: IdRange) = start <= x.start && x.end <= end def contains(x: Int) = start <= x && x < end def contains(x: UInt) = if (size == 0) { false.B } else if (size == 1) { // simple comparison x === start.U } else { // find index of largest different bit val largestDeltaBit = log2Floor(start ^ (end-1)) val smallestCommonBit = largestDeltaBit + 1 // may not exist in x val uncommonMask = (1 << smallestCommonBit) - 1 val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0) // the prefix must match exactly (note: may shift ALL bits away) (x >> smallestCommonBit) === (start >> smallestCommonBit).U && // firrtl constant prop range analysis can eliminate these two: (start & uncommonMask).U <= uncommonBits && uncommonBits <= ((end-1) & uncommonMask).U } def shift(x: Int) = IdRange(start+x, end+x) def size = end - start def isEmpty = end == start def range = start until end } object IdRange { def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else { val ranges = s.sorted (ranges.tail zip ranges.init) find { case (a, b) => a overlaps b } } } // An potentially empty inclusive range of 2-powers [min, max] (in bytes) case class TransferSizes(min: Int, max: Int) { def this(x: Int) = this(x, x) require (min <= max, s"Min transfer $min > max transfer $max") require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)") require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max") require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min") require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)") def none = min == 0 def contains(x: Int) = isPow2(x) && min <= x && x <= max def containsLg(x: Int) = contains(1 << x) def containsLg(x: UInt) = if (none) false.B else if (min == max) { log2Ceil(min).U === x } else { log2Ceil(min).U <= x && x <= log2Ceil(max).U } def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max) def intersect(x: TransferSizes) = if (x.max < min || max < x.min) TransferSizes.none else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max)) // Not a union, because the result may contain sizes contained by neither term // NOT TO BE CONFUSED WITH COVERPOINTS def mincover(x: TransferSizes) = { if (none) { x } else if (x.none) { this } else { TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max)) } } override def toString() = "TransferSizes[%d, %d]".format(min, max) } object TransferSizes { def apply(x: Int) = new TransferSizes(x) val none = new TransferSizes(0) def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _) def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _) implicit def asBool(x: TransferSizes) = !x.none } // AddressSets specify the address space managed by the manager // Base is the base address, and mask are the bits consumed by the manager // e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff // e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ... case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet] { // Forbid misaligned base address (and empty sets) require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}") require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous // We do allow negative mask (=> ignore all high bits) def contains(x: BigInt) = ((x ^ base) & ~mask) == 0 def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S // turn x into an address contained in this set def legalize(x: UInt): UInt = base.U | (mask.U & x) // overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1) def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0 // contains iff bitwise: x.mask => mask && contains(x.base) def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0 // The number of bytes to which the manager must be aligned def alignment = ((mask + 1) & ~mask) // Is this a contiguous memory range def contiguous = alignment == mask+1 def finite = mask >= 0 def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask } // Widen the match function to ignore all bits in imask def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask) // Return an AddressSet that only contains the addresses both sets contain def intersect(x: AddressSet): Option[AddressSet] = { if (!overlaps(x)) { None } else { val r_mask = mask & x.mask val r_base = base | x.base Some(AddressSet(r_base, r_mask)) } } def subtract(x: AddressSet): Seq[AddressSet] = { intersect(x) match { case None => Seq(this) case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit => val nmask = (mask & (bit-1)) | remove.mask val nbase = (remove.base ^ bit) & ~nmask AddressSet(nbase, nmask) } } } // AddressSets have one natural Ordering (the containment order, if contiguous) def compare(x: AddressSet) = { val primary = (this.base - x.base).signum // smallest address first val secondary = (x.mask - this.mask).signum // largest mask first if (primary != 0) primary else secondary } // We always want to see things in hex override def toString() = { if (mask >= 0) { "AddressSet(0x%x, 0x%x)".format(base, mask) } else { "AddressSet(0x%x, ~0x%x)".format(base, ~mask) } } def toRanges = { require (finite, "Ranges cannot be calculated on infinite mask") val size = alignment val fragments = mask & ~(size-1) val bits = bitIndexes(fragments) (BigInt(0) until (BigInt(1) << bits.size)).map { i => val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) } AddressRange(off, size) } } } object AddressSet { val everything = AddressSet(0, -1) def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = { if (size == 0) tail.reverse else { val maxBaseAlignment = base & (-base) // 0 for infinite (LSB) val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size val step = if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment) maxSizeAlignment else maxBaseAlignment misaligned(base+step, size-step, AddressSet(base, step-1) +: tail) } } def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = { // Pair terms up by ignoring 'bit' seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) => if (seq.size == 1) { seq.head // singleton -> unaffected } else { key.copy(mask = key.mask | bit) // pair - widen mask by bit } }.toList } def unify(seq: Seq[AddressSet]): Seq[AddressSet] = { val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _) AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted } def enumerateMask(mask: BigInt): Seq[BigInt] = { def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] = if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail) helper(0, Nil) } def enumerateBits(mask: BigInt): Seq[BigInt] = { def helper(x: BigInt): Seq[BigInt] = { if (x == 0) { Nil } else { val bit = x & (-x) bit +: helper(x & ~bit) } } helper(mask) } } case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean) { require (depth >= 0, "Buffer depth must be >= 0") def isDefined = depth > 0 def latency = if (isDefined && !flow) 1 else 0 def apply[T <: Data](x: DecoupledIO[T]) = if (isDefined) Queue(x, depth, flow=flow, pipe=pipe) else x def irrevocable[T <: Data](x: ReadyValidIO[T]) = if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe) else x def sq[T <: Data](x: DecoupledIO[T]) = if (!isDefined) x else { val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe)) sq.io.enq <> x sq.io.deq } override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "") } object BufferParams { implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false) val default = BufferParams(2) val none = BufferParams(0) val flow = BufferParams(1, true, false) val pipe = BufferParams(1, false, true) } case class TriStateValue(value: Boolean, set: Boolean) { def update(orig: Boolean) = if (set) value else orig } object TriStateValue { implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true) def unset = TriStateValue(false, false) } trait DirectedBuffers[T] { def copyIn(x: BufferParams): T def copyOut(x: BufferParams): T def copyInOut(x: BufferParams): T } trait IdMapEntry { def name: String def from: IdRange def to: IdRange def isCache: Boolean def requestFifo: Boolean def maxTransactionsInFlight: Option[Int] def pretty(fmt: String) = if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5 fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } else { fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } } abstract class IdMap[T <: IdMapEntry] { protected val fmt: String val mapping: Seq[T] def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n") } File PTW.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.rocket import chisel3._ import chisel3.util.{Arbiter, Cat, Decoupled, Enum, Mux1H, OHToUInt, PopCount, PriorityEncoder, PriorityEncoderOH, RegEnable, UIntToOH, Valid, is, isPow2, log2Ceil, switch} import chisel3.withClock import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.subsystem.CacheBlockBytes import freechips.rocketchip.tile._ import freechips.rocketchip.tilelink._ import freechips.rocketchip.util._ import freechips.rocketchip.util.property import scala.collection.mutable.ListBuffer /** PTE request from TLB to PTW * * TLB send a PTE request to PTW when L1TLB miss */ class PTWReq(implicit p: Parameters) extends CoreBundle()(p) { val addr = UInt(vpnBits.W) val need_gpa = Bool() val vstage1 = Bool() val stage2 = Bool() } /** PTE info from L2TLB to TLB * * containing: target PTE, exceptions, two-satge tanslation info */ class PTWResp(implicit p: Parameters) extends CoreBundle()(p) { /** ptw access exception */ val ae_ptw = Bool() /** final access exception */ val ae_final = Bool() /** page fault */ val pf = Bool() /** guest page fault */ val gf = Bool() /** hypervisor read */ val hr = Bool() /** hypervisor write */ val hw = Bool() /** hypervisor execute */ val hx = Bool() /** PTE to refill L1TLB * * source: L2TLB */ val pte = new PTE /** pte pglevel */ val level = UInt(log2Ceil(pgLevels).W) /** fragmented_superpage support */ val fragmented_superpage = Bool() /** homogeneous for both pma and pmp */ val homogeneous = Bool() val gpa = Valid(UInt(vaddrBits.W)) val gpa_is_pte = Bool() } /** IO between TLB and PTW * * PTW receives : * - PTE request * - CSRs info * - pmp results from PMP(in TLB) */ class TLBPTWIO(implicit p: Parameters) extends CoreBundle()(p) with HasCoreParameters { val req = Decoupled(Valid(new PTWReq)) val resp = Flipped(Valid(new PTWResp)) val ptbr = Input(new PTBR()) val hgatp = Input(new PTBR()) val vsatp = Input(new PTBR()) val status = Input(new MStatus()) val hstatus = Input(new HStatus()) val gstatus = Input(new MStatus()) val pmp = Input(Vec(nPMPs, new PMP)) val customCSRs = Flipped(coreParams.customCSRs) } /** PTW performance statistics */ class PTWPerfEvents extends Bundle { val l2miss = Bool() val l2hit = Bool() val pte_miss = Bool() val pte_hit = Bool() } /** Datapath IO between PTW and Core * * PTW receives CSRs info, pmp checks, sfence instruction info * * PTW sends its performance statistics to core */ class DatapathPTWIO(implicit p: Parameters) extends CoreBundle()(p) with HasCoreParameters { val ptbr = Input(new PTBR()) val hgatp = Input(new PTBR()) val vsatp = Input(new PTBR()) val sfence = Flipped(Valid(new SFenceReq)) val status = Input(new MStatus()) val hstatus = Input(new HStatus()) val gstatus = Input(new MStatus()) val pmp = Input(Vec(nPMPs, new PMP)) val perf = Output(new PTWPerfEvents()) val customCSRs = Flipped(coreParams.customCSRs) /** enable clock generated by ptw */ val clock_enabled = Output(Bool()) } /** PTE template for transmission * * contains useful methods to check PTE attributes * @see RV-priv spec 4.3.1 for pgae table entry format */ class PTE(implicit p: Parameters) extends CoreBundle()(p) { val reserved_for_future = UInt(10.W) val ppn = UInt(44.W) val reserved_for_software = Bits(2.W) /** dirty bit */ val d = Bool() /** access bit */ val a = Bool() /** global mapping */ val g = Bool() /** user mode accessible */ val u = Bool() /** whether the page is executable */ val x = Bool() /** whether the page is writable */ val w = Bool() /** whether the page is readable */ val r = Bool() /** valid bit */ val v = Bool() /** return true if find a pointer to next level page table */ def table(dummy: Int = 0) = v && !r && !w && !x && !d && !a && !u && reserved_for_future === 0.U /** return true if find a leaf PTE */ def leaf(dummy: Int = 0) = v && (r || (x && !w)) && a /** user read */ def ur(dummy: Int = 0) = sr() && u /** user write*/ def uw(dummy: Int = 0) = sw() && u /** user execute */ def ux(dummy: Int = 0) = sx() && u /** supervisor read */ def sr(dummy: Int = 0) = leaf() && r /** supervisor write */ def sw(dummy: Int = 0) = leaf() && w && d /** supervisor execute */ def sx(dummy: Int = 0) = leaf() && x /** full permission: writable and executable in user mode */ def isFullPerm(dummy: Int = 0) = uw() && ux() } /** L2TLB PTE template * * contains tag bits * @param nSets number of sets in L2TLB * @see RV-priv spec 4.3.1 for page table entry format */ class L2TLBEntry(nSets: Int)(implicit p: Parameters) extends CoreBundle()(p) with HasCoreParameters { val idxBits = log2Ceil(nSets) val tagBits = maxSVAddrBits - pgIdxBits - idxBits + (if (usingHypervisor) 1 else 0) val tag = UInt(tagBits.W) val ppn = UInt(ppnBits.W) /** dirty bit */ val d = Bool() /** access bit */ val a = Bool() /** user mode accessible */ val u = Bool() /** whether the page is executable */ val x = Bool() /** whether the page is writable */ val w = Bool() /** whether the page is readable */ val r = Bool() } /** PTW contains L2TLB, and performs page table walk for high level TLB, and cache queries from L1 TLBs(I$, D$, RoCC) * * It performs hierarchy page table query to mem for the desired leaf PTE and cache them in l2tlb. * Besides leaf PTEs, it also caches non-leaf PTEs in pte_cache to accerlerate the process. * * ==Structure== * - l2tlb : for leaf PTEs * - set-associative (configurable with [[CoreParams.nL2TLBEntries]]and [[CoreParams.nL2TLBWays]])) * - PLRU * - pte_cache: for non-leaf PTEs * - set-associative * - LRU * - s2_pte_cache: for non-leaf PTEs in 2-stage translation * - set-associative * - PLRU * * l2tlb Pipeline: 3 stage * {{{ * stage 0 : read * stage 1 : decode * stage 2 : hit check * }}} * ==State Machine== * s_ready: ready to reveive request from TLB * s_req: request mem; pte_cache hit judge * s_wait1: deal with l2tlb error * s_wait2: final hit judge * s_wait3: receive mem response * s_fragment_superpage: for superpage PTE * * @note l2tlb hit happens in s_req or s_wait1 * @see RV-priv spec 4.3-4.6 for Virtual-Memory System * @see RV-priv spec 8.5 for Two-Stage Address Translation * @todo details in two-stage translation */ class PTW(n: Int)(implicit edge: TLEdgeOut, p: Parameters) extends CoreModule()(p) { val io = IO(new Bundle { /** to n TLB */ val requestor = Flipped(Vec(n, new TLBPTWIO)) /** to HellaCache */ val mem = new HellaCacheIO /** to Core * * contains CSRs info and performance statistics */ val dpath = new DatapathPTWIO }) val s_ready :: s_req :: s_wait1 :: s_dummy1 :: s_wait2 :: s_wait3 :: s_dummy2 :: s_fragment_superpage :: Nil = Enum(8) val state = RegInit(s_ready) val l2_refill_wire = Wire(Bool()) /** Arbiter to arbite request from n TLB */ val arb = Module(new Arbiter(Valid(new PTWReq), n)) // use TLB req as arbitor's input arb.io.in <> io.requestor.map(_.req) // receive req only when s_ready and not in refill arb.io.out.ready := (state === s_ready) && !l2_refill_wire val resp_valid = RegNext(VecInit(Seq.fill(io.requestor.size)(false.B))) val clock_en = state =/= s_ready || l2_refill_wire || arb.io.out.valid || io.dpath.sfence.valid || io.dpath.customCSRs.disableDCacheClockGate io.dpath.clock_enabled := usingVM.B && clock_en val gated_clock = if (!usingVM || !tileParams.dcache.get.clockGate) clock else ClockGate(clock, clock_en, "ptw_clock_gate") withClock (gated_clock) { // entering gated-clock domain val invalidated = Reg(Bool()) /** current PTE level * {{{ * 0 <= count <= pgLevel-1 * count = pgLevel - 1 : leaf PTE * count < pgLevel - 1 : non-leaf PTE * }}} */ val count = Reg(UInt(log2Ceil(pgLevels).W)) val resp_ae_ptw = Reg(Bool()) val resp_ae_final = Reg(Bool()) val resp_pf = Reg(Bool()) val resp_gf = Reg(Bool()) val resp_hr = Reg(Bool()) val resp_hw = Reg(Bool()) val resp_hx = Reg(Bool()) val resp_fragmented_superpage = Reg(Bool()) /** tlb request */ val r_req = Reg(new PTWReq) /** current selected way in arbitor */ val r_req_dest = Reg(Bits()) // to respond to L1TLB : l2_hit // to construct mem.req.addr val r_pte = Reg(new PTE) val r_hgatp = Reg(new PTBR) // 2-stage pageLevel val aux_count = Reg(UInt(log2Ceil(pgLevels).W)) /** pte for 2-stage translation */ val aux_pte = Reg(new PTE) val gpa_pgoff = Reg(UInt(pgIdxBits.W)) // only valid in resp_gf case val stage2 = Reg(Bool()) val stage2_final = Reg(Bool()) val satp = Mux(arb.io.out.bits.bits.vstage1, io.dpath.vsatp, io.dpath.ptbr) val r_hgatp_initial_count = pgLevels.U - minPgLevels.U - r_hgatp.additionalPgLevels /** 2-stage translation both enable */ val do_both_stages = r_req.vstage1 && r_req.stage2 val max_count = count max aux_count val vpn = Mux(r_req.vstage1 && stage2, aux_pte.ppn, r_req.addr) val mem_resp_valid = RegNext(io.mem.resp.valid) val mem_resp_data = RegNext(io.mem.resp.bits.data) io.mem.uncached_resp.map { resp => assert(!(resp.valid && io.mem.resp.valid)) resp.ready := true.B when (resp.valid) { mem_resp_valid := true.B mem_resp_data := resp.bits.data } } // construct pte from mem.resp val (pte, invalid_paddr, invalid_gpa) = { val tmp = mem_resp_data.asTypeOf(new PTE()) val res = WireDefault(tmp) res.ppn := Mux(do_both_stages && !stage2, tmp.ppn(vpnBits.min(tmp.ppn.getWidth)-1, 0), tmp.ppn(ppnBits-1, 0)) when (tmp.r || tmp.w || tmp.x) { // for superpage mappings, make sure PPN LSBs are zero for (i <- 0 until pgLevels-1) when (count <= i.U && tmp.ppn((pgLevels-1-i)*pgLevelBits-1, (pgLevels-2-i)*pgLevelBits) =/= 0.U) { res.v := false.B } } (res, Mux(do_both_stages && !stage2, (tmp.ppn >> vpnBits) =/= 0.U, (tmp.ppn >> ppnBits) =/= 0.U), do_both_stages && !stage2 && checkInvalidHypervisorGPA(r_hgatp, tmp.ppn)) } // find non-leaf PTE, need traverse val traverse = pte.table() && !invalid_paddr && !invalid_gpa && count < (pgLevels-1).U /** address send to mem for enquerry */ val pte_addr = if (!usingVM) 0.U else { val vpn_idxs = (0 until pgLevels).map { i => val width = pgLevelBits + (if (i <= pgLevels - minPgLevels) hypervisorExtraAddrBits else 0) (vpn >> (pgLevels - i - 1) * pgLevelBits)(width - 1, 0) } val mask = Mux(stage2 && count === r_hgatp_initial_count, ((1 << (hypervisorExtraAddrBits + pgLevelBits)) - 1).U, ((1 << pgLevelBits) - 1).U) val vpn_idx = vpn_idxs(count) & mask val raw_pte_addr = ((r_pte.ppn << pgLevelBits) | vpn_idx) << log2Ceil(xLen / 8) val size = if (usingHypervisor) vaddrBits else paddrBits //use r_pte.ppn as page table base address //use vpn slice as offset raw_pte_addr.apply(size.min(raw_pte_addr.getWidth) - 1, 0) } /** stage2_pte_cache input addr */ val stage2_pte_cache_addr = if (!usingHypervisor) 0.U else { val vpn_idxs = (0 until pgLevels - 1).map { i => (r_req.addr >> (pgLevels - i - 1) * pgLevelBits)(pgLevelBits - 1, 0) } val vpn_idx = vpn_idxs(aux_count) val raw_s2_pte_cache_addr = Cat(aux_pte.ppn, vpn_idx) << log2Ceil(xLen / 8) raw_s2_pte_cache_addr(vaddrBits.min(raw_s2_pte_cache_addr.getWidth) - 1, 0) } def makeFragmentedSuperpagePPN(ppn: UInt): Seq[UInt] = { (pgLevels-1 until 0 by -1).map(i => Cat(ppn >> (pgLevelBits*i), r_req.addr(((pgLevelBits*i) min vpnBits)-1, 0).padTo(pgLevelBits*i))) } /** PTECache caches non-leaf PTE * @param s2 true: 2-stage address translation */ def makePTECache(s2: Boolean): (Bool, UInt) = if (coreParams.nPTECacheEntries == 0) { (false.B, 0.U) } else { val plru = new PseudoLRU(coreParams.nPTECacheEntries) val valid = RegInit(0.U(coreParams.nPTECacheEntries.W)) val tags = Reg(Vec(coreParams.nPTECacheEntries, UInt((if (usingHypervisor) 1 + vaddrBits else paddrBits).W))) // not include full pte, only ppn val data = Reg(Vec(coreParams.nPTECacheEntries, UInt((if (usingHypervisor && s2) vpnBits else ppnBits).W))) val can_hit = if (s2) count === r_hgatp_initial_count && aux_count < (pgLevels-1).U && r_req.vstage1 && stage2 && !stage2_final else count < (pgLevels-1).U && Mux(r_req.vstage1, stage2, !r_req.stage2) val can_refill = if (s2) do_both_stages && !stage2 && !stage2_final else can_hit val tag = if (s2) Cat(true.B, stage2_pte_cache_addr.padTo(vaddrBits)) else Cat(r_req.vstage1, pte_addr.padTo(if (usingHypervisor) vaddrBits else paddrBits)) val hits = tags.map(_ === tag).asUInt & valid val hit = hits.orR && can_hit // refill with mem response when (mem_resp_valid && traverse && can_refill && !hits.orR && !invalidated) { val r = Mux(valid.andR, plru.way, PriorityEncoder(~valid)) valid := valid | UIntToOH(r) tags(r) := tag data(r) := pte.ppn plru.access(r) } // replace when (hit && state === s_req) { plru.access(OHToUInt(hits)) } when (io.dpath.sfence.valid && (!io.dpath.sfence.bits.rs1 || usingHypervisor.B && io.dpath.sfence.bits.hg)) { valid := 0.U } val lcount = if (s2) aux_count else count for (i <- 0 until pgLevels-1) { ccover(hit && state === s_req && lcount === i.U, s"PTE_CACHE_HIT_L$i", s"PTE cache hit, level $i") } (hit, Mux1H(hits, data)) } // generate pte_cache val (pte_cache_hit, pte_cache_data) = makePTECache(false) // generate pte_cache with 2-stage translation val (stage2_pte_cache_hit, stage2_pte_cache_data) = makePTECache(true) // pte_cache hit or 2-stage pte_cache hit val pte_hit = RegNext(false.B) io.dpath.perf.pte_miss := false.B io.dpath.perf.pte_hit := pte_hit && (state === s_req) && !io.dpath.perf.l2hit assert(!(io.dpath.perf.l2hit && (io.dpath.perf.pte_miss || io.dpath.perf.pte_hit)), "PTE Cache Hit/Miss Performance Monitor Events are lower priority than L2TLB Hit event") // l2_refill happens when find the leaf pte val l2_refill = RegNext(false.B) l2_refill_wire := l2_refill io.dpath.perf.l2miss := false.B io.dpath.perf.l2hit := false.B // l2tlb val (l2_hit, l2_error, l2_pte, l2_tlb_ram) = if (coreParams.nL2TLBEntries == 0) (false.B, false.B, WireDefault(0.U.asTypeOf(new PTE)), None) else { val code = new ParityCode require(isPow2(coreParams.nL2TLBEntries)) require(isPow2(coreParams.nL2TLBWays)) require(coreParams.nL2TLBEntries >= coreParams.nL2TLBWays) val nL2TLBSets = coreParams.nL2TLBEntries / coreParams.nL2TLBWays require(isPow2(nL2TLBSets)) val idxBits = log2Ceil(nL2TLBSets) val l2_plru = new SetAssocLRU(nL2TLBSets, coreParams.nL2TLBWays, "plru") val ram = DescribedSRAM( name = "l2_tlb_ram", desc = "L2 TLB", size = nL2TLBSets, data = Vec(coreParams.nL2TLBWays, UInt(code.width(new L2TLBEntry(nL2TLBSets).getWidth).W)) ) val g = Reg(Vec(coreParams.nL2TLBWays, UInt(nL2TLBSets.W))) val valid = RegInit(VecInit(Seq.fill(coreParams.nL2TLBWays)(0.U(nL2TLBSets.W)))) // use r_req to construct tag val (r_tag, r_idx) = Split(Cat(r_req.vstage1, r_req.addr(maxSVAddrBits-pgIdxBits-1, 0)), idxBits) /** the valid vec for the selected set(including n ways) */ val r_valid_vec = valid.map(_(r_idx)).asUInt val r_valid_vec_q = Reg(UInt(coreParams.nL2TLBWays.W)) val r_l2_plru_way = Reg(UInt(log2Ceil(coreParams.nL2TLBWays max 1).W)) r_valid_vec_q := r_valid_vec // replacement way r_l2_plru_way := (if (coreParams.nL2TLBWays > 1) l2_plru.way(r_idx) else 0.U) // refill with r_pte(leaf pte) when (l2_refill && !invalidated) { val entry = Wire(new L2TLBEntry(nL2TLBSets)) entry.ppn := r_pte.ppn entry.d := r_pte.d entry.a := r_pte.a entry.u := r_pte.u entry.x := r_pte.x entry.w := r_pte.w entry.r := r_pte.r entry.tag := r_tag // if all the way are valid, use plru to select one way to be replaced, // otherwise use PriorityEncoderOH to select one val wmask = if (coreParams.nL2TLBWays > 1) Mux(r_valid_vec_q.andR, UIntToOH(r_l2_plru_way, coreParams.nL2TLBWays), PriorityEncoderOH(~r_valid_vec_q)) else 1.U(1.W) ram.write(r_idx, VecInit(Seq.fill(coreParams.nL2TLBWays)(code.encode(entry.asUInt))), wmask.asBools) val mask = UIntToOH(r_idx) for (way <- 0 until coreParams.nL2TLBWays) { when (wmask(way)) { valid(way) := valid(way) | mask g(way) := Mux(r_pte.g, g(way) | mask, g(way) & ~mask) } } } // sfence happens when (io.dpath.sfence.valid) { val hg = usingHypervisor.B && io.dpath.sfence.bits.hg for (way <- 0 until coreParams.nL2TLBWays) { valid(way) := Mux(!hg && io.dpath.sfence.bits.rs1, valid(way) & ~UIntToOH(io.dpath.sfence.bits.addr(idxBits+pgIdxBits-1, pgIdxBits)), Mux(!hg && io.dpath.sfence.bits.rs2, valid(way) & g(way), 0.U)) } } val s0_valid = !l2_refill && arb.io.out.fire val s0_suitable = arb.io.out.bits.bits.vstage1 === arb.io.out.bits.bits.stage2 && !arb.io.out.bits.bits.need_gpa val s1_valid = RegNext(s0_valid && s0_suitable && arb.io.out.bits.valid) val s2_valid = RegNext(s1_valid) // read from tlb idx val s1_rdata = ram.read(arb.io.out.bits.bits.addr(idxBits-1, 0), s0_valid) val s2_rdata = s1_rdata.map(s1_rdway => code.decode(RegEnable(s1_rdway, s1_valid))) val s2_valid_vec = RegEnable(r_valid_vec, s1_valid) val s2_g_vec = RegEnable(VecInit(g.map(_(r_idx))), s1_valid) val s2_error = (0 until coreParams.nL2TLBWays).map(way => s2_valid_vec(way) && s2_rdata(way).error).orR when (s2_valid && s2_error) { valid.foreach { _ := 0.U }} // decode val s2_entry_vec = s2_rdata.map(_.uncorrected.asTypeOf(new L2TLBEntry(nL2TLBSets))) val s2_hit_vec = (0 until coreParams.nL2TLBWays).map(way => s2_valid_vec(way) && (r_tag === s2_entry_vec(way).tag)) val s2_hit = s2_valid && s2_hit_vec.orR io.dpath.perf.l2miss := s2_valid && !(s2_hit_vec.orR) io.dpath.perf.l2hit := s2_hit when (s2_hit) { l2_plru.access(r_idx, OHToUInt(s2_hit_vec)) assert((PopCount(s2_hit_vec) === 1.U) || s2_error, "L2 TLB multi-hit") } val s2_pte = Wire(new PTE) val s2_hit_entry = Mux1H(s2_hit_vec, s2_entry_vec) s2_pte.ppn := s2_hit_entry.ppn s2_pte.d := s2_hit_entry.d s2_pte.a := s2_hit_entry.a s2_pte.g := Mux1H(s2_hit_vec, s2_g_vec) s2_pte.u := s2_hit_entry.u s2_pte.x := s2_hit_entry.x s2_pte.w := s2_hit_entry.w s2_pte.r := s2_hit_entry.r s2_pte.v := true.B s2_pte.reserved_for_future := 0.U s2_pte.reserved_for_software := 0.U for (way <- 0 until coreParams.nL2TLBWays) { ccover(s2_hit && s2_hit_vec(way), s"L2_TLB_HIT_WAY$way", s"L2 TLB hit way$way") } (s2_hit, s2_error, s2_pte, Some(ram)) } // if SFENCE occurs during walk, don't refill PTE cache or L2 TLB until next walk invalidated := io.dpath.sfence.valid || (invalidated && state =/= s_ready) // mem request io.mem.keep_clock_enabled := false.B io.mem.req.valid := state === s_req || state === s_dummy1 io.mem.req.bits.phys := true.B io.mem.req.bits.cmd := M_XRD io.mem.req.bits.size := log2Ceil(xLen/8).U io.mem.req.bits.signed := false.B io.mem.req.bits.addr := pte_addr io.mem.req.bits.idx.foreach(_ := pte_addr) io.mem.req.bits.dprv := PRV.S.U // PTW accesses are S-mode by definition io.mem.req.bits.dv := do_both_stages && !stage2 io.mem.req.bits.tag := DontCare io.mem.req.bits.no_resp := false.B io.mem.req.bits.no_alloc := DontCare io.mem.req.bits.no_xcpt := DontCare io.mem.req.bits.data := DontCare io.mem.req.bits.mask := DontCare io.mem.s1_kill := l2_hit || (state =/= s_wait1) || resp_gf io.mem.s1_data := DontCare io.mem.s2_kill := false.B val pageGranularityPMPs = pmpGranularity >= (1 << pgIdxBits) require(!usingHypervisor || pageGranularityPMPs, s"hypervisor requires pmpGranularity >= ${1<<pgIdxBits}") val pmaPgLevelHomogeneous = (0 until pgLevels) map { i => val pgSize = BigInt(1) << (pgIdxBits + ((pgLevels - 1 - i) * pgLevelBits)) if (pageGranularityPMPs && i == pgLevels - 1) { require(TLBPageLookup.homogeneous(edge.manager.managers, pgSize), s"All memory regions must be $pgSize-byte aligned") true.B } else { TLBPageLookup(edge.manager.managers, xLen, p(CacheBlockBytes), pgSize, xLen/8)(r_pte.ppn << pgIdxBits).homogeneous } } val pmaHomogeneous = pmaPgLevelHomogeneous(count) val pmpHomogeneous = new PMPHomogeneityChecker(io.dpath.pmp).apply(r_pte.ppn << pgIdxBits, count) val homogeneous = pmaHomogeneous && pmpHomogeneous // response to tlb for (i <- 0 until io.requestor.size) { io.requestor(i).resp.valid := resp_valid(i) io.requestor(i).resp.bits.ae_ptw := resp_ae_ptw io.requestor(i).resp.bits.ae_final := resp_ae_final io.requestor(i).resp.bits.pf := resp_pf io.requestor(i).resp.bits.gf := resp_gf io.requestor(i).resp.bits.hr := resp_hr io.requestor(i).resp.bits.hw := resp_hw io.requestor(i).resp.bits.hx := resp_hx io.requestor(i).resp.bits.pte := r_pte io.requestor(i).resp.bits.level := max_count io.requestor(i).resp.bits.homogeneous := homogeneous || pageGranularityPMPs.B io.requestor(i).resp.bits.fragmented_superpage := resp_fragmented_superpage && pageGranularityPMPs.B io.requestor(i).resp.bits.gpa.valid := r_req.need_gpa io.requestor(i).resp.bits.gpa.bits := Cat(Mux(!stage2_final || !r_req.vstage1 || aux_count === (pgLevels - 1).U, aux_pte.ppn, makeFragmentedSuperpagePPN(aux_pte.ppn)(aux_count)), gpa_pgoff) io.requestor(i).resp.bits.gpa_is_pte := !stage2_final io.requestor(i).ptbr := io.dpath.ptbr io.requestor(i).hgatp := io.dpath.hgatp io.requestor(i).vsatp := io.dpath.vsatp io.requestor(i).customCSRs <> io.dpath.customCSRs io.requestor(i).status := io.dpath.status io.requestor(i).hstatus := io.dpath.hstatus io.requestor(i).gstatus := io.dpath.gstatus io.requestor(i).pmp := io.dpath.pmp } // control state machine val next_state = WireDefault(state) state := OptimizationBarrier(next_state) val do_switch = WireDefault(false.B) switch (state) { is (s_ready) { when (arb.io.out.fire) { val satp_initial_count = pgLevels.U - minPgLevels.U - satp.additionalPgLevels val vsatp_initial_count = pgLevels.U - minPgLevels.U - io.dpath.vsatp.additionalPgLevels val hgatp_initial_count = pgLevels.U - minPgLevels.U - io.dpath.hgatp.additionalPgLevels val aux_ppn = Mux(arb.io.out.bits.bits.vstage1, io.dpath.vsatp.ppn, arb.io.out.bits.bits.addr) r_req := arb.io.out.bits.bits r_req_dest := arb.io.chosen next_state := Mux(arb.io.out.bits.valid, s_req, s_ready) stage2 := arb.io.out.bits.bits.stage2 stage2_final := arb.io.out.bits.bits.stage2 && !arb.io.out.bits.bits.vstage1 count := Mux(arb.io.out.bits.bits.stage2, hgatp_initial_count, satp_initial_count) aux_count := Mux(arb.io.out.bits.bits.vstage1, vsatp_initial_count, 0.U) aux_pte.ppn := aux_ppn aux_pte.reserved_for_future := 0.U resp_ae_ptw := false.B resp_ae_final := false.B resp_pf := false.B resp_gf := checkInvalidHypervisorGPA(io.dpath.hgatp, aux_ppn) && arb.io.out.bits.bits.stage2 resp_hr := true.B resp_hw := true.B resp_hx := true.B resp_fragmented_superpage := false.B r_hgatp := io.dpath.hgatp assert(!arb.io.out.bits.bits.need_gpa || arb.io.out.bits.bits.stage2) } } is (s_req) { when(stage2 && count === r_hgatp_initial_count) { gpa_pgoff := Mux(aux_count === (pgLevels-1).U, r_req.addr << (xLen/8).log2, stage2_pte_cache_addr) } // pte_cache hit when (stage2_pte_cache_hit) { aux_count := aux_count + 1.U aux_pte.ppn := stage2_pte_cache_data aux_pte.reserved_for_future := 0.U pte_hit := true.B }.elsewhen (pte_cache_hit) { count := count + 1.U pte_hit := true.B }.otherwise { next_state := Mux(io.mem.req.ready, s_wait1, s_req) } when(resp_gf) { next_state := s_ready resp_valid(r_req_dest) := true.B } } is (s_wait1) { // This Mux is for the l2_error case; the l2_hit && !l2_error case is overriden below next_state := Mux(l2_hit, s_req, s_wait2) } is (s_wait2) { next_state := s_wait3 io.dpath.perf.pte_miss := count < (pgLevels-1).U when (io.mem.s2_xcpt.ae.ld) { resp_ae_ptw := true.B next_state := s_ready resp_valid(r_req_dest) := true.B } } is (s_fragment_superpage) { next_state := s_ready resp_valid(r_req_dest) := true.B when (!homogeneous) { count := (pgLevels-1).U resp_fragmented_superpage := true.B } when (do_both_stages) { resp_fragmented_superpage := true.B } } } val merged_pte = { val superpage_masks = (0 until pgLevels).map(i => ((BigInt(1) << pte.ppn.getWidth) - (BigInt(1) << (pgLevels-1-i)*pgLevelBits)).U) val superpage_mask = superpage_masks(Mux(stage2_final, max_count, (pgLevels-1).U)) val stage1_ppns = (0 until pgLevels-1).map(i => Cat(pte.ppn(pte.ppn.getWidth-1, (pgLevels-i-1)*pgLevelBits), aux_pte.ppn((pgLevels-i-1)*pgLevelBits-1,0))) :+ pte.ppn val stage1_ppn = stage1_ppns(count) makePTE(stage1_ppn & superpage_mask, aux_pte) } r_pte := OptimizationBarrier( // l2tlb hit->find a leaf PTE(l2_pte), respond to L1TLB Mux(l2_hit && !l2_error && !resp_gf, l2_pte, // S2 PTE cache hit -> proceed to the next level of walking, update the r_pte with hgatp Mux(state === s_req && stage2_pte_cache_hit, makeHypervisorRootPTE(r_hgatp, stage2_pte_cache_data, l2_pte), // pte cache hit->find a non-leaf PTE(pte_cache),continue to request mem Mux(state === s_req && pte_cache_hit, makePTE(pte_cache_data, l2_pte), // 2-stage translation Mux(do_switch, makeHypervisorRootPTE(r_hgatp, pte.ppn, r_pte), // when mem respond, store mem.resp.pte Mux(mem_resp_valid, Mux(!traverse && r_req.vstage1 && stage2, merged_pte, pte), // fragment_superpage Mux(state === s_fragment_superpage && !homogeneous && count =/= (pgLevels - 1).U, makePTE(makeFragmentedSuperpagePPN(r_pte.ppn)(count), r_pte), // when tlb request come->request mem, use root address in satp(or vsatp,hgatp) Mux(arb.io.out.fire, Mux(arb.io.out.bits.bits.stage2, makeHypervisorRootPTE(io.dpath.hgatp, io.dpath.vsatp.ppn, r_pte), makePTE(satp.ppn, r_pte)), r_pte)))))))) when (l2_hit && !l2_error && !resp_gf) { assert(state === s_req || state === s_wait1) next_state := s_ready resp_valid(r_req_dest) := true.B count := (pgLevels-1).U } when (mem_resp_valid) { assert(state === s_wait3) next_state := s_req when (traverse) { when (do_both_stages && !stage2) { do_switch := true.B } count := count + 1.U }.otherwise { val gf = (stage2 && !stage2_final && !pte.ur()) || (pte.leaf() && pte.reserved_for_future === 0.U && invalid_gpa) val ae = pte.v && invalid_paddr val pf = pte.v && pte.reserved_for_future =/= 0.U val success = pte.v && !ae && !pf && !gf when (do_both_stages && !stage2_final && success) { when (stage2) { stage2 := false.B count := aux_count }.otherwise { stage2_final := true.B do_switch := true.B } }.otherwise { // find a leaf pte, start l2 refill l2_refill := success && count === (pgLevels-1).U && !r_req.need_gpa && (!r_req.vstage1 && !r_req.stage2 || do_both_stages && aux_count === (pgLevels-1).U && pte.isFullPerm()) count := max_count when (pageGranularityPMPs.B && !(count === (pgLevels-1).U && (!do_both_stages || aux_count === (pgLevels-1).U))) { next_state := s_fragment_superpage }.otherwise { next_state := s_ready resp_valid(r_req_dest) := true.B } resp_ae_ptw := ae && count < (pgLevels-1).U && pte.table() resp_ae_final := ae && pte.leaf() resp_pf := pf && !stage2 resp_gf := gf || (pf && stage2) resp_hr := !stage2 || (!pf && !gf && pte.ur()) resp_hw := !stage2 || (!pf && !gf && pte.uw()) resp_hx := !stage2 || (!pf && !gf && pte.ux()) } } } when (io.mem.s2_nack) { assert(state === s_wait2) next_state := s_req } when (do_switch) { aux_count := Mux(traverse, count + 1.U, count) count := r_hgatp_initial_count aux_pte := Mux(traverse, pte, { val s1_ppns = (0 until pgLevels-1).map(i => Cat(pte.ppn(pte.ppn.getWidth-1, (pgLevels-i-1)*pgLevelBits), r_req.addr(((pgLevels-i-1)*pgLevelBits min vpnBits)-1,0).padTo((pgLevels-i-1)*pgLevelBits))) :+ pte.ppn makePTE(s1_ppns(count), pte) }) stage2 := true.B } for (i <- 0 until pgLevels) { val leaf = mem_resp_valid && !traverse && count === i.U ccover(leaf && pte.v && !invalid_paddr && !invalid_gpa && pte.reserved_for_future === 0.U, s"L$i", s"successful page-table access, level $i") ccover(leaf && pte.v && invalid_paddr, s"L${i}_BAD_PPN_MSB", s"PPN too large, level $i") ccover(leaf && pte.v && invalid_gpa, s"L${i}_BAD_GPA_MSB", s"GPA too large, level $i") ccover(leaf && pte.v && pte.reserved_for_future =/= 0.U, s"L${i}_BAD_RSV_MSB", s"reserved MSBs set, level $i") ccover(leaf && !mem_resp_data(0), s"L${i}_INVALID_PTE", s"page not present, level $i") if (i != pgLevels-1) ccover(leaf && !pte.v && mem_resp_data(0), s"L${i}_BAD_PPN_LSB", s"PPN LSBs not zero, level $i") } ccover(mem_resp_valid && count === (pgLevels-1).U && pte.table(), s"TOO_DEEP", s"page table too deep") ccover(io.mem.s2_nack, "NACK", "D$ nacked page-table access") ccover(state === s_wait2 && io.mem.s2_xcpt.ae.ld, "AE", "access exception while walking page table") } // leaving gated-clock domain private def ccover(cond: Bool, label: String, desc: String)(implicit sourceInfo: SourceInfo) = if (usingVM) property.cover(cond, s"PTW_$label", "MemorySystem;;" + desc) /** Relace PTE.ppn with ppn */ private def makePTE(ppn: UInt, default: PTE) = { val pte = WireDefault(default) pte.ppn := ppn pte } /** use hgatp and vpn to construct a new ppn */ private def makeHypervisorRootPTE(hgatp: PTBR, vpn: UInt, default: PTE) = { val count = pgLevels.U - minPgLevels.U - hgatp.additionalPgLevels val idxs = (0 to pgLevels-minPgLevels).map(i => (vpn >> (pgLevels-i)*pgLevelBits)) val lsbs = WireDefault(UInt(maxHypervisorExtraAddrBits.W), idxs(count)) val pte = WireDefault(default) pte.ppn := Cat(hgatp.ppn >> maxHypervisorExtraAddrBits, lsbs) pte } /** use hgatp and vpn to check for gpa out of range */ private def checkInvalidHypervisorGPA(hgatp: PTBR, vpn: UInt) = { val count = pgLevels.U - minPgLevels.U - hgatp.additionalPgLevels val idxs = (0 to pgLevels-minPgLevels).map(i => (vpn >> ((pgLevels-i)*pgLevelBits)+maxHypervisorExtraAddrBits)) idxs.extract(count) =/= 0.U } } /** Mix-ins for constructing tiles that might have a PTW */ trait CanHavePTW extends HasTileParameters with HasHellaCache { this: BaseTile => val module: CanHavePTWModule var nPTWPorts = 1 nDCachePorts += usingPTW.toInt } trait CanHavePTWModule extends HasHellaCacheModule { val outer: CanHavePTW val ptwPorts = ListBuffer(outer.dcache.module.io.ptw) val ptw = Module(new PTW(outer.nPTWPorts)(outer.dcache.node.edges.out(0), outer.p)) ptw.io.mem <> DontCare if (outer.usingPTW) { dcachePorts += ptw.io.mem } }
module ITLB_2( // @[TLB.scala:318:7] input clock, // @[TLB.scala:318:7] input reset, // @[TLB.scala:318:7] input io_req_valid, // @[TLB.scala:320:14] input [39:0] io_req_bits_vaddr, // @[TLB.scala:320:14] input [1:0] io_req_bits_prv, // @[TLB.scala:320:14] input io_req_bits_v, // @[TLB.scala:320:14] output io_resp_miss, // @[TLB.scala:320:14] output [31:0] io_resp_paddr, // @[TLB.scala:320:14] output [39:0] io_resp_gpa, // @[TLB.scala:320:14] output io_resp_pf_ld, // @[TLB.scala:320:14] output io_resp_pf_inst, // @[TLB.scala:320:14] output io_resp_ae_ld, // @[TLB.scala:320:14] output io_resp_ae_inst, // @[TLB.scala:320:14] output io_resp_ma_ld, // @[TLB.scala:320:14] output io_resp_cacheable, // @[TLB.scala:320:14] output io_resp_prefetchable, // @[TLB.scala:320:14] input io_sfence_valid, // @[TLB.scala:320:14] input io_sfence_bits_rs1, // @[TLB.scala:320:14] input io_sfence_bits_rs2, // @[TLB.scala:320:14] input [38:0] io_sfence_bits_addr, // @[TLB.scala:320:14] input io_sfence_bits_asid, // @[TLB.scala:320:14] input io_sfence_bits_hv, // @[TLB.scala:320:14] input io_sfence_bits_hg, // @[TLB.scala:320:14] input io_ptw_req_ready, // @[TLB.scala:320:14] output io_ptw_req_valid, // @[TLB.scala:320:14] output [26:0] io_ptw_req_bits_bits_addr, // @[TLB.scala:320:14] output io_ptw_req_bits_bits_need_gpa, // @[TLB.scala:320:14] input io_ptw_resp_valid, // @[TLB.scala:320:14] input io_ptw_resp_bits_ae_ptw, // @[TLB.scala:320:14] input io_ptw_resp_bits_ae_final, // @[TLB.scala:320:14] input io_ptw_resp_bits_pf, // @[TLB.scala:320:14] input io_ptw_resp_bits_gf, // @[TLB.scala:320:14] input io_ptw_resp_bits_hr, // @[TLB.scala:320:14] input io_ptw_resp_bits_hw, // @[TLB.scala:320:14] input io_ptw_resp_bits_hx, // @[TLB.scala:320:14] input [9:0] io_ptw_resp_bits_pte_reserved_for_future, // @[TLB.scala:320:14] input [43:0] io_ptw_resp_bits_pte_ppn, // @[TLB.scala:320:14] input [1:0] io_ptw_resp_bits_pte_reserved_for_software, // @[TLB.scala:320:14] input io_ptw_resp_bits_pte_d, // @[TLB.scala:320:14] input io_ptw_resp_bits_pte_a, // @[TLB.scala:320:14] input io_ptw_resp_bits_pte_g, // @[TLB.scala:320:14] input io_ptw_resp_bits_pte_u, // @[TLB.scala:320:14] input io_ptw_resp_bits_pte_x, // @[TLB.scala:320:14] input io_ptw_resp_bits_pte_w, // @[TLB.scala:320:14] input io_ptw_resp_bits_pte_r, // @[TLB.scala:320:14] input io_ptw_resp_bits_pte_v, // @[TLB.scala:320:14] input [1:0] io_ptw_resp_bits_level, // @[TLB.scala:320:14] input io_ptw_resp_bits_homogeneous, // @[TLB.scala:320:14] input io_ptw_resp_bits_gpa_valid, // @[TLB.scala:320:14] input [38:0] io_ptw_resp_bits_gpa_bits, // @[TLB.scala:320:14] input io_ptw_resp_bits_gpa_is_pte, // @[TLB.scala:320:14] input [3:0] io_ptw_ptbr_mode, // @[TLB.scala:320:14] input [43:0] io_ptw_ptbr_ppn, // @[TLB.scala:320:14] input io_ptw_status_debug, // @[TLB.scala:320:14] input io_ptw_status_cease, // @[TLB.scala:320:14] input io_ptw_status_wfi, // @[TLB.scala:320:14] input [1:0] io_ptw_status_dprv, // @[TLB.scala:320:14] input io_ptw_status_dv, // @[TLB.scala:320:14] input [1:0] io_ptw_status_prv, // @[TLB.scala:320:14] input io_ptw_status_v, // @[TLB.scala:320:14] input io_ptw_status_sd, // @[TLB.scala:320:14] input io_ptw_status_mpv, // @[TLB.scala:320:14] input io_ptw_status_gva, // @[TLB.scala:320:14] input io_ptw_status_tsr, // @[TLB.scala:320:14] input io_ptw_status_tw, // @[TLB.scala:320:14] input io_ptw_status_tvm, // @[TLB.scala:320:14] input io_ptw_status_mxr, // @[TLB.scala:320:14] input io_ptw_status_sum, // @[TLB.scala:320:14] input io_ptw_status_mprv, // @[TLB.scala:320:14] input [1:0] io_ptw_status_fs, // @[TLB.scala:320:14] input [1:0] io_ptw_status_mpp, // @[TLB.scala:320:14] input io_ptw_status_spp, // @[TLB.scala:320:14] input io_ptw_status_mpie, // @[TLB.scala:320:14] input io_ptw_status_spie, // @[TLB.scala:320:14] input io_ptw_status_mie, // @[TLB.scala:320:14] input io_ptw_status_sie, // @[TLB.scala:320:14] input io_ptw_pmp_0_cfg_l, // @[TLB.scala:320:14] input [1:0] io_ptw_pmp_0_cfg_a, // @[TLB.scala:320:14] input io_ptw_pmp_0_cfg_x, // @[TLB.scala:320:14] input io_ptw_pmp_0_cfg_w, // @[TLB.scala:320:14] input io_ptw_pmp_0_cfg_r, // @[TLB.scala:320:14] input [29:0] io_ptw_pmp_0_addr, // @[TLB.scala:320:14] input [31:0] io_ptw_pmp_0_mask, // @[TLB.scala:320:14] input io_ptw_pmp_1_cfg_l, // @[TLB.scala:320:14] input [1:0] io_ptw_pmp_1_cfg_a, // @[TLB.scala:320:14] input io_ptw_pmp_1_cfg_x, // @[TLB.scala:320:14] input io_ptw_pmp_1_cfg_w, // @[TLB.scala:320:14] input io_ptw_pmp_1_cfg_r, // @[TLB.scala:320:14] input [29:0] io_ptw_pmp_1_addr, // @[TLB.scala:320:14] input [31:0] io_ptw_pmp_1_mask, // @[TLB.scala:320:14] input io_ptw_pmp_2_cfg_l, // @[TLB.scala:320:14] input [1:0] io_ptw_pmp_2_cfg_a, // @[TLB.scala:320:14] input io_ptw_pmp_2_cfg_x, // @[TLB.scala:320:14] input io_ptw_pmp_2_cfg_w, // @[TLB.scala:320:14] input io_ptw_pmp_2_cfg_r, // @[TLB.scala:320:14] input [29:0] io_ptw_pmp_2_addr, // @[TLB.scala:320:14] input [31:0] io_ptw_pmp_2_mask, // @[TLB.scala:320:14] input io_ptw_pmp_3_cfg_l, // @[TLB.scala:320:14] input [1:0] io_ptw_pmp_3_cfg_a, // @[TLB.scala:320:14] input io_ptw_pmp_3_cfg_x, // @[TLB.scala:320:14] input io_ptw_pmp_3_cfg_w, // @[TLB.scala:320:14] input io_ptw_pmp_3_cfg_r, // @[TLB.scala:320:14] input [29:0] io_ptw_pmp_3_addr, // @[TLB.scala:320:14] input [31:0] io_ptw_pmp_3_mask, // @[TLB.scala:320:14] input io_ptw_pmp_4_cfg_l, // @[TLB.scala:320:14] input [1:0] io_ptw_pmp_4_cfg_a, // @[TLB.scala:320:14] input io_ptw_pmp_4_cfg_x, // @[TLB.scala:320:14] input io_ptw_pmp_4_cfg_w, // @[TLB.scala:320:14] input io_ptw_pmp_4_cfg_r, // @[TLB.scala:320:14] input [29:0] io_ptw_pmp_4_addr, // @[TLB.scala:320:14] input [31:0] io_ptw_pmp_4_mask, // @[TLB.scala:320:14] input io_ptw_pmp_5_cfg_l, // @[TLB.scala:320:14] input [1:0] io_ptw_pmp_5_cfg_a, // @[TLB.scala:320:14] input io_ptw_pmp_5_cfg_x, // @[TLB.scala:320:14] input io_ptw_pmp_5_cfg_w, // @[TLB.scala:320:14] input io_ptw_pmp_5_cfg_r, // @[TLB.scala:320:14] input [29:0] io_ptw_pmp_5_addr, // @[TLB.scala:320:14] input [31:0] io_ptw_pmp_5_mask, // @[TLB.scala:320:14] input io_ptw_pmp_6_cfg_l, // @[TLB.scala:320:14] input [1:0] io_ptw_pmp_6_cfg_a, // @[TLB.scala:320:14] input io_ptw_pmp_6_cfg_x, // @[TLB.scala:320:14] input io_ptw_pmp_6_cfg_w, // @[TLB.scala:320:14] input io_ptw_pmp_6_cfg_r, // @[TLB.scala:320:14] input [29:0] io_ptw_pmp_6_addr, // @[TLB.scala:320:14] input [31:0] io_ptw_pmp_6_mask, // @[TLB.scala:320:14] input io_ptw_pmp_7_cfg_l, // @[TLB.scala:320:14] input [1:0] io_ptw_pmp_7_cfg_a, // @[TLB.scala:320:14] input io_ptw_pmp_7_cfg_x, // @[TLB.scala:320:14] input io_ptw_pmp_7_cfg_w, // @[TLB.scala:320:14] input io_ptw_pmp_7_cfg_r, // @[TLB.scala:320:14] input [29:0] io_ptw_pmp_7_addr, // @[TLB.scala:320:14] input [31:0] io_ptw_pmp_7_mask // @[TLB.scala:320:14] ); wire [19:0] _entries_barrier_12_io_y_ppn; // @[package.scala:267:25] wire _entries_barrier_12_io_y_u; // @[package.scala:267:25] wire _entries_barrier_12_io_y_ae_ptw; // @[package.scala:267:25] wire _entries_barrier_12_io_y_ae_final; // @[package.scala:267:25] wire _entries_barrier_12_io_y_ae_stage2; // @[package.scala:267:25] wire _entries_barrier_12_io_y_pf; // @[package.scala:267:25] wire _entries_barrier_12_io_y_gf; // @[package.scala:267:25] wire _entries_barrier_12_io_y_sw; // @[package.scala:267:25] wire _entries_barrier_12_io_y_sx; // @[package.scala:267:25] wire _entries_barrier_12_io_y_sr; // @[package.scala:267:25] wire _entries_barrier_12_io_y_hw; // @[package.scala:267:25] wire _entries_barrier_12_io_y_hx; // @[package.scala:267:25] wire _entries_barrier_12_io_y_hr; // @[package.scala:267:25] wire [19:0] _entries_barrier_11_io_y_ppn; // @[package.scala:267:25] wire _entries_barrier_11_io_y_u; // @[package.scala:267:25] wire _entries_barrier_11_io_y_ae_ptw; // @[package.scala:267:25] wire _entries_barrier_11_io_y_ae_final; // @[package.scala:267:25] wire _entries_barrier_11_io_y_ae_stage2; // @[package.scala:267:25] wire _entries_barrier_11_io_y_pf; // @[package.scala:267:25] wire _entries_barrier_11_io_y_gf; // @[package.scala:267:25] wire _entries_barrier_11_io_y_sw; // @[package.scala:267:25] wire _entries_barrier_11_io_y_sx; // @[package.scala:267:25] wire _entries_barrier_11_io_y_sr; // @[package.scala:267:25] wire _entries_barrier_11_io_y_hw; // @[package.scala:267:25] wire _entries_barrier_11_io_y_hx; // @[package.scala:267:25] wire _entries_barrier_11_io_y_hr; // @[package.scala:267:25] wire _entries_barrier_11_io_y_pw; // @[package.scala:267:25] wire _entries_barrier_11_io_y_px; // @[package.scala:267:25] wire _entries_barrier_11_io_y_pr; // @[package.scala:267:25] wire _entries_barrier_11_io_y_ppp; // @[package.scala:267:25] wire _entries_barrier_11_io_y_pal; // @[package.scala:267:25] wire _entries_barrier_11_io_y_paa; // @[package.scala:267:25] wire _entries_barrier_11_io_y_eff; // @[package.scala:267:25] wire _entries_barrier_11_io_y_c; // @[package.scala:267:25] wire [19:0] _entries_barrier_10_io_y_ppn; // @[package.scala:267:25] wire _entries_barrier_10_io_y_u; // @[package.scala:267:25] wire _entries_barrier_10_io_y_ae_ptw; // @[package.scala:267:25] wire _entries_barrier_10_io_y_ae_final; // @[package.scala:267:25] wire _entries_barrier_10_io_y_ae_stage2; // @[package.scala:267:25] wire _entries_barrier_10_io_y_pf; // @[package.scala:267:25] wire _entries_barrier_10_io_y_gf; // @[package.scala:267:25] wire _entries_barrier_10_io_y_sw; // @[package.scala:267:25] wire _entries_barrier_10_io_y_sx; // @[package.scala:267:25] wire _entries_barrier_10_io_y_sr; // @[package.scala:267:25] wire _entries_barrier_10_io_y_hw; // @[package.scala:267:25] wire _entries_barrier_10_io_y_hx; // @[package.scala:267:25] wire _entries_barrier_10_io_y_hr; // @[package.scala:267:25] wire _entries_barrier_10_io_y_pw; // @[package.scala:267:25] wire _entries_barrier_10_io_y_px; // @[package.scala:267:25] wire _entries_barrier_10_io_y_pr; // @[package.scala:267:25] wire _entries_barrier_10_io_y_ppp; // @[package.scala:267:25] wire _entries_barrier_10_io_y_pal; // @[package.scala:267:25] wire _entries_barrier_10_io_y_paa; // @[package.scala:267:25] wire _entries_barrier_10_io_y_eff; // @[package.scala:267:25] wire _entries_barrier_10_io_y_c; // @[package.scala:267:25] wire [19:0] _entries_barrier_9_io_y_ppn; // @[package.scala:267:25] wire _entries_barrier_9_io_y_u; // @[package.scala:267:25] wire _entries_barrier_9_io_y_ae_ptw; // @[package.scala:267:25] wire _entries_barrier_9_io_y_ae_final; // @[package.scala:267:25] wire _entries_barrier_9_io_y_ae_stage2; // @[package.scala:267:25] wire _entries_barrier_9_io_y_pf; // @[package.scala:267:25] wire _entries_barrier_9_io_y_gf; // @[package.scala:267:25] wire _entries_barrier_9_io_y_sw; // @[package.scala:267:25] wire _entries_barrier_9_io_y_sx; // @[package.scala:267:25] wire _entries_barrier_9_io_y_sr; // @[package.scala:267:25] wire _entries_barrier_9_io_y_hw; // @[package.scala:267:25] wire _entries_barrier_9_io_y_hx; // @[package.scala:267:25] wire _entries_barrier_9_io_y_hr; // @[package.scala:267:25] wire _entries_barrier_9_io_y_pw; // @[package.scala:267:25] wire _entries_barrier_9_io_y_px; // @[package.scala:267:25] wire _entries_barrier_9_io_y_pr; // @[package.scala:267:25] wire _entries_barrier_9_io_y_ppp; // @[package.scala:267:25] wire _entries_barrier_9_io_y_pal; // @[package.scala:267:25] wire _entries_barrier_9_io_y_paa; // @[package.scala:267:25] wire _entries_barrier_9_io_y_eff; // @[package.scala:267:25] wire _entries_barrier_9_io_y_c; // @[package.scala:267:25] wire [19:0] _entries_barrier_8_io_y_ppn; // @[package.scala:267:25] wire _entries_barrier_8_io_y_u; // @[package.scala:267:25] wire _entries_barrier_8_io_y_ae_ptw; // @[package.scala:267:25] wire _entries_barrier_8_io_y_ae_final; // @[package.scala:267:25] wire _entries_barrier_8_io_y_ae_stage2; // @[package.scala:267:25] wire _entries_barrier_8_io_y_pf; // @[package.scala:267:25] wire _entries_barrier_8_io_y_gf; // @[package.scala:267:25] wire _entries_barrier_8_io_y_sw; // @[package.scala:267:25] wire _entries_barrier_8_io_y_sx; // @[package.scala:267:25] wire _entries_barrier_8_io_y_sr; // @[package.scala:267:25] wire _entries_barrier_8_io_y_hw; // @[package.scala:267:25] wire _entries_barrier_8_io_y_hx; // @[package.scala:267:25] wire _entries_barrier_8_io_y_hr; // @[package.scala:267:25] wire _entries_barrier_8_io_y_pw; // @[package.scala:267:25] wire _entries_barrier_8_io_y_px; // @[package.scala:267:25] wire _entries_barrier_8_io_y_pr; // @[package.scala:267:25] wire _entries_barrier_8_io_y_ppp; // @[package.scala:267:25] wire _entries_barrier_8_io_y_pal; // @[package.scala:267:25] wire _entries_barrier_8_io_y_paa; // @[package.scala:267:25] wire _entries_barrier_8_io_y_eff; // @[package.scala:267:25] wire _entries_barrier_8_io_y_c; // @[package.scala:267:25] wire [19:0] _entries_barrier_7_io_y_ppn; // @[package.scala:267:25] wire _entries_barrier_7_io_y_u; // @[package.scala:267:25] wire _entries_barrier_7_io_y_ae_ptw; // @[package.scala:267:25] wire _entries_barrier_7_io_y_ae_final; // @[package.scala:267:25] wire _entries_barrier_7_io_y_ae_stage2; // @[package.scala:267:25] wire _entries_barrier_7_io_y_pf; // @[package.scala:267:25] wire _entries_barrier_7_io_y_gf; // @[package.scala:267:25] wire _entries_barrier_7_io_y_sw; // @[package.scala:267:25] wire _entries_barrier_7_io_y_sx; // @[package.scala:267:25] wire _entries_barrier_7_io_y_sr; // @[package.scala:267:25] wire _entries_barrier_7_io_y_hw; // @[package.scala:267:25] wire _entries_barrier_7_io_y_hx; // @[package.scala:267:25] wire _entries_barrier_7_io_y_hr; // @[package.scala:267:25] wire _entries_barrier_7_io_y_pw; // @[package.scala:267:25] wire _entries_barrier_7_io_y_px; // @[package.scala:267:25] wire _entries_barrier_7_io_y_pr; // @[package.scala:267:25] wire _entries_barrier_7_io_y_ppp; // @[package.scala:267:25] wire _entries_barrier_7_io_y_pal; // @[package.scala:267:25] wire _entries_barrier_7_io_y_paa; // @[package.scala:267:25] wire _entries_barrier_7_io_y_eff; // @[package.scala:267:25] wire _entries_barrier_7_io_y_c; // @[package.scala:267:25] wire [19:0] _entries_barrier_6_io_y_ppn; // @[package.scala:267:25] wire _entries_barrier_6_io_y_u; // @[package.scala:267:25] wire _entries_barrier_6_io_y_ae_ptw; // @[package.scala:267:25] wire _entries_barrier_6_io_y_ae_final; // @[package.scala:267:25] wire _entries_barrier_6_io_y_ae_stage2; // @[package.scala:267:25] wire _entries_barrier_6_io_y_pf; // @[package.scala:267:25] wire _entries_barrier_6_io_y_gf; // @[package.scala:267:25] wire _entries_barrier_6_io_y_sw; // @[package.scala:267:25] wire _entries_barrier_6_io_y_sx; // @[package.scala:267:25] wire _entries_barrier_6_io_y_sr; // @[package.scala:267:25] wire _entries_barrier_6_io_y_hw; // @[package.scala:267:25] wire _entries_barrier_6_io_y_hx; // @[package.scala:267:25] wire _entries_barrier_6_io_y_hr; // @[package.scala:267:25] wire _entries_barrier_6_io_y_pw; // @[package.scala:267:25] wire _entries_barrier_6_io_y_px; // @[package.scala:267:25] wire _entries_barrier_6_io_y_pr; // @[package.scala:267:25] wire _entries_barrier_6_io_y_ppp; // @[package.scala:267:25] wire _entries_barrier_6_io_y_pal; // @[package.scala:267:25] wire _entries_barrier_6_io_y_paa; // @[package.scala:267:25] wire _entries_barrier_6_io_y_eff; // @[package.scala:267:25] wire _entries_barrier_6_io_y_c; // @[package.scala:267:25] wire [19:0] _entries_barrier_5_io_y_ppn; // @[package.scala:267:25] wire _entries_barrier_5_io_y_u; // @[package.scala:267:25] wire _entries_barrier_5_io_y_ae_ptw; // @[package.scala:267:25] wire _entries_barrier_5_io_y_ae_final; // @[package.scala:267:25] wire _entries_barrier_5_io_y_ae_stage2; // @[package.scala:267:25] wire _entries_barrier_5_io_y_pf; // @[package.scala:267:25] wire _entries_barrier_5_io_y_gf; // @[package.scala:267:25] wire _entries_barrier_5_io_y_sw; // @[package.scala:267:25] wire _entries_barrier_5_io_y_sx; // @[package.scala:267:25] wire _entries_barrier_5_io_y_sr; // @[package.scala:267:25] wire _entries_barrier_5_io_y_hw; // @[package.scala:267:25] wire _entries_barrier_5_io_y_hx; // @[package.scala:267:25] wire _entries_barrier_5_io_y_hr; // @[package.scala:267:25] wire _entries_barrier_5_io_y_pw; // @[package.scala:267:25] wire _entries_barrier_5_io_y_px; // @[package.scala:267:25] wire _entries_barrier_5_io_y_pr; // @[package.scala:267:25] wire _entries_barrier_5_io_y_ppp; // @[package.scala:267:25] wire _entries_barrier_5_io_y_pal; // @[package.scala:267:25] wire _entries_barrier_5_io_y_paa; // @[package.scala:267:25] wire _entries_barrier_5_io_y_eff; // @[package.scala:267:25] wire _entries_barrier_5_io_y_c; // @[package.scala:267:25] wire [19:0] _entries_barrier_4_io_y_ppn; // @[package.scala:267:25] wire _entries_barrier_4_io_y_u; // @[package.scala:267:25] wire _entries_barrier_4_io_y_ae_ptw; // @[package.scala:267:25] wire _entries_barrier_4_io_y_ae_final; // @[package.scala:267:25] wire _entries_barrier_4_io_y_ae_stage2; // @[package.scala:267:25] wire _entries_barrier_4_io_y_pf; // @[package.scala:267:25] wire _entries_barrier_4_io_y_gf; // @[package.scala:267:25] wire _entries_barrier_4_io_y_sw; // @[package.scala:267:25] wire _entries_barrier_4_io_y_sx; // @[package.scala:267:25] wire _entries_barrier_4_io_y_sr; // @[package.scala:267:25] wire _entries_barrier_4_io_y_hw; // @[package.scala:267:25] wire _entries_barrier_4_io_y_hx; // @[package.scala:267:25] wire _entries_barrier_4_io_y_hr; // @[package.scala:267:25] wire _entries_barrier_4_io_y_pw; // @[package.scala:267:25] wire _entries_barrier_4_io_y_px; // @[package.scala:267:25] wire _entries_barrier_4_io_y_pr; // @[package.scala:267:25] wire _entries_barrier_4_io_y_ppp; // @[package.scala:267:25] wire _entries_barrier_4_io_y_pal; // @[package.scala:267:25] wire _entries_barrier_4_io_y_paa; // @[package.scala:267:25] wire _entries_barrier_4_io_y_eff; // @[package.scala:267:25] wire _entries_barrier_4_io_y_c; // @[package.scala:267:25] wire [19:0] _entries_barrier_3_io_y_ppn; // @[package.scala:267:25] wire _entries_barrier_3_io_y_u; // @[package.scala:267:25] wire _entries_barrier_3_io_y_ae_ptw; // @[package.scala:267:25] wire _entries_barrier_3_io_y_ae_final; // @[package.scala:267:25] wire _entries_barrier_3_io_y_ae_stage2; // @[package.scala:267:25] wire _entries_barrier_3_io_y_pf; // @[package.scala:267:25] wire _entries_barrier_3_io_y_gf; // @[package.scala:267:25] wire _entries_barrier_3_io_y_sw; // @[package.scala:267:25] wire _entries_barrier_3_io_y_sx; // @[package.scala:267:25] wire _entries_barrier_3_io_y_sr; // @[package.scala:267:25] wire _entries_barrier_3_io_y_hw; // @[package.scala:267:25] wire _entries_barrier_3_io_y_hx; // @[package.scala:267:25] wire _entries_barrier_3_io_y_hr; // @[package.scala:267:25] wire _entries_barrier_3_io_y_pw; // @[package.scala:267:25] wire _entries_barrier_3_io_y_px; // @[package.scala:267:25] wire _entries_barrier_3_io_y_pr; // @[package.scala:267:25] wire _entries_barrier_3_io_y_ppp; // @[package.scala:267:25] wire _entries_barrier_3_io_y_pal; // @[package.scala:267:25] wire _entries_barrier_3_io_y_paa; // @[package.scala:267:25] wire _entries_barrier_3_io_y_eff; // @[package.scala:267:25] wire _entries_barrier_3_io_y_c; // @[package.scala:267:25] wire [19:0] _entries_barrier_2_io_y_ppn; // @[package.scala:267:25] wire _entries_barrier_2_io_y_u; // @[package.scala:267:25] wire _entries_barrier_2_io_y_ae_ptw; // @[package.scala:267:25] wire _entries_barrier_2_io_y_ae_final; // @[package.scala:267:25] wire _entries_barrier_2_io_y_ae_stage2; // @[package.scala:267:25] wire _entries_barrier_2_io_y_pf; // @[package.scala:267:25] wire _entries_barrier_2_io_y_gf; // @[package.scala:267:25] wire _entries_barrier_2_io_y_sw; // @[package.scala:267:25] wire _entries_barrier_2_io_y_sx; // @[package.scala:267:25] wire _entries_barrier_2_io_y_sr; // @[package.scala:267:25] wire _entries_barrier_2_io_y_hw; // @[package.scala:267:25] wire _entries_barrier_2_io_y_hx; // @[package.scala:267:25] wire _entries_barrier_2_io_y_hr; // @[package.scala:267:25] wire _entries_barrier_2_io_y_pw; // @[package.scala:267:25] wire _entries_barrier_2_io_y_px; // @[package.scala:267:25] wire _entries_barrier_2_io_y_pr; // @[package.scala:267:25] wire _entries_barrier_2_io_y_ppp; // @[package.scala:267:25] wire _entries_barrier_2_io_y_pal; // @[package.scala:267:25] wire _entries_barrier_2_io_y_paa; // @[package.scala:267:25] wire _entries_barrier_2_io_y_eff; // @[package.scala:267:25] wire _entries_barrier_2_io_y_c; // @[package.scala:267:25] wire [19:0] _entries_barrier_1_io_y_ppn; // @[package.scala:267:25] wire _entries_barrier_1_io_y_u; // @[package.scala:267:25] wire _entries_barrier_1_io_y_ae_ptw; // @[package.scala:267:25] wire _entries_barrier_1_io_y_ae_final; // @[package.scala:267:25] wire _entries_barrier_1_io_y_ae_stage2; // @[package.scala:267:25] wire _entries_barrier_1_io_y_pf; // @[package.scala:267:25] wire _entries_barrier_1_io_y_gf; // @[package.scala:267:25] wire _entries_barrier_1_io_y_sw; // @[package.scala:267:25] wire _entries_barrier_1_io_y_sx; // @[package.scala:267:25] wire _entries_barrier_1_io_y_sr; // @[package.scala:267:25] wire _entries_barrier_1_io_y_hw; // @[package.scala:267:25] wire _entries_barrier_1_io_y_hx; // @[package.scala:267:25] wire _entries_barrier_1_io_y_hr; // @[package.scala:267:25] wire _entries_barrier_1_io_y_pw; // @[package.scala:267:25] wire _entries_barrier_1_io_y_px; // @[package.scala:267:25] wire _entries_barrier_1_io_y_pr; // @[package.scala:267:25] wire _entries_barrier_1_io_y_ppp; // @[package.scala:267:25] wire _entries_barrier_1_io_y_pal; // @[package.scala:267:25] wire _entries_barrier_1_io_y_paa; // @[package.scala:267:25] wire _entries_barrier_1_io_y_eff; // @[package.scala:267:25] wire _entries_barrier_1_io_y_c; // @[package.scala:267:25] wire [19:0] _entries_barrier_io_y_ppn; // @[package.scala:267:25] wire _entries_barrier_io_y_u; // @[package.scala:267:25] wire _entries_barrier_io_y_ae_ptw; // @[package.scala:267:25] wire _entries_barrier_io_y_ae_final; // @[package.scala:267:25] wire _entries_barrier_io_y_ae_stage2; // @[package.scala:267:25] wire _entries_barrier_io_y_pf; // @[package.scala:267:25] wire _entries_barrier_io_y_gf; // @[package.scala:267:25] wire _entries_barrier_io_y_sw; // @[package.scala:267:25] wire _entries_barrier_io_y_sx; // @[package.scala:267:25] wire _entries_barrier_io_y_sr; // @[package.scala:267:25] wire _entries_barrier_io_y_hw; // @[package.scala:267:25] wire _entries_barrier_io_y_hx; // @[package.scala:267:25] wire _entries_barrier_io_y_hr; // @[package.scala:267:25] wire _entries_barrier_io_y_pw; // @[package.scala:267:25] wire _entries_barrier_io_y_px; // @[package.scala:267:25] wire _entries_barrier_io_y_pr; // @[package.scala:267:25] wire _entries_barrier_io_y_ppp; // @[package.scala:267:25] wire _entries_barrier_io_y_pal; // @[package.scala:267:25] wire _entries_barrier_io_y_paa; // @[package.scala:267:25] wire _entries_barrier_io_y_eff; // @[package.scala:267:25] wire _entries_barrier_io_y_c; // @[package.scala:267:25] wire _pma_io_resp_r; // @[TLB.scala:422:19] wire _pma_io_resp_w; // @[TLB.scala:422:19] wire _pma_io_resp_pp; // @[TLB.scala:422:19] wire _pma_io_resp_al; // @[TLB.scala:422:19] wire _pma_io_resp_aa; // @[TLB.scala:422:19] wire _pma_io_resp_x; // @[TLB.scala:422:19] wire _pma_io_resp_eff; // @[TLB.scala:422:19] wire _pmp_io_r; // @[TLB.scala:416:19] wire _pmp_io_w; // @[TLB.scala:416:19] wire _pmp_io_x; // @[TLB.scala:416:19] wire [19:0] _mpu_ppn_barrier_io_y_ppn; // @[package.scala:267:25] wire io_req_valid_0 = io_req_valid; // @[TLB.scala:318:7] wire [39:0] io_req_bits_vaddr_0 = io_req_bits_vaddr; // @[TLB.scala:318:7] wire [1:0] io_req_bits_prv_0 = io_req_bits_prv; // @[TLB.scala:318:7] wire io_req_bits_v_0 = io_req_bits_v; // @[TLB.scala:318:7] wire io_sfence_valid_0 = io_sfence_valid; // @[TLB.scala:318:7] wire io_sfence_bits_rs1_0 = io_sfence_bits_rs1; // @[TLB.scala:318:7] wire io_sfence_bits_rs2_0 = io_sfence_bits_rs2; // @[TLB.scala:318:7] wire [38:0] io_sfence_bits_addr_0 = io_sfence_bits_addr; // @[TLB.scala:318:7] wire io_sfence_bits_asid_0 = io_sfence_bits_asid; // @[TLB.scala:318:7] wire io_sfence_bits_hv_0 = io_sfence_bits_hv; // @[TLB.scala:318:7] wire io_sfence_bits_hg_0 = io_sfence_bits_hg; // @[TLB.scala:318:7] wire io_ptw_req_ready_0 = io_ptw_req_ready; // @[TLB.scala:318:7] wire io_ptw_resp_valid_0 = io_ptw_resp_valid; // @[TLB.scala:318:7] wire io_ptw_resp_bits_ae_ptw_0 = io_ptw_resp_bits_ae_ptw; // @[TLB.scala:318:7] wire io_ptw_resp_bits_ae_final_0 = io_ptw_resp_bits_ae_final; // @[TLB.scala:318:7] wire io_ptw_resp_bits_pf_0 = io_ptw_resp_bits_pf; // @[TLB.scala:318:7] wire io_ptw_resp_bits_gf_0 = io_ptw_resp_bits_gf; // @[TLB.scala:318:7] wire io_ptw_resp_bits_hr_0 = io_ptw_resp_bits_hr; // @[TLB.scala:318:7] wire io_ptw_resp_bits_hw_0 = io_ptw_resp_bits_hw; // @[TLB.scala:318:7] wire io_ptw_resp_bits_hx_0 = io_ptw_resp_bits_hx; // @[TLB.scala:318:7] wire [9:0] io_ptw_resp_bits_pte_reserved_for_future_0 = io_ptw_resp_bits_pte_reserved_for_future; // @[TLB.scala:318:7] wire [43:0] io_ptw_resp_bits_pte_ppn_0 = io_ptw_resp_bits_pte_ppn; // @[TLB.scala:318:7] wire [1:0] io_ptw_resp_bits_pte_reserved_for_software_0 = io_ptw_resp_bits_pte_reserved_for_software; // @[TLB.scala:318:7] wire io_ptw_resp_bits_pte_d_0 = io_ptw_resp_bits_pte_d; // @[TLB.scala:318:7] wire io_ptw_resp_bits_pte_a_0 = io_ptw_resp_bits_pte_a; // @[TLB.scala:318:7] wire io_ptw_resp_bits_pte_g_0 = io_ptw_resp_bits_pte_g; // @[TLB.scala:318:7] wire io_ptw_resp_bits_pte_u_0 = io_ptw_resp_bits_pte_u; // @[TLB.scala:318:7] wire io_ptw_resp_bits_pte_x_0 = io_ptw_resp_bits_pte_x; // @[TLB.scala:318:7] wire io_ptw_resp_bits_pte_w_0 = io_ptw_resp_bits_pte_w; // @[TLB.scala:318:7] wire io_ptw_resp_bits_pte_r_0 = io_ptw_resp_bits_pte_r; // @[TLB.scala:318:7] wire io_ptw_resp_bits_pte_v_0 = io_ptw_resp_bits_pte_v; // @[TLB.scala:318:7] wire [1:0] io_ptw_resp_bits_level_0 = io_ptw_resp_bits_level; // @[TLB.scala:318:7] wire io_ptw_resp_bits_homogeneous_0 = io_ptw_resp_bits_homogeneous; // @[TLB.scala:318:7] wire io_ptw_resp_bits_gpa_valid_0 = io_ptw_resp_bits_gpa_valid; // @[TLB.scala:318:7] wire [38:0] io_ptw_resp_bits_gpa_bits_0 = io_ptw_resp_bits_gpa_bits; // @[TLB.scala:318:7] wire io_ptw_resp_bits_gpa_is_pte_0 = io_ptw_resp_bits_gpa_is_pte; // @[TLB.scala:318:7] wire [3:0] io_ptw_ptbr_mode_0 = io_ptw_ptbr_mode; // @[TLB.scala:318:7] wire [43:0] io_ptw_ptbr_ppn_0 = io_ptw_ptbr_ppn; // @[TLB.scala:318:7] wire io_ptw_status_debug_0 = io_ptw_status_debug; // @[TLB.scala:318:7] wire io_ptw_status_cease_0 = io_ptw_status_cease; // @[TLB.scala:318:7] wire io_ptw_status_wfi_0 = io_ptw_status_wfi; // @[TLB.scala:318:7] wire [1:0] io_ptw_status_dprv_0 = io_ptw_status_dprv; // @[TLB.scala:318:7] wire io_ptw_status_dv_0 = io_ptw_status_dv; // @[TLB.scala:318:7] wire [1:0] io_ptw_status_prv_0 = io_ptw_status_prv; // @[TLB.scala:318:7] wire io_ptw_status_v_0 = io_ptw_status_v; // @[TLB.scala:318:7] wire io_ptw_status_sd_0 = io_ptw_status_sd; // @[TLB.scala:318:7] wire io_ptw_status_mpv_0 = io_ptw_status_mpv; // @[TLB.scala:318:7] wire io_ptw_status_gva_0 = io_ptw_status_gva; // @[TLB.scala:318:7] wire io_ptw_status_tsr_0 = io_ptw_status_tsr; // @[TLB.scala:318:7] wire io_ptw_status_tw_0 = io_ptw_status_tw; // @[TLB.scala:318:7] wire io_ptw_status_tvm_0 = io_ptw_status_tvm; // @[TLB.scala:318:7] wire io_ptw_status_mxr_0 = io_ptw_status_mxr; // @[TLB.scala:318:7] wire io_ptw_status_sum_0 = io_ptw_status_sum; // @[TLB.scala:318:7] wire io_ptw_status_mprv_0 = io_ptw_status_mprv; // @[TLB.scala:318:7] wire [1:0] io_ptw_status_fs_0 = io_ptw_status_fs; // @[TLB.scala:318:7] wire [1:0] io_ptw_status_mpp_0 = io_ptw_status_mpp; // @[TLB.scala:318:7] wire io_ptw_status_spp_0 = io_ptw_status_spp; // @[TLB.scala:318:7] wire io_ptw_status_mpie_0 = io_ptw_status_mpie; // @[TLB.scala:318:7] wire io_ptw_status_spie_0 = io_ptw_status_spie; // @[TLB.scala:318:7] wire io_ptw_status_mie_0 = io_ptw_status_mie; // @[TLB.scala:318:7] wire io_ptw_status_sie_0 = io_ptw_status_sie; // @[TLB.scala:318:7] wire io_ptw_pmp_0_cfg_l_0 = io_ptw_pmp_0_cfg_l; // @[TLB.scala:318:7] wire [1:0] io_ptw_pmp_0_cfg_a_0 = io_ptw_pmp_0_cfg_a; // @[TLB.scala:318:7] wire io_ptw_pmp_0_cfg_x_0 = io_ptw_pmp_0_cfg_x; // @[TLB.scala:318:7] wire io_ptw_pmp_0_cfg_w_0 = io_ptw_pmp_0_cfg_w; // @[TLB.scala:318:7] wire io_ptw_pmp_0_cfg_r_0 = io_ptw_pmp_0_cfg_r; // @[TLB.scala:318:7] wire [29:0] io_ptw_pmp_0_addr_0 = io_ptw_pmp_0_addr; // @[TLB.scala:318:7] wire [31:0] io_ptw_pmp_0_mask_0 = io_ptw_pmp_0_mask; // @[TLB.scala:318:7] wire io_ptw_pmp_1_cfg_l_0 = io_ptw_pmp_1_cfg_l; // @[TLB.scala:318:7] wire [1:0] io_ptw_pmp_1_cfg_a_0 = io_ptw_pmp_1_cfg_a; // @[TLB.scala:318:7] wire io_ptw_pmp_1_cfg_x_0 = io_ptw_pmp_1_cfg_x; // @[TLB.scala:318:7] wire io_ptw_pmp_1_cfg_w_0 = io_ptw_pmp_1_cfg_w; // @[TLB.scala:318:7] wire io_ptw_pmp_1_cfg_r_0 = io_ptw_pmp_1_cfg_r; // @[TLB.scala:318:7] wire [29:0] io_ptw_pmp_1_addr_0 = io_ptw_pmp_1_addr; // @[TLB.scala:318:7] wire [31:0] io_ptw_pmp_1_mask_0 = io_ptw_pmp_1_mask; // @[TLB.scala:318:7] wire io_ptw_pmp_2_cfg_l_0 = io_ptw_pmp_2_cfg_l; // @[TLB.scala:318:7] wire [1:0] io_ptw_pmp_2_cfg_a_0 = io_ptw_pmp_2_cfg_a; // @[TLB.scala:318:7] wire io_ptw_pmp_2_cfg_x_0 = io_ptw_pmp_2_cfg_x; // @[TLB.scala:318:7] wire io_ptw_pmp_2_cfg_w_0 = io_ptw_pmp_2_cfg_w; // @[TLB.scala:318:7] wire io_ptw_pmp_2_cfg_r_0 = io_ptw_pmp_2_cfg_r; // @[TLB.scala:318:7] wire [29:0] io_ptw_pmp_2_addr_0 = io_ptw_pmp_2_addr; // @[TLB.scala:318:7] wire [31:0] io_ptw_pmp_2_mask_0 = io_ptw_pmp_2_mask; // @[TLB.scala:318:7] wire io_ptw_pmp_3_cfg_l_0 = io_ptw_pmp_3_cfg_l; // @[TLB.scala:318:7] wire [1:0] io_ptw_pmp_3_cfg_a_0 = io_ptw_pmp_3_cfg_a; // @[TLB.scala:318:7] wire io_ptw_pmp_3_cfg_x_0 = io_ptw_pmp_3_cfg_x; // @[TLB.scala:318:7] wire io_ptw_pmp_3_cfg_w_0 = io_ptw_pmp_3_cfg_w; // @[TLB.scala:318:7] wire io_ptw_pmp_3_cfg_r_0 = io_ptw_pmp_3_cfg_r; // @[TLB.scala:318:7] wire [29:0] io_ptw_pmp_3_addr_0 = io_ptw_pmp_3_addr; // @[TLB.scala:318:7] wire [31:0] io_ptw_pmp_3_mask_0 = io_ptw_pmp_3_mask; // @[TLB.scala:318:7] wire io_ptw_pmp_4_cfg_l_0 = io_ptw_pmp_4_cfg_l; // @[TLB.scala:318:7] wire [1:0] io_ptw_pmp_4_cfg_a_0 = io_ptw_pmp_4_cfg_a; // @[TLB.scala:318:7] wire io_ptw_pmp_4_cfg_x_0 = io_ptw_pmp_4_cfg_x; // @[TLB.scala:318:7] wire io_ptw_pmp_4_cfg_w_0 = io_ptw_pmp_4_cfg_w; // @[TLB.scala:318:7] wire io_ptw_pmp_4_cfg_r_0 = io_ptw_pmp_4_cfg_r; // @[TLB.scala:318:7] wire [29:0] io_ptw_pmp_4_addr_0 = io_ptw_pmp_4_addr; // @[TLB.scala:318:7] wire [31:0] io_ptw_pmp_4_mask_0 = io_ptw_pmp_4_mask; // @[TLB.scala:318:7] wire io_ptw_pmp_5_cfg_l_0 = io_ptw_pmp_5_cfg_l; // @[TLB.scala:318:7] wire [1:0] io_ptw_pmp_5_cfg_a_0 = io_ptw_pmp_5_cfg_a; // @[TLB.scala:318:7] wire io_ptw_pmp_5_cfg_x_0 = io_ptw_pmp_5_cfg_x; // @[TLB.scala:318:7] wire io_ptw_pmp_5_cfg_w_0 = io_ptw_pmp_5_cfg_w; // @[TLB.scala:318:7] wire io_ptw_pmp_5_cfg_r_0 = io_ptw_pmp_5_cfg_r; // @[TLB.scala:318:7] wire [29:0] io_ptw_pmp_5_addr_0 = io_ptw_pmp_5_addr; // @[TLB.scala:318:7] wire [31:0] io_ptw_pmp_5_mask_0 = io_ptw_pmp_5_mask; // @[TLB.scala:318:7] wire io_ptw_pmp_6_cfg_l_0 = io_ptw_pmp_6_cfg_l; // @[TLB.scala:318:7] wire [1:0] io_ptw_pmp_6_cfg_a_0 = io_ptw_pmp_6_cfg_a; // @[TLB.scala:318:7] wire io_ptw_pmp_6_cfg_x_0 = io_ptw_pmp_6_cfg_x; // @[TLB.scala:318:7] wire io_ptw_pmp_6_cfg_w_0 = io_ptw_pmp_6_cfg_w; // @[TLB.scala:318:7] wire io_ptw_pmp_6_cfg_r_0 = io_ptw_pmp_6_cfg_r; // @[TLB.scala:318:7] wire [29:0] io_ptw_pmp_6_addr_0 = io_ptw_pmp_6_addr; // @[TLB.scala:318:7] wire [31:0] io_ptw_pmp_6_mask_0 = io_ptw_pmp_6_mask; // @[TLB.scala:318:7] wire io_ptw_pmp_7_cfg_l_0 = io_ptw_pmp_7_cfg_l; // @[TLB.scala:318:7] wire [1:0] io_ptw_pmp_7_cfg_a_0 = io_ptw_pmp_7_cfg_a; // @[TLB.scala:318:7] wire io_ptw_pmp_7_cfg_x_0 = io_ptw_pmp_7_cfg_x; // @[TLB.scala:318:7] wire io_ptw_pmp_7_cfg_w_0 = io_ptw_pmp_7_cfg_w; // @[TLB.scala:318:7] wire io_ptw_pmp_7_cfg_r_0 = io_ptw_pmp_7_cfg_r; // @[TLB.scala:318:7] wire [29:0] io_ptw_pmp_7_addr_0 = io_ptw_pmp_7_addr; // @[TLB.scala:318:7] wire [31:0] io_ptw_pmp_7_mask_0 = io_ptw_pmp_7_mask; // @[TLB.scala:318:7] wire io_req_bits_passthrough = 1'h0; // @[TLB.scala:318:7] wire io_resp_gpa_is_pte = 1'h0; // @[TLB.scala:318:7] wire io_resp_pf_st = 1'h0; // @[TLB.scala:318:7] wire io_resp_gf_ld = 1'h0; // @[TLB.scala:318:7] wire io_resp_gf_st = 1'h0; // @[TLB.scala:318:7] wire io_resp_gf_inst = 1'h0; // @[TLB.scala:318:7] wire io_resp_ae_st = 1'h0; // @[TLB.scala:318:7] wire io_resp_ma_st = 1'h0; // @[TLB.scala:318:7] wire io_resp_ma_inst = 1'h0; // @[TLB.scala:318:7] wire io_resp_must_alloc = 1'h0; // @[TLB.scala:318:7] wire io_ptw_req_bits_bits_vstage1 = 1'h0; // @[TLB.scala:318:7] wire io_ptw_req_bits_bits_stage2 = 1'h0; // @[TLB.scala:318:7] wire io_ptw_resp_bits_fragmented_superpage = 1'h0; // @[TLB.scala:318:7] wire io_ptw_status_mbe = 1'h0; // @[TLB.scala:318:7] wire io_ptw_status_sbe = 1'h0; // @[TLB.scala:318:7] wire io_ptw_status_sd_rv32 = 1'h0; // @[TLB.scala:318:7] wire io_ptw_status_ube = 1'h0; // @[TLB.scala:318:7] wire io_ptw_status_upie = 1'h0; // @[TLB.scala:318:7] wire io_ptw_status_hie = 1'h0; // @[TLB.scala:318:7] wire io_ptw_status_uie = 1'h0; // @[TLB.scala:318:7] wire io_ptw_hstatus_vtsr = 1'h0; // @[TLB.scala:318:7] wire io_ptw_hstatus_vtw = 1'h0; // @[TLB.scala:318:7] wire io_ptw_hstatus_vtvm = 1'h0; // @[TLB.scala:318:7] wire io_ptw_hstatus_hu = 1'h0; // @[TLB.scala:318:7] wire io_ptw_hstatus_spvp = 1'h0; // @[TLB.scala:318:7] wire io_ptw_hstatus_spv = 1'h0; // @[TLB.scala:318:7] wire io_ptw_hstatus_gva = 1'h0; // @[TLB.scala:318:7] wire io_ptw_hstatus_vsbe = 1'h0; // @[TLB.scala:318:7] wire io_ptw_gstatus_debug = 1'h0; // @[TLB.scala:318:7] wire io_ptw_gstatus_cease = 1'h0; // @[TLB.scala:318:7] wire io_ptw_gstatus_wfi = 1'h0; // @[TLB.scala:318:7] wire io_ptw_gstatus_dv = 1'h0; // @[TLB.scala:318:7] wire io_ptw_gstatus_v = 1'h0; // @[TLB.scala:318:7] wire io_ptw_gstatus_sd = 1'h0; // @[TLB.scala:318:7] wire io_ptw_gstatus_mpv = 1'h0; // @[TLB.scala:318:7] wire io_ptw_gstatus_gva = 1'h0; // @[TLB.scala:318:7] wire io_ptw_gstatus_mbe = 1'h0; // @[TLB.scala:318:7] wire io_ptw_gstatus_sbe = 1'h0; // @[TLB.scala:318:7] wire io_ptw_gstatus_sd_rv32 = 1'h0; // @[TLB.scala:318:7] wire io_ptw_gstatus_tsr = 1'h0; // @[TLB.scala:318:7] wire io_ptw_gstatus_tw = 1'h0; // @[TLB.scala:318:7] wire io_ptw_gstatus_tvm = 1'h0; // @[TLB.scala:318:7] wire io_ptw_gstatus_mxr = 1'h0; // @[TLB.scala:318:7] wire io_ptw_gstatus_sum = 1'h0; // @[TLB.scala:318:7] wire io_ptw_gstatus_mprv = 1'h0; // @[TLB.scala:318:7] wire io_ptw_gstatus_spp = 1'h0; // @[TLB.scala:318:7] wire io_ptw_gstatus_mpie = 1'h0; // @[TLB.scala:318:7] wire io_ptw_gstatus_ube = 1'h0; // @[TLB.scala:318:7] wire io_ptw_gstatus_spie = 1'h0; // @[TLB.scala:318:7] wire io_ptw_gstatus_upie = 1'h0; // @[TLB.scala:318:7] wire io_ptw_gstatus_mie = 1'h0; // @[TLB.scala:318:7] wire io_ptw_gstatus_hie = 1'h0; // @[TLB.scala:318:7] wire io_ptw_gstatus_sie = 1'h0; // @[TLB.scala:318:7] wire io_ptw_gstatus_uie = 1'h0; // @[TLB.scala:318:7] wire io_ptw_customCSRs_csrs_0_ren = 1'h0; // @[TLB.scala:318:7] wire io_ptw_customCSRs_csrs_0_wen = 1'h0; // @[TLB.scala:318:7] wire io_ptw_customCSRs_csrs_0_stall = 1'h0; // @[TLB.scala:318:7] wire io_ptw_customCSRs_csrs_0_set = 1'h0; // @[TLB.scala:318:7] wire io_ptw_customCSRs_csrs_1_ren = 1'h0; // @[TLB.scala:318:7] wire io_ptw_customCSRs_csrs_1_wen = 1'h0; // @[TLB.scala:318:7] wire io_ptw_customCSRs_csrs_1_stall = 1'h0; // @[TLB.scala:318:7] wire io_ptw_customCSRs_csrs_1_set = 1'h0; // @[TLB.scala:318:7] wire io_kill = 1'h0; // @[TLB.scala:318:7] wire priv_v = 1'h0; // @[TLB.scala:369:34] wire _vstage1_en_T = 1'h0; // @[TLB.scala:376:38] wire _vstage1_en_T_1 = 1'h0; // @[TLB.scala:376:68] wire vstage1_en = 1'h0; // @[TLB.scala:376:48] wire _stage2_en_T = 1'h0; // @[TLB.scala:378:38] wire _stage2_en_T_1 = 1'h0; // @[TLB.scala:378:68] wire stage2_en = 1'h0; // @[TLB.scala:378:48] wire _vsatp_mode_mismatch_T = 1'h0; // @[TLB.scala:403:52] wire _vsatp_mode_mismatch_T_1 = 1'h0; // @[TLB.scala:403:37] wire vsatp_mode_mismatch = 1'h0; // @[TLB.scala:403:78] wire _superpage_hits_ignore_T = 1'h0; // @[TLB.scala:182:28] wire superpage_hits_ignore = 1'h0; // @[TLB.scala:182:34] wire _superpage_hits_ignore_T_3 = 1'h0; // @[TLB.scala:182:28] wire superpage_hits_ignore_3 = 1'h0; // @[TLB.scala:182:34] wire _superpage_hits_ignore_T_6 = 1'h0; // @[TLB.scala:182:28] wire superpage_hits_ignore_6 = 1'h0; // @[TLB.scala:182:34] wire _superpage_hits_ignore_T_9 = 1'h0; // @[TLB.scala:182:28] wire superpage_hits_ignore_9 = 1'h0; // @[TLB.scala:182:34] wire _hitsVec_ignore_T = 1'h0; // @[TLB.scala:182:28] wire hitsVec_ignore = 1'h0; // @[TLB.scala:182:34] wire _hitsVec_ignore_T_3 = 1'h0; // @[TLB.scala:182:28] wire hitsVec_ignore_3 = 1'h0; // @[TLB.scala:182:34] wire _hitsVec_ignore_T_6 = 1'h0; // @[TLB.scala:182:28] wire hitsVec_ignore_6 = 1'h0; // @[TLB.scala:182:34] wire _hitsVec_ignore_T_9 = 1'h0; // @[TLB.scala:182:28] wire hitsVec_ignore_9 = 1'h0; // @[TLB.scala:182:34] wire _hitsVec_ignore_T_12 = 1'h0; // @[TLB.scala:182:28] wire hitsVec_ignore_12 = 1'h0; // @[TLB.scala:182:34] wire refill_v = 1'h0; // @[TLB.scala:448:33] wire newEntry_ae_stage2 = 1'h0; // @[TLB.scala:449:24] wire newEntry_fragmented_superpage = 1'h0; // @[TLB.scala:449:24] wire _newEntry_ae_stage2_T_1 = 1'h0; // @[TLB.scala:456:84] wire _waddr_T = 1'h0; // @[TLB.scala:477:45] wire _mxr_T = 1'h0; // @[TLB.scala:518:36] wire _cmd_lrsc_T = 1'h0; // @[package.scala:16:47] wire _cmd_lrsc_T_1 = 1'h0; // @[package.scala:16:47] wire _cmd_lrsc_T_2 = 1'h0; // @[package.scala:81:59] wire cmd_lrsc = 1'h0; // @[TLB.scala:570:33] wire _cmd_amo_logical_T = 1'h0; // @[package.scala:16:47] wire _cmd_amo_logical_T_1 = 1'h0; // @[package.scala:16:47] wire _cmd_amo_logical_T_2 = 1'h0; // @[package.scala:16:47] wire _cmd_amo_logical_T_3 = 1'h0; // @[package.scala:16:47] wire _cmd_amo_logical_T_4 = 1'h0; // @[package.scala:81:59] wire _cmd_amo_logical_T_5 = 1'h0; // @[package.scala:81:59] wire _cmd_amo_logical_T_6 = 1'h0; // @[package.scala:81:59] wire cmd_amo_logical = 1'h0; // @[TLB.scala:571:40] wire _cmd_amo_arithmetic_T = 1'h0; // @[package.scala:16:47] wire _cmd_amo_arithmetic_T_1 = 1'h0; // @[package.scala:16:47] wire _cmd_amo_arithmetic_T_2 = 1'h0; // @[package.scala:16:47] wire _cmd_amo_arithmetic_T_3 = 1'h0; // @[package.scala:16:47] wire _cmd_amo_arithmetic_T_4 = 1'h0; // @[package.scala:16:47] wire _cmd_amo_arithmetic_T_5 = 1'h0; // @[package.scala:81:59] wire _cmd_amo_arithmetic_T_6 = 1'h0; // @[package.scala:81:59] wire _cmd_amo_arithmetic_T_7 = 1'h0; // @[package.scala:81:59] wire _cmd_amo_arithmetic_T_8 = 1'h0; // @[package.scala:81:59] wire cmd_amo_arithmetic = 1'h0; // @[TLB.scala:572:43] wire cmd_put_partial = 1'h0; // @[TLB.scala:573:41] wire _cmd_read_T_1 = 1'h0; // @[package.scala:16:47] wire _cmd_read_T_2 = 1'h0; // @[package.scala:16:47] wire _cmd_read_T_3 = 1'h0; // @[package.scala:16:47] wire _cmd_read_T_7 = 1'h0; // @[package.scala:16:47] wire _cmd_read_T_8 = 1'h0; // @[package.scala:16:47] wire _cmd_read_T_9 = 1'h0; // @[package.scala:16:47] wire _cmd_read_T_10 = 1'h0; // @[package.scala:16:47] wire _cmd_read_T_11 = 1'h0; // @[package.scala:81:59] wire _cmd_read_T_12 = 1'h0; // @[package.scala:81:59] wire _cmd_read_T_13 = 1'h0; // @[package.scala:81:59] wire _cmd_read_T_14 = 1'h0; // @[package.scala:16:47] wire _cmd_read_T_15 = 1'h0; // @[package.scala:16:47] wire _cmd_read_T_16 = 1'h0; // @[package.scala:16:47] wire _cmd_read_T_17 = 1'h0; // @[package.scala:16:47] wire _cmd_read_T_18 = 1'h0; // @[package.scala:16:47] wire _cmd_read_T_19 = 1'h0; // @[package.scala:81:59] wire _cmd_read_T_20 = 1'h0; // @[package.scala:81:59] wire _cmd_read_T_21 = 1'h0; // @[package.scala:81:59] wire _cmd_read_T_22 = 1'h0; // @[package.scala:81:59] wire _cmd_read_T_23 = 1'h0; // @[Consts.scala:87:44] wire _cmd_readx_T = 1'h0; // @[TLB.scala:575:56] wire cmd_readx = 1'h0; // @[TLB.scala:575:37] wire _cmd_write_T = 1'h0; // @[Consts.scala:90:32] wire _cmd_write_T_1 = 1'h0; // @[Consts.scala:90:49] wire _cmd_write_T_2 = 1'h0; // @[Consts.scala:90:42] wire _cmd_write_T_3 = 1'h0; // @[Consts.scala:90:66] wire _cmd_write_T_4 = 1'h0; // @[Consts.scala:90:59] wire _cmd_write_T_5 = 1'h0; // @[package.scala:16:47] wire _cmd_write_T_6 = 1'h0; // @[package.scala:16:47] wire _cmd_write_T_7 = 1'h0; // @[package.scala:16:47] wire _cmd_write_T_8 = 1'h0; // @[package.scala:16:47] wire _cmd_write_T_9 = 1'h0; // @[package.scala:81:59] wire _cmd_write_T_10 = 1'h0; // @[package.scala:81:59] wire _cmd_write_T_11 = 1'h0; // @[package.scala:81:59] wire _cmd_write_T_12 = 1'h0; // @[package.scala:16:47] wire _cmd_write_T_13 = 1'h0; // @[package.scala:16:47] wire _cmd_write_T_14 = 1'h0; // @[package.scala:16:47] wire _cmd_write_T_15 = 1'h0; // @[package.scala:16:47] wire _cmd_write_T_16 = 1'h0; // @[package.scala:16:47] wire _cmd_write_T_17 = 1'h0; // @[package.scala:81:59] wire _cmd_write_T_18 = 1'h0; // @[package.scala:81:59] wire _cmd_write_T_19 = 1'h0; // @[package.scala:81:59] wire _cmd_write_T_20 = 1'h0; // @[package.scala:81:59] wire _cmd_write_T_21 = 1'h0; // @[Consts.scala:87:44] wire cmd_write = 1'h0; // @[Consts.scala:90:76] wire _cmd_write_perms_T = 1'h0; // @[package.scala:16:47] wire _cmd_write_perms_T_1 = 1'h0; // @[package.scala:16:47] wire _cmd_write_perms_T_2 = 1'h0; // @[package.scala:81:59] wire cmd_write_perms = 1'h0; // @[TLB.scala:577:35] wire _gf_ld_array_T = 1'h0; // @[TLB.scala:600:32] wire _gf_st_array_T = 1'h0; // @[TLB.scala:601:32] wire _multipleHits_T_6 = 1'h0; // @[Misc.scala:183:37] wire _multipleHits_T_15 = 1'h0; // @[Misc.scala:183:37] wire _multipleHits_T_27 = 1'h0; // @[Misc.scala:183:37] wire _multipleHits_T_35 = 1'h0; // @[Misc.scala:183:37] wire _multipleHits_T_40 = 1'h0; // @[Misc.scala:183:37] wire _io_resp_pf_st_T = 1'h0; // @[TLB.scala:634:28] wire _io_resp_pf_st_T_2 = 1'h0; // @[TLB.scala:634:72] wire _io_resp_pf_st_T_3 = 1'h0; // @[TLB.scala:634:48] wire _io_resp_gf_ld_T = 1'h0; // @[TLB.scala:637:29] wire _io_resp_gf_ld_T_2 = 1'h0; // @[TLB.scala:637:66] wire _io_resp_gf_ld_T_3 = 1'h0; // @[TLB.scala:637:42] wire _io_resp_gf_st_T = 1'h0; // @[TLB.scala:638:29] wire _io_resp_gf_st_T_2 = 1'h0; // @[TLB.scala:638:73] wire _io_resp_gf_st_T_3 = 1'h0; // @[TLB.scala:638:49] wire _io_resp_gf_inst_T_1 = 1'h0; // @[TLB.scala:639:56] wire _io_resp_gf_inst_T_2 = 1'h0; // @[TLB.scala:639:30] wire _io_resp_ae_st_T_1 = 1'h0; // @[TLB.scala:642:41] wire _io_resp_ma_st_T = 1'h0; // @[TLB.scala:646:31] wire _io_resp_must_alloc_T_1 = 1'h0; // @[TLB.scala:649:51] wire _io_resp_gpa_is_pte_T = 1'h0; // @[TLB.scala:655:36] wire hv = 1'h0; // @[TLB.scala:721:36] wire hg = 1'h0; // @[TLB.scala:722:36] wire hv_1 = 1'h0; // @[TLB.scala:721:36] wire hg_1 = 1'h0; // @[TLB.scala:722:36] wire hv_2 = 1'h0; // @[TLB.scala:721:36] wire hg_2 = 1'h0; // @[TLB.scala:722:36] wire hv_3 = 1'h0; // @[TLB.scala:721:36] wire hg_3 = 1'h0; // @[TLB.scala:722:36] wire hv_4 = 1'h0; // @[TLB.scala:721:36] wire hg_4 = 1'h0; // @[TLB.scala:722:36] wire hv_5 = 1'h0; // @[TLB.scala:721:36] wire hg_5 = 1'h0; // @[TLB.scala:722:36] wire hv_6 = 1'h0; // @[TLB.scala:721:36] wire hg_6 = 1'h0; // @[TLB.scala:722:36] wire hv_7 = 1'h0; // @[TLB.scala:721:36] wire hg_7 = 1'h0; // @[TLB.scala:722:36] wire hv_8 = 1'h0; // @[TLB.scala:721:36] wire hg_8 = 1'h0; // @[TLB.scala:722:36] wire _ignore_T = 1'h0; // @[TLB.scala:182:28] wire ignore = 1'h0; // @[TLB.scala:182:34] wire hv_9 = 1'h0; // @[TLB.scala:721:36] wire hg_9 = 1'h0; // @[TLB.scala:722:36] wire _ignore_T_3 = 1'h0; // @[TLB.scala:182:28] wire ignore_3 = 1'h0; // @[TLB.scala:182:34] wire hv_10 = 1'h0; // @[TLB.scala:721:36] wire hg_10 = 1'h0; // @[TLB.scala:722:36] wire _ignore_T_6 = 1'h0; // @[TLB.scala:182:28] wire ignore_6 = 1'h0; // @[TLB.scala:182:34] wire hv_11 = 1'h0; // @[TLB.scala:721:36] wire hg_11 = 1'h0; // @[TLB.scala:722:36] wire _ignore_T_9 = 1'h0; // @[TLB.scala:182:28] wire ignore_9 = 1'h0; // @[TLB.scala:182:34] wire hv_12 = 1'h0; // @[TLB.scala:721:36] wire hg_12 = 1'h0; // @[TLB.scala:722:36] wire _ignore_T_12 = 1'h0; // @[TLB.scala:182:28] wire ignore_12 = 1'h0; // @[TLB.scala:182:34] wire [15:0] io_ptw_ptbr_asid = 16'h0; // @[TLB.scala:318:7] wire [15:0] io_ptw_hgatp_asid = 16'h0; // @[TLB.scala:318:7] wire [15:0] io_ptw_vsatp_asid = 16'h0; // @[TLB.scala:318:7] wire [15:0] satp_asid = 16'h0; // @[TLB.scala:373:17] wire [31:0] io_ptw_status_isa = 32'h14112D; // @[TLB.scala:318:7] wire [22:0] io_ptw_status_zero2 = 23'h0; // @[TLB.scala:318:7] wire [22:0] io_ptw_gstatus_zero2 = 23'h0; // @[TLB.scala:318:7] wire [7:0] io_ptw_status_zero1 = 8'h0; // @[TLB.scala:318:7] wire [7:0] io_ptw_gstatus_zero1 = 8'h0; // @[TLB.scala:318:7] wire [1:0] io_ptw_status_xs = 2'h0; // @[TLB.scala:318:7] wire [1:0] io_ptw_status_vs = 2'h0; // @[TLB.scala:318:7] wire [1:0] io_ptw_hstatus_vsxl = 2'h0; // @[TLB.scala:318:7] wire [1:0] io_ptw_hstatus_zero3 = 2'h0; // @[TLB.scala:318:7] wire [1:0] io_ptw_hstatus_zero2 = 2'h0; // @[TLB.scala:318:7] wire [1:0] io_ptw_gstatus_dprv = 2'h0; // @[TLB.scala:318:7] wire [1:0] io_ptw_gstatus_prv = 2'h0; // @[TLB.scala:318:7] wire [1:0] io_ptw_gstatus_sxl = 2'h0; // @[TLB.scala:318:7] wire [1:0] io_ptw_gstatus_uxl = 2'h0; // @[TLB.scala:318:7] wire [1:0] io_ptw_gstatus_xs = 2'h0; // @[TLB.scala:318:7] wire [1:0] io_ptw_gstatus_fs = 2'h0; // @[TLB.scala:318:7] wire [1:0] io_ptw_gstatus_mpp = 2'h0; // @[TLB.scala:318:7] wire [1:0] io_ptw_gstatus_vs = 2'h0; // @[TLB.scala:318:7] wire [1:0] io_ptw_pmp_0_cfg_res = 2'h0; // @[TLB.scala:318:7] wire [1:0] io_ptw_pmp_1_cfg_res = 2'h0; // @[TLB.scala:318:7] wire [1:0] io_ptw_pmp_2_cfg_res = 2'h0; // @[TLB.scala:318:7] wire [1:0] io_ptw_pmp_3_cfg_res = 2'h0; // @[TLB.scala:318:7] wire [1:0] io_ptw_pmp_4_cfg_res = 2'h0; // @[TLB.scala:318:7] wire [1:0] io_ptw_pmp_5_cfg_res = 2'h0; // @[TLB.scala:318:7] wire [1:0] io_ptw_pmp_6_cfg_res = 2'h0; // @[TLB.scala:318:7] wire [1:0] io_ptw_pmp_7_cfg_res = 2'h0; // @[TLB.scala:318:7] wire [2:0] io_req_bits_size = 3'h4; // @[TLB.scala:318:7] wire [2:0] io_resp_size = 3'h4; // @[TLB.scala:318:7] wire [4:0] io_req_bits_cmd = 5'h0; // @[TLB.scala:318:7] wire [4:0] io_resp_cmd = 5'h0; // @[TLB.scala:318:7] wire [4:0] io_ptw_hstatus_zero1 = 5'h0; // @[TLB.scala:318:7] wire io_ptw_req_bits_valid = 1'h1; // @[TLB.scala:318:7] wire _vm_enabled_T_2 = 1'h1; // @[TLB.scala:399:64] wire _vsatp_mode_mismatch_T_2 = 1'h1; // @[TLB.scala:403:81] wire _homogeneous_T_59 = 1'h1; // @[TLBPermissions.scala:87:22] wire superpage_hits_ignore_2 = 1'h1; // @[TLB.scala:182:34] wire _superpage_hits_T_13 = 1'h1; // @[TLB.scala:183:40] wire superpage_hits_ignore_5 = 1'h1; // @[TLB.scala:182:34] wire _superpage_hits_T_27 = 1'h1; // @[TLB.scala:183:40] wire superpage_hits_ignore_8 = 1'h1; // @[TLB.scala:182:34] wire _superpage_hits_T_41 = 1'h1; // @[TLB.scala:183:40] wire superpage_hits_ignore_11 = 1'h1; // @[TLB.scala:182:34] wire _superpage_hits_T_55 = 1'h1; // @[TLB.scala:183:40] wire hitsVec_ignore_2 = 1'h1; // @[TLB.scala:182:34] wire _hitsVec_T_61 = 1'h1; // @[TLB.scala:183:40] wire hitsVec_ignore_5 = 1'h1; // @[TLB.scala:182:34] wire _hitsVec_T_76 = 1'h1; // @[TLB.scala:183:40] wire hitsVec_ignore_8 = 1'h1; // @[TLB.scala:182:34] wire _hitsVec_T_91 = 1'h1; // @[TLB.scala:183:40] wire hitsVec_ignore_11 = 1'h1; // @[TLB.scala:182:34] wire _hitsVec_T_106 = 1'h1; // @[TLB.scala:183:40] wire ppn_ignore_1 = 1'h1; // @[TLB.scala:197:34] wire ppn_ignore_3 = 1'h1; // @[TLB.scala:197:34] wire ppn_ignore_5 = 1'h1; // @[TLB.scala:197:34] wire ppn_ignore_7 = 1'h1; // @[TLB.scala:197:34] wire _stage2_bypass_T = 1'h1; // @[TLB.scala:523:42] wire _bad_va_T_1 = 1'h1; // @[TLB.scala:560:26] wire _cmd_read_T = 1'h1; // @[package.scala:16:47] wire _cmd_read_T_4 = 1'h1; // @[package.scala:81:59] wire _cmd_read_T_5 = 1'h1; // @[package.scala:81:59] wire _cmd_read_T_6 = 1'h1; // @[package.scala:81:59] wire cmd_read = 1'h1; // @[Consts.scala:89:68] wire _gpa_hits_hit_mask_T_3 = 1'h1; // @[TLB.scala:606:107] wire _tlb_miss_T = 1'h1; // @[TLB.scala:613:32] wire _io_resp_gpa_page_T = 1'h1; // @[TLB.scala:657:20] wire _io_ptw_req_bits_valid_T = 1'h1; // @[TLB.scala:663:28] wire ignore_2 = 1'h1; // @[TLB.scala:182:34] wire ignore_5 = 1'h1; // @[TLB.scala:182:34] wire ignore_8 = 1'h1; // @[TLB.scala:182:34] wire ignore_11 = 1'h1; // @[TLB.scala:182:34] wire [3:0] io_ptw_hgatp_mode = 4'h0; // @[TLB.scala:318:7] wire [3:0] io_ptw_vsatp_mode = 4'h0; // @[TLB.scala:318:7] wire [43:0] io_ptw_hgatp_ppn = 44'h0; // @[TLB.scala:318:7] wire [43:0] io_ptw_vsatp_ppn = 44'h0; // @[TLB.scala:318:7] wire [1:0] io_ptw_status_sxl = 2'h2; // @[TLB.scala:318:7] wire [1:0] io_ptw_status_uxl = 2'h2; // @[TLB.scala:318:7] wire [29:0] io_ptw_hstatus_zero6 = 30'h0; // @[TLB.scala:318:7] wire [8:0] io_ptw_hstatus_zero5 = 9'h0; // @[TLB.scala:318:7] wire [5:0] io_ptw_hstatus_vgein = 6'h0; // @[TLB.scala:318:7] wire [31:0] io_ptw_gstatus_isa = 32'h0; // @[TLB.scala:318:7] wire [63:0] io_ptw_customCSRs_csrs_0_wdata = 64'h0; // @[TLB.scala:318:7] wire [63:0] io_ptw_customCSRs_csrs_0_value = 64'h0; // @[TLB.scala:318:7] wire [63:0] io_ptw_customCSRs_csrs_0_sdata = 64'h0; // @[TLB.scala:318:7] wire [63:0] io_ptw_customCSRs_csrs_1_wdata = 64'h0; // @[TLB.scala:318:7] wire [63:0] io_ptw_customCSRs_csrs_1_value = 64'h0; // @[TLB.scala:318:7] wire [63:0] io_ptw_customCSRs_csrs_1_sdata = 64'h0; // @[TLB.scala:318:7] wire [13:0] _ae_array_T_2 = 14'h0; // @[TLB.scala:583:8] wire [13:0] _ae_st_array_T_2 = 14'h0; // @[TLB.scala:588:8] wire [13:0] _ae_st_array_T_4 = 14'h0; // @[TLB.scala:589:8] wire [13:0] _ae_st_array_T_5 = 14'h0; // @[TLB.scala:588:53] wire [13:0] _ae_st_array_T_7 = 14'h0; // @[TLB.scala:590:8] wire [13:0] _ae_st_array_T_8 = 14'h0; // @[TLB.scala:589:53] wire [13:0] _ae_st_array_T_10 = 14'h0; // @[TLB.scala:591:8] wire [13:0] ae_st_array = 14'h0; // @[TLB.scala:590:53] wire [13:0] _must_alloc_array_T_1 = 14'h0; // @[TLB.scala:593:8] wire [13:0] _must_alloc_array_T_3 = 14'h0; // @[TLB.scala:594:8] wire [13:0] _must_alloc_array_T_4 = 14'h0; // @[TLB.scala:593:43] wire [13:0] _must_alloc_array_T_6 = 14'h0; // @[TLB.scala:595:8] wire [13:0] _must_alloc_array_T_7 = 14'h0; // @[TLB.scala:594:43] wire [13:0] _must_alloc_array_T_9 = 14'h0; // @[TLB.scala:596:8] wire [13:0] must_alloc_array = 14'h0; // @[TLB.scala:595:46] wire [13:0] pf_st_array = 14'h0; // @[TLB.scala:598:24] wire [13:0] _gf_ld_array_T_2 = 14'h0; // @[TLB.scala:600:46] wire [13:0] gf_ld_array = 14'h0; // @[TLB.scala:600:24] wire [13:0] _gf_st_array_T_1 = 14'h0; // @[TLB.scala:601:53] wire [13:0] gf_st_array = 14'h0; // @[TLB.scala:601:24] wire [13:0] _gf_inst_array_T = 14'h0; // @[TLB.scala:602:36] wire [13:0] gf_inst_array = 14'h0; // @[TLB.scala:602:26] wire [13:0] _io_resp_pf_st_T_1 = 14'h0; // @[TLB.scala:634:64] wire [13:0] _io_resp_gf_ld_T_1 = 14'h0; // @[TLB.scala:637:58] wire [13:0] _io_resp_gf_st_T_1 = 14'h0; // @[TLB.scala:638:65] wire [13:0] _io_resp_gf_inst_T = 14'h0; // @[TLB.scala:639:48] wire [13:0] _io_resp_ae_st_T = 14'h0; // @[TLB.scala:642:33] wire [13:0] _io_resp_must_alloc_T = 14'h0; // @[TLB.scala:649:43] wire [6:0] _state_vec_WIRE_0 = 7'h0; // @[Replacement.scala:305:25] wire [12:0] stage2_bypass = 13'h1FFF; // @[TLB.scala:523:27] wire [12:0] _hr_array_T_4 = 13'h1FFF; // @[TLB.scala:524:111] wire [12:0] _hw_array_T_1 = 13'h1FFF; // @[TLB.scala:525:55] wire [12:0] _hx_array_T_1 = 13'h1FFF; // @[TLB.scala:526:55] wire [12:0] _gpa_hits_hit_mask_T_4 = 13'h1FFF; // @[TLB.scala:606:88] wire [12:0] gpa_hits_hit_mask = 13'h1FFF; // @[TLB.scala:606:82] wire [12:0] _gpa_hits_T_1 = 13'h1FFF; // @[TLB.scala:607:16] wire [12:0] gpa_hits = 13'h1FFF; // @[TLB.scala:607:14] wire [12:0] _stage1_bypass_T = 13'h0; // @[TLB.scala:517:27] wire [12:0] stage1_bypass = 13'h0; // @[TLB.scala:517:61] wire [12:0] _gpa_hits_T = 13'h0; // @[TLB.scala:607:30] wire [13:0] hr_array = 14'h3FFF; // @[TLB.scala:524:21] wire [13:0] hw_array = 14'h3FFF; // @[TLB.scala:525:21] wire [13:0] hx_array = 14'h3FFF; // @[TLB.scala:526:21] wire [13:0] _must_alloc_array_T_8 = 14'h3FFF; // @[TLB.scala:596:19] wire [13:0] _gf_ld_array_T_1 = 14'h3FFF; // @[TLB.scala:600:50] wire [7:0] _misaligned_T_2 = 8'hF; // @[TLB.scala:550:69] wire [8:0] _misaligned_T_1 = 9'hF; // @[TLB.scala:550:69] wire [7:0] _misaligned_T = 8'h10; // @[OneHot.scala:58:35] wire _io_req_ready_T; // @[TLB.scala:631:25] wire _io_resp_miss_T_2; // @[TLB.scala:651:64] wire [31:0] _io_resp_paddr_T_1; // @[TLB.scala:652:23] wire [39:0] _io_resp_gpa_T; // @[TLB.scala:659:8] wire _io_resp_pf_ld_T_3; // @[TLB.scala:633:41] wire _io_resp_pf_inst_T_2; // @[TLB.scala:635:29] wire _io_resp_ae_ld_T_1; // @[TLB.scala:641:41] wire _io_resp_ae_inst_T_2; // @[TLB.scala:643:41] wire _io_resp_ma_ld_T; // @[TLB.scala:645:31] wire _io_resp_cacheable_T_1; // @[TLB.scala:648:41] wire _io_resp_prefetchable_T_2; // @[TLB.scala:650:59] wire _io_ptw_req_valid_T; // @[TLB.scala:662:29] wire do_refill = io_ptw_resp_valid_0; // @[TLB.scala:318:7, :408:29] wire newEntry_ae_ptw = io_ptw_resp_bits_ae_ptw_0; // @[TLB.scala:318:7, :449:24] wire newEntry_ae_final = io_ptw_resp_bits_ae_final_0; // @[TLB.scala:318:7, :449:24] wire newEntry_pf = io_ptw_resp_bits_pf_0; // @[TLB.scala:318:7, :449:24] wire newEntry_gf = io_ptw_resp_bits_gf_0; // @[TLB.scala:318:7, :449:24] wire newEntry_hr = io_ptw_resp_bits_hr_0; // @[TLB.scala:318:7, :449:24] wire newEntry_hw = io_ptw_resp_bits_hw_0; // @[TLB.scala:318:7, :449:24] wire newEntry_hx = io_ptw_resp_bits_hx_0; // @[TLB.scala:318:7, :449:24] wire newEntry_u = io_ptw_resp_bits_pte_u_0; // @[TLB.scala:318:7, :449:24] wire [1:0] _special_entry_level_T = io_ptw_resp_bits_level_0; // @[package.scala:163:13] wire [3:0] satp_mode = io_ptw_ptbr_mode_0; // @[TLB.scala:318:7, :373:17] wire [43:0] satp_ppn = io_ptw_ptbr_ppn_0; // @[TLB.scala:318:7, :373:17] wire mxr = io_ptw_status_mxr_0; // @[TLB.scala:318:7, :518:31] wire sum = io_ptw_status_sum_0; // @[TLB.scala:318:7, :510:16] wire io_req_ready; // @[TLB.scala:318:7] wire io_resp_pf_ld_0; // @[TLB.scala:318:7] wire io_resp_pf_inst_0; // @[TLB.scala:318:7] wire io_resp_ae_ld_0; // @[TLB.scala:318:7] wire io_resp_ae_inst_0; // @[TLB.scala:318:7] wire io_resp_ma_ld_0; // @[TLB.scala:318:7] wire io_resp_miss_0; // @[TLB.scala:318:7] wire [31:0] io_resp_paddr_0; // @[TLB.scala:318:7] wire [39:0] io_resp_gpa_0; // @[TLB.scala:318:7] wire io_resp_cacheable_0; // @[TLB.scala:318:7] wire io_resp_prefetchable_0; // @[TLB.scala:318:7] wire [26:0] io_ptw_req_bits_bits_addr_0; // @[TLB.scala:318:7] wire io_ptw_req_bits_bits_need_gpa_0; // @[TLB.scala:318:7] wire io_ptw_req_valid_0; // @[TLB.scala:318:7] wire [26:0] vpn = io_req_bits_vaddr_0[38:12]; // @[TLB.scala:318:7, :335:30] wire [26:0] _ppn_T_5 = vpn; // @[TLB.scala:198:28, :335:30] wire [26:0] _ppn_T_13 = vpn; // @[TLB.scala:198:28, :335:30] wire [26:0] _ppn_T_21 = vpn; // @[TLB.scala:198:28, :335:30] wire [26:0] _ppn_T_29 = vpn; // @[TLB.scala:198:28, :335:30] reg [1:0] sectored_entries_0_0_level; // @[TLB.scala:339:29] reg [26:0] sectored_entries_0_0_tag_vpn; // @[TLB.scala:339:29] reg sectored_entries_0_0_tag_v; // @[TLB.scala:339:29] reg [41:0] sectored_entries_0_0_data_0; // @[TLB.scala:339:29] reg [41:0] sectored_entries_0_0_data_1; // @[TLB.scala:339:29] reg [41:0] sectored_entries_0_0_data_2; // @[TLB.scala:339:29] reg [41:0] sectored_entries_0_0_data_3; // @[TLB.scala:339:29] reg sectored_entries_0_0_valid_0; // @[TLB.scala:339:29] reg sectored_entries_0_0_valid_1; // @[TLB.scala:339:29] reg sectored_entries_0_0_valid_2; // @[TLB.scala:339:29] reg sectored_entries_0_0_valid_3; // @[TLB.scala:339:29] reg [1:0] sectored_entries_0_1_level; // @[TLB.scala:339:29] reg [26:0] sectored_entries_0_1_tag_vpn; // @[TLB.scala:339:29] reg sectored_entries_0_1_tag_v; // @[TLB.scala:339:29] reg [41:0] sectored_entries_0_1_data_0; // @[TLB.scala:339:29] reg [41:0] sectored_entries_0_1_data_1; // @[TLB.scala:339:29] reg [41:0] sectored_entries_0_1_data_2; // @[TLB.scala:339:29] reg [41:0] sectored_entries_0_1_data_3; // @[TLB.scala:339:29] reg sectored_entries_0_1_valid_0; // @[TLB.scala:339:29] reg sectored_entries_0_1_valid_1; // @[TLB.scala:339:29] reg sectored_entries_0_1_valid_2; // @[TLB.scala:339:29] reg sectored_entries_0_1_valid_3; // @[TLB.scala:339:29] reg [1:0] sectored_entries_0_2_level; // @[TLB.scala:339:29] reg [26:0] sectored_entries_0_2_tag_vpn; // @[TLB.scala:339:29] reg sectored_entries_0_2_tag_v; // @[TLB.scala:339:29] reg [41:0] sectored_entries_0_2_data_0; // @[TLB.scala:339:29] reg [41:0] sectored_entries_0_2_data_1; // @[TLB.scala:339:29] reg [41:0] sectored_entries_0_2_data_2; // @[TLB.scala:339:29] reg [41:0] sectored_entries_0_2_data_3; // @[TLB.scala:339:29] reg sectored_entries_0_2_valid_0; // @[TLB.scala:339:29] reg sectored_entries_0_2_valid_1; // @[TLB.scala:339:29] reg sectored_entries_0_2_valid_2; // @[TLB.scala:339:29] reg sectored_entries_0_2_valid_3; // @[TLB.scala:339:29] reg [1:0] sectored_entries_0_3_level; // @[TLB.scala:339:29] reg [26:0] sectored_entries_0_3_tag_vpn; // @[TLB.scala:339:29] reg sectored_entries_0_3_tag_v; // @[TLB.scala:339:29] reg [41:0] sectored_entries_0_3_data_0; // @[TLB.scala:339:29] reg [41:0] sectored_entries_0_3_data_1; // @[TLB.scala:339:29] reg [41:0] sectored_entries_0_3_data_2; // @[TLB.scala:339:29] reg [41:0] sectored_entries_0_3_data_3; // @[TLB.scala:339:29] reg sectored_entries_0_3_valid_0; // @[TLB.scala:339:29] reg sectored_entries_0_3_valid_1; // @[TLB.scala:339:29] reg sectored_entries_0_3_valid_2; // @[TLB.scala:339:29] reg sectored_entries_0_3_valid_3; // @[TLB.scala:339:29] reg [1:0] sectored_entries_0_4_level; // @[TLB.scala:339:29] reg [26:0] sectored_entries_0_4_tag_vpn; // @[TLB.scala:339:29] reg sectored_entries_0_4_tag_v; // @[TLB.scala:339:29] reg [41:0] sectored_entries_0_4_data_0; // @[TLB.scala:339:29] reg [41:0] sectored_entries_0_4_data_1; // @[TLB.scala:339:29] reg [41:0] sectored_entries_0_4_data_2; // @[TLB.scala:339:29] reg [41:0] sectored_entries_0_4_data_3; // @[TLB.scala:339:29] reg sectored_entries_0_4_valid_0; // @[TLB.scala:339:29] reg sectored_entries_0_4_valid_1; // @[TLB.scala:339:29] reg sectored_entries_0_4_valid_2; // @[TLB.scala:339:29] reg sectored_entries_0_4_valid_3; // @[TLB.scala:339:29] reg [1:0] sectored_entries_0_5_level; // @[TLB.scala:339:29] reg [26:0] sectored_entries_0_5_tag_vpn; // @[TLB.scala:339:29] reg sectored_entries_0_5_tag_v; // @[TLB.scala:339:29] reg [41:0] sectored_entries_0_5_data_0; // @[TLB.scala:339:29] reg [41:0] sectored_entries_0_5_data_1; // @[TLB.scala:339:29] reg [41:0] sectored_entries_0_5_data_2; // @[TLB.scala:339:29] reg [41:0] sectored_entries_0_5_data_3; // @[TLB.scala:339:29] reg sectored_entries_0_5_valid_0; // @[TLB.scala:339:29] reg sectored_entries_0_5_valid_1; // @[TLB.scala:339:29] reg sectored_entries_0_5_valid_2; // @[TLB.scala:339:29] reg sectored_entries_0_5_valid_3; // @[TLB.scala:339:29] reg [1:0] sectored_entries_0_6_level; // @[TLB.scala:339:29] reg [26:0] sectored_entries_0_6_tag_vpn; // @[TLB.scala:339:29] reg sectored_entries_0_6_tag_v; // @[TLB.scala:339:29] reg [41:0] sectored_entries_0_6_data_0; // @[TLB.scala:339:29] reg [41:0] sectored_entries_0_6_data_1; // @[TLB.scala:339:29] reg [41:0] sectored_entries_0_6_data_2; // @[TLB.scala:339:29] reg [41:0] sectored_entries_0_6_data_3; // @[TLB.scala:339:29] reg sectored_entries_0_6_valid_0; // @[TLB.scala:339:29] reg sectored_entries_0_6_valid_1; // @[TLB.scala:339:29] reg sectored_entries_0_6_valid_2; // @[TLB.scala:339:29] reg sectored_entries_0_6_valid_3; // @[TLB.scala:339:29] reg [1:0] sectored_entries_0_7_level; // @[TLB.scala:339:29] reg [26:0] sectored_entries_0_7_tag_vpn; // @[TLB.scala:339:29] reg sectored_entries_0_7_tag_v; // @[TLB.scala:339:29] reg [41:0] sectored_entries_0_7_data_0; // @[TLB.scala:339:29] reg [41:0] sectored_entries_0_7_data_1; // @[TLB.scala:339:29] reg [41:0] sectored_entries_0_7_data_2; // @[TLB.scala:339:29] reg [41:0] sectored_entries_0_7_data_3; // @[TLB.scala:339:29] reg sectored_entries_0_7_valid_0; // @[TLB.scala:339:29] reg sectored_entries_0_7_valid_1; // @[TLB.scala:339:29] reg sectored_entries_0_7_valid_2; // @[TLB.scala:339:29] reg sectored_entries_0_7_valid_3; // @[TLB.scala:339:29] reg [1:0] superpage_entries_0_level; // @[TLB.scala:341:30] reg [26:0] superpage_entries_0_tag_vpn; // @[TLB.scala:341:30] reg superpage_entries_0_tag_v; // @[TLB.scala:341:30] reg [41:0] superpage_entries_0_data_0; // @[TLB.scala:341:30] wire [41:0] _entries_WIRE_17 = superpage_entries_0_data_0; // @[TLB.scala:170:77, :341:30] reg superpage_entries_0_valid_0; // @[TLB.scala:341:30] reg [1:0] superpage_entries_1_level; // @[TLB.scala:341:30] reg [26:0] superpage_entries_1_tag_vpn; // @[TLB.scala:341:30] reg superpage_entries_1_tag_v; // @[TLB.scala:341:30] reg [41:0] superpage_entries_1_data_0; // @[TLB.scala:341:30] wire [41:0] _entries_WIRE_19 = superpage_entries_1_data_0; // @[TLB.scala:170:77, :341:30] reg superpage_entries_1_valid_0; // @[TLB.scala:341:30] reg [1:0] superpage_entries_2_level; // @[TLB.scala:341:30] reg [26:0] superpage_entries_2_tag_vpn; // @[TLB.scala:341:30] reg superpage_entries_2_tag_v; // @[TLB.scala:341:30] reg [41:0] superpage_entries_2_data_0; // @[TLB.scala:341:30] wire [41:0] _entries_WIRE_21 = superpage_entries_2_data_0; // @[TLB.scala:170:77, :341:30] reg superpage_entries_2_valid_0; // @[TLB.scala:341:30] reg [1:0] superpage_entries_3_level; // @[TLB.scala:341:30] reg [26:0] superpage_entries_3_tag_vpn; // @[TLB.scala:341:30] reg superpage_entries_3_tag_v; // @[TLB.scala:341:30] reg [41:0] superpage_entries_3_data_0; // @[TLB.scala:341:30] wire [41:0] _entries_WIRE_23 = superpage_entries_3_data_0; // @[TLB.scala:170:77, :341:30] reg superpage_entries_3_valid_0; // @[TLB.scala:341:30] reg [1:0] special_entry_level; // @[TLB.scala:346:56] reg [26:0] special_entry_tag_vpn; // @[TLB.scala:346:56] reg special_entry_tag_v; // @[TLB.scala:346:56] reg [41:0] special_entry_data_0; // @[TLB.scala:346:56] wire [41:0] _mpu_ppn_WIRE_1 = special_entry_data_0; // @[TLB.scala:170:77, :346:56] wire [41:0] _entries_WIRE_25 = special_entry_data_0; // @[TLB.scala:170:77, :346:56] reg special_entry_valid_0; // @[TLB.scala:346:56] reg [1:0] state; // @[TLB.scala:352:22] reg [26:0] r_refill_tag; // @[TLB.scala:354:25] assign io_ptw_req_bits_bits_addr_0 = r_refill_tag; // @[TLB.scala:318:7, :354:25] reg [1:0] r_superpage_repl_addr; // @[TLB.scala:355:34] wire [1:0] waddr = r_superpage_repl_addr; // @[TLB.scala:355:34, :477:22] reg [2:0] r_sectored_repl_addr; // @[TLB.scala:356:33] reg r_sectored_hit_valid; // @[TLB.scala:357:27] reg [2:0] r_sectored_hit_bits; // @[TLB.scala:357:27] reg r_superpage_hit_valid; // @[TLB.scala:358:28] reg [1:0] r_superpage_hit_bits; // @[TLB.scala:358:28] reg r_need_gpa; // @[TLB.scala:361:23] assign io_ptw_req_bits_bits_need_gpa_0 = r_need_gpa; // @[TLB.scala:318:7, :361:23] reg r_gpa_valid; // @[TLB.scala:362:24] reg [38:0] r_gpa; // @[TLB.scala:363:18] reg [26:0] r_gpa_vpn; // @[TLB.scala:364:22] reg r_gpa_is_pte; // @[TLB.scala:365:25] wire priv_s = io_req_bits_prv_0[0]; // @[TLB.scala:318:7, :370:20] wire priv_uses_vm = ~(io_req_bits_prv_0[1]); // @[TLB.scala:318:7, :372:27] wire _stage1_en_T = satp_mode[3]; // @[TLB.scala:373:17, :374:41] wire stage1_en = _stage1_en_T; // @[TLB.scala:374:{29,41}] wire _vm_enabled_T = stage1_en; // @[TLB.scala:374:29, :399:31] wire _vm_enabled_T_1 = _vm_enabled_T & priv_uses_vm; // @[TLB.scala:372:27, :399:{31,45}] wire vm_enabled = _vm_enabled_T_1; // @[TLB.scala:399:{45,61}] wire _mpu_ppn_T = vm_enabled; // @[TLB.scala:399:61, :413:32] wire _tlb_miss_T_1 = vm_enabled; // @[TLB.scala:399:61, :613:29] wire [19:0] refill_ppn = io_ptw_resp_bits_pte_ppn_0[19:0]; // @[TLB.scala:318:7, :406:44] wire [19:0] newEntry_ppn = io_ptw_resp_bits_pte_ppn_0[19:0]; // @[TLB.scala:318:7, :406:44, :449:24] wire _mpu_priv_T = do_refill; // @[TLB.scala:408:29, :415:52] wire _io_resp_miss_T = do_refill; // @[TLB.scala:408:29, :651:29] wire _T_51 = state == 2'h1; // @[package.scala:16:47] wire _invalidate_refill_T; // @[package.scala:16:47] assign _invalidate_refill_T = _T_51; // @[package.scala:16:47] assign _io_ptw_req_valid_T = _T_51; // @[package.scala:16:47] wire _invalidate_refill_T_1 = &state; // @[package.scala:16:47] wire _invalidate_refill_T_2 = _invalidate_refill_T | _invalidate_refill_T_1; // @[package.scala:16:47, :81:59] wire invalidate_refill = _invalidate_refill_T_2 | io_sfence_valid_0; // @[package.scala:81:59] wire [19:0] _mpu_ppn_T_23; // @[TLB.scala:170:77] wire _mpu_ppn_T_22; // @[TLB.scala:170:77] wire _mpu_ppn_T_21; // @[TLB.scala:170:77] wire _mpu_ppn_T_20; // @[TLB.scala:170:77] wire _mpu_ppn_T_19; // @[TLB.scala:170:77] wire _mpu_ppn_T_18; // @[TLB.scala:170:77] wire _mpu_ppn_T_17; // @[TLB.scala:170:77] wire _mpu_ppn_T_16; // @[TLB.scala:170:77] wire _mpu_ppn_T_15; // @[TLB.scala:170:77] wire _mpu_ppn_T_14; // @[TLB.scala:170:77] wire _mpu_ppn_T_13; // @[TLB.scala:170:77] wire _mpu_ppn_T_12; // @[TLB.scala:170:77] wire _mpu_ppn_T_11; // @[TLB.scala:170:77] wire _mpu_ppn_T_10; // @[TLB.scala:170:77] wire _mpu_ppn_T_9; // @[TLB.scala:170:77] wire _mpu_ppn_T_8; // @[TLB.scala:170:77] wire _mpu_ppn_T_7; // @[TLB.scala:170:77] wire _mpu_ppn_T_6; // @[TLB.scala:170:77] wire _mpu_ppn_T_5; // @[TLB.scala:170:77] wire _mpu_ppn_T_4; // @[TLB.scala:170:77] wire _mpu_ppn_T_3; // @[TLB.scala:170:77] wire _mpu_ppn_T_2; // @[TLB.scala:170:77] wire _mpu_ppn_T_1; // @[TLB.scala:170:77] assign _mpu_ppn_T_1 = _mpu_ppn_WIRE_1[0]; // @[TLB.scala:170:77] wire _mpu_ppn_WIRE_fragmented_superpage = _mpu_ppn_T_1; // @[TLB.scala:170:77] assign _mpu_ppn_T_2 = _mpu_ppn_WIRE_1[1]; // @[TLB.scala:170:77] wire _mpu_ppn_WIRE_c = _mpu_ppn_T_2; // @[TLB.scala:170:77] assign _mpu_ppn_T_3 = _mpu_ppn_WIRE_1[2]; // @[TLB.scala:170:77] wire _mpu_ppn_WIRE_eff = _mpu_ppn_T_3; // @[TLB.scala:170:77] assign _mpu_ppn_T_4 = _mpu_ppn_WIRE_1[3]; // @[TLB.scala:170:77] wire _mpu_ppn_WIRE_paa = _mpu_ppn_T_4; // @[TLB.scala:170:77] assign _mpu_ppn_T_5 = _mpu_ppn_WIRE_1[4]; // @[TLB.scala:170:77] wire _mpu_ppn_WIRE_pal = _mpu_ppn_T_5; // @[TLB.scala:170:77] assign _mpu_ppn_T_6 = _mpu_ppn_WIRE_1[5]; // @[TLB.scala:170:77] wire _mpu_ppn_WIRE_ppp = _mpu_ppn_T_6; // @[TLB.scala:170:77] assign _mpu_ppn_T_7 = _mpu_ppn_WIRE_1[6]; // @[TLB.scala:170:77] wire _mpu_ppn_WIRE_pr = _mpu_ppn_T_7; // @[TLB.scala:170:77] assign _mpu_ppn_T_8 = _mpu_ppn_WIRE_1[7]; // @[TLB.scala:170:77] wire _mpu_ppn_WIRE_px = _mpu_ppn_T_8; // @[TLB.scala:170:77] assign _mpu_ppn_T_9 = _mpu_ppn_WIRE_1[8]; // @[TLB.scala:170:77] wire _mpu_ppn_WIRE_pw = _mpu_ppn_T_9; // @[TLB.scala:170:77] assign _mpu_ppn_T_10 = _mpu_ppn_WIRE_1[9]; // @[TLB.scala:170:77] wire _mpu_ppn_WIRE_hr = _mpu_ppn_T_10; // @[TLB.scala:170:77] assign _mpu_ppn_T_11 = _mpu_ppn_WIRE_1[10]; // @[TLB.scala:170:77] wire _mpu_ppn_WIRE_hx = _mpu_ppn_T_11; // @[TLB.scala:170:77] assign _mpu_ppn_T_12 = _mpu_ppn_WIRE_1[11]; // @[TLB.scala:170:77] wire _mpu_ppn_WIRE_hw = _mpu_ppn_T_12; // @[TLB.scala:170:77] assign _mpu_ppn_T_13 = _mpu_ppn_WIRE_1[12]; // @[TLB.scala:170:77] wire _mpu_ppn_WIRE_sr = _mpu_ppn_T_13; // @[TLB.scala:170:77] assign _mpu_ppn_T_14 = _mpu_ppn_WIRE_1[13]; // @[TLB.scala:170:77] wire _mpu_ppn_WIRE_sx = _mpu_ppn_T_14; // @[TLB.scala:170:77] assign _mpu_ppn_T_15 = _mpu_ppn_WIRE_1[14]; // @[TLB.scala:170:77] wire _mpu_ppn_WIRE_sw = _mpu_ppn_T_15; // @[TLB.scala:170:77] assign _mpu_ppn_T_16 = _mpu_ppn_WIRE_1[15]; // @[TLB.scala:170:77] wire _mpu_ppn_WIRE_gf = _mpu_ppn_T_16; // @[TLB.scala:170:77] assign _mpu_ppn_T_17 = _mpu_ppn_WIRE_1[16]; // @[TLB.scala:170:77] wire _mpu_ppn_WIRE_pf = _mpu_ppn_T_17; // @[TLB.scala:170:77] assign _mpu_ppn_T_18 = _mpu_ppn_WIRE_1[17]; // @[TLB.scala:170:77] wire _mpu_ppn_WIRE_ae_stage2 = _mpu_ppn_T_18; // @[TLB.scala:170:77] assign _mpu_ppn_T_19 = _mpu_ppn_WIRE_1[18]; // @[TLB.scala:170:77] wire _mpu_ppn_WIRE_ae_final = _mpu_ppn_T_19; // @[TLB.scala:170:77] assign _mpu_ppn_T_20 = _mpu_ppn_WIRE_1[19]; // @[TLB.scala:170:77] wire _mpu_ppn_WIRE_ae_ptw = _mpu_ppn_T_20; // @[TLB.scala:170:77] assign _mpu_ppn_T_21 = _mpu_ppn_WIRE_1[20]; // @[TLB.scala:170:77] wire _mpu_ppn_WIRE_g = _mpu_ppn_T_21; // @[TLB.scala:170:77] assign _mpu_ppn_T_22 = _mpu_ppn_WIRE_1[21]; // @[TLB.scala:170:77] wire _mpu_ppn_WIRE_u = _mpu_ppn_T_22; // @[TLB.scala:170:77] assign _mpu_ppn_T_23 = _mpu_ppn_WIRE_1[41:22]; // @[TLB.scala:170:77] wire [19:0] _mpu_ppn_WIRE_ppn = _mpu_ppn_T_23; // @[TLB.scala:170:77] wire [1:0] mpu_ppn_res = _mpu_ppn_barrier_io_y_ppn[19:18]; // @[package.scala:267:25] wire _GEN = special_entry_level == 2'h0; // @[TLB.scala:197:28, :346:56] wire _mpu_ppn_ignore_T; // @[TLB.scala:197:28] assign _mpu_ppn_ignore_T = _GEN; // @[TLB.scala:197:28] wire _hitsVec_ignore_T_13; // @[TLB.scala:182:28] assign _hitsVec_ignore_T_13 = _GEN; // @[TLB.scala:182:28, :197:28] wire _ppn_ignore_T_8; // @[TLB.scala:197:28] assign _ppn_ignore_T_8 = _GEN; // @[TLB.scala:197:28] wire _ignore_T_13; // @[TLB.scala:182:28] assign _ignore_T_13 = _GEN; // @[TLB.scala:182:28, :197:28] wire mpu_ppn_ignore = _mpu_ppn_ignore_T; // @[TLB.scala:197:{28,34}] wire [26:0] _mpu_ppn_T_24 = mpu_ppn_ignore ? vpn : 27'h0; // @[TLB.scala:197:34, :198:28, :335:30] wire [26:0] _mpu_ppn_T_25 = {_mpu_ppn_T_24[26:20], _mpu_ppn_T_24[19:0] | _mpu_ppn_barrier_io_y_ppn}; // @[package.scala:267:25] wire [8:0] _mpu_ppn_T_26 = _mpu_ppn_T_25[17:9]; // @[TLB.scala:198:{47,58}] wire [10:0] _mpu_ppn_T_27 = {mpu_ppn_res, _mpu_ppn_T_26}; // @[TLB.scala:195:26, :198:{18,58}] wire _mpu_ppn_ignore_T_1 = ~(special_entry_level[1]); // @[TLB.scala:197:28, :346:56] wire mpu_ppn_ignore_1 = _mpu_ppn_ignore_T_1; // @[TLB.scala:197:{28,34}] wire [26:0] _mpu_ppn_T_28 = mpu_ppn_ignore_1 ? vpn : 27'h0; // @[TLB.scala:197:34, :198:28, :335:30] wire [26:0] _mpu_ppn_T_29 = {_mpu_ppn_T_28[26:20], _mpu_ppn_T_28[19:0] | _mpu_ppn_barrier_io_y_ppn}; // @[package.scala:267:25] wire [8:0] _mpu_ppn_T_30 = _mpu_ppn_T_29[8:0]; // @[TLB.scala:198:{47,58}] wire [19:0] _mpu_ppn_T_31 = {_mpu_ppn_T_27, _mpu_ppn_T_30}; // @[TLB.scala:198:{18,58}] wire [27:0] _mpu_ppn_T_32 = io_req_bits_vaddr_0[39:12]; // @[TLB.scala:318:7, :413:146] wire [27:0] _mpu_ppn_T_33 = _mpu_ppn_T ? {8'h0, _mpu_ppn_T_31} : _mpu_ppn_T_32; // @[TLB.scala:198:18, :413:{20,32,146}] wire [27:0] mpu_ppn = do_refill ? {8'h0, refill_ppn} : _mpu_ppn_T_33; // @[TLB.scala:406:44, :408:29, :412:20, :413:20] wire [11:0] _mpu_physaddr_T = io_req_bits_vaddr_0[11:0]; // @[TLB.scala:318:7, :414:52] wire [11:0] _io_resp_paddr_T = io_req_bits_vaddr_0[11:0]; // @[TLB.scala:318:7, :414:52, :652:46] wire [11:0] _io_resp_gpa_offset_T_1 = io_req_bits_vaddr_0[11:0]; // @[TLB.scala:318:7, :414:52, :658:82] wire [39:0] mpu_physaddr = {mpu_ppn, _mpu_physaddr_T}; // @[TLB.scala:412:20, :414:{25,52}] wire [39:0] _homogeneous_T = mpu_physaddr; // @[TLB.scala:414:25] wire [39:0] _homogeneous_T_67 = mpu_physaddr; // @[TLB.scala:414:25] wire [39:0] _deny_access_to_debug_T_1 = mpu_physaddr; // @[TLB.scala:414:25] wire _mpu_priv_T_1 = _mpu_priv_T; // @[TLB.scala:415:{38,52}] wire [2:0] _mpu_priv_T_2 = {io_ptw_status_debug_0, io_req_bits_prv_0}; // @[TLB.scala:318:7, :415:103] wire [2:0] mpu_priv = _mpu_priv_T_1 ? 3'h1 : _mpu_priv_T_2; // @[TLB.scala:415:{27,38,103}] wire cacheable; // @[TLB.scala:425:41] wire newEntry_c = cacheable; // @[TLB.scala:425:41, :449:24] wire [40:0] _homogeneous_T_1 = {1'h0, _homogeneous_T}; // @[Parameters.scala:137:{31,41}] wire [40:0] _homogeneous_T_2 = _homogeneous_T_1 & 41'h1FFFFFFE000; // @[Parameters.scala:137:{41,46}] wire [40:0] _homogeneous_T_3 = _homogeneous_T_2; // @[Parameters.scala:137:46] wire _homogeneous_T_4 = _homogeneous_T_3 == 41'h0; // @[Parameters.scala:137:{46,59}] wire _homogeneous_T_50 = _homogeneous_T_4; // @[TLBPermissions.scala:101:65] wire [39:0] _GEN_0 = {mpu_physaddr[39:14], mpu_physaddr[13:0] ^ 14'h3000}; // @[TLB.scala:414:25] wire [39:0] _homogeneous_T_5; // @[Parameters.scala:137:31] assign _homogeneous_T_5 = _GEN_0; // @[Parameters.scala:137:31] wire [39:0] _homogeneous_T_72; // @[Parameters.scala:137:31] assign _homogeneous_T_72 = _GEN_0; // @[Parameters.scala:137:31] wire [40:0] _homogeneous_T_6 = {1'h0, _homogeneous_T_5}; // @[Parameters.scala:137:{31,41}] wire [40:0] _homogeneous_T_7 = _homogeneous_T_6 & 41'h1FFFFFFF000; // @[Parameters.scala:137:{41,46}] wire [40:0] _homogeneous_T_8 = _homogeneous_T_7; // @[Parameters.scala:137:46] wire _homogeneous_T_9 = _homogeneous_T_8 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [39:0] _GEN_1 = {mpu_physaddr[39:17], mpu_physaddr[16:0] ^ 17'h10000}; // @[TLB.scala:414:25] wire [39:0] _homogeneous_T_10; // @[Parameters.scala:137:31] assign _homogeneous_T_10 = _GEN_1; // @[Parameters.scala:137:31] wire [39:0] _homogeneous_T_60; // @[Parameters.scala:137:31] assign _homogeneous_T_60 = _GEN_1; // @[Parameters.scala:137:31] wire [39:0] _homogeneous_T_77; // @[Parameters.scala:137:31] assign _homogeneous_T_77 = _GEN_1; // @[Parameters.scala:137:31] wire [39:0] _homogeneous_T_109; // @[Parameters.scala:137:31] assign _homogeneous_T_109 = _GEN_1; // @[Parameters.scala:137:31] wire [39:0] _homogeneous_T_116; // @[Parameters.scala:137:31] assign _homogeneous_T_116 = _GEN_1; // @[Parameters.scala:137:31] wire [40:0] _homogeneous_T_11 = {1'h0, _homogeneous_T_10}; // @[Parameters.scala:137:{31,41}] wire [40:0] _homogeneous_T_12 = _homogeneous_T_11 & 41'h1FFFFFF0000; // @[Parameters.scala:137:{41,46}] wire [40:0] _homogeneous_T_13 = _homogeneous_T_12; // @[Parameters.scala:137:46] wire _homogeneous_T_14 = _homogeneous_T_13 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [39:0] _homogeneous_T_15 = {mpu_physaddr[39:21], mpu_physaddr[20:0] ^ 21'h100000}; // @[TLB.scala:414:25] wire [40:0] _homogeneous_T_16 = {1'h0, _homogeneous_T_15}; // @[Parameters.scala:137:{31,41}] wire [40:0] _homogeneous_T_17 = _homogeneous_T_16 & 41'h1FFFFFEF000; // @[Parameters.scala:137:{41,46}] wire [40:0] _homogeneous_T_18 = _homogeneous_T_17; // @[Parameters.scala:137:46] wire _homogeneous_T_19 = _homogeneous_T_18 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [39:0] _homogeneous_T_20 = {mpu_physaddr[39:26], mpu_physaddr[25:0] ^ 26'h2000000}; // @[TLB.scala:414:25] wire [40:0] _homogeneous_T_21 = {1'h0, _homogeneous_T_20}; // @[Parameters.scala:137:{31,41}] wire [40:0] _homogeneous_T_22 = _homogeneous_T_21 & 41'h1FFFFFF0000; // @[Parameters.scala:137:{41,46}] wire [40:0] _homogeneous_T_23 = _homogeneous_T_22; // @[Parameters.scala:137:46] wire _homogeneous_T_24 = _homogeneous_T_23 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [39:0] _homogeneous_T_25 = {mpu_physaddr[39:26], mpu_physaddr[25:0] ^ 26'h2010000}; // @[TLB.scala:414:25] wire [40:0] _homogeneous_T_26 = {1'h0, _homogeneous_T_25}; // @[Parameters.scala:137:{31,41}] wire [40:0] _homogeneous_T_27 = _homogeneous_T_26 & 41'h1FFFFFFF000; // @[Parameters.scala:137:{41,46}] wire [40:0] _homogeneous_T_28 = _homogeneous_T_27; // @[Parameters.scala:137:46] wire _homogeneous_T_29 = _homogeneous_T_28 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [39:0] _GEN_2 = {mpu_physaddr[39:28], mpu_physaddr[27:0] ^ 28'h8000000}; // @[TLB.scala:414:25] wire [39:0] _homogeneous_T_30; // @[Parameters.scala:137:31] assign _homogeneous_T_30 = _GEN_2; // @[Parameters.scala:137:31] wire [39:0] _homogeneous_T_82; // @[Parameters.scala:137:31] assign _homogeneous_T_82 = _GEN_2; // @[Parameters.scala:137:31] wire [39:0] _homogeneous_T_97; // @[Parameters.scala:137:31] assign _homogeneous_T_97 = _GEN_2; // @[Parameters.scala:137:31] wire [40:0] _homogeneous_T_31 = {1'h0, _homogeneous_T_30}; // @[Parameters.scala:137:{31,41}] wire [40:0] _homogeneous_T_32 = _homogeneous_T_31 & 41'h1FFFFFF0000; // @[Parameters.scala:137:{41,46}] wire [40:0] _homogeneous_T_33 = _homogeneous_T_32; // @[Parameters.scala:137:46] wire _homogeneous_T_34 = _homogeneous_T_33 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [39:0] _homogeneous_T_35 = {mpu_physaddr[39:28], mpu_physaddr[27:0] ^ 28'hC000000}; // @[TLB.scala:414:25] wire [40:0] _homogeneous_T_36 = {1'h0, _homogeneous_T_35}; // @[Parameters.scala:137:{31,41}] wire [40:0] _homogeneous_T_37 = _homogeneous_T_36 & 41'h1FFFC000000; // @[Parameters.scala:137:{41,46}] wire [40:0] _homogeneous_T_38 = _homogeneous_T_37; // @[Parameters.scala:137:46] wire _homogeneous_T_39 = _homogeneous_T_38 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [39:0] _homogeneous_T_40 = {mpu_physaddr[39:29], mpu_physaddr[28:0] ^ 29'h10020000}; // @[TLB.scala:414:25] wire [40:0] _homogeneous_T_41 = {1'h0, _homogeneous_T_40}; // @[Parameters.scala:137:{31,41}] wire [40:0] _homogeneous_T_42 = _homogeneous_T_41 & 41'h1FFFFFFF000; // @[Parameters.scala:137:{41,46}] wire [40:0] _homogeneous_T_43 = _homogeneous_T_42; // @[Parameters.scala:137:46] wire _homogeneous_T_44 = _homogeneous_T_43 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [39:0] _GEN_3 = {mpu_physaddr[39:32], mpu_physaddr[31:0] ^ 32'h80000000}; // @[TLB.scala:414:25, :417:15] wire [39:0] _homogeneous_T_45; // @[Parameters.scala:137:31] assign _homogeneous_T_45 = _GEN_3; // @[Parameters.scala:137:31] wire [39:0] _homogeneous_T_87; // @[Parameters.scala:137:31] assign _homogeneous_T_87 = _GEN_3; // @[Parameters.scala:137:31] wire [39:0] _homogeneous_T_102; // @[Parameters.scala:137:31] assign _homogeneous_T_102 = _GEN_3; // @[Parameters.scala:137:31] wire [40:0] _homogeneous_T_46 = {1'h0, _homogeneous_T_45}; // @[Parameters.scala:137:{31,41}] wire [40:0] _homogeneous_T_47 = _homogeneous_T_46 & 41'h1FFF0000000; // @[Parameters.scala:137:{41,46}] wire [40:0] _homogeneous_T_48 = _homogeneous_T_47; // @[Parameters.scala:137:46] wire _homogeneous_T_49 = _homogeneous_T_48 == 41'h0; // @[Parameters.scala:137:{46,59}] wire _homogeneous_T_51 = _homogeneous_T_50 | _homogeneous_T_9; // @[TLBPermissions.scala:101:65] wire _homogeneous_T_52 = _homogeneous_T_51 | _homogeneous_T_14; // @[TLBPermissions.scala:101:65] wire _homogeneous_T_53 = _homogeneous_T_52 | _homogeneous_T_19; // @[TLBPermissions.scala:101:65] wire _homogeneous_T_54 = _homogeneous_T_53 | _homogeneous_T_24; // @[TLBPermissions.scala:101:65] wire _homogeneous_T_55 = _homogeneous_T_54 | _homogeneous_T_29; // @[TLBPermissions.scala:101:65] wire _homogeneous_T_56 = _homogeneous_T_55 | _homogeneous_T_34; // @[TLBPermissions.scala:101:65] wire _homogeneous_T_57 = _homogeneous_T_56 | _homogeneous_T_39; // @[TLBPermissions.scala:101:65] wire _homogeneous_T_58 = _homogeneous_T_57 | _homogeneous_T_44; // @[TLBPermissions.scala:101:65] wire homogeneous = _homogeneous_T_58 | _homogeneous_T_49; // @[TLBPermissions.scala:101:65] wire [40:0] _homogeneous_T_61 = {1'h0, _homogeneous_T_60}; // @[Parameters.scala:137:{31,41}] wire [40:0] _homogeneous_T_62 = _homogeneous_T_61 & 41'h8A110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _homogeneous_T_63 = _homogeneous_T_62; // @[Parameters.scala:137:46] wire _homogeneous_T_64 = _homogeneous_T_63 == 41'h0; // @[Parameters.scala:137:{46,59}] wire _homogeneous_T_65 = _homogeneous_T_64; // @[TLBPermissions.scala:87:66] wire _homogeneous_T_66 = ~_homogeneous_T_65; // @[TLBPermissions.scala:87:{22,66}] wire [40:0] _homogeneous_T_68 = {1'h0, _homogeneous_T_67}; // @[Parameters.scala:137:{31,41}] wire [40:0] _homogeneous_T_69 = _homogeneous_T_68 & 41'h9E113000; // @[Parameters.scala:137:{41,46}] wire [40:0] _homogeneous_T_70 = _homogeneous_T_69; // @[Parameters.scala:137:46] wire _homogeneous_T_71 = _homogeneous_T_70 == 41'h0; // @[Parameters.scala:137:{46,59}] wire _homogeneous_T_92 = _homogeneous_T_71; // @[TLBPermissions.scala:85:66] wire [40:0] _homogeneous_T_73 = {1'h0, _homogeneous_T_72}; // @[Parameters.scala:137:{31,41}] wire [40:0] _homogeneous_T_74 = _homogeneous_T_73 & 41'h9E113000; // @[Parameters.scala:137:{41,46}] wire [40:0] _homogeneous_T_75 = _homogeneous_T_74; // @[Parameters.scala:137:46] wire _homogeneous_T_76 = _homogeneous_T_75 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _homogeneous_T_78 = {1'h0, _homogeneous_T_77}; // @[Parameters.scala:137:{31,41}] wire [40:0] _homogeneous_T_79 = _homogeneous_T_78 & 41'h9E110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _homogeneous_T_80 = _homogeneous_T_79; // @[Parameters.scala:137:46] wire _homogeneous_T_81 = _homogeneous_T_80 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _homogeneous_T_83 = {1'h0, _homogeneous_T_82}; // @[Parameters.scala:137:{31,41}] wire [40:0] _homogeneous_T_84 = _homogeneous_T_83 & 41'h9E110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _homogeneous_T_85 = _homogeneous_T_84; // @[Parameters.scala:137:46] wire _homogeneous_T_86 = _homogeneous_T_85 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _homogeneous_T_88 = {1'h0, _homogeneous_T_87}; // @[Parameters.scala:137:{31,41}] wire [40:0] _homogeneous_T_89 = _homogeneous_T_88 & 41'h90000000; // @[Parameters.scala:137:{41,46}] wire [40:0] _homogeneous_T_90 = _homogeneous_T_89; // @[Parameters.scala:137:46] wire _homogeneous_T_91 = _homogeneous_T_90 == 41'h0; // @[Parameters.scala:137:{46,59}] wire _homogeneous_T_93 = _homogeneous_T_92 | _homogeneous_T_76; // @[TLBPermissions.scala:85:66] wire _homogeneous_T_94 = _homogeneous_T_93 | _homogeneous_T_81; // @[TLBPermissions.scala:85:66] wire _homogeneous_T_95 = _homogeneous_T_94 | _homogeneous_T_86; // @[TLBPermissions.scala:85:66] wire _homogeneous_T_96 = _homogeneous_T_95 | _homogeneous_T_91; // @[TLBPermissions.scala:85:66] wire [40:0] _homogeneous_T_98 = {1'h0, _homogeneous_T_97}; // @[Parameters.scala:137:{31,41}] wire [40:0] _homogeneous_T_99 = _homogeneous_T_98 & 41'h8E000000; // @[Parameters.scala:137:{41,46}] wire [40:0] _homogeneous_T_100 = _homogeneous_T_99; // @[Parameters.scala:137:46] wire _homogeneous_T_101 = _homogeneous_T_100 == 41'h0; // @[Parameters.scala:137:{46,59}] wire _homogeneous_T_107 = _homogeneous_T_101; // @[TLBPermissions.scala:85:66] wire [40:0] _homogeneous_T_103 = {1'h0, _homogeneous_T_102}; // @[Parameters.scala:137:{31,41}] wire [40:0] _homogeneous_T_104 = _homogeneous_T_103 & 41'h80000000; // @[Parameters.scala:137:{41,46}] wire [40:0] _homogeneous_T_105 = _homogeneous_T_104; // @[Parameters.scala:137:46] wire _homogeneous_T_106 = _homogeneous_T_105 == 41'h0; // @[Parameters.scala:137:{46,59}] wire _homogeneous_T_108 = _homogeneous_T_107 | _homogeneous_T_106; // @[TLBPermissions.scala:85:66] wire [40:0] _homogeneous_T_110 = {1'h0, _homogeneous_T_109}; // @[Parameters.scala:137:{31,41}] wire [40:0] _homogeneous_T_111 = _homogeneous_T_110 & 41'h8A110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _homogeneous_T_112 = _homogeneous_T_111; // @[Parameters.scala:137:46] wire _homogeneous_T_113 = _homogeneous_T_112 == 41'h0; // @[Parameters.scala:137:{46,59}] wire _homogeneous_T_114 = _homogeneous_T_113; // @[TLBPermissions.scala:87:66] wire _homogeneous_T_115 = ~_homogeneous_T_114; // @[TLBPermissions.scala:87:{22,66}] wire [40:0] _homogeneous_T_117 = {1'h0, _homogeneous_T_116}; // @[Parameters.scala:137:{31,41}] wire [40:0] _homogeneous_T_118 = _homogeneous_T_117 & 41'h8A110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _homogeneous_T_119 = _homogeneous_T_118; // @[Parameters.scala:137:46] wire _homogeneous_T_120 = _homogeneous_T_119 == 41'h0; // @[Parameters.scala:137:{46,59}] wire _homogeneous_T_121 = _homogeneous_T_120; // @[TLBPermissions.scala:87:66] wire _homogeneous_T_122 = ~_homogeneous_T_121; // @[TLBPermissions.scala:87:{22,66}] wire _deny_access_to_debug_T = ~(mpu_priv[2]); // @[TLB.scala:415:27, :428:39] wire [40:0] _deny_access_to_debug_T_2 = {1'h0, _deny_access_to_debug_T_1}; // @[Parameters.scala:137:{31,41}] wire [40:0] _deny_access_to_debug_T_3 = _deny_access_to_debug_T_2 & 41'h1FFFFFFF000; // @[Parameters.scala:137:{41,46}] wire [40:0] _deny_access_to_debug_T_4 = _deny_access_to_debug_T_3; // @[Parameters.scala:137:46] wire _deny_access_to_debug_T_5 = _deny_access_to_debug_T_4 == 41'h0; // @[Parameters.scala:137:{46,59}] wire deny_access_to_debug = _deny_access_to_debug_T & _deny_access_to_debug_T_5; // @[TLB.scala:428:{39,50}] wire _prot_r_T = ~deny_access_to_debug; // @[TLB.scala:428:50, :429:33] wire _prot_r_T_1 = _pma_io_resp_r & _prot_r_T; // @[TLB.scala:422:19, :429:{30,33}] wire prot_r = _prot_r_T_1 & _pmp_io_r; // @[TLB.scala:416:19, :429:{30,55}] wire newEntry_pr = prot_r; // @[TLB.scala:429:55, :449:24] wire _prot_w_T = ~deny_access_to_debug; // @[TLB.scala:428:50, :429:33, :430:33] wire _prot_w_T_1 = _pma_io_resp_w & _prot_w_T; // @[TLB.scala:422:19, :430:{30,33}] wire prot_w = _prot_w_T_1 & _pmp_io_w; // @[TLB.scala:416:19, :430:{30,55}] wire newEntry_pw = prot_w; // @[TLB.scala:430:55, :449:24] wire _prot_x_T = ~deny_access_to_debug; // @[TLB.scala:428:50, :429:33, :434:33] wire _prot_x_T_1 = _pma_io_resp_x & _prot_x_T; // @[TLB.scala:422:19, :434:{30,33}] wire prot_x = _prot_x_T_1 & _pmp_io_x; // @[TLB.scala:416:19, :434:{30,55}] wire newEntry_px = prot_x; // @[TLB.scala:434:55, :449:24] wire _GEN_4 = sectored_entries_0_0_valid_0 | sectored_entries_0_0_valid_1; // @[package.scala:81:59] wire _sector_hits_T; // @[package.scala:81:59] assign _sector_hits_T = _GEN_4; // @[package.scala:81:59] wire _r_sectored_repl_addr_valids_T; // @[package.scala:81:59] assign _r_sectored_repl_addr_valids_T = _GEN_4; // @[package.scala:81:59] wire _sector_hits_T_1 = _sector_hits_T | sectored_entries_0_0_valid_2; // @[package.scala:81:59] wire _sector_hits_T_2 = _sector_hits_T_1 | sectored_entries_0_0_valid_3; // @[package.scala:81:59] wire [26:0] _T_176 = sectored_entries_0_0_tag_vpn ^ vpn; // @[TLB.scala:174:61, :335:30, :339:29] wire [26:0] _sector_hits_T_3; // @[TLB.scala:174:61] assign _sector_hits_T_3 = _T_176; // @[TLB.scala:174:61] wire [26:0] _hitsVec_T; // @[TLB.scala:174:61] assign _hitsVec_T = _T_176; // @[TLB.scala:174:61] wire [24:0] _sector_hits_T_4 = _sector_hits_T_3[26:2]; // @[TLB.scala:174:{61,68}] wire _sector_hits_T_5 = _sector_hits_T_4 == 25'h0; // @[TLB.scala:174:{68,86}] wire _sector_hits_T_6 = ~sectored_entries_0_0_tag_v; // @[TLB.scala:174:105, :339:29] wire _sector_hits_T_7 = _sector_hits_T_5 & _sector_hits_T_6; // @[TLB.scala:174:{86,95,105}] wire sector_hits_0 = _sector_hits_T_2 & _sector_hits_T_7; // @[package.scala:81:59] wire _GEN_5 = sectored_entries_0_1_valid_0 | sectored_entries_0_1_valid_1; // @[package.scala:81:59] wire _sector_hits_T_8; // @[package.scala:81:59] assign _sector_hits_T_8 = _GEN_5; // @[package.scala:81:59] wire _r_sectored_repl_addr_valids_T_3; // @[package.scala:81:59] assign _r_sectored_repl_addr_valids_T_3 = _GEN_5; // @[package.scala:81:59] wire _sector_hits_T_9 = _sector_hits_T_8 | sectored_entries_0_1_valid_2; // @[package.scala:81:59] wire _sector_hits_T_10 = _sector_hits_T_9 | sectored_entries_0_1_valid_3; // @[package.scala:81:59] wire [26:0] _T_597 = sectored_entries_0_1_tag_vpn ^ vpn; // @[TLB.scala:174:61, :335:30, :339:29] wire [26:0] _sector_hits_T_11; // @[TLB.scala:174:61] assign _sector_hits_T_11 = _T_597; // @[TLB.scala:174:61] wire [26:0] _hitsVec_T_6; // @[TLB.scala:174:61] assign _hitsVec_T_6 = _T_597; // @[TLB.scala:174:61] wire [24:0] _sector_hits_T_12 = _sector_hits_T_11[26:2]; // @[TLB.scala:174:{61,68}] wire _sector_hits_T_13 = _sector_hits_T_12 == 25'h0; // @[TLB.scala:174:{68,86}] wire _sector_hits_T_14 = ~sectored_entries_0_1_tag_v; // @[TLB.scala:174:105, :339:29] wire _sector_hits_T_15 = _sector_hits_T_13 & _sector_hits_T_14; // @[TLB.scala:174:{86,95,105}] wire sector_hits_1 = _sector_hits_T_10 & _sector_hits_T_15; // @[package.scala:81:59] wire _GEN_6 = sectored_entries_0_2_valid_0 | sectored_entries_0_2_valid_1; // @[package.scala:81:59] wire _sector_hits_T_16; // @[package.scala:81:59] assign _sector_hits_T_16 = _GEN_6; // @[package.scala:81:59] wire _r_sectored_repl_addr_valids_T_6; // @[package.scala:81:59] assign _r_sectored_repl_addr_valids_T_6 = _GEN_6; // @[package.scala:81:59] wire _sector_hits_T_17 = _sector_hits_T_16 | sectored_entries_0_2_valid_2; // @[package.scala:81:59] wire _sector_hits_T_18 = _sector_hits_T_17 | sectored_entries_0_2_valid_3; // @[package.scala:81:59] wire [26:0] _T_1018 = sectored_entries_0_2_tag_vpn ^ vpn; // @[TLB.scala:174:61, :335:30, :339:29] wire [26:0] _sector_hits_T_19; // @[TLB.scala:174:61] assign _sector_hits_T_19 = _T_1018; // @[TLB.scala:174:61] wire [26:0] _hitsVec_T_12; // @[TLB.scala:174:61] assign _hitsVec_T_12 = _T_1018; // @[TLB.scala:174:61] wire [24:0] _sector_hits_T_20 = _sector_hits_T_19[26:2]; // @[TLB.scala:174:{61,68}] wire _sector_hits_T_21 = _sector_hits_T_20 == 25'h0; // @[TLB.scala:174:{68,86}] wire _sector_hits_T_22 = ~sectored_entries_0_2_tag_v; // @[TLB.scala:174:105, :339:29] wire _sector_hits_T_23 = _sector_hits_T_21 & _sector_hits_T_22; // @[TLB.scala:174:{86,95,105}] wire sector_hits_2 = _sector_hits_T_18 & _sector_hits_T_23; // @[package.scala:81:59] wire _GEN_7 = sectored_entries_0_3_valid_0 | sectored_entries_0_3_valid_1; // @[package.scala:81:59] wire _sector_hits_T_24; // @[package.scala:81:59] assign _sector_hits_T_24 = _GEN_7; // @[package.scala:81:59] wire _r_sectored_repl_addr_valids_T_9; // @[package.scala:81:59] assign _r_sectored_repl_addr_valids_T_9 = _GEN_7; // @[package.scala:81:59] wire _sector_hits_T_25 = _sector_hits_T_24 | sectored_entries_0_3_valid_2; // @[package.scala:81:59] wire _sector_hits_T_26 = _sector_hits_T_25 | sectored_entries_0_3_valid_3; // @[package.scala:81:59] wire [26:0] _T_1439 = sectored_entries_0_3_tag_vpn ^ vpn; // @[TLB.scala:174:61, :335:30, :339:29] wire [26:0] _sector_hits_T_27; // @[TLB.scala:174:61] assign _sector_hits_T_27 = _T_1439; // @[TLB.scala:174:61] wire [26:0] _hitsVec_T_18; // @[TLB.scala:174:61] assign _hitsVec_T_18 = _T_1439; // @[TLB.scala:174:61] wire [24:0] _sector_hits_T_28 = _sector_hits_T_27[26:2]; // @[TLB.scala:174:{61,68}] wire _sector_hits_T_29 = _sector_hits_T_28 == 25'h0; // @[TLB.scala:174:{68,86}] wire _sector_hits_T_30 = ~sectored_entries_0_3_tag_v; // @[TLB.scala:174:105, :339:29] wire _sector_hits_T_31 = _sector_hits_T_29 & _sector_hits_T_30; // @[TLB.scala:174:{86,95,105}] wire sector_hits_3 = _sector_hits_T_26 & _sector_hits_T_31; // @[package.scala:81:59] wire _GEN_8 = sectored_entries_0_4_valid_0 | sectored_entries_0_4_valid_1; // @[package.scala:81:59] wire _sector_hits_T_32; // @[package.scala:81:59] assign _sector_hits_T_32 = _GEN_8; // @[package.scala:81:59] wire _r_sectored_repl_addr_valids_T_12; // @[package.scala:81:59] assign _r_sectored_repl_addr_valids_T_12 = _GEN_8; // @[package.scala:81:59] wire _sector_hits_T_33 = _sector_hits_T_32 | sectored_entries_0_4_valid_2; // @[package.scala:81:59] wire _sector_hits_T_34 = _sector_hits_T_33 | sectored_entries_0_4_valid_3; // @[package.scala:81:59] wire [26:0] _T_1860 = sectored_entries_0_4_tag_vpn ^ vpn; // @[TLB.scala:174:61, :335:30, :339:29] wire [26:0] _sector_hits_T_35; // @[TLB.scala:174:61] assign _sector_hits_T_35 = _T_1860; // @[TLB.scala:174:61] wire [26:0] _hitsVec_T_24; // @[TLB.scala:174:61] assign _hitsVec_T_24 = _T_1860; // @[TLB.scala:174:61] wire [24:0] _sector_hits_T_36 = _sector_hits_T_35[26:2]; // @[TLB.scala:174:{61,68}] wire _sector_hits_T_37 = _sector_hits_T_36 == 25'h0; // @[TLB.scala:174:{68,86}] wire _sector_hits_T_38 = ~sectored_entries_0_4_tag_v; // @[TLB.scala:174:105, :339:29] wire _sector_hits_T_39 = _sector_hits_T_37 & _sector_hits_T_38; // @[TLB.scala:174:{86,95,105}] wire sector_hits_4 = _sector_hits_T_34 & _sector_hits_T_39; // @[package.scala:81:59] wire _GEN_9 = sectored_entries_0_5_valid_0 | sectored_entries_0_5_valid_1; // @[package.scala:81:59] wire _sector_hits_T_40; // @[package.scala:81:59] assign _sector_hits_T_40 = _GEN_9; // @[package.scala:81:59] wire _r_sectored_repl_addr_valids_T_15; // @[package.scala:81:59] assign _r_sectored_repl_addr_valids_T_15 = _GEN_9; // @[package.scala:81:59] wire _sector_hits_T_41 = _sector_hits_T_40 | sectored_entries_0_5_valid_2; // @[package.scala:81:59] wire _sector_hits_T_42 = _sector_hits_T_41 | sectored_entries_0_5_valid_3; // @[package.scala:81:59] wire [26:0] _T_2281 = sectored_entries_0_5_tag_vpn ^ vpn; // @[TLB.scala:174:61, :335:30, :339:29] wire [26:0] _sector_hits_T_43; // @[TLB.scala:174:61] assign _sector_hits_T_43 = _T_2281; // @[TLB.scala:174:61] wire [26:0] _hitsVec_T_30; // @[TLB.scala:174:61] assign _hitsVec_T_30 = _T_2281; // @[TLB.scala:174:61] wire [24:0] _sector_hits_T_44 = _sector_hits_T_43[26:2]; // @[TLB.scala:174:{61,68}] wire _sector_hits_T_45 = _sector_hits_T_44 == 25'h0; // @[TLB.scala:174:{68,86}] wire _sector_hits_T_46 = ~sectored_entries_0_5_tag_v; // @[TLB.scala:174:105, :339:29] wire _sector_hits_T_47 = _sector_hits_T_45 & _sector_hits_T_46; // @[TLB.scala:174:{86,95,105}] wire sector_hits_5 = _sector_hits_T_42 & _sector_hits_T_47; // @[package.scala:81:59] wire _GEN_10 = sectored_entries_0_6_valid_0 | sectored_entries_0_6_valid_1; // @[package.scala:81:59] wire _sector_hits_T_48; // @[package.scala:81:59] assign _sector_hits_T_48 = _GEN_10; // @[package.scala:81:59] wire _r_sectored_repl_addr_valids_T_18; // @[package.scala:81:59] assign _r_sectored_repl_addr_valids_T_18 = _GEN_10; // @[package.scala:81:59] wire _sector_hits_T_49 = _sector_hits_T_48 | sectored_entries_0_6_valid_2; // @[package.scala:81:59] wire _sector_hits_T_50 = _sector_hits_T_49 | sectored_entries_0_6_valid_3; // @[package.scala:81:59] wire [26:0] _T_2702 = sectored_entries_0_6_tag_vpn ^ vpn; // @[TLB.scala:174:61, :335:30, :339:29] wire [26:0] _sector_hits_T_51; // @[TLB.scala:174:61] assign _sector_hits_T_51 = _T_2702; // @[TLB.scala:174:61] wire [26:0] _hitsVec_T_36; // @[TLB.scala:174:61] assign _hitsVec_T_36 = _T_2702; // @[TLB.scala:174:61] wire [24:0] _sector_hits_T_52 = _sector_hits_T_51[26:2]; // @[TLB.scala:174:{61,68}] wire _sector_hits_T_53 = _sector_hits_T_52 == 25'h0; // @[TLB.scala:174:{68,86}] wire _sector_hits_T_54 = ~sectored_entries_0_6_tag_v; // @[TLB.scala:174:105, :339:29] wire _sector_hits_T_55 = _sector_hits_T_53 & _sector_hits_T_54; // @[TLB.scala:174:{86,95,105}] wire sector_hits_6 = _sector_hits_T_50 & _sector_hits_T_55; // @[package.scala:81:59] wire _GEN_11 = sectored_entries_0_7_valid_0 | sectored_entries_0_7_valid_1; // @[package.scala:81:59] wire _sector_hits_T_56; // @[package.scala:81:59] assign _sector_hits_T_56 = _GEN_11; // @[package.scala:81:59] wire _r_sectored_repl_addr_valids_T_21; // @[package.scala:81:59] assign _r_sectored_repl_addr_valids_T_21 = _GEN_11; // @[package.scala:81:59] wire _sector_hits_T_57 = _sector_hits_T_56 | sectored_entries_0_7_valid_2; // @[package.scala:81:59] wire _sector_hits_T_58 = _sector_hits_T_57 | sectored_entries_0_7_valid_3; // @[package.scala:81:59] wire [26:0] _T_3123 = sectored_entries_0_7_tag_vpn ^ vpn; // @[TLB.scala:174:61, :335:30, :339:29] wire [26:0] _sector_hits_T_59; // @[TLB.scala:174:61] assign _sector_hits_T_59 = _T_3123; // @[TLB.scala:174:61] wire [26:0] _hitsVec_T_42; // @[TLB.scala:174:61] assign _hitsVec_T_42 = _T_3123; // @[TLB.scala:174:61] wire [24:0] _sector_hits_T_60 = _sector_hits_T_59[26:2]; // @[TLB.scala:174:{61,68}] wire _sector_hits_T_61 = _sector_hits_T_60 == 25'h0; // @[TLB.scala:174:{68,86}] wire _sector_hits_T_62 = ~sectored_entries_0_7_tag_v; // @[TLB.scala:174:105, :339:29] wire _sector_hits_T_63 = _sector_hits_T_61 & _sector_hits_T_62; // @[TLB.scala:174:{86,95,105}] wire sector_hits_7 = _sector_hits_T_58 & _sector_hits_T_63; // @[package.scala:81:59] wire _superpage_hits_tagMatch_T = ~superpage_entries_0_tag_v; // @[TLB.scala:178:43, :341:30] wire superpage_hits_tagMatch = superpage_entries_0_valid_0 & _superpage_hits_tagMatch_T; // @[TLB.scala:178:{33,43}, :341:30] wire [26:0] _T_3446 = superpage_entries_0_tag_vpn ^ vpn; // @[TLB.scala:183:52, :335:30, :341:30] wire [26:0] _superpage_hits_T; // @[TLB.scala:183:52] assign _superpage_hits_T = _T_3446; // @[TLB.scala:183:52] wire [26:0] _superpage_hits_T_5; // @[TLB.scala:183:52] assign _superpage_hits_T_5 = _T_3446; // @[TLB.scala:183:52] wire [26:0] _superpage_hits_T_10; // @[TLB.scala:183:52] assign _superpage_hits_T_10 = _T_3446; // @[TLB.scala:183:52] wire [26:0] _hitsVec_T_48; // @[TLB.scala:183:52] assign _hitsVec_T_48 = _T_3446; // @[TLB.scala:183:52] wire [26:0] _hitsVec_T_53; // @[TLB.scala:183:52] assign _hitsVec_T_53 = _T_3446; // @[TLB.scala:183:52] wire [26:0] _hitsVec_T_58; // @[TLB.scala:183:52] assign _hitsVec_T_58 = _T_3446; // @[TLB.scala:183:52] wire [8:0] _superpage_hits_T_1 = _superpage_hits_T[26:18]; // @[TLB.scala:183:{52,58}] wire _superpage_hits_T_2 = _superpage_hits_T_1 == 9'h0; // @[TLB.scala:183:{58,79}] wire _superpage_hits_T_3 = _superpage_hits_T_2; // @[TLB.scala:183:{40,79}] wire _superpage_hits_T_4 = superpage_hits_tagMatch & _superpage_hits_T_3; // @[TLB.scala:178:33, :183:{29,40}] wire _GEN_12 = superpage_entries_0_level == 2'h0; // @[TLB.scala:182:28, :341:30] wire _superpage_hits_ignore_T_1; // @[TLB.scala:182:28] assign _superpage_hits_ignore_T_1 = _GEN_12; // @[TLB.scala:182:28] wire _hitsVec_ignore_T_1; // @[TLB.scala:182:28] assign _hitsVec_ignore_T_1 = _GEN_12; // @[TLB.scala:182:28] wire _ppn_ignore_T; // @[TLB.scala:197:28] assign _ppn_ignore_T = _GEN_12; // @[TLB.scala:182:28, :197:28] wire _ignore_T_1; // @[TLB.scala:182:28] assign _ignore_T_1 = _GEN_12; // @[TLB.scala:182:28] wire superpage_hits_ignore_1 = _superpage_hits_ignore_T_1; // @[TLB.scala:182:{28,34}] wire [8:0] _superpage_hits_T_6 = _superpage_hits_T_5[17:9]; // @[TLB.scala:183:{52,58}] wire _superpage_hits_T_7 = _superpage_hits_T_6 == 9'h0; // @[TLB.scala:183:{58,79}] wire _superpage_hits_T_8 = superpage_hits_ignore_1 | _superpage_hits_T_7; // @[TLB.scala:182:34, :183:{40,79}] wire _superpage_hits_T_9 = _superpage_hits_T_4 & _superpage_hits_T_8; // @[TLB.scala:183:{29,40}] wire superpage_hits_0 = _superpage_hits_T_9; // @[TLB.scala:183:29] wire _superpage_hits_ignore_T_2 = ~(superpage_entries_0_level[1]); // @[TLB.scala:182:28, :341:30] wire [8:0] _superpage_hits_T_11 = _superpage_hits_T_10[8:0]; // @[TLB.scala:183:{52,58}] wire _superpage_hits_T_12 = _superpage_hits_T_11 == 9'h0; // @[TLB.scala:183:{58,79}] wire _superpage_hits_tagMatch_T_1 = ~superpage_entries_1_tag_v; // @[TLB.scala:178:43, :341:30] wire superpage_hits_tagMatch_1 = superpage_entries_1_valid_0 & _superpage_hits_tagMatch_T_1; // @[TLB.scala:178:{33,43}, :341:30] wire [26:0] _T_3544 = superpage_entries_1_tag_vpn ^ vpn; // @[TLB.scala:183:52, :335:30, :341:30] wire [26:0] _superpage_hits_T_14; // @[TLB.scala:183:52] assign _superpage_hits_T_14 = _T_3544; // @[TLB.scala:183:52] wire [26:0] _superpage_hits_T_19; // @[TLB.scala:183:52] assign _superpage_hits_T_19 = _T_3544; // @[TLB.scala:183:52] wire [26:0] _superpage_hits_T_24; // @[TLB.scala:183:52] assign _superpage_hits_T_24 = _T_3544; // @[TLB.scala:183:52] wire [26:0] _hitsVec_T_63; // @[TLB.scala:183:52] assign _hitsVec_T_63 = _T_3544; // @[TLB.scala:183:52] wire [26:0] _hitsVec_T_68; // @[TLB.scala:183:52] assign _hitsVec_T_68 = _T_3544; // @[TLB.scala:183:52] wire [26:0] _hitsVec_T_73; // @[TLB.scala:183:52] assign _hitsVec_T_73 = _T_3544; // @[TLB.scala:183:52] wire [8:0] _superpage_hits_T_15 = _superpage_hits_T_14[26:18]; // @[TLB.scala:183:{52,58}] wire _superpage_hits_T_16 = _superpage_hits_T_15 == 9'h0; // @[TLB.scala:183:{58,79}] wire _superpage_hits_T_17 = _superpage_hits_T_16; // @[TLB.scala:183:{40,79}] wire _superpage_hits_T_18 = superpage_hits_tagMatch_1 & _superpage_hits_T_17; // @[TLB.scala:178:33, :183:{29,40}] wire _GEN_13 = superpage_entries_1_level == 2'h0; // @[TLB.scala:182:28, :341:30] wire _superpage_hits_ignore_T_4; // @[TLB.scala:182:28] assign _superpage_hits_ignore_T_4 = _GEN_13; // @[TLB.scala:182:28] wire _hitsVec_ignore_T_4; // @[TLB.scala:182:28] assign _hitsVec_ignore_T_4 = _GEN_13; // @[TLB.scala:182:28] wire _ppn_ignore_T_2; // @[TLB.scala:197:28] assign _ppn_ignore_T_2 = _GEN_13; // @[TLB.scala:182:28, :197:28] wire _ignore_T_4; // @[TLB.scala:182:28] assign _ignore_T_4 = _GEN_13; // @[TLB.scala:182:28] wire superpage_hits_ignore_4 = _superpage_hits_ignore_T_4; // @[TLB.scala:182:{28,34}] wire [8:0] _superpage_hits_T_20 = _superpage_hits_T_19[17:9]; // @[TLB.scala:183:{52,58}] wire _superpage_hits_T_21 = _superpage_hits_T_20 == 9'h0; // @[TLB.scala:183:{58,79}] wire _superpage_hits_T_22 = superpage_hits_ignore_4 | _superpage_hits_T_21; // @[TLB.scala:182:34, :183:{40,79}] wire _superpage_hits_T_23 = _superpage_hits_T_18 & _superpage_hits_T_22; // @[TLB.scala:183:{29,40}] wire superpage_hits_1 = _superpage_hits_T_23; // @[TLB.scala:183:29] wire _superpage_hits_ignore_T_5 = ~(superpage_entries_1_level[1]); // @[TLB.scala:182:28, :341:30] wire [8:0] _superpage_hits_T_25 = _superpage_hits_T_24[8:0]; // @[TLB.scala:183:{52,58}] wire _superpage_hits_T_26 = _superpage_hits_T_25 == 9'h0; // @[TLB.scala:183:{58,79}] wire _superpage_hits_tagMatch_T_2 = ~superpage_entries_2_tag_v; // @[TLB.scala:178:43, :341:30] wire superpage_hits_tagMatch_2 = superpage_entries_2_valid_0 & _superpage_hits_tagMatch_T_2; // @[TLB.scala:178:{33,43}, :341:30] wire [26:0] _T_3642 = superpage_entries_2_tag_vpn ^ vpn; // @[TLB.scala:183:52, :335:30, :341:30] wire [26:0] _superpage_hits_T_28; // @[TLB.scala:183:52] assign _superpage_hits_T_28 = _T_3642; // @[TLB.scala:183:52] wire [26:0] _superpage_hits_T_33; // @[TLB.scala:183:52] assign _superpage_hits_T_33 = _T_3642; // @[TLB.scala:183:52] wire [26:0] _superpage_hits_T_38; // @[TLB.scala:183:52] assign _superpage_hits_T_38 = _T_3642; // @[TLB.scala:183:52] wire [26:0] _hitsVec_T_78; // @[TLB.scala:183:52] assign _hitsVec_T_78 = _T_3642; // @[TLB.scala:183:52] wire [26:0] _hitsVec_T_83; // @[TLB.scala:183:52] assign _hitsVec_T_83 = _T_3642; // @[TLB.scala:183:52] wire [26:0] _hitsVec_T_88; // @[TLB.scala:183:52] assign _hitsVec_T_88 = _T_3642; // @[TLB.scala:183:52] wire [8:0] _superpage_hits_T_29 = _superpage_hits_T_28[26:18]; // @[TLB.scala:183:{52,58}] wire _superpage_hits_T_30 = _superpage_hits_T_29 == 9'h0; // @[TLB.scala:183:{58,79}] wire _superpage_hits_T_31 = _superpage_hits_T_30; // @[TLB.scala:183:{40,79}] wire _superpage_hits_T_32 = superpage_hits_tagMatch_2 & _superpage_hits_T_31; // @[TLB.scala:178:33, :183:{29,40}] wire _GEN_14 = superpage_entries_2_level == 2'h0; // @[TLB.scala:182:28, :341:30] wire _superpage_hits_ignore_T_7; // @[TLB.scala:182:28] assign _superpage_hits_ignore_T_7 = _GEN_14; // @[TLB.scala:182:28] wire _hitsVec_ignore_T_7; // @[TLB.scala:182:28] assign _hitsVec_ignore_T_7 = _GEN_14; // @[TLB.scala:182:28] wire _ppn_ignore_T_4; // @[TLB.scala:197:28] assign _ppn_ignore_T_4 = _GEN_14; // @[TLB.scala:182:28, :197:28] wire _ignore_T_7; // @[TLB.scala:182:28] assign _ignore_T_7 = _GEN_14; // @[TLB.scala:182:28] wire superpage_hits_ignore_7 = _superpage_hits_ignore_T_7; // @[TLB.scala:182:{28,34}] wire [8:0] _superpage_hits_T_34 = _superpage_hits_T_33[17:9]; // @[TLB.scala:183:{52,58}] wire _superpage_hits_T_35 = _superpage_hits_T_34 == 9'h0; // @[TLB.scala:183:{58,79}] wire _superpage_hits_T_36 = superpage_hits_ignore_7 | _superpage_hits_T_35; // @[TLB.scala:182:34, :183:{40,79}] wire _superpage_hits_T_37 = _superpage_hits_T_32 & _superpage_hits_T_36; // @[TLB.scala:183:{29,40}] wire superpage_hits_2 = _superpage_hits_T_37; // @[TLB.scala:183:29] wire _superpage_hits_ignore_T_8 = ~(superpage_entries_2_level[1]); // @[TLB.scala:182:28, :341:30] wire [8:0] _superpage_hits_T_39 = _superpage_hits_T_38[8:0]; // @[TLB.scala:183:{52,58}] wire _superpage_hits_T_40 = _superpage_hits_T_39 == 9'h0; // @[TLB.scala:183:{58,79}] wire _superpage_hits_tagMatch_T_3 = ~superpage_entries_3_tag_v; // @[TLB.scala:178:43, :341:30] wire superpage_hits_tagMatch_3 = superpage_entries_3_valid_0 & _superpage_hits_tagMatch_T_3; // @[TLB.scala:178:{33,43}, :341:30] wire [26:0] _T_3740 = superpage_entries_3_tag_vpn ^ vpn; // @[TLB.scala:183:52, :335:30, :341:30] wire [26:0] _superpage_hits_T_42; // @[TLB.scala:183:52] assign _superpage_hits_T_42 = _T_3740; // @[TLB.scala:183:52] wire [26:0] _superpage_hits_T_47; // @[TLB.scala:183:52] assign _superpage_hits_T_47 = _T_3740; // @[TLB.scala:183:52] wire [26:0] _superpage_hits_T_52; // @[TLB.scala:183:52] assign _superpage_hits_T_52 = _T_3740; // @[TLB.scala:183:52] wire [26:0] _hitsVec_T_93; // @[TLB.scala:183:52] assign _hitsVec_T_93 = _T_3740; // @[TLB.scala:183:52] wire [26:0] _hitsVec_T_98; // @[TLB.scala:183:52] assign _hitsVec_T_98 = _T_3740; // @[TLB.scala:183:52] wire [26:0] _hitsVec_T_103; // @[TLB.scala:183:52] assign _hitsVec_T_103 = _T_3740; // @[TLB.scala:183:52] wire [8:0] _superpage_hits_T_43 = _superpage_hits_T_42[26:18]; // @[TLB.scala:183:{52,58}] wire _superpage_hits_T_44 = _superpage_hits_T_43 == 9'h0; // @[TLB.scala:183:{58,79}] wire _superpage_hits_T_45 = _superpage_hits_T_44; // @[TLB.scala:183:{40,79}] wire _superpage_hits_T_46 = superpage_hits_tagMatch_3 & _superpage_hits_T_45; // @[TLB.scala:178:33, :183:{29,40}] wire _GEN_15 = superpage_entries_3_level == 2'h0; // @[TLB.scala:182:28, :341:30] wire _superpage_hits_ignore_T_10; // @[TLB.scala:182:28] assign _superpage_hits_ignore_T_10 = _GEN_15; // @[TLB.scala:182:28] wire _hitsVec_ignore_T_10; // @[TLB.scala:182:28] assign _hitsVec_ignore_T_10 = _GEN_15; // @[TLB.scala:182:28] wire _ppn_ignore_T_6; // @[TLB.scala:197:28] assign _ppn_ignore_T_6 = _GEN_15; // @[TLB.scala:182:28, :197:28] wire _ignore_T_10; // @[TLB.scala:182:28] assign _ignore_T_10 = _GEN_15; // @[TLB.scala:182:28] wire superpage_hits_ignore_10 = _superpage_hits_ignore_T_10; // @[TLB.scala:182:{28,34}] wire [8:0] _superpage_hits_T_48 = _superpage_hits_T_47[17:9]; // @[TLB.scala:183:{52,58}] wire _superpage_hits_T_49 = _superpage_hits_T_48 == 9'h0; // @[TLB.scala:183:{58,79}] wire _superpage_hits_T_50 = superpage_hits_ignore_10 | _superpage_hits_T_49; // @[TLB.scala:182:34, :183:{40,79}] wire _superpage_hits_T_51 = _superpage_hits_T_46 & _superpage_hits_T_50; // @[TLB.scala:183:{29,40}] wire superpage_hits_3 = _superpage_hits_T_51; // @[TLB.scala:183:29] wire _superpage_hits_ignore_T_11 = ~(superpage_entries_3_level[1]); // @[TLB.scala:182:28, :341:30] wire [8:0] _superpage_hits_T_53 = _superpage_hits_T_52[8:0]; // @[TLB.scala:183:{52,58}] wire _superpage_hits_T_54 = _superpage_hits_T_53 == 9'h0; // @[TLB.scala:183:{58,79}] wire [1:0] hitsVec_idx = vpn[1:0]; // @[package.scala:163:13] wire [1:0] hitsVec_idx_1 = vpn[1:0]; // @[package.scala:163:13] wire [1:0] hitsVec_idx_2 = vpn[1:0]; // @[package.scala:163:13] wire [1:0] hitsVec_idx_3 = vpn[1:0]; // @[package.scala:163:13] wire [1:0] hitsVec_idx_4 = vpn[1:0]; // @[package.scala:163:13] wire [1:0] hitsVec_idx_5 = vpn[1:0]; // @[package.scala:163:13] wire [1:0] hitsVec_idx_6 = vpn[1:0]; // @[package.scala:163:13] wire [1:0] hitsVec_idx_7 = vpn[1:0]; // @[package.scala:163:13] wire [1:0] _entries_T = vpn[1:0]; // @[package.scala:163:13] wire [1:0] _entries_T_24 = vpn[1:0]; // @[package.scala:163:13] wire [1:0] _entries_T_48 = vpn[1:0]; // @[package.scala:163:13] wire [1:0] _entries_T_72 = vpn[1:0]; // @[package.scala:163:13] wire [1:0] _entries_T_96 = vpn[1:0]; // @[package.scala:163:13] wire [1:0] _entries_T_120 = vpn[1:0]; // @[package.scala:163:13] wire [1:0] _entries_T_144 = vpn[1:0]; // @[package.scala:163:13] wire [1:0] _entries_T_168 = vpn[1:0]; // @[package.scala:163:13] wire [24:0] _hitsVec_T_1 = _hitsVec_T[26:2]; // @[TLB.scala:174:{61,68}] wire _hitsVec_T_2 = _hitsVec_T_1 == 25'h0; // @[TLB.scala:174:{68,86}] wire _hitsVec_T_3 = ~sectored_entries_0_0_tag_v; // @[TLB.scala:174:105, :339:29] wire _hitsVec_T_4 = _hitsVec_T_2 & _hitsVec_T_3; // @[TLB.scala:174:{86,95,105}] wire [3:0] _GEN_16 = {{sectored_entries_0_0_valid_3}, {sectored_entries_0_0_valid_2}, {sectored_entries_0_0_valid_1}, {sectored_entries_0_0_valid_0}}; // @[TLB.scala:188:18, :339:29] wire _hitsVec_T_5 = _GEN_16[hitsVec_idx] & _hitsVec_T_4; // @[package.scala:163:13] wire hitsVec_0 = vm_enabled & _hitsVec_T_5; // @[TLB.scala:188:18, :399:61, :440:44] wire [24:0] _hitsVec_T_7 = _hitsVec_T_6[26:2]; // @[TLB.scala:174:{61,68}] wire _hitsVec_T_8 = _hitsVec_T_7 == 25'h0; // @[TLB.scala:174:{68,86}] wire _hitsVec_T_9 = ~sectored_entries_0_1_tag_v; // @[TLB.scala:174:105, :339:29] wire _hitsVec_T_10 = _hitsVec_T_8 & _hitsVec_T_9; // @[TLB.scala:174:{86,95,105}] wire [3:0] _GEN_17 = {{sectored_entries_0_1_valid_3}, {sectored_entries_0_1_valid_2}, {sectored_entries_0_1_valid_1}, {sectored_entries_0_1_valid_0}}; // @[TLB.scala:188:18, :339:29] wire _hitsVec_T_11 = _GEN_17[hitsVec_idx_1] & _hitsVec_T_10; // @[package.scala:163:13] wire hitsVec_1 = vm_enabled & _hitsVec_T_11; // @[TLB.scala:188:18, :399:61, :440:44] wire [24:0] _hitsVec_T_13 = _hitsVec_T_12[26:2]; // @[TLB.scala:174:{61,68}] wire _hitsVec_T_14 = _hitsVec_T_13 == 25'h0; // @[TLB.scala:174:{68,86}] wire _hitsVec_T_15 = ~sectored_entries_0_2_tag_v; // @[TLB.scala:174:105, :339:29] wire _hitsVec_T_16 = _hitsVec_T_14 & _hitsVec_T_15; // @[TLB.scala:174:{86,95,105}] wire [3:0] _GEN_18 = {{sectored_entries_0_2_valid_3}, {sectored_entries_0_2_valid_2}, {sectored_entries_0_2_valid_1}, {sectored_entries_0_2_valid_0}}; // @[TLB.scala:188:18, :339:29] wire _hitsVec_T_17 = _GEN_18[hitsVec_idx_2] & _hitsVec_T_16; // @[package.scala:163:13] wire hitsVec_2 = vm_enabled & _hitsVec_T_17; // @[TLB.scala:188:18, :399:61, :440:44] wire [24:0] _hitsVec_T_19 = _hitsVec_T_18[26:2]; // @[TLB.scala:174:{61,68}] wire _hitsVec_T_20 = _hitsVec_T_19 == 25'h0; // @[TLB.scala:174:{68,86}] wire _hitsVec_T_21 = ~sectored_entries_0_3_tag_v; // @[TLB.scala:174:105, :339:29] wire _hitsVec_T_22 = _hitsVec_T_20 & _hitsVec_T_21; // @[TLB.scala:174:{86,95,105}] wire [3:0] _GEN_19 = {{sectored_entries_0_3_valid_3}, {sectored_entries_0_3_valid_2}, {sectored_entries_0_3_valid_1}, {sectored_entries_0_3_valid_0}}; // @[TLB.scala:188:18, :339:29] wire _hitsVec_T_23 = _GEN_19[hitsVec_idx_3] & _hitsVec_T_22; // @[package.scala:163:13] wire hitsVec_3 = vm_enabled & _hitsVec_T_23; // @[TLB.scala:188:18, :399:61, :440:44] wire [24:0] _hitsVec_T_25 = _hitsVec_T_24[26:2]; // @[TLB.scala:174:{61,68}] wire _hitsVec_T_26 = _hitsVec_T_25 == 25'h0; // @[TLB.scala:174:{68,86}] wire _hitsVec_T_27 = ~sectored_entries_0_4_tag_v; // @[TLB.scala:174:105, :339:29] wire _hitsVec_T_28 = _hitsVec_T_26 & _hitsVec_T_27; // @[TLB.scala:174:{86,95,105}] wire [3:0] _GEN_20 = {{sectored_entries_0_4_valid_3}, {sectored_entries_0_4_valid_2}, {sectored_entries_0_4_valid_1}, {sectored_entries_0_4_valid_0}}; // @[TLB.scala:188:18, :339:29] wire _hitsVec_T_29 = _GEN_20[hitsVec_idx_4] & _hitsVec_T_28; // @[package.scala:163:13] wire hitsVec_4 = vm_enabled & _hitsVec_T_29; // @[TLB.scala:188:18, :399:61, :440:44] wire [24:0] _hitsVec_T_31 = _hitsVec_T_30[26:2]; // @[TLB.scala:174:{61,68}] wire _hitsVec_T_32 = _hitsVec_T_31 == 25'h0; // @[TLB.scala:174:{68,86}] wire _hitsVec_T_33 = ~sectored_entries_0_5_tag_v; // @[TLB.scala:174:105, :339:29] wire _hitsVec_T_34 = _hitsVec_T_32 & _hitsVec_T_33; // @[TLB.scala:174:{86,95,105}] wire [3:0] _GEN_21 = {{sectored_entries_0_5_valid_3}, {sectored_entries_0_5_valid_2}, {sectored_entries_0_5_valid_1}, {sectored_entries_0_5_valid_0}}; // @[TLB.scala:188:18, :339:29] wire _hitsVec_T_35 = _GEN_21[hitsVec_idx_5] & _hitsVec_T_34; // @[package.scala:163:13] wire hitsVec_5 = vm_enabled & _hitsVec_T_35; // @[TLB.scala:188:18, :399:61, :440:44] wire [24:0] _hitsVec_T_37 = _hitsVec_T_36[26:2]; // @[TLB.scala:174:{61,68}] wire _hitsVec_T_38 = _hitsVec_T_37 == 25'h0; // @[TLB.scala:174:{68,86}] wire _hitsVec_T_39 = ~sectored_entries_0_6_tag_v; // @[TLB.scala:174:105, :339:29] wire _hitsVec_T_40 = _hitsVec_T_38 & _hitsVec_T_39; // @[TLB.scala:174:{86,95,105}] wire [3:0] _GEN_22 = {{sectored_entries_0_6_valid_3}, {sectored_entries_0_6_valid_2}, {sectored_entries_0_6_valid_1}, {sectored_entries_0_6_valid_0}}; // @[TLB.scala:188:18, :339:29] wire _hitsVec_T_41 = _GEN_22[hitsVec_idx_6] & _hitsVec_T_40; // @[package.scala:163:13] wire hitsVec_6 = vm_enabled & _hitsVec_T_41; // @[TLB.scala:188:18, :399:61, :440:44] wire [24:0] _hitsVec_T_43 = _hitsVec_T_42[26:2]; // @[TLB.scala:174:{61,68}] wire _hitsVec_T_44 = _hitsVec_T_43 == 25'h0; // @[TLB.scala:174:{68,86}] wire _hitsVec_T_45 = ~sectored_entries_0_7_tag_v; // @[TLB.scala:174:105, :339:29] wire _hitsVec_T_46 = _hitsVec_T_44 & _hitsVec_T_45; // @[TLB.scala:174:{86,95,105}] wire [3:0] _GEN_23 = {{sectored_entries_0_7_valid_3}, {sectored_entries_0_7_valid_2}, {sectored_entries_0_7_valid_1}, {sectored_entries_0_7_valid_0}}; // @[TLB.scala:188:18, :339:29] wire _hitsVec_T_47 = _GEN_23[hitsVec_idx_7] & _hitsVec_T_46; // @[package.scala:163:13] wire hitsVec_7 = vm_enabled & _hitsVec_T_47; // @[TLB.scala:188:18, :399:61, :440:44] wire _hitsVec_tagMatch_T = ~superpage_entries_0_tag_v; // @[TLB.scala:178:43, :341:30] wire hitsVec_tagMatch = superpage_entries_0_valid_0 & _hitsVec_tagMatch_T; // @[TLB.scala:178:{33,43}, :341:30] wire [8:0] _hitsVec_T_49 = _hitsVec_T_48[26:18]; // @[TLB.scala:183:{52,58}] wire _hitsVec_T_50 = _hitsVec_T_49 == 9'h0; // @[TLB.scala:183:{58,79}] wire _hitsVec_T_51 = _hitsVec_T_50; // @[TLB.scala:183:{40,79}] wire _hitsVec_T_52 = hitsVec_tagMatch & _hitsVec_T_51; // @[TLB.scala:178:33, :183:{29,40}] wire hitsVec_ignore_1 = _hitsVec_ignore_T_1; // @[TLB.scala:182:{28,34}] wire [8:0] _hitsVec_T_54 = _hitsVec_T_53[17:9]; // @[TLB.scala:183:{52,58}] wire _hitsVec_T_55 = _hitsVec_T_54 == 9'h0; // @[TLB.scala:183:{58,79}] wire _hitsVec_T_56 = hitsVec_ignore_1 | _hitsVec_T_55; // @[TLB.scala:182:34, :183:{40,79}] wire _hitsVec_T_57 = _hitsVec_T_52 & _hitsVec_T_56; // @[TLB.scala:183:{29,40}] wire _hitsVec_T_62 = _hitsVec_T_57; // @[TLB.scala:183:29] wire _hitsVec_ignore_T_2 = ~(superpage_entries_0_level[1]); // @[TLB.scala:182:28, :341:30] wire [8:0] _hitsVec_T_59 = _hitsVec_T_58[8:0]; // @[TLB.scala:183:{52,58}] wire _hitsVec_T_60 = _hitsVec_T_59 == 9'h0; // @[TLB.scala:183:{58,79}] wire hitsVec_8 = vm_enabled & _hitsVec_T_62; // @[TLB.scala:183:29, :399:61, :440:44] wire _hitsVec_tagMatch_T_1 = ~superpage_entries_1_tag_v; // @[TLB.scala:178:43, :341:30] wire hitsVec_tagMatch_1 = superpage_entries_1_valid_0 & _hitsVec_tagMatch_T_1; // @[TLB.scala:178:{33,43}, :341:30] wire [8:0] _hitsVec_T_64 = _hitsVec_T_63[26:18]; // @[TLB.scala:183:{52,58}] wire _hitsVec_T_65 = _hitsVec_T_64 == 9'h0; // @[TLB.scala:183:{58,79}] wire _hitsVec_T_66 = _hitsVec_T_65; // @[TLB.scala:183:{40,79}] wire _hitsVec_T_67 = hitsVec_tagMatch_1 & _hitsVec_T_66; // @[TLB.scala:178:33, :183:{29,40}] wire hitsVec_ignore_4 = _hitsVec_ignore_T_4; // @[TLB.scala:182:{28,34}] wire [8:0] _hitsVec_T_69 = _hitsVec_T_68[17:9]; // @[TLB.scala:183:{52,58}] wire _hitsVec_T_70 = _hitsVec_T_69 == 9'h0; // @[TLB.scala:183:{58,79}] wire _hitsVec_T_71 = hitsVec_ignore_4 | _hitsVec_T_70; // @[TLB.scala:182:34, :183:{40,79}] wire _hitsVec_T_72 = _hitsVec_T_67 & _hitsVec_T_71; // @[TLB.scala:183:{29,40}] wire _hitsVec_T_77 = _hitsVec_T_72; // @[TLB.scala:183:29] wire _hitsVec_ignore_T_5 = ~(superpage_entries_1_level[1]); // @[TLB.scala:182:28, :341:30] wire [8:0] _hitsVec_T_74 = _hitsVec_T_73[8:0]; // @[TLB.scala:183:{52,58}] wire _hitsVec_T_75 = _hitsVec_T_74 == 9'h0; // @[TLB.scala:183:{58,79}] wire hitsVec_9 = vm_enabled & _hitsVec_T_77; // @[TLB.scala:183:29, :399:61, :440:44] wire _hitsVec_tagMatch_T_2 = ~superpage_entries_2_tag_v; // @[TLB.scala:178:43, :341:30] wire hitsVec_tagMatch_2 = superpage_entries_2_valid_0 & _hitsVec_tagMatch_T_2; // @[TLB.scala:178:{33,43}, :341:30] wire [8:0] _hitsVec_T_79 = _hitsVec_T_78[26:18]; // @[TLB.scala:183:{52,58}] wire _hitsVec_T_80 = _hitsVec_T_79 == 9'h0; // @[TLB.scala:183:{58,79}] wire _hitsVec_T_81 = _hitsVec_T_80; // @[TLB.scala:183:{40,79}] wire _hitsVec_T_82 = hitsVec_tagMatch_2 & _hitsVec_T_81; // @[TLB.scala:178:33, :183:{29,40}] wire hitsVec_ignore_7 = _hitsVec_ignore_T_7; // @[TLB.scala:182:{28,34}] wire [8:0] _hitsVec_T_84 = _hitsVec_T_83[17:9]; // @[TLB.scala:183:{52,58}] wire _hitsVec_T_85 = _hitsVec_T_84 == 9'h0; // @[TLB.scala:183:{58,79}] wire _hitsVec_T_86 = hitsVec_ignore_7 | _hitsVec_T_85; // @[TLB.scala:182:34, :183:{40,79}] wire _hitsVec_T_87 = _hitsVec_T_82 & _hitsVec_T_86; // @[TLB.scala:183:{29,40}] wire _hitsVec_T_92 = _hitsVec_T_87; // @[TLB.scala:183:29] wire _hitsVec_ignore_T_8 = ~(superpage_entries_2_level[1]); // @[TLB.scala:182:28, :341:30] wire [8:0] _hitsVec_T_89 = _hitsVec_T_88[8:0]; // @[TLB.scala:183:{52,58}] wire _hitsVec_T_90 = _hitsVec_T_89 == 9'h0; // @[TLB.scala:183:{58,79}] wire hitsVec_10 = vm_enabled & _hitsVec_T_92; // @[TLB.scala:183:29, :399:61, :440:44] wire _hitsVec_tagMatch_T_3 = ~superpage_entries_3_tag_v; // @[TLB.scala:178:43, :341:30] wire hitsVec_tagMatch_3 = superpage_entries_3_valid_0 & _hitsVec_tagMatch_T_3; // @[TLB.scala:178:{33,43}, :341:30] wire [8:0] _hitsVec_T_94 = _hitsVec_T_93[26:18]; // @[TLB.scala:183:{52,58}] wire _hitsVec_T_95 = _hitsVec_T_94 == 9'h0; // @[TLB.scala:183:{58,79}] wire _hitsVec_T_96 = _hitsVec_T_95; // @[TLB.scala:183:{40,79}] wire _hitsVec_T_97 = hitsVec_tagMatch_3 & _hitsVec_T_96; // @[TLB.scala:178:33, :183:{29,40}] wire hitsVec_ignore_10 = _hitsVec_ignore_T_10; // @[TLB.scala:182:{28,34}] wire [8:0] _hitsVec_T_99 = _hitsVec_T_98[17:9]; // @[TLB.scala:183:{52,58}] wire _hitsVec_T_100 = _hitsVec_T_99 == 9'h0; // @[TLB.scala:183:{58,79}] wire _hitsVec_T_101 = hitsVec_ignore_10 | _hitsVec_T_100; // @[TLB.scala:182:34, :183:{40,79}] wire _hitsVec_T_102 = _hitsVec_T_97 & _hitsVec_T_101; // @[TLB.scala:183:{29,40}] wire _hitsVec_T_107 = _hitsVec_T_102; // @[TLB.scala:183:29] wire _hitsVec_ignore_T_11 = ~(superpage_entries_3_level[1]); // @[TLB.scala:182:28, :341:30] wire [8:0] _hitsVec_T_104 = _hitsVec_T_103[8:0]; // @[TLB.scala:183:{52,58}] wire _hitsVec_T_105 = _hitsVec_T_104 == 9'h0; // @[TLB.scala:183:{58,79}] wire hitsVec_11 = vm_enabled & _hitsVec_T_107; // @[TLB.scala:183:29, :399:61, :440:44] wire _hitsVec_tagMatch_T_4 = ~special_entry_tag_v; // @[TLB.scala:178:43, :346:56] wire hitsVec_tagMatch_4 = special_entry_valid_0 & _hitsVec_tagMatch_T_4; // @[TLB.scala:178:{33,43}, :346:56] wire [26:0] _T_3838 = special_entry_tag_vpn ^ vpn; // @[TLB.scala:183:52, :335:30, :346:56] wire [26:0] _hitsVec_T_108; // @[TLB.scala:183:52] assign _hitsVec_T_108 = _T_3838; // @[TLB.scala:183:52] wire [26:0] _hitsVec_T_113; // @[TLB.scala:183:52] assign _hitsVec_T_113 = _T_3838; // @[TLB.scala:183:52] wire [26:0] _hitsVec_T_118; // @[TLB.scala:183:52] assign _hitsVec_T_118 = _T_3838; // @[TLB.scala:183:52] wire [8:0] _hitsVec_T_109 = _hitsVec_T_108[26:18]; // @[TLB.scala:183:{52,58}] wire _hitsVec_T_110 = _hitsVec_T_109 == 9'h0; // @[TLB.scala:183:{58,79}] wire _hitsVec_T_111 = _hitsVec_T_110; // @[TLB.scala:183:{40,79}] wire _hitsVec_T_112 = hitsVec_tagMatch_4 & _hitsVec_T_111; // @[TLB.scala:178:33, :183:{29,40}] wire hitsVec_ignore_13 = _hitsVec_ignore_T_13; // @[TLB.scala:182:{28,34}] wire [8:0] _hitsVec_T_114 = _hitsVec_T_113[17:9]; // @[TLB.scala:183:{52,58}] wire _hitsVec_T_115 = _hitsVec_T_114 == 9'h0; // @[TLB.scala:183:{58,79}] wire _hitsVec_T_116 = hitsVec_ignore_13 | _hitsVec_T_115; // @[TLB.scala:182:34, :183:{40,79}] wire _hitsVec_T_117 = _hitsVec_T_112 & _hitsVec_T_116; // @[TLB.scala:183:{29,40}] wire _hitsVec_ignore_T_14 = ~(special_entry_level[1]); // @[TLB.scala:182:28, :197:28, :346:56] wire hitsVec_ignore_14 = _hitsVec_ignore_T_14; // @[TLB.scala:182:{28,34}] wire [8:0] _hitsVec_T_119 = _hitsVec_T_118[8:0]; // @[TLB.scala:183:{52,58}] wire _hitsVec_T_120 = _hitsVec_T_119 == 9'h0; // @[TLB.scala:183:{58,79}] wire _hitsVec_T_121 = hitsVec_ignore_14 | _hitsVec_T_120; // @[TLB.scala:182:34, :183:{40,79}] wire _hitsVec_T_122 = _hitsVec_T_117 & _hitsVec_T_121; // @[TLB.scala:183:{29,40}] wire hitsVec_12 = vm_enabled & _hitsVec_T_122; // @[TLB.scala:183:29, :399:61, :440:44] wire [1:0] real_hits_lo_lo_hi = {hitsVec_2, hitsVec_1}; // @[package.scala:45:27] wire [2:0] real_hits_lo_lo = {real_hits_lo_lo_hi, hitsVec_0}; // @[package.scala:45:27] wire [1:0] real_hits_lo_hi_hi = {hitsVec_5, hitsVec_4}; // @[package.scala:45:27] wire [2:0] real_hits_lo_hi = {real_hits_lo_hi_hi, hitsVec_3}; // @[package.scala:45:27] wire [5:0] real_hits_lo = {real_hits_lo_hi, real_hits_lo_lo}; // @[package.scala:45:27] wire [1:0] real_hits_hi_lo_hi = {hitsVec_8, hitsVec_7}; // @[package.scala:45:27] wire [2:0] real_hits_hi_lo = {real_hits_hi_lo_hi, hitsVec_6}; // @[package.scala:45:27] wire [1:0] real_hits_hi_hi_lo = {hitsVec_10, hitsVec_9}; // @[package.scala:45:27] wire [1:0] real_hits_hi_hi_hi = {hitsVec_12, hitsVec_11}; // @[package.scala:45:27] wire [3:0] real_hits_hi_hi = {real_hits_hi_hi_hi, real_hits_hi_hi_lo}; // @[package.scala:45:27] wire [6:0] real_hits_hi = {real_hits_hi_hi, real_hits_hi_lo}; // @[package.scala:45:27] wire [12:0] real_hits = {real_hits_hi, real_hits_lo}; // @[package.scala:45:27] wire [12:0] _tlb_hit_T = real_hits; // @[package.scala:45:27] wire _hits_T = ~vm_enabled; // @[TLB.scala:399:61, :442:18] wire [13:0] hits = {_hits_T, real_hits}; // @[package.scala:45:27] wire _newEntry_g_T; // @[TLB.scala:453:25] wire _newEntry_sw_T_6; // @[PTW.scala:151:40] wire _newEntry_sx_T_5; // @[PTW.scala:153:35] wire _newEntry_sr_T_5; // @[PTW.scala:149:35] wire newEntry_g; // @[TLB.scala:449:24] wire newEntry_sw; // @[TLB.scala:449:24] wire newEntry_sx; // @[TLB.scala:449:24] wire newEntry_sr; // @[TLB.scala:449:24] wire newEntry_ppp; // @[TLB.scala:449:24] wire newEntry_pal; // @[TLB.scala:449:24] wire newEntry_paa; // @[TLB.scala:449:24] wire newEntry_eff; // @[TLB.scala:449:24] assign _newEntry_g_T = io_ptw_resp_bits_pte_g_0 & io_ptw_resp_bits_pte_v_0; // @[TLB.scala:318:7, :453:25] assign newEntry_g = _newEntry_g_T; // @[TLB.scala:449:24, :453:25] wire _newEntry_ae_stage2_T = io_ptw_resp_bits_ae_final_0 & io_ptw_resp_bits_gpa_is_pte_0; // @[TLB.scala:318:7, :456:53] wire _newEntry_sr_T = ~io_ptw_resp_bits_pte_w_0; // @[TLB.scala:318:7] wire _newEntry_sr_T_1 = io_ptw_resp_bits_pte_x_0 & _newEntry_sr_T; // @[TLB.scala:318:7] wire _newEntry_sr_T_2 = io_ptw_resp_bits_pte_r_0 | _newEntry_sr_T_1; // @[TLB.scala:318:7] wire _newEntry_sr_T_3 = io_ptw_resp_bits_pte_v_0 & _newEntry_sr_T_2; // @[TLB.scala:318:7] wire _newEntry_sr_T_4 = _newEntry_sr_T_3 & io_ptw_resp_bits_pte_a_0; // @[TLB.scala:318:7] assign _newEntry_sr_T_5 = _newEntry_sr_T_4 & io_ptw_resp_bits_pte_r_0; // @[TLB.scala:318:7] assign newEntry_sr = _newEntry_sr_T_5; // @[TLB.scala:449:24] wire _newEntry_sw_T = ~io_ptw_resp_bits_pte_w_0; // @[TLB.scala:318:7] wire _newEntry_sw_T_1 = io_ptw_resp_bits_pte_x_0 & _newEntry_sw_T; // @[TLB.scala:318:7] wire _newEntry_sw_T_2 = io_ptw_resp_bits_pte_r_0 | _newEntry_sw_T_1; // @[TLB.scala:318:7] wire _newEntry_sw_T_3 = io_ptw_resp_bits_pte_v_0 & _newEntry_sw_T_2; // @[TLB.scala:318:7] wire _newEntry_sw_T_4 = _newEntry_sw_T_3 & io_ptw_resp_bits_pte_a_0; // @[TLB.scala:318:7] wire _newEntry_sw_T_5 = _newEntry_sw_T_4 & io_ptw_resp_bits_pte_w_0; // @[TLB.scala:318:7] assign _newEntry_sw_T_6 = _newEntry_sw_T_5 & io_ptw_resp_bits_pte_d_0; // @[TLB.scala:318:7] assign newEntry_sw = _newEntry_sw_T_6; // @[TLB.scala:449:24] wire _newEntry_sx_T = ~io_ptw_resp_bits_pte_w_0; // @[TLB.scala:318:7] wire _newEntry_sx_T_1 = io_ptw_resp_bits_pte_x_0 & _newEntry_sx_T; // @[TLB.scala:318:7] wire _newEntry_sx_T_2 = io_ptw_resp_bits_pte_r_0 | _newEntry_sx_T_1; // @[TLB.scala:318:7] wire _newEntry_sx_T_3 = io_ptw_resp_bits_pte_v_0 & _newEntry_sx_T_2; // @[TLB.scala:318:7] wire _newEntry_sx_T_4 = _newEntry_sx_T_3 & io_ptw_resp_bits_pte_a_0; // @[TLB.scala:318:7] assign _newEntry_sx_T_5 = _newEntry_sx_T_4 & io_ptw_resp_bits_pte_x_0; // @[TLB.scala:318:7] assign newEntry_sx = _newEntry_sx_T_5; // @[TLB.scala:449:24] wire [1:0] _GEN_24 = {newEntry_c, 1'h0}; // @[TLB.scala:217:24, :449:24] wire [1:0] special_entry_data_0_lo_lo_lo; // @[TLB.scala:217:24] assign special_entry_data_0_lo_lo_lo = _GEN_24; // @[TLB.scala:217:24] wire [1:0] superpage_entries_0_data_0_lo_lo_lo; // @[TLB.scala:217:24] assign superpage_entries_0_data_0_lo_lo_lo = _GEN_24; // @[TLB.scala:217:24] wire [1:0] superpage_entries_1_data_0_lo_lo_lo; // @[TLB.scala:217:24] assign superpage_entries_1_data_0_lo_lo_lo = _GEN_24; // @[TLB.scala:217:24] wire [1:0] superpage_entries_2_data_0_lo_lo_lo; // @[TLB.scala:217:24] assign superpage_entries_2_data_0_lo_lo_lo = _GEN_24; // @[TLB.scala:217:24] wire [1:0] superpage_entries_3_data_0_lo_lo_lo; // @[TLB.scala:217:24] assign superpage_entries_3_data_0_lo_lo_lo = _GEN_24; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_0_data_lo_lo_lo; // @[TLB.scala:217:24] assign sectored_entries_0_0_data_lo_lo_lo = _GEN_24; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_1_data_lo_lo_lo; // @[TLB.scala:217:24] assign sectored_entries_0_1_data_lo_lo_lo = _GEN_24; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_2_data_lo_lo_lo; // @[TLB.scala:217:24] assign sectored_entries_0_2_data_lo_lo_lo = _GEN_24; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_3_data_lo_lo_lo; // @[TLB.scala:217:24] assign sectored_entries_0_3_data_lo_lo_lo = _GEN_24; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_4_data_lo_lo_lo; // @[TLB.scala:217:24] assign sectored_entries_0_4_data_lo_lo_lo = _GEN_24; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_5_data_lo_lo_lo; // @[TLB.scala:217:24] assign sectored_entries_0_5_data_lo_lo_lo = _GEN_24; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_6_data_lo_lo_lo; // @[TLB.scala:217:24] assign sectored_entries_0_6_data_lo_lo_lo = _GEN_24; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_7_data_lo_lo_lo; // @[TLB.scala:217:24] assign sectored_entries_0_7_data_lo_lo_lo = _GEN_24; // @[TLB.scala:217:24] wire [1:0] _GEN_25 = {newEntry_pal, newEntry_paa}; // @[TLB.scala:217:24, :449:24] wire [1:0] special_entry_data_0_lo_lo_hi_hi; // @[TLB.scala:217:24] assign special_entry_data_0_lo_lo_hi_hi = _GEN_25; // @[TLB.scala:217:24] wire [1:0] superpage_entries_0_data_0_lo_lo_hi_hi; // @[TLB.scala:217:24] assign superpage_entries_0_data_0_lo_lo_hi_hi = _GEN_25; // @[TLB.scala:217:24] wire [1:0] superpage_entries_1_data_0_lo_lo_hi_hi; // @[TLB.scala:217:24] assign superpage_entries_1_data_0_lo_lo_hi_hi = _GEN_25; // @[TLB.scala:217:24] wire [1:0] superpage_entries_2_data_0_lo_lo_hi_hi; // @[TLB.scala:217:24] assign superpage_entries_2_data_0_lo_lo_hi_hi = _GEN_25; // @[TLB.scala:217:24] wire [1:0] superpage_entries_3_data_0_lo_lo_hi_hi; // @[TLB.scala:217:24] assign superpage_entries_3_data_0_lo_lo_hi_hi = _GEN_25; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_0_data_lo_lo_hi_hi; // @[TLB.scala:217:24] assign sectored_entries_0_0_data_lo_lo_hi_hi = _GEN_25; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_1_data_lo_lo_hi_hi; // @[TLB.scala:217:24] assign sectored_entries_0_1_data_lo_lo_hi_hi = _GEN_25; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_2_data_lo_lo_hi_hi; // @[TLB.scala:217:24] assign sectored_entries_0_2_data_lo_lo_hi_hi = _GEN_25; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_3_data_lo_lo_hi_hi; // @[TLB.scala:217:24] assign sectored_entries_0_3_data_lo_lo_hi_hi = _GEN_25; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_4_data_lo_lo_hi_hi; // @[TLB.scala:217:24] assign sectored_entries_0_4_data_lo_lo_hi_hi = _GEN_25; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_5_data_lo_lo_hi_hi; // @[TLB.scala:217:24] assign sectored_entries_0_5_data_lo_lo_hi_hi = _GEN_25; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_6_data_lo_lo_hi_hi; // @[TLB.scala:217:24] assign sectored_entries_0_6_data_lo_lo_hi_hi = _GEN_25; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_7_data_lo_lo_hi_hi; // @[TLB.scala:217:24] assign sectored_entries_0_7_data_lo_lo_hi_hi = _GEN_25; // @[TLB.scala:217:24] wire [2:0] special_entry_data_0_lo_lo_hi = {special_entry_data_0_lo_lo_hi_hi, newEntry_eff}; // @[TLB.scala:217:24, :449:24] wire [4:0] special_entry_data_0_lo_lo = {special_entry_data_0_lo_lo_hi, special_entry_data_0_lo_lo_lo}; // @[TLB.scala:217:24] wire [1:0] _GEN_26 = {newEntry_px, newEntry_pr}; // @[TLB.scala:217:24, :449:24] wire [1:0] special_entry_data_0_lo_hi_lo_hi; // @[TLB.scala:217:24] assign special_entry_data_0_lo_hi_lo_hi = _GEN_26; // @[TLB.scala:217:24] wire [1:0] superpage_entries_0_data_0_lo_hi_lo_hi; // @[TLB.scala:217:24] assign superpage_entries_0_data_0_lo_hi_lo_hi = _GEN_26; // @[TLB.scala:217:24] wire [1:0] superpage_entries_1_data_0_lo_hi_lo_hi; // @[TLB.scala:217:24] assign superpage_entries_1_data_0_lo_hi_lo_hi = _GEN_26; // @[TLB.scala:217:24] wire [1:0] superpage_entries_2_data_0_lo_hi_lo_hi; // @[TLB.scala:217:24] assign superpage_entries_2_data_0_lo_hi_lo_hi = _GEN_26; // @[TLB.scala:217:24] wire [1:0] superpage_entries_3_data_0_lo_hi_lo_hi; // @[TLB.scala:217:24] assign superpage_entries_3_data_0_lo_hi_lo_hi = _GEN_26; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_0_data_lo_hi_lo_hi; // @[TLB.scala:217:24] assign sectored_entries_0_0_data_lo_hi_lo_hi = _GEN_26; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_1_data_lo_hi_lo_hi; // @[TLB.scala:217:24] assign sectored_entries_0_1_data_lo_hi_lo_hi = _GEN_26; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_2_data_lo_hi_lo_hi; // @[TLB.scala:217:24] assign sectored_entries_0_2_data_lo_hi_lo_hi = _GEN_26; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_3_data_lo_hi_lo_hi; // @[TLB.scala:217:24] assign sectored_entries_0_3_data_lo_hi_lo_hi = _GEN_26; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_4_data_lo_hi_lo_hi; // @[TLB.scala:217:24] assign sectored_entries_0_4_data_lo_hi_lo_hi = _GEN_26; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_5_data_lo_hi_lo_hi; // @[TLB.scala:217:24] assign sectored_entries_0_5_data_lo_hi_lo_hi = _GEN_26; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_6_data_lo_hi_lo_hi; // @[TLB.scala:217:24] assign sectored_entries_0_6_data_lo_hi_lo_hi = _GEN_26; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_7_data_lo_hi_lo_hi; // @[TLB.scala:217:24] assign sectored_entries_0_7_data_lo_hi_lo_hi = _GEN_26; // @[TLB.scala:217:24] wire [2:0] special_entry_data_0_lo_hi_lo = {special_entry_data_0_lo_hi_lo_hi, newEntry_ppp}; // @[TLB.scala:217:24, :449:24] wire [1:0] _GEN_27 = {newEntry_hx, newEntry_hr}; // @[TLB.scala:217:24, :449:24] wire [1:0] special_entry_data_0_lo_hi_hi_hi; // @[TLB.scala:217:24] assign special_entry_data_0_lo_hi_hi_hi = _GEN_27; // @[TLB.scala:217:24] wire [1:0] superpage_entries_0_data_0_lo_hi_hi_hi; // @[TLB.scala:217:24] assign superpage_entries_0_data_0_lo_hi_hi_hi = _GEN_27; // @[TLB.scala:217:24] wire [1:0] superpage_entries_1_data_0_lo_hi_hi_hi; // @[TLB.scala:217:24] assign superpage_entries_1_data_0_lo_hi_hi_hi = _GEN_27; // @[TLB.scala:217:24] wire [1:0] superpage_entries_2_data_0_lo_hi_hi_hi; // @[TLB.scala:217:24] assign superpage_entries_2_data_0_lo_hi_hi_hi = _GEN_27; // @[TLB.scala:217:24] wire [1:0] superpage_entries_3_data_0_lo_hi_hi_hi; // @[TLB.scala:217:24] assign superpage_entries_3_data_0_lo_hi_hi_hi = _GEN_27; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_0_data_lo_hi_hi_hi; // @[TLB.scala:217:24] assign sectored_entries_0_0_data_lo_hi_hi_hi = _GEN_27; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_1_data_lo_hi_hi_hi; // @[TLB.scala:217:24] assign sectored_entries_0_1_data_lo_hi_hi_hi = _GEN_27; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_2_data_lo_hi_hi_hi; // @[TLB.scala:217:24] assign sectored_entries_0_2_data_lo_hi_hi_hi = _GEN_27; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_3_data_lo_hi_hi_hi; // @[TLB.scala:217:24] assign sectored_entries_0_3_data_lo_hi_hi_hi = _GEN_27; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_4_data_lo_hi_hi_hi; // @[TLB.scala:217:24] assign sectored_entries_0_4_data_lo_hi_hi_hi = _GEN_27; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_5_data_lo_hi_hi_hi; // @[TLB.scala:217:24] assign sectored_entries_0_5_data_lo_hi_hi_hi = _GEN_27; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_6_data_lo_hi_hi_hi; // @[TLB.scala:217:24] assign sectored_entries_0_6_data_lo_hi_hi_hi = _GEN_27; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_7_data_lo_hi_hi_hi; // @[TLB.scala:217:24] assign sectored_entries_0_7_data_lo_hi_hi_hi = _GEN_27; // @[TLB.scala:217:24] wire [2:0] special_entry_data_0_lo_hi_hi = {special_entry_data_0_lo_hi_hi_hi, newEntry_pw}; // @[TLB.scala:217:24, :449:24] wire [5:0] special_entry_data_0_lo_hi = {special_entry_data_0_lo_hi_hi, special_entry_data_0_lo_hi_lo}; // @[TLB.scala:217:24] wire [10:0] special_entry_data_0_lo = {special_entry_data_0_lo_hi, special_entry_data_0_lo_lo}; // @[TLB.scala:217:24] wire [1:0] _GEN_28 = {newEntry_sx, newEntry_sr}; // @[TLB.scala:217:24, :449:24] wire [1:0] special_entry_data_0_hi_lo_lo_hi; // @[TLB.scala:217:24] assign special_entry_data_0_hi_lo_lo_hi = _GEN_28; // @[TLB.scala:217:24] wire [1:0] superpage_entries_0_data_0_hi_lo_lo_hi; // @[TLB.scala:217:24] assign superpage_entries_0_data_0_hi_lo_lo_hi = _GEN_28; // @[TLB.scala:217:24] wire [1:0] superpage_entries_1_data_0_hi_lo_lo_hi; // @[TLB.scala:217:24] assign superpage_entries_1_data_0_hi_lo_lo_hi = _GEN_28; // @[TLB.scala:217:24] wire [1:0] superpage_entries_2_data_0_hi_lo_lo_hi; // @[TLB.scala:217:24] assign superpage_entries_2_data_0_hi_lo_lo_hi = _GEN_28; // @[TLB.scala:217:24] wire [1:0] superpage_entries_3_data_0_hi_lo_lo_hi; // @[TLB.scala:217:24] assign superpage_entries_3_data_0_hi_lo_lo_hi = _GEN_28; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_0_data_hi_lo_lo_hi; // @[TLB.scala:217:24] assign sectored_entries_0_0_data_hi_lo_lo_hi = _GEN_28; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_1_data_hi_lo_lo_hi; // @[TLB.scala:217:24] assign sectored_entries_0_1_data_hi_lo_lo_hi = _GEN_28; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_2_data_hi_lo_lo_hi; // @[TLB.scala:217:24] assign sectored_entries_0_2_data_hi_lo_lo_hi = _GEN_28; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_3_data_hi_lo_lo_hi; // @[TLB.scala:217:24] assign sectored_entries_0_3_data_hi_lo_lo_hi = _GEN_28; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_4_data_hi_lo_lo_hi; // @[TLB.scala:217:24] assign sectored_entries_0_4_data_hi_lo_lo_hi = _GEN_28; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_5_data_hi_lo_lo_hi; // @[TLB.scala:217:24] assign sectored_entries_0_5_data_hi_lo_lo_hi = _GEN_28; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_6_data_hi_lo_lo_hi; // @[TLB.scala:217:24] assign sectored_entries_0_6_data_hi_lo_lo_hi = _GEN_28; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_7_data_hi_lo_lo_hi; // @[TLB.scala:217:24] assign sectored_entries_0_7_data_hi_lo_lo_hi = _GEN_28; // @[TLB.scala:217:24] wire [2:0] special_entry_data_0_hi_lo_lo = {special_entry_data_0_hi_lo_lo_hi, newEntry_hw}; // @[TLB.scala:217:24, :449:24] wire [1:0] _GEN_29 = {newEntry_pf, newEntry_gf}; // @[TLB.scala:217:24, :449:24] wire [1:0] special_entry_data_0_hi_lo_hi_hi; // @[TLB.scala:217:24] assign special_entry_data_0_hi_lo_hi_hi = _GEN_29; // @[TLB.scala:217:24] wire [1:0] superpage_entries_0_data_0_hi_lo_hi_hi; // @[TLB.scala:217:24] assign superpage_entries_0_data_0_hi_lo_hi_hi = _GEN_29; // @[TLB.scala:217:24] wire [1:0] superpage_entries_1_data_0_hi_lo_hi_hi; // @[TLB.scala:217:24] assign superpage_entries_1_data_0_hi_lo_hi_hi = _GEN_29; // @[TLB.scala:217:24] wire [1:0] superpage_entries_2_data_0_hi_lo_hi_hi; // @[TLB.scala:217:24] assign superpage_entries_2_data_0_hi_lo_hi_hi = _GEN_29; // @[TLB.scala:217:24] wire [1:0] superpage_entries_3_data_0_hi_lo_hi_hi; // @[TLB.scala:217:24] assign superpage_entries_3_data_0_hi_lo_hi_hi = _GEN_29; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_0_data_hi_lo_hi_hi; // @[TLB.scala:217:24] assign sectored_entries_0_0_data_hi_lo_hi_hi = _GEN_29; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_1_data_hi_lo_hi_hi; // @[TLB.scala:217:24] assign sectored_entries_0_1_data_hi_lo_hi_hi = _GEN_29; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_2_data_hi_lo_hi_hi; // @[TLB.scala:217:24] assign sectored_entries_0_2_data_hi_lo_hi_hi = _GEN_29; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_3_data_hi_lo_hi_hi; // @[TLB.scala:217:24] assign sectored_entries_0_3_data_hi_lo_hi_hi = _GEN_29; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_4_data_hi_lo_hi_hi; // @[TLB.scala:217:24] assign sectored_entries_0_4_data_hi_lo_hi_hi = _GEN_29; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_5_data_hi_lo_hi_hi; // @[TLB.scala:217:24] assign sectored_entries_0_5_data_hi_lo_hi_hi = _GEN_29; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_6_data_hi_lo_hi_hi; // @[TLB.scala:217:24] assign sectored_entries_0_6_data_hi_lo_hi_hi = _GEN_29; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_7_data_hi_lo_hi_hi; // @[TLB.scala:217:24] assign sectored_entries_0_7_data_hi_lo_hi_hi = _GEN_29; // @[TLB.scala:217:24] wire [2:0] special_entry_data_0_hi_lo_hi = {special_entry_data_0_hi_lo_hi_hi, newEntry_sw}; // @[TLB.scala:217:24, :449:24] wire [5:0] special_entry_data_0_hi_lo = {special_entry_data_0_hi_lo_hi, special_entry_data_0_hi_lo_lo}; // @[TLB.scala:217:24] wire [1:0] _GEN_30 = {newEntry_ae_ptw, newEntry_ae_final}; // @[TLB.scala:217:24, :449:24] wire [1:0] special_entry_data_0_hi_hi_lo_hi; // @[TLB.scala:217:24] assign special_entry_data_0_hi_hi_lo_hi = _GEN_30; // @[TLB.scala:217:24] wire [1:0] superpage_entries_0_data_0_hi_hi_lo_hi; // @[TLB.scala:217:24] assign superpage_entries_0_data_0_hi_hi_lo_hi = _GEN_30; // @[TLB.scala:217:24] wire [1:0] superpage_entries_1_data_0_hi_hi_lo_hi; // @[TLB.scala:217:24] assign superpage_entries_1_data_0_hi_hi_lo_hi = _GEN_30; // @[TLB.scala:217:24] wire [1:0] superpage_entries_2_data_0_hi_hi_lo_hi; // @[TLB.scala:217:24] assign superpage_entries_2_data_0_hi_hi_lo_hi = _GEN_30; // @[TLB.scala:217:24] wire [1:0] superpage_entries_3_data_0_hi_hi_lo_hi; // @[TLB.scala:217:24] assign superpage_entries_3_data_0_hi_hi_lo_hi = _GEN_30; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_0_data_hi_hi_lo_hi; // @[TLB.scala:217:24] assign sectored_entries_0_0_data_hi_hi_lo_hi = _GEN_30; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_1_data_hi_hi_lo_hi; // @[TLB.scala:217:24] assign sectored_entries_0_1_data_hi_hi_lo_hi = _GEN_30; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_2_data_hi_hi_lo_hi; // @[TLB.scala:217:24] assign sectored_entries_0_2_data_hi_hi_lo_hi = _GEN_30; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_3_data_hi_hi_lo_hi; // @[TLB.scala:217:24] assign sectored_entries_0_3_data_hi_hi_lo_hi = _GEN_30; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_4_data_hi_hi_lo_hi; // @[TLB.scala:217:24] assign sectored_entries_0_4_data_hi_hi_lo_hi = _GEN_30; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_5_data_hi_hi_lo_hi; // @[TLB.scala:217:24] assign sectored_entries_0_5_data_hi_hi_lo_hi = _GEN_30; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_6_data_hi_hi_lo_hi; // @[TLB.scala:217:24] assign sectored_entries_0_6_data_hi_hi_lo_hi = _GEN_30; // @[TLB.scala:217:24] wire [1:0] sectored_entries_0_7_data_hi_hi_lo_hi; // @[TLB.scala:217:24] assign sectored_entries_0_7_data_hi_hi_lo_hi = _GEN_30; // @[TLB.scala:217:24] wire [2:0] special_entry_data_0_hi_hi_lo = {special_entry_data_0_hi_hi_lo_hi, 1'h0}; // @[TLB.scala:217:24] wire [20:0] _GEN_31 = {newEntry_ppn, newEntry_u}; // @[TLB.scala:217:24, :449:24] wire [20:0] special_entry_data_0_hi_hi_hi_hi; // @[TLB.scala:217:24] assign special_entry_data_0_hi_hi_hi_hi = _GEN_31; // @[TLB.scala:217:24] wire [20:0] superpage_entries_0_data_0_hi_hi_hi_hi; // @[TLB.scala:217:24] assign superpage_entries_0_data_0_hi_hi_hi_hi = _GEN_31; // @[TLB.scala:217:24] wire [20:0] superpage_entries_1_data_0_hi_hi_hi_hi; // @[TLB.scala:217:24] assign superpage_entries_1_data_0_hi_hi_hi_hi = _GEN_31; // @[TLB.scala:217:24] wire [20:0] superpage_entries_2_data_0_hi_hi_hi_hi; // @[TLB.scala:217:24] assign superpage_entries_2_data_0_hi_hi_hi_hi = _GEN_31; // @[TLB.scala:217:24] wire [20:0] superpage_entries_3_data_0_hi_hi_hi_hi; // @[TLB.scala:217:24] assign superpage_entries_3_data_0_hi_hi_hi_hi = _GEN_31; // @[TLB.scala:217:24] wire [20:0] sectored_entries_0_0_data_hi_hi_hi_hi; // @[TLB.scala:217:24] assign sectored_entries_0_0_data_hi_hi_hi_hi = _GEN_31; // @[TLB.scala:217:24] wire [20:0] sectored_entries_0_1_data_hi_hi_hi_hi; // @[TLB.scala:217:24] assign sectored_entries_0_1_data_hi_hi_hi_hi = _GEN_31; // @[TLB.scala:217:24] wire [20:0] sectored_entries_0_2_data_hi_hi_hi_hi; // @[TLB.scala:217:24] assign sectored_entries_0_2_data_hi_hi_hi_hi = _GEN_31; // @[TLB.scala:217:24] wire [20:0] sectored_entries_0_3_data_hi_hi_hi_hi; // @[TLB.scala:217:24] assign sectored_entries_0_3_data_hi_hi_hi_hi = _GEN_31; // @[TLB.scala:217:24] wire [20:0] sectored_entries_0_4_data_hi_hi_hi_hi; // @[TLB.scala:217:24] assign sectored_entries_0_4_data_hi_hi_hi_hi = _GEN_31; // @[TLB.scala:217:24] wire [20:0] sectored_entries_0_5_data_hi_hi_hi_hi; // @[TLB.scala:217:24] assign sectored_entries_0_5_data_hi_hi_hi_hi = _GEN_31; // @[TLB.scala:217:24] wire [20:0] sectored_entries_0_6_data_hi_hi_hi_hi; // @[TLB.scala:217:24] assign sectored_entries_0_6_data_hi_hi_hi_hi = _GEN_31; // @[TLB.scala:217:24] wire [20:0] sectored_entries_0_7_data_hi_hi_hi_hi; // @[TLB.scala:217:24] assign sectored_entries_0_7_data_hi_hi_hi_hi = _GEN_31; // @[TLB.scala:217:24] wire [21:0] special_entry_data_0_hi_hi_hi = {special_entry_data_0_hi_hi_hi_hi, newEntry_g}; // @[TLB.scala:217:24, :449:24] wire [24:0] special_entry_data_0_hi_hi = {special_entry_data_0_hi_hi_hi, special_entry_data_0_hi_hi_lo}; // @[TLB.scala:217:24] wire [30:0] special_entry_data_0_hi = {special_entry_data_0_hi_hi, special_entry_data_0_hi_lo}; // @[TLB.scala:217:24] wire [41:0] _special_entry_data_0_T = {special_entry_data_0_hi, special_entry_data_0_lo}; // @[TLB.scala:217:24] wire _superpage_entries_0_level_T = io_ptw_resp_bits_level_0[0]; // @[package.scala:163:13] wire _superpage_entries_1_level_T = io_ptw_resp_bits_level_0[0]; // @[package.scala:163:13] wire _superpage_entries_2_level_T = io_ptw_resp_bits_level_0[0]; // @[package.scala:163:13] wire _superpage_entries_3_level_T = io_ptw_resp_bits_level_0[0]; // @[package.scala:163:13] wire [2:0] superpage_entries_0_data_0_lo_lo_hi = {superpage_entries_0_data_0_lo_lo_hi_hi, newEntry_eff}; // @[TLB.scala:217:24, :449:24] wire [4:0] superpage_entries_0_data_0_lo_lo = {superpage_entries_0_data_0_lo_lo_hi, superpage_entries_0_data_0_lo_lo_lo}; // @[TLB.scala:217:24] wire [2:0] superpage_entries_0_data_0_lo_hi_lo = {superpage_entries_0_data_0_lo_hi_lo_hi, newEntry_ppp}; // @[TLB.scala:217:24, :449:24] wire [2:0] superpage_entries_0_data_0_lo_hi_hi = {superpage_entries_0_data_0_lo_hi_hi_hi, newEntry_pw}; // @[TLB.scala:217:24, :449:24] wire [5:0] superpage_entries_0_data_0_lo_hi = {superpage_entries_0_data_0_lo_hi_hi, superpage_entries_0_data_0_lo_hi_lo}; // @[TLB.scala:217:24] wire [10:0] superpage_entries_0_data_0_lo = {superpage_entries_0_data_0_lo_hi, superpage_entries_0_data_0_lo_lo}; // @[TLB.scala:217:24] wire [2:0] superpage_entries_0_data_0_hi_lo_lo = {superpage_entries_0_data_0_hi_lo_lo_hi, newEntry_hw}; // @[TLB.scala:217:24, :449:24] wire [2:0] superpage_entries_0_data_0_hi_lo_hi = {superpage_entries_0_data_0_hi_lo_hi_hi, newEntry_sw}; // @[TLB.scala:217:24, :449:24] wire [5:0] superpage_entries_0_data_0_hi_lo = {superpage_entries_0_data_0_hi_lo_hi, superpage_entries_0_data_0_hi_lo_lo}; // @[TLB.scala:217:24] wire [2:0] superpage_entries_0_data_0_hi_hi_lo = {superpage_entries_0_data_0_hi_hi_lo_hi, 1'h0}; // @[TLB.scala:217:24] wire [21:0] superpage_entries_0_data_0_hi_hi_hi = {superpage_entries_0_data_0_hi_hi_hi_hi, newEntry_g}; // @[TLB.scala:217:24, :449:24] wire [24:0] superpage_entries_0_data_0_hi_hi = {superpage_entries_0_data_0_hi_hi_hi, superpage_entries_0_data_0_hi_hi_lo}; // @[TLB.scala:217:24] wire [30:0] superpage_entries_0_data_0_hi = {superpage_entries_0_data_0_hi_hi, superpage_entries_0_data_0_hi_lo}; // @[TLB.scala:217:24] wire [41:0] _superpage_entries_0_data_0_T = {superpage_entries_0_data_0_hi, superpage_entries_0_data_0_lo}; // @[TLB.scala:217:24] wire [2:0] superpage_entries_1_data_0_lo_lo_hi = {superpage_entries_1_data_0_lo_lo_hi_hi, newEntry_eff}; // @[TLB.scala:217:24, :449:24] wire [4:0] superpage_entries_1_data_0_lo_lo = {superpage_entries_1_data_0_lo_lo_hi, superpage_entries_1_data_0_lo_lo_lo}; // @[TLB.scala:217:24] wire [2:0] superpage_entries_1_data_0_lo_hi_lo = {superpage_entries_1_data_0_lo_hi_lo_hi, newEntry_ppp}; // @[TLB.scala:217:24, :449:24] wire [2:0] superpage_entries_1_data_0_lo_hi_hi = {superpage_entries_1_data_0_lo_hi_hi_hi, newEntry_pw}; // @[TLB.scala:217:24, :449:24] wire [5:0] superpage_entries_1_data_0_lo_hi = {superpage_entries_1_data_0_lo_hi_hi, superpage_entries_1_data_0_lo_hi_lo}; // @[TLB.scala:217:24] wire [10:0] superpage_entries_1_data_0_lo = {superpage_entries_1_data_0_lo_hi, superpage_entries_1_data_0_lo_lo}; // @[TLB.scala:217:24] wire [2:0] superpage_entries_1_data_0_hi_lo_lo = {superpage_entries_1_data_0_hi_lo_lo_hi, newEntry_hw}; // @[TLB.scala:217:24, :449:24] wire [2:0] superpage_entries_1_data_0_hi_lo_hi = {superpage_entries_1_data_0_hi_lo_hi_hi, newEntry_sw}; // @[TLB.scala:217:24, :449:24] wire [5:0] superpage_entries_1_data_0_hi_lo = {superpage_entries_1_data_0_hi_lo_hi, superpage_entries_1_data_0_hi_lo_lo}; // @[TLB.scala:217:24] wire [2:0] superpage_entries_1_data_0_hi_hi_lo = {superpage_entries_1_data_0_hi_hi_lo_hi, 1'h0}; // @[TLB.scala:217:24] wire [21:0] superpage_entries_1_data_0_hi_hi_hi = {superpage_entries_1_data_0_hi_hi_hi_hi, newEntry_g}; // @[TLB.scala:217:24, :449:24] wire [24:0] superpage_entries_1_data_0_hi_hi = {superpage_entries_1_data_0_hi_hi_hi, superpage_entries_1_data_0_hi_hi_lo}; // @[TLB.scala:217:24] wire [30:0] superpage_entries_1_data_0_hi = {superpage_entries_1_data_0_hi_hi, superpage_entries_1_data_0_hi_lo}; // @[TLB.scala:217:24] wire [41:0] _superpage_entries_1_data_0_T = {superpage_entries_1_data_0_hi, superpage_entries_1_data_0_lo}; // @[TLB.scala:217:24] wire [2:0] superpage_entries_2_data_0_lo_lo_hi = {superpage_entries_2_data_0_lo_lo_hi_hi, newEntry_eff}; // @[TLB.scala:217:24, :449:24] wire [4:0] superpage_entries_2_data_0_lo_lo = {superpage_entries_2_data_0_lo_lo_hi, superpage_entries_2_data_0_lo_lo_lo}; // @[TLB.scala:217:24] wire [2:0] superpage_entries_2_data_0_lo_hi_lo = {superpage_entries_2_data_0_lo_hi_lo_hi, newEntry_ppp}; // @[TLB.scala:217:24, :449:24] wire [2:0] superpage_entries_2_data_0_lo_hi_hi = {superpage_entries_2_data_0_lo_hi_hi_hi, newEntry_pw}; // @[TLB.scala:217:24, :449:24] wire [5:0] superpage_entries_2_data_0_lo_hi = {superpage_entries_2_data_0_lo_hi_hi, superpage_entries_2_data_0_lo_hi_lo}; // @[TLB.scala:217:24] wire [10:0] superpage_entries_2_data_0_lo = {superpage_entries_2_data_0_lo_hi, superpage_entries_2_data_0_lo_lo}; // @[TLB.scala:217:24] wire [2:0] superpage_entries_2_data_0_hi_lo_lo = {superpage_entries_2_data_0_hi_lo_lo_hi, newEntry_hw}; // @[TLB.scala:217:24, :449:24] wire [2:0] superpage_entries_2_data_0_hi_lo_hi = {superpage_entries_2_data_0_hi_lo_hi_hi, newEntry_sw}; // @[TLB.scala:217:24, :449:24] wire [5:0] superpage_entries_2_data_0_hi_lo = {superpage_entries_2_data_0_hi_lo_hi, superpage_entries_2_data_0_hi_lo_lo}; // @[TLB.scala:217:24] wire [2:0] superpage_entries_2_data_0_hi_hi_lo = {superpage_entries_2_data_0_hi_hi_lo_hi, 1'h0}; // @[TLB.scala:217:24] wire [21:0] superpage_entries_2_data_0_hi_hi_hi = {superpage_entries_2_data_0_hi_hi_hi_hi, newEntry_g}; // @[TLB.scala:217:24, :449:24] wire [24:0] superpage_entries_2_data_0_hi_hi = {superpage_entries_2_data_0_hi_hi_hi, superpage_entries_2_data_0_hi_hi_lo}; // @[TLB.scala:217:24] wire [30:0] superpage_entries_2_data_0_hi = {superpage_entries_2_data_0_hi_hi, superpage_entries_2_data_0_hi_lo}; // @[TLB.scala:217:24] wire [41:0] _superpage_entries_2_data_0_T = {superpage_entries_2_data_0_hi, superpage_entries_2_data_0_lo}; // @[TLB.scala:217:24] wire [2:0] superpage_entries_3_data_0_lo_lo_hi = {superpage_entries_3_data_0_lo_lo_hi_hi, newEntry_eff}; // @[TLB.scala:217:24, :449:24] wire [4:0] superpage_entries_3_data_0_lo_lo = {superpage_entries_3_data_0_lo_lo_hi, superpage_entries_3_data_0_lo_lo_lo}; // @[TLB.scala:217:24] wire [2:0] superpage_entries_3_data_0_lo_hi_lo = {superpage_entries_3_data_0_lo_hi_lo_hi, newEntry_ppp}; // @[TLB.scala:217:24, :449:24] wire [2:0] superpage_entries_3_data_0_lo_hi_hi = {superpage_entries_3_data_0_lo_hi_hi_hi, newEntry_pw}; // @[TLB.scala:217:24, :449:24] wire [5:0] superpage_entries_3_data_0_lo_hi = {superpage_entries_3_data_0_lo_hi_hi, superpage_entries_3_data_0_lo_hi_lo}; // @[TLB.scala:217:24] wire [10:0] superpage_entries_3_data_0_lo = {superpage_entries_3_data_0_lo_hi, superpage_entries_3_data_0_lo_lo}; // @[TLB.scala:217:24] wire [2:0] superpage_entries_3_data_0_hi_lo_lo = {superpage_entries_3_data_0_hi_lo_lo_hi, newEntry_hw}; // @[TLB.scala:217:24, :449:24] wire [2:0] superpage_entries_3_data_0_hi_lo_hi = {superpage_entries_3_data_0_hi_lo_hi_hi, newEntry_sw}; // @[TLB.scala:217:24, :449:24] wire [5:0] superpage_entries_3_data_0_hi_lo = {superpage_entries_3_data_0_hi_lo_hi, superpage_entries_3_data_0_hi_lo_lo}; // @[TLB.scala:217:24] wire [2:0] superpage_entries_3_data_0_hi_hi_lo = {superpage_entries_3_data_0_hi_hi_lo_hi, 1'h0}; // @[TLB.scala:217:24] wire [21:0] superpage_entries_3_data_0_hi_hi_hi = {superpage_entries_3_data_0_hi_hi_hi_hi, newEntry_g}; // @[TLB.scala:217:24, :449:24] wire [24:0] superpage_entries_3_data_0_hi_hi = {superpage_entries_3_data_0_hi_hi_hi, superpage_entries_3_data_0_hi_hi_lo}; // @[TLB.scala:217:24] wire [30:0] superpage_entries_3_data_0_hi = {superpage_entries_3_data_0_hi_hi, superpage_entries_3_data_0_hi_lo}; // @[TLB.scala:217:24] wire [41:0] _superpage_entries_3_data_0_T = {superpage_entries_3_data_0_hi, superpage_entries_3_data_0_lo}; // @[TLB.scala:217:24] wire [2:0] waddr_1 = r_sectored_hit_valid ? r_sectored_hit_bits : r_sectored_repl_addr; // @[TLB.scala:356:33, :357:27, :485:22] wire [1:0] idx = r_refill_tag[1:0]; // @[package.scala:163:13] wire [1:0] idx_1 = r_refill_tag[1:0]; // @[package.scala:163:13] wire [1:0] idx_2 = r_refill_tag[1:0]; // @[package.scala:163:13] wire [1:0] idx_3 = r_refill_tag[1:0]; // @[package.scala:163:13] wire [1:0] idx_4 = r_refill_tag[1:0]; // @[package.scala:163:13] wire [1:0] idx_5 = r_refill_tag[1:0]; // @[package.scala:163:13] wire [1:0] idx_6 = r_refill_tag[1:0]; // @[package.scala:163:13] wire [1:0] idx_7 = r_refill_tag[1:0]; // @[package.scala:163:13] wire [2:0] sectored_entries_0_0_data_lo_lo_hi = {sectored_entries_0_0_data_lo_lo_hi_hi, newEntry_eff}; // @[TLB.scala:217:24, :449:24] wire [4:0] sectored_entries_0_0_data_lo_lo = {sectored_entries_0_0_data_lo_lo_hi, sectored_entries_0_0_data_lo_lo_lo}; // @[TLB.scala:217:24] wire [2:0] sectored_entries_0_0_data_lo_hi_lo = {sectored_entries_0_0_data_lo_hi_lo_hi, newEntry_ppp}; // @[TLB.scala:217:24, :449:24] wire [2:0] sectored_entries_0_0_data_lo_hi_hi = {sectored_entries_0_0_data_lo_hi_hi_hi, newEntry_pw}; // @[TLB.scala:217:24, :449:24] wire [5:0] sectored_entries_0_0_data_lo_hi = {sectored_entries_0_0_data_lo_hi_hi, sectored_entries_0_0_data_lo_hi_lo}; // @[TLB.scala:217:24] wire [10:0] sectored_entries_0_0_data_lo = {sectored_entries_0_0_data_lo_hi, sectored_entries_0_0_data_lo_lo}; // @[TLB.scala:217:24] wire [2:0] sectored_entries_0_0_data_hi_lo_lo = {sectored_entries_0_0_data_hi_lo_lo_hi, newEntry_hw}; // @[TLB.scala:217:24, :449:24] wire [2:0] sectored_entries_0_0_data_hi_lo_hi = {sectored_entries_0_0_data_hi_lo_hi_hi, newEntry_sw}; // @[TLB.scala:217:24, :449:24] wire [5:0] sectored_entries_0_0_data_hi_lo = {sectored_entries_0_0_data_hi_lo_hi, sectored_entries_0_0_data_hi_lo_lo}; // @[TLB.scala:217:24] wire [2:0] sectored_entries_0_0_data_hi_hi_lo = {sectored_entries_0_0_data_hi_hi_lo_hi, 1'h0}; // @[TLB.scala:217:24] wire [21:0] sectored_entries_0_0_data_hi_hi_hi = {sectored_entries_0_0_data_hi_hi_hi_hi, newEntry_g}; // @[TLB.scala:217:24, :449:24] wire [24:0] sectored_entries_0_0_data_hi_hi = {sectored_entries_0_0_data_hi_hi_hi, sectored_entries_0_0_data_hi_hi_lo}; // @[TLB.scala:217:24] wire [30:0] sectored_entries_0_0_data_hi = {sectored_entries_0_0_data_hi_hi, sectored_entries_0_0_data_hi_lo}; // @[TLB.scala:217:24] wire [41:0] _sectored_entries_0_0_data_T = {sectored_entries_0_0_data_hi, sectored_entries_0_0_data_lo}; // @[TLB.scala:217:24] wire [2:0] sectored_entries_0_1_data_lo_lo_hi = {sectored_entries_0_1_data_lo_lo_hi_hi, newEntry_eff}; // @[TLB.scala:217:24, :449:24] wire [4:0] sectored_entries_0_1_data_lo_lo = {sectored_entries_0_1_data_lo_lo_hi, sectored_entries_0_1_data_lo_lo_lo}; // @[TLB.scala:217:24] wire [2:0] sectored_entries_0_1_data_lo_hi_lo = {sectored_entries_0_1_data_lo_hi_lo_hi, newEntry_ppp}; // @[TLB.scala:217:24, :449:24] wire [2:0] sectored_entries_0_1_data_lo_hi_hi = {sectored_entries_0_1_data_lo_hi_hi_hi, newEntry_pw}; // @[TLB.scala:217:24, :449:24] wire [5:0] sectored_entries_0_1_data_lo_hi = {sectored_entries_0_1_data_lo_hi_hi, sectored_entries_0_1_data_lo_hi_lo}; // @[TLB.scala:217:24] wire [10:0] sectored_entries_0_1_data_lo = {sectored_entries_0_1_data_lo_hi, sectored_entries_0_1_data_lo_lo}; // @[TLB.scala:217:24] wire [2:0] sectored_entries_0_1_data_hi_lo_lo = {sectored_entries_0_1_data_hi_lo_lo_hi, newEntry_hw}; // @[TLB.scala:217:24, :449:24] wire [2:0] sectored_entries_0_1_data_hi_lo_hi = {sectored_entries_0_1_data_hi_lo_hi_hi, newEntry_sw}; // @[TLB.scala:217:24, :449:24] wire [5:0] sectored_entries_0_1_data_hi_lo = {sectored_entries_0_1_data_hi_lo_hi, sectored_entries_0_1_data_hi_lo_lo}; // @[TLB.scala:217:24] wire [2:0] sectored_entries_0_1_data_hi_hi_lo = {sectored_entries_0_1_data_hi_hi_lo_hi, 1'h0}; // @[TLB.scala:217:24] wire [21:0] sectored_entries_0_1_data_hi_hi_hi = {sectored_entries_0_1_data_hi_hi_hi_hi, newEntry_g}; // @[TLB.scala:217:24, :449:24] wire [24:0] sectored_entries_0_1_data_hi_hi = {sectored_entries_0_1_data_hi_hi_hi, sectored_entries_0_1_data_hi_hi_lo}; // @[TLB.scala:217:24] wire [30:0] sectored_entries_0_1_data_hi = {sectored_entries_0_1_data_hi_hi, sectored_entries_0_1_data_hi_lo}; // @[TLB.scala:217:24] wire [41:0] _sectored_entries_0_1_data_T = {sectored_entries_0_1_data_hi, sectored_entries_0_1_data_lo}; // @[TLB.scala:217:24] wire [2:0] sectored_entries_0_2_data_lo_lo_hi = {sectored_entries_0_2_data_lo_lo_hi_hi, newEntry_eff}; // @[TLB.scala:217:24, :449:24] wire [4:0] sectored_entries_0_2_data_lo_lo = {sectored_entries_0_2_data_lo_lo_hi, sectored_entries_0_2_data_lo_lo_lo}; // @[TLB.scala:217:24] wire [2:0] sectored_entries_0_2_data_lo_hi_lo = {sectored_entries_0_2_data_lo_hi_lo_hi, newEntry_ppp}; // @[TLB.scala:217:24, :449:24] wire [2:0] sectored_entries_0_2_data_lo_hi_hi = {sectored_entries_0_2_data_lo_hi_hi_hi, newEntry_pw}; // @[TLB.scala:217:24, :449:24] wire [5:0] sectored_entries_0_2_data_lo_hi = {sectored_entries_0_2_data_lo_hi_hi, sectored_entries_0_2_data_lo_hi_lo}; // @[TLB.scala:217:24] wire [10:0] sectored_entries_0_2_data_lo = {sectored_entries_0_2_data_lo_hi, sectored_entries_0_2_data_lo_lo}; // @[TLB.scala:217:24] wire [2:0] sectored_entries_0_2_data_hi_lo_lo = {sectored_entries_0_2_data_hi_lo_lo_hi, newEntry_hw}; // @[TLB.scala:217:24, :449:24] wire [2:0] sectored_entries_0_2_data_hi_lo_hi = {sectored_entries_0_2_data_hi_lo_hi_hi, newEntry_sw}; // @[TLB.scala:217:24, :449:24] wire [5:0] sectored_entries_0_2_data_hi_lo = {sectored_entries_0_2_data_hi_lo_hi, sectored_entries_0_2_data_hi_lo_lo}; // @[TLB.scala:217:24] wire [2:0] sectored_entries_0_2_data_hi_hi_lo = {sectored_entries_0_2_data_hi_hi_lo_hi, 1'h0}; // @[TLB.scala:217:24] wire [21:0] sectored_entries_0_2_data_hi_hi_hi = {sectored_entries_0_2_data_hi_hi_hi_hi, newEntry_g}; // @[TLB.scala:217:24, :449:24] wire [24:0] sectored_entries_0_2_data_hi_hi = {sectored_entries_0_2_data_hi_hi_hi, sectored_entries_0_2_data_hi_hi_lo}; // @[TLB.scala:217:24] wire [30:0] sectored_entries_0_2_data_hi = {sectored_entries_0_2_data_hi_hi, sectored_entries_0_2_data_hi_lo}; // @[TLB.scala:217:24] wire [41:0] _sectored_entries_0_2_data_T = {sectored_entries_0_2_data_hi, sectored_entries_0_2_data_lo}; // @[TLB.scala:217:24] wire [2:0] sectored_entries_0_3_data_lo_lo_hi = {sectored_entries_0_3_data_lo_lo_hi_hi, newEntry_eff}; // @[TLB.scala:217:24, :449:24] wire [4:0] sectored_entries_0_3_data_lo_lo = {sectored_entries_0_3_data_lo_lo_hi, sectored_entries_0_3_data_lo_lo_lo}; // @[TLB.scala:217:24] wire [2:0] sectored_entries_0_3_data_lo_hi_lo = {sectored_entries_0_3_data_lo_hi_lo_hi, newEntry_ppp}; // @[TLB.scala:217:24, :449:24] wire [2:0] sectored_entries_0_3_data_lo_hi_hi = {sectored_entries_0_3_data_lo_hi_hi_hi, newEntry_pw}; // @[TLB.scala:217:24, :449:24] wire [5:0] sectored_entries_0_3_data_lo_hi = {sectored_entries_0_3_data_lo_hi_hi, sectored_entries_0_3_data_lo_hi_lo}; // @[TLB.scala:217:24] wire [10:0] sectored_entries_0_3_data_lo = {sectored_entries_0_3_data_lo_hi, sectored_entries_0_3_data_lo_lo}; // @[TLB.scala:217:24] wire [2:0] sectored_entries_0_3_data_hi_lo_lo = {sectored_entries_0_3_data_hi_lo_lo_hi, newEntry_hw}; // @[TLB.scala:217:24, :449:24] wire [2:0] sectored_entries_0_3_data_hi_lo_hi = {sectored_entries_0_3_data_hi_lo_hi_hi, newEntry_sw}; // @[TLB.scala:217:24, :449:24] wire [5:0] sectored_entries_0_3_data_hi_lo = {sectored_entries_0_3_data_hi_lo_hi, sectored_entries_0_3_data_hi_lo_lo}; // @[TLB.scala:217:24] wire [2:0] sectored_entries_0_3_data_hi_hi_lo = {sectored_entries_0_3_data_hi_hi_lo_hi, 1'h0}; // @[TLB.scala:217:24] wire [21:0] sectored_entries_0_3_data_hi_hi_hi = {sectored_entries_0_3_data_hi_hi_hi_hi, newEntry_g}; // @[TLB.scala:217:24, :449:24] wire [24:0] sectored_entries_0_3_data_hi_hi = {sectored_entries_0_3_data_hi_hi_hi, sectored_entries_0_3_data_hi_hi_lo}; // @[TLB.scala:217:24] wire [30:0] sectored_entries_0_3_data_hi = {sectored_entries_0_3_data_hi_hi, sectored_entries_0_3_data_hi_lo}; // @[TLB.scala:217:24] wire [41:0] _sectored_entries_0_3_data_T = {sectored_entries_0_3_data_hi, sectored_entries_0_3_data_lo}; // @[TLB.scala:217:24] wire [2:0] sectored_entries_0_4_data_lo_lo_hi = {sectored_entries_0_4_data_lo_lo_hi_hi, newEntry_eff}; // @[TLB.scala:217:24, :449:24] wire [4:0] sectored_entries_0_4_data_lo_lo = {sectored_entries_0_4_data_lo_lo_hi, sectored_entries_0_4_data_lo_lo_lo}; // @[TLB.scala:217:24] wire [2:0] sectored_entries_0_4_data_lo_hi_lo = {sectored_entries_0_4_data_lo_hi_lo_hi, newEntry_ppp}; // @[TLB.scala:217:24, :449:24] wire [2:0] sectored_entries_0_4_data_lo_hi_hi = {sectored_entries_0_4_data_lo_hi_hi_hi, newEntry_pw}; // @[TLB.scala:217:24, :449:24] wire [5:0] sectored_entries_0_4_data_lo_hi = {sectored_entries_0_4_data_lo_hi_hi, sectored_entries_0_4_data_lo_hi_lo}; // @[TLB.scala:217:24] wire [10:0] sectored_entries_0_4_data_lo = {sectored_entries_0_4_data_lo_hi, sectored_entries_0_4_data_lo_lo}; // @[TLB.scala:217:24] wire [2:0] sectored_entries_0_4_data_hi_lo_lo = {sectored_entries_0_4_data_hi_lo_lo_hi, newEntry_hw}; // @[TLB.scala:217:24, :449:24] wire [2:0] sectored_entries_0_4_data_hi_lo_hi = {sectored_entries_0_4_data_hi_lo_hi_hi, newEntry_sw}; // @[TLB.scala:217:24, :449:24] wire [5:0] sectored_entries_0_4_data_hi_lo = {sectored_entries_0_4_data_hi_lo_hi, sectored_entries_0_4_data_hi_lo_lo}; // @[TLB.scala:217:24] wire [2:0] sectored_entries_0_4_data_hi_hi_lo = {sectored_entries_0_4_data_hi_hi_lo_hi, 1'h0}; // @[TLB.scala:217:24] wire [21:0] sectored_entries_0_4_data_hi_hi_hi = {sectored_entries_0_4_data_hi_hi_hi_hi, newEntry_g}; // @[TLB.scala:217:24, :449:24] wire [24:0] sectored_entries_0_4_data_hi_hi = {sectored_entries_0_4_data_hi_hi_hi, sectored_entries_0_4_data_hi_hi_lo}; // @[TLB.scala:217:24] wire [30:0] sectored_entries_0_4_data_hi = {sectored_entries_0_4_data_hi_hi, sectored_entries_0_4_data_hi_lo}; // @[TLB.scala:217:24] wire [41:0] _sectored_entries_0_4_data_T = {sectored_entries_0_4_data_hi, sectored_entries_0_4_data_lo}; // @[TLB.scala:217:24] wire [2:0] sectored_entries_0_5_data_lo_lo_hi = {sectored_entries_0_5_data_lo_lo_hi_hi, newEntry_eff}; // @[TLB.scala:217:24, :449:24] wire [4:0] sectored_entries_0_5_data_lo_lo = {sectored_entries_0_5_data_lo_lo_hi, sectored_entries_0_5_data_lo_lo_lo}; // @[TLB.scala:217:24] wire [2:0] sectored_entries_0_5_data_lo_hi_lo = {sectored_entries_0_5_data_lo_hi_lo_hi, newEntry_ppp}; // @[TLB.scala:217:24, :449:24] wire [2:0] sectored_entries_0_5_data_lo_hi_hi = {sectored_entries_0_5_data_lo_hi_hi_hi, newEntry_pw}; // @[TLB.scala:217:24, :449:24] wire [5:0] sectored_entries_0_5_data_lo_hi = {sectored_entries_0_5_data_lo_hi_hi, sectored_entries_0_5_data_lo_hi_lo}; // @[TLB.scala:217:24] wire [10:0] sectored_entries_0_5_data_lo = {sectored_entries_0_5_data_lo_hi, sectored_entries_0_5_data_lo_lo}; // @[TLB.scala:217:24] wire [2:0] sectored_entries_0_5_data_hi_lo_lo = {sectored_entries_0_5_data_hi_lo_lo_hi, newEntry_hw}; // @[TLB.scala:217:24, :449:24] wire [2:0] sectored_entries_0_5_data_hi_lo_hi = {sectored_entries_0_5_data_hi_lo_hi_hi, newEntry_sw}; // @[TLB.scala:217:24, :449:24] wire [5:0] sectored_entries_0_5_data_hi_lo = {sectored_entries_0_5_data_hi_lo_hi, sectored_entries_0_5_data_hi_lo_lo}; // @[TLB.scala:217:24] wire [2:0] sectored_entries_0_5_data_hi_hi_lo = {sectored_entries_0_5_data_hi_hi_lo_hi, 1'h0}; // @[TLB.scala:217:24] wire [21:0] sectored_entries_0_5_data_hi_hi_hi = {sectored_entries_0_5_data_hi_hi_hi_hi, newEntry_g}; // @[TLB.scala:217:24, :449:24] wire [24:0] sectored_entries_0_5_data_hi_hi = {sectored_entries_0_5_data_hi_hi_hi, sectored_entries_0_5_data_hi_hi_lo}; // @[TLB.scala:217:24] wire [30:0] sectored_entries_0_5_data_hi = {sectored_entries_0_5_data_hi_hi, sectored_entries_0_5_data_hi_lo}; // @[TLB.scala:217:24] wire [41:0] _sectored_entries_0_5_data_T = {sectored_entries_0_5_data_hi, sectored_entries_0_5_data_lo}; // @[TLB.scala:217:24] wire [2:0] sectored_entries_0_6_data_lo_lo_hi = {sectored_entries_0_6_data_lo_lo_hi_hi, newEntry_eff}; // @[TLB.scala:217:24, :449:24] wire [4:0] sectored_entries_0_6_data_lo_lo = {sectored_entries_0_6_data_lo_lo_hi, sectored_entries_0_6_data_lo_lo_lo}; // @[TLB.scala:217:24] wire [2:0] sectored_entries_0_6_data_lo_hi_lo = {sectored_entries_0_6_data_lo_hi_lo_hi, newEntry_ppp}; // @[TLB.scala:217:24, :449:24] wire [2:0] sectored_entries_0_6_data_lo_hi_hi = {sectored_entries_0_6_data_lo_hi_hi_hi, newEntry_pw}; // @[TLB.scala:217:24, :449:24] wire [5:0] sectored_entries_0_6_data_lo_hi = {sectored_entries_0_6_data_lo_hi_hi, sectored_entries_0_6_data_lo_hi_lo}; // @[TLB.scala:217:24] wire [10:0] sectored_entries_0_6_data_lo = {sectored_entries_0_6_data_lo_hi, sectored_entries_0_6_data_lo_lo}; // @[TLB.scala:217:24] wire [2:0] sectored_entries_0_6_data_hi_lo_lo = {sectored_entries_0_6_data_hi_lo_lo_hi, newEntry_hw}; // @[TLB.scala:217:24, :449:24] wire [2:0] sectored_entries_0_6_data_hi_lo_hi = {sectored_entries_0_6_data_hi_lo_hi_hi, newEntry_sw}; // @[TLB.scala:217:24, :449:24] wire [5:0] sectored_entries_0_6_data_hi_lo = {sectored_entries_0_6_data_hi_lo_hi, sectored_entries_0_6_data_hi_lo_lo}; // @[TLB.scala:217:24] wire [2:0] sectored_entries_0_6_data_hi_hi_lo = {sectored_entries_0_6_data_hi_hi_lo_hi, 1'h0}; // @[TLB.scala:217:24] wire [21:0] sectored_entries_0_6_data_hi_hi_hi = {sectored_entries_0_6_data_hi_hi_hi_hi, newEntry_g}; // @[TLB.scala:217:24, :449:24] wire [24:0] sectored_entries_0_6_data_hi_hi = {sectored_entries_0_6_data_hi_hi_hi, sectored_entries_0_6_data_hi_hi_lo}; // @[TLB.scala:217:24] wire [30:0] sectored_entries_0_6_data_hi = {sectored_entries_0_6_data_hi_hi, sectored_entries_0_6_data_hi_lo}; // @[TLB.scala:217:24] wire [41:0] _sectored_entries_0_6_data_T = {sectored_entries_0_6_data_hi, sectored_entries_0_6_data_lo}; // @[TLB.scala:217:24] wire [2:0] sectored_entries_0_7_data_lo_lo_hi = {sectored_entries_0_7_data_lo_lo_hi_hi, newEntry_eff}; // @[TLB.scala:217:24, :449:24] wire [4:0] sectored_entries_0_7_data_lo_lo = {sectored_entries_0_7_data_lo_lo_hi, sectored_entries_0_7_data_lo_lo_lo}; // @[TLB.scala:217:24] wire [2:0] sectored_entries_0_7_data_lo_hi_lo = {sectored_entries_0_7_data_lo_hi_lo_hi, newEntry_ppp}; // @[TLB.scala:217:24, :449:24] wire [2:0] sectored_entries_0_7_data_lo_hi_hi = {sectored_entries_0_7_data_lo_hi_hi_hi, newEntry_pw}; // @[TLB.scala:217:24, :449:24] wire [5:0] sectored_entries_0_7_data_lo_hi = {sectored_entries_0_7_data_lo_hi_hi, sectored_entries_0_7_data_lo_hi_lo}; // @[TLB.scala:217:24] wire [10:0] sectored_entries_0_7_data_lo = {sectored_entries_0_7_data_lo_hi, sectored_entries_0_7_data_lo_lo}; // @[TLB.scala:217:24] wire [2:0] sectored_entries_0_7_data_hi_lo_lo = {sectored_entries_0_7_data_hi_lo_lo_hi, newEntry_hw}; // @[TLB.scala:217:24, :449:24] wire [2:0] sectored_entries_0_7_data_hi_lo_hi = {sectored_entries_0_7_data_hi_lo_hi_hi, newEntry_sw}; // @[TLB.scala:217:24, :449:24] wire [5:0] sectored_entries_0_7_data_hi_lo = {sectored_entries_0_7_data_hi_lo_hi, sectored_entries_0_7_data_hi_lo_lo}; // @[TLB.scala:217:24] wire [2:0] sectored_entries_0_7_data_hi_hi_lo = {sectored_entries_0_7_data_hi_hi_lo_hi, 1'h0}; // @[TLB.scala:217:24] wire [21:0] sectored_entries_0_7_data_hi_hi_hi = {sectored_entries_0_7_data_hi_hi_hi_hi, newEntry_g}; // @[TLB.scala:217:24, :449:24] wire [24:0] sectored_entries_0_7_data_hi_hi = {sectored_entries_0_7_data_hi_hi_hi, sectored_entries_0_7_data_hi_hi_lo}; // @[TLB.scala:217:24] wire [30:0] sectored_entries_0_7_data_hi = {sectored_entries_0_7_data_hi_hi, sectored_entries_0_7_data_hi_lo}; // @[TLB.scala:217:24] wire [41:0] _sectored_entries_0_7_data_T = {sectored_entries_0_7_data_hi, sectored_entries_0_7_data_lo}; // @[TLB.scala:217:24] wire [19:0] _entries_T_23; // @[TLB.scala:170:77] wire _entries_T_22; // @[TLB.scala:170:77] wire _entries_T_21; // @[TLB.scala:170:77] wire _entries_T_20; // @[TLB.scala:170:77] wire _entries_T_19; // @[TLB.scala:170:77] wire _entries_T_18; // @[TLB.scala:170:77] wire _entries_T_17; // @[TLB.scala:170:77] wire _entries_T_16; // @[TLB.scala:170:77] wire _entries_T_15; // @[TLB.scala:170:77] wire _entries_T_14; // @[TLB.scala:170:77] wire _entries_T_13; // @[TLB.scala:170:77] wire _entries_T_12; // @[TLB.scala:170:77] wire _entries_T_11; // @[TLB.scala:170:77] wire _entries_T_10; // @[TLB.scala:170:77] wire _entries_T_9; // @[TLB.scala:170:77] wire _entries_T_8; // @[TLB.scala:170:77] wire _entries_T_7; // @[TLB.scala:170:77] wire _entries_T_6; // @[TLB.scala:170:77] wire _entries_T_5; // @[TLB.scala:170:77] wire _entries_T_4; // @[TLB.scala:170:77] wire _entries_T_3; // @[TLB.scala:170:77] wire _entries_T_2; // @[TLB.scala:170:77] wire _entries_T_1; // @[TLB.scala:170:77] wire [3:0][41:0] _GEN_32 = {{sectored_entries_0_0_data_3}, {sectored_entries_0_0_data_2}, {sectored_entries_0_0_data_1}, {sectored_entries_0_0_data_0}}; // @[TLB.scala:170:77, :339:29] wire [41:0] _entries_WIRE_1 = _GEN_32[_entries_T]; // @[package.scala:163:13] assign _entries_T_1 = _entries_WIRE_1[0]; // @[TLB.scala:170:77] wire _entries_WIRE_fragmented_superpage = _entries_T_1; // @[TLB.scala:170:77] assign _entries_T_2 = _entries_WIRE_1[1]; // @[TLB.scala:170:77] wire _entries_WIRE_c = _entries_T_2; // @[TLB.scala:170:77] assign _entries_T_3 = _entries_WIRE_1[2]; // @[TLB.scala:170:77] wire _entries_WIRE_eff = _entries_T_3; // @[TLB.scala:170:77] assign _entries_T_4 = _entries_WIRE_1[3]; // @[TLB.scala:170:77] wire _entries_WIRE_paa = _entries_T_4; // @[TLB.scala:170:77] assign _entries_T_5 = _entries_WIRE_1[4]; // @[TLB.scala:170:77] wire _entries_WIRE_pal = _entries_T_5; // @[TLB.scala:170:77] assign _entries_T_6 = _entries_WIRE_1[5]; // @[TLB.scala:170:77] wire _entries_WIRE_ppp = _entries_T_6; // @[TLB.scala:170:77] assign _entries_T_7 = _entries_WIRE_1[6]; // @[TLB.scala:170:77] wire _entries_WIRE_pr = _entries_T_7; // @[TLB.scala:170:77] assign _entries_T_8 = _entries_WIRE_1[7]; // @[TLB.scala:170:77] wire _entries_WIRE_px = _entries_T_8; // @[TLB.scala:170:77] assign _entries_T_9 = _entries_WIRE_1[8]; // @[TLB.scala:170:77] wire _entries_WIRE_pw = _entries_T_9; // @[TLB.scala:170:77] assign _entries_T_10 = _entries_WIRE_1[9]; // @[TLB.scala:170:77] wire _entries_WIRE_hr = _entries_T_10; // @[TLB.scala:170:77] assign _entries_T_11 = _entries_WIRE_1[10]; // @[TLB.scala:170:77] wire _entries_WIRE_hx = _entries_T_11; // @[TLB.scala:170:77] assign _entries_T_12 = _entries_WIRE_1[11]; // @[TLB.scala:170:77] wire _entries_WIRE_hw = _entries_T_12; // @[TLB.scala:170:77] assign _entries_T_13 = _entries_WIRE_1[12]; // @[TLB.scala:170:77] wire _entries_WIRE_sr = _entries_T_13; // @[TLB.scala:170:77] assign _entries_T_14 = _entries_WIRE_1[13]; // @[TLB.scala:170:77] wire _entries_WIRE_sx = _entries_T_14; // @[TLB.scala:170:77] assign _entries_T_15 = _entries_WIRE_1[14]; // @[TLB.scala:170:77] wire _entries_WIRE_sw = _entries_T_15; // @[TLB.scala:170:77] assign _entries_T_16 = _entries_WIRE_1[15]; // @[TLB.scala:170:77] wire _entries_WIRE_gf = _entries_T_16; // @[TLB.scala:170:77] assign _entries_T_17 = _entries_WIRE_1[16]; // @[TLB.scala:170:77] wire _entries_WIRE_pf = _entries_T_17; // @[TLB.scala:170:77] assign _entries_T_18 = _entries_WIRE_1[17]; // @[TLB.scala:170:77] wire _entries_WIRE_ae_stage2 = _entries_T_18; // @[TLB.scala:170:77] assign _entries_T_19 = _entries_WIRE_1[18]; // @[TLB.scala:170:77] wire _entries_WIRE_ae_final = _entries_T_19; // @[TLB.scala:170:77] assign _entries_T_20 = _entries_WIRE_1[19]; // @[TLB.scala:170:77] wire _entries_WIRE_ae_ptw = _entries_T_20; // @[TLB.scala:170:77] assign _entries_T_21 = _entries_WIRE_1[20]; // @[TLB.scala:170:77] wire _entries_WIRE_g = _entries_T_21; // @[TLB.scala:170:77] assign _entries_T_22 = _entries_WIRE_1[21]; // @[TLB.scala:170:77] wire _entries_WIRE_u = _entries_T_22; // @[TLB.scala:170:77] assign _entries_T_23 = _entries_WIRE_1[41:22]; // @[TLB.scala:170:77] wire [19:0] _entries_WIRE_ppn = _entries_T_23; // @[TLB.scala:170:77] wire [19:0] _entries_T_47; // @[TLB.scala:170:77] wire _entries_T_46; // @[TLB.scala:170:77] wire _entries_T_45; // @[TLB.scala:170:77] wire _entries_T_44; // @[TLB.scala:170:77] wire _entries_T_43; // @[TLB.scala:170:77] wire _entries_T_42; // @[TLB.scala:170:77] wire _entries_T_41; // @[TLB.scala:170:77] wire _entries_T_40; // @[TLB.scala:170:77] wire _entries_T_39; // @[TLB.scala:170:77] wire _entries_T_38; // @[TLB.scala:170:77] wire _entries_T_37; // @[TLB.scala:170:77] wire _entries_T_36; // @[TLB.scala:170:77] wire _entries_T_35; // @[TLB.scala:170:77] wire _entries_T_34; // @[TLB.scala:170:77] wire _entries_T_33; // @[TLB.scala:170:77] wire _entries_T_32; // @[TLB.scala:170:77] wire _entries_T_31; // @[TLB.scala:170:77] wire _entries_T_30; // @[TLB.scala:170:77] wire _entries_T_29; // @[TLB.scala:170:77] wire _entries_T_28; // @[TLB.scala:170:77] wire _entries_T_27; // @[TLB.scala:170:77] wire _entries_T_26; // @[TLB.scala:170:77] wire _entries_T_25; // @[TLB.scala:170:77] wire [3:0][41:0] _GEN_33 = {{sectored_entries_0_1_data_3}, {sectored_entries_0_1_data_2}, {sectored_entries_0_1_data_1}, {sectored_entries_0_1_data_0}}; // @[TLB.scala:170:77, :339:29] wire [41:0] _entries_WIRE_3 = _GEN_33[_entries_T_24]; // @[package.scala:163:13] assign _entries_T_25 = _entries_WIRE_3[0]; // @[TLB.scala:170:77] wire _entries_WIRE_2_fragmented_superpage = _entries_T_25; // @[TLB.scala:170:77] assign _entries_T_26 = _entries_WIRE_3[1]; // @[TLB.scala:170:77] wire _entries_WIRE_2_c = _entries_T_26; // @[TLB.scala:170:77] assign _entries_T_27 = _entries_WIRE_3[2]; // @[TLB.scala:170:77] wire _entries_WIRE_2_eff = _entries_T_27; // @[TLB.scala:170:77] assign _entries_T_28 = _entries_WIRE_3[3]; // @[TLB.scala:170:77] wire _entries_WIRE_2_paa = _entries_T_28; // @[TLB.scala:170:77] assign _entries_T_29 = _entries_WIRE_3[4]; // @[TLB.scala:170:77] wire _entries_WIRE_2_pal = _entries_T_29; // @[TLB.scala:170:77] assign _entries_T_30 = _entries_WIRE_3[5]; // @[TLB.scala:170:77] wire _entries_WIRE_2_ppp = _entries_T_30; // @[TLB.scala:170:77] assign _entries_T_31 = _entries_WIRE_3[6]; // @[TLB.scala:170:77] wire _entries_WIRE_2_pr = _entries_T_31; // @[TLB.scala:170:77] assign _entries_T_32 = _entries_WIRE_3[7]; // @[TLB.scala:170:77] wire _entries_WIRE_2_px = _entries_T_32; // @[TLB.scala:170:77] assign _entries_T_33 = _entries_WIRE_3[8]; // @[TLB.scala:170:77] wire _entries_WIRE_2_pw = _entries_T_33; // @[TLB.scala:170:77] assign _entries_T_34 = _entries_WIRE_3[9]; // @[TLB.scala:170:77] wire _entries_WIRE_2_hr = _entries_T_34; // @[TLB.scala:170:77] assign _entries_T_35 = _entries_WIRE_3[10]; // @[TLB.scala:170:77] wire _entries_WIRE_2_hx = _entries_T_35; // @[TLB.scala:170:77] assign _entries_T_36 = _entries_WIRE_3[11]; // @[TLB.scala:170:77] wire _entries_WIRE_2_hw = _entries_T_36; // @[TLB.scala:170:77] assign _entries_T_37 = _entries_WIRE_3[12]; // @[TLB.scala:170:77] wire _entries_WIRE_2_sr = _entries_T_37; // @[TLB.scala:170:77] assign _entries_T_38 = _entries_WIRE_3[13]; // @[TLB.scala:170:77] wire _entries_WIRE_2_sx = _entries_T_38; // @[TLB.scala:170:77] assign _entries_T_39 = _entries_WIRE_3[14]; // @[TLB.scala:170:77] wire _entries_WIRE_2_sw = _entries_T_39; // @[TLB.scala:170:77] assign _entries_T_40 = _entries_WIRE_3[15]; // @[TLB.scala:170:77] wire _entries_WIRE_2_gf = _entries_T_40; // @[TLB.scala:170:77] assign _entries_T_41 = _entries_WIRE_3[16]; // @[TLB.scala:170:77] wire _entries_WIRE_2_pf = _entries_T_41; // @[TLB.scala:170:77] assign _entries_T_42 = _entries_WIRE_3[17]; // @[TLB.scala:170:77] wire _entries_WIRE_2_ae_stage2 = _entries_T_42; // @[TLB.scala:170:77] assign _entries_T_43 = _entries_WIRE_3[18]; // @[TLB.scala:170:77] wire _entries_WIRE_2_ae_final = _entries_T_43; // @[TLB.scala:170:77] assign _entries_T_44 = _entries_WIRE_3[19]; // @[TLB.scala:170:77] wire _entries_WIRE_2_ae_ptw = _entries_T_44; // @[TLB.scala:170:77] assign _entries_T_45 = _entries_WIRE_3[20]; // @[TLB.scala:170:77] wire _entries_WIRE_2_g = _entries_T_45; // @[TLB.scala:170:77] assign _entries_T_46 = _entries_WIRE_3[21]; // @[TLB.scala:170:77] wire _entries_WIRE_2_u = _entries_T_46; // @[TLB.scala:170:77] assign _entries_T_47 = _entries_WIRE_3[41:22]; // @[TLB.scala:170:77] wire [19:0] _entries_WIRE_2_ppn = _entries_T_47; // @[TLB.scala:170:77] wire [19:0] _entries_T_71; // @[TLB.scala:170:77] wire _entries_T_70; // @[TLB.scala:170:77] wire _entries_T_69; // @[TLB.scala:170:77] wire _entries_T_68; // @[TLB.scala:170:77] wire _entries_T_67; // @[TLB.scala:170:77] wire _entries_T_66; // @[TLB.scala:170:77] wire _entries_T_65; // @[TLB.scala:170:77] wire _entries_T_64; // @[TLB.scala:170:77] wire _entries_T_63; // @[TLB.scala:170:77] wire _entries_T_62; // @[TLB.scala:170:77] wire _entries_T_61; // @[TLB.scala:170:77] wire _entries_T_60; // @[TLB.scala:170:77] wire _entries_T_59; // @[TLB.scala:170:77] wire _entries_T_58; // @[TLB.scala:170:77] wire _entries_T_57; // @[TLB.scala:170:77] wire _entries_T_56; // @[TLB.scala:170:77] wire _entries_T_55; // @[TLB.scala:170:77] wire _entries_T_54; // @[TLB.scala:170:77] wire _entries_T_53; // @[TLB.scala:170:77] wire _entries_T_52; // @[TLB.scala:170:77] wire _entries_T_51; // @[TLB.scala:170:77] wire _entries_T_50; // @[TLB.scala:170:77] wire _entries_T_49; // @[TLB.scala:170:77] wire [3:0][41:0] _GEN_34 = {{sectored_entries_0_2_data_3}, {sectored_entries_0_2_data_2}, {sectored_entries_0_2_data_1}, {sectored_entries_0_2_data_0}}; // @[TLB.scala:170:77, :339:29] wire [41:0] _entries_WIRE_5 = _GEN_34[_entries_T_48]; // @[package.scala:163:13] assign _entries_T_49 = _entries_WIRE_5[0]; // @[TLB.scala:170:77] wire _entries_WIRE_4_fragmented_superpage = _entries_T_49; // @[TLB.scala:170:77] assign _entries_T_50 = _entries_WIRE_5[1]; // @[TLB.scala:170:77] wire _entries_WIRE_4_c = _entries_T_50; // @[TLB.scala:170:77] assign _entries_T_51 = _entries_WIRE_5[2]; // @[TLB.scala:170:77] wire _entries_WIRE_4_eff = _entries_T_51; // @[TLB.scala:170:77] assign _entries_T_52 = _entries_WIRE_5[3]; // @[TLB.scala:170:77] wire _entries_WIRE_4_paa = _entries_T_52; // @[TLB.scala:170:77] assign _entries_T_53 = _entries_WIRE_5[4]; // @[TLB.scala:170:77] wire _entries_WIRE_4_pal = _entries_T_53; // @[TLB.scala:170:77] assign _entries_T_54 = _entries_WIRE_5[5]; // @[TLB.scala:170:77] wire _entries_WIRE_4_ppp = _entries_T_54; // @[TLB.scala:170:77] assign _entries_T_55 = _entries_WIRE_5[6]; // @[TLB.scala:170:77] wire _entries_WIRE_4_pr = _entries_T_55; // @[TLB.scala:170:77] assign _entries_T_56 = _entries_WIRE_5[7]; // @[TLB.scala:170:77] wire _entries_WIRE_4_px = _entries_T_56; // @[TLB.scala:170:77] assign _entries_T_57 = _entries_WIRE_5[8]; // @[TLB.scala:170:77] wire _entries_WIRE_4_pw = _entries_T_57; // @[TLB.scala:170:77] assign _entries_T_58 = _entries_WIRE_5[9]; // @[TLB.scala:170:77] wire _entries_WIRE_4_hr = _entries_T_58; // @[TLB.scala:170:77] assign _entries_T_59 = _entries_WIRE_5[10]; // @[TLB.scala:170:77] wire _entries_WIRE_4_hx = _entries_T_59; // @[TLB.scala:170:77] assign _entries_T_60 = _entries_WIRE_5[11]; // @[TLB.scala:170:77] wire _entries_WIRE_4_hw = _entries_T_60; // @[TLB.scala:170:77] assign _entries_T_61 = _entries_WIRE_5[12]; // @[TLB.scala:170:77] wire _entries_WIRE_4_sr = _entries_T_61; // @[TLB.scala:170:77] assign _entries_T_62 = _entries_WIRE_5[13]; // @[TLB.scala:170:77] wire _entries_WIRE_4_sx = _entries_T_62; // @[TLB.scala:170:77] assign _entries_T_63 = _entries_WIRE_5[14]; // @[TLB.scala:170:77] wire _entries_WIRE_4_sw = _entries_T_63; // @[TLB.scala:170:77] assign _entries_T_64 = _entries_WIRE_5[15]; // @[TLB.scala:170:77] wire _entries_WIRE_4_gf = _entries_T_64; // @[TLB.scala:170:77] assign _entries_T_65 = _entries_WIRE_5[16]; // @[TLB.scala:170:77] wire _entries_WIRE_4_pf = _entries_T_65; // @[TLB.scala:170:77] assign _entries_T_66 = _entries_WIRE_5[17]; // @[TLB.scala:170:77] wire _entries_WIRE_4_ae_stage2 = _entries_T_66; // @[TLB.scala:170:77] assign _entries_T_67 = _entries_WIRE_5[18]; // @[TLB.scala:170:77] wire _entries_WIRE_4_ae_final = _entries_T_67; // @[TLB.scala:170:77] assign _entries_T_68 = _entries_WIRE_5[19]; // @[TLB.scala:170:77] wire _entries_WIRE_4_ae_ptw = _entries_T_68; // @[TLB.scala:170:77] assign _entries_T_69 = _entries_WIRE_5[20]; // @[TLB.scala:170:77] wire _entries_WIRE_4_g = _entries_T_69; // @[TLB.scala:170:77] assign _entries_T_70 = _entries_WIRE_5[21]; // @[TLB.scala:170:77] wire _entries_WIRE_4_u = _entries_T_70; // @[TLB.scala:170:77] assign _entries_T_71 = _entries_WIRE_5[41:22]; // @[TLB.scala:170:77] wire [19:0] _entries_WIRE_4_ppn = _entries_T_71; // @[TLB.scala:170:77] wire [19:0] _entries_T_95; // @[TLB.scala:170:77] wire _entries_T_94; // @[TLB.scala:170:77] wire _entries_T_93; // @[TLB.scala:170:77] wire _entries_T_92; // @[TLB.scala:170:77] wire _entries_T_91; // @[TLB.scala:170:77] wire _entries_T_90; // @[TLB.scala:170:77] wire _entries_T_89; // @[TLB.scala:170:77] wire _entries_T_88; // @[TLB.scala:170:77] wire _entries_T_87; // @[TLB.scala:170:77] wire _entries_T_86; // @[TLB.scala:170:77] wire _entries_T_85; // @[TLB.scala:170:77] wire _entries_T_84; // @[TLB.scala:170:77] wire _entries_T_83; // @[TLB.scala:170:77] wire _entries_T_82; // @[TLB.scala:170:77] wire _entries_T_81; // @[TLB.scala:170:77] wire _entries_T_80; // @[TLB.scala:170:77] wire _entries_T_79; // @[TLB.scala:170:77] wire _entries_T_78; // @[TLB.scala:170:77] wire _entries_T_77; // @[TLB.scala:170:77] wire _entries_T_76; // @[TLB.scala:170:77] wire _entries_T_75; // @[TLB.scala:170:77] wire _entries_T_74; // @[TLB.scala:170:77] wire _entries_T_73; // @[TLB.scala:170:77] wire [3:0][41:0] _GEN_35 = {{sectored_entries_0_3_data_3}, {sectored_entries_0_3_data_2}, {sectored_entries_0_3_data_1}, {sectored_entries_0_3_data_0}}; // @[TLB.scala:170:77, :339:29] wire [41:0] _entries_WIRE_7 = _GEN_35[_entries_T_72]; // @[package.scala:163:13] assign _entries_T_73 = _entries_WIRE_7[0]; // @[TLB.scala:170:77] wire _entries_WIRE_6_fragmented_superpage = _entries_T_73; // @[TLB.scala:170:77] assign _entries_T_74 = _entries_WIRE_7[1]; // @[TLB.scala:170:77] wire _entries_WIRE_6_c = _entries_T_74; // @[TLB.scala:170:77] assign _entries_T_75 = _entries_WIRE_7[2]; // @[TLB.scala:170:77] wire _entries_WIRE_6_eff = _entries_T_75; // @[TLB.scala:170:77] assign _entries_T_76 = _entries_WIRE_7[3]; // @[TLB.scala:170:77] wire _entries_WIRE_6_paa = _entries_T_76; // @[TLB.scala:170:77] assign _entries_T_77 = _entries_WIRE_7[4]; // @[TLB.scala:170:77] wire _entries_WIRE_6_pal = _entries_T_77; // @[TLB.scala:170:77] assign _entries_T_78 = _entries_WIRE_7[5]; // @[TLB.scala:170:77] wire _entries_WIRE_6_ppp = _entries_T_78; // @[TLB.scala:170:77] assign _entries_T_79 = _entries_WIRE_7[6]; // @[TLB.scala:170:77] wire _entries_WIRE_6_pr = _entries_T_79; // @[TLB.scala:170:77] assign _entries_T_80 = _entries_WIRE_7[7]; // @[TLB.scala:170:77] wire _entries_WIRE_6_px = _entries_T_80; // @[TLB.scala:170:77] assign _entries_T_81 = _entries_WIRE_7[8]; // @[TLB.scala:170:77] wire _entries_WIRE_6_pw = _entries_T_81; // @[TLB.scala:170:77] assign _entries_T_82 = _entries_WIRE_7[9]; // @[TLB.scala:170:77] wire _entries_WIRE_6_hr = _entries_T_82; // @[TLB.scala:170:77] assign _entries_T_83 = _entries_WIRE_7[10]; // @[TLB.scala:170:77] wire _entries_WIRE_6_hx = _entries_T_83; // @[TLB.scala:170:77] assign _entries_T_84 = _entries_WIRE_7[11]; // @[TLB.scala:170:77] wire _entries_WIRE_6_hw = _entries_T_84; // @[TLB.scala:170:77] assign _entries_T_85 = _entries_WIRE_7[12]; // @[TLB.scala:170:77] wire _entries_WIRE_6_sr = _entries_T_85; // @[TLB.scala:170:77] assign _entries_T_86 = _entries_WIRE_7[13]; // @[TLB.scala:170:77] wire _entries_WIRE_6_sx = _entries_T_86; // @[TLB.scala:170:77] assign _entries_T_87 = _entries_WIRE_7[14]; // @[TLB.scala:170:77] wire _entries_WIRE_6_sw = _entries_T_87; // @[TLB.scala:170:77] assign _entries_T_88 = _entries_WIRE_7[15]; // @[TLB.scala:170:77] wire _entries_WIRE_6_gf = _entries_T_88; // @[TLB.scala:170:77] assign _entries_T_89 = _entries_WIRE_7[16]; // @[TLB.scala:170:77] wire _entries_WIRE_6_pf = _entries_T_89; // @[TLB.scala:170:77] assign _entries_T_90 = _entries_WIRE_7[17]; // @[TLB.scala:170:77] wire _entries_WIRE_6_ae_stage2 = _entries_T_90; // @[TLB.scala:170:77] assign _entries_T_91 = _entries_WIRE_7[18]; // @[TLB.scala:170:77] wire _entries_WIRE_6_ae_final = _entries_T_91; // @[TLB.scala:170:77] assign _entries_T_92 = _entries_WIRE_7[19]; // @[TLB.scala:170:77] wire _entries_WIRE_6_ae_ptw = _entries_T_92; // @[TLB.scala:170:77] assign _entries_T_93 = _entries_WIRE_7[20]; // @[TLB.scala:170:77] wire _entries_WIRE_6_g = _entries_T_93; // @[TLB.scala:170:77] assign _entries_T_94 = _entries_WIRE_7[21]; // @[TLB.scala:170:77] wire _entries_WIRE_6_u = _entries_T_94; // @[TLB.scala:170:77] assign _entries_T_95 = _entries_WIRE_7[41:22]; // @[TLB.scala:170:77] wire [19:0] _entries_WIRE_6_ppn = _entries_T_95; // @[TLB.scala:170:77] wire [19:0] _entries_T_119; // @[TLB.scala:170:77] wire _entries_T_118; // @[TLB.scala:170:77] wire _entries_T_117; // @[TLB.scala:170:77] wire _entries_T_116; // @[TLB.scala:170:77] wire _entries_T_115; // @[TLB.scala:170:77] wire _entries_T_114; // @[TLB.scala:170:77] wire _entries_T_113; // @[TLB.scala:170:77] wire _entries_T_112; // @[TLB.scala:170:77] wire _entries_T_111; // @[TLB.scala:170:77] wire _entries_T_110; // @[TLB.scala:170:77] wire _entries_T_109; // @[TLB.scala:170:77] wire _entries_T_108; // @[TLB.scala:170:77] wire _entries_T_107; // @[TLB.scala:170:77] wire _entries_T_106; // @[TLB.scala:170:77] wire _entries_T_105; // @[TLB.scala:170:77] wire _entries_T_104; // @[TLB.scala:170:77] wire _entries_T_103; // @[TLB.scala:170:77] wire _entries_T_102; // @[TLB.scala:170:77] wire _entries_T_101; // @[TLB.scala:170:77] wire _entries_T_100; // @[TLB.scala:170:77] wire _entries_T_99; // @[TLB.scala:170:77] wire _entries_T_98; // @[TLB.scala:170:77] wire _entries_T_97; // @[TLB.scala:170:77] wire [3:0][41:0] _GEN_36 = {{sectored_entries_0_4_data_3}, {sectored_entries_0_4_data_2}, {sectored_entries_0_4_data_1}, {sectored_entries_0_4_data_0}}; // @[TLB.scala:170:77, :339:29] wire [41:0] _entries_WIRE_9 = _GEN_36[_entries_T_96]; // @[package.scala:163:13] assign _entries_T_97 = _entries_WIRE_9[0]; // @[TLB.scala:170:77] wire _entries_WIRE_8_fragmented_superpage = _entries_T_97; // @[TLB.scala:170:77] assign _entries_T_98 = _entries_WIRE_9[1]; // @[TLB.scala:170:77] wire _entries_WIRE_8_c = _entries_T_98; // @[TLB.scala:170:77] assign _entries_T_99 = _entries_WIRE_9[2]; // @[TLB.scala:170:77] wire _entries_WIRE_8_eff = _entries_T_99; // @[TLB.scala:170:77] assign _entries_T_100 = _entries_WIRE_9[3]; // @[TLB.scala:170:77] wire _entries_WIRE_8_paa = _entries_T_100; // @[TLB.scala:170:77] assign _entries_T_101 = _entries_WIRE_9[4]; // @[TLB.scala:170:77] wire _entries_WIRE_8_pal = _entries_T_101; // @[TLB.scala:170:77] assign _entries_T_102 = _entries_WIRE_9[5]; // @[TLB.scala:170:77] wire _entries_WIRE_8_ppp = _entries_T_102; // @[TLB.scala:170:77] assign _entries_T_103 = _entries_WIRE_9[6]; // @[TLB.scala:170:77] wire _entries_WIRE_8_pr = _entries_T_103; // @[TLB.scala:170:77] assign _entries_T_104 = _entries_WIRE_9[7]; // @[TLB.scala:170:77] wire _entries_WIRE_8_px = _entries_T_104; // @[TLB.scala:170:77] assign _entries_T_105 = _entries_WIRE_9[8]; // @[TLB.scala:170:77] wire _entries_WIRE_8_pw = _entries_T_105; // @[TLB.scala:170:77] assign _entries_T_106 = _entries_WIRE_9[9]; // @[TLB.scala:170:77] wire _entries_WIRE_8_hr = _entries_T_106; // @[TLB.scala:170:77] assign _entries_T_107 = _entries_WIRE_9[10]; // @[TLB.scala:170:77] wire _entries_WIRE_8_hx = _entries_T_107; // @[TLB.scala:170:77] assign _entries_T_108 = _entries_WIRE_9[11]; // @[TLB.scala:170:77] wire _entries_WIRE_8_hw = _entries_T_108; // @[TLB.scala:170:77] assign _entries_T_109 = _entries_WIRE_9[12]; // @[TLB.scala:170:77] wire _entries_WIRE_8_sr = _entries_T_109; // @[TLB.scala:170:77] assign _entries_T_110 = _entries_WIRE_9[13]; // @[TLB.scala:170:77] wire _entries_WIRE_8_sx = _entries_T_110; // @[TLB.scala:170:77] assign _entries_T_111 = _entries_WIRE_9[14]; // @[TLB.scala:170:77] wire _entries_WIRE_8_sw = _entries_T_111; // @[TLB.scala:170:77] assign _entries_T_112 = _entries_WIRE_9[15]; // @[TLB.scala:170:77] wire _entries_WIRE_8_gf = _entries_T_112; // @[TLB.scala:170:77] assign _entries_T_113 = _entries_WIRE_9[16]; // @[TLB.scala:170:77] wire _entries_WIRE_8_pf = _entries_T_113; // @[TLB.scala:170:77] assign _entries_T_114 = _entries_WIRE_9[17]; // @[TLB.scala:170:77] wire _entries_WIRE_8_ae_stage2 = _entries_T_114; // @[TLB.scala:170:77] assign _entries_T_115 = _entries_WIRE_9[18]; // @[TLB.scala:170:77] wire _entries_WIRE_8_ae_final = _entries_T_115; // @[TLB.scala:170:77] assign _entries_T_116 = _entries_WIRE_9[19]; // @[TLB.scala:170:77] wire _entries_WIRE_8_ae_ptw = _entries_T_116; // @[TLB.scala:170:77] assign _entries_T_117 = _entries_WIRE_9[20]; // @[TLB.scala:170:77] wire _entries_WIRE_8_g = _entries_T_117; // @[TLB.scala:170:77] assign _entries_T_118 = _entries_WIRE_9[21]; // @[TLB.scala:170:77] wire _entries_WIRE_8_u = _entries_T_118; // @[TLB.scala:170:77] assign _entries_T_119 = _entries_WIRE_9[41:22]; // @[TLB.scala:170:77] wire [19:0] _entries_WIRE_8_ppn = _entries_T_119; // @[TLB.scala:170:77] wire [19:0] _entries_T_143; // @[TLB.scala:170:77] wire _entries_T_142; // @[TLB.scala:170:77] wire _entries_T_141; // @[TLB.scala:170:77] wire _entries_T_140; // @[TLB.scala:170:77] wire _entries_T_139; // @[TLB.scala:170:77] wire _entries_T_138; // @[TLB.scala:170:77] wire _entries_T_137; // @[TLB.scala:170:77] wire _entries_T_136; // @[TLB.scala:170:77] wire _entries_T_135; // @[TLB.scala:170:77] wire _entries_T_134; // @[TLB.scala:170:77] wire _entries_T_133; // @[TLB.scala:170:77] wire _entries_T_132; // @[TLB.scala:170:77] wire _entries_T_131; // @[TLB.scala:170:77] wire _entries_T_130; // @[TLB.scala:170:77] wire _entries_T_129; // @[TLB.scala:170:77] wire _entries_T_128; // @[TLB.scala:170:77] wire _entries_T_127; // @[TLB.scala:170:77] wire _entries_T_126; // @[TLB.scala:170:77] wire _entries_T_125; // @[TLB.scala:170:77] wire _entries_T_124; // @[TLB.scala:170:77] wire _entries_T_123; // @[TLB.scala:170:77] wire _entries_T_122; // @[TLB.scala:170:77] wire _entries_T_121; // @[TLB.scala:170:77] wire [3:0][41:0] _GEN_37 = {{sectored_entries_0_5_data_3}, {sectored_entries_0_5_data_2}, {sectored_entries_0_5_data_1}, {sectored_entries_0_5_data_0}}; // @[TLB.scala:170:77, :339:29] wire [41:0] _entries_WIRE_11 = _GEN_37[_entries_T_120]; // @[package.scala:163:13] assign _entries_T_121 = _entries_WIRE_11[0]; // @[TLB.scala:170:77] wire _entries_WIRE_10_fragmented_superpage = _entries_T_121; // @[TLB.scala:170:77] assign _entries_T_122 = _entries_WIRE_11[1]; // @[TLB.scala:170:77] wire _entries_WIRE_10_c = _entries_T_122; // @[TLB.scala:170:77] assign _entries_T_123 = _entries_WIRE_11[2]; // @[TLB.scala:170:77] wire _entries_WIRE_10_eff = _entries_T_123; // @[TLB.scala:170:77] assign _entries_T_124 = _entries_WIRE_11[3]; // @[TLB.scala:170:77] wire _entries_WIRE_10_paa = _entries_T_124; // @[TLB.scala:170:77] assign _entries_T_125 = _entries_WIRE_11[4]; // @[TLB.scala:170:77] wire _entries_WIRE_10_pal = _entries_T_125; // @[TLB.scala:170:77] assign _entries_T_126 = _entries_WIRE_11[5]; // @[TLB.scala:170:77] wire _entries_WIRE_10_ppp = _entries_T_126; // @[TLB.scala:170:77] assign _entries_T_127 = _entries_WIRE_11[6]; // @[TLB.scala:170:77] wire _entries_WIRE_10_pr = _entries_T_127; // @[TLB.scala:170:77] assign _entries_T_128 = _entries_WIRE_11[7]; // @[TLB.scala:170:77] wire _entries_WIRE_10_px = _entries_T_128; // @[TLB.scala:170:77] assign _entries_T_129 = _entries_WIRE_11[8]; // @[TLB.scala:170:77] wire _entries_WIRE_10_pw = _entries_T_129; // @[TLB.scala:170:77] assign _entries_T_130 = _entries_WIRE_11[9]; // @[TLB.scala:170:77] wire _entries_WIRE_10_hr = _entries_T_130; // @[TLB.scala:170:77] assign _entries_T_131 = _entries_WIRE_11[10]; // @[TLB.scala:170:77] wire _entries_WIRE_10_hx = _entries_T_131; // @[TLB.scala:170:77] assign _entries_T_132 = _entries_WIRE_11[11]; // @[TLB.scala:170:77] wire _entries_WIRE_10_hw = _entries_T_132; // @[TLB.scala:170:77] assign _entries_T_133 = _entries_WIRE_11[12]; // @[TLB.scala:170:77] wire _entries_WIRE_10_sr = _entries_T_133; // @[TLB.scala:170:77] assign _entries_T_134 = _entries_WIRE_11[13]; // @[TLB.scala:170:77] wire _entries_WIRE_10_sx = _entries_T_134; // @[TLB.scala:170:77] assign _entries_T_135 = _entries_WIRE_11[14]; // @[TLB.scala:170:77] wire _entries_WIRE_10_sw = _entries_T_135; // @[TLB.scala:170:77] assign _entries_T_136 = _entries_WIRE_11[15]; // @[TLB.scala:170:77] wire _entries_WIRE_10_gf = _entries_T_136; // @[TLB.scala:170:77] assign _entries_T_137 = _entries_WIRE_11[16]; // @[TLB.scala:170:77] wire _entries_WIRE_10_pf = _entries_T_137; // @[TLB.scala:170:77] assign _entries_T_138 = _entries_WIRE_11[17]; // @[TLB.scala:170:77] wire _entries_WIRE_10_ae_stage2 = _entries_T_138; // @[TLB.scala:170:77] assign _entries_T_139 = _entries_WIRE_11[18]; // @[TLB.scala:170:77] wire _entries_WIRE_10_ae_final = _entries_T_139; // @[TLB.scala:170:77] assign _entries_T_140 = _entries_WIRE_11[19]; // @[TLB.scala:170:77] wire _entries_WIRE_10_ae_ptw = _entries_T_140; // @[TLB.scala:170:77] assign _entries_T_141 = _entries_WIRE_11[20]; // @[TLB.scala:170:77] wire _entries_WIRE_10_g = _entries_T_141; // @[TLB.scala:170:77] assign _entries_T_142 = _entries_WIRE_11[21]; // @[TLB.scala:170:77] wire _entries_WIRE_10_u = _entries_T_142; // @[TLB.scala:170:77] assign _entries_T_143 = _entries_WIRE_11[41:22]; // @[TLB.scala:170:77] wire [19:0] _entries_WIRE_10_ppn = _entries_T_143; // @[TLB.scala:170:77] wire [19:0] _entries_T_167; // @[TLB.scala:170:77] wire _entries_T_166; // @[TLB.scala:170:77] wire _entries_T_165; // @[TLB.scala:170:77] wire _entries_T_164; // @[TLB.scala:170:77] wire _entries_T_163; // @[TLB.scala:170:77] wire _entries_T_162; // @[TLB.scala:170:77] wire _entries_T_161; // @[TLB.scala:170:77] wire _entries_T_160; // @[TLB.scala:170:77] wire _entries_T_159; // @[TLB.scala:170:77] wire _entries_T_158; // @[TLB.scala:170:77] wire _entries_T_157; // @[TLB.scala:170:77] wire _entries_T_156; // @[TLB.scala:170:77] wire _entries_T_155; // @[TLB.scala:170:77] wire _entries_T_154; // @[TLB.scala:170:77] wire _entries_T_153; // @[TLB.scala:170:77] wire _entries_T_152; // @[TLB.scala:170:77] wire _entries_T_151; // @[TLB.scala:170:77] wire _entries_T_150; // @[TLB.scala:170:77] wire _entries_T_149; // @[TLB.scala:170:77] wire _entries_T_148; // @[TLB.scala:170:77] wire _entries_T_147; // @[TLB.scala:170:77] wire _entries_T_146; // @[TLB.scala:170:77] wire _entries_T_145; // @[TLB.scala:170:77] wire [3:0][41:0] _GEN_38 = {{sectored_entries_0_6_data_3}, {sectored_entries_0_6_data_2}, {sectored_entries_0_6_data_1}, {sectored_entries_0_6_data_0}}; // @[TLB.scala:170:77, :339:29] wire [41:0] _entries_WIRE_13 = _GEN_38[_entries_T_144]; // @[package.scala:163:13] assign _entries_T_145 = _entries_WIRE_13[0]; // @[TLB.scala:170:77] wire _entries_WIRE_12_fragmented_superpage = _entries_T_145; // @[TLB.scala:170:77] assign _entries_T_146 = _entries_WIRE_13[1]; // @[TLB.scala:170:77] wire _entries_WIRE_12_c = _entries_T_146; // @[TLB.scala:170:77] assign _entries_T_147 = _entries_WIRE_13[2]; // @[TLB.scala:170:77] wire _entries_WIRE_12_eff = _entries_T_147; // @[TLB.scala:170:77] assign _entries_T_148 = _entries_WIRE_13[3]; // @[TLB.scala:170:77] wire _entries_WIRE_12_paa = _entries_T_148; // @[TLB.scala:170:77] assign _entries_T_149 = _entries_WIRE_13[4]; // @[TLB.scala:170:77] wire _entries_WIRE_12_pal = _entries_T_149; // @[TLB.scala:170:77] assign _entries_T_150 = _entries_WIRE_13[5]; // @[TLB.scala:170:77] wire _entries_WIRE_12_ppp = _entries_T_150; // @[TLB.scala:170:77] assign _entries_T_151 = _entries_WIRE_13[6]; // @[TLB.scala:170:77] wire _entries_WIRE_12_pr = _entries_T_151; // @[TLB.scala:170:77] assign _entries_T_152 = _entries_WIRE_13[7]; // @[TLB.scala:170:77] wire _entries_WIRE_12_px = _entries_T_152; // @[TLB.scala:170:77] assign _entries_T_153 = _entries_WIRE_13[8]; // @[TLB.scala:170:77] wire _entries_WIRE_12_pw = _entries_T_153; // @[TLB.scala:170:77] assign _entries_T_154 = _entries_WIRE_13[9]; // @[TLB.scala:170:77] wire _entries_WIRE_12_hr = _entries_T_154; // @[TLB.scala:170:77] assign _entries_T_155 = _entries_WIRE_13[10]; // @[TLB.scala:170:77] wire _entries_WIRE_12_hx = _entries_T_155; // @[TLB.scala:170:77] assign _entries_T_156 = _entries_WIRE_13[11]; // @[TLB.scala:170:77] wire _entries_WIRE_12_hw = _entries_T_156; // @[TLB.scala:170:77] assign _entries_T_157 = _entries_WIRE_13[12]; // @[TLB.scala:170:77] wire _entries_WIRE_12_sr = _entries_T_157; // @[TLB.scala:170:77] assign _entries_T_158 = _entries_WIRE_13[13]; // @[TLB.scala:170:77] wire _entries_WIRE_12_sx = _entries_T_158; // @[TLB.scala:170:77] assign _entries_T_159 = _entries_WIRE_13[14]; // @[TLB.scala:170:77] wire _entries_WIRE_12_sw = _entries_T_159; // @[TLB.scala:170:77] assign _entries_T_160 = _entries_WIRE_13[15]; // @[TLB.scala:170:77] wire _entries_WIRE_12_gf = _entries_T_160; // @[TLB.scala:170:77] assign _entries_T_161 = _entries_WIRE_13[16]; // @[TLB.scala:170:77] wire _entries_WIRE_12_pf = _entries_T_161; // @[TLB.scala:170:77] assign _entries_T_162 = _entries_WIRE_13[17]; // @[TLB.scala:170:77] wire _entries_WIRE_12_ae_stage2 = _entries_T_162; // @[TLB.scala:170:77] assign _entries_T_163 = _entries_WIRE_13[18]; // @[TLB.scala:170:77] wire _entries_WIRE_12_ae_final = _entries_T_163; // @[TLB.scala:170:77] assign _entries_T_164 = _entries_WIRE_13[19]; // @[TLB.scala:170:77] wire _entries_WIRE_12_ae_ptw = _entries_T_164; // @[TLB.scala:170:77] assign _entries_T_165 = _entries_WIRE_13[20]; // @[TLB.scala:170:77] wire _entries_WIRE_12_g = _entries_T_165; // @[TLB.scala:170:77] assign _entries_T_166 = _entries_WIRE_13[21]; // @[TLB.scala:170:77] wire _entries_WIRE_12_u = _entries_T_166; // @[TLB.scala:170:77] assign _entries_T_167 = _entries_WIRE_13[41:22]; // @[TLB.scala:170:77] wire [19:0] _entries_WIRE_12_ppn = _entries_T_167; // @[TLB.scala:170:77] wire [19:0] _entries_T_191; // @[TLB.scala:170:77] wire _entries_T_190; // @[TLB.scala:170:77] wire _entries_T_189; // @[TLB.scala:170:77] wire _entries_T_188; // @[TLB.scala:170:77] wire _entries_T_187; // @[TLB.scala:170:77] wire _entries_T_186; // @[TLB.scala:170:77] wire _entries_T_185; // @[TLB.scala:170:77] wire _entries_T_184; // @[TLB.scala:170:77] wire _entries_T_183; // @[TLB.scala:170:77] wire _entries_T_182; // @[TLB.scala:170:77] wire _entries_T_181; // @[TLB.scala:170:77] wire _entries_T_180; // @[TLB.scala:170:77] wire _entries_T_179; // @[TLB.scala:170:77] wire _entries_T_178; // @[TLB.scala:170:77] wire _entries_T_177; // @[TLB.scala:170:77] wire _entries_T_176; // @[TLB.scala:170:77] wire _entries_T_175; // @[TLB.scala:170:77] wire _entries_T_174; // @[TLB.scala:170:77] wire _entries_T_173; // @[TLB.scala:170:77] wire _entries_T_172; // @[TLB.scala:170:77] wire _entries_T_171; // @[TLB.scala:170:77] wire _entries_T_170; // @[TLB.scala:170:77] wire _entries_T_169; // @[TLB.scala:170:77] wire [3:0][41:0] _GEN_39 = {{sectored_entries_0_7_data_3}, {sectored_entries_0_7_data_2}, {sectored_entries_0_7_data_1}, {sectored_entries_0_7_data_0}}; // @[TLB.scala:170:77, :339:29] wire [41:0] _entries_WIRE_15 = _GEN_39[_entries_T_168]; // @[package.scala:163:13] assign _entries_T_169 = _entries_WIRE_15[0]; // @[TLB.scala:170:77] wire _entries_WIRE_14_fragmented_superpage = _entries_T_169; // @[TLB.scala:170:77] assign _entries_T_170 = _entries_WIRE_15[1]; // @[TLB.scala:170:77] wire _entries_WIRE_14_c = _entries_T_170; // @[TLB.scala:170:77] assign _entries_T_171 = _entries_WIRE_15[2]; // @[TLB.scala:170:77] wire _entries_WIRE_14_eff = _entries_T_171; // @[TLB.scala:170:77] assign _entries_T_172 = _entries_WIRE_15[3]; // @[TLB.scala:170:77] wire _entries_WIRE_14_paa = _entries_T_172; // @[TLB.scala:170:77] assign _entries_T_173 = _entries_WIRE_15[4]; // @[TLB.scala:170:77] wire _entries_WIRE_14_pal = _entries_T_173; // @[TLB.scala:170:77] assign _entries_T_174 = _entries_WIRE_15[5]; // @[TLB.scala:170:77] wire _entries_WIRE_14_ppp = _entries_T_174; // @[TLB.scala:170:77] assign _entries_T_175 = _entries_WIRE_15[6]; // @[TLB.scala:170:77] wire _entries_WIRE_14_pr = _entries_T_175; // @[TLB.scala:170:77] assign _entries_T_176 = _entries_WIRE_15[7]; // @[TLB.scala:170:77] wire _entries_WIRE_14_px = _entries_T_176; // @[TLB.scala:170:77] assign _entries_T_177 = _entries_WIRE_15[8]; // @[TLB.scala:170:77] wire _entries_WIRE_14_pw = _entries_T_177; // @[TLB.scala:170:77] assign _entries_T_178 = _entries_WIRE_15[9]; // @[TLB.scala:170:77] wire _entries_WIRE_14_hr = _entries_T_178; // @[TLB.scala:170:77] assign _entries_T_179 = _entries_WIRE_15[10]; // @[TLB.scala:170:77] wire _entries_WIRE_14_hx = _entries_T_179; // @[TLB.scala:170:77] assign _entries_T_180 = _entries_WIRE_15[11]; // @[TLB.scala:170:77] wire _entries_WIRE_14_hw = _entries_T_180; // @[TLB.scala:170:77] assign _entries_T_181 = _entries_WIRE_15[12]; // @[TLB.scala:170:77] wire _entries_WIRE_14_sr = _entries_T_181; // @[TLB.scala:170:77] assign _entries_T_182 = _entries_WIRE_15[13]; // @[TLB.scala:170:77] wire _entries_WIRE_14_sx = _entries_T_182; // @[TLB.scala:170:77] assign _entries_T_183 = _entries_WIRE_15[14]; // @[TLB.scala:170:77] wire _entries_WIRE_14_sw = _entries_T_183; // @[TLB.scala:170:77] assign _entries_T_184 = _entries_WIRE_15[15]; // @[TLB.scala:170:77] wire _entries_WIRE_14_gf = _entries_T_184; // @[TLB.scala:170:77] assign _entries_T_185 = _entries_WIRE_15[16]; // @[TLB.scala:170:77] wire _entries_WIRE_14_pf = _entries_T_185; // @[TLB.scala:170:77] assign _entries_T_186 = _entries_WIRE_15[17]; // @[TLB.scala:170:77] wire _entries_WIRE_14_ae_stage2 = _entries_T_186; // @[TLB.scala:170:77] assign _entries_T_187 = _entries_WIRE_15[18]; // @[TLB.scala:170:77] wire _entries_WIRE_14_ae_final = _entries_T_187; // @[TLB.scala:170:77] assign _entries_T_188 = _entries_WIRE_15[19]; // @[TLB.scala:170:77] wire _entries_WIRE_14_ae_ptw = _entries_T_188; // @[TLB.scala:170:77] assign _entries_T_189 = _entries_WIRE_15[20]; // @[TLB.scala:170:77] wire _entries_WIRE_14_g = _entries_T_189; // @[TLB.scala:170:77] assign _entries_T_190 = _entries_WIRE_15[21]; // @[TLB.scala:170:77] wire _entries_WIRE_14_u = _entries_T_190; // @[TLB.scala:170:77] assign _entries_T_191 = _entries_WIRE_15[41:22]; // @[TLB.scala:170:77] wire [19:0] _entries_WIRE_14_ppn = _entries_T_191; // @[TLB.scala:170:77] wire [19:0] _entries_T_214; // @[TLB.scala:170:77] wire _entries_T_213; // @[TLB.scala:170:77] wire _entries_T_212; // @[TLB.scala:170:77] wire _entries_T_211; // @[TLB.scala:170:77] wire _entries_T_210; // @[TLB.scala:170:77] wire _entries_T_209; // @[TLB.scala:170:77] wire _entries_T_208; // @[TLB.scala:170:77] wire _entries_T_207; // @[TLB.scala:170:77] wire _entries_T_206; // @[TLB.scala:170:77] wire _entries_T_205; // @[TLB.scala:170:77] wire _entries_T_204; // @[TLB.scala:170:77] wire _entries_T_203; // @[TLB.scala:170:77] wire _entries_T_202; // @[TLB.scala:170:77] wire _entries_T_201; // @[TLB.scala:170:77] wire _entries_T_200; // @[TLB.scala:170:77] wire _entries_T_199; // @[TLB.scala:170:77] wire _entries_T_198; // @[TLB.scala:170:77] wire _entries_T_197; // @[TLB.scala:170:77] wire _entries_T_196; // @[TLB.scala:170:77] wire _entries_T_195; // @[TLB.scala:170:77] wire _entries_T_194; // @[TLB.scala:170:77] wire _entries_T_193; // @[TLB.scala:170:77] wire _entries_T_192; // @[TLB.scala:170:77] assign _entries_T_192 = _entries_WIRE_17[0]; // @[TLB.scala:170:77] wire _entries_WIRE_16_fragmented_superpage = _entries_T_192; // @[TLB.scala:170:77] assign _entries_T_193 = _entries_WIRE_17[1]; // @[TLB.scala:170:77] wire _entries_WIRE_16_c = _entries_T_193; // @[TLB.scala:170:77] assign _entries_T_194 = _entries_WIRE_17[2]; // @[TLB.scala:170:77] wire _entries_WIRE_16_eff = _entries_T_194; // @[TLB.scala:170:77] assign _entries_T_195 = _entries_WIRE_17[3]; // @[TLB.scala:170:77] wire _entries_WIRE_16_paa = _entries_T_195; // @[TLB.scala:170:77] assign _entries_T_196 = _entries_WIRE_17[4]; // @[TLB.scala:170:77] wire _entries_WIRE_16_pal = _entries_T_196; // @[TLB.scala:170:77] assign _entries_T_197 = _entries_WIRE_17[5]; // @[TLB.scala:170:77] wire _entries_WIRE_16_ppp = _entries_T_197; // @[TLB.scala:170:77] assign _entries_T_198 = _entries_WIRE_17[6]; // @[TLB.scala:170:77] wire _entries_WIRE_16_pr = _entries_T_198; // @[TLB.scala:170:77] assign _entries_T_199 = _entries_WIRE_17[7]; // @[TLB.scala:170:77] wire _entries_WIRE_16_px = _entries_T_199; // @[TLB.scala:170:77] assign _entries_T_200 = _entries_WIRE_17[8]; // @[TLB.scala:170:77] wire _entries_WIRE_16_pw = _entries_T_200; // @[TLB.scala:170:77] assign _entries_T_201 = _entries_WIRE_17[9]; // @[TLB.scala:170:77] wire _entries_WIRE_16_hr = _entries_T_201; // @[TLB.scala:170:77] assign _entries_T_202 = _entries_WIRE_17[10]; // @[TLB.scala:170:77] wire _entries_WIRE_16_hx = _entries_T_202; // @[TLB.scala:170:77] assign _entries_T_203 = _entries_WIRE_17[11]; // @[TLB.scala:170:77] wire _entries_WIRE_16_hw = _entries_T_203; // @[TLB.scala:170:77] assign _entries_T_204 = _entries_WIRE_17[12]; // @[TLB.scala:170:77] wire _entries_WIRE_16_sr = _entries_T_204; // @[TLB.scala:170:77] assign _entries_T_205 = _entries_WIRE_17[13]; // @[TLB.scala:170:77] wire _entries_WIRE_16_sx = _entries_T_205; // @[TLB.scala:170:77] assign _entries_T_206 = _entries_WIRE_17[14]; // @[TLB.scala:170:77] wire _entries_WIRE_16_sw = _entries_T_206; // @[TLB.scala:170:77] assign _entries_T_207 = _entries_WIRE_17[15]; // @[TLB.scala:170:77] wire _entries_WIRE_16_gf = _entries_T_207; // @[TLB.scala:170:77] assign _entries_T_208 = _entries_WIRE_17[16]; // @[TLB.scala:170:77] wire _entries_WIRE_16_pf = _entries_T_208; // @[TLB.scala:170:77] assign _entries_T_209 = _entries_WIRE_17[17]; // @[TLB.scala:170:77] wire _entries_WIRE_16_ae_stage2 = _entries_T_209; // @[TLB.scala:170:77] assign _entries_T_210 = _entries_WIRE_17[18]; // @[TLB.scala:170:77] wire _entries_WIRE_16_ae_final = _entries_T_210; // @[TLB.scala:170:77] assign _entries_T_211 = _entries_WIRE_17[19]; // @[TLB.scala:170:77] wire _entries_WIRE_16_ae_ptw = _entries_T_211; // @[TLB.scala:170:77] assign _entries_T_212 = _entries_WIRE_17[20]; // @[TLB.scala:170:77] wire _entries_WIRE_16_g = _entries_T_212; // @[TLB.scala:170:77] assign _entries_T_213 = _entries_WIRE_17[21]; // @[TLB.scala:170:77] wire _entries_WIRE_16_u = _entries_T_213; // @[TLB.scala:170:77] assign _entries_T_214 = _entries_WIRE_17[41:22]; // @[TLB.scala:170:77] wire [19:0] _entries_WIRE_16_ppn = _entries_T_214; // @[TLB.scala:170:77] wire [19:0] _entries_T_237; // @[TLB.scala:170:77] wire _entries_T_236; // @[TLB.scala:170:77] wire _entries_T_235; // @[TLB.scala:170:77] wire _entries_T_234; // @[TLB.scala:170:77] wire _entries_T_233; // @[TLB.scala:170:77] wire _entries_T_232; // @[TLB.scala:170:77] wire _entries_T_231; // @[TLB.scala:170:77] wire _entries_T_230; // @[TLB.scala:170:77] wire _entries_T_229; // @[TLB.scala:170:77] wire _entries_T_228; // @[TLB.scala:170:77] wire _entries_T_227; // @[TLB.scala:170:77] wire _entries_T_226; // @[TLB.scala:170:77] wire _entries_T_225; // @[TLB.scala:170:77] wire _entries_T_224; // @[TLB.scala:170:77] wire _entries_T_223; // @[TLB.scala:170:77] wire _entries_T_222; // @[TLB.scala:170:77] wire _entries_T_221; // @[TLB.scala:170:77] wire _entries_T_220; // @[TLB.scala:170:77] wire _entries_T_219; // @[TLB.scala:170:77] wire _entries_T_218; // @[TLB.scala:170:77] wire _entries_T_217; // @[TLB.scala:170:77] wire _entries_T_216; // @[TLB.scala:170:77] wire _entries_T_215; // @[TLB.scala:170:77] assign _entries_T_215 = _entries_WIRE_19[0]; // @[TLB.scala:170:77] wire _entries_WIRE_18_fragmented_superpage = _entries_T_215; // @[TLB.scala:170:77] assign _entries_T_216 = _entries_WIRE_19[1]; // @[TLB.scala:170:77] wire _entries_WIRE_18_c = _entries_T_216; // @[TLB.scala:170:77] assign _entries_T_217 = _entries_WIRE_19[2]; // @[TLB.scala:170:77] wire _entries_WIRE_18_eff = _entries_T_217; // @[TLB.scala:170:77] assign _entries_T_218 = _entries_WIRE_19[3]; // @[TLB.scala:170:77] wire _entries_WIRE_18_paa = _entries_T_218; // @[TLB.scala:170:77] assign _entries_T_219 = _entries_WIRE_19[4]; // @[TLB.scala:170:77] wire _entries_WIRE_18_pal = _entries_T_219; // @[TLB.scala:170:77] assign _entries_T_220 = _entries_WIRE_19[5]; // @[TLB.scala:170:77] wire _entries_WIRE_18_ppp = _entries_T_220; // @[TLB.scala:170:77] assign _entries_T_221 = _entries_WIRE_19[6]; // @[TLB.scala:170:77] wire _entries_WIRE_18_pr = _entries_T_221; // @[TLB.scala:170:77] assign _entries_T_222 = _entries_WIRE_19[7]; // @[TLB.scala:170:77] wire _entries_WIRE_18_px = _entries_T_222; // @[TLB.scala:170:77] assign _entries_T_223 = _entries_WIRE_19[8]; // @[TLB.scala:170:77] wire _entries_WIRE_18_pw = _entries_T_223; // @[TLB.scala:170:77] assign _entries_T_224 = _entries_WIRE_19[9]; // @[TLB.scala:170:77] wire _entries_WIRE_18_hr = _entries_T_224; // @[TLB.scala:170:77] assign _entries_T_225 = _entries_WIRE_19[10]; // @[TLB.scala:170:77] wire _entries_WIRE_18_hx = _entries_T_225; // @[TLB.scala:170:77] assign _entries_T_226 = _entries_WIRE_19[11]; // @[TLB.scala:170:77] wire _entries_WIRE_18_hw = _entries_T_226; // @[TLB.scala:170:77] assign _entries_T_227 = _entries_WIRE_19[12]; // @[TLB.scala:170:77] wire _entries_WIRE_18_sr = _entries_T_227; // @[TLB.scala:170:77] assign _entries_T_228 = _entries_WIRE_19[13]; // @[TLB.scala:170:77] wire _entries_WIRE_18_sx = _entries_T_228; // @[TLB.scala:170:77] assign _entries_T_229 = _entries_WIRE_19[14]; // @[TLB.scala:170:77] wire _entries_WIRE_18_sw = _entries_T_229; // @[TLB.scala:170:77] assign _entries_T_230 = _entries_WIRE_19[15]; // @[TLB.scala:170:77] wire _entries_WIRE_18_gf = _entries_T_230; // @[TLB.scala:170:77] assign _entries_T_231 = _entries_WIRE_19[16]; // @[TLB.scala:170:77] wire _entries_WIRE_18_pf = _entries_T_231; // @[TLB.scala:170:77] assign _entries_T_232 = _entries_WIRE_19[17]; // @[TLB.scala:170:77] wire _entries_WIRE_18_ae_stage2 = _entries_T_232; // @[TLB.scala:170:77] assign _entries_T_233 = _entries_WIRE_19[18]; // @[TLB.scala:170:77] wire _entries_WIRE_18_ae_final = _entries_T_233; // @[TLB.scala:170:77] assign _entries_T_234 = _entries_WIRE_19[19]; // @[TLB.scala:170:77] wire _entries_WIRE_18_ae_ptw = _entries_T_234; // @[TLB.scala:170:77] assign _entries_T_235 = _entries_WIRE_19[20]; // @[TLB.scala:170:77] wire _entries_WIRE_18_g = _entries_T_235; // @[TLB.scala:170:77] assign _entries_T_236 = _entries_WIRE_19[21]; // @[TLB.scala:170:77] wire _entries_WIRE_18_u = _entries_T_236; // @[TLB.scala:170:77] assign _entries_T_237 = _entries_WIRE_19[41:22]; // @[TLB.scala:170:77] wire [19:0] _entries_WIRE_18_ppn = _entries_T_237; // @[TLB.scala:170:77] wire [19:0] _entries_T_260; // @[TLB.scala:170:77] wire _entries_T_259; // @[TLB.scala:170:77] wire _entries_T_258; // @[TLB.scala:170:77] wire _entries_T_257; // @[TLB.scala:170:77] wire _entries_T_256; // @[TLB.scala:170:77] wire _entries_T_255; // @[TLB.scala:170:77] wire _entries_T_254; // @[TLB.scala:170:77] wire _entries_T_253; // @[TLB.scala:170:77] wire _entries_T_252; // @[TLB.scala:170:77] wire _entries_T_251; // @[TLB.scala:170:77] wire _entries_T_250; // @[TLB.scala:170:77] wire _entries_T_249; // @[TLB.scala:170:77] wire _entries_T_248; // @[TLB.scala:170:77] wire _entries_T_247; // @[TLB.scala:170:77] wire _entries_T_246; // @[TLB.scala:170:77] wire _entries_T_245; // @[TLB.scala:170:77] wire _entries_T_244; // @[TLB.scala:170:77] wire _entries_T_243; // @[TLB.scala:170:77] wire _entries_T_242; // @[TLB.scala:170:77] wire _entries_T_241; // @[TLB.scala:170:77] wire _entries_T_240; // @[TLB.scala:170:77] wire _entries_T_239; // @[TLB.scala:170:77] wire _entries_T_238; // @[TLB.scala:170:77] assign _entries_T_238 = _entries_WIRE_21[0]; // @[TLB.scala:170:77] wire _entries_WIRE_20_fragmented_superpage = _entries_T_238; // @[TLB.scala:170:77] assign _entries_T_239 = _entries_WIRE_21[1]; // @[TLB.scala:170:77] wire _entries_WIRE_20_c = _entries_T_239; // @[TLB.scala:170:77] assign _entries_T_240 = _entries_WIRE_21[2]; // @[TLB.scala:170:77] wire _entries_WIRE_20_eff = _entries_T_240; // @[TLB.scala:170:77] assign _entries_T_241 = _entries_WIRE_21[3]; // @[TLB.scala:170:77] wire _entries_WIRE_20_paa = _entries_T_241; // @[TLB.scala:170:77] assign _entries_T_242 = _entries_WIRE_21[4]; // @[TLB.scala:170:77] wire _entries_WIRE_20_pal = _entries_T_242; // @[TLB.scala:170:77] assign _entries_T_243 = _entries_WIRE_21[5]; // @[TLB.scala:170:77] wire _entries_WIRE_20_ppp = _entries_T_243; // @[TLB.scala:170:77] assign _entries_T_244 = _entries_WIRE_21[6]; // @[TLB.scala:170:77] wire _entries_WIRE_20_pr = _entries_T_244; // @[TLB.scala:170:77] assign _entries_T_245 = _entries_WIRE_21[7]; // @[TLB.scala:170:77] wire _entries_WIRE_20_px = _entries_T_245; // @[TLB.scala:170:77] assign _entries_T_246 = _entries_WIRE_21[8]; // @[TLB.scala:170:77] wire _entries_WIRE_20_pw = _entries_T_246; // @[TLB.scala:170:77] assign _entries_T_247 = _entries_WIRE_21[9]; // @[TLB.scala:170:77] wire _entries_WIRE_20_hr = _entries_T_247; // @[TLB.scala:170:77] assign _entries_T_248 = _entries_WIRE_21[10]; // @[TLB.scala:170:77] wire _entries_WIRE_20_hx = _entries_T_248; // @[TLB.scala:170:77] assign _entries_T_249 = _entries_WIRE_21[11]; // @[TLB.scala:170:77] wire _entries_WIRE_20_hw = _entries_T_249; // @[TLB.scala:170:77] assign _entries_T_250 = _entries_WIRE_21[12]; // @[TLB.scala:170:77] wire _entries_WIRE_20_sr = _entries_T_250; // @[TLB.scala:170:77] assign _entries_T_251 = _entries_WIRE_21[13]; // @[TLB.scala:170:77] wire _entries_WIRE_20_sx = _entries_T_251; // @[TLB.scala:170:77] assign _entries_T_252 = _entries_WIRE_21[14]; // @[TLB.scala:170:77] wire _entries_WIRE_20_sw = _entries_T_252; // @[TLB.scala:170:77] assign _entries_T_253 = _entries_WIRE_21[15]; // @[TLB.scala:170:77] wire _entries_WIRE_20_gf = _entries_T_253; // @[TLB.scala:170:77] assign _entries_T_254 = _entries_WIRE_21[16]; // @[TLB.scala:170:77] wire _entries_WIRE_20_pf = _entries_T_254; // @[TLB.scala:170:77] assign _entries_T_255 = _entries_WIRE_21[17]; // @[TLB.scala:170:77] wire _entries_WIRE_20_ae_stage2 = _entries_T_255; // @[TLB.scala:170:77] assign _entries_T_256 = _entries_WIRE_21[18]; // @[TLB.scala:170:77] wire _entries_WIRE_20_ae_final = _entries_T_256; // @[TLB.scala:170:77] assign _entries_T_257 = _entries_WIRE_21[19]; // @[TLB.scala:170:77] wire _entries_WIRE_20_ae_ptw = _entries_T_257; // @[TLB.scala:170:77] assign _entries_T_258 = _entries_WIRE_21[20]; // @[TLB.scala:170:77] wire _entries_WIRE_20_g = _entries_T_258; // @[TLB.scala:170:77] assign _entries_T_259 = _entries_WIRE_21[21]; // @[TLB.scala:170:77] wire _entries_WIRE_20_u = _entries_T_259; // @[TLB.scala:170:77] assign _entries_T_260 = _entries_WIRE_21[41:22]; // @[TLB.scala:170:77] wire [19:0] _entries_WIRE_20_ppn = _entries_T_260; // @[TLB.scala:170:77] wire [19:0] _entries_T_283; // @[TLB.scala:170:77] wire _entries_T_282; // @[TLB.scala:170:77] wire _entries_T_281; // @[TLB.scala:170:77] wire _entries_T_280; // @[TLB.scala:170:77] wire _entries_T_279; // @[TLB.scala:170:77] wire _entries_T_278; // @[TLB.scala:170:77] wire _entries_T_277; // @[TLB.scala:170:77] wire _entries_T_276; // @[TLB.scala:170:77] wire _entries_T_275; // @[TLB.scala:170:77] wire _entries_T_274; // @[TLB.scala:170:77] wire _entries_T_273; // @[TLB.scala:170:77] wire _entries_T_272; // @[TLB.scala:170:77] wire _entries_T_271; // @[TLB.scala:170:77] wire _entries_T_270; // @[TLB.scala:170:77] wire _entries_T_269; // @[TLB.scala:170:77] wire _entries_T_268; // @[TLB.scala:170:77] wire _entries_T_267; // @[TLB.scala:170:77] wire _entries_T_266; // @[TLB.scala:170:77] wire _entries_T_265; // @[TLB.scala:170:77] wire _entries_T_264; // @[TLB.scala:170:77] wire _entries_T_263; // @[TLB.scala:170:77] wire _entries_T_262; // @[TLB.scala:170:77] wire _entries_T_261; // @[TLB.scala:170:77] assign _entries_T_261 = _entries_WIRE_23[0]; // @[TLB.scala:170:77] wire _entries_WIRE_22_fragmented_superpage = _entries_T_261; // @[TLB.scala:170:77] assign _entries_T_262 = _entries_WIRE_23[1]; // @[TLB.scala:170:77] wire _entries_WIRE_22_c = _entries_T_262; // @[TLB.scala:170:77] assign _entries_T_263 = _entries_WIRE_23[2]; // @[TLB.scala:170:77] wire _entries_WIRE_22_eff = _entries_T_263; // @[TLB.scala:170:77] assign _entries_T_264 = _entries_WIRE_23[3]; // @[TLB.scala:170:77] wire _entries_WIRE_22_paa = _entries_T_264; // @[TLB.scala:170:77] assign _entries_T_265 = _entries_WIRE_23[4]; // @[TLB.scala:170:77] wire _entries_WIRE_22_pal = _entries_T_265; // @[TLB.scala:170:77] assign _entries_T_266 = _entries_WIRE_23[5]; // @[TLB.scala:170:77] wire _entries_WIRE_22_ppp = _entries_T_266; // @[TLB.scala:170:77] assign _entries_T_267 = _entries_WIRE_23[6]; // @[TLB.scala:170:77] wire _entries_WIRE_22_pr = _entries_T_267; // @[TLB.scala:170:77] assign _entries_T_268 = _entries_WIRE_23[7]; // @[TLB.scala:170:77] wire _entries_WIRE_22_px = _entries_T_268; // @[TLB.scala:170:77] assign _entries_T_269 = _entries_WIRE_23[8]; // @[TLB.scala:170:77] wire _entries_WIRE_22_pw = _entries_T_269; // @[TLB.scala:170:77] assign _entries_T_270 = _entries_WIRE_23[9]; // @[TLB.scala:170:77] wire _entries_WIRE_22_hr = _entries_T_270; // @[TLB.scala:170:77] assign _entries_T_271 = _entries_WIRE_23[10]; // @[TLB.scala:170:77] wire _entries_WIRE_22_hx = _entries_T_271; // @[TLB.scala:170:77] assign _entries_T_272 = _entries_WIRE_23[11]; // @[TLB.scala:170:77] wire _entries_WIRE_22_hw = _entries_T_272; // @[TLB.scala:170:77] assign _entries_T_273 = _entries_WIRE_23[12]; // @[TLB.scala:170:77] wire _entries_WIRE_22_sr = _entries_T_273; // @[TLB.scala:170:77] assign _entries_T_274 = _entries_WIRE_23[13]; // @[TLB.scala:170:77] wire _entries_WIRE_22_sx = _entries_T_274; // @[TLB.scala:170:77] assign _entries_T_275 = _entries_WIRE_23[14]; // @[TLB.scala:170:77] wire _entries_WIRE_22_sw = _entries_T_275; // @[TLB.scala:170:77] assign _entries_T_276 = _entries_WIRE_23[15]; // @[TLB.scala:170:77] wire _entries_WIRE_22_gf = _entries_T_276; // @[TLB.scala:170:77] assign _entries_T_277 = _entries_WIRE_23[16]; // @[TLB.scala:170:77] wire _entries_WIRE_22_pf = _entries_T_277; // @[TLB.scala:170:77] assign _entries_T_278 = _entries_WIRE_23[17]; // @[TLB.scala:170:77] wire _entries_WIRE_22_ae_stage2 = _entries_T_278; // @[TLB.scala:170:77] assign _entries_T_279 = _entries_WIRE_23[18]; // @[TLB.scala:170:77] wire _entries_WIRE_22_ae_final = _entries_T_279; // @[TLB.scala:170:77] assign _entries_T_280 = _entries_WIRE_23[19]; // @[TLB.scala:170:77] wire _entries_WIRE_22_ae_ptw = _entries_T_280; // @[TLB.scala:170:77] assign _entries_T_281 = _entries_WIRE_23[20]; // @[TLB.scala:170:77] wire _entries_WIRE_22_g = _entries_T_281; // @[TLB.scala:170:77] assign _entries_T_282 = _entries_WIRE_23[21]; // @[TLB.scala:170:77] wire _entries_WIRE_22_u = _entries_T_282; // @[TLB.scala:170:77] assign _entries_T_283 = _entries_WIRE_23[41:22]; // @[TLB.scala:170:77] wire [19:0] _entries_WIRE_22_ppn = _entries_T_283; // @[TLB.scala:170:77] wire [19:0] _entries_T_306; // @[TLB.scala:170:77] wire _entries_T_305; // @[TLB.scala:170:77] wire _entries_T_304; // @[TLB.scala:170:77] wire _entries_T_303; // @[TLB.scala:170:77] wire _entries_T_302; // @[TLB.scala:170:77] wire _entries_T_301; // @[TLB.scala:170:77] wire _entries_T_300; // @[TLB.scala:170:77] wire _entries_T_299; // @[TLB.scala:170:77] wire _entries_T_298; // @[TLB.scala:170:77] wire _entries_T_297; // @[TLB.scala:170:77] wire _entries_T_296; // @[TLB.scala:170:77] wire _entries_T_295; // @[TLB.scala:170:77] wire _entries_T_294; // @[TLB.scala:170:77] wire _entries_T_293; // @[TLB.scala:170:77] wire _entries_T_292; // @[TLB.scala:170:77] wire _entries_T_291; // @[TLB.scala:170:77] wire _entries_T_290; // @[TLB.scala:170:77] wire _entries_T_289; // @[TLB.scala:170:77] wire _entries_T_288; // @[TLB.scala:170:77] wire _entries_T_287; // @[TLB.scala:170:77] wire _entries_T_286; // @[TLB.scala:170:77] wire _entries_T_285; // @[TLB.scala:170:77] wire _entries_T_284; // @[TLB.scala:170:77] assign _entries_T_284 = _entries_WIRE_25[0]; // @[TLB.scala:170:77] wire _entries_WIRE_24_fragmented_superpage = _entries_T_284; // @[TLB.scala:170:77] assign _entries_T_285 = _entries_WIRE_25[1]; // @[TLB.scala:170:77] wire _entries_WIRE_24_c = _entries_T_285; // @[TLB.scala:170:77] assign _entries_T_286 = _entries_WIRE_25[2]; // @[TLB.scala:170:77] wire _entries_WIRE_24_eff = _entries_T_286; // @[TLB.scala:170:77] assign _entries_T_287 = _entries_WIRE_25[3]; // @[TLB.scala:170:77] wire _entries_WIRE_24_paa = _entries_T_287; // @[TLB.scala:170:77] assign _entries_T_288 = _entries_WIRE_25[4]; // @[TLB.scala:170:77] wire _entries_WIRE_24_pal = _entries_T_288; // @[TLB.scala:170:77] assign _entries_T_289 = _entries_WIRE_25[5]; // @[TLB.scala:170:77] wire _entries_WIRE_24_ppp = _entries_T_289; // @[TLB.scala:170:77] assign _entries_T_290 = _entries_WIRE_25[6]; // @[TLB.scala:170:77] wire _entries_WIRE_24_pr = _entries_T_290; // @[TLB.scala:170:77] assign _entries_T_291 = _entries_WIRE_25[7]; // @[TLB.scala:170:77] wire _entries_WIRE_24_px = _entries_T_291; // @[TLB.scala:170:77] assign _entries_T_292 = _entries_WIRE_25[8]; // @[TLB.scala:170:77] wire _entries_WIRE_24_pw = _entries_T_292; // @[TLB.scala:170:77] assign _entries_T_293 = _entries_WIRE_25[9]; // @[TLB.scala:170:77] wire _entries_WIRE_24_hr = _entries_T_293; // @[TLB.scala:170:77] assign _entries_T_294 = _entries_WIRE_25[10]; // @[TLB.scala:170:77] wire _entries_WIRE_24_hx = _entries_T_294; // @[TLB.scala:170:77] assign _entries_T_295 = _entries_WIRE_25[11]; // @[TLB.scala:170:77] wire _entries_WIRE_24_hw = _entries_T_295; // @[TLB.scala:170:77] assign _entries_T_296 = _entries_WIRE_25[12]; // @[TLB.scala:170:77] wire _entries_WIRE_24_sr = _entries_T_296; // @[TLB.scala:170:77] assign _entries_T_297 = _entries_WIRE_25[13]; // @[TLB.scala:170:77] wire _entries_WIRE_24_sx = _entries_T_297; // @[TLB.scala:170:77] assign _entries_T_298 = _entries_WIRE_25[14]; // @[TLB.scala:170:77] wire _entries_WIRE_24_sw = _entries_T_298; // @[TLB.scala:170:77] assign _entries_T_299 = _entries_WIRE_25[15]; // @[TLB.scala:170:77] wire _entries_WIRE_24_gf = _entries_T_299; // @[TLB.scala:170:77] assign _entries_T_300 = _entries_WIRE_25[16]; // @[TLB.scala:170:77] wire _entries_WIRE_24_pf = _entries_T_300; // @[TLB.scala:170:77] assign _entries_T_301 = _entries_WIRE_25[17]; // @[TLB.scala:170:77] wire _entries_WIRE_24_ae_stage2 = _entries_T_301; // @[TLB.scala:170:77] assign _entries_T_302 = _entries_WIRE_25[18]; // @[TLB.scala:170:77] wire _entries_WIRE_24_ae_final = _entries_T_302; // @[TLB.scala:170:77] assign _entries_T_303 = _entries_WIRE_25[19]; // @[TLB.scala:170:77] wire _entries_WIRE_24_ae_ptw = _entries_T_303; // @[TLB.scala:170:77] assign _entries_T_304 = _entries_WIRE_25[20]; // @[TLB.scala:170:77] wire _entries_WIRE_24_g = _entries_T_304; // @[TLB.scala:170:77] assign _entries_T_305 = _entries_WIRE_25[21]; // @[TLB.scala:170:77] wire _entries_WIRE_24_u = _entries_T_305; // @[TLB.scala:170:77] assign _entries_T_306 = _entries_WIRE_25[41:22]; // @[TLB.scala:170:77] wire [19:0] _entries_WIRE_24_ppn = _entries_T_306; // @[TLB.scala:170:77] wire _ppn_T = ~vm_enabled; // @[TLB.scala:399:61, :442:18, :502:30] wire [1:0] ppn_res = _entries_barrier_8_io_y_ppn[19:18]; // @[package.scala:267:25] wire ppn_ignore = _ppn_ignore_T; // @[TLB.scala:197:{28,34}] wire [26:0] _ppn_T_1 = ppn_ignore ? vpn : 27'h0; // @[TLB.scala:197:34, :198:28, :335:30] wire [26:0] _ppn_T_2 = {_ppn_T_1[26:20], _ppn_T_1[19:0] | _entries_barrier_8_io_y_ppn}; // @[package.scala:267:25] wire [8:0] _ppn_T_3 = _ppn_T_2[17:9]; // @[TLB.scala:198:{47,58}] wire [10:0] _ppn_T_4 = {ppn_res, _ppn_T_3}; // @[TLB.scala:195:26, :198:{18,58}] wire _ppn_ignore_T_1 = ~(superpage_entries_0_level[1]); // @[TLB.scala:182:28, :197:28, :341:30] wire [26:0] _ppn_T_6 = {_ppn_T_5[26:20], _ppn_T_5[19:0] | _entries_barrier_8_io_y_ppn}; // @[package.scala:267:25] wire [8:0] _ppn_T_7 = _ppn_T_6[8:0]; // @[TLB.scala:198:{47,58}] wire [19:0] _ppn_T_8 = {_ppn_T_4, _ppn_T_7}; // @[TLB.scala:198:{18,58}] wire [1:0] ppn_res_1 = _entries_barrier_9_io_y_ppn[19:18]; // @[package.scala:267:25] wire ppn_ignore_2 = _ppn_ignore_T_2; // @[TLB.scala:197:{28,34}] wire [26:0] _ppn_T_9 = ppn_ignore_2 ? vpn : 27'h0; // @[TLB.scala:197:34, :198:28, :335:30] wire [26:0] _ppn_T_10 = {_ppn_T_9[26:20], _ppn_T_9[19:0] | _entries_barrier_9_io_y_ppn}; // @[package.scala:267:25] wire [8:0] _ppn_T_11 = _ppn_T_10[17:9]; // @[TLB.scala:198:{47,58}] wire [10:0] _ppn_T_12 = {ppn_res_1, _ppn_T_11}; // @[TLB.scala:195:26, :198:{18,58}] wire _ppn_ignore_T_3 = ~(superpage_entries_1_level[1]); // @[TLB.scala:182:28, :197:28, :341:30] wire [26:0] _ppn_T_14 = {_ppn_T_13[26:20], _ppn_T_13[19:0] | _entries_barrier_9_io_y_ppn}; // @[package.scala:267:25] wire [8:0] _ppn_T_15 = _ppn_T_14[8:0]; // @[TLB.scala:198:{47,58}] wire [19:0] _ppn_T_16 = {_ppn_T_12, _ppn_T_15}; // @[TLB.scala:198:{18,58}] wire [1:0] ppn_res_2 = _entries_barrier_10_io_y_ppn[19:18]; // @[package.scala:267:25] wire ppn_ignore_4 = _ppn_ignore_T_4; // @[TLB.scala:197:{28,34}] wire [26:0] _ppn_T_17 = ppn_ignore_4 ? vpn : 27'h0; // @[TLB.scala:197:34, :198:28, :335:30] wire [26:0] _ppn_T_18 = {_ppn_T_17[26:20], _ppn_T_17[19:0] | _entries_barrier_10_io_y_ppn}; // @[package.scala:267:25] wire [8:0] _ppn_T_19 = _ppn_T_18[17:9]; // @[TLB.scala:198:{47,58}] wire [10:0] _ppn_T_20 = {ppn_res_2, _ppn_T_19}; // @[TLB.scala:195:26, :198:{18,58}] wire _ppn_ignore_T_5 = ~(superpage_entries_2_level[1]); // @[TLB.scala:182:28, :197:28, :341:30] wire [26:0] _ppn_T_22 = {_ppn_T_21[26:20], _ppn_T_21[19:0] | _entries_barrier_10_io_y_ppn}; // @[package.scala:267:25] wire [8:0] _ppn_T_23 = _ppn_T_22[8:0]; // @[TLB.scala:198:{47,58}] wire [19:0] _ppn_T_24 = {_ppn_T_20, _ppn_T_23}; // @[TLB.scala:198:{18,58}] wire [1:0] ppn_res_3 = _entries_barrier_11_io_y_ppn[19:18]; // @[package.scala:267:25] wire ppn_ignore_6 = _ppn_ignore_T_6; // @[TLB.scala:197:{28,34}] wire [26:0] _ppn_T_25 = ppn_ignore_6 ? vpn : 27'h0; // @[TLB.scala:197:34, :198:28, :335:30] wire [26:0] _ppn_T_26 = {_ppn_T_25[26:20], _ppn_T_25[19:0] | _entries_barrier_11_io_y_ppn}; // @[package.scala:267:25] wire [8:0] _ppn_T_27 = _ppn_T_26[17:9]; // @[TLB.scala:198:{47,58}] wire [10:0] _ppn_T_28 = {ppn_res_3, _ppn_T_27}; // @[TLB.scala:195:26, :198:{18,58}] wire _ppn_ignore_T_7 = ~(superpage_entries_3_level[1]); // @[TLB.scala:182:28, :197:28, :341:30] wire [26:0] _ppn_T_30 = {_ppn_T_29[26:20], _ppn_T_29[19:0] | _entries_barrier_11_io_y_ppn}; // @[package.scala:267:25] wire [8:0] _ppn_T_31 = _ppn_T_30[8:0]; // @[TLB.scala:198:{47,58}] wire [19:0] _ppn_T_32 = {_ppn_T_28, _ppn_T_31}; // @[TLB.scala:198:{18,58}] wire [1:0] ppn_res_4 = _entries_barrier_12_io_y_ppn[19:18]; // @[package.scala:267:25] wire ppn_ignore_8 = _ppn_ignore_T_8; // @[TLB.scala:197:{28,34}] wire [26:0] _ppn_T_33 = ppn_ignore_8 ? vpn : 27'h0; // @[TLB.scala:197:34, :198:28, :335:30] wire [26:0] _ppn_T_34 = {_ppn_T_33[26:20], _ppn_T_33[19:0] | _entries_barrier_12_io_y_ppn}; // @[package.scala:267:25] wire [8:0] _ppn_T_35 = _ppn_T_34[17:9]; // @[TLB.scala:198:{47,58}] wire [10:0] _ppn_T_36 = {ppn_res_4, _ppn_T_35}; // @[TLB.scala:195:26, :198:{18,58}] wire _ppn_ignore_T_9 = ~(special_entry_level[1]); // @[TLB.scala:197:28, :346:56] wire ppn_ignore_9 = _ppn_ignore_T_9; // @[TLB.scala:197:{28,34}] wire [26:0] _ppn_T_37 = ppn_ignore_9 ? vpn : 27'h0; // @[TLB.scala:197:34, :198:28, :335:30] wire [26:0] _ppn_T_38 = {_ppn_T_37[26:20], _ppn_T_37[19:0] | _entries_barrier_12_io_y_ppn}; // @[package.scala:267:25] wire [8:0] _ppn_T_39 = _ppn_T_38[8:0]; // @[TLB.scala:198:{47,58}] wire [19:0] _ppn_T_40 = {_ppn_T_36, _ppn_T_39}; // @[TLB.scala:198:{18,58}] wire [19:0] _ppn_T_41 = vpn[19:0]; // @[TLB.scala:335:30, :502:125] wire [19:0] _ppn_T_42 = hitsVec_0 ? _entries_barrier_io_y_ppn : 20'h0; // @[Mux.scala:30:73] wire [19:0] _ppn_T_43 = hitsVec_1 ? _entries_barrier_1_io_y_ppn : 20'h0; // @[Mux.scala:30:73] wire [19:0] _ppn_T_44 = hitsVec_2 ? _entries_barrier_2_io_y_ppn : 20'h0; // @[Mux.scala:30:73] wire [19:0] _ppn_T_45 = hitsVec_3 ? _entries_barrier_3_io_y_ppn : 20'h0; // @[Mux.scala:30:73] wire [19:0] _ppn_T_46 = hitsVec_4 ? _entries_barrier_4_io_y_ppn : 20'h0; // @[Mux.scala:30:73] wire [19:0] _ppn_T_47 = hitsVec_5 ? _entries_barrier_5_io_y_ppn : 20'h0; // @[Mux.scala:30:73] wire [19:0] _ppn_T_48 = hitsVec_6 ? _entries_barrier_6_io_y_ppn : 20'h0; // @[Mux.scala:30:73] wire [19:0] _ppn_T_49 = hitsVec_7 ? _entries_barrier_7_io_y_ppn : 20'h0; // @[Mux.scala:30:73] wire [19:0] _ppn_T_50 = hitsVec_8 ? _ppn_T_8 : 20'h0; // @[Mux.scala:30:73] wire [19:0] _ppn_T_51 = hitsVec_9 ? _ppn_T_16 : 20'h0; // @[Mux.scala:30:73] wire [19:0] _ppn_T_52 = hitsVec_10 ? _ppn_T_24 : 20'h0; // @[Mux.scala:30:73] wire [19:0] _ppn_T_53 = hitsVec_11 ? _ppn_T_32 : 20'h0; // @[Mux.scala:30:73] wire [19:0] _ppn_T_54 = hitsVec_12 ? _ppn_T_40 : 20'h0; // @[Mux.scala:30:73] wire [19:0] _ppn_T_55 = _ppn_T ? _ppn_T_41 : 20'h0; // @[Mux.scala:30:73] wire [19:0] _ppn_T_56 = _ppn_T_42 | _ppn_T_43; // @[Mux.scala:30:73] wire [19:0] _ppn_T_57 = _ppn_T_56 | _ppn_T_44; // @[Mux.scala:30:73] wire [19:0] _ppn_T_58 = _ppn_T_57 | _ppn_T_45; // @[Mux.scala:30:73] wire [19:0] _ppn_T_59 = _ppn_T_58 | _ppn_T_46; // @[Mux.scala:30:73] wire [19:0] _ppn_T_60 = _ppn_T_59 | _ppn_T_47; // @[Mux.scala:30:73] wire [19:0] _ppn_T_61 = _ppn_T_60 | _ppn_T_48; // @[Mux.scala:30:73] wire [19:0] _ppn_T_62 = _ppn_T_61 | _ppn_T_49; // @[Mux.scala:30:73] wire [19:0] _ppn_T_63 = _ppn_T_62 | _ppn_T_50; // @[Mux.scala:30:73] wire [19:0] _ppn_T_64 = _ppn_T_63 | _ppn_T_51; // @[Mux.scala:30:73] wire [19:0] _ppn_T_65 = _ppn_T_64 | _ppn_T_52; // @[Mux.scala:30:73] wire [19:0] _ppn_T_66 = _ppn_T_65 | _ppn_T_53; // @[Mux.scala:30:73] wire [19:0] _ppn_T_67 = _ppn_T_66 | _ppn_T_54; // @[Mux.scala:30:73] wire [19:0] _ppn_T_68 = _ppn_T_67 | _ppn_T_55; // @[Mux.scala:30:73] wire [19:0] ppn = _ppn_T_68; // @[Mux.scala:30:73] wire [1:0] ptw_ae_array_lo_lo_hi = {_entries_barrier_2_io_y_ae_ptw, _entries_barrier_1_io_y_ae_ptw}; // @[package.scala:45:27, :267:25] wire [2:0] ptw_ae_array_lo_lo = {ptw_ae_array_lo_lo_hi, _entries_barrier_io_y_ae_ptw}; // @[package.scala:45:27, :267:25] wire [1:0] ptw_ae_array_lo_hi_hi = {_entries_barrier_5_io_y_ae_ptw, _entries_barrier_4_io_y_ae_ptw}; // @[package.scala:45:27, :267:25] wire [2:0] ptw_ae_array_lo_hi = {ptw_ae_array_lo_hi_hi, _entries_barrier_3_io_y_ae_ptw}; // @[package.scala:45:27, :267:25] wire [5:0] ptw_ae_array_lo = {ptw_ae_array_lo_hi, ptw_ae_array_lo_lo}; // @[package.scala:45:27] wire [1:0] ptw_ae_array_hi_lo_hi = {_entries_barrier_8_io_y_ae_ptw, _entries_barrier_7_io_y_ae_ptw}; // @[package.scala:45:27, :267:25] wire [2:0] ptw_ae_array_hi_lo = {ptw_ae_array_hi_lo_hi, _entries_barrier_6_io_y_ae_ptw}; // @[package.scala:45:27, :267:25] wire [1:0] ptw_ae_array_hi_hi_lo = {_entries_barrier_10_io_y_ae_ptw, _entries_barrier_9_io_y_ae_ptw}; // @[package.scala:45:27, :267:25] wire [1:0] ptw_ae_array_hi_hi_hi = {_entries_barrier_12_io_y_ae_ptw, _entries_barrier_11_io_y_ae_ptw}; // @[package.scala:45:27, :267:25] wire [3:0] ptw_ae_array_hi_hi = {ptw_ae_array_hi_hi_hi, ptw_ae_array_hi_hi_lo}; // @[package.scala:45:27] wire [6:0] ptw_ae_array_hi = {ptw_ae_array_hi_hi, ptw_ae_array_hi_lo}; // @[package.scala:45:27] wire [12:0] _ptw_ae_array_T = {ptw_ae_array_hi, ptw_ae_array_lo}; // @[package.scala:45:27] wire [13:0] ptw_ae_array = {1'h0, _ptw_ae_array_T}; // @[package.scala:45:27] wire [1:0] final_ae_array_lo_lo_hi = {_entries_barrier_2_io_y_ae_final, _entries_barrier_1_io_y_ae_final}; // @[package.scala:45:27, :267:25] wire [2:0] final_ae_array_lo_lo = {final_ae_array_lo_lo_hi, _entries_barrier_io_y_ae_final}; // @[package.scala:45:27, :267:25] wire [1:0] final_ae_array_lo_hi_hi = {_entries_barrier_5_io_y_ae_final, _entries_barrier_4_io_y_ae_final}; // @[package.scala:45:27, :267:25] wire [2:0] final_ae_array_lo_hi = {final_ae_array_lo_hi_hi, _entries_barrier_3_io_y_ae_final}; // @[package.scala:45:27, :267:25] wire [5:0] final_ae_array_lo = {final_ae_array_lo_hi, final_ae_array_lo_lo}; // @[package.scala:45:27] wire [1:0] final_ae_array_hi_lo_hi = {_entries_barrier_8_io_y_ae_final, _entries_barrier_7_io_y_ae_final}; // @[package.scala:45:27, :267:25] wire [2:0] final_ae_array_hi_lo = {final_ae_array_hi_lo_hi, _entries_barrier_6_io_y_ae_final}; // @[package.scala:45:27, :267:25] wire [1:0] final_ae_array_hi_hi_lo = {_entries_barrier_10_io_y_ae_final, _entries_barrier_9_io_y_ae_final}; // @[package.scala:45:27, :267:25] wire [1:0] final_ae_array_hi_hi_hi = {_entries_barrier_12_io_y_ae_final, _entries_barrier_11_io_y_ae_final}; // @[package.scala:45:27, :267:25] wire [3:0] final_ae_array_hi_hi = {final_ae_array_hi_hi_hi, final_ae_array_hi_hi_lo}; // @[package.scala:45:27] wire [6:0] final_ae_array_hi = {final_ae_array_hi_hi, final_ae_array_hi_lo}; // @[package.scala:45:27] wire [12:0] _final_ae_array_T = {final_ae_array_hi, final_ae_array_lo}; // @[package.scala:45:27] wire [13:0] final_ae_array = {1'h0, _final_ae_array_T}; // @[package.scala:45:27] wire [1:0] ptw_pf_array_lo_lo_hi = {_entries_barrier_2_io_y_pf, _entries_barrier_1_io_y_pf}; // @[package.scala:45:27, :267:25] wire [2:0] ptw_pf_array_lo_lo = {ptw_pf_array_lo_lo_hi, _entries_barrier_io_y_pf}; // @[package.scala:45:27, :267:25] wire [1:0] ptw_pf_array_lo_hi_hi = {_entries_barrier_5_io_y_pf, _entries_barrier_4_io_y_pf}; // @[package.scala:45:27, :267:25] wire [2:0] ptw_pf_array_lo_hi = {ptw_pf_array_lo_hi_hi, _entries_barrier_3_io_y_pf}; // @[package.scala:45:27, :267:25] wire [5:0] ptw_pf_array_lo = {ptw_pf_array_lo_hi, ptw_pf_array_lo_lo}; // @[package.scala:45:27] wire [1:0] ptw_pf_array_hi_lo_hi = {_entries_barrier_8_io_y_pf, _entries_barrier_7_io_y_pf}; // @[package.scala:45:27, :267:25] wire [2:0] ptw_pf_array_hi_lo = {ptw_pf_array_hi_lo_hi, _entries_barrier_6_io_y_pf}; // @[package.scala:45:27, :267:25] wire [1:0] ptw_pf_array_hi_hi_lo = {_entries_barrier_10_io_y_pf, _entries_barrier_9_io_y_pf}; // @[package.scala:45:27, :267:25] wire [1:0] ptw_pf_array_hi_hi_hi = {_entries_barrier_12_io_y_pf, _entries_barrier_11_io_y_pf}; // @[package.scala:45:27, :267:25] wire [3:0] ptw_pf_array_hi_hi = {ptw_pf_array_hi_hi_hi, ptw_pf_array_hi_hi_lo}; // @[package.scala:45:27] wire [6:0] ptw_pf_array_hi = {ptw_pf_array_hi_hi, ptw_pf_array_hi_lo}; // @[package.scala:45:27] wire [12:0] _ptw_pf_array_T = {ptw_pf_array_hi, ptw_pf_array_lo}; // @[package.scala:45:27] wire [13:0] ptw_pf_array = {1'h0, _ptw_pf_array_T}; // @[package.scala:45:27] wire [1:0] ptw_gf_array_lo_lo_hi = {_entries_barrier_2_io_y_gf, _entries_barrier_1_io_y_gf}; // @[package.scala:45:27, :267:25] wire [2:0] ptw_gf_array_lo_lo = {ptw_gf_array_lo_lo_hi, _entries_barrier_io_y_gf}; // @[package.scala:45:27, :267:25] wire [1:0] ptw_gf_array_lo_hi_hi = {_entries_barrier_5_io_y_gf, _entries_barrier_4_io_y_gf}; // @[package.scala:45:27, :267:25] wire [2:0] ptw_gf_array_lo_hi = {ptw_gf_array_lo_hi_hi, _entries_barrier_3_io_y_gf}; // @[package.scala:45:27, :267:25] wire [5:0] ptw_gf_array_lo = {ptw_gf_array_lo_hi, ptw_gf_array_lo_lo}; // @[package.scala:45:27] wire [1:0] ptw_gf_array_hi_lo_hi = {_entries_barrier_8_io_y_gf, _entries_barrier_7_io_y_gf}; // @[package.scala:45:27, :267:25] wire [2:0] ptw_gf_array_hi_lo = {ptw_gf_array_hi_lo_hi, _entries_barrier_6_io_y_gf}; // @[package.scala:45:27, :267:25] wire [1:0] ptw_gf_array_hi_hi_lo = {_entries_barrier_10_io_y_gf, _entries_barrier_9_io_y_gf}; // @[package.scala:45:27, :267:25] wire [1:0] ptw_gf_array_hi_hi_hi = {_entries_barrier_12_io_y_gf, _entries_barrier_11_io_y_gf}; // @[package.scala:45:27, :267:25] wire [3:0] ptw_gf_array_hi_hi = {ptw_gf_array_hi_hi_hi, ptw_gf_array_hi_hi_lo}; // @[package.scala:45:27] wire [6:0] ptw_gf_array_hi = {ptw_gf_array_hi_hi, ptw_gf_array_hi_lo}; // @[package.scala:45:27] wire [12:0] _ptw_gf_array_T = {ptw_gf_array_hi, ptw_gf_array_lo}; // @[package.scala:45:27] wire [13:0] ptw_gf_array = {1'h0, _ptw_gf_array_T}; // @[package.scala:45:27] wire [13:0] _gf_ld_array_T_3 = ptw_gf_array; // @[TLB.scala:509:25, :600:82] wire [13:0] _gf_st_array_T_2 = ptw_gf_array; // @[TLB.scala:509:25, :601:63] wire [13:0] _gf_inst_array_T_1 = ptw_gf_array; // @[TLB.scala:509:25, :602:46] wire _priv_rw_ok_T = ~priv_s; // @[TLB.scala:370:20, :513:24] wire _priv_rw_ok_T_1 = _priv_rw_ok_T | sum; // @[TLB.scala:510:16, :513:{24,32}] wire [1:0] _GEN_40 = {_entries_barrier_2_io_y_u, _entries_barrier_1_io_y_u}; // @[package.scala:45:27, :267:25] wire [1:0] priv_rw_ok_lo_lo_hi; // @[package.scala:45:27] assign priv_rw_ok_lo_lo_hi = _GEN_40; // @[package.scala:45:27] wire [1:0] priv_rw_ok_lo_lo_hi_1; // @[package.scala:45:27] assign priv_rw_ok_lo_lo_hi_1 = _GEN_40; // @[package.scala:45:27] wire [1:0] priv_x_ok_lo_lo_hi; // @[package.scala:45:27] assign priv_x_ok_lo_lo_hi = _GEN_40; // @[package.scala:45:27] wire [1:0] priv_x_ok_lo_lo_hi_1; // @[package.scala:45:27] assign priv_x_ok_lo_lo_hi_1 = _GEN_40; // @[package.scala:45:27] wire [2:0] priv_rw_ok_lo_lo = {priv_rw_ok_lo_lo_hi, _entries_barrier_io_y_u}; // @[package.scala:45:27, :267:25] wire [1:0] _GEN_41 = {_entries_barrier_5_io_y_u, _entries_barrier_4_io_y_u}; // @[package.scala:45:27, :267:25] wire [1:0] priv_rw_ok_lo_hi_hi; // @[package.scala:45:27] assign priv_rw_ok_lo_hi_hi = _GEN_41; // @[package.scala:45:27] wire [1:0] priv_rw_ok_lo_hi_hi_1; // @[package.scala:45:27] assign priv_rw_ok_lo_hi_hi_1 = _GEN_41; // @[package.scala:45:27] wire [1:0] priv_x_ok_lo_hi_hi; // @[package.scala:45:27] assign priv_x_ok_lo_hi_hi = _GEN_41; // @[package.scala:45:27] wire [1:0] priv_x_ok_lo_hi_hi_1; // @[package.scala:45:27] assign priv_x_ok_lo_hi_hi_1 = _GEN_41; // @[package.scala:45:27] wire [2:0] priv_rw_ok_lo_hi = {priv_rw_ok_lo_hi_hi, _entries_barrier_3_io_y_u}; // @[package.scala:45:27, :267:25] wire [5:0] priv_rw_ok_lo = {priv_rw_ok_lo_hi, priv_rw_ok_lo_lo}; // @[package.scala:45:27] wire [1:0] _GEN_42 = {_entries_barrier_8_io_y_u, _entries_barrier_7_io_y_u}; // @[package.scala:45:27, :267:25] wire [1:0] priv_rw_ok_hi_lo_hi; // @[package.scala:45:27] assign priv_rw_ok_hi_lo_hi = _GEN_42; // @[package.scala:45:27] wire [1:0] priv_rw_ok_hi_lo_hi_1; // @[package.scala:45:27] assign priv_rw_ok_hi_lo_hi_1 = _GEN_42; // @[package.scala:45:27] wire [1:0] priv_x_ok_hi_lo_hi; // @[package.scala:45:27] assign priv_x_ok_hi_lo_hi = _GEN_42; // @[package.scala:45:27] wire [1:0] priv_x_ok_hi_lo_hi_1; // @[package.scala:45:27] assign priv_x_ok_hi_lo_hi_1 = _GEN_42; // @[package.scala:45:27] wire [2:0] priv_rw_ok_hi_lo = {priv_rw_ok_hi_lo_hi, _entries_barrier_6_io_y_u}; // @[package.scala:45:27, :267:25] wire [1:0] _GEN_43 = {_entries_barrier_10_io_y_u, _entries_barrier_9_io_y_u}; // @[package.scala:45:27, :267:25] wire [1:0] priv_rw_ok_hi_hi_lo; // @[package.scala:45:27] assign priv_rw_ok_hi_hi_lo = _GEN_43; // @[package.scala:45:27] wire [1:0] priv_rw_ok_hi_hi_lo_1; // @[package.scala:45:27] assign priv_rw_ok_hi_hi_lo_1 = _GEN_43; // @[package.scala:45:27] wire [1:0] priv_x_ok_hi_hi_lo; // @[package.scala:45:27] assign priv_x_ok_hi_hi_lo = _GEN_43; // @[package.scala:45:27] wire [1:0] priv_x_ok_hi_hi_lo_1; // @[package.scala:45:27] assign priv_x_ok_hi_hi_lo_1 = _GEN_43; // @[package.scala:45:27] wire [1:0] _GEN_44 = {_entries_barrier_12_io_y_u, _entries_barrier_11_io_y_u}; // @[package.scala:45:27, :267:25] wire [1:0] priv_rw_ok_hi_hi_hi; // @[package.scala:45:27] assign priv_rw_ok_hi_hi_hi = _GEN_44; // @[package.scala:45:27] wire [1:0] priv_rw_ok_hi_hi_hi_1; // @[package.scala:45:27] assign priv_rw_ok_hi_hi_hi_1 = _GEN_44; // @[package.scala:45:27] wire [1:0] priv_x_ok_hi_hi_hi; // @[package.scala:45:27] assign priv_x_ok_hi_hi_hi = _GEN_44; // @[package.scala:45:27] wire [1:0] priv_x_ok_hi_hi_hi_1; // @[package.scala:45:27] assign priv_x_ok_hi_hi_hi_1 = _GEN_44; // @[package.scala:45:27] wire [3:0] priv_rw_ok_hi_hi = {priv_rw_ok_hi_hi_hi, priv_rw_ok_hi_hi_lo}; // @[package.scala:45:27] wire [6:0] priv_rw_ok_hi = {priv_rw_ok_hi_hi, priv_rw_ok_hi_lo}; // @[package.scala:45:27] wire [12:0] _priv_rw_ok_T_2 = {priv_rw_ok_hi, priv_rw_ok_lo}; // @[package.scala:45:27] wire [12:0] _priv_rw_ok_T_3 = _priv_rw_ok_T_1 ? _priv_rw_ok_T_2 : 13'h0; // @[package.scala:45:27] wire [2:0] priv_rw_ok_lo_lo_1 = {priv_rw_ok_lo_lo_hi_1, _entries_barrier_io_y_u}; // @[package.scala:45:27, :267:25] wire [2:0] priv_rw_ok_lo_hi_1 = {priv_rw_ok_lo_hi_hi_1, _entries_barrier_3_io_y_u}; // @[package.scala:45:27, :267:25] wire [5:0] priv_rw_ok_lo_1 = {priv_rw_ok_lo_hi_1, priv_rw_ok_lo_lo_1}; // @[package.scala:45:27] wire [2:0] priv_rw_ok_hi_lo_1 = {priv_rw_ok_hi_lo_hi_1, _entries_barrier_6_io_y_u}; // @[package.scala:45:27, :267:25] wire [3:0] priv_rw_ok_hi_hi_1 = {priv_rw_ok_hi_hi_hi_1, priv_rw_ok_hi_hi_lo_1}; // @[package.scala:45:27] wire [6:0] priv_rw_ok_hi_1 = {priv_rw_ok_hi_hi_1, priv_rw_ok_hi_lo_1}; // @[package.scala:45:27] wire [12:0] _priv_rw_ok_T_4 = {priv_rw_ok_hi_1, priv_rw_ok_lo_1}; // @[package.scala:45:27] wire [12:0] _priv_rw_ok_T_5 = ~_priv_rw_ok_T_4; // @[package.scala:45:27] wire [12:0] _priv_rw_ok_T_6 = priv_s ? _priv_rw_ok_T_5 : 13'h0; // @[TLB.scala:370:20, :513:{75,84}] wire [12:0] priv_rw_ok = _priv_rw_ok_T_3 | _priv_rw_ok_T_6; // @[TLB.scala:513:{23,70,75}] wire [2:0] priv_x_ok_lo_lo = {priv_x_ok_lo_lo_hi, _entries_barrier_io_y_u}; // @[package.scala:45:27, :267:25] wire [2:0] priv_x_ok_lo_hi = {priv_x_ok_lo_hi_hi, _entries_barrier_3_io_y_u}; // @[package.scala:45:27, :267:25] wire [5:0] priv_x_ok_lo = {priv_x_ok_lo_hi, priv_x_ok_lo_lo}; // @[package.scala:45:27] wire [2:0] priv_x_ok_hi_lo = {priv_x_ok_hi_lo_hi, _entries_barrier_6_io_y_u}; // @[package.scala:45:27, :267:25] wire [3:0] priv_x_ok_hi_hi = {priv_x_ok_hi_hi_hi, priv_x_ok_hi_hi_lo}; // @[package.scala:45:27] wire [6:0] priv_x_ok_hi = {priv_x_ok_hi_hi, priv_x_ok_hi_lo}; // @[package.scala:45:27] wire [12:0] _priv_x_ok_T = {priv_x_ok_hi, priv_x_ok_lo}; // @[package.scala:45:27] wire [12:0] _priv_x_ok_T_1 = ~_priv_x_ok_T; // @[package.scala:45:27] wire [2:0] priv_x_ok_lo_lo_1 = {priv_x_ok_lo_lo_hi_1, _entries_barrier_io_y_u}; // @[package.scala:45:27, :267:25] wire [2:0] priv_x_ok_lo_hi_1 = {priv_x_ok_lo_hi_hi_1, _entries_barrier_3_io_y_u}; // @[package.scala:45:27, :267:25] wire [5:0] priv_x_ok_lo_1 = {priv_x_ok_lo_hi_1, priv_x_ok_lo_lo_1}; // @[package.scala:45:27] wire [2:0] priv_x_ok_hi_lo_1 = {priv_x_ok_hi_lo_hi_1, _entries_barrier_6_io_y_u}; // @[package.scala:45:27, :267:25] wire [3:0] priv_x_ok_hi_hi_1 = {priv_x_ok_hi_hi_hi_1, priv_x_ok_hi_hi_lo_1}; // @[package.scala:45:27] wire [6:0] priv_x_ok_hi_1 = {priv_x_ok_hi_hi_1, priv_x_ok_hi_lo_1}; // @[package.scala:45:27] wire [12:0] _priv_x_ok_T_2 = {priv_x_ok_hi_1, priv_x_ok_lo_1}; // @[package.scala:45:27] wire [12:0] priv_x_ok = priv_s ? _priv_x_ok_T_1 : _priv_x_ok_T_2; // @[package.scala:45:27] wire _stage1_bypass_T_1 = ~stage1_en; // @[TLB.scala:374:29, :517:83] wire [12:0] _stage1_bypass_T_2 = {13{_stage1_bypass_T_1}}; // @[TLB.scala:517:{68,83}] wire [1:0] stage1_bypass_lo_lo_hi = {_entries_barrier_2_io_y_ae_stage2, _entries_barrier_1_io_y_ae_stage2}; // @[package.scala:45:27, :267:25] wire [2:0] stage1_bypass_lo_lo = {stage1_bypass_lo_lo_hi, _entries_barrier_io_y_ae_stage2}; // @[package.scala:45:27, :267:25] wire [1:0] stage1_bypass_lo_hi_hi = {_entries_barrier_5_io_y_ae_stage2, _entries_barrier_4_io_y_ae_stage2}; // @[package.scala:45:27, :267:25] wire [2:0] stage1_bypass_lo_hi = {stage1_bypass_lo_hi_hi, _entries_barrier_3_io_y_ae_stage2}; // @[package.scala:45:27, :267:25] wire [5:0] stage1_bypass_lo = {stage1_bypass_lo_hi, stage1_bypass_lo_lo}; // @[package.scala:45:27] wire [1:0] stage1_bypass_hi_lo_hi = {_entries_barrier_8_io_y_ae_stage2, _entries_barrier_7_io_y_ae_stage2}; // @[package.scala:45:27, :267:25] wire [2:0] stage1_bypass_hi_lo = {stage1_bypass_hi_lo_hi, _entries_barrier_6_io_y_ae_stage2}; // @[package.scala:45:27, :267:25] wire [1:0] stage1_bypass_hi_hi_lo = {_entries_barrier_10_io_y_ae_stage2, _entries_barrier_9_io_y_ae_stage2}; // @[package.scala:45:27, :267:25] wire [1:0] stage1_bypass_hi_hi_hi = {_entries_barrier_12_io_y_ae_stage2, _entries_barrier_11_io_y_ae_stage2}; // @[package.scala:45:27, :267:25] wire [3:0] stage1_bypass_hi_hi = {stage1_bypass_hi_hi_hi, stage1_bypass_hi_hi_lo}; // @[package.scala:45:27] wire [6:0] stage1_bypass_hi = {stage1_bypass_hi_hi, stage1_bypass_hi_lo}; // @[package.scala:45:27] wire [12:0] _stage1_bypass_T_3 = {stage1_bypass_hi, stage1_bypass_lo}; // @[package.scala:45:27] wire [12:0] _stage1_bypass_T_4 = _stage1_bypass_T_2 | _stage1_bypass_T_3; // @[package.scala:45:27] wire [1:0] r_array_lo_lo_hi = {_entries_barrier_2_io_y_sr, _entries_barrier_1_io_y_sr}; // @[package.scala:45:27, :267:25] wire [2:0] r_array_lo_lo = {r_array_lo_lo_hi, _entries_barrier_io_y_sr}; // @[package.scala:45:27, :267:25] wire [1:0] r_array_lo_hi_hi = {_entries_barrier_5_io_y_sr, _entries_barrier_4_io_y_sr}; // @[package.scala:45:27, :267:25] wire [2:0] r_array_lo_hi = {r_array_lo_hi_hi, _entries_barrier_3_io_y_sr}; // @[package.scala:45:27, :267:25] wire [5:0] r_array_lo = {r_array_lo_hi, r_array_lo_lo}; // @[package.scala:45:27] wire [1:0] r_array_hi_lo_hi = {_entries_barrier_8_io_y_sr, _entries_barrier_7_io_y_sr}; // @[package.scala:45:27, :267:25] wire [2:0] r_array_hi_lo = {r_array_hi_lo_hi, _entries_barrier_6_io_y_sr}; // @[package.scala:45:27, :267:25] wire [1:0] r_array_hi_hi_lo = {_entries_barrier_10_io_y_sr, _entries_barrier_9_io_y_sr}; // @[package.scala:45:27, :267:25] wire [1:0] r_array_hi_hi_hi = {_entries_barrier_12_io_y_sr, _entries_barrier_11_io_y_sr}; // @[package.scala:45:27, :267:25] wire [3:0] r_array_hi_hi = {r_array_hi_hi_hi, r_array_hi_hi_lo}; // @[package.scala:45:27] wire [6:0] r_array_hi = {r_array_hi_hi, r_array_hi_lo}; // @[package.scala:45:27] wire [12:0] _r_array_T = {r_array_hi, r_array_lo}; // @[package.scala:45:27] wire [1:0] _GEN_45 = {_entries_barrier_2_io_y_sx, _entries_barrier_1_io_y_sx}; // @[package.scala:45:27, :267:25] wire [1:0] r_array_lo_lo_hi_1; // @[package.scala:45:27] assign r_array_lo_lo_hi_1 = _GEN_45; // @[package.scala:45:27] wire [1:0] x_array_lo_lo_hi; // @[package.scala:45:27] assign x_array_lo_lo_hi = _GEN_45; // @[package.scala:45:27] wire [2:0] r_array_lo_lo_1 = {r_array_lo_lo_hi_1, _entries_barrier_io_y_sx}; // @[package.scala:45:27, :267:25] wire [1:0] _GEN_46 = {_entries_barrier_5_io_y_sx, _entries_barrier_4_io_y_sx}; // @[package.scala:45:27, :267:25] wire [1:0] r_array_lo_hi_hi_1; // @[package.scala:45:27] assign r_array_lo_hi_hi_1 = _GEN_46; // @[package.scala:45:27] wire [1:0] x_array_lo_hi_hi; // @[package.scala:45:27] assign x_array_lo_hi_hi = _GEN_46; // @[package.scala:45:27] wire [2:0] r_array_lo_hi_1 = {r_array_lo_hi_hi_1, _entries_barrier_3_io_y_sx}; // @[package.scala:45:27, :267:25] wire [5:0] r_array_lo_1 = {r_array_lo_hi_1, r_array_lo_lo_1}; // @[package.scala:45:27] wire [1:0] _GEN_47 = {_entries_barrier_8_io_y_sx, _entries_barrier_7_io_y_sx}; // @[package.scala:45:27, :267:25] wire [1:0] r_array_hi_lo_hi_1; // @[package.scala:45:27] assign r_array_hi_lo_hi_1 = _GEN_47; // @[package.scala:45:27] wire [1:0] x_array_hi_lo_hi; // @[package.scala:45:27] assign x_array_hi_lo_hi = _GEN_47; // @[package.scala:45:27] wire [2:0] r_array_hi_lo_1 = {r_array_hi_lo_hi_1, _entries_barrier_6_io_y_sx}; // @[package.scala:45:27, :267:25] wire [1:0] _GEN_48 = {_entries_barrier_10_io_y_sx, _entries_barrier_9_io_y_sx}; // @[package.scala:45:27, :267:25] wire [1:0] r_array_hi_hi_lo_1; // @[package.scala:45:27] assign r_array_hi_hi_lo_1 = _GEN_48; // @[package.scala:45:27] wire [1:0] x_array_hi_hi_lo; // @[package.scala:45:27] assign x_array_hi_hi_lo = _GEN_48; // @[package.scala:45:27] wire [1:0] _GEN_49 = {_entries_barrier_12_io_y_sx, _entries_barrier_11_io_y_sx}; // @[package.scala:45:27, :267:25] wire [1:0] r_array_hi_hi_hi_1; // @[package.scala:45:27] assign r_array_hi_hi_hi_1 = _GEN_49; // @[package.scala:45:27] wire [1:0] x_array_hi_hi_hi; // @[package.scala:45:27] assign x_array_hi_hi_hi = _GEN_49; // @[package.scala:45:27] wire [3:0] r_array_hi_hi_1 = {r_array_hi_hi_hi_1, r_array_hi_hi_lo_1}; // @[package.scala:45:27] wire [6:0] r_array_hi_1 = {r_array_hi_hi_1, r_array_hi_lo_1}; // @[package.scala:45:27] wire [12:0] _r_array_T_1 = {r_array_hi_1, r_array_lo_1}; // @[package.scala:45:27] wire [12:0] _r_array_T_2 = mxr ? _r_array_T_1 : 13'h0; // @[package.scala:45:27] wire [12:0] _r_array_T_3 = _r_array_T | _r_array_T_2; // @[package.scala:45:27] wire [12:0] _r_array_T_4 = priv_rw_ok & _r_array_T_3; // @[TLB.scala:513:70, :520:{41,69}] wire [12:0] _r_array_T_5 = _r_array_T_4; // @[TLB.scala:520:{41,113}] wire [13:0] r_array = {1'h1, _r_array_T_5}; // @[TLB.scala:520:{20,113}] wire [13:0] _pf_ld_array_T = r_array; // @[TLB.scala:520:20, :597:41] wire [1:0] w_array_lo_lo_hi = {_entries_barrier_2_io_y_sw, _entries_barrier_1_io_y_sw}; // @[package.scala:45:27, :267:25] wire [2:0] w_array_lo_lo = {w_array_lo_lo_hi, _entries_barrier_io_y_sw}; // @[package.scala:45:27, :267:25] wire [1:0] w_array_lo_hi_hi = {_entries_barrier_5_io_y_sw, _entries_barrier_4_io_y_sw}; // @[package.scala:45:27, :267:25] wire [2:0] w_array_lo_hi = {w_array_lo_hi_hi, _entries_barrier_3_io_y_sw}; // @[package.scala:45:27, :267:25] wire [5:0] w_array_lo = {w_array_lo_hi, w_array_lo_lo}; // @[package.scala:45:27] wire [1:0] w_array_hi_lo_hi = {_entries_barrier_8_io_y_sw, _entries_barrier_7_io_y_sw}; // @[package.scala:45:27, :267:25] wire [2:0] w_array_hi_lo = {w_array_hi_lo_hi, _entries_barrier_6_io_y_sw}; // @[package.scala:45:27, :267:25] wire [1:0] w_array_hi_hi_lo = {_entries_barrier_10_io_y_sw, _entries_barrier_9_io_y_sw}; // @[package.scala:45:27, :267:25] wire [1:0] w_array_hi_hi_hi = {_entries_barrier_12_io_y_sw, _entries_barrier_11_io_y_sw}; // @[package.scala:45:27, :267:25] wire [3:0] w_array_hi_hi = {w_array_hi_hi_hi, w_array_hi_hi_lo}; // @[package.scala:45:27] wire [6:0] w_array_hi = {w_array_hi_hi, w_array_hi_lo}; // @[package.scala:45:27] wire [12:0] _w_array_T = {w_array_hi, w_array_lo}; // @[package.scala:45:27] wire [12:0] _w_array_T_1 = priv_rw_ok & _w_array_T; // @[package.scala:45:27] wire [12:0] _w_array_T_2 = _w_array_T_1; // @[TLB.scala:521:{41,69}] wire [13:0] w_array = {1'h1, _w_array_T_2}; // @[TLB.scala:521:{20,69}] wire [2:0] x_array_lo_lo = {x_array_lo_lo_hi, _entries_barrier_io_y_sx}; // @[package.scala:45:27, :267:25] wire [2:0] x_array_lo_hi = {x_array_lo_hi_hi, _entries_barrier_3_io_y_sx}; // @[package.scala:45:27, :267:25] wire [5:0] x_array_lo = {x_array_lo_hi, x_array_lo_lo}; // @[package.scala:45:27] wire [2:0] x_array_hi_lo = {x_array_hi_lo_hi, _entries_barrier_6_io_y_sx}; // @[package.scala:45:27, :267:25] wire [3:0] x_array_hi_hi = {x_array_hi_hi_hi, x_array_hi_hi_lo}; // @[package.scala:45:27] wire [6:0] x_array_hi = {x_array_hi_hi, x_array_hi_lo}; // @[package.scala:45:27] wire [12:0] _x_array_T = {x_array_hi, x_array_lo}; // @[package.scala:45:27] wire [12:0] _x_array_T_1 = priv_x_ok & _x_array_T; // @[package.scala:45:27] wire [12:0] _x_array_T_2 = _x_array_T_1; // @[TLB.scala:522:{40,68}] wire [13:0] x_array = {1'h1, _x_array_T_2}; // @[TLB.scala:522:{20,68}] wire [1:0] hr_array_lo_lo_hi = {_entries_barrier_2_io_y_hr, _entries_barrier_1_io_y_hr}; // @[package.scala:45:27, :267:25] wire [2:0] hr_array_lo_lo = {hr_array_lo_lo_hi, _entries_barrier_io_y_hr}; // @[package.scala:45:27, :267:25] wire [1:0] hr_array_lo_hi_hi = {_entries_barrier_5_io_y_hr, _entries_barrier_4_io_y_hr}; // @[package.scala:45:27, :267:25] wire [2:0] hr_array_lo_hi = {hr_array_lo_hi_hi, _entries_barrier_3_io_y_hr}; // @[package.scala:45:27, :267:25] wire [5:0] hr_array_lo = {hr_array_lo_hi, hr_array_lo_lo}; // @[package.scala:45:27] wire [1:0] hr_array_hi_lo_hi = {_entries_barrier_8_io_y_hr, _entries_barrier_7_io_y_hr}; // @[package.scala:45:27, :267:25] wire [2:0] hr_array_hi_lo = {hr_array_hi_lo_hi, _entries_barrier_6_io_y_hr}; // @[package.scala:45:27, :267:25] wire [1:0] hr_array_hi_hi_lo = {_entries_barrier_10_io_y_hr, _entries_barrier_9_io_y_hr}; // @[package.scala:45:27, :267:25] wire [1:0] hr_array_hi_hi_hi = {_entries_barrier_12_io_y_hr, _entries_barrier_11_io_y_hr}; // @[package.scala:45:27, :267:25] wire [3:0] hr_array_hi_hi = {hr_array_hi_hi_hi, hr_array_hi_hi_lo}; // @[package.scala:45:27] wire [6:0] hr_array_hi = {hr_array_hi_hi, hr_array_hi_lo}; // @[package.scala:45:27] wire [12:0] _hr_array_T = {hr_array_hi, hr_array_lo}; // @[package.scala:45:27] wire [1:0] _GEN_50 = {_entries_barrier_2_io_y_hx, _entries_barrier_1_io_y_hx}; // @[package.scala:45:27, :267:25] wire [1:0] hr_array_lo_lo_hi_1; // @[package.scala:45:27] assign hr_array_lo_lo_hi_1 = _GEN_50; // @[package.scala:45:27] wire [1:0] hx_array_lo_lo_hi; // @[package.scala:45:27] assign hx_array_lo_lo_hi = _GEN_50; // @[package.scala:45:27] wire [2:0] hr_array_lo_lo_1 = {hr_array_lo_lo_hi_1, _entries_barrier_io_y_hx}; // @[package.scala:45:27, :267:25] wire [1:0] _GEN_51 = {_entries_barrier_5_io_y_hx, _entries_barrier_4_io_y_hx}; // @[package.scala:45:27, :267:25] wire [1:0] hr_array_lo_hi_hi_1; // @[package.scala:45:27] assign hr_array_lo_hi_hi_1 = _GEN_51; // @[package.scala:45:27] wire [1:0] hx_array_lo_hi_hi; // @[package.scala:45:27] assign hx_array_lo_hi_hi = _GEN_51; // @[package.scala:45:27] wire [2:0] hr_array_lo_hi_1 = {hr_array_lo_hi_hi_1, _entries_barrier_3_io_y_hx}; // @[package.scala:45:27, :267:25] wire [5:0] hr_array_lo_1 = {hr_array_lo_hi_1, hr_array_lo_lo_1}; // @[package.scala:45:27] wire [1:0] _GEN_52 = {_entries_barrier_8_io_y_hx, _entries_barrier_7_io_y_hx}; // @[package.scala:45:27, :267:25] wire [1:0] hr_array_hi_lo_hi_1; // @[package.scala:45:27] assign hr_array_hi_lo_hi_1 = _GEN_52; // @[package.scala:45:27] wire [1:0] hx_array_hi_lo_hi; // @[package.scala:45:27] assign hx_array_hi_lo_hi = _GEN_52; // @[package.scala:45:27] wire [2:0] hr_array_hi_lo_1 = {hr_array_hi_lo_hi_1, _entries_barrier_6_io_y_hx}; // @[package.scala:45:27, :267:25] wire [1:0] _GEN_53 = {_entries_barrier_10_io_y_hx, _entries_barrier_9_io_y_hx}; // @[package.scala:45:27, :267:25] wire [1:0] hr_array_hi_hi_lo_1; // @[package.scala:45:27] assign hr_array_hi_hi_lo_1 = _GEN_53; // @[package.scala:45:27] wire [1:0] hx_array_hi_hi_lo; // @[package.scala:45:27] assign hx_array_hi_hi_lo = _GEN_53; // @[package.scala:45:27] wire [1:0] _GEN_54 = {_entries_barrier_12_io_y_hx, _entries_barrier_11_io_y_hx}; // @[package.scala:45:27, :267:25] wire [1:0] hr_array_hi_hi_hi_1; // @[package.scala:45:27] assign hr_array_hi_hi_hi_1 = _GEN_54; // @[package.scala:45:27] wire [1:0] hx_array_hi_hi_hi; // @[package.scala:45:27] assign hx_array_hi_hi_hi = _GEN_54; // @[package.scala:45:27] wire [3:0] hr_array_hi_hi_1 = {hr_array_hi_hi_hi_1, hr_array_hi_hi_lo_1}; // @[package.scala:45:27] wire [6:0] hr_array_hi_1 = {hr_array_hi_hi_1, hr_array_hi_lo_1}; // @[package.scala:45:27] wire [12:0] _hr_array_T_1 = {hr_array_hi_1, hr_array_lo_1}; // @[package.scala:45:27] wire [12:0] _hr_array_T_2 = io_ptw_status_mxr_0 ? _hr_array_T_1 : 13'h0; // @[package.scala:45:27] wire [12:0] _hr_array_T_3 = _hr_array_T | _hr_array_T_2; // @[package.scala:45:27] wire [1:0] hw_array_lo_lo_hi = {_entries_barrier_2_io_y_hw, _entries_barrier_1_io_y_hw}; // @[package.scala:45:27, :267:25] wire [2:0] hw_array_lo_lo = {hw_array_lo_lo_hi, _entries_barrier_io_y_hw}; // @[package.scala:45:27, :267:25] wire [1:0] hw_array_lo_hi_hi = {_entries_barrier_5_io_y_hw, _entries_barrier_4_io_y_hw}; // @[package.scala:45:27, :267:25] wire [2:0] hw_array_lo_hi = {hw_array_lo_hi_hi, _entries_barrier_3_io_y_hw}; // @[package.scala:45:27, :267:25] wire [5:0] hw_array_lo = {hw_array_lo_hi, hw_array_lo_lo}; // @[package.scala:45:27] wire [1:0] hw_array_hi_lo_hi = {_entries_barrier_8_io_y_hw, _entries_barrier_7_io_y_hw}; // @[package.scala:45:27, :267:25] wire [2:0] hw_array_hi_lo = {hw_array_hi_lo_hi, _entries_barrier_6_io_y_hw}; // @[package.scala:45:27, :267:25] wire [1:0] hw_array_hi_hi_lo = {_entries_barrier_10_io_y_hw, _entries_barrier_9_io_y_hw}; // @[package.scala:45:27, :267:25] wire [1:0] hw_array_hi_hi_hi = {_entries_barrier_12_io_y_hw, _entries_barrier_11_io_y_hw}; // @[package.scala:45:27, :267:25] wire [3:0] hw_array_hi_hi = {hw_array_hi_hi_hi, hw_array_hi_hi_lo}; // @[package.scala:45:27] wire [6:0] hw_array_hi = {hw_array_hi_hi, hw_array_hi_lo}; // @[package.scala:45:27] wire [12:0] _hw_array_T = {hw_array_hi, hw_array_lo}; // @[package.scala:45:27] wire [2:0] hx_array_lo_lo = {hx_array_lo_lo_hi, _entries_barrier_io_y_hx}; // @[package.scala:45:27, :267:25] wire [2:0] hx_array_lo_hi = {hx_array_lo_hi_hi, _entries_barrier_3_io_y_hx}; // @[package.scala:45:27, :267:25] wire [5:0] hx_array_lo = {hx_array_lo_hi, hx_array_lo_lo}; // @[package.scala:45:27] wire [2:0] hx_array_hi_lo = {hx_array_hi_lo_hi, _entries_barrier_6_io_y_hx}; // @[package.scala:45:27, :267:25] wire [3:0] hx_array_hi_hi = {hx_array_hi_hi_hi, hx_array_hi_hi_lo}; // @[package.scala:45:27] wire [6:0] hx_array_hi = {hx_array_hi_hi, hx_array_hi_lo}; // @[package.scala:45:27] wire [12:0] _hx_array_T = {hx_array_hi, hx_array_lo}; // @[package.scala:45:27] wire [1:0] _pr_array_T = {2{prot_r}}; // @[TLB.scala:429:55, :529:26] wire [1:0] pr_array_lo_lo_hi = {_entries_barrier_2_io_y_pr, _entries_barrier_1_io_y_pr}; // @[package.scala:45:27, :267:25] wire [2:0] pr_array_lo_lo = {pr_array_lo_lo_hi, _entries_barrier_io_y_pr}; // @[package.scala:45:27, :267:25] wire [1:0] pr_array_lo_hi_hi = {_entries_barrier_5_io_y_pr, _entries_barrier_4_io_y_pr}; // @[package.scala:45:27, :267:25] wire [2:0] pr_array_lo_hi = {pr_array_lo_hi_hi, _entries_barrier_3_io_y_pr}; // @[package.scala:45:27, :267:25] wire [5:0] pr_array_lo = {pr_array_lo_hi, pr_array_lo_lo}; // @[package.scala:45:27] wire [1:0] pr_array_hi_lo_hi = {_entries_barrier_8_io_y_pr, _entries_barrier_7_io_y_pr}; // @[package.scala:45:27, :267:25] wire [2:0] pr_array_hi_lo = {pr_array_hi_lo_hi, _entries_barrier_6_io_y_pr}; // @[package.scala:45:27, :267:25] wire [1:0] pr_array_hi_hi_hi = {_entries_barrier_11_io_y_pr, _entries_barrier_10_io_y_pr}; // @[package.scala:45:27, :267:25] wire [2:0] pr_array_hi_hi = {pr_array_hi_hi_hi, _entries_barrier_9_io_y_pr}; // @[package.scala:45:27, :267:25] wire [5:0] pr_array_hi = {pr_array_hi_hi, pr_array_hi_lo}; // @[package.scala:45:27] wire [11:0] _pr_array_T_1 = {pr_array_hi, pr_array_lo}; // @[package.scala:45:27] wire [13:0] _pr_array_T_2 = {_pr_array_T, _pr_array_T_1}; // @[package.scala:45:27] wire [13:0] _GEN_55 = ptw_ae_array | final_ae_array; // @[TLB.scala:506:25, :507:27, :529:104] wire [13:0] _pr_array_T_3; // @[TLB.scala:529:104] assign _pr_array_T_3 = _GEN_55; // @[TLB.scala:529:104] wire [13:0] _pw_array_T_3; // @[TLB.scala:531:104] assign _pw_array_T_3 = _GEN_55; // @[TLB.scala:529:104, :531:104] wire [13:0] _px_array_T_3; // @[TLB.scala:533:104] assign _px_array_T_3 = _GEN_55; // @[TLB.scala:529:104, :533:104] wire [13:0] _pr_array_T_4 = ~_pr_array_T_3; // @[TLB.scala:529:{89,104}] wire [13:0] pr_array = _pr_array_T_2 & _pr_array_T_4; // @[TLB.scala:529:{21,87,89}] wire [1:0] _pw_array_T = {2{prot_w}}; // @[TLB.scala:430:55, :531:26] wire [1:0] pw_array_lo_lo_hi = {_entries_barrier_2_io_y_pw, _entries_barrier_1_io_y_pw}; // @[package.scala:45:27, :267:25] wire [2:0] pw_array_lo_lo = {pw_array_lo_lo_hi, _entries_barrier_io_y_pw}; // @[package.scala:45:27, :267:25] wire [1:0] pw_array_lo_hi_hi = {_entries_barrier_5_io_y_pw, _entries_barrier_4_io_y_pw}; // @[package.scala:45:27, :267:25] wire [2:0] pw_array_lo_hi = {pw_array_lo_hi_hi, _entries_barrier_3_io_y_pw}; // @[package.scala:45:27, :267:25] wire [5:0] pw_array_lo = {pw_array_lo_hi, pw_array_lo_lo}; // @[package.scala:45:27] wire [1:0] pw_array_hi_lo_hi = {_entries_barrier_8_io_y_pw, _entries_barrier_7_io_y_pw}; // @[package.scala:45:27, :267:25] wire [2:0] pw_array_hi_lo = {pw_array_hi_lo_hi, _entries_barrier_6_io_y_pw}; // @[package.scala:45:27, :267:25] wire [1:0] pw_array_hi_hi_hi = {_entries_barrier_11_io_y_pw, _entries_barrier_10_io_y_pw}; // @[package.scala:45:27, :267:25] wire [2:0] pw_array_hi_hi = {pw_array_hi_hi_hi, _entries_barrier_9_io_y_pw}; // @[package.scala:45:27, :267:25] wire [5:0] pw_array_hi = {pw_array_hi_hi, pw_array_hi_lo}; // @[package.scala:45:27] wire [11:0] _pw_array_T_1 = {pw_array_hi, pw_array_lo}; // @[package.scala:45:27] wire [13:0] _pw_array_T_2 = {_pw_array_T, _pw_array_T_1}; // @[package.scala:45:27] wire [13:0] _pw_array_T_4 = ~_pw_array_T_3; // @[TLB.scala:531:{89,104}] wire [13:0] pw_array = _pw_array_T_2 & _pw_array_T_4; // @[TLB.scala:531:{21,87,89}] wire [1:0] _px_array_T = {2{prot_x}}; // @[TLB.scala:434:55, :533:26] wire [1:0] px_array_lo_lo_hi = {_entries_barrier_2_io_y_px, _entries_barrier_1_io_y_px}; // @[package.scala:45:27, :267:25] wire [2:0] px_array_lo_lo = {px_array_lo_lo_hi, _entries_barrier_io_y_px}; // @[package.scala:45:27, :267:25] wire [1:0] px_array_lo_hi_hi = {_entries_barrier_5_io_y_px, _entries_barrier_4_io_y_px}; // @[package.scala:45:27, :267:25] wire [2:0] px_array_lo_hi = {px_array_lo_hi_hi, _entries_barrier_3_io_y_px}; // @[package.scala:45:27, :267:25] wire [5:0] px_array_lo = {px_array_lo_hi, px_array_lo_lo}; // @[package.scala:45:27] wire [1:0] px_array_hi_lo_hi = {_entries_barrier_8_io_y_px, _entries_barrier_7_io_y_px}; // @[package.scala:45:27, :267:25] wire [2:0] px_array_hi_lo = {px_array_hi_lo_hi, _entries_barrier_6_io_y_px}; // @[package.scala:45:27, :267:25] wire [1:0] px_array_hi_hi_hi = {_entries_barrier_11_io_y_px, _entries_barrier_10_io_y_px}; // @[package.scala:45:27, :267:25] wire [2:0] px_array_hi_hi = {px_array_hi_hi_hi, _entries_barrier_9_io_y_px}; // @[package.scala:45:27, :267:25] wire [5:0] px_array_hi = {px_array_hi_hi, px_array_hi_lo}; // @[package.scala:45:27] wire [11:0] _px_array_T_1 = {px_array_hi, px_array_lo}; // @[package.scala:45:27] wire [13:0] _px_array_T_2 = {_px_array_T, _px_array_T_1}; // @[package.scala:45:27] wire [13:0] _px_array_T_4 = ~_px_array_T_3; // @[TLB.scala:533:{89,104}] wire [13:0] px_array = _px_array_T_2 & _px_array_T_4; // @[TLB.scala:533:{21,87,89}] wire [1:0] _eff_array_T = {2{_pma_io_resp_eff}}; // @[TLB.scala:422:19, :535:27] wire [1:0] eff_array_lo_lo_hi = {_entries_barrier_2_io_y_eff, _entries_barrier_1_io_y_eff}; // @[package.scala:45:27, :267:25] wire [2:0] eff_array_lo_lo = {eff_array_lo_lo_hi, _entries_barrier_io_y_eff}; // @[package.scala:45:27, :267:25] wire [1:0] eff_array_lo_hi_hi = {_entries_barrier_5_io_y_eff, _entries_barrier_4_io_y_eff}; // @[package.scala:45:27, :267:25] wire [2:0] eff_array_lo_hi = {eff_array_lo_hi_hi, _entries_barrier_3_io_y_eff}; // @[package.scala:45:27, :267:25] wire [5:0] eff_array_lo = {eff_array_lo_hi, eff_array_lo_lo}; // @[package.scala:45:27] wire [1:0] eff_array_hi_lo_hi = {_entries_barrier_8_io_y_eff, _entries_barrier_7_io_y_eff}; // @[package.scala:45:27, :267:25] wire [2:0] eff_array_hi_lo = {eff_array_hi_lo_hi, _entries_barrier_6_io_y_eff}; // @[package.scala:45:27, :267:25] wire [1:0] eff_array_hi_hi_hi = {_entries_barrier_11_io_y_eff, _entries_barrier_10_io_y_eff}; // @[package.scala:45:27, :267:25] wire [2:0] eff_array_hi_hi = {eff_array_hi_hi_hi, _entries_barrier_9_io_y_eff}; // @[package.scala:45:27, :267:25] wire [5:0] eff_array_hi = {eff_array_hi_hi, eff_array_hi_lo}; // @[package.scala:45:27] wire [11:0] _eff_array_T_1 = {eff_array_hi, eff_array_lo}; // @[package.scala:45:27] wire [13:0] eff_array = {_eff_array_T, _eff_array_T_1}; // @[package.scala:45:27] wire [1:0] _c_array_T = {2{cacheable}}; // @[TLB.scala:425:41, :537:25] wire [1:0] _GEN_56 = {_entries_barrier_2_io_y_c, _entries_barrier_1_io_y_c}; // @[package.scala:45:27, :267:25] wire [1:0] c_array_lo_lo_hi; // @[package.scala:45:27] assign c_array_lo_lo_hi = _GEN_56; // @[package.scala:45:27] wire [1:0] prefetchable_array_lo_lo_hi; // @[package.scala:45:27] assign prefetchable_array_lo_lo_hi = _GEN_56; // @[package.scala:45:27] wire [2:0] c_array_lo_lo = {c_array_lo_lo_hi, _entries_barrier_io_y_c}; // @[package.scala:45:27, :267:25] wire [1:0] _GEN_57 = {_entries_barrier_5_io_y_c, _entries_barrier_4_io_y_c}; // @[package.scala:45:27, :267:25] wire [1:0] c_array_lo_hi_hi; // @[package.scala:45:27] assign c_array_lo_hi_hi = _GEN_57; // @[package.scala:45:27] wire [1:0] prefetchable_array_lo_hi_hi; // @[package.scala:45:27] assign prefetchable_array_lo_hi_hi = _GEN_57; // @[package.scala:45:27] wire [2:0] c_array_lo_hi = {c_array_lo_hi_hi, _entries_barrier_3_io_y_c}; // @[package.scala:45:27, :267:25] wire [5:0] c_array_lo = {c_array_lo_hi, c_array_lo_lo}; // @[package.scala:45:27] wire [1:0] _GEN_58 = {_entries_barrier_8_io_y_c, _entries_barrier_7_io_y_c}; // @[package.scala:45:27, :267:25] wire [1:0] c_array_hi_lo_hi; // @[package.scala:45:27] assign c_array_hi_lo_hi = _GEN_58; // @[package.scala:45:27] wire [1:0] prefetchable_array_hi_lo_hi; // @[package.scala:45:27] assign prefetchable_array_hi_lo_hi = _GEN_58; // @[package.scala:45:27] wire [2:0] c_array_hi_lo = {c_array_hi_lo_hi, _entries_barrier_6_io_y_c}; // @[package.scala:45:27, :267:25] wire [1:0] _GEN_59 = {_entries_barrier_11_io_y_c, _entries_barrier_10_io_y_c}; // @[package.scala:45:27, :267:25] wire [1:0] c_array_hi_hi_hi; // @[package.scala:45:27] assign c_array_hi_hi_hi = _GEN_59; // @[package.scala:45:27] wire [1:0] prefetchable_array_hi_hi_hi; // @[package.scala:45:27] assign prefetchable_array_hi_hi_hi = _GEN_59; // @[package.scala:45:27] wire [2:0] c_array_hi_hi = {c_array_hi_hi_hi, _entries_barrier_9_io_y_c}; // @[package.scala:45:27, :267:25] wire [5:0] c_array_hi = {c_array_hi_hi, c_array_hi_lo}; // @[package.scala:45:27] wire [11:0] _c_array_T_1 = {c_array_hi, c_array_lo}; // @[package.scala:45:27] wire [13:0] c_array = {_c_array_T, _c_array_T_1}; // @[package.scala:45:27] wire [13:0] lrscAllowed = c_array; // @[TLB.scala:537:20, :580:24] wire [1:0] _ppp_array_T = {2{_pma_io_resp_pp}}; // @[TLB.scala:422:19, :539:27] wire [1:0] ppp_array_lo_lo_hi = {_entries_barrier_2_io_y_ppp, _entries_barrier_1_io_y_ppp}; // @[package.scala:45:27, :267:25] wire [2:0] ppp_array_lo_lo = {ppp_array_lo_lo_hi, _entries_barrier_io_y_ppp}; // @[package.scala:45:27, :267:25] wire [1:0] ppp_array_lo_hi_hi = {_entries_barrier_5_io_y_ppp, _entries_barrier_4_io_y_ppp}; // @[package.scala:45:27, :267:25] wire [2:0] ppp_array_lo_hi = {ppp_array_lo_hi_hi, _entries_barrier_3_io_y_ppp}; // @[package.scala:45:27, :267:25] wire [5:0] ppp_array_lo = {ppp_array_lo_hi, ppp_array_lo_lo}; // @[package.scala:45:27] wire [1:0] ppp_array_hi_lo_hi = {_entries_barrier_8_io_y_ppp, _entries_barrier_7_io_y_ppp}; // @[package.scala:45:27, :267:25] wire [2:0] ppp_array_hi_lo = {ppp_array_hi_lo_hi, _entries_barrier_6_io_y_ppp}; // @[package.scala:45:27, :267:25] wire [1:0] ppp_array_hi_hi_hi = {_entries_barrier_11_io_y_ppp, _entries_barrier_10_io_y_ppp}; // @[package.scala:45:27, :267:25] wire [2:0] ppp_array_hi_hi = {ppp_array_hi_hi_hi, _entries_barrier_9_io_y_ppp}; // @[package.scala:45:27, :267:25] wire [5:0] ppp_array_hi = {ppp_array_hi_hi, ppp_array_hi_lo}; // @[package.scala:45:27] wire [11:0] _ppp_array_T_1 = {ppp_array_hi, ppp_array_lo}; // @[package.scala:45:27] wire [13:0] ppp_array = {_ppp_array_T, _ppp_array_T_1}; // @[package.scala:45:27] wire [1:0] _paa_array_T = {2{_pma_io_resp_aa}}; // @[TLB.scala:422:19, :541:27] wire [1:0] paa_array_lo_lo_hi = {_entries_barrier_2_io_y_paa, _entries_barrier_1_io_y_paa}; // @[package.scala:45:27, :267:25] wire [2:0] paa_array_lo_lo = {paa_array_lo_lo_hi, _entries_barrier_io_y_paa}; // @[package.scala:45:27, :267:25] wire [1:0] paa_array_lo_hi_hi = {_entries_barrier_5_io_y_paa, _entries_barrier_4_io_y_paa}; // @[package.scala:45:27, :267:25] wire [2:0] paa_array_lo_hi = {paa_array_lo_hi_hi, _entries_barrier_3_io_y_paa}; // @[package.scala:45:27, :267:25] wire [5:0] paa_array_lo = {paa_array_lo_hi, paa_array_lo_lo}; // @[package.scala:45:27] wire [1:0] paa_array_hi_lo_hi = {_entries_barrier_8_io_y_paa, _entries_barrier_7_io_y_paa}; // @[package.scala:45:27, :267:25] wire [2:0] paa_array_hi_lo = {paa_array_hi_lo_hi, _entries_barrier_6_io_y_paa}; // @[package.scala:45:27, :267:25] wire [1:0] paa_array_hi_hi_hi = {_entries_barrier_11_io_y_paa, _entries_barrier_10_io_y_paa}; // @[package.scala:45:27, :267:25] wire [2:0] paa_array_hi_hi = {paa_array_hi_hi_hi, _entries_barrier_9_io_y_paa}; // @[package.scala:45:27, :267:25] wire [5:0] paa_array_hi = {paa_array_hi_hi, paa_array_hi_lo}; // @[package.scala:45:27] wire [11:0] _paa_array_T_1 = {paa_array_hi, paa_array_lo}; // @[package.scala:45:27] wire [13:0] paa_array = {_paa_array_T, _paa_array_T_1}; // @[package.scala:45:27] wire [1:0] _pal_array_T = {2{_pma_io_resp_al}}; // @[TLB.scala:422:19, :543:27] wire [1:0] pal_array_lo_lo_hi = {_entries_barrier_2_io_y_pal, _entries_barrier_1_io_y_pal}; // @[package.scala:45:27, :267:25] wire [2:0] pal_array_lo_lo = {pal_array_lo_lo_hi, _entries_barrier_io_y_pal}; // @[package.scala:45:27, :267:25] wire [1:0] pal_array_lo_hi_hi = {_entries_barrier_5_io_y_pal, _entries_barrier_4_io_y_pal}; // @[package.scala:45:27, :267:25] wire [2:0] pal_array_lo_hi = {pal_array_lo_hi_hi, _entries_barrier_3_io_y_pal}; // @[package.scala:45:27, :267:25] wire [5:0] pal_array_lo = {pal_array_lo_hi, pal_array_lo_lo}; // @[package.scala:45:27] wire [1:0] pal_array_hi_lo_hi = {_entries_barrier_8_io_y_pal, _entries_barrier_7_io_y_pal}; // @[package.scala:45:27, :267:25] wire [2:0] pal_array_hi_lo = {pal_array_hi_lo_hi, _entries_barrier_6_io_y_pal}; // @[package.scala:45:27, :267:25] wire [1:0] pal_array_hi_hi_hi = {_entries_barrier_11_io_y_pal, _entries_barrier_10_io_y_pal}; // @[package.scala:45:27, :267:25] wire [2:0] pal_array_hi_hi = {pal_array_hi_hi_hi, _entries_barrier_9_io_y_pal}; // @[package.scala:45:27, :267:25] wire [5:0] pal_array_hi = {pal_array_hi_hi, pal_array_hi_lo}; // @[package.scala:45:27] wire [11:0] _pal_array_T_1 = {pal_array_hi, pal_array_lo}; // @[package.scala:45:27] wire [13:0] pal_array = {_pal_array_T, _pal_array_T_1}; // @[package.scala:45:27] wire [13:0] ppp_array_if_cached = ppp_array | c_array; // @[TLB.scala:537:20, :539:22, :544:39] wire [13:0] paa_array_if_cached = paa_array | c_array; // @[TLB.scala:537:20, :541:22, :545:39] wire [13:0] pal_array_if_cached = pal_array | c_array; // @[TLB.scala:537:20, :543:22, :546:39] wire _prefetchable_array_T = cacheable & homogeneous; // @[TLBPermissions.scala:101:65] wire [1:0] _prefetchable_array_T_1 = {_prefetchable_array_T, 1'h0}; // @[TLB.scala:547:{43,59}] wire [2:0] prefetchable_array_lo_lo = {prefetchable_array_lo_lo_hi, _entries_barrier_io_y_c}; // @[package.scala:45:27, :267:25] wire [2:0] prefetchable_array_lo_hi = {prefetchable_array_lo_hi_hi, _entries_barrier_3_io_y_c}; // @[package.scala:45:27, :267:25] wire [5:0] prefetchable_array_lo = {prefetchable_array_lo_hi, prefetchable_array_lo_lo}; // @[package.scala:45:27] wire [2:0] prefetchable_array_hi_lo = {prefetchable_array_hi_lo_hi, _entries_barrier_6_io_y_c}; // @[package.scala:45:27, :267:25] wire [2:0] prefetchable_array_hi_hi = {prefetchable_array_hi_hi_hi, _entries_barrier_9_io_y_c}; // @[package.scala:45:27, :267:25] wire [5:0] prefetchable_array_hi = {prefetchable_array_hi_hi, prefetchable_array_hi_lo}; // @[package.scala:45:27] wire [11:0] _prefetchable_array_T_2 = {prefetchable_array_hi, prefetchable_array_lo}; // @[package.scala:45:27] wire [13:0] prefetchable_array = {_prefetchable_array_T_1, _prefetchable_array_T_2}; // @[package.scala:45:27] wire [39:0] _misaligned_T_3 = {36'h0, io_req_bits_vaddr_0[3:0]}; // @[TLB.scala:318:7, :550:39] wire misaligned = |_misaligned_T_3; // @[TLB.scala:550:{39,77}] assign _io_resp_ma_ld_T = misaligned; // @[TLB.scala:550:77, :645:31] wire _bad_va_T = vm_enabled & stage1_en; // @[TLB.scala:374:29, :399:61, :568:21] wire [39:0] bad_va_maskedVAddr = io_req_bits_vaddr_0 & 40'hC000000000; // @[TLB.scala:318:7, :559:43] wire _bad_va_T_2 = bad_va_maskedVAddr == 40'h0; // @[TLB.scala:559:43, :560:51] wire _bad_va_T_3 = bad_va_maskedVAddr == 40'hC000000000; // @[TLB.scala:559:43, :560:86] wire _bad_va_T_4 = _bad_va_T_3; // @[TLB.scala:560:{71,86}] wire _bad_va_T_5 = _bad_va_T_2 | _bad_va_T_4; // @[TLB.scala:560:{51,59,71}] wire _bad_va_T_6 = ~_bad_va_T_5; // @[TLB.scala:560:{37,59}] wire _bad_va_T_7 = _bad_va_T_6; // @[TLB.scala:560:{34,37}] wire bad_va = _bad_va_T & _bad_va_T_7; // @[TLB.scala:560:34, :568:{21,34}] wire _io_resp_pf_ld_T = bad_va; // @[TLB.scala:568:34, :633:28] wire [13:0] _ae_array_T = misaligned ? eff_array : 14'h0; // @[TLB.scala:535:22, :550:77, :582:8] wire [13:0] ae_array = _ae_array_T; // @[TLB.scala:582:{8,37}] wire [13:0] _ae_array_T_1 = ~lrscAllowed; // @[TLB.scala:580:24, :583:19] wire [13:0] _ae_ld_array_T = ~pr_array; // @[TLB.scala:529:87, :586:46] wire [13:0] _ae_ld_array_T_1 = ae_array | _ae_ld_array_T; // @[TLB.scala:582:37, :586:{44,46}] wire [13:0] ae_ld_array = _ae_ld_array_T_1; // @[TLB.scala:586:{24,44}] wire [13:0] _ae_st_array_T = ~pw_array; // @[TLB.scala:531:87, :588:37] wire [13:0] _ae_st_array_T_1 = ae_array | _ae_st_array_T; // @[TLB.scala:582:37, :588:{35,37}] wire [13:0] _ae_st_array_T_3 = ~ppp_array_if_cached; // @[TLB.scala:544:39, :589:26] wire [13:0] _ae_st_array_T_6 = ~pal_array_if_cached; // @[TLB.scala:546:39, :590:26] wire [13:0] _ae_st_array_T_9 = ~paa_array_if_cached; // @[TLB.scala:545:39, :591:29] wire [13:0] _must_alloc_array_T = ~ppp_array; // @[TLB.scala:539:22, :593:26] wire [13:0] _must_alloc_array_T_2 = ~pal_array; // @[TLB.scala:543:22, :594:26] wire [13:0] _must_alloc_array_T_5 = ~paa_array; // @[TLB.scala:541:22, :595:29] wire [13:0] _pf_ld_array_T_1 = ~_pf_ld_array_T; // @[TLB.scala:597:{37,41}] wire [13:0] _pf_ld_array_T_2 = ~ptw_ae_array; // @[TLB.scala:506:25, :597:73] wire [13:0] _pf_ld_array_T_3 = _pf_ld_array_T_1 & _pf_ld_array_T_2; // @[TLB.scala:597:{37,71,73}] wire [13:0] _pf_ld_array_T_4 = _pf_ld_array_T_3 | ptw_pf_array; // @[TLB.scala:508:25, :597:{71,88}] wire [13:0] _pf_ld_array_T_5 = ~ptw_gf_array; // @[TLB.scala:509:25, :597:106] wire [13:0] _pf_ld_array_T_6 = _pf_ld_array_T_4 & _pf_ld_array_T_5; // @[TLB.scala:597:{88,104,106}] wire [13:0] pf_ld_array = _pf_ld_array_T_6; // @[TLB.scala:597:{24,104}] wire [13:0] _pf_st_array_T = ~w_array; // @[TLB.scala:521:20, :598:44] wire [13:0] _pf_st_array_T_1 = ~ptw_ae_array; // @[TLB.scala:506:25, :597:73, :598:55] wire [13:0] _pf_st_array_T_2 = _pf_st_array_T & _pf_st_array_T_1; // @[TLB.scala:598:{44,53,55}] wire [13:0] _pf_st_array_T_3 = _pf_st_array_T_2 | ptw_pf_array; // @[TLB.scala:508:25, :598:{53,70}] wire [13:0] _pf_st_array_T_4 = ~ptw_gf_array; // @[TLB.scala:509:25, :597:106, :598:88] wire [13:0] _pf_st_array_T_5 = _pf_st_array_T_3 & _pf_st_array_T_4; // @[TLB.scala:598:{70,86,88}] wire [13:0] _pf_inst_array_T = ~x_array; // @[TLB.scala:522:20, :599:25] wire [13:0] _pf_inst_array_T_1 = ~ptw_ae_array; // @[TLB.scala:506:25, :597:73, :599:36] wire [13:0] _pf_inst_array_T_2 = _pf_inst_array_T & _pf_inst_array_T_1; // @[TLB.scala:599:{25,34,36}] wire [13:0] _pf_inst_array_T_3 = _pf_inst_array_T_2 | ptw_pf_array; // @[TLB.scala:508:25, :599:{34,51}] wire [13:0] _pf_inst_array_T_4 = ~ptw_gf_array; // @[TLB.scala:509:25, :597:106, :599:69] wire [13:0] pf_inst_array = _pf_inst_array_T_3 & _pf_inst_array_T_4; // @[TLB.scala:599:{51,67,69}] wire [13:0] _gf_ld_array_T_4 = ~ptw_ae_array; // @[TLB.scala:506:25, :597:73, :600:100] wire [13:0] _gf_ld_array_T_5 = _gf_ld_array_T_3 & _gf_ld_array_T_4; // @[TLB.scala:600:{82,98,100}] wire [13:0] _gf_st_array_T_3 = ~ptw_ae_array; // @[TLB.scala:506:25, :597:73, :601:81] wire [13:0] _gf_st_array_T_4 = _gf_st_array_T_2 & _gf_st_array_T_3; // @[TLB.scala:601:{63,79,81}] wire [13:0] _gf_inst_array_T_2 = ~ptw_ae_array; // @[TLB.scala:506:25, :597:73, :602:64] wire [13:0] _gf_inst_array_T_3 = _gf_inst_array_T_1 & _gf_inst_array_T_2; // @[TLB.scala:602:{46,62,64}] wire _gpa_hits_hit_mask_T = r_gpa_vpn == vpn; // @[TLB.scala:335:30, :364:22, :606:73] wire _gpa_hits_hit_mask_T_1 = r_gpa_valid & _gpa_hits_hit_mask_T; // @[TLB.scala:362:24, :606:{60,73}] wire [11:0] _gpa_hits_hit_mask_T_2 = {12{_gpa_hits_hit_mask_T_1}}; // @[TLB.scala:606:{24,60}] wire tlb_hit_if_not_gpa_miss = |real_hits; // @[package.scala:45:27] wire tlb_hit = |_tlb_hit_T; // @[TLB.scala:611:{28,40}] wire _tlb_miss_T_2 = ~bad_va; // @[TLB.scala:568:34, :613:56] wire _tlb_miss_T_3 = _tlb_miss_T_1 & _tlb_miss_T_2; // @[TLB.scala:613:{29,53,56}] wire _tlb_miss_T_4 = ~tlb_hit; // @[TLB.scala:611:40, :613:67] wire tlb_miss = _tlb_miss_T_3 & _tlb_miss_T_4; // @[TLB.scala:613:{53,64,67}] reg [6:0] state_vec_0; // @[Replacement.scala:305:17] reg [2:0] state_reg_1; // @[Replacement.scala:168:70] wire [1:0] _GEN_60 = {sector_hits_1, sector_hits_0}; // @[OneHot.scala:21:45] wire [1:0] lo_lo; // @[OneHot.scala:21:45] assign lo_lo = _GEN_60; // @[OneHot.scala:21:45] wire [1:0] r_sectored_hit_bits_lo_lo; // @[OneHot.scala:21:45] assign r_sectored_hit_bits_lo_lo = _GEN_60; // @[OneHot.scala:21:45] wire [1:0] _GEN_61 = {sector_hits_3, sector_hits_2}; // @[OneHot.scala:21:45] wire [1:0] lo_hi; // @[OneHot.scala:21:45] assign lo_hi = _GEN_61; // @[OneHot.scala:21:45] wire [1:0] r_sectored_hit_bits_lo_hi; // @[OneHot.scala:21:45] assign r_sectored_hit_bits_lo_hi = _GEN_61; // @[OneHot.scala:21:45] wire [3:0] lo = {lo_hi, lo_lo}; // @[OneHot.scala:21:45] wire [3:0] lo_1 = lo; // @[OneHot.scala:21:45, :31:18] wire [1:0] _GEN_62 = {sector_hits_5, sector_hits_4}; // @[OneHot.scala:21:45] wire [1:0] hi_lo; // @[OneHot.scala:21:45] assign hi_lo = _GEN_62; // @[OneHot.scala:21:45] wire [1:0] r_sectored_hit_bits_hi_lo; // @[OneHot.scala:21:45] assign r_sectored_hit_bits_hi_lo = _GEN_62; // @[OneHot.scala:21:45] wire [1:0] _GEN_63 = {sector_hits_7, sector_hits_6}; // @[OneHot.scala:21:45] wire [1:0] hi_hi; // @[OneHot.scala:21:45] assign hi_hi = _GEN_63; // @[OneHot.scala:21:45] wire [1:0] r_sectored_hit_bits_hi_hi; // @[OneHot.scala:21:45] assign r_sectored_hit_bits_hi_hi = _GEN_63; // @[OneHot.scala:21:45] wire [3:0] hi = {hi_hi, hi_lo}; // @[OneHot.scala:21:45] wire [3:0] hi_1 = hi; // @[OneHot.scala:21:45, :30:18] wire [3:0] _T_33 = hi_1 | lo_1; // @[OneHot.scala:30:18, :31:18, :32:28] wire [1:0] hi_2 = _T_33[3:2]; // @[OneHot.scala:30:18, :32:28] wire [1:0] lo_2 = _T_33[1:0]; // @[OneHot.scala:31:18, :32:28] wire [2:0] state_vec_0_touch_way_sized = {|hi_1, |hi_2, hi_2[1] | lo_2[1]}; // @[OneHot.scala:30:18, :31:18, :32:{10,14,28}] wire _state_vec_0_set_left_older_T = state_vec_0_touch_way_sized[2]; // @[package.scala:163:13] wire state_vec_0_set_left_older = ~_state_vec_0_set_left_older_T; // @[Replacement.scala:196:{33,43}] wire [2:0] state_vec_0_left_subtree_state = state_vec_0[5:3]; // @[package.scala:163:13] wire [2:0] r_sectored_repl_addr_left_subtree_state = state_vec_0[5:3]; // @[package.scala:163:13] wire [2:0] state_vec_0_right_subtree_state = state_vec_0[2:0]; // @[Replacement.scala:198:38, :305:17] wire [2:0] r_sectored_repl_addr_right_subtree_state = state_vec_0[2:0]; // @[Replacement.scala:198:38, :245:38, :305:17] wire [1:0] _state_vec_0_T = state_vec_0_touch_way_sized[1:0]; // @[package.scala:163:13] wire [1:0] _state_vec_0_T_11 = state_vec_0_touch_way_sized[1:0]; // @[package.scala:163:13] wire _state_vec_0_set_left_older_T_1 = _state_vec_0_T[1]; // @[package.scala:163:13] wire state_vec_0_set_left_older_1 = ~_state_vec_0_set_left_older_T_1; // @[Replacement.scala:196:{33,43}] wire state_vec_0_left_subtree_state_1 = state_vec_0_left_subtree_state[1]; // @[package.scala:163:13] wire state_vec_0_right_subtree_state_1 = state_vec_0_left_subtree_state[0]; // @[package.scala:163:13] wire _state_vec_0_T_1 = _state_vec_0_T[0]; // @[package.scala:163:13] wire _state_vec_0_T_5 = _state_vec_0_T[0]; // @[package.scala:163:13] wire _state_vec_0_T_2 = _state_vec_0_T_1; // @[package.scala:163:13] wire _state_vec_0_T_3 = ~_state_vec_0_T_2; // @[Replacement.scala:218:{7,17}] wire _state_vec_0_T_4 = state_vec_0_set_left_older_1 ? state_vec_0_left_subtree_state_1 : _state_vec_0_T_3; // @[package.scala:163:13] wire _state_vec_0_T_6 = _state_vec_0_T_5; // @[Replacement.scala:207:62, :218:17] wire _state_vec_0_T_7 = ~_state_vec_0_T_6; // @[Replacement.scala:218:{7,17}] wire _state_vec_0_T_8 = state_vec_0_set_left_older_1 ? _state_vec_0_T_7 : state_vec_0_right_subtree_state_1; // @[Replacement.scala:196:33, :198:38, :206:16, :218:7] wire [1:0] state_vec_0_hi = {state_vec_0_set_left_older_1, _state_vec_0_T_4}; // @[Replacement.scala:196:33, :202:12, :203:16] wire [2:0] _state_vec_0_T_9 = {state_vec_0_hi, _state_vec_0_T_8}; // @[Replacement.scala:202:12, :206:16] wire [2:0] _state_vec_0_T_10 = state_vec_0_set_left_older ? state_vec_0_left_subtree_state : _state_vec_0_T_9; // @[package.scala:163:13] wire _state_vec_0_set_left_older_T_2 = _state_vec_0_T_11[1]; // @[Replacement.scala:196:43, :207:62] wire state_vec_0_set_left_older_2 = ~_state_vec_0_set_left_older_T_2; // @[Replacement.scala:196:{33,43}] wire state_vec_0_left_subtree_state_2 = state_vec_0_right_subtree_state[1]; // @[package.scala:163:13] wire state_vec_0_right_subtree_state_2 = state_vec_0_right_subtree_state[0]; // @[Replacement.scala:198:38] wire _state_vec_0_T_12 = _state_vec_0_T_11[0]; // @[package.scala:163:13] wire _state_vec_0_T_16 = _state_vec_0_T_11[0]; // @[package.scala:163:13] wire _state_vec_0_T_13 = _state_vec_0_T_12; // @[package.scala:163:13] wire _state_vec_0_T_14 = ~_state_vec_0_T_13; // @[Replacement.scala:218:{7,17}] wire _state_vec_0_T_15 = state_vec_0_set_left_older_2 ? state_vec_0_left_subtree_state_2 : _state_vec_0_T_14; // @[package.scala:163:13] wire _state_vec_0_T_17 = _state_vec_0_T_16; // @[Replacement.scala:207:62, :218:17] wire _state_vec_0_T_18 = ~_state_vec_0_T_17; // @[Replacement.scala:218:{7,17}] wire _state_vec_0_T_19 = state_vec_0_set_left_older_2 ? _state_vec_0_T_18 : state_vec_0_right_subtree_state_2; // @[Replacement.scala:196:33, :198:38, :206:16, :218:7] wire [1:0] state_vec_0_hi_1 = {state_vec_0_set_left_older_2, _state_vec_0_T_15}; // @[Replacement.scala:196:33, :202:12, :203:16] wire [2:0] _state_vec_0_T_20 = {state_vec_0_hi_1, _state_vec_0_T_19}; // @[Replacement.scala:202:12, :206:16] wire [2:0] _state_vec_0_T_21 = state_vec_0_set_left_older ? _state_vec_0_T_20 : state_vec_0_right_subtree_state; // @[Replacement.scala:196:33, :198:38, :202:12, :206:16] wire [3:0] state_vec_0_hi_2 = {state_vec_0_set_left_older, _state_vec_0_T_10}; // @[Replacement.scala:196:33, :202:12, :203:16] wire [6:0] _state_vec_0_T_22 = {state_vec_0_hi_2, _state_vec_0_T_21}; // @[Replacement.scala:202:12, :206:16] wire [1:0] _GEN_64 = {superpage_hits_1, superpage_hits_0}; // @[OneHot.scala:21:45] wire [1:0] lo_3; // @[OneHot.scala:21:45] assign lo_3 = _GEN_64; // @[OneHot.scala:21:45] wire [1:0] r_superpage_hit_bits_lo; // @[OneHot.scala:21:45] assign r_superpage_hit_bits_lo = _GEN_64; // @[OneHot.scala:21:45] wire [1:0] lo_4 = lo_3; // @[OneHot.scala:21:45, :31:18] wire [1:0] _GEN_65 = {superpage_hits_3, superpage_hits_2}; // @[OneHot.scala:21:45] wire [1:0] hi_3; // @[OneHot.scala:21:45] assign hi_3 = _GEN_65; // @[OneHot.scala:21:45] wire [1:0] r_superpage_hit_bits_hi; // @[OneHot.scala:21:45] assign r_superpage_hit_bits_hi = _GEN_65; // @[OneHot.scala:21:45] wire [1:0] hi_4 = hi_3; // @[OneHot.scala:21:45, :30:18] wire [1:0] state_reg_touch_way_sized = {|hi_4, hi_4[1] | lo_4[1]}; // @[OneHot.scala:30:18, :31:18, :32:{10,14,28}] wire _state_reg_set_left_older_T = state_reg_touch_way_sized[1]; // @[package.scala:163:13] wire state_reg_set_left_older = ~_state_reg_set_left_older_T; // @[Replacement.scala:196:{33,43}] wire state_reg_left_subtree_state = state_reg_1[1]; // @[package.scala:163:13] wire r_superpage_repl_addr_left_subtree_state = state_reg_1[1]; // @[package.scala:163:13] wire state_reg_right_subtree_state = state_reg_1[0]; // @[Replacement.scala:168:70, :198:38] wire r_superpage_repl_addr_right_subtree_state = state_reg_1[0]; // @[Replacement.scala:168:70, :198:38, :245:38] wire _state_reg_T = state_reg_touch_way_sized[0]; // @[package.scala:163:13] wire _state_reg_T_4 = state_reg_touch_way_sized[0]; // @[package.scala:163:13] wire _state_reg_T_1 = _state_reg_T; // @[package.scala:163:13] wire _state_reg_T_2 = ~_state_reg_T_1; // @[Replacement.scala:218:{7,17}] wire _state_reg_T_3 = state_reg_set_left_older ? state_reg_left_subtree_state : _state_reg_T_2; // @[package.scala:163:13] wire _state_reg_T_5 = _state_reg_T_4; // @[Replacement.scala:207:62, :218:17] wire _state_reg_T_6 = ~_state_reg_T_5; // @[Replacement.scala:218:{7,17}] wire _state_reg_T_7 = state_reg_set_left_older ? _state_reg_T_6 : state_reg_right_subtree_state; // @[Replacement.scala:196:33, :198:38, :206:16, :218:7] wire [1:0] state_reg_hi = {state_reg_set_left_older, _state_reg_T_3}; // @[Replacement.scala:196:33, :202:12, :203:16] wire [2:0] _state_reg_T_8 = {state_reg_hi, _state_reg_T_7}; // @[Replacement.scala:202:12, :206:16] wire [5:0] _multipleHits_T = real_hits[5:0]; // @[package.scala:45:27] wire [2:0] _multipleHits_T_1 = _multipleHits_T[2:0]; // @[Misc.scala:181:37] wire _multipleHits_T_2 = _multipleHits_T_1[0]; // @[Misc.scala:181:37] wire multipleHits_leftOne = _multipleHits_T_2; // @[Misc.scala:178:18, :181:37] wire [1:0] _multipleHits_T_3 = _multipleHits_T_1[2:1]; // @[Misc.scala:181:37, :182:39] wire _multipleHits_T_4 = _multipleHits_T_3[0]; // @[Misc.scala:181:37, :182:39] wire multipleHits_leftOne_1 = _multipleHits_T_4; // @[Misc.scala:178:18, :181:37] wire _multipleHits_T_5 = _multipleHits_T_3[1]; // @[Misc.scala:182:39] wire multipleHits_rightOne = _multipleHits_T_5; // @[Misc.scala:178:18, :182:39] wire multipleHits_rightOne_1 = multipleHits_leftOne_1 | multipleHits_rightOne; // @[Misc.scala:178:18, :183:16] wire _multipleHits_T_7 = multipleHits_leftOne_1 & multipleHits_rightOne; // @[Misc.scala:178:18, :183:61] wire multipleHits_rightTwo = _multipleHits_T_7; // @[Misc.scala:183:{49,61}] wire _multipleHits_T_8 = multipleHits_rightTwo; // @[Misc.scala:183:{37,49}] wire multipleHits_leftOne_2 = multipleHits_leftOne | multipleHits_rightOne_1; // @[Misc.scala:178:18, :183:16] wire _multipleHits_T_9 = multipleHits_leftOne & multipleHits_rightOne_1; // @[Misc.scala:178:18, :183:{16,61}] wire multipleHits_leftTwo = _multipleHits_T_8 | _multipleHits_T_9; // @[Misc.scala:183:{37,49,61}] wire [2:0] _multipleHits_T_10 = _multipleHits_T[5:3]; // @[Misc.scala:181:37, :182:39] wire _multipleHits_T_11 = _multipleHits_T_10[0]; // @[Misc.scala:181:37, :182:39] wire multipleHits_leftOne_3 = _multipleHits_T_11; // @[Misc.scala:178:18, :181:37] wire [1:0] _multipleHits_T_12 = _multipleHits_T_10[2:1]; // @[Misc.scala:182:39] wire _multipleHits_T_13 = _multipleHits_T_12[0]; // @[Misc.scala:181:37, :182:39] wire multipleHits_leftOne_4 = _multipleHits_T_13; // @[Misc.scala:178:18, :181:37] wire _multipleHits_T_14 = _multipleHits_T_12[1]; // @[Misc.scala:182:39] wire multipleHits_rightOne_2 = _multipleHits_T_14; // @[Misc.scala:178:18, :182:39] wire multipleHits_rightOne_3 = multipleHits_leftOne_4 | multipleHits_rightOne_2; // @[Misc.scala:178:18, :183:16] wire _multipleHits_T_16 = multipleHits_leftOne_4 & multipleHits_rightOne_2; // @[Misc.scala:178:18, :183:61] wire multipleHits_rightTwo_1 = _multipleHits_T_16; // @[Misc.scala:183:{49,61}] wire _multipleHits_T_17 = multipleHits_rightTwo_1; // @[Misc.scala:183:{37,49}] wire multipleHits_rightOne_4 = multipleHits_leftOne_3 | multipleHits_rightOne_3; // @[Misc.scala:178:18, :183:16] wire _multipleHits_T_18 = multipleHits_leftOne_3 & multipleHits_rightOne_3; // @[Misc.scala:178:18, :183:{16,61}] wire multipleHits_rightTwo_2 = _multipleHits_T_17 | _multipleHits_T_18; // @[Misc.scala:183:{37,49,61}] wire multipleHits_leftOne_5 = multipleHits_leftOne_2 | multipleHits_rightOne_4; // @[Misc.scala:183:16] wire _multipleHits_T_19 = multipleHits_leftTwo | multipleHits_rightTwo_2; // @[Misc.scala:183:{37,49}] wire _multipleHits_T_20 = multipleHits_leftOne_2 & multipleHits_rightOne_4; // @[Misc.scala:183:{16,61}] wire multipleHits_leftTwo_1 = _multipleHits_T_19 | _multipleHits_T_20; // @[Misc.scala:183:{37,49,61}] wire [6:0] _multipleHits_T_21 = real_hits[12:6]; // @[package.scala:45:27] wire [2:0] _multipleHits_T_22 = _multipleHits_T_21[2:0]; // @[Misc.scala:181:37, :182:39] wire _multipleHits_T_23 = _multipleHits_T_22[0]; // @[Misc.scala:181:37] wire multipleHits_leftOne_6 = _multipleHits_T_23; // @[Misc.scala:178:18, :181:37] wire [1:0] _multipleHits_T_24 = _multipleHits_T_22[2:1]; // @[Misc.scala:181:37, :182:39] wire _multipleHits_T_25 = _multipleHits_T_24[0]; // @[Misc.scala:181:37, :182:39] wire multipleHits_leftOne_7 = _multipleHits_T_25; // @[Misc.scala:178:18, :181:37] wire _multipleHits_T_26 = _multipleHits_T_24[1]; // @[Misc.scala:182:39] wire multipleHits_rightOne_5 = _multipleHits_T_26; // @[Misc.scala:178:18, :182:39] wire multipleHits_rightOne_6 = multipleHits_leftOne_7 | multipleHits_rightOne_5; // @[Misc.scala:178:18, :183:16] wire _multipleHits_T_28 = multipleHits_leftOne_7 & multipleHits_rightOne_5; // @[Misc.scala:178:18, :183:61] wire multipleHits_rightTwo_3 = _multipleHits_T_28; // @[Misc.scala:183:{49,61}] wire _multipleHits_T_29 = multipleHits_rightTwo_3; // @[Misc.scala:183:{37,49}] wire multipleHits_leftOne_8 = multipleHits_leftOne_6 | multipleHits_rightOne_6; // @[Misc.scala:178:18, :183:16] wire _multipleHits_T_30 = multipleHits_leftOne_6 & multipleHits_rightOne_6; // @[Misc.scala:178:18, :183:{16,61}] wire multipleHits_leftTwo_2 = _multipleHits_T_29 | _multipleHits_T_30; // @[Misc.scala:183:{37,49,61}] wire [3:0] _multipleHits_T_31 = _multipleHits_T_21[6:3]; // @[Misc.scala:182:39] wire [1:0] _multipleHits_T_32 = _multipleHits_T_31[1:0]; // @[Misc.scala:181:37, :182:39] wire _multipleHits_T_33 = _multipleHits_T_32[0]; // @[Misc.scala:181:37] wire multipleHits_leftOne_9 = _multipleHits_T_33; // @[Misc.scala:178:18, :181:37] wire _multipleHits_T_34 = _multipleHits_T_32[1]; // @[Misc.scala:181:37, :182:39] wire multipleHits_rightOne_7 = _multipleHits_T_34; // @[Misc.scala:178:18, :182:39] wire multipleHits_leftOne_10 = multipleHits_leftOne_9 | multipleHits_rightOne_7; // @[Misc.scala:178:18, :183:16] wire _multipleHits_T_36 = multipleHits_leftOne_9 & multipleHits_rightOne_7; // @[Misc.scala:178:18, :183:61] wire multipleHits_leftTwo_3 = _multipleHits_T_36; // @[Misc.scala:183:{49,61}] wire [1:0] _multipleHits_T_37 = _multipleHits_T_31[3:2]; // @[Misc.scala:182:39] wire _multipleHits_T_38 = _multipleHits_T_37[0]; // @[Misc.scala:181:37, :182:39] wire multipleHits_leftOne_11 = _multipleHits_T_38; // @[Misc.scala:178:18, :181:37] wire _multipleHits_T_39 = _multipleHits_T_37[1]; // @[Misc.scala:182:39] wire multipleHits_rightOne_8 = _multipleHits_T_39; // @[Misc.scala:178:18, :182:39] wire multipleHits_rightOne_9 = multipleHits_leftOne_11 | multipleHits_rightOne_8; // @[Misc.scala:178:18, :183:16] wire _multipleHits_T_41 = multipleHits_leftOne_11 & multipleHits_rightOne_8; // @[Misc.scala:178:18, :183:61] wire multipleHits_rightTwo_4 = _multipleHits_T_41; // @[Misc.scala:183:{49,61}] wire multipleHits_rightOne_10 = multipleHits_leftOne_10 | multipleHits_rightOne_9; // @[Misc.scala:183:16] wire _multipleHits_T_42 = multipleHits_leftTwo_3 | multipleHits_rightTwo_4; // @[Misc.scala:183:{37,49}] wire _multipleHits_T_43 = multipleHits_leftOne_10 & multipleHits_rightOne_9; // @[Misc.scala:183:{16,61}] wire multipleHits_rightTwo_5 = _multipleHits_T_42 | _multipleHits_T_43; // @[Misc.scala:183:{37,49,61}] wire multipleHits_rightOne_11 = multipleHits_leftOne_8 | multipleHits_rightOne_10; // @[Misc.scala:183:16] wire _multipleHits_T_44 = multipleHits_leftTwo_2 | multipleHits_rightTwo_5; // @[Misc.scala:183:{37,49}] wire _multipleHits_T_45 = multipleHits_leftOne_8 & multipleHits_rightOne_10; // @[Misc.scala:183:{16,61}] wire multipleHits_rightTwo_6 = _multipleHits_T_44 | _multipleHits_T_45; // @[Misc.scala:183:{37,49,61}] wire _multipleHits_T_46 = multipleHits_leftOne_5 | multipleHits_rightOne_11; // @[Misc.scala:183:16] wire _multipleHits_T_47 = multipleHits_leftTwo_1 | multipleHits_rightTwo_6; // @[Misc.scala:183:{37,49}] wire _multipleHits_T_48 = multipleHits_leftOne_5 & multipleHits_rightOne_11; // @[Misc.scala:183:{16,61}] wire multipleHits = _multipleHits_T_47 | _multipleHits_T_48; // @[Misc.scala:183:{37,49,61}] assign _io_req_ready_T = state == 2'h0; // @[TLB.scala:352:22, :631:25] assign io_req_ready = _io_req_ready_T; // @[TLB.scala:318:7, :631:25] wire [13:0] _io_resp_pf_ld_T_1 = pf_ld_array & hits; // @[TLB.scala:442:17, :597:24, :633:57] wire _io_resp_pf_ld_T_2 = |_io_resp_pf_ld_T_1; // @[TLB.scala:633:{57,65}] assign _io_resp_pf_ld_T_3 = _io_resp_pf_ld_T | _io_resp_pf_ld_T_2; // @[TLB.scala:633:{28,41,65}] assign io_resp_pf_ld_0 = _io_resp_pf_ld_T_3; // @[TLB.scala:318:7, :633:41] wire [13:0] _io_resp_pf_inst_T = pf_inst_array & hits; // @[TLB.scala:442:17, :599:67, :635:47] wire _io_resp_pf_inst_T_1 = |_io_resp_pf_inst_T; // @[TLB.scala:635:{47,55}] assign _io_resp_pf_inst_T_2 = bad_va | _io_resp_pf_inst_T_1; // @[TLB.scala:568:34, :635:{29,55}] assign io_resp_pf_inst_0 = _io_resp_pf_inst_T_2; // @[TLB.scala:318:7, :635:29] wire [13:0] _io_resp_ae_ld_T = ae_ld_array & hits; // @[TLB.scala:442:17, :586:24, :641:33] assign _io_resp_ae_ld_T_1 = |_io_resp_ae_ld_T; // @[TLB.scala:641:{33,41}] assign io_resp_ae_ld_0 = _io_resp_ae_ld_T_1; // @[TLB.scala:318:7, :641:41] wire [13:0] _io_resp_ae_inst_T = ~px_array; // @[TLB.scala:533:87, :643:23] wire [13:0] _io_resp_ae_inst_T_1 = _io_resp_ae_inst_T & hits; // @[TLB.scala:442:17, :643:{23,33}] assign _io_resp_ae_inst_T_2 = |_io_resp_ae_inst_T_1; // @[TLB.scala:643:{33,41}] assign io_resp_ae_inst_0 = _io_resp_ae_inst_T_2; // @[TLB.scala:318:7, :643:41] assign io_resp_ma_ld_0 = _io_resp_ma_ld_T; // @[TLB.scala:318:7, :645:31] wire [13:0] _io_resp_cacheable_T = c_array & hits; // @[TLB.scala:442:17, :537:20, :648:33] assign _io_resp_cacheable_T_1 = |_io_resp_cacheable_T; // @[TLB.scala:648:{33,41}] assign io_resp_cacheable_0 = _io_resp_cacheable_T_1; // @[TLB.scala:318:7, :648:41] wire [13:0] _io_resp_prefetchable_T = prefetchable_array & hits; // @[TLB.scala:442:17, :547:31, :650:47] wire _io_resp_prefetchable_T_1 = |_io_resp_prefetchable_T; // @[TLB.scala:650:{47,55}] assign _io_resp_prefetchable_T_2 = _io_resp_prefetchable_T_1; // @[TLB.scala:650:{55,59}] assign io_resp_prefetchable_0 = _io_resp_prefetchable_T_2; // @[TLB.scala:318:7, :650:59] wire _io_resp_miss_T_1 = _io_resp_miss_T | tlb_miss; // @[TLB.scala:613:64, :651:{29,52}] assign _io_resp_miss_T_2 = _io_resp_miss_T_1 | multipleHits; // @[Misc.scala:183:49] assign io_resp_miss_0 = _io_resp_miss_T_2; // @[TLB.scala:318:7, :651:64] assign _io_resp_paddr_T_1 = {ppn, _io_resp_paddr_T}; // @[Mux.scala:30:73] assign io_resp_paddr_0 = _io_resp_paddr_T_1; // @[TLB.scala:318:7, :652:23] wire [27:0] _io_resp_gpa_page_T_1 = {1'h0, vpn}; // @[TLB.scala:335:30, :657:36] wire [27:0] io_resp_gpa_page = _io_resp_gpa_page_T_1; // @[TLB.scala:657:{19,36}] wire [26:0] _io_resp_gpa_page_T_2 = r_gpa[38:12]; // @[TLB.scala:363:18, :657:58] wire [11:0] _io_resp_gpa_offset_T = r_gpa[11:0]; // @[TLB.scala:363:18, :658:47] wire [11:0] io_resp_gpa_offset = _io_resp_gpa_offset_T_1; // @[TLB.scala:658:{21,82}] assign _io_resp_gpa_T = {io_resp_gpa_page, io_resp_gpa_offset}; // @[TLB.scala:657:19, :658:21, :659:8] assign io_resp_gpa_0 = _io_resp_gpa_T; // @[TLB.scala:318:7, :659:8] assign io_ptw_req_valid_0 = _io_ptw_req_valid_T; // @[TLB.scala:318:7, :662:29] wire r_superpage_repl_addr_left_subtree_older = state_reg_1[2]; // @[Replacement.scala:168:70, :243:38] wire _r_superpage_repl_addr_T = r_superpage_repl_addr_left_subtree_state; // @[package.scala:163:13] wire _r_superpage_repl_addr_T_1 = r_superpage_repl_addr_right_subtree_state; // @[Replacement.scala:245:38, :262:12] wire _r_superpage_repl_addr_T_2 = r_superpage_repl_addr_left_subtree_older ? _r_superpage_repl_addr_T : _r_superpage_repl_addr_T_1; // @[Replacement.scala:243:38, :250:16, :262:12] wire [1:0] _r_superpage_repl_addr_T_3 = {r_superpage_repl_addr_left_subtree_older, _r_superpage_repl_addr_T_2}; // @[Replacement.scala:243:38, :249:12, :250:16] wire [1:0] r_superpage_repl_addr_valids_lo = {superpage_entries_1_valid_0, superpage_entries_0_valid_0}; // @[package.scala:45:27] wire [1:0] r_superpage_repl_addr_valids_hi = {superpage_entries_3_valid_0, superpage_entries_2_valid_0}; // @[package.scala:45:27] wire [3:0] r_superpage_repl_addr_valids = {r_superpage_repl_addr_valids_hi, r_superpage_repl_addr_valids_lo}; // @[package.scala:45:27] wire _r_superpage_repl_addr_T_4 = &r_superpage_repl_addr_valids; // @[package.scala:45:27] wire [3:0] _r_superpage_repl_addr_T_5 = ~r_superpage_repl_addr_valids; // @[package.scala:45:27] wire _r_superpage_repl_addr_T_6 = _r_superpage_repl_addr_T_5[0]; // @[OneHot.scala:48:45] wire _r_superpage_repl_addr_T_7 = _r_superpage_repl_addr_T_5[1]; // @[OneHot.scala:48:45] wire _r_superpage_repl_addr_T_8 = _r_superpage_repl_addr_T_5[2]; // @[OneHot.scala:48:45] wire _r_superpage_repl_addr_T_9 = _r_superpage_repl_addr_T_5[3]; // @[OneHot.scala:48:45] wire [1:0] _r_superpage_repl_addr_T_10 = {1'h1, ~_r_superpage_repl_addr_T_8}; // @[OneHot.scala:48:45] wire [1:0] _r_superpage_repl_addr_T_11 = _r_superpage_repl_addr_T_7 ? 2'h1 : _r_superpage_repl_addr_T_10; // @[OneHot.scala:48:45] wire [1:0] _r_superpage_repl_addr_T_12 = _r_superpage_repl_addr_T_6 ? 2'h0 : _r_superpage_repl_addr_T_11; // @[OneHot.scala:48:45] wire [1:0] _r_superpage_repl_addr_T_13 = _r_superpage_repl_addr_T_4 ? _r_superpage_repl_addr_T_3 : _r_superpage_repl_addr_T_12; // @[Mux.scala:50:70] wire r_sectored_repl_addr_left_subtree_older = state_vec_0[6]; // @[Replacement.scala:243:38, :305:17] wire r_sectored_repl_addr_left_subtree_older_1 = r_sectored_repl_addr_left_subtree_state[2]; // @[package.scala:163:13] wire r_sectored_repl_addr_left_subtree_state_1 = r_sectored_repl_addr_left_subtree_state[1]; // @[package.scala:163:13] wire _r_sectored_repl_addr_T = r_sectored_repl_addr_left_subtree_state_1; // @[package.scala:163:13] wire r_sectored_repl_addr_right_subtree_state_1 = r_sectored_repl_addr_left_subtree_state[0]; // @[package.scala:163:13] wire _r_sectored_repl_addr_T_1 = r_sectored_repl_addr_right_subtree_state_1; // @[Replacement.scala:245:38, :262:12] wire _r_sectored_repl_addr_T_2 = r_sectored_repl_addr_left_subtree_older_1 ? _r_sectored_repl_addr_T : _r_sectored_repl_addr_T_1; // @[Replacement.scala:243:38, :250:16, :262:12] wire [1:0] _r_sectored_repl_addr_T_3 = {r_sectored_repl_addr_left_subtree_older_1, _r_sectored_repl_addr_T_2}; // @[Replacement.scala:243:38, :249:12, :250:16] wire r_sectored_repl_addr_left_subtree_older_2 = r_sectored_repl_addr_right_subtree_state[2]; // @[Replacement.scala:243:38, :245:38] wire r_sectored_repl_addr_left_subtree_state_2 = r_sectored_repl_addr_right_subtree_state[1]; // @[package.scala:163:13] wire _r_sectored_repl_addr_T_4 = r_sectored_repl_addr_left_subtree_state_2; // @[package.scala:163:13] wire r_sectored_repl_addr_right_subtree_state_2 = r_sectored_repl_addr_right_subtree_state[0]; // @[Replacement.scala:245:38] wire _r_sectored_repl_addr_T_5 = r_sectored_repl_addr_right_subtree_state_2; // @[Replacement.scala:245:38, :262:12] wire _r_sectored_repl_addr_T_6 = r_sectored_repl_addr_left_subtree_older_2 ? _r_sectored_repl_addr_T_4 : _r_sectored_repl_addr_T_5; // @[Replacement.scala:243:38, :250:16, :262:12] wire [1:0] _r_sectored_repl_addr_T_7 = {r_sectored_repl_addr_left_subtree_older_2, _r_sectored_repl_addr_T_6}; // @[Replacement.scala:243:38, :249:12, :250:16] wire [1:0] _r_sectored_repl_addr_T_8 = r_sectored_repl_addr_left_subtree_older ? _r_sectored_repl_addr_T_3 : _r_sectored_repl_addr_T_7; // @[Replacement.scala:243:38, :249:12, :250:16] wire [2:0] _r_sectored_repl_addr_T_9 = {r_sectored_repl_addr_left_subtree_older, _r_sectored_repl_addr_T_8}; // @[Replacement.scala:243:38, :249:12, :250:16] wire _r_sectored_repl_addr_valids_T_1 = _r_sectored_repl_addr_valids_T | sectored_entries_0_0_valid_2; // @[package.scala:81:59] wire _r_sectored_repl_addr_valids_T_2 = _r_sectored_repl_addr_valids_T_1 | sectored_entries_0_0_valid_3; // @[package.scala:81:59] wire _r_sectored_repl_addr_valids_T_4 = _r_sectored_repl_addr_valids_T_3 | sectored_entries_0_1_valid_2; // @[package.scala:81:59] wire _r_sectored_repl_addr_valids_T_5 = _r_sectored_repl_addr_valids_T_4 | sectored_entries_0_1_valid_3; // @[package.scala:81:59] wire _r_sectored_repl_addr_valids_T_7 = _r_sectored_repl_addr_valids_T_6 | sectored_entries_0_2_valid_2; // @[package.scala:81:59] wire _r_sectored_repl_addr_valids_T_8 = _r_sectored_repl_addr_valids_T_7 | sectored_entries_0_2_valid_3; // @[package.scala:81:59] wire _r_sectored_repl_addr_valids_T_10 = _r_sectored_repl_addr_valids_T_9 | sectored_entries_0_3_valid_2; // @[package.scala:81:59] wire _r_sectored_repl_addr_valids_T_11 = _r_sectored_repl_addr_valids_T_10 | sectored_entries_0_3_valid_3; // @[package.scala:81:59] wire _r_sectored_repl_addr_valids_T_13 = _r_sectored_repl_addr_valids_T_12 | sectored_entries_0_4_valid_2; // @[package.scala:81:59] wire _r_sectored_repl_addr_valids_T_14 = _r_sectored_repl_addr_valids_T_13 | sectored_entries_0_4_valid_3; // @[package.scala:81:59] wire _r_sectored_repl_addr_valids_T_16 = _r_sectored_repl_addr_valids_T_15 | sectored_entries_0_5_valid_2; // @[package.scala:81:59] wire _r_sectored_repl_addr_valids_T_17 = _r_sectored_repl_addr_valids_T_16 | sectored_entries_0_5_valid_3; // @[package.scala:81:59] wire _r_sectored_repl_addr_valids_T_19 = _r_sectored_repl_addr_valids_T_18 | sectored_entries_0_6_valid_2; // @[package.scala:81:59] wire _r_sectored_repl_addr_valids_T_20 = _r_sectored_repl_addr_valids_T_19 | sectored_entries_0_6_valid_3; // @[package.scala:81:59] wire _r_sectored_repl_addr_valids_T_22 = _r_sectored_repl_addr_valids_T_21 | sectored_entries_0_7_valid_2; // @[package.scala:81:59] wire _r_sectored_repl_addr_valids_T_23 = _r_sectored_repl_addr_valids_T_22 | sectored_entries_0_7_valid_3; // @[package.scala:81:59] wire [1:0] r_sectored_repl_addr_valids_lo_lo = {_r_sectored_repl_addr_valids_T_5, _r_sectored_repl_addr_valids_T_2}; // @[package.scala:45:27, :81:59] wire [1:0] r_sectored_repl_addr_valids_lo_hi = {_r_sectored_repl_addr_valids_T_11, _r_sectored_repl_addr_valids_T_8}; // @[package.scala:45:27, :81:59] wire [3:0] r_sectored_repl_addr_valids_lo = {r_sectored_repl_addr_valids_lo_hi, r_sectored_repl_addr_valids_lo_lo}; // @[package.scala:45:27] wire [1:0] r_sectored_repl_addr_valids_hi_lo = {_r_sectored_repl_addr_valids_T_17, _r_sectored_repl_addr_valids_T_14}; // @[package.scala:45:27, :81:59] wire [1:0] r_sectored_repl_addr_valids_hi_hi = {_r_sectored_repl_addr_valids_T_23, _r_sectored_repl_addr_valids_T_20}; // @[package.scala:45:27, :81:59] wire [3:0] r_sectored_repl_addr_valids_hi = {r_sectored_repl_addr_valids_hi_hi, r_sectored_repl_addr_valids_hi_lo}; // @[package.scala:45:27] wire [7:0] r_sectored_repl_addr_valids = {r_sectored_repl_addr_valids_hi, r_sectored_repl_addr_valids_lo}; // @[package.scala:45:27] wire _r_sectored_repl_addr_T_10 = &r_sectored_repl_addr_valids; // @[package.scala:45:27] wire [7:0] _r_sectored_repl_addr_T_11 = ~r_sectored_repl_addr_valids; // @[package.scala:45:27] wire _r_sectored_repl_addr_T_12 = _r_sectored_repl_addr_T_11[0]; // @[OneHot.scala:48:45] wire _r_sectored_repl_addr_T_13 = _r_sectored_repl_addr_T_11[1]; // @[OneHot.scala:48:45] wire _r_sectored_repl_addr_T_14 = _r_sectored_repl_addr_T_11[2]; // @[OneHot.scala:48:45] wire _r_sectored_repl_addr_T_15 = _r_sectored_repl_addr_T_11[3]; // @[OneHot.scala:48:45] wire _r_sectored_repl_addr_T_16 = _r_sectored_repl_addr_T_11[4]; // @[OneHot.scala:48:45] wire _r_sectored_repl_addr_T_17 = _r_sectored_repl_addr_T_11[5]; // @[OneHot.scala:48:45] wire _r_sectored_repl_addr_T_18 = _r_sectored_repl_addr_T_11[6]; // @[OneHot.scala:48:45] wire _r_sectored_repl_addr_T_19 = _r_sectored_repl_addr_T_11[7]; // @[OneHot.scala:48:45] wire [2:0] _r_sectored_repl_addr_T_20 = {2'h3, ~_r_sectored_repl_addr_T_18}; // @[OneHot.scala:48:45] wire [2:0] _r_sectored_repl_addr_T_21 = _r_sectored_repl_addr_T_17 ? 3'h5 : _r_sectored_repl_addr_T_20; // @[OneHot.scala:48:45] wire [2:0] _r_sectored_repl_addr_T_22 = _r_sectored_repl_addr_T_16 ? 3'h4 : _r_sectored_repl_addr_T_21; // @[OneHot.scala:48:45] wire [2:0] _r_sectored_repl_addr_T_23 = _r_sectored_repl_addr_T_15 ? 3'h3 : _r_sectored_repl_addr_T_22; // @[OneHot.scala:48:45] wire [2:0] _r_sectored_repl_addr_T_24 = _r_sectored_repl_addr_T_14 ? 3'h2 : _r_sectored_repl_addr_T_23; // @[OneHot.scala:48:45] wire [2:0] _r_sectored_repl_addr_T_25 = _r_sectored_repl_addr_T_13 ? 3'h1 : _r_sectored_repl_addr_T_24; // @[OneHot.scala:48:45] wire [2:0] _r_sectored_repl_addr_T_26 = _r_sectored_repl_addr_T_12 ? 3'h0 : _r_sectored_repl_addr_T_25; // @[OneHot.scala:48:45] wire [2:0] _r_sectored_repl_addr_T_27 = _r_sectored_repl_addr_T_10 ? _r_sectored_repl_addr_T_9 : _r_sectored_repl_addr_T_26; // @[Mux.scala:50:70] wire _r_sectored_hit_valid_T = sector_hits_0 | sector_hits_1; // @[package.scala:81:59] wire _r_sectored_hit_valid_T_1 = _r_sectored_hit_valid_T | sector_hits_2; // @[package.scala:81:59] wire _r_sectored_hit_valid_T_2 = _r_sectored_hit_valid_T_1 | sector_hits_3; // @[package.scala:81:59] wire _r_sectored_hit_valid_T_3 = _r_sectored_hit_valid_T_2 | sector_hits_4; // @[package.scala:81:59] wire _r_sectored_hit_valid_T_4 = _r_sectored_hit_valid_T_3 | sector_hits_5; // @[package.scala:81:59] wire _r_sectored_hit_valid_T_5 = _r_sectored_hit_valid_T_4 | sector_hits_6; // @[package.scala:81:59] wire _r_sectored_hit_valid_T_6 = _r_sectored_hit_valid_T_5 | sector_hits_7; // @[package.scala:81:59] wire [3:0] r_sectored_hit_bits_lo = {r_sectored_hit_bits_lo_hi, r_sectored_hit_bits_lo_lo}; // @[OneHot.scala:21:45] wire [3:0] r_sectored_hit_bits_hi = {r_sectored_hit_bits_hi_hi, r_sectored_hit_bits_hi_lo}; // @[OneHot.scala:21:45] wire [7:0] _r_sectored_hit_bits_T = {r_sectored_hit_bits_hi, r_sectored_hit_bits_lo}; // @[OneHot.scala:21:45] wire [3:0] r_sectored_hit_bits_hi_1 = _r_sectored_hit_bits_T[7:4]; // @[OneHot.scala:21:45, :30:18] wire [3:0] r_sectored_hit_bits_lo_1 = _r_sectored_hit_bits_T[3:0]; // @[OneHot.scala:21:45, :31:18] wire _r_sectored_hit_bits_T_1 = |r_sectored_hit_bits_hi_1; // @[OneHot.scala:30:18, :32:14] wire [3:0] _r_sectored_hit_bits_T_2 = r_sectored_hit_bits_hi_1 | r_sectored_hit_bits_lo_1; // @[OneHot.scala:30:18, :31:18, :32:28] wire [1:0] r_sectored_hit_bits_hi_2 = _r_sectored_hit_bits_T_2[3:2]; // @[OneHot.scala:30:18, :32:28] wire [1:0] r_sectored_hit_bits_lo_2 = _r_sectored_hit_bits_T_2[1:0]; // @[OneHot.scala:31:18, :32:28] wire _r_sectored_hit_bits_T_3 = |r_sectored_hit_bits_hi_2; // @[OneHot.scala:30:18, :32:14] wire [1:0] _r_sectored_hit_bits_T_4 = r_sectored_hit_bits_hi_2 | r_sectored_hit_bits_lo_2; // @[OneHot.scala:30:18, :31:18, :32:28] wire _r_sectored_hit_bits_T_5 = _r_sectored_hit_bits_T_4[1]; // @[OneHot.scala:32:28] wire [1:0] _r_sectored_hit_bits_T_6 = {_r_sectored_hit_bits_T_3, _r_sectored_hit_bits_T_5}; // @[OneHot.scala:32:{10,14}] wire [2:0] _r_sectored_hit_bits_T_7 = {_r_sectored_hit_bits_T_1, _r_sectored_hit_bits_T_6}; // @[OneHot.scala:32:{10,14}] wire _r_superpage_hit_valid_T = superpage_hits_0 | superpage_hits_1; // @[package.scala:81:59] wire _r_superpage_hit_valid_T_1 = _r_superpage_hit_valid_T | superpage_hits_2; // @[package.scala:81:59] wire _r_superpage_hit_valid_T_2 = _r_superpage_hit_valid_T_1 | superpage_hits_3; // @[package.scala:81:59] wire [3:0] _r_superpage_hit_bits_T = {r_superpage_hit_bits_hi, r_superpage_hit_bits_lo}; // @[OneHot.scala:21:45] wire [1:0] r_superpage_hit_bits_hi_1 = _r_superpage_hit_bits_T[3:2]; // @[OneHot.scala:21:45, :30:18] wire [1:0] r_superpage_hit_bits_lo_1 = _r_superpage_hit_bits_T[1:0]; // @[OneHot.scala:21:45, :31:18] wire _r_superpage_hit_bits_T_1 = |r_superpage_hit_bits_hi_1; // @[OneHot.scala:30:18, :32:14] wire [1:0] _r_superpage_hit_bits_T_2 = r_superpage_hit_bits_hi_1 | r_superpage_hit_bits_lo_1; // @[OneHot.scala:30:18, :31:18, :32:28] wire _r_superpage_hit_bits_T_3 = _r_superpage_hit_bits_T_2[1]; // @[OneHot.scala:32:28] wire [1:0] _r_superpage_hit_bits_T_4 = {_r_superpage_hit_bits_T_1, _r_superpage_hit_bits_T_3}; // @[OneHot.scala:32:{10,14}] wire [1:0] _state_T = {1'h1, io_sfence_valid_0}; // @[TLB.scala:318:7, :704:45]
Generate the Verilog code corresponding to the following Chisel files. File PE.scala: // See README.md for license details. package gemmini import chisel3._ import chisel3.util._ class PEControl[T <: Data : Arithmetic](accType: T) extends Bundle { val dataflow = UInt(1.W) // TODO make this an Enum val propagate = UInt(1.W) // Which register should be propagated (and which should be accumulated)? val shift = UInt(log2Up(accType.getWidth).W) // TODO this isn't correct for Floats } class MacUnit[T <: Data](inputType: T, cType: T, dType: T) (implicit ev: Arithmetic[T]) extends Module { import ev._ val io = IO(new Bundle { val in_a = Input(inputType) val in_b = Input(inputType) val in_c = Input(cType) val out_d = Output(dType) }) io.out_d := io.in_c.mac(io.in_a, io.in_b) } // TODO update documentation /** * A PE implementing a MAC operation. Configured as fully combinational when integrated into a Mesh. * @param width Data width of operands */ class PE[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, max_simultaneous_matmuls: Int) (implicit ev: Arithmetic[T]) extends Module { // Debugging variables import ev._ val io = IO(new Bundle { val in_a = Input(inputType) val in_b = Input(outputType) val in_d = Input(outputType) val out_a = Output(inputType) val out_b = Output(outputType) val out_c = Output(outputType) val in_control = Input(new PEControl(accType)) val out_control = Output(new PEControl(accType)) val in_id = Input(UInt(log2Up(max_simultaneous_matmuls).W)) val out_id = Output(UInt(log2Up(max_simultaneous_matmuls).W)) val in_last = Input(Bool()) val out_last = Output(Bool()) val in_valid = Input(Bool()) val out_valid = Output(Bool()) val bad_dataflow = Output(Bool()) }) val cType = if (df == Dataflow.WS) inputType else accType // When creating PEs that support multiple dataflows, the // elaboration/synthesis tools often fail to consolidate and de-duplicate // MAC units. To force mac circuitry to be re-used, we create a "mac_unit" // module here which just performs a single MAC operation val mac_unit = Module(new MacUnit(inputType, if (df == Dataflow.WS) outputType else accType, outputType)) val a = io.in_a val b = io.in_b val d = io.in_d val c1 = Reg(cType) val c2 = Reg(cType) val dataflow = io.in_control.dataflow val prop = io.in_control.propagate val shift = io.in_control.shift val id = io.in_id val last = io.in_last val valid = io.in_valid io.out_a := a io.out_control.dataflow := dataflow io.out_control.propagate := prop io.out_control.shift := shift io.out_id := id io.out_last := last io.out_valid := valid mac_unit.io.in_a := a val last_s = RegEnable(prop, valid) val flip = last_s =/= prop val shift_offset = Mux(flip, shift, 0.U) // Which dataflow are we using? val OUTPUT_STATIONARY = Dataflow.OS.id.U(1.W) val WEIGHT_STATIONARY = Dataflow.WS.id.U(1.W) // Is c1 being computed on, or propagated forward (in the output-stationary dataflow)? val COMPUTE = 0.U(1.W) val PROPAGATE = 1.U(1.W) io.bad_dataflow := false.B when ((df == Dataflow.OS).B || ((df == Dataflow.BOTH).B && dataflow === OUTPUT_STATIONARY)) { when(prop === PROPAGATE) { io.out_c := (c1 >> shift_offset).clippedToWidthOf(outputType) io.out_b := b mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c2 c2 := mac_unit.io.out_d c1 := d.withWidthOf(cType) }.otherwise { io.out_c := (c2 >> shift_offset).clippedToWidthOf(outputType) io.out_b := b mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c1 c1 := mac_unit.io.out_d c2 := d.withWidthOf(cType) } }.elsewhen ((df == Dataflow.WS).B || ((df == Dataflow.BOTH).B && dataflow === WEIGHT_STATIONARY)) { when(prop === PROPAGATE) { io.out_c := c1 mac_unit.io.in_b := c2.asTypeOf(inputType) mac_unit.io.in_c := b io.out_b := mac_unit.io.out_d c1 := d }.otherwise { io.out_c := c2 mac_unit.io.in_b := c1.asTypeOf(inputType) mac_unit.io.in_c := b io.out_b := mac_unit.io.out_d c2 := d } }.otherwise { io.bad_dataflow := true.B //assert(false.B, "unknown dataflow") io.out_c := DontCare io.out_b := DontCare mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c2 } when (!valid) { c1 := c1 c2 := c2 mac_unit.io.in_b := DontCare mac_unit.io.in_c := DontCare } } File Arithmetic.scala: // A simple type class for Chisel datatypes that can add and multiply. To add your own type, simply create your own: // implicit MyTypeArithmetic extends Arithmetic[MyType] { ... } package gemmini import chisel3._ import chisel3.util._ import hardfloat._ // Bundles that represent the raw bits of custom datatypes case class Float(expWidth: Int, sigWidth: Int) extends Bundle { val bits = UInt((expWidth + sigWidth).W) val bias: Int = (1 << (expWidth-1)) - 1 } case class DummySInt(w: Int) extends Bundle { val bits = UInt(w.W) def dontCare: DummySInt = { val o = Wire(new DummySInt(w)) o.bits := 0.U o } } // The Arithmetic typeclass which implements various arithmetic operations on custom datatypes abstract class Arithmetic[T <: Data] { implicit def cast(t: T): ArithmeticOps[T] } abstract class ArithmeticOps[T <: Data](self: T) { def *(t: T): T def mac(m1: T, m2: T): T // Returns (m1 * m2 + self) def +(t: T): T def -(t: T): T def >>(u: UInt): T // This is a rounding shift! Rounds away from 0 def >(t: T): Bool def identity: T def withWidthOf(t: T): T def clippedToWidthOf(t: T): T // Like "withWidthOf", except that it saturates def relu: T def zero: T def minimum: T // Optional parameters, which only need to be defined if you want to enable various optimizations for transformers def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[T])] = None def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[T])] = None def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = None def mult_with_reciprocal[U <: Data](reciprocal: U) = self } object Arithmetic { implicit object UIntArithmetic extends Arithmetic[UInt] { override implicit def cast(self: UInt) = new ArithmeticOps(self) { override def *(t: UInt) = self * t override def mac(m1: UInt, m2: UInt) = m1 * m2 + self override def +(t: UInt) = self + t override def -(t: UInt) = self - t override def >>(u: UInt) = { // The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm // TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here? val point_five = Mux(u === 0.U, 0.U, self(u - 1.U)) val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U val ones_digit = self(u) val r = point_five & (zeros | ones_digit) (self >> u).asUInt + r } override def >(t: UInt): Bool = self > t override def withWidthOf(t: UInt) = self.asTypeOf(t) override def clippedToWidthOf(t: UInt) = { val sat = ((1 << (t.getWidth-1))-1).U Mux(self > sat, sat, self)(t.getWidth-1, 0) } override def relu: UInt = self override def zero: UInt = 0.U override def identity: UInt = 1.U override def minimum: UInt = 0.U } } implicit object SIntArithmetic extends Arithmetic[SInt] { override implicit def cast(self: SInt) = new ArithmeticOps(self) { override def *(t: SInt) = self * t override def mac(m1: SInt, m2: SInt) = m1 * m2 + self override def +(t: SInt) = self + t override def -(t: SInt) = self - t override def >>(u: UInt) = { // The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm // TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here? val point_five = Mux(u === 0.U, 0.U, self(u - 1.U)) val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U val ones_digit = self(u) val r = (point_five & (zeros | ones_digit)).asBool (self >> u).asSInt + Mux(r, 1.S, 0.S) } override def >(t: SInt): Bool = self > t override def withWidthOf(t: SInt) = { if (self.getWidth >= t.getWidth) self(t.getWidth-1, 0).asSInt else { val sign_bits = t.getWidth - self.getWidth val sign = self(self.getWidth-1) Cat(Cat(Seq.fill(sign_bits)(sign)), self).asTypeOf(t) } } override def clippedToWidthOf(t: SInt): SInt = { val maxsat = ((1 << (t.getWidth-1))-1).S val minsat = (-(1 << (t.getWidth-1))).S MuxCase(self, Seq((self > maxsat) -> maxsat, (self < minsat) -> minsat))(t.getWidth-1, 0).asSInt } override def relu: SInt = Mux(self >= 0.S, self, 0.S) override def zero: SInt = 0.S override def identity: SInt = 1.S override def minimum: SInt = (-(1 << (self.getWidth-1))).S override def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = { // TODO this uses a floating point divider, but we should use an integer divider instead val input = Wire(Decoupled(denom_t.cloneType)) val output = Wire(Decoupled(self.cloneType)) // We translate our integer to floating-point form so that we can use the hardfloat divider val expWidth = log2Up(self.getWidth) + 1 val sigWidth = self.getWidth def sin_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def uin_to_float(x: UInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := false.B in_to_rec_fn.io.in := x in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag rec_fn_to_in.io.out.asSInt } val self_rec = sin_to_float(self) val denom_rec = uin_to_float(input.bits) // Instantiate the hardloat divider val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options)) input.ready := divider.io.inReady divider.io.inValid := input.valid divider.io.sqrtOp := false.B divider.io.a := self_rec divider.io.b := denom_rec divider.io.roundingMode := consts.round_minMag divider.io.detectTininess := consts.tininess_afterRounding output.valid := divider.io.outValid_div output.bits := float_to_in(divider.io.out) assert(!output.valid || output.ready) Some((input, output)) } override def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = { // TODO this uses a floating point divider, but we should use an integer divider instead val input = Wire(Decoupled(UInt(0.W))) val output = Wire(Decoupled(self.cloneType)) input.bits := DontCare // We translate our integer to floating-point form so that we can use the hardfloat divider val expWidth = log2Up(self.getWidth) + 1 val sigWidth = self.getWidth def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag rec_fn_to_in.io.out.asSInt } val self_rec = in_to_float(self) // Instantiate the hardloat sqrt val sqrter = Module(new DivSqrtRecFN_small(expWidth, sigWidth, 0)) input.ready := sqrter.io.inReady sqrter.io.inValid := input.valid sqrter.io.sqrtOp := true.B sqrter.io.a := self_rec sqrter.io.b := DontCare sqrter.io.roundingMode := consts.round_minMag sqrter.io.detectTininess := consts.tininess_afterRounding output.valid := sqrter.io.outValid_sqrt output.bits := float_to_in(sqrter.io.out) assert(!output.valid || output.ready) Some((input, output)) } override def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = u match { case Float(expWidth, sigWidth) => val input = Wire(Decoupled(UInt(0.W))) val output = Wire(Decoupled(u.cloneType)) input.bits := DontCare // We translate our integer to floating-point form so that we can use the hardfloat divider def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } val self_rec = in_to_float(self) val one_rec = in_to_float(1.S) // Instantiate the hardloat divider val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options)) input.ready := divider.io.inReady divider.io.inValid := input.valid divider.io.sqrtOp := false.B divider.io.a := one_rec divider.io.b := self_rec divider.io.roundingMode := consts.round_near_even divider.io.detectTininess := consts.tininess_afterRounding output.valid := divider.io.outValid_div output.bits := fNFromRecFN(expWidth, sigWidth, divider.io.out).asTypeOf(u) assert(!output.valid || output.ready) Some((input, output)) case _ => None } override def mult_with_reciprocal[U <: Data](reciprocal: U): SInt = reciprocal match { case recip @ Float(expWidth, sigWidth) => def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag rec_fn_to_in.io.out.asSInt } val self_rec = in_to_float(self) val reciprocal_rec = recFNFromFN(expWidth, sigWidth, recip.bits) // Instantiate the hardloat divider val muladder = Module(new MulRecFN(expWidth, sigWidth)) muladder.io.roundingMode := consts.round_near_even muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := reciprocal_rec float_to_in(muladder.io.out) case _ => self } } } implicit object FloatArithmetic extends Arithmetic[Float] { // TODO Floating point arithmetic currently switches between recoded and standard formats for every operation. However, it should stay in the recoded format as it travels through the systolic array override implicit def cast(self: Float): ArithmeticOps[Float] = new ArithmeticOps(self) { override def *(t: Float): Float = { val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth)) muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := t_rec_resized val out = Wire(Float(self.expWidth, self.sigWidth)) out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) out } override def mac(m1: Float, m2: Float): Float = { // Recode all operands val m1_rec = recFNFromFN(m1.expWidth, m1.sigWidth, m1.bits) val m2_rec = recFNFromFN(m2.expWidth, m2.sigWidth, m2.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Resize m1 to self's width val m1_resizer = Module(new RecFNToRecFN(m1.expWidth, m1.sigWidth, self.expWidth, self.sigWidth)) m1_resizer.io.in := m1_rec m1_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag m1_resizer.io.detectTininess := consts.tininess_afterRounding val m1_rec_resized = m1_resizer.io.out // Resize m2 to self's width val m2_resizer = Module(new RecFNToRecFN(m2.expWidth, m2.sigWidth, self.expWidth, self.sigWidth)) m2_resizer.io.in := m2_rec m2_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag m2_resizer.io.detectTininess := consts.tininess_afterRounding val m2_rec_resized = m2_resizer.io.out // Perform multiply-add val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth)) muladder.io.op := 0.U muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := m1_rec_resized muladder.io.b := m2_rec_resized muladder.io.c := self_rec // Convert result to standard format // TODO remove these intermediate recodings val out = Wire(Float(self.expWidth, self.sigWidth)) out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) out } override def +(t: Float): Float = { require(self.getWidth >= t.getWidth) // This just makes it easier to write the resizing code // Recode all operands val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Generate 1 as a float val in_to_rec_fn = Module(new INToRecFN(1, self.expWidth, self.sigWidth)) in_to_rec_fn.io.signedIn := false.B in_to_rec_fn.io.in := 1.U in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding val one_rec = in_to_rec_fn.io.out // Resize t val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out // Perform addition val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth)) muladder.io.op := 0.U muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := t_rec_resized muladder.io.b := one_rec muladder.io.c := self_rec val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) result } override def -(t: Float): Float = { val t_sgn = t.bits(t.getWidth-1) val neg_t = Cat(~t_sgn, t.bits(t.getWidth-2,0)).asTypeOf(t) self + neg_t } override def >>(u: UInt): Float = { // Recode self val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Get 2^(-u) as a recoded float val shift_exp = Wire(UInt(self.expWidth.W)) shift_exp := self.bias.U - u val shift_fn = Cat(0.U(1.W), shift_exp, 0.U((self.sigWidth-1).W)) val shift_rec = recFNFromFN(self.expWidth, self.sigWidth, shift_fn) assert(shift_exp =/= 0.U, "scaling by denormalized numbers is not currently supported") // Multiply self and 2^(-u) val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth)) muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := shift_rec val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) result } override def >(t: Float): Bool = { // Recode all operands val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Resize t to self's width val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out val comparator = Module(new CompareRecFN(self.expWidth, self.sigWidth)) comparator.io.a := self_rec comparator.io.b := t_rec_resized comparator.io.signaling := false.B comparator.io.gt } override def withWidthOf(t: Float): Float = { val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth)) resizer.io.in := self_rec resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag resizer.io.detectTininess := consts.tininess_afterRounding val result = Wire(Float(t.expWidth, t.sigWidth)) result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out) result } override def clippedToWidthOf(t: Float): Float = { // TODO check for overflow. Right now, we just assume that overflow doesn't happen val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth)) resizer.io.in := self_rec resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag resizer.io.detectTininess := consts.tininess_afterRounding val result = Wire(Float(t.expWidth, t.sigWidth)) result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out) result } override def relu: Float = { val raw = rawFloatFromFN(self.expWidth, self.sigWidth, self.bits) val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := Mux(!raw.isZero && raw.sign, 0.U, self.bits) result } override def zero: Float = 0.U.asTypeOf(self) override def identity: Float = Cat(0.U(2.W), ~(0.U((self.expWidth-1).W)), 0.U((self.sigWidth-1).W)).asTypeOf(self) override def minimum: Float = Cat(1.U, ~(0.U(self.expWidth.W)), 0.U((self.sigWidth-1).W)).asTypeOf(self) } } implicit object DummySIntArithmetic extends Arithmetic[DummySInt] { override implicit def cast(self: DummySInt) = new ArithmeticOps(self) { override def *(t: DummySInt) = self.dontCare override def mac(m1: DummySInt, m2: DummySInt) = self.dontCare override def +(t: DummySInt) = self.dontCare override def -(t: DummySInt) = self.dontCare override def >>(t: UInt) = self.dontCare override def >(t: DummySInt): Bool = false.B override def identity = self.dontCare override def withWidthOf(t: DummySInt) = self.dontCare override def clippedToWidthOf(t: DummySInt) = self.dontCare override def relu = self.dontCare override def zero = self.dontCare override def minimum: DummySInt = self.dontCare } } }
module PE_265( // @[PE.scala:31:7] input clock, // @[PE.scala:31:7] input reset, // @[PE.scala:31:7] input [7:0] io_in_a, // @[PE.scala:35:14] input [19:0] io_in_b, // @[PE.scala:35:14] input [19:0] io_in_d, // @[PE.scala:35:14] output [7:0] io_out_a, // @[PE.scala:35:14] output [19:0] io_out_b, // @[PE.scala:35:14] output [19:0] io_out_c, // @[PE.scala:35:14] input io_in_control_dataflow, // @[PE.scala:35:14] input io_in_control_propagate, // @[PE.scala:35:14] input [4:0] io_in_control_shift, // @[PE.scala:35:14] output io_out_control_dataflow, // @[PE.scala:35:14] output io_out_control_propagate, // @[PE.scala:35:14] output [4:0] io_out_control_shift, // @[PE.scala:35:14] input [2:0] io_in_id, // @[PE.scala:35:14] output [2:0] io_out_id, // @[PE.scala:35:14] input io_in_last, // @[PE.scala:35:14] output io_out_last, // @[PE.scala:35:14] input io_in_valid, // @[PE.scala:35:14] output io_out_valid, // @[PE.scala:35:14] output io_bad_dataflow // @[PE.scala:35:14] ); wire [19:0] _mac_unit_io_out_d; // @[PE.scala:64:24] wire [7:0] io_in_a_0 = io_in_a; // @[PE.scala:31:7] wire [19:0] io_in_b_0 = io_in_b; // @[PE.scala:31:7] wire [19:0] io_in_d_0 = io_in_d; // @[PE.scala:31:7] wire io_in_control_dataflow_0 = io_in_control_dataflow; // @[PE.scala:31:7] wire io_in_control_propagate_0 = io_in_control_propagate; // @[PE.scala:31:7] wire [4:0] io_in_control_shift_0 = io_in_control_shift; // @[PE.scala:31:7] wire [2:0] io_in_id_0 = io_in_id; // @[PE.scala:31:7] wire io_in_last_0 = io_in_last; // @[PE.scala:31:7] wire io_in_valid_0 = io_in_valid; // @[PE.scala:31:7] wire io_bad_dataflow_0 = 1'h0; // @[PE.scala:31:7] wire [7:0] io_out_a_0 = io_in_a_0; // @[PE.scala:31:7] wire [19:0] _mac_unit_io_in_b_T = io_in_b_0; // @[PE.scala:31:7, :106:37] wire [19:0] _mac_unit_io_in_b_T_2 = io_in_b_0; // @[PE.scala:31:7, :113:37] wire [19:0] _mac_unit_io_in_b_T_8 = io_in_b_0; // @[PE.scala:31:7, :137:35] wire [19:0] c1_lo_1 = io_in_d_0; // @[PE.scala:31:7] wire [19:0] c2_lo_1 = io_in_d_0; // @[PE.scala:31:7] wire io_out_control_dataflow_0 = io_in_control_dataflow_0; // @[PE.scala:31:7] wire io_out_control_propagate_0 = io_in_control_propagate_0; // @[PE.scala:31:7] wire [4:0] io_out_control_shift_0 = io_in_control_shift_0; // @[PE.scala:31:7] wire [2:0] io_out_id_0 = io_in_id_0; // @[PE.scala:31:7] wire io_out_last_0 = io_in_last_0; // @[PE.scala:31:7] wire io_out_valid_0 = io_in_valid_0; // @[PE.scala:31:7] wire [19:0] io_out_b_0; // @[PE.scala:31:7] wire [19:0] io_out_c_0; // @[PE.scala:31:7] reg [31:0] c1; // @[PE.scala:70:15] wire [31:0] _io_out_c_zeros_T_1 = c1; // @[PE.scala:70:15] wire [31:0] _mac_unit_io_in_b_T_6 = c1; // @[PE.scala:70:15, :127:38] reg [31:0] c2; // @[PE.scala:71:15] wire [31:0] _io_out_c_zeros_T_10 = c2; // @[PE.scala:71:15] wire [31:0] _mac_unit_io_in_b_T_4 = c2; // @[PE.scala:71:15, :121:38] reg last_s; // @[PE.scala:89:25] wire flip = last_s != io_in_control_propagate_0; // @[PE.scala:31:7, :89:25, :90:21] wire [4:0] shift_offset = flip ? io_in_control_shift_0 : 5'h0; // @[PE.scala:31:7, :90:21, :91:25] wire _GEN = shift_offset == 5'h0; // @[PE.scala:91:25] wire _io_out_c_point_five_T; // @[Arithmetic.scala:101:32] assign _io_out_c_point_five_T = _GEN; // @[Arithmetic.scala:101:32] wire _io_out_c_point_five_T_5; // @[Arithmetic.scala:101:32] assign _io_out_c_point_five_T_5 = _GEN; // @[Arithmetic.scala:101:32] wire [5:0] _GEN_0 = {1'h0, shift_offset} - 6'h1; // @[PE.scala:91:25] wire [5:0] _io_out_c_point_five_T_1; // @[Arithmetic.scala:101:53] assign _io_out_c_point_five_T_1 = _GEN_0; // @[Arithmetic.scala:101:53] wire [5:0] _io_out_c_zeros_T_2; // @[Arithmetic.scala:102:66] assign _io_out_c_zeros_T_2 = _GEN_0; // @[Arithmetic.scala:101:53, :102:66] wire [5:0] _io_out_c_point_five_T_6; // @[Arithmetic.scala:101:53] assign _io_out_c_point_five_T_6 = _GEN_0; // @[Arithmetic.scala:101:53] wire [5:0] _io_out_c_zeros_T_11; // @[Arithmetic.scala:102:66] assign _io_out_c_zeros_T_11 = _GEN_0; // @[Arithmetic.scala:101:53, :102:66] wire [4:0] _io_out_c_point_five_T_2 = _io_out_c_point_five_T_1[4:0]; // @[Arithmetic.scala:101:53] wire [31:0] _io_out_c_point_five_T_3 = $signed($signed(c1) >>> _io_out_c_point_five_T_2); // @[PE.scala:70:15] wire _io_out_c_point_five_T_4 = _io_out_c_point_five_T_3[0]; // @[Arithmetic.scala:101:50] wire io_out_c_point_five = ~_io_out_c_point_five_T & _io_out_c_point_five_T_4; // @[Arithmetic.scala:101:{29,32,50}] wire _GEN_1 = shift_offset < 5'h2; // @[PE.scala:91:25] wire _io_out_c_zeros_T; // @[Arithmetic.scala:102:27] assign _io_out_c_zeros_T = _GEN_1; // @[Arithmetic.scala:102:27] wire _io_out_c_zeros_T_9; // @[Arithmetic.scala:102:27] assign _io_out_c_zeros_T_9 = _GEN_1; // @[Arithmetic.scala:102:27] wire [4:0] _io_out_c_zeros_T_3 = _io_out_c_zeros_T_2[4:0]; // @[Arithmetic.scala:102:66] wire [31:0] _io_out_c_zeros_T_4 = 32'h1 << _io_out_c_zeros_T_3; // @[Arithmetic.scala:102:{60,66}] wire [32:0] _io_out_c_zeros_T_5 = {1'h0, _io_out_c_zeros_T_4} - 33'h1; // @[Arithmetic.scala:102:{60,81}] wire [31:0] _io_out_c_zeros_T_6 = _io_out_c_zeros_T_5[31:0]; // @[Arithmetic.scala:102:81] wire [31:0] _io_out_c_zeros_T_7 = _io_out_c_zeros_T_1 & _io_out_c_zeros_T_6; // @[Arithmetic.scala:102:{45,52,81}] wire [31:0] _io_out_c_zeros_T_8 = _io_out_c_zeros_T ? 32'h0 : _io_out_c_zeros_T_7; // @[Arithmetic.scala:102:{24,27,52}] wire io_out_c_zeros = |_io_out_c_zeros_T_8; // @[Arithmetic.scala:102:{24,89}] wire [31:0] _GEN_2 = {27'h0, shift_offset}; // @[PE.scala:91:25] wire [31:0] _GEN_3 = $signed($signed(c1) >>> _GEN_2); // @[PE.scala:70:15] wire [31:0] _io_out_c_ones_digit_T; // @[Arithmetic.scala:103:30] assign _io_out_c_ones_digit_T = _GEN_3; // @[Arithmetic.scala:103:30] wire [31:0] _io_out_c_T; // @[Arithmetic.scala:107:15] assign _io_out_c_T = _GEN_3; // @[Arithmetic.scala:103:30, :107:15] wire io_out_c_ones_digit = _io_out_c_ones_digit_T[0]; // @[Arithmetic.scala:103:30] wire _io_out_c_r_T = io_out_c_zeros | io_out_c_ones_digit; // @[Arithmetic.scala:102:89, :103:30, :105:38] wire _io_out_c_r_T_1 = io_out_c_point_five & _io_out_c_r_T; // @[Arithmetic.scala:101:29, :105:{29,38}] wire io_out_c_r = _io_out_c_r_T_1; // @[Arithmetic.scala:105:{29,53}] wire [1:0] _io_out_c_T_1 = {1'h0, io_out_c_r}; // @[Arithmetic.scala:105:53, :107:33] wire [32:0] _io_out_c_T_2 = {_io_out_c_T[31], _io_out_c_T} + {{31{_io_out_c_T_1[1]}}, _io_out_c_T_1}; // @[Arithmetic.scala:107:{15,28,33}] wire [31:0] _io_out_c_T_3 = _io_out_c_T_2[31:0]; // @[Arithmetic.scala:107:28] wire [31:0] _io_out_c_T_4 = _io_out_c_T_3; // @[Arithmetic.scala:107:28] wire _io_out_c_T_5 = $signed(_io_out_c_T_4) > 32'sh7FFFF; // @[Arithmetic.scala:107:28, :125:33] wire _io_out_c_T_6 = $signed(_io_out_c_T_4) < -32'sh80000; // @[Arithmetic.scala:107:28, :125:60] wire [31:0] _io_out_c_T_7 = _io_out_c_T_6 ? 32'hFFF80000 : _io_out_c_T_4; // @[Mux.scala:126:16] wire [31:0] _io_out_c_T_8 = _io_out_c_T_5 ? 32'h7FFFF : _io_out_c_T_7; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_9 = _io_out_c_T_8[19:0]; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_10 = _io_out_c_T_9; // @[Arithmetic.scala:125:{81,99}] wire [19:0] _mac_unit_io_in_b_T_1 = _mac_unit_io_in_b_T; // @[PE.scala:106:37] wire [7:0] _mac_unit_io_in_b_WIRE = _mac_unit_io_in_b_T_1[7:0]; // @[PE.scala:106:37] wire c1_sign = io_in_d_0[19]; // @[PE.scala:31:7] wire c2_sign = io_in_d_0[19]; // @[PE.scala:31:7] wire [1:0] _GEN_4 = {2{c1_sign}}; // @[Arithmetic.scala:117:26, :118:18] wire [1:0] c1_lo_lo_hi; // @[Arithmetic.scala:118:18] assign c1_lo_lo_hi = _GEN_4; // @[Arithmetic.scala:118:18] wire [1:0] c1_lo_hi_hi; // @[Arithmetic.scala:118:18] assign c1_lo_hi_hi = _GEN_4; // @[Arithmetic.scala:118:18] wire [1:0] c1_hi_lo_hi; // @[Arithmetic.scala:118:18] assign c1_hi_lo_hi = _GEN_4; // @[Arithmetic.scala:118:18] wire [1:0] c1_hi_hi_hi; // @[Arithmetic.scala:118:18] assign c1_hi_hi_hi = _GEN_4; // @[Arithmetic.scala:118:18] wire [2:0] c1_lo_lo = {c1_lo_lo_hi, c1_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [2:0] c1_lo_hi = {c1_lo_hi_hi, c1_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [5:0] c1_lo = {c1_lo_hi, c1_lo_lo}; // @[Arithmetic.scala:118:18] wire [2:0] c1_hi_lo = {c1_hi_lo_hi, c1_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [2:0] c1_hi_hi = {c1_hi_hi_hi, c1_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [5:0] c1_hi = {c1_hi_hi, c1_hi_lo}; // @[Arithmetic.scala:118:18] wire [11:0] _c1_T = {c1_hi, c1_lo}; // @[Arithmetic.scala:118:18] wire [31:0] _c1_T_1 = {_c1_T, c1_lo_1}; // @[Arithmetic.scala:118:{14,18}] wire [31:0] _c1_T_2 = _c1_T_1; // @[Arithmetic.scala:118:{14,61}] wire [31:0] _c1_WIRE = _c1_T_2; // @[Arithmetic.scala:118:61] wire [4:0] _io_out_c_point_five_T_7 = _io_out_c_point_five_T_6[4:0]; // @[Arithmetic.scala:101:53] wire [31:0] _io_out_c_point_five_T_8 = $signed($signed(c2) >>> _io_out_c_point_five_T_7); // @[PE.scala:71:15] wire _io_out_c_point_five_T_9 = _io_out_c_point_five_T_8[0]; // @[Arithmetic.scala:101:50] wire io_out_c_point_five_1 = ~_io_out_c_point_five_T_5 & _io_out_c_point_five_T_9; // @[Arithmetic.scala:101:{29,32,50}] wire [4:0] _io_out_c_zeros_T_12 = _io_out_c_zeros_T_11[4:0]; // @[Arithmetic.scala:102:66] wire [31:0] _io_out_c_zeros_T_13 = 32'h1 << _io_out_c_zeros_T_12; // @[Arithmetic.scala:102:{60,66}] wire [32:0] _io_out_c_zeros_T_14 = {1'h0, _io_out_c_zeros_T_13} - 33'h1; // @[Arithmetic.scala:102:{60,81}] wire [31:0] _io_out_c_zeros_T_15 = _io_out_c_zeros_T_14[31:0]; // @[Arithmetic.scala:102:81] wire [31:0] _io_out_c_zeros_T_16 = _io_out_c_zeros_T_10 & _io_out_c_zeros_T_15; // @[Arithmetic.scala:102:{45,52,81}] wire [31:0] _io_out_c_zeros_T_17 = _io_out_c_zeros_T_9 ? 32'h0 : _io_out_c_zeros_T_16; // @[Arithmetic.scala:102:{24,27,52}] wire io_out_c_zeros_1 = |_io_out_c_zeros_T_17; // @[Arithmetic.scala:102:{24,89}] wire [31:0] _GEN_5 = $signed($signed(c2) >>> _GEN_2); // @[PE.scala:71:15] wire [31:0] _io_out_c_ones_digit_T_1; // @[Arithmetic.scala:103:30] assign _io_out_c_ones_digit_T_1 = _GEN_5; // @[Arithmetic.scala:103:30] wire [31:0] _io_out_c_T_11; // @[Arithmetic.scala:107:15] assign _io_out_c_T_11 = _GEN_5; // @[Arithmetic.scala:103:30, :107:15] wire io_out_c_ones_digit_1 = _io_out_c_ones_digit_T_1[0]; // @[Arithmetic.scala:103:30] wire _io_out_c_r_T_2 = io_out_c_zeros_1 | io_out_c_ones_digit_1; // @[Arithmetic.scala:102:89, :103:30, :105:38] wire _io_out_c_r_T_3 = io_out_c_point_five_1 & _io_out_c_r_T_2; // @[Arithmetic.scala:101:29, :105:{29,38}] wire io_out_c_r_1 = _io_out_c_r_T_3; // @[Arithmetic.scala:105:{29,53}] wire [1:0] _io_out_c_T_12 = {1'h0, io_out_c_r_1}; // @[Arithmetic.scala:105:53, :107:33] wire [32:0] _io_out_c_T_13 = {_io_out_c_T_11[31], _io_out_c_T_11} + {{31{_io_out_c_T_12[1]}}, _io_out_c_T_12}; // @[Arithmetic.scala:107:{15,28,33}] wire [31:0] _io_out_c_T_14 = _io_out_c_T_13[31:0]; // @[Arithmetic.scala:107:28] wire [31:0] _io_out_c_T_15 = _io_out_c_T_14; // @[Arithmetic.scala:107:28] wire _io_out_c_T_16 = $signed(_io_out_c_T_15) > 32'sh7FFFF; // @[Arithmetic.scala:107:28, :125:33] wire _io_out_c_T_17 = $signed(_io_out_c_T_15) < -32'sh80000; // @[Arithmetic.scala:107:28, :125:60] wire [31:0] _io_out_c_T_18 = _io_out_c_T_17 ? 32'hFFF80000 : _io_out_c_T_15; // @[Mux.scala:126:16] wire [31:0] _io_out_c_T_19 = _io_out_c_T_16 ? 32'h7FFFF : _io_out_c_T_18; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_20 = _io_out_c_T_19[19:0]; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_21 = _io_out_c_T_20; // @[Arithmetic.scala:125:{81,99}] wire [19:0] _mac_unit_io_in_b_T_3 = _mac_unit_io_in_b_T_2; // @[PE.scala:113:37] wire [7:0] _mac_unit_io_in_b_WIRE_1 = _mac_unit_io_in_b_T_3[7:0]; // @[PE.scala:113:37] wire [1:0] _GEN_6 = {2{c2_sign}}; // @[Arithmetic.scala:117:26, :118:18] wire [1:0] c2_lo_lo_hi; // @[Arithmetic.scala:118:18] assign c2_lo_lo_hi = _GEN_6; // @[Arithmetic.scala:118:18] wire [1:0] c2_lo_hi_hi; // @[Arithmetic.scala:118:18] assign c2_lo_hi_hi = _GEN_6; // @[Arithmetic.scala:118:18] wire [1:0] c2_hi_lo_hi; // @[Arithmetic.scala:118:18] assign c2_hi_lo_hi = _GEN_6; // @[Arithmetic.scala:118:18] wire [1:0] c2_hi_hi_hi; // @[Arithmetic.scala:118:18] assign c2_hi_hi_hi = _GEN_6; // @[Arithmetic.scala:118:18] wire [2:0] c2_lo_lo = {c2_lo_lo_hi, c2_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [2:0] c2_lo_hi = {c2_lo_hi_hi, c2_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [5:0] c2_lo = {c2_lo_hi, c2_lo_lo}; // @[Arithmetic.scala:118:18] wire [2:0] c2_hi_lo = {c2_hi_lo_hi, c2_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [2:0] c2_hi_hi = {c2_hi_hi_hi, c2_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [5:0] c2_hi = {c2_hi_hi, c2_hi_lo}; // @[Arithmetic.scala:118:18] wire [11:0] _c2_T = {c2_hi, c2_lo}; // @[Arithmetic.scala:118:18] wire [31:0] _c2_T_1 = {_c2_T, c2_lo_1}; // @[Arithmetic.scala:118:{14,18}] wire [31:0] _c2_T_2 = _c2_T_1; // @[Arithmetic.scala:118:{14,61}] wire [31:0] _c2_WIRE = _c2_T_2; // @[Arithmetic.scala:118:61] wire [31:0] _mac_unit_io_in_b_T_5 = _mac_unit_io_in_b_T_4; // @[PE.scala:121:38] wire [7:0] _mac_unit_io_in_b_WIRE_2 = _mac_unit_io_in_b_T_5[7:0]; // @[PE.scala:121:38] wire [31:0] _mac_unit_io_in_b_T_7 = _mac_unit_io_in_b_T_6; // @[PE.scala:127:38] wire [7:0] _mac_unit_io_in_b_WIRE_3 = _mac_unit_io_in_b_T_7[7:0]; // @[PE.scala:127:38] assign io_out_c_0 = io_in_control_dataflow_0 ? (io_in_control_propagate_0 ? c1[19:0] : c2[19:0]) : io_in_control_propagate_0 ? _io_out_c_T_10 : _io_out_c_T_21; // @[PE.scala:31:7, :70:15, :71:15, :102:95, :103:30, :104:16, :111:16, :118:101, :119:30, :120:16, :126:16] assign io_out_b_0 = io_in_control_dataflow_0 ? _mac_unit_io_out_d : io_in_b_0; // @[PE.scala:31:7, :64:24, :102:95, :103:30, :118:101] wire [19:0] _mac_unit_io_in_b_T_9 = _mac_unit_io_in_b_T_8; // @[PE.scala:137:35] wire [7:0] _mac_unit_io_in_b_WIRE_4 = _mac_unit_io_in_b_T_9[7:0]; // @[PE.scala:137:35] wire [31:0] _GEN_7 = {{12{io_in_d_0[19]}}, io_in_d_0}; // @[PE.scala:31:7, :124:10] wire [31:0] _GEN_8 = {{12{_mac_unit_io_out_d[19]}}, _mac_unit_io_out_d}; // @[PE.scala:64:24, :108:10] always @(posedge clock) begin // @[PE.scala:31:7] if (io_in_valid_0) begin // @[PE.scala:31:7] if (io_in_control_dataflow_0) begin // @[PE.scala:31:7] if (io_in_control_dataflow_0 & io_in_control_propagate_0) // @[PE.scala:31:7, :70:15, :118:101, :119:30, :124:10] c1 <= _GEN_7; // @[PE.scala:70:15, :124:10] if (~io_in_control_dataflow_0 | io_in_control_propagate_0) begin // @[PE.scala:31:7, :71:15, :118:101, :119:30] end else // @[PE.scala:71:15, :118:101, :119:30] c2 <= _GEN_7; // @[PE.scala:71:15, :124:10] end else begin // @[PE.scala:31:7] c1 <= io_in_control_propagate_0 ? _c1_WIRE : _GEN_8; // @[PE.scala:31:7, :70:15, :103:30, :108:10, :109:10, :115:10] c2 <= io_in_control_propagate_0 ? _GEN_8 : _c2_WIRE; // @[PE.scala:31:7, :71:15, :103:30, :108:10, :116:10] end last_s <= io_in_control_propagate_0; // @[PE.scala:31:7, :89:25] end always @(posedge) MacUnit_9 mac_unit ( // @[PE.scala:64:24] .clock (clock), .reset (reset), .io_in_a (io_in_a_0), // @[PE.scala:31:7] .io_in_b (io_in_control_dataflow_0 ? (io_in_control_propagate_0 ? _mac_unit_io_in_b_WIRE_2 : _mac_unit_io_in_b_WIRE_3) : io_in_control_propagate_0 ? _mac_unit_io_in_b_WIRE : _mac_unit_io_in_b_WIRE_1), // @[PE.scala:31:7, :102:95, :103:30, :106:{24,37}, :113:{24,37}, :118:101, :119:30, :121:{24,38}, :127:{24,38}] .io_in_c (io_in_control_dataflow_0 ? {{12{io_in_b_0[19]}}, io_in_b_0} : io_in_control_propagate_0 ? c2 : c1), // @[PE.scala:31:7, :70:15, :71:15, :102:95, :103:30, :107:24, :114:24, :118:101, :122:24] .io_out_d (_mac_unit_io_out_d) ); // @[PE.scala:64:24] assign io_out_a = io_out_a_0; // @[PE.scala:31:7] assign io_out_b = io_out_b_0; // @[PE.scala:31:7] assign io_out_c = io_out_c_0; // @[PE.scala:31:7] assign io_out_control_dataflow = io_out_control_dataflow_0; // @[PE.scala:31:7] assign io_out_control_propagate = io_out_control_propagate_0; // @[PE.scala:31:7] assign io_out_control_shift = io_out_control_shift_0; // @[PE.scala:31:7] assign io_out_id = io_out_id_0; // @[PE.scala:31:7] assign io_out_last = io_out_last_0; // @[PE.scala:31:7] assign io_out_valid = io_out_valid_0; // @[PE.scala:31:7] assign io_bad_dataflow = io_bad_dataflow_0; // @[PE.scala:31:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File AsyncResetReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ /** This black-boxes an Async Reset * (or Set) * Register. * * Because Chisel doesn't support * parameterized black boxes, * we unfortunately have to * instantiate a number of these. * * We also have to hard-code the set/ * reset behavior. * * Do not confuse an asynchronous * reset signal with an asynchronously * reset reg. You should still * properly synchronize your reset * deassertion. * * @param d Data input * @param q Data Output * @param clk Clock Input * @param rst Reset Input * @param en Write Enable Input * */ class AsyncResetReg(resetValue: Int = 0) extends RawModule { val io = IO(new Bundle { val d = Input(Bool()) val q = Output(Bool()) val en = Input(Bool()) val clk = Input(Clock()) val rst = Input(Reset()) }) val reg = withClockAndReset(io.clk, io.rst.asAsyncReset)(RegInit(resetValue.U(1.W))) when (io.en) { reg := io.d } io.q := reg } class SimpleRegIO(val w: Int) extends Bundle{ val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) val en = Input(Bool()) } class AsyncResetRegVec(val w: Int, val init: BigInt) extends Module { override def desiredName = s"AsyncResetRegVec_w${w}_i${init}" val io = IO(new SimpleRegIO(w)) val reg = withReset(reset.asAsyncReset)(RegInit(init.U(w.W))) when (io.en) { reg := io.d } io.q := reg } object AsyncResetReg { // Create Single Registers def apply(d: Bool, clk: Clock, rst: Bool, init: Boolean, name: Option[String]): Bool = { val reg = Module(new AsyncResetReg(if (init) 1 else 0)) reg.io.d := d reg.io.clk := clk reg.io.rst := rst reg.io.en := true.B name.foreach(reg.suggestName(_)) reg.io.q } def apply(d: Bool, clk: Clock, rst: Bool): Bool = apply(d, clk, rst, false, None) def apply(d: Bool, clk: Clock, rst: Bool, name: String): Bool = apply(d, clk, rst, false, Some(name)) // Create Vectors of Registers def apply(updateData: UInt, resetData: BigInt, enable: Bool, name: Option[String] = None): UInt = { val w = updateData.getWidth max resetData.bitLength val reg = Module(new AsyncResetRegVec(w, resetData)) name.foreach(reg.suggestName(_)) reg.io.d := updateData reg.io.en := enable reg.io.q } def apply(updateData: UInt, resetData: BigInt, enable: Bool, name: String): UInt = apply(updateData, resetData, enable, Some(name)) def apply(updateData: UInt, resetData: BigInt): UInt = apply(updateData, resetData, enable = true.B) def apply(updateData: UInt, resetData: BigInt, name: String): UInt = apply(updateData, resetData, enable = true.B, Some(name)) def apply(updateData: UInt, enable: Bool): UInt = apply(updateData, resetData=BigInt(0), enable) def apply(updateData: UInt, enable: Bool, name: String): UInt = apply(updateData, resetData = BigInt(0), enable, Some(name)) def apply(updateData: UInt): UInt = apply(updateData, resetData = BigInt(0), enable = true.B) def apply(updateData: UInt, name:String): UInt = apply(updateData, resetData = BigInt(0), enable = true.B, Some(name)) }
module AsyncResetRegVec_w1_i0_4( // @[AsyncResetReg.scala:56:7] input clock, // @[AsyncResetReg.scala:56:7] input reset // @[AsyncResetReg.scala:56:7] ); wire _reg_T = reset; // @[AsyncResetReg.scala:61:29] wire io_en = 1'h1; // @[AsyncResetReg.scala:56:7, :59:14] wire io_d = 1'h0; // @[AsyncResetReg.scala:56:7] wire io_q = 1'h0; // @[AsyncResetReg.scala:56:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Nodes.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import org.chipsalliance.diplomacy.nodes._ import freechips.rocketchip.util.{AsyncQueueParams,RationalDirection} case object TLMonitorBuilder extends Field[TLMonitorArgs => TLMonitorBase](args => new TLMonitor(args)) object TLImp extends NodeImp[TLMasterPortParameters, TLSlavePortParameters, TLEdgeOut, TLEdgeIn, TLBundle] { def edgeO(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeOut(pd, pu, p, sourceInfo) def edgeI(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeIn (pd, pu, p, sourceInfo) def bundleO(eo: TLEdgeOut) = TLBundle(eo.bundle) def bundleI(ei: TLEdgeIn) = TLBundle(ei.bundle) def render(ei: TLEdgeIn) = RenderedEdge(colour = "#000000" /* black */, label = (ei.manager.beatBytes * 8).toString) override def monitor(bundle: TLBundle, edge: TLEdgeIn): Unit = { val monitor = Module(edge.params(TLMonitorBuilder)(TLMonitorArgs(edge))) monitor.io.in := bundle } override def mixO(pd: TLMasterPortParameters, node: OutwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLMasterPortParameters = pd.v1copy(clients = pd.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }) override def mixI(pu: TLSlavePortParameters, node: InwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLSlavePortParameters = pu.v1copy(managers = pu.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }) } trait TLFormatNode extends FormatNode[TLEdgeIn, TLEdgeOut] case class TLClientNode(portParams: Seq[TLMasterPortParameters])(implicit valName: ValName) extends SourceNode(TLImp)(portParams) with TLFormatNode case class TLManagerNode(portParams: Seq[TLSlavePortParameters])(implicit valName: ValName) extends SinkNode(TLImp)(portParams) with TLFormatNode case class TLAdapterNode( clientFn: TLMasterPortParameters => TLMasterPortParameters = { s => s }, managerFn: TLSlavePortParameters => TLSlavePortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLImp)(clientFn, managerFn) with TLFormatNode case class TLJunctionNode( clientFn: Seq[TLMasterPortParameters] => Seq[TLMasterPortParameters], managerFn: Seq[TLSlavePortParameters] => Seq[TLSlavePortParameters])( implicit valName: ValName) extends JunctionNode(TLImp)(clientFn, managerFn) with TLFormatNode case class TLIdentityNode()(implicit valName: ValName) extends IdentityNode(TLImp)() with TLFormatNode object TLNameNode { def apply(name: ValName) = TLIdentityNode()(name) def apply(name: Option[String]): TLIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLIdentityNode = apply(Some(name)) } case class TLEphemeralNode()(implicit valName: ValName) extends EphemeralNode(TLImp)() object TLTempNode { def apply(): TLEphemeralNode = TLEphemeralNode()(ValName("temp")) } case class TLNexusNode( clientFn: Seq[TLMasterPortParameters] => TLMasterPortParameters, managerFn: Seq[TLSlavePortParameters] => TLSlavePortParameters)( implicit valName: ValName) extends NexusNode(TLImp)(clientFn, managerFn) with TLFormatNode abstract class TLCustomNode(implicit valName: ValName) extends CustomNode(TLImp) with TLFormatNode // Asynchronous crossings trait TLAsyncFormatNode extends FormatNode[TLAsyncEdgeParameters, TLAsyncEdgeParameters] object TLAsyncImp extends SimpleNodeImp[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncEdgeParameters, TLAsyncBundle] { def edge(pd: TLAsyncClientPortParameters, pu: TLAsyncManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLAsyncEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLAsyncEdgeParameters) = new TLAsyncBundle(e.bundle) def render(e: TLAsyncEdgeParameters) = RenderedEdge(colour = "#ff0000" /* red */, label = e.manager.async.depth.toString) override def mixO(pd: TLAsyncClientPortParameters, node: OutwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLAsyncManagerPortParameters, node: InwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLAsyncAdapterNode( clientFn: TLAsyncClientPortParameters => TLAsyncClientPortParameters = { s => s }, managerFn: TLAsyncManagerPortParameters => TLAsyncManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLAsyncImp)(clientFn, managerFn) with TLAsyncFormatNode case class TLAsyncIdentityNode()(implicit valName: ValName) extends IdentityNode(TLAsyncImp)() with TLAsyncFormatNode object TLAsyncNameNode { def apply(name: ValName) = TLAsyncIdentityNode()(name) def apply(name: Option[String]): TLAsyncIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLAsyncIdentityNode = apply(Some(name)) } case class TLAsyncSourceNode(sync: Option[Int])(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLAsyncImp)( dFn = { p => TLAsyncClientPortParameters(p) }, uFn = { p => p.base.v1copy(minLatency = p.base.minLatency + sync.getOrElse(p.async.sync)) }) with FormatNode[TLEdgeIn, TLAsyncEdgeParameters] // discard cycles in other clock domain case class TLAsyncSinkNode(async: AsyncQueueParams)(implicit valName: ValName) extends MixedAdapterNode(TLAsyncImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = p.base.minLatency + async.sync) }, uFn = { p => TLAsyncManagerPortParameters(async, p) }) with FormatNode[TLAsyncEdgeParameters, TLEdgeOut] // Rationally related crossings trait TLRationalFormatNode extends FormatNode[TLRationalEdgeParameters, TLRationalEdgeParameters] object TLRationalImp extends SimpleNodeImp[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalEdgeParameters, TLRationalBundle] { def edge(pd: TLRationalClientPortParameters, pu: TLRationalManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLRationalEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLRationalEdgeParameters) = new TLRationalBundle(e.bundle) def render(e: TLRationalEdgeParameters) = RenderedEdge(colour = "#00ff00" /* green */) override def mixO(pd: TLRationalClientPortParameters, node: OutwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLRationalManagerPortParameters, node: InwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLRationalAdapterNode( clientFn: TLRationalClientPortParameters => TLRationalClientPortParameters = { s => s }, managerFn: TLRationalManagerPortParameters => TLRationalManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLRationalImp)(clientFn, managerFn) with TLRationalFormatNode case class TLRationalIdentityNode()(implicit valName: ValName) extends IdentityNode(TLRationalImp)() with TLRationalFormatNode object TLRationalNameNode { def apply(name: ValName) = TLRationalIdentityNode()(name) def apply(name: Option[String]): TLRationalIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLRationalIdentityNode = apply(Some(name)) } case class TLRationalSourceNode()(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLRationalImp)( dFn = { p => TLRationalClientPortParameters(p) }, uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLRationalEdgeParameters] // discard cycles from other clock domain case class TLRationalSinkNode(direction: RationalDirection)(implicit valName: ValName) extends MixedAdapterNode(TLRationalImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = 1) }, uFn = { p => TLRationalManagerPortParameters(direction, p) }) with FormatNode[TLRationalEdgeParameters, TLEdgeOut] // Credited version of TileLink channels trait TLCreditedFormatNode extends FormatNode[TLCreditedEdgeParameters, TLCreditedEdgeParameters] object TLCreditedImp extends SimpleNodeImp[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedEdgeParameters, TLCreditedBundle] { def edge(pd: TLCreditedClientPortParameters, pu: TLCreditedManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLCreditedEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLCreditedEdgeParameters) = new TLCreditedBundle(e.bundle) def render(e: TLCreditedEdgeParameters) = RenderedEdge(colour = "#ffff00" /* yellow */, e.delay.toString) override def mixO(pd: TLCreditedClientPortParameters, node: OutwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLCreditedManagerPortParameters, node: InwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLCreditedAdapterNode( clientFn: TLCreditedClientPortParameters => TLCreditedClientPortParameters = { s => s }, managerFn: TLCreditedManagerPortParameters => TLCreditedManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLCreditedImp)(clientFn, managerFn) with TLCreditedFormatNode case class TLCreditedIdentityNode()(implicit valName: ValName) extends IdentityNode(TLCreditedImp)() with TLCreditedFormatNode object TLCreditedNameNode { def apply(name: ValName) = TLCreditedIdentityNode()(name) def apply(name: Option[String]): TLCreditedIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLCreditedIdentityNode = apply(Some(name)) } case class TLCreditedSourceNode(delay: TLCreditedDelay)(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLCreditedImp)( dFn = { p => TLCreditedClientPortParameters(delay, p) }, uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLCreditedEdgeParameters] // discard cycles from other clock domain case class TLCreditedSinkNode(delay: TLCreditedDelay)(implicit valName: ValName) extends MixedAdapterNode(TLCreditedImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = 1) }, uFn = { p => TLCreditedManagerPortParameters(delay, p) }) with FormatNode[TLCreditedEdgeParameters, TLEdgeOut] File LazyModuleImp.scala: package org.chipsalliance.diplomacy.lazymodule import chisel3.{withClockAndReset, Module, RawModule, Reset, _} import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo} import firrtl.passes.InlineAnnotation import org.chipsalliance.cde.config.Parameters import org.chipsalliance.diplomacy.nodes.Dangle import scala.collection.immutable.SortedMap /** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]]. * * This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy. */ sealed trait LazyModuleImpLike extends RawModule { /** [[LazyModule]] that contains this instance. */ val wrapper: LazyModule /** IOs that will be automatically "punched" for this instance. */ val auto: AutoBundle /** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */ protected[diplomacy] val dangles: Seq[Dangle] // [[wrapper.module]] had better not be accessed while LazyModules are still being built! require( LazyModule.scope.isEmpty, s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}" ) /** Set module name. Defaults to the containing LazyModule's desiredName. */ override def desiredName: String = wrapper.desiredName suggestName(wrapper.suggestedName) /** [[Parameters]] for chisel [[Module]]s. */ implicit val p: Parameters = wrapper.p /** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and * submodules. */ protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = { // 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]], // 2. return [[Dangle]]s from each module. val childDangles = wrapper.children.reverse.flatMap { c => implicit val sourceInfo: SourceInfo = c.info c.cloneProto.map { cp => // If the child is a clone, then recursively set cloneProto of its children as well def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = { require(bases.size == clones.size) (bases.zip(clones)).map { case (l, r) => require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}") l.cloneProto = Some(r) assignCloneProtos(l.children, r.children) } } assignCloneProtos(c.children, cp.children) // Clone the child module as a record, and get its [[AutoBundle]] val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName) val clonedAuto = clone("auto").asInstanceOf[AutoBundle] // Get the empty [[Dangle]]'s of the cloned child val rawDangles = c.cloneDangles() require(rawDangles.size == clonedAuto.elements.size) // Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) } dangles }.getOrElse { // For non-clones, instantiate the child module val mod = try { Module(c.module) } catch { case e: ChiselException => { println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}") throw e } } mod.dangles } } // Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]]. // This will result in a sequence of [[Dangle]] from these [[BaseNode]]s. val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate()) // Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]] val allDangles = nodeDangles ++ childDangles // Group [[allDangles]] by their [[source]]. val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*) // For each [[source]] set of [[Dangle]]s of size 2, ensure that these // can be connected as a source-sink pair (have opposite flipped value). // Make the connection and mark them as [[done]]. val done = Set() ++ pairing.values.filter(_.size == 2).map { case Seq(a, b) => require(a.flipped != b.flipped) // @todo <> in chisel3 makes directionless connection. if (a.flipped) { a.data <> b.data } else { b.data <> a.data } a.source case _ => None } // Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module. val forward = allDangles.filter(d => !done(d.source)) // Generate [[AutoBundle]] IO from [[forward]]. val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*)) // Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]] val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) => if (d.flipped) { d.data <> io } else { io <> d.data } d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name) } // Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]]. wrapper.inModuleBody.reverse.foreach { _() } if (wrapper.shouldBeInlined) { chisel3.experimental.annotate(new ChiselAnnotation { def toFirrtl = InlineAnnotation(toNamed) }) } // Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]]. (auto, dangles) } } /** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike { /** Instantiate hardware of this `Module`. */ val (auto, dangles) = instantiate() } /** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike { // These wires are the default clock+reset for all LazyModule children. // It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the // [[LazyRawModuleImp]] children. // Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly. /** drive clock explicitly. */ val childClock: Clock = Wire(Clock()) /** drive reset explicitly. */ val childReset: Reset = Wire(Reset()) // the default is that these are disabled childClock := false.B.asClock childReset := chisel3.DontCare def provideImplicitClockToLazyChildren: Boolean = false val (auto, dangles) = if (provideImplicitClockToLazyChildren) { withClockAndReset(childClock, childReset) { instantiate() } } else { instantiate() } } File Arbiter.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.util.random.LFSR import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.util._ object TLArbiter { // (valids, select) => readys type Policy = (Integer, UInt, Bool) => UInt val lowestIndexFirst: Policy = (width, valids, select) => ~(leftOR(valids) << 1)(width-1, 0) val highestIndexFirst: Policy = (width, valids, select) => ~((rightOR(valids) >> 1).pad(width)) val roundRobin: Policy = (width, valids, select) => if (width == 1) 1.U(1.W) else { val valid = valids(width-1, 0) assert (valid === valids) val mask = RegInit(((BigInt(1) << width)-1).U(width-1,0)) val filter = Cat(valid & ~mask, valid) val unready = (rightOR(filter, width*2, width) >> 1) | (mask << width) val readys = ~((unready >> width) & unready(width-1, 0)) when (select && valid.orR) { mask := leftOR(readys & valid, width) } readys(width-1, 0) } def lowestFromSeq[T <: TLChannel](edge: TLEdge, sink: DecoupledIO[T], sources: Seq[DecoupledIO[T]]): Unit = { apply(lowestIndexFirst)(sink, sources.map(s => (edge.numBeats1(s.bits), s)):_*) } def lowest[T <: TLChannel](edge: TLEdge, sink: DecoupledIO[T], sources: DecoupledIO[T]*): Unit = { apply(lowestIndexFirst)(sink, sources.toList.map(s => (edge.numBeats1(s.bits), s)):_*) } def highest[T <: TLChannel](edge: TLEdge, sink: DecoupledIO[T], sources: DecoupledIO[T]*): Unit = { apply(highestIndexFirst)(sink, sources.toList.map(s => (edge.numBeats1(s.bits), s)):_*) } def robin[T <: TLChannel](edge: TLEdge, sink: DecoupledIO[T], sources: DecoupledIO[T]*): Unit = { apply(roundRobin)(sink, sources.toList.map(s => (edge.numBeats1(s.bits), s)):_*) } def apply[T <: Data](policy: Policy)(sink: DecoupledIO[T], sources: (UInt, DecoupledIO[T])*): Unit = { if (sources.isEmpty) { sink.bits := DontCare } else if (sources.size == 1) { sink :<>= sources.head._2 } else { val pairs = sources.toList val beatsIn = pairs.map(_._1) val sourcesIn = pairs.map(_._2) // The number of beats which remain to be sent val beatsLeft = RegInit(0.U) val idle = beatsLeft === 0.U val latch = idle && sink.ready // winner (if any) claims sink // Who wants access to the sink? val valids = sourcesIn.map(_.valid) // Arbitrate amongst the requests val readys = VecInit(policy(valids.size, Cat(valids.reverse), latch).asBools) // Which request wins arbitration? val winner = VecInit((readys zip valids) map { case (r,v) => r&&v }) // Confirm the policy works properly require (readys.size == valids.size) // Never two winners val prefixOR = winner.scanLeft(false.B)(_||_).init assert((prefixOR zip winner) map { case (p,w) => !p || !w } reduce {_ && _}) // If there was any request, there is a winner assert (!valids.reduce(_||_) || winner.reduce(_||_)) // Track remaining beats val maskedBeats = (winner zip beatsIn) map { case (w,b) => Mux(w, b, 0.U) } val initBeats = maskedBeats.reduce(_ | _) // no winner => 0 beats beatsLeft := Mux(latch, initBeats, beatsLeft - sink.fire) // The one-hot source granted access in the previous cycle val state = RegInit(VecInit(Seq.fill(sources.size)(false.B))) val muxState = Mux(idle, winner, state) state := muxState val allowed = Mux(idle, readys, state) (sourcesIn zip allowed) foreach { case (s, r) => s.ready := sink.ready && r } sink.valid := Mux(idle, valids.reduce(_||_), Mux1H(state, valids)) sink.bits :<= Mux1H(muxState, sourcesIn.map(_.bits)) } } } // Synthesizable unit tests import freechips.rocketchip.unittest._ abstract class DecoupledArbiterTest( policy: TLArbiter.Policy, txns: Int, timeout: Int, val numSources: Int, beatsLeftFromIdx: Int => UInt) (implicit p: Parameters) extends UnitTest(timeout) { val sources = Wire(Vec(numSources, DecoupledIO(UInt(log2Ceil(numSources).W)))) dontTouch(sources.suggestName("sources")) val sink = Wire(DecoupledIO(UInt(log2Ceil(numSources).W))) dontTouch(sink.suggestName("sink")) val count = RegInit(0.U(log2Ceil(txns).W)) val lfsr = LFSR(16, true.B) sources.zipWithIndex.map { case (z, i) => z.bits := i.U } TLArbiter(policy)(sink, sources.zipWithIndex.map { case (z, i) => (beatsLeftFromIdx(i), z) }:_*) count := count + 1.U io.finished := count >= txns.U } /** This tests that when a specific pattern of source valids are driven, * a new index from amongst that pattern is always selected, * unless one of those sources takes multiple beats, * in which case the same index should be selected until the arbiter goes idle. */ class TLDecoupledArbiterRobinTest(txns: Int = 128, timeout: Int = 500000, print: Boolean = false) (implicit p: Parameters) extends DecoupledArbiterTest(TLArbiter.roundRobin, txns, timeout, 6, i => i.U) { val lastWinner = RegInit((numSources+1).U) val beatsLeft = RegInit(0.U(log2Ceil(numSources).W)) val first = lastWinner > numSources.U val valid = lfsr(0) val ready = lfsr(15) sink.ready := ready sources.zipWithIndex.map { // pattern: every even-indexed valid is driven the same random way case (s, i) => s.valid := (if (i % 2 == 1) false.B else valid) } when (sink.fire) { if (print) { printf("TestRobin: %d\n", sink.bits) } when (beatsLeft === 0.U) { assert(lastWinner =/= sink.bits, "Round robin did not pick a new idx despite one being valid.") lastWinner := sink.bits beatsLeft := sink.bits } .otherwise { assert(lastWinner === sink.bits, "Round robin did not pick the same index over multiple beats") beatsLeft := beatsLeft - 1.U } } if (print) { when (!sink.fire) { printf("TestRobin: idle (%d %d)\n", valid, ready) } } } /** This tests that the lowest index is always selected across random single cycle transactions. */ class TLDecoupledArbiterLowestTest(txns: Int = 128, timeout: Int = 500000)(implicit p: Parameters) extends DecoupledArbiterTest(TLArbiter.lowestIndexFirst, txns, timeout, 15, _ => 0.U) { def assertLowest(id: Int): Unit = { when (sources(id).valid) { assert((numSources-1 until id by -1).map(!sources(_).fire).foldLeft(true.B)(_&&_), s"$id was valid but a higher valid source was granted ready.") } } sources.zipWithIndex.map { case (s, i) => s.valid := lfsr(i) } sink.ready := lfsr(15) when (sink.fire) { (0 until numSources).foreach(assertLowest(_)) } } /** This tests that the highest index is always selected across random single cycle transactions. */ class TLDecoupledArbiterHighestTest(txns: Int = 128, timeout: Int = 500000)(implicit p: Parameters) extends DecoupledArbiterTest(TLArbiter.highestIndexFirst, txns, timeout, 15, _ => 0.U) { def assertHighest(id: Int): Unit = { when (sources(id).valid) { assert((0 until id).map(!sources(_).fire).foldLeft(true.B)(_&&_), s"$id was valid but a lower valid source was granted ready.") } } sources.zipWithIndex.map { case (s, i) => s.valid := lfsr(i) } sink.ready := lfsr(15) when (sink.fire) { (0 until numSources).foreach(assertHighest(_)) } } File Xbar.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy.lazymodule._ import freechips.rocketchip.diplomacy.{AddressDecoder, AddressSet, RegionType, IdRange, TriStateValue} import freechips.rocketchip.util.BundleField // Trades off slave port proximity against routing resource cost object ForceFanout { def apply[T]( a: TriStateValue = TriStateValue.unset, b: TriStateValue = TriStateValue.unset, c: TriStateValue = TriStateValue.unset, d: TriStateValue = TriStateValue.unset, e: TriStateValue = TriStateValue.unset)(body: Parameters => T)(implicit p: Parameters) = { body(p.alterPartial { case ForceFanoutKey => p(ForceFanoutKey) match { case ForceFanoutParams(pa, pb, pc, pd, pe) => ForceFanoutParams(a.update(pa), b.update(pb), c.update(pc), d.update(pd), e.update(pe)) } }) } } private case class ForceFanoutParams(a: Boolean, b: Boolean, c: Boolean, d: Boolean, e: Boolean) private case object ForceFanoutKey extends Field(ForceFanoutParams(false, false, false, false, false)) class TLXbar(policy: TLArbiter.Policy = TLArbiter.roundRobin, nameSuffix: Option[String] = None)(implicit p: Parameters) extends LazyModule { val node = new TLNexusNode( clientFn = { seq => seq(0).v1copy( echoFields = BundleField.union(seq.flatMap(_.echoFields)), requestFields = BundleField.union(seq.flatMap(_.requestFields)), responseKeys = seq.flatMap(_.responseKeys).distinct, minLatency = seq.map(_.minLatency).min, clients = (TLXbar.mapInputIds(seq) zip seq) flatMap { case (range, port) => port.clients map { client => client.v1copy( sourceId = client.sourceId.shift(range.start) )} } ) }, managerFn = { seq => val fifoIdFactory = TLXbar.relabeler() seq(0).v1copy( responseFields = BundleField.union(seq.flatMap(_.responseFields)), requestKeys = seq.flatMap(_.requestKeys).distinct, minLatency = seq.map(_.minLatency).min, endSinkId = TLXbar.mapOutputIds(seq).map(_.end).max, managers = seq.flatMap { port => require (port.beatBytes == seq(0).beatBytes, s"Xbar ($name with parent $parent) data widths don't match: ${port.managers.map(_.name)} has ${port.beatBytes}B vs ${seq(0).managers.map(_.name)} has ${seq(0).beatBytes}B") val fifoIdMapper = fifoIdFactory() port.managers map { manager => manager.v1copy( fifoId = manager.fifoId.map(fifoIdMapper(_)) )} } ) } ){ override def circuitIdentity = outputs.size == 1 && inputs.size == 1 } lazy val module = new Impl class Impl extends LazyModuleImp(this) { if ((node.in.size * node.out.size) > (8*32)) { println (s"!!! WARNING !!!") println (s" Your TLXbar ($name with parent $parent) is very large, with ${node.in.size} Masters and ${node.out.size} Slaves.") println (s"!!! WARNING !!!") } val wide_bundle = TLBundleParameters.union((node.in ++ node.out).map(_._2.bundle)) override def desiredName = (Seq("TLXbar") ++ nameSuffix ++ Seq(s"i${node.in.size}_o${node.out.size}_${wide_bundle.shortName}")).mkString("_") TLXbar.circuit(policy, node.in, node.out) } } object TLXbar { def mapInputIds(ports: Seq[TLMasterPortParameters]) = assignRanges(ports.map(_.endSourceId)) def mapOutputIds(ports: Seq[TLSlavePortParameters]) = assignRanges(ports.map(_.endSinkId)) def assignRanges(sizes: Seq[Int]) = { val pow2Sizes = sizes.map { z => if (z == 0) 0 else 1 << log2Ceil(z) } val tuples = pow2Sizes.zipWithIndex.sortBy(_._1) // record old index, then sort by increasing size val starts = tuples.scanRight(0)(_._1 + _).tail // suffix-sum of the sizes = the start positions val ranges = (tuples zip starts) map { case ((sz, i), st) => (if (sz == 0) IdRange(0, 0) else IdRange(st, st + sz), i) } ranges.sortBy(_._2).map(_._1) // Restore orignal order } def relabeler() = { var idFactory = 0 () => { val fifoMap = scala.collection.mutable.HashMap.empty[Int, Int] (x: Int) => { if (fifoMap.contains(x)) fifoMap(x) else { val out = idFactory idFactory = idFactory + 1 fifoMap += (x -> out) out } } } } def circuit(policy: TLArbiter.Policy, seqIn: Seq[(TLBundle, TLEdge)], seqOut: Seq[(TLBundle, TLEdge)]) { val (io_in, edgesIn) = seqIn.unzip val (io_out, edgesOut) = seqOut.unzip // Not every master need connect to every slave on every channel; determine which connections are necessary val reachableIO = edgesIn.map { cp => edgesOut.map { mp => cp.client.clients.exists { c => mp.manager.managers.exists { m => c.visibility.exists { ca => m.address.exists { ma => ca.overlaps(ma)}}}} }.toVector}.toVector val probeIO = (edgesIn zip reachableIO).map { case (cp, reachableO) => (edgesOut zip reachableO).map { case (mp, reachable) => reachable && cp.client.anySupportProbe && mp.manager.managers.exists(_.regionType >= RegionType.TRACKED) }.toVector}.toVector val releaseIO = (edgesIn zip reachableIO).map { case (cp, reachableO) => (edgesOut zip reachableO).map { case (mp, reachable) => reachable && cp.client.anySupportProbe && mp.manager.anySupportAcquireB }.toVector}.toVector val connectAIO = reachableIO val connectBIO = probeIO val connectCIO = releaseIO val connectDIO = reachableIO val connectEIO = releaseIO def transpose[T](x: Seq[Seq[T]]) = if (x.isEmpty) Nil else Vector.tabulate(x(0).size) { i => Vector.tabulate(x.size) { j => x(j)(i) } } val connectAOI = transpose(connectAIO) val connectBOI = transpose(connectBIO) val connectCOI = transpose(connectCIO) val connectDOI = transpose(connectDIO) val connectEOI = transpose(connectEIO) // Grab the port ID mapping val inputIdRanges = TLXbar.mapInputIds(edgesIn.map(_.client)) val outputIdRanges = TLXbar.mapOutputIds(edgesOut.map(_.manager)) // We need an intermediate size of bundle with the widest possible identifiers val wide_bundle = TLBundleParameters.union(io_in.map(_.params) ++ io_out.map(_.params)) // Handle size = 1 gracefully (Chisel3 empty range is broken) def trim(id: UInt, size: Int): UInt = if (size <= 1) 0.U else id(log2Ceil(size)-1, 0) // Transform input bundle sources (sinks use global namespace on both sides) val in = Wire(Vec(io_in.size, TLBundle(wide_bundle))) for (i <- 0 until in.size) { val r = inputIdRanges(i) if (connectAIO(i).exists(x=>x)) { in(i).a.bits.user := DontCare in(i).a.squeezeAll.waiveAll :<>= io_in(i).a.squeezeAll.waiveAll in(i).a.bits.source := io_in(i).a.bits.source | r.start.U } else { in(i).a := DontCare io_in(i).a := DontCare in(i).a.valid := false.B io_in(i).a.ready := true.B } if (connectBIO(i).exists(x=>x)) { io_in(i).b.squeezeAll :<>= in(i).b.squeezeAll io_in(i).b.bits.source := trim(in(i).b.bits.source, r.size) } else { in(i).b := DontCare io_in(i).b := DontCare in(i).b.ready := true.B io_in(i).b.valid := false.B } if (connectCIO(i).exists(x=>x)) { in(i).c.bits.user := DontCare in(i).c.squeezeAll.waiveAll :<>= io_in(i).c.squeezeAll.waiveAll in(i).c.bits.source := io_in(i).c.bits.source | r.start.U } else { in(i).c := DontCare io_in(i).c := DontCare in(i).c.valid := false.B io_in(i).c.ready := true.B } if (connectDIO(i).exists(x=>x)) { io_in(i).d.squeezeAll.waiveAll :<>= in(i).d.squeezeAll.waiveAll io_in(i).d.bits.source := trim(in(i).d.bits.source, r.size) } else { in(i).d := DontCare io_in(i).d := DontCare in(i).d.ready := true.B io_in(i).d.valid := false.B } if (connectEIO(i).exists(x=>x)) { in(i).e.squeezeAll :<>= io_in(i).e.squeezeAll } else { in(i).e := DontCare io_in(i).e := DontCare in(i).e.valid := false.B io_in(i).e.ready := true.B } } // Transform output bundle sinks (sources use global namespace on both sides) val out = Wire(Vec(io_out.size, TLBundle(wide_bundle))) for (o <- 0 until out.size) { val r = outputIdRanges(o) if (connectAOI(o).exists(x=>x)) { out(o).a.bits.user := DontCare io_out(o).a.squeezeAll.waiveAll :<>= out(o).a.squeezeAll.waiveAll } else { out(o).a := DontCare io_out(o).a := DontCare out(o).a.ready := true.B io_out(o).a.valid := false.B } if (connectBOI(o).exists(x=>x)) { out(o).b.squeezeAll :<>= io_out(o).b.squeezeAll } else { out(o).b := DontCare io_out(o).b := DontCare out(o).b.valid := false.B io_out(o).b.ready := true.B } if (connectCOI(o).exists(x=>x)) { out(o).c.bits.user := DontCare io_out(o).c.squeezeAll.waiveAll :<>= out(o).c.squeezeAll.waiveAll } else { out(o).c := DontCare io_out(o).c := DontCare out(o).c.ready := true.B io_out(o).c.valid := false.B } if (connectDOI(o).exists(x=>x)) { out(o).d.squeezeAll :<>= io_out(o).d.squeezeAll out(o).d.bits.sink := io_out(o).d.bits.sink | r.start.U } else { out(o).d := DontCare io_out(o).d := DontCare out(o).d.valid := false.B io_out(o).d.ready := true.B } if (connectEOI(o).exists(x=>x)) { io_out(o).e.squeezeAll :<>= out(o).e.squeezeAll io_out(o).e.bits.sink := trim(out(o).e.bits.sink, r.size) } else { out(o).e := DontCare io_out(o).e := DontCare out(o).e.ready := true.B io_out(o).e.valid := false.B } } // Filter a list to only those elements selected def filter[T](data: Seq[T], mask: Seq[Boolean]) = (data zip mask).filter(_._2).map(_._1) // Based on input=>output connectivity, create per-input minimal address decode circuits val requiredAC = (connectAIO ++ connectCIO).distinct val outputPortFns: Map[Vector[Boolean], Seq[UInt => Bool]] = requiredAC.map { connectO => val port_addrs = edgesOut.map(_.manager.managers.flatMap(_.address)) val routingMask = AddressDecoder(filter(port_addrs, connectO)) val route_addrs = port_addrs.map(seq => AddressSet.unify(seq.map(_.widen(~routingMask)).distinct)) // Print the address mapping if (false) { println("Xbar mapping:") route_addrs.foreach { p => print(" ") p.foreach { a => print(s" ${a}") } println("") } println("--") } (connectO, route_addrs.map(seq => (addr: UInt) => seq.map(_.contains(addr)).reduce(_ || _))) }.toMap // Print the ID mapping if (false) { println(s"XBar mapping:") (edgesIn zip inputIdRanges).zipWithIndex.foreach { case ((edge, id), i) => println(s"\t$i assigned ${id} for ${edge.client.clients.map(_.name).mkString(", ")}") } println("") } val addressA = (in zip edgesIn) map { case (i, e) => e.address(i.a.bits) } val addressC = (in zip edgesIn) map { case (i, e) => e.address(i.c.bits) } def unique(x: Vector[Boolean]): Bool = (x.filter(x=>x).size <= 1).B val requestAIO = (connectAIO zip addressA) map { case (c, i) => outputPortFns(c).map { o => unique(c) || o(i) } } val requestCIO = (connectCIO zip addressC) map { case (c, i) => outputPortFns(c).map { o => unique(c) || o(i) } } val requestBOI = out.map { o => inputIdRanges.map { i => i.contains(o.b.bits.source) } } val requestDOI = out.map { o => inputIdRanges.map { i => i.contains(o.d.bits.source) } } val requestEIO = in.map { i => outputIdRanges.map { o => o.contains(i.e.bits.sink) } } val beatsAI = (in zip edgesIn) map { case (i, e) => e.numBeats1(i.a.bits) } val beatsBO = (out zip edgesOut) map { case (o, e) => e.numBeats1(o.b.bits) } val beatsCI = (in zip edgesIn) map { case (i, e) => e.numBeats1(i.c.bits) } val beatsDO = (out zip edgesOut) map { case (o, e) => e.numBeats1(o.d.bits) } val beatsEI = (in zip edgesIn) map { case (i, e) => e.numBeats1(i.e.bits) } // Fanout the input sources to the output sinks val portsAOI = transpose((in zip requestAIO) map { case (i, r) => TLXbar.fanout(i.a, r, edgesOut.map(_.params(ForceFanoutKey).a)) }) val portsBIO = transpose((out zip requestBOI) map { case (o, r) => TLXbar.fanout(o.b, r, edgesIn .map(_.params(ForceFanoutKey).b)) }) val portsCOI = transpose((in zip requestCIO) map { case (i, r) => TLXbar.fanout(i.c, r, edgesOut.map(_.params(ForceFanoutKey).c)) }) val portsDIO = transpose((out zip requestDOI) map { case (o, r) => TLXbar.fanout(o.d, r, edgesIn .map(_.params(ForceFanoutKey).d)) }) val portsEOI = transpose((in zip requestEIO) map { case (i, r) => TLXbar.fanout(i.e, r, edgesOut.map(_.params(ForceFanoutKey).e)) }) // Arbitrate amongst the sources for (o <- 0 until out.size) { TLArbiter(policy)(out(o).a, filter(beatsAI zip portsAOI(o), connectAOI(o)):_*) TLArbiter(policy)(out(o).c, filter(beatsCI zip portsCOI(o), connectCOI(o)):_*) TLArbiter(policy)(out(o).e, filter(beatsEI zip portsEOI(o), connectEOI(o)):_*) filter(portsAOI(o), connectAOI(o).map(!_)) foreach { r => r.ready := false.B } filter(portsCOI(o), connectCOI(o).map(!_)) foreach { r => r.ready := false.B } filter(portsEOI(o), connectEOI(o).map(!_)) foreach { r => r.ready := false.B } } for (i <- 0 until in.size) { TLArbiter(policy)(in(i).b, filter(beatsBO zip portsBIO(i), connectBIO(i)):_*) TLArbiter(policy)(in(i).d, filter(beatsDO zip portsDIO(i), connectDIO(i)):_*) filter(portsBIO(i), connectBIO(i).map(!_)) foreach { r => r.ready := false.B } filter(portsDIO(i), connectDIO(i).map(!_)) foreach { r => r.ready := false.B } } } def apply(policy: TLArbiter.Policy = TLArbiter.roundRobin, nameSuffix: Option[String] = None)(implicit p: Parameters): TLNode = { val xbar = LazyModule(new TLXbar(policy, nameSuffix)) xbar.node } // Replicate an input port to each output port def fanout[T <: TLChannel](input: DecoupledIO[T], select: Seq[Bool], force: Seq[Boolean] = Nil): Seq[DecoupledIO[T]] = { val filtered = Wire(Vec(select.size, chiselTypeOf(input))) for (i <- 0 until select.size) { filtered(i).bits := (if (force.lift(i).getOrElse(false)) IdentityModule(input.bits) else input.bits) filtered(i).valid := input.valid && (select(i) || (select.size == 1).B) } input.ready := Mux1H(select, filtered.map(_.ready)) filtered } } // Synthesizable unit tests import freechips.rocketchip.unittest._ class TLRAMXbar(nManagers: Int, txns: Int)(implicit p: Parameters) extends LazyModule { val fuzz = LazyModule(new TLFuzzer(txns)) val model = LazyModule(new TLRAMModel("Xbar")) val xbar = LazyModule(new TLXbar) xbar.node := TLDelayer(0.1) := model.node := fuzz.node (0 until nManagers) foreach { n => val ram = LazyModule(new TLRAM(AddressSet(0x0+0x400*n, 0x3ff))) ram.node := TLFragmenter(4, 256) := TLDelayer(0.1) := xbar.node } lazy val module = new Impl class Impl extends LazyModuleImp(this) with UnitTestModule { io.finished := fuzz.module.io.finished } } class TLRAMXbarTest(nManagers: Int, txns: Int = 5000, timeout: Int = 500000)(implicit p: Parameters) extends UnitTest(timeout) { val dut = Module(LazyModule(new TLRAMXbar(nManagers,txns)).module) dut.io.start := io.start io.finished := dut.io.finished } class TLMulticlientXbar(nManagers: Int, nClients: Int, txns: Int)(implicit p: Parameters) extends LazyModule { val xbar = LazyModule(new TLXbar) val fuzzers = (0 until nClients) map { n => val fuzz = LazyModule(new TLFuzzer(txns)) xbar.node := TLDelayer(0.1) := fuzz.node fuzz } (0 until nManagers) foreach { n => val ram = LazyModule(new TLRAM(AddressSet(0x0+0x400*n, 0x3ff))) ram.node := TLFragmenter(4, 256) := TLDelayer(0.1) := xbar.node } lazy val module = new Impl class Impl extends LazyModuleImp(this) with UnitTestModule { io.finished := fuzzers.last.module.io.finished } } class TLMulticlientXbarTest(nManagers: Int, nClients: Int, txns: Int = 5000, timeout: Int = 500000)(implicit p: Parameters) extends UnitTest(timeout) { val dut = Module(LazyModule(new TLMulticlientXbar(nManagers, nClients, txns)).module) dut.io.start := io.start io.finished := dut.io.finished }
module TLXbar_dmixbar_i1_o2_a9d32s1k1z2u( // @[Xbar.scala:74:9] input clock, // @[Xbar.scala:74:9] input reset, // @[Xbar.scala:74:9] output auto_anon_in_a_ready, // @[LazyModuleImp.scala:107:25] input auto_anon_in_a_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_anon_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25] input [8:0] auto_anon_in_a_bits_address, // @[LazyModuleImp.scala:107:25] input [31:0] auto_anon_in_a_bits_data, // @[LazyModuleImp.scala:107:25] input auto_anon_in_d_ready, // @[LazyModuleImp.scala:107:25] output auto_anon_in_d_valid, // @[LazyModuleImp.scala:107:25] output auto_anon_in_d_bits_denied, // @[LazyModuleImp.scala:107:25] output [31:0] auto_anon_in_d_bits_data, // @[LazyModuleImp.scala:107:25] output auto_anon_in_d_bits_corrupt, // @[LazyModuleImp.scala:107:25] input auto_anon_out_1_a_ready, // @[LazyModuleImp.scala:107:25] output auto_anon_out_1_a_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_anon_out_1_a_bits_opcode, // @[LazyModuleImp.scala:107:25] output [6:0] auto_anon_out_1_a_bits_address, // @[LazyModuleImp.scala:107:25] output [31:0] auto_anon_out_1_a_bits_data, // @[LazyModuleImp.scala:107:25] output auto_anon_out_1_d_ready, // @[LazyModuleImp.scala:107:25] input auto_anon_out_1_d_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_anon_out_1_d_bits_opcode, // @[LazyModuleImp.scala:107:25] input [31:0] auto_anon_out_1_d_bits_data, // @[LazyModuleImp.scala:107:25] input auto_anon_out_0_a_ready, // @[LazyModuleImp.scala:107:25] output auto_anon_out_0_a_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_anon_out_0_a_bits_opcode, // @[LazyModuleImp.scala:107:25] output [8:0] auto_anon_out_0_a_bits_address, // @[LazyModuleImp.scala:107:25] output [31:0] auto_anon_out_0_a_bits_data, // @[LazyModuleImp.scala:107:25] output auto_anon_out_0_d_ready, // @[LazyModuleImp.scala:107:25] input auto_anon_out_0_d_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_anon_out_0_d_bits_opcode, // @[LazyModuleImp.scala:107:25] input [1:0] auto_anon_out_0_d_bits_param, // @[LazyModuleImp.scala:107:25] input [1:0] auto_anon_out_0_d_bits_size, // @[LazyModuleImp.scala:107:25] input auto_anon_out_0_d_bits_sink, // @[LazyModuleImp.scala:107:25] input auto_anon_out_0_d_bits_denied, // @[LazyModuleImp.scala:107:25] input [31:0] auto_anon_out_0_d_bits_data, // @[LazyModuleImp.scala:107:25] input auto_anon_out_0_d_bits_corrupt // @[LazyModuleImp.scala:107:25] ); wire [4:0] _GEN = auto_anon_in_a_bits_address[6:2] ^ 5'h11; // @[Xbar.scala:222:41] wire requestAIO_0_0 = auto_anon_in_a_bits_address[8:6] == 3'h0 | {auto_anon_in_a_bits_address[8:7], _GEN[4:2], _GEN[0]} == 6'h0 | {auto_anon_in_a_bits_address[8:7], auto_anon_in_a_bits_address[6:3] ^ 4'hB} == 6'h0 | {auto_anon_in_a_bits_address[8:7], ~(auto_anon_in_a_bits_address[6:5])} == 4'h0 | {auto_anon_in_a_bits_address[8], ~(auto_anon_in_a_bits_address[7])} == 2'h0 | auto_anon_in_a_bits_address[8]; // @[Xbar.scala:222:41, :291:92] wire requestAIO_0_1 = {auto_anon_in_a_bits_address[8:7], auto_anon_in_a_bits_address[6:4] ^ 3'h4, auto_anon_in_a_bits_address[2]} == 6'h0 | {auto_anon_in_a_bits_address[8:7], auto_anon_in_a_bits_address[6:3] ^ 4'hA} == 6'h0; // @[Xbar.scala:222:41, :291:92] wire _portsAOI_in_0_a_ready_T_2 = requestAIO_0_0 & auto_anon_out_0_a_ready | requestAIO_0_1 & auto_anon_out_1_a_ready; // @[Mux.scala:30:73] reg beatsLeft; // @[Arbiter.scala:60:30] wire [1:0] readys_valid = {auto_anon_out_1_d_valid, auto_anon_out_0_d_valid}; // @[Arbiter.scala:68:51] reg [1:0] readys_mask; // @[Arbiter.scala:23:23] wire [1:0] _readys_filter_T_1 = readys_valid & ~readys_mask; // @[Arbiter.scala:23:23, :24:{28,30}, :68:51] wire [1:0] readys_readys = ~({readys_mask[1], _readys_filter_T_1[1] | readys_mask[0]} & ({_readys_filter_T_1[0], auto_anon_out_1_d_valid} | _readys_filter_T_1)); // @[package.scala:262:43] wire winner_0 = readys_readys[0] & auto_anon_out_0_d_valid; // @[Arbiter.scala:26:18, :68:76, :71:69] wire winner_1 = readys_readys[1] & auto_anon_out_1_d_valid; // @[Arbiter.scala:26:18, :68:76, :71:69] wire _in_0_d_valid_T = auto_anon_out_0_d_valid | auto_anon_out_1_d_valid; // @[Arbiter.scala:79:31]
Generate the Verilog code corresponding to the following Chisel files. File ShiftReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ // Similar to the Chisel ShiftRegister but allows the user to suggest a // name to the registers that get instantiated, and // to provide a reset value. object ShiftRegInit { def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T = (0 until n).foldRight(in) { case (i, next) => { val r = RegNext(next, init) name.foreach { na => r.suggestName(s"${na}_${i}") } r } } } /** These wrap behavioral * shift registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * The different types vary in their reset behavior: * AsyncResetShiftReg -- Asynchronously reset register array * A W(width) x D(depth) sized array is constructed from D instantiations of a * W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg, * but only used for timing applications */ abstract class AbstractPipelineReg(w: Int = 1) extends Module { val io = IO(new Bundle { val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) } ) } object AbstractPipelineReg { def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = { val chain = Module(gen) name.foreach{ chain.suggestName(_) } chain.io.d := in.asUInt chain.io.q.asTypeOf(in) } } class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) { require(depth > 0, "Depth must be greater than 0.") override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}" val chain = List.tabulate(depth) { i => Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}") } chain.last.io.d := io.d chain.last.io.en := true.B (chain.init zip chain.tail).foreach { case (sink, source) => sink.io.d := source.io.q sink.io.en := true.B } io.q := chain.head.io.q } object AsyncResetShiftReg { def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name) def apply [T <: Data](in: T, depth: Int, name: Option[String]): T = apply(in, depth, 0, name) def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T = apply(in, depth, init.litValue.toInt, name) def apply [T <: Data](in: T, depth: Int, init: T): T = apply (in, depth, init.litValue.toInt, None) } File SynchronizerReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util.{RegEnable, Cat} /** These wrap behavioral * shift and next registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * * These are built up of *ResetSynchronizerPrimitiveShiftReg, * intended to be replaced by the integrator's metastable flops chains or replaced * at this level if they have a multi-bit wide synchronizer primitive. * The different types vary in their reset behavior: * NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin * AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep * 1-bit-wide shift registers. * SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg * * [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference. * * ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross * Clock Domains. */ object SynchronizerResetType extends Enumeration { val NonSync, Inferred, Sync, Async = Value } // Note: this should not be used directly. // Use the companion object to generate this with the correct reset type mixin. private class SynchronizerPrimitiveShiftReg( sync: Int, init: Boolean, resetType: SynchronizerResetType.Value) extends AbstractPipelineReg(1) { val initInt = if (init) 1 else 0 val initPostfix = resetType match { case SynchronizerResetType.NonSync => "" case _ => s"_i${initInt}" } override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}" val chain = List.tabulate(sync) { i => val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B) reg.suggestName(s"sync_$i") } chain.last := io.d.asBool (chain.init zip chain.tail).foreach { case (sink, source) => sink := source } io.q := chain.head.asUInt } private object SynchronizerPrimitiveShiftReg { def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = { val gen: () => SynchronizerPrimitiveShiftReg = resetType match { case SynchronizerResetType.NonSync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) case SynchronizerResetType.Async => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset case SynchronizerResetType.Sync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset case SynchronizerResetType.Inferred => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) } AbstractPipelineReg(gen(), in) } } // Note: This module may end up with a non-AsyncReset type reset. // But the Primitives within will always have AsyncReset type. class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asAsyncReset){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async) } } io.q := Cat(output.reverse) } object AsyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } // Note: This module may end up with a non-Bool type reset. // But the Primitives within will always have Bool reset type. @deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2") class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asBool){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync) } } io.q := Cat(output.reverse) } object SyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred) } io.q := Cat(output.reverse) } object ResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}" val output = Seq.tabulate(w) { i => SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync) } io.q := Cat(output.reverse) } object SynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, None) def apply [T <: Data](in: T): T = apply (in, 3, None) } class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module { override def desiredName = s"ClockCrossingReg_w${w}" val io = IO(new Bundle{ val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) val en = Input(Bool()) }) val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en) io.q := cdc_reg } object ClockCrossingReg { def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = { val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit)) name.foreach{ cdc_reg.suggestName(_) } cdc_reg.io.d := in.asUInt cdc_reg.io.en := en cdc_reg.io.q.asTypeOf(in) } }
module AsyncResetSynchronizerShiftReg_w1_d3_i0_23( // @[SynchronizerReg.scala:80:7] input clock, // @[SynchronizerReg.scala:80:7] input reset, // @[SynchronizerReg.scala:80:7] input io_d, // @[ShiftReg.scala:36:14] output io_q // @[ShiftReg.scala:36:14] ); wire io_d_0 = io_d; // @[SynchronizerReg.scala:80:7] wire _output_T = reset; // @[SynchronizerReg.scala:86:21] wire _output_T_1 = io_d_0; // @[SynchronizerReg.scala:80:7, :87:41] wire output_0; // @[ShiftReg.scala:48:24] wire io_q_0; // @[SynchronizerReg.scala:80:7] assign io_q_0 = output_0; // @[SynchronizerReg.scala:80:7] AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_47 output_chain ( // @[ShiftReg.scala:45:23] .clock (clock), .reset (_output_T), // @[SynchronizerReg.scala:86:21] .io_d (_output_T_1), // @[SynchronizerReg.scala:87:41] .io_q (output_0) ); // @[ShiftReg.scala:45:23] assign io_q = io_q_0; // @[SynchronizerReg.scala:80:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File FPU.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.tile import chisel3._ import chisel3.util._ import chisel3.{DontCare, WireInit, withClock, withReset} import chisel3.experimental.SourceInfo import chisel3.experimental.dataview._ import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.rocket._ import freechips.rocketchip.rocket.Instructions._ import freechips.rocketchip.util._ import freechips.rocketchip.util.property case class FPUParams( minFLen: Int = 32, fLen: Int = 64, divSqrt: Boolean = true, sfmaLatency: Int = 3, dfmaLatency: Int = 4, fpmuLatency: Int = 2, ifpuLatency: Int = 2 ) object FPConstants { val RM_SZ = 3 val FLAGS_SZ = 5 } trait HasFPUCtrlSigs { val ldst = Bool() val wen = Bool() val ren1 = Bool() val ren2 = Bool() val ren3 = Bool() val swap12 = Bool() val swap23 = Bool() val typeTagIn = UInt(2.W) val typeTagOut = UInt(2.W) val fromint = Bool() val toint = Bool() val fastpipe = Bool() val fma = Bool() val div = Bool() val sqrt = Bool() val wflags = Bool() val vec = Bool() } class FPUCtrlSigs extends Bundle with HasFPUCtrlSigs class FPUDecoder(implicit p: Parameters) extends FPUModule()(p) { val io = IO(new Bundle { val inst = Input(Bits(32.W)) val sigs = Output(new FPUCtrlSigs()) }) private val X2 = BitPat.dontCare(2) val default = List(X,X,X,X,X,X,X,X2,X2,X,X,X,X,X,X,X,N) val h: Array[(BitPat, List[BitPat])] = Array(FLH -> List(Y,Y,N,N,N,X,X,X2,X2,N,N,N,N,N,N,N,N), FSH -> List(Y,N,N,Y,N,Y,X, I, H,N,Y,N,N,N,N,N,N), FMV_H_X -> List(N,Y,N,N,N,X,X, H, I,Y,N,N,N,N,N,N,N), FCVT_H_W -> List(N,Y,N,N,N,X,X, H, H,Y,N,N,N,N,N,Y,N), FCVT_H_WU-> List(N,Y,N,N,N,X,X, H, H,Y,N,N,N,N,N,Y,N), FCVT_H_L -> List(N,Y,N,N,N,X,X, H, H,Y,N,N,N,N,N,Y,N), FCVT_H_LU-> List(N,Y,N,N,N,X,X, H, H,Y,N,N,N,N,N,Y,N), FMV_X_H -> List(N,N,Y,N,N,N,X, I, H,N,Y,N,N,N,N,N,N), FCLASS_H -> List(N,N,Y,N,N,N,X, H, H,N,Y,N,N,N,N,N,N), FCVT_W_H -> List(N,N,Y,N,N,N,X, H,X2,N,Y,N,N,N,N,Y,N), FCVT_WU_H-> List(N,N,Y,N,N,N,X, H,X2,N,Y,N,N,N,N,Y,N), FCVT_L_H -> List(N,N,Y,N,N,N,X, H,X2,N,Y,N,N,N,N,Y,N), FCVT_LU_H-> List(N,N,Y,N,N,N,X, H,X2,N,Y,N,N,N,N,Y,N), FCVT_S_H -> List(N,Y,Y,N,N,N,X, H, S,N,N,Y,N,N,N,Y,N), FCVT_H_S -> List(N,Y,Y,N,N,N,X, S, H,N,N,Y,N,N,N,Y,N), FEQ_H -> List(N,N,Y,Y,N,N,N, H, H,N,Y,N,N,N,N,Y,N), FLT_H -> List(N,N,Y,Y,N,N,N, H, H,N,Y,N,N,N,N,Y,N), FLE_H -> List(N,N,Y,Y,N,N,N, H, H,N,Y,N,N,N,N,Y,N), FSGNJ_H -> List(N,Y,Y,Y,N,N,N, H, H,N,N,Y,N,N,N,N,N), FSGNJN_H -> List(N,Y,Y,Y,N,N,N, H, H,N,N,Y,N,N,N,N,N), FSGNJX_H -> List(N,Y,Y,Y,N,N,N, H, H,N,N,Y,N,N,N,N,N), FMIN_H -> List(N,Y,Y,Y,N,N,N, H, H,N,N,Y,N,N,N,Y,N), FMAX_H -> List(N,Y,Y,Y,N,N,N, H, H,N,N,Y,N,N,N,Y,N), FADD_H -> List(N,Y,Y,Y,N,N,Y, H, H,N,N,N,Y,N,N,Y,N), FSUB_H -> List(N,Y,Y,Y,N,N,Y, H, H,N,N,N,Y,N,N,Y,N), FMUL_H -> List(N,Y,Y,Y,N,N,N, H, H,N,N,N,Y,N,N,Y,N), FMADD_H -> List(N,Y,Y,Y,Y,N,N, H, H,N,N,N,Y,N,N,Y,N), FMSUB_H -> List(N,Y,Y,Y,Y,N,N, H, H,N,N,N,Y,N,N,Y,N), FNMADD_H -> List(N,Y,Y,Y,Y,N,N, H, H,N,N,N,Y,N,N,Y,N), FNMSUB_H -> List(N,Y,Y,Y,Y,N,N, H, H,N,N,N,Y,N,N,Y,N), FDIV_H -> List(N,Y,Y,Y,N,N,N, H, H,N,N,N,N,Y,N,Y,N), FSQRT_H -> List(N,Y,Y,N,N,N,X, H, H,N,N,N,N,N,Y,Y,N)) val f: Array[(BitPat, List[BitPat])] = Array(FLW -> List(Y,Y,N,N,N,X,X,X2,X2,N,N,N,N,N,N,N,N), FSW -> List(Y,N,N,Y,N,Y,X, I, S,N,Y,N,N,N,N,N,N), FMV_W_X -> List(N,Y,N,N,N,X,X, S, I,Y,N,N,N,N,N,N,N), FCVT_S_W -> List(N,Y,N,N,N,X,X, S, S,Y,N,N,N,N,N,Y,N), FCVT_S_WU-> List(N,Y,N,N,N,X,X, S, S,Y,N,N,N,N,N,Y,N), FCVT_S_L -> List(N,Y,N,N,N,X,X, S, S,Y,N,N,N,N,N,Y,N), FCVT_S_LU-> List(N,Y,N,N,N,X,X, S, S,Y,N,N,N,N,N,Y,N), FMV_X_W -> List(N,N,Y,N,N,N,X, I, S,N,Y,N,N,N,N,N,N), FCLASS_S -> List(N,N,Y,N,N,N,X, S, S,N,Y,N,N,N,N,N,N), FCVT_W_S -> List(N,N,Y,N,N,N,X, S,X2,N,Y,N,N,N,N,Y,N), FCVT_WU_S-> List(N,N,Y,N,N,N,X, S,X2,N,Y,N,N,N,N,Y,N), FCVT_L_S -> List(N,N,Y,N,N,N,X, S,X2,N,Y,N,N,N,N,Y,N), FCVT_LU_S-> List(N,N,Y,N,N,N,X, S,X2,N,Y,N,N,N,N,Y,N), FEQ_S -> List(N,N,Y,Y,N,N,N, S, S,N,Y,N,N,N,N,Y,N), FLT_S -> List(N,N,Y,Y,N,N,N, S, S,N,Y,N,N,N,N,Y,N), FLE_S -> List(N,N,Y,Y,N,N,N, S, S,N,Y,N,N,N,N,Y,N), FSGNJ_S -> List(N,Y,Y,Y,N,N,N, S, S,N,N,Y,N,N,N,N,N), FSGNJN_S -> List(N,Y,Y,Y,N,N,N, S, S,N,N,Y,N,N,N,N,N), FSGNJX_S -> List(N,Y,Y,Y,N,N,N, S, S,N,N,Y,N,N,N,N,N), FMIN_S -> List(N,Y,Y,Y,N,N,N, S, S,N,N,Y,N,N,N,Y,N), FMAX_S -> List(N,Y,Y,Y,N,N,N, S, S,N,N,Y,N,N,N,Y,N), FADD_S -> List(N,Y,Y,Y,N,N,Y, S, S,N,N,N,Y,N,N,Y,N), FSUB_S -> List(N,Y,Y,Y,N,N,Y, S, S,N,N,N,Y,N,N,Y,N), FMUL_S -> List(N,Y,Y,Y,N,N,N, S, S,N,N,N,Y,N,N,Y,N), FMADD_S -> List(N,Y,Y,Y,Y,N,N, S, S,N,N,N,Y,N,N,Y,N), FMSUB_S -> List(N,Y,Y,Y,Y,N,N, S, S,N,N,N,Y,N,N,Y,N), FNMADD_S -> List(N,Y,Y,Y,Y,N,N, S, S,N,N,N,Y,N,N,Y,N), FNMSUB_S -> List(N,Y,Y,Y,Y,N,N, S, S,N,N,N,Y,N,N,Y,N), FDIV_S -> List(N,Y,Y,Y,N,N,N, S, S,N,N,N,N,Y,N,Y,N), FSQRT_S -> List(N,Y,Y,N,N,N,X, S, S,N,N,N,N,N,Y,Y,N)) val d: Array[(BitPat, List[BitPat])] = Array(FLD -> List(Y,Y,N,N,N,X,X,X2,X2,N,N,N,N,N,N,N,N), FSD -> List(Y,N,N,Y,N,Y,X, I, D,N,Y,N,N,N,N,N,N), FMV_D_X -> List(N,Y,N,N,N,X,X, D, I,Y,N,N,N,N,N,N,N), FCVT_D_W -> List(N,Y,N,N,N,X,X, D, D,Y,N,N,N,N,N,Y,N), FCVT_D_WU-> List(N,Y,N,N,N,X,X, D, D,Y,N,N,N,N,N,Y,N), FCVT_D_L -> List(N,Y,N,N,N,X,X, D, D,Y,N,N,N,N,N,Y,N), FCVT_D_LU-> List(N,Y,N,N,N,X,X, D, D,Y,N,N,N,N,N,Y,N), FMV_X_D -> List(N,N,Y,N,N,N,X, I, D,N,Y,N,N,N,N,N,N), FCLASS_D -> List(N,N,Y,N,N,N,X, D, D,N,Y,N,N,N,N,N,N), FCVT_W_D -> List(N,N,Y,N,N,N,X, D,X2,N,Y,N,N,N,N,Y,N), FCVT_WU_D-> List(N,N,Y,N,N,N,X, D,X2,N,Y,N,N,N,N,Y,N), FCVT_L_D -> List(N,N,Y,N,N,N,X, D,X2,N,Y,N,N,N,N,Y,N), FCVT_LU_D-> List(N,N,Y,N,N,N,X, D,X2,N,Y,N,N,N,N,Y,N), FCVT_S_D -> List(N,Y,Y,N,N,N,X, D, S,N,N,Y,N,N,N,Y,N), FCVT_D_S -> List(N,Y,Y,N,N,N,X, S, D,N,N,Y,N,N,N,Y,N), FEQ_D -> List(N,N,Y,Y,N,N,N, D, D,N,Y,N,N,N,N,Y,N), FLT_D -> List(N,N,Y,Y,N,N,N, D, D,N,Y,N,N,N,N,Y,N), FLE_D -> List(N,N,Y,Y,N,N,N, D, D,N,Y,N,N,N,N,Y,N), FSGNJ_D -> List(N,Y,Y,Y,N,N,N, D, D,N,N,Y,N,N,N,N,N), FSGNJN_D -> List(N,Y,Y,Y,N,N,N, D, D,N,N,Y,N,N,N,N,N), FSGNJX_D -> List(N,Y,Y,Y,N,N,N, D, D,N,N,Y,N,N,N,N,N), FMIN_D -> List(N,Y,Y,Y,N,N,N, D, D,N,N,Y,N,N,N,Y,N), FMAX_D -> List(N,Y,Y,Y,N,N,N, D, D,N,N,Y,N,N,N,Y,N), FADD_D -> List(N,Y,Y,Y,N,N,Y, D, D,N,N,N,Y,N,N,Y,N), FSUB_D -> List(N,Y,Y,Y,N,N,Y, D, D,N,N,N,Y,N,N,Y,N), FMUL_D -> List(N,Y,Y,Y,N,N,N, D, D,N,N,N,Y,N,N,Y,N), FMADD_D -> List(N,Y,Y,Y,Y,N,N, D, D,N,N,N,Y,N,N,Y,N), FMSUB_D -> List(N,Y,Y,Y,Y,N,N, D, D,N,N,N,Y,N,N,Y,N), FNMADD_D -> List(N,Y,Y,Y,Y,N,N, D, D,N,N,N,Y,N,N,Y,N), FNMSUB_D -> List(N,Y,Y,Y,Y,N,N, D, D,N,N,N,Y,N,N,Y,N), FDIV_D -> List(N,Y,Y,Y,N,N,N, D, D,N,N,N,N,Y,N,Y,N), FSQRT_D -> List(N,Y,Y,N,N,N,X, D, D,N,N,N,N,N,Y,Y,N)) val fcvt_hd: Array[(BitPat, List[BitPat])] = Array(FCVT_H_D -> List(N,Y,Y,N,N,N,X, D, H,N,N,Y,N,N,N,Y,N), FCVT_D_H -> List(N,Y,Y,N,N,N,X, H, D,N,N,Y,N,N,N,Y,N)) val vfmv_f_s: Array[(BitPat, List[BitPat])] = Array(VFMV_F_S -> List(N,Y,N,N,N,N,X,X2,X2,N,N,N,N,N,N,N,Y)) val insns = ((minFLen, fLen) match { case (32, 32) => f case (16, 32) => h ++ f case (32, 64) => f ++ d case (16, 64) => h ++ f ++ d ++ fcvt_hd case other => throw new Exception(s"minFLen = ${minFLen} & fLen = ${fLen} is an unsupported configuration") }) ++ (if (usingVector) vfmv_f_s else Array[(BitPat, List[BitPat])]()) val decoder = DecodeLogic(io.inst, default, insns) val s = io.sigs val sigs = Seq(s.ldst, s.wen, s.ren1, s.ren2, s.ren3, s.swap12, s.swap23, s.typeTagIn, s.typeTagOut, s.fromint, s.toint, s.fastpipe, s.fma, s.div, s.sqrt, s.wflags, s.vec) sigs zip decoder map {case(s,d) => s := d} } class FPUCoreIO(implicit p: Parameters) extends CoreBundle()(p) { val hartid = Input(UInt(hartIdLen.W)) val time = Input(UInt(xLen.W)) val inst = Input(Bits(32.W)) val fromint_data = Input(Bits(xLen.W)) val fcsr_rm = Input(Bits(FPConstants.RM_SZ.W)) val fcsr_flags = Valid(Bits(FPConstants.FLAGS_SZ.W)) val v_sew = Input(UInt(3.W)) val store_data = Output(Bits(fLen.W)) val toint_data = Output(Bits(xLen.W)) val ll_resp_val = Input(Bool()) val ll_resp_type = Input(Bits(3.W)) val ll_resp_tag = Input(UInt(5.W)) val ll_resp_data = Input(Bits(fLen.W)) val valid = Input(Bool()) val fcsr_rdy = Output(Bool()) val nack_mem = Output(Bool()) val illegal_rm = Output(Bool()) val killx = Input(Bool()) val killm = Input(Bool()) val dec = Output(new FPUCtrlSigs()) val sboard_set = Output(Bool()) val sboard_clr = Output(Bool()) val sboard_clra = Output(UInt(5.W)) val keep_clock_enabled = Input(Bool()) } class FPUIO(implicit p: Parameters) extends FPUCoreIO ()(p) { val cp_req = Flipped(Decoupled(new FPInput())) //cp doesn't pay attn to kill sigs val cp_resp = Decoupled(new FPResult()) } class FPResult(implicit p: Parameters) extends CoreBundle()(p) { val data = Bits((fLen+1).W) val exc = Bits(FPConstants.FLAGS_SZ.W) } class IntToFPInput(implicit p: Parameters) extends CoreBundle()(p) with HasFPUCtrlSigs { val rm = Bits(FPConstants.RM_SZ.W) val typ = Bits(2.W) val in1 = Bits(xLen.W) } class FPInput(implicit p: Parameters) extends CoreBundle()(p) with HasFPUCtrlSigs { val rm = Bits(FPConstants.RM_SZ.W) val fmaCmd = Bits(2.W) val typ = Bits(2.W) val fmt = Bits(2.W) val in1 = Bits((fLen+1).W) val in2 = Bits((fLen+1).W) val in3 = Bits((fLen+1).W) } case class FType(exp: Int, sig: Int) { def ieeeWidth = exp + sig def recodedWidth = ieeeWidth + 1 def ieeeQNaN = ((BigInt(1) << (ieeeWidth - 1)) - (BigInt(1) << (sig - 2))).U(ieeeWidth.W) def qNaN = ((BigInt(7) << (exp + sig - 3)) + (BigInt(1) << (sig - 2))).U(recodedWidth.W) def isNaN(x: UInt) = x(sig + exp - 1, sig + exp - 3).andR def isSNaN(x: UInt) = isNaN(x) && !x(sig - 2) def classify(x: UInt) = { val sign = x(sig + exp) val code = x(exp + sig - 1, exp + sig - 3) val codeHi = code(2, 1) val isSpecial = codeHi === 3.U val isHighSubnormalIn = x(exp + sig - 3, sig - 1) < 2.U val isSubnormal = code === 1.U || codeHi === 1.U && isHighSubnormalIn val isNormal = codeHi === 1.U && !isHighSubnormalIn || codeHi === 2.U val isZero = code === 0.U val isInf = isSpecial && !code(0) val isNaN = code.andR val isSNaN = isNaN && !x(sig-2) val isQNaN = isNaN && x(sig-2) Cat(isQNaN, isSNaN, isInf && !sign, isNormal && !sign, isSubnormal && !sign, isZero && !sign, isZero && sign, isSubnormal && sign, isNormal && sign, isInf && sign) } // convert between formats, ignoring rounding, range, NaN def unsafeConvert(x: UInt, to: FType) = if (this == to) x else { val sign = x(sig + exp) val fractIn = x(sig - 2, 0) val expIn = x(sig + exp - 1, sig - 1) val fractOut = fractIn << to.sig >> sig val expOut = { val expCode = expIn(exp, exp - 2) val commonCase = (expIn + (1 << to.exp).U) - (1 << exp).U Mux(expCode === 0.U || expCode >= 6.U, Cat(expCode, commonCase(to.exp - 3, 0)), commonCase(to.exp, 0)) } Cat(sign, expOut, fractOut) } private def ieeeBundle = { val expWidth = exp class IEEEBundle extends Bundle { val sign = Bool() val exp = UInt(expWidth.W) val sig = UInt((ieeeWidth-expWidth-1).W) } new IEEEBundle } def unpackIEEE(x: UInt) = x.asTypeOf(ieeeBundle) def recode(x: UInt) = hardfloat.recFNFromFN(exp, sig, x) def ieee(x: UInt) = hardfloat.fNFromRecFN(exp, sig, x) } object FType { val H = new FType(5, 11) val S = new FType(8, 24) val D = new FType(11, 53) val all = List(H, S, D) } trait HasFPUParameters { require(fLen == 0 || FType.all.exists(_.ieeeWidth == fLen)) val minFLen: Int val fLen: Int def xLen: Int val minXLen = 32 val nIntTypes = log2Ceil(xLen/minXLen) + 1 def floatTypes = FType.all.filter(t => minFLen <= t.ieeeWidth && t.ieeeWidth <= fLen) def minType = floatTypes.head def maxType = floatTypes.last def prevType(t: FType) = floatTypes(typeTag(t) - 1) def maxExpWidth = maxType.exp def maxSigWidth = maxType.sig def typeTag(t: FType) = floatTypes.indexOf(t) def typeTagWbOffset = (FType.all.indexOf(minType) + 1).U def typeTagGroup(t: FType) = (if (floatTypes.contains(t)) typeTag(t) else typeTag(maxType)).U // typeTag def H = typeTagGroup(FType.H) def S = typeTagGroup(FType.S) def D = typeTagGroup(FType.D) def I = typeTag(maxType).U private def isBox(x: UInt, t: FType): Bool = x(t.sig + t.exp, t.sig + t.exp - 4).andR private def box(x: UInt, xt: FType, y: UInt, yt: FType): UInt = { require(xt.ieeeWidth == 2 * yt.ieeeWidth) val swizzledNaN = Cat( x(xt.sig + xt.exp, xt.sig + xt.exp - 3), x(xt.sig - 2, yt.recodedWidth - 1).andR, x(xt.sig + xt.exp - 5, xt.sig), y(yt.recodedWidth - 2), x(xt.sig - 2, yt.recodedWidth - 1), y(yt.recodedWidth - 1), y(yt.recodedWidth - 3, 0)) Mux(xt.isNaN(x), swizzledNaN, x) } // implement NaN unboxing for FU inputs def unbox(x: UInt, tag: UInt, exactType: Option[FType]): UInt = { val outType = exactType.getOrElse(maxType) def helper(x: UInt, t: FType): Seq[(Bool, UInt)] = { val prev = if (t == minType) { Seq() } else { val prevT = prevType(t) val unswizzled = Cat( x(prevT.sig + prevT.exp - 1), x(t.sig - 1), x(prevT.sig + prevT.exp - 2, 0)) val prev = helper(unswizzled, prevT) val isbox = isBox(x, t) prev.map(p => (isbox && p._1, p._2)) } prev :+ (true.B, t.unsafeConvert(x, outType)) } val (oks, floats) = helper(x, maxType).unzip if (exactType.isEmpty || floatTypes.size == 1) { Mux(oks(tag), floats(tag), maxType.qNaN) } else { val t = exactType.get floats(typeTag(t)) | Mux(oks(typeTag(t)), 0.U, t.qNaN) } } // make sure that the redundant bits in the NaN-boxed encoding are consistent def consistent(x: UInt): Bool = { def helper(x: UInt, t: FType): Bool = if (typeTag(t) == 0) true.B else { val prevT = prevType(t) val unswizzled = Cat( x(prevT.sig + prevT.exp - 1), x(t.sig - 1), x(prevT.sig + prevT.exp - 2, 0)) val prevOK = !isBox(x, t) || helper(unswizzled, prevT) val curOK = !t.isNaN(x) || x(t.sig + t.exp - 4) === x(t.sig - 2, prevT.recodedWidth - 1).andR prevOK && curOK } helper(x, maxType) } // generate a NaN box from an FU result def box(x: UInt, t: FType): UInt = { if (t == maxType) { x } else { val nt = floatTypes(typeTag(t) + 1) val bigger = box(((BigInt(1) << nt.recodedWidth)-1).U, nt, x, t) bigger | ((BigInt(1) << maxType.recodedWidth) - (BigInt(1) << nt.recodedWidth)).U } } // generate a NaN box from an FU result def box(x: UInt, tag: UInt): UInt = { val opts = floatTypes.map(t => box(x, t)) opts(tag) } // zap bits that hardfloat thinks are don't-cares, but we do care about def sanitizeNaN(x: UInt, t: FType): UInt = { if (typeTag(t) == 0) { x } else { val maskedNaN = x & ~((BigInt(1) << (t.sig-1)) | (BigInt(1) << (t.sig+t.exp-4))).U(t.recodedWidth.W) Mux(t.isNaN(x), maskedNaN, x) } } // implement NaN boxing and recoding for FL*/fmv.*.x def recode(x: UInt, tag: UInt): UInt = { def helper(x: UInt, t: FType): UInt = { if (typeTag(t) == 0) { t.recode(x) } else { val prevT = prevType(t) box(t.recode(x), t, helper(x, prevT), prevT) } } // fill MSBs of subword loads to emulate a wider load of a NaN-boxed value val boxes = floatTypes.map(t => ((BigInt(1) << maxType.ieeeWidth) - (BigInt(1) << t.ieeeWidth)).U) helper(boxes(tag) | x, maxType) } // implement NaN unboxing and un-recoding for FS*/fmv.x.* def ieee(x: UInt, t: FType = maxType): UInt = { if (typeTag(t) == 0) { t.ieee(x) } else { val unrecoded = t.ieee(x) val prevT = prevType(t) val prevRecoded = Cat( x(prevT.recodedWidth-2), x(t.sig-1), x(prevT.recodedWidth-3, 0)) val prevUnrecoded = ieee(prevRecoded, prevT) Cat(unrecoded >> prevT.ieeeWidth, Mux(t.isNaN(x), prevUnrecoded, unrecoded(prevT.ieeeWidth-1, 0))) } } } abstract class FPUModule(implicit val p: Parameters) extends Module with HasCoreParameters with HasFPUParameters class FPToInt(implicit p: Parameters) extends FPUModule()(p) with ShouldBeRetimed { class Output extends Bundle { val in = new FPInput val lt = Bool() val store = Bits(fLen.W) val toint = Bits(xLen.W) val exc = Bits(FPConstants.FLAGS_SZ.W) } val io = IO(new Bundle { val in = Flipped(Valid(new FPInput)) val out = Valid(new Output) }) val in = RegEnable(io.in.bits, io.in.valid) val valid = RegNext(io.in.valid) val dcmp = Module(new hardfloat.CompareRecFN(maxExpWidth, maxSigWidth)) dcmp.io.a := in.in1 dcmp.io.b := in.in2 dcmp.io.signaling := !in.rm(1) val tag = in.typeTagOut val toint_ieee = (floatTypes.map(t => if (t == FType.H) Fill(maxType.ieeeWidth / minXLen, ieee(in.in1)(15, 0).sextTo(minXLen)) else Fill(maxType.ieeeWidth / t.ieeeWidth, ieee(in.in1)(t.ieeeWidth - 1, 0))): Seq[UInt])(tag) val toint = WireDefault(toint_ieee) val intType = WireDefault(in.fmt(0)) io.out.bits.store := (floatTypes.map(t => Fill(fLen / t.ieeeWidth, ieee(in.in1)(t.ieeeWidth - 1, 0))): Seq[UInt])(tag) io.out.bits.toint := ((0 until nIntTypes).map(i => toint((minXLen << i) - 1, 0).sextTo(xLen)): Seq[UInt])(intType) io.out.bits.exc := 0.U when (in.rm(0)) { val classify_out = (floatTypes.map(t => t.classify(maxType.unsafeConvert(in.in1, t))): Seq[UInt])(tag) toint := classify_out | (toint_ieee >> minXLen << minXLen) intType := false.B } when (in.wflags) { // feq/flt/fle, fcvt toint := (~in.rm & Cat(dcmp.io.lt, dcmp.io.eq)).orR | (toint_ieee >> minXLen << minXLen) io.out.bits.exc := dcmp.io.exceptionFlags intType := false.B when (!in.ren2) { // fcvt val cvtType = in.typ.extract(log2Ceil(nIntTypes), 1) intType := cvtType val conv = Module(new hardfloat.RecFNToIN(maxExpWidth, maxSigWidth, xLen)) conv.io.in := in.in1 conv.io.roundingMode := in.rm conv.io.signedOut := ~in.typ(0) toint := conv.io.out io.out.bits.exc := Cat(conv.io.intExceptionFlags(2, 1).orR, 0.U(3.W), conv.io.intExceptionFlags(0)) for (i <- 0 until nIntTypes-1) { val w = minXLen << i when (cvtType === i.U) { val narrow = Module(new hardfloat.RecFNToIN(maxExpWidth, maxSigWidth, w)) narrow.io.in := in.in1 narrow.io.roundingMode := in.rm narrow.io.signedOut := ~in.typ(0) val excSign = in.in1(maxExpWidth + maxSigWidth) && !maxType.isNaN(in.in1) val excOut = Cat(conv.io.signedOut === excSign, Fill(w-1, !excSign)) val invalid = conv.io.intExceptionFlags(2) || narrow.io.intExceptionFlags(1) when (invalid) { toint := Cat(conv.io.out >> w, excOut) } io.out.bits.exc := Cat(invalid, 0.U(3.W), !invalid && conv.io.intExceptionFlags(0)) } } } } io.out.valid := valid io.out.bits.lt := dcmp.io.lt || (dcmp.io.a.asSInt < 0.S && dcmp.io.b.asSInt >= 0.S) io.out.bits.in := in } class IntToFP(val latency: Int)(implicit p: Parameters) extends FPUModule()(p) with ShouldBeRetimed { val io = IO(new Bundle { val in = Flipped(Valid(new IntToFPInput)) val out = Valid(new FPResult) }) val in = Pipe(io.in) val tag = in.bits.typeTagIn val mux = Wire(new FPResult) mux.exc := 0.U mux.data := recode(in.bits.in1, tag) val intValue = { val res = WireDefault(in.bits.in1.asSInt) for (i <- 0 until nIntTypes-1) { val smallInt = in.bits.in1((minXLen << i) - 1, 0) when (in.bits.typ.extract(log2Ceil(nIntTypes), 1) === i.U) { res := Mux(in.bits.typ(0), smallInt.zext, smallInt.asSInt) } } res.asUInt } when (in.bits.wflags) { // fcvt // could be improved for RVD/RVQ with a single variable-position rounding // unit, rather than N fixed-position ones val i2fResults = for (t <- floatTypes) yield { val i2f = Module(new hardfloat.INToRecFN(xLen, t.exp, t.sig)) i2f.io.signedIn := ~in.bits.typ(0) i2f.io.in := intValue i2f.io.roundingMode := in.bits.rm i2f.io.detectTininess := hardfloat.consts.tininess_afterRounding (sanitizeNaN(i2f.io.out, t), i2f.io.exceptionFlags) } val (data, exc) = i2fResults.unzip val dataPadded = data.init.map(d => Cat(data.last >> d.getWidth, d)) :+ data.last mux.data := dataPadded(tag) mux.exc := exc(tag) } io.out <> Pipe(in.valid, mux, latency-1) } class FPToFP(val latency: Int)(implicit p: Parameters) extends FPUModule()(p) with ShouldBeRetimed { val io = IO(new Bundle { val in = Flipped(Valid(new FPInput)) val out = Valid(new FPResult) val lt = Input(Bool()) // from FPToInt }) val in = Pipe(io.in) val signNum = Mux(in.bits.rm(1), in.bits.in1 ^ in.bits.in2, Mux(in.bits.rm(0), ~in.bits.in2, in.bits.in2)) val fsgnj = Cat(signNum(fLen), in.bits.in1(fLen-1, 0)) val fsgnjMux = Wire(new FPResult) fsgnjMux.exc := 0.U fsgnjMux.data := fsgnj when (in.bits.wflags) { // fmin/fmax val isnan1 = maxType.isNaN(in.bits.in1) val isnan2 = maxType.isNaN(in.bits.in2) val isInvalid = maxType.isSNaN(in.bits.in1) || maxType.isSNaN(in.bits.in2) val isNaNOut = isnan1 && isnan2 val isLHS = isnan2 || in.bits.rm(0) =/= io.lt && !isnan1 fsgnjMux.exc := isInvalid << 4 fsgnjMux.data := Mux(isNaNOut, maxType.qNaN, Mux(isLHS, in.bits.in1, in.bits.in2)) } val inTag = in.bits.typeTagIn val outTag = in.bits.typeTagOut val mux = WireDefault(fsgnjMux) for (t <- floatTypes.init) { when (outTag === typeTag(t).U) { mux.data := Cat(fsgnjMux.data >> t.recodedWidth, maxType.unsafeConvert(fsgnjMux.data, t)) } } when (in.bits.wflags && !in.bits.ren2) { // fcvt if (floatTypes.size > 1) { // widening conversions simply canonicalize NaN operands val widened = Mux(maxType.isNaN(in.bits.in1), maxType.qNaN, in.bits.in1) fsgnjMux.data := widened fsgnjMux.exc := maxType.isSNaN(in.bits.in1) << 4 // narrowing conversions require rounding (for RVQ, this could be // optimized to use a single variable-position rounding unit, rather // than two fixed-position ones) for (outType <- floatTypes.init) when (outTag === typeTag(outType).U && ((typeTag(outType) == 0).B || outTag < inTag)) { val narrower = Module(new hardfloat.RecFNToRecFN(maxType.exp, maxType.sig, outType.exp, outType.sig)) narrower.io.in := in.bits.in1 narrower.io.roundingMode := in.bits.rm narrower.io.detectTininess := hardfloat.consts.tininess_afterRounding val narrowed = sanitizeNaN(narrower.io.out, outType) mux.data := Cat(fsgnjMux.data >> narrowed.getWidth, narrowed) mux.exc := narrower.io.exceptionFlags } } } io.out <> Pipe(in.valid, mux, latency-1) } class MulAddRecFNPipe(latency: Int, expWidth: Int, sigWidth: Int) extends Module { override def desiredName = s"MulAddRecFNPipe_l${latency}_e${expWidth}_s${sigWidth}" require(latency<=2) val io = IO(new Bundle { val validin = Input(Bool()) val op = Input(Bits(2.W)) val a = Input(Bits((expWidth + sigWidth + 1).W)) val b = Input(Bits((expWidth + sigWidth + 1).W)) val c = Input(Bits((expWidth + sigWidth + 1).W)) val roundingMode = Input(UInt(3.W)) val detectTininess = Input(UInt(1.W)) val out = Output(Bits((expWidth + sigWidth + 1).W)) val exceptionFlags = Output(Bits(5.W)) val validout = Output(Bool()) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val mulAddRecFNToRaw_preMul = Module(new hardfloat.MulAddRecFNToRaw_preMul(expWidth, sigWidth)) val mulAddRecFNToRaw_postMul = Module(new hardfloat.MulAddRecFNToRaw_postMul(expWidth, sigWidth)) mulAddRecFNToRaw_preMul.io.op := io.op mulAddRecFNToRaw_preMul.io.a := io.a mulAddRecFNToRaw_preMul.io.b := io.b mulAddRecFNToRaw_preMul.io.c := io.c val mulAddResult = (mulAddRecFNToRaw_preMul.io.mulAddA * mulAddRecFNToRaw_preMul.io.mulAddB) +& mulAddRecFNToRaw_preMul.io.mulAddC val valid_stage0 = Wire(Bool()) val roundingMode_stage0 = Wire(UInt(3.W)) val detectTininess_stage0 = Wire(UInt(1.W)) val postmul_regs = if(latency>0) 1 else 0 mulAddRecFNToRaw_postMul.io.fromPreMul := Pipe(io.validin, mulAddRecFNToRaw_preMul.io.toPostMul, postmul_regs).bits mulAddRecFNToRaw_postMul.io.mulAddResult := Pipe(io.validin, mulAddResult, postmul_regs).bits mulAddRecFNToRaw_postMul.io.roundingMode := Pipe(io.validin, io.roundingMode, postmul_regs).bits roundingMode_stage0 := Pipe(io.validin, io.roundingMode, postmul_regs).bits detectTininess_stage0 := Pipe(io.validin, io.detectTininess, postmul_regs).bits valid_stage0 := Pipe(io.validin, false.B, postmul_regs).valid //------------------------------------------------------------------------ //------------------------------------------------------------------------ val roundRawFNToRecFN = Module(new hardfloat.RoundRawFNToRecFN(expWidth, sigWidth, 0)) val round_regs = if(latency==2) 1 else 0 roundRawFNToRecFN.io.invalidExc := Pipe(valid_stage0, mulAddRecFNToRaw_postMul.io.invalidExc, round_regs).bits roundRawFNToRecFN.io.in := Pipe(valid_stage0, mulAddRecFNToRaw_postMul.io.rawOut, round_regs).bits roundRawFNToRecFN.io.roundingMode := Pipe(valid_stage0, roundingMode_stage0, round_regs).bits roundRawFNToRecFN.io.detectTininess := Pipe(valid_stage0, detectTininess_stage0, round_regs).bits io.validout := Pipe(valid_stage0, false.B, round_regs).valid roundRawFNToRecFN.io.infiniteExc := false.B io.out := roundRawFNToRecFN.io.out io.exceptionFlags := roundRawFNToRecFN.io.exceptionFlags } class FPUFMAPipe(val latency: Int, val t: FType) (implicit p: Parameters) extends FPUModule()(p) with ShouldBeRetimed { override def desiredName = s"FPUFMAPipe_l${latency}_f${t.ieeeWidth}" require(latency>0) val io = IO(new Bundle { val in = Flipped(Valid(new FPInput)) val out = Valid(new FPResult) }) val valid = RegNext(io.in.valid) val in = Reg(new FPInput) when (io.in.valid) { val one = 1.U << (t.sig + t.exp - 1) val zero = (io.in.bits.in1 ^ io.in.bits.in2) & (1.U << (t.sig + t.exp)) val cmd_fma = io.in.bits.ren3 val cmd_addsub = io.in.bits.swap23 in := io.in.bits when (cmd_addsub) { in.in2 := one } when (!(cmd_fma || cmd_addsub)) { in.in3 := zero } } val fma = Module(new MulAddRecFNPipe((latency-1) min 2, t.exp, t.sig)) fma.io.validin := valid fma.io.op := in.fmaCmd fma.io.roundingMode := in.rm fma.io.detectTininess := hardfloat.consts.tininess_afterRounding fma.io.a := in.in1 fma.io.b := in.in2 fma.io.c := in.in3 val res = Wire(new FPResult) res.data := sanitizeNaN(fma.io.out, t) res.exc := fma.io.exceptionFlags io.out := Pipe(fma.io.validout, res, (latency-3) max 0) } class FPU(cfg: FPUParams)(implicit p: Parameters) extends FPUModule()(p) { val io = IO(new FPUIO) val (useClockGating, useDebugROB) = coreParams match { case r: RocketCoreParams => val sz = if (r.debugROB.isDefined) r.debugROB.get.size else 1 (r.clockGate, sz < 1) case _ => (false, false) } val clock_en_reg = Reg(Bool()) val clock_en = clock_en_reg || io.cp_req.valid val gated_clock = if (!useClockGating) clock else ClockGate(clock, clock_en, "fpu_clock_gate") val fp_decoder = Module(new FPUDecoder) fp_decoder.io.inst := io.inst val id_ctrl = WireInit(fp_decoder.io.sigs) coreParams match { case r: RocketCoreParams => r.vector.map(v => { val v_decode = v.decoder(p) // Only need to get ren1 v_decode.io.inst := io.inst v_decode.io.vconfig := DontCare // core deals with this when (v_decode.io.legal && v_decode.io.read_frs1) { id_ctrl.ren1 := true.B id_ctrl.swap12 := false.B id_ctrl.toint := true.B id_ctrl.typeTagIn := I id_ctrl.typeTagOut := Mux(io.v_sew === 3.U, D, S) } when (v_decode.io.write_frd) { id_ctrl.wen := true.B } })} val ex_reg_valid = RegNext(io.valid, false.B) val ex_reg_inst = RegEnable(io.inst, io.valid) val ex_reg_ctrl = RegEnable(id_ctrl, io.valid) val ex_ra = List.fill(3)(Reg(UInt())) // load/vector response val load_wb = RegNext(io.ll_resp_val) val load_wb_typeTag = RegEnable(io.ll_resp_type(1,0) - typeTagWbOffset, io.ll_resp_val) val load_wb_data = RegEnable(io.ll_resp_data, io.ll_resp_val) val load_wb_tag = RegEnable(io.ll_resp_tag, io.ll_resp_val) class FPUImpl { // entering gated-clock domain val req_valid = ex_reg_valid || io.cp_req.valid val ex_cp_valid = io.cp_req.fire val mem_cp_valid = RegNext(ex_cp_valid, false.B) val wb_cp_valid = RegNext(mem_cp_valid, false.B) val mem_reg_valid = RegInit(false.B) val killm = (io.killm || io.nack_mem) && !mem_cp_valid // Kill X-stage instruction if M-stage is killed. This prevents it from // speculatively being sent to the div-sqrt unit, which can cause priority // inversion for two back-to-back divides, the first of which is killed. val killx = io.killx || mem_reg_valid && killm mem_reg_valid := ex_reg_valid && !killx || ex_cp_valid val mem_reg_inst = RegEnable(ex_reg_inst, ex_reg_valid) val wb_reg_valid = RegNext(mem_reg_valid && (!killm || mem_cp_valid), false.B) val cp_ctrl = Wire(new FPUCtrlSigs) cp_ctrl :<>= io.cp_req.bits.viewAsSupertype(new FPUCtrlSigs) io.cp_resp.valid := false.B io.cp_resp.bits.data := 0.U io.cp_resp.bits.exc := DontCare val ex_ctrl = Mux(ex_cp_valid, cp_ctrl, ex_reg_ctrl) val mem_ctrl = RegEnable(ex_ctrl, req_valid) val wb_ctrl = RegEnable(mem_ctrl, mem_reg_valid) // CoreMonitorBundle to monitor fp register file writes val frfWriteBundle = Seq.fill(2)(WireInit(new CoreMonitorBundle(xLen, fLen), DontCare)) frfWriteBundle.foreach { i => i.clock := clock i.reset := reset i.hartid := io.hartid i.timer := io.time(31,0) i.valid := false.B i.wrenx := false.B i.wrenf := false.B i.excpt := false.B } // regfile val regfile = Mem(32, Bits((fLen+1).W)) when (load_wb) { val wdata = recode(load_wb_data, load_wb_typeTag) regfile(load_wb_tag) := wdata assert(consistent(wdata)) if (enableCommitLog) printf("f%d p%d 0x%x\n", load_wb_tag, load_wb_tag + 32.U, ieee(wdata)) if (useDebugROB) DebugROB.pushWb(clock, reset, io.hartid, load_wb, load_wb_tag + 32.U, ieee(wdata)) frfWriteBundle(0).wrdst := load_wb_tag frfWriteBundle(0).wrenf := true.B frfWriteBundle(0).wrdata := ieee(wdata) } val ex_rs = ex_ra.map(a => regfile(a)) when (io.valid) { when (id_ctrl.ren1) { when (!id_ctrl.swap12) { ex_ra(0) := io.inst(19,15) } when (id_ctrl.swap12) { ex_ra(1) := io.inst(19,15) } } when (id_ctrl.ren2) { when (id_ctrl.swap12) { ex_ra(0) := io.inst(24,20) } when (id_ctrl.swap23) { ex_ra(2) := io.inst(24,20) } when (!id_ctrl.swap12 && !id_ctrl.swap23) { ex_ra(1) := io.inst(24,20) } } when (id_ctrl.ren3) { ex_ra(2) := io.inst(31,27) } } val ex_rm = Mux(ex_reg_inst(14,12) === 7.U, io.fcsr_rm, ex_reg_inst(14,12)) def fuInput(minT: Option[FType]): FPInput = { val req = Wire(new FPInput) val tag = ex_ctrl.typeTagIn req.viewAsSupertype(new Bundle with HasFPUCtrlSigs) :#= ex_ctrl.viewAsSupertype(new Bundle with HasFPUCtrlSigs) req.rm := ex_rm req.in1 := unbox(ex_rs(0), tag, minT) req.in2 := unbox(ex_rs(1), tag, minT) req.in3 := unbox(ex_rs(2), tag, minT) req.typ := ex_reg_inst(21,20) req.fmt := ex_reg_inst(26,25) req.fmaCmd := ex_reg_inst(3,2) | (!ex_ctrl.ren3 && ex_reg_inst(27)) when (ex_cp_valid) { req := io.cp_req.bits when (io.cp_req.bits.swap12) { req.in1 := io.cp_req.bits.in2 req.in2 := io.cp_req.bits.in1 } when (io.cp_req.bits.swap23) { req.in2 := io.cp_req.bits.in3 req.in3 := io.cp_req.bits.in2 } } req } val sfma = Module(new FPUFMAPipe(cfg.sfmaLatency, FType.S)) sfma.io.in.valid := req_valid && ex_ctrl.fma && ex_ctrl.typeTagOut === S sfma.io.in.bits := fuInput(Some(sfma.t)) val fpiu = Module(new FPToInt) fpiu.io.in.valid := req_valid && (ex_ctrl.toint || ex_ctrl.div || ex_ctrl.sqrt || (ex_ctrl.fastpipe && ex_ctrl.wflags)) fpiu.io.in.bits := fuInput(None) io.store_data := fpiu.io.out.bits.store io.toint_data := fpiu.io.out.bits.toint when(fpiu.io.out.valid && mem_cp_valid && mem_ctrl.toint){ io.cp_resp.bits.data := fpiu.io.out.bits.toint io.cp_resp.valid := true.B } val ifpu = Module(new IntToFP(cfg.ifpuLatency)) ifpu.io.in.valid := req_valid && ex_ctrl.fromint ifpu.io.in.bits := fpiu.io.in.bits ifpu.io.in.bits.in1 := Mux(ex_cp_valid, io.cp_req.bits.in1, io.fromint_data) val fpmu = Module(new FPToFP(cfg.fpmuLatency)) fpmu.io.in.valid := req_valid && ex_ctrl.fastpipe fpmu.io.in.bits := fpiu.io.in.bits fpmu.io.lt := fpiu.io.out.bits.lt val divSqrt_wen = WireDefault(false.B) val divSqrt_inFlight = WireDefault(false.B) val divSqrt_waddr = Reg(UInt(5.W)) val divSqrt_cp = Reg(Bool()) val divSqrt_typeTag = Wire(UInt(log2Up(floatTypes.size).W)) val divSqrt_wdata = Wire(UInt((fLen+1).W)) val divSqrt_flags = Wire(UInt(FPConstants.FLAGS_SZ.W)) divSqrt_typeTag := DontCare divSqrt_wdata := DontCare divSqrt_flags := DontCare // writeback arbitration case class Pipe(p: Module, lat: Int, cond: (FPUCtrlSigs) => Bool, res: FPResult) val pipes = List( Pipe(fpmu, fpmu.latency, (c: FPUCtrlSigs) => c.fastpipe, fpmu.io.out.bits), Pipe(ifpu, ifpu.latency, (c: FPUCtrlSigs) => c.fromint, ifpu.io.out.bits), Pipe(sfma, sfma.latency, (c: FPUCtrlSigs) => c.fma && c.typeTagOut === S, sfma.io.out.bits)) ++ (fLen > 32).option({ val dfma = Module(new FPUFMAPipe(cfg.dfmaLatency, FType.D)) dfma.io.in.valid := req_valid && ex_ctrl.fma && ex_ctrl.typeTagOut === D dfma.io.in.bits := fuInput(Some(dfma.t)) Pipe(dfma, dfma.latency, (c: FPUCtrlSigs) => c.fma && c.typeTagOut === D, dfma.io.out.bits) }) ++ (minFLen == 16).option({ val hfma = Module(new FPUFMAPipe(cfg.sfmaLatency, FType.H)) hfma.io.in.valid := req_valid && ex_ctrl.fma && ex_ctrl.typeTagOut === H hfma.io.in.bits := fuInput(Some(hfma.t)) Pipe(hfma, hfma.latency, (c: FPUCtrlSigs) => c.fma && c.typeTagOut === H, hfma.io.out.bits) }) def latencyMask(c: FPUCtrlSigs, offset: Int) = { require(pipes.forall(_.lat >= offset)) pipes.map(p => Mux(p.cond(c), (1 << p.lat-offset).U, 0.U)).reduce(_|_) } def pipeid(c: FPUCtrlSigs) = pipes.zipWithIndex.map(p => Mux(p._1.cond(c), p._2.U, 0.U)).reduce(_|_) val maxLatency = pipes.map(_.lat).max val memLatencyMask = latencyMask(mem_ctrl, 2) class WBInfo extends Bundle { val rd = UInt(5.W) val typeTag = UInt(log2Up(floatTypes.size).W) val cp = Bool() val pipeid = UInt(log2Ceil(pipes.size).W) } val wen = RegInit(0.U((maxLatency-1).W)) val wbInfo = Reg(Vec(maxLatency-1, new WBInfo)) val mem_wen = mem_reg_valid && (mem_ctrl.fma || mem_ctrl.fastpipe || mem_ctrl.fromint) val write_port_busy = RegEnable(mem_wen && (memLatencyMask & latencyMask(ex_ctrl, 1)).orR || (wen & latencyMask(ex_ctrl, 0)).orR, req_valid) ccover(mem_reg_valid && write_port_busy, "WB_STRUCTURAL", "structural hazard on writeback") for (i <- 0 until maxLatency-2) { when (wen(i+1)) { wbInfo(i) := wbInfo(i+1) } } wen := wen >> 1 when (mem_wen) { when (!killm) { wen := wen >> 1 | memLatencyMask } for (i <- 0 until maxLatency-1) { when (!write_port_busy && memLatencyMask(i)) { wbInfo(i).cp := mem_cp_valid wbInfo(i).typeTag := mem_ctrl.typeTagOut wbInfo(i).pipeid := pipeid(mem_ctrl) wbInfo(i).rd := mem_reg_inst(11,7) } } } val waddr = Mux(divSqrt_wen, divSqrt_waddr, wbInfo(0).rd) val wb_cp = Mux(divSqrt_wen, divSqrt_cp, wbInfo(0).cp) val wtypeTag = Mux(divSqrt_wen, divSqrt_typeTag, wbInfo(0).typeTag) val wdata = box(Mux(divSqrt_wen, divSqrt_wdata, (pipes.map(_.res.data): Seq[UInt])(wbInfo(0).pipeid)), wtypeTag) val wexc = (pipes.map(_.res.exc): Seq[UInt])(wbInfo(0).pipeid) when ((!wbInfo(0).cp && wen(0)) || divSqrt_wen) { assert(consistent(wdata)) regfile(waddr) := wdata if (enableCommitLog) { printf("f%d p%d 0x%x\n", waddr, waddr + 32.U, ieee(wdata)) } frfWriteBundle(1).wrdst := waddr frfWriteBundle(1).wrenf := true.B frfWriteBundle(1).wrdata := ieee(wdata) } if (useDebugROB) { DebugROB.pushWb(clock, reset, io.hartid, (!wbInfo(0).cp && wen(0)) || divSqrt_wen, waddr + 32.U, ieee(wdata)) } when (wb_cp && (wen(0) || divSqrt_wen)) { io.cp_resp.bits.data := wdata io.cp_resp.valid := true.B } assert(!io.cp_req.valid || pipes.forall(_.lat == pipes.head.lat).B, s"FPU only supports coprocessor if FMA pipes have uniform latency ${pipes.map(_.lat)}") // Avoid structural hazards and nacking of external requests // toint responds in the MEM stage, so an incoming toint can induce a structural hazard against inflight FMAs io.cp_req.ready := !ex_reg_valid && !(cp_ctrl.toint && wen =/= 0.U) && !divSqrt_inFlight val wb_toint_valid = wb_reg_valid && wb_ctrl.toint val wb_toint_exc = RegEnable(fpiu.io.out.bits.exc, mem_ctrl.toint) io.fcsr_flags.valid := wb_toint_valid || divSqrt_wen || wen(0) io.fcsr_flags.bits := Mux(wb_toint_valid, wb_toint_exc, 0.U) | Mux(divSqrt_wen, divSqrt_flags, 0.U) | Mux(wen(0), wexc, 0.U) val divSqrt_write_port_busy = (mem_ctrl.div || mem_ctrl.sqrt) && wen.orR io.fcsr_rdy := !(ex_reg_valid && ex_ctrl.wflags || mem_reg_valid && mem_ctrl.wflags || wb_reg_valid && wb_ctrl.toint || wen.orR || divSqrt_inFlight) io.nack_mem := (write_port_busy || divSqrt_write_port_busy || divSqrt_inFlight) && !mem_cp_valid io.dec <> id_ctrl def useScoreboard(f: ((Pipe, Int)) => Bool) = pipes.zipWithIndex.filter(_._1.lat > 3).map(x => f(x)).fold(false.B)(_||_) io.sboard_set := wb_reg_valid && !wb_cp_valid && RegNext(useScoreboard(_._1.cond(mem_ctrl)) || mem_ctrl.div || mem_ctrl.sqrt || mem_ctrl.vec) io.sboard_clr := !wb_cp_valid && (divSqrt_wen || (wen(0) && useScoreboard(x => wbInfo(0).pipeid === x._2.U))) io.sboard_clra := waddr ccover(io.sboard_clr && load_wb, "DUAL_WRITEBACK", "load and FMA writeback on same cycle") // we don't currently support round-max-magnitude (rm=4) io.illegal_rm := io.inst(14,12).isOneOf(5.U, 6.U) || io.inst(14,12) === 7.U && io.fcsr_rm >= 5.U if (cfg.divSqrt) { val divSqrt_inValid = mem_reg_valid && (mem_ctrl.div || mem_ctrl.sqrt) && !divSqrt_inFlight val divSqrt_killed = RegNext(divSqrt_inValid && killm, true.B) when (divSqrt_inValid) { divSqrt_waddr := mem_reg_inst(11,7) divSqrt_cp := mem_cp_valid } ccover(divSqrt_inFlight && divSqrt_killed, "DIV_KILLED", "divide killed after issued to divider") ccover(divSqrt_inFlight && mem_reg_valid && (mem_ctrl.div || mem_ctrl.sqrt), "DIV_BUSY", "divider structural hazard") ccover(mem_reg_valid && divSqrt_write_port_busy, "DIV_WB_STRUCTURAL", "structural hazard on division writeback") for (t <- floatTypes) { val tag = mem_ctrl.typeTagOut val divSqrt = withReset(divSqrt_killed) { Module(new hardfloat.DivSqrtRecFN_small(t.exp, t.sig, 0)) } divSqrt.io.inValid := divSqrt_inValid && tag === typeTag(t).U divSqrt.io.sqrtOp := mem_ctrl.sqrt divSqrt.io.a := maxType.unsafeConvert(fpiu.io.out.bits.in.in1, t) divSqrt.io.b := maxType.unsafeConvert(fpiu.io.out.bits.in.in2, t) divSqrt.io.roundingMode := fpiu.io.out.bits.in.rm divSqrt.io.detectTininess := hardfloat.consts.tininess_afterRounding when (!divSqrt.io.inReady) { divSqrt_inFlight := true.B } // only 1 in flight when (divSqrt.io.outValid_div || divSqrt.io.outValid_sqrt) { divSqrt_wen := !divSqrt_killed divSqrt_wdata := sanitizeNaN(divSqrt.io.out, t) divSqrt_flags := divSqrt.io.exceptionFlags divSqrt_typeTag := typeTag(t).U } } when (divSqrt_killed) { divSqrt_inFlight := false.B } } else { when (id_ctrl.div || id_ctrl.sqrt) { io.illegal_rm := true.B } } // gate the clock clock_en_reg := !useClockGating.B || io.keep_clock_enabled || // chicken bit io.valid || // ID stage req_valid || // EX stage mem_reg_valid || mem_cp_valid || // MEM stage wb_reg_valid || wb_cp_valid || // WB stage wen.orR || divSqrt_inFlight || // post-WB stage io.ll_resp_val // load writeback } // leaving gated-clock domain val fpuImpl = withClock (gated_clock) { new FPUImpl } def ccover(cond: Bool, label: String, desc: String)(implicit sourceInfo: SourceInfo) = property.cover(cond, s"FPU_$label", "Core;;" + desc) }
module MulAddRecFNPipe_l2_e11_s53( // @[FPU.scala:633:7] input clock, // @[FPU.scala:633:7] input reset, // @[FPU.scala:633:7] input io_validin, // @[FPU.scala:638:16] input [1:0] io_op, // @[FPU.scala:638:16] input [64:0] io_a, // @[FPU.scala:638:16] input [64:0] io_b, // @[FPU.scala:638:16] input [64:0] io_c, // @[FPU.scala:638:16] input [2:0] io_roundingMode, // @[FPU.scala:638:16] output [64:0] io_out, // @[FPU.scala:638:16] output [4:0] io_exceptionFlags, // @[FPU.scala:638:16] output io_validout // @[FPU.scala:638:16] ); wire _mulAddRecFNToRaw_postMul_io_invalidExc; // @[FPU.scala:655:42] wire _mulAddRecFNToRaw_postMul_io_rawOut_isNaN; // @[FPU.scala:655:42] wire _mulAddRecFNToRaw_postMul_io_rawOut_isInf; // @[FPU.scala:655:42] wire _mulAddRecFNToRaw_postMul_io_rawOut_isZero; // @[FPU.scala:655:42] wire _mulAddRecFNToRaw_postMul_io_rawOut_sign; // @[FPU.scala:655:42] wire [12:0] _mulAddRecFNToRaw_postMul_io_rawOut_sExp; // @[FPU.scala:655:42] wire [55:0] _mulAddRecFNToRaw_postMul_io_rawOut_sig; // @[FPU.scala:655:42] wire [52:0] _mulAddRecFNToRaw_preMul_io_mulAddA; // @[FPU.scala:654:41] wire [52:0] _mulAddRecFNToRaw_preMul_io_mulAddB; // @[FPU.scala:654:41] wire [105:0] _mulAddRecFNToRaw_preMul_io_mulAddC; // @[FPU.scala:654:41] wire _mulAddRecFNToRaw_preMul_io_toPostMul_isSigNaNAny; // @[FPU.scala:654:41] wire _mulAddRecFNToRaw_preMul_io_toPostMul_isNaNAOrB; // @[FPU.scala:654:41] wire _mulAddRecFNToRaw_preMul_io_toPostMul_isInfA; // @[FPU.scala:654:41] wire _mulAddRecFNToRaw_preMul_io_toPostMul_isZeroA; // @[FPU.scala:654:41] wire _mulAddRecFNToRaw_preMul_io_toPostMul_isInfB; // @[FPU.scala:654:41] wire _mulAddRecFNToRaw_preMul_io_toPostMul_isZeroB; // @[FPU.scala:654:41] wire _mulAddRecFNToRaw_preMul_io_toPostMul_signProd; // @[FPU.scala:654:41] wire _mulAddRecFNToRaw_preMul_io_toPostMul_isNaNC; // @[FPU.scala:654:41] wire _mulAddRecFNToRaw_preMul_io_toPostMul_isInfC; // @[FPU.scala:654:41] wire _mulAddRecFNToRaw_preMul_io_toPostMul_isZeroC; // @[FPU.scala:654:41] wire [12:0] _mulAddRecFNToRaw_preMul_io_toPostMul_sExpSum; // @[FPU.scala:654:41] wire _mulAddRecFNToRaw_preMul_io_toPostMul_doSubMags; // @[FPU.scala:654:41] wire _mulAddRecFNToRaw_preMul_io_toPostMul_CIsDominant; // @[FPU.scala:654:41] wire [5:0] _mulAddRecFNToRaw_preMul_io_toPostMul_CDom_CAlignDist; // @[FPU.scala:654:41] wire [54:0] _mulAddRecFNToRaw_preMul_io_toPostMul_highAlignedSigC; // @[FPU.scala:654:41] wire _mulAddRecFNToRaw_preMul_io_toPostMul_bit0AlignedSigC; // @[FPU.scala:654:41] wire io_validin_0 = io_validin; // @[FPU.scala:633:7] wire [1:0] io_op_0 = io_op; // @[FPU.scala:633:7] wire [64:0] io_a_0 = io_a; // @[FPU.scala:633:7] wire [64:0] io_b_0 = io_b; // @[FPU.scala:633:7] wire [64:0] io_c_0 = io_c; // @[FPU.scala:633:7] wire [2:0] io_roundingMode_0 = io_roundingMode; // @[FPU.scala:633:7] wire io_detectTininess = 1'h1; // @[FPU.scala:633:7] wire detectTininess_stage0 = 1'h1; // @[FPU.scala:669:37] wire detectTininess_stage0_pipe_out_bits = 1'h1; // @[Valid.scala:135:21] wire valid_stage0_pipe_out_bits = 1'h0; // @[Valid.scala:135:21] wire io_validout_pipe_out_bits = 1'h0; // @[Valid.scala:135:21] wire io_validout_pipe_out_valid; // @[Valid.scala:135:21] wire [64:0] io_out_0; // @[FPU.scala:633:7] wire [4:0] io_exceptionFlags_0; // @[FPU.scala:633:7] wire io_validout_0; // @[FPU.scala:633:7] wire [105:0] _mulAddResult_T = {53'h0, _mulAddRecFNToRaw_preMul_io_mulAddA} * {53'h0, _mulAddRecFNToRaw_preMul_io_mulAddB}; // @[FPU.scala:654:41, :663:45] wire [106:0] mulAddResult = {1'h0, _mulAddResult_T} + {1'h0, _mulAddRecFNToRaw_preMul_io_mulAddC}; // @[FPU.scala:654:41, :663:45, :664:50] wire valid_stage0_pipe_out_valid; // @[Valid.scala:135:21] wire valid_stage0; // @[FPU.scala:667:28] wire [2:0] roundingMode_stage0_pipe_out_bits; // @[Valid.scala:135:21] wire [2:0] roundingMode_stage0; // @[FPU.scala:668:35] reg mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_v; // @[Valid.scala:141:24] wire mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_out_valid = mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_v; // @[Valid.scala:135:21, :141:24] reg mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_isSigNaNAny; // @[Valid.scala:142:26] wire mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_out_bits_isSigNaNAny = mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_isSigNaNAny; // @[Valid.scala:135:21, :142:26] reg mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_isNaNAOrB; // @[Valid.scala:142:26] wire mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_out_bits_isNaNAOrB = mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_isNaNAOrB; // @[Valid.scala:135:21, :142:26] reg mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_isInfA; // @[Valid.scala:142:26] wire mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_out_bits_isInfA = mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_isInfA; // @[Valid.scala:135:21, :142:26] reg mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_isZeroA; // @[Valid.scala:142:26] wire mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_out_bits_isZeroA = mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_isZeroA; // @[Valid.scala:135:21, :142:26] reg mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_isInfB; // @[Valid.scala:142:26] wire mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_out_bits_isInfB = mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_isInfB; // @[Valid.scala:135:21, :142:26] reg mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_isZeroB; // @[Valid.scala:142:26] wire mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_out_bits_isZeroB = mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_isZeroB; // @[Valid.scala:135:21, :142:26] reg mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_signProd; // @[Valid.scala:142:26] wire mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_out_bits_signProd = mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_signProd; // @[Valid.scala:135:21, :142:26] reg mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_isNaNC; // @[Valid.scala:142:26] wire mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_out_bits_isNaNC = mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_isNaNC; // @[Valid.scala:135:21, :142:26] reg mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_isInfC; // @[Valid.scala:142:26] wire mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_out_bits_isInfC = mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_isInfC; // @[Valid.scala:135:21, :142:26] reg mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_isZeroC; // @[Valid.scala:142:26] wire mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_out_bits_isZeroC = mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_isZeroC; // @[Valid.scala:135:21, :142:26] reg [12:0] mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_sExpSum; // @[Valid.scala:142:26] wire [12:0] mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_out_bits_sExpSum = mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_sExpSum; // @[Valid.scala:135:21, :142:26] reg mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_doSubMags; // @[Valid.scala:142:26] wire mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_out_bits_doSubMags = mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_doSubMags; // @[Valid.scala:135:21, :142:26] reg mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_CIsDominant; // @[Valid.scala:142:26] wire mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_out_bits_CIsDominant = mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_CIsDominant; // @[Valid.scala:135:21, :142:26] reg [5:0] mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_CDom_CAlignDist; // @[Valid.scala:142:26] wire [5:0] mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_out_bits_CDom_CAlignDist = mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_CDom_CAlignDist; // @[Valid.scala:135:21, :142:26] reg [54:0] mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_highAlignedSigC; // @[Valid.scala:142:26] wire [54:0] mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_out_bits_highAlignedSigC = mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_highAlignedSigC; // @[Valid.scala:135:21, :142:26] reg mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_bit0AlignedSigC; // @[Valid.scala:142:26] wire mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_out_bits_bit0AlignedSigC = mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_bit0AlignedSigC; // @[Valid.scala:135:21, :142:26] reg mulAddRecFNToRaw_postMul_io_mulAddResult_pipe_v; // @[Valid.scala:141:24] wire mulAddRecFNToRaw_postMul_io_mulAddResult_pipe_out_valid = mulAddRecFNToRaw_postMul_io_mulAddResult_pipe_v; // @[Valid.scala:135:21, :141:24] reg [106:0] mulAddRecFNToRaw_postMul_io_mulAddResult_pipe_b; // @[Valid.scala:142:26] wire [106:0] mulAddRecFNToRaw_postMul_io_mulAddResult_pipe_out_bits = mulAddRecFNToRaw_postMul_io_mulAddResult_pipe_b; // @[Valid.scala:135:21, :142:26] reg mulAddRecFNToRaw_postMul_io_roundingMode_pipe_v; // @[Valid.scala:141:24] wire mulAddRecFNToRaw_postMul_io_roundingMode_pipe_out_valid = mulAddRecFNToRaw_postMul_io_roundingMode_pipe_v; // @[Valid.scala:135:21, :141:24] reg [2:0] mulAddRecFNToRaw_postMul_io_roundingMode_pipe_b; // @[Valid.scala:142:26] wire [2:0] mulAddRecFNToRaw_postMul_io_roundingMode_pipe_out_bits = mulAddRecFNToRaw_postMul_io_roundingMode_pipe_b; // @[Valid.scala:135:21, :142:26] reg roundingMode_stage0_pipe_v; // @[Valid.scala:141:24] wire roundingMode_stage0_pipe_out_valid = roundingMode_stage0_pipe_v; // @[Valid.scala:135:21, :141:24] reg [2:0] roundingMode_stage0_pipe_b; // @[Valid.scala:142:26] assign roundingMode_stage0_pipe_out_bits = roundingMode_stage0_pipe_b; // @[Valid.scala:135:21, :142:26] assign roundingMode_stage0 = roundingMode_stage0_pipe_out_bits; // @[Valid.scala:135:21] reg detectTininess_stage0_pipe_v; // @[Valid.scala:141:24] wire detectTininess_stage0_pipe_out_valid = detectTininess_stage0_pipe_v; // @[Valid.scala:135:21, :141:24] reg valid_stage0_pipe_v; // @[Valid.scala:141:24] assign valid_stage0_pipe_out_valid = valid_stage0_pipe_v; // @[Valid.scala:135:21, :141:24] assign valid_stage0 = valid_stage0_pipe_out_valid; // @[Valid.scala:135:21] reg roundRawFNToRecFN_io_invalidExc_pipe_v; // @[Valid.scala:141:24] wire roundRawFNToRecFN_io_invalidExc_pipe_out_valid = roundRawFNToRecFN_io_invalidExc_pipe_v; // @[Valid.scala:135:21, :141:24] reg roundRawFNToRecFN_io_invalidExc_pipe_b; // @[Valid.scala:142:26] wire roundRawFNToRecFN_io_invalidExc_pipe_out_bits = roundRawFNToRecFN_io_invalidExc_pipe_b; // @[Valid.scala:135:21, :142:26] reg roundRawFNToRecFN_io_in_pipe_v; // @[Valid.scala:141:24] wire roundRawFNToRecFN_io_in_pipe_out_valid = roundRawFNToRecFN_io_in_pipe_v; // @[Valid.scala:135:21, :141:24] reg roundRawFNToRecFN_io_in_pipe_b_isNaN; // @[Valid.scala:142:26] wire roundRawFNToRecFN_io_in_pipe_out_bits_isNaN = roundRawFNToRecFN_io_in_pipe_b_isNaN; // @[Valid.scala:135:21, :142:26] reg roundRawFNToRecFN_io_in_pipe_b_isInf; // @[Valid.scala:142:26] wire roundRawFNToRecFN_io_in_pipe_out_bits_isInf = roundRawFNToRecFN_io_in_pipe_b_isInf; // @[Valid.scala:135:21, :142:26] reg roundRawFNToRecFN_io_in_pipe_b_isZero; // @[Valid.scala:142:26] wire roundRawFNToRecFN_io_in_pipe_out_bits_isZero = roundRawFNToRecFN_io_in_pipe_b_isZero; // @[Valid.scala:135:21, :142:26] reg roundRawFNToRecFN_io_in_pipe_b_sign; // @[Valid.scala:142:26] wire roundRawFNToRecFN_io_in_pipe_out_bits_sign = roundRawFNToRecFN_io_in_pipe_b_sign; // @[Valid.scala:135:21, :142:26] reg [12:0] roundRawFNToRecFN_io_in_pipe_b_sExp; // @[Valid.scala:142:26] wire [12:0] roundRawFNToRecFN_io_in_pipe_out_bits_sExp = roundRawFNToRecFN_io_in_pipe_b_sExp; // @[Valid.scala:135:21, :142:26] reg [55:0] roundRawFNToRecFN_io_in_pipe_b_sig; // @[Valid.scala:142:26] wire [55:0] roundRawFNToRecFN_io_in_pipe_out_bits_sig = roundRawFNToRecFN_io_in_pipe_b_sig; // @[Valid.scala:135:21, :142:26] reg roundRawFNToRecFN_io_roundingMode_pipe_v; // @[Valid.scala:141:24] wire roundRawFNToRecFN_io_roundingMode_pipe_out_valid = roundRawFNToRecFN_io_roundingMode_pipe_v; // @[Valid.scala:135:21, :141:24] reg [2:0] roundRawFNToRecFN_io_roundingMode_pipe_b; // @[Valid.scala:142:26] wire [2:0] roundRawFNToRecFN_io_roundingMode_pipe_out_bits = roundRawFNToRecFN_io_roundingMode_pipe_b; // @[Valid.scala:135:21, :142:26] reg roundRawFNToRecFN_io_detectTininess_pipe_v; // @[Valid.scala:141:24] wire roundRawFNToRecFN_io_detectTininess_pipe_out_valid = roundRawFNToRecFN_io_detectTininess_pipe_v; // @[Valid.scala:135:21, :141:24] reg roundRawFNToRecFN_io_detectTininess_pipe_b; // @[Valid.scala:142:26] wire roundRawFNToRecFN_io_detectTininess_pipe_out_bits = roundRawFNToRecFN_io_detectTininess_pipe_b; // @[Valid.scala:135:21, :142:26] reg io_validout_pipe_v; // @[Valid.scala:141:24] assign io_validout_pipe_out_valid = io_validout_pipe_v; // @[Valid.scala:135:21, :141:24] assign io_validout_0 = io_validout_pipe_out_valid; // @[Valid.scala:135:21] always @(posedge clock) begin // @[FPU.scala:633:7] if (reset) begin // @[FPU.scala:633:7] mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_v <= 1'h0; // @[Valid.scala:141:24] mulAddRecFNToRaw_postMul_io_mulAddResult_pipe_v <= 1'h0; // @[Valid.scala:141:24] mulAddRecFNToRaw_postMul_io_roundingMode_pipe_v <= 1'h0; // @[Valid.scala:141:24] roundingMode_stage0_pipe_v <= 1'h0; // @[Valid.scala:141:24] detectTininess_stage0_pipe_v <= 1'h0; // @[Valid.scala:141:24] valid_stage0_pipe_v <= 1'h0; // @[Valid.scala:141:24] roundRawFNToRecFN_io_invalidExc_pipe_v <= 1'h0; // @[Valid.scala:141:24] roundRawFNToRecFN_io_in_pipe_v <= 1'h0; // @[Valid.scala:141:24] roundRawFNToRecFN_io_roundingMode_pipe_v <= 1'h0; // @[Valid.scala:141:24] roundRawFNToRecFN_io_detectTininess_pipe_v <= 1'h0; // @[Valid.scala:141:24] io_validout_pipe_v <= 1'h0; // @[Valid.scala:141:24] end else begin // @[FPU.scala:633:7] mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_v <= io_validin_0; // @[Valid.scala:141:24] mulAddRecFNToRaw_postMul_io_mulAddResult_pipe_v <= io_validin_0; // @[Valid.scala:141:24] mulAddRecFNToRaw_postMul_io_roundingMode_pipe_v <= io_validin_0; // @[Valid.scala:141:24] roundingMode_stage0_pipe_v <= io_validin_0; // @[Valid.scala:141:24] detectTininess_stage0_pipe_v <= io_validin_0; // @[Valid.scala:141:24] valid_stage0_pipe_v <= io_validin_0; // @[Valid.scala:141:24] roundRawFNToRecFN_io_invalidExc_pipe_v <= valid_stage0; // @[Valid.scala:141:24] roundRawFNToRecFN_io_in_pipe_v <= valid_stage0; // @[Valid.scala:141:24] roundRawFNToRecFN_io_roundingMode_pipe_v <= valid_stage0; // @[Valid.scala:141:24] roundRawFNToRecFN_io_detectTininess_pipe_v <= valid_stage0; // @[Valid.scala:141:24] io_validout_pipe_v <= valid_stage0; // @[Valid.scala:141:24] end if (io_validin_0) begin // @[FPU.scala:633:7] mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_isSigNaNAny <= _mulAddRecFNToRaw_preMul_io_toPostMul_isSigNaNAny; // @[Valid.scala:142:26] mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_isNaNAOrB <= _mulAddRecFNToRaw_preMul_io_toPostMul_isNaNAOrB; // @[Valid.scala:142:26] mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_isInfA <= _mulAddRecFNToRaw_preMul_io_toPostMul_isInfA; // @[Valid.scala:142:26] mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_isZeroA <= _mulAddRecFNToRaw_preMul_io_toPostMul_isZeroA; // @[Valid.scala:142:26] mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_isInfB <= _mulAddRecFNToRaw_preMul_io_toPostMul_isInfB; // @[Valid.scala:142:26] mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_isZeroB <= _mulAddRecFNToRaw_preMul_io_toPostMul_isZeroB; // @[Valid.scala:142:26] mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_signProd <= _mulAddRecFNToRaw_preMul_io_toPostMul_signProd; // @[Valid.scala:142:26] mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_isNaNC <= _mulAddRecFNToRaw_preMul_io_toPostMul_isNaNC; // @[Valid.scala:142:26] mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_isInfC <= _mulAddRecFNToRaw_preMul_io_toPostMul_isInfC; // @[Valid.scala:142:26] mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_isZeroC <= _mulAddRecFNToRaw_preMul_io_toPostMul_isZeroC; // @[Valid.scala:142:26] mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_sExpSum <= _mulAddRecFNToRaw_preMul_io_toPostMul_sExpSum; // @[Valid.scala:142:26] mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_doSubMags <= _mulAddRecFNToRaw_preMul_io_toPostMul_doSubMags; // @[Valid.scala:142:26] mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_CIsDominant <= _mulAddRecFNToRaw_preMul_io_toPostMul_CIsDominant; // @[Valid.scala:142:26] mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_CDom_CAlignDist <= _mulAddRecFNToRaw_preMul_io_toPostMul_CDom_CAlignDist; // @[Valid.scala:142:26] mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_highAlignedSigC <= _mulAddRecFNToRaw_preMul_io_toPostMul_highAlignedSigC; // @[Valid.scala:142:26] mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_b_bit0AlignedSigC <= _mulAddRecFNToRaw_preMul_io_toPostMul_bit0AlignedSigC; // @[Valid.scala:142:26] mulAddRecFNToRaw_postMul_io_mulAddResult_pipe_b <= mulAddResult; // @[Valid.scala:142:26] mulAddRecFNToRaw_postMul_io_roundingMode_pipe_b <= io_roundingMode_0; // @[Valid.scala:142:26] roundingMode_stage0_pipe_b <= io_roundingMode_0; // @[Valid.scala:142:26] end if (valid_stage0) begin // @[FPU.scala:667:28] roundRawFNToRecFN_io_invalidExc_pipe_b <= _mulAddRecFNToRaw_postMul_io_invalidExc; // @[Valid.scala:142:26] roundRawFNToRecFN_io_in_pipe_b_isNaN <= _mulAddRecFNToRaw_postMul_io_rawOut_isNaN; // @[Valid.scala:142:26] roundRawFNToRecFN_io_in_pipe_b_isInf <= _mulAddRecFNToRaw_postMul_io_rawOut_isInf; // @[Valid.scala:142:26] roundRawFNToRecFN_io_in_pipe_b_isZero <= _mulAddRecFNToRaw_postMul_io_rawOut_isZero; // @[Valid.scala:142:26] roundRawFNToRecFN_io_in_pipe_b_sign <= _mulAddRecFNToRaw_postMul_io_rawOut_sign; // @[Valid.scala:142:26] roundRawFNToRecFN_io_in_pipe_b_sExp <= _mulAddRecFNToRaw_postMul_io_rawOut_sExp; // @[Valid.scala:142:26] roundRawFNToRecFN_io_in_pipe_b_sig <= _mulAddRecFNToRaw_postMul_io_rawOut_sig; // @[Valid.scala:142:26] roundRawFNToRecFN_io_roundingMode_pipe_b <= roundingMode_stage0; // @[Valid.scala:142:26] end roundRawFNToRecFN_io_detectTininess_pipe_b <= valid_stage0 | roundRawFNToRecFN_io_detectTininess_pipe_b; // @[Valid.scala:142:26] always @(posedge) MulAddRecFNToRaw_preMul_e11_s53 mulAddRecFNToRaw_preMul ( // @[FPU.scala:654:41] .io_op (io_op_0), // @[FPU.scala:633:7] .io_a (io_a_0), // @[FPU.scala:633:7] .io_b (io_b_0), // @[FPU.scala:633:7] .io_c (io_c_0), // @[FPU.scala:633:7] .io_mulAddA (_mulAddRecFNToRaw_preMul_io_mulAddA), .io_mulAddB (_mulAddRecFNToRaw_preMul_io_mulAddB), .io_mulAddC (_mulAddRecFNToRaw_preMul_io_mulAddC), .io_toPostMul_isSigNaNAny (_mulAddRecFNToRaw_preMul_io_toPostMul_isSigNaNAny), .io_toPostMul_isNaNAOrB (_mulAddRecFNToRaw_preMul_io_toPostMul_isNaNAOrB), .io_toPostMul_isInfA (_mulAddRecFNToRaw_preMul_io_toPostMul_isInfA), .io_toPostMul_isZeroA (_mulAddRecFNToRaw_preMul_io_toPostMul_isZeroA), .io_toPostMul_isInfB (_mulAddRecFNToRaw_preMul_io_toPostMul_isInfB), .io_toPostMul_isZeroB (_mulAddRecFNToRaw_preMul_io_toPostMul_isZeroB), .io_toPostMul_signProd (_mulAddRecFNToRaw_preMul_io_toPostMul_signProd), .io_toPostMul_isNaNC (_mulAddRecFNToRaw_preMul_io_toPostMul_isNaNC), .io_toPostMul_isInfC (_mulAddRecFNToRaw_preMul_io_toPostMul_isInfC), .io_toPostMul_isZeroC (_mulAddRecFNToRaw_preMul_io_toPostMul_isZeroC), .io_toPostMul_sExpSum (_mulAddRecFNToRaw_preMul_io_toPostMul_sExpSum), .io_toPostMul_doSubMags (_mulAddRecFNToRaw_preMul_io_toPostMul_doSubMags), .io_toPostMul_CIsDominant (_mulAddRecFNToRaw_preMul_io_toPostMul_CIsDominant), .io_toPostMul_CDom_CAlignDist (_mulAddRecFNToRaw_preMul_io_toPostMul_CDom_CAlignDist), .io_toPostMul_highAlignedSigC (_mulAddRecFNToRaw_preMul_io_toPostMul_highAlignedSigC), .io_toPostMul_bit0AlignedSigC (_mulAddRecFNToRaw_preMul_io_toPostMul_bit0AlignedSigC) ); // @[FPU.scala:654:41] MulAddRecFNToRaw_postMul_e11_s53 mulAddRecFNToRaw_postMul ( // @[FPU.scala:655:42] .io_fromPreMul_isSigNaNAny (mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_out_bits_isSigNaNAny), // @[Valid.scala:135:21] .io_fromPreMul_isNaNAOrB (mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_out_bits_isNaNAOrB), // @[Valid.scala:135:21] .io_fromPreMul_isInfA (mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_out_bits_isInfA), // @[Valid.scala:135:21] .io_fromPreMul_isZeroA (mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_out_bits_isZeroA), // @[Valid.scala:135:21] .io_fromPreMul_isInfB (mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_out_bits_isInfB), // @[Valid.scala:135:21] .io_fromPreMul_isZeroB (mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_out_bits_isZeroB), // @[Valid.scala:135:21] .io_fromPreMul_signProd (mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_out_bits_signProd), // @[Valid.scala:135:21] .io_fromPreMul_isNaNC (mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_out_bits_isNaNC), // @[Valid.scala:135:21] .io_fromPreMul_isInfC (mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_out_bits_isInfC), // @[Valid.scala:135:21] .io_fromPreMul_isZeroC (mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_out_bits_isZeroC), // @[Valid.scala:135:21] .io_fromPreMul_sExpSum (mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_out_bits_sExpSum), // @[Valid.scala:135:21] .io_fromPreMul_doSubMags (mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_out_bits_doSubMags), // @[Valid.scala:135:21] .io_fromPreMul_CIsDominant (mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_out_bits_CIsDominant), // @[Valid.scala:135:21] .io_fromPreMul_CDom_CAlignDist (mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_out_bits_CDom_CAlignDist), // @[Valid.scala:135:21] .io_fromPreMul_highAlignedSigC (mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_out_bits_highAlignedSigC), // @[Valid.scala:135:21] .io_fromPreMul_bit0AlignedSigC (mulAddRecFNToRaw_postMul_io_fromPreMul_pipe_out_bits_bit0AlignedSigC), // @[Valid.scala:135:21] .io_mulAddResult (mulAddRecFNToRaw_postMul_io_mulAddResult_pipe_out_bits), // @[Valid.scala:135:21] .io_roundingMode (mulAddRecFNToRaw_postMul_io_roundingMode_pipe_out_bits), // @[Valid.scala:135:21] .io_invalidExc (_mulAddRecFNToRaw_postMul_io_invalidExc), .io_rawOut_isNaN (_mulAddRecFNToRaw_postMul_io_rawOut_isNaN), .io_rawOut_isInf (_mulAddRecFNToRaw_postMul_io_rawOut_isInf), .io_rawOut_isZero (_mulAddRecFNToRaw_postMul_io_rawOut_isZero), .io_rawOut_sign (_mulAddRecFNToRaw_postMul_io_rawOut_sign), .io_rawOut_sExp (_mulAddRecFNToRaw_postMul_io_rawOut_sExp), .io_rawOut_sig (_mulAddRecFNToRaw_postMul_io_rawOut_sig) ); // @[FPU.scala:655:42] RoundRawFNToRecFN_e11_s53 roundRawFNToRecFN ( // @[FPU.scala:682:35] .io_invalidExc (roundRawFNToRecFN_io_invalidExc_pipe_out_bits), // @[Valid.scala:135:21] .io_in_isNaN (roundRawFNToRecFN_io_in_pipe_out_bits_isNaN), // @[Valid.scala:135:21] .io_in_isInf (roundRawFNToRecFN_io_in_pipe_out_bits_isInf), // @[Valid.scala:135:21] .io_in_isZero (roundRawFNToRecFN_io_in_pipe_out_bits_isZero), // @[Valid.scala:135:21] .io_in_sign (roundRawFNToRecFN_io_in_pipe_out_bits_sign), // @[Valid.scala:135:21] .io_in_sExp (roundRawFNToRecFN_io_in_pipe_out_bits_sExp), // @[Valid.scala:135:21] .io_in_sig (roundRawFNToRecFN_io_in_pipe_out_bits_sig), // @[Valid.scala:135:21] .io_roundingMode (roundRawFNToRecFN_io_roundingMode_pipe_out_bits), // @[Valid.scala:135:21] .io_detectTininess (roundRawFNToRecFN_io_detectTininess_pipe_out_bits), // @[Valid.scala:135:21] .io_out (io_out_0), .io_exceptionFlags (io_exceptionFlags_0) ); // @[FPU.scala:682:35] assign io_out = io_out_0; // @[FPU.scala:633:7] assign io_exceptionFlags = io_exceptionFlags_0; // @[FPU.scala:633:7] assign io_validout = io_validout_0; // @[FPU.scala:633:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File ShiftReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ // Similar to the Chisel ShiftRegister but allows the user to suggest a // name to the registers that get instantiated, and // to provide a reset value. object ShiftRegInit { def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T = (0 until n).foldRight(in) { case (i, next) => { val r = RegNext(next, init) name.foreach { na => r.suggestName(s"${na}_${i}") } r } } } /** These wrap behavioral * shift registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * The different types vary in their reset behavior: * AsyncResetShiftReg -- Asynchronously reset register array * A W(width) x D(depth) sized array is constructed from D instantiations of a * W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg, * but only used for timing applications */ abstract class AbstractPipelineReg(w: Int = 1) extends Module { val io = IO(new Bundle { val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) } ) } object AbstractPipelineReg { def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = { val chain = Module(gen) name.foreach{ chain.suggestName(_) } chain.io.d := in.asUInt chain.io.q.asTypeOf(in) } } class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) { require(depth > 0, "Depth must be greater than 0.") override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}" val chain = List.tabulate(depth) { i => Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}") } chain.last.io.d := io.d chain.last.io.en := true.B (chain.init zip chain.tail).foreach { case (sink, source) => sink.io.d := source.io.q sink.io.en := true.B } io.q := chain.head.io.q } object AsyncResetShiftReg { def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name) def apply [T <: Data](in: T, depth: Int, name: Option[String]): T = apply(in, depth, 0, name) def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T = apply(in, depth, init.litValue.toInt, name) def apply [T <: Data](in: T, depth: Int, init: T): T = apply (in, depth, init.litValue.toInt, None) } File SynchronizerReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util.{RegEnable, Cat} /** These wrap behavioral * shift and next registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * * These are built up of *ResetSynchronizerPrimitiveShiftReg, * intended to be replaced by the integrator's metastable flops chains or replaced * at this level if they have a multi-bit wide synchronizer primitive. * The different types vary in their reset behavior: * NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin * AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep * 1-bit-wide shift registers. * SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg * * [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference. * * ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross * Clock Domains. */ object SynchronizerResetType extends Enumeration { val NonSync, Inferred, Sync, Async = Value } // Note: this should not be used directly. // Use the companion object to generate this with the correct reset type mixin. private class SynchronizerPrimitiveShiftReg( sync: Int, init: Boolean, resetType: SynchronizerResetType.Value) extends AbstractPipelineReg(1) { val initInt = if (init) 1 else 0 val initPostfix = resetType match { case SynchronizerResetType.NonSync => "" case _ => s"_i${initInt}" } override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}" val chain = List.tabulate(sync) { i => val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B) reg.suggestName(s"sync_$i") } chain.last := io.d.asBool (chain.init zip chain.tail).foreach { case (sink, source) => sink := source } io.q := chain.head.asUInt } private object SynchronizerPrimitiveShiftReg { def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = { val gen: () => SynchronizerPrimitiveShiftReg = resetType match { case SynchronizerResetType.NonSync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) case SynchronizerResetType.Async => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset case SynchronizerResetType.Sync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset case SynchronizerResetType.Inferred => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) } AbstractPipelineReg(gen(), in) } } // Note: This module may end up with a non-AsyncReset type reset. // But the Primitives within will always have AsyncReset type. class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asAsyncReset){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async) } } io.q := Cat(output.reverse) } object AsyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } // Note: This module may end up with a non-Bool type reset. // But the Primitives within will always have Bool reset type. @deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2") class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asBool){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync) } } io.q := Cat(output.reverse) } object SyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred) } io.q := Cat(output.reverse) } object ResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}" val output = Seq.tabulate(w) { i => SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync) } io.q := Cat(output.reverse) } object SynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, None) def apply [T <: Data](in: T): T = apply (in, 3, None) } class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module { override def desiredName = s"ClockCrossingReg_w${w}" val io = IO(new Bundle{ val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) val en = Input(Bool()) }) val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en) io.q := cdc_reg } object ClockCrossingReg { def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = { val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit)) name.foreach{ cdc_reg.suggestName(_) } cdc_reg.io.d := in.asUInt cdc_reg.io.en := en cdc_reg.io.q.asTypeOf(in) } }
module AsyncResetSynchronizerShiftReg_w1_d3_i0_70( // @[SynchronizerReg.scala:80:7] input clock, // @[SynchronizerReg.scala:80:7] input reset, // @[SynchronizerReg.scala:80:7] input io_d, // @[ShiftReg.scala:36:14] output io_q // @[ShiftReg.scala:36:14] ); wire io_d_0 = io_d; // @[SynchronizerReg.scala:80:7] wire _output_T = reset; // @[SynchronizerReg.scala:86:21] wire _output_T_1 = io_d_0; // @[SynchronizerReg.scala:80:7, :87:41] wire output_0; // @[ShiftReg.scala:48:24] wire io_q_0; // @[SynchronizerReg.scala:80:7] assign io_q_0 = output_0; // @[SynchronizerReg.scala:80:7] AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_142 output_chain ( // @[ShiftReg.scala:45:23] .clock (clock), .reset (_output_T), // @[SynchronizerReg.scala:86:21] .io_d (_output_T_1), // @[SynchronizerReg.scala:87:41] .io_q (output_0) ); // @[ShiftReg.scala:45:23] assign io_q = io_q_0; // @[SynchronizerReg.scala:80:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File tage.scala: package boom.v3.ifu import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config.{Field, Parameters} import freechips.rocketchip.diplomacy._ import freechips.rocketchip.tilelink._ import boom.v3.common._ import boom.v3.util.{BoomCoreStringPrefix, MaskLower, WrapInc} import scala.math.min class TageResp extends Bundle { val ctr = UInt(3.W) val u = UInt(2.W) } class TageTable(val nRows: Int, val tagSz: Int, val histLength: Int, val uBitPeriod: Int) (implicit p: Parameters) extends BoomModule()(p) with HasBoomFrontendParameters { require(histLength <= globalHistoryLength) val nWrBypassEntries = 2 val io = IO( new Bundle { val f1_req_valid = Input(Bool()) val f1_req_pc = Input(UInt(vaddrBitsExtended.W)) val f1_req_ghist = Input(UInt(globalHistoryLength.W)) val f3_resp = Output(Vec(bankWidth, Valid(new TageResp))) val update_mask = Input(Vec(bankWidth, Bool())) val update_taken = Input(Vec(bankWidth, Bool())) val update_alloc = Input(Vec(bankWidth, Bool())) val update_old_ctr = Input(Vec(bankWidth, UInt(3.W))) val update_pc = Input(UInt()) val update_hist = Input(UInt()) val update_u_mask = Input(Vec(bankWidth, Bool())) val update_u = Input(Vec(bankWidth, UInt(2.W))) }) def compute_folded_hist(hist: UInt, l: Int) = { val nChunks = (histLength + l - 1) / l val hist_chunks = (0 until nChunks) map {i => hist(min((i+1)*l, histLength)-1, i*l) } hist_chunks.reduce(_^_) } def compute_tag_and_hash(unhashed_idx: UInt, hist: UInt) = { val idx_history = compute_folded_hist(hist, log2Ceil(nRows)) val idx = (unhashed_idx ^ idx_history)(log2Ceil(nRows)-1,0) val tag_history = compute_folded_hist(hist, tagSz) val tag = ((unhashed_idx >> log2Ceil(nRows)) ^ tag_history)(tagSz-1,0) (idx, tag) } def inc_ctr(ctr: UInt, taken: Bool): UInt = { Mux(!taken, Mux(ctr === 0.U, 0.U, ctr - 1.U), Mux(ctr === 7.U, 7.U, ctr + 1.U)) } val doing_reset = RegInit(true.B) val reset_idx = RegInit(0.U(log2Ceil(nRows).W)) reset_idx := reset_idx + doing_reset when (reset_idx === (nRows-1).U) { doing_reset := false.B } class TageEntry extends Bundle { val valid = Bool() // TODO: Remove this valid bit val tag = UInt(tagSz.W) val ctr = UInt(3.W) } val tageEntrySz = 1 + tagSz + 3 val (s1_hashed_idx, s1_tag) = compute_tag_and_hash(fetchIdx(io.f1_req_pc), io.f1_req_ghist) val hi_us = SyncReadMem(nRows, Vec(bankWidth, Bool())) val lo_us = SyncReadMem(nRows, Vec(bankWidth, Bool())) val table = SyncReadMem(nRows, Vec(bankWidth, UInt(tageEntrySz.W))) val mems = Seq((f"tage_l$histLength", nRows, bankWidth * tageEntrySz)) val s2_tag = RegNext(s1_tag) val s2_req_rtage = VecInit(table.read(s1_hashed_idx, io.f1_req_valid).map(_.asTypeOf(new TageEntry))) val s2_req_rhius = hi_us.read(s1_hashed_idx, io.f1_req_valid) val s2_req_rlous = lo_us.read(s1_hashed_idx, io.f1_req_valid) val s2_req_rhits = VecInit(s2_req_rtage.map(e => e.valid && e.tag === s2_tag && !doing_reset)) for (w <- 0 until bankWidth) { // This bit indicates the TAGE table matched here io.f3_resp(w).valid := RegNext(s2_req_rhits(w)) io.f3_resp(w).bits.u := RegNext(Cat(s2_req_rhius(w), s2_req_rlous(w))) io.f3_resp(w).bits.ctr := RegNext(s2_req_rtage(w).ctr) } val clear_u_ctr = RegInit(0.U((log2Ceil(uBitPeriod) + log2Ceil(nRows) + 1).W)) when (doing_reset) { clear_u_ctr := 1.U } .otherwise { clear_u_ctr := clear_u_ctr + 1.U } val doing_clear_u = clear_u_ctr(log2Ceil(uBitPeriod)-1,0) === 0.U val doing_clear_u_hi = doing_clear_u && clear_u_ctr(log2Ceil(uBitPeriod) + log2Ceil(nRows)) === 1.U val doing_clear_u_lo = doing_clear_u && clear_u_ctr(log2Ceil(uBitPeriod) + log2Ceil(nRows)) === 0.U val clear_u_idx = clear_u_ctr >> log2Ceil(uBitPeriod) val (update_idx, update_tag) = compute_tag_and_hash(fetchIdx(io.update_pc), io.update_hist) val update_wdata = Wire(Vec(bankWidth, new TageEntry)) table.write( Mux(doing_reset, reset_idx , update_idx), Mux(doing_reset, VecInit(Seq.fill(bankWidth) { 0.U(tageEntrySz.W) }), VecInit(update_wdata.map(_.asUInt))), Mux(doing_reset, ~(0.U(bankWidth.W)) , io.update_mask.asUInt).asBools ) val update_hi_wdata = Wire(Vec(bankWidth, Bool())) hi_us.write( Mux(doing_reset, reset_idx, Mux(doing_clear_u_hi, clear_u_idx, update_idx)), Mux(doing_reset || doing_clear_u_hi, VecInit((0.U(bankWidth.W)).asBools), update_hi_wdata), Mux(doing_reset || doing_clear_u_hi, ~(0.U(bankWidth.W)), io.update_u_mask.asUInt).asBools ) val update_lo_wdata = Wire(Vec(bankWidth, Bool())) lo_us.write( Mux(doing_reset, reset_idx, Mux(doing_clear_u_lo, clear_u_idx, update_idx)), Mux(doing_reset || doing_clear_u_lo, VecInit((0.U(bankWidth.W)).asBools), update_lo_wdata), Mux(doing_reset || doing_clear_u_lo, ~(0.U(bankWidth.W)), io.update_u_mask.asUInt).asBools ) val wrbypass_tags = Reg(Vec(nWrBypassEntries, UInt(tagSz.W))) val wrbypass_idxs = Reg(Vec(nWrBypassEntries, UInt(log2Ceil(nRows).W))) val wrbypass = Reg(Vec(nWrBypassEntries, Vec(bankWidth, UInt(3.W)))) val wrbypass_enq_idx = RegInit(0.U(log2Ceil(nWrBypassEntries).W)) val wrbypass_hits = VecInit((0 until nWrBypassEntries) map { i => !doing_reset && wrbypass_tags(i) === update_tag && wrbypass_idxs(i) === update_idx }) val wrbypass_hit = wrbypass_hits.reduce(_||_) val wrbypass_hit_idx = PriorityEncoder(wrbypass_hits) for (w <- 0 until bankWidth) { update_wdata(w).ctr := Mux(io.update_alloc(w), Mux(io.update_taken(w), 4.U, 3.U ), Mux(wrbypass_hit, inc_ctr(wrbypass(wrbypass_hit_idx)(w), io.update_taken(w)), inc_ctr(io.update_old_ctr(w), io.update_taken(w)) ) ) update_wdata(w).valid := true.B update_wdata(w).tag := update_tag update_hi_wdata(w) := io.update_u(w)(1) update_lo_wdata(w) := io.update_u(w)(0) } when (io.update_mask.reduce(_||_)) { when (wrbypass_hits.reduce(_||_)) { wrbypass(wrbypass_hit_idx) := VecInit(update_wdata.map(_.ctr)) } .otherwise { wrbypass (wrbypass_enq_idx) := VecInit(update_wdata.map(_.ctr)) wrbypass_tags(wrbypass_enq_idx) := update_tag wrbypass_idxs(wrbypass_enq_idx) := update_idx wrbypass_enq_idx := WrapInc(wrbypass_enq_idx, nWrBypassEntries) } } } case class BoomTageParams( // nSets, histLen, tagSz tableInfo: Seq[Tuple3[Int, Int, Int]] = Seq(( 128, 2, 7), ( 128, 4, 7), ( 256, 8, 8), ( 256, 16, 8), ( 128, 32, 9), ( 128, 64, 9)), uBitPeriod: Int = 2048 ) class TageBranchPredictorBank(params: BoomTageParams = BoomTageParams())(implicit p: Parameters) extends BranchPredictorBank()(p) { val tageUBitPeriod = params.uBitPeriod val tageNTables = params.tableInfo.size class TageMeta extends Bundle { val provider = Vec(bankWidth, Valid(UInt(log2Ceil(tageNTables).W))) val alt_differs = Vec(bankWidth, Output(Bool())) val provider_u = Vec(bankWidth, Output(UInt(2.W))) val provider_ctr = Vec(bankWidth, Output(UInt(3.W))) val allocate = Vec(bankWidth, Valid(UInt(log2Ceil(tageNTables).W))) } val f3_meta = Wire(new TageMeta) override val metaSz = f3_meta.asUInt.getWidth require(metaSz <= bpdMaxMetaLength) def inc_u(u: UInt, alt_differs: Bool, mispredict: Bool): UInt = { Mux(!alt_differs, u, Mux(mispredict, Mux(u === 0.U, 0.U, u - 1.U), Mux(u === 3.U, 3.U, u + 1.U))) } val tt = params.tableInfo map { case (n, l, s) => { val t = Module(new TageTable(n, s, l, params.uBitPeriod)) t.io.f1_req_valid := RegNext(io.f0_valid) t.io.f1_req_pc := RegNext(io.f0_pc) t.io.f1_req_ghist := io.f1_ghist (t, t.mems) } } val tables = tt.map(_._1) val mems = tt.map(_._2).flatten val f3_resps = VecInit(tables.map(_.io.f3_resp)) val s1_update_meta = s1_update.bits.meta.asTypeOf(new TageMeta) val s1_update_mispredict_mask = UIntToOH(s1_update.bits.cfi_idx.bits) & Fill(bankWidth, s1_update.bits.cfi_mispredicted) val s1_update_mask = WireInit((0.U).asTypeOf(Vec(tageNTables, Vec(bankWidth, Bool())))) val s1_update_u_mask = WireInit((0.U).asTypeOf(Vec(tageNTables, Vec(bankWidth, UInt(1.W))))) val s1_update_taken = Wire(Vec(tageNTables, Vec(bankWidth, Bool()))) val s1_update_old_ctr = Wire(Vec(tageNTables, Vec(bankWidth, UInt(3.W)))) val s1_update_alloc = Wire(Vec(tageNTables, Vec(bankWidth, Bool()))) val s1_update_u = Wire(Vec(tageNTables, Vec(bankWidth, UInt(2.W)))) s1_update_taken := DontCare s1_update_old_ctr := DontCare s1_update_alloc := DontCare s1_update_u := DontCare for (w <- 0 until bankWidth) { var altpred = io.resp_in(0).f3(w).taken val final_altpred = WireInit(io.resp_in(0).f3(w).taken) var provided = false.B var provider = 0.U io.resp.f3(w).taken := io.resp_in(0).f3(w).taken for (i <- 0 until tageNTables) { val hit = f3_resps(i)(w).valid val ctr = f3_resps(i)(w).bits.ctr when (hit) { io.resp.f3(w).taken := Mux(ctr === 3.U || ctr === 4.U, altpred, ctr(2)) final_altpred := altpred } provided = provided || hit provider = Mux(hit, i.U, provider) altpred = Mux(hit, f3_resps(i)(w).bits.ctr(2), altpred) } f3_meta.provider(w).valid := provided f3_meta.provider(w).bits := provider f3_meta.alt_differs(w) := final_altpred =/= io.resp.f3(w).taken f3_meta.provider_u(w) := f3_resps(provider)(w).bits.u f3_meta.provider_ctr(w) := f3_resps(provider)(w).bits.ctr // Create a mask of tables which did not hit our query, and also contain useless entries // and also uses a longer history than the provider val allocatable_slots = ( VecInit(f3_resps.map(r => !r(w).valid && r(w).bits.u === 0.U)).asUInt & ~(MaskLower(UIntToOH(provider)) & Fill(tageNTables, provided)) ) val alloc_lfsr = random.LFSR(tageNTables max 2) val first_entry = PriorityEncoder(allocatable_slots) val masked_entry = PriorityEncoder(allocatable_slots & alloc_lfsr) val alloc_entry = Mux(allocatable_slots(masked_entry), masked_entry, first_entry) f3_meta.allocate(w).valid := allocatable_slots =/= 0.U f3_meta.allocate(w).bits := alloc_entry val update_was_taken = (s1_update.bits.cfi_idx.valid && (s1_update.bits.cfi_idx.bits === w.U) && s1_update.bits.cfi_taken) when (s1_update.bits.br_mask(w) && s1_update.valid && s1_update.bits.is_commit_update) { when (s1_update_meta.provider(w).valid) { val provider = s1_update_meta.provider(w).bits s1_update_mask(provider)(w) := true.B s1_update_u_mask(provider)(w) := true.B val new_u = inc_u(s1_update_meta.provider_u(w), s1_update_meta.alt_differs(w), s1_update_mispredict_mask(w)) s1_update_u (provider)(w) := new_u s1_update_taken (provider)(w) := update_was_taken s1_update_old_ctr(provider)(w) := s1_update_meta.provider_ctr(w) s1_update_alloc (provider)(w) := false.B } } } when (s1_update.valid && s1_update.bits.is_commit_update && s1_update.bits.cfi_mispredicted && s1_update.bits.cfi_idx.valid) { val idx = s1_update.bits.cfi_idx.bits val allocate = s1_update_meta.allocate(idx) when (allocate.valid) { s1_update_mask (allocate.bits)(idx) := true.B s1_update_taken(allocate.bits)(idx) := s1_update.bits.cfi_taken s1_update_alloc(allocate.bits)(idx) := true.B s1_update_u_mask(allocate.bits)(idx) := true.B s1_update_u (allocate.bits)(idx) := 0.U } .otherwise { val provider = s1_update_meta.provider(idx) val decr_mask = Mux(provider.valid, ~MaskLower(UIntToOH(provider.bits)), 0.U) for (i <- 0 until tageNTables) { when (decr_mask(i)) { s1_update_u_mask(i)(idx) := true.B s1_update_u (i)(idx) := 0.U } } } } for (i <- 0 until tageNTables) { for (w <- 0 until bankWidth) { tables(i).io.update_mask(w) := RegNext(s1_update_mask(i)(w)) tables(i).io.update_taken(w) := RegNext(s1_update_taken(i)(w)) tables(i).io.update_alloc(w) := RegNext(s1_update_alloc(i)(w)) tables(i).io.update_old_ctr(w) := RegNext(s1_update_old_ctr(i)(w)) tables(i).io.update_u_mask(w) := RegNext(s1_update_u_mask(i)(w)) tables(i).io.update_u(w) := RegNext(s1_update_u(i)(w)) } tables(i).io.update_pc := RegNext(s1_update.bits.pc) tables(i).io.update_hist := RegNext(s1_update.bits.ghist) } //io.f3_meta := Cat(f3_meta.asUInt, micro.io.f3_meta(micro.metaSz-1,0), base.io.f3_meta(base.metaSz-1, 0)) io.f3_meta := f3_meta.asUInt }
module hi_us_18( // @[tage.scala:89:27] input [6:0] R0_addr, input R0_en, input R0_clk, output [3:0] R0_data, input [6:0] W0_addr, input W0_clk, input [3:0] W0_data, input [3:0] W0_mask ); hi_us_ext hi_us_ext ( // @[tage.scala:89:27] .R0_addr (R0_addr), .R0_en (R0_en), .R0_clk (R0_clk), .R0_data (R0_data), .W0_addr (W0_addr), .W0_en (1'h1), // @[tage.scala:89:27] .W0_clk (W0_clk), .W0_data (W0_data), .W0_mask (W0_mask) ); // @[tage.scala:89:27] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Buffer.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import org.chipsalliance.diplomacy.lazymodule._ import freechips.rocketchip.diplomacy.BufferParams class TLBufferNode ( a: BufferParams, b: BufferParams, c: BufferParams, d: BufferParams, e: BufferParams)(implicit valName: ValName) extends TLAdapterNode( clientFn = { p => p.v1copy(minLatency = p.minLatency + b.latency + c.latency) }, managerFn = { p => p.v1copy(minLatency = p.minLatency + a.latency + d.latency) } ) { override lazy val nodedebugstring = s"a:${a.toString}, b:${b.toString}, c:${c.toString}, d:${d.toString}, e:${e.toString}" override def circuitIdentity = List(a,b,c,d,e).forall(_ == BufferParams.none) } class TLBuffer( a: BufferParams, b: BufferParams, c: BufferParams, d: BufferParams, e: BufferParams)(implicit p: Parameters) extends LazyModule { def this(ace: BufferParams, bd: BufferParams)(implicit p: Parameters) = this(ace, bd, ace, bd, ace) def this(abcde: BufferParams)(implicit p: Parameters) = this(abcde, abcde) def this()(implicit p: Parameters) = this(BufferParams.default) val node = new TLBufferNode(a, b, c, d, e) lazy val module = new Impl class Impl extends LazyModuleImp(this) { def headBundle = node.out.head._2.bundle override def desiredName = (Seq("TLBuffer") ++ node.out.headOption.map(_._2.bundle.shortName)).mkString("_") (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => out.a <> a(in .a) in .d <> d(out.d) if (edgeOut.manager.anySupportAcquireB && edgeOut.client.anySupportProbe) { in .b <> b(out.b) out.c <> c(in .c) out.e <> e(in .e) } else { in.b.valid := false.B in.c.ready := true.B in.e.ready := true.B out.b.ready := true.B out.c.valid := false.B out.e.valid := false.B } } } } object TLBuffer { def apply() (implicit p: Parameters): TLNode = apply(BufferParams.default) def apply(abcde: BufferParams) (implicit p: Parameters): TLNode = apply(abcde, abcde) def apply(ace: BufferParams, bd: BufferParams)(implicit p: Parameters): TLNode = apply(ace, bd, ace, bd, ace) def apply( a: BufferParams, b: BufferParams, c: BufferParams, d: BufferParams, e: BufferParams)(implicit p: Parameters): TLNode = { val buffer = LazyModule(new TLBuffer(a, b, c, d, e)) buffer.node } def chain(depth: Int, name: Option[String] = None)(implicit p: Parameters): Seq[TLNode] = { val buffers = Seq.fill(depth) { LazyModule(new TLBuffer()) } name.foreach { n => buffers.zipWithIndex.foreach { case (b, i) => b.suggestName(s"${n}_${i}") } } buffers.map(_.node) } def chainNode(depth: Int, name: Option[String] = None)(implicit p: Parameters): TLNode = { chain(depth, name) .reduceLeftOption(_ :*=* _) .getOrElse(TLNameNode("no_buffer")) } } File Nodes.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import org.chipsalliance.diplomacy.nodes._ import freechips.rocketchip.util.{AsyncQueueParams,RationalDirection} case object TLMonitorBuilder extends Field[TLMonitorArgs => TLMonitorBase](args => new TLMonitor(args)) object TLImp extends NodeImp[TLMasterPortParameters, TLSlavePortParameters, TLEdgeOut, TLEdgeIn, TLBundle] { def edgeO(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeOut(pd, pu, p, sourceInfo) def edgeI(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeIn (pd, pu, p, sourceInfo) def bundleO(eo: TLEdgeOut) = TLBundle(eo.bundle) def bundleI(ei: TLEdgeIn) = TLBundle(ei.bundle) def render(ei: TLEdgeIn) = RenderedEdge(colour = "#000000" /* black */, label = (ei.manager.beatBytes * 8).toString) override def monitor(bundle: TLBundle, edge: TLEdgeIn): Unit = { val monitor = Module(edge.params(TLMonitorBuilder)(TLMonitorArgs(edge))) monitor.io.in := bundle } override def mixO(pd: TLMasterPortParameters, node: OutwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLMasterPortParameters = pd.v1copy(clients = pd.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }) override def mixI(pu: TLSlavePortParameters, node: InwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLSlavePortParameters = pu.v1copy(managers = pu.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }) } trait TLFormatNode extends FormatNode[TLEdgeIn, TLEdgeOut] case class TLClientNode(portParams: Seq[TLMasterPortParameters])(implicit valName: ValName) extends SourceNode(TLImp)(portParams) with TLFormatNode case class TLManagerNode(portParams: Seq[TLSlavePortParameters])(implicit valName: ValName) extends SinkNode(TLImp)(portParams) with TLFormatNode case class TLAdapterNode( clientFn: TLMasterPortParameters => TLMasterPortParameters = { s => s }, managerFn: TLSlavePortParameters => TLSlavePortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLImp)(clientFn, managerFn) with TLFormatNode case class TLJunctionNode( clientFn: Seq[TLMasterPortParameters] => Seq[TLMasterPortParameters], managerFn: Seq[TLSlavePortParameters] => Seq[TLSlavePortParameters])( implicit valName: ValName) extends JunctionNode(TLImp)(clientFn, managerFn) with TLFormatNode case class TLIdentityNode()(implicit valName: ValName) extends IdentityNode(TLImp)() with TLFormatNode object TLNameNode { def apply(name: ValName) = TLIdentityNode()(name) def apply(name: Option[String]): TLIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLIdentityNode = apply(Some(name)) } case class TLEphemeralNode()(implicit valName: ValName) extends EphemeralNode(TLImp)() object TLTempNode { def apply(): TLEphemeralNode = TLEphemeralNode()(ValName("temp")) } case class TLNexusNode( clientFn: Seq[TLMasterPortParameters] => TLMasterPortParameters, managerFn: Seq[TLSlavePortParameters] => TLSlavePortParameters)( implicit valName: ValName) extends NexusNode(TLImp)(clientFn, managerFn) with TLFormatNode abstract class TLCustomNode(implicit valName: ValName) extends CustomNode(TLImp) with TLFormatNode // Asynchronous crossings trait TLAsyncFormatNode extends FormatNode[TLAsyncEdgeParameters, TLAsyncEdgeParameters] object TLAsyncImp extends SimpleNodeImp[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncEdgeParameters, TLAsyncBundle] { def edge(pd: TLAsyncClientPortParameters, pu: TLAsyncManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLAsyncEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLAsyncEdgeParameters) = new TLAsyncBundle(e.bundle) def render(e: TLAsyncEdgeParameters) = RenderedEdge(colour = "#ff0000" /* red */, label = e.manager.async.depth.toString) override def mixO(pd: TLAsyncClientPortParameters, node: OutwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLAsyncManagerPortParameters, node: InwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLAsyncAdapterNode( clientFn: TLAsyncClientPortParameters => TLAsyncClientPortParameters = { s => s }, managerFn: TLAsyncManagerPortParameters => TLAsyncManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLAsyncImp)(clientFn, managerFn) with TLAsyncFormatNode case class TLAsyncIdentityNode()(implicit valName: ValName) extends IdentityNode(TLAsyncImp)() with TLAsyncFormatNode object TLAsyncNameNode { def apply(name: ValName) = TLAsyncIdentityNode()(name) def apply(name: Option[String]): TLAsyncIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLAsyncIdentityNode = apply(Some(name)) } case class TLAsyncSourceNode(sync: Option[Int])(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLAsyncImp)( dFn = { p => TLAsyncClientPortParameters(p) }, uFn = { p => p.base.v1copy(minLatency = p.base.minLatency + sync.getOrElse(p.async.sync)) }) with FormatNode[TLEdgeIn, TLAsyncEdgeParameters] // discard cycles in other clock domain case class TLAsyncSinkNode(async: AsyncQueueParams)(implicit valName: ValName) extends MixedAdapterNode(TLAsyncImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = p.base.minLatency + async.sync) }, uFn = { p => TLAsyncManagerPortParameters(async, p) }) with FormatNode[TLAsyncEdgeParameters, TLEdgeOut] // Rationally related crossings trait TLRationalFormatNode extends FormatNode[TLRationalEdgeParameters, TLRationalEdgeParameters] object TLRationalImp extends SimpleNodeImp[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalEdgeParameters, TLRationalBundle] { def edge(pd: TLRationalClientPortParameters, pu: TLRationalManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLRationalEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLRationalEdgeParameters) = new TLRationalBundle(e.bundle) def render(e: TLRationalEdgeParameters) = RenderedEdge(colour = "#00ff00" /* green */) override def mixO(pd: TLRationalClientPortParameters, node: OutwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLRationalManagerPortParameters, node: InwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLRationalAdapterNode( clientFn: TLRationalClientPortParameters => TLRationalClientPortParameters = { s => s }, managerFn: TLRationalManagerPortParameters => TLRationalManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLRationalImp)(clientFn, managerFn) with TLRationalFormatNode case class TLRationalIdentityNode()(implicit valName: ValName) extends IdentityNode(TLRationalImp)() with TLRationalFormatNode object TLRationalNameNode { def apply(name: ValName) = TLRationalIdentityNode()(name) def apply(name: Option[String]): TLRationalIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLRationalIdentityNode = apply(Some(name)) } case class TLRationalSourceNode()(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLRationalImp)( dFn = { p => TLRationalClientPortParameters(p) }, uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLRationalEdgeParameters] // discard cycles from other clock domain case class TLRationalSinkNode(direction: RationalDirection)(implicit valName: ValName) extends MixedAdapterNode(TLRationalImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = 1) }, uFn = { p => TLRationalManagerPortParameters(direction, p) }) with FormatNode[TLRationalEdgeParameters, TLEdgeOut] // Credited version of TileLink channels trait TLCreditedFormatNode extends FormatNode[TLCreditedEdgeParameters, TLCreditedEdgeParameters] object TLCreditedImp extends SimpleNodeImp[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedEdgeParameters, TLCreditedBundle] { def edge(pd: TLCreditedClientPortParameters, pu: TLCreditedManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLCreditedEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLCreditedEdgeParameters) = new TLCreditedBundle(e.bundle) def render(e: TLCreditedEdgeParameters) = RenderedEdge(colour = "#ffff00" /* yellow */, e.delay.toString) override def mixO(pd: TLCreditedClientPortParameters, node: OutwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLCreditedManagerPortParameters, node: InwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLCreditedAdapterNode( clientFn: TLCreditedClientPortParameters => TLCreditedClientPortParameters = { s => s }, managerFn: TLCreditedManagerPortParameters => TLCreditedManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLCreditedImp)(clientFn, managerFn) with TLCreditedFormatNode case class TLCreditedIdentityNode()(implicit valName: ValName) extends IdentityNode(TLCreditedImp)() with TLCreditedFormatNode object TLCreditedNameNode { def apply(name: ValName) = TLCreditedIdentityNode()(name) def apply(name: Option[String]): TLCreditedIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLCreditedIdentityNode = apply(Some(name)) } case class TLCreditedSourceNode(delay: TLCreditedDelay)(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLCreditedImp)( dFn = { p => TLCreditedClientPortParameters(delay, p) }, uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLCreditedEdgeParameters] // discard cycles from other clock domain case class TLCreditedSinkNode(delay: TLCreditedDelay)(implicit valName: ValName) extends MixedAdapterNode(TLCreditedImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = 1) }, uFn = { p => TLCreditedManagerPortParameters(delay, p) }) with FormatNode[TLCreditedEdgeParameters, TLEdgeOut] File LazyModuleImp.scala: package org.chipsalliance.diplomacy.lazymodule import chisel3.{withClockAndReset, Module, RawModule, Reset, _} import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo} import firrtl.passes.InlineAnnotation import org.chipsalliance.cde.config.Parameters import org.chipsalliance.diplomacy.nodes.Dangle import scala.collection.immutable.SortedMap /** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]]. * * This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy. */ sealed trait LazyModuleImpLike extends RawModule { /** [[LazyModule]] that contains this instance. */ val wrapper: LazyModule /** IOs that will be automatically "punched" for this instance. */ val auto: AutoBundle /** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */ protected[diplomacy] val dangles: Seq[Dangle] // [[wrapper.module]] had better not be accessed while LazyModules are still being built! require( LazyModule.scope.isEmpty, s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}" ) /** Set module name. Defaults to the containing LazyModule's desiredName. */ override def desiredName: String = wrapper.desiredName suggestName(wrapper.suggestedName) /** [[Parameters]] for chisel [[Module]]s. */ implicit val p: Parameters = wrapper.p /** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and * submodules. */ protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = { // 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]], // 2. return [[Dangle]]s from each module. val childDangles = wrapper.children.reverse.flatMap { c => implicit val sourceInfo: SourceInfo = c.info c.cloneProto.map { cp => // If the child is a clone, then recursively set cloneProto of its children as well def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = { require(bases.size == clones.size) (bases.zip(clones)).map { case (l, r) => require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}") l.cloneProto = Some(r) assignCloneProtos(l.children, r.children) } } assignCloneProtos(c.children, cp.children) // Clone the child module as a record, and get its [[AutoBundle]] val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName) val clonedAuto = clone("auto").asInstanceOf[AutoBundle] // Get the empty [[Dangle]]'s of the cloned child val rawDangles = c.cloneDangles() require(rawDangles.size == clonedAuto.elements.size) // Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) } dangles }.getOrElse { // For non-clones, instantiate the child module val mod = try { Module(c.module) } catch { case e: ChiselException => { println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}") throw e } } mod.dangles } } // Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]]. // This will result in a sequence of [[Dangle]] from these [[BaseNode]]s. val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate()) // Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]] val allDangles = nodeDangles ++ childDangles // Group [[allDangles]] by their [[source]]. val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*) // For each [[source]] set of [[Dangle]]s of size 2, ensure that these // can be connected as a source-sink pair (have opposite flipped value). // Make the connection and mark them as [[done]]. val done = Set() ++ pairing.values.filter(_.size == 2).map { case Seq(a, b) => require(a.flipped != b.flipped) // @todo <> in chisel3 makes directionless connection. if (a.flipped) { a.data <> b.data } else { b.data <> a.data } a.source case _ => None } // Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module. val forward = allDangles.filter(d => !done(d.source)) // Generate [[AutoBundle]] IO from [[forward]]. val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*)) // Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]] val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) => if (d.flipped) { d.data <> io } else { io <> d.data } d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name) } // Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]]. wrapper.inModuleBody.reverse.foreach { _() } if (wrapper.shouldBeInlined) { chisel3.experimental.annotate(new ChiselAnnotation { def toFirrtl = InlineAnnotation(toNamed) }) } // Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]]. (auto, dangles) } } /** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike { /** Instantiate hardware of this `Module`. */ val (auto, dangles) = instantiate() } /** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike { // These wires are the default clock+reset for all LazyModule children. // It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the // [[LazyRawModuleImp]] children. // Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly. /** drive clock explicitly. */ val childClock: Clock = Wire(Clock()) /** drive reset explicitly. */ val childReset: Reset = Wire(Reset()) // the default is that these are disabled childClock := false.B.asClock childReset := chisel3.DontCare def provideImplicitClockToLazyChildren: Boolean = false val (auto, dangles) = if (provideImplicitClockToLazyChildren) { withClockAndReset(childClock, childReset) { instantiate() } } else { instantiate() } } File MixedNode.scala: package org.chipsalliance.diplomacy.nodes import chisel3.{Data, DontCare, Wire} import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.{Field, Parameters} import org.chipsalliance.diplomacy.ValName import org.chipsalliance.diplomacy.sourceLine /** One side metadata of a [[Dangle]]. * * Describes one side of an edge going into or out of a [[BaseNode]]. * * @param serial * the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to. * @param index * the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to. */ case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] { import scala.math.Ordered.orderingToOrdered def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that)) } /** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]] * connects. * * [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] , * [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]]. * * @param source * the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within * that [[BaseNode]]. * @param sink * sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that * [[BaseNode]]. * @param flipped * flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to * `danglesIn`. * @param dataOpt * actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module */ case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) { def data = dataOpt.get } /** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often * derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually * implement the protocol. */ case class Edges[EI, EO](in: Seq[EI], out: Seq[EO]) /** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */ case object MonitorsEnabled extends Field[Boolean](true) /** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented. * * For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but * [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink * nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the * [[LazyModule]]. */ case object RenderFlipped extends Field[Boolean](false) /** The sealed node class in the package, all node are derived from it. * * @param inner * Sink interface implementation. * @param outer * Source interface implementation. * @param valName * val name of this node. * @tparam DI * Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters * describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected * [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port * parameters. * @tparam UI * Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing * the protocol parameters of a sink. For an [[InwardNode]], it is determined itself. * @tparam EI * Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers * specified for a sink according to protocol. * @tparam BI * Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface. * It should extends from [[chisel3.Data]], which represents the real hardware. * @tparam DO * Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters * describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself. * @tparam UO * Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing * the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]]. * Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters. * @tparam EO * Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers * specified for a source according to protocol. * @tparam BO * Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source * interface. It should extends from [[chisel3.Data]], which represents the real hardware. * * @note * Call Graph of [[MixedNode]] * - line `─`: source is process by a function and generate pass to others * - Arrow `→`: target of arrow is generated by source * * {{{ * (from the other node) * ┌─────────────────────────────────────────────────────────[[InwardNode.uiParams]]─────────────┐ * ↓ │ * (binding node when elaboration) [[OutwardNode.uoParams]]────────────────────────[[MixedNode.mapParamsU]]→──────────┐ │ * [[InwardNode.accPI]] │ │ │ * │ │ (based on protocol) │ * │ │ [[MixedNode.inner.edgeI]] │ * │ │ ↓ │ * ↓ │ │ │ * (immobilize after elaboration) (inward port from [[OutwardNode]]) │ ↓ │ * [[InwardNode.iBindings]]──┐ [[MixedNode.iDirectPorts]]────────────────────→[[MixedNode.iPorts]] [[InwardNode.uiParams]] │ * │ │ ↑ │ │ │ * │ │ │ [[OutwardNode.doParams]] │ │ * │ │ │ (from the other node) │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * │ │ │ └────────┬──────────────┤ │ * │ │ │ │ │ │ * │ │ │ │ (based on protocol) │ * │ │ │ │ [[MixedNode.inner.edgeI]] │ * │ │ │ │ │ │ * │ │ (from the other node) │ ↓ │ * │ └───[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] │ [[MixedNode.edgesIn]]───┐ │ * │ ↑ ↑ │ │ ↓ │ * │ │ │ │ │ [[MixedNode.in]] │ * │ │ │ │ ↓ ↑ │ * │ (solve star connection) │ │ │ [[MixedNode.bundleIn]]──┘ │ * ├───[[MixedNode.resolveStar]]→─┼─────────────────────────────┤ └────────────────────────────────────┐ │ * │ │ │ [[MixedNode.bundleOut]]─┐ │ │ * │ │ │ ↑ ↓ │ │ * │ │ │ │ [[MixedNode.out]] │ │ * │ ↓ ↓ │ ↑ │ │ * │ ┌─────[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]──┘ │ │ * │ │ (from the other node) ↑ │ │ * │ │ │ │ │ │ * │ │ │ [[MixedNode.outer.edgeO]] │ │ * │ │ │ (based on protocol) │ │ * │ │ │ │ │ │ * │ │ │ ┌────────────────────────────────────────┤ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * (immobilize after elaboration)│ ↓ │ │ │ │ * [[OutwardNode.oBindings]]─┘ [[MixedNode.oDirectPorts]]───→[[MixedNode.oPorts]] [[OutwardNode.doParams]] │ │ * ↑ (inward port from [[OutwardNode]]) │ │ │ │ * │ ┌─────────────────────────────────────────┤ │ │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * [[OutwardNode.accPO]] │ ↓ │ │ │ * (binding node when elaboration) │ [[InwardNode.diParams]]─────→[[MixedNode.mapParamsD]]────────────────────────────┘ │ │ * │ ↑ │ │ * │ └──────────────────────────────────────────────────────────────────────────────────────────┘ │ * └──────────────────────────────────────────────────────────────────────────────────────────────────────────┘ * }}} */ abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data]( val inner: InwardNodeImp[DI, UI, EI, BI], val outer: OutwardNodeImp[DO, UO, EO, BO] )( implicit valName: ValName) extends BaseNode with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO] with InwardNode[DI, UI, BI] with OutwardNode[DO, UO, BO] { // Generate a [[NodeHandle]] with inward and outward node are both this node. val inward = this val outward = this /** Debug info of nodes binding. */ def bindingInfo: String = s"""$iBindingInfo |$oBindingInfo |""".stripMargin /** Debug info of ports connecting. */ def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}] |${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}] |""".stripMargin /** Debug info of parameters propagations. */ def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}] |${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}] |${diParams.size} downstream inward parameters: [${diParams.mkString(",")}] |${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}] |""".stripMargin /** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and * [[MixedNode.iPortMapping]]. * * Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward * stars and outward stars. * * This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type * of node. * * @param iKnown * Number of known-size ([[BIND_ONCE]]) input bindings. * @param oKnown * Number of known-size ([[BIND_ONCE]]) output bindings. * @param iStar * Number of unknown size ([[BIND_STAR]]) input bindings. * @param oStar * Number of unknown size ([[BIND_STAR]]) output bindings. * @return * A Tuple of the resolved number of input and output connections. */ protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int) /** Function to generate downward-flowing outward params from the downward-flowing input params and the current output * ports. * * @param n * The size of the output sequence to generate. * @param p * Sequence of downward-flowing input parameters of this node. * @return * A `n`-sized sequence of downward-flowing output edge parameters. */ protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO] /** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]]. * * @param n * Size of the output sequence. * @param p * Upward-flowing output edge parameters. * @return * A n-sized sequence of upward-flowing input edge parameters. */ protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI] /** @return * The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with * [[BIND_STAR]]. */ protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR) /** @return * The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of * output bindings bound with [[BIND_STAR]]. */ protected[diplomacy] lazy val sourceCard: Int = iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR) /** @return list of nodes involved in flex bindings with this node. */ protected[diplomacy] lazy val flexes: Seq[BaseNode] = oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2) /** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin * greedily taking up the remaining connections. * * @return * A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return * value is not relevant. */ protected[diplomacy] lazy val flexOffset: Int = { /** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex * operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a * connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of * each node in the current set and decide whether they should be added to the set or not. * * @return * the mapping of [[BaseNode]] indexed by their serial numbers. */ def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = { if (visited.contains(v.serial) || !v.flexibleArityDirection) { visited } else { v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum)) } } /** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node. * * @example * {{{ * a :*=* b :*=* c * d :*=* b * e :*=* f * }}} * * `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)` */ val flexSet = DFS(this, Map()).values /** The total number of :*= operators where we're on the left. */ val allSink = flexSet.map(_.sinkCard).sum /** The total number of :=* operators used when we're on the right. */ val allSource = flexSet.map(_.sourceCard).sum require( allSink == 0 || allSource == 0, s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction." ) allSink - allSource } /** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */ protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = { if (flexibleArityDirection) flexOffset else if (n.flexibleArityDirection) n.flexOffset else 0 } /** For a node which is connected between two nodes, select the one that will influence the direction of the flex * resolution. */ protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = { val dir = edgeArityDirection(n) if (dir < 0) l else if (dir > 0) r else 1 } /** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */ private var starCycleGuard = false /** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star" * connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also * need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct * edge parameters and later build up correct bundle connections. * * [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding * operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort * (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*= * bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N` */ protected[diplomacy] lazy val ( oPortMapping: Seq[(Int, Int)], iPortMapping: Seq[(Int, Int)], oStar: Int, iStar: Int ) = { try { if (starCycleGuard) throw StarCycleException() starCycleGuard = true // For a given node N... // Number of foo :=* N // + Number of bar :=* foo :*=* N val oStars = oBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0) } // Number of N :*= foo // + Number of N :*=* foo :*= bar val iStars = iBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0) } // 1 for foo := N // + bar.iStar for bar :*= foo :*=* N // + foo.iStar for foo :*= N // + 0 for foo :=* N val oKnown = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, 0, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => 0 } }.sum // 1 for N := foo // + bar.oStar for N :*=* foo :=* bar // + foo.oStar for N :=* foo // + 0 for N :*= foo val iKnown = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, 0) case BIND_QUERY => n.oStar case BIND_STAR => 0 } }.sum // Resolve star depends on the node subclass to implement the algorithm for this. val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars) // Cumulative list of resolved outward binding range starting points val oSum = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => oStar } }.scanLeft(0)(_ + _) // Cumulative list of resolved inward binding range starting points val iSum = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar) case BIND_QUERY => n.oStar case BIND_STAR => iStar } }.scanLeft(0)(_ + _) // Create ranges for each binding based on the running sums and return // those along with resolved values for the star operations. (oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar) } catch { case c: StarCycleException => throw c.copy(loop = context +: c.loop) } } /** Sequence of inward ports. * * This should be called after all star bindings are resolved. * * Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. * `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this * connection was made in the source code. */ protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oBindings.flatMap { case (i, n, _, p, s) => // for each binding operator in this node, look at what it connects to val (start, end) = n.iPortMapping(i) (start until end).map { j => (j, n, p, s) } } /** Sequence of outward ports. * * This should be called after all star bindings are resolved. * * `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of * outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection * was made in the source code. */ protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iBindings.flatMap { case (i, n, _, p, s) => // query this port index range of this node in the other side of node. val (start, end) = n.oPortMapping(i) (start until end).map { j => (j, n, p, s) } } // Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree // Thus, there must exist an Eulerian path and the below algorithms terminate @scala.annotation.tailrec private def oTrace( tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) ): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.iForward(i) match { case None => (i, n, p, s) case Some((j, m)) => oTrace((j, m, p, s)) } } @scala.annotation.tailrec private def iTrace( tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) ): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.oForward(i) match { case None => (i, n, p, s) case Some((j, m)) => iTrace((j, m, p, s)) } } /** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - Numeric index of this binding in the [[InwardNode]] on the other end. * - [[InwardNode]] on the other end of this binding. * - A view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace) /** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - numeric index of this binding in [[OutwardNode]] on the other end. * - [[OutwardNode]] on the other end of this binding. * - a view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace) private var oParamsCycleGuard = false protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) } protected[diplomacy] lazy val doParams: Seq[DO] = { try { if (oParamsCycleGuard) throw DownwardCycleException() oParamsCycleGuard = true val o = mapParamsD(oPorts.size, diParams) require( o.size == oPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of outward ports should equal the number of produced outward parameters. |$context |$connectedPortsInfo |Downstreamed inward parameters: [${diParams.mkString(",")}] |Produced outward parameters: [${o.mkString(",")}] |""".stripMargin ) o.map(outer.mixO(_, this)) } catch { case c: DownwardCycleException => throw c.copy(loop = context +: c.loop) } } private var iParamsCycleGuard = false protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) } protected[diplomacy] lazy val uiParams: Seq[UI] = { try { if (iParamsCycleGuard) throw UpwardCycleException() iParamsCycleGuard = true val i = mapParamsU(iPorts.size, uoParams) require( i.size == iPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of inward ports should equal the number of produced inward parameters. |$context |$connectedPortsInfo |Upstreamed outward parameters: [${uoParams.mkString(",")}] |Produced inward parameters: [${i.mkString(",")}] |""".stripMargin ) i.map(inner.mixI(_, this)) } catch { case c: UpwardCycleException => throw c.copy(loop = context +: c.loop) } } /** Outward edge parameters. */ protected[diplomacy] lazy val edgesOut: Seq[EO] = (oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) } /** Inward edge parameters. */ protected[diplomacy] lazy val edgesIn: Seq[EI] = (iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) } /** A tuple of the input edge parameters and output edge parameters for the edges bound to this node. * * If you need to access to the edges of a foreign Node, use this method (in/out create bundles). */ lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut) /** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */ protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e => val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } /** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */ protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e => val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(serial, i), sink = HalfEdge(n.serial, j), flipped = false, name = wirePrefix + "out", dataOpt = None ) } private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(n.serial, j), sink = HalfEdge(serial, i), flipped = true, name = wirePrefix + "in", dataOpt = None ) } /** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */ protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleOut(i))) } /** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */ protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleIn(i))) } private[diplomacy] var instantiated = false /** Gather Bundle and edge parameters of outward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def out: Seq[(BO, EO)] = { require( instantiated, s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleOut.zip(edgesOut) } /** Gather Bundle and edge parameters of inward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def in: Seq[(BI, EI)] = { require( instantiated, s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleIn.zip(edgesIn) } /** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires, * instantiate monitors on all input ports if appropriate, and return all the dangles of this node. */ protected[diplomacy] def instantiate(): Seq[Dangle] = { instantiated = true if (!circuitIdentity) { (iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) } } danglesOut ++ danglesIn } protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn /** Connects the outward part of a node with the inward part of this node. */ protected[diplomacy] def bind( h: OutwardNode[DI, UI, BI], binding: NodeBinding )( implicit p: Parameters, sourceInfo: SourceInfo ): Unit = { val x = this // x := y val y = h sourceLine(sourceInfo, " at ", "") val i = x.iPushed val o = y.oPushed y.oPush( i, x, binding match { case BIND_ONCE => BIND_ONCE case BIND_FLEX => BIND_FLEX case BIND_STAR => BIND_QUERY case BIND_QUERY => BIND_STAR } ) x.iPush(o, y, binding) } /* Metadata for printing the node graph. */ def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) => val re = inner.render(e) (n, re.copy(flipped = re.flipped != p(RenderFlipped))) } /** Metadata for printing the node graph */ def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) } }
module TLBuffer_a32d64s6k3z3c( // @[Buffer.scala:40:9] input clock, // @[Buffer.scala:40:9] input reset, // @[Buffer.scala:40:9] output auto_in_a_ready, // @[LazyModuleImp.scala:107:25] input auto_in_a_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25] input [2:0] auto_in_a_bits_param, // @[LazyModuleImp.scala:107:25] input [2:0] auto_in_a_bits_size, // @[LazyModuleImp.scala:107:25] input [5:0] auto_in_a_bits_source, // @[LazyModuleImp.scala:107:25] input [31:0] auto_in_a_bits_address, // @[LazyModuleImp.scala:107:25] input [7:0] auto_in_a_bits_mask, // @[LazyModuleImp.scala:107:25] input [63:0] auto_in_a_bits_data, // @[LazyModuleImp.scala:107:25] input auto_in_a_bits_corrupt, // @[LazyModuleImp.scala:107:25] input auto_in_b_ready, // @[LazyModuleImp.scala:107:25] output auto_in_b_valid, // @[LazyModuleImp.scala:107:25] output [1:0] auto_in_b_bits_param, // @[LazyModuleImp.scala:107:25] output [5:0] auto_in_b_bits_source, // @[LazyModuleImp.scala:107:25] output [31:0] auto_in_b_bits_address, // @[LazyModuleImp.scala:107:25] output auto_in_c_ready, // @[LazyModuleImp.scala:107:25] input auto_in_c_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_in_c_bits_opcode, // @[LazyModuleImp.scala:107:25] input [2:0] auto_in_c_bits_param, // @[LazyModuleImp.scala:107:25] input [2:0] auto_in_c_bits_size, // @[LazyModuleImp.scala:107:25] input [5:0] auto_in_c_bits_source, // @[LazyModuleImp.scala:107:25] input [31:0] auto_in_c_bits_address, // @[LazyModuleImp.scala:107:25] input [63:0] auto_in_c_bits_data, // @[LazyModuleImp.scala:107:25] input auto_in_c_bits_corrupt, // @[LazyModuleImp.scala:107:25] input auto_in_d_ready, // @[LazyModuleImp.scala:107:25] output auto_in_d_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25] output [1:0] auto_in_d_bits_param, // @[LazyModuleImp.scala:107:25] output [2:0] auto_in_d_bits_size, // @[LazyModuleImp.scala:107:25] output [5:0] auto_in_d_bits_source, // @[LazyModuleImp.scala:107:25] output [2:0] auto_in_d_bits_sink, // @[LazyModuleImp.scala:107:25] output auto_in_d_bits_denied, // @[LazyModuleImp.scala:107:25] output [63:0] auto_in_d_bits_data, // @[LazyModuleImp.scala:107:25] output auto_in_d_bits_corrupt, // @[LazyModuleImp.scala:107:25] input auto_in_e_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_in_e_bits_sink, // @[LazyModuleImp.scala:107:25] input auto_out_a_ready, // @[LazyModuleImp.scala:107:25] output auto_out_a_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25] output [2:0] auto_out_a_bits_param, // @[LazyModuleImp.scala:107:25] output [2:0] auto_out_a_bits_size, // @[LazyModuleImp.scala:107:25] output [5:0] auto_out_a_bits_source, // @[LazyModuleImp.scala:107:25] output [31:0] auto_out_a_bits_address, // @[LazyModuleImp.scala:107:25] output [7:0] auto_out_a_bits_mask, // @[LazyModuleImp.scala:107:25] output [63:0] auto_out_a_bits_data, // @[LazyModuleImp.scala:107:25] output auto_out_a_bits_corrupt, // @[LazyModuleImp.scala:107:25] output auto_out_b_ready, // @[LazyModuleImp.scala:107:25] input auto_out_b_valid, // @[LazyModuleImp.scala:107:25] input [1:0] auto_out_b_bits_param, // @[LazyModuleImp.scala:107:25] input [5:0] auto_out_b_bits_source, // @[LazyModuleImp.scala:107:25] input [31:0] auto_out_b_bits_address, // @[LazyModuleImp.scala:107:25] input auto_out_c_ready, // @[LazyModuleImp.scala:107:25] output auto_out_c_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_out_c_bits_opcode, // @[LazyModuleImp.scala:107:25] output [2:0] auto_out_c_bits_param, // @[LazyModuleImp.scala:107:25] output [2:0] auto_out_c_bits_size, // @[LazyModuleImp.scala:107:25] output [5:0] auto_out_c_bits_source, // @[LazyModuleImp.scala:107:25] output [31:0] auto_out_c_bits_address, // @[LazyModuleImp.scala:107:25] output [63:0] auto_out_c_bits_data, // @[LazyModuleImp.scala:107:25] output auto_out_c_bits_corrupt, // @[LazyModuleImp.scala:107:25] output auto_out_d_ready, // @[LazyModuleImp.scala:107:25] input auto_out_d_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25] input [1:0] auto_out_d_bits_param, // @[LazyModuleImp.scala:107:25] input [2:0] auto_out_d_bits_size, // @[LazyModuleImp.scala:107:25] input [5:0] auto_out_d_bits_source, // @[LazyModuleImp.scala:107:25] input [2:0] auto_out_d_bits_sink, // @[LazyModuleImp.scala:107:25] input auto_out_d_bits_denied, // @[LazyModuleImp.scala:107:25] input [63:0] auto_out_d_bits_data, // @[LazyModuleImp.scala:107:25] input auto_out_d_bits_corrupt, // @[LazyModuleImp.scala:107:25] output auto_out_e_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_out_e_bits_sink // @[LazyModuleImp.scala:107:25] ); wire auto_in_a_valid_0 = auto_in_a_valid; // @[Buffer.scala:40:9] wire [2:0] auto_in_a_bits_opcode_0 = auto_in_a_bits_opcode; // @[Buffer.scala:40:9] wire [2:0] auto_in_a_bits_param_0 = auto_in_a_bits_param; // @[Buffer.scala:40:9] wire [2:0] auto_in_a_bits_size_0 = auto_in_a_bits_size; // @[Buffer.scala:40:9] wire [5:0] auto_in_a_bits_source_0 = auto_in_a_bits_source; // @[Buffer.scala:40:9] wire [31:0] auto_in_a_bits_address_0 = auto_in_a_bits_address; // @[Buffer.scala:40:9] wire [7:0] auto_in_a_bits_mask_0 = auto_in_a_bits_mask; // @[Buffer.scala:40:9] wire [63:0] auto_in_a_bits_data_0 = auto_in_a_bits_data; // @[Buffer.scala:40:9] wire auto_in_a_bits_corrupt_0 = auto_in_a_bits_corrupt; // @[Buffer.scala:40:9] wire auto_in_b_ready_0 = auto_in_b_ready; // @[Buffer.scala:40:9] wire auto_in_c_valid_0 = auto_in_c_valid; // @[Buffer.scala:40:9] wire [2:0] auto_in_c_bits_opcode_0 = auto_in_c_bits_opcode; // @[Buffer.scala:40:9] wire [2:0] auto_in_c_bits_param_0 = auto_in_c_bits_param; // @[Buffer.scala:40:9] wire [2:0] auto_in_c_bits_size_0 = auto_in_c_bits_size; // @[Buffer.scala:40:9] wire [5:0] auto_in_c_bits_source_0 = auto_in_c_bits_source; // @[Buffer.scala:40:9] wire [31:0] auto_in_c_bits_address_0 = auto_in_c_bits_address; // @[Buffer.scala:40:9] wire [63:0] auto_in_c_bits_data_0 = auto_in_c_bits_data; // @[Buffer.scala:40:9] wire auto_in_c_bits_corrupt_0 = auto_in_c_bits_corrupt; // @[Buffer.scala:40:9] wire auto_in_d_ready_0 = auto_in_d_ready; // @[Buffer.scala:40:9] wire auto_in_e_valid_0 = auto_in_e_valid; // @[Buffer.scala:40:9] wire [2:0] auto_in_e_bits_sink_0 = auto_in_e_bits_sink; // @[Buffer.scala:40:9] wire auto_out_a_ready_0 = auto_out_a_ready; // @[Buffer.scala:40:9] wire auto_out_b_valid_0 = auto_out_b_valid; // @[Buffer.scala:40:9] wire [1:0] auto_out_b_bits_param_0 = auto_out_b_bits_param; // @[Buffer.scala:40:9] wire [5:0] auto_out_b_bits_source_0 = auto_out_b_bits_source; // @[Buffer.scala:40:9] wire [31:0] auto_out_b_bits_address_0 = auto_out_b_bits_address; // @[Buffer.scala:40:9] wire auto_out_c_ready_0 = auto_out_c_ready; // @[Buffer.scala:40:9] wire auto_out_d_valid_0 = auto_out_d_valid; // @[Buffer.scala:40:9] wire [2:0] auto_out_d_bits_opcode_0 = auto_out_d_bits_opcode; // @[Buffer.scala:40:9] wire [1:0] auto_out_d_bits_param_0 = auto_out_d_bits_param; // @[Buffer.scala:40:9] wire [2:0] auto_out_d_bits_size_0 = auto_out_d_bits_size; // @[Buffer.scala:40:9] wire [5:0] auto_out_d_bits_source_0 = auto_out_d_bits_source; // @[Buffer.scala:40:9] wire [2:0] auto_out_d_bits_sink_0 = auto_out_d_bits_sink; // @[Buffer.scala:40:9] wire auto_out_d_bits_denied_0 = auto_out_d_bits_denied; // @[Buffer.scala:40:9] wire [63:0] auto_out_d_bits_data_0 = auto_out_d_bits_data; // @[Buffer.scala:40:9] wire auto_out_d_bits_corrupt_0 = auto_out_d_bits_corrupt; // @[Buffer.scala:40:9] wire auto_in_e_ready = 1'h1; // @[Nodes.scala:27:25] wire auto_out_e_ready = 1'h1; // @[Nodes.scala:27:25] wire nodeIn_e_ready = 1'h1; // @[Nodes.scala:27:25] wire nodeOut_e_ready = 1'h1; // @[Nodes.scala:27:25] wire auto_in_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25] wire auto_out_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25] wire nodeIn_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25] wire nodeOut_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25] wire [63:0] auto_in_b_bits_data = 64'h0; // @[Nodes.scala:27:25] wire [63:0] auto_out_b_bits_data = 64'h0; // @[Nodes.scala:27:25] wire [63:0] nodeIn_b_bits_data = 64'h0; // @[Nodes.scala:27:25] wire [63:0] nodeOut_b_bits_data = 64'h0; // @[Nodes.scala:27:25] wire [7:0] auto_in_b_bits_mask = 8'hFF; // @[Nodes.scala:27:25] wire [7:0] auto_out_b_bits_mask = 8'hFF; // @[Nodes.scala:27:25] wire [7:0] nodeIn_b_bits_mask = 8'hFF; // @[Nodes.scala:27:25] wire [7:0] nodeOut_b_bits_mask = 8'hFF; // @[Nodes.scala:27:25] wire [2:0] auto_in_b_bits_opcode = 3'h6; // @[Nodes.scala:27:25] wire [2:0] auto_in_b_bits_size = 3'h6; // @[Nodes.scala:27:25] wire [2:0] auto_out_b_bits_opcode = 3'h6; // @[Nodes.scala:27:25] wire [2:0] auto_out_b_bits_size = 3'h6; // @[Nodes.scala:27:25] wire nodeIn_a_ready; // @[MixedNode.scala:551:17] wire [2:0] nodeIn_b_bits_opcode = 3'h6; // @[Nodes.scala:27:25] wire [2:0] nodeIn_b_bits_size = 3'h6; // @[Nodes.scala:27:25] wire [2:0] nodeOut_b_bits_opcode = 3'h6; // @[Nodes.scala:27:25] wire [2:0] nodeOut_b_bits_size = 3'h6; // @[Nodes.scala:27:25] wire nodeIn_a_valid = auto_in_a_valid_0; // @[Buffer.scala:40:9] wire [2:0] nodeIn_a_bits_opcode = auto_in_a_bits_opcode_0; // @[Buffer.scala:40:9] wire [2:0] nodeIn_a_bits_param = auto_in_a_bits_param_0; // @[Buffer.scala:40:9] wire [2:0] nodeIn_a_bits_size = auto_in_a_bits_size_0; // @[Buffer.scala:40:9] wire [5:0] nodeIn_a_bits_source = auto_in_a_bits_source_0; // @[Buffer.scala:40:9] wire [31:0] nodeIn_a_bits_address = auto_in_a_bits_address_0; // @[Buffer.scala:40:9] wire [7:0] nodeIn_a_bits_mask = auto_in_a_bits_mask_0; // @[Buffer.scala:40:9] wire [63:0] nodeIn_a_bits_data = auto_in_a_bits_data_0; // @[Buffer.scala:40:9] wire nodeIn_a_bits_corrupt = auto_in_a_bits_corrupt_0; // @[Buffer.scala:40:9] wire nodeIn_b_ready = auto_in_b_ready_0; // @[Buffer.scala:40:9] wire nodeIn_b_valid; // @[MixedNode.scala:551:17] wire [1:0] nodeIn_b_bits_param; // @[MixedNode.scala:551:17] wire [5:0] nodeIn_b_bits_source; // @[MixedNode.scala:551:17] wire [31:0] nodeIn_b_bits_address; // @[MixedNode.scala:551:17] wire nodeIn_c_ready; // @[MixedNode.scala:551:17] wire nodeIn_c_valid = auto_in_c_valid_0; // @[Buffer.scala:40:9] wire [2:0] nodeIn_c_bits_opcode = auto_in_c_bits_opcode_0; // @[Buffer.scala:40:9] wire [2:0] nodeIn_c_bits_param = auto_in_c_bits_param_0; // @[Buffer.scala:40:9] wire [2:0] nodeIn_c_bits_size = auto_in_c_bits_size_0; // @[Buffer.scala:40:9] wire [5:0] nodeIn_c_bits_source = auto_in_c_bits_source_0; // @[Buffer.scala:40:9] wire [31:0] nodeIn_c_bits_address = auto_in_c_bits_address_0; // @[Buffer.scala:40:9] wire [63:0] nodeIn_c_bits_data = auto_in_c_bits_data_0; // @[Buffer.scala:40:9] wire nodeIn_c_bits_corrupt = auto_in_c_bits_corrupt_0; // @[Buffer.scala:40:9] wire nodeIn_d_ready = auto_in_d_ready_0; // @[Buffer.scala:40:9] wire nodeIn_d_valid; // @[MixedNode.scala:551:17] wire [2:0] nodeIn_d_bits_opcode; // @[MixedNode.scala:551:17] wire [1:0] nodeIn_d_bits_param; // @[MixedNode.scala:551:17] wire [2:0] nodeIn_d_bits_size; // @[MixedNode.scala:551:17] wire [5:0] nodeIn_d_bits_source; // @[MixedNode.scala:551:17] wire [2:0] nodeIn_d_bits_sink; // @[MixedNode.scala:551:17] wire nodeIn_d_bits_denied; // @[MixedNode.scala:551:17] wire [63:0] nodeIn_d_bits_data; // @[MixedNode.scala:551:17] wire nodeIn_d_bits_corrupt; // @[MixedNode.scala:551:17] wire nodeIn_e_valid = auto_in_e_valid_0; // @[Buffer.scala:40:9] wire [2:0] nodeIn_e_bits_sink = auto_in_e_bits_sink_0; // @[Buffer.scala:40:9] wire nodeOut_a_ready = auto_out_a_ready_0; // @[Buffer.scala:40:9] wire nodeOut_a_valid; // @[MixedNode.scala:542:17] wire [2:0] nodeOut_a_bits_opcode; // @[MixedNode.scala:542:17] wire [2:0] nodeOut_a_bits_param; // @[MixedNode.scala:542:17] wire [2:0] nodeOut_a_bits_size; // @[MixedNode.scala:542:17] wire [5:0] nodeOut_a_bits_source; // @[MixedNode.scala:542:17] wire [31:0] nodeOut_a_bits_address; // @[MixedNode.scala:542:17] wire [7:0] nodeOut_a_bits_mask; // @[MixedNode.scala:542:17] wire [63:0] nodeOut_a_bits_data; // @[MixedNode.scala:542:17] wire nodeOut_a_bits_corrupt; // @[MixedNode.scala:542:17] wire nodeOut_b_ready; // @[MixedNode.scala:542:17] wire nodeOut_b_valid = auto_out_b_valid_0; // @[Buffer.scala:40:9] wire [1:0] nodeOut_b_bits_param = auto_out_b_bits_param_0; // @[Buffer.scala:40:9] wire [5:0] nodeOut_b_bits_source = auto_out_b_bits_source_0; // @[Buffer.scala:40:9] wire [31:0] nodeOut_b_bits_address = auto_out_b_bits_address_0; // @[Buffer.scala:40:9] wire nodeOut_c_ready = auto_out_c_ready_0; // @[Buffer.scala:40:9] wire nodeOut_c_valid; // @[MixedNode.scala:542:17] wire [2:0] nodeOut_c_bits_opcode; // @[MixedNode.scala:542:17] wire [2:0] nodeOut_c_bits_param; // @[MixedNode.scala:542:17] wire [2:0] nodeOut_c_bits_size; // @[MixedNode.scala:542:17] wire [5:0] nodeOut_c_bits_source; // @[MixedNode.scala:542:17] wire [31:0] nodeOut_c_bits_address; // @[MixedNode.scala:542:17] wire [63:0] nodeOut_c_bits_data; // @[MixedNode.scala:542:17] wire nodeOut_c_bits_corrupt; // @[MixedNode.scala:542:17] wire nodeOut_d_ready; // @[MixedNode.scala:542:17] wire nodeOut_d_valid = auto_out_d_valid_0; // @[Buffer.scala:40:9] wire [2:0] nodeOut_d_bits_opcode = auto_out_d_bits_opcode_0; // @[Buffer.scala:40:9] wire [1:0] nodeOut_d_bits_param = auto_out_d_bits_param_0; // @[Buffer.scala:40:9] wire [2:0] nodeOut_d_bits_size = auto_out_d_bits_size_0; // @[Buffer.scala:40:9] wire [5:0] nodeOut_d_bits_source = auto_out_d_bits_source_0; // @[Buffer.scala:40:9] wire [2:0] nodeOut_d_bits_sink = auto_out_d_bits_sink_0; // @[Buffer.scala:40:9] wire nodeOut_d_bits_denied = auto_out_d_bits_denied_0; // @[Buffer.scala:40:9] wire [63:0] nodeOut_d_bits_data = auto_out_d_bits_data_0; // @[Buffer.scala:40:9] wire nodeOut_d_bits_corrupt = auto_out_d_bits_corrupt_0; // @[Buffer.scala:40:9] wire nodeOut_e_valid; // @[MixedNode.scala:542:17] wire [2:0] nodeOut_e_bits_sink; // @[MixedNode.scala:542:17] wire auto_in_a_ready_0; // @[Buffer.scala:40:9] wire [1:0] auto_in_b_bits_param_0; // @[Buffer.scala:40:9] wire [5:0] auto_in_b_bits_source_0; // @[Buffer.scala:40:9] wire [31:0] auto_in_b_bits_address_0; // @[Buffer.scala:40:9] wire auto_in_b_valid_0; // @[Buffer.scala:40:9] wire auto_in_c_ready_0; // @[Buffer.scala:40:9] wire [2:0] auto_in_d_bits_opcode_0; // @[Buffer.scala:40:9] wire [1:0] auto_in_d_bits_param_0; // @[Buffer.scala:40:9] wire [2:0] auto_in_d_bits_size_0; // @[Buffer.scala:40:9] wire [5:0] auto_in_d_bits_source_0; // @[Buffer.scala:40:9] wire [2:0] auto_in_d_bits_sink_0; // @[Buffer.scala:40:9] wire auto_in_d_bits_denied_0; // @[Buffer.scala:40:9] wire [63:0] auto_in_d_bits_data_0; // @[Buffer.scala:40:9] wire auto_in_d_bits_corrupt_0; // @[Buffer.scala:40:9] wire auto_in_d_valid_0; // @[Buffer.scala:40:9] wire [2:0] auto_out_a_bits_opcode_0; // @[Buffer.scala:40:9] wire [2:0] auto_out_a_bits_param_0; // @[Buffer.scala:40:9] wire [2:0] auto_out_a_bits_size_0; // @[Buffer.scala:40:9] wire [5:0] auto_out_a_bits_source_0; // @[Buffer.scala:40:9] wire [31:0] auto_out_a_bits_address_0; // @[Buffer.scala:40:9] wire [7:0] auto_out_a_bits_mask_0; // @[Buffer.scala:40:9] wire [63:0] auto_out_a_bits_data_0; // @[Buffer.scala:40:9] wire auto_out_a_bits_corrupt_0; // @[Buffer.scala:40:9] wire auto_out_a_valid_0; // @[Buffer.scala:40:9] wire auto_out_b_ready_0; // @[Buffer.scala:40:9] wire [2:0] auto_out_c_bits_opcode_0; // @[Buffer.scala:40:9] wire [2:0] auto_out_c_bits_param_0; // @[Buffer.scala:40:9] wire [2:0] auto_out_c_bits_size_0; // @[Buffer.scala:40:9] wire [5:0] auto_out_c_bits_source_0; // @[Buffer.scala:40:9] wire [31:0] auto_out_c_bits_address_0; // @[Buffer.scala:40:9] wire [63:0] auto_out_c_bits_data_0; // @[Buffer.scala:40:9] wire auto_out_c_bits_corrupt_0; // @[Buffer.scala:40:9] wire auto_out_c_valid_0; // @[Buffer.scala:40:9] wire auto_out_d_ready_0; // @[Buffer.scala:40:9] wire [2:0] auto_out_e_bits_sink_0; // @[Buffer.scala:40:9] wire auto_out_e_valid_0; // @[Buffer.scala:40:9] assign auto_in_a_ready_0 = nodeIn_a_ready; // @[Buffer.scala:40:9] assign nodeOut_b_ready = nodeIn_b_ready; // @[MixedNode.scala:542:17, :551:17] assign auto_in_b_valid_0 = nodeIn_b_valid; // @[Buffer.scala:40:9] assign auto_in_b_bits_param_0 = nodeIn_b_bits_param; // @[Buffer.scala:40:9] assign auto_in_b_bits_source_0 = nodeIn_b_bits_source; // @[Buffer.scala:40:9] assign auto_in_b_bits_address_0 = nodeIn_b_bits_address; // @[Buffer.scala:40:9] assign auto_in_c_ready_0 = nodeIn_c_ready; // @[Buffer.scala:40:9] assign nodeOut_c_valid = nodeIn_c_valid; // @[MixedNode.scala:542:17, :551:17] assign nodeOut_c_bits_opcode = nodeIn_c_bits_opcode; // @[MixedNode.scala:542:17, :551:17] assign nodeOut_c_bits_param = nodeIn_c_bits_param; // @[MixedNode.scala:542:17, :551:17] assign nodeOut_c_bits_size = nodeIn_c_bits_size; // @[MixedNode.scala:542:17, :551:17] assign nodeOut_c_bits_source = nodeIn_c_bits_source; // @[MixedNode.scala:542:17, :551:17] assign nodeOut_c_bits_address = nodeIn_c_bits_address; // @[MixedNode.scala:542:17, :551:17] assign nodeOut_c_bits_data = nodeIn_c_bits_data; // @[MixedNode.scala:542:17, :551:17] assign nodeOut_c_bits_corrupt = nodeIn_c_bits_corrupt; // @[MixedNode.scala:542:17, :551:17] assign auto_in_d_valid_0 = nodeIn_d_valid; // @[Buffer.scala:40:9] assign auto_in_d_bits_opcode_0 = nodeIn_d_bits_opcode; // @[Buffer.scala:40:9] assign auto_in_d_bits_param_0 = nodeIn_d_bits_param; // @[Buffer.scala:40:9] assign auto_in_d_bits_size_0 = nodeIn_d_bits_size; // @[Buffer.scala:40:9] assign auto_in_d_bits_source_0 = nodeIn_d_bits_source; // @[Buffer.scala:40:9] assign auto_in_d_bits_sink_0 = nodeIn_d_bits_sink; // @[Buffer.scala:40:9] assign auto_in_d_bits_denied_0 = nodeIn_d_bits_denied; // @[Buffer.scala:40:9] assign auto_in_d_bits_data_0 = nodeIn_d_bits_data; // @[Buffer.scala:40:9] assign auto_in_d_bits_corrupt_0 = nodeIn_d_bits_corrupt; // @[Buffer.scala:40:9] assign nodeOut_e_valid = nodeIn_e_valid; // @[MixedNode.scala:542:17, :551:17] assign nodeOut_e_bits_sink = nodeIn_e_bits_sink; // @[MixedNode.scala:542:17, :551:17] assign auto_out_a_valid_0 = nodeOut_a_valid; // @[Buffer.scala:40:9] assign auto_out_a_bits_opcode_0 = nodeOut_a_bits_opcode; // @[Buffer.scala:40:9] assign auto_out_a_bits_param_0 = nodeOut_a_bits_param; // @[Buffer.scala:40:9] assign auto_out_a_bits_size_0 = nodeOut_a_bits_size; // @[Buffer.scala:40:9] assign auto_out_a_bits_source_0 = nodeOut_a_bits_source; // @[Buffer.scala:40:9] assign auto_out_a_bits_address_0 = nodeOut_a_bits_address; // @[Buffer.scala:40:9] assign auto_out_a_bits_mask_0 = nodeOut_a_bits_mask; // @[Buffer.scala:40:9] assign auto_out_a_bits_data_0 = nodeOut_a_bits_data; // @[Buffer.scala:40:9] assign auto_out_a_bits_corrupt_0 = nodeOut_a_bits_corrupt; // @[Buffer.scala:40:9] assign auto_out_b_ready_0 = nodeOut_b_ready; // @[Buffer.scala:40:9] assign nodeIn_b_valid = nodeOut_b_valid; // @[MixedNode.scala:542:17, :551:17] assign nodeIn_b_bits_param = nodeOut_b_bits_param; // @[MixedNode.scala:542:17, :551:17] assign nodeIn_b_bits_source = nodeOut_b_bits_source; // @[MixedNode.scala:542:17, :551:17] assign nodeIn_b_bits_address = nodeOut_b_bits_address; // @[MixedNode.scala:542:17, :551:17] assign nodeIn_c_ready = nodeOut_c_ready; // @[MixedNode.scala:542:17, :551:17] assign auto_out_c_valid_0 = nodeOut_c_valid; // @[Buffer.scala:40:9] assign auto_out_c_bits_opcode_0 = nodeOut_c_bits_opcode; // @[Buffer.scala:40:9] assign auto_out_c_bits_param_0 = nodeOut_c_bits_param; // @[Buffer.scala:40:9] assign auto_out_c_bits_size_0 = nodeOut_c_bits_size; // @[Buffer.scala:40:9] assign auto_out_c_bits_source_0 = nodeOut_c_bits_source; // @[Buffer.scala:40:9] assign auto_out_c_bits_address_0 = nodeOut_c_bits_address; // @[Buffer.scala:40:9] assign auto_out_c_bits_data_0 = nodeOut_c_bits_data; // @[Buffer.scala:40:9] assign auto_out_c_bits_corrupt_0 = nodeOut_c_bits_corrupt; // @[Buffer.scala:40:9] assign auto_out_d_ready_0 = nodeOut_d_ready; // @[Buffer.scala:40:9] assign auto_out_e_valid_0 = nodeOut_e_valid; // @[Buffer.scala:40:9] assign auto_out_e_bits_sink_0 = nodeOut_e_bits_sink; // @[Buffer.scala:40:9] TLMonitor_50 monitor ( // @[Nodes.scala:27:25] .clock (clock), .reset (reset), .io_in_a_ready (nodeIn_a_ready), // @[MixedNode.scala:551:17] .io_in_a_valid (nodeIn_a_valid), // @[MixedNode.scala:551:17] .io_in_a_bits_opcode (nodeIn_a_bits_opcode), // @[MixedNode.scala:551:17] .io_in_a_bits_param (nodeIn_a_bits_param), // @[MixedNode.scala:551:17] .io_in_a_bits_size (nodeIn_a_bits_size), // @[MixedNode.scala:551:17] .io_in_a_bits_source (nodeIn_a_bits_source), // @[MixedNode.scala:551:17] .io_in_a_bits_address (nodeIn_a_bits_address), // @[MixedNode.scala:551:17] .io_in_a_bits_mask (nodeIn_a_bits_mask), // @[MixedNode.scala:551:17] .io_in_a_bits_data (nodeIn_a_bits_data), // @[MixedNode.scala:551:17] .io_in_a_bits_corrupt (nodeIn_a_bits_corrupt), // @[MixedNode.scala:551:17] .io_in_b_ready (nodeIn_b_ready), // @[MixedNode.scala:551:17] .io_in_b_valid (nodeIn_b_valid), // @[MixedNode.scala:551:17] .io_in_b_bits_param (nodeIn_b_bits_param), // @[MixedNode.scala:551:17] .io_in_b_bits_source (nodeIn_b_bits_source), // @[MixedNode.scala:551:17] .io_in_b_bits_address (nodeIn_b_bits_address), // @[MixedNode.scala:551:17] .io_in_c_ready (nodeIn_c_ready), // @[MixedNode.scala:551:17] .io_in_c_valid (nodeIn_c_valid), // @[MixedNode.scala:551:17] .io_in_c_bits_opcode (nodeIn_c_bits_opcode), // @[MixedNode.scala:551:17] .io_in_c_bits_param (nodeIn_c_bits_param), // @[MixedNode.scala:551:17] .io_in_c_bits_size (nodeIn_c_bits_size), // @[MixedNode.scala:551:17] .io_in_c_bits_source (nodeIn_c_bits_source), // @[MixedNode.scala:551:17] .io_in_c_bits_address (nodeIn_c_bits_address), // @[MixedNode.scala:551:17] .io_in_c_bits_data (nodeIn_c_bits_data), // @[MixedNode.scala:551:17] .io_in_c_bits_corrupt (nodeIn_c_bits_corrupt), // @[MixedNode.scala:551:17] .io_in_d_ready (nodeIn_d_ready), // @[MixedNode.scala:551:17] .io_in_d_valid (nodeIn_d_valid), // @[MixedNode.scala:551:17] .io_in_d_bits_opcode (nodeIn_d_bits_opcode), // @[MixedNode.scala:551:17] .io_in_d_bits_param (nodeIn_d_bits_param), // @[MixedNode.scala:551:17] .io_in_d_bits_size (nodeIn_d_bits_size), // @[MixedNode.scala:551:17] .io_in_d_bits_source (nodeIn_d_bits_source), // @[MixedNode.scala:551:17] .io_in_d_bits_sink (nodeIn_d_bits_sink), // @[MixedNode.scala:551:17] .io_in_d_bits_denied (nodeIn_d_bits_denied), // @[MixedNode.scala:551:17] .io_in_d_bits_data (nodeIn_d_bits_data), // @[MixedNode.scala:551:17] .io_in_d_bits_corrupt (nodeIn_d_bits_corrupt), // @[MixedNode.scala:551:17] .io_in_e_valid (nodeIn_e_valid), // @[MixedNode.scala:551:17] .io_in_e_bits_sink (nodeIn_e_bits_sink) // @[MixedNode.scala:551:17] ); // @[Nodes.scala:27:25] Queue1_TLBundleA_a32d64s6k3z3c nodeOut_a_q ( // @[Decoupled.scala:362:21] .clock (clock), .reset (reset), .io_enq_ready (nodeIn_a_ready), .io_enq_valid (nodeIn_a_valid), // @[MixedNode.scala:551:17] .io_enq_bits_opcode (nodeIn_a_bits_opcode), // @[MixedNode.scala:551:17] .io_enq_bits_param (nodeIn_a_bits_param), // @[MixedNode.scala:551:17] .io_enq_bits_size (nodeIn_a_bits_size), // @[MixedNode.scala:551:17] .io_enq_bits_source (nodeIn_a_bits_source), // @[MixedNode.scala:551:17] .io_enq_bits_address (nodeIn_a_bits_address), // @[MixedNode.scala:551:17] .io_enq_bits_mask (nodeIn_a_bits_mask), // @[MixedNode.scala:551:17] .io_enq_bits_data (nodeIn_a_bits_data), // @[MixedNode.scala:551:17] .io_enq_bits_corrupt (nodeIn_a_bits_corrupt), // @[MixedNode.scala:551:17] .io_deq_ready (nodeOut_a_ready), // @[MixedNode.scala:542:17] .io_deq_valid (nodeOut_a_valid), .io_deq_bits_opcode (nodeOut_a_bits_opcode), .io_deq_bits_param (nodeOut_a_bits_param), .io_deq_bits_size (nodeOut_a_bits_size), .io_deq_bits_source (nodeOut_a_bits_source), .io_deq_bits_address (nodeOut_a_bits_address), .io_deq_bits_mask (nodeOut_a_bits_mask), .io_deq_bits_data (nodeOut_a_bits_data), .io_deq_bits_corrupt (nodeOut_a_bits_corrupt) ); // @[Decoupled.scala:362:21] Queue1_TLBundleD_a32d64s6k3z3c nodeIn_d_q ( // @[Decoupled.scala:362:21] .clock (clock), .reset (reset), .io_enq_ready (nodeOut_d_ready), .io_enq_valid (nodeOut_d_valid), // @[MixedNode.scala:542:17] .io_enq_bits_opcode (nodeOut_d_bits_opcode), // @[MixedNode.scala:542:17] .io_enq_bits_param (nodeOut_d_bits_param), // @[MixedNode.scala:542:17] .io_enq_bits_size (nodeOut_d_bits_size), // @[MixedNode.scala:542:17] .io_enq_bits_source (nodeOut_d_bits_source), // @[MixedNode.scala:542:17] .io_enq_bits_sink (nodeOut_d_bits_sink), // @[MixedNode.scala:542:17] .io_enq_bits_denied (nodeOut_d_bits_denied), // @[MixedNode.scala:542:17] .io_enq_bits_data (nodeOut_d_bits_data), // @[MixedNode.scala:542:17] .io_enq_bits_corrupt (nodeOut_d_bits_corrupt), // @[MixedNode.scala:542:17] .io_deq_ready (nodeIn_d_ready), // @[MixedNode.scala:551:17] .io_deq_valid (nodeIn_d_valid), .io_deq_bits_opcode (nodeIn_d_bits_opcode), .io_deq_bits_param (nodeIn_d_bits_param), .io_deq_bits_size (nodeIn_d_bits_size), .io_deq_bits_source (nodeIn_d_bits_source), .io_deq_bits_sink (nodeIn_d_bits_sink), .io_deq_bits_denied (nodeIn_d_bits_denied), .io_deq_bits_data (nodeIn_d_bits_data), .io_deq_bits_corrupt (nodeIn_d_bits_corrupt) ); // @[Decoupled.scala:362:21] assign auto_in_a_ready = auto_in_a_ready_0; // @[Buffer.scala:40:9] assign auto_in_b_valid = auto_in_b_valid_0; // @[Buffer.scala:40:9] assign auto_in_b_bits_param = auto_in_b_bits_param_0; // @[Buffer.scala:40:9] assign auto_in_b_bits_source = auto_in_b_bits_source_0; // @[Buffer.scala:40:9] assign auto_in_b_bits_address = auto_in_b_bits_address_0; // @[Buffer.scala:40:9] assign auto_in_c_ready = auto_in_c_ready_0; // @[Buffer.scala:40:9] assign auto_in_d_valid = auto_in_d_valid_0; // @[Buffer.scala:40:9] assign auto_in_d_bits_opcode = auto_in_d_bits_opcode_0; // @[Buffer.scala:40:9] assign auto_in_d_bits_param = auto_in_d_bits_param_0; // @[Buffer.scala:40:9] assign auto_in_d_bits_size = auto_in_d_bits_size_0; // @[Buffer.scala:40:9] assign auto_in_d_bits_source = auto_in_d_bits_source_0; // @[Buffer.scala:40:9] assign auto_in_d_bits_sink = auto_in_d_bits_sink_0; // @[Buffer.scala:40:9] assign auto_in_d_bits_denied = auto_in_d_bits_denied_0; // @[Buffer.scala:40:9] assign auto_in_d_bits_data = auto_in_d_bits_data_0; // @[Buffer.scala:40:9] assign auto_in_d_bits_corrupt = auto_in_d_bits_corrupt_0; // @[Buffer.scala:40:9] assign auto_out_a_valid = auto_out_a_valid_0; // @[Buffer.scala:40:9] assign auto_out_a_bits_opcode = auto_out_a_bits_opcode_0; // @[Buffer.scala:40:9] assign auto_out_a_bits_param = auto_out_a_bits_param_0; // @[Buffer.scala:40:9] assign auto_out_a_bits_size = auto_out_a_bits_size_0; // @[Buffer.scala:40:9] assign auto_out_a_bits_source = auto_out_a_bits_source_0; // @[Buffer.scala:40:9] assign auto_out_a_bits_address = auto_out_a_bits_address_0; // @[Buffer.scala:40:9] assign auto_out_a_bits_mask = auto_out_a_bits_mask_0; // @[Buffer.scala:40:9] assign auto_out_a_bits_data = auto_out_a_bits_data_0; // @[Buffer.scala:40:9] assign auto_out_a_bits_corrupt = auto_out_a_bits_corrupt_0; // @[Buffer.scala:40:9] assign auto_out_b_ready = auto_out_b_ready_0; // @[Buffer.scala:40:9] assign auto_out_c_valid = auto_out_c_valid_0; // @[Buffer.scala:40:9] assign auto_out_c_bits_opcode = auto_out_c_bits_opcode_0; // @[Buffer.scala:40:9] assign auto_out_c_bits_param = auto_out_c_bits_param_0; // @[Buffer.scala:40:9] assign auto_out_c_bits_size = auto_out_c_bits_size_0; // @[Buffer.scala:40:9] assign auto_out_c_bits_source = auto_out_c_bits_source_0; // @[Buffer.scala:40:9] assign auto_out_c_bits_address = auto_out_c_bits_address_0; // @[Buffer.scala:40:9] assign auto_out_c_bits_data = auto_out_c_bits_data_0; // @[Buffer.scala:40:9] assign auto_out_c_bits_corrupt = auto_out_c_bits_corrupt_0; // @[Buffer.scala:40:9] assign auto_out_d_ready = auto_out_d_ready_0; // @[Buffer.scala:40:9] assign auto_out_e_valid = auto_out_e_valid_0; // @[Buffer.scala:40:9] assign auto_out_e_bits_sink = auto_out_e_bits_sink_0; // @[Buffer.scala:40:9] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Monitor.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceLine import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import freechips.rocketchip.diplomacy.EnableMonitors import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode} import freechips.rocketchip.util.PlusArg case class TLMonitorArgs(edge: TLEdge) abstract class TLMonitorBase(args: TLMonitorArgs) extends Module { val io = IO(new Bundle { val in = Input(new TLBundle(args.edge.bundle)) }) def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit legalize(io.in, args.edge, reset) } object TLMonitor { def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = { if (enable) { EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) } } else { node } } } class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args) { require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal)) val cover_prop_class = PropertyClass.Default //Like assert but can flip to being an assumption for formal verification def monAssert(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir, cond, message, PropertyClass.Default) } def assume(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir.flip, cond, message, PropertyClass.Default) } def extra = { args.edge.sourceInfo match { case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)" case _ => "" } } def visible(address: UInt, source: UInt, edge: TLEdge) = edge.client.clients.map { c => !c.sourceId.contains(source) || c.visibility.map(_.contains(address)).reduce(_ || _) }.reduce(_ && _) def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = { //switch this flag to turn on diplomacy in error messages def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n" monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra) // Reuse these subexpressions to save some firrtl lines val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility") //The monitor doesn’t check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B //TODO: check for acquireT? when (bundle.opcode === TLMessages.AcquireBlock) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra) } when (bundle.opcode === TLMessages.AcquirePerm) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra) monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra) monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra) monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra) } } def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = { monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra) monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility") // Reuse these subexpressions to save some firrtl lines val address_ok = edge.manager.containsSafe(edge.address(bundle)) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source when (bundle.opcode === TLMessages.Probe) { assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra) assume (address_ok, "'B' channel Probe carries unmanaged address" + extra) assume (legal_source, "'B' channel Probe carries source that is not first source" + extra) assume (is_aligned, "'B' channel Probe address not aligned to size" + extra) assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra) assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra) assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra) monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra) monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra) monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra) monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra) } } def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = { monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val address_ok = edge.manager.containsSafe(edge.address(bundle)) monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility") when (bundle.opcode === TLMessages.ProbeAck) { monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra) } when (bundle.opcode === TLMessages.ProbeAckData) { monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.Release) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra) monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra) } when (bundle.opcode === TLMessages.ReleaseData) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.AccessAck) { monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra) } when (bundle.opcode === TLMessages.HintAck) { monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra) } } def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = { assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val sink_ok = bundle.sink < edge.manager.endSinkId.U val deny_put_ok = edge.manager.mayDenyPut.B val deny_get_ok = edge.manager.mayDenyGet.B when (bundle.opcode === TLMessages.ReleaseAck) { assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra) assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra) assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra) } when (bundle.opcode === TLMessages.Grant) { assume (source_ok, "'D' channel Grant carries invalid source ID" + extra) assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra) assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra) } when (bundle.opcode === TLMessages.GrantData) { assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra) assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra) } when (bundle.opcode === TLMessages.AccessAck) { assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra) } when (bundle.opcode === TLMessages.HintAck) { assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra) } } def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = { val sink_ok = bundle.sink < edge.manager.endSinkId.U monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra) } def legalizeFormat(bundle: TLBundle, edge: TLEdge) = { when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) } when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) } when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) } when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) } } else { monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra) monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra) monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra) } } def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = { val a_first = edge.first(a.bits, a.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (a.valid && !a_first) { monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra) monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra) monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra) monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra) monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra) } when (a.fire && a_first) { opcode := a.bits.opcode param := a.bits.param size := a.bits.size source := a.bits.source address := a.bits.address } } def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = { val b_first = edge.first(b.bits, b.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (b.valid && !b_first) { monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra) monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra) monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra) monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra) monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra) } when (b.fire && b_first) { opcode := b.bits.opcode param := b.bits.param size := b.bits.size source := b.bits.source address := b.bits.address } } def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = { // Symbolic variable val sym_source = Wire(UInt(edge.client.endSourceId.W)) // TODO: Connect sym_source to a fixed value for simulation and to a // free wire in formal sym_source := 0.U // Type casting Int to UInt val maxSourceId = Wire(UInt(edge.client.endSourceId.W)) maxSourceId := edge.client.endSourceId.U // Delayed verison of sym_source val sym_source_d = Reg(UInt(edge.client.endSourceId.W)) sym_source_d := sym_source // These will be constraints for FV setup Property( MonitorDirection.Monitor, (sym_source === sym_source_d), "sym_source should remain stable", PropertyClass.Default) Property( MonitorDirection.Monitor, (sym_source <= maxSourceId), "sym_source should take legal value", PropertyClass.Default) val my_resp_pend = RegInit(false.B) val my_opcode = Reg(UInt()) val my_size = Reg(UInt()) val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire) val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire) val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source) val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source) val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat) val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend) when (my_set_resp_pend) { my_resp_pend := true.B } .elsewhen (my_clr_resp_pend) { my_resp_pend := false.B } when (my_a_first_beat) { my_opcode := bundle.a.bits.opcode my_size := bundle.a.bits.size } val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size) val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode) val my_resp_opcode_legal = Wire(Bool()) when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) || (my_resp_opcode === TLMessages.LogicalData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData) } .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck) } .otherwise { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck) } monAssert (IfThen(my_resp_pend, !my_a_first_beat), "Request message should not be sent with a source ID, for which a response message" + "is already pending (not received until current cycle) for a prior request message" + "with the same source ID" + extra) assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)), "Response message should be accepted with a source ID only if a request message with the" + "same source ID has been accepted or is being accepted in the current cycle" + extra) assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)), "Response message should be sent with a source ID only if a request message with the" + "same source ID has been accepted or is being sent in the current cycle" + extra) assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)), "If d_valid is 1, then d_size should be same as a_size of the corresponding request" + "message" + extra) assume (IfThen(my_d_first_beat, my_resp_opcode_legal), "If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" + "request message" + extra) } def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = { val c_first = edge.first(c.bits, c.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (c.valid && !c_first) { monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra) monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra) monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra) monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra) monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra) } when (c.fire && c_first) { opcode := c.bits.opcode param := c.bits.param size := c.bits.size source := c.bits.source address := c.bits.address } } def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = { val d_first = edge.first(d.bits, d.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val sink = Reg(UInt()) val denied = Reg(Bool()) when (d.valid && !d_first) { assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra) assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra) assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra) assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra) assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra) assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra) } when (d.fire && d_first) { opcode := d.bits.opcode param := d.bits.param size := d.bits.size source := d.bits.source sink := d.bits.sink denied := d.bits.denied } } def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = { legalizeMultibeatA(bundle.a, edge) legalizeMultibeatD(bundle.d, edge) if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { legalizeMultibeatB(bundle.b, edge) legalizeMultibeatC(bundle.c, edge) } } //This is left in for almond which doesn't adhere to the tilelink protocol @deprecated("Use legalizeADSource instead if possible","") def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.client.endSourceId.W)) val a_first = edge.first(bundle.a.bits, bundle.a.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val a_set = WireInit(0.U(edge.client.endSourceId.W)) when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra) } if (edge.manager.minLatency > 0) { assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = { val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size) val log_a_size_bus_size = log2Ceil(a_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error inflight.suggestName("inflight") val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) inflight_opcodes.suggestName("inflight_opcodes") val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) inflight_sizes.suggestName("inflight_sizes") val a_first = edge.first(bundle.a.bits, bundle.a.fire) a_first.suggestName("a_first") val d_first = edge.first(bundle.d.bits, bundle.d.fire) d_first.suggestName("d_first") val a_set = WireInit(0.U(edge.client.endSourceId.W)) val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) a_set.suggestName("a_set") a_set_wo_ready.suggestName("a_set_wo_ready") val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) a_opcodes_set.suggestName("a_opcodes_set") val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) a_sizes_set.suggestName("a_sizes_set") val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W)) a_opcode_lookup.suggestName("a_opcode_lookup") a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W)) a_size_lookup.suggestName("a_size_lookup") a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant)) val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant)) val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W)) a_opcodes_set_interm.suggestName("a_opcodes_set_interm") val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W)) a_sizes_set_interm.suggestName("a_sizes_set_interm") when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) { a_set_wo_ready := UIntToOH(bundle.a.bits.source) } when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U) a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U) monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) d_opcodes_clr.suggestName("d_opcodes_clr") val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) || (bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra) assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) || (bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra) assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) { assume((!bundle.d.ready) || bundle.a.ready, "ready check") } if (edge.manager.minLatency > 0) { assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = { val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size) val log_c_size_bus_size = log2Ceil(c_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) inflight.suggestName("inflight") inflight_opcodes.suggestName("inflight_opcodes") inflight_sizes.suggestName("inflight_sizes") val c_first = edge.first(bundle.c.bits, bundle.c.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) c_first.suggestName("c_first") d_first.suggestName("d_first") val c_set = WireInit(0.U(edge.client.endSourceId.W)) val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) c_set.suggestName("c_set") c_set_wo_ready.suggestName("c_set_wo_ready") c_opcodes_set.suggestName("c_opcodes_set") c_sizes_set.suggestName("c_sizes_set") val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W)) val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W)) c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U c_opcode_lookup.suggestName("c_opcode_lookup") c_size_lookup.suggestName("c_size_lookup") val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W)) val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W)) c_opcodes_set_interm.suggestName("c_opcodes_set_interm") c_sizes_set_interm.suggestName("c_sizes_set_interm") when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) { c_set_wo_ready := UIntToOH(bundle.c.bits.source) } when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) { c_set := UIntToOH(bundle.c.bits.source) c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U) c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U) monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra) } val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") d_opcodes_clr.suggestName("d_opcodes_clr") d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) { assume((!bundle.d.ready) || bundle.c.ready, "ready check") } if (edge.manager.minLatency > 0) { when (c_set_wo_ready.orR) { assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra) } } inflight := (inflight | c_set) & ~d_clr inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.manager.endSinkId.W)) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val e_first = true.B val d_set = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) { d_set := UIntToOH(bundle.d.bits.sink) assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra) } val e_clr = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) { e_clr := UIntToOH(bundle.e.bits.sink) monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra) } // edge.client.minLatency applies to BC, not DE inflight := (inflight | d_set) & ~e_clr } def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = { val sourceBits = log2Ceil(edge.client.endSourceId) val tooBig = 14 // >16kB worth of flight information gets to be too much if (sourceBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked") } else { if (args.edge.params(TestplanTestType).simulation) { if (args.edge.params(TLMonitorStrictMode)) { legalizeADSource(bundle, edge) legalizeCDSource(bundle, edge) } else { legalizeADSourceOld(bundle, edge) } } if (args.edge.params(TestplanTestType).formal) { legalizeADSourceFormal(bundle, edge) } } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { // legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize... val sinkBits = log2Ceil(edge.manager.endSinkId) if (sinkBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked") } else { legalizeDESink(bundle, edge) } } } def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = { legalizeFormat (bundle, edge) legalizeMultibeat (bundle, edge) legalizeUnique (bundle, edge) } } File Misc.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ import chisel3.util.random.LFSR import org.chipsalliance.cde.config.Parameters import scala.math._ class ParameterizedBundle(implicit p: Parameters) extends Bundle trait Clocked extends Bundle { val clock = Clock() val reset = Bool() } object DecoupledHelper { def apply(rvs: Bool*) = new DecoupledHelper(rvs) } class DecoupledHelper(val rvs: Seq[Bool]) { def fire(exclude: Bool, includes: Bool*) = { require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!") (rvs.filter(_ ne exclude) ++ includes).reduce(_ && _) } def fire() = { rvs.reduce(_ && _) } } object MuxT { def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2)) def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3)) def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4)) } /** Creates a cascade of n MuxTs to search for a key value. */ object MuxTLookup { def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } } object ValidMux { def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = { apply(v1 +: v2.toSeq) } def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = { val out = Wire(Valid(valids.head.bits.cloneType)) out.valid := valids.map(_.valid).reduce(_ || _) out.bits := MuxCase(valids.head.bits, valids.map(v => (v.valid -> v.bits))) out } } object Str { def apply(s: String): UInt = { var i = BigInt(0) require(s.forall(validChar _)) for (c <- s) i = (i << 8) | c i.U((s.length*8).W) } def apply(x: Char): UInt = { require(validChar(x)) x.U(8.W) } def apply(x: UInt): UInt = apply(x, 10) def apply(x: UInt, radix: Int): UInt = { val rad = radix.U val w = x.getWidth require(w > 0) var q = x var s = digit(q % rad) for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s) } s } def apply(x: SInt): UInt = apply(x, 10) def apply(x: SInt, radix: Int): UInt = { val neg = x < 0.S val abs = x.abs.asUInt if (radix != 10) { Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix)) } else { val rad = radix.U val w = abs.getWidth require(w > 0) var q = abs var s = digit(q % rad) var needSign = neg for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad val placeSpace = q === 0.U val space = Mux(needSign, Str('-'), Str(' ')) needSign = needSign && !placeSpace s = Cat(Mux(placeSpace, space, digit(q % rad)), s) } Cat(Mux(needSign, Str('-'), Str(' ')), s) } } private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0) private def validChar(x: Char) = x == (x & 0xFF) } object Split { def apply(x: UInt, n0: Int) = { val w = x.getWidth (x.extract(w-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n2: Int, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } } object Random { def apply(mod: Int, random: UInt): UInt = { if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0) else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod)) } def apply(mod: Int): UInt = apply(mod, randomizer) def oneHot(mod: Int, random: UInt): UInt = { if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0)) else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt } def oneHot(mod: Int): UInt = oneHot(mod, randomizer) private def randomizer = LFSR(16) private def partition(value: UInt, slices: Int) = Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U) } object Majority { def apply(in: Set[Bool]): Bool = { val n = (in.size >> 1) + 1 val clauses = in.subsets(n).map(_.reduce(_ && _)) clauses.reduce(_ || _) } def apply(in: Seq[Bool]): Bool = apply(in.toSet) def apply(in: UInt): Bool = apply(in.asBools.toSet) } object PopCountAtLeast { private def two(x: UInt): (Bool, Bool) = x.getWidth match { case 1 => (x.asBool, false.B) case n => val half = x.getWidth / 2 val (leftOne, leftTwo) = two(x(half - 1, 0)) val (rightOne, rightTwo) = two(x(x.getWidth - 1, half)) (leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne)) } def apply(x: UInt, n: Int): Bool = n match { case 0 => true.B case 1 => x.orR case 2 => two(x)._2 case 3 => PopCount(x) >= n.U } } // This gets used everywhere, so make the smallest circuit possible ... // Given an address and size, create a mask of beatBytes size // eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111 // groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01 object MaskGen { def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = { require (groupBy >= 1 && beatBytes >= groupBy) require (isPow2(beatBytes) && isPow2(groupBy)) val lgBytes = log2Ceil(beatBytes) val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U def helper(i: Int): Seq[(Bool, Bool)] = { if (i == 0) { Seq((lgSize >= lgBytes.asUInt, true.B)) } else { val sub = helper(i-1) val size = sizeOH(lgBytes - i) val bit = addr_lo(lgBytes - i) val nbit = !bit Seq.tabulate (1 << i) { j => val (sub_acc, sub_eq) = sub(j/2) val eq = sub_eq && (if (j % 2 == 1) bit else nbit) val acc = sub_acc || (size && eq) (acc, eq) } } } if (groupBy == beatBytes) 1.U else Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse) } } File PlusArg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.experimental._ import chisel3.util.HasBlackBoxResource @deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05") case class PlusArgInfo(default: BigInt, docstring: String) /** Case class for PlusArg information * * @tparam A scala type of the PlusArg value * @param default optional default value * @param docstring text to include in the help * @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT) */ private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String) /** Typeclass for converting a type to a doctype string * @tparam A some type */ trait Doctypeable[A] { /** Return the doctype string for some option */ def toDoctype(a: Option[A]): String } /** Object containing implementations of the Doctypeable typeclass */ object Doctypes { /** Converts an Int => "INT" */ implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" } /** Converts a BigInt => "INT" */ implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" } /** Converts a String => "STRING" */ implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" } } class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map( "FORMAT" -> StringParam(format), "DEFAULT" -> IntParam(default), "WIDTH" -> IntParam(width) )) with HasBlackBoxResource { val io = IO(new Bundle { val out = Output(UInt(width.W)) }) addResource("/vsrc/plusarg_reader.v") } /* This wrapper class has no outputs, making it clear it is a simulation-only construct */ class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module { val io = IO(new Bundle { val count = Input(UInt(width.W)) }) val max = Module(new plusarg_reader(format, default, docstring, width)).io.out when (max > 0.U) { assert (io.count < max, s"Timeout exceeded: $docstring") } } import Doctypes._ object PlusArg { /** PlusArg("foo") will return 42.U if the simulation is run with +foo=42 * Do not use this as an initial register value. The value is set in an * initial block and thus accessing it from another initial is racey. * Add a docstring to document the arg, which can be dumped in an elaboration * pass. */ def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out } /** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert * to kill the simulation when count exceeds the specified integer argument. * Default 0 will never assert. */ def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count } } object PlusArgArtefacts { private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty /* Add a new PlusArg */ @deprecated( "Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05" ) def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring) /** Add a new PlusArg * * @tparam A scala type of the PlusArg value * @param name name for the PlusArg * @param default optional default value * @param docstring text to include in the help */ def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit = artefacts = artefacts ++ Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default))) /* From plus args, generate help text */ private def serializeHelp_cHeader(tab: String = ""): String = artefacts .map{ case(arg, info) => s"""|$tab+$arg=${info.doctype}\\n\\ |$tab${" "*20}${info.docstring}\\n\\ |""".stripMargin ++ info.default.map{ case default => s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("") }.toSeq.mkString("\\n\\\n") ++ "\"" /* From plus args, generate a char array of their names */ private def serializeArray_cHeader(tab: String = ""): String = { val prettyTab = tab + " " * 44 // Length of 'static const ...' s"${tab}static const char * verilog_plusargs [] = {\\\n" ++ artefacts .map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" } .mkString("")++ s"${prettyTab}0};" } /* Generate C code to be included in emulator.cc that helps with * argument parsing based on available Verilog PlusArgs */ def serialize_cHeader(): String = s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\ |${serializeHelp_cHeader(" "*7)} |${serializeArray_cHeader()} |""".stripMargin } File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag } File Bundles.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import freechips.rocketchip.util._ import scala.collection.immutable.ListMap import chisel3.util.Decoupled import chisel3.util.DecoupledIO import chisel3.reflect.DataMirror abstract class TLBundleBase(val params: TLBundleParameters) extends Bundle // common combos in lazy policy: // Put + Acquire // Release + AccessAck object TLMessages { // A B C D E def PutFullData = 0.U // . . => AccessAck def PutPartialData = 1.U // . . => AccessAck def ArithmeticData = 2.U // . . => AccessAckData def LogicalData = 3.U // . . => AccessAckData def Get = 4.U // . . => AccessAckData def Hint = 5.U // . . => HintAck def AcquireBlock = 6.U // . => Grant[Data] def AcquirePerm = 7.U // . => Grant[Data] def Probe = 6.U // . => ProbeAck[Data] def AccessAck = 0.U // . . def AccessAckData = 1.U // . . def HintAck = 2.U // . . def ProbeAck = 4.U // . def ProbeAckData = 5.U // . def Release = 6.U // . => ReleaseAck def ReleaseData = 7.U // . => ReleaseAck def Grant = 4.U // . => GrantAck def GrantData = 5.U // . => GrantAck def ReleaseAck = 6.U // . def GrantAck = 0.U // . def isA(x: UInt) = x <= AcquirePerm def isB(x: UInt) = x <= Probe def isC(x: UInt) = x <= ReleaseData def isD(x: UInt) = x <= ReleaseAck def adResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, Grant, Grant) def bcResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, ProbeAck, ProbeAck) def a = Seq( ("PutFullData",TLPermissions.PermMsgReserved), ("PutPartialData",TLPermissions.PermMsgReserved), ("ArithmeticData",TLAtomics.ArithMsg), ("LogicalData",TLAtomics.LogicMsg), ("Get",TLPermissions.PermMsgReserved), ("Hint",TLHints.HintsMsg), ("AcquireBlock",TLPermissions.PermMsgGrow), ("AcquirePerm",TLPermissions.PermMsgGrow)) def b = Seq( ("PutFullData",TLPermissions.PermMsgReserved), ("PutPartialData",TLPermissions.PermMsgReserved), ("ArithmeticData",TLAtomics.ArithMsg), ("LogicalData",TLAtomics.LogicMsg), ("Get",TLPermissions.PermMsgReserved), ("Hint",TLHints.HintsMsg), ("Probe",TLPermissions.PermMsgCap)) def c = Seq( ("AccessAck",TLPermissions.PermMsgReserved), ("AccessAckData",TLPermissions.PermMsgReserved), ("HintAck",TLPermissions.PermMsgReserved), ("Invalid Opcode",TLPermissions.PermMsgReserved), ("ProbeAck",TLPermissions.PermMsgReport), ("ProbeAckData",TLPermissions.PermMsgReport), ("Release",TLPermissions.PermMsgReport), ("ReleaseData",TLPermissions.PermMsgReport)) def d = Seq( ("AccessAck",TLPermissions.PermMsgReserved), ("AccessAckData",TLPermissions.PermMsgReserved), ("HintAck",TLPermissions.PermMsgReserved), ("Invalid Opcode",TLPermissions.PermMsgReserved), ("Grant",TLPermissions.PermMsgCap), ("GrantData",TLPermissions.PermMsgCap), ("ReleaseAck",TLPermissions.PermMsgReserved)) } /** * The three primary TileLink permissions are: * (T)runk: the agent is (or is on inwards path to) the global point of serialization. * (B)ranch: the agent is on an outwards path to * (N)one: * These permissions are permuted by transfer operations in various ways. * Operations can cap permissions, request for them to be grown or shrunk, * or for a report on their current status. */ object TLPermissions { val aWidth = 2 val bdWidth = 2 val cWidth = 3 // Cap types (Grant = new permissions, Probe = permisions <= target) def toT = 0.U(bdWidth.W) def toB = 1.U(bdWidth.W) def toN = 2.U(bdWidth.W) def isCap(x: UInt) = x <= toN // Grow types (Acquire = permissions >= target) def NtoB = 0.U(aWidth.W) def NtoT = 1.U(aWidth.W) def BtoT = 2.U(aWidth.W) def isGrow(x: UInt) = x <= BtoT // Shrink types (ProbeAck, Release) def TtoB = 0.U(cWidth.W) def TtoN = 1.U(cWidth.W) def BtoN = 2.U(cWidth.W) def isShrink(x: UInt) = x <= BtoN // Report types (ProbeAck, Release) def TtoT = 3.U(cWidth.W) def BtoB = 4.U(cWidth.W) def NtoN = 5.U(cWidth.W) def isReport(x: UInt) = x <= NtoN def PermMsgGrow:Seq[String] = Seq("Grow NtoB", "Grow NtoT", "Grow BtoT") def PermMsgCap:Seq[String] = Seq("Cap toT", "Cap toB", "Cap toN") def PermMsgReport:Seq[String] = Seq("Shrink TtoB", "Shrink TtoN", "Shrink BtoN", "Report TotT", "Report BtoB", "Report NtoN") def PermMsgReserved:Seq[String] = Seq("Reserved") } object TLAtomics { val width = 3 // Arithmetic types def MIN = 0.U(width.W) def MAX = 1.U(width.W) def MINU = 2.U(width.W) def MAXU = 3.U(width.W) def ADD = 4.U(width.W) def isArithmetic(x: UInt) = x <= ADD // Logical types def XOR = 0.U(width.W) def OR = 1.U(width.W) def AND = 2.U(width.W) def SWAP = 3.U(width.W) def isLogical(x: UInt) = x <= SWAP def ArithMsg:Seq[String] = Seq("MIN", "MAX", "MINU", "MAXU", "ADD") def LogicMsg:Seq[String] = Seq("XOR", "OR", "AND", "SWAP") } object TLHints { val width = 1 def PREFETCH_READ = 0.U(width.W) def PREFETCH_WRITE = 1.U(width.W) def isHints(x: UInt) = x <= PREFETCH_WRITE def HintsMsg:Seq[String] = Seq("PrefetchRead", "PrefetchWrite") } sealed trait TLChannel extends TLBundleBase { val channelName: String } sealed trait TLDataChannel extends TLChannel sealed trait TLAddrChannel extends TLDataChannel final class TLBundleA(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleA_${params.shortName}" val channelName = "'A' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(List(TLAtomics.width, TLPermissions.aWidth, TLHints.width).max.W) // amo_opcode || grow perms || hint val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // from val address = UInt(params.addressBits.W) // to val user = BundleMap(params.requestFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val mask = UInt((params.dataBits/8).W) val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleB(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleB_${params.shortName}" val channelName = "'B' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.bdWidth.W) // cap perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // to val address = UInt(params.addressBits.W) // from // variable fields during multibeat: val mask = UInt((params.dataBits/8).W) val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleC(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleC_${params.shortName}" val channelName = "'C' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.cWidth.W) // shrink or report perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // from val address = UInt(params.addressBits.W) // to val user = BundleMap(params.requestFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleD(params: TLBundleParameters) extends TLBundleBase(params) with TLDataChannel { override def typeName = s"TLBundleD_${params.shortName}" val channelName = "'D' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.bdWidth.W) // cap perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // to val sink = UInt(params.sinkBits.W) // from val denied = Bool() // implies corrupt iff *Data val user = BundleMap(params.responseFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleE(params: TLBundleParameters) extends TLBundleBase(params) with TLChannel { override def typeName = s"TLBundleE_${params.shortName}" val channelName = "'E' channel" val sink = UInt(params.sinkBits.W) // to } class TLBundle(val params: TLBundleParameters) extends Record { // Emulate a Bundle with elements abcde or ad depending on params.hasBCE private val optA = Some (Decoupled(new TLBundleA(params))) private val optB = params.hasBCE.option(Flipped(Decoupled(new TLBundleB(params)))) private val optC = params.hasBCE.option(Decoupled(new TLBundleC(params))) private val optD = Some (Flipped(Decoupled(new TLBundleD(params)))) private val optE = params.hasBCE.option(Decoupled(new TLBundleE(params))) def a: DecoupledIO[TLBundleA] = optA.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleA(params))))) def b: DecoupledIO[TLBundleB] = optB.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleB(params))))) def c: DecoupledIO[TLBundleC] = optC.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleC(params))))) def d: DecoupledIO[TLBundleD] = optD.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleD(params))))) def e: DecoupledIO[TLBundleE] = optE.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleE(params))))) val elements = if (params.hasBCE) ListMap("e" -> e, "d" -> d, "c" -> c, "b" -> b, "a" -> a) else ListMap("d" -> d, "a" -> a) def tieoff(): Unit = { DataMirror.specifiedDirectionOf(a.ready) match { case SpecifiedDirection.Input => a.ready := false.B c.ready := false.B e.ready := false.B b.valid := false.B d.valid := false.B case SpecifiedDirection.Output => a.valid := false.B c.valid := false.B e.valid := false.B b.ready := false.B d.ready := false.B case _ => } } } object TLBundle { def apply(params: TLBundleParameters) = new TLBundle(params) } class TLAsyncBundleBase(val params: TLAsyncBundleParameters) extends Bundle class TLAsyncBundle(params: TLAsyncBundleParameters) extends TLAsyncBundleBase(params) { val a = new AsyncBundle(new TLBundleA(params.base), params.async) val b = Flipped(new AsyncBundle(new TLBundleB(params.base), params.async)) val c = new AsyncBundle(new TLBundleC(params.base), params.async) val d = Flipped(new AsyncBundle(new TLBundleD(params.base), params.async)) val e = new AsyncBundle(new TLBundleE(params.base), params.async) } class TLRationalBundle(params: TLBundleParameters) extends TLBundleBase(params) { val a = RationalIO(new TLBundleA(params)) val b = Flipped(RationalIO(new TLBundleB(params))) val c = RationalIO(new TLBundleC(params)) val d = Flipped(RationalIO(new TLBundleD(params))) val e = RationalIO(new TLBundleE(params)) } class TLCreditedBundle(params: TLBundleParameters) extends TLBundleBase(params) { val a = CreditedIO(new TLBundleA(params)) val b = Flipped(CreditedIO(new TLBundleB(params))) val c = CreditedIO(new TLBundleC(params)) val d = Flipped(CreditedIO(new TLBundleD(params))) val e = CreditedIO(new TLBundleE(params)) } File Parameters.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.diplomacy import chisel3._ import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor} import freechips.rocketchip.util.ShiftQueue /** Options for describing the attributes of memory regions */ object RegionType { // Define the 'more relaxed than' ordering val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS) sealed trait T extends Ordered[T] { def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this) } case object CACHED extends T // an intermediate agent may have cached a copy of the region for you case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively } // A non-empty half-open range; [start, end) case class IdRange(start: Int, end: Int) extends Ordered[IdRange] { require (start >= 0, s"Ids cannot be negative, but got: $start.") require (start <= end, "Id ranges cannot be negative.") def compare(x: IdRange) = { val primary = (this.start - x.start).signum val secondary = (x.end - this.end).signum if (primary != 0) primary else secondary } def overlaps(x: IdRange) = start < x.end && x.start < end def contains(x: IdRange) = start <= x.start && x.end <= end def contains(x: Int) = start <= x && x < end def contains(x: UInt) = if (size == 0) { false.B } else if (size == 1) { // simple comparison x === start.U } else { // find index of largest different bit val largestDeltaBit = log2Floor(start ^ (end-1)) val smallestCommonBit = largestDeltaBit + 1 // may not exist in x val uncommonMask = (1 << smallestCommonBit) - 1 val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0) // the prefix must match exactly (note: may shift ALL bits away) (x >> smallestCommonBit) === (start >> smallestCommonBit).U && // firrtl constant prop range analysis can eliminate these two: (start & uncommonMask).U <= uncommonBits && uncommonBits <= ((end-1) & uncommonMask).U } def shift(x: Int) = IdRange(start+x, end+x) def size = end - start def isEmpty = end == start def range = start until end } object IdRange { def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else { val ranges = s.sorted (ranges.tail zip ranges.init) find { case (a, b) => a overlaps b } } } // An potentially empty inclusive range of 2-powers [min, max] (in bytes) case class TransferSizes(min: Int, max: Int) { def this(x: Int) = this(x, x) require (min <= max, s"Min transfer $min > max transfer $max") require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)") require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max") require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min") require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)") def none = min == 0 def contains(x: Int) = isPow2(x) && min <= x && x <= max def containsLg(x: Int) = contains(1 << x) def containsLg(x: UInt) = if (none) false.B else if (min == max) { log2Ceil(min).U === x } else { log2Ceil(min).U <= x && x <= log2Ceil(max).U } def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max) def intersect(x: TransferSizes) = if (x.max < min || max < x.min) TransferSizes.none else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max)) // Not a union, because the result may contain sizes contained by neither term // NOT TO BE CONFUSED WITH COVERPOINTS def mincover(x: TransferSizes) = { if (none) { x } else if (x.none) { this } else { TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max)) } } override def toString() = "TransferSizes[%d, %d]".format(min, max) } object TransferSizes { def apply(x: Int) = new TransferSizes(x) val none = new TransferSizes(0) def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _) def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _) implicit def asBool(x: TransferSizes) = !x.none } // AddressSets specify the address space managed by the manager // Base is the base address, and mask are the bits consumed by the manager // e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff // e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ... case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet] { // Forbid misaligned base address (and empty sets) require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}") require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous // We do allow negative mask (=> ignore all high bits) def contains(x: BigInt) = ((x ^ base) & ~mask) == 0 def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S // turn x into an address contained in this set def legalize(x: UInt): UInt = base.U | (mask.U & x) // overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1) def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0 // contains iff bitwise: x.mask => mask && contains(x.base) def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0 // The number of bytes to which the manager must be aligned def alignment = ((mask + 1) & ~mask) // Is this a contiguous memory range def contiguous = alignment == mask+1 def finite = mask >= 0 def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask } // Widen the match function to ignore all bits in imask def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask) // Return an AddressSet that only contains the addresses both sets contain def intersect(x: AddressSet): Option[AddressSet] = { if (!overlaps(x)) { None } else { val r_mask = mask & x.mask val r_base = base | x.base Some(AddressSet(r_base, r_mask)) } } def subtract(x: AddressSet): Seq[AddressSet] = { intersect(x) match { case None => Seq(this) case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit => val nmask = (mask & (bit-1)) | remove.mask val nbase = (remove.base ^ bit) & ~nmask AddressSet(nbase, nmask) } } } // AddressSets have one natural Ordering (the containment order, if contiguous) def compare(x: AddressSet) = { val primary = (this.base - x.base).signum // smallest address first val secondary = (x.mask - this.mask).signum // largest mask first if (primary != 0) primary else secondary } // We always want to see things in hex override def toString() = { if (mask >= 0) { "AddressSet(0x%x, 0x%x)".format(base, mask) } else { "AddressSet(0x%x, ~0x%x)".format(base, ~mask) } } def toRanges = { require (finite, "Ranges cannot be calculated on infinite mask") val size = alignment val fragments = mask & ~(size-1) val bits = bitIndexes(fragments) (BigInt(0) until (BigInt(1) << bits.size)).map { i => val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) } AddressRange(off, size) } } } object AddressSet { val everything = AddressSet(0, -1) def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = { if (size == 0) tail.reverse else { val maxBaseAlignment = base & (-base) // 0 for infinite (LSB) val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size val step = if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment) maxSizeAlignment else maxBaseAlignment misaligned(base+step, size-step, AddressSet(base, step-1) +: tail) } } def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = { // Pair terms up by ignoring 'bit' seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) => if (seq.size == 1) { seq.head // singleton -> unaffected } else { key.copy(mask = key.mask | bit) // pair - widen mask by bit } }.toList } def unify(seq: Seq[AddressSet]): Seq[AddressSet] = { val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _) AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted } def enumerateMask(mask: BigInt): Seq[BigInt] = { def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] = if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail) helper(0, Nil) } def enumerateBits(mask: BigInt): Seq[BigInt] = { def helper(x: BigInt): Seq[BigInt] = { if (x == 0) { Nil } else { val bit = x & (-x) bit +: helper(x & ~bit) } } helper(mask) } } case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean) { require (depth >= 0, "Buffer depth must be >= 0") def isDefined = depth > 0 def latency = if (isDefined && !flow) 1 else 0 def apply[T <: Data](x: DecoupledIO[T]) = if (isDefined) Queue(x, depth, flow=flow, pipe=pipe) else x def irrevocable[T <: Data](x: ReadyValidIO[T]) = if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe) else x def sq[T <: Data](x: DecoupledIO[T]) = if (!isDefined) x else { val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe)) sq.io.enq <> x sq.io.deq } override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "") } object BufferParams { implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false) val default = BufferParams(2) val none = BufferParams(0) val flow = BufferParams(1, true, false) val pipe = BufferParams(1, false, true) } case class TriStateValue(value: Boolean, set: Boolean) { def update(orig: Boolean) = if (set) value else orig } object TriStateValue { implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true) def unset = TriStateValue(false, false) } trait DirectedBuffers[T] { def copyIn(x: BufferParams): T def copyOut(x: BufferParams): T def copyInOut(x: BufferParams): T } trait IdMapEntry { def name: String def from: IdRange def to: IdRange def isCache: Boolean def requestFifo: Boolean def maxTransactionsInFlight: Option[Int] def pretty(fmt: String) = if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5 fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } else { fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } } abstract class IdMap[T <: IdMapEntry] { protected val fmt: String val mapping: Seq[T] def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n") } File Edges.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.util._ class TLEdge( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdgeParameters(client, manager, params, sourceInfo) { def isAligned(address: UInt, lgSize: UInt): Bool = { if (maxLgSize == 0) true.B else { val mask = UIntToOH1(lgSize, maxLgSize) (address & mask) === 0.U } } def mask(address: UInt, lgSize: UInt): UInt = MaskGen(address, lgSize, manager.beatBytes) def staticHasData(bundle: TLChannel): Option[Boolean] = { bundle match { case _:TLBundleA => { // Do there exist A messages with Data? val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial // Do there exist A messages without Data? val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint // Statically optimize the case where hasData is a constant if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None } case _:TLBundleB => { // Do there exist B messages with Data? val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial // Do there exist B messages without Data? val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint // Statically optimize the case where hasData is a constant if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None } case _:TLBundleC => { // Do there eixst C messages with Data? val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe // Do there exist C messages without Data? val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None } case _:TLBundleD => { // Do there eixst D messages with Data? val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB // Do there exist D messages without Data? val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None } case _:TLBundleE => Some(false) } } def isRequest(x: TLChannel): Bool = { x match { case a: TLBundleA => true.B case b: TLBundleB => true.B case c: TLBundleC => c.opcode(2) && c.opcode(1) // opcode === TLMessages.Release || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(2) && !d.opcode(1) // opcode === TLMessages.Grant || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } } def isResponse(x: TLChannel): Bool = { x match { case a: TLBundleA => false.B case b: TLBundleB => false.B case c: TLBundleC => !c.opcode(2) || !c.opcode(1) // opcode =/= TLMessages.Release && // opcode =/= TLMessages.ReleaseData case d: TLBundleD => true.B // Grant isResponse + isRequest case e: TLBundleE => true.B } } def hasData(x: TLChannel): Bool = { val opdata = x match { case a: TLBundleA => !a.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case b: TLBundleB => !b.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case c: TLBundleC => c.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.ProbeAckData || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } staticHasData(x).map(_.B).getOrElse(opdata) } def opcode(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.opcode case b: TLBundleB => b.opcode case c: TLBundleC => c.opcode case d: TLBundleD => d.opcode } } def param(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.param case b: TLBundleB => b.param case c: TLBundleC => c.param case d: TLBundleD => d.param } } def size(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.size case b: TLBundleB => b.size case c: TLBundleC => c.size case d: TLBundleD => d.size } } def data(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.data case b: TLBundleB => b.data case c: TLBundleC => c.data case d: TLBundleD => d.data } } def corrupt(x: TLDataChannel): Bool = { x match { case a: TLBundleA => a.corrupt case b: TLBundleB => b.corrupt case c: TLBundleC => c.corrupt case d: TLBundleD => d.corrupt } } def mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.mask case b: TLBundleB => b.mask case c: TLBundleC => mask(c.address, c.size) } } def full_mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => mask(a.address, a.size) case b: TLBundleB => mask(b.address, b.size) case c: TLBundleC => mask(c.address, c.size) } } def address(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.address case b: TLBundleB => b.address case c: TLBundleC => c.address } } def source(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.source case b: TLBundleB => b.source case c: TLBundleC => c.source case d: TLBundleD => d.source } } def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes) def addr_lo(x: UInt): UInt = if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0) def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x)) def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x)) def numBeats(x: TLChannel): UInt = { x match { case _: TLBundleE => 1.U case bundle: TLDataChannel => { val hasData = this.hasData(bundle) val size = this.size(bundle) val cutoff = log2Ceil(manager.beatBytes) val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U val decode = UIntToOH(size, maxLgSize+1) >> cutoff Mux(hasData, decode | small.asUInt, 1.U) } } } def numBeats1(x: TLChannel): UInt = { x match { case _: TLBundleE => 0.U case bundle: TLDataChannel => { if (maxLgSize == 0) { 0.U } else { val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes) Mux(hasData(bundle), decode, 0.U) } } } } def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val beats1 = numBeats1(bits) val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W)) val counter1 = counter - 1.U val first = counter === 0.U val last = counter === 1.U || beats1 === 0.U val done = last && fire val count = (beats1 & ~counter1) when (fire) { counter := Mux(first, beats1, counter1) } (first, last, done, count) } def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1 def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire) def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid) def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2 def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire) def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid) def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3 def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire) def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid) def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3) } def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire) def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid) def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4) } def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire) def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid) def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes)) } def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire) def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid) // Does the request need T permissions to be executed? def needT(a: TLBundleA): Bool = { val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLPermissions.NtoB -> false.B, TLPermissions.NtoT -> true.B, TLPermissions.BtoT -> true.B)) MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array( TLMessages.PutFullData -> true.B, TLMessages.PutPartialData -> true.B, TLMessages.ArithmeticData -> true.B, TLMessages.LogicalData -> true.B, TLMessages.Get -> false.B, TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLHints.PREFETCH_READ -> false.B, TLHints.PREFETCH_WRITE -> true.B)), TLMessages.AcquireBlock -> acq_needT, TLMessages.AcquirePerm -> acq_needT)) } // This is a very expensive circuit; use only if you really mean it! def inFlight(x: TLBundle): (UInt, UInt) = { val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W)) val bce = manager.anySupportAcquireB && client.anySupportProbe val (a_first, a_last, _) = firstlast(x.a) val (b_first, b_last, _) = firstlast(x.b) val (c_first, c_last, _) = firstlast(x.c) val (d_first, d_last, _) = firstlast(x.d) val (e_first, e_last, _) = firstlast(x.e) val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits)) val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits)) val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits)) val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits)) val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits)) val a_inc = x.a.fire && a_first && a_request val b_inc = x.b.fire && b_first && b_request val c_inc = x.c.fire && c_first && c_request val d_inc = x.d.fire && d_first && d_request val e_inc = x.e.fire && e_first && e_request val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil)) val a_dec = x.a.fire && a_last && a_response val b_dec = x.b.fire && b_last && b_response val c_dec = x.c.fire && c_last && c_response val d_dec = x.d.fire && d_last && d_response val e_dec = x.e.fire && e_last && e_response val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil)) val next_flight = flight + PopCount(inc) - PopCount(dec) flight := next_flight (flight, next_flight) } def prettySourceMapping(context: String): String = { s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n" } } class TLEdgeOut( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { // Transfers def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquireBlock a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquirePerm a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.Release c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ReleaseData c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) = Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B) def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAck c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions, data) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAckData c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B) def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink) def GrantAck(toSink: UInt): TLBundleE = { val e = Wire(new TLBundleE(bundle)) e.sink := toSink e } // Accesses def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsGetFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Get a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutFullFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutFullData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, mask, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutPartialFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutPartialData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask a.data := data a.corrupt := corrupt (legal, a) } def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = { require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsArithmeticFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.ArithmeticData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsLogicalFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.LogicalData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = { require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsHintFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Hint a.param := param a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data) def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAckData c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size) def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.HintAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } } class TLEdgeIn( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = { val todo = x.filter(!_.isEmpty) val heads = todo.map(_.head) val tails = todo.map(_.tail) if (todo.isEmpty) Nil else { heads +: myTranspose(tails) } } // Transfers def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = { require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}") val legal = client.supportsProbe(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Probe b.param := capPermissions b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.Grant d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.GrantData d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B) def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.ReleaseAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } // Accesses def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = { require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsGet(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Get b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsPutFull(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutFullData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, mask, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsPutPartial(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutPartialData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask b.data := data b.corrupt := corrupt (legal, b) } def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsArithmetic(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.ArithmeticData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsLogical(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.LogicalData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = { require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsHint(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Hint b.param := param b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size) def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied) def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B) def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data) def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAckData d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B) def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied) def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B) def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.HintAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } }
module TLMonitor_15( // @[Monitor.scala:36:7] input clock, // @[Monitor.scala:36:7] input reset, // @[Monitor.scala:36:7] input io_in_a_ready, // @[Monitor.scala:20:14] input io_in_a_valid, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_size, // @[Monitor.scala:20:14] input [6:0] io_in_a_bits_source, // @[Monitor.scala:20:14] input [28:0] io_in_a_bits_address, // @[Monitor.scala:20:14] input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14] input [63:0] io_in_a_bits_data, // @[Monitor.scala:20:14] input io_in_a_bits_corrupt, // @[Monitor.scala:20:14] input io_in_d_ready, // @[Monitor.scala:20:14] input io_in_d_valid, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14] input [1:0] io_in_d_bits_param, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_size, // @[Monitor.scala:20:14] input [6:0] io_in_d_bits_source, // @[Monitor.scala:20:14] input io_in_d_bits_sink, // @[Monitor.scala:20:14] input io_in_d_bits_denied, // @[Monitor.scala:20:14] input [63:0] io_in_d_bits_data, // @[Monitor.scala:20:14] input io_in_d_bits_corrupt // @[Monitor.scala:20:14] ); wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11] wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11] wire io_in_a_ready_0 = io_in_a_ready; // @[Monitor.scala:36:7] wire io_in_a_valid_0 = io_in_a_valid; // @[Monitor.scala:36:7] wire [2:0] io_in_a_bits_opcode_0 = io_in_a_bits_opcode; // @[Monitor.scala:36:7] wire [2:0] io_in_a_bits_param_0 = io_in_a_bits_param; // @[Monitor.scala:36:7] wire [2:0] io_in_a_bits_size_0 = io_in_a_bits_size; // @[Monitor.scala:36:7] wire [6:0] io_in_a_bits_source_0 = io_in_a_bits_source; // @[Monitor.scala:36:7] wire [28:0] io_in_a_bits_address_0 = io_in_a_bits_address; // @[Monitor.scala:36:7] wire [7:0] io_in_a_bits_mask_0 = io_in_a_bits_mask; // @[Monitor.scala:36:7] wire [63:0] io_in_a_bits_data_0 = io_in_a_bits_data; // @[Monitor.scala:36:7] wire io_in_a_bits_corrupt_0 = io_in_a_bits_corrupt; // @[Monitor.scala:36:7] wire io_in_d_ready_0 = io_in_d_ready; // @[Monitor.scala:36:7] wire io_in_d_valid_0 = io_in_d_valid; // @[Monitor.scala:36:7] wire [2:0] io_in_d_bits_opcode_0 = io_in_d_bits_opcode; // @[Monitor.scala:36:7] wire [1:0] io_in_d_bits_param_0 = io_in_d_bits_param; // @[Monitor.scala:36:7] wire [2:0] io_in_d_bits_size_0 = io_in_d_bits_size; // @[Monitor.scala:36:7] wire [6:0] io_in_d_bits_source_0 = io_in_d_bits_source; // @[Monitor.scala:36:7] wire io_in_d_bits_sink_0 = io_in_d_bits_sink; // @[Monitor.scala:36:7] wire io_in_d_bits_denied_0 = io_in_d_bits_denied; // @[Monitor.scala:36:7] wire [63:0] io_in_d_bits_data_0 = io_in_d_bits_data; // @[Monitor.scala:36:7] wire io_in_d_bits_corrupt_0 = io_in_d_bits_corrupt; // @[Monitor.scala:36:7] wire sink_ok = 1'h0; // @[Monitor.scala:309:31] wire _c_first_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_first_T = 1'h0; // @[Decoupled.scala:51:35] wire c_first_beats1_opdata = 1'h0; // @[Edges.scala:102:36] wire _c_first_last_T = 1'h0; // @[Edges.scala:232:25] wire c_first_done = 1'h0; // @[Edges.scala:233:22] wire _c_set_wo_ready_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_set_wo_ready_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_set_wo_ready_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_T = 1'h0; // @[Monitor.scala:772:47] wire _c_probe_ack_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_T_1 = 1'h0; // @[Monitor.scala:772:95] wire c_probe_ack = 1'h0; // @[Monitor.scala:772:71] wire _same_cycle_resp_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_T_3 = 1'h0; // @[Monitor.scala:795:44] wire _same_cycle_resp_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_T_4 = 1'h0; // @[Edges.scala:68:36] wire _same_cycle_resp_T_5 = 1'h0; // @[Edges.scala:68:51] wire _same_cycle_resp_T_6 = 1'h0; // @[Edges.scala:68:40] wire _same_cycle_resp_T_7 = 1'h0; // @[Monitor.scala:795:55] wire _same_cycle_resp_WIRE_4_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_4_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_4_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_5_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_5_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_5_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire same_cycle_resp_1 = 1'h0; // @[Monitor.scala:795:88] wire [2:0] responseMap_0 = 3'h0; // @[Monitor.scala:643:42] wire [2:0] responseMap_1 = 3'h0; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_0 = 3'h0; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_1 = 3'h0; // @[Monitor.scala:644:42] wire [2:0] _c_first_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] c_first_beats1_decode = 3'h0; // @[Edges.scala:220:59] wire [2:0] c_first_beats1 = 3'h0; // @[Edges.scala:221:14] wire [2:0] _c_first_count_T = 3'h0; // @[Edges.scala:234:27] wire [2:0] c_first_count = 3'h0; // @[Edges.scala:234:25] wire [2:0] _c_first_counter_T = 3'h0; // @[Edges.scala:236:21] wire [2:0] _c_set_wo_ready_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_wo_ready_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_wo_ready_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_4_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_4_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_4_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_5_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_5_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_5_bits_size = 3'h0; // @[Bundles.scala:265:61] wire _source_ok_T_3 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_5 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_9 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_11 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_15 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_17 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_21 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_23 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_61 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_63 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_67 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_69 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_73 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_75 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_79 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_81 = 1'h1; // @[Parameters.scala:57:20] wire c_first = 1'h1; // @[Edges.scala:231:25] wire _c_first_last_T_1 = 1'h1; // @[Edges.scala:232:43] wire c_first_last = 1'h1; // @[Edges.scala:232:33] wire [2:0] c_first_counter1 = 3'h7; // @[Edges.scala:230:28] wire [3:0] _c_first_counter1_T = 4'hF; // @[Edges.scala:230:28] wire [63:0] _c_first_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_first_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_first_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_first_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_set_wo_ready_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_set_wo_ready_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_opcodes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_opcodes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_sizes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_sizes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_opcodes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_opcodes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_sizes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_sizes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_probe_ack_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_probe_ack_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_probe_ack_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_probe_ack_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _same_cycle_resp_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _same_cycle_resp_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _same_cycle_resp_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _same_cycle_resp_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _same_cycle_resp_WIRE_4_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _same_cycle_resp_WIRE_5_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [28:0] _c_first_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _c_first_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [28:0] _c_first_WIRE_2_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _c_first_WIRE_3_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [28:0] _c_set_wo_ready_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _c_set_wo_ready_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [28:0] _c_set_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _c_set_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [28:0] _c_opcodes_set_interm_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _c_opcodes_set_interm_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [28:0] _c_sizes_set_interm_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _c_sizes_set_interm_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [28:0] _c_opcodes_set_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _c_opcodes_set_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [28:0] _c_sizes_set_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _c_sizes_set_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [28:0] _c_probe_ack_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _c_probe_ack_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [28:0] _c_probe_ack_WIRE_2_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _c_probe_ack_WIRE_3_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [28:0] _same_cycle_resp_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _same_cycle_resp_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [28:0] _same_cycle_resp_WIRE_2_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _same_cycle_resp_WIRE_3_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [28:0] _same_cycle_resp_WIRE_4_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _same_cycle_resp_WIRE_5_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [6:0] _c_first_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_first_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_first_WIRE_2_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_first_WIRE_3_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_set_wo_ready_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_set_wo_ready_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_set_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_set_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_opcodes_set_interm_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_opcodes_set_interm_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_sizes_set_interm_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_sizes_set_interm_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_opcodes_set_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_opcodes_set_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_sizes_set_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_sizes_set_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_probe_ack_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_probe_ack_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_probe_ack_WIRE_2_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_probe_ack_WIRE_3_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _same_cycle_resp_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _same_cycle_resp_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _same_cycle_resp_WIRE_2_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _same_cycle_resp_WIRE_3_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _same_cycle_resp_WIRE_4_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _same_cycle_resp_WIRE_5_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [15:0] _a_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _a_size_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _d_opcodes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _d_sizes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _c_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57] wire [15:0] _c_size_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57] wire [15:0] _d_opcodes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57] wire [15:0] _d_sizes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57] wire [16:0] _a_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _a_size_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _d_opcodes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _d_sizes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _c_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57] wire [16:0] _c_size_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57] wire [16:0] _d_opcodes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57] wire [16:0] _d_sizes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57] wire [15:0] _a_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _a_size_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _d_opcodes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _d_sizes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _c_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51] wire [15:0] _c_size_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51] wire [15:0] _d_opcodes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51] wire [15:0] _d_sizes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51] wire [1026:0] _c_opcodes_set_T_1 = 1027'h0; // @[Monitor.scala:767:54] wire [1026:0] _c_sizes_set_T_1 = 1027'h0; // @[Monitor.scala:768:52] wire [9:0] _c_opcodes_set_T = 10'h0; // @[Monitor.scala:767:79] wire [9:0] _c_sizes_set_T = 10'h0; // @[Monitor.scala:768:77] wire [3:0] _c_opcodes_set_interm_T_1 = 4'h1; // @[Monitor.scala:765:61] wire [3:0] _c_sizes_set_interm_T_1 = 4'h1; // @[Monitor.scala:766:59] wire [3:0] c_opcodes_set_interm = 4'h0; // @[Monitor.scala:754:40] wire [3:0] c_sizes_set_interm = 4'h0; // @[Monitor.scala:755:40] wire [3:0] _c_opcodes_set_interm_T = 4'h0; // @[Monitor.scala:765:53] wire [3:0] _c_sizes_set_interm_T = 4'h0; // @[Monitor.scala:766:51] wire [127:0] _c_set_wo_ready_T = 128'h1; // @[OneHot.scala:58:35] wire [127:0] _c_set_T = 128'h1; // @[OneHot.scala:58:35] wire [259:0] c_opcodes_set = 260'h0; // @[Monitor.scala:740:34] wire [259:0] c_sizes_set = 260'h0; // @[Monitor.scala:741:34] wire [64:0] c_set = 65'h0; // @[Monitor.scala:738:34] wire [64:0] c_set_wo_ready = 65'h0; // @[Monitor.scala:739:34] wire [5:0] _c_first_beats1_decode_T_2 = 6'h0; // @[package.scala:243:46] wire [5:0] _c_first_beats1_decode_T_1 = 6'h3F; // @[package.scala:243:76] wire [12:0] _c_first_beats1_decode_T = 13'h3F; // @[package.scala:243:71] wire [2:0] responseMap_6 = 3'h4; // @[Monitor.scala:643:42] wire [2:0] responseMap_7 = 3'h4; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_7 = 3'h4; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_6 = 3'h5; // @[Monitor.scala:644:42] wire [2:0] responseMap_5 = 3'h2; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_5 = 3'h2; // @[Monitor.scala:644:42] wire [2:0] responseMap_2 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMap_3 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMap_4 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_2 = 3'h1; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_3 = 3'h1; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_4 = 3'h1; // @[Monitor.scala:644:42] wire [3:0] _a_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:637:123] wire [3:0] _a_size_lookup_T_2 = 4'h4; // @[Monitor.scala:641:117] wire [3:0] _d_opcodes_clr_T = 4'h4; // @[Monitor.scala:680:48] wire [3:0] _d_sizes_clr_T = 4'h4; // @[Monitor.scala:681:48] wire [3:0] _c_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:749:123] wire [3:0] _c_size_lookup_T_2 = 4'h4; // @[Monitor.scala:750:119] wire [3:0] _d_opcodes_clr_T_6 = 4'h4; // @[Monitor.scala:790:48] wire [3:0] _d_sizes_clr_T_6 = 4'h4; // @[Monitor.scala:791:48] wire [2:0] _mask_sizeOH_T = io_in_a_bits_size_0; // @[Misc.scala:202:34] wire [6:0] _source_ok_uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _source_ok_uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _source_ok_uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _source_ok_uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_4 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_5 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_6 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_7 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_8 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_9 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_10 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_11 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_12 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_13 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_14 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_15 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_16 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_17 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_18 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_19 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_20 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_21 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_22 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_23 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_24 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_25 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_26 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_27 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_28 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_29 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_30 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_31 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_32 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_33 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_34 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_35 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_36 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_37 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_38 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_39 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_40 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_41 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_42 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_43 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _source_ok_uncommonBits_T_4 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _source_ok_uncommonBits_T_5 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _source_ok_uncommonBits_T_6 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _source_ok_uncommonBits_T_7 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire _source_ok_T = io_in_a_bits_source_0 == 7'h10; // @[Monitor.scala:36:7] wire _source_ok_WIRE_0 = _source_ok_T; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits = _source_ok_uncommonBits_T[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] _source_ok_T_1 = io_in_a_bits_source_0[6:2]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_7 = io_in_a_bits_source_0[6:2]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_13 = io_in_a_bits_source_0[6:2]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_19 = io_in_a_bits_source_0[6:2]; // @[Monitor.scala:36:7] wire _source_ok_T_2 = _source_ok_T_1 == 5'h0; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_4 = _source_ok_T_2; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_6 = _source_ok_T_4; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1 = _source_ok_T_6; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_1 = _source_ok_uncommonBits_T_1[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_8 = _source_ok_T_7 == 5'h1; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_10 = _source_ok_T_8; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_12 = _source_ok_T_10; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_2 = _source_ok_T_12; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_2 = _source_ok_uncommonBits_T_2[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_14 = _source_ok_T_13 == 5'h2; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_16 = _source_ok_T_14; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_18 = _source_ok_T_16; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_3 = _source_ok_T_18; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_3 = _source_ok_uncommonBits_T_3[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_20 = _source_ok_T_19 == 5'h3; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_22 = _source_ok_T_20; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_24 = _source_ok_T_22; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_4 = _source_ok_T_24; // @[Parameters.scala:1138:31] wire _source_ok_T_25 = io_in_a_bits_source_0 == 7'h24; // @[Monitor.scala:36:7] wire _source_ok_WIRE_5 = _source_ok_T_25; // @[Parameters.scala:1138:31] wire _source_ok_T_26 = io_in_a_bits_source_0 == 7'h25; // @[Monitor.scala:36:7] wire _source_ok_WIRE_6 = _source_ok_T_26; // @[Parameters.scala:1138:31] wire _source_ok_T_27 = io_in_a_bits_source_0 == 7'h26; // @[Monitor.scala:36:7] wire _source_ok_WIRE_7 = _source_ok_T_27; // @[Parameters.scala:1138:31] wire _source_ok_T_28 = io_in_a_bits_source_0 == 7'h2E; // @[Monitor.scala:36:7] wire _source_ok_WIRE_8 = _source_ok_T_28; // @[Parameters.scala:1138:31] wire _source_ok_T_29 = io_in_a_bits_source_0 == 7'h2F; // @[Monitor.scala:36:7] wire _source_ok_WIRE_9 = _source_ok_T_29; // @[Parameters.scala:1138:31] wire _source_ok_T_30 = io_in_a_bits_source_0 == 7'h2C; // @[Monitor.scala:36:7] wire _source_ok_WIRE_10 = _source_ok_T_30; // @[Parameters.scala:1138:31] wire _source_ok_T_31 = io_in_a_bits_source_0 == 7'h2D; // @[Monitor.scala:36:7] wire _source_ok_WIRE_11 = _source_ok_T_31; // @[Parameters.scala:1138:31] wire _source_ok_T_32 = io_in_a_bits_source_0 == 7'h2A; // @[Monitor.scala:36:7] wire _source_ok_WIRE_12 = _source_ok_T_32; // @[Parameters.scala:1138:31] wire _source_ok_T_33 = io_in_a_bits_source_0 == 7'h2B; // @[Monitor.scala:36:7] wire _source_ok_WIRE_13 = _source_ok_T_33; // @[Parameters.scala:1138:31] wire _source_ok_T_34 = io_in_a_bits_source_0 == 7'h28; // @[Monitor.scala:36:7] wire _source_ok_WIRE_14 = _source_ok_T_34; // @[Parameters.scala:1138:31] wire _source_ok_T_35 = io_in_a_bits_source_0 == 7'h29; // @[Monitor.scala:36:7] wire _source_ok_WIRE_15 = _source_ok_T_35; // @[Parameters.scala:1138:31] wire _source_ok_T_36 = io_in_a_bits_source_0 == 7'h22; // @[Monitor.scala:36:7] wire _source_ok_WIRE_16 = _source_ok_T_36; // @[Parameters.scala:1138:31] wire _source_ok_T_37 = io_in_a_bits_source_0 == 7'h20; // @[Monitor.scala:36:7] wire _source_ok_WIRE_17 = _source_ok_T_37; // @[Parameters.scala:1138:31] wire _source_ok_T_38 = io_in_a_bits_source_0 == 7'h21; // @[Monitor.scala:36:7] wire _source_ok_WIRE_18 = _source_ok_T_38; // @[Parameters.scala:1138:31] wire _source_ok_T_39 = io_in_a_bits_source_0 == 7'h40; // @[Monitor.scala:36:7] wire _source_ok_WIRE_19 = _source_ok_T_39; // @[Parameters.scala:1138:31] wire _source_ok_T_40 = _source_ok_WIRE_0 | _source_ok_WIRE_1; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_41 = _source_ok_T_40 | _source_ok_WIRE_2; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_42 = _source_ok_T_41 | _source_ok_WIRE_3; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_43 = _source_ok_T_42 | _source_ok_WIRE_4; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_44 = _source_ok_T_43 | _source_ok_WIRE_5; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_45 = _source_ok_T_44 | _source_ok_WIRE_6; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_46 = _source_ok_T_45 | _source_ok_WIRE_7; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_47 = _source_ok_T_46 | _source_ok_WIRE_8; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_48 = _source_ok_T_47 | _source_ok_WIRE_9; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_49 = _source_ok_T_48 | _source_ok_WIRE_10; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_50 = _source_ok_T_49 | _source_ok_WIRE_11; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_51 = _source_ok_T_50 | _source_ok_WIRE_12; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_52 = _source_ok_T_51 | _source_ok_WIRE_13; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_53 = _source_ok_T_52 | _source_ok_WIRE_14; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_54 = _source_ok_T_53 | _source_ok_WIRE_15; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_55 = _source_ok_T_54 | _source_ok_WIRE_16; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_56 = _source_ok_T_55 | _source_ok_WIRE_17; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_57 = _source_ok_T_56 | _source_ok_WIRE_18; // @[Parameters.scala:1138:31, :1139:46] wire source_ok = _source_ok_T_57 | _source_ok_WIRE_19; // @[Parameters.scala:1138:31, :1139:46] wire [12:0] _GEN = 13'h3F << io_in_a_bits_size_0; // @[package.scala:243:71] wire [12:0] _is_aligned_mask_T; // @[package.scala:243:71] assign _is_aligned_mask_T = _GEN; // @[package.scala:243:71] wire [12:0] _a_first_beats1_decode_T; // @[package.scala:243:71] assign _a_first_beats1_decode_T = _GEN; // @[package.scala:243:71] wire [12:0] _a_first_beats1_decode_T_3; // @[package.scala:243:71] assign _a_first_beats1_decode_T_3 = _GEN; // @[package.scala:243:71] wire [5:0] _is_aligned_mask_T_1 = _is_aligned_mask_T[5:0]; // @[package.scala:243:{71,76}] wire [5:0] is_aligned_mask = ~_is_aligned_mask_T_1; // @[package.scala:243:{46,76}] wire [28:0] _is_aligned_T = {23'h0, io_in_a_bits_address_0[5:0] & is_aligned_mask}; // @[package.scala:243:46] wire is_aligned = _is_aligned_T == 29'h0; // @[Edges.scala:21:{16,24}] wire [1:0] mask_sizeOH_shiftAmount = _mask_sizeOH_T[1:0]; // @[OneHot.scala:64:49] wire [3:0] _mask_sizeOH_T_1 = 4'h1 << mask_sizeOH_shiftAmount; // @[OneHot.scala:64:49, :65:12] wire [2:0] _mask_sizeOH_T_2 = _mask_sizeOH_T_1[2:0]; // @[OneHot.scala:65:{12,27}] wire [2:0] mask_sizeOH = {_mask_sizeOH_T_2[2:1], 1'h1}; // @[OneHot.scala:65:27] wire mask_sub_sub_sub_0_1 = io_in_a_bits_size_0 > 3'h2; // @[Misc.scala:206:21] wire mask_sub_sub_size = mask_sizeOH[2]; // @[Misc.scala:202:81, :209:26] wire mask_sub_sub_bit = io_in_a_bits_address_0[2]; // @[Misc.scala:210:26] wire mask_sub_sub_1_2 = mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27] wire mask_sub_sub_nbit = ~mask_sub_sub_bit; // @[Misc.scala:210:26, :211:20] wire mask_sub_sub_0_2 = mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_sub_acc_T = mask_sub_sub_size & mask_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_0_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T; // @[Misc.scala:206:21, :215:{29,38}] wire _mask_sub_sub_acc_T_1 = mask_sub_sub_size & mask_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_1_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T_1; // @[Misc.scala:206:21, :215:{29,38}] wire mask_sub_size = mask_sizeOH[1]; // @[Misc.scala:202:81, :209:26] wire mask_sub_bit = io_in_a_bits_address_0[1]; // @[Misc.scala:210:26] wire mask_sub_nbit = ~mask_sub_bit; // @[Misc.scala:210:26, :211:20] wire mask_sub_0_2 = mask_sub_sub_0_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_acc_T = mask_sub_size & mask_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_0_1 = mask_sub_sub_0_1 | _mask_sub_acc_T; // @[Misc.scala:215:{29,38}] wire mask_sub_1_2 = mask_sub_sub_0_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_acc_T_1 = mask_sub_size & mask_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_1_1 = mask_sub_sub_0_1 | _mask_sub_acc_T_1; // @[Misc.scala:215:{29,38}] wire mask_sub_2_2 = mask_sub_sub_1_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_acc_T_2 = mask_sub_size & mask_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_2_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_2; // @[Misc.scala:215:{29,38}] wire mask_sub_3_2 = mask_sub_sub_1_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_acc_T_3 = mask_sub_size & mask_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_3_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_3; // @[Misc.scala:215:{29,38}] wire mask_size = mask_sizeOH[0]; // @[Misc.scala:202:81, :209:26] wire mask_bit = io_in_a_bits_address_0[0]; // @[Misc.scala:210:26] wire mask_nbit = ~mask_bit; // @[Misc.scala:210:26, :211:20] wire mask_eq = mask_sub_0_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T = mask_size & mask_eq; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc = mask_sub_0_1 | _mask_acc_T; // @[Misc.scala:215:{29,38}] wire mask_eq_1 = mask_sub_0_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_1 = mask_size & mask_eq_1; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_1 = mask_sub_0_1 | _mask_acc_T_1; // @[Misc.scala:215:{29,38}] wire mask_eq_2 = mask_sub_1_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_2 = mask_size & mask_eq_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_2 = mask_sub_1_1 | _mask_acc_T_2; // @[Misc.scala:215:{29,38}] wire mask_eq_3 = mask_sub_1_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_3 = mask_size & mask_eq_3; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_3 = mask_sub_1_1 | _mask_acc_T_3; // @[Misc.scala:215:{29,38}] wire mask_eq_4 = mask_sub_2_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_4 = mask_size & mask_eq_4; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_4 = mask_sub_2_1 | _mask_acc_T_4; // @[Misc.scala:215:{29,38}] wire mask_eq_5 = mask_sub_2_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_5 = mask_size & mask_eq_5; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_5 = mask_sub_2_1 | _mask_acc_T_5; // @[Misc.scala:215:{29,38}] wire mask_eq_6 = mask_sub_3_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_6 = mask_size & mask_eq_6; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_6 = mask_sub_3_1 | _mask_acc_T_6; // @[Misc.scala:215:{29,38}] wire mask_eq_7 = mask_sub_3_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_7 = mask_size & mask_eq_7; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_7 = mask_sub_3_1 | _mask_acc_T_7; // @[Misc.scala:215:{29,38}] wire [1:0] mask_lo_lo = {mask_acc_1, mask_acc}; // @[Misc.scala:215:29, :222:10] wire [1:0] mask_lo_hi = {mask_acc_3, mask_acc_2}; // @[Misc.scala:215:29, :222:10] wire [3:0] mask_lo = {mask_lo_hi, mask_lo_lo}; // @[Misc.scala:222:10] wire [1:0] mask_hi_lo = {mask_acc_5, mask_acc_4}; // @[Misc.scala:215:29, :222:10] wire [1:0] mask_hi_hi = {mask_acc_7, mask_acc_6}; // @[Misc.scala:215:29, :222:10] wire [3:0] mask_hi = {mask_hi_hi, mask_hi_lo}; // @[Misc.scala:222:10] wire [7:0] mask = {mask_hi, mask_lo}; // @[Misc.scala:222:10] wire [1:0] uncommonBits = _uncommonBits_T[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_1 = _uncommonBits_T_1[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_2 = _uncommonBits_T_2[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_3 = _uncommonBits_T_3[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_4 = _uncommonBits_T_4[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_5 = _uncommonBits_T_5[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_6 = _uncommonBits_T_6[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_7 = _uncommonBits_T_7[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_8 = _uncommonBits_T_8[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_9 = _uncommonBits_T_9[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_10 = _uncommonBits_T_10[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_11 = _uncommonBits_T_11[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_12 = _uncommonBits_T_12[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_13 = _uncommonBits_T_13[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_14 = _uncommonBits_T_14[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_15 = _uncommonBits_T_15[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_16 = _uncommonBits_T_16[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_17 = _uncommonBits_T_17[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_18 = _uncommonBits_T_18[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_19 = _uncommonBits_T_19[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_20 = _uncommonBits_T_20[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_21 = _uncommonBits_T_21[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_22 = _uncommonBits_T_22[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_23 = _uncommonBits_T_23[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_24 = _uncommonBits_T_24[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_25 = _uncommonBits_T_25[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_26 = _uncommonBits_T_26[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_27 = _uncommonBits_T_27[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_28 = _uncommonBits_T_28[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_29 = _uncommonBits_T_29[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_30 = _uncommonBits_T_30[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_31 = _uncommonBits_T_31[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_32 = _uncommonBits_T_32[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_33 = _uncommonBits_T_33[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_34 = _uncommonBits_T_34[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_35 = _uncommonBits_T_35[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_36 = _uncommonBits_T_36[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_37 = _uncommonBits_T_37[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_38 = _uncommonBits_T_38[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_39 = _uncommonBits_T_39[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_40 = _uncommonBits_T_40[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_41 = _uncommonBits_T_41[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_42 = _uncommonBits_T_42[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_43 = _uncommonBits_T_43[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_58 = io_in_d_bits_source_0 == 7'h10; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_0 = _source_ok_T_58; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_4 = _source_ok_uncommonBits_T_4[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] _source_ok_T_59 = io_in_d_bits_source_0[6:2]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_65 = io_in_d_bits_source_0[6:2]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_71 = io_in_d_bits_source_0[6:2]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_77 = io_in_d_bits_source_0[6:2]; // @[Monitor.scala:36:7] wire _source_ok_T_60 = _source_ok_T_59 == 5'h0; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_62 = _source_ok_T_60; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_64 = _source_ok_T_62; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_1 = _source_ok_T_64; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_5 = _source_ok_uncommonBits_T_5[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_66 = _source_ok_T_65 == 5'h1; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_68 = _source_ok_T_66; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_70 = _source_ok_T_68; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_2 = _source_ok_T_70; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_6 = _source_ok_uncommonBits_T_6[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_72 = _source_ok_T_71 == 5'h2; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_74 = _source_ok_T_72; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_76 = _source_ok_T_74; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_3 = _source_ok_T_76; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_7 = _source_ok_uncommonBits_T_7[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_78 = _source_ok_T_77 == 5'h3; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_80 = _source_ok_T_78; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_82 = _source_ok_T_80; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_4 = _source_ok_T_82; // @[Parameters.scala:1138:31] wire _source_ok_T_83 = io_in_d_bits_source_0 == 7'h24; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_5 = _source_ok_T_83; // @[Parameters.scala:1138:31] wire _source_ok_T_84 = io_in_d_bits_source_0 == 7'h25; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_6 = _source_ok_T_84; // @[Parameters.scala:1138:31] wire _source_ok_T_85 = io_in_d_bits_source_0 == 7'h26; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_7 = _source_ok_T_85; // @[Parameters.scala:1138:31] wire _source_ok_T_86 = io_in_d_bits_source_0 == 7'h2E; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_8 = _source_ok_T_86; // @[Parameters.scala:1138:31] wire _source_ok_T_87 = io_in_d_bits_source_0 == 7'h2F; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_9 = _source_ok_T_87; // @[Parameters.scala:1138:31] wire _source_ok_T_88 = io_in_d_bits_source_0 == 7'h2C; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_10 = _source_ok_T_88; // @[Parameters.scala:1138:31] wire _source_ok_T_89 = io_in_d_bits_source_0 == 7'h2D; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_11 = _source_ok_T_89; // @[Parameters.scala:1138:31] wire _source_ok_T_90 = io_in_d_bits_source_0 == 7'h2A; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_12 = _source_ok_T_90; // @[Parameters.scala:1138:31] wire _source_ok_T_91 = io_in_d_bits_source_0 == 7'h2B; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_13 = _source_ok_T_91; // @[Parameters.scala:1138:31] wire _source_ok_T_92 = io_in_d_bits_source_0 == 7'h28; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_14 = _source_ok_T_92; // @[Parameters.scala:1138:31] wire _source_ok_T_93 = io_in_d_bits_source_0 == 7'h29; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_15 = _source_ok_T_93; // @[Parameters.scala:1138:31] wire _source_ok_T_94 = io_in_d_bits_source_0 == 7'h22; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_16 = _source_ok_T_94; // @[Parameters.scala:1138:31] wire _source_ok_T_95 = io_in_d_bits_source_0 == 7'h20; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_17 = _source_ok_T_95; // @[Parameters.scala:1138:31] wire _source_ok_T_96 = io_in_d_bits_source_0 == 7'h21; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_18 = _source_ok_T_96; // @[Parameters.scala:1138:31] wire _source_ok_T_97 = io_in_d_bits_source_0 == 7'h40; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_19 = _source_ok_T_97; // @[Parameters.scala:1138:31] wire _source_ok_T_98 = _source_ok_WIRE_1_0 | _source_ok_WIRE_1_1; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_99 = _source_ok_T_98 | _source_ok_WIRE_1_2; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_100 = _source_ok_T_99 | _source_ok_WIRE_1_3; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_101 = _source_ok_T_100 | _source_ok_WIRE_1_4; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_102 = _source_ok_T_101 | _source_ok_WIRE_1_5; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_103 = _source_ok_T_102 | _source_ok_WIRE_1_6; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_104 = _source_ok_T_103 | _source_ok_WIRE_1_7; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_105 = _source_ok_T_104 | _source_ok_WIRE_1_8; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_106 = _source_ok_T_105 | _source_ok_WIRE_1_9; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_107 = _source_ok_T_106 | _source_ok_WIRE_1_10; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_108 = _source_ok_T_107 | _source_ok_WIRE_1_11; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_109 = _source_ok_T_108 | _source_ok_WIRE_1_12; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_110 = _source_ok_T_109 | _source_ok_WIRE_1_13; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_111 = _source_ok_T_110 | _source_ok_WIRE_1_14; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_112 = _source_ok_T_111 | _source_ok_WIRE_1_15; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_113 = _source_ok_T_112 | _source_ok_WIRE_1_16; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_114 = _source_ok_T_113 | _source_ok_WIRE_1_17; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_115 = _source_ok_T_114 | _source_ok_WIRE_1_18; // @[Parameters.scala:1138:31, :1139:46] wire source_ok_1 = _source_ok_T_115 | _source_ok_WIRE_1_19; // @[Parameters.scala:1138:31, :1139:46] wire _T_1518 = io_in_a_ready_0 & io_in_a_valid_0; // @[Decoupled.scala:51:35] wire _a_first_T; // @[Decoupled.scala:51:35] assign _a_first_T = _T_1518; // @[Decoupled.scala:51:35] wire _a_first_T_1; // @[Decoupled.scala:51:35] assign _a_first_T_1 = _T_1518; // @[Decoupled.scala:51:35] wire [5:0] _a_first_beats1_decode_T_1 = _a_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}] wire [5:0] _a_first_beats1_decode_T_2 = ~_a_first_beats1_decode_T_1; // @[package.scala:243:{46,76}] wire [2:0] a_first_beats1_decode = _a_first_beats1_decode_T_2[5:3]; // @[package.scala:243:46] wire _a_first_beats1_opdata_T = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7] wire _a_first_beats1_opdata_T_1 = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7] wire a_first_beats1_opdata = ~_a_first_beats1_opdata_T; // @[Edges.scala:92:{28,37}] wire [2:0] a_first_beats1 = a_first_beats1_opdata ? a_first_beats1_decode : 3'h0; // @[Edges.scala:92:28, :220:59, :221:14] reg [2:0] a_first_counter; // @[Edges.scala:229:27] wire [3:0] _a_first_counter1_T = {1'h0, a_first_counter} - 4'h1; // @[Edges.scala:229:27, :230:28] wire [2:0] a_first_counter1 = _a_first_counter1_T[2:0]; // @[Edges.scala:230:28] wire a_first = a_first_counter == 3'h0; // @[Edges.scala:229:27, :231:25] wire _a_first_last_T = a_first_counter == 3'h1; // @[Edges.scala:229:27, :232:25] wire _a_first_last_T_1 = a_first_beats1 == 3'h0; // @[Edges.scala:221:14, :232:43] wire a_first_last = _a_first_last_T | _a_first_last_T_1; // @[Edges.scala:232:{25,33,43}] wire a_first_done = a_first_last & _a_first_T; // @[Decoupled.scala:51:35] wire [2:0] _a_first_count_T = ~a_first_counter1; // @[Edges.scala:230:28, :234:27] wire [2:0] a_first_count = a_first_beats1 & _a_first_count_T; // @[Edges.scala:221:14, :234:{25,27}] wire [2:0] _a_first_counter_T = a_first ? a_first_beats1 : a_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] reg [2:0] opcode; // @[Monitor.scala:387:22] reg [2:0] param; // @[Monitor.scala:388:22] reg [2:0] size; // @[Monitor.scala:389:22] reg [6:0] source; // @[Monitor.scala:390:22] reg [28:0] address; // @[Monitor.scala:391:22] wire _T_1591 = io_in_d_ready_0 & io_in_d_valid_0; // @[Decoupled.scala:51:35] wire _d_first_T; // @[Decoupled.scala:51:35] assign _d_first_T = _T_1591; // @[Decoupled.scala:51:35] wire _d_first_T_1; // @[Decoupled.scala:51:35] assign _d_first_T_1 = _T_1591; // @[Decoupled.scala:51:35] wire _d_first_T_2; // @[Decoupled.scala:51:35] assign _d_first_T_2 = _T_1591; // @[Decoupled.scala:51:35] wire [12:0] _GEN_0 = 13'h3F << io_in_d_bits_size_0; // @[package.scala:243:71] wire [12:0] _d_first_beats1_decode_T; // @[package.scala:243:71] assign _d_first_beats1_decode_T = _GEN_0; // @[package.scala:243:71] wire [12:0] _d_first_beats1_decode_T_3; // @[package.scala:243:71] assign _d_first_beats1_decode_T_3 = _GEN_0; // @[package.scala:243:71] wire [12:0] _d_first_beats1_decode_T_6; // @[package.scala:243:71] assign _d_first_beats1_decode_T_6 = _GEN_0; // @[package.scala:243:71] wire [5:0] _d_first_beats1_decode_T_1 = _d_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}] wire [5:0] _d_first_beats1_decode_T_2 = ~_d_first_beats1_decode_T_1; // @[package.scala:243:{46,76}] wire [2:0] d_first_beats1_decode = _d_first_beats1_decode_T_2[5:3]; // @[package.scala:243:46] wire d_first_beats1_opdata = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire d_first_beats1_opdata_1 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire d_first_beats1_opdata_2 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire [2:0] d_first_beats1 = d_first_beats1_opdata ? d_first_beats1_decode : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [2:0] d_first_counter; // @[Edges.scala:229:27] wire [3:0] _d_first_counter1_T = {1'h0, d_first_counter} - 4'h1; // @[Edges.scala:229:27, :230:28] wire [2:0] d_first_counter1 = _d_first_counter1_T[2:0]; // @[Edges.scala:230:28] wire d_first = d_first_counter == 3'h0; // @[Edges.scala:229:27, :231:25] wire _d_first_last_T = d_first_counter == 3'h1; // @[Edges.scala:229:27, :232:25] wire _d_first_last_T_1 = d_first_beats1 == 3'h0; // @[Edges.scala:221:14, :232:43] wire d_first_last = _d_first_last_T | _d_first_last_T_1; // @[Edges.scala:232:{25,33,43}] wire d_first_done = d_first_last & _d_first_T; // @[Decoupled.scala:51:35] wire [2:0] _d_first_count_T = ~d_first_counter1; // @[Edges.scala:230:28, :234:27] wire [2:0] d_first_count = d_first_beats1 & _d_first_count_T; // @[Edges.scala:221:14, :234:{25,27}] wire [2:0] _d_first_counter_T = d_first ? d_first_beats1 : d_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] reg [2:0] opcode_1; // @[Monitor.scala:538:22] reg [1:0] param_1; // @[Monitor.scala:539:22] reg [2:0] size_1; // @[Monitor.scala:540:22] reg [6:0] source_1; // @[Monitor.scala:541:22] reg sink; // @[Monitor.scala:542:22] reg denied; // @[Monitor.scala:543:22] reg [64:0] inflight; // @[Monitor.scala:614:27] reg [259:0] inflight_opcodes; // @[Monitor.scala:616:35] reg [259:0] inflight_sizes; // @[Monitor.scala:618:33] wire [5:0] _a_first_beats1_decode_T_4 = _a_first_beats1_decode_T_3[5:0]; // @[package.scala:243:{71,76}] wire [5:0] _a_first_beats1_decode_T_5 = ~_a_first_beats1_decode_T_4; // @[package.scala:243:{46,76}] wire [2:0] a_first_beats1_decode_1 = _a_first_beats1_decode_T_5[5:3]; // @[package.scala:243:46] wire a_first_beats1_opdata_1 = ~_a_first_beats1_opdata_T_1; // @[Edges.scala:92:{28,37}] wire [2:0] a_first_beats1_1 = a_first_beats1_opdata_1 ? a_first_beats1_decode_1 : 3'h0; // @[Edges.scala:92:28, :220:59, :221:14] reg [2:0] a_first_counter_1; // @[Edges.scala:229:27] wire [3:0] _a_first_counter1_T_1 = {1'h0, a_first_counter_1} - 4'h1; // @[Edges.scala:229:27, :230:28] wire [2:0] a_first_counter1_1 = _a_first_counter1_T_1[2:0]; // @[Edges.scala:230:28] wire a_first_1 = a_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25] wire _a_first_last_T_2 = a_first_counter_1 == 3'h1; // @[Edges.scala:229:27, :232:25] wire _a_first_last_T_3 = a_first_beats1_1 == 3'h0; // @[Edges.scala:221:14, :232:43] wire a_first_last_1 = _a_first_last_T_2 | _a_first_last_T_3; // @[Edges.scala:232:{25,33,43}] wire a_first_done_1 = a_first_last_1 & _a_first_T_1; // @[Decoupled.scala:51:35] wire [2:0] _a_first_count_T_1 = ~a_first_counter1_1; // @[Edges.scala:230:28, :234:27] wire [2:0] a_first_count_1 = a_first_beats1_1 & _a_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}] wire [2:0] _a_first_counter_T_1 = a_first_1 ? a_first_beats1_1 : a_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [5:0] _d_first_beats1_decode_T_4 = _d_first_beats1_decode_T_3[5:0]; // @[package.scala:243:{71,76}] wire [5:0] _d_first_beats1_decode_T_5 = ~_d_first_beats1_decode_T_4; // @[package.scala:243:{46,76}] wire [2:0] d_first_beats1_decode_1 = _d_first_beats1_decode_T_5[5:3]; // @[package.scala:243:46] wire [2:0] d_first_beats1_1 = d_first_beats1_opdata_1 ? d_first_beats1_decode_1 : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [2:0] d_first_counter_1; // @[Edges.scala:229:27] wire [3:0] _d_first_counter1_T_1 = {1'h0, d_first_counter_1} - 4'h1; // @[Edges.scala:229:27, :230:28] wire [2:0] d_first_counter1_1 = _d_first_counter1_T_1[2:0]; // @[Edges.scala:230:28] wire d_first_1 = d_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25] wire _d_first_last_T_2 = d_first_counter_1 == 3'h1; // @[Edges.scala:229:27, :232:25] wire _d_first_last_T_3 = d_first_beats1_1 == 3'h0; // @[Edges.scala:221:14, :232:43] wire d_first_last_1 = _d_first_last_T_2 | _d_first_last_T_3; // @[Edges.scala:232:{25,33,43}] wire d_first_done_1 = d_first_last_1 & _d_first_T_1; // @[Decoupled.scala:51:35] wire [2:0] _d_first_count_T_1 = ~d_first_counter1_1; // @[Edges.scala:230:28, :234:27] wire [2:0] d_first_count_1 = d_first_beats1_1 & _d_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}] wire [2:0] _d_first_counter_T_1 = d_first_1 ? d_first_beats1_1 : d_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [64:0] a_set; // @[Monitor.scala:626:34] wire [64:0] a_set_wo_ready; // @[Monitor.scala:627:34] wire [259:0] a_opcodes_set; // @[Monitor.scala:630:33] wire [259:0] a_sizes_set; // @[Monitor.scala:632:31] wire [2:0] a_opcode_lookup; // @[Monitor.scala:635:35] wire [9:0] _GEN_1 = {1'h0, io_in_d_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :637:69] wire [9:0] _a_opcode_lookup_T; // @[Monitor.scala:637:69] assign _a_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69] wire [9:0] _a_size_lookup_T; // @[Monitor.scala:641:65] assign _a_size_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :641:65] wire [9:0] _d_opcodes_clr_T_4; // @[Monitor.scala:680:101] assign _d_opcodes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :680:101] wire [9:0] _d_sizes_clr_T_4; // @[Monitor.scala:681:99] assign _d_sizes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :681:99] wire [9:0] _c_opcode_lookup_T; // @[Monitor.scala:749:69] assign _c_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :749:69] wire [9:0] _c_size_lookup_T; // @[Monitor.scala:750:67] assign _c_size_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :750:67] wire [9:0] _d_opcodes_clr_T_10; // @[Monitor.scala:790:101] assign _d_opcodes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :790:101] wire [9:0] _d_sizes_clr_T_10; // @[Monitor.scala:791:99] assign _d_sizes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :791:99] wire [259:0] _a_opcode_lookup_T_1 = inflight_opcodes >> _a_opcode_lookup_T; // @[Monitor.scala:616:35, :637:{44,69}] wire [259:0] _a_opcode_lookup_T_6 = {256'h0, _a_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:637:{44,97}] wire [259:0] _a_opcode_lookup_T_7 = {1'h0, _a_opcode_lookup_T_6[259:1]}; // @[Monitor.scala:637:{97,152}] assign a_opcode_lookup = _a_opcode_lookup_T_7[2:0]; // @[Monitor.scala:635:35, :637:{21,152}] wire [3:0] a_size_lookup; // @[Monitor.scala:639:33] wire [259:0] _a_size_lookup_T_1 = inflight_sizes >> _a_size_lookup_T; // @[Monitor.scala:618:33, :641:{40,65}] wire [259:0] _a_size_lookup_T_6 = {256'h0, _a_size_lookup_T_1[3:0]}; // @[Monitor.scala:641:{40,91}] wire [259:0] _a_size_lookup_T_7 = {1'h0, _a_size_lookup_T_6[259:1]}; // @[Monitor.scala:641:{91,144}] assign a_size_lookup = _a_size_lookup_T_7[3:0]; // @[Monitor.scala:639:33, :641:{19,144}] wire [3:0] a_opcodes_set_interm; // @[Monitor.scala:646:40] wire [3:0] a_sizes_set_interm; // @[Monitor.scala:648:38] wire _same_cycle_resp_T = io_in_a_valid_0 & a_first_1; // @[Monitor.scala:36:7, :651:26, :684:44] wire [127:0] _GEN_2 = 128'h1 << io_in_a_bits_source_0; // @[OneHot.scala:58:35] wire [127:0] _a_set_wo_ready_T; // @[OneHot.scala:58:35] assign _a_set_wo_ready_T = _GEN_2; // @[OneHot.scala:58:35] wire [127:0] _a_set_T; // @[OneHot.scala:58:35] assign _a_set_T = _GEN_2; // @[OneHot.scala:58:35] assign a_set_wo_ready = _same_cycle_resp_T ? _a_set_wo_ready_T[64:0] : 65'h0; // @[OneHot.scala:58:35] wire _T_1444 = _T_1518 & a_first_1; // @[Decoupled.scala:51:35] assign a_set = _T_1444 ? _a_set_T[64:0] : 65'h0; // @[OneHot.scala:58:35] wire [3:0] _a_opcodes_set_interm_T = {io_in_a_bits_opcode_0, 1'h0}; // @[Monitor.scala:36:7, :657:53] wire [3:0] _a_opcodes_set_interm_T_1 = {_a_opcodes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:657:{53,61}] assign a_opcodes_set_interm = _T_1444 ? _a_opcodes_set_interm_T_1 : 4'h0; // @[Monitor.scala:646:40, :655:{25,70}, :657:{28,61}] wire [3:0] _a_sizes_set_interm_T = {io_in_a_bits_size_0, 1'h0}; // @[Monitor.scala:36:7, :658:51] wire [3:0] _a_sizes_set_interm_T_1 = {_a_sizes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:658:{51,59}] assign a_sizes_set_interm = _T_1444 ? _a_sizes_set_interm_T_1 : 4'h0; // @[Monitor.scala:648:38, :655:{25,70}, :658:{28,59}] wire [9:0] _GEN_3 = {1'h0, io_in_a_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :659:79] wire [9:0] _a_opcodes_set_T; // @[Monitor.scala:659:79] assign _a_opcodes_set_T = _GEN_3; // @[Monitor.scala:659:79] wire [9:0] _a_sizes_set_T; // @[Monitor.scala:660:77] assign _a_sizes_set_T = _GEN_3; // @[Monitor.scala:659:79, :660:77] wire [1026:0] _a_opcodes_set_T_1 = {1023'h0, a_opcodes_set_interm} << _a_opcodes_set_T; // @[Monitor.scala:646:40, :659:{54,79}] assign a_opcodes_set = _T_1444 ? _a_opcodes_set_T_1[259:0] : 260'h0; // @[Monitor.scala:630:33, :655:{25,70}, :659:{28,54}] wire [1026:0] _a_sizes_set_T_1 = {1023'h0, a_sizes_set_interm} << _a_sizes_set_T; // @[Monitor.scala:648:38, :659:54, :660:{52,77}] assign a_sizes_set = _T_1444 ? _a_sizes_set_T_1[259:0] : 260'h0; // @[Monitor.scala:632:31, :655:{25,70}, :660:{28,52}] wire [64:0] d_clr; // @[Monitor.scala:664:34] wire [64:0] d_clr_wo_ready; // @[Monitor.scala:665:34] wire [259:0] d_opcodes_clr; // @[Monitor.scala:668:33] wire [259:0] d_sizes_clr; // @[Monitor.scala:670:31] wire _GEN_4 = io_in_d_bits_opcode_0 == 3'h6; // @[Monitor.scala:36:7, :673:46] wire d_release_ack; // @[Monitor.scala:673:46] assign d_release_ack = _GEN_4; // @[Monitor.scala:673:46] wire d_release_ack_1; // @[Monitor.scala:783:46] assign d_release_ack_1 = _GEN_4; // @[Monitor.scala:673:46, :783:46] wire _T_1490 = io_in_d_valid_0 & d_first_1; // @[Monitor.scala:36:7, :674:26] wire [127:0] _GEN_5 = 128'h1 << io_in_d_bits_source_0; // @[OneHot.scala:58:35] wire [127:0] _d_clr_wo_ready_T; // @[OneHot.scala:58:35] assign _d_clr_wo_ready_T = _GEN_5; // @[OneHot.scala:58:35] wire [127:0] _d_clr_T; // @[OneHot.scala:58:35] assign _d_clr_T = _GEN_5; // @[OneHot.scala:58:35] wire [127:0] _d_clr_wo_ready_T_1; // @[OneHot.scala:58:35] assign _d_clr_wo_ready_T_1 = _GEN_5; // @[OneHot.scala:58:35] wire [127:0] _d_clr_T_1; // @[OneHot.scala:58:35] assign _d_clr_T_1 = _GEN_5; // @[OneHot.scala:58:35] assign d_clr_wo_ready = _T_1490 & ~d_release_ack ? _d_clr_wo_ready_T[64:0] : 65'h0; // @[OneHot.scala:58:35] wire _T_1459 = _T_1591 & d_first_1 & ~d_release_ack; // @[Decoupled.scala:51:35] assign d_clr = _T_1459 ? _d_clr_T[64:0] : 65'h0; // @[OneHot.scala:58:35] wire [1038:0] _d_opcodes_clr_T_5 = 1039'hF << _d_opcodes_clr_T_4; // @[Monitor.scala:680:{76,101}] assign d_opcodes_clr = _T_1459 ? _d_opcodes_clr_T_5[259:0] : 260'h0; // @[Monitor.scala:668:33, :678:{25,70,89}, :680:{21,76}] wire [1038:0] _d_sizes_clr_T_5 = 1039'hF << _d_sizes_clr_T_4; // @[Monitor.scala:681:{74,99}] assign d_sizes_clr = _T_1459 ? _d_sizes_clr_T_5[259:0] : 260'h0; // @[Monitor.scala:670:31, :678:{25,70,89}, :681:{21,74}] wire _same_cycle_resp_T_1 = _same_cycle_resp_T; // @[Monitor.scala:684:{44,55}] wire _same_cycle_resp_T_2 = io_in_a_bits_source_0 == io_in_d_bits_source_0; // @[Monitor.scala:36:7, :684:113] wire same_cycle_resp = _same_cycle_resp_T_1 & _same_cycle_resp_T_2; // @[Monitor.scala:684:{55,88,113}] wire [64:0] _inflight_T = inflight | a_set; // @[Monitor.scala:614:27, :626:34, :705:27] wire [64:0] _inflight_T_1 = ~d_clr; // @[Monitor.scala:664:34, :705:38] wire [64:0] _inflight_T_2 = _inflight_T & _inflight_T_1; // @[Monitor.scala:705:{27,36,38}] wire [259:0] _inflight_opcodes_T = inflight_opcodes | a_opcodes_set; // @[Monitor.scala:616:35, :630:33, :706:43] wire [259:0] _inflight_opcodes_T_1 = ~d_opcodes_clr; // @[Monitor.scala:668:33, :706:62] wire [259:0] _inflight_opcodes_T_2 = _inflight_opcodes_T & _inflight_opcodes_T_1; // @[Monitor.scala:706:{43,60,62}] wire [259:0] _inflight_sizes_T = inflight_sizes | a_sizes_set; // @[Monitor.scala:618:33, :632:31, :707:39] wire [259:0] _inflight_sizes_T_1 = ~d_sizes_clr; // @[Monitor.scala:670:31, :707:56] wire [259:0] _inflight_sizes_T_2 = _inflight_sizes_T & _inflight_sizes_T_1; // @[Monitor.scala:707:{39,54,56}] reg [31:0] watchdog; // @[Monitor.scala:709:27] wire [32:0] _watchdog_T = {1'h0, watchdog} + 33'h1; // @[Monitor.scala:709:27, :714:26] wire [31:0] _watchdog_T_1 = _watchdog_T[31:0]; // @[Monitor.scala:714:26] reg [64:0] inflight_1; // @[Monitor.scala:726:35] wire [64:0] _inflight_T_3 = inflight_1; // @[Monitor.scala:726:35, :814:35] reg [259:0] inflight_opcodes_1; // @[Monitor.scala:727:35] wire [259:0] _inflight_opcodes_T_3 = inflight_opcodes_1; // @[Monitor.scala:727:35, :815:43] reg [259:0] inflight_sizes_1; // @[Monitor.scala:728:35] wire [259:0] _inflight_sizes_T_3 = inflight_sizes_1; // @[Monitor.scala:728:35, :816:41] wire [5:0] _d_first_beats1_decode_T_7 = _d_first_beats1_decode_T_6[5:0]; // @[package.scala:243:{71,76}] wire [5:0] _d_first_beats1_decode_T_8 = ~_d_first_beats1_decode_T_7; // @[package.scala:243:{46,76}] wire [2:0] d_first_beats1_decode_2 = _d_first_beats1_decode_T_8[5:3]; // @[package.scala:243:46] wire [2:0] d_first_beats1_2 = d_first_beats1_opdata_2 ? d_first_beats1_decode_2 : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [2:0] d_first_counter_2; // @[Edges.scala:229:27] wire [3:0] _d_first_counter1_T_2 = {1'h0, d_first_counter_2} - 4'h1; // @[Edges.scala:229:27, :230:28] wire [2:0] d_first_counter1_2 = _d_first_counter1_T_2[2:0]; // @[Edges.scala:230:28] wire d_first_2 = d_first_counter_2 == 3'h0; // @[Edges.scala:229:27, :231:25] wire _d_first_last_T_4 = d_first_counter_2 == 3'h1; // @[Edges.scala:229:27, :232:25] wire _d_first_last_T_5 = d_first_beats1_2 == 3'h0; // @[Edges.scala:221:14, :232:43] wire d_first_last_2 = _d_first_last_T_4 | _d_first_last_T_5; // @[Edges.scala:232:{25,33,43}] wire d_first_done_2 = d_first_last_2 & _d_first_T_2; // @[Decoupled.scala:51:35] wire [2:0] _d_first_count_T_2 = ~d_first_counter1_2; // @[Edges.scala:230:28, :234:27] wire [2:0] d_first_count_2 = d_first_beats1_2 & _d_first_count_T_2; // @[Edges.scala:221:14, :234:{25,27}] wire [2:0] _d_first_counter_T_2 = d_first_2 ? d_first_beats1_2 : d_first_counter1_2; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [3:0] c_opcode_lookup; // @[Monitor.scala:747:35] wire [3:0] c_size_lookup; // @[Monitor.scala:748:35] wire [259:0] _c_opcode_lookup_T_1 = inflight_opcodes_1 >> _c_opcode_lookup_T; // @[Monitor.scala:727:35, :749:{44,69}] wire [259:0] _c_opcode_lookup_T_6 = {256'h0, _c_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:749:{44,97}] wire [259:0] _c_opcode_lookup_T_7 = {1'h0, _c_opcode_lookup_T_6[259:1]}; // @[Monitor.scala:749:{97,152}] assign c_opcode_lookup = _c_opcode_lookup_T_7[3:0]; // @[Monitor.scala:747:35, :749:{21,152}] wire [259:0] _c_size_lookup_T_1 = inflight_sizes_1 >> _c_size_lookup_T; // @[Monitor.scala:728:35, :750:{42,67}] wire [259:0] _c_size_lookup_T_6 = {256'h0, _c_size_lookup_T_1[3:0]}; // @[Monitor.scala:750:{42,93}] wire [259:0] _c_size_lookup_T_7 = {1'h0, _c_size_lookup_T_6[259:1]}; // @[Monitor.scala:750:{93,146}] assign c_size_lookup = _c_size_lookup_T_7[3:0]; // @[Monitor.scala:748:35, :750:{21,146}] wire [64:0] d_clr_1; // @[Monitor.scala:774:34] wire [64:0] d_clr_wo_ready_1; // @[Monitor.scala:775:34] wire [259:0] d_opcodes_clr_1; // @[Monitor.scala:776:34] wire [259:0] d_sizes_clr_1; // @[Monitor.scala:777:34] wire _T_1562 = io_in_d_valid_0 & d_first_2; // @[Monitor.scala:36:7, :784:26] assign d_clr_wo_ready_1 = _T_1562 & d_release_ack_1 ? _d_clr_wo_ready_T_1[64:0] : 65'h0; // @[OneHot.scala:58:35] wire _T_1544 = _T_1591 & d_first_2 & d_release_ack_1; // @[Decoupled.scala:51:35] assign d_clr_1 = _T_1544 ? _d_clr_T_1[64:0] : 65'h0; // @[OneHot.scala:58:35] wire [1038:0] _d_opcodes_clr_T_11 = 1039'hF << _d_opcodes_clr_T_10; // @[Monitor.scala:790:{76,101}] assign d_opcodes_clr_1 = _T_1544 ? _d_opcodes_clr_T_11[259:0] : 260'h0; // @[Monitor.scala:776:34, :788:{25,70,88}, :790:{21,76}] wire [1038:0] _d_sizes_clr_T_11 = 1039'hF << _d_sizes_clr_T_10; // @[Monitor.scala:791:{74,99}] assign d_sizes_clr_1 = _T_1544 ? _d_sizes_clr_T_11[259:0] : 260'h0; // @[Monitor.scala:777:34, :788:{25,70,88}, :791:{21,74}] wire _same_cycle_resp_T_8 = io_in_d_bits_source_0 == 7'h0; // @[Monitor.scala:36:7, :795:113] wire [64:0] _inflight_T_4 = ~d_clr_1; // @[Monitor.scala:774:34, :814:46] wire [64:0] _inflight_T_5 = _inflight_T_3 & _inflight_T_4; // @[Monitor.scala:814:{35,44,46}] wire [259:0] _inflight_opcodes_T_4 = ~d_opcodes_clr_1; // @[Monitor.scala:776:34, :815:62] wire [259:0] _inflight_opcodes_T_5 = _inflight_opcodes_T_3 & _inflight_opcodes_T_4; // @[Monitor.scala:815:{43,60,62}] wire [259:0] _inflight_sizes_T_4 = ~d_sizes_clr_1; // @[Monitor.scala:777:34, :816:58] wire [259:0] _inflight_sizes_T_5 = _inflight_sizes_T_3 & _inflight_sizes_T_4; // @[Monitor.scala:816:{41,56,58}] reg [31:0] watchdog_1; // @[Monitor.scala:818:27]
Generate the Verilog code corresponding to the following Chisel files. File UARTRx.scala: package sifive.blocks.devices.uart import chisel3._ import chisel3.util._ import freechips.rocketchip.util._ /** UARTRx module recivies serial input from Rx port and transmits them to Rx fifo in parallel * * ==Datapass== * Port(Rx) -> sample -> shifter -> Rx fifo -> TL bus * * ==Structure== * - baud rate divisor counter: * generate pulse, the enable signal for sample and data shift * - sample counter: * sample happens in middle * - data counter * control signals for data shift process * - sample and data shift logic * * ==State Machine== * s_idle: detect start bit, init data_count and sample count, start pulse counter * s_data: data reciving * * @note Rx fifo transmits Rx data to TL bus */ class UARTRx(c: UARTParams) extends Module { val io = IO(new Bundle { /** enable signal from top */ val en = Input(Bool()) /** input data from rx port */ val in = Input(UInt(1.W)) /** output data to Rx fifo */ val out = Valid(UInt(c.dataBits.W)) /** divisor bits */ val div = Input(UInt(c.divisorBits.W)) /** parity enable */ val enparity = c.includeParity.option(Input(Bool())) /** parity select * * 0 -> even parity * 1 -> odd parity */ val parity = c.includeParity.option(Input(Bool())) /** parity error bit */ val errorparity = c.includeParity.option(Output(Bool())) /** databit select * * ture -> 8 * false -> 9 */ val data8or9 = (c.dataBits == 9).option(Input(Bool())) }) if (c.includeParity) io.errorparity.get := false.B val debounce = RegInit(0.U(2.W)) val debounce_max = (debounce === 3.U) val debounce_min = (debounce === 0.U) val prescaler = Reg(UInt((c.divisorBits - c.oversample + 1).W)) val start = WireDefault(false.B) /** enable signal for sampling and data shifting */ val pulse = (prescaler === 0.U) private val dataCountBits = log2Floor(c.dataBits+c.includeParity.toInt) + 1 /** init = data bits(8 or 9) + parity bit(0 or 1) + start bit(1) */ val data_count = Reg(UInt(dataCountBits.W)) val data_last = (data_count === 0.U) val parity_bit = (data_count === 1.U) && io.enparity.getOrElse(false.B) val sample_count = Reg(UInt(c.oversample.W)) val sample_mid = (sample_count === ((c.oversampleFactor - c.nSamples + 1) >> 1).U) // todo unused val sample_last = (sample_count === 0.U) /** counter for data and sample * * {{{ * | data_count | sample_count | * }}} */ val countdown = Cat(data_count, sample_count) - 1.U // Compensate for the divisor not being a multiple of the oversampling period. // Let remainder k = (io.div % c.oversampleFactor). // For the last k samples, extend the sampling delay by 1 cycle. val remainder = io.div(c.oversample-1, 0) val extend = (sample_count < remainder) // Pad head: (sample_count > ~remainder) /** prescaler reset signal * * conditions: * {{{ * start : transmisson starts * pulse : returns ture every pluse counter period * }}} */ val restore = start || pulse val prescaler_in = Mux(restore, io.div >> c.oversample, prescaler) val prescaler_next = prescaler_in - Mux(restore && extend, 0.U, 1.U) /** buffer for sample results */ val sample = Reg(UInt(c.nSamples.W)) // take the majority bit of sample buffer val voter = Majority(sample.asBools.toSet) // data buffer val shifter = Reg(UInt(c.dataBits.W)) val valid = RegInit(false.B) valid := false.B io.out.valid := valid io.out.bits := (if (c.dataBits == 8) shifter else Mux(io.data8or9.get, Cat(0.U, shifter(8,1)), shifter)) val (s_idle :: s_data :: Nil) = Enum(2) val state = RegInit(s_idle) switch (state) { is (s_idle) { // todo !(!io.in)? when (!(!io.in) && !debounce_min) { debounce := debounce - 1.U } when (!io.in) { debounce := debounce + 1.U when (debounce_max) { state := s_data start := true.B prescaler := prescaler_next // init data_count data_count := (c.dataBits+1).U + (if (c.includeParity) io.enparity.get else 0.U) - io.data8or9.getOrElse(false.B).asUInt // init sample_count = 15 sample_count := (c.oversampleFactor - 1).U } } } is (s_data) { prescaler := prescaler_next when (pulse) { // sample scan in sample := Cat(sample, io.in) data_count := countdown >> c.oversample sample_count := countdown(c.oversample-1, 0) when (sample_mid) { if (c.includeParity) { // act according to frame bit stage at its respective sampling point // check parity bit for error when (parity_bit) { io.errorparity.get := (shifter.asBools.reduce(_ ^ _) ^ voter ^ io.parity.get) } when (data_last) { state := s_idle valid := true.B } .elsewhen (!parity_bit) { // do not add parity bit to final rx data shifter := Cat(voter, shifter >> 1) } } else { when (data_last) { state := s_idle valid := true.B } .otherwise { shifter := Cat(voter, shifter >> 1) } } } } } } when (!io.en) { debounce := 0.U } } /* Copyright 2016 SiFive, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */
module UARTRx( // @[UARTRx.scala:28:7] input clock, // @[UARTRx.scala:28:7] input reset, // @[UARTRx.scala:28:7] input io_en, // @[UARTRx.scala:29:14] input io_in, // @[UARTRx.scala:29:14] output io_out_valid, // @[UARTRx.scala:29:14] output [7:0] io_out_bits, // @[UARTRx.scala:29:14] input [15:0] io_div // @[UARTRx.scala:29:14] ); reg [1:0] debounce; // @[UARTRx.scala:59:25] reg [12:0] prescaler; // @[UARTRx.scala:63:22] reg [3:0] data_count; // @[UARTRx.scala:70:23] reg [3:0] sample_count; // @[UARTRx.scala:73:25] reg [2:0] sample; // @[UARTRx.scala:102:19] reg [7:0] shifter; // @[UARTRx.scala:106:20] reg valid; // @[UARTRx.scala:108:22] reg state; // @[UARTRx.scala:114:22] wire [7:0] _countdown_T_1 = {data_count, sample_count} - 8'h1; // @[UARTRx.scala:70:23, :73:25, :83:49] wire pulse = prescaler == 13'h0; // @[UARTRx.scala:63:22, :66:26] wire data_last = data_count == 4'h0; // @[UARTRx.scala:70:23, :71:31] wire sample_mid = sample_count == 4'h7; // @[UARTRx.scala:73:25, :74:34] wire _GEN = ~io_in & (&debounce); // @[UARTRx.scala:59:25, :60:32, :114:22, :119:15, :122:21, :124:29, :125:17] wire _GEN_0 = _GEN | state; // @[UARTRx.scala:114:22, :122:21, :124:29, :125:17] wire _GEN_1 = state & pulse; // @[UARTRx.scala:66:26, :102:19, :114:22, :116:18, :138:20, :140:16] wire _GEN_2 = state & pulse & sample_mid; // @[UARTRx.scala:66:26, :74:34, :109:9, :114:22, :116:18, :138:20, :144:27, :159:30] wire restore = ~state & ~io_in & (&debounce) | pulse; // @[UARTRx.scala:59:25, :60:32, :64:26, :66:26, :98:23, :114:22, :116:18, :119:15, :122:21, :124:29] always @(posedge clock) begin // @[UARTRx.scala:28:7] if (reset) begin // @[UARTRx.scala:28:7] debounce <= 2'h0; // @[UARTRx.scala:28:7, :59:25] valid <= 1'h0; // @[UARTRx.scala:28:7, :108:22] state <= 1'h0; // @[UARTRx.scala:28:7, :114:22] end else begin // @[UARTRx.scala:28:7] if (io_en) begin // @[UARTRx.scala:29:14] if (state) begin // @[UARTRx.scala:114:22] end else if (io_in) begin // @[UARTRx.scala:29:14] if (io_in & (|debounce)) // @[UARTRx.scala:59:25, :61:32, :119:23] debounce <= debounce - 2'h1; // @[UARTRx.scala:59:25, :120:30] end else // @[UARTRx.scala:29:14] debounce <= debounce + 2'h1; // @[UARTRx.scala:28:7, :59:25, :123:30] end else // @[UARTRx.scala:29:14] debounce <= 2'h0; // @[UARTRx.scala:28:7, :59:25] valid <= _GEN_2 & data_last; // @[UARTRx.scala:71:31, :108:22, :109:9, :116:18, :138:20, :144:27, :159:30] if (state) // @[UARTRx.scala:114:22] state <= ~(state & pulse & sample_mid & data_last) & state; // @[UARTRx.scala:66:26, :71:31, :74:34, :114:22, :116:18, :138:20, :144:27, :159:30, :160:21] else // @[UARTRx.scala:114:22] state <= _GEN_0; // @[UARTRx.scala:114:22, :122:21, :124:29, :125:17] end if (_GEN_0) // @[UARTRx.scala:114:22, :116:18, :122:21, :124:29, :125:17] prescaler <= (restore ? {1'h0, io_div[15:4]} : prescaler) - {12'h0, ~(restore & sample_count < io_div[3:0])}; // @[UARTRx.scala:28:7, :63:22, :73:25, :88:25, :89:30, :98:23, :99:{25,42}, :100:{37,42,51}] if (state) begin // @[UARTRx.scala:114:22] if (_GEN_1) begin // @[UARTRx.scala:102:19, :116:18, :138:20, :140:16] data_count <= _countdown_T_1[7:4]; // @[UARTRx.scala:70:23, :83:49, :141:33] sample_count <= _countdown_T_1[3:0]; // @[UARTRx.scala:73:25, :83:49, :142:34] end end else if (_GEN) begin // @[UARTRx.scala:114:22, :122:21, :124:29, :125:17] data_count <= 4'h9; // @[UARTRx.scala:70:23] sample_count <= 4'hF; // @[UARTRx.scala:73:25] end if (_GEN_1) // @[UARTRx.scala:102:19, :116:18, :138:20, :140:16] sample <= {sample[1:0], io_in}; // @[UARTRx.scala:102:19, :140:16] if (~state | ~_GEN_2 | data_last) begin // @[UARTRx.scala:71:31, :106:20, :109:9, :114:22, :116:18, :138:20, :144:27, :159:30] end else // @[UARTRx.scala:106:20, :116:18, :138:20, :144:27, :159:30] shifter <= {sample[0] & sample[1] | sample[0] & sample[2] | sample[1] & sample[2], shifter[7:1]}; // @[Misc.scala:167:48, :168:22] always @(posedge)
Generate the Verilog code corresponding to the following Chisel files. File UnsafeAXI4ToTL.scala: package ara import chisel3._ import chisel3.util._ import freechips.rocketchip.amba._ import freechips.rocketchip.amba.axi4._ import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.diplomacy._ import freechips.rocketchip.tilelink._ import freechips.rocketchip.util._ class ReorderData(val dataWidth: Int, val respWidth: Int, val userFields: Seq[BundleFieldBase]) extends Bundle { val data = UInt(dataWidth.W) val resp = UInt(respWidth.W) val last = Bool() val user = BundleMap(userFields) } /** Parameters for [[BaseReservableListBuffer]] and all child classes. * * @param numEntries Total number of elements that can be stored in the 'data' RAM * @param numLists Maximum number of linked lists * @param numBeats Maximum number of beats per entry */ case class ReservableListBufferParameters(numEntries: Int, numLists: Int, numBeats: Int) { // Avoid zero-width wires when we call 'log2Ceil' val entryBits = if (numEntries == 1) 1 else log2Ceil(numEntries) val listBits = if (numLists == 1) 1 else log2Ceil(numLists) val beatBits = if (numBeats == 1) 1 else log2Ceil(numBeats) } case class UnsafeAXI4ToTLNode(numTlTxns: Int, wcorrupt: Boolean)(implicit valName: ValName) extends MixedAdapterNode(AXI4Imp, TLImp)( dFn = { case mp => TLMasterPortParameters.v2( masters = mp.masters.zipWithIndex.map { case (m, i) => // Support 'numTlTxns' read requests and 'numTlTxns' write requests at once. val numSourceIds = numTlTxns * 2 TLMasterParameters.v2( name = m.name, sourceId = IdRange(i * numSourceIds, (i + 1) * numSourceIds), nodePath = m.nodePath ) }, echoFields = mp.echoFields, requestFields = AMBAProtField() +: mp.requestFields, responseKeys = mp.responseKeys ) }, uFn = { mp => AXI4SlavePortParameters( slaves = mp.managers.map { m => val maxXfer = TransferSizes(1, mp.beatBytes * (1 << AXI4Parameters.lenBits)) AXI4SlaveParameters( address = m.address, resources = m.resources, regionType = m.regionType, executable = m.executable, nodePath = m.nodePath, supportsWrite = m.supportsPutPartial.intersect(maxXfer), supportsRead = m.supportsGet.intersect(maxXfer), interleavedId = Some(0) // TL2 never interleaves D beats ) }, beatBytes = mp.beatBytes, minLatency = mp.minLatency, responseFields = mp.responseFields, requestKeys = (if (wcorrupt) Seq(AMBACorrupt) else Seq()) ++ mp.requestKeys.filter(_ != AMBAProt) ) } ) class UnsafeAXI4ToTL(numTlTxns: Int, wcorrupt: Boolean)(implicit p: Parameters) extends LazyModule { require(numTlTxns >= 1) require(isPow2(numTlTxns), s"Number of TileLink transactions ($numTlTxns) must be a power of 2") val node = UnsafeAXI4ToTLNode(numTlTxns, wcorrupt) lazy val module = new LazyModuleImp(this) { (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => edgeIn.master.masters.foreach { m => require(m.aligned, "AXI4ToTL requires aligned requests") } val numIds = edgeIn.master.endId val beatBytes = edgeOut.slave.beatBytes val maxTransfer = edgeOut.slave.maxTransfer val maxBeats = maxTransfer / beatBytes // Look for an Error device to redirect bad requests val errorDevs = edgeOut.slave.managers.filter(_.nodePath.last.lazyModule.className == "TLError") require(!errorDevs.isEmpty, "There is no TLError reachable from AXI4ToTL. One must be instantiated.") val errorDev = errorDevs.maxBy(_.maxTransfer) val errorDevAddr = errorDev.address.head.base require( errorDev.supportsPutPartial.contains(maxTransfer), s"Error device supports ${errorDev.supportsPutPartial} PutPartial but must support $maxTransfer" ) require( errorDev.supportsGet.contains(maxTransfer), s"Error device supports ${errorDev.supportsGet} Get but must support $maxTransfer" ) // All of the read-response reordering logic. val listBufData = new ReorderData(beatBytes * 8, edgeIn.bundle.respBits, out.d.bits.user.fields) val listBufParams = ReservableListBufferParameters(numTlTxns, numIds, maxBeats) val listBuffer = if (numTlTxns > 1) { Module(new ReservableListBuffer(listBufData, listBufParams)) } else { Module(new PassthroughListBuffer(listBufData, listBufParams)) } // To differentiate between read and write transaction IDs, we will set the MSB of the TileLink 'source' field to // 0 for read requests and 1 for write requests. val isReadSourceBit = 0.U(1.W) val isWriteSourceBit = 1.U(1.W) /* Read request logic */ val rOut = Wire(Decoupled(new TLBundleA(edgeOut.bundle))) val rBytes1 = in.ar.bits.bytes1() val rSize = OH1ToUInt(rBytes1) val rOk = edgeOut.slave.supportsGetSafe(in.ar.bits.addr, rSize) val rId = if (numTlTxns > 1) { Cat(isReadSourceBit, listBuffer.ioReservedIndex) } else { isReadSourceBit } val rAddr = Mux(rOk, in.ar.bits.addr, errorDevAddr.U | in.ar.bits.addr(log2Ceil(beatBytes) - 1, 0)) // Indicates if there are still valid TileLink source IDs left to use. val canIssueR = listBuffer.ioReserve.ready listBuffer.ioReserve.bits := in.ar.bits.id listBuffer.ioReserve.valid := in.ar.valid && rOut.ready in.ar.ready := rOut.ready && canIssueR rOut.valid := in.ar.valid && canIssueR rOut.bits :<= edgeOut.Get(rId, rAddr, rSize)._2 rOut.bits.user :<= in.ar.bits.user rOut.bits.user.lift(AMBAProt).foreach { rProt => rProt.privileged := in.ar.bits.prot(0) rProt.secure := !in.ar.bits.prot(1) rProt.fetch := in.ar.bits.prot(2) rProt.bufferable := in.ar.bits.cache(0) rProt.modifiable := in.ar.bits.cache(1) rProt.readalloc := in.ar.bits.cache(2) rProt.writealloc := in.ar.bits.cache(3) } /* Write request logic */ // Strip off the MSB, which identifies the transaction as read vs write. val strippedResponseSourceId = if (numTlTxns > 1) { out.d.bits.source((out.d.bits.source).getWidth - 2, 0) } else { // When there's only 1 TileLink transaction allowed for read/write, then this field is always 0. 0.U(1.W) } // Track when a write request burst is in progress. val writeBurstBusy = RegInit(false.B) when(in.w.fire) { writeBurstBusy := !in.w.bits.last } val usedWriteIds = RegInit(0.U(numTlTxns.W)) val canIssueW = !usedWriteIds.andR val usedWriteIdsSet = WireDefault(0.U(numTlTxns.W)) val usedWriteIdsClr = WireDefault(0.U(numTlTxns.W)) usedWriteIds := (usedWriteIds & ~usedWriteIdsClr) | usedWriteIdsSet // Since write responses can show up in the middle of a write burst, we need to ensure the write burst ID doesn't // change mid-burst. val freeWriteIdOHRaw = Wire(UInt(numTlTxns.W)) val freeWriteIdOH = freeWriteIdOHRaw holdUnless !writeBurstBusy val freeWriteIdIndex = OHToUInt(freeWriteIdOH) freeWriteIdOHRaw := ~(leftOR(~usedWriteIds) << 1) & ~usedWriteIds val wOut = Wire(Decoupled(new TLBundleA(edgeOut.bundle))) val wBytes1 = in.aw.bits.bytes1() val wSize = OH1ToUInt(wBytes1) val wOk = edgeOut.slave.supportsPutPartialSafe(in.aw.bits.addr, wSize) val wId = if (numTlTxns > 1) { Cat(isWriteSourceBit, freeWriteIdIndex) } else { isWriteSourceBit } val wAddr = Mux(wOk, in.aw.bits.addr, errorDevAddr.U | in.aw.bits.addr(log2Ceil(beatBytes) - 1, 0)) // Here, we're taking advantage of the Irrevocable behavior of AXI4 (once 'valid' is asserted it must remain // asserted until the handshake occurs). We will only accept W-channel beats when we have a valid AW beat, but // the AW-channel beat won't fire until the final W-channel beat fires. So, we have stable address/size/strb // bits during a W-channel burst. in.aw.ready := wOut.ready && in.w.valid && in.w.bits.last && canIssueW in.w.ready := wOut.ready && in.aw.valid && canIssueW wOut.valid := in.aw.valid && in.w.valid && canIssueW wOut.bits :<= edgeOut.Put(wId, wAddr, wSize, in.w.bits.data, in.w.bits.strb)._2 in.w.bits.user.lift(AMBACorrupt).foreach { wOut.bits.corrupt := _ } wOut.bits.user :<= in.aw.bits.user wOut.bits.user.lift(AMBAProt).foreach { wProt => wProt.privileged := in.aw.bits.prot(0) wProt.secure := !in.aw.bits.prot(1) wProt.fetch := in.aw.bits.prot(2) wProt.bufferable := in.aw.bits.cache(0) wProt.modifiable := in.aw.bits.cache(1) wProt.readalloc := in.aw.bits.cache(2) wProt.writealloc := in.aw.bits.cache(3) } // Merge the AXI4 read/write requests into the TL-A channel. TLArbiter(TLArbiter.roundRobin)(out.a, (0.U, rOut), (in.aw.bits.len, wOut)) /* Read/write response logic */ val okB = Wire(Irrevocable(new AXI4BundleB(edgeIn.bundle))) val okR = Wire(Irrevocable(new AXI4BundleR(edgeIn.bundle))) val dResp = Mux(out.d.bits.denied || out.d.bits.corrupt, AXI4Parameters.RESP_SLVERR, AXI4Parameters.RESP_OKAY) val dHasData = edgeOut.hasData(out.d.bits) val (_dFirst, dLast, _dDone, dCount) = edgeOut.count(out.d) val dNumBeats1 = edgeOut.numBeats1(out.d.bits) // Handle cases where writeack arrives before write is done val writeEarlyAck = (UIntToOH(strippedResponseSourceId) & usedWriteIds) === 0.U out.d.ready := Mux(dHasData, listBuffer.ioResponse.ready, okB.ready && !writeEarlyAck) listBuffer.ioDataOut.ready := okR.ready okR.valid := listBuffer.ioDataOut.valid okB.valid := out.d.valid && !dHasData && !writeEarlyAck listBuffer.ioResponse.valid := out.d.valid && dHasData listBuffer.ioResponse.bits.index := strippedResponseSourceId listBuffer.ioResponse.bits.data.data := out.d.bits.data listBuffer.ioResponse.bits.data.resp := dResp listBuffer.ioResponse.bits.data.last := dLast listBuffer.ioResponse.bits.data.user :<= out.d.bits.user listBuffer.ioResponse.bits.count := dCount listBuffer.ioResponse.bits.numBeats1 := dNumBeats1 okR.bits.id := listBuffer.ioDataOut.bits.listIndex okR.bits.data := listBuffer.ioDataOut.bits.payload.data okR.bits.resp := listBuffer.ioDataOut.bits.payload.resp okR.bits.last := listBuffer.ioDataOut.bits.payload.last okR.bits.user :<= listBuffer.ioDataOut.bits.payload.user // Upon the final beat in a write request, record a mapping from TileLink source ID to AXI write ID. Upon a write // response, mark the write transaction as complete. val writeIdMap = Mem(numTlTxns, UInt(log2Ceil(numIds).W)) val writeResponseId = writeIdMap.read(strippedResponseSourceId) when(wOut.fire) { writeIdMap.write(freeWriteIdIndex, in.aw.bits.id) } when(edgeOut.done(wOut)) { usedWriteIdsSet := freeWriteIdOH } when(okB.fire) { usedWriteIdsClr := UIntToOH(strippedResponseSourceId, numTlTxns) } okB.bits.id := writeResponseId okB.bits.resp := dResp okB.bits.user :<= out.d.bits.user // AXI4 needs irrevocable behaviour in.r <> Queue.irrevocable(okR, 1, flow = true) in.b <> Queue.irrevocable(okB, 1, flow = true) // Unused channels out.b.ready := true.B out.c.valid := false.B out.e.valid := false.B /* Alignment constraints. The AXI4Fragmenter should guarantee all of these constraints. */ def checkRequest[T <: AXI4BundleA](a: IrrevocableIO[T], reqType: String): Unit = { val lReqType = reqType.toLowerCase when(a.valid) { assert(a.bits.len < maxBeats.U, s"$reqType burst length (%d) must be less than $maxBeats", a.bits.len + 1.U) // Narrow transfers and FIXED bursts must be single-beat bursts. when(a.bits.len =/= 0.U) { assert( a.bits.size === log2Ceil(beatBytes).U, s"Narrow $lReqType transfers (%d < $beatBytes bytes) can't be multi-beat bursts (%d beats)", 1.U << a.bits.size, a.bits.len + 1.U ) assert( a.bits.burst =/= AXI4Parameters.BURST_FIXED, s"Fixed $lReqType bursts can't be multi-beat bursts (%d beats)", a.bits.len + 1.U ) } // Furthermore, the transfer size (a.bits.bytes1() + 1.U) must be naturally-aligned to the address (in // particular, during both WRAP and INCR bursts), but this constraint is already checked by TileLink // Monitors. Note that this alignment requirement means that WRAP bursts are identical to INCR bursts. } } checkRequest(in.ar, "Read") checkRequest(in.aw, "Write") } } } object UnsafeAXI4ToTL { def apply(numTlTxns: Int = 1, wcorrupt: Boolean = true)(implicit p: Parameters) = { val axi42tl = LazyModule(new UnsafeAXI4ToTL(numTlTxns, wcorrupt)) axi42tl.node } } /* ReservableListBuffer logic, and associated classes. */ class ResponsePayload[T <: Data](val data: T, val params: ReservableListBufferParameters) extends Bundle { val index = UInt(params.entryBits.W) val count = UInt(params.beatBits.W) val numBeats1 = UInt(params.beatBits.W) } class DataOutPayload[T <: Data](val payload: T, val params: ReservableListBufferParameters) extends Bundle { val listIndex = UInt(params.listBits.W) } /** Abstract base class to unify [[ReservableListBuffer]] and [[PassthroughListBuffer]]. */ abstract class BaseReservableListBuffer[T <: Data](gen: T, params: ReservableListBufferParameters) extends Module { require(params.numEntries > 0) require(params.numLists > 0) val ioReserve = IO(Flipped(Decoupled(UInt(params.listBits.W)))) val ioReservedIndex = IO(Output(UInt(params.entryBits.W))) val ioResponse = IO(Flipped(Decoupled(new ResponsePayload(gen, params)))) val ioDataOut = IO(Decoupled(new DataOutPayload(gen, params))) } /** A modified version of 'ListBuffer' from 'sifive/block-inclusivecache-sifive'. This module forces users to reserve * linked list entries (through the 'ioReserve' port) before writing data into those linked lists (through the * 'ioResponse' port). Each response is tagged to indicate which linked list it is written into. The responses for a * given linked list can come back out-of-order, but they will be read out through the 'ioDataOut' port in-order. * * ==Constructor== * @param gen Chisel type of linked list data element * @param params Other parameters * * ==Module IO== * @param ioReserve Index of list to reserve a new element in * @param ioReservedIndex Index of the entry that was reserved in the linked list, valid when 'ioReserve.fire' * @param ioResponse Payload containing response data and linked-list-entry index * @param ioDataOut Payload containing data read from response linked list and linked list index */ class ReservableListBuffer[T <: Data](gen: T, params: ReservableListBufferParameters) extends BaseReservableListBuffer(gen, params) { val valid = RegInit(0.U(params.numLists.W)) val head = Mem(params.numLists, UInt(params.entryBits.W)) val tail = Mem(params.numLists, UInt(params.entryBits.W)) val used = RegInit(0.U(params.numEntries.W)) val next = Mem(params.numEntries, UInt(params.entryBits.W)) val map = Mem(params.numEntries, UInt(params.listBits.W)) val dataMems = Seq.fill(params.numBeats) { SyncReadMem(params.numEntries, gen) } val dataIsPresent = RegInit(0.U(params.numEntries.W)) val beats = Mem(params.numEntries, UInt(params.beatBits.W)) // The 'data' SRAM should be single-ported (read-or-write), since dual-ported SRAMs are significantly slower. val dataMemReadEnable = WireDefault(false.B) val dataMemWriteEnable = WireDefault(false.B) assert(!(dataMemReadEnable && dataMemWriteEnable)) // 'freeOH' has a single bit set, which is the least-significant bit that is cleared in 'used'. So, it's the // lowest-index entry in the 'data' RAM which is free. val freeOH = Wire(UInt(params.numEntries.W)) val freeIndex = OHToUInt(freeOH) freeOH := ~(leftOR(~used) << 1) & ~used ioReservedIndex := freeIndex val validSet = WireDefault(0.U(params.numLists.W)) val validClr = WireDefault(0.U(params.numLists.W)) val usedSet = WireDefault(0.U(params.numEntries.W)) val usedClr = WireDefault(0.U(params.numEntries.W)) val dataIsPresentSet = WireDefault(0.U(params.numEntries.W)) val dataIsPresentClr = WireDefault(0.U(params.numEntries.W)) valid := (valid & ~validClr) | validSet used := (used & ~usedClr) | usedSet dataIsPresent := (dataIsPresent & ~dataIsPresentClr) | dataIsPresentSet /* Reservation logic signals */ val reserveTail = Wire(UInt(params.entryBits.W)) val reserveIsValid = Wire(Bool()) /* Response logic signals */ val responseIndex = Wire(UInt(params.entryBits.W)) val responseListIndex = Wire(UInt(params.listBits.W)) val responseHead = Wire(UInt(params.entryBits.W)) val responseTail = Wire(UInt(params.entryBits.W)) val nextResponseHead = Wire(UInt(params.entryBits.W)) val nextDataIsPresent = Wire(Bool()) val isResponseInOrder = Wire(Bool()) val isEndOfList = Wire(Bool()) val isLastBeat = Wire(Bool()) val isLastResponseBeat = Wire(Bool()) val isLastUnwindBeat = Wire(Bool()) /* Reservation logic */ reserveTail := tail.read(ioReserve.bits) reserveIsValid := valid(ioReserve.bits) ioReserve.ready := !used.andR // When we want to append-to and destroy the same linked list on the same cycle, we need to take special care that we // actually start a new list, rather than appending to a list that's about to disappear. val reserveResponseSameList = ioReserve.bits === responseListIndex val appendToAndDestroyList = ioReserve.fire && ioDataOut.fire && reserveResponseSameList && isEndOfList && isLastBeat when(ioReserve.fire) { validSet := UIntToOH(ioReserve.bits, params.numLists) usedSet := freeOH when(reserveIsValid && !appendToAndDestroyList) { next.write(reserveTail, freeIndex) }.otherwise { head.write(ioReserve.bits, freeIndex) } tail.write(ioReserve.bits, freeIndex) map.write(freeIndex, ioReserve.bits) } /* Response logic */ // The majority of the response logic (reading from and writing to the various RAMs) is common between the // response-from-IO case (ioResponse.fire) and the response-from-unwind case (unwindDataIsValid). // The read from the 'next' RAM should be performed at the address given by 'responseHead'. However, we only use the // 'nextResponseHead' signal when 'isResponseInOrder' is asserted (both in the response-from-IO and // response-from-unwind cases), which implies that 'responseHead' equals 'responseIndex'. 'responseHead' comes after // two back-to-back RAM reads, so indexing into the 'next' RAM with 'responseIndex' is much quicker. responseHead := head.read(responseListIndex) responseTail := tail.read(responseListIndex) nextResponseHead := next.read(responseIndex) nextDataIsPresent := dataIsPresent(nextResponseHead) // Note that when 'isEndOfList' is asserted, 'nextResponseHead' (and therefore 'nextDataIsPresent') is invalid, since // there isn't a next element in the linked list. isResponseInOrder := responseHead === responseIndex isEndOfList := responseHead === responseTail isLastResponseBeat := ioResponse.bits.count === ioResponse.bits.numBeats1 // When a response's last beat is sent to the output channel, mark it as completed. This can happen in two // situations: // 1. We receive an in-order response, which travels straight from 'ioResponse' to 'ioDataOut'. The 'data' SRAM // reservation was never needed. // 2. An entry is read out of the 'data' SRAM (within the unwind FSM). when(ioDataOut.fire && isLastBeat) { // Mark the reservation as no-longer-used. usedClr := UIntToOH(responseIndex, params.numEntries) // If the response is in-order, then we're popping an element from this linked list. when(isEndOfList) { // Once we pop the last element from a linked list, mark it as no-longer-present. validClr := UIntToOH(responseListIndex, params.numLists) }.otherwise { // Move the linked list's head pointer to the new head pointer. head.write(responseListIndex, nextResponseHead) } } // If we get an out-of-order response, then stash it in the 'data' SRAM for later unwinding. when(ioResponse.fire && !isResponseInOrder) { dataMemWriteEnable := true.B when(isLastResponseBeat) { dataIsPresentSet := UIntToOH(ioResponse.bits.index, params.numEntries) beats.write(ioResponse.bits.index, ioResponse.bits.numBeats1) } } // Use the 'ioResponse.bits.count' index (AKA the beat number) to select which 'data' SRAM to write to. val responseCountOH = UIntToOH(ioResponse.bits.count, params.numBeats) (responseCountOH.asBools zip dataMems) foreach { case (select, seqMem) => when(select && dataMemWriteEnable) { seqMem.write(ioResponse.bits.index, ioResponse.bits.data) } } /* Response unwind logic */ // Unwind FSM state definitions val sIdle :: sUnwinding :: Nil = Enum(2) val unwindState = RegInit(sIdle) val busyUnwinding = unwindState === sUnwinding val startUnwind = Wire(Bool()) val stopUnwind = Wire(Bool()) when(startUnwind) { unwindState := sUnwinding }.elsewhen(stopUnwind) { unwindState := sIdle } assert(!(startUnwind && stopUnwind)) // Start the unwind FSM when there is an old out-of-order response stored in the 'data' SRAM that is now about to // become the next in-order response. As noted previously, when 'isEndOfList' is asserted, 'nextDataIsPresent' is // invalid. // // Note that since an in-order response from 'ioResponse' to 'ioDataOut' starts the unwind FSM, we don't have to // worry about overwriting the 'data' SRAM's output when we start the unwind FSM. startUnwind := ioResponse.fire && isResponseInOrder && isLastResponseBeat && !isEndOfList && nextDataIsPresent // Stop the unwind FSM when the output channel consumes the final beat of an element from the unwind FSM, and one of // two things happens: // 1. We're still waiting for the next in-order response for this list (!nextDataIsPresent) // 2. There are no more outstanding responses in this list (isEndOfList) // // Including 'busyUnwinding' ensures this is a single-cycle pulse, and it never fires while in-order transactions are // passing from 'ioResponse' to 'ioDataOut'. stopUnwind := busyUnwinding && ioDataOut.fire && isLastUnwindBeat && (!nextDataIsPresent || isEndOfList) val isUnwindBurstOver = Wire(Bool()) val startNewBurst = startUnwind || (isUnwindBurstOver && dataMemReadEnable) // Track the number of beats left to unwind for each list entry. At the start of a new burst, we flop the number of // beats in this burst (minus 1) into 'unwindBeats1', and we reset the 'beatCounter' counter. With each beat, we // increment 'beatCounter' until it reaches 'unwindBeats1'. val unwindBeats1 = Reg(UInt(params.beatBits.W)) val nextBeatCounter = Wire(UInt(params.beatBits.W)) val beatCounter = RegNext(nextBeatCounter) isUnwindBurstOver := beatCounter === unwindBeats1 when(startNewBurst) { unwindBeats1 := beats.read(nextResponseHead) nextBeatCounter := 0.U }.elsewhen(dataMemReadEnable) { nextBeatCounter := beatCounter + 1.U }.otherwise { nextBeatCounter := beatCounter } // When unwinding, feed the next linked-list head pointer (read out of the 'next' RAM) back so we can unwind the next // entry in this linked list. Only update the pointer when we're actually moving to the next 'data' SRAM entry (which // happens at the start of reading a new stored burst). val unwindResponseIndex = RegEnable(nextResponseHead, startNewBurst) responseIndex := Mux(busyUnwinding, unwindResponseIndex, ioResponse.bits.index) // Hold 'nextResponseHead' static while we're in the middle of unwinding a multi-beat burst entry. We don't want the // SRAM read address to shift while reading beats from a burst. Note that this is identical to 'nextResponseHead // holdUnless startNewBurst', but 'unwindResponseIndex' already implements the 'RegEnable' signal in 'holdUnless'. val unwindReadAddress = Mux(startNewBurst, nextResponseHead, unwindResponseIndex) // The 'data' SRAM's output is valid if we read from the SRAM on the previous cycle. The SRAM's output stays valid // until it is consumed by the output channel (and if we don't read from the SRAM again on that same cycle). val unwindDataIsValid = RegInit(false.B) when(dataMemReadEnable) { unwindDataIsValid := true.B }.elsewhen(ioDataOut.fire) { unwindDataIsValid := false.B } isLastUnwindBeat := isUnwindBurstOver && unwindDataIsValid // Indicates if this is the last beat for both 'ioResponse'-to-'ioDataOut' and unwind-to-'ioDataOut' beats. isLastBeat := Mux(busyUnwinding, isLastUnwindBeat, isLastResponseBeat) // Select which SRAM to read from based on the beat counter. val dataOutputVec = Wire(Vec(params.numBeats, gen)) val nextBeatCounterOH = UIntToOH(nextBeatCounter, params.numBeats) (nextBeatCounterOH.asBools zip dataMems).zipWithIndex foreach { case ((select, seqMem), i) => dataOutputVec(i) := seqMem.read(unwindReadAddress, select && dataMemReadEnable) } // Select the current 'data' SRAM output beat, and save the output in a register in case we're being back-pressured // by 'ioDataOut'. This implements the functionality of 'readAndHold', but only on the single SRAM we're reading // from. val dataOutput = dataOutputVec(beatCounter) holdUnless RegNext(dataMemReadEnable) // Mark 'data' burst entries as no-longer-present as they get read out of the SRAM. when(dataMemReadEnable) { dataIsPresentClr := UIntToOH(unwindReadAddress, params.numEntries) } // As noted above, when starting the unwind FSM, we know the 'data' SRAM's output isn't valid, so it's safe to issue // a read command. Otherwise, only issue an SRAM read when the next 'unwindState' is 'sUnwinding', and if we know // we're not going to overwrite the SRAM's current output (the SRAM output is already valid, and it's not going to be // consumed by the output channel). val dontReadFromDataMem = unwindDataIsValid && !ioDataOut.ready dataMemReadEnable := startUnwind || (busyUnwinding && !stopUnwind && !dontReadFromDataMem) // While unwinding, prevent new reservations from overwriting the current 'map' entry that we're using. We need // 'responseListIndex' to be coherent for the entire unwind process. val rawResponseListIndex = map.read(responseIndex) val unwindResponseListIndex = RegEnable(rawResponseListIndex, startNewBurst) responseListIndex := Mux(busyUnwinding, unwindResponseListIndex, rawResponseListIndex) // Accept responses either when they can be passed through to the output channel, or if they're out-of-order and are // just going to be stashed in the 'data' SRAM. Never accept a response payload when we're busy unwinding, since that // could result in reading from and writing to the 'data' SRAM in the same cycle, and we want that SRAM to be // single-ported. ioResponse.ready := (ioDataOut.ready || !isResponseInOrder) && !busyUnwinding // Either pass an in-order response to the output channel, or data read from the unwind FSM. ioDataOut.valid := Mux(busyUnwinding, unwindDataIsValid, ioResponse.valid && isResponseInOrder) ioDataOut.bits.listIndex := responseListIndex ioDataOut.bits.payload := Mux(busyUnwinding, dataOutput, ioResponse.bits.data) // It's an error to get a response that isn't associated with a valid linked list. when(ioResponse.fire || unwindDataIsValid) { assert( valid(responseListIndex), "No linked list exists at index %d, mapped from %d", responseListIndex, responseIndex ) } when(busyUnwinding && dataMemReadEnable) { assert(isResponseInOrder, "Unwind FSM must read entries from SRAM in order") } } /** Specialized version of [[ReservableListBuffer]] for the case of numEntries == 1. * * Much of the complex logic in [[ReservableListBuffer]] can disappear in this case. For instance, we don't have to * reorder any responses, or store any linked lists. */ class PassthroughListBuffer[T <: Data](gen: T, params: ReservableListBufferParameters) extends BaseReservableListBuffer(gen, params) { require(params.numEntries == 1, s"PassthroughListBuffer is only valid when 'numEntries' (${params.numEntries}) is 1") val used = RegInit(0.U(params.numEntries.W)) val map = Mem(params.numEntries, UInt(params.listBits.W)) val usedSet = WireDefault(0.U(params.numEntries.W)) val usedClr = WireDefault(0.U(params.numEntries.W)) used := (used & ~usedClr) | usedSet ioReserve.ready := used === 0.U // Store which list index was reserved, we need to return this value when we get a response. when(ioReserve.fire) { usedSet := 1.U map.write(0.U, ioReserve.bits) } // There's only one valid linked list entry, which is at index 0. ioReservedIndex := 0.U val isLastResponseBeat = ioResponse.bits.count === ioResponse.bits.numBeats1 // Mark the linked list as empty when we get the last beat in a response. // Note that 'ioResponse.fire === ioDataOut.fire'. when(ioResponse.fire && isLastResponseBeat) { usedClr := 1.U } // Always pass the response data straight through, since we never need to reorder the response data. ioDataOut.bits.listIndex := map.read(0.U) ioDataOut.bits.payload := ioResponse.bits.data ioDataOut.valid := ioResponse.valid ioResponse.ready := ioDataOut.ready }
module dataMems_450( // @[UnsafeAXI4ToTL.scala:365:62] input [4:0] R0_addr, input R0_en, input R0_clk, output [66:0] R0_data, input [4:0] W0_addr, input W0_en, input W0_clk, input [66:0] W0_data ); dataMems_0_ext dataMems_0_ext ( // @[UnsafeAXI4ToTL.scala:365:62] .R0_addr (R0_addr), .R0_en (R0_en), .R0_clk (R0_clk), .R0_data (R0_data), .W0_addr (W0_addr), .W0_en (W0_en), .W0_clk (W0_clk), .W0_data (W0_data) ); // @[UnsafeAXI4ToTL.scala:365:62] endmodule
Generate the Verilog code corresponding to the following Chisel files. File PE.scala: // See README.md for license details. package gemmini import chisel3._ import chisel3.util._ class PEControl[T <: Data : Arithmetic](accType: T) extends Bundle { val dataflow = UInt(1.W) // TODO make this an Enum val propagate = UInt(1.W) // Which register should be propagated (and which should be accumulated)? val shift = UInt(log2Up(accType.getWidth).W) // TODO this isn't correct for Floats } class MacUnit[T <: Data](inputType: T, cType: T, dType: T) (implicit ev: Arithmetic[T]) extends Module { import ev._ val io = IO(new Bundle { val in_a = Input(inputType) val in_b = Input(inputType) val in_c = Input(cType) val out_d = Output(dType) }) io.out_d := io.in_c.mac(io.in_a, io.in_b) } // TODO update documentation /** * A PE implementing a MAC operation. Configured as fully combinational when integrated into a Mesh. * @param width Data width of operands */ class PE[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, max_simultaneous_matmuls: Int) (implicit ev: Arithmetic[T]) extends Module { // Debugging variables import ev._ val io = IO(new Bundle { val in_a = Input(inputType) val in_b = Input(outputType) val in_d = Input(outputType) val out_a = Output(inputType) val out_b = Output(outputType) val out_c = Output(outputType) val in_control = Input(new PEControl(accType)) val out_control = Output(new PEControl(accType)) val in_id = Input(UInt(log2Up(max_simultaneous_matmuls).W)) val out_id = Output(UInt(log2Up(max_simultaneous_matmuls).W)) val in_last = Input(Bool()) val out_last = Output(Bool()) val in_valid = Input(Bool()) val out_valid = Output(Bool()) val bad_dataflow = Output(Bool()) }) val cType = if (df == Dataflow.WS) inputType else accType // When creating PEs that support multiple dataflows, the // elaboration/synthesis tools often fail to consolidate and de-duplicate // MAC units. To force mac circuitry to be re-used, we create a "mac_unit" // module here which just performs a single MAC operation val mac_unit = Module(new MacUnit(inputType, if (df == Dataflow.WS) outputType else accType, outputType)) val a = io.in_a val b = io.in_b val d = io.in_d val c1 = Reg(cType) val c2 = Reg(cType) val dataflow = io.in_control.dataflow val prop = io.in_control.propagate val shift = io.in_control.shift val id = io.in_id val last = io.in_last val valid = io.in_valid io.out_a := a io.out_control.dataflow := dataflow io.out_control.propagate := prop io.out_control.shift := shift io.out_id := id io.out_last := last io.out_valid := valid mac_unit.io.in_a := a val last_s = RegEnable(prop, valid) val flip = last_s =/= prop val shift_offset = Mux(flip, shift, 0.U) // Which dataflow are we using? val OUTPUT_STATIONARY = Dataflow.OS.id.U(1.W) val WEIGHT_STATIONARY = Dataflow.WS.id.U(1.W) // Is c1 being computed on, or propagated forward (in the output-stationary dataflow)? val COMPUTE = 0.U(1.W) val PROPAGATE = 1.U(1.W) io.bad_dataflow := false.B when ((df == Dataflow.OS).B || ((df == Dataflow.BOTH).B && dataflow === OUTPUT_STATIONARY)) { when(prop === PROPAGATE) { io.out_c := (c1 >> shift_offset).clippedToWidthOf(outputType) io.out_b := b mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c2 c2 := mac_unit.io.out_d c1 := d.withWidthOf(cType) }.otherwise { io.out_c := (c2 >> shift_offset).clippedToWidthOf(outputType) io.out_b := b mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c1 c1 := mac_unit.io.out_d c2 := d.withWidthOf(cType) } }.elsewhen ((df == Dataflow.WS).B || ((df == Dataflow.BOTH).B && dataflow === WEIGHT_STATIONARY)) { when(prop === PROPAGATE) { io.out_c := c1 mac_unit.io.in_b := c2.asTypeOf(inputType) mac_unit.io.in_c := b io.out_b := mac_unit.io.out_d c1 := d }.otherwise { io.out_c := c2 mac_unit.io.in_b := c1.asTypeOf(inputType) mac_unit.io.in_c := b io.out_b := mac_unit.io.out_d c2 := d } }.otherwise { io.bad_dataflow := true.B //assert(false.B, "unknown dataflow") io.out_c := DontCare io.out_b := DontCare mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c2 } when (!valid) { c1 := c1 c2 := c2 mac_unit.io.in_b := DontCare mac_unit.io.in_c := DontCare } } File Arithmetic.scala: // A simple type class for Chisel datatypes that can add and multiply. To add your own type, simply create your own: // implicit MyTypeArithmetic extends Arithmetic[MyType] { ... } package gemmini import chisel3._ import chisel3.util._ import hardfloat._ // Bundles that represent the raw bits of custom datatypes case class Float(expWidth: Int, sigWidth: Int) extends Bundle { val bits = UInt((expWidth + sigWidth).W) val bias: Int = (1 << (expWidth-1)) - 1 } case class DummySInt(w: Int) extends Bundle { val bits = UInt(w.W) def dontCare: DummySInt = { val o = Wire(new DummySInt(w)) o.bits := 0.U o } } // The Arithmetic typeclass which implements various arithmetic operations on custom datatypes abstract class Arithmetic[T <: Data] { implicit def cast(t: T): ArithmeticOps[T] } abstract class ArithmeticOps[T <: Data](self: T) { def *(t: T): T def mac(m1: T, m2: T): T // Returns (m1 * m2 + self) def +(t: T): T def -(t: T): T def >>(u: UInt): T // This is a rounding shift! Rounds away from 0 def >(t: T): Bool def identity: T def withWidthOf(t: T): T def clippedToWidthOf(t: T): T // Like "withWidthOf", except that it saturates def relu: T def zero: T def minimum: T // Optional parameters, which only need to be defined if you want to enable various optimizations for transformers def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[T])] = None def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[T])] = None def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = None def mult_with_reciprocal[U <: Data](reciprocal: U) = self } object Arithmetic { implicit object UIntArithmetic extends Arithmetic[UInt] { override implicit def cast(self: UInt) = new ArithmeticOps(self) { override def *(t: UInt) = self * t override def mac(m1: UInt, m2: UInt) = m1 * m2 + self override def +(t: UInt) = self + t override def -(t: UInt) = self - t override def >>(u: UInt) = { // The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm // TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here? val point_five = Mux(u === 0.U, 0.U, self(u - 1.U)) val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U val ones_digit = self(u) val r = point_five & (zeros | ones_digit) (self >> u).asUInt + r } override def >(t: UInt): Bool = self > t override def withWidthOf(t: UInt) = self.asTypeOf(t) override def clippedToWidthOf(t: UInt) = { val sat = ((1 << (t.getWidth-1))-1).U Mux(self > sat, sat, self)(t.getWidth-1, 0) } override def relu: UInt = self override def zero: UInt = 0.U override def identity: UInt = 1.U override def minimum: UInt = 0.U } } implicit object SIntArithmetic extends Arithmetic[SInt] { override implicit def cast(self: SInt) = new ArithmeticOps(self) { override def *(t: SInt) = self * t override def mac(m1: SInt, m2: SInt) = m1 * m2 + self override def +(t: SInt) = self + t override def -(t: SInt) = self - t override def >>(u: UInt) = { // The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm // TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here? val point_five = Mux(u === 0.U, 0.U, self(u - 1.U)) val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U val ones_digit = self(u) val r = (point_five & (zeros | ones_digit)).asBool (self >> u).asSInt + Mux(r, 1.S, 0.S) } override def >(t: SInt): Bool = self > t override def withWidthOf(t: SInt) = { if (self.getWidth >= t.getWidth) self(t.getWidth-1, 0).asSInt else { val sign_bits = t.getWidth - self.getWidth val sign = self(self.getWidth-1) Cat(Cat(Seq.fill(sign_bits)(sign)), self).asTypeOf(t) } } override def clippedToWidthOf(t: SInt): SInt = { val maxsat = ((1 << (t.getWidth-1))-1).S val minsat = (-(1 << (t.getWidth-1))).S MuxCase(self, Seq((self > maxsat) -> maxsat, (self < minsat) -> minsat))(t.getWidth-1, 0).asSInt } override def relu: SInt = Mux(self >= 0.S, self, 0.S) override def zero: SInt = 0.S override def identity: SInt = 1.S override def minimum: SInt = (-(1 << (self.getWidth-1))).S override def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = { // TODO this uses a floating point divider, but we should use an integer divider instead val input = Wire(Decoupled(denom_t.cloneType)) val output = Wire(Decoupled(self.cloneType)) // We translate our integer to floating-point form so that we can use the hardfloat divider val expWidth = log2Up(self.getWidth) + 1 val sigWidth = self.getWidth def sin_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def uin_to_float(x: UInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := false.B in_to_rec_fn.io.in := x in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag rec_fn_to_in.io.out.asSInt } val self_rec = sin_to_float(self) val denom_rec = uin_to_float(input.bits) // Instantiate the hardloat divider val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options)) input.ready := divider.io.inReady divider.io.inValid := input.valid divider.io.sqrtOp := false.B divider.io.a := self_rec divider.io.b := denom_rec divider.io.roundingMode := consts.round_minMag divider.io.detectTininess := consts.tininess_afterRounding output.valid := divider.io.outValid_div output.bits := float_to_in(divider.io.out) assert(!output.valid || output.ready) Some((input, output)) } override def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = { // TODO this uses a floating point divider, but we should use an integer divider instead val input = Wire(Decoupled(UInt(0.W))) val output = Wire(Decoupled(self.cloneType)) input.bits := DontCare // We translate our integer to floating-point form so that we can use the hardfloat divider val expWidth = log2Up(self.getWidth) + 1 val sigWidth = self.getWidth def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag rec_fn_to_in.io.out.asSInt } val self_rec = in_to_float(self) // Instantiate the hardloat sqrt val sqrter = Module(new DivSqrtRecFN_small(expWidth, sigWidth, 0)) input.ready := sqrter.io.inReady sqrter.io.inValid := input.valid sqrter.io.sqrtOp := true.B sqrter.io.a := self_rec sqrter.io.b := DontCare sqrter.io.roundingMode := consts.round_minMag sqrter.io.detectTininess := consts.tininess_afterRounding output.valid := sqrter.io.outValid_sqrt output.bits := float_to_in(sqrter.io.out) assert(!output.valid || output.ready) Some((input, output)) } override def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = u match { case Float(expWidth, sigWidth) => val input = Wire(Decoupled(UInt(0.W))) val output = Wire(Decoupled(u.cloneType)) input.bits := DontCare // We translate our integer to floating-point form so that we can use the hardfloat divider def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } val self_rec = in_to_float(self) val one_rec = in_to_float(1.S) // Instantiate the hardloat divider val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options)) input.ready := divider.io.inReady divider.io.inValid := input.valid divider.io.sqrtOp := false.B divider.io.a := one_rec divider.io.b := self_rec divider.io.roundingMode := consts.round_near_even divider.io.detectTininess := consts.tininess_afterRounding output.valid := divider.io.outValid_div output.bits := fNFromRecFN(expWidth, sigWidth, divider.io.out).asTypeOf(u) assert(!output.valid || output.ready) Some((input, output)) case _ => None } override def mult_with_reciprocal[U <: Data](reciprocal: U): SInt = reciprocal match { case recip @ Float(expWidth, sigWidth) => def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag rec_fn_to_in.io.out.asSInt } val self_rec = in_to_float(self) val reciprocal_rec = recFNFromFN(expWidth, sigWidth, recip.bits) // Instantiate the hardloat divider val muladder = Module(new MulRecFN(expWidth, sigWidth)) muladder.io.roundingMode := consts.round_near_even muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := reciprocal_rec float_to_in(muladder.io.out) case _ => self } } } implicit object FloatArithmetic extends Arithmetic[Float] { // TODO Floating point arithmetic currently switches between recoded and standard formats for every operation. However, it should stay in the recoded format as it travels through the systolic array override implicit def cast(self: Float): ArithmeticOps[Float] = new ArithmeticOps(self) { override def *(t: Float): Float = { val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth)) muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := t_rec_resized val out = Wire(Float(self.expWidth, self.sigWidth)) out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) out } override def mac(m1: Float, m2: Float): Float = { // Recode all operands val m1_rec = recFNFromFN(m1.expWidth, m1.sigWidth, m1.bits) val m2_rec = recFNFromFN(m2.expWidth, m2.sigWidth, m2.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Resize m1 to self's width val m1_resizer = Module(new RecFNToRecFN(m1.expWidth, m1.sigWidth, self.expWidth, self.sigWidth)) m1_resizer.io.in := m1_rec m1_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag m1_resizer.io.detectTininess := consts.tininess_afterRounding val m1_rec_resized = m1_resizer.io.out // Resize m2 to self's width val m2_resizer = Module(new RecFNToRecFN(m2.expWidth, m2.sigWidth, self.expWidth, self.sigWidth)) m2_resizer.io.in := m2_rec m2_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag m2_resizer.io.detectTininess := consts.tininess_afterRounding val m2_rec_resized = m2_resizer.io.out // Perform multiply-add val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth)) muladder.io.op := 0.U muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := m1_rec_resized muladder.io.b := m2_rec_resized muladder.io.c := self_rec // Convert result to standard format // TODO remove these intermediate recodings val out = Wire(Float(self.expWidth, self.sigWidth)) out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) out } override def +(t: Float): Float = { require(self.getWidth >= t.getWidth) // This just makes it easier to write the resizing code // Recode all operands val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Generate 1 as a float val in_to_rec_fn = Module(new INToRecFN(1, self.expWidth, self.sigWidth)) in_to_rec_fn.io.signedIn := false.B in_to_rec_fn.io.in := 1.U in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding val one_rec = in_to_rec_fn.io.out // Resize t val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out // Perform addition val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth)) muladder.io.op := 0.U muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := t_rec_resized muladder.io.b := one_rec muladder.io.c := self_rec val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) result } override def -(t: Float): Float = { val t_sgn = t.bits(t.getWidth-1) val neg_t = Cat(~t_sgn, t.bits(t.getWidth-2,0)).asTypeOf(t) self + neg_t } override def >>(u: UInt): Float = { // Recode self val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Get 2^(-u) as a recoded float val shift_exp = Wire(UInt(self.expWidth.W)) shift_exp := self.bias.U - u val shift_fn = Cat(0.U(1.W), shift_exp, 0.U((self.sigWidth-1).W)) val shift_rec = recFNFromFN(self.expWidth, self.sigWidth, shift_fn) assert(shift_exp =/= 0.U, "scaling by denormalized numbers is not currently supported") // Multiply self and 2^(-u) val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth)) muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := shift_rec val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) result } override def >(t: Float): Bool = { // Recode all operands val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Resize t to self's width val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out val comparator = Module(new CompareRecFN(self.expWidth, self.sigWidth)) comparator.io.a := self_rec comparator.io.b := t_rec_resized comparator.io.signaling := false.B comparator.io.gt } override def withWidthOf(t: Float): Float = { val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth)) resizer.io.in := self_rec resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag resizer.io.detectTininess := consts.tininess_afterRounding val result = Wire(Float(t.expWidth, t.sigWidth)) result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out) result } override def clippedToWidthOf(t: Float): Float = { // TODO check for overflow. Right now, we just assume that overflow doesn't happen val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth)) resizer.io.in := self_rec resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag resizer.io.detectTininess := consts.tininess_afterRounding val result = Wire(Float(t.expWidth, t.sigWidth)) result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out) result } override def relu: Float = { val raw = rawFloatFromFN(self.expWidth, self.sigWidth, self.bits) val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := Mux(!raw.isZero && raw.sign, 0.U, self.bits) result } override def zero: Float = 0.U.asTypeOf(self) override def identity: Float = Cat(0.U(2.W), ~(0.U((self.expWidth-1).W)), 0.U((self.sigWidth-1).W)).asTypeOf(self) override def minimum: Float = Cat(1.U, ~(0.U(self.expWidth.W)), 0.U((self.sigWidth-1).W)).asTypeOf(self) } } implicit object DummySIntArithmetic extends Arithmetic[DummySInt] { override implicit def cast(self: DummySInt) = new ArithmeticOps(self) { override def *(t: DummySInt) = self.dontCare override def mac(m1: DummySInt, m2: DummySInt) = self.dontCare override def +(t: DummySInt) = self.dontCare override def -(t: DummySInt) = self.dontCare override def >>(t: UInt) = self.dontCare override def >(t: DummySInt): Bool = false.B override def identity = self.dontCare override def withWidthOf(t: DummySInt) = self.dontCare override def clippedToWidthOf(t: DummySInt) = self.dontCare override def relu = self.dontCare override def zero = self.dontCare override def minimum: DummySInt = self.dontCare } } }
module PE_432( // @[PE.scala:31:7] input clock, // @[PE.scala:31:7] input reset, // @[PE.scala:31:7] input [7:0] io_in_a, // @[PE.scala:35:14] input [19:0] io_in_b, // @[PE.scala:35:14] input [19:0] io_in_d, // @[PE.scala:35:14] output [7:0] io_out_a, // @[PE.scala:35:14] output [19:0] io_out_b, // @[PE.scala:35:14] output [19:0] io_out_c, // @[PE.scala:35:14] input io_in_control_dataflow, // @[PE.scala:35:14] input io_in_control_propagate, // @[PE.scala:35:14] input [4:0] io_in_control_shift, // @[PE.scala:35:14] output io_out_control_dataflow, // @[PE.scala:35:14] output io_out_control_propagate, // @[PE.scala:35:14] output [4:0] io_out_control_shift, // @[PE.scala:35:14] input [2:0] io_in_id, // @[PE.scala:35:14] output [2:0] io_out_id, // @[PE.scala:35:14] input io_in_last, // @[PE.scala:35:14] output io_out_last, // @[PE.scala:35:14] input io_in_valid, // @[PE.scala:35:14] output io_out_valid // @[PE.scala:35:14] ); wire [7:0] io_in_a_0 = io_in_a; // @[PE.scala:31:7] wire [19:0] io_in_b_0 = io_in_b; // @[PE.scala:31:7] wire [19:0] io_in_d_0 = io_in_d; // @[PE.scala:31:7] wire io_in_control_dataflow_0 = io_in_control_dataflow; // @[PE.scala:31:7] wire io_in_control_propagate_0 = io_in_control_propagate; // @[PE.scala:31:7] wire [4:0] io_in_control_shift_0 = io_in_control_shift; // @[PE.scala:31:7] wire [2:0] io_in_id_0 = io_in_id; // @[PE.scala:31:7] wire io_in_last_0 = io_in_last; // @[PE.scala:31:7] wire io_in_valid_0 = io_in_valid; // @[PE.scala:31:7] wire io_bad_dataflow = 1'h0; // @[PE.scala:31:7] wire _io_out_c_T_5 = 1'h0; // @[Arithmetic.scala:125:33] wire _io_out_c_T_6 = 1'h0; // @[Arithmetic.scala:125:60] wire _io_out_c_T_16 = 1'h0; // @[Arithmetic.scala:125:33] wire _io_out_c_T_17 = 1'h0; // @[Arithmetic.scala:125:60] wire [7:0] io_out_a_0 = io_in_a_0; // @[PE.scala:31:7] wire [19:0] _mac_unit_io_in_b_T = io_in_b_0; // @[PE.scala:31:7, :106:37] wire [19:0] _mac_unit_io_in_b_T_2 = io_in_b_0; // @[PE.scala:31:7, :113:37] wire [19:0] _mac_unit_io_in_b_T_8 = io_in_b_0; // @[PE.scala:31:7, :137:35] wire io_out_control_dataflow_0 = io_in_control_dataflow_0; // @[PE.scala:31:7] wire io_out_control_propagate_0 = io_in_control_propagate_0; // @[PE.scala:31:7] wire [4:0] io_out_control_shift_0 = io_in_control_shift_0; // @[PE.scala:31:7] wire [2:0] io_out_id_0 = io_in_id_0; // @[PE.scala:31:7] wire io_out_last_0 = io_in_last_0; // @[PE.scala:31:7] wire io_out_valid_0 = io_in_valid_0; // @[PE.scala:31:7] wire [19:0] io_out_b_0; // @[PE.scala:31:7] wire [19:0] io_out_c_0; // @[PE.scala:31:7] reg [7:0] c1; // @[PE.scala:70:15] wire [7:0] _io_out_c_zeros_T_1 = c1; // @[PE.scala:70:15] wire [7:0] _mac_unit_io_in_b_T_6 = c1; // @[PE.scala:70:15, :127:38] reg [7:0] c2; // @[PE.scala:71:15] wire [7:0] _io_out_c_zeros_T_10 = c2; // @[PE.scala:71:15] wire [7:0] _mac_unit_io_in_b_T_4 = c2; // @[PE.scala:71:15, :121:38] reg last_s; // @[PE.scala:89:25] wire flip = last_s != io_in_control_propagate_0; // @[PE.scala:31:7, :89:25, :90:21] wire [4:0] shift_offset = flip ? io_in_control_shift_0 : 5'h0; // @[PE.scala:31:7, :90:21, :91:25] wire _GEN = shift_offset == 5'h0; // @[PE.scala:91:25] wire _io_out_c_point_five_T; // @[Arithmetic.scala:101:32] assign _io_out_c_point_five_T = _GEN; // @[Arithmetic.scala:101:32] wire _io_out_c_point_five_T_5; // @[Arithmetic.scala:101:32] assign _io_out_c_point_five_T_5 = _GEN; // @[Arithmetic.scala:101:32] wire [5:0] _GEN_0 = {1'h0, shift_offset} - 6'h1; // @[PE.scala:91:25] wire [5:0] _io_out_c_point_five_T_1; // @[Arithmetic.scala:101:53] assign _io_out_c_point_five_T_1 = _GEN_0; // @[Arithmetic.scala:101:53] wire [5:0] _io_out_c_zeros_T_2; // @[Arithmetic.scala:102:66] assign _io_out_c_zeros_T_2 = _GEN_0; // @[Arithmetic.scala:101:53, :102:66] wire [5:0] _io_out_c_point_five_T_6; // @[Arithmetic.scala:101:53] assign _io_out_c_point_five_T_6 = _GEN_0; // @[Arithmetic.scala:101:53] wire [5:0] _io_out_c_zeros_T_11; // @[Arithmetic.scala:102:66] assign _io_out_c_zeros_T_11 = _GEN_0; // @[Arithmetic.scala:101:53, :102:66] wire [4:0] _io_out_c_point_five_T_2 = _io_out_c_point_five_T_1[4:0]; // @[Arithmetic.scala:101:53] wire [7:0] _io_out_c_point_five_T_3 = $signed($signed(c1) >>> _io_out_c_point_five_T_2); // @[PE.scala:70:15] wire _io_out_c_point_five_T_4 = _io_out_c_point_five_T_3[0]; // @[Arithmetic.scala:101:50] wire io_out_c_point_five = ~_io_out_c_point_five_T & _io_out_c_point_five_T_4; // @[Arithmetic.scala:101:{29,32,50}] wire _GEN_1 = shift_offset < 5'h2; // @[PE.scala:91:25] wire _io_out_c_zeros_T; // @[Arithmetic.scala:102:27] assign _io_out_c_zeros_T = _GEN_1; // @[Arithmetic.scala:102:27] wire _io_out_c_zeros_T_9; // @[Arithmetic.scala:102:27] assign _io_out_c_zeros_T_9 = _GEN_1; // @[Arithmetic.scala:102:27] wire [4:0] _io_out_c_zeros_T_3 = _io_out_c_zeros_T_2[4:0]; // @[Arithmetic.scala:102:66] wire [31:0] _io_out_c_zeros_T_4 = 32'h1 << _io_out_c_zeros_T_3; // @[Arithmetic.scala:102:{60,66}] wire [32:0] _io_out_c_zeros_T_5 = {1'h0, _io_out_c_zeros_T_4} - 33'h1; // @[Arithmetic.scala:102:{60,81}] wire [31:0] _io_out_c_zeros_T_6 = _io_out_c_zeros_T_5[31:0]; // @[Arithmetic.scala:102:81] wire [31:0] _io_out_c_zeros_T_7 = {24'h0, _io_out_c_zeros_T_6[7:0] & _io_out_c_zeros_T_1}; // @[Arithmetic.scala:102:{45,52,81}] wire [31:0] _io_out_c_zeros_T_8 = _io_out_c_zeros_T ? 32'h0 : _io_out_c_zeros_T_7; // @[Arithmetic.scala:102:{24,27,52}] wire io_out_c_zeros = |_io_out_c_zeros_T_8; // @[Arithmetic.scala:102:{24,89}] wire [7:0] _GEN_2 = {3'h0, shift_offset}; // @[PE.scala:91:25] wire [7:0] _GEN_3 = $signed($signed(c1) >>> _GEN_2); // @[PE.scala:70:15] wire [7:0] _io_out_c_ones_digit_T; // @[Arithmetic.scala:103:30] assign _io_out_c_ones_digit_T = _GEN_3; // @[Arithmetic.scala:103:30] wire [7:0] _io_out_c_T; // @[Arithmetic.scala:107:15] assign _io_out_c_T = _GEN_3; // @[Arithmetic.scala:103:30, :107:15] wire io_out_c_ones_digit = _io_out_c_ones_digit_T[0]; // @[Arithmetic.scala:103:30] wire _io_out_c_r_T = io_out_c_zeros | io_out_c_ones_digit; // @[Arithmetic.scala:102:89, :103:30, :105:38] wire _io_out_c_r_T_1 = io_out_c_point_five & _io_out_c_r_T; // @[Arithmetic.scala:101:29, :105:{29,38}] wire io_out_c_r = _io_out_c_r_T_1; // @[Arithmetic.scala:105:{29,53}] wire [1:0] _io_out_c_T_1 = {1'h0, io_out_c_r}; // @[Arithmetic.scala:105:53, :107:33] wire [8:0] _io_out_c_T_2 = {_io_out_c_T[7], _io_out_c_T} + {{7{_io_out_c_T_1[1]}}, _io_out_c_T_1}; // @[Arithmetic.scala:107:{15,28,33}] wire [7:0] _io_out_c_T_3 = _io_out_c_T_2[7:0]; // @[Arithmetic.scala:107:28] wire [7:0] _io_out_c_T_4 = _io_out_c_T_3; // @[Arithmetic.scala:107:28] wire [19:0] _io_out_c_T_7 = {{12{_io_out_c_T_4[7]}}, _io_out_c_T_4}; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_8 = _io_out_c_T_7; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_9 = _io_out_c_T_8; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_10 = _io_out_c_T_9; // @[Arithmetic.scala:125:{81,99}] wire [19:0] _mac_unit_io_in_b_T_1 = _mac_unit_io_in_b_T; // @[PE.scala:106:37] wire [7:0] _mac_unit_io_in_b_WIRE = _mac_unit_io_in_b_T_1[7:0]; // @[PE.scala:106:37] wire [7:0] _c1_T = io_in_d_0[7:0]; // @[PE.scala:31:7] wire [7:0] _c2_T = io_in_d_0[7:0]; // @[PE.scala:31:7] wire [7:0] _c1_T_1 = _c1_T; // @[Arithmetic.scala:114:{15,33}] wire [4:0] _io_out_c_point_five_T_7 = _io_out_c_point_five_T_6[4:0]; // @[Arithmetic.scala:101:53] wire [7:0] _io_out_c_point_five_T_8 = $signed($signed(c2) >>> _io_out_c_point_five_T_7); // @[PE.scala:71:15] wire _io_out_c_point_five_T_9 = _io_out_c_point_five_T_8[0]; // @[Arithmetic.scala:101:50] wire io_out_c_point_five_1 = ~_io_out_c_point_five_T_5 & _io_out_c_point_five_T_9; // @[Arithmetic.scala:101:{29,32,50}] wire [4:0] _io_out_c_zeros_T_12 = _io_out_c_zeros_T_11[4:0]; // @[Arithmetic.scala:102:66] wire [31:0] _io_out_c_zeros_T_13 = 32'h1 << _io_out_c_zeros_T_12; // @[Arithmetic.scala:102:{60,66}] wire [32:0] _io_out_c_zeros_T_14 = {1'h0, _io_out_c_zeros_T_13} - 33'h1; // @[Arithmetic.scala:102:{60,81}] wire [31:0] _io_out_c_zeros_T_15 = _io_out_c_zeros_T_14[31:0]; // @[Arithmetic.scala:102:81] wire [31:0] _io_out_c_zeros_T_16 = {24'h0, _io_out_c_zeros_T_15[7:0] & _io_out_c_zeros_T_10}; // @[Arithmetic.scala:102:{45,52,81}] wire [31:0] _io_out_c_zeros_T_17 = _io_out_c_zeros_T_9 ? 32'h0 : _io_out_c_zeros_T_16; // @[Arithmetic.scala:102:{24,27,52}] wire io_out_c_zeros_1 = |_io_out_c_zeros_T_17; // @[Arithmetic.scala:102:{24,89}] wire [7:0] _GEN_4 = $signed($signed(c2) >>> _GEN_2); // @[PE.scala:71:15] wire [7:0] _io_out_c_ones_digit_T_1; // @[Arithmetic.scala:103:30] assign _io_out_c_ones_digit_T_1 = _GEN_4; // @[Arithmetic.scala:103:30] wire [7:0] _io_out_c_T_11; // @[Arithmetic.scala:107:15] assign _io_out_c_T_11 = _GEN_4; // @[Arithmetic.scala:103:30, :107:15] wire io_out_c_ones_digit_1 = _io_out_c_ones_digit_T_1[0]; // @[Arithmetic.scala:103:30] wire _io_out_c_r_T_2 = io_out_c_zeros_1 | io_out_c_ones_digit_1; // @[Arithmetic.scala:102:89, :103:30, :105:38] wire _io_out_c_r_T_3 = io_out_c_point_five_1 & _io_out_c_r_T_2; // @[Arithmetic.scala:101:29, :105:{29,38}] wire io_out_c_r_1 = _io_out_c_r_T_3; // @[Arithmetic.scala:105:{29,53}] wire [1:0] _io_out_c_T_12 = {1'h0, io_out_c_r_1}; // @[Arithmetic.scala:105:53, :107:33] wire [8:0] _io_out_c_T_13 = {_io_out_c_T_11[7], _io_out_c_T_11} + {{7{_io_out_c_T_12[1]}}, _io_out_c_T_12}; // @[Arithmetic.scala:107:{15,28,33}] wire [7:0] _io_out_c_T_14 = _io_out_c_T_13[7:0]; // @[Arithmetic.scala:107:28] wire [7:0] _io_out_c_T_15 = _io_out_c_T_14; // @[Arithmetic.scala:107:28] wire [19:0] _io_out_c_T_18 = {{12{_io_out_c_T_15[7]}}, _io_out_c_T_15}; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_19 = _io_out_c_T_18; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_20 = _io_out_c_T_19; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_21 = _io_out_c_T_20; // @[Arithmetic.scala:125:{81,99}] wire [19:0] _mac_unit_io_in_b_T_3 = _mac_unit_io_in_b_T_2; // @[PE.scala:113:37] wire [7:0] _mac_unit_io_in_b_WIRE_1 = _mac_unit_io_in_b_T_3[7:0]; // @[PE.scala:113:37] wire [7:0] _c2_T_1 = _c2_T; // @[Arithmetic.scala:114:{15,33}] wire [7:0] _mac_unit_io_in_b_T_5; // @[PE.scala:121:38] assign _mac_unit_io_in_b_T_5 = _mac_unit_io_in_b_T_4; // @[PE.scala:121:38] wire [7:0] _mac_unit_io_in_b_WIRE_2 = _mac_unit_io_in_b_T_5; // @[PE.scala:121:38] assign io_out_c_0 = io_in_control_propagate_0 ? {{12{c1[7]}}, c1} : {{12{c2[7]}}, c2}; // @[PE.scala:31:7, :70:15, :71:15, :119:30, :120:16, :126:16] wire [7:0] _mac_unit_io_in_b_T_7; // @[PE.scala:127:38] assign _mac_unit_io_in_b_T_7 = _mac_unit_io_in_b_T_6; // @[PE.scala:127:38] wire [7:0] _mac_unit_io_in_b_WIRE_3 = _mac_unit_io_in_b_T_7; // @[PE.scala:127:38] wire [19:0] _mac_unit_io_in_b_T_9 = _mac_unit_io_in_b_T_8; // @[PE.scala:137:35] wire [7:0] _mac_unit_io_in_b_WIRE_4 = _mac_unit_io_in_b_T_9[7:0]; // @[PE.scala:137:35] always @(posedge clock) begin // @[PE.scala:31:7] if (io_in_valid_0 & io_in_control_propagate_0) // @[PE.scala:31:7, :102:95, :141:17, :142:8] c1 <= io_in_d_0[7:0]; // @[PE.scala:31:7, :70:15] if (~(~io_in_valid_0 | io_in_control_propagate_0)) // @[PE.scala:31:7, :71:15, :102:95, :119:30, :130:10, :141:{9,17}, :143:8] c2 <= io_in_d_0[7:0]; // @[PE.scala:31:7, :71:15] if (io_in_valid_0) // @[PE.scala:31:7] last_s <= io_in_control_propagate_0; // @[PE.scala:31:7, :89:25] always @(posedge) MacUnit_176 mac_unit ( // @[PE.scala:64:24] .clock (clock), .reset (reset), .io_in_a (io_in_a_0), // @[PE.scala:31:7] .io_in_b (io_in_control_propagate_0 ? _mac_unit_io_in_b_WIRE_2 : _mac_unit_io_in_b_WIRE_3), // @[PE.scala:31:7, :119:30, :121:{24,38}, :127:{24,38}] .io_in_c (io_in_b_0), // @[PE.scala:31:7] .io_out_d (io_out_b_0) ); // @[PE.scala:64:24] assign io_out_a = io_out_a_0; // @[PE.scala:31:7] assign io_out_b = io_out_b_0; // @[PE.scala:31:7] assign io_out_c = io_out_c_0; // @[PE.scala:31:7] assign io_out_control_dataflow = io_out_control_dataflow_0; // @[PE.scala:31:7] assign io_out_control_propagate = io_out_control_propagate_0; // @[PE.scala:31:7] assign io_out_control_shift = io_out_control_shift_0; // @[PE.scala:31:7] assign io_out_id = io_out_id_0; // @[PE.scala:31:7] assign io_out_last = io_out_last_0; // @[PE.scala:31:7] assign io_out_valid = io_out_valid_0; // @[PE.scala:31:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Monitor.scala: package constellation.channel import chisel3._ import chisel3.util._ import freechips.rocketchip.diplomacy._ import org.chipsalliance.cde.config.{Parameters} import freechips.rocketchip.util._ import constellation.noc.{HasNoCParams} class NoCMonitor(val cParam: ChannelParams)(implicit val p: Parameters) extends Module with HasNoCParams { val io = IO(new Bundle { val in = Input(new Channel(cParam)) }) val in_flight = RegInit(VecInit(Seq.fill(cParam.nVirtualChannels) { false.B })) for (i <- 0 until cParam.srcSpeedup) { val flit = io.in.flit(i) when (flit.valid) { when (flit.bits.head) { in_flight(flit.bits.virt_channel_id) := true.B assert (!in_flight(flit.bits.virt_channel_id), "Flit head/tail sequencing is broken") } when (flit.bits.tail) { in_flight(flit.bits.virt_channel_id) := false.B } } val possibleFlows = cParam.possibleFlows when (flit.valid && flit.bits.head) { cParam match { case n: ChannelParams => n.virtualChannelParams.zipWithIndex.foreach { case (v,i) => assert(flit.bits.virt_channel_id =/= i.U || v.possibleFlows.toSeq.map(_.isFlow(flit.bits.flow)).orR) } case _ => assert(cParam.possibleFlows.toSeq.map(_.isFlow(flit.bits.flow)).orR) } } } } File Types.scala: package constellation.routing import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config.{Parameters} import constellation.noc.{HasNoCParams} import constellation.channel.{Flit} /** A representation for 1 specific virtual channel in wormhole routing * * @param src the source node * @param vc ID for the virtual channel * @param dst the destination node * @param n_vc the number of virtual channels */ // BEGIN: ChannelRoutingInfo case class ChannelRoutingInfo( src: Int, dst: Int, vc: Int, n_vc: Int ) { // END: ChannelRoutingInfo require (src >= -1 && dst >= -1 && vc >= 0, s"Illegal $this") require (!(src == -1 && dst == -1), s"Illegal $this") require (vc < n_vc, s"Illegal $this") val isIngress = src == -1 val isEgress = dst == -1 } /** Represents the properties of a packet that are relevant for routing * ingressId and egressId uniquely identify a flow, but vnet and dst are used here * to simplify the implementation of routingrelations * * @param ingressId packet's source ingress point * @param egressId packet's destination egress point * @param vNet virtual subnetwork identifier * @param dst packet's destination node ID */ // BEGIN: FlowRoutingInfo case class FlowRoutingInfo( ingressId: Int, egressId: Int, vNetId: Int, ingressNode: Int, ingressNodeId: Int, egressNode: Int, egressNodeId: Int, fifo: Boolean ) { // END: FlowRoutingInfo def isFlow(f: FlowRoutingBundle): Bool = { (f.ingress_node === ingressNode.U && f.egress_node === egressNode.U && f.ingress_node_id === ingressNodeId.U && f.egress_node_id === egressNodeId.U) } def asLiteral(b: FlowRoutingBundle): BigInt = { Seq( (vNetId , b.vnet_id), (ingressNode , b.ingress_node), (ingressNodeId , b.ingress_node_id), (egressNode , b.egress_node), (egressNodeId , b.egress_node_id) ).foldLeft(0)((l, t) => { (l << t._2.getWidth) | t._1 }) } } class FlowRoutingBundle(implicit val p: Parameters) extends Bundle with HasNoCParams { // Instead of tracking ingress/egress ID, track the physical destination id and the offset at the destination // This simplifies the routing tables val vnet_id = UInt(log2Ceil(nVirtualNetworks).W) val ingress_node = UInt(log2Ceil(nNodes).W) val ingress_node_id = UInt(log2Ceil(maxIngressesAtNode).W) val egress_node = UInt(log2Ceil(nNodes).W) val egress_node_id = UInt(log2Ceil(maxEgressesAtNode).W) }
module NoCMonitor_7( // @[Monitor.scala:11:7] input clock, // @[Monitor.scala:11:7] input reset, // @[Monitor.scala:11:7] input io_in_flit_0_valid, // @[Monitor.scala:12:14] input io_in_flit_0_bits_head, // @[Monitor.scala:12:14] input io_in_flit_0_bits_tail, // @[Monitor.scala:12:14] input [3:0] io_in_flit_0_bits_flow_ingress_node, // @[Monitor.scala:12:14] input [1:0] io_in_flit_0_bits_flow_ingress_node_id, // @[Monitor.scala:12:14] input [3:0] io_in_flit_0_bits_flow_egress_node, // @[Monitor.scala:12:14] input [1:0] io_in_flit_0_bits_flow_egress_node_id, // @[Monitor.scala:12:14] input [2:0] io_in_flit_0_bits_virt_channel_id // @[Monitor.scala:12:14] ); reg in_flight_0; // @[Monitor.scala:16:26] reg in_flight_1; // @[Monitor.scala:16:26] reg in_flight_2; // @[Monitor.scala:16:26] reg in_flight_3; // @[Monitor.scala:16:26] reg in_flight_4; // @[Monitor.scala:16:26] reg in_flight_5; // @[Monitor.scala:16:26]
Generate the Verilog code corresponding to the following Chisel files. File PE.scala: // See README.md for license details. package gemmini import chisel3._ import chisel3.util._ class PEControl[T <: Data : Arithmetic](accType: T) extends Bundle { val dataflow = UInt(1.W) // TODO make this an Enum val propagate = UInt(1.W) // Which register should be propagated (and which should be accumulated)? val shift = UInt(log2Up(accType.getWidth).W) // TODO this isn't correct for Floats } class MacUnit[T <: Data](inputType: T, cType: T, dType: T) (implicit ev: Arithmetic[T]) extends Module { import ev._ val io = IO(new Bundle { val in_a = Input(inputType) val in_b = Input(inputType) val in_c = Input(cType) val out_d = Output(dType) }) io.out_d := io.in_c.mac(io.in_a, io.in_b) } // TODO update documentation /** * A PE implementing a MAC operation. Configured as fully combinational when integrated into a Mesh. * @param width Data width of operands */ class PE[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, max_simultaneous_matmuls: Int) (implicit ev: Arithmetic[T]) extends Module { // Debugging variables import ev._ val io = IO(new Bundle { val in_a = Input(inputType) val in_b = Input(outputType) val in_d = Input(outputType) val out_a = Output(inputType) val out_b = Output(outputType) val out_c = Output(outputType) val in_control = Input(new PEControl(accType)) val out_control = Output(new PEControl(accType)) val in_id = Input(UInt(log2Up(max_simultaneous_matmuls).W)) val out_id = Output(UInt(log2Up(max_simultaneous_matmuls).W)) val in_last = Input(Bool()) val out_last = Output(Bool()) val in_valid = Input(Bool()) val out_valid = Output(Bool()) val bad_dataflow = Output(Bool()) }) val cType = if (df == Dataflow.WS) inputType else accType // When creating PEs that support multiple dataflows, the // elaboration/synthesis tools often fail to consolidate and de-duplicate // MAC units. To force mac circuitry to be re-used, we create a "mac_unit" // module here which just performs a single MAC operation val mac_unit = Module(new MacUnit(inputType, if (df == Dataflow.WS) outputType else accType, outputType)) val a = io.in_a val b = io.in_b val d = io.in_d val c1 = Reg(cType) val c2 = Reg(cType) val dataflow = io.in_control.dataflow val prop = io.in_control.propagate val shift = io.in_control.shift val id = io.in_id val last = io.in_last val valid = io.in_valid io.out_a := a io.out_control.dataflow := dataflow io.out_control.propagate := prop io.out_control.shift := shift io.out_id := id io.out_last := last io.out_valid := valid mac_unit.io.in_a := a val last_s = RegEnable(prop, valid) val flip = last_s =/= prop val shift_offset = Mux(flip, shift, 0.U) // Which dataflow are we using? val OUTPUT_STATIONARY = Dataflow.OS.id.U(1.W) val WEIGHT_STATIONARY = Dataflow.WS.id.U(1.W) // Is c1 being computed on, or propagated forward (in the output-stationary dataflow)? val COMPUTE = 0.U(1.W) val PROPAGATE = 1.U(1.W) io.bad_dataflow := false.B when ((df == Dataflow.OS).B || ((df == Dataflow.BOTH).B && dataflow === OUTPUT_STATIONARY)) { when(prop === PROPAGATE) { io.out_c := (c1 >> shift_offset).clippedToWidthOf(outputType) io.out_b := b mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c2 c2 := mac_unit.io.out_d c1 := d.withWidthOf(cType) }.otherwise { io.out_c := (c2 >> shift_offset).clippedToWidthOf(outputType) io.out_b := b mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c1 c1 := mac_unit.io.out_d c2 := d.withWidthOf(cType) } }.elsewhen ((df == Dataflow.WS).B || ((df == Dataflow.BOTH).B && dataflow === WEIGHT_STATIONARY)) { when(prop === PROPAGATE) { io.out_c := c1 mac_unit.io.in_b := c2.asTypeOf(inputType) mac_unit.io.in_c := b io.out_b := mac_unit.io.out_d c1 := d }.otherwise { io.out_c := c2 mac_unit.io.in_b := c1.asTypeOf(inputType) mac_unit.io.in_c := b io.out_b := mac_unit.io.out_d c2 := d } }.otherwise { io.bad_dataflow := true.B //assert(false.B, "unknown dataflow") io.out_c := DontCare io.out_b := DontCare mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c2 } when (!valid) { c1 := c1 c2 := c2 mac_unit.io.in_b := DontCare mac_unit.io.in_c := DontCare } } File Arithmetic.scala: // A simple type class for Chisel datatypes that can add and multiply. To add your own type, simply create your own: // implicit MyTypeArithmetic extends Arithmetic[MyType] { ... } package gemmini import chisel3._ import chisel3.util._ import hardfloat._ // Bundles that represent the raw bits of custom datatypes case class Float(expWidth: Int, sigWidth: Int) extends Bundle { val bits = UInt((expWidth + sigWidth).W) val bias: Int = (1 << (expWidth-1)) - 1 } case class DummySInt(w: Int) extends Bundle { val bits = UInt(w.W) def dontCare: DummySInt = { val o = Wire(new DummySInt(w)) o.bits := 0.U o } } // The Arithmetic typeclass which implements various arithmetic operations on custom datatypes abstract class Arithmetic[T <: Data] { implicit def cast(t: T): ArithmeticOps[T] } abstract class ArithmeticOps[T <: Data](self: T) { def *(t: T): T def mac(m1: T, m2: T): T // Returns (m1 * m2 + self) def +(t: T): T def -(t: T): T def >>(u: UInt): T // This is a rounding shift! Rounds away from 0 def >(t: T): Bool def identity: T def withWidthOf(t: T): T def clippedToWidthOf(t: T): T // Like "withWidthOf", except that it saturates def relu: T def zero: T def minimum: T // Optional parameters, which only need to be defined if you want to enable various optimizations for transformers def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[T])] = None def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[T])] = None def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = None def mult_with_reciprocal[U <: Data](reciprocal: U) = self } object Arithmetic { implicit object UIntArithmetic extends Arithmetic[UInt] { override implicit def cast(self: UInt) = new ArithmeticOps(self) { override def *(t: UInt) = self * t override def mac(m1: UInt, m2: UInt) = m1 * m2 + self override def +(t: UInt) = self + t override def -(t: UInt) = self - t override def >>(u: UInt) = { // The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm // TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here? val point_five = Mux(u === 0.U, 0.U, self(u - 1.U)) val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U val ones_digit = self(u) val r = point_five & (zeros | ones_digit) (self >> u).asUInt + r } override def >(t: UInt): Bool = self > t override def withWidthOf(t: UInt) = self.asTypeOf(t) override def clippedToWidthOf(t: UInt) = { val sat = ((1 << (t.getWidth-1))-1).U Mux(self > sat, sat, self)(t.getWidth-1, 0) } override def relu: UInt = self override def zero: UInt = 0.U override def identity: UInt = 1.U override def minimum: UInt = 0.U } } implicit object SIntArithmetic extends Arithmetic[SInt] { override implicit def cast(self: SInt) = new ArithmeticOps(self) { override def *(t: SInt) = self * t override def mac(m1: SInt, m2: SInt) = m1 * m2 + self override def +(t: SInt) = self + t override def -(t: SInt) = self - t override def >>(u: UInt) = { // The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm // TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here? val point_five = Mux(u === 0.U, 0.U, self(u - 1.U)) val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U val ones_digit = self(u) val r = (point_five & (zeros | ones_digit)).asBool (self >> u).asSInt + Mux(r, 1.S, 0.S) } override def >(t: SInt): Bool = self > t override def withWidthOf(t: SInt) = { if (self.getWidth >= t.getWidth) self(t.getWidth-1, 0).asSInt else { val sign_bits = t.getWidth - self.getWidth val sign = self(self.getWidth-1) Cat(Cat(Seq.fill(sign_bits)(sign)), self).asTypeOf(t) } } override def clippedToWidthOf(t: SInt): SInt = { val maxsat = ((1 << (t.getWidth-1))-1).S val minsat = (-(1 << (t.getWidth-1))).S MuxCase(self, Seq((self > maxsat) -> maxsat, (self < minsat) -> minsat))(t.getWidth-1, 0).asSInt } override def relu: SInt = Mux(self >= 0.S, self, 0.S) override def zero: SInt = 0.S override def identity: SInt = 1.S override def minimum: SInt = (-(1 << (self.getWidth-1))).S override def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = { // TODO this uses a floating point divider, but we should use an integer divider instead val input = Wire(Decoupled(denom_t.cloneType)) val output = Wire(Decoupled(self.cloneType)) // We translate our integer to floating-point form so that we can use the hardfloat divider val expWidth = log2Up(self.getWidth) + 1 val sigWidth = self.getWidth def sin_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def uin_to_float(x: UInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := false.B in_to_rec_fn.io.in := x in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag rec_fn_to_in.io.out.asSInt } val self_rec = sin_to_float(self) val denom_rec = uin_to_float(input.bits) // Instantiate the hardloat divider val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options)) input.ready := divider.io.inReady divider.io.inValid := input.valid divider.io.sqrtOp := false.B divider.io.a := self_rec divider.io.b := denom_rec divider.io.roundingMode := consts.round_minMag divider.io.detectTininess := consts.tininess_afterRounding output.valid := divider.io.outValid_div output.bits := float_to_in(divider.io.out) assert(!output.valid || output.ready) Some((input, output)) } override def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = { // TODO this uses a floating point divider, but we should use an integer divider instead val input = Wire(Decoupled(UInt(0.W))) val output = Wire(Decoupled(self.cloneType)) input.bits := DontCare // We translate our integer to floating-point form so that we can use the hardfloat divider val expWidth = log2Up(self.getWidth) + 1 val sigWidth = self.getWidth def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag rec_fn_to_in.io.out.asSInt } val self_rec = in_to_float(self) // Instantiate the hardloat sqrt val sqrter = Module(new DivSqrtRecFN_small(expWidth, sigWidth, 0)) input.ready := sqrter.io.inReady sqrter.io.inValid := input.valid sqrter.io.sqrtOp := true.B sqrter.io.a := self_rec sqrter.io.b := DontCare sqrter.io.roundingMode := consts.round_minMag sqrter.io.detectTininess := consts.tininess_afterRounding output.valid := sqrter.io.outValid_sqrt output.bits := float_to_in(sqrter.io.out) assert(!output.valid || output.ready) Some((input, output)) } override def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = u match { case Float(expWidth, sigWidth) => val input = Wire(Decoupled(UInt(0.W))) val output = Wire(Decoupled(u.cloneType)) input.bits := DontCare // We translate our integer to floating-point form so that we can use the hardfloat divider def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } val self_rec = in_to_float(self) val one_rec = in_to_float(1.S) // Instantiate the hardloat divider val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options)) input.ready := divider.io.inReady divider.io.inValid := input.valid divider.io.sqrtOp := false.B divider.io.a := one_rec divider.io.b := self_rec divider.io.roundingMode := consts.round_near_even divider.io.detectTininess := consts.tininess_afterRounding output.valid := divider.io.outValid_div output.bits := fNFromRecFN(expWidth, sigWidth, divider.io.out).asTypeOf(u) assert(!output.valid || output.ready) Some((input, output)) case _ => None } override def mult_with_reciprocal[U <: Data](reciprocal: U): SInt = reciprocal match { case recip @ Float(expWidth, sigWidth) => def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag rec_fn_to_in.io.out.asSInt } val self_rec = in_to_float(self) val reciprocal_rec = recFNFromFN(expWidth, sigWidth, recip.bits) // Instantiate the hardloat divider val muladder = Module(new MulRecFN(expWidth, sigWidth)) muladder.io.roundingMode := consts.round_near_even muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := reciprocal_rec float_to_in(muladder.io.out) case _ => self } } } implicit object FloatArithmetic extends Arithmetic[Float] { // TODO Floating point arithmetic currently switches between recoded and standard formats for every operation. However, it should stay in the recoded format as it travels through the systolic array override implicit def cast(self: Float): ArithmeticOps[Float] = new ArithmeticOps(self) { override def *(t: Float): Float = { val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth)) muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := t_rec_resized val out = Wire(Float(self.expWidth, self.sigWidth)) out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) out } override def mac(m1: Float, m2: Float): Float = { // Recode all operands val m1_rec = recFNFromFN(m1.expWidth, m1.sigWidth, m1.bits) val m2_rec = recFNFromFN(m2.expWidth, m2.sigWidth, m2.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Resize m1 to self's width val m1_resizer = Module(new RecFNToRecFN(m1.expWidth, m1.sigWidth, self.expWidth, self.sigWidth)) m1_resizer.io.in := m1_rec m1_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag m1_resizer.io.detectTininess := consts.tininess_afterRounding val m1_rec_resized = m1_resizer.io.out // Resize m2 to self's width val m2_resizer = Module(new RecFNToRecFN(m2.expWidth, m2.sigWidth, self.expWidth, self.sigWidth)) m2_resizer.io.in := m2_rec m2_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag m2_resizer.io.detectTininess := consts.tininess_afterRounding val m2_rec_resized = m2_resizer.io.out // Perform multiply-add val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth)) muladder.io.op := 0.U muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := m1_rec_resized muladder.io.b := m2_rec_resized muladder.io.c := self_rec // Convert result to standard format // TODO remove these intermediate recodings val out = Wire(Float(self.expWidth, self.sigWidth)) out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) out } override def +(t: Float): Float = { require(self.getWidth >= t.getWidth) // This just makes it easier to write the resizing code // Recode all operands val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Generate 1 as a float val in_to_rec_fn = Module(new INToRecFN(1, self.expWidth, self.sigWidth)) in_to_rec_fn.io.signedIn := false.B in_to_rec_fn.io.in := 1.U in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding val one_rec = in_to_rec_fn.io.out // Resize t val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out // Perform addition val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth)) muladder.io.op := 0.U muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := t_rec_resized muladder.io.b := one_rec muladder.io.c := self_rec val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) result } override def -(t: Float): Float = { val t_sgn = t.bits(t.getWidth-1) val neg_t = Cat(~t_sgn, t.bits(t.getWidth-2,0)).asTypeOf(t) self + neg_t } override def >>(u: UInt): Float = { // Recode self val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Get 2^(-u) as a recoded float val shift_exp = Wire(UInt(self.expWidth.W)) shift_exp := self.bias.U - u val shift_fn = Cat(0.U(1.W), shift_exp, 0.U((self.sigWidth-1).W)) val shift_rec = recFNFromFN(self.expWidth, self.sigWidth, shift_fn) assert(shift_exp =/= 0.U, "scaling by denormalized numbers is not currently supported") // Multiply self and 2^(-u) val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth)) muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := shift_rec val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) result } override def >(t: Float): Bool = { // Recode all operands val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Resize t to self's width val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out val comparator = Module(new CompareRecFN(self.expWidth, self.sigWidth)) comparator.io.a := self_rec comparator.io.b := t_rec_resized comparator.io.signaling := false.B comparator.io.gt } override def withWidthOf(t: Float): Float = { val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth)) resizer.io.in := self_rec resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag resizer.io.detectTininess := consts.tininess_afterRounding val result = Wire(Float(t.expWidth, t.sigWidth)) result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out) result } override def clippedToWidthOf(t: Float): Float = { // TODO check for overflow. Right now, we just assume that overflow doesn't happen val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth)) resizer.io.in := self_rec resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag resizer.io.detectTininess := consts.tininess_afterRounding val result = Wire(Float(t.expWidth, t.sigWidth)) result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out) result } override def relu: Float = { val raw = rawFloatFromFN(self.expWidth, self.sigWidth, self.bits) val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := Mux(!raw.isZero && raw.sign, 0.U, self.bits) result } override def zero: Float = 0.U.asTypeOf(self) override def identity: Float = Cat(0.U(2.W), ~(0.U((self.expWidth-1).W)), 0.U((self.sigWidth-1).W)).asTypeOf(self) override def minimum: Float = Cat(1.U, ~(0.U(self.expWidth.W)), 0.U((self.sigWidth-1).W)).asTypeOf(self) } } implicit object DummySIntArithmetic extends Arithmetic[DummySInt] { override implicit def cast(self: DummySInt) = new ArithmeticOps(self) { override def *(t: DummySInt) = self.dontCare override def mac(m1: DummySInt, m2: DummySInt) = self.dontCare override def +(t: DummySInt) = self.dontCare override def -(t: DummySInt) = self.dontCare override def >>(t: UInt) = self.dontCare override def >(t: DummySInt): Bool = false.B override def identity = self.dontCare override def withWidthOf(t: DummySInt) = self.dontCare override def clippedToWidthOf(t: DummySInt) = self.dontCare override def relu = self.dontCare override def zero = self.dontCare override def minimum: DummySInt = self.dontCare } } }
module MacUnit_45( // @[PE.scala:14:7] input clock, // @[PE.scala:14:7] input reset, // @[PE.scala:14:7] input [7:0] io_in_a, // @[PE.scala:16:14] input [7:0] io_in_b, // @[PE.scala:16:14] input [31:0] io_in_c, // @[PE.scala:16:14] output [19:0] io_out_d // @[PE.scala:16:14] ); wire [7:0] io_in_a_0 = io_in_a; // @[PE.scala:14:7] wire [7:0] io_in_b_0 = io_in_b; // @[PE.scala:14:7] wire [31:0] io_in_c_0 = io_in_c; // @[PE.scala:14:7] wire [19:0] io_out_d_0; // @[PE.scala:14:7] wire [15:0] _io_out_d_T = {{8{io_in_a_0[7]}}, io_in_a_0} * {{8{io_in_b_0[7]}}, io_in_b_0}; // @[PE.scala:14:7] wire [32:0] _io_out_d_T_1 = {{17{_io_out_d_T[15]}}, _io_out_d_T} + {io_in_c_0[31], io_in_c_0}; // @[PE.scala:14:7] wire [31:0] _io_out_d_T_2 = _io_out_d_T_1[31:0]; // @[Arithmetic.scala:93:54] wire [31:0] _io_out_d_T_3 = _io_out_d_T_2; // @[Arithmetic.scala:93:54] assign io_out_d_0 = _io_out_d_T_3[19:0]; // @[PE.scala:14:7, :23:12] assign io_out_d = io_out_d_0; // @[PE.scala:14:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File RegisterFile.scala: package saturn.backend import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config._ import freechips.rocketchip.tile.{CoreModule} import freechips.rocketchip.util._ import saturn.common._ class OldestRRArbiter(val n: Int)(implicit p: Parameters) extends Module { val io = IO(new ArbiterIO(new VectorReadReq, n)) val arb = Module(new RRArbiter(new VectorReadReq, n)) io <> arb.io val oldest_oh = io.in.map(i => i.valid && i.bits.oldest) //assert(PopCount(oldest_oh) <= 1.U) when (oldest_oh.orR) { io.chosen := VecInit(oldest_oh).asUInt io.out.valid := true.B io.out.bits := Mux1H(oldest_oh, io.in.map(_.bits)) for (i <- 0 until n) { io.in(i).ready := oldest_oh(i) && io.out.ready } } } class RegisterReadXbar(n: Int, banks: Int)(implicit p: Parameters) extends CoreModule()(p) with HasVectorParams { val io = IO(new Bundle { val in = Vec(n, Flipped(new VectorReadIO)) val out = Vec(banks, new VectorReadIO) }) val arbs = Seq.fill(banks) { Module(new OldestRRArbiter(n)) } for (i <- 0 until banks) { io.out(i).req <> arbs(i).io.out } val bankOffset = log2Ceil(banks) for (i <- 0 until n) { val bank_sel = if (bankOffset == 0) true.B else UIntToOH(io.in(i).req.bits.eg(bankOffset-1,0)) for (j <- 0 until banks) { arbs(j).io.in(i).valid := io.in(i).req.valid && bank_sel(j) arbs(j).io.in(i).bits.eg := io.in(i).req.bits.eg >> bankOffset arbs(j).io.in(i).bits.oldest := io.in(i).req.bits.oldest } io.in(i).req.ready := Mux1H(bank_sel, arbs.map(_.io.in(i).ready)) io.in(i).resp := Mux1H(bank_sel, io.out.map(_.resp)) } } class RegisterFileBank(reads: Int, maskReads: Int, rows: Int, maskRows: Int)(implicit p: Parameters) extends CoreModule()(p) with HasVectorParams { val io = IO(new Bundle { val read = Vec(reads, Flipped(new VectorReadIO)) val mask_read = Vec(maskReads, Flipped(new VectorReadIO)) val write = Input(Valid(new VectorWrite(dLen))) val ll_write = Flipped(Decoupled(new VectorWrite(dLen))) }) val ll_write_valid = RegInit(false.B) val ll_write_bits = Reg(new VectorWrite(dLen)) val vrf = Mem(rows, Vec(dLen, Bool())) val v0_mask = Mem(maskRows, Vec(dLen, Bool())) for (read <- io.read) { read.req.ready := !(ll_write_valid && read.req.bits.eg === ll_write_bits.eg) read.resp := DontCare when (read.req.valid) { read.resp := vrf.read(read.req.bits.eg).asUInt } } for (mask_read <- io.mask_read) { mask_read.req.ready := !(ll_write_valid && mask_read.req.bits.eg === ll_write_bits.eg) mask_read.resp := DontCare when (mask_read.req.valid) { mask_read.resp := v0_mask.read(mask_read.req.bits.eg).asUInt } } val write = WireInit(io.write) io.ll_write.ready := false.B if (vParams.vrfHiccupBuffer) { when (!io.write.valid) { // drain hiccup buffer write.valid := ll_write_valid || io.ll_write.valid write.bits := Mux(ll_write_valid, ll_write_bits, io.ll_write.bits) ll_write_valid := false.B when (io.ll_write.valid && ll_write_valid) { ll_write_valid := true.B ll_write_bits := io.ll_write.bits } io.ll_write.ready := true.B } .elsewhen (!ll_write_valid) { // fill hiccup buffer when (io.ll_write.valid) { ll_write_valid := true.B ll_write_bits := io.ll_write.bits } io.ll_write.ready := true.B } } else { when (!io.write.valid) { io.ll_write.ready := true.B write.valid := io.ll_write.valid write.bits := io.ll_write.bits } } when (write.valid) { vrf.write( write.bits.eg, VecInit(write.bits.data.asBools), write.bits.mask.asBools) when (write.bits.eg < maskRows.U) { v0_mask.write( write.bits.eg, VecInit(write.bits.data.asBools), write.bits.mask.asBools) } } } class RegisterFile(reads: Seq[Int], maskReads: Seq[Int], pipeWrites: Int, llWrites: Int)(implicit p: Parameters) extends CoreModule()(p) with HasVectorParams { val nBanks = vParams.vrfBanking // Support 1, 2, and 4 banks for the VRF require(nBanks == 1 || nBanks == 2 || nBanks == 4) val io = IO(new Bundle { val read = MixedVec(reads.map(rc => Vec(rc, Flipped(new VectorReadIO)))) val mask_read = MixedVec(maskReads.map(rc => Vec(rc, Flipped(new VectorReadIO)))) val pipe_writes = Vec(pipeWrites, Input(Valid(new VectorWrite(dLen)))) val ll_writes = Vec(llWrites, Flipped(Decoupled(new VectorWrite(dLen)))) }) val vrf = Seq.fill(nBanks) { Module(new RegisterFileBank(reads.size, maskReads.size, egsTotal/nBanks, if (egsPerVReg < nBanks) 1 else egsPerVReg / nBanks)) } reads.zipWithIndex.foreach { case (rc, i) => val xbar = Module(new RegisterReadXbar(rc, nBanks)) vrf.zipWithIndex.foreach { case (bank, j) => bank.io.read(i) <> xbar.io.out(j) } xbar.io.in <> io.read(i) } maskReads.zipWithIndex.foreach { case (rc, i) => val mask_xbar = Module(new RegisterReadXbar(rc, nBanks)) vrf.zipWithIndex.foreach { case (bank, j) => bank.io.mask_read(i) <> mask_xbar.io.out(j) } mask_xbar.io.in <> io.mask_read(i) } io.ll_writes.foreach(_.ready := false.B) vrf.zipWithIndex.foreach { case (rf, i) => val bank_match = io.pipe_writes.map { w => (w.bits.bankId === i.U) && w.valid } val bank_write_data = Mux1H(bank_match, io.pipe_writes.map(_.bits.data)) val bank_write_mask = Mux1H(bank_match, io.pipe_writes.map(_.bits.mask)) val bank_write_eg = Mux1H(bank_match, io.pipe_writes.map(_.bits.eg)) val bank_write_valid = bank_match.orR rf.io.write.valid := bank_write_valid rf.io.write.bits.data := bank_write_data rf.io.write.bits.mask := bank_write_mask rf.io.write.bits.eg := bank_write_eg >> vrfBankBits when (bank_write_valid) { PopCount(bank_match) === 1.U } val ll_arb = Module(new Arbiter(new VectorWrite(dLen), llWrites)) rf.io.ll_write <> ll_arb.io.out io.ll_writes.zipWithIndex.foreach { case (w, j) => ll_arb.io.in(j).valid := w.valid && w.bits.bankId === i.U ll_arb.io.in(j).bits.eg := w.bits.eg >> vrfBankBits ll_arb.io.in(j).bits.data := w.bits.data ll_arb.io.in(j).bits.mask := w.bits.mask when (ll_arb.io.in(j).ready && w.bits.bankId === i.U) { w.ready := true.B } } } }
module RegisterFileBank( // @[RegisterFile.scala:52:7] input clock, // @[RegisterFile.scala:52:7] input reset, // @[RegisterFile.scala:52:7] output io_read_0_req_ready, // @[RegisterFile.scala:53:14] input io_read_0_req_valid, // @[RegisterFile.scala:53:14] input [6:0] io_read_0_req_bits_eg, // @[RegisterFile.scala:53:14] output [63:0] io_read_0_resp, // @[RegisterFile.scala:53:14] output io_read_1_req_ready, // @[RegisterFile.scala:53:14] input io_read_1_req_valid, // @[RegisterFile.scala:53:14] input [6:0] io_read_1_req_bits_eg, // @[RegisterFile.scala:53:14] output [63:0] io_read_1_resp, // @[RegisterFile.scala:53:14] output io_read_2_req_ready, // @[RegisterFile.scala:53:14] input io_read_2_req_valid, // @[RegisterFile.scala:53:14] input [6:0] io_read_2_req_bits_eg, // @[RegisterFile.scala:53:14] output [63:0] io_read_2_resp, // @[RegisterFile.scala:53:14] output io_mask_read_0_req_ready, // @[RegisterFile.scala:53:14] input [6:0] io_mask_read_0_req_bits_eg, // @[RegisterFile.scala:53:14] output [63:0] io_mask_read_0_resp, // @[RegisterFile.scala:53:14] input io_write_valid, // @[RegisterFile.scala:53:14] input [6:0] io_write_bits_eg, // @[RegisterFile.scala:53:14] input [63:0] io_write_bits_data, // @[RegisterFile.scala:53:14] input [63:0] io_write_bits_mask, // @[RegisterFile.scala:53:14] output io_ll_write_ready, // @[RegisterFile.scala:53:14] input io_ll_write_valid, // @[RegisterFile.scala:53:14] input [6:0] io_ll_write_bits_eg, // @[RegisterFile.scala:53:14] input [63:0] io_ll_write_bits_data, // @[RegisterFile.scala:53:14] input [63:0] io_ll_write_bits_mask // @[RegisterFile.scala:53:14] ); reg ll_write_valid; // @[RegisterFile.scala:59:31] reg [6:0] ll_write_bits_eg; // @[RegisterFile.scala:60:26] reg [63:0] ll_write_bits_data; // @[RegisterFile.scala:60:26] reg [63:0] ll_write_bits_mask; // @[RegisterFile.scala:60:26] reg [63:0] v0_mask; // @[RegisterFile.scala:63:20] wire write_valid = io_write_valid ? io_write_valid : ll_write_valid | io_ll_write_valid; // @[RegisterFile.scala:59:31, :79:23, :82:28, :83:{19,37}] wire [63:0] write_bits_mask = io_write_valid ? io_write_bits_mask : ll_write_valid ? ll_write_bits_mask : io_ll_write_bits_mask; // @[RegisterFile.scala:59:31, :60:26, :79:23, :82:28, :84:{18,24}] wire [63:0] write_bits_data = io_write_valid ? io_write_bits_data : ll_write_valid ? ll_write_bits_data : io_ll_write_bits_data; // @[RegisterFile.scala:59:31, :60:26, :79:23, :82:28, :84:{18,24}] wire [6:0] write_bits_eg = io_write_valid ? io_write_bits_eg : ll_write_valid ? ll_write_bits_eg : io_ll_write_bits_eg; // @[RegisterFile.scala:59:31, :60:26, :79:23, :82:28, :84:{18,24}] wire _GEN = io_ll_write_valid & ll_write_valid; // @[RegisterFile.scala:59:31, :86:31] wire _GEN_0 = ~ll_write_valid & io_ll_write_valid; // @[RegisterFile.scala:59:31, :91:{18,35}, :92:32, :93:24] always @(posedge clock) begin // @[RegisterFile.scala:52:7] if (reset) // @[RegisterFile.scala:52:7] ll_write_valid <= 1'h0; // @[RegisterFile.scala:59:31] else // @[RegisterFile.scala:52:7] ll_write_valid <= io_write_valid ? _GEN_0 | ll_write_valid : _GEN; // @[RegisterFile.scala:59:31, :82:28, :86:{31,50}, :91:35, :92:32, :93:24] if (io_write_valid ? _GEN_0 : _GEN) begin // @[RegisterFile.scala:59:31, :60:26, :82:28, :86:{31,50}, :88:23, :91:35, :92:32, :93:24, :94:23] ll_write_bits_eg <= io_ll_write_bits_eg; // @[RegisterFile.scala:60:26] ll_write_bits_data <= io_ll_write_bits_data; // @[RegisterFile.scala:60:26] ll_write_bits_mask <= io_ll_write_bits_mask; // @[RegisterFile.scala:60:26] end if (write_valid & write_bits_eg == 7'h0) // @[RegisterFile.scala:63:20, :79:23, :82:28, :83:19, :84:18, :106:22, :111:{25,39}] v0_mask <= {write_bits_mask[63] ? write_bits_data[63] : v0_mask[63], write_bits_mask[62] ? write_bits_data[62] : v0_mask[62], write_bits_mask[61] ? write_bits_data[61] : v0_mask[61], write_bits_mask[60] ? write_bits_data[60] : v0_mask[60], write_bits_mask[59] ? write_bits_data[59] : v0_mask[59], write_bits_mask[58] ? write_bits_data[58] : v0_mask[58], write_bits_mask[57] ? write_bits_data[57] : v0_mask[57], write_bits_mask[56] ? write_bits_data[56] : v0_mask[56], write_bits_mask[55] ? write_bits_data[55] : v0_mask[55], write_bits_mask[54] ? write_bits_data[54] : v0_mask[54], write_bits_mask[53] ? write_bits_data[53] : v0_mask[53], write_bits_mask[52] ? write_bits_data[52] : v0_mask[52], write_bits_mask[51] ? write_bits_data[51] : v0_mask[51], write_bits_mask[50] ? write_bits_data[50] : v0_mask[50], write_bits_mask[49] ? write_bits_data[49] : v0_mask[49], write_bits_mask[48] ? write_bits_data[48] : v0_mask[48], write_bits_mask[47] ? write_bits_data[47] : v0_mask[47], write_bits_mask[46] ? write_bits_data[46] : v0_mask[46], write_bits_mask[45] ? write_bits_data[45] : v0_mask[45], write_bits_mask[44] ? write_bits_data[44] : v0_mask[44], write_bits_mask[43] ? write_bits_data[43] : v0_mask[43], write_bits_mask[42] ? write_bits_data[42] : v0_mask[42], write_bits_mask[41] ? write_bits_data[41] : v0_mask[41], write_bits_mask[40] ? write_bits_data[40] : v0_mask[40], write_bits_mask[39] ? write_bits_data[39] : v0_mask[39], write_bits_mask[38] ? write_bits_data[38] : v0_mask[38], write_bits_mask[37] ? write_bits_data[37] : v0_mask[37], write_bits_mask[36] ? write_bits_data[36] : v0_mask[36], write_bits_mask[35] ? write_bits_data[35] : v0_mask[35], write_bits_mask[34] ? write_bits_data[34] : v0_mask[34], write_bits_mask[33] ? write_bits_data[33] : v0_mask[33], write_bits_mask[32] ? write_bits_data[32] : v0_mask[32], write_bits_mask[31] ? write_bits_data[31] : v0_mask[31], write_bits_mask[30] ? write_bits_data[30] : v0_mask[30], write_bits_mask[29] ? write_bits_data[29] : v0_mask[29], write_bits_mask[28] ? write_bits_data[28] : v0_mask[28], write_bits_mask[27] ? write_bits_data[27] : v0_mask[27], write_bits_mask[26] ? write_bits_data[26] : v0_mask[26], write_bits_mask[25] ? write_bits_data[25] : v0_mask[25], write_bits_mask[24] ? write_bits_data[24] : v0_mask[24], write_bits_mask[23] ? write_bits_data[23] : v0_mask[23], write_bits_mask[22] ? write_bits_data[22] : v0_mask[22], write_bits_mask[21] ? write_bits_data[21] : v0_mask[21], write_bits_mask[20] ? write_bits_data[20] : v0_mask[20], write_bits_mask[19] ? write_bits_data[19] : v0_mask[19], write_bits_mask[18] ? write_bits_data[18] : v0_mask[18], write_bits_mask[17] ? write_bits_data[17] : v0_mask[17], write_bits_mask[16] ? write_bits_data[16] : v0_mask[16], write_bits_mask[15] ? write_bits_data[15] : v0_mask[15], write_bits_mask[14] ? write_bits_data[14] : v0_mask[14], write_bits_mask[13] ? write_bits_data[13] : v0_mask[13], write_bits_mask[12] ? write_bits_data[12] : v0_mask[12], write_bits_mask[11] ? write_bits_data[11] : v0_mask[11], write_bits_mask[10] ? write_bits_data[10] : v0_mask[10], write_bits_mask[9] ? write_bits_data[9] : v0_mask[9], write_bits_mask[8] ? write_bits_data[8] : v0_mask[8], write_bits_mask[7] ? write_bits_data[7] : v0_mask[7], write_bits_mask[6] ? write_bits_data[6] : v0_mask[6], write_bits_mask[5] ? write_bits_data[5] : v0_mask[5], write_bits_mask[4] ? write_bits_data[4] : v0_mask[4], write_bits_mask[3] ? write_bits_data[3] : v0_mask[3], write_bits_mask[2] ? write_bits_data[2] : v0_mask[2], write_bits_mask[1] ? write_bits_data[1] : v0_mask[1], write_bits_mask[0] ? write_bits_data[0] : v0_mask[0]}; // @[RegisterFile.scala:63:20, :79:23, :82:28, :84:18] always @(posedge)
Generate the Verilog code corresponding to the following Chisel files. File Monitor.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceLine import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import freechips.rocketchip.diplomacy.EnableMonitors import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode} import freechips.rocketchip.util.PlusArg case class TLMonitorArgs(edge: TLEdge) abstract class TLMonitorBase(args: TLMonitorArgs) extends Module { val io = IO(new Bundle { val in = Input(new TLBundle(args.edge.bundle)) }) def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit legalize(io.in, args.edge, reset) } object TLMonitor { def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = { if (enable) { EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) } } else { node } } } class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args) { require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal)) val cover_prop_class = PropertyClass.Default //Like assert but can flip to being an assumption for formal verification def monAssert(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir, cond, message, PropertyClass.Default) } def assume(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir.flip, cond, message, PropertyClass.Default) } def extra = { args.edge.sourceInfo match { case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)" case _ => "" } } def visible(address: UInt, source: UInt, edge: TLEdge) = edge.client.clients.map { c => !c.sourceId.contains(source) || c.visibility.map(_.contains(address)).reduce(_ || _) }.reduce(_ && _) def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = { //switch this flag to turn on diplomacy in error messages def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n" monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra) // Reuse these subexpressions to save some firrtl lines val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility") //The monitor doesn’t check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B //TODO: check for acquireT? when (bundle.opcode === TLMessages.AcquireBlock) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra) } when (bundle.opcode === TLMessages.AcquirePerm) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra) monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra) monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra) monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra) } } def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = { monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra) monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility") // Reuse these subexpressions to save some firrtl lines val address_ok = edge.manager.containsSafe(edge.address(bundle)) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source when (bundle.opcode === TLMessages.Probe) { assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra) assume (address_ok, "'B' channel Probe carries unmanaged address" + extra) assume (legal_source, "'B' channel Probe carries source that is not first source" + extra) assume (is_aligned, "'B' channel Probe address not aligned to size" + extra) assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra) assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra) assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra) monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra) monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra) monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra) monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra) } } def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = { monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val address_ok = edge.manager.containsSafe(edge.address(bundle)) monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility") when (bundle.opcode === TLMessages.ProbeAck) { monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra) } when (bundle.opcode === TLMessages.ProbeAckData) { monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.Release) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra) monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra) } when (bundle.opcode === TLMessages.ReleaseData) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.AccessAck) { monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra) } when (bundle.opcode === TLMessages.HintAck) { monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra) } } def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = { assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val sink_ok = bundle.sink < edge.manager.endSinkId.U val deny_put_ok = edge.manager.mayDenyPut.B val deny_get_ok = edge.manager.mayDenyGet.B when (bundle.opcode === TLMessages.ReleaseAck) { assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra) assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra) assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra) } when (bundle.opcode === TLMessages.Grant) { assume (source_ok, "'D' channel Grant carries invalid source ID" + extra) assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra) assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra) } when (bundle.opcode === TLMessages.GrantData) { assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra) assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra) } when (bundle.opcode === TLMessages.AccessAck) { assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra) } when (bundle.opcode === TLMessages.HintAck) { assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra) } } def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = { val sink_ok = bundle.sink < edge.manager.endSinkId.U monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra) } def legalizeFormat(bundle: TLBundle, edge: TLEdge) = { when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) } when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) } when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) } when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) } } else { monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra) monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra) monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra) } } def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = { val a_first = edge.first(a.bits, a.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (a.valid && !a_first) { monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra) monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra) monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra) monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra) monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra) } when (a.fire && a_first) { opcode := a.bits.opcode param := a.bits.param size := a.bits.size source := a.bits.source address := a.bits.address } } def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = { val b_first = edge.first(b.bits, b.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (b.valid && !b_first) { monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra) monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra) monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra) monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra) monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra) } when (b.fire && b_first) { opcode := b.bits.opcode param := b.bits.param size := b.bits.size source := b.bits.source address := b.bits.address } } def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = { // Symbolic variable val sym_source = Wire(UInt(edge.client.endSourceId.W)) // TODO: Connect sym_source to a fixed value for simulation and to a // free wire in formal sym_source := 0.U // Type casting Int to UInt val maxSourceId = Wire(UInt(edge.client.endSourceId.W)) maxSourceId := edge.client.endSourceId.U // Delayed verison of sym_source val sym_source_d = Reg(UInt(edge.client.endSourceId.W)) sym_source_d := sym_source // These will be constraints for FV setup Property( MonitorDirection.Monitor, (sym_source === sym_source_d), "sym_source should remain stable", PropertyClass.Default) Property( MonitorDirection.Monitor, (sym_source <= maxSourceId), "sym_source should take legal value", PropertyClass.Default) val my_resp_pend = RegInit(false.B) val my_opcode = Reg(UInt()) val my_size = Reg(UInt()) val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire) val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire) val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source) val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source) val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat) val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend) when (my_set_resp_pend) { my_resp_pend := true.B } .elsewhen (my_clr_resp_pend) { my_resp_pend := false.B } when (my_a_first_beat) { my_opcode := bundle.a.bits.opcode my_size := bundle.a.bits.size } val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size) val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode) val my_resp_opcode_legal = Wire(Bool()) when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) || (my_resp_opcode === TLMessages.LogicalData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData) } .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck) } .otherwise { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck) } monAssert (IfThen(my_resp_pend, !my_a_first_beat), "Request message should not be sent with a source ID, for which a response message" + "is already pending (not received until current cycle) for a prior request message" + "with the same source ID" + extra) assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)), "Response message should be accepted with a source ID only if a request message with the" + "same source ID has been accepted or is being accepted in the current cycle" + extra) assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)), "Response message should be sent with a source ID only if a request message with the" + "same source ID has been accepted or is being sent in the current cycle" + extra) assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)), "If d_valid is 1, then d_size should be same as a_size of the corresponding request" + "message" + extra) assume (IfThen(my_d_first_beat, my_resp_opcode_legal), "If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" + "request message" + extra) } def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = { val c_first = edge.first(c.bits, c.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (c.valid && !c_first) { monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra) monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra) monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra) monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra) monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra) } when (c.fire && c_first) { opcode := c.bits.opcode param := c.bits.param size := c.bits.size source := c.bits.source address := c.bits.address } } def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = { val d_first = edge.first(d.bits, d.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val sink = Reg(UInt()) val denied = Reg(Bool()) when (d.valid && !d_first) { assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra) assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra) assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra) assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra) assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra) assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra) } when (d.fire && d_first) { opcode := d.bits.opcode param := d.bits.param size := d.bits.size source := d.bits.source sink := d.bits.sink denied := d.bits.denied } } def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = { legalizeMultibeatA(bundle.a, edge) legalizeMultibeatD(bundle.d, edge) if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { legalizeMultibeatB(bundle.b, edge) legalizeMultibeatC(bundle.c, edge) } } //This is left in for almond which doesn't adhere to the tilelink protocol @deprecated("Use legalizeADSource instead if possible","") def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.client.endSourceId.W)) val a_first = edge.first(bundle.a.bits, bundle.a.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val a_set = WireInit(0.U(edge.client.endSourceId.W)) when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra) } if (edge.manager.minLatency > 0) { assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = { val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size) val log_a_size_bus_size = log2Ceil(a_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error inflight.suggestName("inflight") val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) inflight_opcodes.suggestName("inflight_opcodes") val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) inflight_sizes.suggestName("inflight_sizes") val a_first = edge.first(bundle.a.bits, bundle.a.fire) a_first.suggestName("a_first") val d_first = edge.first(bundle.d.bits, bundle.d.fire) d_first.suggestName("d_first") val a_set = WireInit(0.U(edge.client.endSourceId.W)) val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) a_set.suggestName("a_set") a_set_wo_ready.suggestName("a_set_wo_ready") val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) a_opcodes_set.suggestName("a_opcodes_set") val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) a_sizes_set.suggestName("a_sizes_set") val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W)) a_opcode_lookup.suggestName("a_opcode_lookup") a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W)) a_size_lookup.suggestName("a_size_lookup") a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant)) val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant)) val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W)) a_opcodes_set_interm.suggestName("a_opcodes_set_interm") val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W)) a_sizes_set_interm.suggestName("a_sizes_set_interm") when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) { a_set_wo_ready := UIntToOH(bundle.a.bits.source) } when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U) a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U) monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) d_opcodes_clr.suggestName("d_opcodes_clr") val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) || (bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra) assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) || (bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra) assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) { assume((!bundle.d.ready) || bundle.a.ready, "ready check") } if (edge.manager.minLatency > 0) { assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = { val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size) val log_c_size_bus_size = log2Ceil(c_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) inflight.suggestName("inflight") inflight_opcodes.suggestName("inflight_opcodes") inflight_sizes.suggestName("inflight_sizes") val c_first = edge.first(bundle.c.bits, bundle.c.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) c_first.suggestName("c_first") d_first.suggestName("d_first") val c_set = WireInit(0.U(edge.client.endSourceId.W)) val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) c_set.suggestName("c_set") c_set_wo_ready.suggestName("c_set_wo_ready") c_opcodes_set.suggestName("c_opcodes_set") c_sizes_set.suggestName("c_sizes_set") val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W)) val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W)) c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U c_opcode_lookup.suggestName("c_opcode_lookup") c_size_lookup.suggestName("c_size_lookup") val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W)) val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W)) c_opcodes_set_interm.suggestName("c_opcodes_set_interm") c_sizes_set_interm.suggestName("c_sizes_set_interm") when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) { c_set_wo_ready := UIntToOH(bundle.c.bits.source) } when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) { c_set := UIntToOH(bundle.c.bits.source) c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U) c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U) monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra) } val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") d_opcodes_clr.suggestName("d_opcodes_clr") d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) { assume((!bundle.d.ready) || bundle.c.ready, "ready check") } if (edge.manager.minLatency > 0) { when (c_set_wo_ready.orR) { assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra) } } inflight := (inflight | c_set) & ~d_clr inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.manager.endSinkId.W)) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val e_first = true.B val d_set = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) { d_set := UIntToOH(bundle.d.bits.sink) assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra) } val e_clr = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) { e_clr := UIntToOH(bundle.e.bits.sink) monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra) } // edge.client.minLatency applies to BC, not DE inflight := (inflight | d_set) & ~e_clr } def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = { val sourceBits = log2Ceil(edge.client.endSourceId) val tooBig = 14 // >16kB worth of flight information gets to be too much if (sourceBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked") } else { if (args.edge.params(TestplanTestType).simulation) { if (args.edge.params(TLMonitorStrictMode)) { legalizeADSource(bundle, edge) legalizeCDSource(bundle, edge) } else { legalizeADSourceOld(bundle, edge) } } if (args.edge.params(TestplanTestType).formal) { legalizeADSourceFormal(bundle, edge) } } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { // legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize... val sinkBits = log2Ceil(edge.manager.endSinkId) if (sinkBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked") } else { legalizeDESink(bundle, edge) } } } def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = { legalizeFormat (bundle, edge) legalizeMultibeat (bundle, edge) legalizeUnique (bundle, edge) } } File Misc.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ import chisel3.util.random.LFSR import org.chipsalliance.cde.config.Parameters import scala.math._ class ParameterizedBundle(implicit p: Parameters) extends Bundle trait Clocked extends Bundle { val clock = Clock() val reset = Bool() } object DecoupledHelper { def apply(rvs: Bool*) = new DecoupledHelper(rvs) } class DecoupledHelper(val rvs: Seq[Bool]) { def fire(exclude: Bool, includes: Bool*) = { require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!") (rvs.filter(_ ne exclude) ++ includes).reduce(_ && _) } def fire() = { rvs.reduce(_ && _) } } object MuxT { def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2)) def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3)) def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4)) } /** Creates a cascade of n MuxTs to search for a key value. */ object MuxTLookup { def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } } object ValidMux { def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = { apply(v1 +: v2.toSeq) } def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = { val out = Wire(Valid(valids.head.bits.cloneType)) out.valid := valids.map(_.valid).reduce(_ || _) out.bits := MuxCase(valids.head.bits, valids.map(v => (v.valid -> v.bits))) out } } object Str { def apply(s: String): UInt = { var i = BigInt(0) require(s.forall(validChar _)) for (c <- s) i = (i << 8) | c i.U((s.length*8).W) } def apply(x: Char): UInt = { require(validChar(x)) x.U(8.W) } def apply(x: UInt): UInt = apply(x, 10) def apply(x: UInt, radix: Int): UInt = { val rad = radix.U val w = x.getWidth require(w > 0) var q = x var s = digit(q % rad) for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s) } s } def apply(x: SInt): UInt = apply(x, 10) def apply(x: SInt, radix: Int): UInt = { val neg = x < 0.S val abs = x.abs.asUInt if (radix != 10) { Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix)) } else { val rad = radix.U val w = abs.getWidth require(w > 0) var q = abs var s = digit(q % rad) var needSign = neg for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad val placeSpace = q === 0.U val space = Mux(needSign, Str('-'), Str(' ')) needSign = needSign && !placeSpace s = Cat(Mux(placeSpace, space, digit(q % rad)), s) } Cat(Mux(needSign, Str('-'), Str(' ')), s) } } private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0) private def validChar(x: Char) = x == (x & 0xFF) } object Split { def apply(x: UInt, n0: Int) = { val w = x.getWidth (x.extract(w-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n2: Int, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } } object Random { def apply(mod: Int, random: UInt): UInt = { if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0) else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod)) } def apply(mod: Int): UInt = apply(mod, randomizer) def oneHot(mod: Int, random: UInt): UInt = { if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0)) else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt } def oneHot(mod: Int): UInt = oneHot(mod, randomizer) private def randomizer = LFSR(16) private def partition(value: UInt, slices: Int) = Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U) } object Majority { def apply(in: Set[Bool]): Bool = { val n = (in.size >> 1) + 1 val clauses = in.subsets(n).map(_.reduce(_ && _)) clauses.reduce(_ || _) } def apply(in: Seq[Bool]): Bool = apply(in.toSet) def apply(in: UInt): Bool = apply(in.asBools.toSet) } object PopCountAtLeast { private def two(x: UInt): (Bool, Bool) = x.getWidth match { case 1 => (x.asBool, false.B) case n => val half = x.getWidth / 2 val (leftOne, leftTwo) = two(x(half - 1, 0)) val (rightOne, rightTwo) = two(x(x.getWidth - 1, half)) (leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne)) } def apply(x: UInt, n: Int): Bool = n match { case 0 => true.B case 1 => x.orR case 2 => two(x)._2 case 3 => PopCount(x) >= n.U } } // This gets used everywhere, so make the smallest circuit possible ... // Given an address and size, create a mask of beatBytes size // eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111 // groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01 object MaskGen { def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = { require (groupBy >= 1 && beatBytes >= groupBy) require (isPow2(beatBytes) && isPow2(groupBy)) val lgBytes = log2Ceil(beatBytes) val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U def helper(i: Int): Seq[(Bool, Bool)] = { if (i == 0) { Seq((lgSize >= lgBytes.asUInt, true.B)) } else { val sub = helper(i-1) val size = sizeOH(lgBytes - i) val bit = addr_lo(lgBytes - i) val nbit = !bit Seq.tabulate (1 << i) { j => val (sub_acc, sub_eq) = sub(j/2) val eq = sub_eq && (if (j % 2 == 1) bit else nbit) val acc = sub_acc || (size && eq) (acc, eq) } } } if (groupBy == beatBytes) 1.U else Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse) } } File PlusArg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.experimental._ import chisel3.util.HasBlackBoxResource @deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05") case class PlusArgInfo(default: BigInt, docstring: String) /** Case class for PlusArg information * * @tparam A scala type of the PlusArg value * @param default optional default value * @param docstring text to include in the help * @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT) */ private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String) /** Typeclass for converting a type to a doctype string * @tparam A some type */ trait Doctypeable[A] { /** Return the doctype string for some option */ def toDoctype(a: Option[A]): String } /** Object containing implementations of the Doctypeable typeclass */ object Doctypes { /** Converts an Int => "INT" */ implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" } /** Converts a BigInt => "INT" */ implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" } /** Converts a String => "STRING" */ implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" } } class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map( "FORMAT" -> StringParam(format), "DEFAULT" -> IntParam(default), "WIDTH" -> IntParam(width) )) with HasBlackBoxResource { val io = IO(new Bundle { val out = Output(UInt(width.W)) }) addResource("/vsrc/plusarg_reader.v") } /* This wrapper class has no outputs, making it clear it is a simulation-only construct */ class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module { val io = IO(new Bundle { val count = Input(UInt(width.W)) }) val max = Module(new plusarg_reader(format, default, docstring, width)).io.out when (max > 0.U) { assert (io.count < max, s"Timeout exceeded: $docstring") } } import Doctypes._ object PlusArg { /** PlusArg("foo") will return 42.U if the simulation is run with +foo=42 * Do not use this as an initial register value. The value is set in an * initial block and thus accessing it from another initial is racey. * Add a docstring to document the arg, which can be dumped in an elaboration * pass. */ def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out } /** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert * to kill the simulation when count exceeds the specified integer argument. * Default 0 will never assert. */ def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count } } object PlusArgArtefacts { private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty /* Add a new PlusArg */ @deprecated( "Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05" ) def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring) /** Add a new PlusArg * * @tparam A scala type of the PlusArg value * @param name name for the PlusArg * @param default optional default value * @param docstring text to include in the help */ def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit = artefacts = artefacts ++ Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default))) /* From plus args, generate help text */ private def serializeHelp_cHeader(tab: String = ""): String = artefacts .map{ case(arg, info) => s"""|$tab+$arg=${info.doctype}\\n\\ |$tab${" "*20}${info.docstring}\\n\\ |""".stripMargin ++ info.default.map{ case default => s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("") }.toSeq.mkString("\\n\\\n") ++ "\"" /* From plus args, generate a char array of their names */ private def serializeArray_cHeader(tab: String = ""): String = { val prettyTab = tab + " " * 44 // Length of 'static const ...' s"${tab}static const char * verilog_plusargs [] = {\\\n" ++ artefacts .map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" } .mkString("")++ s"${prettyTab}0};" } /* Generate C code to be included in emulator.cc that helps with * argument parsing based on available Verilog PlusArgs */ def serialize_cHeader(): String = s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\ |${serializeHelp_cHeader(" "*7)} |${serializeArray_cHeader()} |""".stripMargin } File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag } File Bundles.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import freechips.rocketchip.util._ import scala.collection.immutable.ListMap import chisel3.util.Decoupled import chisel3.util.DecoupledIO import chisel3.reflect.DataMirror abstract class TLBundleBase(val params: TLBundleParameters) extends Bundle // common combos in lazy policy: // Put + Acquire // Release + AccessAck object TLMessages { // A B C D E def PutFullData = 0.U // . . => AccessAck def PutPartialData = 1.U // . . => AccessAck def ArithmeticData = 2.U // . . => AccessAckData def LogicalData = 3.U // . . => AccessAckData def Get = 4.U // . . => AccessAckData def Hint = 5.U // . . => HintAck def AcquireBlock = 6.U // . => Grant[Data] def AcquirePerm = 7.U // . => Grant[Data] def Probe = 6.U // . => ProbeAck[Data] def AccessAck = 0.U // . . def AccessAckData = 1.U // . . def HintAck = 2.U // . . def ProbeAck = 4.U // . def ProbeAckData = 5.U // . def Release = 6.U // . => ReleaseAck def ReleaseData = 7.U // . => ReleaseAck def Grant = 4.U // . => GrantAck def GrantData = 5.U // . => GrantAck def ReleaseAck = 6.U // . def GrantAck = 0.U // . def isA(x: UInt) = x <= AcquirePerm def isB(x: UInt) = x <= Probe def isC(x: UInt) = x <= ReleaseData def isD(x: UInt) = x <= ReleaseAck def adResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, Grant, Grant) def bcResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, ProbeAck, ProbeAck) def a = Seq( ("PutFullData",TLPermissions.PermMsgReserved), ("PutPartialData",TLPermissions.PermMsgReserved), ("ArithmeticData",TLAtomics.ArithMsg), ("LogicalData",TLAtomics.LogicMsg), ("Get",TLPermissions.PermMsgReserved), ("Hint",TLHints.HintsMsg), ("AcquireBlock",TLPermissions.PermMsgGrow), ("AcquirePerm",TLPermissions.PermMsgGrow)) def b = Seq( ("PutFullData",TLPermissions.PermMsgReserved), ("PutPartialData",TLPermissions.PermMsgReserved), ("ArithmeticData",TLAtomics.ArithMsg), ("LogicalData",TLAtomics.LogicMsg), ("Get",TLPermissions.PermMsgReserved), ("Hint",TLHints.HintsMsg), ("Probe",TLPermissions.PermMsgCap)) def c = Seq( ("AccessAck",TLPermissions.PermMsgReserved), ("AccessAckData",TLPermissions.PermMsgReserved), ("HintAck",TLPermissions.PermMsgReserved), ("Invalid Opcode",TLPermissions.PermMsgReserved), ("ProbeAck",TLPermissions.PermMsgReport), ("ProbeAckData",TLPermissions.PermMsgReport), ("Release",TLPermissions.PermMsgReport), ("ReleaseData",TLPermissions.PermMsgReport)) def d = Seq( ("AccessAck",TLPermissions.PermMsgReserved), ("AccessAckData",TLPermissions.PermMsgReserved), ("HintAck",TLPermissions.PermMsgReserved), ("Invalid Opcode",TLPermissions.PermMsgReserved), ("Grant",TLPermissions.PermMsgCap), ("GrantData",TLPermissions.PermMsgCap), ("ReleaseAck",TLPermissions.PermMsgReserved)) } /** * The three primary TileLink permissions are: * (T)runk: the agent is (or is on inwards path to) the global point of serialization. * (B)ranch: the agent is on an outwards path to * (N)one: * These permissions are permuted by transfer operations in various ways. * Operations can cap permissions, request for them to be grown or shrunk, * or for a report on their current status. */ object TLPermissions { val aWidth = 2 val bdWidth = 2 val cWidth = 3 // Cap types (Grant = new permissions, Probe = permisions <= target) def toT = 0.U(bdWidth.W) def toB = 1.U(bdWidth.W) def toN = 2.U(bdWidth.W) def isCap(x: UInt) = x <= toN // Grow types (Acquire = permissions >= target) def NtoB = 0.U(aWidth.W) def NtoT = 1.U(aWidth.W) def BtoT = 2.U(aWidth.W) def isGrow(x: UInt) = x <= BtoT // Shrink types (ProbeAck, Release) def TtoB = 0.U(cWidth.W) def TtoN = 1.U(cWidth.W) def BtoN = 2.U(cWidth.W) def isShrink(x: UInt) = x <= BtoN // Report types (ProbeAck, Release) def TtoT = 3.U(cWidth.W) def BtoB = 4.U(cWidth.W) def NtoN = 5.U(cWidth.W) def isReport(x: UInt) = x <= NtoN def PermMsgGrow:Seq[String] = Seq("Grow NtoB", "Grow NtoT", "Grow BtoT") def PermMsgCap:Seq[String] = Seq("Cap toT", "Cap toB", "Cap toN") def PermMsgReport:Seq[String] = Seq("Shrink TtoB", "Shrink TtoN", "Shrink BtoN", "Report TotT", "Report BtoB", "Report NtoN") def PermMsgReserved:Seq[String] = Seq("Reserved") } object TLAtomics { val width = 3 // Arithmetic types def MIN = 0.U(width.W) def MAX = 1.U(width.W) def MINU = 2.U(width.W) def MAXU = 3.U(width.W) def ADD = 4.U(width.W) def isArithmetic(x: UInt) = x <= ADD // Logical types def XOR = 0.U(width.W) def OR = 1.U(width.W) def AND = 2.U(width.W) def SWAP = 3.U(width.W) def isLogical(x: UInt) = x <= SWAP def ArithMsg:Seq[String] = Seq("MIN", "MAX", "MINU", "MAXU", "ADD") def LogicMsg:Seq[String] = Seq("XOR", "OR", "AND", "SWAP") } object TLHints { val width = 1 def PREFETCH_READ = 0.U(width.W) def PREFETCH_WRITE = 1.U(width.W) def isHints(x: UInt) = x <= PREFETCH_WRITE def HintsMsg:Seq[String] = Seq("PrefetchRead", "PrefetchWrite") } sealed trait TLChannel extends TLBundleBase { val channelName: String } sealed trait TLDataChannel extends TLChannel sealed trait TLAddrChannel extends TLDataChannel final class TLBundleA(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleA_${params.shortName}" val channelName = "'A' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(List(TLAtomics.width, TLPermissions.aWidth, TLHints.width).max.W) // amo_opcode || grow perms || hint val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // from val address = UInt(params.addressBits.W) // to val user = BundleMap(params.requestFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val mask = UInt((params.dataBits/8).W) val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleB(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleB_${params.shortName}" val channelName = "'B' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.bdWidth.W) // cap perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // to val address = UInt(params.addressBits.W) // from // variable fields during multibeat: val mask = UInt((params.dataBits/8).W) val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleC(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleC_${params.shortName}" val channelName = "'C' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.cWidth.W) // shrink or report perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // from val address = UInt(params.addressBits.W) // to val user = BundleMap(params.requestFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleD(params: TLBundleParameters) extends TLBundleBase(params) with TLDataChannel { override def typeName = s"TLBundleD_${params.shortName}" val channelName = "'D' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.bdWidth.W) // cap perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // to val sink = UInt(params.sinkBits.W) // from val denied = Bool() // implies corrupt iff *Data val user = BundleMap(params.responseFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleE(params: TLBundleParameters) extends TLBundleBase(params) with TLChannel { override def typeName = s"TLBundleE_${params.shortName}" val channelName = "'E' channel" val sink = UInt(params.sinkBits.W) // to } class TLBundle(val params: TLBundleParameters) extends Record { // Emulate a Bundle with elements abcde or ad depending on params.hasBCE private val optA = Some (Decoupled(new TLBundleA(params))) private val optB = params.hasBCE.option(Flipped(Decoupled(new TLBundleB(params)))) private val optC = params.hasBCE.option(Decoupled(new TLBundleC(params))) private val optD = Some (Flipped(Decoupled(new TLBundleD(params)))) private val optE = params.hasBCE.option(Decoupled(new TLBundleE(params))) def a: DecoupledIO[TLBundleA] = optA.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleA(params))))) def b: DecoupledIO[TLBundleB] = optB.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleB(params))))) def c: DecoupledIO[TLBundleC] = optC.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleC(params))))) def d: DecoupledIO[TLBundleD] = optD.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleD(params))))) def e: DecoupledIO[TLBundleE] = optE.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleE(params))))) val elements = if (params.hasBCE) ListMap("e" -> e, "d" -> d, "c" -> c, "b" -> b, "a" -> a) else ListMap("d" -> d, "a" -> a) def tieoff(): Unit = { DataMirror.specifiedDirectionOf(a.ready) match { case SpecifiedDirection.Input => a.ready := false.B c.ready := false.B e.ready := false.B b.valid := false.B d.valid := false.B case SpecifiedDirection.Output => a.valid := false.B c.valid := false.B e.valid := false.B b.ready := false.B d.ready := false.B case _ => } } } object TLBundle { def apply(params: TLBundleParameters) = new TLBundle(params) } class TLAsyncBundleBase(val params: TLAsyncBundleParameters) extends Bundle class TLAsyncBundle(params: TLAsyncBundleParameters) extends TLAsyncBundleBase(params) { val a = new AsyncBundle(new TLBundleA(params.base), params.async) val b = Flipped(new AsyncBundle(new TLBundleB(params.base), params.async)) val c = new AsyncBundle(new TLBundleC(params.base), params.async) val d = Flipped(new AsyncBundle(new TLBundleD(params.base), params.async)) val e = new AsyncBundle(new TLBundleE(params.base), params.async) } class TLRationalBundle(params: TLBundleParameters) extends TLBundleBase(params) { val a = RationalIO(new TLBundleA(params)) val b = Flipped(RationalIO(new TLBundleB(params))) val c = RationalIO(new TLBundleC(params)) val d = Flipped(RationalIO(new TLBundleD(params))) val e = RationalIO(new TLBundleE(params)) } class TLCreditedBundle(params: TLBundleParameters) extends TLBundleBase(params) { val a = CreditedIO(new TLBundleA(params)) val b = Flipped(CreditedIO(new TLBundleB(params))) val c = CreditedIO(new TLBundleC(params)) val d = Flipped(CreditedIO(new TLBundleD(params))) val e = CreditedIO(new TLBundleE(params)) } File Parameters.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.diplomacy import chisel3._ import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor} import freechips.rocketchip.util.ShiftQueue /** Options for describing the attributes of memory regions */ object RegionType { // Define the 'more relaxed than' ordering val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS) sealed trait T extends Ordered[T] { def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this) } case object CACHED extends T // an intermediate agent may have cached a copy of the region for you case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively } // A non-empty half-open range; [start, end) case class IdRange(start: Int, end: Int) extends Ordered[IdRange] { require (start >= 0, s"Ids cannot be negative, but got: $start.") require (start <= end, "Id ranges cannot be negative.") def compare(x: IdRange) = { val primary = (this.start - x.start).signum val secondary = (x.end - this.end).signum if (primary != 0) primary else secondary } def overlaps(x: IdRange) = start < x.end && x.start < end def contains(x: IdRange) = start <= x.start && x.end <= end def contains(x: Int) = start <= x && x < end def contains(x: UInt) = if (size == 0) { false.B } else if (size == 1) { // simple comparison x === start.U } else { // find index of largest different bit val largestDeltaBit = log2Floor(start ^ (end-1)) val smallestCommonBit = largestDeltaBit + 1 // may not exist in x val uncommonMask = (1 << smallestCommonBit) - 1 val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0) // the prefix must match exactly (note: may shift ALL bits away) (x >> smallestCommonBit) === (start >> smallestCommonBit).U && // firrtl constant prop range analysis can eliminate these two: (start & uncommonMask).U <= uncommonBits && uncommonBits <= ((end-1) & uncommonMask).U } def shift(x: Int) = IdRange(start+x, end+x) def size = end - start def isEmpty = end == start def range = start until end } object IdRange { def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else { val ranges = s.sorted (ranges.tail zip ranges.init) find { case (a, b) => a overlaps b } } } // An potentially empty inclusive range of 2-powers [min, max] (in bytes) case class TransferSizes(min: Int, max: Int) { def this(x: Int) = this(x, x) require (min <= max, s"Min transfer $min > max transfer $max") require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)") require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max") require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min") require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)") def none = min == 0 def contains(x: Int) = isPow2(x) && min <= x && x <= max def containsLg(x: Int) = contains(1 << x) def containsLg(x: UInt) = if (none) false.B else if (min == max) { log2Ceil(min).U === x } else { log2Ceil(min).U <= x && x <= log2Ceil(max).U } def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max) def intersect(x: TransferSizes) = if (x.max < min || max < x.min) TransferSizes.none else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max)) // Not a union, because the result may contain sizes contained by neither term // NOT TO BE CONFUSED WITH COVERPOINTS def mincover(x: TransferSizes) = { if (none) { x } else if (x.none) { this } else { TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max)) } } override def toString() = "TransferSizes[%d, %d]".format(min, max) } object TransferSizes { def apply(x: Int) = new TransferSizes(x) val none = new TransferSizes(0) def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _) def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _) implicit def asBool(x: TransferSizes) = !x.none } // AddressSets specify the address space managed by the manager // Base is the base address, and mask are the bits consumed by the manager // e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff // e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ... case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet] { // Forbid misaligned base address (and empty sets) require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}") require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous // We do allow negative mask (=> ignore all high bits) def contains(x: BigInt) = ((x ^ base) & ~mask) == 0 def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S // turn x into an address contained in this set def legalize(x: UInt): UInt = base.U | (mask.U & x) // overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1) def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0 // contains iff bitwise: x.mask => mask && contains(x.base) def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0 // The number of bytes to which the manager must be aligned def alignment = ((mask + 1) & ~mask) // Is this a contiguous memory range def contiguous = alignment == mask+1 def finite = mask >= 0 def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask } // Widen the match function to ignore all bits in imask def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask) // Return an AddressSet that only contains the addresses both sets contain def intersect(x: AddressSet): Option[AddressSet] = { if (!overlaps(x)) { None } else { val r_mask = mask & x.mask val r_base = base | x.base Some(AddressSet(r_base, r_mask)) } } def subtract(x: AddressSet): Seq[AddressSet] = { intersect(x) match { case None => Seq(this) case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit => val nmask = (mask & (bit-1)) | remove.mask val nbase = (remove.base ^ bit) & ~nmask AddressSet(nbase, nmask) } } } // AddressSets have one natural Ordering (the containment order, if contiguous) def compare(x: AddressSet) = { val primary = (this.base - x.base).signum // smallest address first val secondary = (x.mask - this.mask).signum // largest mask first if (primary != 0) primary else secondary } // We always want to see things in hex override def toString() = { if (mask >= 0) { "AddressSet(0x%x, 0x%x)".format(base, mask) } else { "AddressSet(0x%x, ~0x%x)".format(base, ~mask) } } def toRanges = { require (finite, "Ranges cannot be calculated on infinite mask") val size = alignment val fragments = mask & ~(size-1) val bits = bitIndexes(fragments) (BigInt(0) until (BigInt(1) << bits.size)).map { i => val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) } AddressRange(off, size) } } } object AddressSet { val everything = AddressSet(0, -1) def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = { if (size == 0) tail.reverse else { val maxBaseAlignment = base & (-base) // 0 for infinite (LSB) val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size val step = if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment) maxSizeAlignment else maxBaseAlignment misaligned(base+step, size-step, AddressSet(base, step-1) +: tail) } } def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = { // Pair terms up by ignoring 'bit' seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) => if (seq.size == 1) { seq.head // singleton -> unaffected } else { key.copy(mask = key.mask | bit) // pair - widen mask by bit } }.toList } def unify(seq: Seq[AddressSet]): Seq[AddressSet] = { val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _) AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted } def enumerateMask(mask: BigInt): Seq[BigInt] = { def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] = if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail) helper(0, Nil) } def enumerateBits(mask: BigInt): Seq[BigInt] = { def helper(x: BigInt): Seq[BigInt] = { if (x == 0) { Nil } else { val bit = x & (-x) bit +: helper(x & ~bit) } } helper(mask) } } case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean) { require (depth >= 0, "Buffer depth must be >= 0") def isDefined = depth > 0 def latency = if (isDefined && !flow) 1 else 0 def apply[T <: Data](x: DecoupledIO[T]) = if (isDefined) Queue(x, depth, flow=flow, pipe=pipe) else x def irrevocable[T <: Data](x: ReadyValidIO[T]) = if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe) else x def sq[T <: Data](x: DecoupledIO[T]) = if (!isDefined) x else { val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe)) sq.io.enq <> x sq.io.deq } override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "") } object BufferParams { implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false) val default = BufferParams(2) val none = BufferParams(0) val flow = BufferParams(1, true, false) val pipe = BufferParams(1, false, true) } case class TriStateValue(value: Boolean, set: Boolean) { def update(orig: Boolean) = if (set) value else orig } object TriStateValue { implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true) def unset = TriStateValue(false, false) } trait DirectedBuffers[T] { def copyIn(x: BufferParams): T def copyOut(x: BufferParams): T def copyInOut(x: BufferParams): T } trait IdMapEntry { def name: String def from: IdRange def to: IdRange def isCache: Boolean def requestFifo: Boolean def maxTransactionsInFlight: Option[Int] def pretty(fmt: String) = if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5 fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } else { fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } } abstract class IdMap[T <: IdMapEntry] { protected val fmt: String val mapping: Seq[T] def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n") } File Edges.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.util._ class TLEdge( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdgeParameters(client, manager, params, sourceInfo) { def isAligned(address: UInt, lgSize: UInt): Bool = { if (maxLgSize == 0) true.B else { val mask = UIntToOH1(lgSize, maxLgSize) (address & mask) === 0.U } } def mask(address: UInt, lgSize: UInt): UInt = MaskGen(address, lgSize, manager.beatBytes) def staticHasData(bundle: TLChannel): Option[Boolean] = { bundle match { case _:TLBundleA => { // Do there exist A messages with Data? val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial // Do there exist A messages without Data? val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint // Statically optimize the case where hasData is a constant if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None } case _:TLBundleB => { // Do there exist B messages with Data? val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial // Do there exist B messages without Data? val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint // Statically optimize the case where hasData is a constant if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None } case _:TLBundleC => { // Do there eixst C messages with Data? val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe // Do there exist C messages without Data? val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None } case _:TLBundleD => { // Do there eixst D messages with Data? val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB // Do there exist D messages without Data? val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None } case _:TLBundleE => Some(false) } } def isRequest(x: TLChannel): Bool = { x match { case a: TLBundleA => true.B case b: TLBundleB => true.B case c: TLBundleC => c.opcode(2) && c.opcode(1) // opcode === TLMessages.Release || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(2) && !d.opcode(1) // opcode === TLMessages.Grant || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } } def isResponse(x: TLChannel): Bool = { x match { case a: TLBundleA => false.B case b: TLBundleB => false.B case c: TLBundleC => !c.opcode(2) || !c.opcode(1) // opcode =/= TLMessages.Release && // opcode =/= TLMessages.ReleaseData case d: TLBundleD => true.B // Grant isResponse + isRequest case e: TLBundleE => true.B } } def hasData(x: TLChannel): Bool = { val opdata = x match { case a: TLBundleA => !a.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case b: TLBundleB => !b.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case c: TLBundleC => c.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.ProbeAckData || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } staticHasData(x).map(_.B).getOrElse(opdata) } def opcode(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.opcode case b: TLBundleB => b.opcode case c: TLBundleC => c.opcode case d: TLBundleD => d.opcode } } def param(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.param case b: TLBundleB => b.param case c: TLBundleC => c.param case d: TLBundleD => d.param } } def size(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.size case b: TLBundleB => b.size case c: TLBundleC => c.size case d: TLBundleD => d.size } } def data(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.data case b: TLBundleB => b.data case c: TLBundleC => c.data case d: TLBundleD => d.data } } def corrupt(x: TLDataChannel): Bool = { x match { case a: TLBundleA => a.corrupt case b: TLBundleB => b.corrupt case c: TLBundleC => c.corrupt case d: TLBundleD => d.corrupt } } def mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.mask case b: TLBundleB => b.mask case c: TLBundleC => mask(c.address, c.size) } } def full_mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => mask(a.address, a.size) case b: TLBundleB => mask(b.address, b.size) case c: TLBundleC => mask(c.address, c.size) } } def address(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.address case b: TLBundleB => b.address case c: TLBundleC => c.address } } def source(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.source case b: TLBundleB => b.source case c: TLBundleC => c.source case d: TLBundleD => d.source } } def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes) def addr_lo(x: UInt): UInt = if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0) def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x)) def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x)) def numBeats(x: TLChannel): UInt = { x match { case _: TLBundleE => 1.U case bundle: TLDataChannel => { val hasData = this.hasData(bundle) val size = this.size(bundle) val cutoff = log2Ceil(manager.beatBytes) val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U val decode = UIntToOH(size, maxLgSize+1) >> cutoff Mux(hasData, decode | small.asUInt, 1.U) } } } def numBeats1(x: TLChannel): UInt = { x match { case _: TLBundleE => 0.U case bundle: TLDataChannel => { if (maxLgSize == 0) { 0.U } else { val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes) Mux(hasData(bundle), decode, 0.U) } } } } def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val beats1 = numBeats1(bits) val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W)) val counter1 = counter - 1.U val first = counter === 0.U val last = counter === 1.U || beats1 === 0.U val done = last && fire val count = (beats1 & ~counter1) when (fire) { counter := Mux(first, beats1, counter1) } (first, last, done, count) } def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1 def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire) def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid) def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2 def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire) def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid) def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3 def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire) def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid) def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3) } def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire) def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid) def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4) } def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire) def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid) def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes)) } def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire) def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid) // Does the request need T permissions to be executed? def needT(a: TLBundleA): Bool = { val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLPermissions.NtoB -> false.B, TLPermissions.NtoT -> true.B, TLPermissions.BtoT -> true.B)) MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array( TLMessages.PutFullData -> true.B, TLMessages.PutPartialData -> true.B, TLMessages.ArithmeticData -> true.B, TLMessages.LogicalData -> true.B, TLMessages.Get -> false.B, TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLHints.PREFETCH_READ -> false.B, TLHints.PREFETCH_WRITE -> true.B)), TLMessages.AcquireBlock -> acq_needT, TLMessages.AcquirePerm -> acq_needT)) } // This is a very expensive circuit; use only if you really mean it! def inFlight(x: TLBundle): (UInt, UInt) = { val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W)) val bce = manager.anySupportAcquireB && client.anySupportProbe val (a_first, a_last, _) = firstlast(x.a) val (b_first, b_last, _) = firstlast(x.b) val (c_first, c_last, _) = firstlast(x.c) val (d_first, d_last, _) = firstlast(x.d) val (e_first, e_last, _) = firstlast(x.e) val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits)) val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits)) val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits)) val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits)) val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits)) val a_inc = x.a.fire && a_first && a_request val b_inc = x.b.fire && b_first && b_request val c_inc = x.c.fire && c_first && c_request val d_inc = x.d.fire && d_first && d_request val e_inc = x.e.fire && e_first && e_request val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil)) val a_dec = x.a.fire && a_last && a_response val b_dec = x.b.fire && b_last && b_response val c_dec = x.c.fire && c_last && c_response val d_dec = x.d.fire && d_last && d_response val e_dec = x.e.fire && e_last && e_response val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil)) val next_flight = flight + PopCount(inc) - PopCount(dec) flight := next_flight (flight, next_flight) } def prettySourceMapping(context: String): String = { s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n" } } class TLEdgeOut( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { // Transfers def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquireBlock a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquirePerm a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.Release c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ReleaseData c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) = Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B) def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAck c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions, data) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAckData c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B) def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink) def GrantAck(toSink: UInt): TLBundleE = { val e = Wire(new TLBundleE(bundle)) e.sink := toSink e } // Accesses def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsGetFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Get a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutFullFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutFullData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, mask, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutPartialFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutPartialData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask a.data := data a.corrupt := corrupt (legal, a) } def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = { require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsArithmeticFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.ArithmeticData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsLogicalFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.LogicalData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = { require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsHintFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Hint a.param := param a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data) def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAckData c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size) def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.HintAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } } class TLEdgeIn( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = { val todo = x.filter(!_.isEmpty) val heads = todo.map(_.head) val tails = todo.map(_.tail) if (todo.isEmpty) Nil else { heads +: myTranspose(tails) } } // Transfers def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = { require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}") val legal = client.supportsProbe(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Probe b.param := capPermissions b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.Grant d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.GrantData d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B) def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.ReleaseAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } // Accesses def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = { require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsGet(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Get b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsPutFull(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutFullData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, mask, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsPutPartial(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutPartialData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask b.data := data b.corrupt := corrupt (legal, b) } def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsArithmetic(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.ArithmeticData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsLogical(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.LogicalData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = { require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsHint(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Hint b.param := param b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size) def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied) def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B) def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data) def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAckData d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B) def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied) def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B) def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.HintAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } }
module TLMonitor_17( // @[Monitor.scala:36:7] input clock, // @[Monitor.scala:36:7] input reset, // @[Monitor.scala:36:7] input io_in_a_ready, // @[Monitor.scala:20:14] input io_in_a_valid, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14] input [3:0] io_in_a_bits_size, // @[Monitor.scala:20:14] input [6:0] io_in_a_bits_source, // @[Monitor.scala:20:14] input [28:0] io_in_a_bits_address, // @[Monitor.scala:20:14] input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14] input [63:0] io_in_a_bits_data, // @[Monitor.scala:20:14] input io_in_a_bits_corrupt, // @[Monitor.scala:20:14] input io_in_d_ready, // @[Monitor.scala:20:14] input io_in_d_valid, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14] input [1:0] io_in_d_bits_param, // @[Monitor.scala:20:14] input [3:0] io_in_d_bits_size, // @[Monitor.scala:20:14] input [6:0] io_in_d_bits_source, // @[Monitor.scala:20:14] input io_in_d_bits_sink, // @[Monitor.scala:20:14] input io_in_d_bits_denied, // @[Monitor.scala:20:14] input [63:0] io_in_d_bits_data, // @[Monitor.scala:20:14] input io_in_d_bits_corrupt // @[Monitor.scala:20:14] ); wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11] wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11] wire io_in_a_ready_0 = io_in_a_ready; // @[Monitor.scala:36:7] wire io_in_a_valid_0 = io_in_a_valid; // @[Monitor.scala:36:7] wire [2:0] io_in_a_bits_opcode_0 = io_in_a_bits_opcode; // @[Monitor.scala:36:7] wire [2:0] io_in_a_bits_param_0 = io_in_a_bits_param; // @[Monitor.scala:36:7] wire [3:0] io_in_a_bits_size_0 = io_in_a_bits_size; // @[Monitor.scala:36:7] wire [6:0] io_in_a_bits_source_0 = io_in_a_bits_source; // @[Monitor.scala:36:7] wire [28:0] io_in_a_bits_address_0 = io_in_a_bits_address; // @[Monitor.scala:36:7] wire [7:0] io_in_a_bits_mask_0 = io_in_a_bits_mask; // @[Monitor.scala:36:7] wire [63:0] io_in_a_bits_data_0 = io_in_a_bits_data; // @[Monitor.scala:36:7] wire io_in_a_bits_corrupt_0 = io_in_a_bits_corrupt; // @[Monitor.scala:36:7] wire io_in_d_ready_0 = io_in_d_ready; // @[Monitor.scala:36:7] wire io_in_d_valid_0 = io_in_d_valid; // @[Monitor.scala:36:7] wire [2:0] io_in_d_bits_opcode_0 = io_in_d_bits_opcode; // @[Monitor.scala:36:7] wire [1:0] io_in_d_bits_param_0 = io_in_d_bits_param; // @[Monitor.scala:36:7] wire [3:0] io_in_d_bits_size_0 = io_in_d_bits_size; // @[Monitor.scala:36:7] wire [6:0] io_in_d_bits_source_0 = io_in_d_bits_source; // @[Monitor.scala:36:7] wire io_in_d_bits_sink_0 = io_in_d_bits_sink; // @[Monitor.scala:36:7] wire io_in_d_bits_denied_0 = io_in_d_bits_denied; // @[Monitor.scala:36:7] wire [63:0] io_in_d_bits_data_0 = io_in_d_bits_data; // @[Monitor.scala:36:7] wire io_in_d_bits_corrupt_0 = io_in_d_bits_corrupt; // @[Monitor.scala:36:7] wire sink_ok = 1'h0; // @[Monitor.scala:309:31] wire _c_first_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_first_T = 1'h0; // @[Decoupled.scala:51:35] wire c_first_beats1_opdata = 1'h0; // @[Edges.scala:102:36] wire _c_first_last_T = 1'h0; // @[Edges.scala:232:25] wire c_first_done = 1'h0; // @[Edges.scala:233:22] wire _c_set_wo_ready_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_set_wo_ready_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_set_wo_ready_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_T = 1'h0; // @[Monitor.scala:772:47] wire _c_probe_ack_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_T_1 = 1'h0; // @[Monitor.scala:772:95] wire c_probe_ack = 1'h0; // @[Monitor.scala:772:71] wire _same_cycle_resp_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_T_3 = 1'h0; // @[Monitor.scala:795:44] wire _same_cycle_resp_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_T_4 = 1'h0; // @[Edges.scala:68:36] wire _same_cycle_resp_T_5 = 1'h0; // @[Edges.scala:68:51] wire _same_cycle_resp_T_6 = 1'h0; // @[Edges.scala:68:40] wire _same_cycle_resp_T_7 = 1'h0; // @[Monitor.scala:795:55] wire _same_cycle_resp_WIRE_4_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_4_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_4_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_5_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_5_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_5_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire same_cycle_resp_1 = 1'h0; // @[Monitor.scala:795:88] wire [8:0] c_first_beats1_decode = 9'h0; // @[Edges.scala:220:59] wire [8:0] c_first_beats1 = 9'h0; // @[Edges.scala:221:14] wire [8:0] _c_first_count_T = 9'h0; // @[Edges.scala:234:27] wire [8:0] c_first_count = 9'h0; // @[Edges.scala:234:25] wire [8:0] _c_first_counter_T = 9'h0; // @[Edges.scala:236:21] wire _source_ok_T_3 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_5 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_9 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_11 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_15 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_17 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_21 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_23 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_28 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_30 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_44 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_46 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_50 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_52 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_56 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_58 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_62 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_64 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_69 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_71 = 1'h1; // @[Parameters.scala:57:20] wire c_first = 1'h1; // @[Edges.scala:231:25] wire _c_first_last_T_1 = 1'h1; // @[Edges.scala:232:43] wire c_first_last = 1'h1; // @[Edges.scala:232:33] wire [8:0] c_first_counter1 = 9'h1FF; // @[Edges.scala:230:28] wire [9:0] _c_first_counter1_T = 10'h3FF; // @[Edges.scala:230:28] wire [63:0] _c_first_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_first_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_first_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_first_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_set_wo_ready_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_set_wo_ready_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_opcodes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_opcodes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_sizes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_sizes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_opcodes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_opcodes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_sizes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_sizes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_probe_ack_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_probe_ack_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_probe_ack_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_probe_ack_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _same_cycle_resp_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _same_cycle_resp_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _same_cycle_resp_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _same_cycle_resp_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _same_cycle_resp_WIRE_4_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _same_cycle_resp_WIRE_5_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [28:0] _c_first_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _c_first_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [28:0] _c_first_WIRE_2_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _c_first_WIRE_3_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [28:0] _c_set_wo_ready_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _c_set_wo_ready_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [28:0] _c_set_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _c_set_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [28:0] _c_opcodes_set_interm_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _c_opcodes_set_interm_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [28:0] _c_sizes_set_interm_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _c_sizes_set_interm_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [28:0] _c_opcodes_set_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _c_opcodes_set_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [28:0] _c_sizes_set_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _c_sizes_set_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [28:0] _c_probe_ack_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _c_probe_ack_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [28:0] _c_probe_ack_WIRE_2_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _c_probe_ack_WIRE_3_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [28:0] _same_cycle_resp_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _same_cycle_resp_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [28:0] _same_cycle_resp_WIRE_2_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _same_cycle_resp_WIRE_3_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [28:0] _same_cycle_resp_WIRE_4_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _same_cycle_resp_WIRE_5_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [6:0] _c_first_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_first_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_first_WIRE_2_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_first_WIRE_3_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_set_wo_ready_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_set_wo_ready_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_set_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_set_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_opcodes_set_interm_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_opcodes_set_interm_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_sizes_set_interm_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_sizes_set_interm_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_opcodes_set_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_opcodes_set_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_sizes_set_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_sizes_set_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_probe_ack_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_probe_ack_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_probe_ack_WIRE_2_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_probe_ack_WIRE_3_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _same_cycle_resp_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _same_cycle_resp_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _same_cycle_resp_WIRE_2_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _same_cycle_resp_WIRE_3_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _same_cycle_resp_WIRE_4_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _same_cycle_resp_WIRE_5_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [3:0] _c_first_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_first_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_first_WIRE_2_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_first_WIRE_3_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] c_opcodes_set_interm = 4'h0; // @[Monitor.scala:754:40] wire [3:0] _c_set_wo_ready_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_set_wo_ready_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_set_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_set_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_opcodes_set_interm_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_opcodes_set_interm_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_opcodes_set_interm_T = 4'h0; // @[Monitor.scala:765:53] wire [3:0] _c_sizes_set_interm_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_sizes_set_interm_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_opcodes_set_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_opcodes_set_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_sizes_set_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_sizes_set_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_probe_ack_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_probe_ack_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_probe_ack_WIRE_2_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_probe_ack_WIRE_3_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _same_cycle_resp_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _same_cycle_resp_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _same_cycle_resp_WIRE_2_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _same_cycle_resp_WIRE_3_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _same_cycle_resp_WIRE_4_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _same_cycle_resp_WIRE_5_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [2:0] responseMap_0 = 3'h0; // @[Monitor.scala:643:42] wire [2:0] responseMap_1 = 3'h0; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_0 = 3'h0; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_1 = 3'h0; // @[Monitor.scala:644:42] wire [2:0] _c_first_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_wo_ready_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_wo_ready_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_4_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_4_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_5_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_5_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [15:0] _a_size_lookup_T_5 = 16'hFF; // @[Monitor.scala:612:57] wire [15:0] _d_sizes_clr_T_3 = 16'hFF; // @[Monitor.scala:612:57] wire [15:0] _c_size_lookup_T_5 = 16'hFF; // @[Monitor.scala:724:57] wire [15:0] _d_sizes_clr_T_9 = 16'hFF; // @[Monitor.scala:724:57] wire [16:0] _a_size_lookup_T_4 = 17'hFF; // @[Monitor.scala:612:57] wire [16:0] _d_sizes_clr_T_2 = 17'hFF; // @[Monitor.scala:612:57] wire [16:0] _c_size_lookup_T_4 = 17'hFF; // @[Monitor.scala:724:57] wire [16:0] _d_sizes_clr_T_8 = 17'hFF; // @[Monitor.scala:724:57] wire [15:0] _a_size_lookup_T_3 = 16'h100; // @[Monitor.scala:612:51] wire [15:0] _d_sizes_clr_T_1 = 16'h100; // @[Monitor.scala:612:51] wire [15:0] _c_size_lookup_T_3 = 16'h100; // @[Monitor.scala:724:51] wire [15:0] _d_sizes_clr_T_7 = 16'h100; // @[Monitor.scala:724:51] wire [15:0] _a_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _d_opcodes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _c_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57] wire [15:0] _d_opcodes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57] wire [16:0] _a_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _d_opcodes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _c_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57] wire [16:0] _d_opcodes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57] wire [15:0] _a_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _d_opcodes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _c_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51] wire [15:0] _d_opcodes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51] wire [1027:0] _c_sizes_set_T_1 = 1028'h0; // @[Monitor.scala:768:52] wire [9:0] _c_opcodes_set_T = 10'h0; // @[Monitor.scala:767:79] wire [9:0] _c_sizes_set_T = 10'h0; // @[Monitor.scala:768:77] wire [1026:0] _c_opcodes_set_T_1 = 1027'h0; // @[Monitor.scala:767:54] wire [4:0] _c_sizes_set_interm_T_1 = 5'h1; // @[Monitor.scala:766:59] wire [4:0] c_sizes_set_interm = 5'h0; // @[Monitor.scala:755:40] wire [4:0] _c_sizes_set_interm_T = 5'h0; // @[Monitor.scala:766:51] wire [3:0] _c_opcodes_set_interm_T_1 = 4'h1; // @[Monitor.scala:765:61] wire [127:0] _c_set_wo_ready_T = 128'h1; // @[OneHot.scala:58:35] wire [127:0] _c_set_T = 128'h1; // @[OneHot.scala:58:35] wire [519:0] c_sizes_set = 520'h0; // @[Monitor.scala:741:34] wire [259:0] c_opcodes_set = 260'h0; // @[Monitor.scala:740:34] wire [64:0] c_set = 65'h0; // @[Monitor.scala:738:34] wire [64:0] c_set_wo_ready = 65'h0; // @[Monitor.scala:739:34] wire [11:0] _c_first_beats1_decode_T_2 = 12'h0; // @[package.scala:243:46] wire [11:0] _c_first_beats1_decode_T_1 = 12'hFFF; // @[package.scala:243:76] wire [26:0] _c_first_beats1_decode_T = 27'hFFF; // @[package.scala:243:71] wire [2:0] responseMap_6 = 3'h4; // @[Monitor.scala:643:42] wire [2:0] responseMap_7 = 3'h4; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_7 = 3'h4; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_6 = 3'h5; // @[Monitor.scala:644:42] wire [2:0] responseMap_5 = 3'h2; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_5 = 3'h2; // @[Monitor.scala:644:42] wire [2:0] responseMap_2 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMap_3 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMap_4 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_2 = 3'h1; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_3 = 3'h1; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_4 = 3'h1; // @[Monitor.scala:644:42] wire [3:0] _a_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:637:123] wire [3:0] _d_opcodes_clr_T = 4'h4; // @[Monitor.scala:680:48] wire [3:0] _c_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:749:123] wire [3:0] _d_opcodes_clr_T_6 = 4'h4; // @[Monitor.scala:790:48] wire [3:0] _a_size_lookup_T_2 = 4'h8; // @[Monitor.scala:641:117] wire [3:0] _d_sizes_clr_T = 4'h8; // @[Monitor.scala:681:48] wire [3:0] _c_size_lookup_T_2 = 4'h8; // @[Monitor.scala:750:119] wire [3:0] _d_sizes_clr_T_6 = 4'h8; // @[Monitor.scala:791:48] wire [3:0] _mask_sizeOH_T = io_in_a_bits_size_0; // @[Misc.scala:202:34] wire [6:0] _source_ok_uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _source_ok_uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _source_ok_uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _source_ok_uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _source_ok_uncommonBits_T_4 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_4 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_5 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_6 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_7 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_8 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_9 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_10 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_11 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_12 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_13 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_14 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_15 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_16 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_17 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_18 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_19 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_20 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_21 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_22 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_23 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_24 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_25 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_26 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_27 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_28 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_29 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_30 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_31 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_32 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_33 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_34 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_35 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_36 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_37 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_38 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_39 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_40 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_41 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_42 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_43 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_44 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_45 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_46 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_47 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_48 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_49 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_50 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_51 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_52 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_53 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_54 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _source_ok_uncommonBits_T_5 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _source_ok_uncommonBits_T_6 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _source_ok_uncommonBits_T_7 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _source_ok_uncommonBits_T_8 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _source_ok_uncommonBits_T_9 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire _source_ok_T = io_in_a_bits_source_0 == 7'h10; // @[Monitor.scala:36:7] wire _source_ok_WIRE_0 = _source_ok_T; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits = _source_ok_uncommonBits_T[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] _source_ok_T_1 = io_in_a_bits_source_0[6:2]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_7 = io_in_a_bits_source_0[6:2]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_13 = io_in_a_bits_source_0[6:2]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_19 = io_in_a_bits_source_0[6:2]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_26 = io_in_a_bits_source_0[6:2]; // @[Monitor.scala:36:7] wire _source_ok_T_2 = _source_ok_T_1 == 5'h0; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_4 = _source_ok_T_2; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_6 = _source_ok_T_4; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1 = _source_ok_T_6; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_1 = _source_ok_uncommonBits_T_1[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_8 = _source_ok_T_7 == 5'h1; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_10 = _source_ok_T_8; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_12 = _source_ok_T_10; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_2 = _source_ok_T_12; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_2 = _source_ok_uncommonBits_T_2[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_14 = _source_ok_T_13 == 5'h2; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_16 = _source_ok_T_14; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_18 = _source_ok_T_16; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_3 = _source_ok_T_18; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_3 = _source_ok_uncommonBits_T_3[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_20 = _source_ok_T_19 == 5'h3; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_22 = _source_ok_T_20; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_24 = _source_ok_T_22; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_4 = _source_ok_T_24; // @[Parameters.scala:1138:31] wire _source_ok_T_25 = io_in_a_bits_source_0 == 7'h28; // @[Monitor.scala:36:7] wire _source_ok_WIRE_5 = _source_ok_T_25; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_4 = _source_ok_uncommonBits_T_4[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_27 = _source_ok_T_26 == 5'h8; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_29 = _source_ok_T_27; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_31 = _source_ok_T_29; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_6 = _source_ok_T_31; // @[Parameters.scala:1138:31] wire _source_ok_T_32 = io_in_a_bits_source_0 == 7'h24; // @[Monitor.scala:36:7] wire _source_ok_WIRE_7 = _source_ok_T_32; // @[Parameters.scala:1138:31] wire _source_ok_T_33 = io_in_a_bits_source_0 == 7'h40; // @[Monitor.scala:36:7] wire _source_ok_WIRE_8 = _source_ok_T_33; // @[Parameters.scala:1138:31] wire _source_ok_T_34 = _source_ok_WIRE_0 | _source_ok_WIRE_1; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_35 = _source_ok_T_34 | _source_ok_WIRE_2; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_36 = _source_ok_T_35 | _source_ok_WIRE_3; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_37 = _source_ok_T_36 | _source_ok_WIRE_4; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_38 = _source_ok_T_37 | _source_ok_WIRE_5; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_39 = _source_ok_T_38 | _source_ok_WIRE_6; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_40 = _source_ok_T_39 | _source_ok_WIRE_7; // @[Parameters.scala:1138:31, :1139:46] wire source_ok = _source_ok_T_40 | _source_ok_WIRE_8; // @[Parameters.scala:1138:31, :1139:46] wire [26:0] _GEN = 27'hFFF << io_in_a_bits_size_0; // @[package.scala:243:71] wire [26:0] _is_aligned_mask_T; // @[package.scala:243:71] assign _is_aligned_mask_T = _GEN; // @[package.scala:243:71] wire [26:0] _a_first_beats1_decode_T; // @[package.scala:243:71] assign _a_first_beats1_decode_T = _GEN; // @[package.scala:243:71] wire [26:0] _a_first_beats1_decode_T_3; // @[package.scala:243:71] assign _a_first_beats1_decode_T_3 = _GEN; // @[package.scala:243:71] wire [11:0] _is_aligned_mask_T_1 = _is_aligned_mask_T[11:0]; // @[package.scala:243:{71,76}] wire [11:0] is_aligned_mask = ~_is_aligned_mask_T_1; // @[package.scala:243:{46,76}] wire [28:0] _is_aligned_T = {17'h0, io_in_a_bits_address_0[11:0] & is_aligned_mask}; // @[package.scala:243:46] wire is_aligned = _is_aligned_T == 29'h0; // @[Edges.scala:21:{16,24}] wire [1:0] mask_sizeOH_shiftAmount = _mask_sizeOH_T[1:0]; // @[OneHot.scala:64:49] wire [3:0] _mask_sizeOH_T_1 = 4'h1 << mask_sizeOH_shiftAmount; // @[OneHot.scala:64:49, :65:12] wire [2:0] _mask_sizeOH_T_2 = _mask_sizeOH_T_1[2:0]; // @[OneHot.scala:65:{12,27}] wire [2:0] mask_sizeOH = {_mask_sizeOH_T_2[2:1], 1'h1}; // @[OneHot.scala:65:27] wire mask_sub_sub_sub_0_1 = io_in_a_bits_size_0 > 4'h2; // @[Misc.scala:206:21] wire mask_sub_sub_size = mask_sizeOH[2]; // @[Misc.scala:202:81, :209:26] wire mask_sub_sub_bit = io_in_a_bits_address_0[2]; // @[Misc.scala:210:26] wire mask_sub_sub_1_2 = mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27] wire mask_sub_sub_nbit = ~mask_sub_sub_bit; // @[Misc.scala:210:26, :211:20] wire mask_sub_sub_0_2 = mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_sub_acc_T = mask_sub_sub_size & mask_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_0_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T; // @[Misc.scala:206:21, :215:{29,38}] wire _mask_sub_sub_acc_T_1 = mask_sub_sub_size & mask_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_1_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T_1; // @[Misc.scala:206:21, :215:{29,38}] wire mask_sub_size = mask_sizeOH[1]; // @[Misc.scala:202:81, :209:26] wire mask_sub_bit = io_in_a_bits_address_0[1]; // @[Misc.scala:210:26] wire mask_sub_nbit = ~mask_sub_bit; // @[Misc.scala:210:26, :211:20] wire mask_sub_0_2 = mask_sub_sub_0_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_acc_T = mask_sub_size & mask_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_0_1 = mask_sub_sub_0_1 | _mask_sub_acc_T; // @[Misc.scala:215:{29,38}] wire mask_sub_1_2 = mask_sub_sub_0_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_acc_T_1 = mask_sub_size & mask_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_1_1 = mask_sub_sub_0_1 | _mask_sub_acc_T_1; // @[Misc.scala:215:{29,38}] wire mask_sub_2_2 = mask_sub_sub_1_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_acc_T_2 = mask_sub_size & mask_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_2_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_2; // @[Misc.scala:215:{29,38}] wire mask_sub_3_2 = mask_sub_sub_1_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_acc_T_3 = mask_sub_size & mask_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_3_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_3; // @[Misc.scala:215:{29,38}] wire mask_size = mask_sizeOH[0]; // @[Misc.scala:202:81, :209:26] wire mask_bit = io_in_a_bits_address_0[0]; // @[Misc.scala:210:26] wire mask_nbit = ~mask_bit; // @[Misc.scala:210:26, :211:20] wire mask_eq = mask_sub_0_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T = mask_size & mask_eq; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc = mask_sub_0_1 | _mask_acc_T; // @[Misc.scala:215:{29,38}] wire mask_eq_1 = mask_sub_0_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_1 = mask_size & mask_eq_1; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_1 = mask_sub_0_1 | _mask_acc_T_1; // @[Misc.scala:215:{29,38}] wire mask_eq_2 = mask_sub_1_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_2 = mask_size & mask_eq_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_2 = mask_sub_1_1 | _mask_acc_T_2; // @[Misc.scala:215:{29,38}] wire mask_eq_3 = mask_sub_1_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_3 = mask_size & mask_eq_3; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_3 = mask_sub_1_1 | _mask_acc_T_3; // @[Misc.scala:215:{29,38}] wire mask_eq_4 = mask_sub_2_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_4 = mask_size & mask_eq_4; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_4 = mask_sub_2_1 | _mask_acc_T_4; // @[Misc.scala:215:{29,38}] wire mask_eq_5 = mask_sub_2_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_5 = mask_size & mask_eq_5; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_5 = mask_sub_2_1 | _mask_acc_T_5; // @[Misc.scala:215:{29,38}] wire mask_eq_6 = mask_sub_3_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_6 = mask_size & mask_eq_6; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_6 = mask_sub_3_1 | _mask_acc_T_6; // @[Misc.scala:215:{29,38}] wire mask_eq_7 = mask_sub_3_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_7 = mask_size & mask_eq_7; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_7 = mask_sub_3_1 | _mask_acc_T_7; // @[Misc.scala:215:{29,38}] wire [1:0] mask_lo_lo = {mask_acc_1, mask_acc}; // @[Misc.scala:215:29, :222:10] wire [1:0] mask_lo_hi = {mask_acc_3, mask_acc_2}; // @[Misc.scala:215:29, :222:10] wire [3:0] mask_lo = {mask_lo_hi, mask_lo_lo}; // @[Misc.scala:222:10] wire [1:0] mask_hi_lo = {mask_acc_5, mask_acc_4}; // @[Misc.scala:215:29, :222:10] wire [1:0] mask_hi_hi = {mask_acc_7, mask_acc_6}; // @[Misc.scala:215:29, :222:10] wire [3:0] mask_hi = {mask_hi_hi, mask_hi_lo}; // @[Misc.scala:222:10] wire [7:0] mask = {mask_hi, mask_lo}; // @[Misc.scala:222:10] wire [1:0] uncommonBits = _uncommonBits_T[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_1 = _uncommonBits_T_1[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_2 = _uncommonBits_T_2[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_3 = _uncommonBits_T_3[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_4 = _uncommonBits_T_4[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_5 = _uncommonBits_T_5[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_6 = _uncommonBits_T_6[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_7 = _uncommonBits_T_7[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_8 = _uncommonBits_T_8[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_9 = _uncommonBits_T_9[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_10 = _uncommonBits_T_10[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_11 = _uncommonBits_T_11[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_12 = _uncommonBits_T_12[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_13 = _uncommonBits_T_13[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_14 = _uncommonBits_T_14[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_15 = _uncommonBits_T_15[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_16 = _uncommonBits_T_16[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_17 = _uncommonBits_T_17[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_18 = _uncommonBits_T_18[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_19 = _uncommonBits_T_19[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_20 = _uncommonBits_T_20[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_21 = _uncommonBits_T_21[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_22 = _uncommonBits_T_22[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_23 = _uncommonBits_T_23[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_24 = _uncommonBits_T_24[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_25 = _uncommonBits_T_25[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_26 = _uncommonBits_T_26[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_27 = _uncommonBits_T_27[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_28 = _uncommonBits_T_28[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_29 = _uncommonBits_T_29[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_30 = _uncommonBits_T_30[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_31 = _uncommonBits_T_31[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_32 = _uncommonBits_T_32[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_33 = _uncommonBits_T_33[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_34 = _uncommonBits_T_34[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_35 = _uncommonBits_T_35[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_36 = _uncommonBits_T_36[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_37 = _uncommonBits_T_37[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_38 = _uncommonBits_T_38[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_39 = _uncommonBits_T_39[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_40 = _uncommonBits_T_40[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_41 = _uncommonBits_T_41[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_42 = _uncommonBits_T_42[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_43 = _uncommonBits_T_43[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_44 = _uncommonBits_T_44[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_45 = _uncommonBits_T_45[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_46 = _uncommonBits_T_46[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_47 = _uncommonBits_T_47[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_48 = _uncommonBits_T_48[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_49 = _uncommonBits_T_49[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_50 = _uncommonBits_T_50[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_51 = _uncommonBits_T_51[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_52 = _uncommonBits_T_52[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_53 = _uncommonBits_T_53[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_54 = _uncommonBits_T_54[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_41 = io_in_d_bits_source_0 == 7'h10; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_0 = _source_ok_T_41; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_5 = _source_ok_uncommonBits_T_5[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] _source_ok_T_42 = io_in_d_bits_source_0[6:2]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_48 = io_in_d_bits_source_0[6:2]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_54 = io_in_d_bits_source_0[6:2]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_60 = io_in_d_bits_source_0[6:2]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_67 = io_in_d_bits_source_0[6:2]; // @[Monitor.scala:36:7] wire _source_ok_T_43 = _source_ok_T_42 == 5'h0; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_45 = _source_ok_T_43; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_47 = _source_ok_T_45; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_1 = _source_ok_T_47; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_6 = _source_ok_uncommonBits_T_6[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_49 = _source_ok_T_48 == 5'h1; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_51 = _source_ok_T_49; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_53 = _source_ok_T_51; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_2 = _source_ok_T_53; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_7 = _source_ok_uncommonBits_T_7[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_55 = _source_ok_T_54 == 5'h2; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_57 = _source_ok_T_55; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_59 = _source_ok_T_57; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_3 = _source_ok_T_59; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_8 = _source_ok_uncommonBits_T_8[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_61 = _source_ok_T_60 == 5'h3; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_63 = _source_ok_T_61; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_65 = _source_ok_T_63; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_4 = _source_ok_T_65; // @[Parameters.scala:1138:31] wire _source_ok_T_66 = io_in_d_bits_source_0 == 7'h28; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_5 = _source_ok_T_66; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_9 = _source_ok_uncommonBits_T_9[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_68 = _source_ok_T_67 == 5'h8; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_70 = _source_ok_T_68; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_72 = _source_ok_T_70; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_6 = _source_ok_T_72; // @[Parameters.scala:1138:31] wire _source_ok_T_73 = io_in_d_bits_source_0 == 7'h24; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_7 = _source_ok_T_73; // @[Parameters.scala:1138:31] wire _source_ok_T_74 = io_in_d_bits_source_0 == 7'h40; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_8 = _source_ok_T_74; // @[Parameters.scala:1138:31] wire _source_ok_T_75 = _source_ok_WIRE_1_0 | _source_ok_WIRE_1_1; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_76 = _source_ok_T_75 | _source_ok_WIRE_1_2; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_77 = _source_ok_T_76 | _source_ok_WIRE_1_3; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_78 = _source_ok_T_77 | _source_ok_WIRE_1_4; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_79 = _source_ok_T_78 | _source_ok_WIRE_1_5; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_80 = _source_ok_T_79 | _source_ok_WIRE_1_6; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_81 = _source_ok_T_80 | _source_ok_WIRE_1_7; // @[Parameters.scala:1138:31, :1139:46] wire source_ok_1 = _source_ok_T_81 | _source_ok_WIRE_1_8; // @[Parameters.scala:1138:31, :1139:46] wire _T_1610 = io_in_a_ready_0 & io_in_a_valid_0; // @[Decoupled.scala:51:35] wire _a_first_T; // @[Decoupled.scala:51:35] assign _a_first_T = _T_1610; // @[Decoupled.scala:51:35] wire _a_first_T_1; // @[Decoupled.scala:51:35] assign _a_first_T_1 = _T_1610; // @[Decoupled.scala:51:35] wire [11:0] _a_first_beats1_decode_T_1 = _a_first_beats1_decode_T[11:0]; // @[package.scala:243:{71,76}] wire [11:0] _a_first_beats1_decode_T_2 = ~_a_first_beats1_decode_T_1; // @[package.scala:243:{46,76}] wire [8:0] a_first_beats1_decode = _a_first_beats1_decode_T_2[11:3]; // @[package.scala:243:46] wire _a_first_beats1_opdata_T = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7] wire _a_first_beats1_opdata_T_1 = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7] wire a_first_beats1_opdata = ~_a_first_beats1_opdata_T; // @[Edges.scala:92:{28,37}] wire [8:0] a_first_beats1 = a_first_beats1_opdata ? a_first_beats1_decode : 9'h0; // @[Edges.scala:92:28, :220:59, :221:14] reg [8:0] a_first_counter; // @[Edges.scala:229:27] wire [9:0] _a_first_counter1_T = {1'h0, a_first_counter} - 10'h1; // @[Edges.scala:229:27, :230:28] wire [8:0] a_first_counter1 = _a_first_counter1_T[8:0]; // @[Edges.scala:230:28] wire a_first = a_first_counter == 9'h0; // @[Edges.scala:229:27, :231:25] wire _a_first_last_T = a_first_counter == 9'h1; // @[Edges.scala:229:27, :232:25] wire _a_first_last_T_1 = a_first_beats1 == 9'h0; // @[Edges.scala:221:14, :232:43] wire a_first_last = _a_first_last_T | _a_first_last_T_1; // @[Edges.scala:232:{25,33,43}] wire a_first_done = a_first_last & _a_first_T; // @[Decoupled.scala:51:35] wire [8:0] _a_first_count_T = ~a_first_counter1; // @[Edges.scala:230:28, :234:27] wire [8:0] a_first_count = a_first_beats1 & _a_first_count_T; // @[Edges.scala:221:14, :234:{25,27}] wire [8:0] _a_first_counter_T = a_first ? a_first_beats1 : a_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] reg [2:0] opcode; // @[Monitor.scala:387:22] reg [2:0] param; // @[Monitor.scala:388:22] reg [3:0] size; // @[Monitor.scala:389:22] reg [6:0] source; // @[Monitor.scala:390:22] reg [28:0] address; // @[Monitor.scala:391:22] wire _T_1683 = io_in_d_ready_0 & io_in_d_valid_0; // @[Decoupled.scala:51:35] wire _d_first_T; // @[Decoupled.scala:51:35] assign _d_first_T = _T_1683; // @[Decoupled.scala:51:35] wire _d_first_T_1; // @[Decoupled.scala:51:35] assign _d_first_T_1 = _T_1683; // @[Decoupled.scala:51:35] wire _d_first_T_2; // @[Decoupled.scala:51:35] assign _d_first_T_2 = _T_1683; // @[Decoupled.scala:51:35] wire [26:0] _GEN_0 = 27'hFFF << io_in_d_bits_size_0; // @[package.scala:243:71] wire [26:0] _d_first_beats1_decode_T; // @[package.scala:243:71] assign _d_first_beats1_decode_T = _GEN_0; // @[package.scala:243:71] wire [26:0] _d_first_beats1_decode_T_3; // @[package.scala:243:71] assign _d_first_beats1_decode_T_3 = _GEN_0; // @[package.scala:243:71] wire [26:0] _d_first_beats1_decode_T_6; // @[package.scala:243:71] assign _d_first_beats1_decode_T_6 = _GEN_0; // @[package.scala:243:71] wire [11:0] _d_first_beats1_decode_T_1 = _d_first_beats1_decode_T[11:0]; // @[package.scala:243:{71,76}] wire [11:0] _d_first_beats1_decode_T_2 = ~_d_first_beats1_decode_T_1; // @[package.scala:243:{46,76}] wire [8:0] d_first_beats1_decode = _d_first_beats1_decode_T_2[11:3]; // @[package.scala:243:46] wire d_first_beats1_opdata = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire d_first_beats1_opdata_1 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire d_first_beats1_opdata_2 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire [8:0] d_first_beats1 = d_first_beats1_opdata ? d_first_beats1_decode : 9'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [8:0] d_first_counter; // @[Edges.scala:229:27] wire [9:0] _d_first_counter1_T = {1'h0, d_first_counter} - 10'h1; // @[Edges.scala:229:27, :230:28] wire [8:0] d_first_counter1 = _d_first_counter1_T[8:0]; // @[Edges.scala:230:28] wire d_first = d_first_counter == 9'h0; // @[Edges.scala:229:27, :231:25] wire _d_first_last_T = d_first_counter == 9'h1; // @[Edges.scala:229:27, :232:25] wire _d_first_last_T_1 = d_first_beats1 == 9'h0; // @[Edges.scala:221:14, :232:43] wire d_first_last = _d_first_last_T | _d_first_last_T_1; // @[Edges.scala:232:{25,33,43}] wire d_first_done = d_first_last & _d_first_T; // @[Decoupled.scala:51:35] wire [8:0] _d_first_count_T = ~d_first_counter1; // @[Edges.scala:230:28, :234:27] wire [8:0] d_first_count = d_first_beats1 & _d_first_count_T; // @[Edges.scala:221:14, :234:{25,27}] wire [8:0] _d_first_counter_T = d_first ? d_first_beats1 : d_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] reg [2:0] opcode_1; // @[Monitor.scala:538:22] reg [1:0] param_1; // @[Monitor.scala:539:22] reg [3:0] size_1; // @[Monitor.scala:540:22] reg [6:0] source_1; // @[Monitor.scala:541:22] reg sink; // @[Monitor.scala:542:22] reg denied; // @[Monitor.scala:543:22] reg [64:0] inflight; // @[Monitor.scala:614:27] reg [259:0] inflight_opcodes; // @[Monitor.scala:616:35] reg [519:0] inflight_sizes; // @[Monitor.scala:618:33] wire [11:0] _a_first_beats1_decode_T_4 = _a_first_beats1_decode_T_3[11:0]; // @[package.scala:243:{71,76}] wire [11:0] _a_first_beats1_decode_T_5 = ~_a_first_beats1_decode_T_4; // @[package.scala:243:{46,76}] wire [8:0] a_first_beats1_decode_1 = _a_first_beats1_decode_T_5[11:3]; // @[package.scala:243:46] wire a_first_beats1_opdata_1 = ~_a_first_beats1_opdata_T_1; // @[Edges.scala:92:{28,37}] wire [8:0] a_first_beats1_1 = a_first_beats1_opdata_1 ? a_first_beats1_decode_1 : 9'h0; // @[Edges.scala:92:28, :220:59, :221:14] reg [8:0] a_first_counter_1; // @[Edges.scala:229:27] wire [9:0] _a_first_counter1_T_1 = {1'h0, a_first_counter_1} - 10'h1; // @[Edges.scala:229:27, :230:28] wire [8:0] a_first_counter1_1 = _a_first_counter1_T_1[8:0]; // @[Edges.scala:230:28] wire a_first_1 = a_first_counter_1 == 9'h0; // @[Edges.scala:229:27, :231:25] wire _a_first_last_T_2 = a_first_counter_1 == 9'h1; // @[Edges.scala:229:27, :232:25] wire _a_first_last_T_3 = a_first_beats1_1 == 9'h0; // @[Edges.scala:221:14, :232:43] wire a_first_last_1 = _a_first_last_T_2 | _a_first_last_T_3; // @[Edges.scala:232:{25,33,43}] wire a_first_done_1 = a_first_last_1 & _a_first_T_1; // @[Decoupled.scala:51:35] wire [8:0] _a_first_count_T_1 = ~a_first_counter1_1; // @[Edges.scala:230:28, :234:27] wire [8:0] a_first_count_1 = a_first_beats1_1 & _a_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}] wire [8:0] _a_first_counter_T_1 = a_first_1 ? a_first_beats1_1 : a_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [11:0] _d_first_beats1_decode_T_4 = _d_first_beats1_decode_T_3[11:0]; // @[package.scala:243:{71,76}] wire [11:0] _d_first_beats1_decode_T_5 = ~_d_first_beats1_decode_T_4; // @[package.scala:243:{46,76}] wire [8:0] d_first_beats1_decode_1 = _d_first_beats1_decode_T_5[11:3]; // @[package.scala:243:46] wire [8:0] d_first_beats1_1 = d_first_beats1_opdata_1 ? d_first_beats1_decode_1 : 9'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [8:0] d_first_counter_1; // @[Edges.scala:229:27] wire [9:0] _d_first_counter1_T_1 = {1'h0, d_first_counter_1} - 10'h1; // @[Edges.scala:229:27, :230:28] wire [8:0] d_first_counter1_1 = _d_first_counter1_T_1[8:0]; // @[Edges.scala:230:28] wire d_first_1 = d_first_counter_1 == 9'h0; // @[Edges.scala:229:27, :231:25] wire _d_first_last_T_2 = d_first_counter_1 == 9'h1; // @[Edges.scala:229:27, :232:25] wire _d_first_last_T_3 = d_first_beats1_1 == 9'h0; // @[Edges.scala:221:14, :232:43] wire d_first_last_1 = _d_first_last_T_2 | _d_first_last_T_3; // @[Edges.scala:232:{25,33,43}] wire d_first_done_1 = d_first_last_1 & _d_first_T_1; // @[Decoupled.scala:51:35] wire [8:0] _d_first_count_T_1 = ~d_first_counter1_1; // @[Edges.scala:230:28, :234:27] wire [8:0] d_first_count_1 = d_first_beats1_1 & _d_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}] wire [8:0] _d_first_counter_T_1 = d_first_1 ? d_first_beats1_1 : d_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [64:0] a_set; // @[Monitor.scala:626:34] wire [64:0] a_set_wo_ready; // @[Monitor.scala:627:34] wire [259:0] a_opcodes_set; // @[Monitor.scala:630:33] wire [519:0] a_sizes_set; // @[Monitor.scala:632:31] wire [2:0] a_opcode_lookup; // @[Monitor.scala:635:35] wire [9:0] _GEN_1 = {1'h0, io_in_d_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :637:69] wire [9:0] _a_opcode_lookup_T; // @[Monitor.scala:637:69] assign _a_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69] wire [9:0] _d_opcodes_clr_T_4; // @[Monitor.scala:680:101] assign _d_opcodes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :680:101] wire [9:0] _c_opcode_lookup_T; // @[Monitor.scala:749:69] assign _c_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :749:69] wire [9:0] _d_opcodes_clr_T_10; // @[Monitor.scala:790:101] assign _d_opcodes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :790:101] wire [259:0] _a_opcode_lookup_T_1 = inflight_opcodes >> _a_opcode_lookup_T; // @[Monitor.scala:616:35, :637:{44,69}] wire [259:0] _a_opcode_lookup_T_6 = {256'h0, _a_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:637:{44,97}] wire [259:0] _a_opcode_lookup_T_7 = {1'h0, _a_opcode_lookup_T_6[259:1]}; // @[Monitor.scala:637:{97,152}] assign a_opcode_lookup = _a_opcode_lookup_T_7[2:0]; // @[Monitor.scala:635:35, :637:{21,152}] wire [7:0] a_size_lookup; // @[Monitor.scala:639:33] wire [9:0] _GEN_2 = {io_in_d_bits_source_0, 3'h0}; // @[Monitor.scala:36:7, :641:65] wire [9:0] _a_size_lookup_T; // @[Monitor.scala:641:65] assign _a_size_lookup_T = _GEN_2; // @[Monitor.scala:641:65] wire [9:0] _d_sizes_clr_T_4; // @[Monitor.scala:681:99] assign _d_sizes_clr_T_4 = _GEN_2; // @[Monitor.scala:641:65, :681:99] wire [9:0] _c_size_lookup_T; // @[Monitor.scala:750:67] assign _c_size_lookup_T = _GEN_2; // @[Monitor.scala:641:65, :750:67] wire [9:0] _d_sizes_clr_T_10; // @[Monitor.scala:791:99] assign _d_sizes_clr_T_10 = _GEN_2; // @[Monitor.scala:641:65, :791:99] wire [519:0] _a_size_lookup_T_1 = inflight_sizes >> _a_size_lookup_T; // @[Monitor.scala:618:33, :641:{40,65}] wire [519:0] _a_size_lookup_T_6 = {512'h0, _a_size_lookup_T_1[7:0]}; // @[Monitor.scala:641:{40,91}] wire [519:0] _a_size_lookup_T_7 = {1'h0, _a_size_lookup_T_6[519:1]}; // @[Monitor.scala:641:{91,144}] assign a_size_lookup = _a_size_lookup_T_7[7:0]; // @[Monitor.scala:639:33, :641:{19,144}] wire [3:0] a_opcodes_set_interm; // @[Monitor.scala:646:40] wire [4:0] a_sizes_set_interm; // @[Monitor.scala:648:38] wire _same_cycle_resp_T = io_in_a_valid_0 & a_first_1; // @[Monitor.scala:36:7, :651:26, :684:44] wire [127:0] _GEN_3 = 128'h1 << io_in_a_bits_source_0; // @[OneHot.scala:58:35] wire [127:0] _a_set_wo_ready_T; // @[OneHot.scala:58:35] assign _a_set_wo_ready_T = _GEN_3; // @[OneHot.scala:58:35] wire [127:0] _a_set_T; // @[OneHot.scala:58:35] assign _a_set_T = _GEN_3; // @[OneHot.scala:58:35] assign a_set_wo_ready = _same_cycle_resp_T ? _a_set_wo_ready_T[64:0] : 65'h0; // @[OneHot.scala:58:35] wire _T_1536 = _T_1610 & a_first_1; // @[Decoupled.scala:51:35] assign a_set = _T_1536 ? _a_set_T[64:0] : 65'h0; // @[OneHot.scala:58:35] wire [3:0] _a_opcodes_set_interm_T = {io_in_a_bits_opcode_0, 1'h0}; // @[Monitor.scala:36:7, :657:53] wire [3:0] _a_opcodes_set_interm_T_1 = {_a_opcodes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:657:{53,61}] assign a_opcodes_set_interm = _T_1536 ? _a_opcodes_set_interm_T_1 : 4'h0; // @[Monitor.scala:646:40, :655:{25,70}, :657:{28,61}] wire [4:0] _a_sizes_set_interm_T = {io_in_a_bits_size_0, 1'h0}; // @[Monitor.scala:36:7, :658:51] wire [4:0] _a_sizes_set_interm_T_1 = {_a_sizes_set_interm_T[4:1], 1'h1}; // @[Monitor.scala:658:{51,59}] assign a_sizes_set_interm = _T_1536 ? _a_sizes_set_interm_T_1 : 5'h0; // @[Monitor.scala:648:38, :655:{25,70}, :658:{28,59}] wire [9:0] _a_opcodes_set_T = {1'h0, io_in_a_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :659:79] wire [1026:0] _a_opcodes_set_T_1 = {1023'h0, a_opcodes_set_interm} << _a_opcodes_set_T; // @[Monitor.scala:646:40, :659:{54,79}] assign a_opcodes_set = _T_1536 ? _a_opcodes_set_T_1[259:0] : 260'h0; // @[Monitor.scala:630:33, :655:{25,70}, :659:{28,54}] wire [9:0] _a_sizes_set_T = {io_in_a_bits_source_0, 3'h0}; // @[Monitor.scala:36:7, :660:77] wire [1027:0] _a_sizes_set_T_1 = {1023'h0, a_sizes_set_interm} << _a_sizes_set_T; // @[Monitor.scala:648:38, :659:54, :660:{52,77}] assign a_sizes_set = _T_1536 ? _a_sizes_set_T_1[519:0] : 520'h0; // @[Monitor.scala:632:31, :655:{25,70}, :660:{28,52}] wire [64:0] d_clr; // @[Monitor.scala:664:34] wire [64:0] d_clr_wo_ready; // @[Monitor.scala:665:34] wire [259:0] d_opcodes_clr; // @[Monitor.scala:668:33] wire [519:0] d_sizes_clr; // @[Monitor.scala:670:31] wire _GEN_4 = io_in_d_bits_opcode_0 == 3'h6; // @[Monitor.scala:36:7, :673:46] wire d_release_ack; // @[Monitor.scala:673:46] assign d_release_ack = _GEN_4; // @[Monitor.scala:673:46] wire d_release_ack_1; // @[Monitor.scala:783:46] assign d_release_ack_1 = _GEN_4; // @[Monitor.scala:673:46, :783:46] wire _T_1582 = io_in_d_valid_0 & d_first_1; // @[Monitor.scala:36:7, :674:26] wire [127:0] _GEN_5 = 128'h1 << io_in_d_bits_source_0; // @[OneHot.scala:58:35] wire [127:0] _d_clr_wo_ready_T; // @[OneHot.scala:58:35] assign _d_clr_wo_ready_T = _GEN_5; // @[OneHot.scala:58:35] wire [127:0] _d_clr_T; // @[OneHot.scala:58:35] assign _d_clr_T = _GEN_5; // @[OneHot.scala:58:35] wire [127:0] _d_clr_wo_ready_T_1; // @[OneHot.scala:58:35] assign _d_clr_wo_ready_T_1 = _GEN_5; // @[OneHot.scala:58:35] wire [127:0] _d_clr_T_1; // @[OneHot.scala:58:35] assign _d_clr_T_1 = _GEN_5; // @[OneHot.scala:58:35] assign d_clr_wo_ready = _T_1582 & ~d_release_ack ? _d_clr_wo_ready_T[64:0] : 65'h0; // @[OneHot.scala:58:35] wire _T_1551 = _T_1683 & d_first_1 & ~d_release_ack; // @[Decoupled.scala:51:35] assign d_clr = _T_1551 ? _d_clr_T[64:0] : 65'h0; // @[OneHot.scala:58:35] wire [1038:0] _d_opcodes_clr_T_5 = 1039'hF << _d_opcodes_clr_T_4; // @[Monitor.scala:680:{76,101}] assign d_opcodes_clr = _T_1551 ? _d_opcodes_clr_T_5[259:0] : 260'h0; // @[Monitor.scala:668:33, :678:{25,70,89}, :680:{21,76}] wire [1038:0] _d_sizes_clr_T_5 = 1039'hFF << _d_sizes_clr_T_4; // @[Monitor.scala:681:{74,99}] assign d_sizes_clr = _T_1551 ? _d_sizes_clr_T_5[519:0] : 520'h0; // @[Monitor.scala:670:31, :678:{25,70,89}, :681:{21,74}] wire _same_cycle_resp_T_1 = _same_cycle_resp_T; // @[Monitor.scala:684:{44,55}] wire _same_cycle_resp_T_2 = io_in_a_bits_source_0 == io_in_d_bits_source_0; // @[Monitor.scala:36:7, :684:113] wire same_cycle_resp = _same_cycle_resp_T_1 & _same_cycle_resp_T_2; // @[Monitor.scala:684:{55,88,113}] wire [64:0] _inflight_T = inflight | a_set; // @[Monitor.scala:614:27, :626:34, :705:27] wire [64:0] _inflight_T_1 = ~d_clr; // @[Monitor.scala:664:34, :705:38] wire [64:0] _inflight_T_2 = _inflight_T & _inflight_T_1; // @[Monitor.scala:705:{27,36,38}] wire [259:0] _inflight_opcodes_T = inflight_opcodes | a_opcodes_set; // @[Monitor.scala:616:35, :630:33, :706:43] wire [259:0] _inflight_opcodes_T_1 = ~d_opcodes_clr; // @[Monitor.scala:668:33, :706:62] wire [259:0] _inflight_opcodes_T_2 = _inflight_opcodes_T & _inflight_opcodes_T_1; // @[Monitor.scala:706:{43,60,62}] wire [519:0] _inflight_sizes_T = inflight_sizes | a_sizes_set; // @[Monitor.scala:618:33, :632:31, :707:39] wire [519:0] _inflight_sizes_T_1 = ~d_sizes_clr; // @[Monitor.scala:670:31, :707:56] wire [519:0] _inflight_sizes_T_2 = _inflight_sizes_T & _inflight_sizes_T_1; // @[Monitor.scala:707:{39,54,56}] reg [31:0] watchdog; // @[Monitor.scala:709:27] wire [32:0] _watchdog_T = {1'h0, watchdog} + 33'h1; // @[Monitor.scala:709:27, :714:26] wire [31:0] _watchdog_T_1 = _watchdog_T[31:0]; // @[Monitor.scala:714:26] reg [64:0] inflight_1; // @[Monitor.scala:726:35] wire [64:0] _inflight_T_3 = inflight_1; // @[Monitor.scala:726:35, :814:35] reg [259:0] inflight_opcodes_1; // @[Monitor.scala:727:35] wire [259:0] _inflight_opcodes_T_3 = inflight_opcodes_1; // @[Monitor.scala:727:35, :815:43] reg [519:0] inflight_sizes_1; // @[Monitor.scala:728:35] wire [519:0] _inflight_sizes_T_3 = inflight_sizes_1; // @[Monitor.scala:728:35, :816:41] wire [11:0] _d_first_beats1_decode_T_7 = _d_first_beats1_decode_T_6[11:0]; // @[package.scala:243:{71,76}] wire [11:0] _d_first_beats1_decode_T_8 = ~_d_first_beats1_decode_T_7; // @[package.scala:243:{46,76}] wire [8:0] d_first_beats1_decode_2 = _d_first_beats1_decode_T_8[11:3]; // @[package.scala:243:46] wire [8:0] d_first_beats1_2 = d_first_beats1_opdata_2 ? d_first_beats1_decode_2 : 9'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [8:0] d_first_counter_2; // @[Edges.scala:229:27] wire [9:0] _d_first_counter1_T_2 = {1'h0, d_first_counter_2} - 10'h1; // @[Edges.scala:229:27, :230:28] wire [8:0] d_first_counter1_2 = _d_first_counter1_T_2[8:0]; // @[Edges.scala:230:28] wire d_first_2 = d_first_counter_2 == 9'h0; // @[Edges.scala:229:27, :231:25] wire _d_first_last_T_4 = d_first_counter_2 == 9'h1; // @[Edges.scala:229:27, :232:25] wire _d_first_last_T_5 = d_first_beats1_2 == 9'h0; // @[Edges.scala:221:14, :232:43] wire d_first_last_2 = _d_first_last_T_4 | _d_first_last_T_5; // @[Edges.scala:232:{25,33,43}] wire d_first_done_2 = d_first_last_2 & _d_first_T_2; // @[Decoupled.scala:51:35] wire [8:0] _d_first_count_T_2 = ~d_first_counter1_2; // @[Edges.scala:230:28, :234:27] wire [8:0] d_first_count_2 = d_first_beats1_2 & _d_first_count_T_2; // @[Edges.scala:221:14, :234:{25,27}] wire [8:0] _d_first_counter_T_2 = d_first_2 ? d_first_beats1_2 : d_first_counter1_2; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [3:0] c_opcode_lookup; // @[Monitor.scala:747:35] wire [7:0] c_size_lookup; // @[Monitor.scala:748:35] wire [259:0] _c_opcode_lookup_T_1 = inflight_opcodes_1 >> _c_opcode_lookup_T; // @[Monitor.scala:727:35, :749:{44,69}] wire [259:0] _c_opcode_lookup_T_6 = {256'h0, _c_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:749:{44,97}] wire [259:0] _c_opcode_lookup_T_7 = {1'h0, _c_opcode_lookup_T_6[259:1]}; // @[Monitor.scala:749:{97,152}] assign c_opcode_lookup = _c_opcode_lookup_T_7[3:0]; // @[Monitor.scala:747:35, :749:{21,152}] wire [519:0] _c_size_lookup_T_1 = inflight_sizes_1 >> _c_size_lookup_T; // @[Monitor.scala:728:35, :750:{42,67}] wire [519:0] _c_size_lookup_T_6 = {512'h0, _c_size_lookup_T_1[7:0]}; // @[Monitor.scala:750:{42,93}] wire [519:0] _c_size_lookup_T_7 = {1'h0, _c_size_lookup_T_6[519:1]}; // @[Monitor.scala:750:{93,146}] assign c_size_lookup = _c_size_lookup_T_7[7:0]; // @[Monitor.scala:748:35, :750:{21,146}] wire [64:0] d_clr_1; // @[Monitor.scala:774:34] wire [64:0] d_clr_wo_ready_1; // @[Monitor.scala:775:34] wire [259:0] d_opcodes_clr_1; // @[Monitor.scala:776:34] wire [519:0] d_sizes_clr_1; // @[Monitor.scala:777:34] wire _T_1654 = io_in_d_valid_0 & d_first_2; // @[Monitor.scala:36:7, :784:26] assign d_clr_wo_ready_1 = _T_1654 & d_release_ack_1 ? _d_clr_wo_ready_T_1[64:0] : 65'h0; // @[OneHot.scala:58:35] wire _T_1636 = _T_1683 & d_first_2 & d_release_ack_1; // @[Decoupled.scala:51:35] assign d_clr_1 = _T_1636 ? _d_clr_T_1[64:0] : 65'h0; // @[OneHot.scala:58:35] wire [1038:0] _d_opcodes_clr_T_11 = 1039'hF << _d_opcodes_clr_T_10; // @[Monitor.scala:790:{76,101}] assign d_opcodes_clr_1 = _T_1636 ? _d_opcodes_clr_T_11[259:0] : 260'h0; // @[Monitor.scala:776:34, :788:{25,70,88}, :790:{21,76}] wire [1038:0] _d_sizes_clr_T_11 = 1039'hFF << _d_sizes_clr_T_10; // @[Monitor.scala:791:{74,99}] assign d_sizes_clr_1 = _T_1636 ? _d_sizes_clr_T_11[519:0] : 520'h0; // @[Monitor.scala:777:34, :788:{25,70,88}, :791:{21,74}] wire _same_cycle_resp_T_8 = io_in_d_bits_source_0 == 7'h0; // @[Monitor.scala:36:7, :795:113] wire [64:0] _inflight_T_4 = ~d_clr_1; // @[Monitor.scala:774:34, :814:46] wire [64:0] _inflight_T_5 = _inflight_T_3 & _inflight_T_4; // @[Monitor.scala:814:{35,44,46}] wire [259:0] _inflight_opcodes_T_4 = ~d_opcodes_clr_1; // @[Monitor.scala:776:34, :815:62] wire [259:0] _inflight_opcodes_T_5 = _inflight_opcodes_T_3 & _inflight_opcodes_T_4; // @[Monitor.scala:815:{43,60,62}] wire [519:0] _inflight_sizes_T_4 = ~d_sizes_clr_1; // @[Monitor.scala:777:34, :816:58] wire [519:0] _inflight_sizes_T_5 = _inflight_sizes_T_3 & _inflight_sizes_T_4; // @[Monitor.scala:816:{41,56,58}] reg [31:0] watchdog_1; // @[Monitor.scala:818:27]
Generate the Verilog code corresponding to the following Chisel files. File ShiftReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ // Similar to the Chisel ShiftRegister but allows the user to suggest a // name to the registers that get instantiated, and // to provide a reset value. object ShiftRegInit { def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T = (0 until n).foldRight(in) { case (i, next) => { val r = RegNext(next, init) name.foreach { na => r.suggestName(s"${na}_${i}") } r } } } /** These wrap behavioral * shift registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * The different types vary in their reset behavior: * AsyncResetShiftReg -- Asynchronously reset register array * A W(width) x D(depth) sized array is constructed from D instantiations of a * W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg, * but only used for timing applications */ abstract class AbstractPipelineReg(w: Int = 1) extends Module { val io = IO(new Bundle { val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) } ) } object AbstractPipelineReg { def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = { val chain = Module(gen) name.foreach{ chain.suggestName(_) } chain.io.d := in.asUInt chain.io.q.asTypeOf(in) } } class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) { require(depth > 0, "Depth must be greater than 0.") override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}" val chain = List.tabulate(depth) { i => Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}") } chain.last.io.d := io.d chain.last.io.en := true.B (chain.init zip chain.tail).foreach { case (sink, source) => sink.io.d := source.io.q sink.io.en := true.B } io.q := chain.head.io.q } object AsyncResetShiftReg { def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name) def apply [T <: Data](in: T, depth: Int, name: Option[String]): T = apply(in, depth, 0, name) def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T = apply(in, depth, init.litValue.toInt, name) def apply [T <: Data](in: T, depth: Int, init: T): T = apply (in, depth, init.litValue.toInt, None) } File SynchronizerReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util.{RegEnable, Cat} /** These wrap behavioral * shift and next registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * * These are built up of *ResetSynchronizerPrimitiveShiftReg, * intended to be replaced by the integrator's metastable flops chains or replaced * at this level if they have a multi-bit wide synchronizer primitive. * The different types vary in their reset behavior: * NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin * AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep * 1-bit-wide shift registers. * SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg * * [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference. * * ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross * Clock Domains. */ object SynchronizerResetType extends Enumeration { val NonSync, Inferred, Sync, Async = Value } // Note: this should not be used directly. // Use the companion object to generate this with the correct reset type mixin. private class SynchronizerPrimitiveShiftReg( sync: Int, init: Boolean, resetType: SynchronizerResetType.Value) extends AbstractPipelineReg(1) { val initInt = if (init) 1 else 0 val initPostfix = resetType match { case SynchronizerResetType.NonSync => "" case _ => s"_i${initInt}" } override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}" val chain = List.tabulate(sync) { i => val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B) reg.suggestName(s"sync_$i") } chain.last := io.d.asBool (chain.init zip chain.tail).foreach { case (sink, source) => sink := source } io.q := chain.head.asUInt } private object SynchronizerPrimitiveShiftReg { def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = { val gen: () => SynchronizerPrimitiveShiftReg = resetType match { case SynchronizerResetType.NonSync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) case SynchronizerResetType.Async => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset case SynchronizerResetType.Sync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset case SynchronizerResetType.Inferred => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) } AbstractPipelineReg(gen(), in) } } // Note: This module may end up with a non-AsyncReset type reset. // But the Primitives within will always have AsyncReset type. class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asAsyncReset){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async) } } io.q := Cat(output.reverse) } object AsyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } // Note: This module may end up with a non-Bool type reset. // But the Primitives within will always have Bool reset type. @deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2") class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asBool){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync) } } io.q := Cat(output.reverse) } object SyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred) } io.q := Cat(output.reverse) } object ResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}" val output = Seq.tabulate(w) { i => SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync) } io.q := Cat(output.reverse) } object SynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, None) def apply [T <: Data](in: T): T = apply (in, 3, None) } class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module { override def desiredName = s"ClockCrossingReg_w${w}" val io = IO(new Bundle{ val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) val en = Input(Bool()) }) val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en) io.q := cdc_reg } object ClockCrossingReg { def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = { val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit)) name.foreach{ cdc_reg.suggestName(_) } cdc_reg.io.d := in.asUInt cdc_reg.io.en := en cdc_reg.io.q.asTypeOf(in) } } File AsyncQueue.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ case class AsyncQueueParams( depth: Int = 8, sync: Int = 3, safe: Boolean = true, // If safe is true, then effort is made to resynchronize the crossing indices when either side is reset. // This makes it safe/possible to reset one side of the crossing (but not the other) when the queue is empty. narrow: Boolean = false) // If narrow is true then the read mux is moved to the source side of the crossing. // This reduces the number of level shifters in the case where the clock crossing is also a voltage crossing, // at the expense of a combinational path from the sink to the source and back to the sink. { require (depth > 0 && isPow2(depth)) require (sync >= 2) val bits = log2Ceil(depth) val wires = if (narrow) 1 else depth } object AsyncQueueParams { // When there is only one entry, we don't need narrow. def singleton(sync: Int = 3, safe: Boolean = true) = AsyncQueueParams(1, sync, safe, false) } class AsyncBundleSafety extends Bundle { val ridx_valid = Input (Bool()) val widx_valid = Output(Bool()) val source_reset_n = Output(Bool()) val sink_reset_n = Input (Bool()) } class AsyncBundle[T <: Data](private val gen: T, val params: AsyncQueueParams = AsyncQueueParams()) extends Bundle { // Data-path synchronization val mem = Output(Vec(params.wires, gen)) val ridx = Input (UInt((params.bits+1).W)) val widx = Output(UInt((params.bits+1).W)) val index = params.narrow.option(Input(UInt(params.bits.W))) // Signals used to self-stabilize a safe AsyncQueue val safe = params.safe.option(new AsyncBundleSafety) } object GrayCounter { def apply(bits: Int, increment: Bool = true.B, clear: Bool = false.B, name: String = "binary"): UInt = { val incremented = Wire(UInt(bits.W)) val binary = RegNext(next=incremented, init=0.U).suggestName(name) incremented := Mux(clear, 0.U, binary + increment.asUInt) incremented ^ (incremented >> 1) } } class AsyncValidSync(sync: Int, desc: String) extends RawModule { val io = IO(new Bundle { val in = Input(Bool()) val out = Output(Bool()) }) val clock = IO(Input(Clock())) val reset = IO(Input(AsyncReset())) withClockAndReset(clock, reset){ io.out := AsyncResetSynchronizerShiftReg(io.in, sync, Some(desc)) } } class AsyncQueueSource[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module { override def desiredName = s"AsyncQueueSource_${gen.typeName}" val io = IO(new Bundle { // These come from the source domain val enq = Flipped(Decoupled(gen)) // These cross to the sink clock domain val async = new AsyncBundle(gen, params) }) val bits = params.bits val sink_ready = WireInit(true.B) val mem = Reg(Vec(params.depth, gen)) // This does NOT need to be reset at all. val widx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.enq.fire, !sink_ready, "widx_bin")) val ridx = AsyncResetSynchronizerShiftReg(io.async.ridx, params.sync, Some("ridx_gray")) val ready = sink_ready && widx =/= (ridx ^ (params.depth | params.depth >> 1).U) val index = if (bits == 0) 0.U else io.async.widx(bits-1, 0) ^ (io.async.widx(bits, bits) << (bits-1)) when (io.enq.fire) { mem(index) := io.enq.bits } val ready_reg = withReset(reset.asAsyncReset)(RegNext(next=ready, init=false.B).suggestName("ready_reg")) io.enq.ready := ready_reg && sink_ready val widx_reg = withReset(reset.asAsyncReset)(RegNext(next=widx, init=0.U).suggestName("widx_gray")) io.async.widx := widx_reg io.async.index match { case Some(index) => io.async.mem(0) := mem(index) case None => io.async.mem := mem } io.async.safe.foreach { sio => val source_valid_0 = Module(new AsyncValidSync(params.sync, "source_valid_0")) val source_valid_1 = Module(new AsyncValidSync(params.sync, "source_valid_1")) val sink_extend = Module(new AsyncValidSync(params.sync, "sink_extend")) val sink_valid = Module(new AsyncValidSync(params.sync, "sink_valid")) source_valid_0.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset source_valid_1.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset sink_extend .reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset sink_valid .reset := reset.asAsyncReset source_valid_0.clock := clock source_valid_1.clock := clock sink_extend .clock := clock sink_valid .clock := clock source_valid_0.io.in := true.B source_valid_1.io.in := source_valid_0.io.out sio.widx_valid := source_valid_1.io.out sink_extend.io.in := sio.ridx_valid sink_valid.io.in := sink_extend.io.out sink_ready := sink_valid.io.out sio.source_reset_n := !reset.asBool // Assert that if there is stuff in the queue, then reset cannot happen // Impossible to write because dequeue can occur on the receiving side, // then reset allowed to happen, but write side cannot know that dequeue // occurred. // TODO: write some sort of sanity check assertion for users // that denote don't reset when there is activity // assert (!(reset || !sio.sink_reset_n) || !io.enq.valid, "Enqueue while sink is reset and AsyncQueueSource is unprotected") // assert (!reset_rise || prev_idx_match.asBool, "Sink reset while AsyncQueueSource not empty") } } class AsyncQueueSink[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module { override def desiredName = s"AsyncQueueSink_${gen.typeName}" val io = IO(new Bundle { // These come from the sink domain val deq = Decoupled(gen) // These cross to the source clock domain val async = Flipped(new AsyncBundle(gen, params)) }) val bits = params.bits val source_ready = WireInit(true.B) val ridx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.deq.fire, !source_ready, "ridx_bin")) val widx = AsyncResetSynchronizerShiftReg(io.async.widx, params.sync, Some("widx_gray")) val valid = source_ready && ridx =/= widx // The mux is safe because timing analysis ensures ridx has reached the register // On an ASIC, changes to the unread location cannot affect the selected value // On an FPGA, only one input changes at a time => mem updates don't cause glitches // The register only latches when the selected valued is not being written val index = if (bits == 0) 0.U else ridx(bits-1, 0) ^ (ridx(bits, bits) << (bits-1)) io.async.index.foreach { _ := index } // This register does not NEED to be reset, as its contents will not // be considered unless the asynchronously reset deq valid register is set. // It is possible that bits latches when the source domain is reset / has power cut // This is safe, because isolation gates brought mem low before the zeroed widx reached us val deq_bits_nxt = io.async.mem(if (params.narrow) 0.U else index) io.deq.bits := ClockCrossingReg(deq_bits_nxt, en = valid, doInit = false, name = Some("deq_bits_reg")) val valid_reg = withReset(reset.asAsyncReset)(RegNext(next=valid, init=false.B).suggestName("valid_reg")) io.deq.valid := valid_reg && source_ready val ridx_reg = withReset(reset.asAsyncReset)(RegNext(next=ridx, init=0.U).suggestName("ridx_gray")) io.async.ridx := ridx_reg io.async.safe.foreach { sio => val sink_valid_0 = Module(new AsyncValidSync(params.sync, "sink_valid_0")) val sink_valid_1 = Module(new AsyncValidSync(params.sync, "sink_valid_1")) val source_extend = Module(new AsyncValidSync(params.sync, "source_extend")) val source_valid = Module(new AsyncValidSync(params.sync, "source_valid")) sink_valid_0 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset sink_valid_1 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset source_extend.reset := (reset.asBool || !sio.source_reset_n).asAsyncReset source_valid .reset := reset.asAsyncReset sink_valid_0 .clock := clock sink_valid_1 .clock := clock source_extend.clock := clock source_valid .clock := clock sink_valid_0.io.in := true.B sink_valid_1.io.in := sink_valid_0.io.out sio.ridx_valid := sink_valid_1.io.out source_extend.io.in := sio.widx_valid source_valid.io.in := source_extend.io.out source_ready := source_valid.io.out sio.sink_reset_n := !reset.asBool // TODO: write some sort of sanity check assertion for users // that denote don't reset when there is activity // // val reset_and_extend = !source_ready || !sio.source_reset_n || reset.asBool // val reset_and_extend_prev = RegNext(reset_and_extend, true.B) // val reset_rise = !reset_and_extend_prev && reset_and_extend // val prev_idx_match = AsyncResetReg(updateData=(io.async.widx===io.async.ridx), resetData=0) // assert (!reset_rise || prev_idx_match.asBool, "Source reset while AsyncQueueSink not empty") } } object FromAsyncBundle { // Sometimes it makes sense for the sink to have different sync than the source def apply[T <: Data](x: AsyncBundle[T]): DecoupledIO[T] = apply(x, x.params.sync) def apply[T <: Data](x: AsyncBundle[T], sync: Int): DecoupledIO[T] = { val sink = Module(new AsyncQueueSink(chiselTypeOf(x.mem(0)), x.params.copy(sync = sync))) sink.io.async <> x sink.io.deq } } object ToAsyncBundle { def apply[T <: Data](x: ReadyValidIO[T], params: AsyncQueueParams = AsyncQueueParams()): AsyncBundle[T] = { val source = Module(new AsyncQueueSource(chiselTypeOf(x.bits), params)) source.io.enq <> x source.io.async } } class AsyncQueue[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Crossing[T] { val io = IO(new CrossingIO(gen)) val source = withClockAndReset(io.enq_clock, io.enq_reset) { Module(new AsyncQueueSource(gen, params)) } val sink = withClockAndReset(io.deq_clock, io.deq_reset) { Module(new AsyncQueueSink (gen, params)) } source.io.enq <> io.enq io.deq <> sink.io.deq sink.io.async <> source.io.async }
module AsyncQueueSink_Phit_15( // @[AsyncQueue.scala:136:7] input clock, // @[AsyncQueue.scala:136:7] input reset, // @[AsyncQueue.scala:136:7] input io_deq_ready, // @[AsyncQueue.scala:139:14] output io_deq_valid, // @[AsyncQueue.scala:139:14] output [31:0] io_deq_bits_phit, // @[AsyncQueue.scala:139:14] input [31:0] io_async_mem_0_phit, // @[AsyncQueue.scala:139:14] input [31:0] io_async_mem_1_phit, // @[AsyncQueue.scala:139:14] input [31:0] io_async_mem_2_phit, // @[AsyncQueue.scala:139:14] input [31:0] io_async_mem_3_phit, // @[AsyncQueue.scala:139:14] input [31:0] io_async_mem_4_phit, // @[AsyncQueue.scala:139:14] input [31:0] io_async_mem_5_phit, // @[AsyncQueue.scala:139:14] input [31:0] io_async_mem_6_phit, // @[AsyncQueue.scala:139:14] input [31:0] io_async_mem_7_phit, // @[AsyncQueue.scala:139:14] output [3:0] io_async_ridx, // @[AsyncQueue.scala:139:14] input [3:0] io_async_widx, // @[AsyncQueue.scala:139:14] output io_async_safe_ridx_valid, // @[AsyncQueue.scala:139:14] input io_async_safe_widx_valid, // @[AsyncQueue.scala:139:14] input io_async_safe_source_reset_n, // @[AsyncQueue.scala:139:14] output io_async_safe_sink_reset_n // @[AsyncQueue.scala:139:14] ); wire _source_extend_io_out; // @[AsyncQueue.scala:175:31] wire _sink_valid_0_io_out; // @[AsyncQueue.scala:172:33] wire io_deq_ready_0 = io_deq_ready; // @[AsyncQueue.scala:136:7] wire [31:0] io_async_mem_0_phit_0 = io_async_mem_0_phit; // @[AsyncQueue.scala:136:7] wire [31:0] io_async_mem_1_phit_0 = io_async_mem_1_phit; // @[AsyncQueue.scala:136:7] wire [31:0] io_async_mem_2_phit_0 = io_async_mem_2_phit; // @[AsyncQueue.scala:136:7] wire [31:0] io_async_mem_3_phit_0 = io_async_mem_3_phit; // @[AsyncQueue.scala:136:7] wire [31:0] io_async_mem_4_phit_0 = io_async_mem_4_phit; // @[AsyncQueue.scala:136:7] wire [31:0] io_async_mem_5_phit_0 = io_async_mem_5_phit; // @[AsyncQueue.scala:136:7] wire [31:0] io_async_mem_6_phit_0 = io_async_mem_6_phit; // @[AsyncQueue.scala:136:7] wire [31:0] io_async_mem_7_phit_0 = io_async_mem_7_phit; // @[AsyncQueue.scala:136:7] wire [3:0] io_async_widx_0 = io_async_widx; // @[AsyncQueue.scala:136:7] wire io_async_safe_widx_valid_0 = io_async_safe_widx_valid; // @[AsyncQueue.scala:136:7] wire io_async_safe_source_reset_n_0 = io_async_safe_source_reset_n; // @[AsyncQueue.scala:136:7] wire _ridx_T = reset; // @[AsyncQueue.scala:148:30] wire _valid_reg_T = reset; // @[AsyncQueue.scala:165:35] wire _ridx_reg_T = reset; // @[AsyncQueue.scala:168:34] wire _sink_valid_0_reset_T = reset; // @[AsyncQueue.scala:177:35] wire _sink_valid_1_reset_T = reset; // @[AsyncQueue.scala:178:35] wire _source_extend_reset_T = reset; // @[AsyncQueue.scala:179:35] wire _source_valid_reset_T = reset; // @[AsyncQueue.scala:180:34] wire _io_async_safe_sink_reset_n_T = reset; // @[AsyncQueue.scala:193:32] wire _io_deq_valid_T; // @[AsyncQueue.scala:166:29] wire [31:0] _io_deq_bits_WIRE_phit; // @[SynchronizerReg.scala:211:26] wire _io_async_safe_sink_reset_n_T_1; // @[AsyncQueue.scala:193:25] wire [31:0] io_deq_bits_phit_0; // @[AsyncQueue.scala:136:7] wire io_deq_valid_0; // @[AsyncQueue.scala:136:7] wire io_async_safe_ridx_valid_0; // @[AsyncQueue.scala:136:7] wire io_async_safe_sink_reset_n_0; // @[AsyncQueue.scala:136:7] wire [3:0] io_async_ridx_0; // @[AsyncQueue.scala:136:7] wire source_ready; // @[AsyncQueue.scala:147:30] wire _ridx_T_1 = io_deq_ready_0 & io_deq_valid_0; // @[Decoupled.scala:51:35] wire _ridx_T_2 = ~source_ready; // @[AsyncQueue.scala:147:30, :148:77] wire [3:0] _ridx_incremented_T_2; // @[AsyncQueue.scala:53:23] wire [3:0] ridx_incremented; // @[AsyncQueue.scala:51:27] reg [3:0] ridx_ridx_bin; // @[AsyncQueue.scala:52:25] wire [4:0] _ridx_incremented_T = {1'h0, ridx_ridx_bin} + {4'h0, _ridx_T_1}; // @[Decoupled.scala:51:35] wire [3:0] _ridx_incremented_T_1 = _ridx_incremented_T[3:0]; // @[AsyncQueue.scala:53:43] assign _ridx_incremented_T_2 = _ridx_T_2 ? 4'h0 : _ridx_incremented_T_1; // @[AsyncQueue.scala:52:25, :53:{23,43}, :148:77] assign ridx_incremented = _ridx_incremented_T_2; // @[AsyncQueue.scala:51:27, :53:23] wire [2:0] _ridx_T_3 = ridx_incremented[3:1]; // @[AsyncQueue.scala:51:27, :54:32] wire [3:0] ridx = {ridx_incremented[3], ridx_incremented[2:0] ^ _ridx_T_3}; // @[AsyncQueue.scala:51:27, :54:{17,32}] wire [3:0] widx; // @[ShiftReg.scala:48:24] wire _valid_T = ridx != widx; // @[ShiftReg.scala:48:24] wire valid = source_ready & _valid_T; // @[AsyncQueue.scala:147:30, :150:{28,36}] wire [2:0] _index_T = ridx[2:0]; // @[AsyncQueue.scala:54:17, :156:43] wire _index_T_1 = ridx[3]; // @[AsyncQueue.scala:54:17, :156:62] wire [2:0] _index_T_2 = {_index_T_1, 2'h0}; // @[AsyncQueue.scala:156:{62,75}] wire [2:0] index = _index_T ^ _index_T_2; // @[AsyncQueue.scala:156:{43,55,75}] wire [7:0][31:0] _GEN = {{io_async_mem_7_phit_0}, {io_async_mem_6_phit_0}, {io_async_mem_5_phit_0}, {io_async_mem_4_phit_0}, {io_async_mem_3_phit_0}, {io_async_mem_2_phit_0}, {io_async_mem_1_phit_0}, {io_async_mem_0_phit_0}}; // @[SynchronizerReg.scala:209:18] wire [31:0] _io_deq_bits_T; // @[SynchronizerReg.scala:211:26] assign io_deq_bits_phit_0 = _io_deq_bits_WIRE_phit; // @[SynchronizerReg.scala:211:26] wire [31:0] _io_deq_bits_WIRE_1; // @[SynchronizerReg.scala:211:26] assign _io_deq_bits_T = _io_deq_bits_WIRE_1; // @[SynchronizerReg.scala:211:26] assign _io_deq_bits_WIRE_phit = _io_deq_bits_T; // @[SynchronizerReg.scala:211:26] reg valid_reg; // @[AsyncQueue.scala:165:56] assign _io_deq_valid_T = valid_reg & source_ready; // @[AsyncQueue.scala:147:30, :165:56, :166:29] assign io_deq_valid_0 = _io_deq_valid_T; // @[AsyncQueue.scala:136:7, :166:29] reg [3:0] ridx_gray; // @[AsyncQueue.scala:168:55] assign io_async_ridx_0 = ridx_gray; // @[AsyncQueue.scala:136:7, :168:55] wire _sink_valid_0_reset_T_1 = ~io_async_safe_source_reset_n_0; // @[AsyncQueue.scala:136:7, :177:45] wire _sink_valid_0_reset_T_2 = _sink_valid_0_reset_T | _sink_valid_0_reset_T_1; // @[AsyncQueue.scala:177:{35,42,45}] wire _sink_valid_0_reset_T_3 = _sink_valid_0_reset_T_2; // @[AsyncQueue.scala:177:{42,66}] wire _sink_valid_1_reset_T_1 = ~io_async_safe_source_reset_n_0; // @[AsyncQueue.scala:136:7, :177:45, :178:45] wire _sink_valid_1_reset_T_2 = _sink_valid_1_reset_T | _sink_valid_1_reset_T_1; // @[AsyncQueue.scala:178:{35,42,45}] wire _sink_valid_1_reset_T_3 = _sink_valid_1_reset_T_2; // @[AsyncQueue.scala:178:{42,66}] wire _source_extend_reset_T_1 = ~io_async_safe_source_reset_n_0; // @[AsyncQueue.scala:136:7, :177:45, :179:45] wire _source_extend_reset_T_2 = _source_extend_reset_T | _source_extend_reset_T_1; // @[AsyncQueue.scala:179:{35,42,45}] wire _source_extend_reset_T_3 = _source_extend_reset_T_2; // @[AsyncQueue.scala:179:{42,66}] assign _io_async_safe_sink_reset_n_T_1 = ~_io_async_safe_sink_reset_n_T; // @[AsyncQueue.scala:193:{25,32}] assign io_async_safe_sink_reset_n_0 = _io_async_safe_sink_reset_n_T_1; // @[AsyncQueue.scala:136:7, :193:25] always @(posedge clock or posedge _ridx_T) begin // @[AsyncQueue.scala:136:7, :148:30] if (_ridx_T) // @[AsyncQueue.scala:136:7, :148:30] ridx_ridx_bin <= 4'h0; // @[AsyncQueue.scala:52:25] else // @[AsyncQueue.scala:136:7] ridx_ridx_bin <= ridx_incremented; // @[AsyncQueue.scala:51:27, :52:25] always @(posedge, posedge) always @(posedge clock or posedge _valid_reg_T) begin // @[AsyncQueue.scala:136:7, :165:35] if (_valid_reg_T) // @[AsyncQueue.scala:136:7, :165:35] valid_reg <= 1'h0; // @[AsyncQueue.scala:165:56] else // @[AsyncQueue.scala:136:7] valid_reg <= valid; // @[AsyncQueue.scala:150:28, :165:56] always @(posedge, posedge) always @(posedge clock or posedge _ridx_reg_T) begin // @[AsyncQueue.scala:136:7, :168:34] if (_ridx_reg_T) // @[AsyncQueue.scala:136:7, :168:34] ridx_gray <= 4'h0; // @[AsyncQueue.scala:52:25, :168:55] else // @[AsyncQueue.scala:136:7] ridx_gray <= ridx; // @[AsyncQueue.scala:54:17, :168:55] always @(posedge, posedge)
Generate the Verilog code corresponding to the following Chisel files. File Crossing.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.interrupts import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy.lazymodule._ import freechips.rocketchip.util.{SynchronizerShiftReg, AsyncResetReg} @deprecated("IntXing does not ensure interrupt source is glitch free. Use IntSyncSource and IntSyncSink", "rocket-chip 1.2") class IntXing(sync: Int = 3)(implicit p: Parameters) extends LazyModule { val intnode = IntAdapterNode() lazy val module = new Impl class Impl extends LazyModuleImp(this) { (intnode.in zip intnode.out) foreach { case ((in, _), (out, _)) => out := SynchronizerShiftReg(in, sync) } } } object IntSyncCrossingSource { def apply(alreadyRegistered: Boolean = false)(implicit p: Parameters) = { val intsource = LazyModule(new IntSyncCrossingSource(alreadyRegistered)) intsource.node } } class IntSyncCrossingSource(alreadyRegistered: Boolean = false)(implicit p: Parameters) extends LazyModule { val node = IntSyncSourceNode(alreadyRegistered) lazy val module = if (alreadyRegistered) (new ImplRegistered) else (new Impl) class Impl extends LazyModuleImp(this) { def outSize = node.out.headOption.map(_._1.sync.size).getOrElse(0) override def desiredName = s"IntSyncCrossingSource_n${node.out.size}x${outSize}" (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => out.sync := AsyncResetReg(Cat(in.reverse)).asBools } } class ImplRegistered extends LazyRawModuleImp(this) { def outSize = node.out.headOption.map(_._1.sync.size).getOrElse(0) override def desiredName = s"IntSyncCrossingSource_n${node.out.size}x${outSize}_Registered" (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => out.sync := in } } } object IntSyncCrossingSink { @deprecated("IntSyncCrossingSink which used the `sync` parameter to determine crossing type is deprecated. Use IntSyncAsyncCrossingSink, IntSyncRationalCrossingSink, or IntSyncSyncCrossingSink instead for > 1, 1, and 0 sync values respectively", "rocket-chip 1.2") def apply(sync: Int = 3)(implicit p: Parameters) = { val intsink = LazyModule(new IntSyncAsyncCrossingSink(sync)) intsink.node } } class IntSyncAsyncCrossingSink(sync: Int = 3)(implicit p: Parameters) extends LazyModule { val node = IntSyncSinkNode(sync) lazy val module = new Impl class Impl extends LazyModuleImp(this) { override def desiredName = s"IntSyncAsyncCrossingSink_n${node.out.size}x${node.out.head._1.size}" (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => out := SynchronizerShiftReg(in.sync, sync) } } } object IntSyncAsyncCrossingSink { def apply(sync: Int = 3)(implicit p: Parameters) = { val intsink = LazyModule(new IntSyncAsyncCrossingSink(sync)) intsink.node } } class IntSyncSyncCrossingSink()(implicit p: Parameters) extends LazyModule { val node = IntSyncSinkNode(0) lazy val module = new Impl class Impl extends LazyRawModuleImp(this) { def outSize = node.out.headOption.map(_._1.size).getOrElse(0) override def desiredName = s"IntSyncSyncCrossingSink_n${node.out.size}x${outSize}" (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => out := in.sync } } } object IntSyncSyncCrossingSink { def apply()(implicit p: Parameters) = { val intsink = LazyModule(new IntSyncSyncCrossingSink()) intsink.node } } class IntSyncRationalCrossingSink()(implicit p: Parameters) extends LazyModule { val node = IntSyncSinkNode(1) lazy val module = new Impl class Impl extends LazyModuleImp(this) { def outSize = node.out.headOption.map(_._1.size).getOrElse(0) override def desiredName = s"IntSyncRationalCrossingSink_n${node.out.size}x${outSize}" (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => out := RegNext(in.sync) } } } object IntSyncRationalCrossingSink { def apply()(implicit p: Parameters) = { val intsink = LazyModule(new IntSyncRationalCrossingSink()) intsink.node } } File LazyModuleImp.scala: package org.chipsalliance.diplomacy.lazymodule import chisel3.{withClockAndReset, Module, RawModule, Reset, _} import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo} import firrtl.passes.InlineAnnotation import org.chipsalliance.cde.config.Parameters import org.chipsalliance.diplomacy.nodes.Dangle import scala.collection.immutable.SortedMap /** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]]. * * This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy. */ sealed trait LazyModuleImpLike extends RawModule { /** [[LazyModule]] that contains this instance. */ val wrapper: LazyModule /** IOs that will be automatically "punched" for this instance. */ val auto: AutoBundle /** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */ protected[diplomacy] val dangles: Seq[Dangle] // [[wrapper.module]] had better not be accessed while LazyModules are still being built! require( LazyModule.scope.isEmpty, s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}" ) /** Set module name. Defaults to the containing LazyModule's desiredName. */ override def desiredName: String = wrapper.desiredName suggestName(wrapper.suggestedName) /** [[Parameters]] for chisel [[Module]]s. */ implicit val p: Parameters = wrapper.p /** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and * submodules. */ protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = { // 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]], // 2. return [[Dangle]]s from each module. val childDangles = wrapper.children.reverse.flatMap { c => implicit val sourceInfo: SourceInfo = c.info c.cloneProto.map { cp => // If the child is a clone, then recursively set cloneProto of its children as well def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = { require(bases.size == clones.size) (bases.zip(clones)).map { case (l, r) => require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}") l.cloneProto = Some(r) assignCloneProtos(l.children, r.children) } } assignCloneProtos(c.children, cp.children) // Clone the child module as a record, and get its [[AutoBundle]] val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName) val clonedAuto = clone("auto").asInstanceOf[AutoBundle] // Get the empty [[Dangle]]'s of the cloned child val rawDangles = c.cloneDangles() require(rawDangles.size == clonedAuto.elements.size) // Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) } dangles }.getOrElse { // For non-clones, instantiate the child module val mod = try { Module(c.module) } catch { case e: ChiselException => { println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}") throw e } } mod.dangles } } // Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]]. // This will result in a sequence of [[Dangle]] from these [[BaseNode]]s. val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate()) // Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]] val allDangles = nodeDangles ++ childDangles // Group [[allDangles]] by their [[source]]. val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*) // For each [[source]] set of [[Dangle]]s of size 2, ensure that these // can be connected as a source-sink pair (have opposite flipped value). // Make the connection and mark them as [[done]]. val done = Set() ++ pairing.values.filter(_.size == 2).map { case Seq(a, b) => require(a.flipped != b.flipped) // @todo <> in chisel3 makes directionless connection. if (a.flipped) { a.data <> b.data } else { b.data <> a.data } a.source case _ => None } // Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module. val forward = allDangles.filter(d => !done(d.source)) // Generate [[AutoBundle]] IO from [[forward]]. val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*)) // Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]] val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) => if (d.flipped) { d.data <> io } else { io <> d.data } d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name) } // Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]]. wrapper.inModuleBody.reverse.foreach { _() } if (wrapper.shouldBeInlined) { chisel3.experimental.annotate(new ChiselAnnotation { def toFirrtl = InlineAnnotation(toNamed) }) } // Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]]. (auto, dangles) } } /** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike { /** Instantiate hardware of this `Module`. */ val (auto, dangles) = instantiate() } /** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike { // These wires are the default clock+reset for all LazyModule children. // It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the // [[LazyRawModuleImp]] children. // Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly. /** drive clock explicitly. */ val childClock: Clock = Wire(Clock()) /** drive reset explicitly. */ val childReset: Reset = Wire(Reset()) // the default is that these are disabled childClock := false.B.asClock childReset := chisel3.DontCare def provideImplicitClockToLazyChildren: Boolean = false val (auto, dangles) = if (provideImplicitClockToLazyChildren) { withClockAndReset(childClock, childReset) { instantiate() } } else { instantiate() } } File MixedNode.scala: package org.chipsalliance.diplomacy.nodes import chisel3.{Data, DontCare, Wire} import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.{Field, Parameters} import org.chipsalliance.diplomacy.ValName import org.chipsalliance.diplomacy.sourceLine /** One side metadata of a [[Dangle]]. * * Describes one side of an edge going into or out of a [[BaseNode]]. * * @param serial * the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to. * @param index * the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to. */ case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] { import scala.math.Ordered.orderingToOrdered def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that)) } /** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]] * connects. * * [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] , * [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]]. * * @param source * the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within * that [[BaseNode]]. * @param sink * sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that * [[BaseNode]]. * @param flipped * flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to * `danglesIn`. * @param dataOpt * actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module */ case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) { def data = dataOpt.get } /** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often * derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually * implement the protocol. */ case class Edges[EI, EO](in: Seq[EI], out: Seq[EO]) /** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */ case object MonitorsEnabled extends Field[Boolean](true) /** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented. * * For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but * [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink * nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the * [[LazyModule]]. */ case object RenderFlipped extends Field[Boolean](false) /** The sealed node class in the package, all node are derived from it. * * @param inner * Sink interface implementation. * @param outer * Source interface implementation. * @param valName * val name of this node. * @tparam DI * Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters * describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected * [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port * parameters. * @tparam UI * Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing * the protocol parameters of a sink. For an [[InwardNode]], it is determined itself. * @tparam EI * Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers * specified for a sink according to protocol. * @tparam BI * Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface. * It should extends from [[chisel3.Data]], which represents the real hardware. * @tparam DO * Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters * describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself. * @tparam UO * Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing * the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]]. * Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters. * @tparam EO * Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers * specified for a source according to protocol. * @tparam BO * Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source * interface. It should extends from [[chisel3.Data]], which represents the real hardware. * * @note * Call Graph of [[MixedNode]] * - line `─`: source is process by a function and generate pass to others * - Arrow `→`: target of arrow is generated by source * * {{{ * (from the other node) * ┌─────────────────────────────────────────────────────────[[InwardNode.uiParams]]─────────────┐ * ↓ │ * (binding node when elaboration) [[OutwardNode.uoParams]]────────────────────────[[MixedNode.mapParamsU]]→──────────┐ │ * [[InwardNode.accPI]] │ │ │ * │ │ (based on protocol) │ * │ │ [[MixedNode.inner.edgeI]] │ * │ │ ↓ │ * ↓ │ │ │ * (immobilize after elaboration) (inward port from [[OutwardNode]]) │ ↓ │ * [[InwardNode.iBindings]]──┐ [[MixedNode.iDirectPorts]]────────────────────→[[MixedNode.iPorts]] [[InwardNode.uiParams]] │ * │ │ ↑ │ │ │ * │ │ │ [[OutwardNode.doParams]] │ │ * │ │ │ (from the other node) │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * │ │ │ └────────┬──────────────┤ │ * │ │ │ │ │ │ * │ │ │ │ (based on protocol) │ * │ │ │ │ [[MixedNode.inner.edgeI]] │ * │ │ │ │ │ │ * │ │ (from the other node) │ ↓ │ * │ └───[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] │ [[MixedNode.edgesIn]]───┐ │ * │ ↑ ↑ │ │ ↓ │ * │ │ │ │ │ [[MixedNode.in]] │ * │ │ │ │ ↓ ↑ │ * │ (solve star connection) │ │ │ [[MixedNode.bundleIn]]──┘ │ * ├───[[MixedNode.resolveStar]]→─┼─────────────────────────────┤ └────────────────────────────────────┐ │ * │ │ │ [[MixedNode.bundleOut]]─┐ │ │ * │ │ │ ↑ ↓ │ │ * │ │ │ │ [[MixedNode.out]] │ │ * │ ↓ ↓ │ ↑ │ │ * │ ┌─────[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]──┘ │ │ * │ │ (from the other node) ↑ │ │ * │ │ │ │ │ │ * │ │ │ [[MixedNode.outer.edgeO]] │ │ * │ │ │ (based on protocol) │ │ * │ │ │ │ │ │ * │ │ │ ┌────────────────────────────────────────┤ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * (immobilize after elaboration)│ ↓ │ │ │ │ * [[OutwardNode.oBindings]]─┘ [[MixedNode.oDirectPorts]]───→[[MixedNode.oPorts]] [[OutwardNode.doParams]] │ │ * ↑ (inward port from [[OutwardNode]]) │ │ │ │ * │ ┌─────────────────────────────────────────┤ │ │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * [[OutwardNode.accPO]] │ ↓ │ │ │ * (binding node when elaboration) │ [[InwardNode.diParams]]─────→[[MixedNode.mapParamsD]]────────────────────────────┘ │ │ * │ ↑ │ │ * │ └──────────────────────────────────────────────────────────────────────────────────────────┘ │ * └──────────────────────────────────────────────────────────────────────────────────────────────────────────┘ * }}} */ abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data]( val inner: InwardNodeImp[DI, UI, EI, BI], val outer: OutwardNodeImp[DO, UO, EO, BO] )( implicit valName: ValName) extends BaseNode with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO] with InwardNode[DI, UI, BI] with OutwardNode[DO, UO, BO] { // Generate a [[NodeHandle]] with inward and outward node are both this node. val inward = this val outward = this /** Debug info of nodes binding. */ def bindingInfo: String = s"""$iBindingInfo |$oBindingInfo |""".stripMargin /** Debug info of ports connecting. */ def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}] |${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}] |""".stripMargin /** Debug info of parameters propagations. */ def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}] |${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}] |${diParams.size} downstream inward parameters: [${diParams.mkString(",")}] |${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}] |""".stripMargin /** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and * [[MixedNode.iPortMapping]]. * * Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward * stars and outward stars. * * This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type * of node. * * @param iKnown * Number of known-size ([[BIND_ONCE]]) input bindings. * @param oKnown * Number of known-size ([[BIND_ONCE]]) output bindings. * @param iStar * Number of unknown size ([[BIND_STAR]]) input bindings. * @param oStar * Number of unknown size ([[BIND_STAR]]) output bindings. * @return * A Tuple of the resolved number of input and output connections. */ protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int) /** Function to generate downward-flowing outward params from the downward-flowing input params and the current output * ports. * * @param n * The size of the output sequence to generate. * @param p * Sequence of downward-flowing input parameters of this node. * @return * A `n`-sized sequence of downward-flowing output edge parameters. */ protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO] /** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]]. * * @param n * Size of the output sequence. * @param p * Upward-flowing output edge parameters. * @return * A n-sized sequence of upward-flowing input edge parameters. */ protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI] /** @return * The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with * [[BIND_STAR]]. */ protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR) /** @return * The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of * output bindings bound with [[BIND_STAR]]. */ protected[diplomacy] lazy val sourceCard: Int = iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR) /** @return list of nodes involved in flex bindings with this node. */ protected[diplomacy] lazy val flexes: Seq[BaseNode] = oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2) /** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin * greedily taking up the remaining connections. * * @return * A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return * value is not relevant. */ protected[diplomacy] lazy val flexOffset: Int = { /** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex * operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a * connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of * each node in the current set and decide whether they should be added to the set or not. * * @return * the mapping of [[BaseNode]] indexed by their serial numbers. */ def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = { if (visited.contains(v.serial) || !v.flexibleArityDirection) { visited } else { v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum)) } } /** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node. * * @example * {{{ * a :*=* b :*=* c * d :*=* b * e :*=* f * }}} * * `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)` */ val flexSet = DFS(this, Map()).values /** The total number of :*= operators where we're on the left. */ val allSink = flexSet.map(_.sinkCard).sum /** The total number of :=* operators used when we're on the right. */ val allSource = flexSet.map(_.sourceCard).sum require( allSink == 0 || allSource == 0, s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction." ) allSink - allSource } /** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */ protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = { if (flexibleArityDirection) flexOffset else if (n.flexibleArityDirection) n.flexOffset else 0 } /** For a node which is connected between two nodes, select the one that will influence the direction of the flex * resolution. */ protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = { val dir = edgeArityDirection(n) if (dir < 0) l else if (dir > 0) r else 1 } /** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */ private var starCycleGuard = false /** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star" * connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also * need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct * edge parameters and later build up correct bundle connections. * * [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding * operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort * (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*= * bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N` */ protected[diplomacy] lazy val ( oPortMapping: Seq[(Int, Int)], iPortMapping: Seq[(Int, Int)], oStar: Int, iStar: Int ) = { try { if (starCycleGuard) throw StarCycleException() starCycleGuard = true // For a given node N... // Number of foo :=* N // + Number of bar :=* foo :*=* N val oStars = oBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0) } // Number of N :*= foo // + Number of N :*=* foo :*= bar val iStars = iBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0) } // 1 for foo := N // + bar.iStar for bar :*= foo :*=* N // + foo.iStar for foo :*= N // + 0 for foo :=* N val oKnown = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, 0, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => 0 } }.sum // 1 for N := foo // + bar.oStar for N :*=* foo :=* bar // + foo.oStar for N :=* foo // + 0 for N :*= foo val iKnown = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, 0) case BIND_QUERY => n.oStar case BIND_STAR => 0 } }.sum // Resolve star depends on the node subclass to implement the algorithm for this. val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars) // Cumulative list of resolved outward binding range starting points val oSum = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => oStar } }.scanLeft(0)(_ + _) // Cumulative list of resolved inward binding range starting points val iSum = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar) case BIND_QUERY => n.oStar case BIND_STAR => iStar } }.scanLeft(0)(_ + _) // Create ranges for each binding based on the running sums and return // those along with resolved values for the star operations. (oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar) } catch { case c: StarCycleException => throw c.copy(loop = context +: c.loop) } } /** Sequence of inward ports. * * This should be called after all star bindings are resolved. * * Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. * `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this * connection was made in the source code. */ protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oBindings.flatMap { case (i, n, _, p, s) => // for each binding operator in this node, look at what it connects to val (start, end) = n.iPortMapping(i) (start until end).map { j => (j, n, p, s) } } /** Sequence of outward ports. * * This should be called after all star bindings are resolved. * * `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of * outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection * was made in the source code. */ protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iBindings.flatMap { case (i, n, _, p, s) => // query this port index range of this node in the other side of node. val (start, end) = n.oPortMapping(i) (start until end).map { j => (j, n, p, s) } } // Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree // Thus, there must exist an Eulerian path and the below algorithms terminate @scala.annotation.tailrec private def oTrace( tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) ): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.iForward(i) match { case None => (i, n, p, s) case Some((j, m)) => oTrace((j, m, p, s)) } } @scala.annotation.tailrec private def iTrace( tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) ): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.oForward(i) match { case None => (i, n, p, s) case Some((j, m)) => iTrace((j, m, p, s)) } } /** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - Numeric index of this binding in the [[InwardNode]] on the other end. * - [[InwardNode]] on the other end of this binding. * - A view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace) /** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - numeric index of this binding in [[OutwardNode]] on the other end. * - [[OutwardNode]] on the other end of this binding. * - a view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace) private var oParamsCycleGuard = false protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) } protected[diplomacy] lazy val doParams: Seq[DO] = { try { if (oParamsCycleGuard) throw DownwardCycleException() oParamsCycleGuard = true val o = mapParamsD(oPorts.size, diParams) require( o.size == oPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of outward ports should equal the number of produced outward parameters. |$context |$connectedPortsInfo |Downstreamed inward parameters: [${diParams.mkString(",")}] |Produced outward parameters: [${o.mkString(",")}] |""".stripMargin ) o.map(outer.mixO(_, this)) } catch { case c: DownwardCycleException => throw c.copy(loop = context +: c.loop) } } private var iParamsCycleGuard = false protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) } protected[diplomacy] lazy val uiParams: Seq[UI] = { try { if (iParamsCycleGuard) throw UpwardCycleException() iParamsCycleGuard = true val i = mapParamsU(iPorts.size, uoParams) require( i.size == iPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of inward ports should equal the number of produced inward parameters. |$context |$connectedPortsInfo |Upstreamed outward parameters: [${uoParams.mkString(",")}] |Produced inward parameters: [${i.mkString(",")}] |""".stripMargin ) i.map(inner.mixI(_, this)) } catch { case c: UpwardCycleException => throw c.copy(loop = context +: c.loop) } } /** Outward edge parameters. */ protected[diplomacy] lazy val edgesOut: Seq[EO] = (oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) } /** Inward edge parameters. */ protected[diplomacy] lazy val edgesIn: Seq[EI] = (iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) } /** A tuple of the input edge parameters and output edge parameters for the edges bound to this node. * * If you need to access to the edges of a foreign Node, use this method (in/out create bundles). */ lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut) /** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */ protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e => val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } /** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */ protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e => val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(serial, i), sink = HalfEdge(n.serial, j), flipped = false, name = wirePrefix + "out", dataOpt = None ) } private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(n.serial, j), sink = HalfEdge(serial, i), flipped = true, name = wirePrefix + "in", dataOpt = None ) } /** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */ protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleOut(i))) } /** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */ protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleIn(i))) } private[diplomacy] var instantiated = false /** Gather Bundle and edge parameters of outward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def out: Seq[(BO, EO)] = { require( instantiated, s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleOut.zip(edgesOut) } /** Gather Bundle and edge parameters of inward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def in: Seq[(BI, EI)] = { require( instantiated, s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleIn.zip(edgesIn) } /** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires, * instantiate monitors on all input ports if appropriate, and return all the dangles of this node. */ protected[diplomacy] def instantiate(): Seq[Dangle] = { instantiated = true if (!circuitIdentity) { (iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) } } danglesOut ++ danglesIn } protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn /** Connects the outward part of a node with the inward part of this node. */ protected[diplomacy] def bind( h: OutwardNode[DI, UI, BI], binding: NodeBinding )( implicit p: Parameters, sourceInfo: SourceInfo ): Unit = { val x = this // x := y val y = h sourceLine(sourceInfo, " at ", "") val i = x.iPushed val o = y.oPushed y.oPush( i, x, binding match { case BIND_ONCE => BIND_ONCE case BIND_FLEX => BIND_FLEX case BIND_STAR => BIND_QUERY case BIND_QUERY => BIND_STAR } ) x.iPush(o, y, binding) } /* Metadata for printing the node graph. */ def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) => val re = inner.render(e) (n, re.copy(flipped = re.flipped != p(RenderFlipped))) } /** Metadata for printing the node graph */ def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) } } File AsyncResetReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ /** This black-boxes an Async Reset * (or Set) * Register. * * Because Chisel doesn't support * parameterized black boxes, * we unfortunately have to * instantiate a number of these. * * We also have to hard-code the set/ * reset behavior. * * Do not confuse an asynchronous * reset signal with an asynchronously * reset reg. You should still * properly synchronize your reset * deassertion. * * @param d Data input * @param q Data Output * @param clk Clock Input * @param rst Reset Input * @param en Write Enable Input * */ class AsyncResetReg(resetValue: Int = 0) extends RawModule { val io = IO(new Bundle { val d = Input(Bool()) val q = Output(Bool()) val en = Input(Bool()) val clk = Input(Clock()) val rst = Input(Reset()) }) val reg = withClockAndReset(io.clk, io.rst.asAsyncReset)(RegInit(resetValue.U(1.W))) when (io.en) { reg := io.d } io.q := reg } class SimpleRegIO(val w: Int) extends Bundle{ val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) val en = Input(Bool()) } class AsyncResetRegVec(val w: Int, val init: BigInt) extends Module { override def desiredName = s"AsyncResetRegVec_w${w}_i${init}" val io = IO(new SimpleRegIO(w)) val reg = withReset(reset.asAsyncReset)(RegInit(init.U(w.W))) when (io.en) { reg := io.d } io.q := reg } object AsyncResetReg { // Create Single Registers def apply(d: Bool, clk: Clock, rst: Bool, init: Boolean, name: Option[String]): Bool = { val reg = Module(new AsyncResetReg(if (init) 1 else 0)) reg.io.d := d reg.io.clk := clk reg.io.rst := rst reg.io.en := true.B name.foreach(reg.suggestName(_)) reg.io.q } def apply(d: Bool, clk: Clock, rst: Bool): Bool = apply(d, clk, rst, false, None) def apply(d: Bool, clk: Clock, rst: Bool, name: String): Bool = apply(d, clk, rst, false, Some(name)) // Create Vectors of Registers def apply(updateData: UInt, resetData: BigInt, enable: Bool, name: Option[String] = None): UInt = { val w = updateData.getWidth max resetData.bitLength val reg = Module(new AsyncResetRegVec(w, resetData)) name.foreach(reg.suggestName(_)) reg.io.d := updateData reg.io.en := enable reg.io.q } def apply(updateData: UInt, resetData: BigInt, enable: Bool, name: String): UInt = apply(updateData, resetData, enable, Some(name)) def apply(updateData: UInt, resetData: BigInt): UInt = apply(updateData, resetData, enable = true.B) def apply(updateData: UInt, resetData: BigInt, name: String): UInt = apply(updateData, resetData, enable = true.B, Some(name)) def apply(updateData: UInt, enable: Bool): UInt = apply(updateData, resetData=BigInt(0), enable) def apply(updateData: UInt, enable: Bool, name: String): UInt = apply(updateData, resetData = BigInt(0), enable, Some(name)) def apply(updateData: UInt): UInt = apply(updateData, resetData = BigInt(0), enable = true.B) def apply(updateData: UInt, name:String): UInt = apply(updateData, resetData = BigInt(0), enable = true.B, Some(name)) }
module IntSyncCrossingSource_n1x1_51( // @[Crossing.scala:41:9] input clock, // @[Crossing.scala:41:9] input reset, // @[Crossing.scala:41:9] input auto_in_0, // @[LazyModuleImp.scala:107:25] output auto_out_sync_0 // @[LazyModuleImp.scala:107:25] ); wire auto_in_0_0 = auto_in_0; // @[Crossing.scala:41:9] wire nodeIn_0 = auto_in_0_0; // @[Crossing.scala:41:9] wire nodeOut_sync_0; // @[MixedNode.scala:542:17] wire auto_out_sync_0_0; // @[Crossing.scala:41:9] assign auto_out_sync_0_0 = nodeOut_sync_0; // @[Crossing.scala:41:9] AsyncResetRegVec_w1_i0_51 reg_0 ( // @[AsyncResetReg.scala:86:21] .clock (clock), .reset (reset), .io_d (nodeIn_0), // @[MixedNode.scala:551:17] .io_q (nodeOut_sync_0) ); // @[AsyncResetReg.scala:86:21] assign auto_out_sync_0 = auto_out_sync_0_0; // @[Crossing.scala:41:9] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Monitor.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceLine import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import freechips.rocketchip.diplomacy.EnableMonitors import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode} import freechips.rocketchip.util.PlusArg case class TLMonitorArgs(edge: TLEdge) abstract class TLMonitorBase(args: TLMonitorArgs) extends Module { val io = IO(new Bundle { val in = Input(new TLBundle(args.edge.bundle)) }) def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit legalize(io.in, args.edge, reset) } object TLMonitor { def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = { if (enable) { EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) } } else { node } } } class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args) { require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal)) val cover_prop_class = PropertyClass.Default //Like assert but can flip to being an assumption for formal verification def monAssert(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir, cond, message, PropertyClass.Default) } def assume(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir.flip, cond, message, PropertyClass.Default) } def extra = { args.edge.sourceInfo match { case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)" case _ => "" } } def visible(address: UInt, source: UInt, edge: TLEdge) = edge.client.clients.map { c => !c.sourceId.contains(source) || c.visibility.map(_.contains(address)).reduce(_ || _) }.reduce(_ && _) def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = { //switch this flag to turn on diplomacy in error messages def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n" monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra) // Reuse these subexpressions to save some firrtl lines val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility") //The monitor doesn’t check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B //TODO: check for acquireT? when (bundle.opcode === TLMessages.AcquireBlock) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra) } when (bundle.opcode === TLMessages.AcquirePerm) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra) monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra) monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra) monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra) } } def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = { monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra) monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility") // Reuse these subexpressions to save some firrtl lines val address_ok = edge.manager.containsSafe(edge.address(bundle)) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source when (bundle.opcode === TLMessages.Probe) { assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra) assume (address_ok, "'B' channel Probe carries unmanaged address" + extra) assume (legal_source, "'B' channel Probe carries source that is not first source" + extra) assume (is_aligned, "'B' channel Probe address not aligned to size" + extra) assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra) assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra) assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra) monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra) monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra) monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra) monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra) } } def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = { monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val address_ok = edge.manager.containsSafe(edge.address(bundle)) monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility") when (bundle.opcode === TLMessages.ProbeAck) { monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra) } when (bundle.opcode === TLMessages.ProbeAckData) { monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.Release) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra) monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra) } when (bundle.opcode === TLMessages.ReleaseData) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.AccessAck) { monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra) } when (bundle.opcode === TLMessages.HintAck) { monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra) } } def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = { assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val sink_ok = bundle.sink < edge.manager.endSinkId.U val deny_put_ok = edge.manager.mayDenyPut.B val deny_get_ok = edge.manager.mayDenyGet.B when (bundle.opcode === TLMessages.ReleaseAck) { assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra) assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra) assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra) } when (bundle.opcode === TLMessages.Grant) { assume (source_ok, "'D' channel Grant carries invalid source ID" + extra) assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra) assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra) } when (bundle.opcode === TLMessages.GrantData) { assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra) assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra) } when (bundle.opcode === TLMessages.AccessAck) { assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra) } when (bundle.opcode === TLMessages.HintAck) { assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra) } } def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = { val sink_ok = bundle.sink < edge.manager.endSinkId.U monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra) } def legalizeFormat(bundle: TLBundle, edge: TLEdge) = { when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) } when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) } when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) } when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) } } else { monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra) monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra) monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra) } } def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = { val a_first = edge.first(a.bits, a.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (a.valid && !a_first) { monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra) monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra) monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra) monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra) monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra) } when (a.fire && a_first) { opcode := a.bits.opcode param := a.bits.param size := a.bits.size source := a.bits.source address := a.bits.address } } def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = { val b_first = edge.first(b.bits, b.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (b.valid && !b_first) { monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra) monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra) monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra) monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra) monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra) } when (b.fire && b_first) { opcode := b.bits.opcode param := b.bits.param size := b.bits.size source := b.bits.source address := b.bits.address } } def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = { // Symbolic variable val sym_source = Wire(UInt(edge.client.endSourceId.W)) // TODO: Connect sym_source to a fixed value for simulation and to a // free wire in formal sym_source := 0.U // Type casting Int to UInt val maxSourceId = Wire(UInt(edge.client.endSourceId.W)) maxSourceId := edge.client.endSourceId.U // Delayed verison of sym_source val sym_source_d = Reg(UInt(edge.client.endSourceId.W)) sym_source_d := sym_source // These will be constraints for FV setup Property( MonitorDirection.Monitor, (sym_source === sym_source_d), "sym_source should remain stable", PropertyClass.Default) Property( MonitorDirection.Monitor, (sym_source <= maxSourceId), "sym_source should take legal value", PropertyClass.Default) val my_resp_pend = RegInit(false.B) val my_opcode = Reg(UInt()) val my_size = Reg(UInt()) val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire) val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire) val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source) val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source) val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat) val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend) when (my_set_resp_pend) { my_resp_pend := true.B } .elsewhen (my_clr_resp_pend) { my_resp_pend := false.B } when (my_a_first_beat) { my_opcode := bundle.a.bits.opcode my_size := bundle.a.bits.size } val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size) val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode) val my_resp_opcode_legal = Wire(Bool()) when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) || (my_resp_opcode === TLMessages.LogicalData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData) } .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck) } .otherwise { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck) } monAssert (IfThen(my_resp_pend, !my_a_first_beat), "Request message should not be sent with a source ID, for which a response message" + "is already pending (not received until current cycle) for a prior request message" + "with the same source ID" + extra) assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)), "Response message should be accepted with a source ID only if a request message with the" + "same source ID has been accepted or is being accepted in the current cycle" + extra) assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)), "Response message should be sent with a source ID only if a request message with the" + "same source ID has been accepted or is being sent in the current cycle" + extra) assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)), "If d_valid is 1, then d_size should be same as a_size of the corresponding request" + "message" + extra) assume (IfThen(my_d_first_beat, my_resp_opcode_legal), "If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" + "request message" + extra) } def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = { val c_first = edge.first(c.bits, c.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (c.valid && !c_first) { monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra) monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra) monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra) monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra) monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra) } when (c.fire && c_first) { opcode := c.bits.opcode param := c.bits.param size := c.bits.size source := c.bits.source address := c.bits.address } } def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = { val d_first = edge.first(d.bits, d.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val sink = Reg(UInt()) val denied = Reg(Bool()) when (d.valid && !d_first) { assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra) assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra) assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra) assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra) assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra) assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra) } when (d.fire && d_first) { opcode := d.bits.opcode param := d.bits.param size := d.bits.size source := d.bits.source sink := d.bits.sink denied := d.bits.denied } } def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = { legalizeMultibeatA(bundle.a, edge) legalizeMultibeatD(bundle.d, edge) if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { legalizeMultibeatB(bundle.b, edge) legalizeMultibeatC(bundle.c, edge) } } //This is left in for almond which doesn't adhere to the tilelink protocol @deprecated("Use legalizeADSource instead if possible","") def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.client.endSourceId.W)) val a_first = edge.first(bundle.a.bits, bundle.a.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val a_set = WireInit(0.U(edge.client.endSourceId.W)) when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra) } if (edge.manager.minLatency > 0) { assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = { val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size) val log_a_size_bus_size = log2Ceil(a_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error inflight.suggestName("inflight") val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) inflight_opcodes.suggestName("inflight_opcodes") val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) inflight_sizes.suggestName("inflight_sizes") val a_first = edge.first(bundle.a.bits, bundle.a.fire) a_first.suggestName("a_first") val d_first = edge.first(bundle.d.bits, bundle.d.fire) d_first.suggestName("d_first") val a_set = WireInit(0.U(edge.client.endSourceId.W)) val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) a_set.suggestName("a_set") a_set_wo_ready.suggestName("a_set_wo_ready") val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) a_opcodes_set.suggestName("a_opcodes_set") val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) a_sizes_set.suggestName("a_sizes_set") val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W)) a_opcode_lookup.suggestName("a_opcode_lookup") a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W)) a_size_lookup.suggestName("a_size_lookup") a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant)) val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant)) val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W)) a_opcodes_set_interm.suggestName("a_opcodes_set_interm") val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W)) a_sizes_set_interm.suggestName("a_sizes_set_interm") when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) { a_set_wo_ready := UIntToOH(bundle.a.bits.source) } when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U) a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U) monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) d_opcodes_clr.suggestName("d_opcodes_clr") val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) || (bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra) assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) || (bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra) assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) { assume((!bundle.d.ready) || bundle.a.ready, "ready check") } if (edge.manager.minLatency > 0) { assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = { val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size) val log_c_size_bus_size = log2Ceil(c_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) inflight.suggestName("inflight") inflight_opcodes.suggestName("inflight_opcodes") inflight_sizes.suggestName("inflight_sizes") val c_first = edge.first(bundle.c.bits, bundle.c.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) c_first.suggestName("c_first") d_first.suggestName("d_first") val c_set = WireInit(0.U(edge.client.endSourceId.W)) val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) c_set.suggestName("c_set") c_set_wo_ready.suggestName("c_set_wo_ready") c_opcodes_set.suggestName("c_opcodes_set") c_sizes_set.suggestName("c_sizes_set") val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W)) val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W)) c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U c_opcode_lookup.suggestName("c_opcode_lookup") c_size_lookup.suggestName("c_size_lookup") val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W)) val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W)) c_opcodes_set_interm.suggestName("c_opcodes_set_interm") c_sizes_set_interm.suggestName("c_sizes_set_interm") when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) { c_set_wo_ready := UIntToOH(bundle.c.bits.source) } when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) { c_set := UIntToOH(bundle.c.bits.source) c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U) c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U) monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra) } val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") d_opcodes_clr.suggestName("d_opcodes_clr") d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) { assume((!bundle.d.ready) || bundle.c.ready, "ready check") } if (edge.manager.minLatency > 0) { when (c_set_wo_ready.orR) { assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra) } } inflight := (inflight | c_set) & ~d_clr inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.manager.endSinkId.W)) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val e_first = true.B val d_set = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) { d_set := UIntToOH(bundle.d.bits.sink) assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra) } val e_clr = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) { e_clr := UIntToOH(bundle.e.bits.sink) monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra) } // edge.client.minLatency applies to BC, not DE inflight := (inflight | d_set) & ~e_clr } def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = { val sourceBits = log2Ceil(edge.client.endSourceId) val tooBig = 14 // >16kB worth of flight information gets to be too much if (sourceBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked") } else { if (args.edge.params(TestplanTestType).simulation) { if (args.edge.params(TLMonitorStrictMode)) { legalizeADSource(bundle, edge) legalizeCDSource(bundle, edge) } else { legalizeADSourceOld(bundle, edge) } } if (args.edge.params(TestplanTestType).formal) { legalizeADSourceFormal(bundle, edge) } } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { // legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize... val sinkBits = log2Ceil(edge.manager.endSinkId) if (sinkBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked") } else { legalizeDESink(bundle, edge) } } } def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = { legalizeFormat (bundle, edge) legalizeMultibeat (bundle, edge) legalizeUnique (bundle, edge) } } File Misc.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ import chisel3.util.random.LFSR import org.chipsalliance.cde.config.Parameters import scala.math._ class ParameterizedBundle(implicit p: Parameters) extends Bundle trait Clocked extends Bundle { val clock = Clock() val reset = Bool() } object DecoupledHelper { def apply(rvs: Bool*) = new DecoupledHelper(rvs) } class DecoupledHelper(val rvs: Seq[Bool]) { def fire(exclude: Bool, includes: Bool*) = { require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!") (rvs.filter(_ ne exclude) ++ includes).reduce(_ && _) } def fire() = { rvs.reduce(_ && _) } } object MuxT { def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2)) def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3)) def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4)) } /** Creates a cascade of n MuxTs to search for a key value. */ object MuxTLookup { def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } } object ValidMux { def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = { apply(v1 +: v2.toSeq) } def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = { val out = Wire(Valid(valids.head.bits.cloneType)) out.valid := valids.map(_.valid).reduce(_ || _) out.bits := MuxCase(valids.head.bits, valids.map(v => (v.valid -> v.bits))) out } } object Str { def apply(s: String): UInt = { var i = BigInt(0) require(s.forall(validChar _)) for (c <- s) i = (i << 8) | c i.U((s.length*8).W) } def apply(x: Char): UInt = { require(validChar(x)) x.U(8.W) } def apply(x: UInt): UInt = apply(x, 10) def apply(x: UInt, radix: Int): UInt = { val rad = radix.U val w = x.getWidth require(w > 0) var q = x var s = digit(q % rad) for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s) } s } def apply(x: SInt): UInt = apply(x, 10) def apply(x: SInt, radix: Int): UInt = { val neg = x < 0.S val abs = x.abs.asUInt if (radix != 10) { Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix)) } else { val rad = radix.U val w = abs.getWidth require(w > 0) var q = abs var s = digit(q % rad) var needSign = neg for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad val placeSpace = q === 0.U val space = Mux(needSign, Str('-'), Str(' ')) needSign = needSign && !placeSpace s = Cat(Mux(placeSpace, space, digit(q % rad)), s) } Cat(Mux(needSign, Str('-'), Str(' ')), s) } } private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0) private def validChar(x: Char) = x == (x & 0xFF) } object Split { def apply(x: UInt, n0: Int) = { val w = x.getWidth (x.extract(w-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n2: Int, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } } object Random { def apply(mod: Int, random: UInt): UInt = { if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0) else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod)) } def apply(mod: Int): UInt = apply(mod, randomizer) def oneHot(mod: Int, random: UInt): UInt = { if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0)) else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt } def oneHot(mod: Int): UInt = oneHot(mod, randomizer) private def randomizer = LFSR(16) private def partition(value: UInt, slices: Int) = Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U) } object Majority { def apply(in: Set[Bool]): Bool = { val n = (in.size >> 1) + 1 val clauses = in.subsets(n).map(_.reduce(_ && _)) clauses.reduce(_ || _) } def apply(in: Seq[Bool]): Bool = apply(in.toSet) def apply(in: UInt): Bool = apply(in.asBools.toSet) } object PopCountAtLeast { private def two(x: UInt): (Bool, Bool) = x.getWidth match { case 1 => (x.asBool, false.B) case n => val half = x.getWidth / 2 val (leftOne, leftTwo) = two(x(half - 1, 0)) val (rightOne, rightTwo) = two(x(x.getWidth - 1, half)) (leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne)) } def apply(x: UInt, n: Int): Bool = n match { case 0 => true.B case 1 => x.orR case 2 => two(x)._2 case 3 => PopCount(x) >= n.U } } // This gets used everywhere, so make the smallest circuit possible ... // Given an address and size, create a mask of beatBytes size // eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111 // groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01 object MaskGen { def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = { require (groupBy >= 1 && beatBytes >= groupBy) require (isPow2(beatBytes) && isPow2(groupBy)) val lgBytes = log2Ceil(beatBytes) val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U def helper(i: Int): Seq[(Bool, Bool)] = { if (i == 0) { Seq((lgSize >= lgBytes.asUInt, true.B)) } else { val sub = helper(i-1) val size = sizeOH(lgBytes - i) val bit = addr_lo(lgBytes - i) val nbit = !bit Seq.tabulate (1 << i) { j => val (sub_acc, sub_eq) = sub(j/2) val eq = sub_eq && (if (j % 2 == 1) bit else nbit) val acc = sub_acc || (size && eq) (acc, eq) } } } if (groupBy == beatBytes) 1.U else Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse) } } File PlusArg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.experimental._ import chisel3.util.HasBlackBoxResource @deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05") case class PlusArgInfo(default: BigInt, docstring: String) /** Case class for PlusArg information * * @tparam A scala type of the PlusArg value * @param default optional default value * @param docstring text to include in the help * @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT) */ private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String) /** Typeclass for converting a type to a doctype string * @tparam A some type */ trait Doctypeable[A] { /** Return the doctype string for some option */ def toDoctype(a: Option[A]): String } /** Object containing implementations of the Doctypeable typeclass */ object Doctypes { /** Converts an Int => "INT" */ implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" } /** Converts a BigInt => "INT" */ implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" } /** Converts a String => "STRING" */ implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" } } class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map( "FORMAT" -> StringParam(format), "DEFAULT" -> IntParam(default), "WIDTH" -> IntParam(width) )) with HasBlackBoxResource { val io = IO(new Bundle { val out = Output(UInt(width.W)) }) addResource("/vsrc/plusarg_reader.v") } /* This wrapper class has no outputs, making it clear it is a simulation-only construct */ class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module { val io = IO(new Bundle { val count = Input(UInt(width.W)) }) val max = Module(new plusarg_reader(format, default, docstring, width)).io.out when (max > 0.U) { assert (io.count < max, s"Timeout exceeded: $docstring") } } import Doctypes._ object PlusArg { /** PlusArg("foo") will return 42.U if the simulation is run with +foo=42 * Do not use this as an initial register value. The value is set in an * initial block and thus accessing it from another initial is racey. * Add a docstring to document the arg, which can be dumped in an elaboration * pass. */ def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out } /** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert * to kill the simulation when count exceeds the specified integer argument. * Default 0 will never assert. */ def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count } } object PlusArgArtefacts { private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty /* Add a new PlusArg */ @deprecated( "Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05" ) def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring) /** Add a new PlusArg * * @tparam A scala type of the PlusArg value * @param name name for the PlusArg * @param default optional default value * @param docstring text to include in the help */ def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit = artefacts = artefacts ++ Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default))) /* From plus args, generate help text */ private def serializeHelp_cHeader(tab: String = ""): String = artefacts .map{ case(arg, info) => s"""|$tab+$arg=${info.doctype}\\n\\ |$tab${" "*20}${info.docstring}\\n\\ |""".stripMargin ++ info.default.map{ case default => s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("") }.toSeq.mkString("\\n\\\n") ++ "\"" /* From plus args, generate a char array of their names */ private def serializeArray_cHeader(tab: String = ""): String = { val prettyTab = tab + " " * 44 // Length of 'static const ...' s"${tab}static const char * verilog_plusargs [] = {\\\n" ++ artefacts .map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" } .mkString("")++ s"${prettyTab}0};" } /* Generate C code to be included in emulator.cc that helps with * argument parsing based on available Verilog PlusArgs */ def serialize_cHeader(): String = s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\ |${serializeHelp_cHeader(" "*7)} |${serializeArray_cHeader()} |""".stripMargin } File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag } File Bundles.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import freechips.rocketchip.util._ import scala.collection.immutable.ListMap import chisel3.util.Decoupled import chisel3.util.DecoupledIO import chisel3.reflect.DataMirror abstract class TLBundleBase(val params: TLBundleParameters) extends Bundle // common combos in lazy policy: // Put + Acquire // Release + AccessAck object TLMessages { // A B C D E def PutFullData = 0.U // . . => AccessAck def PutPartialData = 1.U // . . => AccessAck def ArithmeticData = 2.U // . . => AccessAckData def LogicalData = 3.U // . . => AccessAckData def Get = 4.U // . . => AccessAckData def Hint = 5.U // . . => HintAck def AcquireBlock = 6.U // . => Grant[Data] def AcquirePerm = 7.U // . => Grant[Data] def Probe = 6.U // . => ProbeAck[Data] def AccessAck = 0.U // . . def AccessAckData = 1.U // . . def HintAck = 2.U // . . def ProbeAck = 4.U // . def ProbeAckData = 5.U // . def Release = 6.U // . => ReleaseAck def ReleaseData = 7.U // . => ReleaseAck def Grant = 4.U // . => GrantAck def GrantData = 5.U // . => GrantAck def ReleaseAck = 6.U // . def GrantAck = 0.U // . def isA(x: UInt) = x <= AcquirePerm def isB(x: UInt) = x <= Probe def isC(x: UInt) = x <= ReleaseData def isD(x: UInt) = x <= ReleaseAck def adResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, Grant, Grant) def bcResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, ProbeAck, ProbeAck) def a = Seq( ("PutFullData",TLPermissions.PermMsgReserved), ("PutPartialData",TLPermissions.PermMsgReserved), ("ArithmeticData",TLAtomics.ArithMsg), ("LogicalData",TLAtomics.LogicMsg), ("Get",TLPermissions.PermMsgReserved), ("Hint",TLHints.HintsMsg), ("AcquireBlock",TLPermissions.PermMsgGrow), ("AcquirePerm",TLPermissions.PermMsgGrow)) def b = Seq( ("PutFullData",TLPermissions.PermMsgReserved), ("PutPartialData",TLPermissions.PermMsgReserved), ("ArithmeticData",TLAtomics.ArithMsg), ("LogicalData",TLAtomics.LogicMsg), ("Get",TLPermissions.PermMsgReserved), ("Hint",TLHints.HintsMsg), ("Probe",TLPermissions.PermMsgCap)) def c = Seq( ("AccessAck",TLPermissions.PermMsgReserved), ("AccessAckData",TLPermissions.PermMsgReserved), ("HintAck",TLPermissions.PermMsgReserved), ("Invalid Opcode",TLPermissions.PermMsgReserved), ("ProbeAck",TLPermissions.PermMsgReport), ("ProbeAckData",TLPermissions.PermMsgReport), ("Release",TLPermissions.PermMsgReport), ("ReleaseData",TLPermissions.PermMsgReport)) def d = Seq( ("AccessAck",TLPermissions.PermMsgReserved), ("AccessAckData",TLPermissions.PermMsgReserved), ("HintAck",TLPermissions.PermMsgReserved), ("Invalid Opcode",TLPermissions.PermMsgReserved), ("Grant",TLPermissions.PermMsgCap), ("GrantData",TLPermissions.PermMsgCap), ("ReleaseAck",TLPermissions.PermMsgReserved)) } /** * The three primary TileLink permissions are: * (T)runk: the agent is (or is on inwards path to) the global point of serialization. * (B)ranch: the agent is on an outwards path to * (N)one: * These permissions are permuted by transfer operations in various ways. * Operations can cap permissions, request for them to be grown or shrunk, * or for a report on their current status. */ object TLPermissions { val aWidth = 2 val bdWidth = 2 val cWidth = 3 // Cap types (Grant = new permissions, Probe = permisions <= target) def toT = 0.U(bdWidth.W) def toB = 1.U(bdWidth.W) def toN = 2.U(bdWidth.W) def isCap(x: UInt) = x <= toN // Grow types (Acquire = permissions >= target) def NtoB = 0.U(aWidth.W) def NtoT = 1.U(aWidth.W) def BtoT = 2.U(aWidth.W) def isGrow(x: UInt) = x <= BtoT // Shrink types (ProbeAck, Release) def TtoB = 0.U(cWidth.W) def TtoN = 1.U(cWidth.W) def BtoN = 2.U(cWidth.W) def isShrink(x: UInt) = x <= BtoN // Report types (ProbeAck, Release) def TtoT = 3.U(cWidth.W) def BtoB = 4.U(cWidth.W) def NtoN = 5.U(cWidth.W) def isReport(x: UInt) = x <= NtoN def PermMsgGrow:Seq[String] = Seq("Grow NtoB", "Grow NtoT", "Grow BtoT") def PermMsgCap:Seq[String] = Seq("Cap toT", "Cap toB", "Cap toN") def PermMsgReport:Seq[String] = Seq("Shrink TtoB", "Shrink TtoN", "Shrink BtoN", "Report TotT", "Report BtoB", "Report NtoN") def PermMsgReserved:Seq[String] = Seq("Reserved") } object TLAtomics { val width = 3 // Arithmetic types def MIN = 0.U(width.W) def MAX = 1.U(width.W) def MINU = 2.U(width.W) def MAXU = 3.U(width.W) def ADD = 4.U(width.W) def isArithmetic(x: UInt) = x <= ADD // Logical types def XOR = 0.U(width.W) def OR = 1.U(width.W) def AND = 2.U(width.W) def SWAP = 3.U(width.W) def isLogical(x: UInt) = x <= SWAP def ArithMsg:Seq[String] = Seq("MIN", "MAX", "MINU", "MAXU", "ADD") def LogicMsg:Seq[String] = Seq("XOR", "OR", "AND", "SWAP") } object TLHints { val width = 1 def PREFETCH_READ = 0.U(width.W) def PREFETCH_WRITE = 1.U(width.W) def isHints(x: UInt) = x <= PREFETCH_WRITE def HintsMsg:Seq[String] = Seq("PrefetchRead", "PrefetchWrite") } sealed trait TLChannel extends TLBundleBase { val channelName: String } sealed trait TLDataChannel extends TLChannel sealed trait TLAddrChannel extends TLDataChannel final class TLBundleA(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleA_${params.shortName}" val channelName = "'A' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(List(TLAtomics.width, TLPermissions.aWidth, TLHints.width).max.W) // amo_opcode || grow perms || hint val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // from val address = UInt(params.addressBits.W) // to val user = BundleMap(params.requestFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val mask = UInt((params.dataBits/8).W) val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleB(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleB_${params.shortName}" val channelName = "'B' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.bdWidth.W) // cap perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // to val address = UInt(params.addressBits.W) // from // variable fields during multibeat: val mask = UInt((params.dataBits/8).W) val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleC(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleC_${params.shortName}" val channelName = "'C' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.cWidth.W) // shrink or report perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // from val address = UInt(params.addressBits.W) // to val user = BundleMap(params.requestFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleD(params: TLBundleParameters) extends TLBundleBase(params) with TLDataChannel { override def typeName = s"TLBundleD_${params.shortName}" val channelName = "'D' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.bdWidth.W) // cap perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // to val sink = UInt(params.sinkBits.W) // from val denied = Bool() // implies corrupt iff *Data val user = BundleMap(params.responseFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleE(params: TLBundleParameters) extends TLBundleBase(params) with TLChannel { override def typeName = s"TLBundleE_${params.shortName}" val channelName = "'E' channel" val sink = UInt(params.sinkBits.W) // to } class TLBundle(val params: TLBundleParameters) extends Record { // Emulate a Bundle with elements abcde or ad depending on params.hasBCE private val optA = Some (Decoupled(new TLBundleA(params))) private val optB = params.hasBCE.option(Flipped(Decoupled(new TLBundleB(params)))) private val optC = params.hasBCE.option(Decoupled(new TLBundleC(params))) private val optD = Some (Flipped(Decoupled(new TLBundleD(params)))) private val optE = params.hasBCE.option(Decoupled(new TLBundleE(params))) def a: DecoupledIO[TLBundleA] = optA.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleA(params))))) def b: DecoupledIO[TLBundleB] = optB.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleB(params))))) def c: DecoupledIO[TLBundleC] = optC.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleC(params))))) def d: DecoupledIO[TLBundleD] = optD.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleD(params))))) def e: DecoupledIO[TLBundleE] = optE.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleE(params))))) val elements = if (params.hasBCE) ListMap("e" -> e, "d" -> d, "c" -> c, "b" -> b, "a" -> a) else ListMap("d" -> d, "a" -> a) def tieoff(): Unit = { DataMirror.specifiedDirectionOf(a.ready) match { case SpecifiedDirection.Input => a.ready := false.B c.ready := false.B e.ready := false.B b.valid := false.B d.valid := false.B case SpecifiedDirection.Output => a.valid := false.B c.valid := false.B e.valid := false.B b.ready := false.B d.ready := false.B case _ => } } } object TLBundle { def apply(params: TLBundleParameters) = new TLBundle(params) } class TLAsyncBundleBase(val params: TLAsyncBundleParameters) extends Bundle class TLAsyncBundle(params: TLAsyncBundleParameters) extends TLAsyncBundleBase(params) { val a = new AsyncBundle(new TLBundleA(params.base), params.async) val b = Flipped(new AsyncBundle(new TLBundleB(params.base), params.async)) val c = new AsyncBundle(new TLBundleC(params.base), params.async) val d = Flipped(new AsyncBundle(new TLBundleD(params.base), params.async)) val e = new AsyncBundle(new TLBundleE(params.base), params.async) } class TLRationalBundle(params: TLBundleParameters) extends TLBundleBase(params) { val a = RationalIO(new TLBundleA(params)) val b = Flipped(RationalIO(new TLBundleB(params))) val c = RationalIO(new TLBundleC(params)) val d = Flipped(RationalIO(new TLBundleD(params))) val e = RationalIO(new TLBundleE(params)) } class TLCreditedBundle(params: TLBundleParameters) extends TLBundleBase(params) { val a = CreditedIO(new TLBundleA(params)) val b = Flipped(CreditedIO(new TLBundleB(params))) val c = CreditedIO(new TLBundleC(params)) val d = Flipped(CreditedIO(new TLBundleD(params))) val e = CreditedIO(new TLBundleE(params)) } File Parameters.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy.nodes._ import freechips.rocketchip.diplomacy.{ AddressDecoder, AddressSet, BufferParams, DirectedBuffers, IdMap, IdMapEntry, IdRange, RegionType, TransferSizes } import freechips.rocketchip.resources.{Resource, ResourceAddress, ResourcePermissions} import freechips.rocketchip.util.{ AsyncQueueParams, BundleField, BundleFieldBase, BundleKeyBase, CreditedDelay, groupByIntoSeq, RationalDirection, SimpleProduct } import scala.math.max //These transfer sizes describe requests issued from masters on the A channel that will be responded by slaves on the D channel case class TLMasterToSlaveTransferSizes( // Supports both Acquire+Release of the following two sizes: acquireT: TransferSizes = TransferSizes.none, acquireB: TransferSizes = TransferSizes.none, arithmetic: TransferSizes = TransferSizes.none, logical: TransferSizes = TransferSizes.none, get: TransferSizes = TransferSizes.none, putFull: TransferSizes = TransferSizes.none, putPartial: TransferSizes = TransferSizes.none, hint: TransferSizes = TransferSizes.none) extends TLCommonTransferSizes { def intersect(rhs: TLMasterToSlaveTransferSizes) = TLMasterToSlaveTransferSizes( acquireT = acquireT .intersect(rhs.acquireT), acquireB = acquireB .intersect(rhs.acquireB), arithmetic = arithmetic.intersect(rhs.arithmetic), logical = logical .intersect(rhs.logical), get = get .intersect(rhs.get), putFull = putFull .intersect(rhs.putFull), putPartial = putPartial.intersect(rhs.putPartial), hint = hint .intersect(rhs.hint)) def mincover(rhs: TLMasterToSlaveTransferSizes) = TLMasterToSlaveTransferSizes( acquireT = acquireT .mincover(rhs.acquireT), acquireB = acquireB .mincover(rhs.acquireB), arithmetic = arithmetic.mincover(rhs.arithmetic), logical = logical .mincover(rhs.logical), get = get .mincover(rhs.get), putFull = putFull .mincover(rhs.putFull), putPartial = putPartial.mincover(rhs.putPartial), hint = hint .mincover(rhs.hint)) // Reduce rendering to a simple yes/no per field override def toString = { def str(x: TransferSizes, flag: String) = if (x.none) "" else flag def flags = Vector( str(acquireT, "T"), str(acquireB, "B"), str(arithmetic, "A"), str(logical, "L"), str(get, "G"), str(putFull, "F"), str(putPartial, "P"), str(hint, "H")) flags.mkString } // Prints out the actual information in a user readable way def infoString = { s"""acquireT = ${acquireT} |acquireB = ${acquireB} |arithmetic = ${arithmetic} |logical = ${logical} |get = ${get} |putFull = ${putFull} |putPartial = ${putPartial} |hint = ${hint} | |""".stripMargin } } object TLMasterToSlaveTransferSizes { def unknownEmits = TLMasterToSlaveTransferSizes( acquireT = TransferSizes(1, 4096), acquireB = TransferSizes(1, 4096), arithmetic = TransferSizes(1, 4096), logical = TransferSizes(1, 4096), get = TransferSizes(1, 4096), putFull = TransferSizes(1, 4096), putPartial = TransferSizes(1, 4096), hint = TransferSizes(1, 4096)) def unknownSupports = TLMasterToSlaveTransferSizes() } //These transfer sizes describe requests issued from slaves on the B channel that will be responded by masters on the C channel case class TLSlaveToMasterTransferSizes( probe: TransferSizes = TransferSizes.none, arithmetic: TransferSizes = TransferSizes.none, logical: TransferSizes = TransferSizes.none, get: TransferSizes = TransferSizes.none, putFull: TransferSizes = TransferSizes.none, putPartial: TransferSizes = TransferSizes.none, hint: TransferSizes = TransferSizes.none ) extends TLCommonTransferSizes { def intersect(rhs: TLSlaveToMasterTransferSizes) = TLSlaveToMasterTransferSizes( probe = probe .intersect(rhs.probe), arithmetic = arithmetic.intersect(rhs.arithmetic), logical = logical .intersect(rhs.logical), get = get .intersect(rhs.get), putFull = putFull .intersect(rhs.putFull), putPartial = putPartial.intersect(rhs.putPartial), hint = hint .intersect(rhs.hint) ) def mincover(rhs: TLSlaveToMasterTransferSizes) = TLSlaveToMasterTransferSizes( probe = probe .mincover(rhs.probe), arithmetic = arithmetic.mincover(rhs.arithmetic), logical = logical .mincover(rhs.logical), get = get .mincover(rhs.get), putFull = putFull .mincover(rhs.putFull), putPartial = putPartial.mincover(rhs.putPartial), hint = hint .mincover(rhs.hint) ) // Reduce rendering to a simple yes/no per field override def toString = { def str(x: TransferSizes, flag: String) = if (x.none) "" else flag def flags = Vector( str(probe, "P"), str(arithmetic, "A"), str(logical, "L"), str(get, "G"), str(putFull, "F"), str(putPartial, "P"), str(hint, "H")) flags.mkString } // Prints out the actual information in a user readable way def infoString = { s"""probe = ${probe} |arithmetic = ${arithmetic} |logical = ${logical} |get = ${get} |putFull = ${putFull} |putPartial = ${putPartial} |hint = ${hint} | |""".stripMargin } } object TLSlaveToMasterTransferSizes { def unknownEmits = TLSlaveToMasterTransferSizes( arithmetic = TransferSizes(1, 4096), logical = TransferSizes(1, 4096), get = TransferSizes(1, 4096), putFull = TransferSizes(1, 4096), putPartial = TransferSizes(1, 4096), hint = TransferSizes(1, 4096), probe = TransferSizes(1, 4096)) def unknownSupports = TLSlaveToMasterTransferSizes() } trait TLCommonTransferSizes { def arithmetic: TransferSizes def logical: TransferSizes def get: TransferSizes def putFull: TransferSizes def putPartial: TransferSizes def hint: TransferSizes } class TLSlaveParameters private( val nodePath: Seq[BaseNode], val resources: Seq[Resource], setName: Option[String], val address: Seq[AddressSet], val regionType: RegionType.T, val executable: Boolean, val fifoId: Option[Int], val supports: TLMasterToSlaveTransferSizes, val emits: TLSlaveToMasterTransferSizes, // By default, slaves are forbidden from issuing 'denied' responses (it prevents Fragmentation) val alwaysGrantsT: Boolean, // typically only true for CacheCork'd read-write devices; dual: neverReleaseData // If fifoId=Some, all accesses sent to the same fifoId are executed and ACK'd in FIFO order // Note: you can only rely on this FIFO behaviour if your TLMasterParameters include requestFifo val mayDenyGet: Boolean, // applies to: AccessAckData, GrantData val mayDenyPut: Boolean) // applies to: AccessAck, Grant, HintAck // ReleaseAck may NEVER be denied extends SimpleProduct { def sortedAddress = address.sorted override def canEqual(that: Any): Boolean = that.isInstanceOf[TLSlaveParameters] override def productPrefix = "TLSlaveParameters" // We intentionally omit nodePath for equality testing / formatting def productArity: Int = 11 def productElement(n: Int): Any = n match { case 0 => name case 1 => address case 2 => resources case 3 => regionType case 4 => executable case 5 => fifoId case 6 => supports case 7 => emits case 8 => alwaysGrantsT case 9 => mayDenyGet case 10 => mayDenyPut case _ => throw new IndexOutOfBoundsException(n.toString) } def supportsAcquireT: TransferSizes = supports.acquireT def supportsAcquireB: TransferSizes = supports.acquireB def supportsArithmetic: TransferSizes = supports.arithmetic def supportsLogical: TransferSizes = supports.logical def supportsGet: TransferSizes = supports.get def supportsPutFull: TransferSizes = supports.putFull def supportsPutPartial: TransferSizes = supports.putPartial def supportsHint: TransferSizes = supports.hint require (!address.isEmpty, "Address cannot be empty") address.foreach { a => require (a.finite, "Address must be finite") } address.combinations(2).foreach { case Seq(x,y) => require (!x.overlaps(y), s"$x and $y overlap.") } require (supportsPutFull.contains(supportsPutPartial), s"PutFull($supportsPutFull) < PutPartial($supportsPutPartial)") require (supportsPutFull.contains(supportsArithmetic), s"PutFull($supportsPutFull) < Arithmetic($supportsArithmetic)") require (supportsPutFull.contains(supportsLogical), s"PutFull($supportsPutFull) < Logical($supportsLogical)") require (supportsGet.contains(supportsArithmetic), s"Get($supportsGet) < Arithmetic($supportsArithmetic)") require (supportsGet.contains(supportsLogical), s"Get($supportsGet) < Logical($supportsLogical)") require (supportsAcquireB.contains(supportsAcquireT), s"AcquireB($supportsAcquireB) < AcquireT($supportsAcquireT)") require (!alwaysGrantsT || supportsAcquireT, s"Must supportAcquireT if promising to always grantT") // Make sure that the regionType agrees with the capabilities require (!supportsAcquireB || regionType >= RegionType.UNCACHED) // acquire -> uncached, tracked, cached require (regionType <= RegionType.UNCACHED || supportsAcquireB) // tracked, cached -> acquire require (regionType != RegionType.UNCACHED || supportsGet) // uncached -> supportsGet val name = setName.orElse(nodePath.lastOption.map(_.lazyModule.name)).getOrElse("disconnected") val maxTransfer = List( // Largest supported transfer of all types supportsAcquireT.max, supportsAcquireB.max, supportsArithmetic.max, supportsLogical.max, supportsGet.max, supportsPutFull.max, supportsPutPartial.max).max val maxAddress = address.map(_.max).max val minAlignment = address.map(_.alignment).min // The device had better not support a transfer larger than its alignment require (minAlignment >= maxTransfer, s"Bad $address: minAlignment ($minAlignment) must be >= maxTransfer ($maxTransfer)") def toResource: ResourceAddress = { ResourceAddress(address, ResourcePermissions( r = supportsAcquireB || supportsGet, w = supportsAcquireT || supportsPutFull, x = executable, c = supportsAcquireB, a = supportsArithmetic && supportsLogical)) } def findTreeViolation() = nodePath.find { case _: MixedAdapterNode[_, _, _, _, _, _, _, _] => false case _: SinkNode[_, _, _, _, _] => false case node => node.inputs.size != 1 } def isTree = findTreeViolation() == None def infoString = { s"""Slave Name = ${name} |Slave Address = ${address} |supports = ${supports.infoString} | |""".stripMargin } def v1copy( address: Seq[AddressSet] = address, resources: Seq[Resource] = resources, regionType: RegionType.T = regionType, executable: Boolean = executable, nodePath: Seq[BaseNode] = nodePath, supportsAcquireT: TransferSizes = supports.acquireT, supportsAcquireB: TransferSizes = supports.acquireB, supportsArithmetic: TransferSizes = supports.arithmetic, supportsLogical: TransferSizes = supports.logical, supportsGet: TransferSizes = supports.get, supportsPutFull: TransferSizes = supports.putFull, supportsPutPartial: TransferSizes = supports.putPartial, supportsHint: TransferSizes = supports.hint, mayDenyGet: Boolean = mayDenyGet, mayDenyPut: Boolean = mayDenyPut, alwaysGrantsT: Boolean = alwaysGrantsT, fifoId: Option[Int] = fifoId) = { new TLSlaveParameters( setName = setName, address = address, resources = resources, regionType = regionType, executable = executable, nodePath = nodePath, supports = TLMasterToSlaveTransferSizes( acquireT = supportsAcquireT, acquireB = supportsAcquireB, arithmetic = supportsArithmetic, logical = supportsLogical, get = supportsGet, putFull = supportsPutFull, putPartial = supportsPutPartial, hint = supportsHint), emits = emits, mayDenyGet = mayDenyGet, mayDenyPut = mayDenyPut, alwaysGrantsT = alwaysGrantsT, fifoId = fifoId) } def v2copy( nodePath: Seq[BaseNode] = nodePath, resources: Seq[Resource] = resources, name: Option[String] = setName, address: Seq[AddressSet] = address, regionType: RegionType.T = regionType, executable: Boolean = executable, fifoId: Option[Int] = fifoId, supports: TLMasterToSlaveTransferSizes = supports, emits: TLSlaveToMasterTransferSizes = emits, alwaysGrantsT: Boolean = alwaysGrantsT, mayDenyGet: Boolean = mayDenyGet, mayDenyPut: Boolean = mayDenyPut) = { new TLSlaveParameters( nodePath = nodePath, resources = resources, setName = name, address = address, regionType = regionType, executable = executable, fifoId = fifoId, supports = supports, emits = emits, alwaysGrantsT = alwaysGrantsT, mayDenyGet = mayDenyGet, mayDenyPut = mayDenyPut) } @deprecated("Use v1copy instead of copy","") def copy( address: Seq[AddressSet] = address, resources: Seq[Resource] = resources, regionType: RegionType.T = regionType, executable: Boolean = executable, nodePath: Seq[BaseNode] = nodePath, supportsAcquireT: TransferSizes = supports.acquireT, supportsAcquireB: TransferSizes = supports.acquireB, supportsArithmetic: TransferSizes = supports.arithmetic, supportsLogical: TransferSizes = supports.logical, supportsGet: TransferSizes = supports.get, supportsPutFull: TransferSizes = supports.putFull, supportsPutPartial: TransferSizes = supports.putPartial, supportsHint: TransferSizes = supports.hint, mayDenyGet: Boolean = mayDenyGet, mayDenyPut: Boolean = mayDenyPut, alwaysGrantsT: Boolean = alwaysGrantsT, fifoId: Option[Int] = fifoId) = { v1copy( address = address, resources = resources, regionType = regionType, executable = executable, nodePath = nodePath, supportsAcquireT = supportsAcquireT, supportsAcquireB = supportsAcquireB, supportsArithmetic = supportsArithmetic, supportsLogical = supportsLogical, supportsGet = supportsGet, supportsPutFull = supportsPutFull, supportsPutPartial = supportsPutPartial, supportsHint = supportsHint, mayDenyGet = mayDenyGet, mayDenyPut = mayDenyPut, alwaysGrantsT = alwaysGrantsT, fifoId = fifoId) } } object TLSlaveParameters { def v1( address: Seq[AddressSet], resources: Seq[Resource] = Seq(), regionType: RegionType.T = RegionType.GET_EFFECTS, executable: Boolean = false, nodePath: Seq[BaseNode] = Seq(), supportsAcquireT: TransferSizes = TransferSizes.none, supportsAcquireB: TransferSizes = TransferSizes.none, supportsArithmetic: TransferSizes = TransferSizes.none, supportsLogical: TransferSizes = TransferSizes.none, supportsGet: TransferSizes = TransferSizes.none, supportsPutFull: TransferSizes = TransferSizes.none, supportsPutPartial: TransferSizes = TransferSizes.none, supportsHint: TransferSizes = TransferSizes.none, mayDenyGet: Boolean = false, mayDenyPut: Boolean = false, alwaysGrantsT: Boolean = false, fifoId: Option[Int] = None) = { new TLSlaveParameters( setName = None, address = address, resources = resources, regionType = regionType, executable = executable, nodePath = nodePath, supports = TLMasterToSlaveTransferSizes( acquireT = supportsAcquireT, acquireB = supportsAcquireB, arithmetic = supportsArithmetic, logical = supportsLogical, get = supportsGet, putFull = supportsPutFull, putPartial = supportsPutPartial, hint = supportsHint), emits = TLSlaveToMasterTransferSizes.unknownEmits, mayDenyGet = mayDenyGet, mayDenyPut = mayDenyPut, alwaysGrantsT = alwaysGrantsT, fifoId = fifoId) } def v2( address: Seq[AddressSet], nodePath: Seq[BaseNode] = Seq(), resources: Seq[Resource] = Seq(), name: Option[String] = None, regionType: RegionType.T = RegionType.GET_EFFECTS, executable: Boolean = false, fifoId: Option[Int] = None, supports: TLMasterToSlaveTransferSizes = TLMasterToSlaveTransferSizes.unknownSupports, emits: TLSlaveToMasterTransferSizes = TLSlaveToMasterTransferSizes.unknownEmits, alwaysGrantsT: Boolean = false, mayDenyGet: Boolean = false, mayDenyPut: Boolean = false) = { new TLSlaveParameters( nodePath = nodePath, resources = resources, setName = name, address = address, regionType = regionType, executable = executable, fifoId = fifoId, supports = supports, emits = emits, alwaysGrantsT = alwaysGrantsT, mayDenyGet = mayDenyGet, mayDenyPut = mayDenyPut) } } object TLManagerParameters { @deprecated("Use TLSlaveParameters.v1 instead of TLManagerParameters","") def apply( address: Seq[AddressSet], resources: Seq[Resource] = Seq(), regionType: RegionType.T = RegionType.GET_EFFECTS, executable: Boolean = false, nodePath: Seq[BaseNode] = Seq(), supportsAcquireT: TransferSizes = TransferSizes.none, supportsAcquireB: TransferSizes = TransferSizes.none, supportsArithmetic: TransferSizes = TransferSizes.none, supportsLogical: TransferSizes = TransferSizes.none, supportsGet: TransferSizes = TransferSizes.none, supportsPutFull: TransferSizes = TransferSizes.none, supportsPutPartial: TransferSizes = TransferSizes.none, supportsHint: TransferSizes = TransferSizes.none, mayDenyGet: Boolean = false, mayDenyPut: Boolean = false, alwaysGrantsT: Boolean = false, fifoId: Option[Int] = None) = TLSlaveParameters.v1( address, resources, regionType, executable, nodePath, supportsAcquireT, supportsAcquireB, supportsArithmetic, supportsLogical, supportsGet, supportsPutFull, supportsPutPartial, supportsHint, mayDenyGet, mayDenyPut, alwaysGrantsT, fifoId, ) } case class TLChannelBeatBytes(a: Option[Int], b: Option[Int], c: Option[Int], d: Option[Int]) { def members = Seq(a, b, c, d) members.collect { case Some(beatBytes) => require (isPow2(beatBytes), "Data channel width must be a power of 2") } } object TLChannelBeatBytes{ def apply(beatBytes: Int): TLChannelBeatBytes = TLChannelBeatBytes( Some(beatBytes), Some(beatBytes), Some(beatBytes), Some(beatBytes)) def apply(): TLChannelBeatBytes = TLChannelBeatBytes( None, None, None, None) } class TLSlavePortParameters private( val slaves: Seq[TLSlaveParameters], val channelBytes: TLChannelBeatBytes, val endSinkId: Int, val minLatency: Int, val responseFields: Seq[BundleFieldBase], val requestKeys: Seq[BundleKeyBase]) extends SimpleProduct { def sortedSlaves = slaves.sortBy(_.sortedAddress.head) override def canEqual(that: Any): Boolean = that.isInstanceOf[TLSlavePortParameters] override def productPrefix = "TLSlavePortParameters" def productArity: Int = 6 def productElement(n: Int): Any = n match { case 0 => slaves case 1 => channelBytes case 2 => endSinkId case 3 => minLatency case 4 => responseFields case 5 => requestKeys case _ => throw new IndexOutOfBoundsException(n.toString) } require (!slaves.isEmpty, "Slave ports must have slaves") require (endSinkId >= 0, "Sink ids cannot be negative") require (minLatency >= 0, "Minimum required latency cannot be negative") // Using this API implies you cannot handle mixed-width busses def beatBytes = { channelBytes.members.foreach { width => require (width.isDefined && width == channelBytes.a) } channelBytes.a.get } // TODO this should be deprecated def managers = slaves def requireFifo(policy: TLFIFOFixer.Policy = TLFIFOFixer.allFIFO) = { val relevant = slaves.filter(m => policy(m)) relevant.foreach { m => require(m.fifoId == relevant.head.fifoId, s"${m.name} had fifoId ${m.fifoId}, which was not homogeneous (${slaves.map(s => (s.name, s.fifoId))}) ") } } // Bounds on required sizes def maxAddress = slaves.map(_.maxAddress).max def maxTransfer = slaves.map(_.maxTransfer).max def mayDenyGet = slaves.exists(_.mayDenyGet) def mayDenyPut = slaves.exists(_.mayDenyPut) // Diplomatically determined operation sizes emitted by all outward Slaves // as opposed to emits* which generate circuitry to check which specific addresses val allEmitClaims = slaves.map(_.emits).reduce( _ intersect _) // Operation Emitted by at least one outward Slaves // as opposed to emits* which generate circuitry to check which specific addresses val anyEmitClaims = slaves.map(_.emits).reduce(_ mincover _) // Diplomatically determined operation sizes supported by all outward Slaves // as opposed to supports* which generate circuitry to check which specific addresses val allSupportClaims = slaves.map(_.supports).reduce( _ intersect _) val allSupportAcquireT = allSupportClaims.acquireT val allSupportAcquireB = allSupportClaims.acquireB val allSupportArithmetic = allSupportClaims.arithmetic val allSupportLogical = allSupportClaims.logical val allSupportGet = allSupportClaims.get val allSupportPutFull = allSupportClaims.putFull val allSupportPutPartial = allSupportClaims.putPartial val allSupportHint = allSupportClaims.hint // Operation supported by at least one outward Slaves // as opposed to supports* which generate circuitry to check which specific addresses val anySupportClaims = slaves.map(_.supports).reduce(_ mincover _) val anySupportAcquireT = !anySupportClaims.acquireT.none val anySupportAcquireB = !anySupportClaims.acquireB.none val anySupportArithmetic = !anySupportClaims.arithmetic.none val anySupportLogical = !anySupportClaims.logical.none val anySupportGet = !anySupportClaims.get.none val anySupportPutFull = !anySupportClaims.putFull.none val anySupportPutPartial = !anySupportClaims.putPartial.none val anySupportHint = !anySupportClaims.hint.none // Supporting Acquire means being routable for GrantAck require ((endSinkId == 0) == !anySupportAcquireB) // These return Option[TLSlaveParameters] for your convenience def find(address: BigInt) = slaves.find(_.address.exists(_.contains(address))) // The safe version will check the entire address def findSafe(address: UInt) = VecInit(sortedSlaves.map(_.address.map(_.contains(address)).reduce(_ || _))) // The fast version assumes the address is valid (you probably want fastProperty instead of this function) def findFast(address: UInt) = { val routingMask = AddressDecoder(slaves.map(_.address)) VecInit(sortedSlaves.map(_.address.map(_.widen(~routingMask)).distinct.map(_.contains(address)).reduce(_ || _))) } // Compute the simplest AddressSets that decide a key def fastPropertyGroup[K](p: TLSlaveParameters => K): Seq[(K, Seq[AddressSet])] = { val groups = groupByIntoSeq(sortedSlaves.map(m => (p(m), m.address)))( _._1).map { case (k, vs) => k -> vs.flatMap(_._2) } val reductionMask = AddressDecoder(groups.map(_._2)) groups.map { case (k, seq) => k -> AddressSet.unify(seq.map(_.widen(~reductionMask)).distinct) } } // Select a property def fastProperty[K, D <: Data](address: UInt, p: TLSlaveParameters => K, d: K => D): D = Mux1H(fastPropertyGroup(p).map { case (v, a) => (a.map(_.contains(address)).reduce(_||_), d(v)) }) // Note: returns the actual fifoId + 1 or 0 if None def findFifoIdFast(address: UInt) = fastProperty(address, _.fifoId.map(_+1).getOrElse(0), (i:Int) => i.U) def hasFifoIdFast(address: UInt) = fastProperty(address, _.fifoId.isDefined, (b:Boolean) => b.B) // Does this Port manage this ID/address? def containsSafe(address: UInt) = findSafe(address).reduce(_ || _) private def addressHelper( // setting safe to false indicates that all addresses are expected to be legal, which might reduce circuit complexity safe: Boolean, // member filters out the sizes being checked based on the opcode being emitted or supported member: TLSlaveParameters => TransferSizes, address: UInt, lgSize: UInt, // range provides a limit on the sizes that are expected to be evaluated, which might reduce circuit complexity range: Option[TransferSizes]): Bool = { // trim reduces circuit complexity by intersecting checked sizes with the range argument def trim(x: TransferSizes) = range.map(_.intersect(x)).getOrElse(x) // groupBy returns an unordered map, convert back to Seq and sort the result for determinism // groupByIntoSeq is turning slaves into trimmed membership sizes // We are grouping all the slaves by their transfer size where // if they support the trimmed size then // member is the type of transfer that you are looking for (What you are trying to filter on) // When you consider membership, you are trimming the sizes to only the ones that you care about // you are filtering the slaves based on both whether they support a particular opcode and the size // Grouping the slaves based on the actual transfer size range they support // intersecting the range and checking their membership // FOR SUPPORTCASES instead of returning the list of slaves, // you are returning a map from transfer size to the set of // address sets that are supported for that transfer size // find all the slaves that support a certain type of operation and then group their addresses by the supported size // for every size there could be multiple address ranges // safety is a trade off between checking between all possible addresses vs only the addresses // that are known to have supported sizes // the trade off is 'checking all addresses is a more expensive circuit but will always give you // the right answer even if you give it an illegal address' // the not safe version is a cheaper circuit but if you give it an illegal address then it might produce the wrong answer // fast presumes address legality // This groupByIntoSeq deterministically groups all address sets for which a given `member` transfer size applies. // In the resulting Map of cases, the keys are transfer sizes and the values are all address sets which emit or support that size. val supportCases = groupByIntoSeq(slaves)(m => trim(member(m))).map { case (k: TransferSizes, vs: Seq[TLSlaveParameters]) => k -> vs.flatMap(_.address) } // safe produces a circuit that compares against all possible addresses, // whereas fast presumes that the address is legal but uses an efficient address decoder val mask = if (safe) ~BigInt(0) else AddressDecoder(supportCases.map(_._2)) // Simplified creates the most concise possible representation of each cases' address sets based on the mask. val simplified = supportCases.map { case (k, seq) => k -> AddressSet.unify(seq.map(_.widen(~mask)).distinct) } simplified.map { case (s, a) => // s is a size, you are checking for this size either the size of the operation is in s // We return an or-reduction of all the cases, checking whether any contains both the dynamic size and dynamic address on the wire. ((Some(s) == range).B || s.containsLg(lgSize)) && a.map(_.contains(address)).reduce(_||_) }.foldLeft(false.B)(_||_) } def supportsAcquireTSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.acquireT, address, lgSize, range) def supportsAcquireBSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.acquireB, address, lgSize, range) def supportsArithmeticSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.arithmetic, address, lgSize, range) def supportsLogicalSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.logical, address, lgSize, range) def supportsGetSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.get, address, lgSize, range) def supportsPutFullSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.putFull, address, lgSize, range) def supportsPutPartialSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.putPartial, address, lgSize, range) def supportsHintSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.hint, address, lgSize, range) def supportsAcquireTFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.acquireT, address, lgSize, range) def supportsAcquireBFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.acquireB, address, lgSize, range) def supportsArithmeticFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.arithmetic, address, lgSize, range) def supportsLogicalFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.logical, address, lgSize, range) def supportsGetFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.get, address, lgSize, range) def supportsPutFullFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.putFull, address, lgSize, range) def supportsPutPartialFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.putPartial, address, lgSize, range) def supportsHintFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.hint, address, lgSize, range) def emitsProbeSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.probe, address, lgSize, range) def emitsArithmeticSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.arithmetic, address, lgSize, range) def emitsLogicalSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.logical, address, lgSize, range) def emitsGetSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.get, address, lgSize, range) def emitsPutFullSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.putFull, address, lgSize, range) def emitsPutPartialSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.putPartial, address, lgSize, range) def emitsHintSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.hint, address, lgSize, range) def findTreeViolation() = slaves.flatMap(_.findTreeViolation()).headOption def isTree = !slaves.exists(!_.isTree) def infoString = "Slave Port Beatbytes = " + beatBytes + "\n" + "Slave Port MinLatency = " + minLatency + "\n\n" + slaves.map(_.infoString).mkString def v1copy( managers: Seq[TLSlaveParameters] = slaves, beatBytes: Int = -1, endSinkId: Int = endSinkId, minLatency: Int = minLatency, responseFields: Seq[BundleFieldBase] = responseFields, requestKeys: Seq[BundleKeyBase] = requestKeys) = { new TLSlavePortParameters( slaves = managers, channelBytes = if (beatBytes != -1) TLChannelBeatBytes(beatBytes) else channelBytes, endSinkId = endSinkId, minLatency = minLatency, responseFields = responseFields, requestKeys = requestKeys) } def v2copy( slaves: Seq[TLSlaveParameters] = slaves, channelBytes: TLChannelBeatBytes = channelBytes, endSinkId: Int = endSinkId, minLatency: Int = minLatency, responseFields: Seq[BundleFieldBase] = responseFields, requestKeys: Seq[BundleKeyBase] = requestKeys) = { new TLSlavePortParameters( slaves = slaves, channelBytes = channelBytes, endSinkId = endSinkId, minLatency = minLatency, responseFields = responseFields, requestKeys = requestKeys) } @deprecated("Use v1copy instead of copy","") def copy( managers: Seq[TLSlaveParameters] = slaves, beatBytes: Int = -1, endSinkId: Int = endSinkId, minLatency: Int = minLatency, responseFields: Seq[BundleFieldBase] = responseFields, requestKeys: Seq[BundleKeyBase] = requestKeys) = { v1copy( managers, beatBytes, endSinkId, minLatency, responseFields, requestKeys) } } object TLSlavePortParameters { def v1( managers: Seq[TLSlaveParameters], beatBytes: Int, endSinkId: Int = 0, minLatency: Int = 0, responseFields: Seq[BundleFieldBase] = Nil, requestKeys: Seq[BundleKeyBase] = Nil) = { new TLSlavePortParameters( slaves = managers, channelBytes = TLChannelBeatBytes(beatBytes), endSinkId = endSinkId, minLatency = minLatency, responseFields = responseFields, requestKeys = requestKeys) } } object TLManagerPortParameters { @deprecated("Use TLSlavePortParameters.v1 instead of TLManagerPortParameters","") def apply( managers: Seq[TLSlaveParameters], beatBytes: Int, endSinkId: Int = 0, minLatency: Int = 0, responseFields: Seq[BundleFieldBase] = Nil, requestKeys: Seq[BundleKeyBase] = Nil) = { TLSlavePortParameters.v1( managers, beatBytes, endSinkId, minLatency, responseFields, requestKeys) } } class TLMasterParameters private( val nodePath: Seq[BaseNode], val resources: Seq[Resource], val name: String, val visibility: Seq[AddressSet], val unusedRegionTypes: Set[RegionType.T], val executesOnly: Boolean, val requestFifo: Boolean, // only a request, not a requirement. applies to A, not C. val supports: TLSlaveToMasterTransferSizes, val emits: TLMasterToSlaveTransferSizes, val neverReleasesData: Boolean, val sourceId: IdRange) extends SimpleProduct { override def canEqual(that: Any): Boolean = that.isInstanceOf[TLMasterParameters] override def productPrefix = "TLMasterParameters" // We intentionally omit nodePath for equality testing / formatting def productArity: Int = 10 def productElement(n: Int): Any = n match { case 0 => name case 1 => sourceId case 2 => resources case 3 => visibility case 4 => unusedRegionTypes case 5 => executesOnly case 6 => requestFifo case 7 => supports case 8 => emits case 9 => neverReleasesData case _ => throw new IndexOutOfBoundsException(n.toString) } require (!sourceId.isEmpty) require (!visibility.isEmpty) require (supports.putFull.contains(supports.putPartial)) // We only support these operations if we support Probe (ie: we're a cache) require (supports.probe.contains(supports.arithmetic)) require (supports.probe.contains(supports.logical)) require (supports.probe.contains(supports.get)) require (supports.probe.contains(supports.putFull)) require (supports.probe.contains(supports.putPartial)) require (supports.probe.contains(supports.hint)) visibility.combinations(2).foreach { case Seq(x,y) => require (!x.overlaps(y), s"$x and $y overlap.") } val maxTransfer = List( supports.probe.max, supports.arithmetic.max, supports.logical.max, supports.get.max, supports.putFull.max, supports.putPartial.max).max def infoString = { s"""Master Name = ${name} |visibility = ${visibility} |emits = ${emits.infoString} |sourceId = ${sourceId} | |""".stripMargin } def v1copy( name: String = name, sourceId: IdRange = sourceId, nodePath: Seq[BaseNode] = nodePath, requestFifo: Boolean = requestFifo, visibility: Seq[AddressSet] = visibility, supportsProbe: TransferSizes = supports.probe, supportsArithmetic: TransferSizes = supports.arithmetic, supportsLogical: TransferSizes = supports.logical, supportsGet: TransferSizes = supports.get, supportsPutFull: TransferSizes = supports.putFull, supportsPutPartial: TransferSizes = supports.putPartial, supportsHint: TransferSizes = supports.hint) = { new TLMasterParameters( nodePath = nodePath, resources = this.resources, name = name, visibility = visibility, unusedRegionTypes = this.unusedRegionTypes, executesOnly = this.executesOnly, requestFifo = requestFifo, supports = TLSlaveToMasterTransferSizes( probe = supportsProbe, arithmetic = supportsArithmetic, logical = supportsLogical, get = supportsGet, putFull = supportsPutFull, putPartial = supportsPutPartial, hint = supportsHint), emits = this.emits, neverReleasesData = this.neverReleasesData, sourceId = sourceId) } def v2copy( nodePath: Seq[BaseNode] = nodePath, resources: Seq[Resource] = resources, name: String = name, visibility: Seq[AddressSet] = visibility, unusedRegionTypes: Set[RegionType.T] = unusedRegionTypes, executesOnly: Boolean = executesOnly, requestFifo: Boolean = requestFifo, supports: TLSlaveToMasterTransferSizes = supports, emits: TLMasterToSlaveTransferSizes = emits, neverReleasesData: Boolean = neverReleasesData, sourceId: IdRange = sourceId) = { new TLMasterParameters( nodePath = nodePath, resources = resources, name = name, visibility = visibility, unusedRegionTypes = unusedRegionTypes, executesOnly = executesOnly, requestFifo = requestFifo, supports = supports, emits = emits, neverReleasesData = neverReleasesData, sourceId = sourceId) } @deprecated("Use v1copy instead of copy","") def copy( name: String = name, sourceId: IdRange = sourceId, nodePath: Seq[BaseNode] = nodePath, requestFifo: Boolean = requestFifo, visibility: Seq[AddressSet] = visibility, supportsProbe: TransferSizes = supports.probe, supportsArithmetic: TransferSizes = supports.arithmetic, supportsLogical: TransferSizes = supports.logical, supportsGet: TransferSizes = supports.get, supportsPutFull: TransferSizes = supports.putFull, supportsPutPartial: TransferSizes = supports.putPartial, supportsHint: TransferSizes = supports.hint) = { v1copy( name = name, sourceId = sourceId, nodePath = nodePath, requestFifo = requestFifo, visibility = visibility, supportsProbe = supportsProbe, supportsArithmetic = supportsArithmetic, supportsLogical = supportsLogical, supportsGet = supportsGet, supportsPutFull = supportsPutFull, supportsPutPartial = supportsPutPartial, supportsHint = supportsHint) } } object TLMasterParameters { def v1( name: String, sourceId: IdRange = IdRange(0,1), nodePath: Seq[BaseNode] = Seq(), requestFifo: Boolean = false, visibility: Seq[AddressSet] = Seq(AddressSet(0, ~0)), supportsProbe: TransferSizes = TransferSizes.none, supportsArithmetic: TransferSizes = TransferSizes.none, supportsLogical: TransferSizes = TransferSizes.none, supportsGet: TransferSizes = TransferSizes.none, supportsPutFull: TransferSizes = TransferSizes.none, supportsPutPartial: TransferSizes = TransferSizes.none, supportsHint: TransferSizes = TransferSizes.none) = { new TLMasterParameters( nodePath = nodePath, resources = Nil, name = name, visibility = visibility, unusedRegionTypes = Set(), executesOnly = false, requestFifo = requestFifo, supports = TLSlaveToMasterTransferSizes( probe = supportsProbe, arithmetic = supportsArithmetic, logical = supportsLogical, get = supportsGet, putFull = supportsPutFull, putPartial = supportsPutPartial, hint = supportsHint), emits = TLMasterToSlaveTransferSizes.unknownEmits, neverReleasesData = false, sourceId = sourceId) } def v2( nodePath: Seq[BaseNode] = Seq(), resources: Seq[Resource] = Nil, name: String, visibility: Seq[AddressSet] = Seq(AddressSet(0, ~0)), unusedRegionTypes: Set[RegionType.T] = Set(), executesOnly: Boolean = false, requestFifo: Boolean = false, supports: TLSlaveToMasterTransferSizes = TLSlaveToMasterTransferSizes.unknownSupports, emits: TLMasterToSlaveTransferSizes = TLMasterToSlaveTransferSizes.unknownEmits, neverReleasesData: Boolean = false, sourceId: IdRange = IdRange(0,1)) = { new TLMasterParameters( nodePath = nodePath, resources = resources, name = name, visibility = visibility, unusedRegionTypes = unusedRegionTypes, executesOnly = executesOnly, requestFifo = requestFifo, supports = supports, emits = emits, neverReleasesData = neverReleasesData, sourceId = sourceId) } } object TLClientParameters { @deprecated("Use TLMasterParameters.v1 instead of TLClientParameters","") def apply( name: String, sourceId: IdRange = IdRange(0,1), nodePath: Seq[BaseNode] = Seq(), requestFifo: Boolean = false, visibility: Seq[AddressSet] = Seq(AddressSet.everything), supportsProbe: TransferSizes = TransferSizes.none, supportsArithmetic: TransferSizes = TransferSizes.none, supportsLogical: TransferSizes = TransferSizes.none, supportsGet: TransferSizes = TransferSizes.none, supportsPutFull: TransferSizes = TransferSizes.none, supportsPutPartial: TransferSizes = TransferSizes.none, supportsHint: TransferSizes = TransferSizes.none) = { TLMasterParameters.v1( name = name, sourceId = sourceId, nodePath = nodePath, requestFifo = requestFifo, visibility = visibility, supportsProbe = supportsProbe, supportsArithmetic = supportsArithmetic, supportsLogical = supportsLogical, supportsGet = supportsGet, supportsPutFull = supportsPutFull, supportsPutPartial = supportsPutPartial, supportsHint = supportsHint) } } class TLMasterPortParameters private( val masters: Seq[TLMasterParameters], val channelBytes: TLChannelBeatBytes, val minLatency: Int, val echoFields: Seq[BundleFieldBase], val requestFields: Seq[BundleFieldBase], val responseKeys: Seq[BundleKeyBase]) extends SimpleProduct { override def canEqual(that: Any): Boolean = that.isInstanceOf[TLMasterPortParameters] override def productPrefix = "TLMasterPortParameters" def productArity: Int = 6 def productElement(n: Int): Any = n match { case 0 => masters case 1 => channelBytes case 2 => minLatency case 3 => echoFields case 4 => requestFields case 5 => responseKeys case _ => throw new IndexOutOfBoundsException(n.toString) } require (!masters.isEmpty) require (minLatency >= 0) def clients = masters // Require disjoint ranges for Ids IdRange.overlaps(masters.map(_.sourceId)).foreach { case (x, y) => require (!x.overlaps(y), s"TLClientParameters.sourceId ${x} overlaps ${y}") } // Bounds on required sizes def endSourceId = masters.map(_.sourceId.end).max def maxTransfer = masters.map(_.maxTransfer).max // The unused sources < endSourceId def unusedSources: Seq[Int] = { val usedSources = masters.map(_.sourceId).sortBy(_.start) ((Seq(0) ++ usedSources.map(_.end)) zip usedSources.map(_.start)) flatMap { case (end, start) => end until start } } // Diplomatically determined operation sizes emitted by all inward Masters // as opposed to emits* which generate circuitry to check which specific addresses val allEmitClaims = masters.map(_.emits).reduce( _ intersect _) // Diplomatically determined operation sizes Emitted by at least one inward Masters // as opposed to emits* which generate circuitry to check which specific addresses val anyEmitClaims = masters.map(_.emits).reduce(_ mincover _) // Diplomatically determined operation sizes supported by all inward Masters // as opposed to supports* which generate circuitry to check which specific addresses val allSupportProbe = masters.map(_.supports.probe) .reduce(_ intersect _) val allSupportArithmetic = masters.map(_.supports.arithmetic).reduce(_ intersect _) val allSupportLogical = masters.map(_.supports.logical) .reduce(_ intersect _) val allSupportGet = masters.map(_.supports.get) .reduce(_ intersect _) val allSupportPutFull = masters.map(_.supports.putFull) .reduce(_ intersect _) val allSupportPutPartial = masters.map(_.supports.putPartial).reduce(_ intersect _) val allSupportHint = masters.map(_.supports.hint) .reduce(_ intersect _) // Diplomatically determined operation sizes supported by at least one master // as opposed to supports* which generate circuitry to check which specific addresses val anySupportProbe = masters.map(!_.supports.probe.none) .reduce(_ || _) val anySupportArithmetic = masters.map(!_.supports.arithmetic.none).reduce(_ || _) val anySupportLogical = masters.map(!_.supports.logical.none) .reduce(_ || _) val anySupportGet = masters.map(!_.supports.get.none) .reduce(_ || _) val anySupportPutFull = masters.map(!_.supports.putFull.none) .reduce(_ || _) val anySupportPutPartial = masters.map(!_.supports.putPartial.none).reduce(_ || _) val anySupportHint = masters.map(!_.supports.hint.none) .reduce(_ || _) // These return Option[TLMasterParameters] for your convenience def find(id: Int) = masters.find(_.sourceId.contains(id)) // Synthesizable lookup methods def find(id: UInt) = VecInit(masters.map(_.sourceId.contains(id))) def contains(id: UInt) = find(id).reduce(_ || _) def requestFifo(id: UInt) = Mux1H(find(id), masters.map(c => c.requestFifo.B)) // Available during RTL runtime, checks to see if (id, size) is supported by the master's (client's) diplomatic parameters private def sourceIdHelper(member: TLMasterParameters => TransferSizes)(id: UInt, lgSize: UInt) = { val allSame = masters.map(member(_) == member(masters(0))).reduce(_ && _) // this if statement is a coarse generalization of the groupBy in the sourceIdHelper2 version; // the case where there is only one group. if (allSame) member(masters(0)).containsLg(lgSize) else { // Find the master associated with ID and returns whether that particular master is able to receive transaction of lgSize Mux1H(find(id), masters.map(member(_).containsLg(lgSize))) } } // Check for support of a given operation at a specific id val supportsProbe = sourceIdHelper(_.supports.probe) _ val supportsArithmetic = sourceIdHelper(_.supports.arithmetic) _ val supportsLogical = sourceIdHelper(_.supports.logical) _ val supportsGet = sourceIdHelper(_.supports.get) _ val supportsPutFull = sourceIdHelper(_.supports.putFull) _ val supportsPutPartial = sourceIdHelper(_.supports.putPartial) _ val supportsHint = sourceIdHelper(_.supports.hint) _ // TODO: Merge sourceIdHelper2 with sourceIdHelper private def sourceIdHelper2( member: TLMasterParameters => TransferSizes, sourceId: UInt, lgSize: UInt): Bool = { // Because sourceIds are uniquely owned by each master, we use them to group the // cases that have to be checked. val emitCases = groupByIntoSeq(masters)(m => member(m)).map { case (k, vs) => k -> vs.map(_.sourceId) } emitCases.map { case (s, a) => (s.containsLg(lgSize)) && a.map(_.contains(sourceId)).reduce(_||_) }.foldLeft(false.B)(_||_) } // Check for emit of a given operation at a specific id def emitsAcquireT (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.acquireT, sourceId, lgSize) def emitsAcquireB (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.acquireB, sourceId, lgSize) def emitsArithmetic(sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.arithmetic, sourceId, lgSize) def emitsLogical (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.logical, sourceId, lgSize) def emitsGet (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.get, sourceId, lgSize) def emitsPutFull (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.putFull, sourceId, lgSize) def emitsPutPartial(sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.putPartial, sourceId, lgSize) def emitsHint (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.hint, sourceId, lgSize) def infoString = masters.map(_.infoString).mkString def v1copy( clients: Seq[TLMasterParameters] = masters, minLatency: Int = minLatency, echoFields: Seq[BundleFieldBase] = echoFields, requestFields: Seq[BundleFieldBase] = requestFields, responseKeys: Seq[BundleKeyBase] = responseKeys) = { new TLMasterPortParameters( masters = clients, channelBytes = channelBytes, minLatency = minLatency, echoFields = echoFields, requestFields = requestFields, responseKeys = responseKeys) } def v2copy( masters: Seq[TLMasterParameters] = masters, channelBytes: TLChannelBeatBytes = channelBytes, minLatency: Int = minLatency, echoFields: Seq[BundleFieldBase] = echoFields, requestFields: Seq[BundleFieldBase] = requestFields, responseKeys: Seq[BundleKeyBase] = responseKeys) = { new TLMasterPortParameters( masters = masters, channelBytes = channelBytes, minLatency = minLatency, echoFields = echoFields, requestFields = requestFields, responseKeys = responseKeys) } @deprecated("Use v1copy instead of copy","") def copy( clients: Seq[TLMasterParameters] = masters, minLatency: Int = minLatency, echoFields: Seq[BundleFieldBase] = echoFields, requestFields: Seq[BundleFieldBase] = requestFields, responseKeys: Seq[BundleKeyBase] = responseKeys) = { v1copy( clients, minLatency, echoFields, requestFields, responseKeys) } } object TLClientPortParameters { @deprecated("Use TLMasterPortParameters.v1 instead of TLClientPortParameters","") def apply( clients: Seq[TLMasterParameters], minLatency: Int = 0, echoFields: Seq[BundleFieldBase] = Nil, requestFields: Seq[BundleFieldBase] = Nil, responseKeys: Seq[BundleKeyBase] = Nil) = { TLMasterPortParameters.v1( clients, minLatency, echoFields, requestFields, responseKeys) } } object TLMasterPortParameters { def v1( clients: Seq[TLMasterParameters], minLatency: Int = 0, echoFields: Seq[BundleFieldBase] = Nil, requestFields: Seq[BundleFieldBase] = Nil, responseKeys: Seq[BundleKeyBase] = Nil) = { new TLMasterPortParameters( masters = clients, channelBytes = TLChannelBeatBytes(), minLatency = minLatency, echoFields = echoFields, requestFields = requestFields, responseKeys = responseKeys) } def v2( masters: Seq[TLMasterParameters], channelBytes: TLChannelBeatBytes = TLChannelBeatBytes(), minLatency: Int = 0, echoFields: Seq[BundleFieldBase] = Nil, requestFields: Seq[BundleFieldBase] = Nil, responseKeys: Seq[BundleKeyBase] = Nil) = { new TLMasterPortParameters( masters = masters, channelBytes = channelBytes, minLatency = minLatency, echoFields = echoFields, requestFields = requestFields, responseKeys = responseKeys) } } case class TLBundleParameters( addressBits: Int, dataBits: Int, sourceBits: Int, sinkBits: Int, sizeBits: Int, echoFields: Seq[BundleFieldBase], requestFields: Seq[BundleFieldBase], responseFields: Seq[BundleFieldBase], hasBCE: Boolean) { // Chisel has issues with 0-width wires require (addressBits >= 1) require (dataBits >= 8) require (sourceBits >= 1) require (sinkBits >= 1) require (sizeBits >= 1) require (isPow2(dataBits)) echoFields.foreach { f => require (f.key.isControl, s"${f} is not a legal echo field") } val addrLoBits = log2Up(dataBits/8) // Used to uniquify bus IP names def shortName = s"a${addressBits}d${dataBits}s${sourceBits}k${sinkBits}z${sizeBits}" + (if (hasBCE) "c" else "u") def union(x: TLBundleParameters) = TLBundleParameters( max(addressBits, x.addressBits), max(dataBits, x.dataBits), max(sourceBits, x.sourceBits), max(sinkBits, x.sinkBits), max(sizeBits, x.sizeBits), echoFields = BundleField.union(echoFields ++ x.echoFields), requestFields = BundleField.union(requestFields ++ x.requestFields), responseFields = BundleField.union(responseFields ++ x.responseFields), hasBCE || x.hasBCE) } object TLBundleParameters { val emptyBundleParams = TLBundleParameters( addressBits = 1, dataBits = 8, sourceBits = 1, sinkBits = 1, sizeBits = 1, echoFields = Nil, requestFields = Nil, responseFields = Nil, hasBCE = false) def union(x: Seq[TLBundleParameters]) = x.foldLeft(emptyBundleParams)((x,y) => x.union(y)) def apply(master: TLMasterPortParameters, slave: TLSlavePortParameters) = new TLBundleParameters( addressBits = log2Up(slave.maxAddress + 1), dataBits = slave.beatBytes * 8, sourceBits = log2Up(master.endSourceId), sinkBits = log2Up(slave.endSinkId), sizeBits = log2Up(log2Ceil(max(master.maxTransfer, slave.maxTransfer))+1), echoFields = master.echoFields, requestFields = BundleField.accept(master.requestFields, slave.requestKeys), responseFields = BundleField.accept(slave.responseFields, master.responseKeys), hasBCE = master.anySupportProbe && slave.anySupportAcquireB) } case class TLEdgeParameters( master: TLMasterPortParameters, slave: TLSlavePortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge { // legacy names: def manager = slave def client = master val maxTransfer = max(master.maxTransfer, slave.maxTransfer) val maxLgSize = log2Ceil(maxTransfer) // Sanity check the link... require (maxTransfer >= slave.beatBytes, s"Link's max transfer (${maxTransfer}) < ${slave.slaves.map(_.name)}'s beatBytes (${slave.beatBytes})") def diplomaticClaimsMasterToSlave = master.anyEmitClaims.intersect(slave.anySupportClaims) val bundle = TLBundleParameters(master, slave) def formatEdge = master.infoString + "\n" + slave.infoString } case class TLCreditedDelay( a: CreditedDelay, b: CreditedDelay, c: CreditedDelay, d: CreditedDelay, e: CreditedDelay) { def + (that: TLCreditedDelay): TLCreditedDelay = TLCreditedDelay( a = a + that.a, b = b + that.b, c = c + that.c, d = d + that.d, e = e + that.e) override def toString = s"(${a}, ${b}, ${c}, ${d}, ${e})" } object TLCreditedDelay { def apply(delay: CreditedDelay): TLCreditedDelay = apply(delay, delay.flip, delay, delay.flip, delay) } case class TLCreditedManagerPortParameters(delay: TLCreditedDelay, base: TLSlavePortParameters) {def infoString = base.infoString} case class TLCreditedClientPortParameters(delay: TLCreditedDelay, base: TLMasterPortParameters) {def infoString = base.infoString} case class TLCreditedEdgeParameters(client: TLCreditedClientPortParameters, manager: TLCreditedManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge { val delay = client.delay + manager.delay val bundle = TLBundleParameters(client.base, manager.base) def formatEdge = client.infoString + "\n" + manager.infoString } case class TLAsyncManagerPortParameters(async: AsyncQueueParams, base: TLSlavePortParameters) {def infoString = base.infoString} case class TLAsyncClientPortParameters(base: TLMasterPortParameters) {def infoString = base.infoString} case class TLAsyncBundleParameters(async: AsyncQueueParams, base: TLBundleParameters) case class TLAsyncEdgeParameters(client: TLAsyncClientPortParameters, manager: TLAsyncManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge { val bundle = TLAsyncBundleParameters(manager.async, TLBundleParameters(client.base, manager.base)) def formatEdge = client.infoString + "\n" + manager.infoString } case class TLRationalManagerPortParameters(direction: RationalDirection, base: TLSlavePortParameters) {def infoString = base.infoString} case class TLRationalClientPortParameters(base: TLMasterPortParameters) {def infoString = base.infoString} case class TLRationalEdgeParameters(client: TLRationalClientPortParameters, manager: TLRationalManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge { val bundle = TLBundleParameters(client.base, manager.base) def formatEdge = client.infoString + "\n" + manager.infoString } // To be unified, devices must agree on all of these terms case class ManagerUnificationKey( resources: Seq[Resource], regionType: RegionType.T, executable: Boolean, supportsAcquireT: TransferSizes, supportsAcquireB: TransferSizes, supportsArithmetic: TransferSizes, supportsLogical: TransferSizes, supportsGet: TransferSizes, supportsPutFull: TransferSizes, supportsPutPartial: TransferSizes, supportsHint: TransferSizes) object ManagerUnificationKey { def apply(x: TLSlaveParameters): ManagerUnificationKey = ManagerUnificationKey( resources = x.resources, regionType = x.regionType, executable = x.executable, supportsAcquireT = x.supportsAcquireT, supportsAcquireB = x.supportsAcquireB, supportsArithmetic = x.supportsArithmetic, supportsLogical = x.supportsLogical, supportsGet = x.supportsGet, supportsPutFull = x.supportsPutFull, supportsPutPartial = x.supportsPutPartial, supportsHint = x.supportsHint) } object ManagerUnification { def apply(slaves: Seq[TLSlaveParameters]): List[TLSlaveParameters] = { slaves.groupBy(ManagerUnificationKey.apply).values.map { seq => val agree = seq.forall(_.fifoId == seq.head.fifoId) seq(0).v1copy( address = AddressSet.unify(seq.flatMap(_.address)), fifoId = if (agree) seq(0).fifoId else None) }.toList } } case class TLBufferParams( a: BufferParams = BufferParams.none, b: BufferParams = BufferParams.none, c: BufferParams = BufferParams.none, d: BufferParams = BufferParams.none, e: BufferParams = BufferParams.none ) extends DirectedBuffers[TLBufferParams] { def copyIn(x: BufferParams) = this.copy(b = x, d = x) def copyOut(x: BufferParams) = this.copy(a = x, c = x, e = x) def copyInOut(x: BufferParams) = this.copyIn(x).copyOut(x) } /** Pretty printing of TL source id maps */ class TLSourceIdMap(tl: TLMasterPortParameters) extends IdMap[TLSourceIdMapEntry] { private val tlDigits = String.valueOf(tl.endSourceId-1).length() protected val fmt = s"\t[%${tlDigits}d, %${tlDigits}d) %s%s%s" private val sorted = tl.masters.sortBy(_.sourceId) val mapping: Seq[TLSourceIdMapEntry] = sorted.map { case c => TLSourceIdMapEntry(c.sourceId, c.name, c.supports.probe, c.requestFifo) } } case class TLSourceIdMapEntry(tlId: IdRange, name: String, isCache: Boolean, requestFifo: Boolean) extends IdMapEntry { val from = tlId val to = tlId val maxTransactionsInFlight = Some(tlId.size) } File Edges.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.util._ class TLEdge( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdgeParameters(client, manager, params, sourceInfo) { def isAligned(address: UInt, lgSize: UInt): Bool = { if (maxLgSize == 0) true.B else { val mask = UIntToOH1(lgSize, maxLgSize) (address & mask) === 0.U } } def mask(address: UInt, lgSize: UInt): UInt = MaskGen(address, lgSize, manager.beatBytes) def staticHasData(bundle: TLChannel): Option[Boolean] = { bundle match { case _:TLBundleA => { // Do there exist A messages with Data? val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial // Do there exist A messages without Data? val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint // Statically optimize the case where hasData is a constant if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None } case _:TLBundleB => { // Do there exist B messages with Data? val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial // Do there exist B messages without Data? val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint // Statically optimize the case where hasData is a constant if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None } case _:TLBundleC => { // Do there eixst C messages with Data? val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe // Do there exist C messages without Data? val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None } case _:TLBundleD => { // Do there eixst D messages with Data? val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB // Do there exist D messages without Data? val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None } case _:TLBundleE => Some(false) } } def isRequest(x: TLChannel): Bool = { x match { case a: TLBundleA => true.B case b: TLBundleB => true.B case c: TLBundleC => c.opcode(2) && c.opcode(1) // opcode === TLMessages.Release || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(2) && !d.opcode(1) // opcode === TLMessages.Grant || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } } def isResponse(x: TLChannel): Bool = { x match { case a: TLBundleA => false.B case b: TLBundleB => false.B case c: TLBundleC => !c.opcode(2) || !c.opcode(1) // opcode =/= TLMessages.Release && // opcode =/= TLMessages.ReleaseData case d: TLBundleD => true.B // Grant isResponse + isRequest case e: TLBundleE => true.B } } def hasData(x: TLChannel): Bool = { val opdata = x match { case a: TLBundleA => !a.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case b: TLBundleB => !b.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case c: TLBundleC => c.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.ProbeAckData || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } staticHasData(x).map(_.B).getOrElse(opdata) } def opcode(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.opcode case b: TLBundleB => b.opcode case c: TLBundleC => c.opcode case d: TLBundleD => d.opcode } } def param(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.param case b: TLBundleB => b.param case c: TLBundleC => c.param case d: TLBundleD => d.param } } def size(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.size case b: TLBundleB => b.size case c: TLBundleC => c.size case d: TLBundleD => d.size } } def data(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.data case b: TLBundleB => b.data case c: TLBundleC => c.data case d: TLBundleD => d.data } } def corrupt(x: TLDataChannel): Bool = { x match { case a: TLBundleA => a.corrupt case b: TLBundleB => b.corrupt case c: TLBundleC => c.corrupt case d: TLBundleD => d.corrupt } } def mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.mask case b: TLBundleB => b.mask case c: TLBundleC => mask(c.address, c.size) } } def full_mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => mask(a.address, a.size) case b: TLBundleB => mask(b.address, b.size) case c: TLBundleC => mask(c.address, c.size) } } def address(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.address case b: TLBundleB => b.address case c: TLBundleC => c.address } } def source(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.source case b: TLBundleB => b.source case c: TLBundleC => c.source case d: TLBundleD => d.source } } def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes) def addr_lo(x: UInt): UInt = if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0) def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x)) def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x)) def numBeats(x: TLChannel): UInt = { x match { case _: TLBundleE => 1.U case bundle: TLDataChannel => { val hasData = this.hasData(bundle) val size = this.size(bundle) val cutoff = log2Ceil(manager.beatBytes) val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U val decode = UIntToOH(size, maxLgSize+1) >> cutoff Mux(hasData, decode | small.asUInt, 1.U) } } } def numBeats1(x: TLChannel): UInt = { x match { case _: TLBundleE => 0.U case bundle: TLDataChannel => { if (maxLgSize == 0) { 0.U } else { val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes) Mux(hasData(bundle), decode, 0.U) } } } } def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val beats1 = numBeats1(bits) val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W)) val counter1 = counter - 1.U val first = counter === 0.U val last = counter === 1.U || beats1 === 0.U val done = last && fire val count = (beats1 & ~counter1) when (fire) { counter := Mux(first, beats1, counter1) } (first, last, done, count) } def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1 def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire) def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid) def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2 def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire) def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid) def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3 def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire) def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid) def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3) } def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire) def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid) def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4) } def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire) def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid) def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes)) } def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire) def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid) // Does the request need T permissions to be executed? def needT(a: TLBundleA): Bool = { val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLPermissions.NtoB -> false.B, TLPermissions.NtoT -> true.B, TLPermissions.BtoT -> true.B)) MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array( TLMessages.PutFullData -> true.B, TLMessages.PutPartialData -> true.B, TLMessages.ArithmeticData -> true.B, TLMessages.LogicalData -> true.B, TLMessages.Get -> false.B, TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLHints.PREFETCH_READ -> false.B, TLHints.PREFETCH_WRITE -> true.B)), TLMessages.AcquireBlock -> acq_needT, TLMessages.AcquirePerm -> acq_needT)) } // This is a very expensive circuit; use only if you really mean it! def inFlight(x: TLBundle): (UInt, UInt) = { val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W)) val bce = manager.anySupportAcquireB && client.anySupportProbe val (a_first, a_last, _) = firstlast(x.a) val (b_first, b_last, _) = firstlast(x.b) val (c_first, c_last, _) = firstlast(x.c) val (d_first, d_last, _) = firstlast(x.d) val (e_first, e_last, _) = firstlast(x.e) val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits)) val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits)) val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits)) val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits)) val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits)) val a_inc = x.a.fire && a_first && a_request val b_inc = x.b.fire && b_first && b_request val c_inc = x.c.fire && c_first && c_request val d_inc = x.d.fire && d_first && d_request val e_inc = x.e.fire && e_first && e_request val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil)) val a_dec = x.a.fire && a_last && a_response val b_dec = x.b.fire && b_last && b_response val c_dec = x.c.fire && c_last && c_response val d_dec = x.d.fire && d_last && d_response val e_dec = x.e.fire && e_last && e_response val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil)) val next_flight = flight + PopCount(inc) - PopCount(dec) flight := next_flight (flight, next_flight) } def prettySourceMapping(context: String): String = { s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n" } } class TLEdgeOut( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { // Transfers def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquireBlock a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquirePerm a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.Release c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ReleaseData c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) = Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B) def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAck c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions, data) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAckData c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B) def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink) def GrantAck(toSink: UInt): TLBundleE = { val e = Wire(new TLBundleE(bundle)) e.sink := toSink e } // Accesses def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsGetFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Get a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutFullFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutFullData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, mask, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutPartialFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutPartialData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask a.data := data a.corrupt := corrupt (legal, a) } def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = { require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsArithmeticFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.ArithmeticData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsLogicalFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.LogicalData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = { require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsHintFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Hint a.param := param a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data) def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAckData c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size) def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.HintAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } } class TLEdgeIn( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = { val todo = x.filter(!_.isEmpty) val heads = todo.map(_.head) val tails = todo.map(_.tail) if (todo.isEmpty) Nil else { heads +: myTranspose(tails) } } // Transfers def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = { require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}") val legal = client.supportsProbe(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Probe b.param := capPermissions b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.Grant d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.GrantData d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B) def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.ReleaseAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } // Accesses def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = { require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsGet(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Get b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsPutFull(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutFullData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, mask, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsPutPartial(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutPartialData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask b.data := data b.corrupt := corrupt (legal, b) } def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsArithmetic(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.ArithmeticData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsLogical(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.LogicalData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = { require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsHint(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Hint b.param := param b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size) def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied) def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B) def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data) def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAckData d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B) def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied) def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B) def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.HintAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } }
module TLMonitor_51( // @[Monitor.scala:36:7] input clock, // @[Monitor.scala:36:7] input reset, // @[Monitor.scala:36:7] input io_in_a_ready, // @[Monitor.scala:20:14] input io_in_a_valid, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14] input [8:0] io_in_a_bits_address, // @[Monitor.scala:20:14] input [31:0] io_in_a_bits_data, // @[Monitor.scala:20:14] input io_in_d_ready, // @[Monitor.scala:20:14] input io_in_d_valid, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14] input [1:0] io_in_d_bits_param, // @[Monitor.scala:20:14] input [1:0] io_in_d_bits_size, // @[Monitor.scala:20:14] input io_in_d_bits_source, // @[Monitor.scala:20:14] input io_in_d_bits_sink, // @[Monitor.scala:20:14] input io_in_d_bits_denied, // @[Monitor.scala:20:14] input [31:0] io_in_d_bits_data, // @[Monitor.scala:20:14] input io_in_d_bits_corrupt // @[Monitor.scala:20:14] ); wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11] wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11] wire io_in_a_ready_0 = io_in_a_ready; // @[Monitor.scala:36:7] wire io_in_a_valid_0 = io_in_a_valid; // @[Monitor.scala:36:7] wire [2:0] io_in_a_bits_opcode_0 = io_in_a_bits_opcode; // @[Monitor.scala:36:7] wire [8:0] io_in_a_bits_address_0 = io_in_a_bits_address; // @[Monitor.scala:36:7] wire [31:0] io_in_a_bits_data_0 = io_in_a_bits_data; // @[Monitor.scala:36:7] wire io_in_d_ready_0 = io_in_d_ready; // @[Monitor.scala:36:7] wire io_in_d_valid_0 = io_in_d_valid; // @[Monitor.scala:36:7] wire [2:0] io_in_d_bits_opcode_0 = io_in_d_bits_opcode; // @[Monitor.scala:36:7] wire [1:0] io_in_d_bits_param_0 = io_in_d_bits_param; // @[Monitor.scala:36:7] wire [1:0] io_in_d_bits_size_0 = io_in_d_bits_size; // @[Monitor.scala:36:7] wire io_in_d_bits_source_0 = io_in_d_bits_source; // @[Monitor.scala:36:7] wire io_in_d_bits_sink_0 = io_in_d_bits_sink; // @[Monitor.scala:36:7] wire io_in_d_bits_denied_0 = io_in_d_bits_denied; // @[Monitor.scala:36:7] wire [31:0] io_in_d_bits_data_0 = io_in_d_bits_data; // @[Monitor.scala:36:7] wire io_in_d_bits_corrupt_0 = io_in_d_bits_corrupt; // @[Monitor.scala:36:7] wire io_in_a_bits_source = 1'h0; // @[Monitor.scala:36:7] wire io_in_a_bits_corrupt = 1'h0; // @[Monitor.scala:36:7] wire mask_sizeOH_shiftAmount = 1'h0; // @[OneHot.scala:64:49] wire mask_sub_size = 1'h0; // @[Misc.scala:209:26] wire _mask_sub_acc_T = 1'h0; // @[Misc.scala:215:38] wire _mask_sub_acc_T_1 = 1'h0; // @[Misc.scala:215:38] wire sink_ok = 1'h0; // @[Monitor.scala:309:31] wire a_first_beats1_decode = 1'h0; // @[Edges.scala:220:59] wire a_first_beats1 = 1'h0; // @[Edges.scala:221:14] wire a_first_count = 1'h0; // @[Edges.scala:234:25] wire d_first_beats1_decode = 1'h0; // @[Edges.scala:220:59] wire d_first_beats1 = 1'h0; // @[Edges.scala:221:14] wire d_first_count = 1'h0; // @[Edges.scala:234:25] wire a_first_beats1_decode_1 = 1'h0; // @[Edges.scala:220:59] wire a_first_beats1_1 = 1'h0; // @[Edges.scala:221:14] wire a_first_count_1 = 1'h0; // @[Edges.scala:234:25] wire d_first_beats1_decode_1 = 1'h0; // @[Edges.scala:220:59] wire d_first_beats1_1 = 1'h0; // @[Edges.scala:221:14] wire d_first_count_1 = 1'h0; // @[Edges.scala:234:25] wire _c_first_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_2_bits_source = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_3_bits_source = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_first_T = 1'h0; // @[Decoupled.scala:51:35] wire c_first_beats1_decode = 1'h0; // @[Edges.scala:220:59] wire c_first_beats1_opdata = 1'h0; // @[Edges.scala:102:36] wire c_first_beats1 = 1'h0; // @[Edges.scala:221:14] wire _c_first_last_T = 1'h0; // @[Edges.scala:232:25] wire c_first_done = 1'h0; // @[Edges.scala:233:22] wire _c_first_count_T = 1'h0; // @[Edges.scala:234:27] wire c_first_count = 1'h0; // @[Edges.scala:234:25] wire _c_first_counter_T = 1'h0; // @[Edges.scala:236:21] wire d_first_beats1_decode_2 = 1'h0; // @[Edges.scala:220:59] wire d_first_beats1_2 = 1'h0; // @[Edges.scala:221:14] wire d_first_count_2 = 1'h0; // @[Edges.scala:234:25] wire c_set = 1'h0; // @[Monitor.scala:738:34] wire c_set_wo_ready = 1'h0; // @[Monitor.scala:739:34] wire _c_set_wo_ready_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_set_wo_ready_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_set_wo_ready_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61] wire _c_set_wo_ready_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_T = 1'h0; // @[Monitor.scala:772:47] wire _c_probe_ack_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_2_bits_source = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_3_bits_source = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_T_1 = 1'h0; // @[Monitor.scala:772:95] wire c_probe_ack = 1'h0; // @[Monitor.scala:772:71] wire _same_cycle_resp_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_bits_source = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_T_3 = 1'h0; // @[Monitor.scala:795:44] wire _same_cycle_resp_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_2_bits_source = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_3_bits_source = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_T_4 = 1'h0; // @[Edges.scala:68:36] wire _same_cycle_resp_T_5 = 1'h0; // @[Edges.scala:68:51] wire _same_cycle_resp_T_6 = 1'h0; // @[Edges.scala:68:40] wire _same_cycle_resp_T_7 = 1'h0; // @[Monitor.scala:795:55] wire _same_cycle_resp_WIRE_4_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_4_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_4_bits_source = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_4_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_5_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_5_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_5_bits_source = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_5_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire same_cycle_resp_1 = 1'h0; // @[Monitor.scala:795:88] wire _source_ok_T = 1'h1; // @[Parameters.scala:46:9] wire _source_ok_WIRE_0 = 1'h1; // @[Parameters.scala:1138:31] wire mask_sub_sub_0_1 = 1'h1; // @[Misc.scala:206:21] wire mask_sub_0_1 = 1'h1; // @[Misc.scala:215:29] wire mask_sub_1_1 = 1'h1; // @[Misc.scala:215:29] wire mask_size = 1'h1; // @[Misc.scala:209:26] wire mask_acc = 1'h1; // @[Misc.scala:215:29] wire mask_acc_1 = 1'h1; // @[Misc.scala:215:29] wire mask_acc_2 = 1'h1; // @[Misc.scala:215:29] wire mask_acc_3 = 1'h1; // @[Misc.scala:215:29] wire _a_first_last_T_1 = 1'h1; // @[Edges.scala:232:43] wire a_first_last = 1'h1; // @[Edges.scala:232:33] wire _d_first_last_T_1 = 1'h1; // @[Edges.scala:232:43] wire d_first_last = 1'h1; // @[Edges.scala:232:33] wire _a_first_last_T_3 = 1'h1; // @[Edges.scala:232:43] wire a_first_last_1 = 1'h1; // @[Edges.scala:232:33] wire _d_first_last_T_3 = 1'h1; // @[Edges.scala:232:43] wire d_first_last_1 = 1'h1; // @[Edges.scala:232:33] wire c_first_counter1 = 1'h1; // @[Edges.scala:230:28] wire c_first = 1'h1; // @[Edges.scala:231:25] wire _c_first_last_T_1 = 1'h1; // @[Edges.scala:232:43] wire c_first_last = 1'h1; // @[Edges.scala:232:33] wire _d_first_last_T_5 = 1'h1; // @[Edges.scala:232:43] wire d_first_last_2 = 1'h1; // @[Edges.scala:232:33] wire [1:0] is_aligned_mask = 2'h3; // @[package.scala:243:46] wire [1:0] mask_lo = 2'h3; // @[Misc.scala:222:10] wire [1:0] mask_hi = 2'h3; // @[Misc.scala:222:10] wire [1:0] _a_first_beats1_decode_T_2 = 2'h3; // @[package.scala:243:46] wire [1:0] _a_first_beats1_decode_T_5 = 2'h3; // @[package.scala:243:46] wire [1:0] _c_first_beats1_decode_T_1 = 2'h3; // @[package.scala:243:76] wire [1:0] _c_first_counter1_T = 2'h3; // @[Edges.scala:230:28] wire [1:0] io_in_a_bits_size = 2'h2; // @[Monitor.scala:36:7] wire [1:0] _mask_sizeOH_T = 2'h2; // @[Misc.scala:202:34] wire [2:0] io_in_a_bits_param = 3'h0; // @[Monitor.scala:36:7] wire [2:0] responseMap_0 = 3'h0; // @[Monitor.scala:643:42] wire [2:0] responseMap_1 = 3'h0; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_0 = 3'h0; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_1 = 3'h0; // @[Monitor.scala:644:42] wire [2:0] _c_first_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] c_sizes_set_interm = 3'h0; // @[Monitor.scala:755:40] wire [2:0] _c_set_wo_ready_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_wo_ready_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_T = 3'h0; // @[Monitor.scala:766:51] wire [2:0] _c_opcodes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_4_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_4_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_5_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_5_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [3:0] io_in_a_bits_mask = 4'hF; // @[Monitor.scala:36:7] wire [3:0] mask = 4'hF; // @[Misc.scala:222:10] wire [31:0] _c_first_WIRE_bits_data = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_first_WIRE_1_bits_data = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_first_WIRE_2_bits_data = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_first_WIRE_3_bits_data = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_set_wo_ready_WIRE_bits_data = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_set_wo_ready_WIRE_1_bits_data = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_set_WIRE_bits_data = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_set_WIRE_1_bits_data = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_opcodes_set_interm_WIRE_bits_data = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_opcodes_set_interm_WIRE_1_bits_data = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_sizes_set_interm_WIRE_bits_data = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_sizes_set_interm_WIRE_1_bits_data = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_opcodes_set_WIRE_bits_data = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_opcodes_set_WIRE_1_bits_data = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_sizes_set_WIRE_bits_data = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_sizes_set_WIRE_1_bits_data = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_probe_ack_WIRE_bits_data = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_probe_ack_WIRE_1_bits_data = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_probe_ack_WIRE_2_bits_data = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_probe_ack_WIRE_3_bits_data = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _same_cycle_resp_WIRE_bits_data = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _same_cycle_resp_WIRE_1_bits_data = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _same_cycle_resp_WIRE_2_bits_data = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _same_cycle_resp_WIRE_3_bits_data = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _same_cycle_resp_WIRE_4_bits_data = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _same_cycle_resp_WIRE_5_bits_data = 32'h0; // @[Bundles.scala:265:61] wire [8:0] _c_first_WIRE_bits_address = 9'h0; // @[Bundles.scala:265:74] wire [8:0] _c_first_WIRE_1_bits_address = 9'h0; // @[Bundles.scala:265:61] wire [8:0] _c_first_WIRE_2_bits_address = 9'h0; // @[Bundles.scala:265:74] wire [8:0] _c_first_WIRE_3_bits_address = 9'h0; // @[Bundles.scala:265:61] wire [8:0] _c_set_wo_ready_WIRE_bits_address = 9'h0; // @[Bundles.scala:265:74] wire [8:0] _c_set_wo_ready_WIRE_1_bits_address = 9'h0; // @[Bundles.scala:265:61] wire [8:0] _c_set_WIRE_bits_address = 9'h0; // @[Bundles.scala:265:74] wire [8:0] _c_set_WIRE_1_bits_address = 9'h0; // @[Bundles.scala:265:61] wire [8:0] _c_opcodes_set_interm_WIRE_bits_address = 9'h0; // @[Bundles.scala:265:74] wire [8:0] _c_opcodes_set_interm_WIRE_1_bits_address = 9'h0; // @[Bundles.scala:265:61] wire [8:0] _c_sizes_set_interm_WIRE_bits_address = 9'h0; // @[Bundles.scala:265:74] wire [8:0] _c_sizes_set_interm_WIRE_1_bits_address = 9'h0; // @[Bundles.scala:265:61] wire [8:0] _c_opcodes_set_WIRE_bits_address = 9'h0; // @[Bundles.scala:265:74] wire [8:0] _c_opcodes_set_WIRE_1_bits_address = 9'h0; // @[Bundles.scala:265:61] wire [8:0] _c_sizes_set_WIRE_bits_address = 9'h0; // @[Bundles.scala:265:74] wire [8:0] _c_sizes_set_WIRE_1_bits_address = 9'h0; // @[Bundles.scala:265:61] wire [8:0] _c_probe_ack_WIRE_bits_address = 9'h0; // @[Bundles.scala:265:74] wire [8:0] _c_probe_ack_WIRE_1_bits_address = 9'h0; // @[Bundles.scala:265:61] wire [8:0] _c_probe_ack_WIRE_2_bits_address = 9'h0; // @[Bundles.scala:265:74] wire [8:0] _c_probe_ack_WIRE_3_bits_address = 9'h0; // @[Bundles.scala:265:61] wire [8:0] _same_cycle_resp_WIRE_bits_address = 9'h0; // @[Bundles.scala:265:74] wire [8:0] _same_cycle_resp_WIRE_1_bits_address = 9'h0; // @[Bundles.scala:265:61] wire [8:0] _same_cycle_resp_WIRE_2_bits_address = 9'h0; // @[Bundles.scala:265:74] wire [8:0] _same_cycle_resp_WIRE_3_bits_address = 9'h0; // @[Bundles.scala:265:61] wire [8:0] _same_cycle_resp_WIRE_4_bits_address = 9'h0; // @[Bundles.scala:265:74] wire [8:0] _same_cycle_resp_WIRE_5_bits_address = 9'h0; // @[Bundles.scala:265:61] wire [1:0] _is_aligned_mask_T_1 = 2'h0; // @[package.scala:243:76] wire [1:0] _a_first_beats1_decode_T_1 = 2'h0; // @[package.scala:243:76] wire [1:0] _a_first_beats1_decode_T_4 = 2'h0; // @[package.scala:243:76] wire [1:0] _c_first_WIRE_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _c_first_WIRE_1_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [1:0] _c_first_WIRE_2_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _c_first_WIRE_3_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [1:0] _c_first_beats1_decode_T_2 = 2'h0; // @[package.scala:243:46] wire [1:0] _c_set_wo_ready_WIRE_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _c_set_wo_ready_WIRE_1_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [1:0] _c_set_WIRE_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _c_set_WIRE_1_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [1:0] _c_opcodes_set_interm_WIRE_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _c_opcodes_set_interm_WIRE_1_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [1:0] _c_sizes_set_interm_WIRE_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _c_sizes_set_interm_WIRE_1_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [1:0] _c_opcodes_set_WIRE_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _c_opcodes_set_WIRE_1_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [1:0] _c_sizes_set_WIRE_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _c_sizes_set_WIRE_1_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [1:0] _c_probe_ack_WIRE_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _c_probe_ack_WIRE_1_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [1:0] _c_probe_ack_WIRE_2_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _c_probe_ack_WIRE_3_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [1:0] _same_cycle_resp_WIRE_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _same_cycle_resp_WIRE_1_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [1:0] _same_cycle_resp_WIRE_2_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _same_cycle_resp_WIRE_3_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [1:0] _same_cycle_resp_WIRE_4_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _same_cycle_resp_WIRE_5_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [15:0] _a_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _a_size_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _d_opcodes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _d_sizes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _c_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57] wire [15:0] _c_size_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57] wire [15:0] _d_opcodes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57] wire [15:0] _d_sizes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57] wire [16:0] _a_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _a_size_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _d_opcodes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _d_sizes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _c_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57] wire [16:0] _c_size_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57] wire [16:0] _d_opcodes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57] wire [16:0] _d_sizes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57] wire [15:0] _a_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _a_size_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _d_opcodes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _d_sizes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _c_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51] wire [15:0] _c_size_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51] wire [15:0] _d_opcodes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51] wire [15:0] _d_sizes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51] wire [17:0] _c_sizes_set_T_1 = 18'h0; // @[Monitor.scala:768:52] wire [3:0] _a_opcodes_set_T = 4'h0; // @[Monitor.scala:659:79] wire [3:0] _a_sizes_set_T = 4'h0; // @[Monitor.scala:660:77] wire [3:0] c_opcodes_set = 4'h0; // @[Monitor.scala:740:34] wire [3:0] c_sizes_set = 4'h0; // @[Monitor.scala:741:34] wire [3:0] c_opcodes_set_interm = 4'h0; // @[Monitor.scala:754:40] wire [3:0] _c_opcodes_set_interm_T = 4'h0; // @[Monitor.scala:765:53] wire [3:0] _c_opcodes_set_T = 4'h0; // @[Monitor.scala:767:79] wire [3:0] _c_sizes_set_T = 4'h0; // @[Monitor.scala:768:77] wire [18:0] _c_opcodes_set_T_1 = 19'h0; // @[Monitor.scala:767:54] wire [2:0] responseMap_2 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMap_3 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMap_4 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_2 = 3'h1; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_3 = 3'h1; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_4 = 3'h1; // @[Monitor.scala:644:42] wire [2:0] _c_sizes_set_interm_T_1 = 3'h1; // @[Monitor.scala:766:59] wire [3:0] _c_opcodes_set_interm_T_1 = 4'h1; // @[Monitor.scala:765:61] wire [1:0] _mask_sizeOH_T_1 = 2'h1; // @[OneHot.scala:65:12] wire [1:0] _mask_sizeOH_T_2 = 2'h1; // @[OneHot.scala:65:27] wire [1:0] mask_sizeOH = 2'h1; // @[Misc.scala:202:81] wire [1:0] _a_set_wo_ready_T = 2'h1; // @[OneHot.scala:58:35] wire [1:0] _a_set_T = 2'h1; // @[OneHot.scala:58:35] wire [1:0] _c_set_wo_ready_T = 2'h1; // @[OneHot.scala:58:35] wire [1:0] _c_set_T = 2'h1; // @[OneHot.scala:58:35] wire [4:0] _c_first_beats1_decode_T = 5'h3; // @[package.scala:243:71] wire [2:0] responseMapSecondOption_6 = 3'h5; // @[Monitor.scala:644:42] wire [2:0] _a_sizes_set_interm_T_1 = 3'h5; // @[Monitor.scala:658:59] wire [2:0] responseMap_6 = 3'h4; // @[Monitor.scala:643:42] wire [2:0] responseMap_7 = 3'h4; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_7 = 3'h4; // @[Monitor.scala:644:42] wire [2:0] _a_sizes_set_interm_T = 3'h4; // @[Monitor.scala:658:51] wire [2:0] responseMap_5 = 3'h2; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_5 = 3'h2; // @[Monitor.scala:644:42] wire [4:0] _is_aligned_mask_T = 5'hC; // @[package.scala:243:71] wire [4:0] _a_first_beats1_decode_T = 5'hC; // @[package.scala:243:71] wire [4:0] _a_first_beats1_decode_T_3 = 5'hC; // @[package.scala:243:71] wire [3:0] _a_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:637:123] wire [3:0] _a_size_lookup_T_2 = 4'h4; // @[Monitor.scala:641:117] wire [3:0] _d_opcodes_clr_T = 4'h4; // @[Monitor.scala:680:48] wire [3:0] _d_sizes_clr_T = 4'h4; // @[Monitor.scala:681:48] wire [3:0] _c_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:749:123] wire [3:0] _c_size_lookup_T_2 = 4'h4; // @[Monitor.scala:750:119] wire [3:0] _d_opcodes_clr_T_6 = 4'h4; // @[Monitor.scala:790:48] wire [3:0] _d_sizes_clr_T_6 = 4'h4; // @[Monitor.scala:791:48] wire [8:0] _is_aligned_T = {7'h0, io_in_a_bits_address_0[1:0]}; // @[Monitor.scala:36:7] wire is_aligned = _is_aligned_T == 9'h0; // @[Edges.scala:21:{16,24}] wire mask_sub_bit = io_in_a_bits_address_0[1]; // @[Misc.scala:210:26] wire mask_sub_1_2 = mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire mask_sub_nbit = ~mask_sub_bit; // @[Misc.scala:210:26, :211:20] wire mask_sub_0_2 = mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire mask_bit = io_in_a_bits_address_0[0]; // @[Misc.scala:210:26] wire mask_nbit = ~mask_bit; // @[Misc.scala:210:26, :211:20] wire mask_eq = mask_sub_0_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T = mask_eq; // @[Misc.scala:214:27, :215:38] wire mask_eq_1 = mask_sub_0_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_1 = mask_eq_1; // @[Misc.scala:214:27, :215:38] wire mask_eq_2 = mask_sub_1_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_2 = mask_eq_2; // @[Misc.scala:214:27, :215:38] wire mask_eq_3 = mask_sub_1_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_3 = mask_eq_3; // @[Misc.scala:214:27, :215:38] wire _source_ok_T_1 = ~io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_0 = _source_ok_T_1; // @[Parameters.scala:1138:31] wire _T_898 = io_in_a_ready_0 & io_in_a_valid_0; // @[Decoupled.scala:51:35] wire _a_first_T; // @[Decoupled.scala:51:35] assign _a_first_T = _T_898; // @[Decoupled.scala:51:35] wire _a_first_T_1; // @[Decoupled.scala:51:35] assign _a_first_T_1 = _T_898; // @[Decoupled.scala:51:35] wire a_first_done = _a_first_T; // @[Decoupled.scala:51:35] wire _a_first_beats1_opdata_T = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7] wire _a_first_beats1_opdata_T_1 = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7] wire a_first_beats1_opdata = ~_a_first_beats1_opdata_T; // @[Edges.scala:92:{28,37}] reg a_first_counter; // @[Edges.scala:229:27] wire _a_first_last_T = a_first_counter; // @[Edges.scala:229:27, :232:25] wire [1:0] _a_first_counter1_T = {1'h0, a_first_counter} - 2'h1; // @[Edges.scala:229:27, :230:28] wire a_first_counter1 = _a_first_counter1_T[0]; // @[Edges.scala:230:28] wire a_first = ~a_first_counter; // @[Edges.scala:229:27, :231:25] wire _a_first_count_T = ~a_first_counter1; // @[Edges.scala:230:28, :234:27] wire _a_first_counter_T = ~a_first & a_first_counter1; // @[Edges.scala:230:28, :231:25, :236:21] reg [2:0] opcode; // @[Monitor.scala:387:22] reg [8:0] address; // @[Monitor.scala:391:22] wire _T_966 = io_in_d_ready_0 & io_in_d_valid_0; // @[Decoupled.scala:51:35] wire _d_first_T; // @[Decoupled.scala:51:35] assign _d_first_T = _T_966; // @[Decoupled.scala:51:35] wire _d_first_T_1; // @[Decoupled.scala:51:35] assign _d_first_T_1 = _T_966; // @[Decoupled.scala:51:35] wire _d_first_T_2; // @[Decoupled.scala:51:35] assign _d_first_T_2 = _T_966; // @[Decoupled.scala:51:35] wire d_first_done = _d_first_T; // @[Decoupled.scala:51:35] wire [4:0] _GEN = 5'h3 << io_in_d_bits_size_0; // @[package.scala:243:71] wire [4:0] _d_first_beats1_decode_T; // @[package.scala:243:71] assign _d_first_beats1_decode_T = _GEN; // @[package.scala:243:71] wire [4:0] _d_first_beats1_decode_T_3; // @[package.scala:243:71] assign _d_first_beats1_decode_T_3 = _GEN; // @[package.scala:243:71] wire [4:0] _d_first_beats1_decode_T_6; // @[package.scala:243:71] assign _d_first_beats1_decode_T_6 = _GEN; // @[package.scala:243:71] wire [1:0] _d_first_beats1_decode_T_1 = _d_first_beats1_decode_T[1:0]; // @[package.scala:243:{71,76}] wire [1:0] _d_first_beats1_decode_T_2 = ~_d_first_beats1_decode_T_1; // @[package.scala:243:{46,76}] wire d_first_beats1_opdata = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire d_first_beats1_opdata_1 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire d_first_beats1_opdata_2 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] reg d_first_counter; // @[Edges.scala:229:27] wire _d_first_last_T = d_first_counter; // @[Edges.scala:229:27, :232:25] wire [1:0] _d_first_counter1_T = {1'h0, d_first_counter} - 2'h1; // @[Edges.scala:229:27, :230:28] wire d_first_counter1 = _d_first_counter1_T[0]; // @[Edges.scala:230:28] wire d_first = ~d_first_counter; // @[Edges.scala:229:27, :231:25] wire _d_first_count_T = ~d_first_counter1; // @[Edges.scala:230:28, :234:27] wire _d_first_counter_T = ~d_first & d_first_counter1; // @[Edges.scala:230:28, :231:25, :236:21] reg [2:0] opcode_1; // @[Monitor.scala:538:22] reg [1:0] param_1; // @[Monitor.scala:539:22] reg [1:0] size_1; // @[Monitor.scala:540:22] reg source_1; // @[Monitor.scala:541:22] reg sink; // @[Monitor.scala:542:22] reg denied; // @[Monitor.scala:543:22] reg [1:0] inflight; // @[Monitor.scala:614:27] reg [3:0] inflight_opcodes; // @[Monitor.scala:616:35] reg [3:0] inflight_sizes; // @[Monitor.scala:618:33] wire a_first_done_1 = _a_first_T_1; // @[Decoupled.scala:51:35] wire a_first_beats1_opdata_1 = ~_a_first_beats1_opdata_T_1; // @[Edges.scala:92:{28,37}] reg a_first_counter_1; // @[Edges.scala:229:27] wire _a_first_last_T_2 = a_first_counter_1; // @[Edges.scala:229:27, :232:25] wire [1:0] _a_first_counter1_T_1 = {1'h0, a_first_counter_1} - 2'h1; // @[Edges.scala:229:27, :230:28] wire a_first_counter1_1 = _a_first_counter1_T_1[0]; // @[Edges.scala:230:28] wire a_first_1 = ~a_first_counter_1; // @[Edges.scala:229:27, :231:25] wire _a_first_count_T_1 = ~a_first_counter1_1; // @[Edges.scala:230:28, :234:27] wire _a_first_counter_T_1 = ~a_first_1 & a_first_counter1_1; // @[Edges.scala:230:28, :231:25, :236:21] wire d_first_done_1 = _d_first_T_1; // @[Decoupled.scala:51:35] wire [1:0] _d_first_beats1_decode_T_4 = _d_first_beats1_decode_T_3[1:0]; // @[package.scala:243:{71,76}] wire [1:0] _d_first_beats1_decode_T_5 = ~_d_first_beats1_decode_T_4; // @[package.scala:243:{46,76}] reg d_first_counter_1; // @[Edges.scala:229:27] wire _d_first_last_T_2 = d_first_counter_1; // @[Edges.scala:229:27, :232:25] wire [1:0] _d_first_counter1_T_1 = {1'h0, d_first_counter_1} - 2'h1; // @[Edges.scala:229:27, :230:28] wire d_first_counter1_1 = _d_first_counter1_T_1[0]; // @[Edges.scala:230:28] wire d_first_1 = ~d_first_counter_1; // @[Edges.scala:229:27, :231:25] wire _d_first_count_T_1 = ~d_first_counter1_1; // @[Edges.scala:230:28, :234:27] wire _d_first_counter_T_1 = ~d_first_1 & d_first_counter1_1; // @[Edges.scala:230:28, :231:25, :236:21] wire a_set; // @[Monitor.scala:626:34] wire a_set_wo_ready; // @[Monitor.scala:627:34] wire [3:0] a_opcodes_set; // @[Monitor.scala:630:33] wire [3:0] a_sizes_set; // @[Monitor.scala:632:31] wire [2:0] a_opcode_lookup; // @[Monitor.scala:635:35] wire [3:0] _GEN_0 = {1'h0, io_in_d_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :637:69] wire [3:0] _a_opcode_lookup_T; // @[Monitor.scala:637:69] assign _a_opcode_lookup_T = _GEN_0; // @[Monitor.scala:637:69] wire [3:0] _a_size_lookup_T; // @[Monitor.scala:641:65] assign _a_size_lookup_T = _GEN_0; // @[Monitor.scala:637:69, :641:65] wire [3:0] _d_opcodes_clr_T_4; // @[Monitor.scala:680:101] assign _d_opcodes_clr_T_4 = _GEN_0; // @[Monitor.scala:637:69, :680:101] wire [3:0] _d_sizes_clr_T_4; // @[Monitor.scala:681:99] assign _d_sizes_clr_T_4 = _GEN_0; // @[Monitor.scala:637:69, :681:99] wire [3:0] _c_opcode_lookup_T; // @[Monitor.scala:749:69] assign _c_opcode_lookup_T = _GEN_0; // @[Monitor.scala:637:69, :749:69] wire [3:0] _c_size_lookup_T; // @[Monitor.scala:750:67] assign _c_size_lookup_T = _GEN_0; // @[Monitor.scala:637:69, :750:67] wire [3:0] _d_opcodes_clr_T_10; // @[Monitor.scala:790:101] assign _d_opcodes_clr_T_10 = _GEN_0; // @[Monitor.scala:637:69, :790:101] wire [3:0] _d_sizes_clr_T_10; // @[Monitor.scala:791:99] assign _d_sizes_clr_T_10 = _GEN_0; // @[Monitor.scala:637:69, :791:99] wire [3:0] _a_opcode_lookup_T_1 = inflight_opcodes >> _a_opcode_lookup_T; // @[Monitor.scala:616:35, :637:{44,69}] wire [15:0] _a_opcode_lookup_T_6 = {12'h0, _a_opcode_lookup_T_1}; // @[Monitor.scala:637:{44,97}] wire [15:0] _a_opcode_lookup_T_7 = {1'h0, _a_opcode_lookup_T_6[15:1]}; // @[Monitor.scala:637:{97,152}] assign a_opcode_lookup = _a_opcode_lookup_T_7[2:0]; // @[Monitor.scala:635:35, :637:{21,152}] wire [3:0] a_size_lookup; // @[Monitor.scala:639:33] wire [3:0] _a_size_lookup_T_1 = inflight_sizes >> _a_size_lookup_T; // @[Monitor.scala:618:33, :641:{40,65}] wire [15:0] _a_size_lookup_T_6 = {12'h0, _a_size_lookup_T_1}; // @[Monitor.scala:637:97, :641:{40,91}] wire [15:0] _a_size_lookup_T_7 = {1'h0, _a_size_lookup_T_6[15:1]}; // @[Monitor.scala:641:{91,144}] assign a_size_lookup = _a_size_lookup_T_7[3:0]; // @[Monitor.scala:639:33, :641:{19,144}] wire [3:0] a_opcodes_set_interm; // @[Monitor.scala:646:40] wire [2:0] a_sizes_set_interm; // @[Monitor.scala:648:38] wire _T_828 = io_in_a_valid_0 & a_first_1; // @[Monitor.scala:36:7, :651:26] assign a_set_wo_ready = _T_828; // @[Monitor.scala:627:34, :651:26] wire _same_cycle_resp_T; // @[Monitor.scala:684:44] assign _same_cycle_resp_T = _T_828; // @[Monitor.scala:651:26, :684:44] assign a_set = _T_898 & a_first_1; // @[Decoupled.scala:51:35] wire [3:0] _a_opcodes_set_interm_T = {io_in_a_bits_opcode_0, 1'h0}; // @[Monitor.scala:36:7, :657:53] wire [3:0] _a_opcodes_set_interm_T_1 = {_a_opcodes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:657:{53,61}] assign a_opcodes_set_interm = a_set ? _a_opcodes_set_interm_T_1 : 4'h0; // @[Monitor.scala:626:34, :646:40, :655:70, :657:{28,61}] assign a_sizes_set_interm = a_set ? 3'h5 : 3'h0; // @[Monitor.scala:626:34, :648:38, :655:70, :658:28] wire [18:0] _a_opcodes_set_T_1 = {15'h0, a_opcodes_set_interm}; // @[Monitor.scala:646:40, :659:54] assign a_opcodes_set = a_set ? _a_opcodes_set_T_1[3:0] : 4'h0; // @[Monitor.scala:626:34, :630:33, :655:70, :659:{28,54}] wire [17:0] _a_sizes_set_T_1 = {15'h0, a_sizes_set_interm}; // @[Monitor.scala:648:38, :659:54, :660:52] assign a_sizes_set = a_set ? _a_sizes_set_T_1[3:0] : 4'h0; // @[Monitor.scala:626:34, :632:31, :655:70, :660:{28,52}] wire d_clr; // @[Monitor.scala:664:34] wire d_clr_wo_ready; // @[Monitor.scala:665:34] wire [3:0] d_opcodes_clr; // @[Monitor.scala:668:33] wire [3:0] d_sizes_clr; // @[Monitor.scala:670:31] wire _GEN_1 = io_in_d_bits_opcode_0 == 3'h6; // @[Monitor.scala:36:7, :673:46] wire d_release_ack; // @[Monitor.scala:673:46] assign d_release_ack = _GEN_1; // @[Monitor.scala:673:46] wire d_release_ack_1; // @[Monitor.scala:783:46] assign d_release_ack_1 = _GEN_1; // @[Monitor.scala:673:46, :783:46] wire _T_877 = io_in_d_valid_0 & d_first_1; // @[Monitor.scala:36:7, :674:26] wire [1:0] _GEN_2 = {1'h0, io_in_d_bits_source_0}; // @[OneHot.scala:58:35] wire [1:0] _GEN_3 = 2'h1 << _GEN_2; // @[OneHot.scala:58:35] wire [1:0] _d_clr_wo_ready_T; // @[OneHot.scala:58:35] assign _d_clr_wo_ready_T = _GEN_3; // @[OneHot.scala:58:35] wire [1:0] _d_clr_T; // @[OneHot.scala:58:35] assign _d_clr_T = _GEN_3; // @[OneHot.scala:58:35] wire [1:0] _d_clr_wo_ready_T_1; // @[OneHot.scala:58:35] assign _d_clr_wo_ready_T_1 = _GEN_3; // @[OneHot.scala:58:35] wire [1:0] _d_clr_T_1; // @[OneHot.scala:58:35] assign _d_clr_T_1 = _GEN_3; // @[OneHot.scala:58:35] assign d_clr_wo_ready = _T_877 & ~d_release_ack & _d_clr_wo_ready_T[0]; // @[OneHot.scala:58:35] wire _T_846 = _T_966 & d_first_1 & ~d_release_ack; // @[Decoupled.scala:51:35] assign d_clr = _T_846 & _d_clr_T[0]; // @[OneHot.scala:58:35] wire [30:0] _d_opcodes_clr_T_5 = 31'hF << _d_opcodes_clr_T_4; // @[Monitor.scala:680:{76,101}] assign d_opcodes_clr = _T_846 ? _d_opcodes_clr_T_5[3:0] : 4'h0; // @[Monitor.scala:668:33, :678:{25,70,89}, :680:{21,76}] wire [30:0] _d_sizes_clr_T_5 = 31'hF << _d_sizes_clr_T_4; // @[Monitor.scala:681:{74,99}] assign d_sizes_clr = _T_846 ? _d_sizes_clr_T_5[3:0] : 4'h0; // @[Monitor.scala:670:31, :678:{25,70,89}, :681:{21,74}] wire _same_cycle_resp_T_1 = _same_cycle_resp_T; // @[Monitor.scala:684:{44,55}] wire _same_cycle_resp_T_2 = ~io_in_d_bits_source_0; // @[Monitor.scala:36:7, :684:113] wire same_cycle_resp = _same_cycle_resp_T_1 & _same_cycle_resp_T_2; // @[Monitor.scala:684:{55,88,113}] wire [1:0] _inflight_T = {inflight[1], inflight[0] | a_set}; // @[Monitor.scala:614:27, :626:34, :705:27] wire _inflight_T_1 = ~d_clr; // @[Monitor.scala:664:34, :705:38] wire [1:0] _inflight_T_2 = {1'h0, _inflight_T[0] & _inflight_T_1}; // @[Monitor.scala:705:{27,36,38}] wire [3:0] _inflight_opcodes_T = inflight_opcodes | a_opcodes_set; // @[Monitor.scala:616:35, :630:33, :706:43] wire [3:0] _inflight_opcodes_T_1 = ~d_opcodes_clr; // @[Monitor.scala:668:33, :706:62] wire [3:0] _inflight_opcodes_T_2 = _inflight_opcodes_T & _inflight_opcodes_T_1; // @[Monitor.scala:706:{43,60,62}] wire [3:0] _inflight_sizes_T = inflight_sizes | a_sizes_set; // @[Monitor.scala:618:33, :632:31, :707:39] wire [3:0] _inflight_sizes_T_1 = ~d_sizes_clr; // @[Monitor.scala:670:31, :707:56] wire [3:0] _inflight_sizes_T_2 = _inflight_sizes_T & _inflight_sizes_T_1; // @[Monitor.scala:707:{39,54,56}] reg [31:0] watchdog; // @[Monitor.scala:709:27] wire [32:0] _watchdog_T = {1'h0, watchdog} + 33'h1; // @[Monitor.scala:709:27, :714:26] wire [31:0] _watchdog_T_1 = _watchdog_T[31:0]; // @[Monitor.scala:714:26] reg [1:0] inflight_1; // @[Monitor.scala:726:35] wire [1:0] _inflight_T_3 = inflight_1; // @[Monitor.scala:726:35, :814:35] reg [3:0] inflight_opcodes_1; // @[Monitor.scala:727:35] wire [3:0] _inflight_opcodes_T_3 = inflight_opcodes_1; // @[Monitor.scala:727:35, :815:43] reg [3:0] inflight_sizes_1; // @[Monitor.scala:728:35] wire [3:0] _inflight_sizes_T_3 = inflight_sizes_1; // @[Monitor.scala:728:35, :816:41] wire d_first_done_2 = _d_first_T_2; // @[Decoupled.scala:51:35] wire [1:0] _d_first_beats1_decode_T_7 = _d_first_beats1_decode_T_6[1:0]; // @[package.scala:243:{71,76}] wire [1:0] _d_first_beats1_decode_T_8 = ~_d_first_beats1_decode_T_7; // @[package.scala:243:{46,76}] reg d_first_counter_2; // @[Edges.scala:229:27] wire _d_first_last_T_4 = d_first_counter_2; // @[Edges.scala:229:27, :232:25] wire [1:0] _d_first_counter1_T_2 = {1'h0, d_first_counter_2} - 2'h1; // @[Edges.scala:229:27, :230:28] wire d_first_counter1_2 = _d_first_counter1_T_2[0]; // @[Edges.scala:230:28] wire d_first_2 = ~d_first_counter_2; // @[Edges.scala:229:27, :231:25] wire _d_first_count_T_2 = ~d_first_counter1_2; // @[Edges.scala:230:28, :234:27] wire _d_first_counter_T_2 = ~d_first_2 & d_first_counter1_2; // @[Edges.scala:230:28, :231:25, :236:21] wire [3:0] c_opcode_lookup; // @[Monitor.scala:747:35] wire [3:0] c_size_lookup; // @[Monitor.scala:748:35] wire [3:0] _c_opcode_lookup_T_1 = inflight_opcodes_1 >> _c_opcode_lookup_T; // @[Monitor.scala:727:35, :749:{44,69}] wire [15:0] _c_opcode_lookup_T_6 = {12'h0, _c_opcode_lookup_T_1}; // @[Monitor.scala:637:97, :749:{44,97}] wire [15:0] _c_opcode_lookup_T_7 = {1'h0, _c_opcode_lookup_T_6[15:1]}; // @[Monitor.scala:749:{97,152}] assign c_opcode_lookup = _c_opcode_lookup_T_7[3:0]; // @[Monitor.scala:747:35, :749:{21,152}] wire [3:0] _c_size_lookup_T_1 = inflight_sizes_1 >> _c_size_lookup_T; // @[Monitor.scala:728:35, :750:{42,67}] wire [15:0] _c_size_lookup_T_6 = {12'h0, _c_size_lookup_T_1}; // @[Monitor.scala:637:97, :750:{42,93}] wire [15:0] _c_size_lookup_T_7 = {1'h0, _c_size_lookup_T_6[15:1]}; // @[Monitor.scala:750:{93,146}] assign c_size_lookup = _c_size_lookup_T_7[3:0]; // @[Monitor.scala:748:35, :750:{21,146}] wire d_clr_1; // @[Monitor.scala:774:34] wire d_clr_wo_ready_1; // @[Monitor.scala:775:34] wire [3:0] d_opcodes_clr_1; // @[Monitor.scala:776:34] wire [3:0] d_sizes_clr_1; // @[Monitor.scala:777:34] wire _T_942 = io_in_d_valid_0 & d_first_2; // @[Monitor.scala:36:7, :784:26] assign d_clr_wo_ready_1 = _T_942 & d_release_ack_1 & _d_clr_wo_ready_T_1[0]; // @[OneHot.scala:58:35] wire _T_924 = _T_966 & d_first_2 & d_release_ack_1; // @[Decoupled.scala:51:35] assign d_clr_1 = _T_924 & _d_clr_T_1[0]; // @[OneHot.scala:58:35] wire [30:0] _d_opcodes_clr_T_11 = 31'hF << _d_opcodes_clr_T_10; // @[Monitor.scala:790:{76,101}] assign d_opcodes_clr_1 = _T_924 ? _d_opcodes_clr_T_11[3:0] : 4'h0; // @[Monitor.scala:776:34, :788:{25,70,88}, :790:{21,76}] wire [30:0] _d_sizes_clr_T_11 = 31'hF << _d_sizes_clr_T_10; // @[Monitor.scala:791:{74,99}] assign d_sizes_clr_1 = _T_924 ? _d_sizes_clr_T_11[3:0] : 4'h0; // @[Monitor.scala:777:34, :788:{25,70,88}, :791:{21,74}] wire _same_cycle_resp_T_8 = ~io_in_d_bits_source_0; // @[Monitor.scala:36:7, :795:113] wire _inflight_T_4 = ~d_clr_1; // @[Monitor.scala:774:34, :814:46] wire [1:0] _inflight_T_5 = {1'h0, _inflight_T_3[0] & _inflight_T_4}; // @[Monitor.scala:814:{35,44,46}] wire [3:0] _inflight_opcodes_T_4 = ~d_opcodes_clr_1; // @[Monitor.scala:776:34, :815:62] wire [3:0] _inflight_opcodes_T_5 = _inflight_opcodes_T_3 & _inflight_opcodes_T_4; // @[Monitor.scala:815:{43,60,62}] wire [3:0] _inflight_sizes_T_4 = ~d_sizes_clr_1; // @[Monitor.scala:777:34, :816:58] wire [3:0] _inflight_sizes_T_5 = _inflight_sizes_T_3 & _inflight_sizes_T_4; // @[Monitor.scala:816:{41,56,58}] reg [31:0] watchdog_1; // @[Monitor.scala:818:27]
Generate the Verilog code corresponding to the following Chisel files. File primitives.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import chisel3.util._ //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object lowMask { def apply(in: UInt, topBound: BigInt, bottomBound: BigInt): UInt = { require(topBound != bottomBound) val numInVals = BigInt(1)<<in.getWidth if (topBound < bottomBound) { lowMask(~in, numInVals - 1 - topBound, numInVals - 1 - bottomBound) } else if (numInVals > 64 /* Empirical */) { // For simulation performance, we should avoid generating // exteremely wide shifters, so we divide and conquer. // Empirically, this does not impact synthesis QoR. val mid = numInVals / 2 val msb = in(in.getWidth - 1) val lsbs = in(in.getWidth - 2, 0) if (mid < topBound) { if (mid <= bottomBound) { Mux(msb, lowMask(lsbs, topBound - mid, bottomBound - mid), 0.U ) } else { Mux(msb, lowMask(lsbs, topBound - mid, 0) ## ((BigInt(1)<<(mid - bottomBound).toInt) - 1).U, lowMask(lsbs, mid, bottomBound) ) } } else { ~Mux(msb, 0.U, ~lowMask(lsbs, topBound, bottomBound)) } } else { val shift = (BigInt(-1)<<numInVals.toInt).S>>in Reverse( shift( (numInVals - 1 - bottomBound).toInt, (numInVals - topBound).toInt ) ) } } } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object countLeadingZeros { def apply(in: UInt): UInt = PriorityEncoder(in.asBools.reverse) } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object orReduceBy2 { def apply(in: UInt): UInt = { val reducedWidth = (in.getWidth + 1)>>1 val reducedVec = Wire(Vec(reducedWidth, Bool())) for (ix <- 0 until reducedWidth - 1) { reducedVec(ix) := in(ix * 2 + 1, ix * 2).orR } reducedVec(reducedWidth - 1) := in(in.getWidth - 1, (reducedWidth - 1) * 2).orR reducedVec.asUInt } } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object orReduceBy4 { def apply(in: UInt): UInt = { val reducedWidth = (in.getWidth + 3)>>2 val reducedVec = Wire(Vec(reducedWidth, Bool())) for (ix <- 0 until reducedWidth - 1) { reducedVec(ix) := in(ix * 4 + 3, ix * 4).orR } reducedVec(reducedWidth - 1) := in(in.getWidth - 1, (reducedWidth - 1) * 4).orR reducedVec.asUInt } } File MulAddRecFN.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import chisel3.util._ import consts._ //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class MulAddRecFN_interIo(expWidth: Int, sigWidth: Int) extends Bundle { //*** ENCODE SOME OF THESE CASES IN FEWER BITS?: val isSigNaNAny = Bool() val isNaNAOrB = Bool() val isInfA = Bool() val isZeroA = Bool() val isInfB = Bool() val isZeroB = Bool() val signProd = Bool() val isNaNC = Bool() val isInfC = Bool() val isZeroC = Bool() val sExpSum = SInt((expWidth + 2).W) val doSubMags = Bool() val CIsDominant = Bool() val CDom_CAlignDist = UInt(log2Ceil(sigWidth + 1).W) val highAlignedSigC = UInt((sigWidth + 2).W) val bit0AlignedSigC = UInt(1.W) } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class MulAddRecFNToRaw_preMul(expWidth: Int, sigWidth: Int) extends RawModule { override def desiredName = s"MulAddRecFNToRaw_preMul_e${expWidth}_s${sigWidth}" val io = IO(new Bundle { val op = Input(Bits(2.W)) val a = Input(Bits((expWidth + sigWidth + 1).W)) val b = Input(Bits((expWidth + sigWidth + 1).W)) val c = Input(Bits((expWidth + sigWidth + 1).W)) val mulAddA = Output(UInt(sigWidth.W)) val mulAddB = Output(UInt(sigWidth.W)) val mulAddC = Output(UInt((sigWidth * 2).W)) val toPostMul = Output(new MulAddRecFN_interIo(expWidth, sigWidth)) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ //*** POSSIBLE TO REDUCE THIS BY 1 OR 2 BITS? (CURRENTLY 2 BITS BETWEEN //*** UNSHIFTED C AND PRODUCT): val sigSumWidth = sigWidth * 3 + 3 //------------------------------------------------------------------------ //------------------------------------------------------------------------ val rawA = rawFloatFromRecFN(expWidth, sigWidth, io.a) val rawB = rawFloatFromRecFN(expWidth, sigWidth, io.b) val rawC = rawFloatFromRecFN(expWidth, sigWidth, io.c) val signProd = rawA.sign ^ rawB.sign ^ io.op(1) //*** REVIEW THE BIAS FOR 'sExpAlignedProd': val sExpAlignedProd = rawA.sExp +& rawB.sExp + (-(BigInt(1)<<expWidth) + sigWidth + 3).S val doSubMags = signProd ^ rawC.sign ^ io.op(0) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val sNatCAlignDist = sExpAlignedProd - rawC.sExp val posNatCAlignDist = sNatCAlignDist(expWidth + 1, 0) val isMinCAlign = rawA.isZero || rawB.isZero || (sNatCAlignDist < 0.S) val CIsDominant = ! rawC.isZero && (isMinCAlign || (posNatCAlignDist <= sigWidth.U)) val CAlignDist = Mux(isMinCAlign, 0.U, Mux(posNatCAlignDist < (sigSumWidth - 1).U, posNatCAlignDist(log2Ceil(sigSumWidth) - 1, 0), (sigSumWidth - 1).U ) ) val mainAlignedSigC = (Mux(doSubMags, ~rawC.sig, rawC.sig) ## Fill(sigSumWidth - sigWidth + 2, doSubMags)).asSInt>>CAlignDist val reduced4CExtra = (orReduceBy4(rawC.sig<<((sigSumWidth - sigWidth - 1) & 3)) & lowMask( CAlignDist>>2, //*** NOT NEEDED?: // (sigSumWidth + 2)>>2, (sigSumWidth - 1)>>2, (sigSumWidth - sigWidth - 1)>>2 ) ).orR val alignedSigC = Cat(mainAlignedSigC>>3, Mux(doSubMags, mainAlignedSigC(2, 0).andR && ! reduced4CExtra, mainAlignedSigC(2, 0).orR || reduced4CExtra ) ) //------------------------------------------------------------------------ //------------------------------------------------------------------------ io.mulAddA := rawA.sig io.mulAddB := rawB.sig io.mulAddC := alignedSigC(sigWidth * 2, 1) io.toPostMul.isSigNaNAny := isSigNaNRawFloat(rawA) || isSigNaNRawFloat(rawB) || isSigNaNRawFloat(rawC) io.toPostMul.isNaNAOrB := rawA.isNaN || rawB.isNaN io.toPostMul.isInfA := rawA.isInf io.toPostMul.isZeroA := rawA.isZero io.toPostMul.isInfB := rawB.isInf io.toPostMul.isZeroB := rawB.isZero io.toPostMul.signProd := signProd io.toPostMul.isNaNC := rawC.isNaN io.toPostMul.isInfC := rawC.isInf io.toPostMul.isZeroC := rawC.isZero io.toPostMul.sExpSum := Mux(CIsDominant, rawC.sExp, sExpAlignedProd - sigWidth.S) io.toPostMul.doSubMags := doSubMags io.toPostMul.CIsDominant := CIsDominant io.toPostMul.CDom_CAlignDist := CAlignDist(log2Ceil(sigWidth + 1) - 1, 0) io.toPostMul.highAlignedSigC := alignedSigC(sigSumWidth - 1, sigWidth * 2 + 1) io.toPostMul.bit0AlignedSigC := alignedSigC(0) } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class MulAddRecFNToRaw_postMul(expWidth: Int, sigWidth: Int) extends RawModule { override def desiredName = s"MulAddRecFNToRaw_postMul_e${expWidth}_s${sigWidth}" val io = IO(new Bundle { val fromPreMul = Input(new MulAddRecFN_interIo(expWidth, sigWidth)) val mulAddResult = Input(UInt((sigWidth * 2 + 1).W)) val roundingMode = Input(UInt(3.W)) val invalidExc = Output(Bool()) val rawOut = Output(new RawFloat(expWidth, sigWidth + 2)) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val sigSumWidth = sigWidth * 3 + 3 //------------------------------------------------------------------------ //------------------------------------------------------------------------ val roundingMode_min = (io.roundingMode === round_min) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val opSignC = io.fromPreMul.signProd ^ io.fromPreMul.doSubMags val sigSum = Cat(Mux(io.mulAddResult(sigWidth * 2), io.fromPreMul.highAlignedSigC + 1.U, io.fromPreMul.highAlignedSigC ), io.mulAddResult(sigWidth * 2 - 1, 0), io.fromPreMul.bit0AlignedSigC ) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val CDom_sign = opSignC val CDom_sExp = io.fromPreMul.sExpSum - io.fromPreMul.doSubMags.zext val CDom_absSigSum = Mux(io.fromPreMul.doSubMags, ~sigSum(sigSumWidth - 1, sigWidth + 1), 0.U(1.W) ## //*** IF GAP IS REDUCED TO 1 BIT, MUST REDUCE THIS COMPONENT TO 1 BIT TOO: io.fromPreMul.highAlignedSigC(sigWidth + 1, sigWidth) ## sigSum(sigSumWidth - 3, sigWidth + 2) ) val CDom_absSigSumExtra = Mux(io.fromPreMul.doSubMags, (~sigSum(sigWidth, 1)).orR, sigSum(sigWidth + 1, 1).orR ) val CDom_mainSig = (CDom_absSigSum<<io.fromPreMul.CDom_CAlignDist)( sigWidth * 2 + 1, sigWidth - 3) val CDom_reduced4SigExtra = (orReduceBy4(CDom_absSigSum(sigWidth - 1, 0)<<(~sigWidth & 3)) & lowMask(io.fromPreMul.CDom_CAlignDist>>2, 0, sigWidth>>2)).orR val CDom_sig = Cat(CDom_mainSig>>3, CDom_mainSig(2, 0).orR || CDom_reduced4SigExtra || CDom_absSigSumExtra ) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val notCDom_signSigSum = sigSum(sigWidth * 2 + 3) val notCDom_absSigSum = Mux(notCDom_signSigSum, ~sigSum(sigWidth * 2 + 2, 0), sigSum(sigWidth * 2 + 2, 0) + io.fromPreMul.doSubMags ) val notCDom_reduced2AbsSigSum = orReduceBy2(notCDom_absSigSum) val notCDom_normDistReduced2 = countLeadingZeros(notCDom_reduced2AbsSigSum) val notCDom_nearNormDist = notCDom_normDistReduced2<<1 val notCDom_sExp = io.fromPreMul.sExpSum - notCDom_nearNormDist.asUInt.zext val notCDom_mainSig = (notCDom_absSigSum<<notCDom_nearNormDist)( sigWidth * 2 + 3, sigWidth - 1) val notCDom_reduced4SigExtra = (orReduceBy2( notCDom_reduced2AbsSigSum(sigWidth>>1, 0)<<((sigWidth>>1) & 1)) & lowMask(notCDom_normDistReduced2>>1, 0, (sigWidth + 2)>>2) ).orR val notCDom_sig = Cat(notCDom_mainSig>>3, notCDom_mainSig(2, 0).orR || notCDom_reduced4SigExtra ) val notCDom_completeCancellation = (notCDom_sig(sigWidth + 2, sigWidth + 1) === 0.U) val notCDom_sign = Mux(notCDom_completeCancellation, roundingMode_min, io.fromPreMul.signProd ^ notCDom_signSigSum ) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val notNaN_isInfProd = io.fromPreMul.isInfA || io.fromPreMul.isInfB val notNaN_isInfOut = notNaN_isInfProd || io.fromPreMul.isInfC val notNaN_addZeros = (io.fromPreMul.isZeroA || io.fromPreMul.isZeroB) && io.fromPreMul.isZeroC io.invalidExc := io.fromPreMul.isSigNaNAny || (io.fromPreMul.isInfA && io.fromPreMul.isZeroB) || (io.fromPreMul.isZeroA && io.fromPreMul.isInfB) || (! io.fromPreMul.isNaNAOrB && (io.fromPreMul.isInfA || io.fromPreMul.isInfB) && io.fromPreMul.isInfC && io.fromPreMul.doSubMags) io.rawOut.isNaN := io.fromPreMul.isNaNAOrB || io.fromPreMul.isNaNC io.rawOut.isInf := notNaN_isInfOut //*** IMPROVE?: io.rawOut.isZero := notNaN_addZeros || (! io.fromPreMul.CIsDominant && notCDom_completeCancellation) io.rawOut.sign := (notNaN_isInfProd && io.fromPreMul.signProd) || (io.fromPreMul.isInfC && opSignC) || (notNaN_addZeros && ! roundingMode_min && io.fromPreMul.signProd && opSignC) || (notNaN_addZeros && roundingMode_min && (io.fromPreMul.signProd || opSignC)) || (! notNaN_isInfOut && ! notNaN_addZeros && Mux(io.fromPreMul.CIsDominant, CDom_sign, notCDom_sign)) io.rawOut.sExp := Mux(io.fromPreMul.CIsDominant, CDom_sExp, notCDom_sExp) io.rawOut.sig := Mux(io.fromPreMul.CIsDominant, CDom_sig, notCDom_sig) } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class MulAddRecFN(expWidth: Int, sigWidth: Int) extends RawModule { override def desiredName = s"MulAddRecFN_e${expWidth}_s${sigWidth}" val io = IO(new Bundle { val op = Input(Bits(2.W)) val a = Input(Bits((expWidth + sigWidth + 1).W)) val b = Input(Bits((expWidth + sigWidth + 1).W)) val c = Input(Bits((expWidth + sigWidth + 1).W)) val roundingMode = Input(UInt(3.W)) val detectTininess = Input(UInt(1.W)) val out = Output(Bits((expWidth + sigWidth + 1).W)) val exceptionFlags = Output(Bits(5.W)) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val mulAddRecFNToRaw_preMul = Module(new MulAddRecFNToRaw_preMul(expWidth, sigWidth)) val mulAddRecFNToRaw_postMul = Module(new MulAddRecFNToRaw_postMul(expWidth, sigWidth)) mulAddRecFNToRaw_preMul.io.op := io.op mulAddRecFNToRaw_preMul.io.a := io.a mulAddRecFNToRaw_preMul.io.b := io.b mulAddRecFNToRaw_preMul.io.c := io.c val mulAddResult = (mulAddRecFNToRaw_preMul.io.mulAddA * mulAddRecFNToRaw_preMul.io.mulAddB) +& mulAddRecFNToRaw_preMul.io.mulAddC mulAddRecFNToRaw_postMul.io.fromPreMul := mulAddRecFNToRaw_preMul.io.toPostMul mulAddRecFNToRaw_postMul.io.mulAddResult := mulAddResult mulAddRecFNToRaw_postMul.io.roundingMode := io.roundingMode //------------------------------------------------------------------------ //------------------------------------------------------------------------ val roundRawFNToRecFN = Module(new RoundRawFNToRecFN(expWidth, sigWidth, 0)) roundRawFNToRecFN.io.invalidExc := mulAddRecFNToRaw_postMul.io.invalidExc roundRawFNToRecFN.io.infiniteExc := false.B roundRawFNToRecFN.io.in := mulAddRecFNToRaw_postMul.io.rawOut roundRawFNToRecFN.io.roundingMode := io.roundingMode roundRawFNToRecFN.io.detectTininess := io.detectTininess io.out := roundRawFNToRecFN.io.out io.exceptionFlags := roundRawFNToRecFN.io.exceptionFlags }
module MulAddRecFNToRaw_postMul_e8_s24_55( // @[MulAddRecFN.scala:169:7] input io_fromPreMul_isSigNaNAny, // @[MulAddRecFN.scala:172:16] input io_fromPreMul_isNaNAOrB, // @[MulAddRecFN.scala:172:16] input io_fromPreMul_isInfA, // @[MulAddRecFN.scala:172:16] input io_fromPreMul_isZeroA, // @[MulAddRecFN.scala:172:16] input io_fromPreMul_signProd, // @[MulAddRecFN.scala:172:16] input [9:0] io_fromPreMul_sExpSum, // @[MulAddRecFN.scala:172:16] input io_fromPreMul_doSubMags, // @[MulAddRecFN.scala:172:16] input [4:0] io_fromPreMul_CDom_CAlignDist, // @[MulAddRecFN.scala:172:16] input [25:0] io_fromPreMul_highAlignedSigC, // @[MulAddRecFN.scala:172:16] input io_fromPreMul_bit0AlignedSigC, // @[MulAddRecFN.scala:172:16] input [48:0] io_mulAddResult, // @[MulAddRecFN.scala:172:16] output io_invalidExc, // @[MulAddRecFN.scala:172:16] output io_rawOut_isNaN, // @[MulAddRecFN.scala:172:16] output io_rawOut_isInf, // @[MulAddRecFN.scala:172:16] output io_rawOut_isZero, // @[MulAddRecFN.scala:172:16] output io_rawOut_sign, // @[MulAddRecFN.scala:172:16] output [9:0] io_rawOut_sExp, // @[MulAddRecFN.scala:172:16] output [26:0] io_rawOut_sig // @[MulAddRecFN.scala:172:16] ); wire io_fromPreMul_isSigNaNAny_0 = io_fromPreMul_isSigNaNAny; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_isNaNAOrB_0 = io_fromPreMul_isNaNAOrB; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_isInfA_0 = io_fromPreMul_isInfA; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_isZeroA_0 = io_fromPreMul_isZeroA; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_signProd_0 = io_fromPreMul_signProd; // @[MulAddRecFN.scala:169:7] wire [9:0] io_fromPreMul_sExpSum_0 = io_fromPreMul_sExpSum; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_doSubMags_0 = io_fromPreMul_doSubMags; // @[MulAddRecFN.scala:169:7] wire [4:0] io_fromPreMul_CDom_CAlignDist_0 = io_fromPreMul_CDom_CAlignDist; // @[MulAddRecFN.scala:169:7] wire [25:0] io_fromPreMul_highAlignedSigC_0 = io_fromPreMul_highAlignedSigC; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_bit0AlignedSigC_0 = io_fromPreMul_bit0AlignedSigC; // @[MulAddRecFN.scala:169:7] wire [48:0] io_mulAddResult_0 = io_mulAddResult; // @[MulAddRecFN.scala:169:7] wire [2:0] io_roundingMode = 3'h0; // @[MulAddRecFN.scala:169:7, :172:16] wire io_fromPreMul_isZeroC = 1'h1; // @[MulAddRecFN.scala:169:7] wire _io_rawOut_isZero_T = 1'h1; // @[MulAddRecFN.scala:283:14] wire _io_rawOut_sign_T_3 = 1'h1; // @[MulAddRecFN.scala:287:29] wire io_fromPreMul_isInfB = 1'h0; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_isZeroB = 1'h0; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_isNaNC = 1'h0; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_isInfC = 1'h0; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_CIsDominant = 1'h0; // @[MulAddRecFN.scala:169:7] wire roundingMode_min = 1'h0; // @[MulAddRecFN.scala:186:45] wire _io_invalidExc_T = 1'h0; // @[MulAddRecFN.scala:272:31] wire _io_invalidExc_T_2 = 1'h0; // @[MulAddRecFN.scala:273:32] wire _io_invalidExc_T_7 = 1'h0; // @[MulAddRecFN.scala:275:61] wire _io_invalidExc_T_8 = 1'h0; // @[MulAddRecFN.scala:276:35] wire _io_rawOut_sign_T_1 = 1'h0; // @[MulAddRecFN.scala:286:31] wire _io_rawOut_sign_T_8 = 1'h0; // @[MulAddRecFN.scala:289:26] wire _io_rawOut_sign_T_10 = 1'h0; // @[MulAddRecFN.scala:289:46] wire _io_invalidExc_T_1 = io_fromPreMul_isSigNaNAny_0; // @[MulAddRecFN.scala:169:7, :271:35] wire _io_rawOut_isNaN_T = io_fromPreMul_isNaNAOrB_0; // @[MulAddRecFN.scala:169:7, :278:48] wire notNaN_isInfProd = io_fromPreMul_isInfA_0; // @[MulAddRecFN.scala:169:7, :264:49] wire _io_invalidExc_T_5 = io_fromPreMul_isInfA_0; // @[MulAddRecFN.scala:169:7, :275:36] wire _notNaN_addZeros_T = io_fromPreMul_isZeroA_0; // @[MulAddRecFN.scala:169:7, :267:32] wire _io_invalidExc_T_9; // @[MulAddRecFN.scala:273:57] wire notNaN_isInfOut; // @[MulAddRecFN.scala:265:44] wire _io_rawOut_isZero_T_2; // @[MulAddRecFN.scala:282:25] wire _io_rawOut_sign_T_17; // @[MulAddRecFN.scala:290:50] wire [9:0] _io_rawOut_sExp_T; // @[MulAddRecFN.scala:293:26] wire [26:0] _io_rawOut_sig_T; // @[MulAddRecFN.scala:294:25] wire io_rawOut_isNaN_0; // @[MulAddRecFN.scala:169:7] wire io_rawOut_isInf_0; // @[MulAddRecFN.scala:169:7] wire io_rawOut_isZero_0; // @[MulAddRecFN.scala:169:7] wire io_rawOut_sign_0; // @[MulAddRecFN.scala:169:7] wire [9:0] io_rawOut_sExp_0; // @[MulAddRecFN.scala:169:7] wire [26:0] io_rawOut_sig_0; // @[MulAddRecFN.scala:169:7] wire io_invalidExc_0; // @[MulAddRecFN.scala:169:7] wire opSignC = io_fromPreMul_signProd_0 ^ io_fromPreMul_doSubMags_0; // @[MulAddRecFN.scala:169:7, :190:42] wire _sigSum_T = io_mulAddResult_0[48]; // @[MulAddRecFN.scala:169:7, :192:32] wire [26:0] _sigSum_T_1 = {1'h0, io_fromPreMul_highAlignedSigC_0} + 27'h1; // @[MulAddRecFN.scala:169:7, :193:47] wire [25:0] _sigSum_T_2 = _sigSum_T_1[25:0]; // @[MulAddRecFN.scala:193:47] wire [25:0] _sigSum_T_3 = _sigSum_T ? _sigSum_T_2 : io_fromPreMul_highAlignedSigC_0; // @[MulAddRecFN.scala:169:7, :192:{16,32}, :193:47] wire [47:0] _sigSum_T_4 = io_mulAddResult_0[47:0]; // @[MulAddRecFN.scala:169:7, :196:28] wire [73:0] sigSum_hi = {_sigSum_T_3, _sigSum_T_4}; // @[MulAddRecFN.scala:192:{12,16}, :196:28] wire [74:0] sigSum = {sigSum_hi, io_fromPreMul_bit0AlignedSigC_0}; // @[MulAddRecFN.scala:169:7, :192:12] wire [1:0] _CDom_sExp_T = {1'h0, io_fromPreMul_doSubMags_0}; // @[MulAddRecFN.scala:169:7, :203:69] wire [10:0] _GEN = {io_fromPreMul_sExpSum_0[9], io_fromPreMul_sExpSum_0}; // @[MulAddRecFN.scala:169:7, :203:43] wire [10:0] _CDom_sExp_T_1 = _GEN - {{9{_CDom_sExp_T[1]}}, _CDom_sExp_T}; // @[MulAddRecFN.scala:203:{43,69}] wire [9:0] _CDom_sExp_T_2 = _CDom_sExp_T_1[9:0]; // @[MulAddRecFN.scala:203:43] wire [9:0] CDom_sExp = _CDom_sExp_T_2; // @[MulAddRecFN.scala:203:43] wire [49:0] _CDom_absSigSum_T = sigSum[74:25]; // @[MulAddRecFN.scala:192:12, :206:20] wire [49:0] _CDom_absSigSum_T_1 = ~_CDom_absSigSum_T; // @[MulAddRecFN.scala:206:{13,20}] wire [1:0] _CDom_absSigSum_T_2 = io_fromPreMul_highAlignedSigC_0[25:24]; // @[MulAddRecFN.scala:169:7, :209:46] wire [2:0] _CDom_absSigSum_T_3 = {1'h0, _CDom_absSigSum_T_2}; // @[MulAddRecFN.scala:207:22, :209:46] wire [46:0] _CDom_absSigSum_T_4 = sigSum[72:26]; // @[MulAddRecFN.scala:192:12, :210:23] wire [49:0] _CDom_absSigSum_T_5 = {_CDom_absSigSum_T_3, _CDom_absSigSum_T_4}; // @[MulAddRecFN.scala:207:22, :209:71, :210:23] wire [49:0] CDom_absSigSum = io_fromPreMul_doSubMags_0 ? _CDom_absSigSum_T_1 : _CDom_absSigSum_T_5; // @[MulAddRecFN.scala:169:7, :205:12, :206:13, :209:71] wire [23:0] _CDom_absSigSumExtra_T = sigSum[24:1]; // @[MulAddRecFN.scala:192:12, :215:21] wire [23:0] _CDom_absSigSumExtra_T_1 = ~_CDom_absSigSumExtra_T; // @[MulAddRecFN.scala:215:{14,21}] wire _CDom_absSigSumExtra_T_2 = |_CDom_absSigSumExtra_T_1; // @[MulAddRecFN.scala:215:{14,36}] wire [24:0] _CDom_absSigSumExtra_T_3 = sigSum[25:1]; // @[MulAddRecFN.scala:192:12, :216:19] wire _CDom_absSigSumExtra_T_4 = |_CDom_absSigSumExtra_T_3; // @[MulAddRecFN.scala:216:{19,37}] wire CDom_absSigSumExtra = io_fromPreMul_doSubMags_0 ? _CDom_absSigSumExtra_T_2 : _CDom_absSigSumExtra_T_4; // @[MulAddRecFN.scala:169:7, :214:12, :215:36, :216:37] wire [80:0] _CDom_mainSig_T = {31'h0, CDom_absSigSum} << io_fromPreMul_CDom_CAlignDist_0; // @[MulAddRecFN.scala:169:7, :205:12, :219:24] wire [28:0] CDom_mainSig = _CDom_mainSig_T[49:21]; // @[MulAddRecFN.scala:219:{24,56}] wire [23:0] _CDom_reduced4SigExtra_T = CDom_absSigSum[23:0]; // @[MulAddRecFN.scala:205:12, :222:36] wire [26:0] _CDom_reduced4SigExtra_T_1 = {_CDom_reduced4SigExtra_T, 3'h0}; // @[MulAddRecFN.scala:169:7, :172:16, :222:{36,53}] wire _CDom_reduced4SigExtra_reducedVec_0_T_1; // @[primitives.scala:120:54] wire _CDom_reduced4SigExtra_reducedVec_1_T_1; // @[primitives.scala:120:54] wire _CDom_reduced4SigExtra_reducedVec_2_T_1; // @[primitives.scala:120:54] wire _CDom_reduced4SigExtra_reducedVec_3_T_1; // @[primitives.scala:120:54] wire _CDom_reduced4SigExtra_reducedVec_4_T_1; // @[primitives.scala:120:54] wire _CDom_reduced4SigExtra_reducedVec_5_T_1; // @[primitives.scala:120:54] wire _CDom_reduced4SigExtra_reducedVec_6_T_1; // @[primitives.scala:123:57] wire CDom_reduced4SigExtra_reducedVec_0; // @[primitives.scala:118:30] wire CDom_reduced4SigExtra_reducedVec_1; // @[primitives.scala:118:30] wire CDom_reduced4SigExtra_reducedVec_2; // @[primitives.scala:118:30] wire CDom_reduced4SigExtra_reducedVec_3; // @[primitives.scala:118:30] wire CDom_reduced4SigExtra_reducedVec_4; // @[primitives.scala:118:30] wire CDom_reduced4SigExtra_reducedVec_5; // @[primitives.scala:118:30] wire CDom_reduced4SigExtra_reducedVec_6; // @[primitives.scala:118:30] wire [3:0] _CDom_reduced4SigExtra_reducedVec_0_T = _CDom_reduced4SigExtra_T_1[3:0]; // @[primitives.scala:120:33] assign _CDom_reduced4SigExtra_reducedVec_0_T_1 = |_CDom_reduced4SigExtra_reducedVec_0_T; // @[primitives.scala:120:{33,54}] assign CDom_reduced4SigExtra_reducedVec_0 = _CDom_reduced4SigExtra_reducedVec_0_T_1; // @[primitives.scala:118:30, :120:54] wire [3:0] _CDom_reduced4SigExtra_reducedVec_1_T = _CDom_reduced4SigExtra_T_1[7:4]; // @[primitives.scala:120:33] assign _CDom_reduced4SigExtra_reducedVec_1_T_1 = |_CDom_reduced4SigExtra_reducedVec_1_T; // @[primitives.scala:120:{33,54}] assign CDom_reduced4SigExtra_reducedVec_1 = _CDom_reduced4SigExtra_reducedVec_1_T_1; // @[primitives.scala:118:30, :120:54] wire [3:0] _CDom_reduced4SigExtra_reducedVec_2_T = _CDom_reduced4SigExtra_T_1[11:8]; // @[primitives.scala:120:33] assign _CDom_reduced4SigExtra_reducedVec_2_T_1 = |_CDom_reduced4SigExtra_reducedVec_2_T; // @[primitives.scala:120:{33,54}] assign CDom_reduced4SigExtra_reducedVec_2 = _CDom_reduced4SigExtra_reducedVec_2_T_1; // @[primitives.scala:118:30, :120:54] wire [3:0] _CDom_reduced4SigExtra_reducedVec_3_T = _CDom_reduced4SigExtra_T_1[15:12]; // @[primitives.scala:120:33] assign _CDom_reduced4SigExtra_reducedVec_3_T_1 = |_CDom_reduced4SigExtra_reducedVec_3_T; // @[primitives.scala:120:{33,54}] assign CDom_reduced4SigExtra_reducedVec_3 = _CDom_reduced4SigExtra_reducedVec_3_T_1; // @[primitives.scala:118:30, :120:54] wire [3:0] _CDom_reduced4SigExtra_reducedVec_4_T = _CDom_reduced4SigExtra_T_1[19:16]; // @[primitives.scala:120:33] assign _CDom_reduced4SigExtra_reducedVec_4_T_1 = |_CDom_reduced4SigExtra_reducedVec_4_T; // @[primitives.scala:120:{33,54}] assign CDom_reduced4SigExtra_reducedVec_4 = _CDom_reduced4SigExtra_reducedVec_4_T_1; // @[primitives.scala:118:30, :120:54] wire [3:0] _CDom_reduced4SigExtra_reducedVec_5_T = _CDom_reduced4SigExtra_T_1[23:20]; // @[primitives.scala:120:33] assign _CDom_reduced4SigExtra_reducedVec_5_T_1 = |_CDom_reduced4SigExtra_reducedVec_5_T; // @[primitives.scala:120:{33,54}] assign CDom_reduced4SigExtra_reducedVec_5 = _CDom_reduced4SigExtra_reducedVec_5_T_1; // @[primitives.scala:118:30, :120:54] wire [2:0] _CDom_reduced4SigExtra_reducedVec_6_T = _CDom_reduced4SigExtra_T_1[26:24]; // @[primitives.scala:123:15] assign _CDom_reduced4SigExtra_reducedVec_6_T_1 = |_CDom_reduced4SigExtra_reducedVec_6_T; // @[primitives.scala:123:{15,57}] assign CDom_reduced4SigExtra_reducedVec_6 = _CDom_reduced4SigExtra_reducedVec_6_T_1; // @[primitives.scala:118:30, :123:57] wire [1:0] CDom_reduced4SigExtra_lo_hi = {CDom_reduced4SigExtra_reducedVec_2, CDom_reduced4SigExtra_reducedVec_1}; // @[primitives.scala:118:30, :124:20] wire [2:0] CDom_reduced4SigExtra_lo = {CDom_reduced4SigExtra_lo_hi, CDom_reduced4SigExtra_reducedVec_0}; // @[primitives.scala:118:30, :124:20] wire [1:0] CDom_reduced4SigExtra_hi_lo = {CDom_reduced4SigExtra_reducedVec_4, CDom_reduced4SigExtra_reducedVec_3}; // @[primitives.scala:118:30, :124:20] wire [1:0] CDom_reduced4SigExtra_hi_hi = {CDom_reduced4SigExtra_reducedVec_6, CDom_reduced4SigExtra_reducedVec_5}; // @[primitives.scala:118:30, :124:20] wire [3:0] CDom_reduced4SigExtra_hi = {CDom_reduced4SigExtra_hi_hi, CDom_reduced4SigExtra_hi_lo}; // @[primitives.scala:124:20] wire [6:0] _CDom_reduced4SigExtra_T_2 = {CDom_reduced4SigExtra_hi, CDom_reduced4SigExtra_lo}; // @[primitives.scala:124:20] wire [2:0] _CDom_reduced4SigExtra_T_3 = io_fromPreMul_CDom_CAlignDist_0[4:2]; // @[MulAddRecFN.scala:169:7, :223:51] wire [2:0] _CDom_reduced4SigExtra_T_4 = ~_CDom_reduced4SigExtra_T_3; // @[primitives.scala:52:21] wire [8:0] CDom_reduced4SigExtra_shift = $signed(9'sh100 >>> _CDom_reduced4SigExtra_T_4); // @[primitives.scala:52:21, :76:56] wire [5:0] _CDom_reduced4SigExtra_T_5 = CDom_reduced4SigExtra_shift[6:1]; // @[primitives.scala:76:56, :78:22] wire [3:0] _CDom_reduced4SigExtra_T_6 = _CDom_reduced4SigExtra_T_5[3:0]; // @[primitives.scala:77:20, :78:22] wire [1:0] _CDom_reduced4SigExtra_T_7 = _CDom_reduced4SigExtra_T_6[1:0]; // @[primitives.scala:77:20] wire _CDom_reduced4SigExtra_T_8 = _CDom_reduced4SigExtra_T_7[0]; // @[primitives.scala:77:20] wire _CDom_reduced4SigExtra_T_9 = _CDom_reduced4SigExtra_T_7[1]; // @[primitives.scala:77:20] wire [1:0] _CDom_reduced4SigExtra_T_10 = {_CDom_reduced4SigExtra_T_8, _CDom_reduced4SigExtra_T_9}; // @[primitives.scala:77:20] wire [1:0] _CDom_reduced4SigExtra_T_11 = _CDom_reduced4SigExtra_T_6[3:2]; // @[primitives.scala:77:20] wire _CDom_reduced4SigExtra_T_12 = _CDom_reduced4SigExtra_T_11[0]; // @[primitives.scala:77:20] wire _CDom_reduced4SigExtra_T_13 = _CDom_reduced4SigExtra_T_11[1]; // @[primitives.scala:77:20] wire [1:0] _CDom_reduced4SigExtra_T_14 = {_CDom_reduced4SigExtra_T_12, _CDom_reduced4SigExtra_T_13}; // @[primitives.scala:77:20] wire [3:0] _CDom_reduced4SigExtra_T_15 = {_CDom_reduced4SigExtra_T_10, _CDom_reduced4SigExtra_T_14}; // @[primitives.scala:77:20] wire [1:0] _CDom_reduced4SigExtra_T_16 = _CDom_reduced4SigExtra_T_5[5:4]; // @[primitives.scala:77:20, :78:22] wire _CDom_reduced4SigExtra_T_17 = _CDom_reduced4SigExtra_T_16[0]; // @[primitives.scala:77:20] wire _CDom_reduced4SigExtra_T_18 = _CDom_reduced4SigExtra_T_16[1]; // @[primitives.scala:77:20] wire [1:0] _CDom_reduced4SigExtra_T_19 = {_CDom_reduced4SigExtra_T_17, _CDom_reduced4SigExtra_T_18}; // @[primitives.scala:77:20] wire [5:0] _CDom_reduced4SigExtra_T_20 = {_CDom_reduced4SigExtra_T_15, _CDom_reduced4SigExtra_T_19}; // @[primitives.scala:77:20] wire [6:0] _CDom_reduced4SigExtra_T_21 = {1'h0, _CDom_reduced4SigExtra_T_2[5:0] & _CDom_reduced4SigExtra_T_20}; // @[primitives.scala:77:20, :124:20] wire CDom_reduced4SigExtra = |_CDom_reduced4SigExtra_T_21; // @[MulAddRecFN.scala:222:72, :223:73] wire [25:0] _CDom_sig_T = CDom_mainSig[28:3]; // @[MulAddRecFN.scala:219:56, :225:25] wire [2:0] _CDom_sig_T_1 = CDom_mainSig[2:0]; // @[MulAddRecFN.scala:219:56, :226:25] wire _CDom_sig_T_2 = |_CDom_sig_T_1; // @[MulAddRecFN.scala:226:{25,32}] wire _CDom_sig_T_3 = _CDom_sig_T_2 | CDom_reduced4SigExtra; // @[MulAddRecFN.scala:223:73, :226:{32,36}] wire _CDom_sig_T_4 = _CDom_sig_T_3 | CDom_absSigSumExtra; // @[MulAddRecFN.scala:214:12, :226:{36,61}] wire [26:0] CDom_sig = {_CDom_sig_T, _CDom_sig_T_4}; // @[MulAddRecFN.scala:225:{12,25}, :226:61] wire notCDom_signSigSum = sigSum[51]; // @[MulAddRecFN.scala:192:12, :232:36] wire [50:0] _notCDom_absSigSum_T = sigSum[50:0]; // @[MulAddRecFN.scala:192:12, :235:20] wire [50:0] _notCDom_absSigSum_T_2 = sigSum[50:0]; // @[MulAddRecFN.scala:192:12, :235:20, :236:19] wire [50:0] _notCDom_absSigSum_T_1 = ~_notCDom_absSigSum_T; // @[MulAddRecFN.scala:235:{13,20}] wire [51:0] _notCDom_absSigSum_T_3 = {1'h0, _notCDom_absSigSum_T_2} + {51'h0, io_fromPreMul_doSubMags_0}; // @[MulAddRecFN.scala:169:7, :236:{19,41}] wire [50:0] _notCDom_absSigSum_T_4 = _notCDom_absSigSum_T_3[50:0]; // @[MulAddRecFN.scala:236:41] wire [50:0] notCDom_absSigSum = notCDom_signSigSum ? _notCDom_absSigSum_T_1 : _notCDom_absSigSum_T_4; // @[MulAddRecFN.scala:232:36, :234:12, :235:13, :236:41] wire _notCDom_reduced2AbsSigSum_reducedVec_0_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_1_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_2_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_3_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_4_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_5_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_6_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_7_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_8_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_9_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_10_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_11_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_12_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_13_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_14_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_15_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_16_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_17_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_18_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_19_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_20_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_21_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_22_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_23_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_24_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_25_T_1; // @[primitives.scala:106:57] wire notCDom_reduced2AbsSigSum_reducedVec_0; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_1; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_2; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_3; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_4; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_5; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_6; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_7; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_8; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_9; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_10; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_11; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_12; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_13; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_14; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_15; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_16; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_17; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_18; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_19; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_20; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_21; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_22; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_23; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_24; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_25; // @[primitives.scala:101:30] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_0_T = notCDom_absSigSum[1:0]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_0_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_0_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_0 = _notCDom_reduced2AbsSigSum_reducedVec_0_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_1_T = notCDom_absSigSum[3:2]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_1_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_1_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_1 = _notCDom_reduced2AbsSigSum_reducedVec_1_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_2_T = notCDom_absSigSum[5:4]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_2_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_2_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_2 = _notCDom_reduced2AbsSigSum_reducedVec_2_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_3_T = notCDom_absSigSum[7:6]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_3_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_3_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_3 = _notCDom_reduced2AbsSigSum_reducedVec_3_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_4_T = notCDom_absSigSum[9:8]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_4_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_4_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_4 = _notCDom_reduced2AbsSigSum_reducedVec_4_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_5_T = notCDom_absSigSum[11:10]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_5_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_5_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_5 = _notCDom_reduced2AbsSigSum_reducedVec_5_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_6_T = notCDom_absSigSum[13:12]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_6_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_6_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_6 = _notCDom_reduced2AbsSigSum_reducedVec_6_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_7_T = notCDom_absSigSum[15:14]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_7_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_7_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_7 = _notCDom_reduced2AbsSigSum_reducedVec_7_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_8_T = notCDom_absSigSum[17:16]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_8_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_8_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_8 = _notCDom_reduced2AbsSigSum_reducedVec_8_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_9_T = notCDom_absSigSum[19:18]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_9_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_9_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_9 = _notCDom_reduced2AbsSigSum_reducedVec_9_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_10_T = notCDom_absSigSum[21:20]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_10_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_10_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_10 = _notCDom_reduced2AbsSigSum_reducedVec_10_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_11_T = notCDom_absSigSum[23:22]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_11_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_11_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_11 = _notCDom_reduced2AbsSigSum_reducedVec_11_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_12_T = notCDom_absSigSum[25:24]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_12_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_12_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_12 = _notCDom_reduced2AbsSigSum_reducedVec_12_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_13_T = notCDom_absSigSum[27:26]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_13_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_13_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_13 = _notCDom_reduced2AbsSigSum_reducedVec_13_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_14_T = notCDom_absSigSum[29:28]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_14_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_14_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_14 = _notCDom_reduced2AbsSigSum_reducedVec_14_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_15_T = notCDom_absSigSum[31:30]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_15_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_15_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_15 = _notCDom_reduced2AbsSigSum_reducedVec_15_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_16_T = notCDom_absSigSum[33:32]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_16_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_16_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_16 = _notCDom_reduced2AbsSigSum_reducedVec_16_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_17_T = notCDom_absSigSum[35:34]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_17_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_17_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_17 = _notCDom_reduced2AbsSigSum_reducedVec_17_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_18_T = notCDom_absSigSum[37:36]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_18_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_18_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_18 = _notCDom_reduced2AbsSigSum_reducedVec_18_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_19_T = notCDom_absSigSum[39:38]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_19_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_19_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_19 = _notCDom_reduced2AbsSigSum_reducedVec_19_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_20_T = notCDom_absSigSum[41:40]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_20_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_20_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_20 = _notCDom_reduced2AbsSigSum_reducedVec_20_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_21_T = notCDom_absSigSum[43:42]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_21_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_21_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_21 = _notCDom_reduced2AbsSigSum_reducedVec_21_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_22_T = notCDom_absSigSum[45:44]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_22_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_22_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_22 = _notCDom_reduced2AbsSigSum_reducedVec_22_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_23_T = notCDom_absSigSum[47:46]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_23_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_23_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_23 = _notCDom_reduced2AbsSigSum_reducedVec_23_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_24_T = notCDom_absSigSum[49:48]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_24_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_24_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_24 = _notCDom_reduced2AbsSigSum_reducedVec_24_T_1; // @[primitives.scala:101:30, :103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_25_T = notCDom_absSigSum[50]; // @[primitives.scala:106:15] assign _notCDom_reduced2AbsSigSum_reducedVec_25_T_1 = _notCDom_reduced2AbsSigSum_reducedVec_25_T; // @[primitives.scala:106:{15,57}] assign notCDom_reduced2AbsSigSum_reducedVec_25 = _notCDom_reduced2AbsSigSum_reducedVec_25_T_1; // @[primitives.scala:101:30, :106:57] wire [1:0] notCDom_reduced2AbsSigSum_lo_lo_lo_hi = {notCDom_reduced2AbsSigSum_reducedVec_2, notCDom_reduced2AbsSigSum_reducedVec_1}; // @[primitives.scala:101:30, :107:20] wire [2:0] notCDom_reduced2AbsSigSum_lo_lo_lo = {notCDom_reduced2AbsSigSum_lo_lo_lo_hi, notCDom_reduced2AbsSigSum_reducedVec_0}; // @[primitives.scala:101:30, :107:20] wire [1:0] notCDom_reduced2AbsSigSum_lo_lo_hi_hi = {notCDom_reduced2AbsSigSum_reducedVec_5, notCDom_reduced2AbsSigSum_reducedVec_4}; // @[primitives.scala:101:30, :107:20] wire [2:0] notCDom_reduced2AbsSigSum_lo_lo_hi = {notCDom_reduced2AbsSigSum_lo_lo_hi_hi, notCDom_reduced2AbsSigSum_reducedVec_3}; // @[primitives.scala:101:30, :107:20] wire [5:0] notCDom_reduced2AbsSigSum_lo_lo = {notCDom_reduced2AbsSigSum_lo_lo_hi, notCDom_reduced2AbsSigSum_lo_lo_lo}; // @[primitives.scala:107:20] wire [1:0] notCDom_reduced2AbsSigSum_lo_hi_lo_hi = {notCDom_reduced2AbsSigSum_reducedVec_8, notCDom_reduced2AbsSigSum_reducedVec_7}; // @[primitives.scala:101:30, :107:20] wire [2:0] notCDom_reduced2AbsSigSum_lo_hi_lo = {notCDom_reduced2AbsSigSum_lo_hi_lo_hi, notCDom_reduced2AbsSigSum_reducedVec_6}; // @[primitives.scala:101:30, :107:20] wire [1:0] notCDom_reduced2AbsSigSum_lo_hi_hi_lo = {notCDom_reduced2AbsSigSum_reducedVec_10, notCDom_reduced2AbsSigSum_reducedVec_9}; // @[primitives.scala:101:30, :107:20] wire [1:0] notCDom_reduced2AbsSigSum_lo_hi_hi_hi = {notCDom_reduced2AbsSigSum_reducedVec_12, notCDom_reduced2AbsSigSum_reducedVec_11}; // @[primitives.scala:101:30, :107:20] wire [3:0] notCDom_reduced2AbsSigSum_lo_hi_hi = {notCDom_reduced2AbsSigSum_lo_hi_hi_hi, notCDom_reduced2AbsSigSum_lo_hi_hi_lo}; // @[primitives.scala:107:20] wire [6:0] notCDom_reduced2AbsSigSum_lo_hi = {notCDom_reduced2AbsSigSum_lo_hi_hi, notCDom_reduced2AbsSigSum_lo_hi_lo}; // @[primitives.scala:107:20] wire [12:0] notCDom_reduced2AbsSigSum_lo = {notCDom_reduced2AbsSigSum_lo_hi, notCDom_reduced2AbsSigSum_lo_lo}; // @[primitives.scala:107:20] wire [1:0] notCDom_reduced2AbsSigSum_hi_lo_lo_hi = {notCDom_reduced2AbsSigSum_reducedVec_15, notCDom_reduced2AbsSigSum_reducedVec_14}; // @[primitives.scala:101:30, :107:20] wire [2:0] notCDom_reduced2AbsSigSum_hi_lo_lo = {notCDom_reduced2AbsSigSum_hi_lo_lo_hi, notCDom_reduced2AbsSigSum_reducedVec_13}; // @[primitives.scala:101:30, :107:20] wire [1:0] notCDom_reduced2AbsSigSum_hi_lo_hi_hi = {notCDom_reduced2AbsSigSum_reducedVec_18, notCDom_reduced2AbsSigSum_reducedVec_17}; // @[primitives.scala:101:30, :107:20] wire [2:0] notCDom_reduced2AbsSigSum_hi_lo_hi = {notCDom_reduced2AbsSigSum_hi_lo_hi_hi, notCDom_reduced2AbsSigSum_reducedVec_16}; // @[primitives.scala:101:30, :107:20] wire [5:0] notCDom_reduced2AbsSigSum_hi_lo = {notCDom_reduced2AbsSigSum_hi_lo_hi, notCDom_reduced2AbsSigSum_hi_lo_lo}; // @[primitives.scala:107:20] wire [1:0] notCDom_reduced2AbsSigSum_hi_hi_lo_hi = {notCDom_reduced2AbsSigSum_reducedVec_21, notCDom_reduced2AbsSigSum_reducedVec_20}; // @[primitives.scala:101:30, :107:20] wire [2:0] notCDom_reduced2AbsSigSum_hi_hi_lo = {notCDom_reduced2AbsSigSum_hi_hi_lo_hi, notCDom_reduced2AbsSigSum_reducedVec_19}; // @[primitives.scala:101:30, :107:20] wire [1:0] notCDom_reduced2AbsSigSum_hi_hi_hi_lo = {notCDom_reduced2AbsSigSum_reducedVec_23, notCDom_reduced2AbsSigSum_reducedVec_22}; // @[primitives.scala:101:30, :107:20] wire [1:0] notCDom_reduced2AbsSigSum_hi_hi_hi_hi = {notCDom_reduced2AbsSigSum_reducedVec_25, notCDom_reduced2AbsSigSum_reducedVec_24}; // @[primitives.scala:101:30, :107:20] wire [3:0] notCDom_reduced2AbsSigSum_hi_hi_hi = {notCDom_reduced2AbsSigSum_hi_hi_hi_hi, notCDom_reduced2AbsSigSum_hi_hi_hi_lo}; // @[primitives.scala:107:20] wire [6:0] notCDom_reduced2AbsSigSum_hi_hi = {notCDom_reduced2AbsSigSum_hi_hi_hi, notCDom_reduced2AbsSigSum_hi_hi_lo}; // @[primitives.scala:107:20] wire [12:0] notCDom_reduced2AbsSigSum_hi = {notCDom_reduced2AbsSigSum_hi_hi, notCDom_reduced2AbsSigSum_hi_lo}; // @[primitives.scala:107:20] wire [25:0] notCDom_reduced2AbsSigSum = {notCDom_reduced2AbsSigSum_hi, notCDom_reduced2AbsSigSum_lo}; // @[primitives.scala:107:20] wire _notCDom_normDistReduced2_T = notCDom_reduced2AbsSigSum[0]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_1 = notCDom_reduced2AbsSigSum[1]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_2 = notCDom_reduced2AbsSigSum[2]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_3 = notCDom_reduced2AbsSigSum[3]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_4 = notCDom_reduced2AbsSigSum[4]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_5 = notCDom_reduced2AbsSigSum[5]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_6 = notCDom_reduced2AbsSigSum[6]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_7 = notCDom_reduced2AbsSigSum[7]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_8 = notCDom_reduced2AbsSigSum[8]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_9 = notCDom_reduced2AbsSigSum[9]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_10 = notCDom_reduced2AbsSigSum[10]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_11 = notCDom_reduced2AbsSigSum[11]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_12 = notCDom_reduced2AbsSigSum[12]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_13 = notCDom_reduced2AbsSigSum[13]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_14 = notCDom_reduced2AbsSigSum[14]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_15 = notCDom_reduced2AbsSigSum[15]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_16 = notCDom_reduced2AbsSigSum[16]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_17 = notCDom_reduced2AbsSigSum[17]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_18 = notCDom_reduced2AbsSigSum[18]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_19 = notCDom_reduced2AbsSigSum[19]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_20 = notCDom_reduced2AbsSigSum[20]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_21 = notCDom_reduced2AbsSigSum[21]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_22 = notCDom_reduced2AbsSigSum[22]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_23 = notCDom_reduced2AbsSigSum[23]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_24 = notCDom_reduced2AbsSigSum[24]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_25 = notCDom_reduced2AbsSigSum[25]; // @[primitives.scala:91:52, :107:20] wire [4:0] _notCDom_normDistReduced2_T_26 = {4'hC, ~_notCDom_normDistReduced2_T_1}; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_27 = _notCDom_normDistReduced2_T_2 ? 5'h17 : _notCDom_normDistReduced2_T_26; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_28 = _notCDom_normDistReduced2_T_3 ? 5'h16 : _notCDom_normDistReduced2_T_27; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_29 = _notCDom_normDistReduced2_T_4 ? 5'h15 : _notCDom_normDistReduced2_T_28; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_30 = _notCDom_normDistReduced2_T_5 ? 5'h14 : _notCDom_normDistReduced2_T_29; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_31 = _notCDom_normDistReduced2_T_6 ? 5'h13 : _notCDom_normDistReduced2_T_30; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_32 = _notCDom_normDistReduced2_T_7 ? 5'h12 : _notCDom_normDistReduced2_T_31; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_33 = _notCDom_normDistReduced2_T_8 ? 5'h11 : _notCDom_normDistReduced2_T_32; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_34 = _notCDom_normDistReduced2_T_9 ? 5'h10 : _notCDom_normDistReduced2_T_33; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_35 = _notCDom_normDistReduced2_T_10 ? 5'hF : _notCDom_normDistReduced2_T_34; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_36 = _notCDom_normDistReduced2_T_11 ? 5'hE : _notCDom_normDistReduced2_T_35; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_37 = _notCDom_normDistReduced2_T_12 ? 5'hD : _notCDom_normDistReduced2_T_36; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_38 = _notCDom_normDistReduced2_T_13 ? 5'hC : _notCDom_normDistReduced2_T_37; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_39 = _notCDom_normDistReduced2_T_14 ? 5'hB : _notCDom_normDistReduced2_T_38; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_40 = _notCDom_normDistReduced2_T_15 ? 5'hA : _notCDom_normDistReduced2_T_39; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_41 = _notCDom_normDistReduced2_T_16 ? 5'h9 : _notCDom_normDistReduced2_T_40; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_42 = _notCDom_normDistReduced2_T_17 ? 5'h8 : _notCDom_normDistReduced2_T_41; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_43 = _notCDom_normDistReduced2_T_18 ? 5'h7 : _notCDom_normDistReduced2_T_42; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_44 = _notCDom_normDistReduced2_T_19 ? 5'h6 : _notCDom_normDistReduced2_T_43; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_45 = _notCDom_normDistReduced2_T_20 ? 5'h5 : _notCDom_normDistReduced2_T_44; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_46 = _notCDom_normDistReduced2_T_21 ? 5'h4 : _notCDom_normDistReduced2_T_45; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_47 = _notCDom_normDistReduced2_T_22 ? 5'h3 : _notCDom_normDistReduced2_T_46; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_48 = _notCDom_normDistReduced2_T_23 ? 5'h2 : _notCDom_normDistReduced2_T_47; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_49 = _notCDom_normDistReduced2_T_24 ? 5'h1 : _notCDom_normDistReduced2_T_48; // @[Mux.scala:50:70] wire [4:0] notCDom_normDistReduced2 = _notCDom_normDistReduced2_T_25 ? 5'h0 : _notCDom_normDistReduced2_T_49; // @[Mux.scala:50:70] wire [5:0] notCDom_nearNormDist = {notCDom_normDistReduced2, 1'h0}; // @[Mux.scala:50:70] wire [6:0] _notCDom_sExp_T = {1'h0, notCDom_nearNormDist}; // @[MulAddRecFN.scala:240:56, :241:76] wire [10:0] _notCDom_sExp_T_1 = _GEN - {{4{_notCDom_sExp_T[6]}}, _notCDom_sExp_T}; // @[MulAddRecFN.scala:203:43, :241:{46,76}] wire [9:0] _notCDom_sExp_T_2 = _notCDom_sExp_T_1[9:0]; // @[MulAddRecFN.scala:241:46] wire [9:0] notCDom_sExp = _notCDom_sExp_T_2; // @[MulAddRecFN.scala:241:46] assign _io_rawOut_sExp_T = notCDom_sExp; // @[MulAddRecFN.scala:241:46, :293:26] wire [113:0] _notCDom_mainSig_T = {63'h0, notCDom_absSigSum} << notCDom_nearNormDist; // @[MulAddRecFN.scala:234:12, :240:56, :243:27] wire [28:0] notCDom_mainSig = _notCDom_mainSig_T[51:23]; // @[MulAddRecFN.scala:243:{27,50}] wire [12:0] _notCDom_reduced4SigExtra_T = notCDom_reduced2AbsSigSum[12:0]; // @[primitives.scala:107:20] wire [12:0] _notCDom_reduced4SigExtra_T_1 = _notCDom_reduced4SigExtra_T; // @[MulAddRecFN.scala:247:{39,55}] wire _notCDom_reduced4SigExtra_reducedVec_0_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced4SigExtra_reducedVec_1_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced4SigExtra_reducedVec_2_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced4SigExtra_reducedVec_3_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced4SigExtra_reducedVec_4_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced4SigExtra_reducedVec_5_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced4SigExtra_reducedVec_6_T_1; // @[primitives.scala:106:57] wire notCDom_reduced4SigExtra_reducedVec_0; // @[primitives.scala:101:30] wire notCDom_reduced4SigExtra_reducedVec_1; // @[primitives.scala:101:30] wire notCDom_reduced4SigExtra_reducedVec_2; // @[primitives.scala:101:30] wire notCDom_reduced4SigExtra_reducedVec_3; // @[primitives.scala:101:30] wire notCDom_reduced4SigExtra_reducedVec_4; // @[primitives.scala:101:30] wire notCDom_reduced4SigExtra_reducedVec_5; // @[primitives.scala:101:30] wire notCDom_reduced4SigExtra_reducedVec_6; // @[primitives.scala:101:30] wire [1:0] _notCDom_reduced4SigExtra_reducedVec_0_T = _notCDom_reduced4SigExtra_T_1[1:0]; // @[primitives.scala:103:33] assign _notCDom_reduced4SigExtra_reducedVec_0_T_1 = |_notCDom_reduced4SigExtra_reducedVec_0_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced4SigExtra_reducedVec_0 = _notCDom_reduced4SigExtra_reducedVec_0_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced4SigExtra_reducedVec_1_T = _notCDom_reduced4SigExtra_T_1[3:2]; // @[primitives.scala:103:33] assign _notCDom_reduced4SigExtra_reducedVec_1_T_1 = |_notCDom_reduced4SigExtra_reducedVec_1_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced4SigExtra_reducedVec_1 = _notCDom_reduced4SigExtra_reducedVec_1_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced4SigExtra_reducedVec_2_T = _notCDom_reduced4SigExtra_T_1[5:4]; // @[primitives.scala:103:33] assign _notCDom_reduced4SigExtra_reducedVec_2_T_1 = |_notCDom_reduced4SigExtra_reducedVec_2_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced4SigExtra_reducedVec_2 = _notCDom_reduced4SigExtra_reducedVec_2_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced4SigExtra_reducedVec_3_T = _notCDom_reduced4SigExtra_T_1[7:6]; // @[primitives.scala:103:33] assign _notCDom_reduced4SigExtra_reducedVec_3_T_1 = |_notCDom_reduced4SigExtra_reducedVec_3_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced4SigExtra_reducedVec_3 = _notCDom_reduced4SigExtra_reducedVec_3_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced4SigExtra_reducedVec_4_T = _notCDom_reduced4SigExtra_T_1[9:8]; // @[primitives.scala:103:33] assign _notCDom_reduced4SigExtra_reducedVec_4_T_1 = |_notCDom_reduced4SigExtra_reducedVec_4_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced4SigExtra_reducedVec_4 = _notCDom_reduced4SigExtra_reducedVec_4_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced4SigExtra_reducedVec_5_T = _notCDom_reduced4SigExtra_T_1[11:10]; // @[primitives.scala:103:33] assign _notCDom_reduced4SigExtra_reducedVec_5_T_1 = |_notCDom_reduced4SigExtra_reducedVec_5_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced4SigExtra_reducedVec_5 = _notCDom_reduced4SigExtra_reducedVec_5_T_1; // @[primitives.scala:101:30, :103:54] wire _notCDom_reduced4SigExtra_reducedVec_6_T = _notCDom_reduced4SigExtra_T_1[12]; // @[primitives.scala:106:15] assign _notCDom_reduced4SigExtra_reducedVec_6_T_1 = _notCDom_reduced4SigExtra_reducedVec_6_T; // @[primitives.scala:106:{15,57}] assign notCDom_reduced4SigExtra_reducedVec_6 = _notCDom_reduced4SigExtra_reducedVec_6_T_1; // @[primitives.scala:101:30, :106:57] wire [1:0] notCDom_reduced4SigExtra_lo_hi = {notCDom_reduced4SigExtra_reducedVec_2, notCDom_reduced4SigExtra_reducedVec_1}; // @[primitives.scala:101:30, :107:20] wire [2:0] notCDom_reduced4SigExtra_lo = {notCDom_reduced4SigExtra_lo_hi, notCDom_reduced4SigExtra_reducedVec_0}; // @[primitives.scala:101:30, :107:20] wire [1:0] notCDom_reduced4SigExtra_hi_lo = {notCDom_reduced4SigExtra_reducedVec_4, notCDom_reduced4SigExtra_reducedVec_3}; // @[primitives.scala:101:30, :107:20] wire [1:0] notCDom_reduced4SigExtra_hi_hi = {notCDom_reduced4SigExtra_reducedVec_6, notCDom_reduced4SigExtra_reducedVec_5}; // @[primitives.scala:101:30, :107:20] wire [3:0] notCDom_reduced4SigExtra_hi = {notCDom_reduced4SigExtra_hi_hi, notCDom_reduced4SigExtra_hi_lo}; // @[primitives.scala:107:20] wire [6:0] _notCDom_reduced4SigExtra_T_2 = {notCDom_reduced4SigExtra_hi, notCDom_reduced4SigExtra_lo}; // @[primitives.scala:107:20] wire [3:0] _notCDom_reduced4SigExtra_T_3 = notCDom_normDistReduced2[4:1]; // @[Mux.scala:50:70] wire [3:0] _notCDom_reduced4SigExtra_T_4 = ~_notCDom_reduced4SigExtra_T_3; // @[primitives.scala:52:21] wire [16:0] notCDom_reduced4SigExtra_shift = $signed(17'sh10000 >>> _notCDom_reduced4SigExtra_T_4); // @[primitives.scala:52:21, :76:56] wire [5:0] _notCDom_reduced4SigExtra_T_5 = notCDom_reduced4SigExtra_shift[6:1]; // @[primitives.scala:76:56, :78:22] wire [3:0] _notCDom_reduced4SigExtra_T_6 = _notCDom_reduced4SigExtra_T_5[3:0]; // @[primitives.scala:77:20, :78:22] wire [1:0] _notCDom_reduced4SigExtra_T_7 = _notCDom_reduced4SigExtra_T_6[1:0]; // @[primitives.scala:77:20] wire _notCDom_reduced4SigExtra_T_8 = _notCDom_reduced4SigExtra_T_7[0]; // @[primitives.scala:77:20] wire _notCDom_reduced4SigExtra_T_9 = _notCDom_reduced4SigExtra_T_7[1]; // @[primitives.scala:77:20] wire [1:0] _notCDom_reduced4SigExtra_T_10 = {_notCDom_reduced4SigExtra_T_8, _notCDom_reduced4SigExtra_T_9}; // @[primitives.scala:77:20] wire [1:0] _notCDom_reduced4SigExtra_T_11 = _notCDom_reduced4SigExtra_T_6[3:2]; // @[primitives.scala:77:20] wire _notCDom_reduced4SigExtra_T_12 = _notCDom_reduced4SigExtra_T_11[0]; // @[primitives.scala:77:20] wire _notCDom_reduced4SigExtra_T_13 = _notCDom_reduced4SigExtra_T_11[1]; // @[primitives.scala:77:20] wire [1:0] _notCDom_reduced4SigExtra_T_14 = {_notCDom_reduced4SigExtra_T_12, _notCDom_reduced4SigExtra_T_13}; // @[primitives.scala:77:20] wire [3:0] _notCDom_reduced4SigExtra_T_15 = {_notCDom_reduced4SigExtra_T_10, _notCDom_reduced4SigExtra_T_14}; // @[primitives.scala:77:20] wire [1:0] _notCDom_reduced4SigExtra_T_16 = _notCDom_reduced4SigExtra_T_5[5:4]; // @[primitives.scala:77:20, :78:22] wire _notCDom_reduced4SigExtra_T_17 = _notCDom_reduced4SigExtra_T_16[0]; // @[primitives.scala:77:20] wire _notCDom_reduced4SigExtra_T_18 = _notCDom_reduced4SigExtra_T_16[1]; // @[primitives.scala:77:20] wire [1:0] _notCDom_reduced4SigExtra_T_19 = {_notCDom_reduced4SigExtra_T_17, _notCDom_reduced4SigExtra_T_18}; // @[primitives.scala:77:20] wire [5:0] _notCDom_reduced4SigExtra_T_20 = {_notCDom_reduced4SigExtra_T_15, _notCDom_reduced4SigExtra_T_19}; // @[primitives.scala:77:20] wire [6:0] _notCDom_reduced4SigExtra_T_21 = {1'h0, _notCDom_reduced4SigExtra_T_2[5:0] & _notCDom_reduced4SigExtra_T_20}; // @[primitives.scala:77:20, :107:20] wire notCDom_reduced4SigExtra = |_notCDom_reduced4SigExtra_T_21; // @[MulAddRecFN.scala:247:78, :249:11] wire [25:0] _notCDom_sig_T = notCDom_mainSig[28:3]; // @[MulAddRecFN.scala:243:50, :251:28] wire [2:0] _notCDom_sig_T_1 = notCDom_mainSig[2:0]; // @[MulAddRecFN.scala:243:50, :252:28] wire _notCDom_sig_T_2 = |_notCDom_sig_T_1; // @[MulAddRecFN.scala:252:{28,35}] wire _notCDom_sig_T_3 = _notCDom_sig_T_2 | notCDom_reduced4SigExtra; // @[MulAddRecFN.scala:249:11, :252:{35,39}] wire [26:0] notCDom_sig = {_notCDom_sig_T, _notCDom_sig_T_3}; // @[MulAddRecFN.scala:251:{12,28}, :252:39] assign _io_rawOut_sig_T = notCDom_sig; // @[MulAddRecFN.scala:251:12, :294:25] wire [1:0] _notCDom_completeCancellation_T = notCDom_sig[26:25]; // @[MulAddRecFN.scala:251:12, :255:21] wire notCDom_completeCancellation = _notCDom_completeCancellation_T == 2'h0; // @[primitives.scala:103:54] wire _io_rawOut_isZero_T_1 = notCDom_completeCancellation; // @[MulAddRecFN.scala:255:50, :283:42] wire _notCDom_sign_T = io_fromPreMul_signProd_0 ^ notCDom_signSigSum; // @[MulAddRecFN.scala:169:7, :232:36, :259:36] wire notCDom_sign = ~notCDom_completeCancellation & _notCDom_sign_T; // @[MulAddRecFN.scala:255:50, :257:12, :259:36] wire _io_rawOut_sign_T_15 = notCDom_sign; // @[MulAddRecFN.scala:257:12, :292:17] assign notNaN_isInfOut = notNaN_isInfProd; // @[MulAddRecFN.scala:264:49, :265:44] assign io_rawOut_isInf_0 = notNaN_isInfOut; // @[MulAddRecFN.scala:169:7, :265:44] wire notNaN_addZeros = _notNaN_addZeros_T; // @[MulAddRecFN.scala:267:{32,58}] wire _io_rawOut_sign_T_4 = notNaN_addZeros; // @[MulAddRecFN.scala:267:58, :287:26] wire _io_invalidExc_T_3 = _io_invalidExc_T_1; // @[MulAddRecFN.scala:271:35, :272:57] assign _io_invalidExc_T_9 = _io_invalidExc_T_3; // @[MulAddRecFN.scala:272:57, :273:57] wire _io_invalidExc_T_4 = ~io_fromPreMul_isNaNAOrB_0; // @[MulAddRecFN.scala:169:7, :274:10] wire _io_invalidExc_T_6 = _io_invalidExc_T_4 & _io_invalidExc_T_5; // @[MulAddRecFN.scala:274:{10,36}, :275:36] assign io_invalidExc_0 = _io_invalidExc_T_9; // @[MulAddRecFN.scala:169:7, :273:57] assign io_rawOut_isNaN_0 = _io_rawOut_isNaN_T; // @[MulAddRecFN.scala:169:7, :278:48] assign _io_rawOut_isZero_T_2 = notNaN_addZeros | _io_rawOut_isZero_T_1; // @[MulAddRecFN.scala:267:58, :282:25, :283:42] assign io_rawOut_isZero_0 = _io_rawOut_isZero_T_2; // @[MulAddRecFN.scala:169:7, :282:25] wire _io_rawOut_sign_T = notNaN_isInfProd & io_fromPreMul_signProd_0; // @[MulAddRecFN.scala:169:7, :264:49, :285:27] wire _io_rawOut_sign_T_2 = _io_rawOut_sign_T; // @[MulAddRecFN.scala:285:{27,54}] wire _io_rawOut_sign_T_5 = _io_rawOut_sign_T_4 & io_fromPreMul_signProd_0; // @[MulAddRecFN.scala:169:7, :287:{26,48}] wire _io_rawOut_sign_T_6 = _io_rawOut_sign_T_5 & opSignC; // @[MulAddRecFN.scala:190:42, :287:48, :288:36] wire _io_rawOut_sign_T_7 = _io_rawOut_sign_T_2 | _io_rawOut_sign_T_6; // @[MulAddRecFN.scala:285:54, :286:43, :288:36] wire _io_rawOut_sign_T_11 = _io_rawOut_sign_T_7; // @[MulAddRecFN.scala:286:43, :288:48] wire _io_rawOut_sign_T_9 = io_fromPreMul_signProd_0 | opSignC; // @[MulAddRecFN.scala:169:7, :190:42, :290:37] wire _io_rawOut_sign_T_12 = ~notNaN_isInfOut; // @[MulAddRecFN.scala:265:44, :291:10] wire _io_rawOut_sign_T_13 = ~notNaN_addZeros; // @[MulAddRecFN.scala:267:58, :291:31] wire _io_rawOut_sign_T_14 = _io_rawOut_sign_T_12 & _io_rawOut_sign_T_13; // @[MulAddRecFN.scala:291:{10,28,31}] wire _io_rawOut_sign_T_16 = _io_rawOut_sign_T_14 & _io_rawOut_sign_T_15; // @[MulAddRecFN.scala:291:{28,49}, :292:17] assign _io_rawOut_sign_T_17 = _io_rawOut_sign_T_11 | _io_rawOut_sign_T_16; // @[MulAddRecFN.scala:288:48, :290:50, :291:49] assign io_rawOut_sign_0 = _io_rawOut_sign_T_17; // @[MulAddRecFN.scala:169:7, :290:50] assign io_rawOut_sExp_0 = _io_rawOut_sExp_T; // @[MulAddRecFN.scala:169:7, :293:26] assign io_rawOut_sig_0 = _io_rawOut_sig_T; // @[MulAddRecFN.scala:169:7, :294:25] assign io_invalidExc = io_invalidExc_0; // @[MulAddRecFN.scala:169:7] assign io_rawOut_isNaN = io_rawOut_isNaN_0; // @[MulAddRecFN.scala:169:7] assign io_rawOut_isInf = io_rawOut_isInf_0; // @[MulAddRecFN.scala:169:7] assign io_rawOut_isZero = io_rawOut_isZero_0; // @[MulAddRecFN.scala:169:7] assign io_rawOut_sign = io_rawOut_sign_0; // @[MulAddRecFN.scala:169:7] assign io_rawOut_sExp = io_rawOut_sExp_0; // @[MulAddRecFN.scala:169:7] assign io_rawOut_sig = io_rawOut_sig_0; // @[MulAddRecFN.scala:169:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File ShiftReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ // Similar to the Chisel ShiftRegister but allows the user to suggest a // name to the registers that get instantiated, and // to provide a reset value. object ShiftRegInit { def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T = (0 until n).foldRight(in) { case (i, next) => { val r = RegNext(next, init) name.foreach { na => r.suggestName(s"${na}_${i}") } r } } } /** These wrap behavioral * shift registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * The different types vary in their reset behavior: * AsyncResetShiftReg -- Asynchronously reset register array * A W(width) x D(depth) sized array is constructed from D instantiations of a * W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg, * but only used for timing applications */ abstract class AbstractPipelineReg(w: Int = 1) extends Module { val io = IO(new Bundle { val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) } ) } object AbstractPipelineReg { def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = { val chain = Module(gen) name.foreach{ chain.suggestName(_) } chain.io.d := in.asUInt chain.io.q.asTypeOf(in) } } class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) { require(depth > 0, "Depth must be greater than 0.") override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}" val chain = List.tabulate(depth) { i => Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}") } chain.last.io.d := io.d chain.last.io.en := true.B (chain.init zip chain.tail).foreach { case (sink, source) => sink.io.d := source.io.q sink.io.en := true.B } io.q := chain.head.io.q } object AsyncResetShiftReg { def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name) def apply [T <: Data](in: T, depth: Int, name: Option[String]): T = apply(in, depth, 0, name) def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T = apply(in, depth, init.litValue.toInt, name) def apply [T <: Data](in: T, depth: Int, init: T): T = apply (in, depth, init.litValue.toInt, None) } File SynchronizerReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util.{RegEnable, Cat} /** These wrap behavioral * shift and next registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * * These are built up of *ResetSynchronizerPrimitiveShiftReg, * intended to be replaced by the integrator's metastable flops chains or replaced * at this level if they have a multi-bit wide synchronizer primitive. * The different types vary in their reset behavior: * NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin * AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep * 1-bit-wide shift registers. * SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg * * [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference. * * ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross * Clock Domains. */ object SynchronizerResetType extends Enumeration { val NonSync, Inferred, Sync, Async = Value } // Note: this should not be used directly. // Use the companion object to generate this with the correct reset type mixin. private class SynchronizerPrimitiveShiftReg( sync: Int, init: Boolean, resetType: SynchronizerResetType.Value) extends AbstractPipelineReg(1) { val initInt = if (init) 1 else 0 val initPostfix = resetType match { case SynchronizerResetType.NonSync => "" case _ => s"_i${initInt}" } override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}" val chain = List.tabulate(sync) { i => val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B) reg.suggestName(s"sync_$i") } chain.last := io.d.asBool (chain.init zip chain.tail).foreach { case (sink, source) => sink := source } io.q := chain.head.asUInt } private object SynchronizerPrimitiveShiftReg { def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = { val gen: () => SynchronizerPrimitiveShiftReg = resetType match { case SynchronizerResetType.NonSync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) case SynchronizerResetType.Async => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset case SynchronizerResetType.Sync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset case SynchronizerResetType.Inferred => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) } AbstractPipelineReg(gen(), in) } } // Note: This module may end up with a non-AsyncReset type reset. // But the Primitives within will always have AsyncReset type. class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asAsyncReset){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async) } } io.q := Cat(output.reverse) } object AsyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } // Note: This module may end up with a non-Bool type reset. // But the Primitives within will always have Bool reset type. @deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2") class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asBool){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync) } } io.q := Cat(output.reverse) } object SyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred) } io.q := Cat(output.reverse) } object ResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}" val output = Seq.tabulate(w) { i => SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync) } io.q := Cat(output.reverse) } object SynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, None) def apply [T <: Data](in: T): T = apply (in, 3, None) } class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module { override def desiredName = s"ClockCrossingReg_w${w}" val io = IO(new Bundle{ val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) val en = Input(Bool()) }) val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en) io.q := cdc_reg } object ClockCrossingReg { def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = { val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit)) name.foreach{ cdc_reg.suggestName(_) } cdc_reg.io.d := in.asUInt cdc_reg.io.en := en cdc_reg.io.q.asTypeOf(in) } }
module AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_24( // @[SynchronizerReg.scala:68:19] input clock, // @[SynchronizerReg.scala:68:19] input reset, // @[SynchronizerReg.scala:68:19] output io_q // @[ShiftReg.scala:36:14] ); wire io_d = 1'h1; // @[SynchronizerReg.scala:54:22, :68:19] wire _sync_2_T = 1'h1; // @[SynchronizerReg.scala:54:22, :68:19] wire io_q_0; // @[SynchronizerReg.scala:68:19] reg sync_0; // @[SynchronizerReg.scala:51:87] assign io_q_0 = sync_0; // @[SynchronizerReg.scala:51:87, :68:19] reg sync_1; // @[SynchronizerReg.scala:51:87] reg sync_2; // @[SynchronizerReg.scala:51:87] always @(posedge clock or posedge reset) begin // @[SynchronizerReg.scala:68:19] if (reset) begin // @[SynchronizerReg.scala:68:19] sync_0 <= 1'h0; // @[SynchronizerReg.scala:51:87] sync_1 <= 1'h0; // @[SynchronizerReg.scala:51:87] sync_2 <= 1'h0; // @[SynchronizerReg.scala:51:87] end else begin // @[SynchronizerReg.scala:68:19] sync_0 <= sync_1; // @[SynchronizerReg.scala:51:87] sync_1 <= sync_2; // @[SynchronizerReg.scala:51:87] sync_2 <= 1'h1; // @[SynchronizerReg.scala:51:87, :54:22, :68:19] end always @(posedge, posedge)
Generate the Verilog code corresponding to the following Chisel files. File Buffer.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import org.chipsalliance.diplomacy.lazymodule._ import freechips.rocketchip.diplomacy.BufferParams class TLBufferNode ( a: BufferParams, b: BufferParams, c: BufferParams, d: BufferParams, e: BufferParams)(implicit valName: ValName) extends TLAdapterNode( clientFn = { p => p.v1copy(minLatency = p.minLatency + b.latency + c.latency) }, managerFn = { p => p.v1copy(minLatency = p.minLatency + a.latency + d.latency) } ) { override lazy val nodedebugstring = s"a:${a.toString}, b:${b.toString}, c:${c.toString}, d:${d.toString}, e:${e.toString}" override def circuitIdentity = List(a,b,c,d,e).forall(_ == BufferParams.none) } class TLBuffer( a: BufferParams, b: BufferParams, c: BufferParams, d: BufferParams, e: BufferParams)(implicit p: Parameters) extends LazyModule { def this(ace: BufferParams, bd: BufferParams)(implicit p: Parameters) = this(ace, bd, ace, bd, ace) def this(abcde: BufferParams)(implicit p: Parameters) = this(abcde, abcde) def this()(implicit p: Parameters) = this(BufferParams.default) val node = new TLBufferNode(a, b, c, d, e) lazy val module = new Impl class Impl extends LazyModuleImp(this) { def headBundle = node.out.head._2.bundle override def desiredName = (Seq("TLBuffer") ++ node.out.headOption.map(_._2.bundle.shortName)).mkString("_") (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => out.a <> a(in .a) in .d <> d(out.d) if (edgeOut.manager.anySupportAcquireB && edgeOut.client.anySupportProbe) { in .b <> b(out.b) out.c <> c(in .c) out.e <> e(in .e) } else { in.b.valid := false.B in.c.ready := true.B in.e.ready := true.B out.b.ready := true.B out.c.valid := false.B out.e.valid := false.B } } } } object TLBuffer { def apply() (implicit p: Parameters): TLNode = apply(BufferParams.default) def apply(abcde: BufferParams) (implicit p: Parameters): TLNode = apply(abcde, abcde) def apply(ace: BufferParams, bd: BufferParams)(implicit p: Parameters): TLNode = apply(ace, bd, ace, bd, ace) def apply( a: BufferParams, b: BufferParams, c: BufferParams, d: BufferParams, e: BufferParams)(implicit p: Parameters): TLNode = { val buffer = LazyModule(new TLBuffer(a, b, c, d, e)) buffer.node } def chain(depth: Int, name: Option[String] = None)(implicit p: Parameters): Seq[TLNode] = { val buffers = Seq.fill(depth) { LazyModule(new TLBuffer()) } name.foreach { n => buffers.zipWithIndex.foreach { case (b, i) => b.suggestName(s"${n}_${i}") } } buffers.map(_.node) } def chainNode(depth: Int, name: Option[String] = None)(implicit p: Parameters): TLNode = { chain(depth, name) .reduceLeftOption(_ :*=* _) .getOrElse(TLNameNode("no_buffer")) } } File Nodes.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import org.chipsalliance.diplomacy.nodes._ import freechips.rocketchip.util.{AsyncQueueParams,RationalDirection} case object TLMonitorBuilder extends Field[TLMonitorArgs => TLMonitorBase](args => new TLMonitor(args)) object TLImp extends NodeImp[TLMasterPortParameters, TLSlavePortParameters, TLEdgeOut, TLEdgeIn, TLBundle] { def edgeO(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeOut(pd, pu, p, sourceInfo) def edgeI(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeIn (pd, pu, p, sourceInfo) def bundleO(eo: TLEdgeOut) = TLBundle(eo.bundle) def bundleI(ei: TLEdgeIn) = TLBundle(ei.bundle) def render(ei: TLEdgeIn) = RenderedEdge(colour = "#000000" /* black */, label = (ei.manager.beatBytes * 8).toString) override def monitor(bundle: TLBundle, edge: TLEdgeIn): Unit = { val monitor = Module(edge.params(TLMonitorBuilder)(TLMonitorArgs(edge))) monitor.io.in := bundle } override def mixO(pd: TLMasterPortParameters, node: OutwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLMasterPortParameters = pd.v1copy(clients = pd.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }) override def mixI(pu: TLSlavePortParameters, node: InwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLSlavePortParameters = pu.v1copy(managers = pu.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }) } trait TLFormatNode extends FormatNode[TLEdgeIn, TLEdgeOut] case class TLClientNode(portParams: Seq[TLMasterPortParameters])(implicit valName: ValName) extends SourceNode(TLImp)(portParams) with TLFormatNode case class TLManagerNode(portParams: Seq[TLSlavePortParameters])(implicit valName: ValName) extends SinkNode(TLImp)(portParams) with TLFormatNode case class TLAdapterNode( clientFn: TLMasterPortParameters => TLMasterPortParameters = { s => s }, managerFn: TLSlavePortParameters => TLSlavePortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLImp)(clientFn, managerFn) with TLFormatNode case class TLJunctionNode( clientFn: Seq[TLMasterPortParameters] => Seq[TLMasterPortParameters], managerFn: Seq[TLSlavePortParameters] => Seq[TLSlavePortParameters])( implicit valName: ValName) extends JunctionNode(TLImp)(clientFn, managerFn) with TLFormatNode case class TLIdentityNode()(implicit valName: ValName) extends IdentityNode(TLImp)() with TLFormatNode object TLNameNode { def apply(name: ValName) = TLIdentityNode()(name) def apply(name: Option[String]): TLIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLIdentityNode = apply(Some(name)) } case class TLEphemeralNode()(implicit valName: ValName) extends EphemeralNode(TLImp)() object TLTempNode { def apply(): TLEphemeralNode = TLEphemeralNode()(ValName("temp")) } case class TLNexusNode( clientFn: Seq[TLMasterPortParameters] => TLMasterPortParameters, managerFn: Seq[TLSlavePortParameters] => TLSlavePortParameters)( implicit valName: ValName) extends NexusNode(TLImp)(clientFn, managerFn) with TLFormatNode abstract class TLCustomNode(implicit valName: ValName) extends CustomNode(TLImp) with TLFormatNode // Asynchronous crossings trait TLAsyncFormatNode extends FormatNode[TLAsyncEdgeParameters, TLAsyncEdgeParameters] object TLAsyncImp extends SimpleNodeImp[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncEdgeParameters, TLAsyncBundle] { def edge(pd: TLAsyncClientPortParameters, pu: TLAsyncManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLAsyncEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLAsyncEdgeParameters) = new TLAsyncBundle(e.bundle) def render(e: TLAsyncEdgeParameters) = RenderedEdge(colour = "#ff0000" /* red */, label = e.manager.async.depth.toString) override def mixO(pd: TLAsyncClientPortParameters, node: OutwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLAsyncManagerPortParameters, node: InwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLAsyncAdapterNode( clientFn: TLAsyncClientPortParameters => TLAsyncClientPortParameters = { s => s }, managerFn: TLAsyncManagerPortParameters => TLAsyncManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLAsyncImp)(clientFn, managerFn) with TLAsyncFormatNode case class TLAsyncIdentityNode()(implicit valName: ValName) extends IdentityNode(TLAsyncImp)() with TLAsyncFormatNode object TLAsyncNameNode { def apply(name: ValName) = TLAsyncIdentityNode()(name) def apply(name: Option[String]): TLAsyncIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLAsyncIdentityNode = apply(Some(name)) } case class TLAsyncSourceNode(sync: Option[Int])(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLAsyncImp)( dFn = { p => TLAsyncClientPortParameters(p) }, uFn = { p => p.base.v1copy(minLatency = p.base.minLatency + sync.getOrElse(p.async.sync)) }) with FormatNode[TLEdgeIn, TLAsyncEdgeParameters] // discard cycles in other clock domain case class TLAsyncSinkNode(async: AsyncQueueParams)(implicit valName: ValName) extends MixedAdapterNode(TLAsyncImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = p.base.minLatency + async.sync) }, uFn = { p => TLAsyncManagerPortParameters(async, p) }) with FormatNode[TLAsyncEdgeParameters, TLEdgeOut] // Rationally related crossings trait TLRationalFormatNode extends FormatNode[TLRationalEdgeParameters, TLRationalEdgeParameters] object TLRationalImp extends SimpleNodeImp[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalEdgeParameters, TLRationalBundle] { def edge(pd: TLRationalClientPortParameters, pu: TLRationalManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLRationalEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLRationalEdgeParameters) = new TLRationalBundle(e.bundle) def render(e: TLRationalEdgeParameters) = RenderedEdge(colour = "#00ff00" /* green */) override def mixO(pd: TLRationalClientPortParameters, node: OutwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLRationalManagerPortParameters, node: InwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLRationalAdapterNode( clientFn: TLRationalClientPortParameters => TLRationalClientPortParameters = { s => s }, managerFn: TLRationalManagerPortParameters => TLRationalManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLRationalImp)(clientFn, managerFn) with TLRationalFormatNode case class TLRationalIdentityNode()(implicit valName: ValName) extends IdentityNode(TLRationalImp)() with TLRationalFormatNode object TLRationalNameNode { def apply(name: ValName) = TLRationalIdentityNode()(name) def apply(name: Option[String]): TLRationalIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLRationalIdentityNode = apply(Some(name)) } case class TLRationalSourceNode()(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLRationalImp)( dFn = { p => TLRationalClientPortParameters(p) }, uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLRationalEdgeParameters] // discard cycles from other clock domain case class TLRationalSinkNode(direction: RationalDirection)(implicit valName: ValName) extends MixedAdapterNode(TLRationalImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = 1) }, uFn = { p => TLRationalManagerPortParameters(direction, p) }) with FormatNode[TLRationalEdgeParameters, TLEdgeOut] // Credited version of TileLink channels trait TLCreditedFormatNode extends FormatNode[TLCreditedEdgeParameters, TLCreditedEdgeParameters] object TLCreditedImp extends SimpleNodeImp[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedEdgeParameters, TLCreditedBundle] { def edge(pd: TLCreditedClientPortParameters, pu: TLCreditedManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLCreditedEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLCreditedEdgeParameters) = new TLCreditedBundle(e.bundle) def render(e: TLCreditedEdgeParameters) = RenderedEdge(colour = "#ffff00" /* yellow */, e.delay.toString) override def mixO(pd: TLCreditedClientPortParameters, node: OutwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLCreditedManagerPortParameters, node: InwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLCreditedAdapterNode( clientFn: TLCreditedClientPortParameters => TLCreditedClientPortParameters = { s => s }, managerFn: TLCreditedManagerPortParameters => TLCreditedManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLCreditedImp)(clientFn, managerFn) with TLCreditedFormatNode case class TLCreditedIdentityNode()(implicit valName: ValName) extends IdentityNode(TLCreditedImp)() with TLCreditedFormatNode object TLCreditedNameNode { def apply(name: ValName) = TLCreditedIdentityNode()(name) def apply(name: Option[String]): TLCreditedIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLCreditedIdentityNode = apply(Some(name)) } case class TLCreditedSourceNode(delay: TLCreditedDelay)(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLCreditedImp)( dFn = { p => TLCreditedClientPortParameters(delay, p) }, uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLCreditedEdgeParameters] // discard cycles from other clock domain case class TLCreditedSinkNode(delay: TLCreditedDelay)(implicit valName: ValName) extends MixedAdapterNode(TLCreditedImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = 1) }, uFn = { p => TLCreditedManagerPortParameters(delay, p) }) with FormatNode[TLCreditedEdgeParameters, TLEdgeOut] File LazyModuleImp.scala: package org.chipsalliance.diplomacy.lazymodule import chisel3.{withClockAndReset, Module, RawModule, Reset, _} import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo} import firrtl.passes.InlineAnnotation import org.chipsalliance.cde.config.Parameters import org.chipsalliance.diplomacy.nodes.Dangle import scala.collection.immutable.SortedMap /** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]]. * * This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy. */ sealed trait LazyModuleImpLike extends RawModule { /** [[LazyModule]] that contains this instance. */ val wrapper: LazyModule /** IOs that will be automatically "punched" for this instance. */ val auto: AutoBundle /** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */ protected[diplomacy] val dangles: Seq[Dangle] // [[wrapper.module]] had better not be accessed while LazyModules are still being built! require( LazyModule.scope.isEmpty, s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}" ) /** Set module name. Defaults to the containing LazyModule's desiredName. */ override def desiredName: String = wrapper.desiredName suggestName(wrapper.suggestedName) /** [[Parameters]] for chisel [[Module]]s. */ implicit val p: Parameters = wrapper.p /** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and * submodules. */ protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = { // 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]], // 2. return [[Dangle]]s from each module. val childDangles = wrapper.children.reverse.flatMap { c => implicit val sourceInfo: SourceInfo = c.info c.cloneProto.map { cp => // If the child is a clone, then recursively set cloneProto of its children as well def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = { require(bases.size == clones.size) (bases.zip(clones)).map { case (l, r) => require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}") l.cloneProto = Some(r) assignCloneProtos(l.children, r.children) } } assignCloneProtos(c.children, cp.children) // Clone the child module as a record, and get its [[AutoBundle]] val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName) val clonedAuto = clone("auto").asInstanceOf[AutoBundle] // Get the empty [[Dangle]]'s of the cloned child val rawDangles = c.cloneDangles() require(rawDangles.size == clonedAuto.elements.size) // Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) } dangles }.getOrElse { // For non-clones, instantiate the child module val mod = try { Module(c.module) } catch { case e: ChiselException => { println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}") throw e } } mod.dangles } } // Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]]. // This will result in a sequence of [[Dangle]] from these [[BaseNode]]s. val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate()) // Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]] val allDangles = nodeDangles ++ childDangles // Group [[allDangles]] by their [[source]]. val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*) // For each [[source]] set of [[Dangle]]s of size 2, ensure that these // can be connected as a source-sink pair (have opposite flipped value). // Make the connection and mark them as [[done]]. val done = Set() ++ pairing.values.filter(_.size == 2).map { case Seq(a, b) => require(a.flipped != b.flipped) // @todo <> in chisel3 makes directionless connection. if (a.flipped) { a.data <> b.data } else { b.data <> a.data } a.source case _ => None } // Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module. val forward = allDangles.filter(d => !done(d.source)) // Generate [[AutoBundle]] IO from [[forward]]. val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*)) // Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]] val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) => if (d.flipped) { d.data <> io } else { io <> d.data } d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name) } // Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]]. wrapper.inModuleBody.reverse.foreach { _() } if (wrapper.shouldBeInlined) { chisel3.experimental.annotate(new ChiselAnnotation { def toFirrtl = InlineAnnotation(toNamed) }) } // Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]]. (auto, dangles) } } /** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike { /** Instantiate hardware of this `Module`. */ val (auto, dangles) = instantiate() } /** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike { // These wires are the default clock+reset for all LazyModule children. // It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the // [[LazyRawModuleImp]] children. // Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly. /** drive clock explicitly. */ val childClock: Clock = Wire(Clock()) /** drive reset explicitly. */ val childReset: Reset = Wire(Reset()) // the default is that these are disabled childClock := false.B.asClock childReset := chisel3.DontCare def provideImplicitClockToLazyChildren: Boolean = false val (auto, dangles) = if (provideImplicitClockToLazyChildren) { withClockAndReset(childClock, childReset) { instantiate() } } else { instantiate() } } File MixedNode.scala: package org.chipsalliance.diplomacy.nodes import chisel3.{Data, DontCare, Wire} import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.{Field, Parameters} import org.chipsalliance.diplomacy.ValName import org.chipsalliance.diplomacy.sourceLine /** One side metadata of a [[Dangle]]. * * Describes one side of an edge going into or out of a [[BaseNode]]. * * @param serial * the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to. * @param index * the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to. */ case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] { import scala.math.Ordered.orderingToOrdered def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that)) } /** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]] * connects. * * [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] , * [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]]. * * @param source * the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within * that [[BaseNode]]. * @param sink * sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that * [[BaseNode]]. * @param flipped * flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to * `danglesIn`. * @param dataOpt * actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module */ case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) { def data = dataOpt.get } /** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often * derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually * implement the protocol. */ case class Edges[EI, EO](in: Seq[EI], out: Seq[EO]) /** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */ case object MonitorsEnabled extends Field[Boolean](true) /** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented. * * For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but * [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink * nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the * [[LazyModule]]. */ case object RenderFlipped extends Field[Boolean](false) /** The sealed node class in the package, all node are derived from it. * * @param inner * Sink interface implementation. * @param outer * Source interface implementation. * @param valName * val name of this node. * @tparam DI * Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters * describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected * [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port * parameters. * @tparam UI * Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing * the protocol parameters of a sink. For an [[InwardNode]], it is determined itself. * @tparam EI * Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers * specified for a sink according to protocol. * @tparam BI * Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface. * It should extends from [[chisel3.Data]], which represents the real hardware. * @tparam DO * Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters * describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself. * @tparam UO * Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing * the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]]. * Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters. * @tparam EO * Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers * specified for a source according to protocol. * @tparam BO * Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source * interface. It should extends from [[chisel3.Data]], which represents the real hardware. * * @note * Call Graph of [[MixedNode]] * - line `─`: source is process by a function and generate pass to others * - Arrow `→`: target of arrow is generated by source * * {{{ * (from the other node) * ┌─────────────────────────────────────────────────────────[[InwardNode.uiParams]]─────────────┐ * ↓ │ * (binding node when elaboration) [[OutwardNode.uoParams]]────────────────────────[[MixedNode.mapParamsU]]→──────────┐ │ * [[InwardNode.accPI]] │ │ │ * │ │ (based on protocol) │ * │ │ [[MixedNode.inner.edgeI]] │ * │ │ ↓ │ * ↓ │ │ │ * (immobilize after elaboration) (inward port from [[OutwardNode]]) │ ↓ │ * [[InwardNode.iBindings]]──┐ [[MixedNode.iDirectPorts]]────────────────────→[[MixedNode.iPorts]] [[InwardNode.uiParams]] │ * │ │ ↑ │ │ │ * │ │ │ [[OutwardNode.doParams]] │ │ * │ │ │ (from the other node) │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * │ │ │ └────────┬──────────────┤ │ * │ │ │ │ │ │ * │ │ │ │ (based on protocol) │ * │ │ │ │ [[MixedNode.inner.edgeI]] │ * │ │ │ │ │ │ * │ │ (from the other node) │ ↓ │ * │ └───[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] │ [[MixedNode.edgesIn]]───┐ │ * │ ↑ ↑ │ │ ↓ │ * │ │ │ │ │ [[MixedNode.in]] │ * │ │ │ │ ↓ ↑ │ * │ (solve star connection) │ │ │ [[MixedNode.bundleIn]]──┘ │ * ├───[[MixedNode.resolveStar]]→─┼─────────────────────────────┤ └────────────────────────────────────┐ │ * │ │ │ [[MixedNode.bundleOut]]─┐ │ │ * │ │ │ ↑ ↓ │ │ * │ │ │ │ [[MixedNode.out]] │ │ * │ ↓ ↓ │ ↑ │ │ * │ ┌─────[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]──┘ │ │ * │ │ (from the other node) ↑ │ │ * │ │ │ │ │ │ * │ │ │ [[MixedNode.outer.edgeO]] │ │ * │ │ │ (based on protocol) │ │ * │ │ │ │ │ │ * │ │ │ ┌────────────────────────────────────────┤ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * (immobilize after elaboration)│ ↓ │ │ │ │ * [[OutwardNode.oBindings]]─┘ [[MixedNode.oDirectPorts]]───→[[MixedNode.oPorts]] [[OutwardNode.doParams]] │ │ * ↑ (inward port from [[OutwardNode]]) │ │ │ │ * │ ┌─────────────────────────────────────────┤ │ │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * [[OutwardNode.accPO]] │ ↓ │ │ │ * (binding node when elaboration) │ [[InwardNode.diParams]]─────→[[MixedNode.mapParamsD]]────────────────────────────┘ │ │ * │ ↑ │ │ * │ └──────────────────────────────────────────────────────────────────────────────────────────┘ │ * └──────────────────────────────────────────────────────────────────────────────────────────────────────────┘ * }}} */ abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data]( val inner: InwardNodeImp[DI, UI, EI, BI], val outer: OutwardNodeImp[DO, UO, EO, BO] )( implicit valName: ValName) extends BaseNode with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO] with InwardNode[DI, UI, BI] with OutwardNode[DO, UO, BO] { // Generate a [[NodeHandle]] with inward and outward node are both this node. val inward = this val outward = this /** Debug info of nodes binding. */ def bindingInfo: String = s"""$iBindingInfo |$oBindingInfo |""".stripMargin /** Debug info of ports connecting. */ def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}] |${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}] |""".stripMargin /** Debug info of parameters propagations. */ def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}] |${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}] |${diParams.size} downstream inward parameters: [${diParams.mkString(",")}] |${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}] |""".stripMargin /** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and * [[MixedNode.iPortMapping]]. * * Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward * stars and outward stars. * * This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type * of node. * * @param iKnown * Number of known-size ([[BIND_ONCE]]) input bindings. * @param oKnown * Number of known-size ([[BIND_ONCE]]) output bindings. * @param iStar * Number of unknown size ([[BIND_STAR]]) input bindings. * @param oStar * Number of unknown size ([[BIND_STAR]]) output bindings. * @return * A Tuple of the resolved number of input and output connections. */ protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int) /** Function to generate downward-flowing outward params from the downward-flowing input params and the current output * ports. * * @param n * The size of the output sequence to generate. * @param p * Sequence of downward-flowing input parameters of this node. * @return * A `n`-sized sequence of downward-flowing output edge parameters. */ protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO] /** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]]. * * @param n * Size of the output sequence. * @param p * Upward-flowing output edge parameters. * @return * A n-sized sequence of upward-flowing input edge parameters. */ protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI] /** @return * The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with * [[BIND_STAR]]. */ protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR) /** @return * The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of * output bindings bound with [[BIND_STAR]]. */ protected[diplomacy] lazy val sourceCard: Int = iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR) /** @return list of nodes involved in flex bindings with this node. */ protected[diplomacy] lazy val flexes: Seq[BaseNode] = oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2) /** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin * greedily taking up the remaining connections. * * @return * A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return * value is not relevant. */ protected[diplomacy] lazy val flexOffset: Int = { /** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex * operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a * connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of * each node in the current set and decide whether they should be added to the set or not. * * @return * the mapping of [[BaseNode]] indexed by their serial numbers. */ def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = { if (visited.contains(v.serial) || !v.flexibleArityDirection) { visited } else { v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum)) } } /** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node. * * @example * {{{ * a :*=* b :*=* c * d :*=* b * e :*=* f * }}} * * `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)` */ val flexSet = DFS(this, Map()).values /** The total number of :*= operators where we're on the left. */ val allSink = flexSet.map(_.sinkCard).sum /** The total number of :=* operators used when we're on the right. */ val allSource = flexSet.map(_.sourceCard).sum require( allSink == 0 || allSource == 0, s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction." ) allSink - allSource } /** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */ protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = { if (flexibleArityDirection) flexOffset else if (n.flexibleArityDirection) n.flexOffset else 0 } /** For a node which is connected between two nodes, select the one that will influence the direction of the flex * resolution. */ protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = { val dir = edgeArityDirection(n) if (dir < 0) l else if (dir > 0) r else 1 } /** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */ private var starCycleGuard = false /** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star" * connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also * need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct * edge parameters and later build up correct bundle connections. * * [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding * operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort * (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*= * bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N` */ protected[diplomacy] lazy val ( oPortMapping: Seq[(Int, Int)], iPortMapping: Seq[(Int, Int)], oStar: Int, iStar: Int ) = { try { if (starCycleGuard) throw StarCycleException() starCycleGuard = true // For a given node N... // Number of foo :=* N // + Number of bar :=* foo :*=* N val oStars = oBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0) } // Number of N :*= foo // + Number of N :*=* foo :*= bar val iStars = iBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0) } // 1 for foo := N // + bar.iStar for bar :*= foo :*=* N // + foo.iStar for foo :*= N // + 0 for foo :=* N val oKnown = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, 0, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => 0 } }.sum // 1 for N := foo // + bar.oStar for N :*=* foo :=* bar // + foo.oStar for N :=* foo // + 0 for N :*= foo val iKnown = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, 0) case BIND_QUERY => n.oStar case BIND_STAR => 0 } }.sum // Resolve star depends on the node subclass to implement the algorithm for this. val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars) // Cumulative list of resolved outward binding range starting points val oSum = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => oStar } }.scanLeft(0)(_ + _) // Cumulative list of resolved inward binding range starting points val iSum = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar) case BIND_QUERY => n.oStar case BIND_STAR => iStar } }.scanLeft(0)(_ + _) // Create ranges for each binding based on the running sums and return // those along with resolved values for the star operations. (oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar) } catch { case c: StarCycleException => throw c.copy(loop = context +: c.loop) } } /** Sequence of inward ports. * * This should be called after all star bindings are resolved. * * Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. * `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this * connection was made in the source code. */ protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oBindings.flatMap { case (i, n, _, p, s) => // for each binding operator in this node, look at what it connects to val (start, end) = n.iPortMapping(i) (start until end).map { j => (j, n, p, s) } } /** Sequence of outward ports. * * This should be called after all star bindings are resolved. * * `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of * outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection * was made in the source code. */ protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iBindings.flatMap { case (i, n, _, p, s) => // query this port index range of this node in the other side of node. val (start, end) = n.oPortMapping(i) (start until end).map { j => (j, n, p, s) } } // Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree // Thus, there must exist an Eulerian path and the below algorithms terminate @scala.annotation.tailrec private def oTrace( tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) ): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.iForward(i) match { case None => (i, n, p, s) case Some((j, m)) => oTrace((j, m, p, s)) } } @scala.annotation.tailrec private def iTrace( tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) ): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.oForward(i) match { case None => (i, n, p, s) case Some((j, m)) => iTrace((j, m, p, s)) } } /** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - Numeric index of this binding in the [[InwardNode]] on the other end. * - [[InwardNode]] on the other end of this binding. * - A view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace) /** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - numeric index of this binding in [[OutwardNode]] on the other end. * - [[OutwardNode]] on the other end of this binding. * - a view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace) private var oParamsCycleGuard = false protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) } protected[diplomacy] lazy val doParams: Seq[DO] = { try { if (oParamsCycleGuard) throw DownwardCycleException() oParamsCycleGuard = true val o = mapParamsD(oPorts.size, diParams) require( o.size == oPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of outward ports should equal the number of produced outward parameters. |$context |$connectedPortsInfo |Downstreamed inward parameters: [${diParams.mkString(",")}] |Produced outward parameters: [${o.mkString(",")}] |""".stripMargin ) o.map(outer.mixO(_, this)) } catch { case c: DownwardCycleException => throw c.copy(loop = context +: c.loop) } } private var iParamsCycleGuard = false protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) } protected[diplomacy] lazy val uiParams: Seq[UI] = { try { if (iParamsCycleGuard) throw UpwardCycleException() iParamsCycleGuard = true val i = mapParamsU(iPorts.size, uoParams) require( i.size == iPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of inward ports should equal the number of produced inward parameters. |$context |$connectedPortsInfo |Upstreamed outward parameters: [${uoParams.mkString(",")}] |Produced inward parameters: [${i.mkString(",")}] |""".stripMargin ) i.map(inner.mixI(_, this)) } catch { case c: UpwardCycleException => throw c.copy(loop = context +: c.loop) } } /** Outward edge parameters. */ protected[diplomacy] lazy val edgesOut: Seq[EO] = (oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) } /** Inward edge parameters. */ protected[diplomacy] lazy val edgesIn: Seq[EI] = (iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) } /** A tuple of the input edge parameters and output edge parameters for the edges bound to this node. * * If you need to access to the edges of a foreign Node, use this method (in/out create bundles). */ lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut) /** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */ protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e => val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } /** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */ protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e => val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(serial, i), sink = HalfEdge(n.serial, j), flipped = false, name = wirePrefix + "out", dataOpt = None ) } private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(n.serial, j), sink = HalfEdge(serial, i), flipped = true, name = wirePrefix + "in", dataOpt = None ) } /** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */ protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleOut(i))) } /** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */ protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleIn(i))) } private[diplomacy] var instantiated = false /** Gather Bundle and edge parameters of outward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def out: Seq[(BO, EO)] = { require( instantiated, s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleOut.zip(edgesOut) } /** Gather Bundle and edge parameters of inward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def in: Seq[(BI, EI)] = { require( instantiated, s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleIn.zip(edgesIn) } /** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires, * instantiate monitors on all input ports if appropriate, and return all the dangles of this node. */ protected[diplomacy] def instantiate(): Seq[Dangle] = { instantiated = true if (!circuitIdentity) { (iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) } } danglesOut ++ danglesIn } protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn /** Connects the outward part of a node with the inward part of this node. */ protected[diplomacy] def bind( h: OutwardNode[DI, UI, BI], binding: NodeBinding )( implicit p: Parameters, sourceInfo: SourceInfo ): Unit = { val x = this // x := y val y = h sourceLine(sourceInfo, " at ", "") val i = x.iPushed val o = y.oPushed y.oPush( i, x, binding match { case BIND_ONCE => BIND_ONCE case BIND_FLEX => BIND_FLEX case BIND_STAR => BIND_QUERY case BIND_QUERY => BIND_STAR } ) x.iPush(o, y, binding) } /* Metadata for printing the node graph. */ def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) => val re = inner.render(e) (n, re.copy(flipped = re.flipped != p(RenderFlipped))) } /** Metadata for printing the node graph */ def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) } }
module TLBuffer_a32d64s1k3z4u( // @[Buffer.scala:40:9] input clock, // @[Buffer.scala:40:9] input reset, // @[Buffer.scala:40:9] output auto_in_a_ready, // @[LazyModuleImp.scala:107:25] input auto_in_a_valid, // @[LazyModuleImp.scala:107:25] input [31:0] auto_in_a_bits_address, // @[LazyModuleImp.scala:107:25] output auto_in_d_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25] output [1:0] auto_in_d_bits_param, // @[LazyModuleImp.scala:107:25] output [3:0] auto_in_d_bits_size, // @[LazyModuleImp.scala:107:25] output auto_in_d_bits_source, // @[LazyModuleImp.scala:107:25] output [2:0] auto_in_d_bits_sink, // @[LazyModuleImp.scala:107:25] output auto_in_d_bits_denied, // @[LazyModuleImp.scala:107:25] output [63:0] auto_in_d_bits_data, // @[LazyModuleImp.scala:107:25] output auto_in_d_bits_corrupt, // @[LazyModuleImp.scala:107:25] input auto_out_a_ready, // @[LazyModuleImp.scala:107:25] output auto_out_a_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25] output [2:0] auto_out_a_bits_param, // @[LazyModuleImp.scala:107:25] output [3:0] auto_out_a_bits_size, // @[LazyModuleImp.scala:107:25] output auto_out_a_bits_source, // @[LazyModuleImp.scala:107:25] output [31:0] auto_out_a_bits_address, // @[LazyModuleImp.scala:107:25] output [7:0] auto_out_a_bits_mask, // @[LazyModuleImp.scala:107:25] output [63:0] auto_out_a_bits_data, // @[LazyModuleImp.scala:107:25] output auto_out_a_bits_corrupt, // @[LazyModuleImp.scala:107:25] output auto_out_d_ready, // @[LazyModuleImp.scala:107:25] input auto_out_d_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25] input [1:0] auto_out_d_bits_param, // @[LazyModuleImp.scala:107:25] input [3:0] auto_out_d_bits_size, // @[LazyModuleImp.scala:107:25] input [2:0] auto_out_d_bits_sink, // @[LazyModuleImp.scala:107:25] input auto_out_d_bits_denied, // @[LazyModuleImp.scala:107:25] input [63:0] auto_out_d_bits_data, // @[LazyModuleImp.scala:107:25] input auto_out_d_bits_corrupt // @[LazyModuleImp.scala:107:25] ); wire auto_in_a_valid_0 = auto_in_a_valid; // @[Buffer.scala:40:9] wire [31:0] auto_in_a_bits_address_0 = auto_in_a_bits_address; // @[Buffer.scala:40:9] wire auto_out_a_ready_0 = auto_out_a_ready; // @[Buffer.scala:40:9] wire auto_out_d_valid_0 = auto_out_d_valid; // @[Buffer.scala:40:9] wire [2:0] auto_out_d_bits_opcode_0 = auto_out_d_bits_opcode; // @[Buffer.scala:40:9] wire [1:0] auto_out_d_bits_param_0 = auto_out_d_bits_param; // @[Buffer.scala:40:9] wire [3:0] auto_out_d_bits_size_0 = auto_out_d_bits_size; // @[Buffer.scala:40:9] wire [2:0] auto_out_d_bits_sink_0 = auto_out_d_bits_sink; // @[Buffer.scala:40:9] wire auto_out_d_bits_denied_0 = auto_out_d_bits_denied; // @[Buffer.scala:40:9] wire [63:0] auto_out_d_bits_data_0 = auto_out_d_bits_data; // @[Buffer.scala:40:9] wire auto_out_d_bits_corrupt_0 = auto_out_d_bits_corrupt; // @[Buffer.scala:40:9] wire auto_in_d_ready = 1'h1; // @[Decoupled.scala:362:21] wire nodeIn_d_ready = 1'h1; // @[Decoupled.scala:362:21] wire [63:0] auto_in_a_bits_data = 64'h0; // @[Decoupled.scala:362:21] wire [63:0] nodeIn_a_bits_data = 64'h0; // @[Decoupled.scala:362:21] wire [7:0] auto_in_a_bits_mask = 8'hFF; // @[Decoupled.scala:362:21] wire [7:0] nodeIn_a_bits_mask = 8'hFF; // @[Decoupled.scala:362:21] wire auto_in_a_bits_source = 1'h0; // @[Decoupled.scala:362:21] wire auto_in_a_bits_corrupt = 1'h0; // @[Decoupled.scala:362:21] wire auto_out_d_bits_source = 1'h0; // @[Decoupled.scala:362:21] wire nodeIn_a_bits_source = 1'h0; // @[Decoupled.scala:362:21] wire nodeIn_a_bits_corrupt = 1'h0; // @[Decoupled.scala:362:21] wire nodeOut_d_bits_source = 1'h0; // @[Decoupled.scala:362:21] wire [3:0] auto_in_a_bits_size = 4'h6; // @[Decoupled.scala:362:21] wire [3:0] nodeIn_a_bits_size = 4'h6; // @[Decoupled.scala:362:21] wire [2:0] auto_in_a_bits_param = 3'h0; // @[Decoupled.scala:362:21] wire [2:0] nodeIn_a_bits_param = 3'h0; // @[Decoupled.scala:362:21] wire [2:0] auto_in_a_bits_opcode = 3'h4; // @[Decoupled.scala:362:21] wire nodeIn_a_ready; // @[MixedNode.scala:551:17] wire [2:0] nodeIn_a_bits_opcode = 3'h4; // @[Decoupled.scala:362:21] wire nodeIn_a_valid = auto_in_a_valid_0; // @[Buffer.scala:40:9] wire [31:0] nodeIn_a_bits_address = auto_in_a_bits_address_0; // @[Buffer.scala:40:9] wire nodeIn_d_valid; // @[MixedNode.scala:551:17] wire [2:0] nodeIn_d_bits_opcode; // @[MixedNode.scala:551:17] wire [1:0] nodeIn_d_bits_param; // @[MixedNode.scala:551:17] wire [3:0] nodeIn_d_bits_size; // @[MixedNode.scala:551:17] wire nodeIn_d_bits_source; // @[MixedNode.scala:551:17] wire [2:0] nodeIn_d_bits_sink; // @[MixedNode.scala:551:17] wire nodeIn_d_bits_denied; // @[MixedNode.scala:551:17] wire [63:0] nodeIn_d_bits_data; // @[MixedNode.scala:551:17] wire nodeIn_d_bits_corrupt; // @[MixedNode.scala:551:17] wire nodeOut_a_ready = auto_out_a_ready_0; // @[Buffer.scala:40:9] wire nodeOut_a_valid; // @[MixedNode.scala:542:17] wire [2:0] nodeOut_a_bits_opcode; // @[MixedNode.scala:542:17] wire [2:0] nodeOut_a_bits_param; // @[MixedNode.scala:542:17] wire [3:0] nodeOut_a_bits_size; // @[MixedNode.scala:542:17] wire nodeOut_a_bits_source; // @[MixedNode.scala:542:17] wire [31:0] nodeOut_a_bits_address; // @[MixedNode.scala:542:17] wire [7:0] nodeOut_a_bits_mask; // @[MixedNode.scala:542:17] wire [63:0] nodeOut_a_bits_data; // @[MixedNode.scala:542:17] wire nodeOut_a_bits_corrupt; // @[MixedNode.scala:542:17] wire nodeOut_d_ready; // @[MixedNode.scala:542:17] wire nodeOut_d_valid = auto_out_d_valid_0; // @[Buffer.scala:40:9] wire [2:0] nodeOut_d_bits_opcode = auto_out_d_bits_opcode_0; // @[Buffer.scala:40:9] wire [1:0] nodeOut_d_bits_param = auto_out_d_bits_param_0; // @[Buffer.scala:40:9] wire [3:0] nodeOut_d_bits_size = auto_out_d_bits_size_0; // @[Buffer.scala:40:9] wire [2:0] nodeOut_d_bits_sink = auto_out_d_bits_sink_0; // @[Buffer.scala:40:9] wire nodeOut_d_bits_denied = auto_out_d_bits_denied_0; // @[Buffer.scala:40:9] wire [63:0] nodeOut_d_bits_data = auto_out_d_bits_data_0; // @[Buffer.scala:40:9] wire nodeOut_d_bits_corrupt = auto_out_d_bits_corrupt_0; // @[Buffer.scala:40:9] wire auto_in_a_ready_0; // @[Buffer.scala:40:9] wire [2:0] auto_in_d_bits_opcode_0; // @[Buffer.scala:40:9] wire [1:0] auto_in_d_bits_param_0; // @[Buffer.scala:40:9] wire [3:0] auto_in_d_bits_size_0; // @[Buffer.scala:40:9] wire auto_in_d_bits_source_0; // @[Buffer.scala:40:9] wire [2:0] auto_in_d_bits_sink_0; // @[Buffer.scala:40:9] wire auto_in_d_bits_denied_0; // @[Buffer.scala:40:9] wire [63:0] auto_in_d_bits_data_0; // @[Buffer.scala:40:9] wire auto_in_d_bits_corrupt_0; // @[Buffer.scala:40:9] wire auto_in_d_valid_0; // @[Buffer.scala:40:9] wire [2:0] auto_out_a_bits_opcode_0; // @[Buffer.scala:40:9] wire [2:0] auto_out_a_bits_param_0; // @[Buffer.scala:40:9] wire [3:0] auto_out_a_bits_size_0; // @[Buffer.scala:40:9] wire auto_out_a_bits_source_0; // @[Buffer.scala:40:9] wire [31:0] auto_out_a_bits_address_0; // @[Buffer.scala:40:9] wire [7:0] auto_out_a_bits_mask_0; // @[Buffer.scala:40:9] wire [63:0] auto_out_a_bits_data_0; // @[Buffer.scala:40:9] wire auto_out_a_bits_corrupt_0; // @[Buffer.scala:40:9] wire auto_out_a_valid_0; // @[Buffer.scala:40:9] wire auto_out_d_ready_0; // @[Buffer.scala:40:9] assign auto_in_a_ready_0 = nodeIn_a_ready; // @[Buffer.scala:40:9] assign auto_in_d_valid_0 = nodeIn_d_valid; // @[Buffer.scala:40:9] assign auto_in_d_bits_opcode_0 = nodeIn_d_bits_opcode; // @[Buffer.scala:40:9] assign auto_in_d_bits_param_0 = nodeIn_d_bits_param; // @[Buffer.scala:40:9] assign auto_in_d_bits_size_0 = nodeIn_d_bits_size; // @[Buffer.scala:40:9] assign auto_in_d_bits_source_0 = nodeIn_d_bits_source; // @[Buffer.scala:40:9] assign auto_in_d_bits_sink_0 = nodeIn_d_bits_sink; // @[Buffer.scala:40:9] assign auto_in_d_bits_denied_0 = nodeIn_d_bits_denied; // @[Buffer.scala:40:9] assign auto_in_d_bits_data_0 = nodeIn_d_bits_data; // @[Buffer.scala:40:9] assign auto_in_d_bits_corrupt_0 = nodeIn_d_bits_corrupt; // @[Buffer.scala:40:9] assign auto_out_a_valid_0 = nodeOut_a_valid; // @[Buffer.scala:40:9] assign auto_out_a_bits_opcode_0 = nodeOut_a_bits_opcode; // @[Buffer.scala:40:9] assign auto_out_a_bits_param_0 = nodeOut_a_bits_param; // @[Buffer.scala:40:9] assign auto_out_a_bits_size_0 = nodeOut_a_bits_size; // @[Buffer.scala:40:9] assign auto_out_a_bits_source_0 = nodeOut_a_bits_source; // @[Buffer.scala:40:9] assign auto_out_a_bits_address_0 = nodeOut_a_bits_address; // @[Buffer.scala:40:9] assign auto_out_a_bits_mask_0 = nodeOut_a_bits_mask; // @[Buffer.scala:40:9] assign auto_out_a_bits_data_0 = nodeOut_a_bits_data; // @[Buffer.scala:40:9] assign auto_out_a_bits_corrupt_0 = nodeOut_a_bits_corrupt; // @[Buffer.scala:40:9] assign auto_out_d_ready_0 = nodeOut_d_ready; // @[Buffer.scala:40:9] TLMonitor_42 monitor ( // @[Nodes.scala:27:25] .clock (clock), .reset (reset), .io_in_a_ready (nodeIn_a_ready), // @[MixedNode.scala:551:17] .io_in_a_valid (nodeIn_a_valid), // @[MixedNode.scala:551:17] .io_in_a_bits_address (nodeIn_a_bits_address), // @[MixedNode.scala:551:17] .io_in_d_valid (nodeIn_d_valid), // @[MixedNode.scala:551:17] .io_in_d_bits_opcode (nodeIn_d_bits_opcode), // @[MixedNode.scala:551:17] .io_in_d_bits_param (nodeIn_d_bits_param), // @[MixedNode.scala:551:17] .io_in_d_bits_size (nodeIn_d_bits_size), // @[MixedNode.scala:551:17] .io_in_d_bits_source (nodeIn_d_bits_source), // @[MixedNode.scala:551:17] .io_in_d_bits_sink (nodeIn_d_bits_sink), // @[MixedNode.scala:551:17] .io_in_d_bits_denied (nodeIn_d_bits_denied), // @[MixedNode.scala:551:17] .io_in_d_bits_data (nodeIn_d_bits_data), // @[MixedNode.scala:551:17] .io_in_d_bits_corrupt (nodeIn_d_bits_corrupt) // @[MixedNode.scala:551:17] ); // @[Nodes.scala:27:25] Queue2_TLBundleA_a32d64s1k3z4u nodeOut_a_q ( // @[Decoupled.scala:362:21] .clock (clock), .reset (reset), .io_enq_ready (nodeIn_a_ready), .io_enq_valid (nodeIn_a_valid), // @[MixedNode.scala:551:17] .io_enq_bits_address (nodeIn_a_bits_address), // @[MixedNode.scala:551:17] .io_deq_ready (nodeOut_a_ready), // @[MixedNode.scala:542:17] .io_deq_valid (nodeOut_a_valid), .io_deq_bits_opcode (nodeOut_a_bits_opcode), .io_deq_bits_param (nodeOut_a_bits_param), .io_deq_bits_size (nodeOut_a_bits_size), .io_deq_bits_source (nodeOut_a_bits_source), .io_deq_bits_address (nodeOut_a_bits_address), .io_deq_bits_mask (nodeOut_a_bits_mask), .io_deq_bits_data (nodeOut_a_bits_data), .io_deq_bits_corrupt (nodeOut_a_bits_corrupt) ); // @[Decoupled.scala:362:21] Queue2_TLBundleD_a32d64s1k3z4u nodeIn_d_q ( // @[Decoupled.scala:362:21] .clock (clock), .reset (reset), .io_enq_ready (nodeOut_d_ready), .io_enq_valid (nodeOut_d_valid), // @[MixedNode.scala:542:17] .io_enq_bits_opcode (nodeOut_d_bits_opcode), // @[MixedNode.scala:542:17] .io_enq_bits_param (nodeOut_d_bits_param), // @[MixedNode.scala:542:17] .io_enq_bits_size (nodeOut_d_bits_size), // @[MixedNode.scala:542:17] .io_enq_bits_sink (nodeOut_d_bits_sink), // @[MixedNode.scala:542:17] .io_enq_bits_denied (nodeOut_d_bits_denied), // @[MixedNode.scala:542:17] .io_enq_bits_data (nodeOut_d_bits_data), // @[MixedNode.scala:542:17] .io_enq_bits_corrupt (nodeOut_d_bits_corrupt), // @[MixedNode.scala:542:17] .io_deq_valid (nodeIn_d_valid), .io_deq_bits_opcode (nodeIn_d_bits_opcode), .io_deq_bits_param (nodeIn_d_bits_param), .io_deq_bits_size (nodeIn_d_bits_size), .io_deq_bits_source (nodeIn_d_bits_source), .io_deq_bits_sink (nodeIn_d_bits_sink), .io_deq_bits_denied (nodeIn_d_bits_denied), .io_deq_bits_data (nodeIn_d_bits_data), .io_deq_bits_corrupt (nodeIn_d_bits_corrupt) ); // @[Decoupled.scala:362:21] assign auto_in_a_ready = auto_in_a_ready_0; // @[Buffer.scala:40:9] assign auto_in_d_valid = auto_in_d_valid_0; // @[Buffer.scala:40:9] assign auto_in_d_bits_opcode = auto_in_d_bits_opcode_0; // @[Buffer.scala:40:9] assign auto_in_d_bits_param = auto_in_d_bits_param_0; // @[Buffer.scala:40:9] assign auto_in_d_bits_size = auto_in_d_bits_size_0; // @[Buffer.scala:40:9] assign auto_in_d_bits_source = auto_in_d_bits_source_0; // @[Buffer.scala:40:9] assign auto_in_d_bits_sink = auto_in_d_bits_sink_0; // @[Buffer.scala:40:9] assign auto_in_d_bits_denied = auto_in_d_bits_denied_0; // @[Buffer.scala:40:9] assign auto_in_d_bits_data = auto_in_d_bits_data_0; // @[Buffer.scala:40:9] assign auto_in_d_bits_corrupt = auto_in_d_bits_corrupt_0; // @[Buffer.scala:40:9] assign auto_out_a_valid = auto_out_a_valid_0; // @[Buffer.scala:40:9] assign auto_out_a_bits_opcode = auto_out_a_bits_opcode_0; // @[Buffer.scala:40:9] assign auto_out_a_bits_param = auto_out_a_bits_param_0; // @[Buffer.scala:40:9] assign auto_out_a_bits_size = auto_out_a_bits_size_0; // @[Buffer.scala:40:9] assign auto_out_a_bits_source = auto_out_a_bits_source_0; // @[Buffer.scala:40:9] assign auto_out_a_bits_address = auto_out_a_bits_address_0; // @[Buffer.scala:40:9] assign auto_out_a_bits_mask = auto_out_a_bits_mask_0; // @[Buffer.scala:40:9] assign auto_out_a_bits_data = auto_out_a_bits_data_0; // @[Buffer.scala:40:9] assign auto_out_a_bits_corrupt = auto_out_a_bits_corrupt_0; // @[Buffer.scala:40:9] assign auto_out_d_ready = auto_out_d_ready_0; // @[Buffer.scala:40:9] endmodule
Generate the Verilog code corresponding to the following Chisel files. File PE.scala: // See README.md for license details. package gemmini import chisel3._ import chisel3.util._ class PEControl[T <: Data : Arithmetic](accType: T) extends Bundle { val dataflow = UInt(1.W) // TODO make this an Enum val propagate = UInt(1.W) // Which register should be propagated (and which should be accumulated)? val shift = UInt(log2Up(accType.getWidth).W) // TODO this isn't correct for Floats } class MacUnit[T <: Data](inputType: T, cType: T, dType: T) (implicit ev: Arithmetic[T]) extends Module { import ev._ val io = IO(new Bundle { val in_a = Input(inputType) val in_b = Input(inputType) val in_c = Input(cType) val out_d = Output(dType) }) io.out_d := io.in_c.mac(io.in_a, io.in_b) } // TODO update documentation /** * A PE implementing a MAC operation. Configured as fully combinational when integrated into a Mesh. * @param width Data width of operands */ class PE[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, max_simultaneous_matmuls: Int) (implicit ev: Arithmetic[T]) extends Module { // Debugging variables import ev._ val io = IO(new Bundle { val in_a = Input(inputType) val in_b = Input(outputType) val in_d = Input(outputType) val out_a = Output(inputType) val out_b = Output(outputType) val out_c = Output(outputType) val in_control = Input(new PEControl(accType)) val out_control = Output(new PEControl(accType)) val in_id = Input(UInt(log2Up(max_simultaneous_matmuls).W)) val out_id = Output(UInt(log2Up(max_simultaneous_matmuls).W)) val in_last = Input(Bool()) val out_last = Output(Bool()) val in_valid = Input(Bool()) val out_valid = Output(Bool()) val bad_dataflow = Output(Bool()) }) val cType = if (df == Dataflow.WS) inputType else accType // When creating PEs that support multiple dataflows, the // elaboration/synthesis tools often fail to consolidate and de-duplicate // MAC units. To force mac circuitry to be re-used, we create a "mac_unit" // module here which just performs a single MAC operation val mac_unit = Module(new MacUnit(inputType, if (df == Dataflow.WS) outputType else accType, outputType)) val a = io.in_a val b = io.in_b val d = io.in_d val c1 = Reg(cType) val c2 = Reg(cType) val dataflow = io.in_control.dataflow val prop = io.in_control.propagate val shift = io.in_control.shift val id = io.in_id val last = io.in_last val valid = io.in_valid io.out_a := a io.out_control.dataflow := dataflow io.out_control.propagate := prop io.out_control.shift := shift io.out_id := id io.out_last := last io.out_valid := valid mac_unit.io.in_a := a val last_s = RegEnable(prop, valid) val flip = last_s =/= prop val shift_offset = Mux(flip, shift, 0.U) // Which dataflow are we using? val OUTPUT_STATIONARY = Dataflow.OS.id.U(1.W) val WEIGHT_STATIONARY = Dataflow.WS.id.U(1.W) // Is c1 being computed on, or propagated forward (in the output-stationary dataflow)? val COMPUTE = 0.U(1.W) val PROPAGATE = 1.U(1.W) io.bad_dataflow := false.B when ((df == Dataflow.OS).B || ((df == Dataflow.BOTH).B && dataflow === OUTPUT_STATIONARY)) { when(prop === PROPAGATE) { io.out_c := (c1 >> shift_offset).clippedToWidthOf(outputType) io.out_b := b mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c2 c2 := mac_unit.io.out_d c1 := d.withWidthOf(cType) }.otherwise { io.out_c := (c2 >> shift_offset).clippedToWidthOf(outputType) io.out_b := b mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c1 c1 := mac_unit.io.out_d c2 := d.withWidthOf(cType) } }.elsewhen ((df == Dataflow.WS).B || ((df == Dataflow.BOTH).B && dataflow === WEIGHT_STATIONARY)) { when(prop === PROPAGATE) { io.out_c := c1 mac_unit.io.in_b := c2.asTypeOf(inputType) mac_unit.io.in_c := b io.out_b := mac_unit.io.out_d c1 := d }.otherwise { io.out_c := c2 mac_unit.io.in_b := c1.asTypeOf(inputType) mac_unit.io.in_c := b io.out_b := mac_unit.io.out_d c2 := d } }.otherwise { io.bad_dataflow := true.B //assert(false.B, "unknown dataflow") io.out_c := DontCare io.out_b := DontCare mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c2 } when (!valid) { c1 := c1 c2 := c2 mac_unit.io.in_b := DontCare mac_unit.io.in_c := DontCare } } File Arithmetic.scala: // A simple type class for Chisel datatypes that can add and multiply. To add your own type, simply create your own: // implicit MyTypeArithmetic extends Arithmetic[MyType] { ... } package gemmini import chisel3._ import chisel3.util._ import hardfloat._ // Bundles that represent the raw bits of custom datatypes case class Float(expWidth: Int, sigWidth: Int) extends Bundle { val bits = UInt((expWidth + sigWidth).W) val bias: Int = (1 << (expWidth-1)) - 1 } case class DummySInt(w: Int) extends Bundle { val bits = UInt(w.W) def dontCare: DummySInt = { val o = Wire(new DummySInt(w)) o.bits := 0.U o } } // The Arithmetic typeclass which implements various arithmetic operations on custom datatypes abstract class Arithmetic[T <: Data] { implicit def cast(t: T): ArithmeticOps[T] } abstract class ArithmeticOps[T <: Data](self: T) { def *(t: T): T def mac(m1: T, m2: T): T // Returns (m1 * m2 + self) def +(t: T): T def -(t: T): T def >>(u: UInt): T // This is a rounding shift! Rounds away from 0 def >(t: T): Bool def identity: T def withWidthOf(t: T): T def clippedToWidthOf(t: T): T // Like "withWidthOf", except that it saturates def relu: T def zero: T def minimum: T // Optional parameters, which only need to be defined if you want to enable various optimizations for transformers def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[T])] = None def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[T])] = None def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = None def mult_with_reciprocal[U <: Data](reciprocal: U) = self } object Arithmetic { implicit object UIntArithmetic extends Arithmetic[UInt] { override implicit def cast(self: UInt) = new ArithmeticOps(self) { override def *(t: UInt) = self * t override def mac(m1: UInt, m2: UInt) = m1 * m2 + self override def +(t: UInt) = self + t override def -(t: UInt) = self - t override def >>(u: UInt) = { // The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm // TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here? val point_five = Mux(u === 0.U, 0.U, self(u - 1.U)) val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U val ones_digit = self(u) val r = point_five & (zeros | ones_digit) (self >> u).asUInt + r } override def >(t: UInt): Bool = self > t override def withWidthOf(t: UInt) = self.asTypeOf(t) override def clippedToWidthOf(t: UInt) = { val sat = ((1 << (t.getWidth-1))-1).U Mux(self > sat, sat, self)(t.getWidth-1, 0) } override def relu: UInt = self override def zero: UInt = 0.U override def identity: UInt = 1.U override def minimum: UInt = 0.U } } implicit object SIntArithmetic extends Arithmetic[SInt] { override implicit def cast(self: SInt) = new ArithmeticOps(self) { override def *(t: SInt) = self * t override def mac(m1: SInt, m2: SInt) = m1 * m2 + self override def +(t: SInt) = self + t override def -(t: SInt) = self - t override def >>(u: UInt) = { // The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm // TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here? val point_five = Mux(u === 0.U, 0.U, self(u - 1.U)) val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U val ones_digit = self(u) val r = (point_five & (zeros | ones_digit)).asBool (self >> u).asSInt + Mux(r, 1.S, 0.S) } override def >(t: SInt): Bool = self > t override def withWidthOf(t: SInt) = { if (self.getWidth >= t.getWidth) self(t.getWidth-1, 0).asSInt else { val sign_bits = t.getWidth - self.getWidth val sign = self(self.getWidth-1) Cat(Cat(Seq.fill(sign_bits)(sign)), self).asTypeOf(t) } } override def clippedToWidthOf(t: SInt): SInt = { val maxsat = ((1 << (t.getWidth-1))-1).S val minsat = (-(1 << (t.getWidth-1))).S MuxCase(self, Seq((self > maxsat) -> maxsat, (self < minsat) -> minsat))(t.getWidth-1, 0).asSInt } override def relu: SInt = Mux(self >= 0.S, self, 0.S) override def zero: SInt = 0.S override def identity: SInt = 1.S override def minimum: SInt = (-(1 << (self.getWidth-1))).S override def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = { // TODO this uses a floating point divider, but we should use an integer divider instead val input = Wire(Decoupled(denom_t.cloneType)) val output = Wire(Decoupled(self.cloneType)) // We translate our integer to floating-point form so that we can use the hardfloat divider val expWidth = log2Up(self.getWidth) + 1 val sigWidth = self.getWidth def sin_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def uin_to_float(x: UInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := false.B in_to_rec_fn.io.in := x in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag rec_fn_to_in.io.out.asSInt } val self_rec = sin_to_float(self) val denom_rec = uin_to_float(input.bits) // Instantiate the hardloat divider val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options)) input.ready := divider.io.inReady divider.io.inValid := input.valid divider.io.sqrtOp := false.B divider.io.a := self_rec divider.io.b := denom_rec divider.io.roundingMode := consts.round_minMag divider.io.detectTininess := consts.tininess_afterRounding output.valid := divider.io.outValid_div output.bits := float_to_in(divider.io.out) assert(!output.valid || output.ready) Some((input, output)) } override def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = { // TODO this uses a floating point divider, but we should use an integer divider instead val input = Wire(Decoupled(UInt(0.W))) val output = Wire(Decoupled(self.cloneType)) input.bits := DontCare // We translate our integer to floating-point form so that we can use the hardfloat divider val expWidth = log2Up(self.getWidth) + 1 val sigWidth = self.getWidth def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag rec_fn_to_in.io.out.asSInt } val self_rec = in_to_float(self) // Instantiate the hardloat sqrt val sqrter = Module(new DivSqrtRecFN_small(expWidth, sigWidth, 0)) input.ready := sqrter.io.inReady sqrter.io.inValid := input.valid sqrter.io.sqrtOp := true.B sqrter.io.a := self_rec sqrter.io.b := DontCare sqrter.io.roundingMode := consts.round_minMag sqrter.io.detectTininess := consts.tininess_afterRounding output.valid := sqrter.io.outValid_sqrt output.bits := float_to_in(sqrter.io.out) assert(!output.valid || output.ready) Some((input, output)) } override def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = u match { case Float(expWidth, sigWidth) => val input = Wire(Decoupled(UInt(0.W))) val output = Wire(Decoupled(u.cloneType)) input.bits := DontCare // We translate our integer to floating-point form so that we can use the hardfloat divider def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } val self_rec = in_to_float(self) val one_rec = in_to_float(1.S) // Instantiate the hardloat divider val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options)) input.ready := divider.io.inReady divider.io.inValid := input.valid divider.io.sqrtOp := false.B divider.io.a := one_rec divider.io.b := self_rec divider.io.roundingMode := consts.round_near_even divider.io.detectTininess := consts.tininess_afterRounding output.valid := divider.io.outValid_div output.bits := fNFromRecFN(expWidth, sigWidth, divider.io.out).asTypeOf(u) assert(!output.valid || output.ready) Some((input, output)) case _ => None } override def mult_with_reciprocal[U <: Data](reciprocal: U): SInt = reciprocal match { case recip @ Float(expWidth, sigWidth) => def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag rec_fn_to_in.io.out.asSInt } val self_rec = in_to_float(self) val reciprocal_rec = recFNFromFN(expWidth, sigWidth, recip.bits) // Instantiate the hardloat divider val muladder = Module(new MulRecFN(expWidth, sigWidth)) muladder.io.roundingMode := consts.round_near_even muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := reciprocal_rec float_to_in(muladder.io.out) case _ => self } } } implicit object FloatArithmetic extends Arithmetic[Float] { // TODO Floating point arithmetic currently switches between recoded and standard formats for every operation. However, it should stay in the recoded format as it travels through the systolic array override implicit def cast(self: Float): ArithmeticOps[Float] = new ArithmeticOps(self) { override def *(t: Float): Float = { val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth)) muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := t_rec_resized val out = Wire(Float(self.expWidth, self.sigWidth)) out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) out } override def mac(m1: Float, m2: Float): Float = { // Recode all operands val m1_rec = recFNFromFN(m1.expWidth, m1.sigWidth, m1.bits) val m2_rec = recFNFromFN(m2.expWidth, m2.sigWidth, m2.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Resize m1 to self's width val m1_resizer = Module(new RecFNToRecFN(m1.expWidth, m1.sigWidth, self.expWidth, self.sigWidth)) m1_resizer.io.in := m1_rec m1_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag m1_resizer.io.detectTininess := consts.tininess_afterRounding val m1_rec_resized = m1_resizer.io.out // Resize m2 to self's width val m2_resizer = Module(new RecFNToRecFN(m2.expWidth, m2.sigWidth, self.expWidth, self.sigWidth)) m2_resizer.io.in := m2_rec m2_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag m2_resizer.io.detectTininess := consts.tininess_afterRounding val m2_rec_resized = m2_resizer.io.out // Perform multiply-add val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth)) muladder.io.op := 0.U muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := m1_rec_resized muladder.io.b := m2_rec_resized muladder.io.c := self_rec // Convert result to standard format // TODO remove these intermediate recodings val out = Wire(Float(self.expWidth, self.sigWidth)) out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) out } override def +(t: Float): Float = { require(self.getWidth >= t.getWidth) // This just makes it easier to write the resizing code // Recode all operands val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Generate 1 as a float val in_to_rec_fn = Module(new INToRecFN(1, self.expWidth, self.sigWidth)) in_to_rec_fn.io.signedIn := false.B in_to_rec_fn.io.in := 1.U in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding val one_rec = in_to_rec_fn.io.out // Resize t val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out // Perform addition val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth)) muladder.io.op := 0.U muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := t_rec_resized muladder.io.b := one_rec muladder.io.c := self_rec val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) result } override def -(t: Float): Float = { val t_sgn = t.bits(t.getWidth-1) val neg_t = Cat(~t_sgn, t.bits(t.getWidth-2,0)).asTypeOf(t) self + neg_t } override def >>(u: UInt): Float = { // Recode self val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Get 2^(-u) as a recoded float val shift_exp = Wire(UInt(self.expWidth.W)) shift_exp := self.bias.U - u val shift_fn = Cat(0.U(1.W), shift_exp, 0.U((self.sigWidth-1).W)) val shift_rec = recFNFromFN(self.expWidth, self.sigWidth, shift_fn) assert(shift_exp =/= 0.U, "scaling by denormalized numbers is not currently supported") // Multiply self and 2^(-u) val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth)) muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := shift_rec val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) result } override def >(t: Float): Bool = { // Recode all operands val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Resize t to self's width val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out val comparator = Module(new CompareRecFN(self.expWidth, self.sigWidth)) comparator.io.a := self_rec comparator.io.b := t_rec_resized comparator.io.signaling := false.B comparator.io.gt } override def withWidthOf(t: Float): Float = { val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth)) resizer.io.in := self_rec resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag resizer.io.detectTininess := consts.tininess_afterRounding val result = Wire(Float(t.expWidth, t.sigWidth)) result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out) result } override def clippedToWidthOf(t: Float): Float = { // TODO check for overflow. Right now, we just assume that overflow doesn't happen val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth)) resizer.io.in := self_rec resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag resizer.io.detectTininess := consts.tininess_afterRounding val result = Wire(Float(t.expWidth, t.sigWidth)) result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out) result } override def relu: Float = { val raw = rawFloatFromFN(self.expWidth, self.sigWidth, self.bits) val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := Mux(!raw.isZero && raw.sign, 0.U, self.bits) result } override def zero: Float = 0.U.asTypeOf(self) override def identity: Float = Cat(0.U(2.W), ~(0.U((self.expWidth-1).W)), 0.U((self.sigWidth-1).W)).asTypeOf(self) override def minimum: Float = Cat(1.U, ~(0.U(self.expWidth.W)), 0.U((self.sigWidth-1).W)).asTypeOf(self) } } implicit object DummySIntArithmetic extends Arithmetic[DummySInt] { override implicit def cast(self: DummySInt) = new ArithmeticOps(self) { override def *(t: DummySInt) = self.dontCare override def mac(m1: DummySInt, m2: DummySInt) = self.dontCare override def +(t: DummySInt) = self.dontCare override def -(t: DummySInt) = self.dontCare override def >>(t: UInt) = self.dontCare override def >(t: DummySInt): Bool = false.B override def identity = self.dontCare override def withWidthOf(t: DummySInt) = self.dontCare override def clippedToWidthOf(t: DummySInt) = self.dontCare override def relu = self.dontCare override def zero = self.dontCare override def minimum: DummySInt = self.dontCare } } }
module MacUnit_136( // @[PE.scala:14:7] input clock, // @[PE.scala:14:7] input reset, // @[PE.scala:14:7] input [7:0] io_in_a, // @[PE.scala:16:14] input [7:0] io_in_b, // @[PE.scala:16:14] input [31:0] io_in_c, // @[PE.scala:16:14] output [19:0] io_out_d // @[PE.scala:16:14] ); wire [7:0] io_in_a_0 = io_in_a; // @[PE.scala:14:7] wire [7:0] io_in_b_0 = io_in_b; // @[PE.scala:14:7] wire [31:0] io_in_c_0 = io_in_c; // @[PE.scala:14:7] wire [19:0] io_out_d_0; // @[PE.scala:14:7] wire [15:0] _io_out_d_T = {{8{io_in_a_0[7]}}, io_in_a_0} * {{8{io_in_b_0[7]}}, io_in_b_0}; // @[PE.scala:14:7] wire [32:0] _io_out_d_T_1 = {{17{_io_out_d_T[15]}}, _io_out_d_T} + {io_in_c_0[31], io_in_c_0}; // @[PE.scala:14:7] wire [31:0] _io_out_d_T_2 = _io_out_d_T_1[31:0]; // @[Arithmetic.scala:93:54] wire [31:0] _io_out_d_T_3 = _io_out_d_T_2; // @[Arithmetic.scala:93:54] assign io_out_d_0 = _io_out_d_T_3[19:0]; // @[PE.scala:14:7, :23:12] assign io_out_d = io_out_d_0; // @[PE.scala:14:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File MSHR.scala: /* * Copyright 2019 SiFive, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You should have received a copy of LICENSE.Apache2 along with * this software. If not, you may obtain a copy at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package sifive.blocks.inclusivecache import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import freechips.rocketchip.tilelink._ import TLPermissions._ import TLMessages._ import MetaData._ import chisel3.PrintableHelper import chisel3.experimental.dataview._ class ScheduleRequest(params: InclusiveCacheParameters) extends InclusiveCacheBundle(params) { val a = Valid(new SourceARequest(params)) val b = Valid(new SourceBRequest(params)) val c = Valid(new SourceCRequest(params)) val d = Valid(new SourceDRequest(params)) val e = Valid(new SourceERequest(params)) val x = Valid(new SourceXRequest(params)) val dir = Valid(new DirectoryWrite(params)) val reload = Bool() // get next request via allocate (if any) } class MSHRStatus(params: InclusiveCacheParameters) extends InclusiveCacheBundle(params) { val set = UInt(params.setBits.W) val tag = UInt(params.tagBits.W) val way = UInt(params.wayBits.W) val blockB = Bool() val nestB = Bool() val blockC = Bool() val nestC = Bool() } class NestedWriteback(params: InclusiveCacheParameters) extends InclusiveCacheBundle(params) { val set = UInt(params.setBits.W) val tag = UInt(params.tagBits.W) val b_toN = Bool() // nested Probes may unhit us val b_toB = Bool() // nested Probes may demote us val b_clr_dirty = Bool() // nested Probes clear dirty val c_set_dirty = Bool() // nested Releases MAY set dirty } sealed trait CacheState { val code = CacheState.index.U CacheState.index = CacheState.index + 1 } object CacheState { var index = 0 } case object S_INVALID extends CacheState case object S_BRANCH extends CacheState case object S_BRANCH_C extends CacheState case object S_TIP extends CacheState case object S_TIP_C extends CacheState case object S_TIP_CD extends CacheState case object S_TIP_D extends CacheState case object S_TRUNK_C extends CacheState case object S_TRUNK_CD extends CacheState class MSHR(params: InclusiveCacheParameters) extends Module { val io = IO(new Bundle { val allocate = Flipped(Valid(new AllocateRequest(params))) // refills MSHR for next cycle val directory = Flipped(Valid(new DirectoryResult(params))) // triggers schedule setup val status = Valid(new MSHRStatus(params)) val schedule = Decoupled(new ScheduleRequest(params)) val sinkc = Flipped(Valid(new SinkCResponse(params))) val sinkd = Flipped(Valid(new SinkDResponse(params))) val sinke = Flipped(Valid(new SinkEResponse(params))) val nestedwb = Flipped(new NestedWriteback(params)) }) val request_valid = RegInit(false.B) val request = Reg(new FullRequest(params)) val meta_valid = RegInit(false.B) val meta = Reg(new DirectoryResult(params)) // Define which states are valid when (meta_valid) { when (meta.state === INVALID) { assert (!meta.clients.orR) assert (!meta.dirty) } when (meta.state === BRANCH) { assert (!meta.dirty) } when (meta.state === TRUNK) { assert (meta.clients.orR) assert ((meta.clients & (meta.clients - 1.U)) === 0.U) // at most one } when (meta.state === TIP) { // noop } } // Completed transitions (s_ = scheduled), (w_ = waiting) val s_rprobe = RegInit(true.B) // B val w_rprobeackfirst = RegInit(true.B) val w_rprobeacklast = RegInit(true.B) val s_release = RegInit(true.B) // CW w_rprobeackfirst val w_releaseack = RegInit(true.B) val s_pprobe = RegInit(true.B) // B val s_acquire = RegInit(true.B) // A s_release, s_pprobe [1] val s_flush = RegInit(true.B) // X w_releaseack val w_grantfirst = RegInit(true.B) val w_grantlast = RegInit(true.B) val w_grant = RegInit(true.B) // first | last depending on wormhole val w_pprobeackfirst = RegInit(true.B) val w_pprobeacklast = RegInit(true.B) val w_pprobeack = RegInit(true.B) // first | last depending on wormhole val s_probeack = RegInit(true.B) // C w_pprobeackfirst (mutually exclusive with next two s_*) val s_grantack = RegInit(true.B) // E w_grantfirst ... CAN require both outE&inD to service outD val s_execute = RegInit(true.B) // D w_pprobeack, w_grant val w_grantack = RegInit(true.B) val s_writeback = RegInit(true.B) // W w_* // [1]: We cannot issue outer Acquire while holding blockB (=> outA can stall) // However, inB and outC are higher priority than outB, so s_release and s_pprobe // may be safely issued while blockB. Thus we must NOT try to schedule the // potentially stuck s_acquire with either of them (scheduler is all or none). // Meta-data that we discover underway val sink = Reg(UInt(params.outer.bundle.sinkBits.W)) val gotT = Reg(Bool()) val bad_grant = Reg(Bool()) val probes_done = Reg(UInt(params.clientBits.W)) val probes_toN = Reg(UInt(params.clientBits.W)) val probes_noT = Reg(Bool()) // When a nested transaction completes, update our meta data when (meta_valid && meta.state =/= INVALID && io.nestedwb.set === request.set && io.nestedwb.tag === meta.tag) { when (io.nestedwb.b_clr_dirty) { meta.dirty := false.B } when (io.nestedwb.c_set_dirty) { meta.dirty := true.B } when (io.nestedwb.b_toB) { meta.state := BRANCH } when (io.nestedwb.b_toN) { meta.hit := false.B } } // Scheduler status io.status.valid := request_valid io.status.bits.set := request.set io.status.bits.tag := request.tag io.status.bits.way := meta.way io.status.bits.blockB := !meta_valid || ((!w_releaseack || !w_rprobeacklast || !w_pprobeacklast) && !w_grantfirst) io.status.bits.nestB := meta_valid && w_releaseack && w_rprobeacklast && w_pprobeacklast && !w_grantfirst // The above rules ensure we will block and not nest an outer probe while still doing our // own inner probes. Thus every probe wakes exactly one MSHR. io.status.bits.blockC := !meta_valid io.status.bits.nestC := meta_valid && (!w_rprobeackfirst || !w_pprobeackfirst || !w_grantfirst) // The w_grantfirst in nestC is necessary to deal with: // acquire waiting for grant, inner release gets queued, outer probe -> inner probe -> deadlock // ... this is possible because the release+probe can be for same set, but different tag // We can only demand: block, nest, or queue assert (!io.status.bits.nestB || !io.status.bits.blockB) assert (!io.status.bits.nestC || !io.status.bits.blockC) // Scheduler requests val no_wait = w_rprobeacklast && w_releaseack && w_grantlast && w_pprobeacklast && w_grantack io.schedule.bits.a.valid := !s_acquire && s_release && s_pprobe io.schedule.bits.b.valid := !s_rprobe || !s_pprobe io.schedule.bits.c.valid := (!s_release && w_rprobeackfirst) || (!s_probeack && w_pprobeackfirst) io.schedule.bits.d.valid := !s_execute && w_pprobeack && w_grant io.schedule.bits.e.valid := !s_grantack && w_grantfirst io.schedule.bits.x.valid := !s_flush && w_releaseack io.schedule.bits.dir.valid := (!s_release && w_rprobeackfirst) || (!s_writeback && no_wait) io.schedule.bits.reload := no_wait io.schedule.valid := io.schedule.bits.a.valid || io.schedule.bits.b.valid || io.schedule.bits.c.valid || io.schedule.bits.d.valid || io.schedule.bits.e.valid || io.schedule.bits.x.valid || io.schedule.bits.dir.valid // Schedule completions when (io.schedule.ready) { s_rprobe := true.B when (w_rprobeackfirst) { s_release := true.B } s_pprobe := true.B when (s_release && s_pprobe) { s_acquire := true.B } when (w_releaseack) { s_flush := true.B } when (w_pprobeackfirst) { s_probeack := true.B } when (w_grantfirst) { s_grantack := true.B } when (w_pprobeack && w_grant) { s_execute := true.B } when (no_wait) { s_writeback := true.B } // Await the next operation when (no_wait) { request_valid := false.B meta_valid := false.B } } // Resulting meta-data val final_meta_writeback = WireInit(meta) val req_clientBit = params.clientBit(request.source) val req_needT = needT(request.opcode, request.param) val req_acquire = request.opcode === AcquireBlock || request.opcode === AcquirePerm val meta_no_clients = !meta.clients.orR val req_promoteT = req_acquire && Mux(meta.hit, meta_no_clients && meta.state === TIP, gotT) when (request.prio(2) && (!params.firstLevel).B) { // always a hit final_meta_writeback.dirty := meta.dirty || request.opcode(0) final_meta_writeback.state := Mux(request.param =/= TtoT && meta.state === TRUNK, TIP, meta.state) final_meta_writeback.clients := meta.clients & ~Mux(isToN(request.param), req_clientBit, 0.U) final_meta_writeback.hit := true.B // chained requests are hits } .elsewhen (request.control && params.control.B) { // request.prio(0) when (meta.hit) { final_meta_writeback.dirty := false.B final_meta_writeback.state := INVALID final_meta_writeback.clients := meta.clients & ~probes_toN } final_meta_writeback.hit := false.B } .otherwise { final_meta_writeback.dirty := (meta.hit && meta.dirty) || !request.opcode(2) final_meta_writeback.state := Mux(req_needT, Mux(req_acquire, TRUNK, TIP), Mux(!meta.hit, Mux(gotT, Mux(req_acquire, TRUNK, TIP), BRANCH), MuxLookup(meta.state, 0.U(2.W))(Seq( INVALID -> BRANCH, BRANCH -> BRANCH, TRUNK -> TIP, TIP -> Mux(meta_no_clients && req_acquire, TRUNK, TIP))))) final_meta_writeback.clients := Mux(meta.hit, meta.clients & ~probes_toN, 0.U) | Mux(req_acquire, req_clientBit, 0.U) final_meta_writeback.tag := request.tag final_meta_writeback.hit := true.B } when (bad_grant) { when (meta.hit) { // upgrade failed (B -> T) assert (!meta_valid || meta.state === BRANCH) final_meta_writeback.hit := true.B final_meta_writeback.dirty := false.B final_meta_writeback.state := BRANCH final_meta_writeback.clients := meta.clients & ~probes_toN } .otherwise { // failed N -> (T or B) final_meta_writeback.hit := false.B final_meta_writeback.dirty := false.B final_meta_writeback.state := INVALID final_meta_writeback.clients := 0.U } } val invalid = Wire(new DirectoryEntry(params)) invalid.dirty := false.B invalid.state := INVALID invalid.clients := 0.U invalid.tag := 0.U // Just because a client says BtoT, by the time we process the request he may be N. // Therefore, we must consult our own meta-data state to confirm he owns the line still. val honour_BtoT = meta.hit && (meta.clients & req_clientBit).orR // The client asking us to act is proof they don't have permissions. val excluded_client = Mux(meta.hit && request.prio(0) && skipProbeN(request.opcode, params.cache.hintsSkipProbe), req_clientBit, 0.U) io.schedule.bits.a.bits.tag := request.tag io.schedule.bits.a.bits.set := request.set io.schedule.bits.a.bits.param := Mux(req_needT, Mux(meta.hit, BtoT, NtoT), NtoB) io.schedule.bits.a.bits.block := request.size =/= log2Ceil(params.cache.blockBytes).U || !(request.opcode === PutFullData || request.opcode === AcquirePerm) io.schedule.bits.a.bits.source := 0.U io.schedule.bits.b.bits.param := Mux(!s_rprobe, toN, Mux(request.prio(1), request.param, Mux(req_needT, toN, toB))) io.schedule.bits.b.bits.tag := Mux(!s_rprobe, meta.tag, request.tag) io.schedule.bits.b.bits.set := request.set io.schedule.bits.b.bits.clients := meta.clients & ~excluded_client io.schedule.bits.c.bits.opcode := Mux(meta.dirty, ReleaseData, Release) io.schedule.bits.c.bits.param := Mux(meta.state === BRANCH, BtoN, TtoN) io.schedule.bits.c.bits.source := 0.U io.schedule.bits.c.bits.tag := meta.tag io.schedule.bits.c.bits.set := request.set io.schedule.bits.c.bits.way := meta.way io.schedule.bits.c.bits.dirty := meta.dirty io.schedule.bits.d.bits.viewAsSupertype(chiselTypeOf(request)) := request io.schedule.bits.d.bits.param := Mux(!req_acquire, request.param, MuxLookup(request.param, request.param)(Seq( NtoB -> Mux(req_promoteT, NtoT, NtoB), BtoT -> Mux(honour_BtoT, BtoT, NtoT), NtoT -> NtoT))) io.schedule.bits.d.bits.sink := 0.U io.schedule.bits.d.bits.way := meta.way io.schedule.bits.d.bits.bad := bad_grant io.schedule.bits.e.bits.sink := sink io.schedule.bits.x.bits.fail := false.B io.schedule.bits.dir.bits.set := request.set io.schedule.bits.dir.bits.way := meta.way io.schedule.bits.dir.bits.data := Mux(!s_release, invalid, WireInit(new DirectoryEntry(params), init = final_meta_writeback)) // Coverage of state transitions def cacheState(entry: DirectoryEntry, hit: Bool) = { val out = WireDefault(0.U) val c = entry.clients.orR val d = entry.dirty switch (entry.state) { is (BRANCH) { out := Mux(c, S_BRANCH_C.code, S_BRANCH.code) } is (TRUNK) { out := Mux(d, S_TRUNK_CD.code, S_TRUNK_C.code) } is (TIP) { out := Mux(c, Mux(d, S_TIP_CD.code, S_TIP_C.code), Mux(d, S_TIP_D.code, S_TIP.code)) } is (INVALID) { out := S_INVALID.code } } when (!hit) { out := S_INVALID.code } out } val p = !params.lastLevel // can be probed val c = !params.firstLevel // can be acquired val m = params.inner.client.clients.exists(!_.supports.probe) // can be written (or read) val r = params.outer.manager.managers.exists(!_.alwaysGrantsT) // read-only devices exist val f = params.control // flush control register exists val cfg = (p, c, m, r, f) val b = r || p // can reach branch state (via probe downgrade or read-only device) // The cache must be used for something or we would not be here require(c || m) val evict = cacheState(meta, !meta.hit) val before = cacheState(meta, meta.hit) val after = cacheState(final_meta_writeback, true.B) def eviction(from: CacheState, cover: Boolean)(implicit sourceInfo: SourceInfo) { if (cover) { params.ccover(evict === from.code, s"MSHR_${from}_EVICT", s"State transition from ${from} to evicted ${cfg}") } else { assert(!(evict === from.code), cf"State transition from ${from} to evicted should be impossible ${cfg}") } if (cover && f) { params.ccover(before === from.code, s"MSHR_${from}_FLUSH", s"State transition from ${from} to flushed ${cfg}") } else { assert(!(before === from.code), cf"State transition from ${from} to flushed should be impossible ${cfg}") } } def transition(from: CacheState, to: CacheState, cover: Boolean)(implicit sourceInfo: SourceInfo) { if (cover) { params.ccover(before === from.code && after === to.code, s"MSHR_${from}_${to}", s"State transition from ${from} to ${to} ${cfg}") } else { assert(!(before === from.code && after === to.code), cf"State transition from ${from} to ${to} should be impossible ${cfg}") } } when ((!s_release && w_rprobeackfirst) && io.schedule.ready) { eviction(S_BRANCH, b) // MMIO read to read-only device eviction(S_BRANCH_C, b && c) // you need children to become C eviction(S_TIP, true) // MMIO read || clean release can lead to this state eviction(S_TIP_C, c) // needs two clients || client + mmio || downgrading client eviction(S_TIP_CD, c) // needs two clients || client + mmio || downgrading client eviction(S_TIP_D, true) // MMIO write || dirty release lead here eviction(S_TRUNK_C, c) // acquire for write eviction(S_TRUNK_CD, c) // dirty release then reacquire } when ((!s_writeback && no_wait) && io.schedule.ready) { transition(S_INVALID, S_BRANCH, b && m) // only MMIO can bring us to BRANCH state transition(S_INVALID, S_BRANCH_C, b && c) // C state is only possible if there are inner caches transition(S_INVALID, S_TIP, m) // MMIO read transition(S_INVALID, S_TIP_C, false) // we would go S_TRUNK_C instead transition(S_INVALID, S_TIP_CD, false) // acquire does not cause dirty immediately transition(S_INVALID, S_TIP_D, m) // MMIO write transition(S_INVALID, S_TRUNK_C, c) // acquire transition(S_INVALID, S_TRUNK_CD, false) // acquire does not cause dirty immediately transition(S_BRANCH, S_INVALID, b && p) // probe can do this (flushes run as evictions) transition(S_BRANCH, S_BRANCH_C, b && c) // acquire transition(S_BRANCH, S_TIP, b && m) // prefetch write transition(S_BRANCH, S_TIP_C, false) // we would go S_TRUNK_C instead transition(S_BRANCH, S_TIP_CD, false) // acquire does not cause dirty immediately transition(S_BRANCH, S_TIP_D, b && m) // MMIO write transition(S_BRANCH, S_TRUNK_C, b && c) // acquire transition(S_BRANCH, S_TRUNK_CD, false) // acquire does not cause dirty immediately transition(S_BRANCH_C, S_INVALID, b && c && p) transition(S_BRANCH_C, S_BRANCH, b && c) // clean release (optional) transition(S_BRANCH_C, S_TIP, b && c && m) // prefetch write transition(S_BRANCH_C, S_TIP_C, false) // we would go S_TRUNK_C instead transition(S_BRANCH_C, S_TIP_D, b && c && m) // MMIO write transition(S_BRANCH_C, S_TIP_CD, false) // going dirty means we must shoot down clients transition(S_BRANCH_C, S_TRUNK_C, b && c) // acquire transition(S_BRANCH_C, S_TRUNK_CD, false) // acquire does not cause dirty immediately transition(S_TIP, S_INVALID, p) transition(S_TIP, S_BRANCH, p) // losing TIP only possible via probe transition(S_TIP, S_BRANCH_C, false) // we would go S_TRUNK_C instead transition(S_TIP, S_TIP_C, false) // we would go S_TRUNK_C instead transition(S_TIP, S_TIP_D, m) // direct dirty only via MMIO write transition(S_TIP, S_TIP_CD, false) // acquire does not make us dirty immediately transition(S_TIP, S_TRUNK_C, c) // acquire transition(S_TIP, S_TRUNK_CD, false) // acquire does not make us dirty immediately transition(S_TIP_C, S_INVALID, c && p) transition(S_TIP_C, S_BRANCH, c && p) // losing TIP only possible via probe transition(S_TIP_C, S_BRANCH_C, c && p) // losing TIP only possible via probe transition(S_TIP_C, S_TIP, c) // probed while MMIO read || clean release (optional) transition(S_TIP_C, S_TIP_D, c && m) // direct dirty only via MMIO write transition(S_TIP_C, S_TIP_CD, false) // going dirty means we must shoot down clients transition(S_TIP_C, S_TRUNK_C, c) // acquire transition(S_TIP_C, S_TRUNK_CD, false) // acquire does not make us immediately dirty transition(S_TIP_D, S_INVALID, p) transition(S_TIP_D, S_BRANCH, p) // losing D is only possible via probe transition(S_TIP_D, S_BRANCH_C, p && c) // probed while acquire shared transition(S_TIP_D, S_TIP, p) // probed while MMIO read || outer probe.toT (optional) transition(S_TIP_D, S_TIP_C, false) // we would go S_TRUNK_C instead transition(S_TIP_D, S_TIP_CD, false) // we would go S_TRUNK_CD instead transition(S_TIP_D, S_TRUNK_C, p && c) // probed while acquired transition(S_TIP_D, S_TRUNK_CD, c) // acquire transition(S_TIP_CD, S_INVALID, c && p) transition(S_TIP_CD, S_BRANCH, c && p) // losing D is only possible via probe transition(S_TIP_CD, S_BRANCH_C, c && p) // losing D is only possible via probe transition(S_TIP_CD, S_TIP, c && p) // probed while MMIO read || outer probe.toT (optional) transition(S_TIP_CD, S_TIP_C, false) // we would go S_TRUNK_C instead transition(S_TIP_CD, S_TIP_D, c) // MMIO write || clean release (optional) transition(S_TIP_CD, S_TRUNK_C, c && p) // probed while acquire transition(S_TIP_CD, S_TRUNK_CD, c) // acquire transition(S_TRUNK_C, S_INVALID, c && p) transition(S_TRUNK_C, S_BRANCH, c && p) // losing TIP only possible via probe transition(S_TRUNK_C, S_BRANCH_C, c && p) // losing TIP only possible via probe transition(S_TRUNK_C, S_TIP, c) // MMIO read || clean release (optional) transition(S_TRUNK_C, S_TIP_C, c) // bounce shared transition(S_TRUNK_C, S_TIP_D, c) // dirty release transition(S_TRUNK_C, S_TIP_CD, c) // dirty bounce shared transition(S_TRUNK_C, S_TRUNK_CD, c) // dirty bounce transition(S_TRUNK_CD, S_INVALID, c && p) transition(S_TRUNK_CD, S_BRANCH, c && p) // losing D only possible via probe transition(S_TRUNK_CD, S_BRANCH_C, c && p) // losing D only possible via probe transition(S_TRUNK_CD, S_TIP, c && p) // probed while MMIO read || outer probe.toT (optional) transition(S_TRUNK_CD, S_TIP_C, false) // we would go S_TRUNK_C instead transition(S_TRUNK_CD, S_TIP_D, c) // dirty release transition(S_TRUNK_CD, S_TIP_CD, c) // bounce shared transition(S_TRUNK_CD, S_TRUNK_C, c && p) // probed while acquire } // Handle response messages val probe_bit = params.clientBit(io.sinkc.bits.source) val last_probe = (probes_done | probe_bit) === (meta.clients & ~excluded_client) val probe_toN = isToN(io.sinkc.bits.param) if (!params.firstLevel) when (io.sinkc.valid) { params.ccover( probe_toN && io.schedule.bits.b.bits.param === toB, "MSHR_PROBE_FULL", "Client downgraded to N when asked only to do B") params.ccover(!probe_toN && io.schedule.bits.b.bits.param === toB, "MSHR_PROBE_HALF", "Client downgraded to B when asked only to do B") // Caution: the probe matches us only in set. // We would never allow an outer probe to nest until both w_[rp]probeack complete, so // it is safe to just unguardedly update the probe FSM. probes_done := probes_done | probe_bit probes_toN := probes_toN | Mux(probe_toN, probe_bit, 0.U) probes_noT := probes_noT || io.sinkc.bits.param =/= TtoT w_rprobeackfirst := w_rprobeackfirst || last_probe w_rprobeacklast := w_rprobeacklast || (last_probe && io.sinkc.bits.last) w_pprobeackfirst := w_pprobeackfirst || last_probe w_pprobeacklast := w_pprobeacklast || (last_probe && io.sinkc.bits.last) // Allow wormhole routing from sinkC if the first request beat has offset 0 val set_pprobeack = last_probe && (io.sinkc.bits.last || request.offset === 0.U) w_pprobeack := w_pprobeack || set_pprobeack params.ccover(!set_pprobeack && w_rprobeackfirst, "MSHR_PROBE_SERIAL", "Sequential routing of probe response data") params.ccover( set_pprobeack && w_rprobeackfirst, "MSHR_PROBE_WORMHOLE", "Wormhole routing of probe response data") // However, meta-data updates need to be done more cautiously when (meta.state =/= INVALID && io.sinkc.bits.tag === meta.tag && io.sinkc.bits.data) { meta.dirty := true.B } // !!! } when (io.sinkd.valid) { when (io.sinkd.bits.opcode === Grant || io.sinkd.bits.opcode === GrantData) { sink := io.sinkd.bits.sink w_grantfirst := true.B w_grantlast := io.sinkd.bits.last // Record if we need to prevent taking ownership bad_grant := io.sinkd.bits.denied // Allow wormhole routing for requests whose first beat has offset 0 w_grant := request.offset === 0.U || io.sinkd.bits.last params.ccover(io.sinkd.bits.opcode === GrantData && request.offset === 0.U, "MSHR_GRANT_WORMHOLE", "Wormhole routing of grant response data") params.ccover(io.sinkd.bits.opcode === GrantData && request.offset =/= 0.U, "MSHR_GRANT_SERIAL", "Sequential routing of grant response data") gotT := io.sinkd.bits.param === toT } .elsewhen (io.sinkd.bits.opcode === ReleaseAck) { w_releaseack := true.B } } when (io.sinke.valid) { w_grantack := true.B } // Bootstrap new requests val allocate_as_full = WireInit(new FullRequest(params), init = io.allocate.bits) val new_meta = Mux(io.allocate.valid && io.allocate.bits.repeat, final_meta_writeback, io.directory.bits) val new_request = Mux(io.allocate.valid, allocate_as_full, request) val new_needT = needT(new_request.opcode, new_request.param) val new_clientBit = params.clientBit(new_request.source) val new_skipProbe = Mux(skipProbeN(new_request.opcode, params.cache.hintsSkipProbe), new_clientBit, 0.U) val prior = cacheState(final_meta_writeback, true.B) def bypass(from: CacheState, cover: Boolean)(implicit sourceInfo: SourceInfo) { if (cover) { params.ccover(prior === from.code, s"MSHR_${from}_BYPASS", s"State bypass transition from ${from} ${cfg}") } else { assert(!(prior === from.code), cf"State bypass from ${from} should be impossible ${cfg}") } } when (io.allocate.valid && io.allocate.bits.repeat) { bypass(S_INVALID, f || p) // Can lose permissions (probe/flush) bypass(S_BRANCH, b) // MMIO read to read-only device bypass(S_BRANCH_C, b && c) // you need children to become C bypass(S_TIP, true) // MMIO read || clean release can lead to this state bypass(S_TIP_C, c) // needs two clients || client + mmio || downgrading client bypass(S_TIP_CD, c) // needs two clients || client + mmio || downgrading client bypass(S_TIP_D, true) // MMIO write || dirty release lead here bypass(S_TRUNK_C, c) // acquire for write bypass(S_TRUNK_CD, c) // dirty release then reacquire } when (io.allocate.valid) { assert (!request_valid || (no_wait && io.schedule.fire)) request_valid := true.B request := io.allocate.bits } // Create execution plan when (io.directory.valid || (io.allocate.valid && io.allocate.bits.repeat)) { meta_valid := true.B meta := new_meta probes_done := 0.U probes_toN := 0.U probes_noT := false.B gotT := false.B bad_grant := false.B // These should already be either true or turning true // We clear them here explicitly to simplify the mux tree s_rprobe := true.B w_rprobeackfirst := true.B w_rprobeacklast := true.B s_release := true.B w_releaseack := true.B s_pprobe := true.B s_acquire := true.B s_flush := true.B w_grantfirst := true.B w_grantlast := true.B w_grant := true.B w_pprobeackfirst := true.B w_pprobeacklast := true.B w_pprobeack := true.B s_probeack := true.B s_grantack := true.B s_execute := true.B w_grantack := true.B s_writeback := true.B // For C channel requests (ie: Release[Data]) when (new_request.prio(2) && (!params.firstLevel).B) { s_execute := false.B // Do we need to go dirty? when (new_request.opcode(0) && !new_meta.dirty) { s_writeback := false.B } // Does our state change? when (isToB(new_request.param) && new_meta.state === TRUNK) { s_writeback := false.B } // Do our clients change? when (isToN(new_request.param) && (new_meta.clients & new_clientBit) =/= 0.U) { s_writeback := false.B } assert (new_meta.hit) } // For X channel requests (ie: flush) .elsewhen (new_request.control && params.control.B) { // new_request.prio(0) s_flush := false.B // Do we need to actually do something? when (new_meta.hit) { s_release := false.B w_releaseack := false.B // Do we need to shoot-down inner caches? when ((!params.firstLevel).B && (new_meta.clients =/= 0.U)) { s_rprobe := false.B w_rprobeackfirst := false.B w_rprobeacklast := false.B } } } // For A channel requests .otherwise { // new_request.prio(0) && !new_request.control s_execute := false.B // Do we need an eviction? when (!new_meta.hit && new_meta.state =/= INVALID) { s_release := false.B w_releaseack := false.B // Do we need to shoot-down inner caches? when ((!params.firstLevel).B & (new_meta.clients =/= 0.U)) { s_rprobe := false.B w_rprobeackfirst := false.B w_rprobeacklast := false.B } } // Do we need an acquire? when (!new_meta.hit || (new_meta.state === BRANCH && new_needT)) { s_acquire := false.B w_grantfirst := false.B w_grantlast := false.B w_grant := false.B s_grantack := false.B s_writeback := false.B } // Do we need a probe? when ((!params.firstLevel).B && (new_meta.hit && (new_needT || new_meta.state === TRUNK) && (new_meta.clients & ~new_skipProbe) =/= 0.U)) { s_pprobe := false.B w_pprobeackfirst := false.B w_pprobeacklast := false.B w_pprobeack := false.B s_writeback := false.B } // Do we need a grantack? when (new_request.opcode === AcquireBlock || new_request.opcode === AcquirePerm) { w_grantack := false.B s_writeback := false.B } // Becomes dirty? when (!new_request.opcode(2) && new_meta.hit && !new_meta.dirty) { s_writeback := false.B } } } } File Parameters.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.diplomacy import chisel3._ import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor} import freechips.rocketchip.util.ShiftQueue /** Options for describing the attributes of memory regions */ object RegionType { // Define the 'more relaxed than' ordering val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS) sealed trait T extends Ordered[T] { def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this) } case object CACHED extends T // an intermediate agent may have cached a copy of the region for you case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively } // A non-empty half-open range; [start, end) case class IdRange(start: Int, end: Int) extends Ordered[IdRange] { require (start >= 0, s"Ids cannot be negative, but got: $start.") require (start <= end, "Id ranges cannot be negative.") def compare(x: IdRange) = { val primary = (this.start - x.start).signum val secondary = (x.end - this.end).signum if (primary != 0) primary else secondary } def overlaps(x: IdRange) = start < x.end && x.start < end def contains(x: IdRange) = start <= x.start && x.end <= end def contains(x: Int) = start <= x && x < end def contains(x: UInt) = if (size == 0) { false.B } else if (size == 1) { // simple comparison x === start.U } else { // find index of largest different bit val largestDeltaBit = log2Floor(start ^ (end-1)) val smallestCommonBit = largestDeltaBit + 1 // may not exist in x val uncommonMask = (1 << smallestCommonBit) - 1 val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0) // the prefix must match exactly (note: may shift ALL bits away) (x >> smallestCommonBit) === (start >> smallestCommonBit).U && // firrtl constant prop range analysis can eliminate these two: (start & uncommonMask).U <= uncommonBits && uncommonBits <= ((end-1) & uncommonMask).U } def shift(x: Int) = IdRange(start+x, end+x) def size = end - start def isEmpty = end == start def range = start until end } object IdRange { def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else { val ranges = s.sorted (ranges.tail zip ranges.init) find { case (a, b) => a overlaps b } } } // An potentially empty inclusive range of 2-powers [min, max] (in bytes) case class TransferSizes(min: Int, max: Int) { def this(x: Int) = this(x, x) require (min <= max, s"Min transfer $min > max transfer $max") require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)") require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max") require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min") require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)") def none = min == 0 def contains(x: Int) = isPow2(x) && min <= x && x <= max def containsLg(x: Int) = contains(1 << x) def containsLg(x: UInt) = if (none) false.B else if (min == max) { log2Ceil(min).U === x } else { log2Ceil(min).U <= x && x <= log2Ceil(max).U } def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max) def intersect(x: TransferSizes) = if (x.max < min || max < x.min) TransferSizes.none else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max)) // Not a union, because the result may contain sizes contained by neither term // NOT TO BE CONFUSED WITH COVERPOINTS def mincover(x: TransferSizes) = { if (none) { x } else if (x.none) { this } else { TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max)) } } override def toString() = "TransferSizes[%d, %d]".format(min, max) } object TransferSizes { def apply(x: Int) = new TransferSizes(x) val none = new TransferSizes(0) def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _) def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _) implicit def asBool(x: TransferSizes) = !x.none } // AddressSets specify the address space managed by the manager // Base is the base address, and mask are the bits consumed by the manager // e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff // e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ... case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet] { // Forbid misaligned base address (and empty sets) require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}") require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous // We do allow negative mask (=> ignore all high bits) def contains(x: BigInt) = ((x ^ base) & ~mask) == 0 def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S // turn x into an address contained in this set def legalize(x: UInt): UInt = base.U | (mask.U & x) // overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1) def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0 // contains iff bitwise: x.mask => mask && contains(x.base) def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0 // The number of bytes to which the manager must be aligned def alignment = ((mask + 1) & ~mask) // Is this a contiguous memory range def contiguous = alignment == mask+1 def finite = mask >= 0 def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask } // Widen the match function to ignore all bits in imask def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask) // Return an AddressSet that only contains the addresses both sets contain def intersect(x: AddressSet): Option[AddressSet] = { if (!overlaps(x)) { None } else { val r_mask = mask & x.mask val r_base = base | x.base Some(AddressSet(r_base, r_mask)) } } def subtract(x: AddressSet): Seq[AddressSet] = { intersect(x) match { case None => Seq(this) case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit => val nmask = (mask & (bit-1)) | remove.mask val nbase = (remove.base ^ bit) & ~nmask AddressSet(nbase, nmask) } } } // AddressSets have one natural Ordering (the containment order, if contiguous) def compare(x: AddressSet) = { val primary = (this.base - x.base).signum // smallest address first val secondary = (x.mask - this.mask).signum // largest mask first if (primary != 0) primary else secondary } // We always want to see things in hex override def toString() = { if (mask >= 0) { "AddressSet(0x%x, 0x%x)".format(base, mask) } else { "AddressSet(0x%x, ~0x%x)".format(base, ~mask) } } def toRanges = { require (finite, "Ranges cannot be calculated on infinite mask") val size = alignment val fragments = mask & ~(size-1) val bits = bitIndexes(fragments) (BigInt(0) until (BigInt(1) << bits.size)).map { i => val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) } AddressRange(off, size) } } } object AddressSet { val everything = AddressSet(0, -1) def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = { if (size == 0) tail.reverse else { val maxBaseAlignment = base & (-base) // 0 for infinite (LSB) val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size val step = if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment) maxSizeAlignment else maxBaseAlignment misaligned(base+step, size-step, AddressSet(base, step-1) +: tail) } } def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = { // Pair terms up by ignoring 'bit' seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) => if (seq.size == 1) { seq.head // singleton -> unaffected } else { key.copy(mask = key.mask | bit) // pair - widen mask by bit } }.toList } def unify(seq: Seq[AddressSet]): Seq[AddressSet] = { val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _) AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted } def enumerateMask(mask: BigInt): Seq[BigInt] = { def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] = if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail) helper(0, Nil) } def enumerateBits(mask: BigInt): Seq[BigInt] = { def helper(x: BigInt): Seq[BigInt] = { if (x == 0) { Nil } else { val bit = x & (-x) bit +: helper(x & ~bit) } } helper(mask) } } case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean) { require (depth >= 0, "Buffer depth must be >= 0") def isDefined = depth > 0 def latency = if (isDefined && !flow) 1 else 0 def apply[T <: Data](x: DecoupledIO[T]) = if (isDefined) Queue(x, depth, flow=flow, pipe=pipe) else x def irrevocable[T <: Data](x: ReadyValidIO[T]) = if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe) else x def sq[T <: Data](x: DecoupledIO[T]) = if (!isDefined) x else { val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe)) sq.io.enq <> x sq.io.deq } override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "") } object BufferParams { implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false) val default = BufferParams(2) val none = BufferParams(0) val flow = BufferParams(1, true, false) val pipe = BufferParams(1, false, true) } case class TriStateValue(value: Boolean, set: Boolean) { def update(orig: Boolean) = if (set) value else orig } object TriStateValue { implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true) def unset = TriStateValue(false, false) } trait DirectedBuffers[T] { def copyIn(x: BufferParams): T def copyOut(x: BufferParams): T def copyInOut(x: BufferParams): T } trait IdMapEntry { def name: String def from: IdRange def to: IdRange def isCache: Boolean def requestFifo: Boolean def maxTransactionsInFlight: Option[Int] def pretty(fmt: String) = if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5 fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } else { fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } } abstract class IdMap[T <: IdMapEntry] { protected val fmt: String val mapping: Seq[T] def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n") }
module MSHR( // @[MSHR.scala:84:7] input clock, // @[MSHR.scala:84:7] input reset, // @[MSHR.scala:84:7] input io_allocate_valid, // @[MSHR.scala:86:14] input io_allocate_bits_prio_0, // @[MSHR.scala:86:14] input io_allocate_bits_prio_1, // @[MSHR.scala:86:14] input io_allocate_bits_prio_2, // @[MSHR.scala:86:14] input io_allocate_bits_control, // @[MSHR.scala:86:14] input [2:0] io_allocate_bits_opcode, // @[MSHR.scala:86:14] input [2:0] io_allocate_bits_param, // @[MSHR.scala:86:14] input [2:0] io_allocate_bits_size, // @[MSHR.scala:86:14] input [6:0] io_allocate_bits_source, // @[MSHR.scala:86:14] input [12:0] io_allocate_bits_tag, // @[MSHR.scala:86:14] input [5:0] io_allocate_bits_offset, // @[MSHR.scala:86:14] input [5:0] io_allocate_bits_put, // @[MSHR.scala:86:14] input [9:0] io_allocate_bits_set, // @[MSHR.scala:86:14] input io_allocate_bits_repeat, // @[MSHR.scala:86:14] input io_directory_valid, // @[MSHR.scala:86:14] input io_directory_bits_dirty, // @[MSHR.scala:86:14] input [1:0] io_directory_bits_state, // @[MSHR.scala:86:14] input [3:0] io_directory_bits_clients, // @[MSHR.scala:86:14] input [12:0] io_directory_bits_tag, // @[MSHR.scala:86:14] input io_directory_bits_hit, // @[MSHR.scala:86:14] input [2:0] io_directory_bits_way, // @[MSHR.scala:86:14] output io_status_valid, // @[MSHR.scala:86:14] output [9:0] io_status_bits_set, // @[MSHR.scala:86:14] output [12:0] io_status_bits_tag, // @[MSHR.scala:86:14] output [2:0] io_status_bits_way, // @[MSHR.scala:86:14] output io_status_bits_blockB, // @[MSHR.scala:86:14] output io_status_bits_nestB, // @[MSHR.scala:86:14] output io_status_bits_blockC, // @[MSHR.scala:86:14] output io_status_bits_nestC, // @[MSHR.scala:86:14] input io_schedule_ready, // @[MSHR.scala:86:14] output io_schedule_valid, // @[MSHR.scala:86:14] output io_schedule_bits_a_valid, // @[MSHR.scala:86:14] output [12:0] io_schedule_bits_a_bits_tag, // @[MSHR.scala:86:14] output [9:0] io_schedule_bits_a_bits_set, // @[MSHR.scala:86:14] output [2:0] io_schedule_bits_a_bits_param, // @[MSHR.scala:86:14] output io_schedule_bits_a_bits_block, // @[MSHR.scala:86:14] output io_schedule_bits_b_valid, // @[MSHR.scala:86:14] output [2:0] io_schedule_bits_b_bits_param, // @[MSHR.scala:86:14] output [12:0] io_schedule_bits_b_bits_tag, // @[MSHR.scala:86:14] output [9:0] io_schedule_bits_b_bits_set, // @[MSHR.scala:86:14] output [3:0] io_schedule_bits_b_bits_clients, // @[MSHR.scala:86:14] output io_schedule_bits_c_valid, // @[MSHR.scala:86:14] output [2:0] io_schedule_bits_c_bits_opcode, // @[MSHR.scala:86:14] output [2:0] io_schedule_bits_c_bits_param, // @[MSHR.scala:86:14] output [12:0] io_schedule_bits_c_bits_tag, // @[MSHR.scala:86:14] output [9:0] io_schedule_bits_c_bits_set, // @[MSHR.scala:86:14] output [2:0] io_schedule_bits_c_bits_way, // @[MSHR.scala:86:14] output io_schedule_bits_c_bits_dirty, // @[MSHR.scala:86:14] output io_schedule_bits_d_valid, // @[MSHR.scala:86:14] output io_schedule_bits_d_bits_prio_0, // @[MSHR.scala:86:14] output io_schedule_bits_d_bits_prio_1, // @[MSHR.scala:86:14] output io_schedule_bits_d_bits_prio_2, // @[MSHR.scala:86:14] output io_schedule_bits_d_bits_control, // @[MSHR.scala:86:14] output [2:0] io_schedule_bits_d_bits_opcode, // @[MSHR.scala:86:14] output [2:0] io_schedule_bits_d_bits_param, // @[MSHR.scala:86:14] output [2:0] io_schedule_bits_d_bits_size, // @[MSHR.scala:86:14] output [6:0] io_schedule_bits_d_bits_source, // @[MSHR.scala:86:14] output [12:0] io_schedule_bits_d_bits_tag, // @[MSHR.scala:86:14] output [5:0] io_schedule_bits_d_bits_offset, // @[MSHR.scala:86:14] output [5:0] io_schedule_bits_d_bits_put, // @[MSHR.scala:86:14] output [9:0] io_schedule_bits_d_bits_set, // @[MSHR.scala:86:14] output [2:0] io_schedule_bits_d_bits_way, // @[MSHR.scala:86:14] output io_schedule_bits_d_bits_bad, // @[MSHR.scala:86:14] output io_schedule_bits_e_valid, // @[MSHR.scala:86:14] output [2:0] io_schedule_bits_e_bits_sink, // @[MSHR.scala:86:14] output io_schedule_bits_x_valid, // @[MSHR.scala:86:14] output io_schedule_bits_dir_valid, // @[MSHR.scala:86:14] output [9:0] io_schedule_bits_dir_bits_set, // @[MSHR.scala:86:14] output [2:0] io_schedule_bits_dir_bits_way, // @[MSHR.scala:86:14] output io_schedule_bits_dir_bits_data_dirty, // @[MSHR.scala:86:14] output [1:0] io_schedule_bits_dir_bits_data_state, // @[MSHR.scala:86:14] output [3:0] io_schedule_bits_dir_bits_data_clients, // @[MSHR.scala:86:14] output [12:0] io_schedule_bits_dir_bits_data_tag, // @[MSHR.scala:86:14] output io_schedule_bits_reload, // @[MSHR.scala:86:14] input io_sinkc_valid, // @[MSHR.scala:86:14] input io_sinkc_bits_last, // @[MSHR.scala:86:14] input [9:0] io_sinkc_bits_set, // @[MSHR.scala:86:14] input [12:0] io_sinkc_bits_tag, // @[MSHR.scala:86:14] input [6:0] io_sinkc_bits_source, // @[MSHR.scala:86:14] input [2:0] io_sinkc_bits_param, // @[MSHR.scala:86:14] input io_sinkc_bits_data, // @[MSHR.scala:86:14] input io_sinkd_valid, // @[MSHR.scala:86:14] input io_sinkd_bits_last, // @[MSHR.scala:86:14] input [2:0] io_sinkd_bits_opcode, // @[MSHR.scala:86:14] input [2:0] io_sinkd_bits_param, // @[MSHR.scala:86:14] input [3:0] io_sinkd_bits_source, // @[MSHR.scala:86:14] input [2:0] io_sinkd_bits_sink, // @[MSHR.scala:86:14] input io_sinkd_bits_denied, // @[MSHR.scala:86:14] input io_sinke_valid, // @[MSHR.scala:86:14] input [3:0] io_sinke_bits_sink, // @[MSHR.scala:86:14] input [9:0] io_nestedwb_set, // @[MSHR.scala:86:14] input [12:0] io_nestedwb_tag, // @[MSHR.scala:86:14] input io_nestedwb_b_toN, // @[MSHR.scala:86:14] input io_nestedwb_b_toB, // @[MSHR.scala:86:14] input io_nestedwb_b_clr_dirty, // @[MSHR.scala:86:14] input io_nestedwb_c_set_dirty // @[MSHR.scala:86:14] ); wire [12:0] final_meta_writeback_tag; // @[MSHR.scala:215:38] wire [3:0] final_meta_writeback_clients; // @[MSHR.scala:215:38] wire [1:0] final_meta_writeback_state; // @[MSHR.scala:215:38] wire final_meta_writeback_dirty; // @[MSHR.scala:215:38] wire io_allocate_valid_0 = io_allocate_valid; // @[MSHR.scala:84:7] wire io_allocate_bits_prio_0_0 = io_allocate_bits_prio_0; // @[MSHR.scala:84:7] wire io_allocate_bits_prio_1_0 = io_allocate_bits_prio_1; // @[MSHR.scala:84:7] wire io_allocate_bits_prio_2_0 = io_allocate_bits_prio_2; // @[MSHR.scala:84:7] wire io_allocate_bits_control_0 = io_allocate_bits_control; // @[MSHR.scala:84:7] wire [2:0] io_allocate_bits_opcode_0 = io_allocate_bits_opcode; // @[MSHR.scala:84:7] wire [2:0] io_allocate_bits_param_0 = io_allocate_bits_param; // @[MSHR.scala:84:7] wire [2:0] io_allocate_bits_size_0 = io_allocate_bits_size; // @[MSHR.scala:84:7] wire [6:0] io_allocate_bits_source_0 = io_allocate_bits_source; // @[MSHR.scala:84:7] wire [12:0] io_allocate_bits_tag_0 = io_allocate_bits_tag; // @[MSHR.scala:84:7] wire [5:0] io_allocate_bits_offset_0 = io_allocate_bits_offset; // @[MSHR.scala:84:7] wire [5:0] io_allocate_bits_put_0 = io_allocate_bits_put; // @[MSHR.scala:84:7] wire [9:0] io_allocate_bits_set_0 = io_allocate_bits_set; // @[MSHR.scala:84:7] wire io_allocate_bits_repeat_0 = io_allocate_bits_repeat; // @[MSHR.scala:84:7] wire io_directory_valid_0 = io_directory_valid; // @[MSHR.scala:84:7] wire io_directory_bits_dirty_0 = io_directory_bits_dirty; // @[MSHR.scala:84:7] wire [1:0] io_directory_bits_state_0 = io_directory_bits_state; // @[MSHR.scala:84:7] wire [3:0] io_directory_bits_clients_0 = io_directory_bits_clients; // @[MSHR.scala:84:7] wire [12:0] io_directory_bits_tag_0 = io_directory_bits_tag; // @[MSHR.scala:84:7] wire io_directory_bits_hit_0 = io_directory_bits_hit; // @[MSHR.scala:84:7] wire [2:0] io_directory_bits_way_0 = io_directory_bits_way; // @[MSHR.scala:84:7] wire io_schedule_ready_0 = io_schedule_ready; // @[MSHR.scala:84:7] wire io_sinkc_valid_0 = io_sinkc_valid; // @[MSHR.scala:84:7] wire io_sinkc_bits_last_0 = io_sinkc_bits_last; // @[MSHR.scala:84:7] wire [9:0] io_sinkc_bits_set_0 = io_sinkc_bits_set; // @[MSHR.scala:84:7] wire [12:0] io_sinkc_bits_tag_0 = io_sinkc_bits_tag; // @[MSHR.scala:84:7] wire [6:0] io_sinkc_bits_source_0 = io_sinkc_bits_source; // @[MSHR.scala:84:7] wire [2:0] io_sinkc_bits_param_0 = io_sinkc_bits_param; // @[MSHR.scala:84:7] wire io_sinkc_bits_data_0 = io_sinkc_bits_data; // @[MSHR.scala:84:7] wire io_sinkd_valid_0 = io_sinkd_valid; // @[MSHR.scala:84:7] wire io_sinkd_bits_last_0 = io_sinkd_bits_last; // @[MSHR.scala:84:7] wire [2:0] io_sinkd_bits_opcode_0 = io_sinkd_bits_opcode; // @[MSHR.scala:84:7] wire [2:0] io_sinkd_bits_param_0 = io_sinkd_bits_param; // @[MSHR.scala:84:7] wire [3:0] io_sinkd_bits_source_0 = io_sinkd_bits_source; // @[MSHR.scala:84:7] wire [2:0] io_sinkd_bits_sink_0 = io_sinkd_bits_sink; // @[MSHR.scala:84:7] wire io_sinkd_bits_denied_0 = io_sinkd_bits_denied; // @[MSHR.scala:84:7] wire io_sinke_valid_0 = io_sinke_valid; // @[MSHR.scala:84:7] wire [3:0] io_sinke_bits_sink_0 = io_sinke_bits_sink; // @[MSHR.scala:84:7] wire [9:0] io_nestedwb_set_0 = io_nestedwb_set; // @[MSHR.scala:84:7] wire [12:0] io_nestedwb_tag_0 = io_nestedwb_tag; // @[MSHR.scala:84:7] wire io_nestedwb_b_toN_0 = io_nestedwb_b_toN; // @[MSHR.scala:84:7] wire io_nestedwb_b_toB_0 = io_nestedwb_b_toB; // @[MSHR.scala:84:7] wire io_nestedwb_b_clr_dirty_0 = io_nestedwb_b_clr_dirty; // @[MSHR.scala:84:7] wire io_nestedwb_c_set_dirty_0 = io_nestedwb_c_set_dirty; // @[MSHR.scala:84:7] wire [3:0] io_schedule_bits_a_bits_source = 4'h0; // @[MSHR.scala:84:7] wire [3:0] io_schedule_bits_c_bits_source = 4'h0; // @[MSHR.scala:84:7] wire [3:0] io_schedule_bits_d_bits_sink = 4'h0; // @[MSHR.scala:84:7] wire [3:0] invalid_clients = 4'h0; // @[MSHR.scala:268:21] wire io_schedule_bits_x_bits_fail = 1'h0; // @[MSHR.scala:84:7] wire _io_schedule_bits_c_valid_T_2 = 1'h0; // @[MSHR.scala:186:68] wire _io_schedule_bits_c_valid_T_3 = 1'h0; // @[MSHR.scala:186:80] wire invalid_dirty = 1'h0; // @[MSHR.scala:268:21] wire _excluded_client_T_7 = 1'h0; // @[Parameters.scala:279:137] wire _after_T_4 = 1'h0; // @[MSHR.scala:323:11] wire _new_skipProbe_T_6 = 1'h0; // @[Parameters.scala:279:137] wire _prior_T_4 = 1'h0; // @[MSHR.scala:323:11] wire _req_clientBit_T_4 = 1'h1; // @[Parameters.scala:56:32] wire _req_clientBit_T_10 = 1'h1; // @[Parameters.scala:56:32] wire _probe_bit_T_4 = 1'h1; // @[Parameters.scala:56:32] wire _probe_bit_T_10 = 1'h1; // @[Parameters.scala:56:32] wire _new_clientBit_T_4 = 1'h1; // @[Parameters.scala:56:32] wire _new_clientBit_T_10 = 1'h1; // @[Parameters.scala:56:32] wire [12:0] invalid_tag = 13'h0; // @[MSHR.scala:268:21] wire [1:0] invalid_state = 2'h0; // @[MSHR.scala:268:21] wire [1:0] _final_meta_writeback_state_T_11 = 2'h1; // @[MSHR.scala:240:70] wire allocate_as_full_prio_0 = io_allocate_bits_prio_0_0; // @[MSHR.scala:84:7, :504:34] wire allocate_as_full_prio_1 = io_allocate_bits_prio_1_0; // @[MSHR.scala:84:7, :504:34] wire allocate_as_full_prio_2 = io_allocate_bits_prio_2_0; // @[MSHR.scala:84:7, :504:34] wire allocate_as_full_control = io_allocate_bits_control_0; // @[MSHR.scala:84:7, :504:34] wire [2:0] allocate_as_full_opcode = io_allocate_bits_opcode_0; // @[MSHR.scala:84:7, :504:34] wire [2:0] allocate_as_full_param = io_allocate_bits_param_0; // @[MSHR.scala:84:7, :504:34] wire [2:0] allocate_as_full_size = io_allocate_bits_size_0; // @[MSHR.scala:84:7, :504:34] wire [6:0] allocate_as_full_source = io_allocate_bits_source_0; // @[MSHR.scala:84:7, :504:34] wire [12:0] allocate_as_full_tag = io_allocate_bits_tag_0; // @[MSHR.scala:84:7, :504:34] wire [5:0] allocate_as_full_offset = io_allocate_bits_offset_0; // @[MSHR.scala:84:7, :504:34] wire [5:0] allocate_as_full_put = io_allocate_bits_put_0; // @[MSHR.scala:84:7, :504:34] wire [9:0] allocate_as_full_set = io_allocate_bits_set_0; // @[MSHR.scala:84:7, :504:34] wire _io_status_bits_blockB_T_8; // @[MSHR.scala:168:40] wire _io_status_bits_nestB_T_4; // @[MSHR.scala:169:93] wire _io_status_bits_blockC_T; // @[MSHR.scala:172:28] wire _io_status_bits_nestC_T_5; // @[MSHR.scala:173:39] wire _io_schedule_valid_T_5; // @[MSHR.scala:193:105] wire _io_schedule_bits_a_valid_T_2; // @[MSHR.scala:184:55] wire _io_schedule_bits_a_bits_block_T_5; // @[MSHR.scala:283:91] wire _io_schedule_bits_b_valid_T_2; // @[MSHR.scala:185:41] wire [2:0] _io_schedule_bits_b_bits_param_T_3; // @[MSHR.scala:286:41] wire [12:0] _io_schedule_bits_b_bits_tag_T_1; // @[MSHR.scala:287:41] wire [3:0] _io_schedule_bits_b_bits_clients_T_1; // @[MSHR.scala:289:51] wire _io_schedule_bits_c_valid_T_4; // @[MSHR.scala:186:64] wire [2:0] _io_schedule_bits_c_bits_opcode_T; // @[MSHR.scala:290:41] wire [2:0] _io_schedule_bits_c_bits_param_T_1; // @[MSHR.scala:291:41] wire _io_schedule_bits_d_valid_T_2; // @[MSHR.scala:187:57] wire [2:0] _io_schedule_bits_d_bits_param_T_9; // @[MSHR.scala:298:41] wire _io_schedule_bits_e_valid_T_1; // @[MSHR.scala:188:43] wire _io_schedule_bits_x_valid_T_1; // @[MSHR.scala:189:40] wire _io_schedule_bits_dir_valid_T_4; // @[MSHR.scala:190:66] wire _io_schedule_bits_dir_bits_data_T_1_dirty; // @[MSHR.scala:310:41] wire [1:0] _io_schedule_bits_dir_bits_data_T_1_state; // @[MSHR.scala:310:41] wire [3:0] _io_schedule_bits_dir_bits_data_T_1_clients; // @[MSHR.scala:310:41] wire [12:0] _io_schedule_bits_dir_bits_data_T_1_tag; // @[MSHR.scala:310:41] wire no_wait; // @[MSHR.scala:183:83] wire [6:0] _probe_bit_uncommonBits_T = io_sinkc_bits_source_0; // @[Parameters.scala:52:29] wire [6:0] _probe_bit_uncommonBits_T_1 = io_sinkc_bits_source_0; // @[Parameters.scala:52:29] wire [9:0] io_status_bits_set_0; // @[MSHR.scala:84:7] wire [12:0] io_status_bits_tag_0; // @[MSHR.scala:84:7] wire [2:0] io_status_bits_way_0; // @[MSHR.scala:84:7] wire io_status_bits_blockB_0; // @[MSHR.scala:84:7] wire io_status_bits_nestB_0; // @[MSHR.scala:84:7] wire io_status_bits_blockC_0; // @[MSHR.scala:84:7] wire io_status_bits_nestC_0; // @[MSHR.scala:84:7] wire io_status_valid_0; // @[MSHR.scala:84:7] wire [12:0] io_schedule_bits_a_bits_tag_0; // @[MSHR.scala:84:7] wire [9:0] io_schedule_bits_a_bits_set_0; // @[MSHR.scala:84:7] wire [2:0] io_schedule_bits_a_bits_param_0; // @[MSHR.scala:84:7] wire io_schedule_bits_a_bits_block_0; // @[MSHR.scala:84:7] wire io_schedule_bits_a_valid_0; // @[MSHR.scala:84:7] wire [2:0] io_schedule_bits_b_bits_param_0; // @[MSHR.scala:84:7] wire [12:0] io_schedule_bits_b_bits_tag_0; // @[MSHR.scala:84:7] wire [9:0] io_schedule_bits_b_bits_set_0; // @[MSHR.scala:84:7] wire [3:0] io_schedule_bits_b_bits_clients_0; // @[MSHR.scala:84:7] wire io_schedule_bits_b_valid_0; // @[MSHR.scala:84:7] wire [2:0] io_schedule_bits_c_bits_opcode_0; // @[MSHR.scala:84:7] wire [2:0] io_schedule_bits_c_bits_param_0; // @[MSHR.scala:84:7] wire [12:0] io_schedule_bits_c_bits_tag_0; // @[MSHR.scala:84:7] wire [9:0] io_schedule_bits_c_bits_set_0; // @[MSHR.scala:84:7] wire [2:0] io_schedule_bits_c_bits_way_0; // @[MSHR.scala:84:7] wire io_schedule_bits_c_bits_dirty_0; // @[MSHR.scala:84:7] wire io_schedule_bits_c_valid_0; // @[MSHR.scala:84:7] wire io_schedule_bits_d_bits_prio_0_0; // @[MSHR.scala:84:7] wire io_schedule_bits_d_bits_prio_1_0; // @[MSHR.scala:84:7] wire io_schedule_bits_d_bits_prio_2_0; // @[MSHR.scala:84:7] wire io_schedule_bits_d_bits_control_0; // @[MSHR.scala:84:7] wire [2:0] io_schedule_bits_d_bits_opcode_0; // @[MSHR.scala:84:7] wire [2:0] io_schedule_bits_d_bits_param_0; // @[MSHR.scala:84:7] wire [2:0] io_schedule_bits_d_bits_size_0; // @[MSHR.scala:84:7] wire [6:0] io_schedule_bits_d_bits_source_0; // @[MSHR.scala:84:7] wire [12:0] io_schedule_bits_d_bits_tag_0; // @[MSHR.scala:84:7] wire [5:0] io_schedule_bits_d_bits_offset_0; // @[MSHR.scala:84:7] wire [5:0] io_schedule_bits_d_bits_put_0; // @[MSHR.scala:84:7] wire [9:0] io_schedule_bits_d_bits_set_0; // @[MSHR.scala:84:7] wire [2:0] io_schedule_bits_d_bits_way_0; // @[MSHR.scala:84:7] wire io_schedule_bits_d_bits_bad_0; // @[MSHR.scala:84:7] wire io_schedule_bits_d_valid_0; // @[MSHR.scala:84:7] wire [2:0] io_schedule_bits_e_bits_sink_0; // @[MSHR.scala:84:7] wire io_schedule_bits_e_valid_0; // @[MSHR.scala:84:7] wire io_schedule_bits_x_valid_0; // @[MSHR.scala:84:7] wire io_schedule_bits_dir_bits_data_dirty_0; // @[MSHR.scala:84:7] wire [1:0] io_schedule_bits_dir_bits_data_state_0; // @[MSHR.scala:84:7] wire [3:0] io_schedule_bits_dir_bits_data_clients_0; // @[MSHR.scala:84:7] wire [12:0] io_schedule_bits_dir_bits_data_tag_0; // @[MSHR.scala:84:7] wire [9:0] io_schedule_bits_dir_bits_set_0; // @[MSHR.scala:84:7] wire [2:0] io_schedule_bits_dir_bits_way_0; // @[MSHR.scala:84:7] wire io_schedule_bits_dir_valid_0; // @[MSHR.scala:84:7] wire io_schedule_bits_reload_0; // @[MSHR.scala:84:7] wire io_schedule_valid_0; // @[MSHR.scala:84:7] reg request_valid; // @[MSHR.scala:97:30] assign io_status_valid_0 = request_valid; // @[MSHR.scala:84:7, :97:30] reg request_prio_0; // @[MSHR.scala:98:20] assign io_schedule_bits_d_bits_prio_0_0 = request_prio_0; // @[MSHR.scala:84:7, :98:20] reg request_prio_1; // @[MSHR.scala:98:20] assign io_schedule_bits_d_bits_prio_1_0 = request_prio_1; // @[MSHR.scala:84:7, :98:20] reg request_prio_2; // @[MSHR.scala:98:20] assign io_schedule_bits_d_bits_prio_2_0 = request_prio_2; // @[MSHR.scala:84:7, :98:20] reg request_control; // @[MSHR.scala:98:20] assign io_schedule_bits_d_bits_control_0 = request_control; // @[MSHR.scala:84:7, :98:20] reg [2:0] request_opcode; // @[MSHR.scala:98:20] assign io_schedule_bits_d_bits_opcode_0 = request_opcode; // @[MSHR.scala:84:7, :98:20] reg [2:0] request_param; // @[MSHR.scala:98:20] reg [2:0] request_size; // @[MSHR.scala:98:20] assign io_schedule_bits_d_bits_size_0 = request_size; // @[MSHR.scala:84:7, :98:20] reg [6:0] request_source; // @[MSHR.scala:98:20] assign io_schedule_bits_d_bits_source_0 = request_source; // @[MSHR.scala:84:7, :98:20] wire [6:0] _req_clientBit_uncommonBits_T = request_source; // @[Parameters.scala:52:29] wire [6:0] _req_clientBit_uncommonBits_T_1 = request_source; // @[Parameters.scala:52:29] reg [12:0] request_tag; // @[MSHR.scala:98:20] assign io_status_bits_tag_0 = request_tag; // @[MSHR.scala:84:7, :98:20] assign io_schedule_bits_a_bits_tag_0 = request_tag; // @[MSHR.scala:84:7, :98:20] assign io_schedule_bits_d_bits_tag_0 = request_tag; // @[MSHR.scala:84:7, :98:20] reg [5:0] request_offset; // @[MSHR.scala:98:20] assign io_schedule_bits_d_bits_offset_0 = request_offset; // @[MSHR.scala:84:7, :98:20] reg [5:0] request_put; // @[MSHR.scala:98:20] assign io_schedule_bits_d_bits_put_0 = request_put; // @[MSHR.scala:84:7, :98:20] reg [9:0] request_set; // @[MSHR.scala:98:20] assign io_status_bits_set_0 = request_set; // @[MSHR.scala:84:7, :98:20] assign io_schedule_bits_a_bits_set_0 = request_set; // @[MSHR.scala:84:7, :98:20] assign io_schedule_bits_b_bits_set_0 = request_set; // @[MSHR.scala:84:7, :98:20] assign io_schedule_bits_c_bits_set_0 = request_set; // @[MSHR.scala:84:7, :98:20] assign io_schedule_bits_d_bits_set_0 = request_set; // @[MSHR.scala:84:7, :98:20] assign io_schedule_bits_dir_bits_set_0 = request_set; // @[MSHR.scala:84:7, :98:20] reg meta_valid; // @[MSHR.scala:99:27] reg meta_dirty; // @[MSHR.scala:100:17] assign io_schedule_bits_c_bits_dirty_0 = meta_dirty; // @[MSHR.scala:84:7, :100:17] reg [1:0] meta_state; // @[MSHR.scala:100:17] reg [3:0] meta_clients; // @[MSHR.scala:100:17] reg [12:0] meta_tag; // @[MSHR.scala:100:17] assign io_schedule_bits_c_bits_tag_0 = meta_tag; // @[MSHR.scala:84:7, :100:17] reg meta_hit; // @[MSHR.scala:100:17] reg [2:0] meta_way; // @[MSHR.scala:100:17] assign io_status_bits_way_0 = meta_way; // @[MSHR.scala:84:7, :100:17] assign io_schedule_bits_c_bits_way_0 = meta_way; // @[MSHR.scala:84:7, :100:17] assign io_schedule_bits_d_bits_way_0 = meta_way; // @[MSHR.scala:84:7, :100:17] assign io_schedule_bits_dir_bits_way_0 = meta_way; // @[MSHR.scala:84:7, :100:17] wire [2:0] final_meta_writeback_way = meta_way; // @[MSHR.scala:100:17, :215:38] reg s_rprobe; // @[MSHR.scala:121:33] reg w_rprobeackfirst; // @[MSHR.scala:122:33] reg w_rprobeacklast; // @[MSHR.scala:123:33] reg s_release; // @[MSHR.scala:124:33] reg w_releaseack; // @[MSHR.scala:125:33] reg s_pprobe; // @[MSHR.scala:126:33] reg s_acquire; // @[MSHR.scala:127:33] reg s_flush; // @[MSHR.scala:128:33] reg w_grantfirst; // @[MSHR.scala:129:33] reg w_grantlast; // @[MSHR.scala:130:33] reg w_grant; // @[MSHR.scala:131:33] reg w_pprobeackfirst; // @[MSHR.scala:132:33] reg w_pprobeacklast; // @[MSHR.scala:133:33] reg w_pprobeack; // @[MSHR.scala:134:33] reg s_grantack; // @[MSHR.scala:136:33] reg s_execute; // @[MSHR.scala:137:33] reg w_grantack; // @[MSHR.scala:138:33] reg s_writeback; // @[MSHR.scala:139:33] reg [2:0] sink; // @[MSHR.scala:147:17] assign io_schedule_bits_e_bits_sink_0 = sink; // @[MSHR.scala:84:7, :147:17] reg gotT; // @[MSHR.scala:148:17] reg bad_grant; // @[MSHR.scala:149:22] assign io_schedule_bits_d_bits_bad_0 = bad_grant; // @[MSHR.scala:84:7, :149:22] reg [3:0] probes_done; // @[MSHR.scala:150:24] reg [3:0] probes_toN; // @[MSHR.scala:151:23] reg probes_noT; // @[MSHR.scala:152:23] wire _io_status_bits_blockB_T = ~meta_valid; // @[MSHR.scala:99:27, :168:28] wire _io_status_bits_blockB_T_1 = ~w_releaseack; // @[MSHR.scala:125:33, :168:45] wire _io_status_bits_blockB_T_2 = ~w_rprobeacklast; // @[MSHR.scala:123:33, :168:62] wire _io_status_bits_blockB_T_3 = _io_status_bits_blockB_T_1 | _io_status_bits_blockB_T_2; // @[MSHR.scala:168:{45,59,62}] wire _io_status_bits_blockB_T_4 = ~w_pprobeacklast; // @[MSHR.scala:133:33, :168:82] wire _io_status_bits_blockB_T_5 = _io_status_bits_blockB_T_3 | _io_status_bits_blockB_T_4; // @[MSHR.scala:168:{59,79,82}] wire _io_status_bits_blockB_T_6 = ~w_grantfirst; // @[MSHR.scala:129:33, :168:103] wire _io_status_bits_blockB_T_7 = _io_status_bits_blockB_T_5 & _io_status_bits_blockB_T_6; // @[MSHR.scala:168:{79,100,103}] assign _io_status_bits_blockB_T_8 = _io_status_bits_blockB_T | _io_status_bits_blockB_T_7; // @[MSHR.scala:168:{28,40,100}] assign io_status_bits_blockB_0 = _io_status_bits_blockB_T_8; // @[MSHR.scala:84:7, :168:40] wire _io_status_bits_nestB_T = meta_valid & w_releaseack; // @[MSHR.scala:99:27, :125:33, :169:39] wire _io_status_bits_nestB_T_1 = _io_status_bits_nestB_T & w_rprobeacklast; // @[MSHR.scala:123:33, :169:{39,55}] wire _io_status_bits_nestB_T_2 = _io_status_bits_nestB_T_1 & w_pprobeacklast; // @[MSHR.scala:133:33, :169:{55,74}] wire _io_status_bits_nestB_T_3 = ~w_grantfirst; // @[MSHR.scala:129:33, :168:103, :169:96] assign _io_status_bits_nestB_T_4 = _io_status_bits_nestB_T_2 & _io_status_bits_nestB_T_3; // @[MSHR.scala:169:{74,93,96}] assign io_status_bits_nestB_0 = _io_status_bits_nestB_T_4; // @[MSHR.scala:84:7, :169:93] assign _io_status_bits_blockC_T = ~meta_valid; // @[MSHR.scala:99:27, :168:28, :172:28] assign io_status_bits_blockC_0 = _io_status_bits_blockC_T; // @[MSHR.scala:84:7, :172:28] wire _io_status_bits_nestC_T = ~w_rprobeackfirst; // @[MSHR.scala:122:33, :173:43] wire _io_status_bits_nestC_T_1 = ~w_pprobeackfirst; // @[MSHR.scala:132:33, :173:64] wire _io_status_bits_nestC_T_2 = _io_status_bits_nestC_T | _io_status_bits_nestC_T_1; // @[MSHR.scala:173:{43,61,64}] wire _io_status_bits_nestC_T_3 = ~w_grantfirst; // @[MSHR.scala:129:33, :168:103, :173:85] wire _io_status_bits_nestC_T_4 = _io_status_bits_nestC_T_2 | _io_status_bits_nestC_T_3; // @[MSHR.scala:173:{61,82,85}] assign _io_status_bits_nestC_T_5 = meta_valid & _io_status_bits_nestC_T_4; // @[MSHR.scala:99:27, :173:{39,82}] assign io_status_bits_nestC_0 = _io_status_bits_nestC_T_5; // @[MSHR.scala:84:7, :173:39] wire _no_wait_T = w_rprobeacklast & w_releaseack; // @[MSHR.scala:123:33, :125:33, :183:33] wire _no_wait_T_1 = _no_wait_T & w_grantlast; // @[MSHR.scala:130:33, :183:{33,49}] wire _no_wait_T_2 = _no_wait_T_1 & w_pprobeacklast; // @[MSHR.scala:133:33, :183:{49,64}] assign no_wait = _no_wait_T_2 & w_grantack; // @[MSHR.scala:138:33, :183:{64,83}] assign io_schedule_bits_reload_0 = no_wait; // @[MSHR.scala:84:7, :183:83] wire _io_schedule_bits_a_valid_T = ~s_acquire; // @[MSHR.scala:127:33, :184:31] wire _io_schedule_bits_a_valid_T_1 = _io_schedule_bits_a_valid_T & s_release; // @[MSHR.scala:124:33, :184:{31,42}] assign _io_schedule_bits_a_valid_T_2 = _io_schedule_bits_a_valid_T_1 & s_pprobe; // @[MSHR.scala:126:33, :184:{42,55}] assign io_schedule_bits_a_valid_0 = _io_schedule_bits_a_valid_T_2; // @[MSHR.scala:84:7, :184:55] wire _io_schedule_bits_b_valid_T = ~s_rprobe; // @[MSHR.scala:121:33, :185:31] wire _io_schedule_bits_b_valid_T_1 = ~s_pprobe; // @[MSHR.scala:126:33, :185:44] assign _io_schedule_bits_b_valid_T_2 = _io_schedule_bits_b_valid_T | _io_schedule_bits_b_valid_T_1; // @[MSHR.scala:185:{31,41,44}] assign io_schedule_bits_b_valid_0 = _io_schedule_bits_b_valid_T_2; // @[MSHR.scala:84:7, :185:41] wire _io_schedule_bits_c_valid_T = ~s_release; // @[MSHR.scala:124:33, :186:32] wire _io_schedule_bits_c_valid_T_1 = _io_schedule_bits_c_valid_T & w_rprobeackfirst; // @[MSHR.scala:122:33, :186:{32,43}] assign _io_schedule_bits_c_valid_T_4 = _io_schedule_bits_c_valid_T_1; // @[MSHR.scala:186:{43,64}] assign io_schedule_bits_c_valid_0 = _io_schedule_bits_c_valid_T_4; // @[MSHR.scala:84:7, :186:64] wire _io_schedule_bits_d_valid_T = ~s_execute; // @[MSHR.scala:137:33, :187:31] wire _io_schedule_bits_d_valid_T_1 = _io_schedule_bits_d_valid_T & w_pprobeack; // @[MSHR.scala:134:33, :187:{31,42}] assign _io_schedule_bits_d_valid_T_2 = _io_schedule_bits_d_valid_T_1 & w_grant; // @[MSHR.scala:131:33, :187:{42,57}] assign io_schedule_bits_d_valid_0 = _io_schedule_bits_d_valid_T_2; // @[MSHR.scala:84:7, :187:57] wire _io_schedule_bits_e_valid_T = ~s_grantack; // @[MSHR.scala:136:33, :188:31] assign _io_schedule_bits_e_valid_T_1 = _io_schedule_bits_e_valid_T & w_grantfirst; // @[MSHR.scala:129:33, :188:{31,43}] assign io_schedule_bits_e_valid_0 = _io_schedule_bits_e_valid_T_1; // @[MSHR.scala:84:7, :188:43] wire _io_schedule_bits_x_valid_T = ~s_flush; // @[MSHR.scala:128:33, :189:31] assign _io_schedule_bits_x_valid_T_1 = _io_schedule_bits_x_valid_T & w_releaseack; // @[MSHR.scala:125:33, :189:{31,40}] assign io_schedule_bits_x_valid_0 = _io_schedule_bits_x_valid_T_1; // @[MSHR.scala:84:7, :189:40] wire _io_schedule_bits_dir_valid_T = ~s_release; // @[MSHR.scala:124:33, :186:32, :190:34] wire _io_schedule_bits_dir_valid_T_1 = _io_schedule_bits_dir_valid_T & w_rprobeackfirst; // @[MSHR.scala:122:33, :190:{34,45}] wire _io_schedule_bits_dir_valid_T_2 = ~s_writeback; // @[MSHR.scala:139:33, :190:70] wire _io_schedule_bits_dir_valid_T_3 = _io_schedule_bits_dir_valid_T_2 & no_wait; // @[MSHR.scala:183:83, :190:{70,83}] assign _io_schedule_bits_dir_valid_T_4 = _io_schedule_bits_dir_valid_T_1 | _io_schedule_bits_dir_valid_T_3; // @[MSHR.scala:190:{45,66,83}] assign io_schedule_bits_dir_valid_0 = _io_schedule_bits_dir_valid_T_4; // @[MSHR.scala:84:7, :190:66] wire _io_schedule_valid_T = io_schedule_bits_a_valid_0 | io_schedule_bits_b_valid_0; // @[MSHR.scala:84:7, :192:49] wire _io_schedule_valid_T_1 = _io_schedule_valid_T | io_schedule_bits_c_valid_0; // @[MSHR.scala:84:7, :192:{49,77}] wire _io_schedule_valid_T_2 = _io_schedule_valid_T_1 | io_schedule_bits_d_valid_0; // @[MSHR.scala:84:7, :192:{77,105}] wire _io_schedule_valid_T_3 = _io_schedule_valid_T_2 | io_schedule_bits_e_valid_0; // @[MSHR.scala:84:7, :192:105, :193:49] wire _io_schedule_valid_T_4 = _io_schedule_valid_T_3 | io_schedule_bits_x_valid_0; // @[MSHR.scala:84:7, :193:{49,77}] assign _io_schedule_valid_T_5 = _io_schedule_valid_T_4 | io_schedule_bits_dir_valid_0; // @[MSHR.scala:84:7, :193:{77,105}] assign io_schedule_valid_0 = _io_schedule_valid_T_5; // @[MSHR.scala:84:7, :193:105] wire _io_schedule_bits_dir_bits_data_WIRE_dirty = final_meta_writeback_dirty; // @[MSHR.scala:215:38, :310:71] wire [1:0] _io_schedule_bits_dir_bits_data_WIRE_state = final_meta_writeback_state; // @[MSHR.scala:215:38, :310:71] wire [3:0] _io_schedule_bits_dir_bits_data_WIRE_clients = final_meta_writeback_clients; // @[MSHR.scala:215:38, :310:71] wire [12:0] _io_schedule_bits_dir_bits_data_WIRE_tag = final_meta_writeback_tag; // @[MSHR.scala:215:38, :310:71] wire final_meta_writeback_hit; // @[MSHR.scala:215:38] wire _req_clientBit_T = request_source == 7'h44; // @[Parameters.scala:46:9] wire _req_clientBit_T_1 = request_source == 7'h40; // @[Parameters.scala:46:9] wire [2:0] req_clientBit_uncommonBits = _req_clientBit_uncommonBits_T[2:0]; // @[Parameters.scala:52:{29,56}] wire [3:0] _req_clientBit_T_2 = request_source[6:3]; // @[Parameters.scala:54:10] wire [3:0] _req_clientBit_T_8 = request_source[6:3]; // @[Parameters.scala:54:10] wire _req_clientBit_T_3 = _req_clientBit_T_2 == 4'h6; // @[Parameters.scala:54:{10,32}] wire _req_clientBit_T_5 = _req_clientBit_T_3; // @[Parameters.scala:54:{32,67}] wire _req_clientBit_T_6 = req_clientBit_uncommonBits < 3'h5; // @[Parameters.scala:52:56, :57:20] wire _req_clientBit_T_7 = _req_clientBit_T_5 & _req_clientBit_T_6; // @[Parameters.scala:54:67, :56:48, :57:20] wire [2:0] req_clientBit_uncommonBits_1 = _req_clientBit_uncommonBits_T_1[2:0]; // @[Parameters.scala:52:{29,56}] wire _req_clientBit_T_9 = _req_clientBit_T_8 == 4'h4; // @[Parameters.scala:54:{10,32}] wire _req_clientBit_T_11 = _req_clientBit_T_9; // @[Parameters.scala:54:{32,67}] wire _req_clientBit_T_12 = req_clientBit_uncommonBits_1 < 3'h5; // @[Parameters.scala:52:56, :57:20] wire _req_clientBit_T_13 = _req_clientBit_T_11 & _req_clientBit_T_12; // @[Parameters.scala:54:67, :56:48, :57:20] wire [1:0] req_clientBit_lo = {_req_clientBit_T_1, _req_clientBit_T}; // @[Parameters.scala:46:9] wire [1:0] req_clientBit_hi = {_req_clientBit_T_13, _req_clientBit_T_7}; // @[Parameters.scala:56:48] wire [3:0] req_clientBit = {req_clientBit_hi, req_clientBit_lo}; // @[Parameters.scala:201:10] wire _req_needT_T = request_opcode[2]; // @[Parameters.scala:269:12] wire _final_meta_writeback_dirty_T_3 = request_opcode[2]; // @[Parameters.scala:269:12] wire _req_needT_T_1 = ~_req_needT_T; // @[Parameters.scala:269:{5,12}] wire _GEN = request_opcode == 3'h5; // @[Parameters.scala:270:13] wire _req_needT_T_2; // @[Parameters.scala:270:13] assign _req_needT_T_2 = _GEN; // @[Parameters.scala:270:13] wire _excluded_client_T_6; // @[Parameters.scala:279:117] assign _excluded_client_T_6 = _GEN; // @[Parameters.scala:270:13, :279:117] wire _GEN_0 = request_param == 3'h1; // @[Parameters.scala:270:42] wire _req_needT_T_3; // @[Parameters.scala:270:42] assign _req_needT_T_3 = _GEN_0; // @[Parameters.scala:270:42] wire _final_meta_writeback_clients_T; // @[Parameters.scala:282:11] assign _final_meta_writeback_clients_T = _GEN_0; // @[Parameters.scala:270:42, :282:11] wire _io_schedule_bits_d_bits_param_T_7; // @[MSHR.scala:299:79] assign _io_schedule_bits_d_bits_param_T_7 = _GEN_0; // @[Parameters.scala:270:42] wire _req_needT_T_4 = _req_needT_T_2 & _req_needT_T_3; // @[Parameters.scala:270:{13,33,42}] wire _req_needT_T_5 = _req_needT_T_1 | _req_needT_T_4; // @[Parameters.scala:269:{5,16}, :270:33] wire _GEN_1 = request_opcode == 3'h6; // @[Parameters.scala:271:14] wire _req_needT_T_6; // @[Parameters.scala:271:14] assign _req_needT_T_6 = _GEN_1; // @[Parameters.scala:271:14] wire _req_acquire_T; // @[MSHR.scala:219:36] assign _req_acquire_T = _GEN_1; // @[Parameters.scala:271:14] wire _excluded_client_T_1; // @[Parameters.scala:279:12] assign _excluded_client_T_1 = _GEN_1; // @[Parameters.scala:271:14, :279:12] wire _req_needT_T_7 = &request_opcode; // @[Parameters.scala:271:52] wire _req_needT_T_8 = _req_needT_T_6 | _req_needT_T_7; // @[Parameters.scala:271:{14,42,52}] wire _req_needT_T_9 = |request_param; // @[Parameters.scala:271:89] wire _req_needT_T_10 = _req_needT_T_8 & _req_needT_T_9; // @[Parameters.scala:271:{42,80,89}] wire req_needT = _req_needT_T_5 | _req_needT_T_10; // @[Parameters.scala:269:16, :270:70, :271:80] wire _req_acquire_T_1 = &request_opcode; // @[Parameters.scala:271:52] wire req_acquire = _req_acquire_T | _req_acquire_T_1; // @[MSHR.scala:219:{36,53,71}] wire _meta_no_clients_T = |meta_clients; // @[MSHR.scala:100:17, :220:39] wire meta_no_clients = ~_meta_no_clients_T; // @[MSHR.scala:220:{25,39}] wire _req_promoteT_T = &meta_state; // @[MSHR.scala:100:17, :221:81] wire _req_promoteT_T_1 = meta_no_clients & _req_promoteT_T; // @[MSHR.scala:220:25, :221:{67,81}] wire _req_promoteT_T_2 = meta_hit ? _req_promoteT_T_1 : gotT; // @[MSHR.scala:100:17, :148:17, :221:{40,67}] wire req_promoteT = req_acquire & _req_promoteT_T_2; // @[MSHR.scala:219:53, :221:{34,40}] wire _final_meta_writeback_dirty_T = request_opcode[0]; // @[MSHR.scala:98:20, :224:65] wire _final_meta_writeback_dirty_T_1 = meta_dirty | _final_meta_writeback_dirty_T; // @[MSHR.scala:100:17, :224:{48,65}] wire _final_meta_writeback_state_T = request_param != 3'h3; // @[MSHR.scala:98:20, :225:55] wire _GEN_2 = meta_state == 2'h2; // @[MSHR.scala:100:17, :225:78] wire _final_meta_writeback_state_T_1; // @[MSHR.scala:225:78] assign _final_meta_writeback_state_T_1 = _GEN_2; // @[MSHR.scala:225:78] wire _final_meta_writeback_state_T_12; // @[MSHR.scala:240:70] assign _final_meta_writeback_state_T_12 = _GEN_2; // @[MSHR.scala:225:78, :240:70] wire _evict_T_2; // @[MSHR.scala:317:26] assign _evict_T_2 = _GEN_2; // @[MSHR.scala:225:78, :317:26] wire _before_T_1; // @[MSHR.scala:317:26] assign _before_T_1 = _GEN_2; // @[MSHR.scala:225:78, :317:26] wire _final_meta_writeback_state_T_2 = _final_meta_writeback_state_T & _final_meta_writeback_state_T_1; // @[MSHR.scala:225:{55,64,78}] wire [1:0] _final_meta_writeback_state_T_3 = _final_meta_writeback_state_T_2 ? 2'h3 : meta_state; // @[MSHR.scala:100:17, :225:{40,64}] wire _GEN_3 = request_param == 3'h2; // @[Parameters.scala:282:43] wire _final_meta_writeback_clients_T_1; // @[Parameters.scala:282:43] assign _final_meta_writeback_clients_T_1 = _GEN_3; // @[Parameters.scala:282:43] wire _io_schedule_bits_d_bits_param_T_5; // @[MSHR.scala:299:79] assign _io_schedule_bits_d_bits_param_T_5 = _GEN_3; // @[Parameters.scala:282:43] wire _final_meta_writeback_clients_T_2 = _final_meta_writeback_clients_T | _final_meta_writeback_clients_T_1; // @[Parameters.scala:282:{11,34,43}] wire _final_meta_writeback_clients_T_3 = request_param == 3'h5; // @[Parameters.scala:282:75] wire _final_meta_writeback_clients_T_4 = _final_meta_writeback_clients_T_2 | _final_meta_writeback_clients_T_3; // @[Parameters.scala:282:{34,66,75}] wire [3:0] _final_meta_writeback_clients_T_5 = _final_meta_writeback_clients_T_4 ? req_clientBit : 4'h0; // @[Parameters.scala:201:10, :282:66] wire [3:0] _final_meta_writeback_clients_T_6 = ~_final_meta_writeback_clients_T_5; // @[MSHR.scala:226:{52,56}] wire [3:0] _final_meta_writeback_clients_T_7 = meta_clients & _final_meta_writeback_clients_T_6; // @[MSHR.scala:100:17, :226:{50,52}] wire [3:0] _final_meta_writeback_clients_T_8 = ~probes_toN; // @[MSHR.scala:151:23, :232:54] wire [3:0] _final_meta_writeback_clients_T_9 = meta_clients & _final_meta_writeback_clients_T_8; // @[MSHR.scala:100:17, :232:{52,54}] wire _final_meta_writeback_dirty_T_2 = meta_hit & meta_dirty; // @[MSHR.scala:100:17, :236:45] wire _final_meta_writeback_dirty_T_4 = ~_final_meta_writeback_dirty_T_3; // @[MSHR.scala:236:{63,78}] wire _final_meta_writeback_dirty_T_5 = _final_meta_writeback_dirty_T_2 | _final_meta_writeback_dirty_T_4; // @[MSHR.scala:236:{45,60,63}] wire [1:0] _GEN_4 = {1'h1, ~req_acquire}; // @[MSHR.scala:219:53, :238:40] wire [1:0] _final_meta_writeback_state_T_4; // @[MSHR.scala:238:40] assign _final_meta_writeback_state_T_4 = _GEN_4; // @[MSHR.scala:238:40] wire [1:0] _final_meta_writeback_state_T_6; // @[MSHR.scala:239:65] assign _final_meta_writeback_state_T_6 = _GEN_4; // @[MSHR.scala:238:40, :239:65] wire _final_meta_writeback_state_T_5 = ~meta_hit; // @[MSHR.scala:100:17, :239:41] wire [1:0] _final_meta_writeback_state_T_7 = gotT ? _final_meta_writeback_state_T_6 : 2'h1; // @[MSHR.scala:148:17, :239:{55,65}] wire _final_meta_writeback_state_T_8 = meta_no_clients & req_acquire; // @[MSHR.scala:219:53, :220:25, :244:72] wire [1:0] _final_meta_writeback_state_T_9 = {1'h1, ~_final_meta_writeback_state_T_8}; // @[MSHR.scala:244:{55,72}] wire _GEN_5 = meta_state == 2'h1; // @[MSHR.scala:100:17, :240:70] wire _final_meta_writeback_state_T_10; // @[MSHR.scala:240:70] assign _final_meta_writeback_state_T_10 = _GEN_5; // @[MSHR.scala:240:70] wire _io_schedule_bits_c_bits_param_T; // @[MSHR.scala:291:53] assign _io_schedule_bits_c_bits_param_T = _GEN_5; // @[MSHR.scala:240:70, :291:53] wire _evict_T_1; // @[MSHR.scala:317:26] assign _evict_T_1 = _GEN_5; // @[MSHR.scala:240:70, :317:26] wire _before_T; // @[MSHR.scala:317:26] assign _before_T = _GEN_5; // @[MSHR.scala:240:70, :317:26] wire [1:0] _final_meta_writeback_state_T_13 = {_final_meta_writeback_state_T_12, 1'h1}; // @[MSHR.scala:240:70] wire _final_meta_writeback_state_T_14 = &meta_state; // @[MSHR.scala:100:17, :221:81, :240:70] wire [1:0] _final_meta_writeback_state_T_15 = _final_meta_writeback_state_T_14 ? _final_meta_writeback_state_T_9 : _final_meta_writeback_state_T_13; // @[MSHR.scala:240:70, :244:55] wire [1:0] _final_meta_writeback_state_T_16 = _final_meta_writeback_state_T_5 ? _final_meta_writeback_state_T_7 : _final_meta_writeback_state_T_15; // @[MSHR.scala:239:{40,41,55}, :240:70] wire [1:0] _final_meta_writeback_state_T_17 = req_needT ? _final_meta_writeback_state_T_4 : _final_meta_writeback_state_T_16; // @[Parameters.scala:270:70] wire [3:0] _final_meta_writeback_clients_T_10 = ~probes_toN; // @[MSHR.scala:151:23, :232:54, :245:66] wire [3:0] _final_meta_writeback_clients_T_11 = meta_clients & _final_meta_writeback_clients_T_10; // @[MSHR.scala:100:17, :245:{64,66}] wire [3:0] _final_meta_writeback_clients_T_12 = meta_hit ? _final_meta_writeback_clients_T_11 : 4'h0; // @[MSHR.scala:100:17, :245:{40,64}] wire [3:0] _final_meta_writeback_clients_T_13 = req_acquire ? req_clientBit : 4'h0; // @[Parameters.scala:201:10] wire [3:0] _final_meta_writeback_clients_T_14 = _final_meta_writeback_clients_T_12 | _final_meta_writeback_clients_T_13; // @[MSHR.scala:245:{40,84}, :246:40] assign final_meta_writeback_tag = request_prio_2 | request_control ? meta_tag : request_tag; // @[MSHR.scala:98:20, :100:17, :215:38, :223:52, :228:53, :247:30] wire [3:0] _final_meta_writeback_clients_T_15 = ~probes_toN; // @[MSHR.scala:151:23, :232:54, :258:54] wire [3:0] _final_meta_writeback_clients_T_16 = meta_clients & _final_meta_writeback_clients_T_15; // @[MSHR.scala:100:17, :258:{52,54}] assign final_meta_writeback_hit = bad_grant ? meta_hit : request_prio_2 | ~request_control; // @[MSHR.scala:98:20, :100:17, :149:22, :215:38, :223:52, :227:34, :228:53, :234:30, :248:30, :251:20, :252:21] assign final_meta_writeback_dirty = ~bad_grant & (request_prio_2 ? _final_meta_writeback_dirty_T_1 : request_control ? ~meta_hit & meta_dirty : _final_meta_writeback_dirty_T_5); // @[MSHR.scala:98:20, :100:17, :149:22, :215:38, :223:52, :224:{34,48}, :228:53, :229:21, :230:36, :236:{32,60}, :251:20, :252:21] assign final_meta_writeback_state = bad_grant ? {1'h0, meta_hit} : request_prio_2 ? _final_meta_writeback_state_T_3 : request_control ? (meta_hit ? 2'h0 : meta_state) : _final_meta_writeback_state_T_17; // @[MSHR.scala:98:20, :100:17, :149:22, :215:38, :223:52, :225:{34,40}, :228:53, :229:21, :231:36, :237:{32,38}, :251:20, :252:21, :257:36, :263:36] assign final_meta_writeback_clients = bad_grant ? (meta_hit ? _final_meta_writeback_clients_T_16 : 4'h0) : request_prio_2 ? _final_meta_writeback_clients_T_7 : request_control ? (meta_hit ? _final_meta_writeback_clients_T_9 : meta_clients) : _final_meta_writeback_clients_T_14; // @[MSHR.scala:98:20, :100:17, :149:22, :215:38, :223:52, :226:{34,50}, :228:53, :229:21, :232:{36,52}, :245:{34,84}, :251:20, :252:21, :258:{36,52}, :264:36] wire [3:0] _honour_BtoT_T = meta_clients & req_clientBit; // @[Parameters.scala:201:10] wire _honour_BtoT_T_1 = |_honour_BtoT_T; // @[MSHR.scala:276:{47,64}] wire honour_BtoT = meta_hit & _honour_BtoT_T_1; // @[MSHR.scala:100:17, :276:{30,64}] wire _excluded_client_T = meta_hit & request_prio_0; // @[MSHR.scala:98:20, :100:17, :279:38] wire _excluded_client_T_2 = &request_opcode; // @[Parameters.scala:271:52, :279:50] wire _excluded_client_T_3 = _excluded_client_T_1 | _excluded_client_T_2; // @[Parameters.scala:279:{12,40,50}] wire _excluded_client_T_4 = request_opcode == 3'h4; // @[Parameters.scala:279:87] wire _excluded_client_T_5 = _excluded_client_T_3 | _excluded_client_T_4; // @[Parameters.scala:279:{40,77,87}] wire _excluded_client_T_8 = _excluded_client_T_5; // @[Parameters.scala:279:{77,106}] wire _excluded_client_T_9 = _excluded_client_T & _excluded_client_T_8; // @[Parameters.scala:279:106] wire [3:0] excluded_client = _excluded_client_T_9 ? req_clientBit : 4'h0; // @[Parameters.scala:201:10] wire [1:0] _io_schedule_bits_a_bits_param_T = meta_hit ? 2'h2 : 2'h1; // @[MSHR.scala:100:17, :282:56] wire [1:0] _io_schedule_bits_a_bits_param_T_1 = req_needT ? _io_schedule_bits_a_bits_param_T : 2'h0; // @[Parameters.scala:270:70] assign io_schedule_bits_a_bits_param_0 = {1'h0, _io_schedule_bits_a_bits_param_T_1}; // @[MSHR.scala:84:7, :282:{35,41}] wire _io_schedule_bits_a_bits_block_T = request_size != 3'h6; // @[MSHR.scala:98:20, :283:51] wire _io_schedule_bits_a_bits_block_T_1 = request_opcode == 3'h0; // @[MSHR.scala:98:20, :284:55] wire _io_schedule_bits_a_bits_block_T_2 = &request_opcode; // @[Parameters.scala:271:52] wire _io_schedule_bits_a_bits_block_T_3 = _io_schedule_bits_a_bits_block_T_1 | _io_schedule_bits_a_bits_block_T_2; // @[MSHR.scala:284:{55,71,89}] wire _io_schedule_bits_a_bits_block_T_4 = ~_io_schedule_bits_a_bits_block_T_3; // @[MSHR.scala:284:{38,71}] assign _io_schedule_bits_a_bits_block_T_5 = _io_schedule_bits_a_bits_block_T | _io_schedule_bits_a_bits_block_T_4; // @[MSHR.scala:283:{51,91}, :284:38] assign io_schedule_bits_a_bits_block_0 = _io_schedule_bits_a_bits_block_T_5; // @[MSHR.scala:84:7, :283:91] wire _io_schedule_bits_b_bits_param_T = ~s_rprobe; // @[MSHR.scala:121:33, :185:31, :286:42] wire [1:0] _io_schedule_bits_b_bits_param_T_1 = req_needT ? 2'h2 : 2'h1; // @[Parameters.scala:270:70] wire [2:0] _io_schedule_bits_b_bits_param_T_2 = request_prio_1 ? request_param : {1'h0, _io_schedule_bits_b_bits_param_T_1}; // @[MSHR.scala:98:20, :286:{61,97}] assign _io_schedule_bits_b_bits_param_T_3 = _io_schedule_bits_b_bits_param_T ? 3'h2 : _io_schedule_bits_b_bits_param_T_2; // @[MSHR.scala:286:{41,42,61}] assign io_schedule_bits_b_bits_param_0 = _io_schedule_bits_b_bits_param_T_3; // @[MSHR.scala:84:7, :286:41] wire _io_schedule_bits_b_bits_tag_T = ~s_rprobe; // @[MSHR.scala:121:33, :185:31, :287:42] assign _io_schedule_bits_b_bits_tag_T_1 = _io_schedule_bits_b_bits_tag_T ? meta_tag : request_tag; // @[MSHR.scala:98:20, :100:17, :287:{41,42}] assign io_schedule_bits_b_bits_tag_0 = _io_schedule_bits_b_bits_tag_T_1; // @[MSHR.scala:84:7, :287:41] wire [3:0] _io_schedule_bits_b_bits_clients_T = ~excluded_client; // @[MSHR.scala:279:28, :289:53] assign _io_schedule_bits_b_bits_clients_T_1 = meta_clients & _io_schedule_bits_b_bits_clients_T; // @[MSHR.scala:100:17, :289:{51,53}] assign io_schedule_bits_b_bits_clients_0 = _io_schedule_bits_b_bits_clients_T_1; // @[MSHR.scala:84:7, :289:51] assign _io_schedule_bits_c_bits_opcode_T = {2'h3, meta_dirty}; // @[MSHR.scala:100:17, :290:41] assign io_schedule_bits_c_bits_opcode_0 = _io_schedule_bits_c_bits_opcode_T; // @[MSHR.scala:84:7, :290:41] assign _io_schedule_bits_c_bits_param_T_1 = _io_schedule_bits_c_bits_param_T ? 3'h2 : 3'h1; // @[MSHR.scala:291:{41,53}] assign io_schedule_bits_c_bits_param_0 = _io_schedule_bits_c_bits_param_T_1; // @[MSHR.scala:84:7, :291:41] wire _io_schedule_bits_d_bits_param_T = ~req_acquire; // @[MSHR.scala:219:53, :298:42] wire [1:0] _io_schedule_bits_d_bits_param_T_1 = {1'h0, req_promoteT}; // @[MSHR.scala:221:34, :300:53] wire [1:0] _io_schedule_bits_d_bits_param_T_2 = honour_BtoT ? 2'h2 : 2'h1; // @[MSHR.scala:276:30, :301:53] wire _io_schedule_bits_d_bits_param_T_3 = ~(|request_param); // @[Parameters.scala:271:89] wire [2:0] _io_schedule_bits_d_bits_param_T_4 = _io_schedule_bits_d_bits_param_T_3 ? {1'h0, _io_schedule_bits_d_bits_param_T_1} : request_param; // @[MSHR.scala:98:20, :299:79, :300:53] wire [2:0] _io_schedule_bits_d_bits_param_T_6 = _io_schedule_bits_d_bits_param_T_5 ? {1'h0, _io_schedule_bits_d_bits_param_T_2} : _io_schedule_bits_d_bits_param_T_4; // @[MSHR.scala:299:79, :301:53] wire [2:0] _io_schedule_bits_d_bits_param_T_8 = _io_schedule_bits_d_bits_param_T_7 ? 3'h1 : _io_schedule_bits_d_bits_param_T_6; // @[MSHR.scala:299:79] assign _io_schedule_bits_d_bits_param_T_9 = _io_schedule_bits_d_bits_param_T ? request_param : _io_schedule_bits_d_bits_param_T_8; // @[MSHR.scala:98:20, :298:{41,42}, :299:79] assign io_schedule_bits_d_bits_param_0 = _io_schedule_bits_d_bits_param_T_9; // @[MSHR.scala:84:7, :298:41] wire _io_schedule_bits_dir_bits_data_T = ~s_release; // @[MSHR.scala:124:33, :186:32, :310:42] assign _io_schedule_bits_dir_bits_data_T_1_dirty = ~_io_schedule_bits_dir_bits_data_T & _io_schedule_bits_dir_bits_data_WIRE_dirty; // @[MSHR.scala:310:{41,42,71}] assign _io_schedule_bits_dir_bits_data_T_1_state = _io_schedule_bits_dir_bits_data_T ? 2'h0 : _io_schedule_bits_dir_bits_data_WIRE_state; // @[MSHR.scala:310:{41,42,71}] assign _io_schedule_bits_dir_bits_data_T_1_clients = _io_schedule_bits_dir_bits_data_T ? 4'h0 : _io_schedule_bits_dir_bits_data_WIRE_clients; // @[MSHR.scala:310:{41,42,71}] assign _io_schedule_bits_dir_bits_data_T_1_tag = _io_schedule_bits_dir_bits_data_T ? 13'h0 : _io_schedule_bits_dir_bits_data_WIRE_tag; // @[MSHR.scala:310:{41,42,71}] assign io_schedule_bits_dir_bits_data_dirty_0 = _io_schedule_bits_dir_bits_data_T_1_dirty; // @[MSHR.scala:84:7, :310:41] assign io_schedule_bits_dir_bits_data_state_0 = _io_schedule_bits_dir_bits_data_T_1_state; // @[MSHR.scala:84:7, :310:41] assign io_schedule_bits_dir_bits_data_clients_0 = _io_schedule_bits_dir_bits_data_T_1_clients; // @[MSHR.scala:84:7, :310:41] assign io_schedule_bits_dir_bits_data_tag_0 = _io_schedule_bits_dir_bits_data_T_1_tag; // @[MSHR.scala:84:7, :310:41] wire _evict_T = ~meta_hit; // @[MSHR.scala:100:17, :239:41, :338:32] wire [3:0] evict; // @[MSHR.scala:314:26] wire evict_c = |meta_clients; // @[MSHR.scala:100:17, :220:39, :315:27] wire _evict_out_T = ~evict_c; // @[MSHR.scala:315:27, :318:32] wire [1:0] _GEN_6 = {1'h1, ~meta_dirty}; // @[MSHR.scala:100:17, :319:32] wire [1:0] _evict_out_T_1; // @[MSHR.scala:319:32] assign _evict_out_T_1 = _GEN_6; // @[MSHR.scala:319:32] wire [1:0] _before_out_T_1; // @[MSHR.scala:319:32] assign _before_out_T_1 = _GEN_6; // @[MSHR.scala:319:32] wire _evict_T_3 = &meta_state; // @[MSHR.scala:100:17, :221:81, :317:26] wire [2:0] _GEN_7 = {2'h2, ~meta_dirty}; // @[MSHR.scala:100:17, :319:32, :320:39] wire [2:0] _evict_out_T_2; // @[MSHR.scala:320:39] assign _evict_out_T_2 = _GEN_7; // @[MSHR.scala:320:39] wire [2:0] _before_out_T_2; // @[MSHR.scala:320:39] assign _before_out_T_2 = _GEN_7; // @[MSHR.scala:320:39] wire [2:0] _GEN_8 = {2'h3, ~meta_dirty}; // @[MSHR.scala:100:17, :319:32, :320:76] wire [2:0] _evict_out_T_3; // @[MSHR.scala:320:76] assign _evict_out_T_3 = _GEN_8; // @[MSHR.scala:320:76] wire [2:0] _before_out_T_3; // @[MSHR.scala:320:76] assign _before_out_T_3 = _GEN_8; // @[MSHR.scala:320:76] wire [2:0] _evict_out_T_4 = evict_c ? _evict_out_T_2 : _evict_out_T_3; // @[MSHR.scala:315:27, :320:{32,39,76}] wire _evict_T_4 = ~(|meta_state); // @[MSHR.scala:100:17, :104:22, :317:26] wire _evict_T_5 = ~_evict_T; // @[MSHR.scala:323:11, :338:32] assign evict = _evict_T_5 ? 4'h8 : _evict_T_1 ? {3'h0, _evict_out_T} : _evict_T_2 ? {2'h0, _evict_out_T_1} : _evict_T_3 ? {1'h0, _evict_out_T_4} : {_evict_T_4, 3'h0}; // @[MSHR.scala:314:26, :317:26, :318:{26,32}, :319:{26,32}, :320:{26,32}, :321:26, :323:{11,17,23}] wire [3:0] before_0; // @[MSHR.scala:314:26] wire before_c = |meta_clients; // @[MSHR.scala:100:17, :220:39, :315:27] wire _before_out_T = ~before_c; // @[MSHR.scala:315:27, :318:32] wire _before_T_2 = &meta_state; // @[MSHR.scala:100:17, :221:81, :317:26] wire [2:0] _before_out_T_4 = before_c ? _before_out_T_2 : _before_out_T_3; // @[MSHR.scala:315:27, :320:{32,39,76}] wire _before_T_3 = ~(|meta_state); // @[MSHR.scala:100:17, :104:22, :317:26] wire _before_T_4 = ~meta_hit; // @[MSHR.scala:100:17, :239:41, :323:11] assign before_0 = _before_T_4 ? 4'h8 : _before_T ? {3'h0, _before_out_T} : _before_T_1 ? {2'h0, _before_out_T_1} : _before_T_2 ? {1'h0, _before_out_T_4} : {_before_T_3, 3'h0}; // @[MSHR.scala:314:26, :317:26, :318:{26,32}, :319:{26,32}, :320:{26,32}, :321:26, :323:{11,17,23}] wire [3:0] after; // @[MSHR.scala:314:26] wire after_c = |final_meta_writeback_clients; // @[MSHR.scala:215:38, :315:27] wire _GEN_9 = final_meta_writeback_state == 2'h1; // @[MSHR.scala:215:38, :317:26] wire _after_T; // @[MSHR.scala:317:26] assign _after_T = _GEN_9; // @[MSHR.scala:317:26] wire _prior_T; // @[MSHR.scala:317:26] assign _prior_T = _GEN_9; // @[MSHR.scala:317:26] wire _after_out_T = ~after_c; // @[MSHR.scala:315:27, :318:32] wire _GEN_10 = final_meta_writeback_state == 2'h2; // @[MSHR.scala:215:38, :317:26] wire _after_T_1; // @[MSHR.scala:317:26] assign _after_T_1 = _GEN_10; // @[MSHR.scala:317:26] wire _prior_T_1; // @[MSHR.scala:317:26] assign _prior_T_1 = _GEN_10; // @[MSHR.scala:317:26] wire [1:0] _GEN_11 = {1'h1, ~final_meta_writeback_dirty}; // @[MSHR.scala:215:38, :319:32] wire [1:0] _after_out_T_1; // @[MSHR.scala:319:32] assign _after_out_T_1 = _GEN_11; // @[MSHR.scala:319:32] wire [1:0] _prior_out_T_1; // @[MSHR.scala:319:32] assign _prior_out_T_1 = _GEN_11; // @[MSHR.scala:319:32] wire _after_T_2 = &final_meta_writeback_state; // @[MSHR.scala:215:38, :317:26] wire [2:0] _GEN_12 = {2'h2, ~final_meta_writeback_dirty}; // @[MSHR.scala:215:38, :319:32, :320:39] wire [2:0] _after_out_T_2; // @[MSHR.scala:320:39] assign _after_out_T_2 = _GEN_12; // @[MSHR.scala:320:39] wire [2:0] _prior_out_T_2; // @[MSHR.scala:320:39] assign _prior_out_T_2 = _GEN_12; // @[MSHR.scala:320:39] wire [2:0] _GEN_13 = {2'h3, ~final_meta_writeback_dirty}; // @[MSHR.scala:215:38, :319:32, :320:76] wire [2:0] _after_out_T_3; // @[MSHR.scala:320:76] assign _after_out_T_3 = _GEN_13; // @[MSHR.scala:320:76] wire [2:0] _prior_out_T_3; // @[MSHR.scala:320:76] assign _prior_out_T_3 = _GEN_13; // @[MSHR.scala:320:76] wire [2:0] _after_out_T_4 = after_c ? _after_out_T_2 : _after_out_T_3; // @[MSHR.scala:315:27, :320:{32,39,76}] wire _GEN_14 = final_meta_writeback_state == 2'h0; // @[MSHR.scala:215:38, :317:26] wire _after_T_3; // @[MSHR.scala:317:26] assign _after_T_3 = _GEN_14; // @[MSHR.scala:317:26] wire _prior_T_3; // @[MSHR.scala:317:26] assign _prior_T_3 = _GEN_14; // @[MSHR.scala:317:26] assign after = _after_T ? {3'h0, _after_out_T} : _after_T_1 ? {2'h0, _after_out_T_1} : _after_T_2 ? {1'h0, _after_out_T_4} : {_after_T_3, 3'h0}; // @[MSHR.scala:314:26, :317:26, :318:{26,32}, :319:{26,32}, :320:{26,32}, :321:26] wire _probe_bit_T = io_sinkc_bits_source_0 == 7'h44; // @[Parameters.scala:46:9] wire _probe_bit_T_1 = io_sinkc_bits_source_0 == 7'h40; // @[Parameters.scala:46:9] wire [2:0] probe_bit_uncommonBits = _probe_bit_uncommonBits_T[2:0]; // @[Parameters.scala:52:{29,56}] wire [3:0] _probe_bit_T_2 = io_sinkc_bits_source_0[6:3]; // @[Parameters.scala:54:10] wire [3:0] _probe_bit_T_8 = io_sinkc_bits_source_0[6:3]; // @[Parameters.scala:54:10] wire _probe_bit_T_3 = _probe_bit_T_2 == 4'h6; // @[Parameters.scala:54:{10,32}] wire _probe_bit_T_5 = _probe_bit_T_3; // @[Parameters.scala:54:{32,67}] wire _probe_bit_T_6 = probe_bit_uncommonBits < 3'h5; // @[Parameters.scala:52:56, :57:20] wire _probe_bit_T_7 = _probe_bit_T_5 & _probe_bit_T_6; // @[Parameters.scala:54:67, :56:48, :57:20] wire [2:0] probe_bit_uncommonBits_1 = _probe_bit_uncommonBits_T_1[2:0]; // @[Parameters.scala:52:{29,56}] wire _probe_bit_T_9 = _probe_bit_T_8 == 4'h4; // @[Parameters.scala:54:{10,32}] wire _probe_bit_T_11 = _probe_bit_T_9; // @[Parameters.scala:54:{32,67}] wire _probe_bit_T_12 = probe_bit_uncommonBits_1 < 3'h5; // @[Parameters.scala:52:56, :57:20] wire _probe_bit_T_13 = _probe_bit_T_11 & _probe_bit_T_12; // @[Parameters.scala:54:67, :56:48, :57:20] wire [1:0] probe_bit_lo = {_probe_bit_T_1, _probe_bit_T}; // @[Parameters.scala:46:9] wire [1:0] probe_bit_hi = {_probe_bit_T_13, _probe_bit_T_7}; // @[Parameters.scala:56:48] wire [3:0] probe_bit = {probe_bit_hi, probe_bit_lo}; // @[Parameters.scala:201:10] wire [3:0] _GEN_15 = probes_done | probe_bit; // @[Parameters.scala:201:10] wire [3:0] _last_probe_T; // @[MSHR.scala:459:33] assign _last_probe_T = _GEN_15; // @[MSHR.scala:459:33] wire [3:0] _probes_done_T; // @[MSHR.scala:467:32] assign _probes_done_T = _GEN_15; // @[MSHR.scala:459:33, :467:32] wire [3:0] _last_probe_T_1 = ~excluded_client; // @[MSHR.scala:279:28, :289:53, :459:66] wire [3:0] _last_probe_T_2 = meta_clients & _last_probe_T_1; // @[MSHR.scala:100:17, :459:{64,66}] wire last_probe = _last_probe_T == _last_probe_T_2; // @[MSHR.scala:459:{33,46,64}] wire _probe_toN_T = io_sinkc_bits_param_0 == 3'h1; // @[Parameters.scala:282:11] wire _probe_toN_T_1 = io_sinkc_bits_param_0 == 3'h2; // @[Parameters.scala:282:43] wire _probe_toN_T_2 = _probe_toN_T | _probe_toN_T_1; // @[Parameters.scala:282:{11,34,43}] wire _probe_toN_T_3 = io_sinkc_bits_param_0 == 3'h5; // @[Parameters.scala:282:75] wire probe_toN = _probe_toN_T_2 | _probe_toN_T_3; // @[Parameters.scala:282:{34,66,75}] wire [3:0] _probes_toN_T = probe_toN ? probe_bit : 4'h0; // @[Parameters.scala:201:10, :282:66] wire [3:0] _probes_toN_T_1 = probes_toN | _probes_toN_T; // @[MSHR.scala:151:23, :468:{30,35}] wire _probes_noT_T = io_sinkc_bits_param_0 != 3'h3; // @[MSHR.scala:84:7, :469:53] wire _probes_noT_T_1 = probes_noT | _probes_noT_T; // @[MSHR.scala:152:23, :469:{30,53}] wire _w_rprobeackfirst_T = w_rprobeackfirst | last_probe; // @[MSHR.scala:122:33, :459:46, :470:42] wire _GEN_16 = last_probe & io_sinkc_bits_last_0; // @[MSHR.scala:84:7, :459:46, :471:55] wire _w_rprobeacklast_T; // @[MSHR.scala:471:55] assign _w_rprobeacklast_T = _GEN_16; // @[MSHR.scala:471:55] wire _w_pprobeacklast_T; // @[MSHR.scala:473:55] assign _w_pprobeacklast_T = _GEN_16; // @[MSHR.scala:471:55, :473:55] wire _w_rprobeacklast_T_1 = w_rprobeacklast | _w_rprobeacklast_T; // @[MSHR.scala:123:33, :471:{40,55}] wire _w_pprobeackfirst_T = w_pprobeackfirst | last_probe; // @[MSHR.scala:132:33, :459:46, :472:42] wire _w_pprobeacklast_T_1 = w_pprobeacklast | _w_pprobeacklast_T; // @[MSHR.scala:133:33, :473:{40,55}] wire _set_pprobeack_T = ~(|request_offset); // @[MSHR.scala:98:20, :475:77] wire _set_pprobeack_T_1 = io_sinkc_bits_last_0 | _set_pprobeack_T; // @[MSHR.scala:84:7, :475:{59,77}] wire set_pprobeack = last_probe & _set_pprobeack_T_1; // @[MSHR.scala:459:46, :475:{36,59}] wire _w_pprobeack_T = w_pprobeack | set_pprobeack; // @[MSHR.scala:134:33, :475:36, :476:32] wire _w_grant_T = ~(|request_offset); // @[MSHR.scala:98:20, :475:77, :490:33] wire _w_grant_T_1 = _w_grant_T | io_sinkd_bits_last_0; // @[MSHR.scala:84:7, :490:{33,41}] wire _gotT_T = io_sinkd_bits_param_0 == 3'h0; // @[MSHR.scala:84:7, :493:35] wire _new_meta_T = io_allocate_valid_0 & io_allocate_bits_repeat_0; // @[MSHR.scala:84:7, :505:40] wire new_meta_dirty = _new_meta_T ? final_meta_writeback_dirty : io_directory_bits_dirty_0; // @[MSHR.scala:84:7, :215:38, :505:{21,40}] wire [1:0] new_meta_state = _new_meta_T ? final_meta_writeback_state : io_directory_bits_state_0; // @[MSHR.scala:84:7, :215:38, :505:{21,40}] wire [3:0] new_meta_clients = _new_meta_T ? final_meta_writeback_clients : io_directory_bits_clients_0; // @[MSHR.scala:84:7, :215:38, :505:{21,40}] wire [12:0] new_meta_tag = _new_meta_T ? final_meta_writeback_tag : io_directory_bits_tag_0; // @[MSHR.scala:84:7, :215:38, :505:{21,40}] wire new_meta_hit = _new_meta_T ? final_meta_writeback_hit : io_directory_bits_hit_0; // @[MSHR.scala:84:7, :215:38, :505:{21,40}] wire [2:0] new_meta_way = _new_meta_T ? final_meta_writeback_way : io_directory_bits_way_0; // @[MSHR.scala:84:7, :215:38, :505:{21,40}] wire new_request_prio_0 = io_allocate_valid_0 ? allocate_as_full_prio_0 : request_prio_0; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24] wire new_request_prio_1 = io_allocate_valid_0 ? allocate_as_full_prio_1 : request_prio_1; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24] wire new_request_prio_2 = io_allocate_valid_0 ? allocate_as_full_prio_2 : request_prio_2; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24] wire new_request_control = io_allocate_valid_0 ? allocate_as_full_control : request_control; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24] wire [2:0] new_request_opcode = io_allocate_valid_0 ? allocate_as_full_opcode : request_opcode; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24] wire [2:0] new_request_param = io_allocate_valid_0 ? allocate_as_full_param : request_param; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24] wire [2:0] new_request_size = io_allocate_valid_0 ? allocate_as_full_size : request_size; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24] wire [6:0] new_request_source = io_allocate_valid_0 ? allocate_as_full_source : request_source; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24] wire [12:0] new_request_tag = io_allocate_valid_0 ? allocate_as_full_tag : request_tag; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24] wire [5:0] new_request_offset = io_allocate_valid_0 ? allocate_as_full_offset : request_offset; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24] wire [5:0] new_request_put = io_allocate_valid_0 ? allocate_as_full_put : request_put; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24] wire [9:0] new_request_set = io_allocate_valid_0 ? allocate_as_full_set : request_set; // @[MSHR.scala:84:7, :98:20, :504:34, :506:24] wire [6:0] _new_clientBit_uncommonBits_T = new_request_source; // @[Parameters.scala:52:29] wire [6:0] _new_clientBit_uncommonBits_T_1 = new_request_source; // @[Parameters.scala:52:29] wire _new_needT_T = new_request_opcode[2]; // @[Parameters.scala:269:12] wire _new_needT_T_1 = ~_new_needT_T; // @[Parameters.scala:269:{5,12}] wire _GEN_17 = new_request_opcode == 3'h5; // @[Parameters.scala:270:13] wire _new_needT_T_2; // @[Parameters.scala:270:13] assign _new_needT_T_2 = _GEN_17; // @[Parameters.scala:270:13] wire _new_skipProbe_T_5; // @[Parameters.scala:279:117] assign _new_skipProbe_T_5 = _GEN_17; // @[Parameters.scala:270:13, :279:117] wire _new_needT_T_3 = new_request_param == 3'h1; // @[Parameters.scala:270:42] wire _new_needT_T_4 = _new_needT_T_2 & _new_needT_T_3; // @[Parameters.scala:270:{13,33,42}] wire _new_needT_T_5 = _new_needT_T_1 | _new_needT_T_4; // @[Parameters.scala:269:{5,16}, :270:33] wire _T_615 = new_request_opcode == 3'h6; // @[Parameters.scala:271:14] wire _new_needT_T_6; // @[Parameters.scala:271:14] assign _new_needT_T_6 = _T_615; // @[Parameters.scala:271:14] wire _new_skipProbe_T; // @[Parameters.scala:279:12] assign _new_skipProbe_T = _T_615; // @[Parameters.scala:271:14, :279:12] wire _new_needT_T_7 = &new_request_opcode; // @[Parameters.scala:271:52] wire _new_needT_T_8 = _new_needT_T_6 | _new_needT_T_7; // @[Parameters.scala:271:{14,42,52}] wire _new_needT_T_9 = |new_request_param; // @[Parameters.scala:271:89] wire _new_needT_T_10 = _new_needT_T_8 & _new_needT_T_9; // @[Parameters.scala:271:{42,80,89}] wire new_needT = _new_needT_T_5 | _new_needT_T_10; // @[Parameters.scala:269:16, :270:70, :271:80] wire _new_clientBit_T = new_request_source == 7'h44; // @[Parameters.scala:46:9] wire _new_clientBit_T_1 = new_request_source == 7'h40; // @[Parameters.scala:46:9] wire [2:0] new_clientBit_uncommonBits = _new_clientBit_uncommonBits_T[2:0]; // @[Parameters.scala:52:{29,56}] wire [3:0] _new_clientBit_T_2 = new_request_source[6:3]; // @[Parameters.scala:54:10] wire [3:0] _new_clientBit_T_8 = new_request_source[6:3]; // @[Parameters.scala:54:10] wire _new_clientBit_T_3 = _new_clientBit_T_2 == 4'h6; // @[Parameters.scala:54:{10,32}] wire _new_clientBit_T_5 = _new_clientBit_T_3; // @[Parameters.scala:54:{32,67}] wire _new_clientBit_T_6 = new_clientBit_uncommonBits < 3'h5; // @[Parameters.scala:52:56, :57:20] wire _new_clientBit_T_7 = _new_clientBit_T_5 & _new_clientBit_T_6; // @[Parameters.scala:54:67, :56:48, :57:20] wire [2:0] new_clientBit_uncommonBits_1 = _new_clientBit_uncommonBits_T_1[2:0]; // @[Parameters.scala:52:{29,56}] wire _new_clientBit_T_9 = _new_clientBit_T_8 == 4'h4; // @[Parameters.scala:54:{10,32}] wire _new_clientBit_T_11 = _new_clientBit_T_9; // @[Parameters.scala:54:{32,67}] wire _new_clientBit_T_12 = new_clientBit_uncommonBits_1 < 3'h5; // @[Parameters.scala:52:56, :57:20] wire _new_clientBit_T_13 = _new_clientBit_T_11 & _new_clientBit_T_12; // @[Parameters.scala:54:67, :56:48, :57:20] wire [1:0] new_clientBit_lo = {_new_clientBit_T_1, _new_clientBit_T}; // @[Parameters.scala:46:9] wire [1:0] new_clientBit_hi = {_new_clientBit_T_13, _new_clientBit_T_7}; // @[Parameters.scala:56:48] wire [3:0] new_clientBit = {new_clientBit_hi, new_clientBit_lo}; // @[Parameters.scala:201:10] wire _new_skipProbe_T_1 = &new_request_opcode; // @[Parameters.scala:271:52, :279:50] wire _new_skipProbe_T_2 = _new_skipProbe_T | _new_skipProbe_T_1; // @[Parameters.scala:279:{12,40,50}] wire _new_skipProbe_T_3 = new_request_opcode == 3'h4; // @[Parameters.scala:279:87] wire _new_skipProbe_T_4 = _new_skipProbe_T_2 | _new_skipProbe_T_3; // @[Parameters.scala:279:{40,77,87}] wire _new_skipProbe_T_7 = _new_skipProbe_T_4; // @[Parameters.scala:279:{77,106}] wire [3:0] new_skipProbe = _new_skipProbe_T_7 ? new_clientBit : 4'h0; // @[Parameters.scala:201:10, :279:106] wire [3:0] prior; // @[MSHR.scala:314:26] wire prior_c = |final_meta_writeback_clients; // @[MSHR.scala:215:38, :315:27] wire _prior_out_T = ~prior_c; // @[MSHR.scala:315:27, :318:32] wire _prior_T_2 = &final_meta_writeback_state; // @[MSHR.scala:215:38, :317:26] wire [2:0] _prior_out_T_4 = prior_c ? _prior_out_T_2 : _prior_out_T_3; // @[MSHR.scala:315:27, :320:{32,39,76}] assign prior = _prior_T ? {3'h0, _prior_out_T} : _prior_T_1 ? {2'h0, _prior_out_T_1} : _prior_T_2 ? {1'h0, _prior_out_T_4} : {_prior_T_3, 3'h0}; // @[MSHR.scala:314:26, :317:26, :318:{26,32}, :319:{26,32}, :320:{26,32}, :321:26] wire _T_574 = io_directory_valid_0 | _new_meta_T; // @[MSHR.scala:84:7, :505:40, :539:28]
Generate the Verilog code corresponding to the following Chisel files. File ShiftReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ // Similar to the Chisel ShiftRegister but allows the user to suggest a // name to the registers that get instantiated, and // to provide a reset value. object ShiftRegInit { def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T = (0 until n).foldRight(in) { case (i, next) => { val r = RegNext(next, init) name.foreach { na => r.suggestName(s"${na}_${i}") } r } } } /** These wrap behavioral * shift registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * The different types vary in their reset behavior: * AsyncResetShiftReg -- Asynchronously reset register array * A W(width) x D(depth) sized array is constructed from D instantiations of a * W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg, * but only used for timing applications */ abstract class AbstractPipelineReg(w: Int = 1) extends Module { val io = IO(new Bundle { val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) } ) } object AbstractPipelineReg { def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = { val chain = Module(gen) name.foreach{ chain.suggestName(_) } chain.io.d := in.asUInt chain.io.q.asTypeOf(in) } } class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) { require(depth > 0, "Depth must be greater than 0.") override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}" val chain = List.tabulate(depth) { i => Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}") } chain.last.io.d := io.d chain.last.io.en := true.B (chain.init zip chain.tail).foreach { case (sink, source) => sink.io.d := source.io.q sink.io.en := true.B } io.q := chain.head.io.q } object AsyncResetShiftReg { def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name) def apply [T <: Data](in: T, depth: Int, name: Option[String]): T = apply(in, depth, 0, name) def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T = apply(in, depth, init.litValue.toInt, name) def apply [T <: Data](in: T, depth: Int, init: T): T = apply (in, depth, init.litValue.toInt, None) } File SynchronizerReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util.{RegEnable, Cat} /** These wrap behavioral * shift and next registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * * These are built up of *ResetSynchronizerPrimitiveShiftReg, * intended to be replaced by the integrator's metastable flops chains or replaced * at this level if they have a multi-bit wide synchronizer primitive. * The different types vary in their reset behavior: * NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin * AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep * 1-bit-wide shift registers. * SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg * * [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference. * * ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross * Clock Domains. */ object SynchronizerResetType extends Enumeration { val NonSync, Inferred, Sync, Async = Value } // Note: this should not be used directly. // Use the companion object to generate this with the correct reset type mixin. private class SynchronizerPrimitiveShiftReg( sync: Int, init: Boolean, resetType: SynchronizerResetType.Value) extends AbstractPipelineReg(1) { val initInt = if (init) 1 else 0 val initPostfix = resetType match { case SynchronizerResetType.NonSync => "" case _ => s"_i${initInt}" } override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}" val chain = List.tabulate(sync) { i => val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B) reg.suggestName(s"sync_$i") } chain.last := io.d.asBool (chain.init zip chain.tail).foreach { case (sink, source) => sink := source } io.q := chain.head.asUInt } private object SynchronizerPrimitiveShiftReg { def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = { val gen: () => SynchronizerPrimitiveShiftReg = resetType match { case SynchronizerResetType.NonSync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) case SynchronizerResetType.Async => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset case SynchronizerResetType.Sync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset case SynchronizerResetType.Inferred => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) } AbstractPipelineReg(gen(), in) } } // Note: This module may end up with a non-AsyncReset type reset. // But the Primitives within will always have AsyncReset type. class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asAsyncReset){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async) } } io.q := Cat(output.reverse) } object AsyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } // Note: This module may end up with a non-Bool type reset. // But the Primitives within will always have Bool reset type. @deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2") class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asBool){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync) } } io.q := Cat(output.reverse) } object SyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred) } io.q := Cat(output.reverse) } object ResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}" val output = Seq.tabulate(w) { i => SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync) } io.q := Cat(output.reverse) } object SynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, None) def apply [T <: Data](in: T): T = apply (in, 3, None) } class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module { override def desiredName = s"ClockCrossingReg_w${w}" val io = IO(new Bundle{ val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) val en = Input(Bool()) }) val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en) io.q := cdc_reg } object ClockCrossingReg { def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = { val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit)) name.foreach{ cdc_reg.suggestName(_) } cdc_reg.io.d := in.asUInt cdc_reg.io.en := en cdc_reg.io.q.asTypeOf(in) } }
module AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_286( // @[SynchronizerReg.scala:68:19] input clock, // @[SynchronizerReg.scala:68:19] input reset, // @[SynchronizerReg.scala:68:19] input io_d, // @[ShiftReg.scala:36:14] output io_q // @[ShiftReg.scala:36:14] ); wire io_d_0 = io_d; // @[SynchronizerReg.scala:68:19] wire _sync_2_T = io_d_0; // @[SynchronizerReg.scala:54:22, :68:19] wire io_q_0; // @[SynchronizerReg.scala:68:19] reg sync_0; // @[SynchronizerReg.scala:51:87] assign io_q_0 = sync_0; // @[SynchronizerReg.scala:51:87, :68:19] reg sync_1; // @[SynchronizerReg.scala:51:87] reg sync_2; // @[SynchronizerReg.scala:51:87] always @(posedge clock or posedge reset) begin // @[SynchronizerReg.scala:68:19] if (reset) begin // @[SynchronizerReg.scala:68:19] sync_0 <= 1'h0; // @[SynchronizerReg.scala:51:87] sync_1 <= 1'h0; // @[SynchronizerReg.scala:51:87] sync_2 <= 1'h0; // @[SynchronizerReg.scala:51:87] end else begin // @[SynchronizerReg.scala:68:19] sync_0 <= sync_1; // @[SynchronizerReg.scala:51:87] sync_1 <= sync_2; // @[SynchronizerReg.scala:51:87] sync_2 <= _sync_2_T; // @[SynchronizerReg.scala:51:87, :54:22] end always @(posedge, posedge)
Generate the Verilog code corresponding to the following Chisel files. File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag } File Nodes.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import org.chipsalliance.diplomacy.nodes._ import freechips.rocketchip.util.{AsyncQueueParams,RationalDirection} case object TLMonitorBuilder extends Field[TLMonitorArgs => TLMonitorBase](args => new TLMonitor(args)) object TLImp extends NodeImp[TLMasterPortParameters, TLSlavePortParameters, TLEdgeOut, TLEdgeIn, TLBundle] { def edgeO(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeOut(pd, pu, p, sourceInfo) def edgeI(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeIn (pd, pu, p, sourceInfo) def bundleO(eo: TLEdgeOut) = TLBundle(eo.bundle) def bundleI(ei: TLEdgeIn) = TLBundle(ei.bundle) def render(ei: TLEdgeIn) = RenderedEdge(colour = "#000000" /* black */, label = (ei.manager.beatBytes * 8).toString) override def monitor(bundle: TLBundle, edge: TLEdgeIn): Unit = { val monitor = Module(edge.params(TLMonitorBuilder)(TLMonitorArgs(edge))) monitor.io.in := bundle } override def mixO(pd: TLMasterPortParameters, node: OutwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLMasterPortParameters = pd.v1copy(clients = pd.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }) override def mixI(pu: TLSlavePortParameters, node: InwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLSlavePortParameters = pu.v1copy(managers = pu.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }) } trait TLFormatNode extends FormatNode[TLEdgeIn, TLEdgeOut] case class TLClientNode(portParams: Seq[TLMasterPortParameters])(implicit valName: ValName) extends SourceNode(TLImp)(portParams) with TLFormatNode case class TLManagerNode(portParams: Seq[TLSlavePortParameters])(implicit valName: ValName) extends SinkNode(TLImp)(portParams) with TLFormatNode case class TLAdapterNode( clientFn: TLMasterPortParameters => TLMasterPortParameters = { s => s }, managerFn: TLSlavePortParameters => TLSlavePortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLImp)(clientFn, managerFn) with TLFormatNode case class TLJunctionNode( clientFn: Seq[TLMasterPortParameters] => Seq[TLMasterPortParameters], managerFn: Seq[TLSlavePortParameters] => Seq[TLSlavePortParameters])( implicit valName: ValName) extends JunctionNode(TLImp)(clientFn, managerFn) with TLFormatNode case class TLIdentityNode()(implicit valName: ValName) extends IdentityNode(TLImp)() with TLFormatNode object TLNameNode { def apply(name: ValName) = TLIdentityNode()(name) def apply(name: Option[String]): TLIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLIdentityNode = apply(Some(name)) } case class TLEphemeralNode()(implicit valName: ValName) extends EphemeralNode(TLImp)() object TLTempNode { def apply(): TLEphemeralNode = TLEphemeralNode()(ValName("temp")) } case class TLNexusNode( clientFn: Seq[TLMasterPortParameters] => TLMasterPortParameters, managerFn: Seq[TLSlavePortParameters] => TLSlavePortParameters)( implicit valName: ValName) extends NexusNode(TLImp)(clientFn, managerFn) with TLFormatNode abstract class TLCustomNode(implicit valName: ValName) extends CustomNode(TLImp) with TLFormatNode // Asynchronous crossings trait TLAsyncFormatNode extends FormatNode[TLAsyncEdgeParameters, TLAsyncEdgeParameters] object TLAsyncImp extends SimpleNodeImp[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncEdgeParameters, TLAsyncBundle] { def edge(pd: TLAsyncClientPortParameters, pu: TLAsyncManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLAsyncEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLAsyncEdgeParameters) = new TLAsyncBundle(e.bundle) def render(e: TLAsyncEdgeParameters) = RenderedEdge(colour = "#ff0000" /* red */, label = e.manager.async.depth.toString) override def mixO(pd: TLAsyncClientPortParameters, node: OutwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLAsyncManagerPortParameters, node: InwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLAsyncAdapterNode( clientFn: TLAsyncClientPortParameters => TLAsyncClientPortParameters = { s => s }, managerFn: TLAsyncManagerPortParameters => TLAsyncManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLAsyncImp)(clientFn, managerFn) with TLAsyncFormatNode case class TLAsyncIdentityNode()(implicit valName: ValName) extends IdentityNode(TLAsyncImp)() with TLAsyncFormatNode object TLAsyncNameNode { def apply(name: ValName) = TLAsyncIdentityNode()(name) def apply(name: Option[String]): TLAsyncIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLAsyncIdentityNode = apply(Some(name)) } case class TLAsyncSourceNode(sync: Option[Int])(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLAsyncImp)( dFn = { p => TLAsyncClientPortParameters(p) }, uFn = { p => p.base.v1copy(minLatency = p.base.minLatency + sync.getOrElse(p.async.sync)) }) with FormatNode[TLEdgeIn, TLAsyncEdgeParameters] // discard cycles in other clock domain case class TLAsyncSinkNode(async: AsyncQueueParams)(implicit valName: ValName) extends MixedAdapterNode(TLAsyncImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = p.base.minLatency + async.sync) }, uFn = { p => TLAsyncManagerPortParameters(async, p) }) with FormatNode[TLAsyncEdgeParameters, TLEdgeOut] // Rationally related crossings trait TLRationalFormatNode extends FormatNode[TLRationalEdgeParameters, TLRationalEdgeParameters] object TLRationalImp extends SimpleNodeImp[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalEdgeParameters, TLRationalBundle] { def edge(pd: TLRationalClientPortParameters, pu: TLRationalManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLRationalEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLRationalEdgeParameters) = new TLRationalBundle(e.bundle) def render(e: TLRationalEdgeParameters) = RenderedEdge(colour = "#00ff00" /* green */) override def mixO(pd: TLRationalClientPortParameters, node: OutwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLRationalManagerPortParameters, node: InwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLRationalAdapterNode( clientFn: TLRationalClientPortParameters => TLRationalClientPortParameters = { s => s }, managerFn: TLRationalManagerPortParameters => TLRationalManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLRationalImp)(clientFn, managerFn) with TLRationalFormatNode case class TLRationalIdentityNode()(implicit valName: ValName) extends IdentityNode(TLRationalImp)() with TLRationalFormatNode object TLRationalNameNode { def apply(name: ValName) = TLRationalIdentityNode()(name) def apply(name: Option[String]): TLRationalIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLRationalIdentityNode = apply(Some(name)) } case class TLRationalSourceNode()(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLRationalImp)( dFn = { p => TLRationalClientPortParameters(p) }, uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLRationalEdgeParameters] // discard cycles from other clock domain case class TLRationalSinkNode(direction: RationalDirection)(implicit valName: ValName) extends MixedAdapterNode(TLRationalImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = 1) }, uFn = { p => TLRationalManagerPortParameters(direction, p) }) with FormatNode[TLRationalEdgeParameters, TLEdgeOut] // Credited version of TileLink channels trait TLCreditedFormatNode extends FormatNode[TLCreditedEdgeParameters, TLCreditedEdgeParameters] object TLCreditedImp extends SimpleNodeImp[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedEdgeParameters, TLCreditedBundle] { def edge(pd: TLCreditedClientPortParameters, pu: TLCreditedManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLCreditedEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLCreditedEdgeParameters) = new TLCreditedBundle(e.bundle) def render(e: TLCreditedEdgeParameters) = RenderedEdge(colour = "#ffff00" /* yellow */, e.delay.toString) override def mixO(pd: TLCreditedClientPortParameters, node: OutwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLCreditedManagerPortParameters, node: InwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLCreditedAdapterNode( clientFn: TLCreditedClientPortParameters => TLCreditedClientPortParameters = { s => s }, managerFn: TLCreditedManagerPortParameters => TLCreditedManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLCreditedImp)(clientFn, managerFn) with TLCreditedFormatNode case class TLCreditedIdentityNode()(implicit valName: ValName) extends IdentityNode(TLCreditedImp)() with TLCreditedFormatNode object TLCreditedNameNode { def apply(name: ValName) = TLCreditedIdentityNode()(name) def apply(name: Option[String]): TLCreditedIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLCreditedIdentityNode = apply(Some(name)) } case class TLCreditedSourceNode(delay: TLCreditedDelay)(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLCreditedImp)( dFn = { p => TLCreditedClientPortParameters(delay, p) }, uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLCreditedEdgeParameters] // discard cycles from other clock domain case class TLCreditedSinkNode(delay: TLCreditedDelay)(implicit valName: ValName) extends MixedAdapterNode(TLCreditedImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = 1) }, uFn = { p => TLCreditedManagerPortParameters(delay, p) }) with FormatNode[TLCreditedEdgeParameters, TLEdgeOut] File Bundles.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import freechips.rocketchip.util._ import scala.collection.immutable.ListMap import chisel3.util.Decoupled import chisel3.util.DecoupledIO import chisel3.reflect.DataMirror abstract class TLBundleBase(val params: TLBundleParameters) extends Bundle // common combos in lazy policy: // Put + Acquire // Release + AccessAck object TLMessages { // A B C D E def PutFullData = 0.U // . . => AccessAck def PutPartialData = 1.U // . . => AccessAck def ArithmeticData = 2.U // . . => AccessAckData def LogicalData = 3.U // . . => AccessAckData def Get = 4.U // . . => AccessAckData def Hint = 5.U // . . => HintAck def AcquireBlock = 6.U // . => Grant[Data] def AcquirePerm = 7.U // . => Grant[Data] def Probe = 6.U // . => ProbeAck[Data] def AccessAck = 0.U // . . def AccessAckData = 1.U // . . def HintAck = 2.U // . . def ProbeAck = 4.U // . def ProbeAckData = 5.U // . def Release = 6.U // . => ReleaseAck def ReleaseData = 7.U // . => ReleaseAck def Grant = 4.U // . => GrantAck def GrantData = 5.U // . => GrantAck def ReleaseAck = 6.U // . def GrantAck = 0.U // . def isA(x: UInt) = x <= AcquirePerm def isB(x: UInt) = x <= Probe def isC(x: UInt) = x <= ReleaseData def isD(x: UInt) = x <= ReleaseAck def adResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, Grant, Grant) def bcResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, ProbeAck, ProbeAck) def a = Seq( ("PutFullData",TLPermissions.PermMsgReserved), ("PutPartialData",TLPermissions.PermMsgReserved), ("ArithmeticData",TLAtomics.ArithMsg), ("LogicalData",TLAtomics.LogicMsg), ("Get",TLPermissions.PermMsgReserved), ("Hint",TLHints.HintsMsg), ("AcquireBlock",TLPermissions.PermMsgGrow), ("AcquirePerm",TLPermissions.PermMsgGrow)) def b = Seq( ("PutFullData",TLPermissions.PermMsgReserved), ("PutPartialData",TLPermissions.PermMsgReserved), ("ArithmeticData",TLAtomics.ArithMsg), ("LogicalData",TLAtomics.LogicMsg), ("Get",TLPermissions.PermMsgReserved), ("Hint",TLHints.HintsMsg), ("Probe",TLPermissions.PermMsgCap)) def c = Seq( ("AccessAck",TLPermissions.PermMsgReserved), ("AccessAckData",TLPermissions.PermMsgReserved), ("HintAck",TLPermissions.PermMsgReserved), ("Invalid Opcode",TLPermissions.PermMsgReserved), ("ProbeAck",TLPermissions.PermMsgReport), ("ProbeAckData",TLPermissions.PermMsgReport), ("Release",TLPermissions.PermMsgReport), ("ReleaseData",TLPermissions.PermMsgReport)) def d = Seq( ("AccessAck",TLPermissions.PermMsgReserved), ("AccessAckData",TLPermissions.PermMsgReserved), ("HintAck",TLPermissions.PermMsgReserved), ("Invalid Opcode",TLPermissions.PermMsgReserved), ("Grant",TLPermissions.PermMsgCap), ("GrantData",TLPermissions.PermMsgCap), ("ReleaseAck",TLPermissions.PermMsgReserved)) } /** * The three primary TileLink permissions are: * (T)runk: the agent is (or is on inwards path to) the global point of serialization. * (B)ranch: the agent is on an outwards path to * (N)one: * These permissions are permuted by transfer operations in various ways. * Operations can cap permissions, request for them to be grown or shrunk, * or for a report on their current status. */ object TLPermissions { val aWidth = 2 val bdWidth = 2 val cWidth = 3 // Cap types (Grant = new permissions, Probe = permisions <= target) def toT = 0.U(bdWidth.W) def toB = 1.U(bdWidth.W) def toN = 2.U(bdWidth.W) def isCap(x: UInt) = x <= toN // Grow types (Acquire = permissions >= target) def NtoB = 0.U(aWidth.W) def NtoT = 1.U(aWidth.W) def BtoT = 2.U(aWidth.W) def isGrow(x: UInt) = x <= BtoT // Shrink types (ProbeAck, Release) def TtoB = 0.U(cWidth.W) def TtoN = 1.U(cWidth.W) def BtoN = 2.U(cWidth.W) def isShrink(x: UInt) = x <= BtoN // Report types (ProbeAck, Release) def TtoT = 3.U(cWidth.W) def BtoB = 4.U(cWidth.W) def NtoN = 5.U(cWidth.W) def isReport(x: UInt) = x <= NtoN def PermMsgGrow:Seq[String] = Seq("Grow NtoB", "Grow NtoT", "Grow BtoT") def PermMsgCap:Seq[String] = Seq("Cap toT", "Cap toB", "Cap toN") def PermMsgReport:Seq[String] = Seq("Shrink TtoB", "Shrink TtoN", "Shrink BtoN", "Report TotT", "Report BtoB", "Report NtoN") def PermMsgReserved:Seq[String] = Seq("Reserved") } object TLAtomics { val width = 3 // Arithmetic types def MIN = 0.U(width.W) def MAX = 1.U(width.W) def MINU = 2.U(width.W) def MAXU = 3.U(width.W) def ADD = 4.U(width.W) def isArithmetic(x: UInt) = x <= ADD // Logical types def XOR = 0.U(width.W) def OR = 1.U(width.W) def AND = 2.U(width.W) def SWAP = 3.U(width.W) def isLogical(x: UInt) = x <= SWAP def ArithMsg:Seq[String] = Seq("MIN", "MAX", "MINU", "MAXU", "ADD") def LogicMsg:Seq[String] = Seq("XOR", "OR", "AND", "SWAP") } object TLHints { val width = 1 def PREFETCH_READ = 0.U(width.W) def PREFETCH_WRITE = 1.U(width.W) def isHints(x: UInt) = x <= PREFETCH_WRITE def HintsMsg:Seq[String] = Seq("PrefetchRead", "PrefetchWrite") } sealed trait TLChannel extends TLBundleBase { val channelName: String } sealed trait TLDataChannel extends TLChannel sealed trait TLAddrChannel extends TLDataChannel final class TLBundleA(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleA_${params.shortName}" val channelName = "'A' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(List(TLAtomics.width, TLPermissions.aWidth, TLHints.width).max.W) // amo_opcode || grow perms || hint val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // from val address = UInt(params.addressBits.W) // to val user = BundleMap(params.requestFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val mask = UInt((params.dataBits/8).W) val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleB(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleB_${params.shortName}" val channelName = "'B' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.bdWidth.W) // cap perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // to val address = UInt(params.addressBits.W) // from // variable fields during multibeat: val mask = UInt((params.dataBits/8).W) val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleC(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleC_${params.shortName}" val channelName = "'C' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.cWidth.W) // shrink or report perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // from val address = UInt(params.addressBits.W) // to val user = BundleMap(params.requestFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleD(params: TLBundleParameters) extends TLBundleBase(params) with TLDataChannel { override def typeName = s"TLBundleD_${params.shortName}" val channelName = "'D' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.bdWidth.W) // cap perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // to val sink = UInt(params.sinkBits.W) // from val denied = Bool() // implies corrupt iff *Data val user = BundleMap(params.responseFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleE(params: TLBundleParameters) extends TLBundleBase(params) with TLChannel { override def typeName = s"TLBundleE_${params.shortName}" val channelName = "'E' channel" val sink = UInt(params.sinkBits.W) // to } class TLBundle(val params: TLBundleParameters) extends Record { // Emulate a Bundle with elements abcde or ad depending on params.hasBCE private val optA = Some (Decoupled(new TLBundleA(params))) private val optB = params.hasBCE.option(Flipped(Decoupled(new TLBundleB(params)))) private val optC = params.hasBCE.option(Decoupled(new TLBundleC(params))) private val optD = Some (Flipped(Decoupled(new TLBundleD(params)))) private val optE = params.hasBCE.option(Decoupled(new TLBundleE(params))) def a: DecoupledIO[TLBundleA] = optA.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleA(params))))) def b: DecoupledIO[TLBundleB] = optB.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleB(params))))) def c: DecoupledIO[TLBundleC] = optC.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleC(params))))) def d: DecoupledIO[TLBundleD] = optD.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleD(params))))) def e: DecoupledIO[TLBundleE] = optE.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleE(params))))) val elements = if (params.hasBCE) ListMap("e" -> e, "d" -> d, "c" -> c, "b" -> b, "a" -> a) else ListMap("d" -> d, "a" -> a) def tieoff(): Unit = { DataMirror.specifiedDirectionOf(a.ready) match { case SpecifiedDirection.Input => a.ready := false.B c.ready := false.B e.ready := false.B b.valid := false.B d.valid := false.B case SpecifiedDirection.Output => a.valid := false.B c.valid := false.B e.valid := false.B b.ready := false.B d.ready := false.B case _ => } } } object TLBundle { def apply(params: TLBundleParameters) = new TLBundle(params) } class TLAsyncBundleBase(val params: TLAsyncBundleParameters) extends Bundle class TLAsyncBundle(params: TLAsyncBundleParameters) extends TLAsyncBundleBase(params) { val a = new AsyncBundle(new TLBundleA(params.base), params.async) val b = Flipped(new AsyncBundle(new TLBundleB(params.base), params.async)) val c = new AsyncBundle(new TLBundleC(params.base), params.async) val d = Flipped(new AsyncBundle(new TLBundleD(params.base), params.async)) val e = new AsyncBundle(new TLBundleE(params.base), params.async) } class TLRationalBundle(params: TLBundleParameters) extends TLBundleBase(params) { val a = RationalIO(new TLBundleA(params)) val b = Flipped(RationalIO(new TLBundleB(params))) val c = RationalIO(new TLBundleC(params)) val d = Flipped(RationalIO(new TLBundleD(params))) val e = RationalIO(new TLBundleE(params)) } class TLCreditedBundle(params: TLBundleParameters) extends TLBundleBase(params) { val a = CreditedIO(new TLBundleA(params)) val b = Flipped(CreditedIO(new TLBundleB(params))) val c = CreditedIO(new TLBundleC(params)) val d = Flipped(CreditedIO(new TLBundleD(params))) val e = CreditedIO(new TLBundleE(params)) } File LazyModuleImp.scala: package org.chipsalliance.diplomacy.lazymodule import chisel3.{withClockAndReset, Module, RawModule, Reset, _} import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo} import firrtl.passes.InlineAnnotation import org.chipsalliance.cde.config.Parameters import org.chipsalliance.diplomacy.nodes.Dangle import scala.collection.immutable.SortedMap /** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]]. * * This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy. */ sealed trait LazyModuleImpLike extends RawModule { /** [[LazyModule]] that contains this instance. */ val wrapper: LazyModule /** IOs that will be automatically "punched" for this instance. */ val auto: AutoBundle /** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */ protected[diplomacy] val dangles: Seq[Dangle] // [[wrapper.module]] had better not be accessed while LazyModules are still being built! require( LazyModule.scope.isEmpty, s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}" ) /** Set module name. Defaults to the containing LazyModule's desiredName. */ override def desiredName: String = wrapper.desiredName suggestName(wrapper.suggestedName) /** [[Parameters]] for chisel [[Module]]s. */ implicit val p: Parameters = wrapper.p /** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and * submodules. */ protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = { // 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]], // 2. return [[Dangle]]s from each module. val childDangles = wrapper.children.reverse.flatMap { c => implicit val sourceInfo: SourceInfo = c.info c.cloneProto.map { cp => // If the child is a clone, then recursively set cloneProto of its children as well def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = { require(bases.size == clones.size) (bases.zip(clones)).map { case (l, r) => require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}") l.cloneProto = Some(r) assignCloneProtos(l.children, r.children) } } assignCloneProtos(c.children, cp.children) // Clone the child module as a record, and get its [[AutoBundle]] val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName) val clonedAuto = clone("auto").asInstanceOf[AutoBundle] // Get the empty [[Dangle]]'s of the cloned child val rawDangles = c.cloneDangles() require(rawDangles.size == clonedAuto.elements.size) // Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) } dangles }.getOrElse { // For non-clones, instantiate the child module val mod = try { Module(c.module) } catch { case e: ChiselException => { println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}") throw e } } mod.dangles } } // Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]]. // This will result in a sequence of [[Dangle]] from these [[BaseNode]]s. val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate()) // Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]] val allDangles = nodeDangles ++ childDangles // Group [[allDangles]] by their [[source]]. val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*) // For each [[source]] set of [[Dangle]]s of size 2, ensure that these // can be connected as a source-sink pair (have opposite flipped value). // Make the connection and mark them as [[done]]. val done = Set() ++ pairing.values.filter(_.size == 2).map { case Seq(a, b) => require(a.flipped != b.flipped) // @todo <> in chisel3 makes directionless connection. if (a.flipped) { a.data <> b.data } else { b.data <> a.data } a.source case _ => None } // Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module. val forward = allDangles.filter(d => !done(d.source)) // Generate [[AutoBundle]] IO from [[forward]]. val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*)) // Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]] val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) => if (d.flipped) { d.data <> io } else { io <> d.data } d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name) } // Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]]. wrapper.inModuleBody.reverse.foreach { _() } if (wrapper.shouldBeInlined) { chisel3.experimental.annotate(new ChiselAnnotation { def toFirrtl = InlineAnnotation(toNamed) }) } // Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]]. (auto, dangles) } } /** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike { /** Instantiate hardware of this `Module`. */ val (auto, dangles) = instantiate() } /** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike { // These wires are the default clock+reset for all LazyModule children. // It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the // [[LazyRawModuleImp]] children. // Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly. /** drive clock explicitly. */ val childClock: Clock = Wire(Clock()) /** drive reset explicitly. */ val childReset: Reset = Wire(Reset()) // the default is that these are disabled childClock := false.B.asClock childReset := chisel3.DontCare def provideImplicitClockToLazyChildren: Boolean = false val (auto, dangles) = if (provideImplicitClockToLazyChildren) { withClockAndReset(childClock, childReset) { instantiate() } } else { instantiate() } } File TLSerdes.scala: package testchipip.serdes import chisel3._ import chisel3.util._ import freechips.rocketchip.diplomacy._ import org.chipsalliance.cde.config._ import freechips.rocketchip.util._ import freechips.rocketchip.tilelink._ object TLSerdesser { // This should be the standard bundle type for TLSerdesser val STANDARD_TLBUNDLE_PARAMS = TLBundleParameters( addressBits=64, dataBits=64, sourceBits=8, sinkBits=8, sizeBits=8, echoFields=Nil, requestFields=Nil, responseFields=Nil, hasBCE=true) } class SerdesDebugIO extends Bundle { val ser_busy = Output(Bool()) val des_busy = Output(Bool()) } class TLSerdesser( val flitWidth: Int, clientPortParams: Option[TLMasterPortParameters], managerPortParams: Option[TLSlavePortParameters], val bundleParams: TLBundleParameters = TLSerdesser.STANDARD_TLBUNDLE_PARAMS, nameSuffix: Option[String] = None ) (implicit p: Parameters) extends LazyModule { require (clientPortParams.isDefined || managerPortParams.isDefined) val clientNode = clientPortParams.map { c => TLClientNode(Seq(c)) } val managerNode = managerPortParams.map { m => TLManagerNode(Seq(m)) } override lazy val desiredName = (Seq("TLSerdesser") ++ nameSuffix).mkString("_") lazy val module = new Impl class Impl extends LazyModuleImp(this) { val io = IO(new Bundle { val ser = Vec(5, new DecoupledFlitIO(flitWidth)) val debug = new SerdesDebugIO }) val client_tl = clientNode.map(_.out(0)._1).getOrElse(0.U.asTypeOf(new TLBundle(bundleParams))) val client_edge = clientNode.map(_.out(0)._2) val manager_tl = managerNode.map(_.in(0)._1).getOrElse(0.U.asTypeOf(new TLBundle(bundleParams))) val manager_edge = managerNode.map(_.in(0)._2) val clientParams = client_edge.map(_.bundle).getOrElse(bundleParams) val managerParams = manager_edge.map(_.bundle).getOrElse(bundleParams) val mergedParams = clientParams.union(managerParams).union(bundleParams) require(mergedParams.echoFields.isEmpty, "TLSerdesser does not support TileLink with echo fields") require(mergedParams.requestFields.isEmpty, "TLSerdesser does not support TileLink with request fields") require(mergedParams.responseFields.isEmpty, "TLSerdesser does not support TileLink with response fields") require(mergedParams == bundleParams, s"TLSerdesser is misconfigured, the combined inwards/outwards parameters cannot be serialized using the provided bundle params\n$mergedParams > $bundleParams") val out_channels = Seq( (manager_tl.e, manager_edge.map(e => Module(new TLEToBeat(e, mergedParams, nameSuffix)))), (client_tl.d, client_edge.map (e => Module(new TLDToBeat(e, mergedParams, nameSuffix)))), (manager_tl.c, manager_edge.map(e => Module(new TLCToBeat(e, mergedParams, nameSuffix)))), (client_tl.b, client_edge.map (e => Module(new TLBToBeat(e, mergedParams, nameSuffix)))), (manager_tl.a, manager_edge.map(e => Module(new TLAToBeat(e, mergedParams, nameSuffix)))) ) io.ser.map(_.out.valid := false.B) io.ser.map(_.out.bits := DontCare) val out_sers = out_channels.zipWithIndex.map { case ((c,b),i) => b.map { b => b.io.protocol <> c val ser = Module(new GenericSerializer(b.io.beat.bits.cloneType, flitWidth)).suggestName(s"ser_$i") ser.io.in <> b.io.beat io.ser(i).out <> ser.io.out ser }}.flatten io.debug.ser_busy := out_sers.map(_.io.busy).orR val in_channels = Seq( (client_tl.e, Module(new TLEFromBeat(mergedParams, nameSuffix))), (manager_tl.d, Module(new TLDFromBeat(mergedParams, nameSuffix))), (client_tl.c, Module(new TLCFromBeat(mergedParams, nameSuffix))), (manager_tl.b, Module(new TLBFromBeat(mergedParams, nameSuffix))), (client_tl.a, Module(new TLAFromBeat(mergedParams, nameSuffix))) ) val in_desers = in_channels.zipWithIndex.map { case ((c,b),i) => c <> b.io.protocol val des = Module(new GenericDeserializer(b.io.beat.bits.cloneType, flitWidth)).suggestName(s"des_$i") des.io.in <> io.ser(i).in b.io.beat <> des.io.out des } io.debug.des_busy := in_desers.map(_.io.busy).orR } } File MixedNode.scala: package org.chipsalliance.diplomacy.nodes import chisel3.{Data, DontCare, Wire} import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.{Field, Parameters} import org.chipsalliance.diplomacy.ValName import org.chipsalliance.diplomacy.sourceLine /** One side metadata of a [[Dangle]]. * * Describes one side of an edge going into or out of a [[BaseNode]]. * * @param serial * the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to. * @param index * the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to. */ case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] { import scala.math.Ordered.orderingToOrdered def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that)) } /** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]] * connects. * * [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] , * [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]]. * * @param source * the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within * that [[BaseNode]]. * @param sink * sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that * [[BaseNode]]. * @param flipped * flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to * `danglesIn`. * @param dataOpt * actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module */ case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) { def data = dataOpt.get } /** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often * derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually * implement the protocol. */ case class Edges[EI, EO](in: Seq[EI], out: Seq[EO]) /** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */ case object MonitorsEnabled extends Field[Boolean](true) /** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented. * * For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but * [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink * nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the * [[LazyModule]]. */ case object RenderFlipped extends Field[Boolean](false) /** The sealed node class in the package, all node are derived from it. * * @param inner * Sink interface implementation. * @param outer * Source interface implementation. * @param valName * val name of this node. * @tparam DI * Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters * describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected * [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port * parameters. * @tparam UI * Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing * the protocol parameters of a sink. For an [[InwardNode]], it is determined itself. * @tparam EI * Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers * specified for a sink according to protocol. * @tparam BI * Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface. * It should extends from [[chisel3.Data]], which represents the real hardware. * @tparam DO * Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters * describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself. * @tparam UO * Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing * the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]]. * Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters. * @tparam EO * Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers * specified for a source according to protocol. * @tparam BO * Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source * interface. It should extends from [[chisel3.Data]], which represents the real hardware. * * @note * Call Graph of [[MixedNode]] * - line `─`: source is process by a function and generate pass to others * - Arrow `→`: target of arrow is generated by source * * {{{ * (from the other node) * ┌─────────────────────────────────────────────────────────[[InwardNode.uiParams]]─────────────┐ * ↓ │ * (binding node when elaboration) [[OutwardNode.uoParams]]────────────────────────[[MixedNode.mapParamsU]]→──────────┐ │ * [[InwardNode.accPI]] │ │ │ * │ │ (based on protocol) │ * │ │ [[MixedNode.inner.edgeI]] │ * │ │ ↓ │ * ↓ │ │ │ * (immobilize after elaboration) (inward port from [[OutwardNode]]) │ ↓ │ * [[InwardNode.iBindings]]──┐ [[MixedNode.iDirectPorts]]────────────────────→[[MixedNode.iPorts]] [[InwardNode.uiParams]] │ * │ │ ↑ │ │ │ * │ │ │ [[OutwardNode.doParams]] │ │ * │ │ │ (from the other node) │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * │ │ │ └────────┬──────────────┤ │ * │ │ │ │ │ │ * │ │ │ │ (based on protocol) │ * │ │ │ │ [[MixedNode.inner.edgeI]] │ * │ │ │ │ │ │ * │ │ (from the other node) │ ↓ │ * │ └───[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] │ [[MixedNode.edgesIn]]───┐ │ * │ ↑ ↑ │ │ ↓ │ * │ │ │ │ │ [[MixedNode.in]] │ * │ │ │ │ ↓ ↑ │ * │ (solve star connection) │ │ │ [[MixedNode.bundleIn]]──┘ │ * ├───[[MixedNode.resolveStar]]→─┼─────────────────────────────┤ └────────────────────────────────────┐ │ * │ │ │ [[MixedNode.bundleOut]]─┐ │ │ * │ │ │ ↑ ↓ │ │ * │ │ │ │ [[MixedNode.out]] │ │ * │ ↓ ↓ │ ↑ │ │ * │ ┌─────[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]──┘ │ │ * │ │ (from the other node) ↑ │ │ * │ │ │ │ │ │ * │ │ │ [[MixedNode.outer.edgeO]] │ │ * │ │ │ (based on protocol) │ │ * │ │ │ │ │ │ * │ │ │ ┌────────────────────────────────────────┤ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * (immobilize after elaboration)│ ↓ │ │ │ │ * [[OutwardNode.oBindings]]─┘ [[MixedNode.oDirectPorts]]───→[[MixedNode.oPorts]] [[OutwardNode.doParams]] │ │ * ↑ (inward port from [[OutwardNode]]) │ │ │ │ * │ ┌─────────────────────────────────────────┤ │ │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * [[OutwardNode.accPO]] │ ↓ │ │ │ * (binding node when elaboration) │ [[InwardNode.diParams]]─────→[[MixedNode.mapParamsD]]────────────────────────────┘ │ │ * │ ↑ │ │ * │ └──────────────────────────────────────────────────────────────────────────────────────────┘ │ * └──────────────────────────────────────────────────────────────────────────────────────────────────────────┘ * }}} */ abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data]( val inner: InwardNodeImp[DI, UI, EI, BI], val outer: OutwardNodeImp[DO, UO, EO, BO] )( implicit valName: ValName) extends BaseNode with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO] with InwardNode[DI, UI, BI] with OutwardNode[DO, UO, BO] { // Generate a [[NodeHandle]] with inward and outward node are both this node. val inward = this val outward = this /** Debug info of nodes binding. */ def bindingInfo: String = s"""$iBindingInfo |$oBindingInfo |""".stripMargin /** Debug info of ports connecting. */ def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}] |${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}] |""".stripMargin /** Debug info of parameters propagations. */ def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}] |${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}] |${diParams.size} downstream inward parameters: [${diParams.mkString(",")}] |${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}] |""".stripMargin /** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and * [[MixedNode.iPortMapping]]. * * Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward * stars and outward stars. * * This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type * of node. * * @param iKnown * Number of known-size ([[BIND_ONCE]]) input bindings. * @param oKnown * Number of known-size ([[BIND_ONCE]]) output bindings. * @param iStar * Number of unknown size ([[BIND_STAR]]) input bindings. * @param oStar * Number of unknown size ([[BIND_STAR]]) output bindings. * @return * A Tuple of the resolved number of input and output connections. */ protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int) /** Function to generate downward-flowing outward params from the downward-flowing input params and the current output * ports. * * @param n * The size of the output sequence to generate. * @param p * Sequence of downward-flowing input parameters of this node. * @return * A `n`-sized sequence of downward-flowing output edge parameters. */ protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO] /** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]]. * * @param n * Size of the output sequence. * @param p * Upward-flowing output edge parameters. * @return * A n-sized sequence of upward-flowing input edge parameters. */ protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI] /** @return * The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with * [[BIND_STAR]]. */ protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR) /** @return * The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of * output bindings bound with [[BIND_STAR]]. */ protected[diplomacy] lazy val sourceCard: Int = iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR) /** @return list of nodes involved in flex bindings with this node. */ protected[diplomacy] lazy val flexes: Seq[BaseNode] = oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2) /** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin * greedily taking up the remaining connections. * * @return * A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return * value is not relevant. */ protected[diplomacy] lazy val flexOffset: Int = { /** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex * operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a * connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of * each node in the current set and decide whether they should be added to the set or not. * * @return * the mapping of [[BaseNode]] indexed by their serial numbers. */ def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = { if (visited.contains(v.serial) || !v.flexibleArityDirection) { visited } else { v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum)) } } /** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node. * * @example * {{{ * a :*=* b :*=* c * d :*=* b * e :*=* f * }}} * * `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)` */ val flexSet = DFS(this, Map()).values /** The total number of :*= operators where we're on the left. */ val allSink = flexSet.map(_.sinkCard).sum /** The total number of :=* operators used when we're on the right. */ val allSource = flexSet.map(_.sourceCard).sum require( allSink == 0 || allSource == 0, s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction." ) allSink - allSource } /** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */ protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = { if (flexibleArityDirection) flexOffset else if (n.flexibleArityDirection) n.flexOffset else 0 } /** For a node which is connected between two nodes, select the one that will influence the direction of the flex * resolution. */ protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = { val dir = edgeArityDirection(n) if (dir < 0) l else if (dir > 0) r else 1 } /** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */ private var starCycleGuard = false /** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star" * connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also * need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct * edge parameters and later build up correct bundle connections. * * [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding * operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort * (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*= * bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N` */ protected[diplomacy] lazy val ( oPortMapping: Seq[(Int, Int)], iPortMapping: Seq[(Int, Int)], oStar: Int, iStar: Int ) = { try { if (starCycleGuard) throw StarCycleException() starCycleGuard = true // For a given node N... // Number of foo :=* N // + Number of bar :=* foo :*=* N val oStars = oBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0) } // Number of N :*= foo // + Number of N :*=* foo :*= bar val iStars = iBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0) } // 1 for foo := N // + bar.iStar for bar :*= foo :*=* N // + foo.iStar for foo :*= N // + 0 for foo :=* N val oKnown = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, 0, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => 0 } }.sum // 1 for N := foo // + bar.oStar for N :*=* foo :=* bar // + foo.oStar for N :=* foo // + 0 for N :*= foo val iKnown = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, 0) case BIND_QUERY => n.oStar case BIND_STAR => 0 } }.sum // Resolve star depends on the node subclass to implement the algorithm for this. val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars) // Cumulative list of resolved outward binding range starting points val oSum = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => oStar } }.scanLeft(0)(_ + _) // Cumulative list of resolved inward binding range starting points val iSum = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar) case BIND_QUERY => n.oStar case BIND_STAR => iStar } }.scanLeft(0)(_ + _) // Create ranges for each binding based on the running sums and return // those along with resolved values for the star operations. (oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar) } catch { case c: StarCycleException => throw c.copy(loop = context +: c.loop) } } /** Sequence of inward ports. * * This should be called after all star bindings are resolved. * * Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. * `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this * connection was made in the source code. */ protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oBindings.flatMap { case (i, n, _, p, s) => // for each binding operator in this node, look at what it connects to val (start, end) = n.iPortMapping(i) (start until end).map { j => (j, n, p, s) } } /** Sequence of outward ports. * * This should be called after all star bindings are resolved. * * `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of * outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection * was made in the source code. */ protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iBindings.flatMap { case (i, n, _, p, s) => // query this port index range of this node in the other side of node. val (start, end) = n.oPortMapping(i) (start until end).map { j => (j, n, p, s) } } // Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree // Thus, there must exist an Eulerian path and the below algorithms terminate @scala.annotation.tailrec private def oTrace( tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) ): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.iForward(i) match { case None => (i, n, p, s) case Some((j, m)) => oTrace((j, m, p, s)) } } @scala.annotation.tailrec private def iTrace( tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) ): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.oForward(i) match { case None => (i, n, p, s) case Some((j, m)) => iTrace((j, m, p, s)) } } /** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - Numeric index of this binding in the [[InwardNode]] on the other end. * - [[InwardNode]] on the other end of this binding. * - A view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace) /** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - numeric index of this binding in [[OutwardNode]] on the other end. * - [[OutwardNode]] on the other end of this binding. * - a view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace) private var oParamsCycleGuard = false protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) } protected[diplomacy] lazy val doParams: Seq[DO] = { try { if (oParamsCycleGuard) throw DownwardCycleException() oParamsCycleGuard = true val o = mapParamsD(oPorts.size, diParams) require( o.size == oPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of outward ports should equal the number of produced outward parameters. |$context |$connectedPortsInfo |Downstreamed inward parameters: [${diParams.mkString(",")}] |Produced outward parameters: [${o.mkString(",")}] |""".stripMargin ) o.map(outer.mixO(_, this)) } catch { case c: DownwardCycleException => throw c.copy(loop = context +: c.loop) } } private var iParamsCycleGuard = false protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) } protected[diplomacy] lazy val uiParams: Seq[UI] = { try { if (iParamsCycleGuard) throw UpwardCycleException() iParamsCycleGuard = true val i = mapParamsU(iPorts.size, uoParams) require( i.size == iPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of inward ports should equal the number of produced inward parameters. |$context |$connectedPortsInfo |Upstreamed outward parameters: [${uoParams.mkString(",")}] |Produced inward parameters: [${i.mkString(",")}] |""".stripMargin ) i.map(inner.mixI(_, this)) } catch { case c: UpwardCycleException => throw c.copy(loop = context +: c.loop) } } /** Outward edge parameters. */ protected[diplomacy] lazy val edgesOut: Seq[EO] = (oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) } /** Inward edge parameters. */ protected[diplomacy] lazy val edgesIn: Seq[EI] = (iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) } /** A tuple of the input edge parameters and output edge parameters for the edges bound to this node. * * If you need to access to the edges of a foreign Node, use this method (in/out create bundles). */ lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut) /** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */ protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e => val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } /** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */ protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e => val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(serial, i), sink = HalfEdge(n.serial, j), flipped = false, name = wirePrefix + "out", dataOpt = None ) } private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(n.serial, j), sink = HalfEdge(serial, i), flipped = true, name = wirePrefix + "in", dataOpt = None ) } /** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */ protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleOut(i))) } /** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */ protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleIn(i))) } private[diplomacy] var instantiated = false /** Gather Bundle and edge parameters of outward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def out: Seq[(BO, EO)] = { require( instantiated, s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleOut.zip(edgesOut) } /** Gather Bundle and edge parameters of inward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def in: Seq[(BI, EI)] = { require( instantiated, s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleIn.zip(edgesIn) } /** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires, * instantiate monitors on all input ports if appropriate, and return all the dangles of this node. */ protected[diplomacy] def instantiate(): Seq[Dangle] = { instantiated = true if (!circuitIdentity) { (iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) } } danglesOut ++ danglesIn } protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn /** Connects the outward part of a node with the inward part of this node. */ protected[diplomacy] def bind( h: OutwardNode[DI, UI, BI], binding: NodeBinding )( implicit p: Parameters, sourceInfo: SourceInfo ): Unit = { val x = this // x := y val y = h sourceLine(sourceInfo, " at ", "") val i = x.iPushed val o = y.oPushed y.oPush( i, x, binding match { case BIND_ONCE => BIND_ONCE case BIND_FLEX => BIND_FLEX case BIND_STAR => BIND_QUERY case BIND_QUERY => BIND_STAR } ) x.iPush(o, y, binding) } /* Metadata for printing the node graph. */ def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) => val re = inner.render(e) (n, re.copy(flipped = re.flipped != p(RenderFlipped))) } /** Metadata for printing the node graph */ def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) } }
module TLSerdesser_SerialRAM( // @[TLSerdes.scala:39:9] input clock, // @[TLSerdes.scala:39:9] input reset, // @[TLSerdes.scala:39:9] output auto_manager_in_a_ready, // @[LazyModuleImp.scala:107:25] input auto_manager_in_a_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_manager_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25] input [2:0] auto_manager_in_a_bits_param, // @[LazyModuleImp.scala:107:25] input [3:0] auto_manager_in_a_bits_size, // @[LazyModuleImp.scala:107:25] input auto_manager_in_a_bits_source, // @[LazyModuleImp.scala:107:25] input [31:0] auto_manager_in_a_bits_address, // @[LazyModuleImp.scala:107:25] input [7:0] auto_manager_in_a_bits_mask, // @[LazyModuleImp.scala:107:25] input [63:0] auto_manager_in_a_bits_data, // @[LazyModuleImp.scala:107:25] input auto_manager_in_a_bits_corrupt, // @[LazyModuleImp.scala:107:25] input auto_manager_in_d_ready, // @[LazyModuleImp.scala:107:25] output auto_manager_in_d_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_manager_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25] output [1:0] auto_manager_in_d_bits_param, // @[LazyModuleImp.scala:107:25] output [3:0] auto_manager_in_d_bits_size, // @[LazyModuleImp.scala:107:25] output auto_manager_in_d_bits_source, // @[LazyModuleImp.scala:107:25] output auto_manager_in_d_bits_sink, // @[LazyModuleImp.scala:107:25] output auto_manager_in_d_bits_denied, // @[LazyModuleImp.scala:107:25] output [63:0] auto_manager_in_d_bits_data, // @[LazyModuleImp.scala:107:25] output auto_manager_in_d_bits_corrupt, // @[LazyModuleImp.scala:107:25] output io_ser_0_in_ready, // @[TLSerdes.scala:40:16] input io_ser_0_in_valid, // @[TLSerdes.scala:40:16] input [31:0] io_ser_0_in_bits_flit, // @[TLSerdes.scala:40:16] input io_ser_0_out_ready, // @[TLSerdes.scala:40:16] output [31:0] io_ser_0_out_bits_flit, // @[TLSerdes.scala:40:16] output io_ser_1_in_ready, // @[TLSerdes.scala:40:16] input io_ser_1_in_valid, // @[TLSerdes.scala:40:16] input [31:0] io_ser_1_in_bits_flit, // @[TLSerdes.scala:40:16] output io_ser_2_in_ready, // @[TLSerdes.scala:40:16] input io_ser_2_in_valid, // @[TLSerdes.scala:40:16] input [31:0] io_ser_2_in_bits_flit, // @[TLSerdes.scala:40:16] input io_ser_2_out_ready, // @[TLSerdes.scala:40:16] output io_ser_2_out_valid, // @[TLSerdes.scala:40:16] output [31:0] io_ser_2_out_bits_flit, // @[TLSerdes.scala:40:16] output io_ser_3_in_ready, // @[TLSerdes.scala:40:16] input io_ser_3_in_valid, // @[TLSerdes.scala:40:16] input [31:0] io_ser_3_in_bits_flit, // @[TLSerdes.scala:40:16] output io_ser_4_in_ready, // @[TLSerdes.scala:40:16] input io_ser_4_in_valid, // @[TLSerdes.scala:40:16] input [31:0] io_ser_4_in_bits_flit, // @[TLSerdes.scala:40:16] input io_ser_4_out_ready, // @[TLSerdes.scala:40:16] output io_ser_4_out_valid, // @[TLSerdes.scala:40:16] output [31:0] io_ser_4_out_bits_flit // @[TLSerdes.scala:40:16] ); wire _des_4_io_out_valid; // @[TLSerdes.scala:86:23] wire [85:0] _des_4_io_out_bits_payload; // @[TLSerdes.scala:86:23] wire _des_4_io_out_bits_head; // @[TLSerdes.scala:86:23] wire _des_4_io_out_bits_tail; // @[TLSerdes.scala:86:23] wire _des_4_io_busy; // @[TLSerdes.scala:86:23] wire _des_3_io_out_valid; // @[TLSerdes.scala:86:23] wire [84:0] _des_3_io_out_bits_payload; // @[TLSerdes.scala:86:23] wire _des_3_io_out_bits_head; // @[TLSerdes.scala:86:23] wire _des_3_io_out_bits_tail; // @[TLSerdes.scala:86:23] wire _des_3_io_busy; // @[TLSerdes.scala:86:23] wire _des_2_io_out_valid; // @[TLSerdes.scala:86:23] wire [85:0] _des_2_io_out_bits_payload; // @[TLSerdes.scala:86:23] wire _des_2_io_out_bits_head; // @[TLSerdes.scala:86:23] wire _des_2_io_out_bits_tail; // @[TLSerdes.scala:86:23] wire _des_2_io_busy; // @[TLSerdes.scala:86:23] wire _des_1_io_out_valid; // @[TLSerdes.scala:86:23] wire [64:0] _des_1_io_out_bits_payload; // @[TLSerdes.scala:86:23] wire _des_1_io_out_bits_head; // @[TLSerdes.scala:86:23] wire _des_1_io_out_bits_tail; // @[TLSerdes.scala:86:23] wire _des_0_io_out_valid; // @[TLSerdes.scala:86:23] wire [7:0] _des_0_io_out_bits_payload; // @[TLSerdes.scala:86:23] wire _des_0_io_out_bits_head; // @[TLSerdes.scala:86:23] wire _des_0_io_out_bits_tail; // @[TLSerdes.scala:86:23] wire _in_channels_4_2_io_beat_ready; // @[TLSerdes.scala:82:28] wire [7:0] _in_channels_3_2_io_protocol_bits_size; // @[TLSerdes.scala:81:28] wire [7:0] _in_channels_3_2_io_protocol_bits_source; // @[TLSerdes.scala:81:28] wire [63:0] _in_channels_3_2_io_protocol_bits_address; // @[TLSerdes.scala:81:28] wire _in_channels_3_2_io_beat_ready; // @[TLSerdes.scala:81:28] wire _in_channels_2_2_io_beat_ready; // @[TLSerdes.scala:80:28] wire [7:0] _in_channels_1_2_io_protocol_bits_size; // @[TLSerdes.scala:79:28] wire [7:0] _in_channels_1_2_io_protocol_bits_source; // @[TLSerdes.scala:79:28] wire [7:0] _in_channels_1_2_io_protocol_bits_sink; // @[TLSerdes.scala:79:28] wire _in_channels_1_2_io_beat_ready; // @[TLSerdes.scala:79:28] wire _in_channels_0_2_io_beat_ready; // @[TLSerdes.scala:78:28] wire _ser_4_io_in_ready; // @[TLSerdes.scala:69:23] wire _ser_4_io_busy; // @[TLSerdes.scala:69:23] wire _ser_2_io_in_ready; // @[TLSerdes.scala:69:23] wire _ser_0_io_in_ready; // @[TLSerdes.scala:69:23] wire _out_channels_4_2_io_beat_valid; // @[TLSerdes.scala:63:50] wire [85:0] _out_channels_4_2_io_beat_bits_payload; // @[TLSerdes.scala:63:50] wire _out_channels_4_2_io_beat_bits_head; // @[TLSerdes.scala:63:50] wire _out_channels_4_2_io_beat_bits_tail; // @[TLSerdes.scala:63:50] wire _out_channels_2_2_io_beat_bits_head; // @[TLSerdes.scala:61:50] wire _out_channels_0_2_io_beat_bits_head; // @[TLSerdes.scala:59:50] wire auto_manager_in_a_valid_0 = auto_manager_in_a_valid; // @[TLSerdes.scala:39:9] wire [2:0] auto_manager_in_a_bits_opcode_0 = auto_manager_in_a_bits_opcode; // @[TLSerdes.scala:39:9] wire [2:0] auto_manager_in_a_bits_param_0 = auto_manager_in_a_bits_param; // @[TLSerdes.scala:39:9] wire [3:0] auto_manager_in_a_bits_size_0 = auto_manager_in_a_bits_size; // @[TLSerdes.scala:39:9] wire auto_manager_in_a_bits_source_0 = auto_manager_in_a_bits_source; // @[TLSerdes.scala:39:9] wire [31:0] auto_manager_in_a_bits_address_0 = auto_manager_in_a_bits_address; // @[TLSerdes.scala:39:9] wire [7:0] auto_manager_in_a_bits_mask_0 = auto_manager_in_a_bits_mask; // @[TLSerdes.scala:39:9] wire [63:0] auto_manager_in_a_bits_data_0 = auto_manager_in_a_bits_data; // @[TLSerdes.scala:39:9] wire auto_manager_in_a_bits_corrupt_0 = auto_manager_in_a_bits_corrupt; // @[TLSerdes.scala:39:9] wire auto_manager_in_d_ready_0 = auto_manager_in_d_ready; // @[TLSerdes.scala:39:9] wire io_ser_0_in_valid_0 = io_ser_0_in_valid; // @[TLSerdes.scala:39:9] wire [31:0] io_ser_0_in_bits_flit_0 = io_ser_0_in_bits_flit; // @[TLSerdes.scala:39:9] wire io_ser_0_out_ready_0 = io_ser_0_out_ready; // @[TLSerdes.scala:39:9] wire io_ser_1_in_valid_0 = io_ser_1_in_valid; // @[TLSerdes.scala:39:9] wire [31:0] io_ser_1_in_bits_flit_0 = io_ser_1_in_bits_flit; // @[TLSerdes.scala:39:9] wire io_ser_2_in_valid_0 = io_ser_2_in_valid; // @[TLSerdes.scala:39:9] wire [31:0] io_ser_2_in_bits_flit_0 = io_ser_2_in_bits_flit; // @[TLSerdes.scala:39:9] wire io_ser_2_out_ready_0 = io_ser_2_out_ready; // @[TLSerdes.scala:39:9] wire io_ser_3_in_valid_0 = io_ser_3_in_valid; // @[TLSerdes.scala:39:9] wire [31:0] io_ser_3_in_bits_flit_0 = io_ser_3_in_bits_flit; // @[TLSerdes.scala:39:9] wire io_ser_4_in_valid_0 = io_ser_4_in_valid; // @[TLSerdes.scala:39:9] wire [31:0] io_ser_4_in_bits_flit_0 = io_ser_4_in_bits_flit; // @[TLSerdes.scala:39:9] wire io_ser_4_out_ready_0 = io_ser_4_out_ready; // @[TLSerdes.scala:39:9] wire [2:0] client_tl_b_bits_opcode = 3'h0; // @[TLSerdes.scala:45:71] wire [2:0] client_tl_d_bits_opcode = 3'h0; // @[TLSerdes.scala:45:71] wire [2:0] _out_channels_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _out_channels_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] out_channels_2_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] out_channels_2_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _in_channels_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:264:74] wire [1:0] client_tl_b_bits_param = 2'h0; // @[TLSerdes.scala:45:71] wire [1:0] client_tl_d_bits_param = 2'h0; // @[TLSerdes.scala:45:71] wire [1:0] _in_channels_WIRE_bits_param = 2'h0; // @[Bundles.scala:264:74] wire [3:0] _out_channels_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] out_channels_2_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _in_channels_WIRE_bits_size = 4'h0; // @[Bundles.scala:264:74] wire [7:0] client_tl_b_bits_size = 8'h0; // @[TLSerdes.scala:45:71] wire [7:0] client_tl_b_bits_source = 8'h0; // @[TLSerdes.scala:45:71] wire [7:0] client_tl_b_bits_mask = 8'h0; // @[TLSerdes.scala:45:71] wire [7:0] client_tl_d_bits_size = 8'h0; // @[TLSerdes.scala:45:71] wire [7:0] client_tl_d_bits_source = 8'h0; // @[TLSerdes.scala:45:71] wire [7:0] client_tl_d_bits_sink = 8'h0; // @[TLSerdes.scala:45:71] wire [7:0] _in_channels_WIRE_bits_mask = 8'h0; // @[Bundles.scala:264:74] wire [63:0] client_tl_b_bits_address = 64'h0; // @[TLSerdes.scala:45:71] wire [63:0] client_tl_b_bits_data = 64'h0; // @[TLSerdes.scala:45:71] wire [63:0] client_tl_d_bits_data = 64'h0; // @[TLSerdes.scala:45:71] wire [63:0] _out_channels_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] out_channels_2_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _in_channels_WIRE_bits_data = 64'h0; // @[Bundles.scala:264:74] wire [31:0] io_ser_1_out_bits_flit = 32'h0; // @[TLSerdes.scala:39:9] wire [31:0] io_ser_3_out_bits_flit = 32'h0; // @[TLSerdes.scala:39:9] wire [31:0] _out_channels_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] out_channels_2_1_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _in_channels_WIRE_bits_address = 32'h0; // @[Bundles.scala:264:74] wire io_ser_1_out_ready = 1'h1; // @[TLSerdes.scala:39:9, :40:16, :59:50, :61:50] wire io_ser_3_out_ready = 1'h1; // @[TLSerdes.scala:39:9, :40:16, :59:50, :61:50] wire out_channels_0_1_ready = 1'h1; // @[TLSerdes.scala:39:9, :40:16, :59:50, :61:50] wire out_channels_2_1_ready = 1'h1; // @[TLSerdes.scala:39:9, :40:16, :59:50, :61:50] wire io_ser_0_out_valid = 1'h0; // @[TLSerdes.scala:39:9] wire io_ser_1_out_valid = 1'h0; // @[TLSerdes.scala:39:9] wire io_ser_3_out_valid = 1'h0; // @[TLSerdes.scala:39:9] wire managerNodeIn_a_ready; // @[MixedNode.scala:551:17] wire client_tl_a_ready = 1'h0; // @[TLSerdes.scala:45:71] wire client_tl_b_ready = 1'h0; // @[TLSerdes.scala:45:71] wire client_tl_b_valid = 1'h0; // @[TLSerdes.scala:45:71] wire client_tl_b_bits_corrupt = 1'h0; // @[TLSerdes.scala:45:71] wire client_tl_c_ready = 1'h0; // @[TLSerdes.scala:45:71] wire client_tl_d_ready = 1'h0; // @[TLSerdes.scala:45:71] wire client_tl_d_valid = 1'h0; // @[TLSerdes.scala:45:71] wire client_tl_d_bits_denied = 1'h0; // @[TLSerdes.scala:45:71] wire client_tl_d_bits_corrupt = 1'h0; // @[TLSerdes.scala:45:71] wire client_tl_e_ready = 1'h0; // @[TLSerdes.scala:45:71] wire _out_channels_WIRE_ready = 1'h0; // @[Bundles.scala:267:74] wire _out_channels_WIRE_valid = 1'h0; // @[Bundles.scala:267:74] wire _out_channels_WIRE_bits_sink = 1'h0; // @[Bundles.scala:267:74] wire out_channels_0_1_valid = 1'h0; // @[Bundles.scala:267:61] wire out_channels_0_1_bits_sink = 1'h0; // @[Bundles.scala:267:61] wire _out_channels_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:74] wire _out_channels_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:74] wire _out_channels_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:74] wire _out_channels_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire out_channels_2_1_valid = 1'h0; // @[Bundles.scala:265:61] wire out_channels_2_1_bits_source = 1'h0; // @[Bundles.scala:265:61] wire out_channels_2_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _in_channels_WIRE_ready = 1'h0; // @[Bundles.scala:264:74] wire _in_channels_WIRE_valid = 1'h0; // @[Bundles.scala:264:74] wire _in_channels_WIRE_bits_source = 1'h0; // @[Bundles.scala:264:74] wire _in_channels_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:264:74] wire in_channels_3_1_ready = 1'h0; // @[Bundles.scala:264:61] wire managerNodeIn_a_valid = auto_manager_in_a_valid_0; // @[TLSerdes.scala:39:9] wire [2:0] managerNodeIn_a_bits_opcode = auto_manager_in_a_bits_opcode_0; // @[TLSerdes.scala:39:9] wire [2:0] managerNodeIn_a_bits_param = auto_manager_in_a_bits_param_0; // @[TLSerdes.scala:39:9] wire [3:0] managerNodeIn_a_bits_size = auto_manager_in_a_bits_size_0; // @[TLSerdes.scala:39:9] wire managerNodeIn_a_bits_source = auto_manager_in_a_bits_source_0; // @[TLSerdes.scala:39:9] wire [31:0] managerNodeIn_a_bits_address = auto_manager_in_a_bits_address_0; // @[TLSerdes.scala:39:9] wire [7:0] managerNodeIn_a_bits_mask = auto_manager_in_a_bits_mask_0; // @[TLSerdes.scala:39:9] wire [63:0] managerNodeIn_a_bits_data = auto_manager_in_a_bits_data_0; // @[TLSerdes.scala:39:9] wire managerNodeIn_a_bits_corrupt = auto_manager_in_a_bits_corrupt_0; // @[TLSerdes.scala:39:9] wire managerNodeIn_d_ready = auto_manager_in_d_ready_0; // @[TLSerdes.scala:39:9] wire managerNodeIn_d_valid; // @[MixedNode.scala:551:17] wire [2:0] managerNodeIn_d_bits_opcode; // @[MixedNode.scala:551:17] wire [1:0] managerNodeIn_d_bits_param; // @[MixedNode.scala:551:17] wire [3:0] managerNodeIn_d_bits_size; // @[MixedNode.scala:551:17] wire managerNodeIn_d_bits_source; // @[MixedNode.scala:551:17] wire managerNodeIn_d_bits_sink; // @[MixedNode.scala:551:17] wire managerNodeIn_d_bits_denied; // @[MixedNode.scala:551:17] wire [63:0] managerNodeIn_d_bits_data; // @[MixedNode.scala:551:17] wire managerNodeIn_d_bits_corrupt; // @[MixedNode.scala:551:17] wire _io_debug_ser_busy_T_1; // @[package.scala:81:59] wire _io_debug_des_busy_T_3; // @[package.scala:81:59] wire auto_manager_in_a_ready_0; // @[TLSerdes.scala:39:9] wire [2:0] auto_manager_in_d_bits_opcode_0; // @[TLSerdes.scala:39:9] wire [1:0] auto_manager_in_d_bits_param_0; // @[TLSerdes.scala:39:9] wire [3:0] auto_manager_in_d_bits_size_0; // @[TLSerdes.scala:39:9] wire auto_manager_in_d_bits_source_0; // @[TLSerdes.scala:39:9] wire auto_manager_in_d_bits_sink_0; // @[TLSerdes.scala:39:9] wire auto_manager_in_d_bits_denied_0; // @[TLSerdes.scala:39:9] wire [63:0] auto_manager_in_d_bits_data_0; // @[TLSerdes.scala:39:9] wire auto_manager_in_d_bits_corrupt_0; // @[TLSerdes.scala:39:9] wire auto_manager_in_d_valid_0; // @[TLSerdes.scala:39:9] wire io_ser_0_in_ready_0; // @[TLSerdes.scala:39:9] wire [31:0] io_ser_0_out_bits_flit_0; // @[TLSerdes.scala:39:9] wire io_ser_1_in_ready_0; // @[TLSerdes.scala:39:9] wire io_ser_2_in_ready_0; // @[TLSerdes.scala:39:9] wire [31:0] io_ser_2_out_bits_flit_0; // @[TLSerdes.scala:39:9] wire io_ser_2_out_valid_0; // @[TLSerdes.scala:39:9] wire io_ser_3_in_ready_0; // @[TLSerdes.scala:39:9] wire io_ser_4_in_ready_0; // @[TLSerdes.scala:39:9] wire [31:0] io_ser_4_out_bits_flit_0; // @[TLSerdes.scala:39:9] wire io_ser_4_out_valid_0; // @[TLSerdes.scala:39:9] wire io_debug_ser_busy; // @[TLSerdes.scala:39:9] wire io_debug_des_busy; // @[TLSerdes.scala:39:9] assign auto_manager_in_a_ready_0 = managerNodeIn_a_ready; // @[TLSerdes.scala:39:9] assign auto_manager_in_d_valid_0 = managerNodeIn_d_valid; // @[TLSerdes.scala:39:9] assign auto_manager_in_d_bits_opcode_0 = managerNodeIn_d_bits_opcode; // @[TLSerdes.scala:39:9] assign auto_manager_in_d_bits_param_0 = managerNodeIn_d_bits_param; // @[TLSerdes.scala:39:9] assign auto_manager_in_d_bits_size_0 = managerNodeIn_d_bits_size; // @[TLSerdes.scala:39:9] assign auto_manager_in_d_bits_source_0 = managerNodeIn_d_bits_source; // @[TLSerdes.scala:39:9] assign auto_manager_in_d_bits_sink_0 = managerNodeIn_d_bits_sink; // @[TLSerdes.scala:39:9] assign auto_manager_in_d_bits_denied_0 = managerNodeIn_d_bits_denied; // @[TLSerdes.scala:39:9] assign auto_manager_in_d_bits_data_0 = managerNodeIn_d_bits_data; // @[TLSerdes.scala:39:9] assign auto_manager_in_d_bits_corrupt_0 = managerNodeIn_d_bits_corrupt; // @[TLSerdes.scala:39:9] wire [2:0] client_tl_a_bits_opcode; // @[TLSerdes.scala:45:71] wire [2:0] client_tl_a_bits_param; // @[TLSerdes.scala:45:71] wire [7:0] client_tl_a_bits_size; // @[TLSerdes.scala:45:71] wire [7:0] client_tl_a_bits_source; // @[TLSerdes.scala:45:71] wire [63:0] client_tl_a_bits_address; // @[TLSerdes.scala:45:71] wire [7:0] client_tl_a_bits_mask; // @[TLSerdes.scala:45:71] wire [63:0] client_tl_a_bits_data; // @[TLSerdes.scala:45:71] wire client_tl_a_bits_corrupt; // @[TLSerdes.scala:45:71] wire client_tl_a_valid; // @[TLSerdes.scala:45:71] wire [2:0] client_tl_c_bits_opcode; // @[TLSerdes.scala:45:71] wire [2:0] client_tl_c_bits_param; // @[TLSerdes.scala:45:71] wire [7:0] client_tl_c_bits_size; // @[TLSerdes.scala:45:71] wire [7:0] client_tl_c_bits_source; // @[TLSerdes.scala:45:71] wire [63:0] client_tl_c_bits_address; // @[TLSerdes.scala:45:71] wire [63:0] client_tl_c_bits_data; // @[TLSerdes.scala:45:71] wire client_tl_c_bits_corrupt; // @[TLSerdes.scala:45:71] wire client_tl_c_valid; // @[TLSerdes.scala:45:71] wire [7:0] client_tl_e_bits_sink; // @[TLSerdes.scala:45:71] wire client_tl_e_valid; // @[TLSerdes.scala:45:71] wire _io_debug_ser_busy_T; // @[package.scala:81:59] assign _io_debug_ser_busy_T_1 = _io_debug_ser_busy_T | _ser_4_io_busy; // @[TLSerdes.scala:69:23] assign io_debug_ser_busy = _io_debug_ser_busy_T_1; // @[TLSerdes.scala:39:9] wire [2:0] in_channels_3_1_bits_opcode; // @[Bundles.scala:264:61] wire [1:0] in_channels_3_1_bits_param; // @[Bundles.scala:264:61] wire [3:0] in_channels_3_1_bits_size; // @[Bundles.scala:264:61] wire in_channels_3_1_bits_source; // @[Bundles.scala:264:61] wire [31:0] in_channels_3_1_bits_address; // @[Bundles.scala:264:61] wire [7:0] in_channels_3_1_bits_mask; // @[Bundles.scala:264:61] wire [63:0] in_channels_3_1_bits_data; // @[Bundles.scala:264:61] wire in_channels_3_1_bits_corrupt; // @[Bundles.scala:264:61] wire in_channels_3_1_valid; // @[Bundles.scala:264:61] assign managerNodeIn_d_bits_size = _in_channels_1_2_io_protocol_bits_size[3:0]; // @[TLSerdes.scala:79:28, :85:9] assign managerNodeIn_d_bits_source = _in_channels_1_2_io_protocol_bits_source[0]; // @[TLSerdes.scala:79:28, :85:9] assign managerNodeIn_d_bits_sink = _in_channels_1_2_io_protocol_bits_sink[0]; // @[TLSerdes.scala:79:28, :85:9] assign in_channels_3_1_bits_size = _in_channels_3_2_io_protocol_bits_size[3:0]; // @[TLSerdes.scala:81:28, :85:9] assign in_channels_3_1_bits_source = _in_channels_3_2_io_protocol_bits_source[0]; // @[TLSerdes.scala:81:28, :85:9] assign in_channels_3_1_bits_address = _in_channels_3_2_io_protocol_bits_address[31:0]; // @[TLSerdes.scala:81:28, :85:9] wire _io_debug_des_busy_T; // @[package.scala:81:59] wire _io_debug_des_busy_T_1 = _io_debug_des_busy_T | _des_2_io_busy; // @[TLSerdes.scala:86:23] wire _io_debug_des_busy_T_2 = _io_debug_des_busy_T_1 | _des_3_io_busy; // @[TLSerdes.scala:86:23] assign _io_debug_des_busy_T_3 = _io_debug_des_busy_T_2 | _des_4_io_busy; // @[TLSerdes.scala:86:23] assign io_debug_des_busy = _io_debug_des_busy_T_3; // @[TLSerdes.scala:39:9] TLMonitor_46 monitor ( // @[Nodes.scala:27:25] .clock (clock), .reset (reset), .io_in_a_ready (managerNodeIn_a_ready), // @[MixedNode.scala:551:17] .io_in_a_valid (managerNodeIn_a_valid), // @[MixedNode.scala:551:17] .io_in_a_bits_opcode (managerNodeIn_a_bits_opcode), // @[MixedNode.scala:551:17] .io_in_a_bits_param (managerNodeIn_a_bits_param), // @[MixedNode.scala:551:17] .io_in_a_bits_size (managerNodeIn_a_bits_size), // @[MixedNode.scala:551:17] .io_in_a_bits_source (managerNodeIn_a_bits_source), // @[MixedNode.scala:551:17] .io_in_a_bits_address (managerNodeIn_a_bits_address), // @[MixedNode.scala:551:17] .io_in_a_bits_mask (managerNodeIn_a_bits_mask), // @[MixedNode.scala:551:17] .io_in_a_bits_data (managerNodeIn_a_bits_data), // @[MixedNode.scala:551:17] .io_in_a_bits_corrupt (managerNodeIn_a_bits_corrupt), // @[MixedNode.scala:551:17] .io_in_d_ready (managerNodeIn_d_ready), // @[MixedNode.scala:551:17] .io_in_d_valid (managerNodeIn_d_valid), // @[MixedNode.scala:551:17] .io_in_d_bits_opcode (managerNodeIn_d_bits_opcode), // @[MixedNode.scala:551:17] .io_in_d_bits_param (managerNodeIn_d_bits_param), // @[MixedNode.scala:551:17] .io_in_d_bits_size (managerNodeIn_d_bits_size), // @[MixedNode.scala:551:17] .io_in_d_bits_source (managerNodeIn_d_bits_source), // @[MixedNode.scala:551:17] .io_in_d_bits_sink (managerNodeIn_d_bits_sink), // @[MixedNode.scala:551:17] .io_in_d_bits_denied (managerNodeIn_d_bits_denied), // @[MixedNode.scala:551:17] .io_in_d_bits_data (managerNodeIn_d_bits_data), // @[MixedNode.scala:551:17] .io_in_d_bits_corrupt (managerNodeIn_d_bits_corrupt) // @[MixedNode.scala:551:17] ); // @[Nodes.scala:27:25] TLEToBeat_SerialRAM_a64d64s8k8z8c out_channels_0_2 ( // @[TLSerdes.scala:59:50] .clock (clock), .reset (reset), .io_beat_ready (_ser_0_io_in_ready), // @[TLSerdes.scala:69:23] .io_beat_bits_head (_out_channels_0_2_io_beat_bits_head) ); // @[TLSerdes.scala:59:50] TLCToBeat_SerialRAM_a64d64s8k8z8c out_channels_2_2 ( // @[TLSerdes.scala:61:50] .clock (clock), .reset (reset), .io_beat_ready (_ser_2_io_in_ready), // @[TLSerdes.scala:69:23] .io_beat_bits_head (_out_channels_2_2_io_beat_bits_head) ); // @[TLSerdes.scala:61:50] TLAToBeat_SerialRAM_a64d64s8k8z8c out_channels_4_2 ( // @[TLSerdes.scala:63:50] .clock (clock), .reset (reset), .io_protocol_ready (managerNodeIn_a_ready), .io_protocol_valid (managerNodeIn_a_valid), // @[MixedNode.scala:551:17] .io_protocol_bits_opcode (managerNodeIn_a_bits_opcode), // @[MixedNode.scala:551:17] .io_protocol_bits_param (managerNodeIn_a_bits_param), // @[MixedNode.scala:551:17] .io_protocol_bits_size ({4'h0, managerNodeIn_a_bits_size}), // @[TLSerdes.scala:68:21] .io_protocol_bits_source ({7'h0, managerNodeIn_a_bits_source}), // @[TLSerdes.scala:68:21] .io_protocol_bits_address ({32'h0, managerNodeIn_a_bits_address}), // @[TLSerdes.scala:68:21] .io_protocol_bits_mask (managerNodeIn_a_bits_mask), // @[MixedNode.scala:551:17] .io_protocol_bits_data (managerNodeIn_a_bits_data), // @[MixedNode.scala:551:17] .io_protocol_bits_corrupt (managerNodeIn_a_bits_corrupt), // @[MixedNode.scala:551:17] .io_beat_ready (_ser_4_io_in_ready), // @[TLSerdes.scala:69:23] .io_beat_valid (_out_channels_4_2_io_beat_valid), .io_beat_bits_payload (_out_channels_4_2_io_beat_bits_payload), .io_beat_bits_head (_out_channels_4_2_io_beat_bits_head), .io_beat_bits_tail (_out_channels_4_2_io_beat_bits_tail) ); // @[TLSerdes.scala:63:50] GenericSerializer_TLBeatw10_f32 ser_0 ( // @[TLSerdes.scala:69:23] .clock (clock), .reset (reset), .io_in_ready (_ser_0_io_in_ready), .io_in_bits_head (_out_channels_0_2_io_beat_bits_head), // @[TLSerdes.scala:59:50] .io_out_ready (io_ser_0_out_ready_0), // @[TLSerdes.scala:39:9] .io_out_bits_flit (io_ser_0_out_bits_flit_0) ); // @[TLSerdes.scala:69:23] GenericSerializer_TLBeatw88_f32 ser_2 ( // @[TLSerdes.scala:69:23] .clock (clock), .reset (reset), .io_in_ready (_ser_2_io_in_ready), .io_in_bits_head (_out_channels_2_2_io_beat_bits_head), // @[TLSerdes.scala:61:50] .io_out_ready (io_ser_2_out_ready_0), // @[TLSerdes.scala:39:9] .io_out_valid (io_ser_2_out_valid_0), .io_out_bits_flit (io_ser_2_out_bits_flit_0), .io_busy (_io_debug_ser_busy_T) ); // @[TLSerdes.scala:69:23] GenericSerializer_TLBeatw88_f32_1 ser_4 ( // @[TLSerdes.scala:69:23] .clock (clock), .reset (reset), .io_in_ready (_ser_4_io_in_ready), .io_in_valid (_out_channels_4_2_io_beat_valid), // @[TLSerdes.scala:63:50] .io_in_bits_payload (_out_channels_4_2_io_beat_bits_payload), // @[TLSerdes.scala:63:50] .io_in_bits_head (_out_channels_4_2_io_beat_bits_head), // @[TLSerdes.scala:63:50] .io_in_bits_tail (_out_channels_4_2_io_beat_bits_tail), // @[TLSerdes.scala:63:50] .io_out_ready (io_ser_4_out_ready_0), // @[TLSerdes.scala:39:9] .io_out_valid (io_ser_4_out_valid_0), .io_out_bits_flit (io_ser_4_out_bits_flit_0), .io_busy (_ser_4_io_busy) ); // @[TLSerdes.scala:69:23] TLEFromBeat_SerialRAM_a64d64s8k8z8c in_channels_0_2 ( // @[TLSerdes.scala:78:28] .clock (clock), .reset (reset), .io_protocol_valid (client_tl_e_valid), .io_protocol_bits_sink (client_tl_e_bits_sink), .io_beat_ready (_in_channels_0_2_io_beat_ready), .io_beat_valid (_des_0_io_out_valid), // @[TLSerdes.scala:86:23] .io_beat_bits_payload (_des_0_io_out_bits_payload), // @[TLSerdes.scala:86:23] .io_beat_bits_head (_des_0_io_out_bits_head), // @[TLSerdes.scala:86:23] .io_beat_bits_tail (_des_0_io_out_bits_tail) // @[TLSerdes.scala:86:23] ); // @[TLSerdes.scala:78:28] TLDFromBeat_SerialRAM_a64d64s8k8z8c in_channels_1_2 ( // @[TLSerdes.scala:79:28] .clock (clock), .reset (reset), .io_protocol_ready (managerNodeIn_d_ready), // @[MixedNode.scala:551:17] .io_protocol_valid (managerNodeIn_d_valid), .io_protocol_bits_opcode (managerNodeIn_d_bits_opcode), .io_protocol_bits_param (managerNodeIn_d_bits_param), .io_protocol_bits_size (_in_channels_1_2_io_protocol_bits_size), .io_protocol_bits_source (_in_channels_1_2_io_protocol_bits_source), .io_protocol_bits_sink (_in_channels_1_2_io_protocol_bits_sink), .io_protocol_bits_denied (managerNodeIn_d_bits_denied), .io_protocol_bits_data (managerNodeIn_d_bits_data), .io_protocol_bits_corrupt (managerNodeIn_d_bits_corrupt), .io_beat_ready (_in_channels_1_2_io_beat_ready), .io_beat_valid (_des_1_io_out_valid), // @[TLSerdes.scala:86:23] .io_beat_bits_payload (_des_1_io_out_bits_payload), // @[TLSerdes.scala:86:23] .io_beat_bits_head (_des_1_io_out_bits_head), // @[TLSerdes.scala:86:23] .io_beat_bits_tail (_des_1_io_out_bits_tail) // @[TLSerdes.scala:86:23] ); // @[TLSerdes.scala:79:28] TLCFromBeat_SerialRAM_a64d64s8k8z8c in_channels_2_2 ( // @[TLSerdes.scala:80:28] .clock (clock), .reset (reset), .io_protocol_valid (client_tl_c_valid), .io_protocol_bits_opcode (client_tl_c_bits_opcode), .io_protocol_bits_param (client_tl_c_bits_param), .io_protocol_bits_size (client_tl_c_bits_size), .io_protocol_bits_source (client_tl_c_bits_source), .io_protocol_bits_address (client_tl_c_bits_address), .io_protocol_bits_data (client_tl_c_bits_data), .io_protocol_bits_corrupt (client_tl_c_bits_corrupt), .io_beat_ready (_in_channels_2_2_io_beat_ready), .io_beat_valid (_des_2_io_out_valid), // @[TLSerdes.scala:86:23] .io_beat_bits_payload (_des_2_io_out_bits_payload), // @[TLSerdes.scala:86:23] .io_beat_bits_head (_des_2_io_out_bits_head), // @[TLSerdes.scala:86:23] .io_beat_bits_tail (_des_2_io_out_bits_tail) // @[TLSerdes.scala:86:23] ); // @[TLSerdes.scala:80:28] TLBFromBeat_SerialRAM_a64d64s8k8z8c in_channels_3_2 ( // @[TLSerdes.scala:81:28] .clock (clock), .reset (reset), .io_protocol_valid (in_channels_3_1_valid), .io_protocol_bits_opcode (in_channels_3_1_bits_opcode), .io_protocol_bits_param (in_channels_3_1_bits_param), .io_protocol_bits_size (_in_channels_3_2_io_protocol_bits_size), .io_protocol_bits_source (_in_channels_3_2_io_protocol_bits_source), .io_protocol_bits_address (_in_channels_3_2_io_protocol_bits_address), .io_protocol_bits_mask (in_channels_3_1_bits_mask), .io_protocol_bits_data (in_channels_3_1_bits_data), .io_protocol_bits_corrupt (in_channels_3_1_bits_corrupt), .io_beat_ready (_in_channels_3_2_io_beat_ready), .io_beat_valid (_des_3_io_out_valid), // @[TLSerdes.scala:86:23] .io_beat_bits_payload (_des_3_io_out_bits_payload), // @[TLSerdes.scala:86:23] .io_beat_bits_head (_des_3_io_out_bits_head), // @[TLSerdes.scala:86:23] .io_beat_bits_tail (_des_3_io_out_bits_tail) // @[TLSerdes.scala:86:23] ); // @[TLSerdes.scala:81:28] TLAFromBeat_SerialRAM_a64d64s8k8z8c in_channels_4_2 ( // @[TLSerdes.scala:82:28] .clock (clock), .reset (reset), .io_protocol_valid (client_tl_a_valid), .io_protocol_bits_opcode (client_tl_a_bits_opcode), .io_protocol_bits_param (client_tl_a_bits_param), .io_protocol_bits_size (client_tl_a_bits_size), .io_protocol_bits_source (client_tl_a_bits_source), .io_protocol_bits_address (client_tl_a_bits_address), .io_protocol_bits_mask (client_tl_a_bits_mask), .io_protocol_bits_data (client_tl_a_bits_data), .io_protocol_bits_corrupt (client_tl_a_bits_corrupt), .io_beat_ready (_in_channels_4_2_io_beat_ready), .io_beat_valid (_des_4_io_out_valid), // @[TLSerdes.scala:86:23] .io_beat_bits_payload (_des_4_io_out_bits_payload), // @[TLSerdes.scala:86:23] .io_beat_bits_head (_des_4_io_out_bits_head), // @[TLSerdes.scala:86:23] .io_beat_bits_tail (_des_4_io_out_bits_tail) // @[TLSerdes.scala:86:23] ); // @[TLSerdes.scala:82:28] GenericDeserializer_TLBeatw10_f32_1 des_0 ( // @[TLSerdes.scala:86:23] .clock (clock), .reset (reset), .io_in_ready (io_ser_0_in_ready_0), .io_in_valid (io_ser_0_in_valid_0), // @[TLSerdes.scala:39:9] .io_in_bits_flit (io_ser_0_in_bits_flit_0), // @[TLSerdes.scala:39:9] .io_out_ready (_in_channels_0_2_io_beat_ready), // @[TLSerdes.scala:78:28] .io_out_valid (_des_0_io_out_valid), .io_out_bits_payload (_des_0_io_out_bits_payload), .io_out_bits_head (_des_0_io_out_bits_head), .io_out_bits_tail (_des_0_io_out_bits_tail) ); // @[TLSerdes.scala:86:23] GenericDeserializer_TLBeatw67_f32_1 des_1 ( // @[TLSerdes.scala:86:23] .clock (clock), .reset (reset), .io_in_ready (io_ser_1_in_ready_0), .io_in_valid (io_ser_1_in_valid_0), // @[TLSerdes.scala:39:9] .io_in_bits_flit (io_ser_1_in_bits_flit_0), // @[TLSerdes.scala:39:9] .io_out_ready (_in_channels_1_2_io_beat_ready), // @[TLSerdes.scala:79:28] .io_out_valid (_des_1_io_out_valid), .io_out_bits_payload (_des_1_io_out_bits_payload), .io_out_bits_head (_des_1_io_out_bits_head), .io_out_bits_tail (_des_1_io_out_bits_tail), .io_busy (_io_debug_des_busy_T) ); // @[TLSerdes.scala:86:23] GenericDeserializer_TLBeatw88_f32_2 des_2 ( // @[TLSerdes.scala:86:23] .clock (clock), .reset (reset), .io_in_ready (io_ser_2_in_ready_0), .io_in_valid (io_ser_2_in_valid_0), // @[TLSerdes.scala:39:9] .io_in_bits_flit (io_ser_2_in_bits_flit_0), // @[TLSerdes.scala:39:9] .io_out_ready (_in_channels_2_2_io_beat_ready), // @[TLSerdes.scala:80:28] .io_out_valid (_des_2_io_out_valid), .io_out_bits_payload (_des_2_io_out_bits_payload), .io_out_bits_head (_des_2_io_out_bits_head), .io_out_bits_tail (_des_2_io_out_bits_tail), .io_busy (_des_2_io_busy) ); // @[TLSerdes.scala:86:23] GenericDeserializer_TLBeatw87_f32_1 des_3 ( // @[TLSerdes.scala:86:23] .clock (clock), .reset (reset), .io_in_ready (io_ser_3_in_ready_0), .io_in_valid (io_ser_3_in_valid_0), // @[TLSerdes.scala:39:9] .io_in_bits_flit (io_ser_3_in_bits_flit_0), // @[TLSerdes.scala:39:9] .io_out_ready (_in_channels_3_2_io_beat_ready), // @[TLSerdes.scala:81:28] .io_out_valid (_des_3_io_out_valid), .io_out_bits_payload (_des_3_io_out_bits_payload), .io_out_bits_head (_des_3_io_out_bits_head), .io_out_bits_tail (_des_3_io_out_bits_tail), .io_busy (_des_3_io_busy) ); // @[TLSerdes.scala:86:23] GenericDeserializer_TLBeatw88_f32_3 des_4 ( // @[TLSerdes.scala:86:23] .clock (clock), .reset (reset), .io_in_ready (io_ser_4_in_ready_0), .io_in_valid (io_ser_4_in_valid_0), // @[TLSerdes.scala:39:9] .io_in_bits_flit (io_ser_4_in_bits_flit_0), // @[TLSerdes.scala:39:9] .io_out_ready (_in_channels_4_2_io_beat_ready), // @[TLSerdes.scala:82:28] .io_out_valid (_des_4_io_out_valid), .io_out_bits_payload (_des_4_io_out_bits_payload), .io_out_bits_head (_des_4_io_out_bits_head), .io_out_bits_tail (_des_4_io_out_bits_tail), .io_busy (_des_4_io_busy) ); // @[TLSerdes.scala:86:23] assign auto_manager_in_a_ready = auto_manager_in_a_ready_0; // @[TLSerdes.scala:39:9] assign auto_manager_in_d_valid = auto_manager_in_d_valid_0; // @[TLSerdes.scala:39:9] assign auto_manager_in_d_bits_opcode = auto_manager_in_d_bits_opcode_0; // @[TLSerdes.scala:39:9] assign auto_manager_in_d_bits_param = auto_manager_in_d_bits_param_0; // @[TLSerdes.scala:39:9] assign auto_manager_in_d_bits_size = auto_manager_in_d_bits_size_0; // @[TLSerdes.scala:39:9] assign auto_manager_in_d_bits_source = auto_manager_in_d_bits_source_0; // @[TLSerdes.scala:39:9] assign auto_manager_in_d_bits_sink = auto_manager_in_d_bits_sink_0; // @[TLSerdes.scala:39:9] assign auto_manager_in_d_bits_denied = auto_manager_in_d_bits_denied_0; // @[TLSerdes.scala:39:9] assign auto_manager_in_d_bits_data = auto_manager_in_d_bits_data_0; // @[TLSerdes.scala:39:9] assign auto_manager_in_d_bits_corrupt = auto_manager_in_d_bits_corrupt_0; // @[TLSerdes.scala:39:9] assign io_ser_0_in_ready = io_ser_0_in_ready_0; // @[TLSerdes.scala:39:9] assign io_ser_0_out_bits_flit = io_ser_0_out_bits_flit_0; // @[TLSerdes.scala:39:9] assign io_ser_1_in_ready = io_ser_1_in_ready_0; // @[TLSerdes.scala:39:9] assign io_ser_2_in_ready = io_ser_2_in_ready_0; // @[TLSerdes.scala:39:9] assign io_ser_2_out_valid = io_ser_2_out_valid_0; // @[TLSerdes.scala:39:9] assign io_ser_2_out_bits_flit = io_ser_2_out_bits_flit_0; // @[TLSerdes.scala:39:9] assign io_ser_3_in_ready = io_ser_3_in_ready_0; // @[TLSerdes.scala:39:9] assign io_ser_4_in_ready = io_ser_4_in_ready_0; // @[TLSerdes.scala:39:9] assign io_ser_4_out_valid = io_ser_4_out_valid_0; // @[TLSerdes.scala:39:9] assign io_ser_4_out_bits_flit = io_ser_4_out_bits_flit_0; // @[TLSerdes.scala:39:9] endmodule
Generate the Verilog code corresponding to the following Chisel files. File RecFNToRecFN.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import consts._ class RecFNToRecFN( inExpWidth: Int, inSigWidth: Int, outExpWidth: Int, outSigWidth: Int) extends chisel3.RawModule { val io = IO(new Bundle { val in = Input(Bits((inExpWidth + inSigWidth + 1).W)) val roundingMode = Input(UInt(3.W)) val detectTininess = Input(UInt(1.W)) val out = Output(Bits((outExpWidth + outSigWidth + 1).W)) val exceptionFlags = Output(Bits(5.W)) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val rawIn = rawFloatFromRecFN(inExpWidth, inSigWidth, io.in); if ((inExpWidth == outExpWidth) && (inSigWidth <= outSigWidth)) { //-------------------------------------------------------------------- //-------------------------------------------------------------------- io.out := io.in<<(outSigWidth - inSigWidth) io.exceptionFlags := isSigNaNRawFloat(rawIn) ## 0.U(4.W) } else { //-------------------------------------------------------------------- //-------------------------------------------------------------------- val roundAnyRawFNToRecFN = Module( new RoundAnyRawFNToRecFN( inExpWidth, inSigWidth, outExpWidth, outSigWidth, flRoundOpt_sigMSBitAlwaysZero )) roundAnyRawFNToRecFN.io.invalidExc := isSigNaNRawFloat(rawIn) roundAnyRawFNToRecFN.io.infiniteExc := false.B roundAnyRawFNToRecFN.io.in := rawIn roundAnyRawFNToRecFN.io.roundingMode := io.roundingMode roundAnyRawFNToRecFN.io.detectTininess := io.detectTininess io.out := roundAnyRawFNToRecFN.io.out io.exceptionFlags := roundAnyRawFNToRecFN.io.exceptionFlags } } File rawFloatFromRecFN.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import chisel3.util._ /*---------------------------------------------------------------------------- | In the result, no more than one of 'isNaN', 'isInf', and 'isZero' will be | set. *----------------------------------------------------------------------------*/ object rawFloatFromRecFN { def apply(expWidth: Int, sigWidth: Int, in: Bits): RawFloat = { val exp = in(expWidth + sigWidth - 1, sigWidth - 1) val isZero = exp(expWidth, expWidth - 2) === 0.U val isSpecial = exp(expWidth, expWidth - 1) === 3.U val out = Wire(new RawFloat(expWidth, sigWidth)) out.isNaN := isSpecial && exp(expWidth - 2) out.isInf := isSpecial && ! exp(expWidth - 2) out.isZero := isZero out.sign := in(expWidth + sigWidth) out.sExp := exp.zext out.sig := 0.U(1.W) ## ! isZero ## in(sigWidth - 2, 0) out } }
module RecFNToRecFN_78( // @[RecFNToRecFN.scala:44:5] input [32:0] io_in, // @[RecFNToRecFN.scala:48:16] output [32:0] io_out // @[RecFNToRecFN.scala:48:16] ); wire [32:0] io_in_0 = io_in; // @[RecFNToRecFN.scala:44:5] wire io_detectTininess = 1'h1; // @[RecFNToRecFN.scala:44:5, :48:16] wire [2:0] io_roundingMode = 3'h0; // @[RecFNToRecFN.scala:44:5, :48:16] wire [32:0] _io_out_T = io_in_0; // @[RecFNToRecFN.scala:44:5, :64:35] wire [4:0] _io_exceptionFlags_T_3; // @[RecFNToRecFN.scala:65:54] wire [32:0] io_out_0; // @[RecFNToRecFN.scala:44:5] wire [4:0] io_exceptionFlags; // @[RecFNToRecFN.scala:44:5] wire [8:0] rawIn_exp = io_in_0[31:23]; // @[rawFloatFromRecFN.scala:51:21] wire [2:0] _rawIn_isZero_T = rawIn_exp[8:6]; // @[rawFloatFromRecFN.scala:51:21, :52:28] wire rawIn_isZero = _rawIn_isZero_T == 3'h0; // @[rawFloatFromRecFN.scala:52:{28,53}] wire rawIn_isZero_0 = rawIn_isZero; // @[rawFloatFromRecFN.scala:52:53, :55:23] wire [1:0] _rawIn_isSpecial_T = rawIn_exp[8:7]; // @[rawFloatFromRecFN.scala:51:21, :53:28] wire rawIn_isSpecial = &_rawIn_isSpecial_T; // @[rawFloatFromRecFN.scala:53:{28,53}] wire _rawIn_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:56:33] wire _rawIn_out_isInf_T_2; // @[rawFloatFromRecFN.scala:57:33] wire _rawIn_out_sign_T; // @[rawFloatFromRecFN.scala:59:25] wire [9:0] _rawIn_out_sExp_T; // @[rawFloatFromRecFN.scala:60:27] wire [24:0] _rawIn_out_sig_T_3; // @[rawFloatFromRecFN.scala:61:44] wire rawIn_isNaN; // @[rawFloatFromRecFN.scala:55:23] wire rawIn_isInf; // @[rawFloatFromRecFN.scala:55:23] wire rawIn_sign; // @[rawFloatFromRecFN.scala:55:23] wire [9:0] rawIn_sExp; // @[rawFloatFromRecFN.scala:55:23] wire [24:0] rawIn_sig; // @[rawFloatFromRecFN.scala:55:23] wire _rawIn_out_isNaN_T = rawIn_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41] wire _rawIn_out_isInf_T = rawIn_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41, :57:41] assign _rawIn_out_isNaN_T_1 = rawIn_isSpecial & _rawIn_out_isNaN_T; // @[rawFloatFromRecFN.scala:53:53, :56:{33,41}] assign rawIn_isNaN = _rawIn_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:55:23, :56:33] wire _rawIn_out_isInf_T_1 = ~_rawIn_out_isInf_T; // @[rawFloatFromRecFN.scala:57:{36,41}] assign _rawIn_out_isInf_T_2 = rawIn_isSpecial & _rawIn_out_isInf_T_1; // @[rawFloatFromRecFN.scala:53:53, :57:{33,36}] assign rawIn_isInf = _rawIn_out_isInf_T_2; // @[rawFloatFromRecFN.scala:55:23, :57:33] assign _rawIn_out_sign_T = io_in_0[32]; // @[rawFloatFromRecFN.scala:59:25] assign rawIn_sign = _rawIn_out_sign_T; // @[rawFloatFromRecFN.scala:55:23, :59:25] assign _rawIn_out_sExp_T = {1'h0, rawIn_exp}; // @[rawFloatFromRecFN.scala:51:21, :60:27] assign rawIn_sExp = _rawIn_out_sExp_T; // @[rawFloatFromRecFN.scala:55:23, :60:27] wire _rawIn_out_sig_T = ~rawIn_isZero; // @[rawFloatFromRecFN.scala:52:53, :61:35] wire [1:0] _rawIn_out_sig_T_1 = {1'h0, _rawIn_out_sig_T}; // @[rawFloatFromRecFN.scala:61:{32,35}] wire [22:0] _rawIn_out_sig_T_2 = io_in_0[22:0]; // @[rawFloatFromRecFN.scala:61:49] assign _rawIn_out_sig_T_3 = {_rawIn_out_sig_T_1, _rawIn_out_sig_T_2}; // @[rawFloatFromRecFN.scala:61:{32,44,49}] assign rawIn_sig = _rawIn_out_sig_T_3; // @[rawFloatFromRecFN.scala:55:23, :61:44] assign io_out_0 = _io_out_T; // @[RecFNToRecFN.scala:44:5, :64:35] wire _io_exceptionFlags_T = rawIn_sig[22]; // @[rawFloatFromRecFN.scala:55:23] wire _io_exceptionFlags_T_1 = ~_io_exceptionFlags_T; // @[common.scala:82:{49,56}] wire _io_exceptionFlags_T_2 = rawIn_isNaN & _io_exceptionFlags_T_1; // @[rawFloatFromRecFN.scala:55:23] assign _io_exceptionFlags_T_3 = {_io_exceptionFlags_T_2, 4'h0}; // @[common.scala:82:46] assign io_exceptionFlags = _io_exceptionFlags_T_3; // @[RecFNToRecFN.scala:44:5, :65:54] assign io_out = io_out_0; // @[RecFNToRecFN.scala:44:5] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Periphery.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.devices.debug import chisel3._ import chisel3.experimental.{noPrefix, IntParam} import chisel3.util._ import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy.lazymodule._ import freechips.rocketchip.amba.apb.{APBBundle, APBBundleParameters, APBMasterNode, APBMasterParameters, APBMasterPortParameters} import freechips.rocketchip.interrupts.{IntSyncXbar, NullIntSyncSource} import freechips.rocketchip.jtag.JTAGIO import freechips.rocketchip.prci.{ClockSinkNode, ClockSinkParameters} import freechips.rocketchip.subsystem.{BaseSubsystem, CBUS, FBUS, ResetSynchronous, SubsystemResetSchemeKey, TLBusWrapperLocation} import freechips.rocketchip.tilelink.{TLFragmenter, TLWidthWidget} import freechips.rocketchip.util.{AsyncResetSynchronizerShiftReg, CanHavePSDTestModeIO, ClockGate, PSDTestMode, PlusArg, ResetSynchronizerShiftReg} import freechips.rocketchip.util.BooleanToAugmentedBoolean /** Protocols used for communicating with external debugging tools */ sealed trait DebugExportProtocol case object DMI extends DebugExportProtocol case object JTAG extends DebugExportProtocol case object CJTAG extends DebugExportProtocol case object APB extends DebugExportProtocol /** Options for possible debug interfaces */ case class DebugAttachParams( protocols: Set[DebugExportProtocol] = Set(DMI), externalDisable: Boolean = false, masterWhere: TLBusWrapperLocation = FBUS, slaveWhere: TLBusWrapperLocation = CBUS ) { def dmi = protocols.contains(DMI) def jtag = protocols.contains(JTAG) def cjtag = protocols.contains(CJTAG) def apb = protocols.contains(APB) } case object ExportDebug extends Field(DebugAttachParams()) class ClockedAPBBundle(params: APBBundleParameters) extends APBBundle(params) { val clock = Clock() val reset = Reset() } class DebugIO(implicit val p: Parameters) extends Bundle { val clock = Input(Clock()) val reset = Input(Reset()) val clockeddmi = p(ExportDebug).dmi.option(Flipped(new ClockedDMIIO())) val systemjtag = p(ExportDebug).jtag.option(new SystemJTAGIO) val apb = p(ExportDebug).apb.option(Flipped(new ClockedAPBBundle(APBBundleParameters(addrBits=12, dataBits=32)))) //------------------------------ val ndreset = Output(Bool()) val dmactive = Output(Bool()) val dmactiveAck = Input(Bool()) val extTrigger = (p(DebugModuleKey).get.nExtTriggers > 0).option(new DebugExtTriggerIO()) val disableDebug = p(ExportDebug).externalDisable.option(Input(Bool())) } class PSDIO(implicit val p: Parameters) extends Bundle with CanHavePSDTestModeIO { } class ResetCtrlIO(val nComponents: Int)(implicit val p: Parameters) extends Bundle { val hartResetReq = (p(DebugModuleKey).exists(x=>x.hasHartResets)).option(Output(Vec(nComponents, Bool()))) val hartIsInReset = Input(Vec(nComponents, Bool())) } /** Either adds a JTAG DTM to system, and exports a JTAG interface, * or exports the Debug Module Interface (DMI), or exports and hooks up APB, * based on a global parameter. */ trait HasPeripheryDebug { this: BaseSubsystem => private lazy val tlbus = locateTLBusWrapper(p(ExportDebug).slaveWhere) lazy val debugCustomXbarOpt = p(DebugModuleKey).map(params => LazyModule( new DebugCustomXbar(outputRequiresInput = false))) lazy val apbDebugNodeOpt = p(ExportDebug).apb.option(APBMasterNode(Seq(APBMasterPortParameters(Seq(APBMasterParameters("debugAPB")))))) val debugTLDomainOpt = p(DebugModuleKey).map { _ => val domain = ClockSinkNode(Seq(ClockSinkParameters())) domain := tlbus.fixedClockNode domain } lazy val debugOpt = p(DebugModuleKey).map { params => val tlDM = LazyModule(new TLDebugModule(tlbus.beatBytes)) tlDM.node := tlbus.coupleTo("debug"){ TLFragmenter(tlbus.beatBytes, tlbus.blockBytes, nameSuffix = Some("Debug")) := _ } tlDM.dmInner.dmInner.customNode := debugCustomXbarOpt.get.node (apbDebugNodeOpt zip tlDM.apbNodeOpt) foreach { case (master, slave) => slave := master } tlDM.dmInner.dmInner.sb2tlOpt.foreach { sb2tl => locateTLBusWrapper(p(ExportDebug).masterWhere).coupleFrom("debug_sb") { _ := TLWidthWidget(1) := sb2tl.node } } tlDM } val debugNode = debugOpt.map(_.intnode) val psd = InModuleBody { val psd = IO(new PSDIO) psd } val resetctrl = InModuleBody { debugOpt.map { debug => debug.module.io.tl_reset := debugTLDomainOpt.get.in.head._1.reset debug.module.io.tl_clock := debugTLDomainOpt.get.in.head._1.clock val resetctrl = IO(new ResetCtrlIO(debug.dmOuter.dmOuter.intnode.edges.out.size)) debug.module.io.hartIsInReset := resetctrl.hartIsInReset resetctrl.hartResetReq.foreach { rcio => debug.module.io.hartResetReq.foreach { rcdm => rcio := rcdm }} resetctrl } } // noPrefix is workaround https://github.com/freechipsproject/chisel3/issues/1603 val debug = InModuleBody { noPrefix(debugOpt.map { debugmod => val debug = IO(new DebugIO) require(!(debug.clockeddmi.isDefined && debug.systemjtag.isDefined), "You cannot have both DMI and JTAG interface in HasPeripheryDebug") require(!(debug.clockeddmi.isDefined && debug.apb.isDefined), "You cannot have both DMI and APB interface in HasPeripheryDebug") require(!(debug.systemjtag.isDefined && debug.apb.isDefined), "You cannot have both APB and JTAG interface in HasPeripheryDebug") debug.clockeddmi.foreach { dbg => debugmod.module.io.dmi.get <> dbg } (debug.apb zip apbDebugNodeOpt zip debugmod.module.io.apb_clock zip debugmod.module.io.apb_reset).foreach { case (((io, apb), c ), r) => apb.out(0)._1 <> io c:= io.clock r:= io.reset } debugmod.module.io.debug_reset := debug.reset debugmod.module.io.debug_clock := debug.clock debug.ndreset := debugmod.module.io.ctrl.ndreset debug.dmactive := debugmod.module.io.ctrl.dmactive debugmod.module.io.ctrl.dmactiveAck := debug.dmactiveAck debug.extTrigger.foreach { x => debugmod.module.io.extTrigger.foreach {y => x <> y}} // TODO in inheriting traits: Set this to something meaningful, e.g. "component is in reset or powered down" debugmod.module.io.ctrl.debugUnavail.foreach { _ := false.B } debug })} val dtm = InModuleBody { debug.flatMap(_.systemjtag.map(instantiateJtagDTM(_))) } def instantiateJtagDTM(sj: SystemJTAGIO): DebugTransportModuleJTAG = { val dtm = Module(new DebugTransportModuleJTAG(p(DebugModuleKey).get.nDMIAddrSize, p(JtagDTMKey))) dtm.io.jtag <> sj.jtag debug.map(_.disableDebug.foreach { x => dtm.io.jtag.TMS := sj.jtag.TMS | x }) // force TMS high when debug is disabled dtm.io.jtag_clock := sj.jtag.TCK dtm.io.jtag_reset := sj.reset dtm.io.jtag_mfr_id := sj.mfr_id dtm.io.jtag_part_number := sj.part_number dtm.io.jtag_version := sj.version dtm.rf_reset := sj.reset debugOpt.map { outerdebug => outerdebug.module.io.dmi.get.dmi <> dtm.io.dmi outerdebug.module.io.dmi.get.dmiClock := sj.jtag.TCK outerdebug.module.io.dmi.get.dmiReset := sj.reset } dtm } } /** BlackBox to export DMI interface */ class SimDTM(implicit p: Parameters) extends BlackBox with HasBlackBoxResource { val io = IO(new Bundle { val clk = Input(Clock()) val reset = Input(Bool()) val debug = new DMIIO val exit = Output(UInt(32.W)) }) def connect(tbclk: Clock, tbreset: Bool, dutio: ClockedDMIIO, tbsuccess: Bool) = { io.clk := tbclk io.reset := tbreset dutio.dmi <> io.debug dutio.dmiClock := tbclk dutio.dmiReset := tbreset tbsuccess := io.exit === 1.U assert(io.exit < 2.U, "*** FAILED *** (exit code = %d)\n", io.exit >> 1.U) } addResource("/vsrc/SimDTM.v") addResource("/csrc/SimDTM.cc") } /** BlackBox to export JTAG interface */ class SimJTAG(tickDelay: Int = 50) extends BlackBox(Map("TICK_DELAY" -> IntParam(tickDelay))) with HasBlackBoxResource { val io = IO(new Bundle { val clock = Input(Clock()) val reset = Input(Bool()) val jtag = new JTAGIO(hasTRSTn = true) val enable = Input(Bool()) val init_done = Input(Bool()) val exit = Output(UInt(32.W)) }) def connect(dutio: JTAGIO, tbclock: Clock, tbreset: Bool, init_done: Bool, tbsuccess: Bool) = { dutio.TCK := io.jtag.TCK dutio.TMS := io.jtag.TMS dutio.TDI := io.jtag.TDI io.jtag.TDO := dutio.TDO io.clock := tbclock io.reset := tbreset io.enable := PlusArg("jtag_rbb_enable", 0, "Enable SimJTAG for JTAG Connections. Simulation will pause until connection is made.") io.init_done := init_done // Success is determined by the gdbserver // which is controlling this simulation. tbsuccess := io.exit === 1.U assert(io.exit < 2.U, "*** FAILED *** (exit code = %d)\n", io.exit >> 1.U) } addResource("/vsrc/SimJTAG.v") addResource("/csrc/SimJTAG.cc") addResource("/csrc/remote_bitbang.h") addResource("/csrc/remote_bitbang.cc") } object Debug { def connectDebug( debugOpt: Option[DebugIO], resetctrlOpt: Option[ResetCtrlIO], psdio: PSDIO, c: Clock, r: Bool, out: Bool, tckHalfPeriod: Int = 2, cmdDelay: Int = 2, psd: PSDTestMode = 0.U.asTypeOf(new PSDTestMode())) (implicit p: Parameters): Unit = { connectDebugClockAndReset(debugOpt, c) resetctrlOpt.map { rcio => rcio.hartIsInReset.map { _ := r }} debugOpt.map { debug => debug.clockeddmi.foreach { d => val dtm = Module(new SimDTM).connect(c, r, d, out) } debug.systemjtag.foreach { sj => val jtag = Module(new SimJTAG(tickDelay=3)).connect(sj.jtag, c, r, ~r, out) sj.reset := r.asAsyncReset sj.mfr_id := p(JtagDTMKey).idcodeManufId.U(11.W) sj.part_number := p(JtagDTMKey).idcodePartNum.U(16.W) sj.version := p(JtagDTMKey).idcodeVersion.U(4.W) } debug.apb.foreach { apb => require(false, "No support for connectDebug for an APB debug connection.") } psdio.psd.foreach { _ <> psd } debug.disableDebug.foreach { x => x := false.B } } } def connectDebugClockAndReset(debugOpt: Option[DebugIO], c: Clock, sync: Boolean = true)(implicit p: Parameters): Unit = { debugOpt.foreach { debug => val dmi_reset = debug.clockeddmi.map(_.dmiReset.asBool).getOrElse(false.B) | debug.systemjtag.map(_.reset.asBool).getOrElse(false.B) | debug.apb.map(_.reset.asBool).getOrElse(false.B) connectDebugClockHelper(debug, dmi_reset, c, sync) } } def connectDebugClockHelper(debug: DebugIO, dmi_reset: Reset, c: Clock, sync: Boolean = true)(implicit p: Parameters): Unit = { val debug_reset = Wire(Bool()) withClockAndReset(c, dmi_reset) { val debug_reset_syncd = if(sync) ~AsyncResetSynchronizerShiftReg(in=true.B, sync=3, name=Some("debug_reset_sync")) else dmi_reset debug_reset := debug_reset_syncd } // Need to clock DM during debug_reset because of synchronous reset, so keep // the clock alive for one cycle after debug_reset asserts to action this behavior. // The unit should also be clocked when dmactive is high. withClockAndReset(c, debug_reset.asAsyncReset) { val dmactiveAck = if (sync) ResetSynchronizerShiftReg(in=debug.dmactive, sync=3, name=Some("dmactiveAck")) else debug.dmactive val clock_en = RegNext(next=dmactiveAck, init=true.B) val gated_clock = if (!p(DebugModuleKey).get.clockGate) c else ClockGate(c, clock_en, "debug_clock_gate") debug.clock := gated_clock debug.reset := (if (p(SubsystemResetSchemeKey)==ResetSynchronous) debug_reset else debug_reset.asAsyncReset) debug.dmactiveAck := dmactiveAck } } def tieoffDebug(debugOpt: Option[DebugIO], resetctrlOpt: Option[ResetCtrlIO] = None, psdio: Option[PSDIO] = None)(implicit p: Parameters): Bool = { psdio.foreach(_.psd.foreach { _ <> 0.U.asTypeOf(new PSDTestMode()) } ) resetctrlOpt.map { rcio => rcio.hartIsInReset.map { _ := false.B }} debugOpt.map { debug => debug.clock := true.B.asClock debug.reset := (if (p(SubsystemResetSchemeKey)==ResetSynchronous) true.B else true.B.asAsyncReset) debug.systemjtag.foreach { sj => sj.jtag.TCK := true.B.asClock sj.jtag.TMS := true.B sj.jtag.TDI := true.B sj.jtag.TRSTn.foreach { r => r := true.B } sj.reset := true.B.asAsyncReset sj.mfr_id := 0.U sj.part_number := 0.U sj.version := 0.U } debug.clockeddmi.foreach { d => d.dmi.req.valid := false.B d.dmi.req.bits.addr := 0.U d.dmi.req.bits.data := 0.U d.dmi.req.bits.op := 0.U d.dmi.resp.ready := true.B d.dmiClock := false.B.asClock d.dmiReset := true.B.asAsyncReset } debug.apb.foreach { apb => apb.clock := false.B.asClock apb.reset := true.B.asAsyncReset apb.pready := false.B apb.pslverr := false.B apb.prdata := 0.U apb.pduser := 0.U.asTypeOf(chiselTypeOf(apb.pduser)) apb.psel := false.B apb.penable := false.B } debug.extTrigger.foreach { t => t.in.req := false.B t.out.ack := t.out.req } debug.disableDebug.foreach { x => x := false.B } debug.dmactiveAck := false.B debug.ndreset }.getOrElse(false.B) } } File ResetCatchAndSync.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.{withClockAndReset, withReset} /** Reset: asynchronous assert, * synchronous de-assert * */ class ResetCatchAndSync (sync: Int = 3) extends Module { override def desiredName = s"ResetCatchAndSync_d${sync}" val io = IO(new Bundle { val sync_reset = Output(Bool()) val psd = Input(new PSDTestMode()) }) // Bypass both the resets to the flops themselves (to prevent DFT holes on // those flops) and on the output of the synchronizer circuit (to control // reset to any flops this circuit drives). val post_psd_reset = Mux(io.psd.test_mode, io.psd.test_mode_reset, reset.asBool) withReset(post_psd_reset) { io.sync_reset := Mux(io.psd.test_mode, io.psd.test_mode_reset, ~AsyncResetSynchronizerShiftReg(true.B, sync)) } } object ResetCatchAndSync { def apply(clk: Clock, rst: Bool, sync: Int = 3, name: Option[String] = None, psd: Option[PSDTestMode] = None): Bool = { withClockAndReset(clk, rst) { val catcher = Module (new ResetCatchAndSync(sync)) if (name.isDefined) {catcher.suggestName(name.get)} catcher.io.psd <> psd.getOrElse(WireDefault(0.U.asTypeOf(new PSDTestMode()))) catcher.io.sync_reset } } def apply(clk: Clock, rst: Bool, sync: Int, name: String): Bool = apply(clk, rst, sync, Some(name)) def apply(clk: Clock, rst: Bool, name: String): Bool = apply(clk, rst, name = Some(name)) def apply(clk: Clock, rst: Bool, sync: Int, name: String, psd: PSDTestMode): Bool = apply(clk, rst, sync, Some(name), Some(psd)) def apply(clk: Clock, rst: Bool, name: String, psd: PSDTestMode): Bool = apply(clk, rst, name = Some(name), psd = Some(psd)) } File ShiftReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ // Similar to the Chisel ShiftRegister but allows the user to suggest a // name to the registers that get instantiated, and // to provide a reset value. object ShiftRegInit { def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T = (0 until n).foldRight(in) { case (i, next) => { val r = RegNext(next, init) name.foreach { na => r.suggestName(s"${na}_${i}") } r } } } /** These wrap behavioral * shift registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * The different types vary in their reset behavior: * AsyncResetShiftReg -- Asynchronously reset register array * A W(width) x D(depth) sized array is constructed from D instantiations of a * W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg, * but only used for timing applications */ abstract class AbstractPipelineReg(w: Int = 1) extends Module { val io = IO(new Bundle { val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) } ) } object AbstractPipelineReg { def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = { val chain = Module(gen) name.foreach{ chain.suggestName(_) } chain.io.d := in.asUInt chain.io.q.asTypeOf(in) } } class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) { require(depth > 0, "Depth must be greater than 0.") override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}" val chain = List.tabulate(depth) { i => Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}") } chain.last.io.d := io.d chain.last.io.en := true.B (chain.init zip chain.tail).foreach { case (sink, source) => sink.io.d := source.io.q sink.io.en := true.B } io.q := chain.head.io.q } object AsyncResetShiftReg { def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name) def apply [T <: Data](in: T, depth: Int, name: Option[String]): T = apply(in, depth, 0, name) def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T = apply(in, depth, init.litValue.toInt, name) def apply [T <: Data](in: T, depth: Int, init: T): T = apply (in, depth, init.litValue.toInt, None) } File IOCell.scala: // See LICENSE for license details package chipyard.iocell import chisel3._ import chisel3.util.{Cat, HasBlackBoxInline} import chisel3.reflect.DataMirror import chisel3.experimental.{Analog, BaseModule} // The following four IO cell bundle types are bare-minimum functional connections // for modeling 4 different IO cell scenarios. The intention is that the user // would create wrapper modules that extend these interfaces with additional // control signals. These are loosely similar to the sifive-blocks PinCtrl bundles // (https://github.com/sifive/sifive-blocks/blob/master/src/main/scala/devices/pinctrl/PinCtrl.scala), // but we want to avoid a dependency on an external libraries. /** The base IO bundle for an analog signal (typically something with no digital buffers inside) * pad: off-chip (external) connection * core: internal connection */ class AnalogIOCellBundle extends Bundle { val pad = Analog(1.W) // Pad/bump signal (off-chip) val core = Analog(1.W) // core signal (on-chip) } /** The base IO bundle for a signal with runtime-controllable direction * pad: off-chip (external) connection * i: input to chip logic (output from IO cell) * ie: enable signal for i * o: output from chip logic (input to IO cell) * oe: enable signal for o */ class DigitalGPIOCellBundle extends Bundle { val pad = Analog(1.W) val i = Output(Bool()) val ie = Input(Bool()) val o = Input(Bool()) val oe = Input(Bool()) } /** The base IO bundle for a digital output signal * pad: off-chip (external) connection * o: output from chip logic (input to IO cell) * oe: enable signal for o */ class DigitalOutIOCellBundle extends Bundle { val pad = Output(Bool()) val o = Input(Bool()) val oe = Input(Bool()) } /** The base IO bundle for a digital input signal * pad: off-chip (external) connection * i: input to chip logic (output from IO cell) * ie: enable signal for i */ class DigitalInIOCellBundle extends Bundle { val pad = Input(Bool()) val i = Output(Bool()) val ie = Input(Bool()) } trait IOCell extends BaseModule { var iocell_name: Option[String] = None /** Set IOCell name * @param s Proposed name for the IOCell * * @return An inherited IOCell with given the proposed name */ def suggestName(s: String): this.type = { iocell_name = Some(s) super.suggestName(s) } } trait AnalogIOCell extends IOCell { val io: AnalogIOCellBundle } trait DigitalGPIOCell extends IOCell { val io: DigitalGPIOCellBundle } trait DigitalInIOCell extends IOCell { val io: DigitalInIOCellBundle } trait DigitalOutIOCell extends IOCell { val io: DigitalOutIOCellBundle } // The following Generic IO cell black boxes have verilog models that mimic a very simple // implementation of an IO cell. For building a real chip, it is important to implement // and use similar classes which wrap the foundry-specific IO cells. abstract class GenericIOCell extends BlackBox with HasBlackBoxInline { val impl: String val moduleName = this.getClass.getSimpleName setInline(s"$moduleName.v", impl); } class GenericAnalogIOCell extends GenericIOCell with AnalogIOCell { val io = IO(new AnalogIOCellBundle) lazy val impl = s""" `timescale 1ns/1ps module GenericAnalogIOCell( inout pad, inout core ); assign core = 1'bz; assign pad = core; endmodule""" } class GenericDigitalGPIOCell extends GenericIOCell with DigitalGPIOCell { val io = IO(new DigitalGPIOCellBundle) lazy val impl = s""" `timescale 1ns/1ps module GenericDigitalGPIOCell( inout pad, output i, input ie, input o, input oe ); assign pad = oe ? o : 1'bz; assign i = ie ? pad : 1'b0; endmodule""" } class GenericDigitalInIOCell extends GenericIOCell with DigitalInIOCell { val io = IO(new DigitalInIOCellBundle) lazy val impl = s""" `timescale 1ns/1ps module GenericDigitalInIOCell( input pad, output i, input ie ); assign i = ie ? pad : 1'b0; endmodule""" } class GenericDigitalOutIOCell extends GenericIOCell with DigitalOutIOCell { val io = IO(new DigitalOutIOCellBundle) lazy val impl = s""" `timescale 1ns/1ps module GenericDigitalOutIOCell( output pad, input o, input oe ); assign pad = oe ? o : 1'bz; endmodule""" } trait IOCellTypeParams { def analog(): AnalogIOCell def gpio(): DigitalGPIOCell def input(): DigitalInIOCell def output(): DigitalOutIOCell } case class GenericIOCellParams() extends IOCellTypeParams { def analog() = Module(new GenericAnalogIOCell) def gpio() = Module(new GenericDigitalGPIOCell) def input() = Module(new GenericDigitalInIOCell) def output() = Module(new GenericDigitalOutIOCell) } object IOCell { /** From within a RawModule or MultiIOModule context, generate new module IOs from a given * signal and return the new IO and a Seq containing all generated IO cells. * @param coreSignal The signal onto which to add IO cells * @param name An optional name or name prefix to use for naming IO cells * @param abstractResetAsAsync When set, will coerce abstract resets to * AsyncReset, and otherwise to Bool (sync reset) * @return A tuple of (the generated IO data node, a Seq of all generated IO cell instances) */ def generateIOFromSignal[T <: Data]( coreSignal: T, name: String, typeParams: IOCellTypeParams = GenericIOCellParams(), abstractResetAsAsync: Boolean = false ): (T, Seq[IOCell]) = { val padSignal = IO(DataMirror.internal.chiselTypeClone[T](coreSignal)).suggestName(name) val resetFn = if (abstractResetAsAsync) toAsyncReset else toSyncReset val iocells = IOCell.generateFromSignal(coreSignal, padSignal, Some(s"iocell_$name"), typeParams, resetFn) (padSignal, iocells) } /** Connect two identical signals together by adding IO cells between them and return a Seq * containing all generated IO cells. * @param coreSignal The core-side (internal) signal onto which to connect/add IO cells * @param padSignal The pad-side (external) signal onto which to connect IO cells * @param name An optional name or name prefix to use for naming IO cells * @return A Seq of all generated IO cell instances */ val toSyncReset: (Reset) => Bool = _.asBool val toAsyncReset: (Reset) => AsyncReset = _.asAsyncReset def generateFromSignal[T <: Data, R <: Reset]( coreSignal: T, padSignal: T, name: Option[String] = None, typeParams: IOCellTypeParams = GenericIOCellParams(), concretizeResetFn: (Reset) => R = toSyncReset ): Seq[IOCell] = { def genCell[T <: Data]( castToBool: (T) => Bool, castFromBool: (Bool) => T )(coreSignal: T, padSignal: T ): Seq[IOCell] = { DataMirror.directionOf(coreSignal) match { case ActualDirection.Input => { val iocell = typeParams.input() name.foreach(n => { iocell.suggestName(n) }) coreSignal := castFromBool(iocell.io.i) iocell.io.ie := true.B iocell.io.pad := castToBool(padSignal) Seq(iocell) } case ActualDirection.Output => { val iocell = typeParams.output() name.foreach(n => { iocell.suggestName(n) }) iocell.io.o := castToBool(coreSignal) iocell.io.oe := true.B padSignal := castFromBool(iocell.io.pad) Seq(iocell) } case _ => throw new Exception(s"Signal does not have a direction and cannot be matched to an IOCell") } } def genCellForClock = genCell[Clock](_.asUInt.asBool, _.asClock) _ def genCellForAsyncReset = genCell[AsyncReset](_.asBool, _.asAsyncReset) _ def genCellForAbstractReset = genCell[Reset](_.asBool, concretizeResetFn) _ (coreSignal, padSignal) match { case (coreSignal: Analog, padSignal: Analog) => { if (coreSignal.getWidth == 0) { Seq() } else { require( coreSignal.getWidth == 1, "Analogs wider than 1 bit are not supported because we can't bit-select Analogs (https://github.com/freechipsproject/chisel3/issues/536)" ) val iocell = typeParams.analog() name.foreach(n => iocell.suggestName(n)) iocell.io.core <> coreSignal padSignal <> iocell.io.pad Seq(iocell) } } case (coreSignal: Clock, padSignal: Clock) => genCellForClock(coreSignal, padSignal) case (coreSignal: AsyncReset, padSignal: AsyncReset) => genCellForAsyncReset(coreSignal, padSignal) case (coreSignal: Bits, padSignal: Bits) => { require(padSignal.getWidth == coreSignal.getWidth, "padSignal and coreSignal must be the same width") if (padSignal.getWidth == 0) { // This dummy assignment will prevent invalid firrtl from being emitted DataMirror.directionOf(coreSignal) match { case ActualDirection.Input => coreSignal := 0.U case _ => {} } Seq() } else { DataMirror.directionOf(coreSignal) match { case ActualDirection.Input => { val iocells = padSignal.asBools.zipWithIndex.map { case (sig, i) => val iocell = typeParams.input() // Note that we are relying on chisel deterministically naming this in the index order (which it does) // This has the side-effect of naming index 0 with no _0 suffix, which is how chisel names other signals // An alternative solution would be to suggestName(n + "_" + i) name.foreach(n => { iocell.suggestName(n) }) iocell.io.pad := sig iocell.io.ie := true.B iocell } // Note that the reverse here is because Cat(Seq(a,b,c,d)) yields abcd, but a is index 0 of the Seq coreSignal := Cat(iocells.map(_.io.i).reverse) iocells } case ActualDirection.Output => { val iocells = coreSignal.asBools.zipWithIndex.map { case (sig, i) => val iocell = typeParams.output() // Note that we are relying on chisel deterministically naming this in the index order (which it does) // This has the side-effect of naming index 0 with no _0 suffix, which is how chisel names other signals // An alternative solution would be to suggestName(n + "_" + i) name.foreach(n => { iocell.suggestName(n) }) iocell.io.o := sig iocell.io.oe := true.B iocell } // Note that the reverse here is because Cat(Seq(a,b,c,d)) yields abcd, but a is index 0 of the Seq padSignal := Cat(iocells.map(_.io.pad).reverse) iocells } case _ => throw new Exception("Bits signal does not have a direction and cannot be matched to IOCell(s)") } } } case (coreSignal: Reset, padSignal: Reset) => genCellForAbstractReset(coreSignal, padSignal) case (coreSignal: Vec[_], padSignal: Vec[_]) => { require(padSignal.size == coreSignal.size, "size of Vec for padSignal and coreSignal must be the same") coreSignal.zip(padSignal).zipWithIndex.foldLeft(Seq.empty[IOCell]) { case (total, ((core, pad), i)) => val ios = IOCell.generateFromSignal(core, pad, name.map(_ + "_" + i), typeParams) total ++ ios } } case (coreSignal: Record, padSignal: Record) => { coreSignal.elements.foldLeft(Seq.empty[IOCell]) { case (total, (eltName, core)) => val pad = padSignal.elements(eltName) val ios = IOCell.generateFromSignal(core, pad, name.map(_ + "_" + eltName), typeParams) total ++ ios } } case _ => { throw new Exception("Oops, I don't know how to handle this signal.") } } } } File ChipTop.scala: package chipyard import chisel3._ import scala.collection.mutable.{ArrayBuffer} import freechips.rocketchip.prci.{ClockGroupIdentityNode, ClockSinkParameters, ClockSinkNode, ClockGroup} import org.chipsalliance.cde.config.{Parameters, Field} import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp, LazyRawModuleImp, LazyModuleImpLike, BindingScope} import freechips.rocketchip.util.{DontTouch} import chipyard.iobinders._ import chipyard.iocell._ case object BuildSystem extends Field[Parameters => LazyModule]((p: Parameters) => new DigitalTop()(p)) /** * The base class used for building chips. This constructor instantiates a module specified by the BuildSystem parameter, * named "system", which is an instance of DigitalTop by default. The diplomatic clocks of System, as well as its implicit clock, * is aggregated into the clockGroupNode. The parameterized functions controlled by ClockingSchemeKey and GlobalResetSchemeKey * drive clock and reset generation */ class ChipTop(implicit p: Parameters) extends LazyModule with BindingScope with HasIOBinders { // The system module specified by BuildSystem lazy val lazySystem = LazyModule(p(BuildSystem)(p)).suggestName("system") // NOTE: Making this a LazyRawModule is moderately dangerous, as anonymous children // of ChipTop (ex: ClockGroup) do not receive clock or reset. // However. anonymous children of ChipTop should not need an implicit Clock or Reset // anyways, they probably need to be explicitly clocked. lazy val module: LazyModuleImpLike = new LazyRawModuleImp(this) with DontTouch { } } File LazyModuleImp.scala: package org.chipsalliance.diplomacy.lazymodule import chisel3.{withClockAndReset, Module, RawModule, Reset, _} import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo} import firrtl.passes.InlineAnnotation import org.chipsalliance.cde.config.Parameters import org.chipsalliance.diplomacy.nodes.Dangle import scala.collection.immutable.SortedMap /** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]]. * * This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy. */ sealed trait LazyModuleImpLike extends RawModule { /** [[LazyModule]] that contains this instance. */ val wrapper: LazyModule /** IOs that will be automatically "punched" for this instance. */ val auto: AutoBundle /** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */ protected[diplomacy] val dangles: Seq[Dangle] // [[wrapper.module]] had better not be accessed while LazyModules are still being built! require( LazyModule.scope.isEmpty, s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}" ) /** Set module name. Defaults to the containing LazyModule's desiredName. */ override def desiredName: String = wrapper.desiredName suggestName(wrapper.suggestedName) /** [[Parameters]] for chisel [[Module]]s. */ implicit val p: Parameters = wrapper.p /** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and * submodules. */ protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = { // 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]], // 2. return [[Dangle]]s from each module. val childDangles = wrapper.children.reverse.flatMap { c => implicit val sourceInfo: SourceInfo = c.info c.cloneProto.map { cp => // If the child is a clone, then recursively set cloneProto of its children as well def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = { require(bases.size == clones.size) (bases.zip(clones)).map { case (l, r) => require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}") l.cloneProto = Some(r) assignCloneProtos(l.children, r.children) } } assignCloneProtos(c.children, cp.children) // Clone the child module as a record, and get its [[AutoBundle]] val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName) val clonedAuto = clone("auto").asInstanceOf[AutoBundle] // Get the empty [[Dangle]]'s of the cloned child val rawDangles = c.cloneDangles() require(rawDangles.size == clonedAuto.elements.size) // Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) } dangles }.getOrElse { // For non-clones, instantiate the child module val mod = try { Module(c.module) } catch { case e: ChiselException => { println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}") throw e } } mod.dangles } } // Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]]. // This will result in a sequence of [[Dangle]] from these [[BaseNode]]s. val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate()) // Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]] val allDangles = nodeDangles ++ childDangles // Group [[allDangles]] by their [[source]]. val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*) // For each [[source]] set of [[Dangle]]s of size 2, ensure that these // can be connected as a source-sink pair (have opposite flipped value). // Make the connection and mark them as [[done]]. val done = Set() ++ pairing.values.filter(_.size == 2).map { case Seq(a, b) => require(a.flipped != b.flipped) // @todo <> in chisel3 makes directionless connection. if (a.flipped) { a.data <> b.data } else { b.data <> a.data } a.source case _ => None } // Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module. val forward = allDangles.filter(d => !done(d.source)) // Generate [[AutoBundle]] IO from [[forward]]. val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*)) // Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]] val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) => if (d.flipped) { d.data <> io } else { io <> d.data } d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name) } // Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]]. wrapper.inModuleBody.reverse.foreach { _() } if (wrapper.shouldBeInlined) { chisel3.experimental.annotate(new ChiselAnnotation { def toFirrtl = InlineAnnotation(toNamed) }) } // Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]]. (auto, dangles) } } /** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike { /** Instantiate hardware of this `Module`. */ val (auto, dangles) = instantiate() } /** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike { // These wires are the default clock+reset for all LazyModule children. // It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the // [[LazyRawModuleImp]] children. // Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly. /** drive clock explicitly. */ val childClock: Clock = Wire(Clock()) /** drive reset explicitly. */ val childReset: Reset = Wire(Reset()) // the default is that these are disabled childClock := false.B.asClock childReset := chisel3.DontCare def provideImplicitClockToLazyChildren: Boolean = false val (auto, dangles) = if (provideImplicitClockToLazyChildren) { withClockAndReset(childClock, childReset) { instantiate() } } else { instantiate() } } File MixedNode.scala: package org.chipsalliance.diplomacy.nodes import chisel3.{Data, DontCare, Wire} import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.{Field, Parameters} import org.chipsalliance.diplomacy.ValName import org.chipsalliance.diplomacy.sourceLine /** One side metadata of a [[Dangle]]. * * Describes one side of an edge going into or out of a [[BaseNode]]. * * @param serial * the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to. * @param index * the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to. */ case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] { import scala.math.Ordered.orderingToOrdered def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that)) } /** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]] * connects. * * [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] , * [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]]. * * @param source * the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within * that [[BaseNode]]. * @param sink * sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that * [[BaseNode]]. * @param flipped * flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to * `danglesIn`. * @param dataOpt * actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module */ case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) { def data = dataOpt.get } /** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often * derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually * implement the protocol. */ case class Edges[EI, EO](in: Seq[EI], out: Seq[EO]) /** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */ case object MonitorsEnabled extends Field[Boolean](true) /** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented. * * For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but * [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink * nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the * [[LazyModule]]. */ case object RenderFlipped extends Field[Boolean](false) /** The sealed node class in the package, all node are derived from it. * * @param inner * Sink interface implementation. * @param outer * Source interface implementation. * @param valName * val name of this node. * @tparam DI * Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters * describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected * [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port * parameters. * @tparam UI * Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing * the protocol parameters of a sink. For an [[InwardNode]], it is determined itself. * @tparam EI * Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers * specified for a sink according to protocol. * @tparam BI * Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface. * It should extends from [[chisel3.Data]], which represents the real hardware. * @tparam DO * Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters * describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself. * @tparam UO * Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing * the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]]. * Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters. * @tparam EO * Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers * specified for a source according to protocol. * @tparam BO * Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source * interface. It should extends from [[chisel3.Data]], which represents the real hardware. * * @note * Call Graph of [[MixedNode]] * - line `─`: source is process by a function and generate pass to others * - Arrow `→`: target of arrow is generated by source * * {{{ * (from the other node) * ┌─────────────────────────────────────────────────────────[[InwardNode.uiParams]]─────────────┐ * ↓ │ * (binding node when elaboration) [[OutwardNode.uoParams]]────────────────────────[[MixedNode.mapParamsU]]→──────────┐ │ * [[InwardNode.accPI]] │ │ │ * │ │ (based on protocol) │ * │ │ [[MixedNode.inner.edgeI]] │ * │ │ ↓ │ * ↓ │ │ │ * (immobilize after elaboration) (inward port from [[OutwardNode]]) │ ↓ │ * [[InwardNode.iBindings]]──┐ [[MixedNode.iDirectPorts]]────────────────────→[[MixedNode.iPorts]] [[InwardNode.uiParams]] │ * │ │ ↑ │ │ │ * │ │ │ [[OutwardNode.doParams]] │ │ * │ │ │ (from the other node) │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * │ │ │ └────────┬──────────────┤ │ * │ │ │ │ │ │ * │ │ │ │ (based on protocol) │ * │ │ │ │ [[MixedNode.inner.edgeI]] │ * │ │ │ │ │ │ * │ │ (from the other node) │ ↓ │ * │ └───[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] │ [[MixedNode.edgesIn]]───┐ │ * │ ↑ ↑ │ │ ↓ │ * │ │ │ │ │ [[MixedNode.in]] │ * │ │ │ │ ↓ ↑ │ * │ (solve star connection) │ │ │ [[MixedNode.bundleIn]]──┘ │ * ├───[[MixedNode.resolveStar]]→─┼─────────────────────────────┤ └────────────────────────────────────┐ │ * │ │ │ [[MixedNode.bundleOut]]─┐ │ │ * │ │ │ ↑ ↓ │ │ * │ │ │ │ [[MixedNode.out]] │ │ * │ ↓ ↓ │ ↑ │ │ * │ ┌─────[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]──┘ │ │ * │ │ (from the other node) ↑ │ │ * │ │ │ │ │ │ * │ │ │ [[MixedNode.outer.edgeO]] │ │ * │ │ │ (based on protocol) │ │ * │ │ │ │ │ │ * │ │ │ ┌────────────────────────────────────────┤ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * (immobilize after elaboration)│ ↓ │ │ │ │ * [[OutwardNode.oBindings]]─┘ [[MixedNode.oDirectPorts]]───→[[MixedNode.oPorts]] [[OutwardNode.doParams]] │ │ * ↑ (inward port from [[OutwardNode]]) │ │ │ │ * │ ┌─────────────────────────────────────────┤ │ │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * [[OutwardNode.accPO]] │ ↓ │ │ │ * (binding node when elaboration) │ [[InwardNode.diParams]]─────→[[MixedNode.mapParamsD]]────────────────────────────┘ │ │ * │ ↑ │ │ * │ └──────────────────────────────────────────────────────────────────────────────────────────┘ │ * └──────────────────────────────────────────────────────────────────────────────────────────────────────────┘ * }}} */ abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data]( val inner: InwardNodeImp[DI, UI, EI, BI], val outer: OutwardNodeImp[DO, UO, EO, BO] )( implicit valName: ValName) extends BaseNode with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO] with InwardNode[DI, UI, BI] with OutwardNode[DO, UO, BO] { // Generate a [[NodeHandle]] with inward and outward node are both this node. val inward = this val outward = this /** Debug info of nodes binding. */ def bindingInfo: String = s"""$iBindingInfo |$oBindingInfo |""".stripMargin /** Debug info of ports connecting. */ def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}] |${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}] |""".stripMargin /** Debug info of parameters propagations. */ def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}] |${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}] |${diParams.size} downstream inward parameters: [${diParams.mkString(",")}] |${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}] |""".stripMargin /** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and * [[MixedNode.iPortMapping]]. * * Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward * stars and outward stars. * * This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type * of node. * * @param iKnown * Number of known-size ([[BIND_ONCE]]) input bindings. * @param oKnown * Number of known-size ([[BIND_ONCE]]) output bindings. * @param iStar * Number of unknown size ([[BIND_STAR]]) input bindings. * @param oStar * Number of unknown size ([[BIND_STAR]]) output bindings. * @return * A Tuple of the resolved number of input and output connections. */ protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int) /** Function to generate downward-flowing outward params from the downward-flowing input params and the current output * ports. * * @param n * The size of the output sequence to generate. * @param p * Sequence of downward-flowing input parameters of this node. * @return * A `n`-sized sequence of downward-flowing output edge parameters. */ protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO] /** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]]. * * @param n * Size of the output sequence. * @param p * Upward-flowing output edge parameters. * @return * A n-sized sequence of upward-flowing input edge parameters. */ protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI] /** @return * The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with * [[BIND_STAR]]. */ protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR) /** @return * The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of * output bindings bound with [[BIND_STAR]]. */ protected[diplomacy] lazy val sourceCard: Int = iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR) /** @return list of nodes involved in flex bindings with this node. */ protected[diplomacy] lazy val flexes: Seq[BaseNode] = oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2) /** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin * greedily taking up the remaining connections. * * @return * A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return * value is not relevant. */ protected[diplomacy] lazy val flexOffset: Int = { /** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex * operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a * connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of * each node in the current set and decide whether they should be added to the set or not. * * @return * the mapping of [[BaseNode]] indexed by their serial numbers. */ def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = { if (visited.contains(v.serial) || !v.flexibleArityDirection) { visited } else { v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum)) } } /** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node. * * @example * {{{ * a :*=* b :*=* c * d :*=* b * e :*=* f * }}} * * `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)` */ val flexSet = DFS(this, Map()).values /** The total number of :*= operators where we're on the left. */ val allSink = flexSet.map(_.sinkCard).sum /** The total number of :=* operators used when we're on the right. */ val allSource = flexSet.map(_.sourceCard).sum require( allSink == 0 || allSource == 0, s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction." ) allSink - allSource } /** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */ protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = { if (flexibleArityDirection) flexOffset else if (n.flexibleArityDirection) n.flexOffset else 0 } /** For a node which is connected between two nodes, select the one that will influence the direction of the flex * resolution. */ protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = { val dir = edgeArityDirection(n) if (dir < 0) l else if (dir > 0) r else 1 } /** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */ private var starCycleGuard = false /** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star" * connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also * need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct * edge parameters and later build up correct bundle connections. * * [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding * operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort * (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*= * bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N` */ protected[diplomacy] lazy val ( oPortMapping: Seq[(Int, Int)], iPortMapping: Seq[(Int, Int)], oStar: Int, iStar: Int ) = { try { if (starCycleGuard) throw StarCycleException() starCycleGuard = true // For a given node N... // Number of foo :=* N // + Number of bar :=* foo :*=* N val oStars = oBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0) } // Number of N :*= foo // + Number of N :*=* foo :*= bar val iStars = iBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0) } // 1 for foo := N // + bar.iStar for bar :*= foo :*=* N // + foo.iStar for foo :*= N // + 0 for foo :=* N val oKnown = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, 0, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => 0 } }.sum // 1 for N := foo // + bar.oStar for N :*=* foo :=* bar // + foo.oStar for N :=* foo // + 0 for N :*= foo val iKnown = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, 0) case BIND_QUERY => n.oStar case BIND_STAR => 0 } }.sum // Resolve star depends on the node subclass to implement the algorithm for this. val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars) // Cumulative list of resolved outward binding range starting points val oSum = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => oStar } }.scanLeft(0)(_ + _) // Cumulative list of resolved inward binding range starting points val iSum = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar) case BIND_QUERY => n.oStar case BIND_STAR => iStar } }.scanLeft(0)(_ + _) // Create ranges for each binding based on the running sums and return // those along with resolved values for the star operations. (oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar) } catch { case c: StarCycleException => throw c.copy(loop = context +: c.loop) } } /** Sequence of inward ports. * * This should be called after all star bindings are resolved. * * Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. * `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this * connection was made in the source code. */ protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oBindings.flatMap { case (i, n, _, p, s) => // for each binding operator in this node, look at what it connects to val (start, end) = n.iPortMapping(i) (start until end).map { j => (j, n, p, s) } } /** Sequence of outward ports. * * This should be called after all star bindings are resolved. * * `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of * outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection * was made in the source code. */ protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iBindings.flatMap { case (i, n, _, p, s) => // query this port index range of this node in the other side of node. val (start, end) = n.oPortMapping(i) (start until end).map { j => (j, n, p, s) } } // Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree // Thus, there must exist an Eulerian path and the below algorithms terminate @scala.annotation.tailrec private def oTrace( tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) ): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.iForward(i) match { case None => (i, n, p, s) case Some((j, m)) => oTrace((j, m, p, s)) } } @scala.annotation.tailrec private def iTrace( tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) ): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.oForward(i) match { case None => (i, n, p, s) case Some((j, m)) => iTrace((j, m, p, s)) } } /** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - Numeric index of this binding in the [[InwardNode]] on the other end. * - [[InwardNode]] on the other end of this binding. * - A view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace) /** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - numeric index of this binding in [[OutwardNode]] on the other end. * - [[OutwardNode]] on the other end of this binding. * - a view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace) private var oParamsCycleGuard = false protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) } protected[diplomacy] lazy val doParams: Seq[DO] = { try { if (oParamsCycleGuard) throw DownwardCycleException() oParamsCycleGuard = true val o = mapParamsD(oPorts.size, diParams) require( o.size == oPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of outward ports should equal the number of produced outward parameters. |$context |$connectedPortsInfo |Downstreamed inward parameters: [${diParams.mkString(",")}] |Produced outward parameters: [${o.mkString(",")}] |""".stripMargin ) o.map(outer.mixO(_, this)) } catch { case c: DownwardCycleException => throw c.copy(loop = context +: c.loop) } } private var iParamsCycleGuard = false protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) } protected[diplomacy] lazy val uiParams: Seq[UI] = { try { if (iParamsCycleGuard) throw UpwardCycleException() iParamsCycleGuard = true val i = mapParamsU(iPorts.size, uoParams) require( i.size == iPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of inward ports should equal the number of produced inward parameters. |$context |$connectedPortsInfo |Upstreamed outward parameters: [${uoParams.mkString(",")}] |Produced inward parameters: [${i.mkString(",")}] |""".stripMargin ) i.map(inner.mixI(_, this)) } catch { case c: UpwardCycleException => throw c.copy(loop = context +: c.loop) } } /** Outward edge parameters. */ protected[diplomacy] lazy val edgesOut: Seq[EO] = (oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) } /** Inward edge parameters. */ protected[diplomacy] lazy val edgesIn: Seq[EI] = (iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) } /** A tuple of the input edge parameters and output edge parameters for the edges bound to this node. * * If you need to access to the edges of a foreign Node, use this method (in/out create bundles). */ lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut) /** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */ protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e => val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } /** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */ protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e => val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(serial, i), sink = HalfEdge(n.serial, j), flipped = false, name = wirePrefix + "out", dataOpt = None ) } private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(n.serial, j), sink = HalfEdge(serial, i), flipped = true, name = wirePrefix + "in", dataOpt = None ) } /** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */ protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleOut(i))) } /** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */ protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleIn(i))) } private[diplomacy] var instantiated = false /** Gather Bundle and edge parameters of outward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def out: Seq[(BO, EO)] = { require( instantiated, s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleOut.zip(edgesOut) } /** Gather Bundle and edge parameters of inward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def in: Seq[(BI, EI)] = { require( instantiated, s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleIn.zip(edgesIn) } /** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires, * instantiate monitors on all input ports if appropriate, and return all the dangles of this node. */ protected[diplomacy] def instantiate(): Seq[Dangle] = { instantiated = true if (!circuitIdentity) { (iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) } } danglesOut ++ danglesIn } protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn /** Connects the outward part of a node with the inward part of this node. */ protected[diplomacy] def bind( h: OutwardNode[DI, UI, BI], binding: NodeBinding )( implicit p: Parameters, sourceInfo: SourceInfo ): Unit = { val x = this // x := y val y = h sourceLine(sourceInfo, " at ", "") val i = x.iPushed val o = y.oPushed y.oPush( i, x, binding match { case BIND_ONCE => BIND_ONCE case BIND_FLEX => BIND_FLEX case BIND_STAR => BIND_QUERY case BIND_QUERY => BIND_STAR } ) x.iPush(o, y, binding) } /* Metadata for printing the node graph. */ def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) => val re = inner.render(e) (n, re.copy(flipped = re.flipped != p(RenderFlipped))) } /** Metadata for printing the node graph */ def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) } } File ClockGate.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util.{HasBlackBoxResource, HasBlackBoxPath} import org.chipsalliance.cde.config.{Field, Parameters} import java.nio.file.{Files, Paths} case object ClockGateImpl extends Field[() => ClockGate](() => new EICG_wrapper) case object ClockGateModelFile extends Field[Option[String]](None) abstract class ClockGate extends BlackBox with HasBlackBoxResource with HasBlackBoxPath { val io = IO(new Bundle{ val in = Input(Clock()) val test_en = Input(Bool()) val en = Input(Bool()) val out = Output(Clock()) }) def addVerilogResource(vsrc: String): Unit = { if (Files.exists(Paths.get(vsrc))) addPath(vsrc) else addResource(vsrc) } } object ClockGate { def apply[T <: ClockGate]( in: Clock, en: Bool, name: Option[String] = None)(implicit p: Parameters): Clock = { val cg = Module(p(ClockGateImpl)()) name.foreach(cg.suggestName(_)) p(ClockGateModelFile).map(cg.addVerilogResource(_)) cg.io.in := in cg.io.test_en := false.B cg.io.en := en cg.io.out } def apply[T <: ClockGate]( in: Clock, en: Bool, name: String)(implicit p: Parameters): Clock = apply(in, en, Some(name)) } // behavioral model of Integrated Clock Gating cell class EICG_wrapper extends ClockGate File IOBinders.scala: package chipyard.iobinders import chisel3._ import chisel3.reflect.DataMirror import chisel3.experimental.Analog import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import org.chipsalliance.diplomacy.nodes._ import org.chipsalliance.diplomacy.aop._ import org.chipsalliance.diplomacy.lazymodule._ import org.chipsalliance.diplomacy.bundlebridge._ import freechips.rocketchip.diplomacy.{Resource, ResourceBinding, ResourceAddress, RegionType} import freechips.rocketchip.devices.debug._ import freechips.rocketchip.jtag.{JTAGIO} import freechips.rocketchip.subsystem._ import freechips.rocketchip.system.{SimAXIMem} import freechips.rocketchip.amba.axi4.{AXI4Bundle, AXI4SlaveNode, AXI4MasterNode, AXI4EdgeParameters} import freechips.rocketchip.util._ import freechips.rocketchip.prci._ import freechips.rocketchip.groundtest.{GroundTestSubsystemModuleImp, GroundTestSubsystem} import freechips.rocketchip.tilelink.{TLBundle} import sifive.blocks.devices.gpio._ import sifive.blocks.devices.uart._ import sifive.blocks.devices.spi._ import sifive.blocks.devices.i2c._ import tracegen.{TraceGenSystemModuleImp} import chipyard.iocell._ import testchipip.serdes.{CanHavePeripheryTLSerial, SerialTLKey} import testchipip.spi.{SPIChipIO} import testchipip.boot.{CanHavePeripheryCustomBootPin} import testchipip.soc.{CanHavePeripheryChipIdPin} import testchipip.util.{ClockedIO} import testchipip.iceblk.{CanHavePeripheryBlockDevice, BlockDeviceKey, BlockDeviceIO} import testchipip.cosim.{CanHaveTraceIO, TraceOutputTop, SpikeCosimConfig} import testchipip.tsi.{CanHavePeripheryUARTTSI, UARTTSIIO} import icenet.{CanHavePeripheryIceNIC, SimNetwork, NicLoopback, NICKey, NICIOvonly} import chipyard.{CanHaveMasterTLMemPort, ChipyardSystem, ChipyardSystemModule} import chipyard.example.{CanHavePeripheryGCD} import scala.reflect.{ClassTag} object IOBinderTypes { type IOBinderTuple = (Seq[Port[_]], Seq[IOCell]) type IOBinderFunction = (Boolean, => Any) => ModuleValue[IOBinderTuple] } import IOBinderTypes._ // System for instantiating binders based // on the scala type of the Target (_not_ its IO). This avoids needing to // duplicate harnesses (essentially test harnesses) for each target. // IOBinders is map between string representations of traits to the desired // IO connection behavior for tops matching that trait. We use strings to enable // composition and overriding of IOBinders, much like how normal Keys in the config // system are used/ At elaboration, the testharness traverses this set of functions, // and functions which match the type of the DigitalTop are evaluated. // You can add your own binder by adding a new (key, fn) pair, typically by using // the OverrideIOBinder or ComposeIOBinder macros case object IOBinders extends Field[Map[String, Seq[IOBinderFunction]]]( Map[String, Seq[IOBinderFunction]]().withDefaultValue(Nil) ) abstract trait HasIOBinders extends HasChipyardPorts { this: LazyModule => val lazySystem: LazyModule private val iobinders = p(IOBinders) // Note: IOBinders cannot rely on the implicit clock/reset, as they may be called from the // context of a LazyRawModuleImp private val lzy = iobinders.map({ case (s,fns) => s -> fns.map(f => f(true, lazySystem)) }) private val imp = iobinders.map({ case (s,fns) => s -> fns.map(f => f(false, lazySystem.module)) }) private lazy val lzyFlattened: Map[String, IOBinderTuple] = lzy.map({ case (s,ms) => s -> (ms.map(_._1).flatten, ms.map(_._2).flatten) }) private lazy val impFlattened: Map[String, IOBinderTuple] = imp.map({ case (s,ms) => s -> (ms.map(_._1).flatten, ms.map(_._2).flatten) }) // A publicly accessible list of IO cells (useful for a floorplanning tool, for example) val iocells = InModuleBody { (lzyFlattened.values ++ impFlattened.values).unzip._2.flatten.toBuffer } // A mapping between stringified DigitalSystem traits and their corresponding ChipTop ports val portMap = InModuleBody { iobinders.keys.map(k => k -> (lzyFlattened(k)._1 ++ impFlattened(k)._1)).toMap } // A mapping between stringified DigitalSystem traits and their corresponding ChipTop iocells val iocellMap = InModuleBody { iobinders.keys.map(k => k -> (lzyFlattened(k)._2 ++ impFlattened(k)._2)).toMap } def ports = portMap.getWrappedValue.values.flatten.toSeq InModuleBody { println("IOCells generated by IOBinders:") for ((k, v) <- iocellMap) { if (!v.isEmpty) { val cells = v.map(_.getClass.getSimpleName).groupBy(identity).mapValues(_.size) println(s" IOBinder for $k generated:") for ((t, c) <- cells) { println(s" $c X $t") } } } println() val totals = iocells.map(_.getClass.getSimpleName).groupBy(identity).mapValues(_.size) println(s" Total generated ${iocells.size} IOCells:") for ((t, c) <- totals) { println(s" $c X $t") } } } // Note: The parameters instance is accessible only through LazyModule // or LazyModuleImpLike. The self-type requirement in traits like // CanHaveMasterAXI4MemPort is insufficient to make it accessible to the IOBinder // As a result, IOBinders only work on Modules which inherit LazyModule or // or LazyModuleImpLike object GetSystemParameters { def apply(s: Any): Parameters = { s match { case s: LazyModule => s.p case s: LazyModuleImpLike => s.p case _ => throw new Exception(s"Trying to get Parameters from a system that is not LazyModule or LazyModuleImpLike") } } } class IOBinder[T](composer: Seq[IOBinderFunction] => Seq[IOBinderFunction])(implicit tag: ClassTag[T]) extends Config((site, here, up) => { case IOBinders => { val upMap = up(IOBinders) upMap + (tag.runtimeClass.toString -> composer(upMap(tag.runtimeClass.toString))) } }) class ConcreteIOBinder[T](composes: Boolean, fn: T => IOBinderTuple)(implicit tag: ClassTag[T]) extends IOBinder[T]( up => (if (composes) up else Nil) ++ Seq(((_, t) => { InModuleBody { t match { case system: T => fn(system) case _ => (Nil, Nil) } }}): IOBinderFunction) ) class LazyIOBinder[T](composes: Boolean, fn: T => ModuleValue[IOBinderTuple])(implicit tag: ClassTag[T]) extends IOBinder[T]( up => (if (composes) up else Nil) ++ Seq(((isLazy, t) => { val empty = new ModuleValue[IOBinderTuple] { def getWrappedValue: IOBinderTuple = (Nil, Nil) } if (isLazy) { t match { case system: T => fn(system) case _ => empty } } else { empty } }): IOBinderFunction) ) // The "Override" binders override any previous IOBinders (lazy or concrete) defined on the same trait. // The "Compose" binders do not override previously defined IOBinders on the same trait // The default IOBinders evaluate only in the concrete "ModuleImp" phase of elaboration // The "Lazy" IOBinders evaluate in the LazyModule phase, but can also generate hardware through InModuleBody class OverrideIOBinder[T](fn: T => IOBinderTuple)(implicit tag: ClassTag[T]) extends ConcreteIOBinder[T](false, fn) class ComposeIOBinder[T](fn: T => IOBinderTuple)(implicit tag: ClassTag[T]) extends ConcreteIOBinder[T](true, fn) class OverrideLazyIOBinder[T](fn: T => ModuleValue[IOBinderTuple])(implicit tag: ClassTag[T]) extends LazyIOBinder[T](false, fn) class ComposeLazyIOBinder[T](fn: T => ModuleValue[IOBinderTuple])(implicit tag: ClassTag[T]) extends LazyIOBinder[T](true, fn) case object IOCellKey extends Field[IOCellTypeParams](GenericIOCellParams()) class WithGPIOCells extends OverrideIOBinder({ (system: HasPeripheryGPIO) => { val (ports2d, cells2d) = system.gpio.zipWithIndex.map({ case (gpio, i) => gpio.pins.zipWithIndex.map({ case (pin, j) => val p = system.asInstanceOf[BaseSubsystem].p val g = IO(Analog(1.W)).suggestName(s"gpio_${i}_${j}") val iocell = p(IOCellKey).gpio().suggestName(s"iocell_gpio_${i}_${j}") iocell.io.o := pin.o.oval iocell.io.oe := pin.o.oe iocell.io.ie := pin.o.ie pin.i.ival := iocell.io.i pin.i.po.foreach(_ := DontCare) iocell.io.pad <> g (GPIOPort(() => g, i, j), iocell) }).unzip }).unzip (ports2d.flatten, cells2d.flatten) } }) class WithGPIOPunchthrough extends OverrideIOBinder({ (system: HasPeripheryGPIO) => { val ports = system.gpio.zipWithIndex.map { case (gpio, i) => val io_gpio = IO(gpio.cloneType).suggestName(s"gpio_$i") io_gpio <> gpio GPIOPinsPort(() => io_gpio, i) } (ports, Nil) } }) class WithI2CPunchthrough extends OverrideIOBinder({ (system: HasPeripheryI2C) => { val ports = system.i2c.zipWithIndex.map { case (i2c, i) => val io_i2c = IO(i2c.cloneType).suggestName(s"i2c_$i") io_i2c <> i2c I2CPort(() => i2c) } (ports, Nil) } }) // DOC include start: WithUARTIOCells class WithUARTIOCells extends OverrideIOBinder({ (system: HasPeripheryUART) => { val (ports: Seq[UARTPort], cells2d) = system.uart.zipWithIndex.map({ case (u, i) => val p = system.asInstanceOf[BaseSubsystem].p val (port, ios) = IOCell.generateIOFromSignal(u, s"uart_${i}", p(IOCellKey), abstractResetAsAsync = true) val where = PBUS // TODO fix val bus = system.asInstanceOf[HasTileLinkLocations].locateTLBusWrapper(where) val freqMHz = bus.dtsFrequency.get / 1000000 (UARTPort(() => port, i, freqMHz.toInt), ios) }).unzip (ports, cells2d.flatten) } }) // DOC include end: WithUARTIOCells class WithSPIIOPunchthrough extends OverrideLazyIOBinder({ (system: HasPeripherySPI) => { // attach resource to 1st SPI if (system.tlSpiNodes.size > 0) ResourceBinding { Resource(new MMCDevice(system.tlSpiNodes.head.device, 1), "reg").bind(ResourceAddress(0)) } InModuleBody { val spi = system.spi val ports = spi.zipWithIndex.map({ case (s, i) => val io_spi = IO(s.cloneType).suggestName(s"spi_$i") io_spi <> s SPIPort(() => io_spi) }) (ports, Nil) } } }) class WithSPIFlashIOCells extends OverrideIOBinder({ (system: HasPeripherySPIFlash) => { val (ports: Seq[SPIFlashPort], cells2d) = system.qspi.zipWithIndex.map({ case (s, i) => val p = system.asInstanceOf[BaseSubsystem].p val name = s"spi_${i}" val port = IO(new SPIChipIO(s.c.csWidth)).suggestName(name) val iocellBase = s"iocell_${name}" // SCK and CS are unidirectional outputs val sckIOs = IOCell.generateFromSignal(s.sck, port.sck, Some(s"${iocellBase}_sck"), p(IOCellKey), IOCell.toAsyncReset) val csIOs = IOCell.generateFromSignal(s.cs, port.cs, Some(s"${iocellBase}_cs"), p(IOCellKey), IOCell.toAsyncReset) // DQ are bidirectional, so then need special treatment val dqIOs = s.dq.zip(port.dq).zipWithIndex.map { case ((pin, ana), j) => val iocell = p(IOCellKey).gpio().suggestName(s"${iocellBase}_dq_${j}") iocell.io.o := pin.o iocell.io.oe := pin.oe iocell.io.ie := true.B pin.i := iocell.io.i iocell.io.pad <> ana iocell } (SPIFlashPort(() => port, p(PeripherySPIFlashKey)(i), i), dqIOs ++ csIOs ++ sckIOs) }).unzip (ports, cells2d.flatten) } }) class WithExtInterruptIOCells extends OverrideIOBinder({ (system: HasExtInterruptsModuleImp) => { if (system.outer.nExtInterrupts > 0) { val (port: UInt, cells) = IOCell.generateIOFromSignal(system.interrupts, "ext_interrupts", system.p(IOCellKey), abstractResetAsAsync = true) (Seq(ExtIntPort(() => port)), cells) } else { system.interrupts := DontCare // why do I have to drive this 0-wide wire??? (Nil, Nil) } } }) // Rocketchip's JTAGIO exposes the oe signal, which doesn't go off-chip class JTAGChipIO extends Bundle { val TCK = Input(Clock()) val TMS = Input(Bool()) val TDI = Input(Bool()) val TDO = Output(Bool()) } // WARNING: Don't disable syncReset unless you are trying to // get around bugs in RTL simulators class WithDebugIOCells(syncReset: Boolean = true) extends OverrideLazyIOBinder({ (system: HasPeripheryDebug) => { implicit val p = GetSystemParameters(system) val tlbus = system.asInstanceOf[BaseSubsystem].locateTLBusWrapper(p(ExportDebug).slaveWhere) val clockSinkNode = system.debugOpt.map(_ => ClockSinkNode(Seq(ClockSinkParameters()))) clockSinkNode.map(_ := tlbus.fixedClockNode) def clockBundle = clockSinkNode.get.in.head._1 InModuleBody { system.asInstanceOf[BaseSubsystem] match { case system: HasPeripheryDebug => { system.debug.map({ debug => // We never use the PSDIO, so tie it off on-chip system.psd.psd.foreach { _ <> 0.U.asTypeOf(new PSDTestMode) } system.resetctrl.map { rcio => rcio.hartIsInReset.map { _ := clockBundle.reset.asBool } } system.debug.map { d => // Tie off extTrigger d.extTrigger.foreach { t => t.in.req := false.B t.out.ack := t.out.req } // Tie off disableDebug d.disableDebug.foreach { d => d := false.B } // Drive JTAG on-chip IOs d.systemjtag.map { j => j.reset := (if (syncReset) ResetCatchAndSync(j.jtag.TCK, clockBundle.reset.asBool) else clockBundle.reset.asBool) j.mfr_id := p(JtagDTMKey).idcodeManufId.U(11.W) j.part_number := p(JtagDTMKey).idcodePartNum.U(16.W) j.version := p(JtagDTMKey).idcodeVersion.U(4.W) } } Debug.connectDebugClockAndReset(Some(debug), clockBundle.clock) // Add IOCells for the DMI/JTAG/APB ports val dmiTuple = debug.clockeddmi.map { d => val (port, cells) = IOCell.generateIOFromSignal(d, "dmi", p(IOCellKey), abstractResetAsAsync = true) (DMIPort(() => port), cells) } val jtagTuple = debug.systemjtag.map { j => val jtag_wire = Wire(new JTAGChipIO) j.jtag.TCK := jtag_wire.TCK j.jtag.TMS := jtag_wire.TMS j.jtag.TDI := jtag_wire.TDI jtag_wire.TDO := j.jtag.TDO.data val (port, cells) = IOCell.generateIOFromSignal(jtag_wire, "jtag", p(IOCellKey), abstractResetAsAsync = true) (JTAGPort(() => port), cells) } require(!debug.apb.isDefined) val allTuples = (dmiTuple ++ jtagTuple).toSeq (allTuples.map(_._1).toSeq, allTuples.flatMap(_._2).toSeq) }).getOrElse((Nil, Nil)) }}} } }) class WithSerialTLIOCells extends OverrideIOBinder({ (system: CanHavePeripheryTLSerial) => { val (ports, cells) = system.serial_tls.zipWithIndex.map({ case (s, id) => val sys = system.asInstanceOf[BaseSubsystem] val (port, cells) = IOCell.generateIOFromSignal(s.getWrappedValue, s"serial_tl_$id", sys.p(IOCellKey), abstractResetAsAsync = true) (SerialTLPort(() => port, sys.p(SerialTLKey)(id), system.serdessers(id), id), cells) }).unzip (ports.toSeq, cells.flatten.toSeq) } }) class WithChipIdIOCells extends OverrideIOBinder({ (system: CanHavePeripheryChipIdPin) => system.chip_id_pin.map({ p => val sys = system.asInstanceOf[BaseSubsystem] val (port, cells) = IOCell.generateIOFromSignal(p.getWrappedValue, s"chip_id", sys.p(IOCellKey), abstractResetAsAsync = true) (Seq(ChipIdPort(() => port)), cells) }).getOrElse(Nil, Nil) }) class WithSerialTLPunchthrough extends OverrideIOBinder({ (system: CanHavePeripheryTLSerial) => { val (ports, cells) = system.serial_tls.zipWithIndex.map({ case (s, id) => val sys = system.asInstanceOf[BaseSubsystem] val port = IO(chiselTypeOf(s.getWrappedValue)) port <> s.getWrappedValue (SerialTLPort(() => port, sys.p(SerialTLKey)(id), system.serdessers(id), id), Nil) }).unzip (ports.toSeq, cells.flatten.toSeq) } }) class WithAXI4MemPunchthrough extends OverrideLazyIOBinder({ (system: CanHaveMasterAXI4MemPort) => { implicit val p: Parameters = GetSystemParameters(system) val clockSinkNode = p(ExtMem).map(_ => ClockSinkNode(Seq(ClockSinkParameters()))) clockSinkNode.map(_ := system.asInstanceOf[HasTileLinkLocations].locateTLBusWrapper(MBUS).fixedClockNode) def clockBundle = clockSinkNode.get.in.head._1 InModuleBody { val ports: Seq[AXI4MemPort] = system.mem_axi4.zipWithIndex.map({ case (m, i) => val port = IO(new ClockedIO(DataMirror.internal.chiselTypeClone[AXI4Bundle](m))).suggestName(s"axi4_mem_${i}") port.bits <> m port.clock := clockBundle.clock AXI4MemPort(() => port, p(ExtMem).get, system.memAXI4Node.edges.in(i), p(MemoryBusKey).dtsFrequency.get.toInt) }).toSeq (ports, Nil) } } }) class WithAXI4MMIOPunchthrough extends OverrideLazyIOBinder({ (system: CanHaveMasterAXI4MMIOPort) => { implicit val p: Parameters = GetSystemParameters(system) val clockSinkNode = p(ExtBus).map(_ => ClockSinkNode(Seq(ClockSinkParameters()))) clockSinkNode.map(_ := system.asInstanceOf[HasTileLinkLocations].locateTLBusWrapper(SBUS).fixedClockNode) def clockBundle = clockSinkNode.get.in.head._1 InModuleBody { val ports: Seq[AXI4MMIOPort] = system.mmio_axi4.zipWithIndex.map({ case (m, i) => val port = IO(new ClockedIO(DataMirror.internal.chiselTypeClone[AXI4Bundle](m))).suggestName(s"axi4_mmio_${i}") port.bits <> m port.clock := clockBundle.clock AXI4MMIOPort(() => port, p(ExtBus).get, system.mmioAXI4Node.edges.in(i)) }).toSeq (ports, Nil) } } }) class WithL2FBusAXI4Punchthrough extends OverrideLazyIOBinder({ (system: CanHaveSlaveAXI4Port) => { implicit val p: Parameters = GetSystemParameters(system) val clockSinkNode = p(ExtIn).map(_ => ClockSinkNode(Seq(ClockSinkParameters()))) val fbus = system.asInstanceOf[HasTileLinkLocations].locateTLBusWrapper(FBUS) clockSinkNode.map(_ := fbus.fixedClockNode) def clockBundle = clockSinkNode.get.in.head._1 InModuleBody { val ports: Seq[AXI4InPort] = system.l2_frontend_bus_axi4.zipWithIndex.map({ case (m, i) => val port = IO(new ClockedIO(Flipped(DataMirror.internal.chiselTypeClone[AXI4Bundle](m)))).suggestName(s"axi4_fbus_${i}") m <> port.bits port.clock := clockBundle.clock AXI4InPort(() => port, p(ExtIn).get) }).toSeq (ports, Nil) } } }) class WithBlockDeviceIOPunchthrough extends OverrideIOBinder({ (system: CanHavePeripheryBlockDevice) => { val ports: Seq[BlockDevicePort] = system.bdev.map({ bdev => val p = GetSystemParameters(system) val bdParams = p(BlockDeviceKey).get val port = IO(new ClockedIO(new BlockDeviceIO(bdParams))).suggestName("blockdev") port <> bdev BlockDevicePort(() => port, bdParams) }).toSeq (ports, Nil) } }) class WithNICIOPunchthrough extends OverrideIOBinder({ (system: CanHavePeripheryIceNIC) => { val ports: Seq[NICPort] = system.icenicOpt.map({ n => val p = GetSystemParameters(system) val port = IO(new ClockedIO(new NICIOvonly)).suggestName("nic") port <> n NICPort(() => port, p(NICKey).get) }).toSeq (ports, Nil) } }) class WithTraceGenSuccessPunchthrough extends OverrideIOBinder({ (system: TraceGenSystemModuleImp) => { val success: Bool = IO(Output(Bool())).suggestName("success") success := system.success (Seq(SuccessPort(() => success)), Nil) } }) class WithTraceIOPunchthrough extends OverrideLazyIOBinder({ (system: CanHaveTraceIO) => InModuleBody { val ports: Option[TracePort] = system.traceIO.map { t => val trace = IO(DataMirror.internal.chiselTypeClone[TraceOutputTop](t)).suggestName("trace") trace <> t val p = GetSystemParameters(system) val chipyardSystem = system.asInstanceOf[ChipyardSystem] val tiles = chipyardSystem.totalTiles.values val viewpointBus = system.asInstanceOf[HasConfigurableTLNetworkTopology].viewpointBus val mems = viewpointBus.unifyManagers.filter { m => val regionTypes = Seq(RegionType.CACHED, RegionType.TRACKED, RegionType.UNCACHED, RegionType.IDEMPOTENT) val ignoreAddresses = Seq( 0x10000 // bootrom is handled specially ) regionTypes.contains(m.regionType) && !ignoreAddresses.contains(m.address.map(_.base).min) }.map { m => val base = m.address.map(_.base).min val size = m.address.map(_.max).max - base + 1 (base, size) } val useSimDTM = p(ExportDebug).protocols.contains(DMI) // assume that exposing clockeddmi means we will connect SimDTM val cfg = SpikeCosimConfig( isa = tiles.headOption.map(_.isaDTS).getOrElse(""), priv = tiles.headOption.map(t => if (t.usingUser) "MSU" else if (t.usingSupervisor) "MS" else "M").getOrElse(""), maxpglevels = tiles.headOption.map(_.tileParams.core.pgLevels).getOrElse(0), pmpregions = tiles.headOption.map(_.tileParams.core.nPMPs).getOrElse(0), nharts = tiles.size, bootrom = chipyardSystem.bootROM.map(_.module.contents.toArray.mkString(" ")).getOrElse(""), has_dtm = useSimDTM, mems = mems, // Connect using the legacy API for firesim only mem0_base = p(ExtMem).map(_.master.base).getOrElse(BigInt(0)), mem0_size = p(ExtMem).map(_.master.size).getOrElse(BigInt(0)), ) TracePort(() => trace, cfg) } (ports.toSeq, Nil) } }) class WithCustomBootPin extends OverrideIOBinder({ (system: CanHavePeripheryCustomBootPin) => system.custom_boot_pin.map({ p => val sys = system.asInstanceOf[BaseSubsystem] val (port, cells) = IOCell.generateIOFromSignal(p.getWrappedValue, "custom_boot", sys.p(IOCellKey), abstractResetAsAsync = true) (Seq(CustomBootPort(() => port)), cells) }).getOrElse((Nil, Nil)) }) class WithUARTTSIPunchthrough extends OverrideIOBinder({ (system: CanHavePeripheryUARTTSI) => system.uart_tsi.map({ p => val sys = system.asInstanceOf[BaseSubsystem] val uart_tsi = IO(new UARTTSIIO(p.uartParams)) uart_tsi <> p (Seq(UARTTSIPort(() => uart_tsi)), Nil) }).getOrElse((Nil, Nil)) }) class WithTLMemPunchthrough extends OverrideIOBinder({ (system: CanHaveMasterTLMemPort) => { val io_tl_mem_pins_temp = IO(DataMirror.internal.chiselTypeClone[HeterogeneousBag[TLBundle]](system.mem_tl)).suggestName("tl_slave") io_tl_mem_pins_temp <> system.mem_tl (Seq(TLMemPort(() => io_tl_mem_pins_temp)), Nil) } }) class WithDontTouchPorts extends OverrideIOBinder({ (system: DontTouch) => system.dontTouchPorts(); (Nil, Nil) }) class WithNMITiedOff extends ComposeIOBinder({ (system: HasHierarchicalElementsRootContextModuleImp) => { system.nmi.foreach { nmi => nmi.rnmi := false.B nmi.rnmi_interrupt_vector := 0.U nmi.rnmi_exception_vector := 0.U } (Nil, Nil) } }) class WithGCDBusyPunchthrough extends OverrideIOBinder({ (system: CanHavePeripheryGCD) => system.gcd_busy.map { busy => val io_gcd_busy = IO(Output(Bool())) io_gcd_busy := busy (Seq(GCDBusyPort(() => io_gcd_busy)), Nil) }.getOrElse((Nil, Nil)) }) File ClockBinders.scala: package chipyard.clocking import chisel3._ import chisel3.util._ import chipyard.iobinders._ import freechips.rocketchip.prci._ import freechips.rocketchip.diplomacy._ import freechips.rocketchip.subsystem._ import freechips.rocketchip.tilelink._ import chipyard.iocell._ // This uses the FakePLL, which uses a ClockAtFreq Verilog blackbox to generate // the requested clocks. This also adds TileLink ClockDivider and ClockSelector // blocks, which allow memory-mapped control of clock division, and clock muxing // between the FakePLL and the slow off-chip clock // Note: This will not simulate properly with firesim // Unsetting enable will prevent the divider/selector from actually modifying the clock, // while preserving the address map. Unsetting enable should only be done for RTL // simulators (Verilator) which do not model reset properly class WithPLLSelectorDividerClockGenerator(enable: Boolean = true) extends OverrideLazyIOBinder({ (system: HasChipyardPRCI) => { // Connect the implicit clock implicit val p = GetSystemParameters(system) val tlbus = system.asInstanceOf[BaseSubsystem].locateTLBusWrapper(system.prciParams.slaveWhere) val baseAddress = system.prciParams.baseAddress val clockDivider = system.prci_ctrl_domain { LazyModule(new TLClockDivider (baseAddress + 0x20000, tlbus.beatBytes, enable=enable)) } val clockSelector = system.prci_ctrl_domain { LazyModule(new TLClockSelector(baseAddress + 0x30000, tlbus.beatBytes, enable=enable)) } val pllCtrl = system.prci_ctrl_domain { LazyModule(new FakePLLCtrl (baseAddress + 0x40000, tlbus.beatBytes)) } clockDivider.tlNode := system.prci_ctrl_domain { TLFragmenter(tlbus, Some("ClockDivider")) := system.prci_ctrl_bus.get } clockSelector.tlNode := system.prci_ctrl_domain { TLFragmenter(tlbus, Some("ClockSelector")) := system.prci_ctrl_bus.get } pllCtrl.tlNode := system.prci_ctrl_domain { TLFragmenter(tlbus, Some("PLLCtrl")) := system.prci_ctrl_bus.get } system.chiptopClockGroupsNode := clockDivider.clockNode := clockSelector.clockNode // Connect all other requested clocks val slowClockSource = ClockSourceNode(Seq(ClockSourceParameters())) val pllClockSource = ClockSourceNode(Seq(ClockSourceParameters())) // The order of the connections to clockSelector.clockNode configures the inputs // of the clockSelector's clockMux. Default to using the slowClockSource, // software should enable the PLL, then switch to the pllClockSource clockSelector.clockNode := slowClockSource clockSelector.clockNode := pllClockSource val pllCtrlSink = BundleBridgeSink[FakePLLCtrlBundle]() pllCtrlSink := pllCtrl.ctrlNode InModuleBody { val clock_wire = Wire(Input(Clock())) val reset_wire = Wire(Input(AsyncReset())) val (clock_io, clockIOCell) = IOCell.generateIOFromSignal(clock_wire, "clock", p(IOCellKey)) val (reset_io, resetIOCell) = IOCell.generateIOFromSignal(reset_wire, "reset", p(IOCellKey)) slowClockSource.out.unzip._1.map { o => o.clock := clock_wire o.reset := reset_wire } // For a real chip you should replace this ClockSourceAtFreqFromPlusArg // with a blackbox of whatever PLL is being integrated val fake_pll = Module(new ClockSourceAtFreqFromPlusArg("pll_freq_mhz")) fake_pll.io.power := pllCtrlSink.in(0)._1.power fake_pll.io.gate := pllCtrlSink.in(0)._1.gate pllClockSource.out.unzip._1.map { o => o.clock := fake_pll.io.clk o.reset := reset_wire } (Seq(ClockPort(() => clock_io, 100), ResetPort(() => reset_io)), clockIOCell ++ resetIOCell) } } }) // This passes all clocks through to the TestHarness class WithPassthroughClockGenerator extends OverrideLazyIOBinder({ (system: HasChipyardPRCI) => { implicit val p = GetSystemParameters(system) // This aggregate node should do nothing val clockGroupAggNode = ClockGroupAggregateNode("fake") val clockGroupsSourceNode = ClockGroupSourceNode(Seq(ClockGroupSourceParameters())) system.chiptopClockGroupsNode := clockGroupAggNode := clockGroupsSourceNode InModuleBody { val reset_io = IO(Input(AsyncReset())) require(clockGroupAggNode.out.size == 1) val (bundle, edge) = clockGroupAggNode.out(0) val clock_ios = (bundle.member.data zip edge.sink.members).map { case (b, m) => require(m.take.isDefined, s"""Clock ${m.name.get} has no requested frequency |Clocks: ${edge.sink.members.map(_.name.get)}""".stripMargin) val freq = m.take.get.freqMHz val clock_io = IO(Input(Clock())).suggestName(s"clock_${m.name.get}") b.clock := clock_io b.reset := reset_io ClockPort(() => clock_io, freq) }.toSeq ((clock_ios :+ ResetPort(() => reset_io)), Nil) } } }) // Broadcasts a single clock IO to all clock domains. Ignores all requested frequencies class WithSingleClockBroadcastClockGenerator(freqMHz: Int = 100) extends OverrideLazyIOBinder({ (system: HasChipyardPRCI) => { implicit val p = GetSystemParameters(system) val clockGroupsAggregator = LazyModule(new ClockGroupAggregator("single_clock")) val clockGroupsSourceNode = ClockGroupSourceNode(Seq(ClockGroupSourceParameters())) system.chiptopClockGroupsNode :*= clockGroupsAggregator.node := clockGroupsSourceNode InModuleBody { val clock_wire = Wire(Input(Clock())) val reset_wire = Wire(Input(AsyncReset())) val (clock_io, clockIOCell) = IOCell.generateIOFromSignal(clock_wire, "clock", p(IOCellKey)) val (reset_io, resetIOCell) = IOCell.generateIOFromSignal(reset_wire, "reset", p(IOCellKey)) clockGroupsSourceNode.out.foreach { case (bundle, edge) => bundle.member.data.foreach { b => b.clock := clock_io b.reset := reset_io } } (Seq(ClockPort(() => clock_io, freqMHz), ResetPort(() => reset_io)), clockIOCell ++ resetIOCell) } } }) class WithClockTapIOCells extends OverrideIOBinder({ (system: CanHaveClockTap) => { system.clockTapIO.map { tap => val (clock_tap_io, clock_tap_cell) = IOCell.generateIOFromSignal(tap.getWrappedValue, "clock_tap") (Seq(ClockTapPort(() => clock_tap_io)), clock_tap_cell) }.getOrElse((Nil, Nil)) } })
module ChipTop( // @[ChipTop.scala:33:44] output uart_0_txd, // @[IOCell.scala:196:23] input uart_0_rxd, // @[IOCell.scala:196:23] output axi4_mem_0_clock, // @[IOBinders.scala:397:22] input axi4_mem_0_bits_aw_ready, // @[IOBinders.scala:397:22] output axi4_mem_0_bits_aw_valid, // @[IOBinders.scala:397:22] output [3:0] axi4_mem_0_bits_aw_bits_id, // @[IOBinders.scala:397:22] output [31:0] axi4_mem_0_bits_aw_bits_addr, // @[IOBinders.scala:397:22] output [7:0] axi4_mem_0_bits_aw_bits_len, // @[IOBinders.scala:397:22] output [2:0] axi4_mem_0_bits_aw_bits_size, // @[IOBinders.scala:397:22] output [1:0] axi4_mem_0_bits_aw_bits_burst, // @[IOBinders.scala:397:22] output axi4_mem_0_bits_aw_bits_lock, // @[IOBinders.scala:397:22] output [3:0] axi4_mem_0_bits_aw_bits_cache, // @[IOBinders.scala:397:22] output [2:0] axi4_mem_0_bits_aw_bits_prot, // @[IOBinders.scala:397:22] output [3:0] axi4_mem_0_bits_aw_bits_qos, // @[IOBinders.scala:397:22] input axi4_mem_0_bits_w_ready, // @[IOBinders.scala:397:22] output axi4_mem_0_bits_w_valid, // @[IOBinders.scala:397:22] output [63:0] axi4_mem_0_bits_w_bits_data, // @[IOBinders.scala:397:22] output [7:0] axi4_mem_0_bits_w_bits_strb, // @[IOBinders.scala:397:22] output axi4_mem_0_bits_w_bits_last, // @[IOBinders.scala:397:22] output axi4_mem_0_bits_b_ready, // @[IOBinders.scala:397:22] input axi4_mem_0_bits_b_valid, // @[IOBinders.scala:397:22] input [3:0] axi4_mem_0_bits_b_bits_id, // @[IOBinders.scala:397:22] input [1:0] axi4_mem_0_bits_b_bits_resp, // @[IOBinders.scala:397:22] input axi4_mem_0_bits_ar_ready, // @[IOBinders.scala:397:22] output axi4_mem_0_bits_ar_valid, // @[IOBinders.scala:397:22] output [3:0] axi4_mem_0_bits_ar_bits_id, // @[IOBinders.scala:397:22] output [31:0] axi4_mem_0_bits_ar_bits_addr, // @[IOBinders.scala:397:22] output [7:0] axi4_mem_0_bits_ar_bits_len, // @[IOBinders.scala:397:22] output [2:0] axi4_mem_0_bits_ar_bits_size, // @[IOBinders.scala:397:22] output [1:0] axi4_mem_0_bits_ar_bits_burst, // @[IOBinders.scala:397:22] output axi4_mem_0_bits_ar_bits_lock, // @[IOBinders.scala:397:22] output [3:0] axi4_mem_0_bits_ar_bits_cache, // @[IOBinders.scala:397:22] output [2:0] axi4_mem_0_bits_ar_bits_prot, // @[IOBinders.scala:397:22] output [3:0] axi4_mem_0_bits_ar_bits_qos, // @[IOBinders.scala:397:22] output axi4_mem_0_bits_r_ready, // @[IOBinders.scala:397:22] input axi4_mem_0_bits_r_valid, // @[IOBinders.scala:397:22] input [3:0] axi4_mem_0_bits_r_bits_id, // @[IOBinders.scala:397:22] input [63:0] axi4_mem_0_bits_r_bits_data, // @[IOBinders.scala:397:22] input [1:0] axi4_mem_0_bits_r_bits_resp, // @[IOBinders.scala:397:22] input axi4_mem_0_bits_r_bits_last, // @[IOBinders.scala:397:22] input custom_boot, // @[IOCell.scala:196:23] input jtag_TCK, // @[IOCell.scala:196:23] input jtag_TMS, // @[IOCell.scala:196:23] input jtag_TDI, // @[IOCell.scala:196:23] output jtag_TDO, // @[IOCell.scala:196:23] input reset_io, // @[ClockBinders.scala:87:24] input clock_uncore, // @[ClockBinders.scala:95:26] output clock_tap, // @[IOCell.scala:196:23] output serial_tl_0_in_ready, // @[IOCell.scala:196:23] input serial_tl_0_in_valid, // @[IOCell.scala:196:23] input [31:0] serial_tl_0_in_bits_phit, // @[IOCell.scala:196:23] input serial_tl_0_out_ready, // @[IOCell.scala:196:23] output serial_tl_0_out_valid, // @[IOCell.scala:196:23] output [31:0] serial_tl_0_out_bits_phit, // @[IOCell.scala:196:23] input serial_tl_0_clock_in // @[IOCell.scala:196:23] ); wire _iocell_serial_tl_0_in_valid_i; // @[IOCell.scala:176:23] wire _iocell_serial_tl_0_in_bits_phit_31_i; // @[IOCell.scala:176:23] wire _iocell_serial_tl_0_in_bits_phit_30_i; // @[IOCell.scala:176:23] wire _iocell_serial_tl_0_in_bits_phit_29_i; // @[IOCell.scala:176:23] wire _iocell_serial_tl_0_in_bits_phit_28_i; // @[IOCell.scala:176:23] wire _iocell_serial_tl_0_in_bits_phit_27_i; // @[IOCell.scala:176:23] wire _iocell_serial_tl_0_in_bits_phit_26_i; // @[IOCell.scala:176:23] wire _iocell_serial_tl_0_in_bits_phit_25_i; // @[IOCell.scala:176:23] wire _iocell_serial_tl_0_in_bits_phit_24_i; // @[IOCell.scala:176:23] wire _iocell_serial_tl_0_in_bits_phit_23_i; // @[IOCell.scala:176:23] wire _iocell_serial_tl_0_in_bits_phit_22_i; // @[IOCell.scala:176:23] wire _iocell_serial_tl_0_in_bits_phit_21_i; // @[IOCell.scala:176:23] wire _iocell_serial_tl_0_in_bits_phit_20_i; // @[IOCell.scala:176:23] wire _iocell_serial_tl_0_in_bits_phit_19_i; // @[IOCell.scala:176:23] wire _iocell_serial_tl_0_in_bits_phit_18_i; // @[IOCell.scala:176:23] wire _iocell_serial_tl_0_in_bits_phit_17_i; // @[IOCell.scala:176:23] wire _iocell_serial_tl_0_in_bits_phit_16_i; // @[IOCell.scala:176:23] wire _iocell_serial_tl_0_in_bits_phit_15_i; // @[IOCell.scala:176:23] wire _iocell_serial_tl_0_in_bits_phit_14_i; // @[IOCell.scala:176:23] wire _iocell_serial_tl_0_in_bits_phit_13_i; // @[IOCell.scala:176:23] wire _iocell_serial_tl_0_in_bits_phit_12_i; // @[IOCell.scala:176:23] wire _iocell_serial_tl_0_in_bits_phit_11_i; // @[IOCell.scala:176:23] wire _iocell_serial_tl_0_in_bits_phit_10_i; // @[IOCell.scala:176:23] wire _iocell_serial_tl_0_in_bits_phit_9_i; // @[IOCell.scala:176:23] wire _iocell_serial_tl_0_in_bits_phit_8_i; // @[IOCell.scala:176:23] wire _iocell_serial_tl_0_in_bits_phit_7_i; // @[IOCell.scala:176:23] wire _iocell_serial_tl_0_in_bits_phit_6_i; // @[IOCell.scala:176:23] wire _iocell_serial_tl_0_in_bits_phit_5_i; // @[IOCell.scala:176:23] wire _iocell_serial_tl_0_in_bits_phit_4_i; // @[IOCell.scala:176:23] wire _iocell_serial_tl_0_in_bits_phit_3_i; // @[IOCell.scala:176:23] wire _iocell_serial_tl_0_in_bits_phit_2_i; // @[IOCell.scala:176:23] wire _iocell_serial_tl_0_in_bits_phit_1_i; // @[IOCell.scala:176:23] wire _iocell_serial_tl_0_in_bits_phit_i; // @[IOCell.scala:176:23] wire _iocell_serial_tl_0_out_ready_i; // @[IOCell.scala:176:23] wire _iocell_serial_tl_0_out_bits_phit_31_pad; // @[IOCell.scala:177:24] wire _iocell_serial_tl_0_out_bits_phit_30_pad; // @[IOCell.scala:177:24] wire _iocell_serial_tl_0_out_bits_phit_29_pad; // @[IOCell.scala:177:24] wire _iocell_serial_tl_0_out_bits_phit_28_pad; // @[IOCell.scala:177:24] wire _iocell_serial_tl_0_out_bits_phit_27_pad; // @[IOCell.scala:177:24] wire _iocell_serial_tl_0_out_bits_phit_26_pad; // @[IOCell.scala:177:24] wire _iocell_serial_tl_0_out_bits_phit_25_pad; // @[IOCell.scala:177:24] wire _iocell_serial_tl_0_out_bits_phit_24_pad; // @[IOCell.scala:177:24] wire _iocell_serial_tl_0_out_bits_phit_23_pad; // @[IOCell.scala:177:24] wire _iocell_serial_tl_0_out_bits_phit_22_pad; // @[IOCell.scala:177:24] wire _iocell_serial_tl_0_out_bits_phit_21_pad; // @[IOCell.scala:177:24] wire _iocell_serial_tl_0_out_bits_phit_20_pad; // @[IOCell.scala:177:24] wire _iocell_serial_tl_0_out_bits_phit_19_pad; // @[IOCell.scala:177:24] wire _iocell_serial_tl_0_out_bits_phit_18_pad; // @[IOCell.scala:177:24] wire _iocell_serial_tl_0_out_bits_phit_17_pad; // @[IOCell.scala:177:24] wire _iocell_serial_tl_0_out_bits_phit_16_pad; // @[IOCell.scala:177:24] wire _iocell_serial_tl_0_out_bits_phit_15_pad; // @[IOCell.scala:177:24] wire _iocell_serial_tl_0_out_bits_phit_14_pad; // @[IOCell.scala:177:24] wire _iocell_serial_tl_0_out_bits_phit_13_pad; // @[IOCell.scala:177:24] wire _iocell_serial_tl_0_out_bits_phit_12_pad; // @[IOCell.scala:177:24] wire _iocell_serial_tl_0_out_bits_phit_11_pad; // @[IOCell.scala:177:24] wire _iocell_serial_tl_0_out_bits_phit_10_pad; // @[IOCell.scala:177:24] wire _iocell_serial_tl_0_out_bits_phit_9_pad; // @[IOCell.scala:177:24] wire _iocell_serial_tl_0_out_bits_phit_8_pad; // @[IOCell.scala:177:24] wire _iocell_serial_tl_0_out_bits_phit_7_pad; // @[IOCell.scala:177:24] wire _iocell_serial_tl_0_out_bits_phit_6_pad; // @[IOCell.scala:177:24] wire _iocell_serial_tl_0_out_bits_phit_5_pad; // @[IOCell.scala:177:24] wire _iocell_serial_tl_0_out_bits_phit_4_pad; // @[IOCell.scala:177:24] wire _iocell_serial_tl_0_out_bits_phit_3_pad; // @[IOCell.scala:177:24] wire _iocell_serial_tl_0_out_bits_phit_2_pad; // @[IOCell.scala:177:24] wire _iocell_serial_tl_0_out_bits_phit_1_pad; // @[IOCell.scala:177:24] wire _iocell_serial_tl_0_out_bits_phit_pad; // @[IOCell.scala:177:24] wire _gated_clock_debug_clock_gate_out; // @[ClockGate.scala:36:20] wire _system_debug_systemjtag_reset_catcher_io_sync_reset; // @[ResetCatchAndSync.scala:39:28] wire _iocell_custom_boot_i; // @[IOCell.scala:176:23] wire _iocell_uart_0_rxd_i; // @[IOCell.scala:176:23] wire _system_debug_dmactive; // @[ChipTop.scala:27:35] wire _system_serial_tl_0_in_ready; // @[ChipTop.scala:27:35] wire _system_serial_tl_0_out_valid; // @[ChipTop.scala:27:35] wire [31:0] _system_serial_tl_0_out_bits_phit; // @[ChipTop.scala:27:35] wire _system_uart_0_txd; // @[ChipTop.scala:27:35] wire uart_0_rxd_0 = uart_0_rxd; // @[ChipTop.scala:33:44] wire axi4_mem_0_bits_aw_ready_0 = axi4_mem_0_bits_aw_ready; // @[ChipTop.scala:33:44] wire axi4_mem_0_bits_w_ready_0 = axi4_mem_0_bits_w_ready; // @[ChipTop.scala:33:44] wire axi4_mem_0_bits_b_valid_0 = axi4_mem_0_bits_b_valid; // @[ChipTop.scala:33:44] wire [3:0] axi4_mem_0_bits_b_bits_id_0 = axi4_mem_0_bits_b_bits_id; // @[ChipTop.scala:33:44] wire [1:0] axi4_mem_0_bits_b_bits_resp_0 = axi4_mem_0_bits_b_bits_resp; // @[ChipTop.scala:33:44] wire axi4_mem_0_bits_ar_ready_0 = axi4_mem_0_bits_ar_ready; // @[ChipTop.scala:33:44] wire axi4_mem_0_bits_r_valid_0 = axi4_mem_0_bits_r_valid; // @[ChipTop.scala:33:44] wire [3:0] axi4_mem_0_bits_r_bits_id_0 = axi4_mem_0_bits_r_bits_id; // @[ChipTop.scala:33:44] wire [63:0] axi4_mem_0_bits_r_bits_data_0 = axi4_mem_0_bits_r_bits_data; // @[ChipTop.scala:33:44] wire [1:0] axi4_mem_0_bits_r_bits_resp_0 = axi4_mem_0_bits_r_bits_resp; // @[ChipTop.scala:33:44] wire axi4_mem_0_bits_r_bits_last_0 = axi4_mem_0_bits_r_bits_last; // @[ChipTop.scala:33:44] wire jtag_TCK_0 = jtag_TCK; // @[ChipTop.scala:33:44] wire jtag_TMS_0 = jtag_TMS; // @[ChipTop.scala:33:44] wire jtag_TDI_0 = jtag_TDI; // @[ChipTop.scala:33:44] wire serial_tl_0_in_valid_0 = serial_tl_0_in_valid; // @[ChipTop.scala:33:44] wire [31:0] serial_tl_0_in_bits_phit_0 = serial_tl_0_in_bits_phit; // @[ChipTop.scala:33:44] wire serial_tl_0_out_ready_0 = serial_tl_0_out_ready; // @[ChipTop.scala:33:44] wire serial_tl_0_clock_in_0 = serial_tl_0_clock_in; // @[ChipTop.scala:33:44] wire clockGroupAggNodeOut_member_allClocks_uncore_clock = clock_uncore; // @[MixedNode.scala:542:17] wire clockGroupAggNodeOut_member_allClocks_uncore_reset = reset_io; // @[MixedNode.scala:542:17] wire childClock = 1'h0; // @[LazyModuleImp.scala:155:31] wire childReset = 1'h0; // @[LazyModuleImp.scala:158:31] wire _childClock_T = 1'h0; // @[LazyModuleImp.scala:160:25] wire clockGroupAggNodeIn_member_fake_uncore_clock = 1'h0; // @[MixedNode.scala:551:17] wire clockGroupAggNodeIn_member_fake_uncore_reset = 1'h0; // @[MixedNode.scala:551:17] wire clockGroupsSourceNodeOut_member_fake_uncore_clock = 1'h0; // @[MixedNode.scala:542:17] wire clockGroupsSourceNodeOut_member_fake_uncore_reset = 1'h0; // @[MixedNode.scala:542:17] wire _system_debug_systemjtag_reset_catcher_io_psd_WIRE_test_mode = 1'h0; // @[ResetCatchAndSync.scala:41:63] wire _system_debug_systemjtag_reset_catcher_io_psd_WIRE_test_mode_reset = 1'h0; // @[ResetCatchAndSync.scala:41:63] wire _system_debug_systemjtag_reset_catcher_io_psd_WIRE_1_test_mode = 1'h0; // @[ResetCatchAndSync.scala:41:50] wire _system_debug_systemjtag_reset_catcher_io_psd_WIRE_1_test_mode_reset = 1'h0; // @[ResetCatchAndSync.scala:41:50] wire _clock_tap_T; // @[IOCell.scala:248:61] wire clockSinkNodeIn_clock; // @[MixedNode.scala:551:17] wire _iocell_jtag_TCK_io_pad_T = jtag_TCK_0; // @[IOCell.scala:248:44] wire [31:0] _serial_tl_0_out_bits_phit_T; // @[IOCell.scala:312:31] wire _iocell_serial_tl_0_clock_in_io_pad_T = serial_tl_0_clock_in_0; // @[IOCell.scala:248:44] wire uart_0_txd_0; // @[ChipTop.scala:33:44] wire [3:0] axi4_mem_0_bits_aw_bits_id_0; // @[ChipTop.scala:33:44] wire [31:0] axi4_mem_0_bits_aw_bits_addr_0; // @[ChipTop.scala:33:44] wire [7:0] axi4_mem_0_bits_aw_bits_len_0; // @[ChipTop.scala:33:44] wire [2:0] axi4_mem_0_bits_aw_bits_size_0; // @[ChipTop.scala:33:44] wire [1:0] axi4_mem_0_bits_aw_bits_burst_0; // @[ChipTop.scala:33:44] wire axi4_mem_0_bits_aw_bits_lock_0; // @[ChipTop.scala:33:44] wire [3:0] axi4_mem_0_bits_aw_bits_cache_0; // @[ChipTop.scala:33:44] wire [2:0] axi4_mem_0_bits_aw_bits_prot_0; // @[ChipTop.scala:33:44] wire [3:0] axi4_mem_0_bits_aw_bits_qos_0; // @[ChipTop.scala:33:44] wire axi4_mem_0_bits_aw_valid_0; // @[ChipTop.scala:33:44] wire [63:0] axi4_mem_0_bits_w_bits_data_0; // @[ChipTop.scala:33:44] wire [7:0] axi4_mem_0_bits_w_bits_strb_0; // @[ChipTop.scala:33:44] wire axi4_mem_0_bits_w_bits_last_0; // @[ChipTop.scala:33:44] wire axi4_mem_0_bits_w_valid_0; // @[ChipTop.scala:33:44] wire axi4_mem_0_bits_b_ready_0; // @[ChipTop.scala:33:44] wire [3:0] axi4_mem_0_bits_ar_bits_id_0; // @[ChipTop.scala:33:44] wire [31:0] axi4_mem_0_bits_ar_bits_addr_0; // @[ChipTop.scala:33:44] wire [7:0] axi4_mem_0_bits_ar_bits_len_0; // @[ChipTop.scala:33:44] wire [2:0] axi4_mem_0_bits_ar_bits_size_0; // @[ChipTop.scala:33:44] wire [1:0] axi4_mem_0_bits_ar_bits_burst_0; // @[ChipTop.scala:33:44] wire axi4_mem_0_bits_ar_bits_lock_0; // @[ChipTop.scala:33:44] wire [3:0] axi4_mem_0_bits_ar_bits_cache_0; // @[ChipTop.scala:33:44] wire [2:0] axi4_mem_0_bits_ar_bits_prot_0; // @[ChipTop.scala:33:44] wire [3:0] axi4_mem_0_bits_ar_bits_qos_0; // @[ChipTop.scala:33:44] wire axi4_mem_0_bits_ar_valid_0; // @[ChipTop.scala:33:44] wire axi4_mem_0_bits_r_ready_0; // @[ChipTop.scala:33:44] wire axi4_mem_0_clock_0; // @[ChipTop.scala:33:44] wire jtag_TDO_0; // @[ChipTop.scala:33:44] wire _clock_tap_output; // @[ChipTop.scala:33:44] wire serial_tl_0_in_ready_0; // @[ChipTop.scala:33:44] wire [31:0] serial_tl_0_out_bits_phit_0; // @[ChipTop.scala:33:44] wire serial_tl_0_out_valid_0; // @[ChipTop.scala:33:44] assign axi4_mem_0_clock_0 = clockSinkNodeIn_clock; // @[MixedNode.scala:551:17] wire clockSinkNodeIn_reset; // @[MixedNode.scala:551:17] wire clockSinkNodeIn_1_clock; // @[MixedNode.scala:551:17] wire clockSinkNodeIn_1_reset; // @[MixedNode.scala:551:17] wire _system_resetctrl_hartIsInReset_0_T = clockSinkNodeIn_1_reset; // @[MixedNode.scala:551:17] wire _system_resetctrl_hartIsInReset_1_T = clockSinkNodeIn_1_reset; // @[MixedNode.scala:551:17] wire _system_debug_systemjtag_reset_T = clockSinkNodeIn_1_reset; // @[MixedNode.scala:551:17] wire _dmi_reset_T; // @[Periphery.scala:281:38] wire _dmi_reset_T_1 = _dmi_reset_T; // @[Periphery.scala:280:82, :281:38] wire dmi_reset = _dmi_reset_T_1; // @[Periphery.scala:280:82, :281:65] wire debug_reset_syncd; // @[Periphery.scala:290:40] wire debug_reset; // @[Periphery.scala:288:27] wire _debug_reset_syncd_WIRE; // @[ShiftReg.scala:48:24] assign debug_reset_syncd = ~_debug_reset_syncd_WIRE; // @[ShiftReg.scala:48:24] assign debug_reset = debug_reset_syncd; // @[Periphery.scala:288:27, :290:40] wire dmactiveAck; // @[ShiftReg.scala:48:24] reg clock_en; // @[Periphery.scala:298:29] wire _jtag_wire_TCK_T; // @[IOCell.scala:248:61] wire jtag_wire_TCK; // @[IOBinders.scala:339:31] wire jtag_wire_TMS; // @[IOBinders.scala:339:31] wire jtag_wire_TDI; // @[IOBinders.scala:339:31] wire jtag_wire_TDO; // @[IOBinders.scala:339:31] assign jtag_wire_TCK = _jtag_wire_TCK_T; // @[IOCell.scala:248:61] wire _iocell_jtag_TCK_io_pad_T_1 = _iocell_jtag_TCK_io_pad_T; // @[IOCell.scala:248:{44,51}] wire _iocell_clock_tap_io_o_T; // @[IOCell.scala:248:44] wire _iocell_clock_tap_io_o_T_1 = _iocell_clock_tap_io_o_T; // @[IOCell.scala:248:{44,51}] assign _clock_tap_output = _clock_tap_T; // @[IOCell.scala:248:61] wire _iocell_serial_tl_0_clock_in_io_pad_T_1 = _iocell_serial_tl_0_clock_in_io_pad_T; // @[IOCell.scala:248:{44,51}] wire [1:0] serial_tl_0_out_bits_phit_lo_lo_lo_lo = {_iocell_serial_tl_0_out_bits_phit_1_pad, _iocell_serial_tl_0_out_bits_phit_pad}; // @[IOCell.scala:177:24, :312:31] wire [1:0] serial_tl_0_out_bits_phit_lo_lo_lo_hi = {_iocell_serial_tl_0_out_bits_phit_3_pad, _iocell_serial_tl_0_out_bits_phit_2_pad}; // @[IOCell.scala:177:24, :312:31] wire [3:0] serial_tl_0_out_bits_phit_lo_lo_lo = {serial_tl_0_out_bits_phit_lo_lo_lo_hi, serial_tl_0_out_bits_phit_lo_lo_lo_lo}; // @[IOCell.scala:312:31] wire [1:0] serial_tl_0_out_bits_phit_lo_lo_hi_lo = {_iocell_serial_tl_0_out_bits_phit_5_pad, _iocell_serial_tl_0_out_bits_phit_4_pad}; // @[IOCell.scala:177:24, :312:31] wire [1:0] serial_tl_0_out_bits_phit_lo_lo_hi_hi = {_iocell_serial_tl_0_out_bits_phit_7_pad, _iocell_serial_tl_0_out_bits_phit_6_pad}; // @[IOCell.scala:177:24, :312:31] wire [3:0] serial_tl_0_out_bits_phit_lo_lo_hi = {serial_tl_0_out_bits_phit_lo_lo_hi_hi, serial_tl_0_out_bits_phit_lo_lo_hi_lo}; // @[IOCell.scala:312:31] wire [7:0] serial_tl_0_out_bits_phit_lo_lo = {serial_tl_0_out_bits_phit_lo_lo_hi, serial_tl_0_out_bits_phit_lo_lo_lo}; // @[IOCell.scala:312:31] wire [1:0] serial_tl_0_out_bits_phit_lo_hi_lo_lo = {_iocell_serial_tl_0_out_bits_phit_9_pad, _iocell_serial_tl_0_out_bits_phit_8_pad}; // @[IOCell.scala:177:24, :312:31] wire [1:0] serial_tl_0_out_bits_phit_lo_hi_lo_hi = {_iocell_serial_tl_0_out_bits_phit_11_pad, _iocell_serial_tl_0_out_bits_phit_10_pad}; // @[IOCell.scala:177:24, :312:31] wire [3:0] serial_tl_0_out_bits_phit_lo_hi_lo = {serial_tl_0_out_bits_phit_lo_hi_lo_hi, serial_tl_0_out_bits_phit_lo_hi_lo_lo}; // @[IOCell.scala:312:31] wire [1:0] serial_tl_0_out_bits_phit_lo_hi_hi_lo = {_iocell_serial_tl_0_out_bits_phit_13_pad, _iocell_serial_tl_0_out_bits_phit_12_pad}; // @[IOCell.scala:177:24, :312:31] wire [1:0] serial_tl_0_out_bits_phit_lo_hi_hi_hi = {_iocell_serial_tl_0_out_bits_phit_15_pad, _iocell_serial_tl_0_out_bits_phit_14_pad}; // @[IOCell.scala:177:24, :312:31] wire [3:0] serial_tl_0_out_bits_phit_lo_hi_hi = {serial_tl_0_out_bits_phit_lo_hi_hi_hi, serial_tl_0_out_bits_phit_lo_hi_hi_lo}; // @[IOCell.scala:312:31] wire [7:0] serial_tl_0_out_bits_phit_lo_hi = {serial_tl_0_out_bits_phit_lo_hi_hi, serial_tl_0_out_bits_phit_lo_hi_lo}; // @[IOCell.scala:312:31] wire [15:0] serial_tl_0_out_bits_phit_lo = {serial_tl_0_out_bits_phit_lo_hi, serial_tl_0_out_bits_phit_lo_lo}; // @[IOCell.scala:312:31] wire [1:0] serial_tl_0_out_bits_phit_hi_lo_lo_lo = {_iocell_serial_tl_0_out_bits_phit_17_pad, _iocell_serial_tl_0_out_bits_phit_16_pad}; // @[IOCell.scala:177:24, :312:31] wire [1:0] serial_tl_0_out_bits_phit_hi_lo_lo_hi = {_iocell_serial_tl_0_out_bits_phit_19_pad, _iocell_serial_tl_0_out_bits_phit_18_pad}; // @[IOCell.scala:177:24, :312:31] wire [3:0] serial_tl_0_out_bits_phit_hi_lo_lo = {serial_tl_0_out_bits_phit_hi_lo_lo_hi, serial_tl_0_out_bits_phit_hi_lo_lo_lo}; // @[IOCell.scala:312:31] wire [1:0] serial_tl_0_out_bits_phit_hi_lo_hi_lo = {_iocell_serial_tl_0_out_bits_phit_21_pad, _iocell_serial_tl_0_out_bits_phit_20_pad}; // @[IOCell.scala:177:24, :312:31] wire [1:0] serial_tl_0_out_bits_phit_hi_lo_hi_hi = {_iocell_serial_tl_0_out_bits_phit_23_pad, _iocell_serial_tl_0_out_bits_phit_22_pad}; // @[IOCell.scala:177:24, :312:31] wire [3:0] serial_tl_0_out_bits_phit_hi_lo_hi = {serial_tl_0_out_bits_phit_hi_lo_hi_hi, serial_tl_0_out_bits_phit_hi_lo_hi_lo}; // @[IOCell.scala:312:31] wire [7:0] serial_tl_0_out_bits_phit_hi_lo = {serial_tl_0_out_bits_phit_hi_lo_hi, serial_tl_0_out_bits_phit_hi_lo_lo}; // @[IOCell.scala:312:31] wire [1:0] serial_tl_0_out_bits_phit_hi_hi_lo_lo = {_iocell_serial_tl_0_out_bits_phit_25_pad, _iocell_serial_tl_0_out_bits_phit_24_pad}; // @[IOCell.scala:177:24, :312:31] wire [1:0] serial_tl_0_out_bits_phit_hi_hi_lo_hi = {_iocell_serial_tl_0_out_bits_phit_27_pad, _iocell_serial_tl_0_out_bits_phit_26_pad}; // @[IOCell.scala:177:24, :312:31] wire [3:0] serial_tl_0_out_bits_phit_hi_hi_lo = {serial_tl_0_out_bits_phit_hi_hi_lo_hi, serial_tl_0_out_bits_phit_hi_hi_lo_lo}; // @[IOCell.scala:312:31] wire [1:0] serial_tl_0_out_bits_phit_hi_hi_hi_lo = {_iocell_serial_tl_0_out_bits_phit_29_pad, _iocell_serial_tl_0_out_bits_phit_28_pad}; // @[IOCell.scala:177:24, :312:31] wire [1:0] serial_tl_0_out_bits_phit_hi_hi_hi_hi = {_iocell_serial_tl_0_out_bits_phit_31_pad, _iocell_serial_tl_0_out_bits_phit_30_pad}; // @[IOCell.scala:177:24, :312:31] wire [3:0] serial_tl_0_out_bits_phit_hi_hi_hi = {serial_tl_0_out_bits_phit_hi_hi_hi_hi, serial_tl_0_out_bits_phit_hi_hi_hi_lo}; // @[IOCell.scala:312:31] wire [7:0] serial_tl_0_out_bits_phit_hi_hi = {serial_tl_0_out_bits_phit_hi_hi_hi, serial_tl_0_out_bits_phit_hi_hi_lo}; // @[IOCell.scala:312:31] wire [15:0] serial_tl_0_out_bits_phit_hi = {serial_tl_0_out_bits_phit_hi_hi, serial_tl_0_out_bits_phit_hi_lo}; // @[IOCell.scala:312:31] assign _serial_tl_0_out_bits_phit_T = {serial_tl_0_out_bits_phit_hi, serial_tl_0_out_bits_phit_lo}; // @[IOCell.scala:312:31] assign serial_tl_0_out_bits_phit_0 = _serial_tl_0_out_bits_phit_T; // @[IOCell.scala:312:31] wire [1:0] system_serial_tl_0_in_bits_phit_lo_lo_lo_lo = {_iocell_serial_tl_0_in_bits_phit_1_i, _iocell_serial_tl_0_in_bits_phit_i}; // @[IOCell.scala:176:23, :295:32] wire [1:0] system_serial_tl_0_in_bits_phit_lo_lo_lo_hi = {_iocell_serial_tl_0_in_bits_phit_3_i, _iocell_serial_tl_0_in_bits_phit_2_i}; // @[IOCell.scala:176:23, :295:32] wire [3:0] system_serial_tl_0_in_bits_phit_lo_lo_lo = {system_serial_tl_0_in_bits_phit_lo_lo_lo_hi, system_serial_tl_0_in_bits_phit_lo_lo_lo_lo}; // @[IOCell.scala:295:32] wire [1:0] system_serial_tl_0_in_bits_phit_lo_lo_hi_lo = {_iocell_serial_tl_0_in_bits_phit_5_i, _iocell_serial_tl_0_in_bits_phit_4_i}; // @[IOCell.scala:176:23, :295:32] wire [1:0] system_serial_tl_0_in_bits_phit_lo_lo_hi_hi = {_iocell_serial_tl_0_in_bits_phit_7_i, _iocell_serial_tl_0_in_bits_phit_6_i}; // @[IOCell.scala:176:23, :295:32] wire [3:0] system_serial_tl_0_in_bits_phit_lo_lo_hi = {system_serial_tl_0_in_bits_phit_lo_lo_hi_hi, system_serial_tl_0_in_bits_phit_lo_lo_hi_lo}; // @[IOCell.scala:295:32] wire [7:0] system_serial_tl_0_in_bits_phit_lo_lo = {system_serial_tl_0_in_bits_phit_lo_lo_hi, system_serial_tl_0_in_bits_phit_lo_lo_lo}; // @[IOCell.scala:295:32] wire [1:0] system_serial_tl_0_in_bits_phit_lo_hi_lo_lo = {_iocell_serial_tl_0_in_bits_phit_9_i, _iocell_serial_tl_0_in_bits_phit_8_i}; // @[IOCell.scala:176:23, :295:32] wire [1:0] system_serial_tl_0_in_bits_phit_lo_hi_lo_hi = {_iocell_serial_tl_0_in_bits_phit_11_i, _iocell_serial_tl_0_in_bits_phit_10_i}; // @[IOCell.scala:176:23, :295:32] wire [3:0] system_serial_tl_0_in_bits_phit_lo_hi_lo = {system_serial_tl_0_in_bits_phit_lo_hi_lo_hi, system_serial_tl_0_in_bits_phit_lo_hi_lo_lo}; // @[IOCell.scala:295:32] wire [1:0] system_serial_tl_0_in_bits_phit_lo_hi_hi_lo = {_iocell_serial_tl_0_in_bits_phit_13_i, _iocell_serial_tl_0_in_bits_phit_12_i}; // @[IOCell.scala:176:23, :295:32] wire [1:0] system_serial_tl_0_in_bits_phit_lo_hi_hi_hi = {_iocell_serial_tl_0_in_bits_phit_15_i, _iocell_serial_tl_0_in_bits_phit_14_i}; // @[IOCell.scala:176:23, :295:32] wire [3:0] system_serial_tl_0_in_bits_phit_lo_hi_hi = {system_serial_tl_0_in_bits_phit_lo_hi_hi_hi, system_serial_tl_0_in_bits_phit_lo_hi_hi_lo}; // @[IOCell.scala:295:32] wire [7:0] system_serial_tl_0_in_bits_phit_lo_hi = {system_serial_tl_0_in_bits_phit_lo_hi_hi, system_serial_tl_0_in_bits_phit_lo_hi_lo}; // @[IOCell.scala:295:32] wire [15:0] system_serial_tl_0_in_bits_phit_lo = {system_serial_tl_0_in_bits_phit_lo_hi, system_serial_tl_0_in_bits_phit_lo_lo}; // @[IOCell.scala:295:32] wire [1:0] system_serial_tl_0_in_bits_phit_hi_lo_lo_lo = {_iocell_serial_tl_0_in_bits_phit_17_i, _iocell_serial_tl_0_in_bits_phit_16_i}; // @[IOCell.scala:176:23, :295:32] wire [1:0] system_serial_tl_0_in_bits_phit_hi_lo_lo_hi = {_iocell_serial_tl_0_in_bits_phit_19_i, _iocell_serial_tl_0_in_bits_phit_18_i}; // @[IOCell.scala:176:23, :295:32] wire [3:0] system_serial_tl_0_in_bits_phit_hi_lo_lo = {system_serial_tl_0_in_bits_phit_hi_lo_lo_hi, system_serial_tl_0_in_bits_phit_hi_lo_lo_lo}; // @[IOCell.scala:295:32] wire [1:0] system_serial_tl_0_in_bits_phit_hi_lo_hi_lo = {_iocell_serial_tl_0_in_bits_phit_21_i, _iocell_serial_tl_0_in_bits_phit_20_i}; // @[IOCell.scala:176:23, :295:32] wire [1:0] system_serial_tl_0_in_bits_phit_hi_lo_hi_hi = {_iocell_serial_tl_0_in_bits_phit_23_i, _iocell_serial_tl_0_in_bits_phit_22_i}; // @[IOCell.scala:176:23, :295:32] wire [3:0] system_serial_tl_0_in_bits_phit_hi_lo_hi = {system_serial_tl_0_in_bits_phit_hi_lo_hi_hi, system_serial_tl_0_in_bits_phit_hi_lo_hi_lo}; // @[IOCell.scala:295:32] wire [7:0] system_serial_tl_0_in_bits_phit_hi_lo = {system_serial_tl_0_in_bits_phit_hi_lo_hi, system_serial_tl_0_in_bits_phit_hi_lo_lo}; // @[IOCell.scala:295:32] wire [1:0] system_serial_tl_0_in_bits_phit_hi_hi_lo_lo = {_iocell_serial_tl_0_in_bits_phit_25_i, _iocell_serial_tl_0_in_bits_phit_24_i}; // @[IOCell.scala:176:23, :295:32] wire [1:0] system_serial_tl_0_in_bits_phit_hi_hi_lo_hi = {_iocell_serial_tl_0_in_bits_phit_27_i, _iocell_serial_tl_0_in_bits_phit_26_i}; // @[IOCell.scala:176:23, :295:32] wire [3:0] system_serial_tl_0_in_bits_phit_hi_hi_lo = {system_serial_tl_0_in_bits_phit_hi_hi_lo_hi, system_serial_tl_0_in_bits_phit_hi_hi_lo_lo}; // @[IOCell.scala:295:32] wire [1:0] system_serial_tl_0_in_bits_phit_hi_hi_hi_lo = {_iocell_serial_tl_0_in_bits_phit_29_i, _iocell_serial_tl_0_in_bits_phit_28_i}; // @[IOCell.scala:176:23, :295:32] wire [1:0] system_serial_tl_0_in_bits_phit_hi_hi_hi_hi = {_iocell_serial_tl_0_in_bits_phit_31_i, _iocell_serial_tl_0_in_bits_phit_30_i}; // @[IOCell.scala:176:23, :295:32] wire [3:0] system_serial_tl_0_in_bits_phit_hi_hi_hi = {system_serial_tl_0_in_bits_phit_hi_hi_hi_hi, system_serial_tl_0_in_bits_phit_hi_hi_hi_lo}; // @[IOCell.scala:295:32] wire [7:0] system_serial_tl_0_in_bits_phit_hi_hi = {system_serial_tl_0_in_bits_phit_hi_hi_hi, system_serial_tl_0_in_bits_phit_hi_hi_lo}; // @[IOCell.scala:295:32] wire [15:0] system_serial_tl_0_in_bits_phit_hi = {system_serial_tl_0_in_bits_phit_hi_hi, system_serial_tl_0_in_bits_phit_hi_lo}; // @[IOCell.scala:295:32] wire [31:0] _system_serial_tl_0_in_bits_phit_T = {system_serial_tl_0_in_bits_phit_hi, system_serial_tl_0_in_bits_phit_lo}; // @[IOCell.scala:295:32] always @(posedge clockSinkNodeIn_1_clock or posedge debug_reset) begin // @[Periphery.scala:288:27] if (debug_reset) // @[Periphery.scala:288:27] clock_en <= 1'h1; // @[Periphery.scala:298:29] else // @[MixedNode.scala:551:17] clock_en <= dmactiveAck; // @[ShiftReg.scala:48:24] always @(posedge, posedge)
Generate the Verilog code corresponding to the following Chisel files. File ShiftReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ // Similar to the Chisel ShiftRegister but allows the user to suggest a // name to the registers that get instantiated, and // to provide a reset value. object ShiftRegInit { def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T = (0 until n).foldRight(in) { case (i, next) => { val r = RegNext(next, init) name.foreach { na => r.suggestName(s"${na}_${i}") } r } } } /** These wrap behavioral * shift registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * The different types vary in their reset behavior: * AsyncResetShiftReg -- Asynchronously reset register array * A W(width) x D(depth) sized array is constructed from D instantiations of a * W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg, * but only used for timing applications */ abstract class AbstractPipelineReg(w: Int = 1) extends Module { val io = IO(new Bundle { val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) } ) } object AbstractPipelineReg { def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = { val chain = Module(gen) name.foreach{ chain.suggestName(_) } chain.io.d := in.asUInt chain.io.q.asTypeOf(in) } } class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) { require(depth > 0, "Depth must be greater than 0.") override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}" val chain = List.tabulate(depth) { i => Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}") } chain.last.io.d := io.d chain.last.io.en := true.B (chain.init zip chain.tail).foreach { case (sink, source) => sink.io.d := source.io.q sink.io.en := true.B } io.q := chain.head.io.q } object AsyncResetShiftReg { def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name) def apply [T <: Data](in: T, depth: Int, name: Option[String]): T = apply(in, depth, 0, name) def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T = apply(in, depth, init.litValue.toInt, name) def apply [T <: Data](in: T, depth: Int, init: T): T = apply (in, depth, init.litValue.toInt, None) } File SynchronizerReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util.{RegEnable, Cat} /** These wrap behavioral * shift and next registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * * These are built up of *ResetSynchronizerPrimitiveShiftReg, * intended to be replaced by the integrator's metastable flops chains or replaced * at this level if they have a multi-bit wide synchronizer primitive. * The different types vary in their reset behavior: * NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin * AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep * 1-bit-wide shift registers. * SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg * * [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference. * * ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross * Clock Domains. */ object SynchronizerResetType extends Enumeration { val NonSync, Inferred, Sync, Async = Value } // Note: this should not be used directly. // Use the companion object to generate this with the correct reset type mixin. private class SynchronizerPrimitiveShiftReg( sync: Int, init: Boolean, resetType: SynchronizerResetType.Value) extends AbstractPipelineReg(1) { val initInt = if (init) 1 else 0 val initPostfix = resetType match { case SynchronizerResetType.NonSync => "" case _ => s"_i${initInt}" } override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}" val chain = List.tabulate(sync) { i => val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B) reg.suggestName(s"sync_$i") } chain.last := io.d.asBool (chain.init zip chain.tail).foreach { case (sink, source) => sink := source } io.q := chain.head.asUInt } private object SynchronizerPrimitiveShiftReg { def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = { val gen: () => SynchronizerPrimitiveShiftReg = resetType match { case SynchronizerResetType.NonSync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) case SynchronizerResetType.Async => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset case SynchronizerResetType.Sync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset case SynchronizerResetType.Inferred => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) } AbstractPipelineReg(gen(), in) } } // Note: This module may end up with a non-AsyncReset type reset. // But the Primitives within will always have AsyncReset type. class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asAsyncReset){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async) } } io.q := Cat(output.reverse) } object AsyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } // Note: This module may end up with a non-Bool type reset. // But the Primitives within will always have Bool reset type. @deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2") class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asBool){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync) } } io.q := Cat(output.reverse) } object SyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred) } io.q := Cat(output.reverse) } object ResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}" val output = Seq.tabulate(w) { i => SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync) } io.q := Cat(output.reverse) } object SynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, None) def apply [T <: Data](in: T): T = apply (in, 3, None) } class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module { override def desiredName = s"ClockCrossingReg_w${w}" val io = IO(new Bundle{ val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) val en = Input(Bool()) }) val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en) io.q := cdc_reg } object ClockCrossingReg { def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = { val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit)) name.foreach{ cdc_reg.suggestName(_) } cdc_reg.io.d := in.asUInt cdc_reg.io.en := en cdc_reg.io.q.asTypeOf(in) } }
module AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_301( // @[SynchronizerReg.scala:68:19] input clock, // @[SynchronizerReg.scala:68:19] input reset, // @[SynchronizerReg.scala:68:19] input io_d, // @[ShiftReg.scala:36:14] output io_q // @[ShiftReg.scala:36:14] ); wire io_d_0 = io_d; // @[SynchronizerReg.scala:68:19] wire _sync_2_T = io_d_0; // @[SynchronizerReg.scala:54:22, :68:19] wire io_q_0; // @[SynchronizerReg.scala:68:19] reg sync_0; // @[SynchronizerReg.scala:51:87] assign io_q_0 = sync_0; // @[SynchronizerReg.scala:51:87, :68:19] reg sync_1; // @[SynchronizerReg.scala:51:87] reg sync_2; // @[SynchronizerReg.scala:51:87] always @(posedge clock or posedge reset) begin // @[SynchronizerReg.scala:68:19] if (reset) begin // @[SynchronizerReg.scala:68:19] sync_0 <= 1'h0; // @[SynchronizerReg.scala:51:87] sync_1 <= 1'h0; // @[SynchronizerReg.scala:51:87] sync_2 <= 1'h0; // @[SynchronizerReg.scala:51:87] end else begin // @[SynchronizerReg.scala:68:19] sync_0 <= sync_1; // @[SynchronizerReg.scala:51:87] sync_1 <= sync_2; // @[SynchronizerReg.scala:51:87] sync_2 <= _sync_2_T; // @[SynchronizerReg.scala:51:87, :54:22] end always @(posedge, posedge)
Generate the Verilog code corresponding to the following Chisel files. File PE.scala: // See README.md for license details. package gemmini import chisel3._ import chisel3.util._ class PEControl[T <: Data : Arithmetic](accType: T) extends Bundle { val dataflow = UInt(1.W) // TODO make this an Enum val propagate = UInt(1.W) // Which register should be propagated (and which should be accumulated)? val shift = UInt(log2Up(accType.getWidth).W) // TODO this isn't correct for Floats } class MacUnit[T <: Data](inputType: T, cType: T, dType: T) (implicit ev: Arithmetic[T]) extends Module { import ev._ val io = IO(new Bundle { val in_a = Input(inputType) val in_b = Input(inputType) val in_c = Input(cType) val out_d = Output(dType) }) io.out_d := io.in_c.mac(io.in_a, io.in_b) } // TODO update documentation /** * A PE implementing a MAC operation. Configured as fully combinational when integrated into a Mesh. * @param width Data width of operands */ class PE[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, max_simultaneous_matmuls: Int) (implicit ev: Arithmetic[T]) extends Module { // Debugging variables import ev._ val io = IO(new Bundle { val in_a = Input(inputType) val in_b = Input(outputType) val in_d = Input(outputType) val out_a = Output(inputType) val out_b = Output(outputType) val out_c = Output(outputType) val in_control = Input(new PEControl(accType)) val out_control = Output(new PEControl(accType)) val in_id = Input(UInt(log2Up(max_simultaneous_matmuls).W)) val out_id = Output(UInt(log2Up(max_simultaneous_matmuls).W)) val in_last = Input(Bool()) val out_last = Output(Bool()) val in_valid = Input(Bool()) val out_valid = Output(Bool()) val bad_dataflow = Output(Bool()) }) val cType = if (df == Dataflow.WS) inputType else accType // When creating PEs that support multiple dataflows, the // elaboration/synthesis tools often fail to consolidate and de-duplicate // MAC units. To force mac circuitry to be re-used, we create a "mac_unit" // module here which just performs a single MAC operation val mac_unit = Module(new MacUnit(inputType, if (df == Dataflow.WS) outputType else accType, outputType)) val a = io.in_a val b = io.in_b val d = io.in_d val c1 = Reg(cType) val c2 = Reg(cType) val dataflow = io.in_control.dataflow val prop = io.in_control.propagate val shift = io.in_control.shift val id = io.in_id val last = io.in_last val valid = io.in_valid io.out_a := a io.out_control.dataflow := dataflow io.out_control.propagate := prop io.out_control.shift := shift io.out_id := id io.out_last := last io.out_valid := valid mac_unit.io.in_a := a val last_s = RegEnable(prop, valid) val flip = last_s =/= prop val shift_offset = Mux(flip, shift, 0.U) // Which dataflow are we using? val OUTPUT_STATIONARY = Dataflow.OS.id.U(1.W) val WEIGHT_STATIONARY = Dataflow.WS.id.U(1.W) // Is c1 being computed on, or propagated forward (in the output-stationary dataflow)? val COMPUTE = 0.U(1.W) val PROPAGATE = 1.U(1.W) io.bad_dataflow := false.B when ((df == Dataflow.OS).B || ((df == Dataflow.BOTH).B && dataflow === OUTPUT_STATIONARY)) { when(prop === PROPAGATE) { io.out_c := (c1 >> shift_offset).clippedToWidthOf(outputType) io.out_b := b mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c2 c2 := mac_unit.io.out_d c1 := d.withWidthOf(cType) }.otherwise { io.out_c := (c2 >> shift_offset).clippedToWidthOf(outputType) io.out_b := b mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c1 c1 := mac_unit.io.out_d c2 := d.withWidthOf(cType) } }.elsewhen ((df == Dataflow.WS).B || ((df == Dataflow.BOTH).B && dataflow === WEIGHT_STATIONARY)) { when(prop === PROPAGATE) { io.out_c := c1 mac_unit.io.in_b := c2.asTypeOf(inputType) mac_unit.io.in_c := b io.out_b := mac_unit.io.out_d c1 := d }.otherwise { io.out_c := c2 mac_unit.io.in_b := c1.asTypeOf(inputType) mac_unit.io.in_c := b io.out_b := mac_unit.io.out_d c2 := d } }.otherwise { io.bad_dataflow := true.B //assert(false.B, "unknown dataflow") io.out_c := DontCare io.out_b := DontCare mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c2 } when (!valid) { c1 := c1 c2 := c2 mac_unit.io.in_b := DontCare mac_unit.io.in_c := DontCare } } File Arithmetic.scala: // A simple type class for Chisel datatypes that can add and multiply. To add your own type, simply create your own: // implicit MyTypeArithmetic extends Arithmetic[MyType] { ... } package gemmini import chisel3._ import chisel3.util._ import hardfloat._ // Bundles that represent the raw bits of custom datatypes case class Float(expWidth: Int, sigWidth: Int) extends Bundle { val bits = UInt((expWidth + sigWidth).W) val bias: Int = (1 << (expWidth-1)) - 1 } case class DummySInt(w: Int) extends Bundle { val bits = UInt(w.W) def dontCare: DummySInt = { val o = Wire(new DummySInt(w)) o.bits := 0.U o } } // The Arithmetic typeclass which implements various arithmetic operations on custom datatypes abstract class Arithmetic[T <: Data] { implicit def cast(t: T): ArithmeticOps[T] } abstract class ArithmeticOps[T <: Data](self: T) { def *(t: T): T def mac(m1: T, m2: T): T // Returns (m1 * m2 + self) def +(t: T): T def -(t: T): T def >>(u: UInt): T // This is a rounding shift! Rounds away from 0 def >(t: T): Bool def identity: T def withWidthOf(t: T): T def clippedToWidthOf(t: T): T // Like "withWidthOf", except that it saturates def relu: T def zero: T def minimum: T // Optional parameters, which only need to be defined if you want to enable various optimizations for transformers def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[T])] = None def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[T])] = None def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = None def mult_with_reciprocal[U <: Data](reciprocal: U) = self } object Arithmetic { implicit object UIntArithmetic extends Arithmetic[UInt] { override implicit def cast(self: UInt) = new ArithmeticOps(self) { override def *(t: UInt) = self * t override def mac(m1: UInt, m2: UInt) = m1 * m2 + self override def +(t: UInt) = self + t override def -(t: UInt) = self - t override def >>(u: UInt) = { // The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm // TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here? val point_five = Mux(u === 0.U, 0.U, self(u - 1.U)) val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U val ones_digit = self(u) val r = point_five & (zeros | ones_digit) (self >> u).asUInt + r } override def >(t: UInt): Bool = self > t override def withWidthOf(t: UInt) = self.asTypeOf(t) override def clippedToWidthOf(t: UInt) = { val sat = ((1 << (t.getWidth-1))-1).U Mux(self > sat, sat, self)(t.getWidth-1, 0) } override def relu: UInt = self override def zero: UInt = 0.U override def identity: UInt = 1.U override def minimum: UInt = 0.U } } implicit object SIntArithmetic extends Arithmetic[SInt] { override implicit def cast(self: SInt) = new ArithmeticOps(self) { override def *(t: SInt) = self * t override def mac(m1: SInt, m2: SInt) = m1 * m2 + self override def +(t: SInt) = self + t override def -(t: SInt) = self - t override def >>(u: UInt) = { // The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm // TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here? val point_five = Mux(u === 0.U, 0.U, self(u - 1.U)) val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U val ones_digit = self(u) val r = (point_five & (zeros | ones_digit)).asBool (self >> u).asSInt + Mux(r, 1.S, 0.S) } override def >(t: SInt): Bool = self > t override def withWidthOf(t: SInt) = { if (self.getWidth >= t.getWidth) self(t.getWidth-1, 0).asSInt else { val sign_bits = t.getWidth - self.getWidth val sign = self(self.getWidth-1) Cat(Cat(Seq.fill(sign_bits)(sign)), self).asTypeOf(t) } } override def clippedToWidthOf(t: SInt): SInt = { val maxsat = ((1 << (t.getWidth-1))-1).S val minsat = (-(1 << (t.getWidth-1))).S MuxCase(self, Seq((self > maxsat) -> maxsat, (self < minsat) -> minsat))(t.getWidth-1, 0).asSInt } override def relu: SInt = Mux(self >= 0.S, self, 0.S) override def zero: SInt = 0.S override def identity: SInt = 1.S override def minimum: SInt = (-(1 << (self.getWidth-1))).S override def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = { // TODO this uses a floating point divider, but we should use an integer divider instead val input = Wire(Decoupled(denom_t.cloneType)) val output = Wire(Decoupled(self.cloneType)) // We translate our integer to floating-point form so that we can use the hardfloat divider val expWidth = log2Up(self.getWidth) + 1 val sigWidth = self.getWidth def sin_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def uin_to_float(x: UInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := false.B in_to_rec_fn.io.in := x in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag rec_fn_to_in.io.out.asSInt } val self_rec = sin_to_float(self) val denom_rec = uin_to_float(input.bits) // Instantiate the hardloat divider val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options)) input.ready := divider.io.inReady divider.io.inValid := input.valid divider.io.sqrtOp := false.B divider.io.a := self_rec divider.io.b := denom_rec divider.io.roundingMode := consts.round_minMag divider.io.detectTininess := consts.tininess_afterRounding output.valid := divider.io.outValid_div output.bits := float_to_in(divider.io.out) assert(!output.valid || output.ready) Some((input, output)) } override def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = { // TODO this uses a floating point divider, but we should use an integer divider instead val input = Wire(Decoupled(UInt(0.W))) val output = Wire(Decoupled(self.cloneType)) input.bits := DontCare // We translate our integer to floating-point form so that we can use the hardfloat divider val expWidth = log2Up(self.getWidth) + 1 val sigWidth = self.getWidth def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag rec_fn_to_in.io.out.asSInt } val self_rec = in_to_float(self) // Instantiate the hardloat sqrt val sqrter = Module(new DivSqrtRecFN_small(expWidth, sigWidth, 0)) input.ready := sqrter.io.inReady sqrter.io.inValid := input.valid sqrter.io.sqrtOp := true.B sqrter.io.a := self_rec sqrter.io.b := DontCare sqrter.io.roundingMode := consts.round_minMag sqrter.io.detectTininess := consts.tininess_afterRounding output.valid := sqrter.io.outValid_sqrt output.bits := float_to_in(sqrter.io.out) assert(!output.valid || output.ready) Some((input, output)) } override def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = u match { case Float(expWidth, sigWidth) => val input = Wire(Decoupled(UInt(0.W))) val output = Wire(Decoupled(u.cloneType)) input.bits := DontCare // We translate our integer to floating-point form so that we can use the hardfloat divider def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } val self_rec = in_to_float(self) val one_rec = in_to_float(1.S) // Instantiate the hardloat divider val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options)) input.ready := divider.io.inReady divider.io.inValid := input.valid divider.io.sqrtOp := false.B divider.io.a := one_rec divider.io.b := self_rec divider.io.roundingMode := consts.round_near_even divider.io.detectTininess := consts.tininess_afterRounding output.valid := divider.io.outValid_div output.bits := fNFromRecFN(expWidth, sigWidth, divider.io.out).asTypeOf(u) assert(!output.valid || output.ready) Some((input, output)) case _ => None } override def mult_with_reciprocal[U <: Data](reciprocal: U): SInt = reciprocal match { case recip @ Float(expWidth, sigWidth) => def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag rec_fn_to_in.io.out.asSInt } val self_rec = in_to_float(self) val reciprocal_rec = recFNFromFN(expWidth, sigWidth, recip.bits) // Instantiate the hardloat divider val muladder = Module(new MulRecFN(expWidth, sigWidth)) muladder.io.roundingMode := consts.round_near_even muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := reciprocal_rec float_to_in(muladder.io.out) case _ => self } } } implicit object FloatArithmetic extends Arithmetic[Float] { // TODO Floating point arithmetic currently switches between recoded and standard formats for every operation. However, it should stay in the recoded format as it travels through the systolic array override implicit def cast(self: Float): ArithmeticOps[Float] = new ArithmeticOps(self) { override def *(t: Float): Float = { val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth)) muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := t_rec_resized val out = Wire(Float(self.expWidth, self.sigWidth)) out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) out } override def mac(m1: Float, m2: Float): Float = { // Recode all operands val m1_rec = recFNFromFN(m1.expWidth, m1.sigWidth, m1.bits) val m2_rec = recFNFromFN(m2.expWidth, m2.sigWidth, m2.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Resize m1 to self's width val m1_resizer = Module(new RecFNToRecFN(m1.expWidth, m1.sigWidth, self.expWidth, self.sigWidth)) m1_resizer.io.in := m1_rec m1_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag m1_resizer.io.detectTininess := consts.tininess_afterRounding val m1_rec_resized = m1_resizer.io.out // Resize m2 to self's width val m2_resizer = Module(new RecFNToRecFN(m2.expWidth, m2.sigWidth, self.expWidth, self.sigWidth)) m2_resizer.io.in := m2_rec m2_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag m2_resizer.io.detectTininess := consts.tininess_afterRounding val m2_rec_resized = m2_resizer.io.out // Perform multiply-add val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth)) muladder.io.op := 0.U muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := m1_rec_resized muladder.io.b := m2_rec_resized muladder.io.c := self_rec // Convert result to standard format // TODO remove these intermediate recodings val out = Wire(Float(self.expWidth, self.sigWidth)) out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) out } override def +(t: Float): Float = { require(self.getWidth >= t.getWidth) // This just makes it easier to write the resizing code // Recode all operands val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Generate 1 as a float val in_to_rec_fn = Module(new INToRecFN(1, self.expWidth, self.sigWidth)) in_to_rec_fn.io.signedIn := false.B in_to_rec_fn.io.in := 1.U in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding val one_rec = in_to_rec_fn.io.out // Resize t val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out // Perform addition val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth)) muladder.io.op := 0.U muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := t_rec_resized muladder.io.b := one_rec muladder.io.c := self_rec val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) result } override def -(t: Float): Float = { val t_sgn = t.bits(t.getWidth-1) val neg_t = Cat(~t_sgn, t.bits(t.getWidth-2,0)).asTypeOf(t) self + neg_t } override def >>(u: UInt): Float = { // Recode self val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Get 2^(-u) as a recoded float val shift_exp = Wire(UInt(self.expWidth.W)) shift_exp := self.bias.U - u val shift_fn = Cat(0.U(1.W), shift_exp, 0.U((self.sigWidth-1).W)) val shift_rec = recFNFromFN(self.expWidth, self.sigWidth, shift_fn) assert(shift_exp =/= 0.U, "scaling by denormalized numbers is not currently supported") // Multiply self and 2^(-u) val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth)) muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := shift_rec val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) result } override def >(t: Float): Bool = { // Recode all operands val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Resize t to self's width val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out val comparator = Module(new CompareRecFN(self.expWidth, self.sigWidth)) comparator.io.a := self_rec comparator.io.b := t_rec_resized comparator.io.signaling := false.B comparator.io.gt } override def withWidthOf(t: Float): Float = { val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth)) resizer.io.in := self_rec resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag resizer.io.detectTininess := consts.tininess_afterRounding val result = Wire(Float(t.expWidth, t.sigWidth)) result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out) result } override def clippedToWidthOf(t: Float): Float = { // TODO check for overflow. Right now, we just assume that overflow doesn't happen val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth)) resizer.io.in := self_rec resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag resizer.io.detectTininess := consts.tininess_afterRounding val result = Wire(Float(t.expWidth, t.sigWidth)) result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out) result } override def relu: Float = { val raw = rawFloatFromFN(self.expWidth, self.sigWidth, self.bits) val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := Mux(!raw.isZero && raw.sign, 0.U, self.bits) result } override def zero: Float = 0.U.asTypeOf(self) override def identity: Float = Cat(0.U(2.W), ~(0.U((self.expWidth-1).W)), 0.U((self.sigWidth-1).W)).asTypeOf(self) override def minimum: Float = Cat(1.U, ~(0.U(self.expWidth.W)), 0.U((self.sigWidth-1).W)).asTypeOf(self) } } implicit object DummySIntArithmetic extends Arithmetic[DummySInt] { override implicit def cast(self: DummySInt) = new ArithmeticOps(self) { override def *(t: DummySInt) = self.dontCare override def mac(m1: DummySInt, m2: DummySInt) = self.dontCare override def +(t: DummySInt) = self.dontCare override def -(t: DummySInt) = self.dontCare override def >>(t: UInt) = self.dontCare override def >(t: DummySInt): Bool = false.B override def identity = self.dontCare override def withWidthOf(t: DummySInt) = self.dontCare override def clippedToWidthOf(t: DummySInt) = self.dontCare override def relu = self.dontCare override def zero = self.dontCare override def minimum: DummySInt = self.dontCare } } }
module PE_391( // @[PE.scala:31:7] input clock, // @[PE.scala:31:7] input reset, // @[PE.scala:31:7] input [7:0] io_in_a, // @[PE.scala:35:14] input [19:0] io_in_b, // @[PE.scala:35:14] input [19:0] io_in_d, // @[PE.scala:35:14] output [7:0] io_out_a, // @[PE.scala:35:14] output [19:0] io_out_b, // @[PE.scala:35:14] output [19:0] io_out_c, // @[PE.scala:35:14] input io_in_control_dataflow, // @[PE.scala:35:14] input io_in_control_propagate, // @[PE.scala:35:14] input [4:0] io_in_control_shift, // @[PE.scala:35:14] output io_out_control_dataflow, // @[PE.scala:35:14] output io_out_control_propagate, // @[PE.scala:35:14] output [4:0] io_out_control_shift, // @[PE.scala:35:14] input [2:0] io_in_id, // @[PE.scala:35:14] output [2:0] io_out_id, // @[PE.scala:35:14] input io_in_last, // @[PE.scala:35:14] output io_out_last, // @[PE.scala:35:14] input io_in_valid, // @[PE.scala:35:14] output io_out_valid // @[PE.scala:35:14] ); wire [7:0] io_in_a_0 = io_in_a; // @[PE.scala:31:7] wire [19:0] io_in_b_0 = io_in_b; // @[PE.scala:31:7] wire [19:0] io_in_d_0 = io_in_d; // @[PE.scala:31:7] wire io_in_control_dataflow_0 = io_in_control_dataflow; // @[PE.scala:31:7] wire io_in_control_propagate_0 = io_in_control_propagate; // @[PE.scala:31:7] wire [4:0] io_in_control_shift_0 = io_in_control_shift; // @[PE.scala:31:7] wire [2:0] io_in_id_0 = io_in_id; // @[PE.scala:31:7] wire io_in_last_0 = io_in_last; // @[PE.scala:31:7] wire io_in_valid_0 = io_in_valid; // @[PE.scala:31:7] wire io_bad_dataflow = 1'h0; // @[PE.scala:31:7] wire _io_out_c_T_5 = 1'h0; // @[Arithmetic.scala:125:33] wire _io_out_c_T_6 = 1'h0; // @[Arithmetic.scala:125:60] wire _io_out_c_T_16 = 1'h0; // @[Arithmetic.scala:125:33] wire _io_out_c_T_17 = 1'h0; // @[Arithmetic.scala:125:60] wire [7:0] io_out_a_0 = io_in_a_0; // @[PE.scala:31:7] wire [19:0] _mac_unit_io_in_b_T = io_in_b_0; // @[PE.scala:31:7, :106:37] wire [19:0] _mac_unit_io_in_b_T_2 = io_in_b_0; // @[PE.scala:31:7, :113:37] wire [19:0] _mac_unit_io_in_b_T_8 = io_in_b_0; // @[PE.scala:31:7, :137:35] wire io_out_control_dataflow_0 = io_in_control_dataflow_0; // @[PE.scala:31:7] wire io_out_control_propagate_0 = io_in_control_propagate_0; // @[PE.scala:31:7] wire [4:0] io_out_control_shift_0 = io_in_control_shift_0; // @[PE.scala:31:7] wire [2:0] io_out_id_0 = io_in_id_0; // @[PE.scala:31:7] wire io_out_last_0 = io_in_last_0; // @[PE.scala:31:7] wire io_out_valid_0 = io_in_valid_0; // @[PE.scala:31:7] wire [19:0] io_out_b_0; // @[PE.scala:31:7] wire [19:0] io_out_c_0; // @[PE.scala:31:7] reg [7:0] c1; // @[PE.scala:70:15] wire [7:0] _io_out_c_zeros_T_1 = c1; // @[PE.scala:70:15] wire [7:0] _mac_unit_io_in_b_T_6 = c1; // @[PE.scala:70:15, :127:38] reg [7:0] c2; // @[PE.scala:71:15] wire [7:0] _io_out_c_zeros_T_10 = c2; // @[PE.scala:71:15] wire [7:0] _mac_unit_io_in_b_T_4 = c2; // @[PE.scala:71:15, :121:38] reg last_s; // @[PE.scala:89:25] wire flip = last_s != io_in_control_propagate_0; // @[PE.scala:31:7, :89:25, :90:21] wire [4:0] shift_offset = flip ? io_in_control_shift_0 : 5'h0; // @[PE.scala:31:7, :90:21, :91:25] wire _GEN = shift_offset == 5'h0; // @[PE.scala:91:25] wire _io_out_c_point_five_T; // @[Arithmetic.scala:101:32] assign _io_out_c_point_five_T = _GEN; // @[Arithmetic.scala:101:32] wire _io_out_c_point_five_T_5; // @[Arithmetic.scala:101:32] assign _io_out_c_point_five_T_5 = _GEN; // @[Arithmetic.scala:101:32] wire [5:0] _GEN_0 = {1'h0, shift_offset} - 6'h1; // @[PE.scala:91:25] wire [5:0] _io_out_c_point_five_T_1; // @[Arithmetic.scala:101:53] assign _io_out_c_point_five_T_1 = _GEN_0; // @[Arithmetic.scala:101:53] wire [5:0] _io_out_c_zeros_T_2; // @[Arithmetic.scala:102:66] assign _io_out_c_zeros_T_2 = _GEN_0; // @[Arithmetic.scala:101:53, :102:66] wire [5:0] _io_out_c_point_five_T_6; // @[Arithmetic.scala:101:53] assign _io_out_c_point_five_T_6 = _GEN_0; // @[Arithmetic.scala:101:53] wire [5:0] _io_out_c_zeros_T_11; // @[Arithmetic.scala:102:66] assign _io_out_c_zeros_T_11 = _GEN_0; // @[Arithmetic.scala:101:53, :102:66] wire [4:0] _io_out_c_point_five_T_2 = _io_out_c_point_five_T_1[4:0]; // @[Arithmetic.scala:101:53] wire [7:0] _io_out_c_point_five_T_3 = $signed($signed(c1) >>> _io_out_c_point_five_T_2); // @[PE.scala:70:15] wire _io_out_c_point_five_T_4 = _io_out_c_point_five_T_3[0]; // @[Arithmetic.scala:101:50] wire io_out_c_point_five = ~_io_out_c_point_five_T & _io_out_c_point_five_T_4; // @[Arithmetic.scala:101:{29,32,50}] wire _GEN_1 = shift_offset < 5'h2; // @[PE.scala:91:25] wire _io_out_c_zeros_T; // @[Arithmetic.scala:102:27] assign _io_out_c_zeros_T = _GEN_1; // @[Arithmetic.scala:102:27] wire _io_out_c_zeros_T_9; // @[Arithmetic.scala:102:27] assign _io_out_c_zeros_T_9 = _GEN_1; // @[Arithmetic.scala:102:27] wire [4:0] _io_out_c_zeros_T_3 = _io_out_c_zeros_T_2[4:0]; // @[Arithmetic.scala:102:66] wire [31:0] _io_out_c_zeros_T_4 = 32'h1 << _io_out_c_zeros_T_3; // @[Arithmetic.scala:102:{60,66}] wire [32:0] _io_out_c_zeros_T_5 = {1'h0, _io_out_c_zeros_T_4} - 33'h1; // @[Arithmetic.scala:102:{60,81}] wire [31:0] _io_out_c_zeros_T_6 = _io_out_c_zeros_T_5[31:0]; // @[Arithmetic.scala:102:81] wire [31:0] _io_out_c_zeros_T_7 = {24'h0, _io_out_c_zeros_T_6[7:0] & _io_out_c_zeros_T_1}; // @[Arithmetic.scala:102:{45,52,81}] wire [31:0] _io_out_c_zeros_T_8 = _io_out_c_zeros_T ? 32'h0 : _io_out_c_zeros_T_7; // @[Arithmetic.scala:102:{24,27,52}] wire io_out_c_zeros = |_io_out_c_zeros_T_8; // @[Arithmetic.scala:102:{24,89}] wire [7:0] _GEN_2 = {3'h0, shift_offset}; // @[PE.scala:91:25] wire [7:0] _GEN_3 = $signed($signed(c1) >>> _GEN_2); // @[PE.scala:70:15] wire [7:0] _io_out_c_ones_digit_T; // @[Arithmetic.scala:103:30] assign _io_out_c_ones_digit_T = _GEN_3; // @[Arithmetic.scala:103:30] wire [7:0] _io_out_c_T; // @[Arithmetic.scala:107:15] assign _io_out_c_T = _GEN_3; // @[Arithmetic.scala:103:30, :107:15] wire io_out_c_ones_digit = _io_out_c_ones_digit_T[0]; // @[Arithmetic.scala:103:30] wire _io_out_c_r_T = io_out_c_zeros | io_out_c_ones_digit; // @[Arithmetic.scala:102:89, :103:30, :105:38] wire _io_out_c_r_T_1 = io_out_c_point_five & _io_out_c_r_T; // @[Arithmetic.scala:101:29, :105:{29,38}] wire io_out_c_r = _io_out_c_r_T_1; // @[Arithmetic.scala:105:{29,53}] wire [1:0] _io_out_c_T_1 = {1'h0, io_out_c_r}; // @[Arithmetic.scala:105:53, :107:33] wire [8:0] _io_out_c_T_2 = {_io_out_c_T[7], _io_out_c_T} + {{7{_io_out_c_T_1[1]}}, _io_out_c_T_1}; // @[Arithmetic.scala:107:{15,28,33}] wire [7:0] _io_out_c_T_3 = _io_out_c_T_2[7:0]; // @[Arithmetic.scala:107:28] wire [7:0] _io_out_c_T_4 = _io_out_c_T_3; // @[Arithmetic.scala:107:28] wire [19:0] _io_out_c_T_7 = {{12{_io_out_c_T_4[7]}}, _io_out_c_T_4}; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_8 = _io_out_c_T_7; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_9 = _io_out_c_T_8; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_10 = _io_out_c_T_9; // @[Arithmetic.scala:125:{81,99}] wire [19:0] _mac_unit_io_in_b_T_1 = _mac_unit_io_in_b_T; // @[PE.scala:106:37] wire [7:0] _mac_unit_io_in_b_WIRE = _mac_unit_io_in_b_T_1[7:0]; // @[PE.scala:106:37] wire [7:0] _c1_T = io_in_d_0[7:0]; // @[PE.scala:31:7] wire [7:0] _c2_T = io_in_d_0[7:0]; // @[PE.scala:31:7] wire [7:0] _c1_T_1 = _c1_T; // @[Arithmetic.scala:114:{15,33}] wire [4:0] _io_out_c_point_five_T_7 = _io_out_c_point_five_T_6[4:0]; // @[Arithmetic.scala:101:53] wire [7:0] _io_out_c_point_five_T_8 = $signed($signed(c2) >>> _io_out_c_point_five_T_7); // @[PE.scala:71:15] wire _io_out_c_point_five_T_9 = _io_out_c_point_five_T_8[0]; // @[Arithmetic.scala:101:50] wire io_out_c_point_five_1 = ~_io_out_c_point_five_T_5 & _io_out_c_point_five_T_9; // @[Arithmetic.scala:101:{29,32,50}] wire [4:0] _io_out_c_zeros_T_12 = _io_out_c_zeros_T_11[4:0]; // @[Arithmetic.scala:102:66] wire [31:0] _io_out_c_zeros_T_13 = 32'h1 << _io_out_c_zeros_T_12; // @[Arithmetic.scala:102:{60,66}] wire [32:0] _io_out_c_zeros_T_14 = {1'h0, _io_out_c_zeros_T_13} - 33'h1; // @[Arithmetic.scala:102:{60,81}] wire [31:0] _io_out_c_zeros_T_15 = _io_out_c_zeros_T_14[31:0]; // @[Arithmetic.scala:102:81] wire [31:0] _io_out_c_zeros_T_16 = {24'h0, _io_out_c_zeros_T_15[7:0] & _io_out_c_zeros_T_10}; // @[Arithmetic.scala:102:{45,52,81}] wire [31:0] _io_out_c_zeros_T_17 = _io_out_c_zeros_T_9 ? 32'h0 : _io_out_c_zeros_T_16; // @[Arithmetic.scala:102:{24,27,52}] wire io_out_c_zeros_1 = |_io_out_c_zeros_T_17; // @[Arithmetic.scala:102:{24,89}] wire [7:0] _GEN_4 = $signed($signed(c2) >>> _GEN_2); // @[PE.scala:71:15] wire [7:0] _io_out_c_ones_digit_T_1; // @[Arithmetic.scala:103:30] assign _io_out_c_ones_digit_T_1 = _GEN_4; // @[Arithmetic.scala:103:30] wire [7:0] _io_out_c_T_11; // @[Arithmetic.scala:107:15] assign _io_out_c_T_11 = _GEN_4; // @[Arithmetic.scala:103:30, :107:15] wire io_out_c_ones_digit_1 = _io_out_c_ones_digit_T_1[0]; // @[Arithmetic.scala:103:30] wire _io_out_c_r_T_2 = io_out_c_zeros_1 | io_out_c_ones_digit_1; // @[Arithmetic.scala:102:89, :103:30, :105:38] wire _io_out_c_r_T_3 = io_out_c_point_five_1 & _io_out_c_r_T_2; // @[Arithmetic.scala:101:29, :105:{29,38}] wire io_out_c_r_1 = _io_out_c_r_T_3; // @[Arithmetic.scala:105:{29,53}] wire [1:0] _io_out_c_T_12 = {1'h0, io_out_c_r_1}; // @[Arithmetic.scala:105:53, :107:33] wire [8:0] _io_out_c_T_13 = {_io_out_c_T_11[7], _io_out_c_T_11} + {{7{_io_out_c_T_12[1]}}, _io_out_c_T_12}; // @[Arithmetic.scala:107:{15,28,33}] wire [7:0] _io_out_c_T_14 = _io_out_c_T_13[7:0]; // @[Arithmetic.scala:107:28] wire [7:0] _io_out_c_T_15 = _io_out_c_T_14; // @[Arithmetic.scala:107:28] wire [19:0] _io_out_c_T_18 = {{12{_io_out_c_T_15[7]}}, _io_out_c_T_15}; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_19 = _io_out_c_T_18; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_20 = _io_out_c_T_19; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_21 = _io_out_c_T_20; // @[Arithmetic.scala:125:{81,99}] wire [19:0] _mac_unit_io_in_b_T_3 = _mac_unit_io_in_b_T_2; // @[PE.scala:113:37] wire [7:0] _mac_unit_io_in_b_WIRE_1 = _mac_unit_io_in_b_T_3[7:0]; // @[PE.scala:113:37] wire [7:0] _c2_T_1 = _c2_T; // @[Arithmetic.scala:114:{15,33}] wire [7:0] _mac_unit_io_in_b_T_5; // @[PE.scala:121:38] assign _mac_unit_io_in_b_T_5 = _mac_unit_io_in_b_T_4; // @[PE.scala:121:38] wire [7:0] _mac_unit_io_in_b_WIRE_2 = _mac_unit_io_in_b_T_5; // @[PE.scala:121:38] assign io_out_c_0 = io_in_control_propagate_0 ? {{12{c1[7]}}, c1} : {{12{c2[7]}}, c2}; // @[PE.scala:31:7, :70:15, :71:15, :119:30, :120:16, :126:16] wire [7:0] _mac_unit_io_in_b_T_7; // @[PE.scala:127:38] assign _mac_unit_io_in_b_T_7 = _mac_unit_io_in_b_T_6; // @[PE.scala:127:38] wire [7:0] _mac_unit_io_in_b_WIRE_3 = _mac_unit_io_in_b_T_7; // @[PE.scala:127:38] wire [19:0] _mac_unit_io_in_b_T_9 = _mac_unit_io_in_b_T_8; // @[PE.scala:137:35] wire [7:0] _mac_unit_io_in_b_WIRE_4 = _mac_unit_io_in_b_T_9[7:0]; // @[PE.scala:137:35] always @(posedge clock) begin // @[PE.scala:31:7] if (io_in_valid_0 & io_in_control_propagate_0) // @[PE.scala:31:7, :102:95, :141:17, :142:8] c1 <= io_in_d_0[7:0]; // @[PE.scala:31:7, :70:15] if (~(~io_in_valid_0 | io_in_control_propagate_0)) // @[PE.scala:31:7, :71:15, :102:95, :119:30, :130:10, :141:{9,17}, :143:8] c2 <= io_in_d_0[7:0]; // @[PE.scala:31:7, :71:15] if (io_in_valid_0) // @[PE.scala:31:7] last_s <= io_in_control_propagate_0; // @[PE.scala:31:7, :89:25] always @(posedge) MacUnit_135 mac_unit ( // @[PE.scala:64:24] .clock (clock), .reset (reset), .io_in_a (io_in_a_0), // @[PE.scala:31:7] .io_in_b (io_in_control_propagate_0 ? _mac_unit_io_in_b_WIRE_2 : _mac_unit_io_in_b_WIRE_3), // @[PE.scala:31:7, :119:30, :121:{24,38}, :127:{24,38}] .io_in_c (io_in_b_0), // @[PE.scala:31:7] .io_out_d (io_out_b_0) ); // @[PE.scala:64:24] assign io_out_a = io_out_a_0; // @[PE.scala:31:7] assign io_out_b = io_out_b_0; // @[PE.scala:31:7] assign io_out_c = io_out_c_0; // @[PE.scala:31:7] assign io_out_control_dataflow = io_out_control_dataflow_0; // @[PE.scala:31:7] assign io_out_control_propagate = io_out_control_propagate_0; // @[PE.scala:31:7] assign io_out_control_shift = io_out_control_shift_0; // @[PE.scala:31:7] assign io_out_id = io_out_id_0; // @[PE.scala:31:7] assign io_out_last = io_out_last_0; // @[PE.scala:31:7] assign io_out_valid = io_out_valid_0; // @[PE.scala:31:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File IngressUnit.scala: package constellation.router import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config.{Field, Parameters} import freechips.rocketchip.util._ import constellation.channel._ class IngressUnit( ingressNodeId: Int, cParam: IngressChannelParams, outParams: Seq[ChannelParams], egressParams: Seq[EgressChannelParams], combineRCVA: Boolean, combineSAST: Boolean, ) (implicit p: Parameters) extends AbstractInputUnit(cParam, outParams, egressParams)(p) { class IngressUnitIO extends AbstractInputUnitIO(cParam, outParams, egressParams) { val in = Flipped(Decoupled(new IngressFlit(cParam.payloadBits))) } val io = IO(new IngressUnitIO) val route_buffer = Module(new Queue(new Flit(cParam.payloadBits), 2)) val route_q = Module(new Queue(new RouteComputerResp(outParams, egressParams), 2, flow=combineRCVA)) assert(!(io.in.valid && !cParam.possibleFlows.toSeq.map(_.egressId.U === io.in.bits.egress_id).orR)) route_buffer.io.enq.bits.head := io.in.bits.head route_buffer.io.enq.bits.tail := io.in.bits.tail val flows = cParam.possibleFlows.toSeq if (flows.size == 0) { route_buffer.io.enq.bits.flow := DontCare } else { route_buffer.io.enq.bits.flow.ingress_node := cParam.destId.U route_buffer.io.enq.bits.flow.ingress_node_id := ingressNodeId.U route_buffer.io.enq.bits.flow.vnet_id := cParam.vNetId.U route_buffer.io.enq.bits.flow.egress_node := Mux1H( flows.map(_.egressId.U === io.in.bits.egress_id), flows.map(_.egressNode.U) ) route_buffer.io.enq.bits.flow.egress_node_id := Mux1H( flows.map(_.egressId.U === io.in.bits.egress_id), flows.map(_.egressNodeId.U) ) } route_buffer.io.enq.bits.payload := io.in.bits.payload route_buffer.io.enq.bits.virt_channel_id := DontCare io.router_req.bits.src_virt_id := 0.U io.router_req.bits.flow := route_buffer.io.enq.bits.flow val at_dest = route_buffer.io.enq.bits.flow.egress_node === nodeId.U route_buffer.io.enq.valid := io.in.valid && ( io.router_req.ready || !io.in.bits.head || at_dest) io.router_req.valid := io.in.valid && route_buffer.io.enq.ready && io.in.bits.head && !at_dest io.in.ready := route_buffer.io.enq.ready && ( io.router_req.ready || !io.in.bits.head || at_dest) route_q.io.enq.valid := io.router_req.fire route_q.io.enq.bits := io.router_resp when (io.in.fire && io.in.bits.head && at_dest) { route_q.io.enq.valid := true.B route_q.io.enq.bits.vc_sel.foreach(_.foreach(_ := false.B)) for (o <- 0 until nEgress) { when (egressParams(o).egressId.U === io.in.bits.egress_id) { route_q.io.enq.bits.vc_sel(o+nOutputs)(0) := true.B } } } assert(!(route_q.io.enq.valid && !route_q.io.enq.ready)) val vcalloc_buffer = Module(new Queue(new Flit(cParam.payloadBits), 2)) val vcalloc_q = Module(new Queue(new VCAllocResp(outParams, egressParams), 1, pipe=true)) vcalloc_buffer.io.enq.bits := route_buffer.io.deq.bits io.vcalloc_req.bits.vc_sel := route_q.io.deq.bits.vc_sel io.vcalloc_req.bits.flow := route_buffer.io.deq.bits.flow io.vcalloc_req.bits.in_vc := 0.U val head = route_buffer.io.deq.bits.head val tail = route_buffer.io.deq.bits.tail vcalloc_buffer.io.enq.valid := (route_buffer.io.deq.valid && (route_q.io.deq.valid || !head) && (io.vcalloc_req.ready || !head) ) io.vcalloc_req.valid := (route_buffer.io.deq.valid && route_q.io.deq.valid && head && vcalloc_buffer.io.enq.ready && vcalloc_q.io.enq.ready) route_buffer.io.deq.ready := (vcalloc_buffer.io.enq.ready && (route_q.io.deq.valid || !head) && (io.vcalloc_req.ready || !head) && (vcalloc_q.io.enq.ready || !head)) route_q.io.deq.ready := (route_buffer.io.deq.fire && tail) vcalloc_q.io.enq.valid := io.vcalloc_req.fire vcalloc_q.io.enq.bits := io.vcalloc_resp assert(!(vcalloc_q.io.enq.valid && !vcalloc_q.io.enq.ready)) io.salloc_req(0).bits.vc_sel := vcalloc_q.io.deq.bits.vc_sel io.salloc_req(0).bits.tail := vcalloc_buffer.io.deq.bits.tail val c = (vcalloc_q.io.deq.bits.vc_sel.asUInt & io.out_credit_available.asUInt) =/= 0.U val vcalloc_tail = vcalloc_buffer.io.deq.bits.tail io.salloc_req(0).valid := vcalloc_buffer.io.deq.valid && vcalloc_q.io.deq.valid && c && !io.block vcalloc_buffer.io.deq.ready := io.salloc_req(0).ready && vcalloc_q.io.deq.valid && c && !io.block vcalloc_q.io.deq.ready := vcalloc_tail && vcalloc_buffer.io.deq.fire val out_bundle = if (combineSAST) { Wire(Valid(new SwitchBundle(outParams, egressParams))) } else { Reg(Valid(new SwitchBundle(outParams, egressParams))) } io.out(0) := out_bundle out_bundle.valid := vcalloc_buffer.io.deq.fire out_bundle.bits.flit := vcalloc_buffer.io.deq.bits out_bundle.bits.flit.virt_channel_id := 0.U val out_channel_oh = vcalloc_q.io.deq.bits.vc_sel.map(_.reduce(_||_)).toSeq out_bundle.bits.out_virt_channel := Mux1H(out_channel_oh, vcalloc_q.io.deq.bits.vc_sel.map(v => OHToUInt(v)).toSeq) io.debug.va_stall := io.vcalloc_req.valid && !io.vcalloc_req.ready io.debug.sa_stall := io.salloc_req(0).valid && !io.salloc_req(0).ready // TODO: We should not generate input/ingress/output/egress units for untraversable channels if (!cParam.traversable) { io.in.ready := false.B io.router_req.valid := false.B io.router_req.bits := DontCare io.vcalloc_req.valid := false.B io.vcalloc_req.bits := DontCare io.salloc_req.foreach(_.valid := false.B) io.salloc_req.foreach(_.bits := DontCare) io.out.foreach(_.valid := false.B) io.out.foreach(_.bits := DontCare) } }
module IngressUnit_10( // @[IngressUnit.scala:11:7] input clock, // @[IngressUnit.scala:11:7] input reset, // @[IngressUnit.scala:11:7] input io_vcalloc_req_ready, // @[IngressUnit.scala:24:14] output io_vcalloc_req_valid, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_7_0, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_6_0, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_5_0, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_4_0, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_3_0, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_2_0, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_1_0, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_0, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_1, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_2, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_3, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_4, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_5, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_6, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_7, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_8, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_9, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_10, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_11, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_12, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_13, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_14, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_15, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_16, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_17, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_18, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_19, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_20, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_21, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_7_0, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_6_0, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_5_0, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_4_0, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_3_0, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_2_0, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_1_0, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_0, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_1, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_2, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_3, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_4, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_5, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_6, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_7, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_8, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_9, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_10, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_11, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_12, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_13, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_14, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_15, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_16, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_17, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_18, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_19, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_20, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_21, // @[IngressUnit.scala:24:14] input io_out_credit_available_7_0, // @[IngressUnit.scala:24:14] input io_out_credit_available_6_0, // @[IngressUnit.scala:24:14] input io_out_credit_available_5_0, // @[IngressUnit.scala:24:14] input io_out_credit_available_4_0, // @[IngressUnit.scala:24:14] input io_out_credit_available_3_0, // @[IngressUnit.scala:24:14] input io_out_credit_available_2_0, // @[IngressUnit.scala:24:14] input io_out_credit_available_1_0, // @[IngressUnit.scala:24:14] input io_out_credit_available_0_8, // @[IngressUnit.scala:24:14] input io_out_credit_available_0_9, // @[IngressUnit.scala:24:14] input io_out_credit_available_0_10, // @[IngressUnit.scala:24:14] input io_out_credit_available_0_11, // @[IngressUnit.scala:24:14] input io_out_credit_available_0_12, // @[IngressUnit.scala:24:14] input io_out_credit_available_0_13, // @[IngressUnit.scala:24:14] input io_out_credit_available_0_14, // @[IngressUnit.scala:24:14] input io_out_credit_available_0_15, // @[IngressUnit.scala:24:14] input io_out_credit_available_0_16, // @[IngressUnit.scala:24:14] input io_out_credit_available_0_17, // @[IngressUnit.scala:24:14] input io_out_credit_available_0_18, // @[IngressUnit.scala:24:14] input io_out_credit_available_0_19, // @[IngressUnit.scala:24:14] input io_out_credit_available_0_20, // @[IngressUnit.scala:24:14] input io_out_credit_available_0_21, // @[IngressUnit.scala:24:14] input io_salloc_req_0_ready, // @[IngressUnit.scala:24:14] output io_salloc_req_0_valid, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_7_0, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_6_0, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_5_0, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_4_0, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_3_0, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_2_0, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_1_0, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_0, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_1, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_2, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_3, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_4, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_5, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_6, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_7, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_8, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_9, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_10, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_11, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_12, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_13, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_14, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_15, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_16, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_17, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_18, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_19, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_20, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_21, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_tail, // @[IngressUnit.scala:24:14] output io_out_0_valid, // @[IngressUnit.scala:24:14] output io_out_0_bits_flit_head, // @[IngressUnit.scala:24:14] output io_out_0_bits_flit_tail, // @[IngressUnit.scala:24:14] output [72:0] io_out_0_bits_flit_payload, // @[IngressUnit.scala:24:14] output [3:0] io_out_0_bits_flit_flow_vnet_id, // @[IngressUnit.scala:24:14] output [5:0] io_out_0_bits_flit_flow_ingress_node, // @[IngressUnit.scala:24:14] output [2:0] io_out_0_bits_flit_flow_ingress_node_id, // @[IngressUnit.scala:24:14] output [5:0] io_out_0_bits_flit_flow_egress_node, // @[IngressUnit.scala:24:14] output [2:0] io_out_0_bits_flit_flow_egress_node_id, // @[IngressUnit.scala:24:14] output [4:0] io_out_0_bits_out_virt_channel, // @[IngressUnit.scala:24:14] output io_in_ready, // @[IngressUnit.scala:24:14] input io_in_valid, // @[IngressUnit.scala:24:14] input io_in_bits_head, // @[IngressUnit.scala:24:14] input [72:0] io_in_bits_payload, // @[IngressUnit.scala:24:14] input [5:0] io_in_bits_egress_id // @[IngressUnit.scala:24:14] ); wire _GEN; // @[Decoupled.scala:51:35] wire _vcalloc_q_io_enq_ready; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_valid; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_7_0; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_6_0; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_5_0; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_4_0; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_3_0; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_2_0; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_1_0; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_0; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_1; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_2; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_3; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_4; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_5; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_6; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_7; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_8; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_9; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_10; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_11; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_12; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_13; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_14; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_15; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_16; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_17; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_18; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_19; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_20; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_21; // @[IngressUnit.scala:76:25] wire _vcalloc_buffer_io_enq_ready; // @[IngressUnit.scala:75:30] wire _vcalloc_buffer_io_deq_valid; // @[IngressUnit.scala:75:30] wire _vcalloc_buffer_io_deq_bits_head; // @[IngressUnit.scala:75:30] wire _vcalloc_buffer_io_deq_bits_tail; // @[IngressUnit.scala:75:30] wire [72:0] _vcalloc_buffer_io_deq_bits_payload; // @[IngressUnit.scala:75:30] wire [3:0] _vcalloc_buffer_io_deq_bits_flow_vnet_id; // @[IngressUnit.scala:75:30] wire [5:0] _vcalloc_buffer_io_deq_bits_flow_ingress_node; // @[IngressUnit.scala:75:30] wire [2:0] _vcalloc_buffer_io_deq_bits_flow_ingress_node_id; // @[IngressUnit.scala:75:30] wire [5:0] _vcalloc_buffer_io_deq_bits_flow_egress_node; // @[IngressUnit.scala:75:30] wire [2:0] _vcalloc_buffer_io_deq_bits_flow_egress_node_id; // @[IngressUnit.scala:75:30] wire _route_q_io_enq_ready; // @[IngressUnit.scala:27:23] wire _route_q_io_deq_valid; // @[IngressUnit.scala:27:23] wire _route_buffer_io_enq_ready; // @[IngressUnit.scala:26:28] wire _route_buffer_io_deq_valid; // @[IngressUnit.scala:26:28] wire _route_buffer_io_deq_bits_head; // @[IngressUnit.scala:26:28] wire _route_buffer_io_deq_bits_tail; // @[IngressUnit.scala:26:28] wire [72:0] _route_buffer_io_deq_bits_payload; // @[IngressUnit.scala:26:28] wire [3:0] _route_buffer_io_deq_bits_flow_vnet_id; // @[IngressUnit.scala:26:28] wire [5:0] _route_buffer_io_deq_bits_flow_ingress_node; // @[IngressUnit.scala:26:28] wire [2:0] _route_buffer_io_deq_bits_flow_ingress_node_id; // @[IngressUnit.scala:26:28] wire [5:0] _route_buffer_io_deq_bits_flow_egress_node; // @[IngressUnit.scala:26:28] wire [2:0] _route_buffer_io_deq_bits_flow_egress_node_id; // @[IngressUnit.scala:26:28] wire [4:0] _route_buffer_io_deq_bits_virt_channel_id; // @[IngressUnit.scala:26:28] wire _route_buffer_io_enq_bits_flow_egress_node_id_T = io_in_bits_egress_id == 6'h28; // @[IngressUnit.scala:30:72] wire _route_buffer_io_enq_bits_flow_egress_node_id_T_1 = io_in_bits_egress_id == 6'h2B; // @[IngressUnit.scala:30:72] wire _route_buffer_io_enq_bits_flow_egress_node_id_T_2 = io_in_bits_egress_id == 6'h2E; // @[IngressUnit.scala:30:72] wire _route_buffer_io_enq_bits_flow_egress_node_id_T_3 = io_in_bits_egress_id == 6'h31; // @[IngressUnit.scala:30:72] wire [2:0] _GEN_0 = {1'h0, _route_buffer_io_enq_bits_flow_egress_node_id_T_1, 1'h0} | (_route_buffer_io_enq_bits_flow_egress_node_id_T_3 ? 3'h6 : 3'h0); // @[Mux.scala:30:73] wire [2:0] _GEN_1 = {_route_buffer_io_enq_bits_flow_egress_node_id_T_2, _GEN_0[2:1]}; // @[Mux.scala:30:73] assign _GEN = _route_buffer_io_enq_ready & io_in_valid & io_in_bits_head & _GEN_1 == 3'h1; // @[Decoupled.scala:51:35] wire route_q_io_enq_valid = _GEN | io_in_valid & _route_buffer_io_enq_ready & io_in_bits_head & _GEN_1 != 3'h1; // @[Decoupled.scala:51:35] wire io_vcalloc_req_valid_0 = _route_buffer_io_deq_valid & _route_q_io_deq_valid & _route_buffer_io_deq_bits_head & _vcalloc_buffer_io_enq_ready & _vcalloc_q_io_enq_ready; // @[IngressUnit.scala:26:28, :27:23, :75:30, :76:25, :91:{54,78}, :92:{10,41}] wire route_buffer_io_deq_ready = _vcalloc_buffer_io_enq_ready & (_route_q_io_deq_valid | ~_route_buffer_io_deq_bits_head) & (io_vcalloc_req_ready | ~_route_buffer_io_deq_bits_head) & (_vcalloc_q_io_enq_ready | ~_route_buffer_io_deq_bits_head); // @[IngressUnit.scala:26:28, :27:23, :75:30, :76:25, :88:30, :93:61, :94:{27,37}, :95:{27,37}, :96:29] wire vcalloc_q_io_enq_valid = io_vcalloc_req_ready & io_vcalloc_req_valid_0; // @[Decoupled.scala:51:35]
Generate the Verilog code corresponding to the following Chisel files. File RoundAnyRawFNToRecFN.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import chisel3.util.Fill import consts._ //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class RoundAnyRawFNToRecFN( inExpWidth: Int, inSigWidth: Int, outExpWidth: Int, outSigWidth: Int, options: Int ) extends RawModule { override def desiredName = s"RoundAnyRawFNToRecFN_ie${inExpWidth}_is${inSigWidth}_oe${outExpWidth}_os${outSigWidth}" val io = IO(new Bundle { val invalidExc = Input(Bool()) // overrides 'infiniteExc' and 'in' val infiniteExc = Input(Bool()) // overrides 'in' except for 'in.sign' val in = Input(new RawFloat(inExpWidth, inSigWidth)) // (allowed exponent range has limits) val roundingMode = Input(UInt(3.W)) val detectTininess = Input(UInt(1.W)) val out = Output(Bits((outExpWidth + outSigWidth + 1).W)) val exceptionFlags = Output(Bits(5.W)) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val sigMSBitAlwaysZero = ((options & flRoundOpt_sigMSBitAlwaysZero) != 0) val effectiveInSigWidth = if (sigMSBitAlwaysZero) inSigWidth else inSigWidth + 1 val neverUnderflows = ((options & (flRoundOpt_neverUnderflows | flRoundOpt_subnormsAlwaysExact) ) != 0) || (inExpWidth < outExpWidth) val neverOverflows = ((options & flRoundOpt_neverOverflows) != 0) || (inExpWidth < outExpWidth) val outNaNExp = BigInt(7)<<(outExpWidth - 2) val outInfExp = BigInt(6)<<(outExpWidth - 2) val outMaxFiniteExp = outInfExp - 1 val outMinNormExp = (BigInt(1)<<(outExpWidth - 1)) + 2 val outMinNonzeroExp = outMinNormExp - outSigWidth + 1 //------------------------------------------------------------------------ //------------------------------------------------------------------------ val roundingMode_near_even = (io.roundingMode === round_near_even) val roundingMode_minMag = (io.roundingMode === round_minMag) val roundingMode_min = (io.roundingMode === round_min) val roundingMode_max = (io.roundingMode === round_max) val roundingMode_near_maxMag = (io.roundingMode === round_near_maxMag) val roundingMode_odd = (io.roundingMode === round_odd) val roundMagUp = (roundingMode_min && io.in.sign) || (roundingMode_max && ! io.in.sign) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val sAdjustedExp = if (inExpWidth < outExpWidth) (io.in.sExp +& ((BigInt(1)<<outExpWidth) - (BigInt(1)<<inExpWidth)).S )(outExpWidth, 0).zext else if (inExpWidth == outExpWidth) io.in.sExp else io.in.sExp +& ((BigInt(1)<<outExpWidth) - (BigInt(1)<<inExpWidth)).S val adjustedSig = if (inSigWidth <= outSigWidth + 2) io.in.sig<<(outSigWidth - inSigWidth + 2) else (io.in.sig(inSigWidth, inSigWidth - outSigWidth - 1) ## io.in.sig(inSigWidth - outSigWidth - 2, 0).orR ) val doShiftSigDown1 = if (sigMSBitAlwaysZero) false.B else adjustedSig(outSigWidth + 2) val common_expOut = Wire(UInt((outExpWidth + 1).W)) val common_fractOut = Wire(UInt((outSigWidth - 1).W)) val common_overflow = Wire(Bool()) val common_totalUnderflow = Wire(Bool()) val common_underflow = Wire(Bool()) val common_inexact = Wire(Bool()) if ( neverOverflows && neverUnderflows && (effectiveInSigWidth <= outSigWidth) ) { //-------------------------------------------------------------------- //-------------------------------------------------------------------- common_expOut := sAdjustedExp(outExpWidth, 0) + doShiftSigDown1 common_fractOut := Mux(doShiftSigDown1, adjustedSig(outSigWidth + 1, 3), adjustedSig(outSigWidth, 2) ) common_overflow := false.B common_totalUnderflow := false.B common_underflow := false.B common_inexact := false.B } else { //-------------------------------------------------------------------- //-------------------------------------------------------------------- val roundMask = if (neverUnderflows) 0.U(outSigWidth.W) ## doShiftSigDown1 ## 3.U(2.W) else (lowMask( sAdjustedExp(outExpWidth, 0), outMinNormExp - outSigWidth - 1, outMinNormExp ) | doShiftSigDown1) ## 3.U(2.W) val shiftedRoundMask = 0.U(1.W) ## roundMask>>1 val roundPosMask = ~shiftedRoundMask & roundMask val roundPosBit = (adjustedSig & roundPosMask).orR val anyRoundExtra = (adjustedSig & shiftedRoundMask).orR val anyRound = roundPosBit || anyRoundExtra val roundIncr = ((roundingMode_near_even || roundingMode_near_maxMag) && roundPosBit) || (roundMagUp && anyRound) val roundedSig: Bits = Mux(roundIncr, (((adjustedSig | roundMask)>>2) +& 1.U) & ~Mux(roundingMode_near_even && roundPosBit && ! anyRoundExtra, roundMask>>1, 0.U((outSigWidth + 2).W) ), (adjustedSig & ~roundMask)>>2 | Mux(roundingMode_odd && anyRound, roundPosMask>>1, 0.U) ) //*** IF SIG WIDTH IS VERY NARROW, NEED TO ACCOUNT FOR ROUND-EVEN ZEROING //*** M.S. BIT OF SUBNORMAL SIG? val sRoundedExp = sAdjustedExp +& (roundedSig>>outSigWidth).asUInt.zext common_expOut := sRoundedExp(outExpWidth, 0) common_fractOut := Mux(doShiftSigDown1, roundedSig(outSigWidth - 1, 1), roundedSig(outSigWidth - 2, 0) ) common_overflow := (if (neverOverflows) false.B else //*** REWRITE BASED ON BEFORE-ROUNDING EXPONENT?: (sRoundedExp>>(outExpWidth - 1) >= 3.S)) common_totalUnderflow := (if (neverUnderflows) false.B else //*** WOULD BE GOOD ENOUGH TO USE EXPONENT BEFORE ROUNDING?: (sRoundedExp < outMinNonzeroExp.S)) val unboundedRange_roundPosBit = Mux(doShiftSigDown1, adjustedSig(2), adjustedSig(1)) val unboundedRange_anyRound = (doShiftSigDown1 && adjustedSig(2)) || adjustedSig(1, 0).orR val unboundedRange_roundIncr = ((roundingMode_near_even || roundingMode_near_maxMag) && unboundedRange_roundPosBit) || (roundMagUp && unboundedRange_anyRound) val roundCarry = Mux(doShiftSigDown1, roundedSig(outSigWidth + 1), roundedSig(outSigWidth) ) common_underflow := (if (neverUnderflows) false.B else common_totalUnderflow || //*** IF SIG WIDTH IS VERY NARROW, NEED TO ACCOUNT FOR ROUND-EVEN ZEROING //*** M.S. BIT OF SUBNORMAL SIG? (anyRound && ((sAdjustedExp>>outExpWidth) <= 0.S) && Mux(doShiftSigDown1, roundMask(3), roundMask(2)) && ! ((io.detectTininess === tininess_afterRounding) && ! Mux(doShiftSigDown1, roundMask(4), roundMask(3) ) && roundCarry && roundPosBit && unboundedRange_roundIncr))) common_inexact := common_totalUnderflow || anyRound } //------------------------------------------------------------------------ //------------------------------------------------------------------------ val isNaNOut = io.invalidExc || io.in.isNaN val notNaN_isSpecialInfOut = io.infiniteExc || io.in.isInf val commonCase = ! isNaNOut && ! notNaN_isSpecialInfOut && ! io.in.isZero val overflow = commonCase && common_overflow val underflow = commonCase && common_underflow val inexact = overflow || (commonCase && common_inexact) val overflow_roundMagUp = roundingMode_near_even || roundingMode_near_maxMag || roundMagUp val pegMinNonzeroMagOut = commonCase && common_totalUnderflow && (roundMagUp || roundingMode_odd) val pegMaxFiniteMagOut = overflow && ! overflow_roundMagUp val notNaN_isInfOut = notNaN_isSpecialInfOut || (overflow && overflow_roundMagUp) val signOut = Mux(isNaNOut, false.B, io.in.sign) val expOut = (common_expOut & ~Mux(io.in.isZero || common_totalUnderflow, (BigInt(7)<<(outExpWidth - 2)).U((outExpWidth + 1).W), 0.U ) & ~Mux(pegMinNonzeroMagOut, ~outMinNonzeroExp.U((outExpWidth + 1).W), 0.U ) & ~Mux(pegMaxFiniteMagOut, (BigInt(1)<<(outExpWidth - 1)).U((outExpWidth + 1).W), 0.U ) & ~Mux(notNaN_isInfOut, (BigInt(1)<<(outExpWidth - 2)).U((outExpWidth + 1).W), 0.U )) | Mux(pegMinNonzeroMagOut, outMinNonzeroExp.U((outExpWidth + 1).W), 0.U ) | Mux(pegMaxFiniteMagOut, outMaxFiniteExp.U((outExpWidth + 1).W), 0.U ) | Mux(notNaN_isInfOut, outInfExp.U((outExpWidth + 1).W), 0.U) | Mux(isNaNOut, outNaNExp.U((outExpWidth + 1).W), 0.U) val fractOut = Mux(isNaNOut || io.in.isZero || common_totalUnderflow, Mux(isNaNOut, (BigInt(1)<<(outSigWidth - 2)).U, 0.U), common_fractOut ) | Fill(outSigWidth - 1, pegMaxFiniteMagOut) io.out := signOut ## expOut ## fractOut io.exceptionFlags := io.invalidExc ## io.infiniteExc ## overflow ## underflow ## inexact } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class RoundRawFNToRecFN(expWidth: Int, sigWidth: Int, options: Int) extends RawModule { override def desiredName = s"RoundRawFNToRecFN_e${expWidth}_s${sigWidth}" val io = IO(new Bundle { val invalidExc = Input(Bool()) // overrides 'infiniteExc' and 'in' val infiniteExc = Input(Bool()) // overrides 'in' except for 'in.sign' val in = Input(new RawFloat(expWidth, sigWidth + 2)) val roundingMode = Input(UInt(3.W)) val detectTininess = Input(UInt(1.W)) val out = Output(Bits((expWidth + sigWidth + 1).W)) val exceptionFlags = Output(Bits(5.W)) }) val roundAnyRawFNToRecFN = Module( new RoundAnyRawFNToRecFN( expWidth, sigWidth + 2, expWidth, sigWidth, options)) roundAnyRawFNToRecFN.io.invalidExc := io.invalidExc roundAnyRawFNToRecFN.io.infiniteExc := io.infiniteExc roundAnyRawFNToRecFN.io.in := io.in roundAnyRawFNToRecFN.io.roundingMode := io.roundingMode roundAnyRawFNToRecFN.io.detectTininess := io.detectTininess io.out := roundAnyRawFNToRecFN.io.out io.exceptionFlags := roundAnyRawFNToRecFN.io.exceptionFlags }
module RoundRawFNToRecFN_e8_s24_10( // @[RoundAnyRawFNToRecFN.scala:295:5] input io_invalidExc, // @[RoundAnyRawFNToRecFN.scala:299:16] input io_in_isNaN, // @[RoundAnyRawFNToRecFN.scala:299:16] input io_in_isInf, // @[RoundAnyRawFNToRecFN.scala:299:16] input io_in_isZero, // @[RoundAnyRawFNToRecFN.scala:299:16] input io_in_sign, // @[RoundAnyRawFNToRecFN.scala:299:16] input [9:0] io_in_sExp, // @[RoundAnyRawFNToRecFN.scala:299:16] input [26:0] io_in_sig, // @[RoundAnyRawFNToRecFN.scala:299:16] input [2:0] io_roundingMode, // @[RoundAnyRawFNToRecFN.scala:299:16] input io_detectTininess, // @[RoundAnyRawFNToRecFN.scala:299:16] output [32:0] io_out, // @[RoundAnyRawFNToRecFN.scala:299:16] output [4:0] io_exceptionFlags // @[RoundAnyRawFNToRecFN.scala:299:16] ); wire io_invalidExc_0 = io_invalidExc; // @[RoundAnyRawFNToRecFN.scala:295:5] wire io_in_isNaN_0 = io_in_isNaN; // @[RoundAnyRawFNToRecFN.scala:295:5] wire io_in_isInf_0 = io_in_isInf; // @[RoundAnyRawFNToRecFN.scala:295:5] wire io_in_isZero_0 = io_in_isZero; // @[RoundAnyRawFNToRecFN.scala:295:5] wire io_in_sign_0 = io_in_sign; // @[RoundAnyRawFNToRecFN.scala:295:5] wire [9:0] io_in_sExp_0 = io_in_sExp; // @[RoundAnyRawFNToRecFN.scala:295:5] wire [26:0] io_in_sig_0 = io_in_sig; // @[RoundAnyRawFNToRecFN.scala:295:5] wire [2:0] io_roundingMode_0 = io_roundingMode; // @[RoundAnyRawFNToRecFN.scala:295:5] wire io_detectTininess_0 = io_detectTininess; // @[RoundAnyRawFNToRecFN.scala:295:5] wire io_infiniteExc = 1'h0; // @[RoundAnyRawFNToRecFN.scala:295:5, :299:16, :310:15] wire [32:0] io_out_0; // @[RoundAnyRawFNToRecFN.scala:295:5] wire [4:0] io_exceptionFlags_0; // @[RoundAnyRawFNToRecFN.scala:295:5] RoundAnyRawFNToRecFN_ie8_is26_oe8_os24_10 roundAnyRawFNToRecFN ( // @[RoundAnyRawFNToRecFN.scala:310:15] .io_invalidExc (io_invalidExc_0), // @[RoundAnyRawFNToRecFN.scala:295:5] .io_in_isNaN (io_in_isNaN_0), // @[RoundAnyRawFNToRecFN.scala:295:5] .io_in_isInf (io_in_isInf_0), // @[RoundAnyRawFNToRecFN.scala:295:5] .io_in_isZero (io_in_isZero_0), // @[RoundAnyRawFNToRecFN.scala:295:5] .io_in_sign (io_in_sign_0), // @[RoundAnyRawFNToRecFN.scala:295:5] .io_in_sExp (io_in_sExp_0), // @[RoundAnyRawFNToRecFN.scala:295:5] .io_in_sig (io_in_sig_0), // @[RoundAnyRawFNToRecFN.scala:295:5] .io_roundingMode (io_roundingMode_0), // @[RoundAnyRawFNToRecFN.scala:295:5] .io_detectTininess (io_detectTininess_0), // @[RoundAnyRawFNToRecFN.scala:295:5] .io_out (io_out_0), .io_exceptionFlags (io_exceptionFlags_0) ); // @[RoundAnyRawFNToRecFN.scala:310:15] assign io_out = io_out_0; // @[RoundAnyRawFNToRecFN.scala:295:5] assign io_exceptionFlags = io_exceptionFlags_0; // @[RoundAnyRawFNToRecFN.scala:295:5] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Buffer.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import org.chipsalliance.diplomacy.lazymodule._ import freechips.rocketchip.diplomacy.BufferParams class TLBufferNode ( a: BufferParams, b: BufferParams, c: BufferParams, d: BufferParams, e: BufferParams)(implicit valName: ValName) extends TLAdapterNode( clientFn = { p => p.v1copy(minLatency = p.minLatency + b.latency + c.latency) }, managerFn = { p => p.v1copy(minLatency = p.minLatency + a.latency + d.latency) } ) { override lazy val nodedebugstring = s"a:${a.toString}, b:${b.toString}, c:${c.toString}, d:${d.toString}, e:${e.toString}" override def circuitIdentity = List(a,b,c,d,e).forall(_ == BufferParams.none) } class TLBuffer( a: BufferParams, b: BufferParams, c: BufferParams, d: BufferParams, e: BufferParams)(implicit p: Parameters) extends LazyModule { def this(ace: BufferParams, bd: BufferParams)(implicit p: Parameters) = this(ace, bd, ace, bd, ace) def this(abcde: BufferParams)(implicit p: Parameters) = this(abcde, abcde) def this()(implicit p: Parameters) = this(BufferParams.default) val node = new TLBufferNode(a, b, c, d, e) lazy val module = new Impl class Impl extends LazyModuleImp(this) { def headBundle = node.out.head._2.bundle override def desiredName = (Seq("TLBuffer") ++ node.out.headOption.map(_._2.bundle.shortName)).mkString("_") (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => out.a <> a(in .a) in .d <> d(out.d) if (edgeOut.manager.anySupportAcquireB && edgeOut.client.anySupportProbe) { in .b <> b(out.b) out.c <> c(in .c) out.e <> e(in .e) } else { in.b.valid := false.B in.c.ready := true.B in.e.ready := true.B out.b.ready := true.B out.c.valid := false.B out.e.valid := false.B } } } } object TLBuffer { def apply() (implicit p: Parameters): TLNode = apply(BufferParams.default) def apply(abcde: BufferParams) (implicit p: Parameters): TLNode = apply(abcde, abcde) def apply(ace: BufferParams, bd: BufferParams)(implicit p: Parameters): TLNode = apply(ace, bd, ace, bd, ace) def apply( a: BufferParams, b: BufferParams, c: BufferParams, d: BufferParams, e: BufferParams)(implicit p: Parameters): TLNode = { val buffer = LazyModule(new TLBuffer(a, b, c, d, e)) buffer.node } def chain(depth: Int, name: Option[String] = None)(implicit p: Parameters): Seq[TLNode] = { val buffers = Seq.fill(depth) { LazyModule(new TLBuffer()) } name.foreach { n => buffers.zipWithIndex.foreach { case (b, i) => b.suggestName(s"${n}_${i}") } } buffers.map(_.node) } def chainNode(depth: Int, name: Option[String] = None)(implicit p: Parameters): TLNode = { chain(depth, name) .reduceLeftOption(_ :*=* _) .getOrElse(TLNameNode("no_buffer")) } } File Fragmenter.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import org.chipsalliance.diplomacy.lazymodule._ import freechips.rocketchip.diplomacy.{AddressSet, BufferParams, IdRange, TransferSizes} import freechips.rocketchip.util.{Repeater, OH1ToUInt, UIntToOH1} import scala.math.min import freechips.rocketchip.util.DataToAugmentedData object EarlyAck { sealed trait T case object AllPuts extends T case object PutFulls extends T case object None extends T } // minSize: minimum size of transfers supported by all outward managers // maxSize: maximum size of transfers supported after the Fragmenter is applied // alwaysMin: fragment all requests down to minSize (else fragment to maximum supported by manager) // earlyAck: should a multibeat Put should be acknowledged on the first beat or last beat // holdFirstDeny: allow the Fragmenter to unsafely combine multibeat Gets by taking the first denied for the whole burst // nameSuffix: appends a suffix to the module name // Fragmenter modifies: PutFull, PutPartial, LogicalData, Get, Hint // Fragmenter passes: ArithmeticData (truncated to minSize if alwaysMin) // Fragmenter cannot modify acquire (could livelock); thus it is unsafe to put caches on both sides class TLFragmenter(val minSize: Int, val maxSize: Int, val alwaysMin: Boolean = false, val earlyAck: EarlyAck.T = EarlyAck.None, val holdFirstDeny: Boolean = false, val nameSuffix: Option[String] = None)(implicit p: Parameters) extends LazyModule { require(isPow2 (maxSize), s"TLFragmenter expects pow2(maxSize), but got $maxSize") require(isPow2 (minSize), s"TLFragmenter expects pow2(minSize), but got $minSize") require(minSize <= maxSize, s"TLFragmenter expects min <= max, but got $minSize > $maxSize") val fragmentBits = log2Ceil(maxSize / minSize) val fullBits = if (earlyAck == EarlyAck.PutFulls) 1 else 0 val toggleBits = 1 val addedBits = fragmentBits + toggleBits + fullBits def expandTransfer(x: TransferSizes, op: String) = if (!x) x else { // validate that we can apply the fragmenter correctly require (x.max >= minSize, s"TLFragmenter (with parent $parent) max transfer size $op(${x.max}) must be >= min transfer size (${minSize})") TransferSizes(x.min, maxSize) } private def noChangeRequired = minSize == maxSize private def shrinkTransfer(x: TransferSizes) = if (!alwaysMin) x else if (x.min <= minSize) TransferSizes(x.min, min(minSize, x.max)) else TransferSizes.none private def mapManager(m: TLSlaveParameters) = m.v1copy( supportsArithmetic = shrinkTransfer(m.supportsArithmetic), supportsLogical = shrinkTransfer(m.supportsLogical), supportsGet = expandTransfer(m.supportsGet, "Get"), supportsPutFull = expandTransfer(m.supportsPutFull, "PutFull"), supportsPutPartial = expandTransfer(m.supportsPutPartial, "PutParital"), supportsHint = expandTransfer(m.supportsHint, "Hint")) val node = new TLAdapterNode( // We require that all the responses are mutually FIFO // Thus we need to compact all of the masters into one big master clientFn = { c => (if (noChangeRequired) c else c.v2copy( masters = Seq(TLMasterParameters.v2( name = "TLFragmenter", sourceId = IdRange(0, if (minSize == maxSize) c.endSourceId else (c.endSourceId << addedBits)), requestFifo = true, emits = TLMasterToSlaveTransferSizes( acquireT = shrinkTransfer(c.masters.map(_.emits.acquireT) .reduce(_ mincover _)), acquireB = shrinkTransfer(c.masters.map(_.emits.acquireB) .reduce(_ mincover _)), arithmetic = shrinkTransfer(c.masters.map(_.emits.arithmetic).reduce(_ mincover _)), logical = shrinkTransfer(c.masters.map(_.emits.logical) .reduce(_ mincover _)), get = shrinkTransfer(c.masters.map(_.emits.get) .reduce(_ mincover _)), putFull = shrinkTransfer(c.masters.map(_.emits.putFull) .reduce(_ mincover _)), putPartial = shrinkTransfer(c.masters.map(_.emits.putPartial).reduce(_ mincover _)), hint = shrinkTransfer(c.masters.map(_.emits.hint) .reduce(_ mincover _)) ) )) ))}, managerFn = { m => if (noChangeRequired) m else m.v2copy(slaves = m.slaves.map(mapManager)) } ) { override def circuitIdentity = noChangeRequired } lazy val module = new Impl class Impl extends LazyModuleImp(this) { override def desiredName = (Seq("TLFragmenter") ++ nameSuffix).mkString("_") (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => if (noChangeRequired) { out <> in } else { // All managers must share a common FIFO domain (responses might end up interleaved) val manager = edgeOut.manager val managers = manager.managers val beatBytes = manager.beatBytes val fifoId = managers(0).fifoId require (fifoId.isDefined && managers.map(_.fifoId == fifoId).reduce(_ && _)) require (!manager.anySupportAcquireB || !edgeOut.client.anySupportProbe, s"TLFragmenter (with parent $parent) can't fragment a caching client's requests into a cacheable region") require (minSize >= beatBytes, s"TLFragmenter (with parent $parent) can't support fragmenting ($minSize) to sub-beat ($beatBytes) accesses") // We can't support devices which are cached on both sides of us require (!edgeOut.manager.anySupportAcquireB || !edgeIn.client.anySupportProbe) // We can't support denied because we reassemble fragments require (!edgeOut.manager.mayDenyGet || holdFirstDeny, s"TLFragmenter (with parent $parent) can't support denials without holdFirstDeny=true") require (!edgeOut.manager.mayDenyPut || earlyAck == EarlyAck.None) /* The Fragmenter is a bit tricky, because there are 5 sizes in play: * max size -- the maximum transfer size possible * orig size -- the original pre-fragmenter size * frag size -- the modified post-fragmenter size * min size -- the threshold below which frag=orig * beat size -- the amount transfered on any given beat * * The relationships are as follows: * max >= orig >= frag * max > min >= beat * It IS possible that orig <= min (then frag=orig; ie: no fragmentation) * * The fragment# (sent via TL.source) is measured in multiples of min size. * Meanwhile, to track the progress, counters measure in multiples of beat size. * * Here is an example of a bus with max=256, min=8, beat=4 and a device supporting 16. * * in.A out.A (frag#) out.D (frag#) in.D gen# ack# * get64 get16 6 ackD16 6 ackD64 12 15 * ackD16 6 ackD64 14 * ackD16 6 ackD64 13 * ackD16 6 ackD64 12 * get16 4 ackD16 4 ackD64 8 11 * ackD16 4 ackD64 10 * ackD16 4 ackD64 9 * ackD16 4 ackD64 8 * get16 2 ackD16 2 ackD64 4 7 * ackD16 2 ackD64 6 * ackD16 2 ackD64 5 * ackD16 2 ackD64 4 * get16 0 ackD16 0 ackD64 0 3 * ackD16 0 ackD64 2 * ackD16 0 ackD64 1 * ackD16 0 ackD64 0 * * get8 get8 0 ackD8 0 ackD8 0 1 * ackD8 0 ackD8 0 * * get4 get4 0 ackD4 0 ackD4 0 0 * get1 get1 0 ackD1 0 ackD1 0 0 * * put64 put16 6 15 * put64 put16 6 14 * put64 put16 6 13 * put64 put16 6 ack16 6 12 12 * put64 put16 4 11 * put64 put16 4 10 * put64 put16 4 9 * put64 put16 4 ack16 4 8 8 * put64 put16 2 7 * put64 put16 2 6 * put64 put16 2 5 * put64 put16 2 ack16 2 4 4 * put64 put16 0 3 * put64 put16 0 2 * put64 put16 0 1 * put64 put16 0 ack16 0 ack64 0 0 * * put8 put8 0 1 * put8 put8 0 ack8 0 ack8 0 0 * * put4 put4 0 ack4 0 ack4 0 0 * put1 put1 0 ack1 0 ack1 0 0 */ val counterBits = log2Up(maxSize/beatBytes) val maxDownSize = if (alwaysMin) minSize else min(manager.maxTransfer, maxSize) // Consider the following waveform for two 4-beat bursts: // ---A----A------------ // -------D-----DDD-DDDD // Under TL rules, the second A can use the same source as the first A, // because the source is released for reuse on the first response beat. // // However, if we fragment the requests, it looks like this: // ---3210-3210--------- // -------3-----210-3210 // ... now we've broken the rules because 210 are twice inflight. // // This phenomenon means we can have essentially 2*maxSize/minSize-1 // fragmented transactions in flight per original transaction source. // // To keep the source unique, we encode the beat counter in the low // bits of the source. To solve the overlap, we use a toggle bit. // Whatever toggle bit the D is reassembling, A will use the opposite. // First, handle the return path val acknum = RegInit(0.U(counterBits.W)) val dOrig = Reg(UInt()) val dToggle = RegInit(false.B) val dFragnum = out.d.bits.source(fragmentBits-1, 0) val dFirst = acknum === 0.U val dLast = dFragnum === 0.U // only for AccessAck (!Data) val dsizeOH = UIntToOH (out.d.bits.size, log2Ceil(maxDownSize)+1) val dsizeOH1 = UIntToOH1(out.d.bits.size, log2Up(maxDownSize)) val dHasData = edgeOut.hasData(out.d.bits) // calculate new acknum val acknum_fragment = dFragnum << log2Ceil(minSize/beatBytes) val acknum_size = dsizeOH1 >> log2Ceil(beatBytes) assert (!out.d.valid || (acknum_fragment & acknum_size) === 0.U) val dFirst_acknum = acknum_fragment | Mux(dHasData, acknum_size, 0.U) val ack_decrement = Mux(dHasData, 1.U, dsizeOH >> log2Ceil(beatBytes)) // calculate the original size val dFirst_size = OH1ToUInt((dFragnum << log2Ceil(minSize)) | dsizeOH1) when (out.d.fire) { acknum := Mux(dFirst, dFirst_acknum, acknum - ack_decrement) when (dFirst) { dOrig := dFirst_size dToggle := out.d.bits.source(fragmentBits) } } // Swallow up non-data ack fragments val doEarlyAck = earlyAck match { case EarlyAck.AllPuts => true.B case EarlyAck.PutFulls => out.d.bits.source(fragmentBits+1) case EarlyAck.None => false.B } val drop = !dHasData && !Mux(doEarlyAck, dFirst, dLast) out.d.ready := in.d.ready || drop in.d.valid := out.d.valid && !drop in.d.bits := out.d.bits // pass most stuff unchanged in.d.bits.source := out.d.bits.source >> addedBits in.d.bits.size := Mux(dFirst, dFirst_size, dOrig) if (edgeOut.manager.mayDenyPut) { val r_denied = Reg(Bool()) val d_denied = (!dFirst && r_denied) || out.d.bits.denied when (out.d.fire) { r_denied := d_denied } in.d.bits.denied := d_denied } if (edgeOut.manager.mayDenyGet) { // Take denied only from the first beat and hold that value val d_denied = out.d.bits.denied holdUnless dFirst when (dHasData) { in.d.bits.denied := d_denied in.d.bits.corrupt := d_denied || out.d.bits.corrupt } } // What maximum transfer sizes do downstream devices support? val maxArithmetics = managers.map(_.supportsArithmetic.max) val maxLogicals = managers.map(_.supportsLogical.max) val maxGets = managers.map(_.supportsGet.max) val maxPutFulls = managers.map(_.supportsPutFull.max) val maxPutPartials = managers.map(_.supportsPutPartial.max) val maxHints = managers.map(m => if (m.supportsHint) maxDownSize else 0) // We assume that the request is valid => size 0 is impossible val lgMinSize = log2Ceil(minSize).U val maxLgArithmetics = maxArithmetics.map(m => if (m == 0) lgMinSize else log2Ceil(m).U) val maxLgLogicals = maxLogicals .map(m => if (m == 0) lgMinSize else log2Ceil(m).U) val maxLgGets = maxGets .map(m => if (m == 0) lgMinSize else log2Ceil(m).U) val maxLgPutFulls = maxPutFulls .map(m => if (m == 0) lgMinSize else log2Ceil(m).U) val maxLgPutPartials = maxPutPartials.map(m => if (m == 0) lgMinSize else log2Ceil(m).U) val maxLgHints = maxHints .map(m => if (m == 0) lgMinSize else log2Ceil(m).U) // Make the request repeatable val repeater = Module(new Repeater(in.a.bits)) repeater.io.enq <> in.a val in_a = repeater.io.deq // If this is infront of a single manager, these become constants val find = manager.findFast(edgeIn.address(in_a.bits)) val maxLgArithmetic = Mux1H(find, maxLgArithmetics) val maxLgLogical = Mux1H(find, maxLgLogicals) val maxLgGet = Mux1H(find, maxLgGets) val maxLgPutFull = Mux1H(find, maxLgPutFulls) val maxLgPutPartial = Mux1H(find, maxLgPutPartials) val maxLgHint = Mux1H(find, maxLgHints) val limit = if (alwaysMin) lgMinSize else MuxLookup(in_a.bits.opcode, lgMinSize)(Array( TLMessages.PutFullData -> maxLgPutFull, TLMessages.PutPartialData -> maxLgPutPartial, TLMessages.ArithmeticData -> maxLgArithmetic, TLMessages.LogicalData -> maxLgLogical, TLMessages.Get -> maxLgGet, TLMessages.Hint -> maxLgHint)) val aOrig = in_a.bits.size val aFrag = Mux(aOrig > limit, limit, aOrig) val aOrigOH1 = UIntToOH1(aOrig, log2Ceil(maxSize)) val aFragOH1 = UIntToOH1(aFrag, log2Up(maxDownSize)) val aHasData = edgeIn.hasData(in_a.bits) val aMask = Mux(aHasData, 0.U, aFragOH1) val gennum = RegInit(0.U(counterBits.W)) val aFirst = gennum === 0.U val old_gennum1 = Mux(aFirst, aOrigOH1 >> log2Ceil(beatBytes), gennum - 1.U) val new_gennum = ~(~old_gennum1 | (aMask >> log2Ceil(beatBytes))) // ~(~x|y) is width safe val aFragnum = ~(~(old_gennum1 >> log2Ceil(minSize/beatBytes)) | (aFragOH1 >> log2Ceil(minSize))) val aLast = aFragnum === 0.U val aToggle = !Mux(aFirst, dToggle, RegEnable(dToggle, aFirst)) val aFull = if (earlyAck == EarlyAck.PutFulls) Some(in_a.bits.opcode === TLMessages.PutFullData) else None when (out.a.fire) { gennum := new_gennum } repeater.io.repeat := !aHasData && aFragnum =/= 0.U out.a <> in_a out.a.bits.address := in_a.bits.address | ~(old_gennum1 << log2Ceil(beatBytes) | ~aOrigOH1 | aFragOH1 | (minSize-1).U) out.a.bits.source := Cat(Seq(in_a.bits.source) ++ aFull ++ Seq(aToggle.asUInt, aFragnum)) out.a.bits.size := aFrag // Optimize away some of the Repeater's registers assert (!repeater.io.full || !aHasData) out.a.bits.data := in.a.bits.data val fullMask = ((BigInt(1) << beatBytes) - 1).U assert (!repeater.io.full || in_a.bits.mask === fullMask) out.a.bits.mask := Mux(repeater.io.full, fullMask, in.a.bits.mask) out.a.bits.user.waiveAll :<= in.a.bits.user.subset(_.isData) // Tie off unused channels in.b.valid := false.B in.c.ready := true.B in.e.ready := true.B out.b.ready := true.B out.c.valid := false.B out.e.valid := false.B } } } } object TLFragmenter { def apply(minSize: Int, maxSize: Int, alwaysMin: Boolean = false, earlyAck: EarlyAck.T = EarlyAck.None, holdFirstDeny: Boolean = false, nameSuffix: Option[String] = None)(implicit p: Parameters): TLNode = { if (minSize <= maxSize) { val fragmenter = LazyModule(new TLFragmenter(minSize, maxSize, alwaysMin, earlyAck, holdFirstDeny, nameSuffix)) fragmenter.node } else { TLEphemeralNode()(ValName("no_fragmenter")) } } def apply(wrapper: TLBusWrapper, nameSuffix: Option[String])(implicit p: Parameters): TLNode = apply(wrapper.beatBytes, wrapper.blockBytes, nameSuffix = nameSuffix) def apply(wrapper: TLBusWrapper)(implicit p: Parameters): TLNode = apply(wrapper, None) } // Synthesizable unit tests import freechips.rocketchip.unittest._ class TLRAMFragmenter(ramBeatBytes: Int, maxSize: Int, txns: Int)(implicit p: Parameters) extends LazyModule { val fuzz = LazyModule(new TLFuzzer(txns)) val model = LazyModule(new TLRAMModel("Fragmenter")) val ram = LazyModule(new TLRAM(AddressSet(0x0, 0x3ff), beatBytes = ramBeatBytes)) (ram.node := TLDelayer(0.1) := TLBuffer(BufferParams.flow) := TLDelayer(0.1) := TLFragmenter(ramBeatBytes, maxSize, earlyAck = EarlyAck.AllPuts) := TLDelayer(0.1) := TLBuffer(BufferParams.flow) := TLFragmenter(ramBeatBytes, maxSize/2) := TLDelayer(0.1) := TLBuffer(BufferParams.flow) := model.node := fuzz.node) lazy val module = new Impl class Impl extends LazyModuleImp(this) with UnitTestModule { io.finished := fuzz.module.io.finished } } class TLRAMFragmenterTest(ramBeatBytes: Int, maxSize: Int, txns: Int = 5000, timeout: Int = 500000)(implicit p: Parameters) extends UnitTest(timeout) { val dut = Module(LazyModule(new TLRAMFragmenter(ramBeatBytes,maxSize,txns)).module) io.finished := dut.io.finished dut.io.start := io.start } File LazyModuleImp.scala: package org.chipsalliance.diplomacy.lazymodule import chisel3.{withClockAndReset, Module, RawModule, Reset, _} import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo} import firrtl.passes.InlineAnnotation import org.chipsalliance.cde.config.Parameters import org.chipsalliance.diplomacy.nodes.Dangle import scala.collection.immutable.SortedMap /** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]]. * * This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy. */ sealed trait LazyModuleImpLike extends RawModule { /** [[LazyModule]] that contains this instance. */ val wrapper: LazyModule /** IOs that will be automatically "punched" for this instance. */ val auto: AutoBundle /** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */ protected[diplomacy] val dangles: Seq[Dangle] // [[wrapper.module]] had better not be accessed while LazyModules are still being built! require( LazyModule.scope.isEmpty, s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}" ) /** Set module name. Defaults to the containing LazyModule's desiredName. */ override def desiredName: String = wrapper.desiredName suggestName(wrapper.suggestedName) /** [[Parameters]] for chisel [[Module]]s. */ implicit val p: Parameters = wrapper.p /** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and * submodules. */ protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = { // 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]], // 2. return [[Dangle]]s from each module. val childDangles = wrapper.children.reverse.flatMap { c => implicit val sourceInfo: SourceInfo = c.info c.cloneProto.map { cp => // If the child is a clone, then recursively set cloneProto of its children as well def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = { require(bases.size == clones.size) (bases.zip(clones)).map { case (l, r) => require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}") l.cloneProto = Some(r) assignCloneProtos(l.children, r.children) } } assignCloneProtos(c.children, cp.children) // Clone the child module as a record, and get its [[AutoBundle]] val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName) val clonedAuto = clone("auto").asInstanceOf[AutoBundle] // Get the empty [[Dangle]]'s of the cloned child val rawDangles = c.cloneDangles() require(rawDangles.size == clonedAuto.elements.size) // Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) } dangles }.getOrElse { // For non-clones, instantiate the child module val mod = try { Module(c.module) } catch { case e: ChiselException => { println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}") throw e } } mod.dangles } } // Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]]. // This will result in a sequence of [[Dangle]] from these [[BaseNode]]s. val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate()) // Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]] val allDangles = nodeDangles ++ childDangles // Group [[allDangles]] by their [[source]]. val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*) // For each [[source]] set of [[Dangle]]s of size 2, ensure that these // can be connected as a source-sink pair (have opposite flipped value). // Make the connection and mark them as [[done]]. val done = Set() ++ pairing.values.filter(_.size == 2).map { case Seq(a, b) => require(a.flipped != b.flipped) // @todo <> in chisel3 makes directionless connection. if (a.flipped) { a.data <> b.data } else { b.data <> a.data } a.source case _ => None } // Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module. val forward = allDangles.filter(d => !done(d.source)) // Generate [[AutoBundle]] IO from [[forward]]. val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*)) // Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]] val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) => if (d.flipped) { d.data <> io } else { io <> d.data } d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name) } // Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]]. wrapper.inModuleBody.reverse.foreach { _() } if (wrapper.shouldBeInlined) { chisel3.experimental.annotate(new ChiselAnnotation { def toFirrtl = InlineAnnotation(toNamed) }) } // Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]]. (auto, dangles) } } /** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike { /** Instantiate hardware of this `Module`. */ val (auto, dangles) = instantiate() } /** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike { // These wires are the default clock+reset for all LazyModule children. // It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the // [[LazyRawModuleImp]] children. // Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly. /** drive clock explicitly. */ val childClock: Clock = Wire(Clock()) /** drive reset explicitly. */ val childReset: Reset = Wire(Reset()) // the default is that these are disabled childClock := false.B.asClock childReset := chisel3.DontCare def provideImplicitClockToLazyChildren: Boolean = false val (auto, dangles) = if (provideImplicitClockToLazyChildren) { withClockAndReset(childClock, childReset) { instantiate() } } else { instantiate() } } File MixedNode.scala: package org.chipsalliance.diplomacy.nodes import chisel3.{Data, DontCare, Wire} import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.{Field, Parameters} import org.chipsalliance.diplomacy.ValName import org.chipsalliance.diplomacy.sourceLine /** One side metadata of a [[Dangle]]. * * Describes one side of an edge going into or out of a [[BaseNode]]. * * @param serial * the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to. * @param index * the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to. */ case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] { import scala.math.Ordered.orderingToOrdered def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that)) } /** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]] * connects. * * [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] , * [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]]. * * @param source * the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within * that [[BaseNode]]. * @param sink * sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that * [[BaseNode]]. * @param flipped * flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to * `danglesIn`. * @param dataOpt * actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module */ case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) { def data = dataOpt.get } /** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often * derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually * implement the protocol. */ case class Edges[EI, EO](in: Seq[EI], out: Seq[EO]) /** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */ case object MonitorsEnabled extends Field[Boolean](true) /** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented. * * For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but * [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink * nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the * [[LazyModule]]. */ case object RenderFlipped extends Field[Boolean](false) /** The sealed node class in the package, all node are derived from it. * * @param inner * Sink interface implementation. * @param outer * Source interface implementation. * @param valName * val name of this node. * @tparam DI * Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters * describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected * [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port * parameters. * @tparam UI * Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing * the protocol parameters of a sink. For an [[InwardNode]], it is determined itself. * @tparam EI * Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers * specified for a sink according to protocol. * @tparam BI * Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface. * It should extends from [[chisel3.Data]], which represents the real hardware. * @tparam DO * Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters * describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself. * @tparam UO * Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing * the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]]. * Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters. * @tparam EO * Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers * specified for a source according to protocol. * @tparam BO * Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source * interface. It should extends from [[chisel3.Data]], which represents the real hardware. * * @note * Call Graph of [[MixedNode]] * - line `─`: source is process by a function and generate pass to others * - Arrow `→`: target of arrow is generated by source * * {{{ * (from the other node) * ┌─────────────────────────────────────────────────────────[[InwardNode.uiParams]]─────────────┐ * ↓ │ * (binding node when elaboration) [[OutwardNode.uoParams]]────────────────────────[[MixedNode.mapParamsU]]→──────────┐ │ * [[InwardNode.accPI]] │ │ │ * │ │ (based on protocol) │ * │ │ [[MixedNode.inner.edgeI]] │ * │ │ ↓ │ * ↓ │ │ │ * (immobilize after elaboration) (inward port from [[OutwardNode]]) │ ↓ │ * [[InwardNode.iBindings]]──┐ [[MixedNode.iDirectPorts]]────────────────────→[[MixedNode.iPorts]] [[InwardNode.uiParams]] │ * │ │ ↑ │ │ │ * │ │ │ [[OutwardNode.doParams]] │ │ * │ │ │ (from the other node) │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * │ │ │ └────────┬──────────────┤ │ * │ │ │ │ │ │ * │ │ │ │ (based on protocol) │ * │ │ │ │ [[MixedNode.inner.edgeI]] │ * │ │ │ │ │ │ * │ │ (from the other node) │ ↓ │ * │ └───[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] │ [[MixedNode.edgesIn]]───┐ │ * │ ↑ ↑ │ │ ↓ │ * │ │ │ │ │ [[MixedNode.in]] │ * │ │ │ │ ↓ ↑ │ * │ (solve star connection) │ │ │ [[MixedNode.bundleIn]]──┘ │ * ├───[[MixedNode.resolveStar]]→─┼─────────────────────────────┤ └────────────────────────────────────┐ │ * │ │ │ [[MixedNode.bundleOut]]─┐ │ │ * │ │ │ ↑ ↓ │ │ * │ │ │ │ [[MixedNode.out]] │ │ * │ ↓ ↓ │ ↑ │ │ * │ ┌─────[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]──┘ │ │ * │ │ (from the other node) ↑ │ │ * │ │ │ │ │ │ * │ │ │ [[MixedNode.outer.edgeO]] │ │ * │ │ │ (based on protocol) │ │ * │ │ │ │ │ │ * │ │ │ ┌────────────────────────────────────────┤ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * (immobilize after elaboration)│ ↓ │ │ │ │ * [[OutwardNode.oBindings]]─┘ [[MixedNode.oDirectPorts]]───→[[MixedNode.oPorts]] [[OutwardNode.doParams]] │ │ * ↑ (inward port from [[OutwardNode]]) │ │ │ │ * │ ┌─────────────────────────────────────────┤ │ │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * [[OutwardNode.accPO]] │ ↓ │ │ │ * (binding node when elaboration) │ [[InwardNode.diParams]]─────→[[MixedNode.mapParamsD]]────────────────────────────┘ │ │ * │ ↑ │ │ * │ └──────────────────────────────────────────────────────────────────────────────────────────┘ │ * └──────────────────────────────────────────────────────────────────────────────────────────────────────────┘ * }}} */ abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data]( val inner: InwardNodeImp[DI, UI, EI, BI], val outer: OutwardNodeImp[DO, UO, EO, BO] )( implicit valName: ValName) extends BaseNode with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO] with InwardNode[DI, UI, BI] with OutwardNode[DO, UO, BO] { // Generate a [[NodeHandle]] with inward and outward node are both this node. val inward = this val outward = this /** Debug info of nodes binding. */ def bindingInfo: String = s"""$iBindingInfo |$oBindingInfo |""".stripMargin /** Debug info of ports connecting. */ def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}] |${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}] |""".stripMargin /** Debug info of parameters propagations. */ def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}] |${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}] |${diParams.size} downstream inward parameters: [${diParams.mkString(",")}] |${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}] |""".stripMargin /** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and * [[MixedNode.iPortMapping]]. * * Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward * stars and outward stars. * * This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type * of node. * * @param iKnown * Number of known-size ([[BIND_ONCE]]) input bindings. * @param oKnown * Number of known-size ([[BIND_ONCE]]) output bindings. * @param iStar * Number of unknown size ([[BIND_STAR]]) input bindings. * @param oStar * Number of unknown size ([[BIND_STAR]]) output bindings. * @return * A Tuple of the resolved number of input and output connections. */ protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int) /** Function to generate downward-flowing outward params from the downward-flowing input params and the current output * ports. * * @param n * The size of the output sequence to generate. * @param p * Sequence of downward-flowing input parameters of this node. * @return * A `n`-sized sequence of downward-flowing output edge parameters. */ protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO] /** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]]. * * @param n * Size of the output sequence. * @param p * Upward-flowing output edge parameters. * @return * A n-sized sequence of upward-flowing input edge parameters. */ protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI] /** @return * The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with * [[BIND_STAR]]. */ protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR) /** @return * The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of * output bindings bound with [[BIND_STAR]]. */ protected[diplomacy] lazy val sourceCard: Int = iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR) /** @return list of nodes involved in flex bindings with this node. */ protected[diplomacy] lazy val flexes: Seq[BaseNode] = oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2) /** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin * greedily taking up the remaining connections. * * @return * A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return * value is not relevant. */ protected[diplomacy] lazy val flexOffset: Int = { /** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex * operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a * connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of * each node in the current set and decide whether they should be added to the set or not. * * @return * the mapping of [[BaseNode]] indexed by their serial numbers. */ def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = { if (visited.contains(v.serial) || !v.flexibleArityDirection) { visited } else { v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum)) } } /** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node. * * @example * {{{ * a :*=* b :*=* c * d :*=* b * e :*=* f * }}} * * `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)` */ val flexSet = DFS(this, Map()).values /** The total number of :*= operators where we're on the left. */ val allSink = flexSet.map(_.sinkCard).sum /** The total number of :=* operators used when we're on the right. */ val allSource = flexSet.map(_.sourceCard).sum require( allSink == 0 || allSource == 0, s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction." ) allSink - allSource } /** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */ protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = { if (flexibleArityDirection) flexOffset else if (n.flexibleArityDirection) n.flexOffset else 0 } /** For a node which is connected between two nodes, select the one that will influence the direction of the flex * resolution. */ protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = { val dir = edgeArityDirection(n) if (dir < 0) l else if (dir > 0) r else 1 } /** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */ private var starCycleGuard = false /** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star" * connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also * need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct * edge parameters and later build up correct bundle connections. * * [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding * operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort * (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*= * bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N` */ protected[diplomacy] lazy val ( oPortMapping: Seq[(Int, Int)], iPortMapping: Seq[(Int, Int)], oStar: Int, iStar: Int ) = { try { if (starCycleGuard) throw StarCycleException() starCycleGuard = true // For a given node N... // Number of foo :=* N // + Number of bar :=* foo :*=* N val oStars = oBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0) } // Number of N :*= foo // + Number of N :*=* foo :*= bar val iStars = iBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0) } // 1 for foo := N // + bar.iStar for bar :*= foo :*=* N // + foo.iStar for foo :*= N // + 0 for foo :=* N val oKnown = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, 0, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => 0 } }.sum // 1 for N := foo // + bar.oStar for N :*=* foo :=* bar // + foo.oStar for N :=* foo // + 0 for N :*= foo val iKnown = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, 0) case BIND_QUERY => n.oStar case BIND_STAR => 0 } }.sum // Resolve star depends on the node subclass to implement the algorithm for this. val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars) // Cumulative list of resolved outward binding range starting points val oSum = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => oStar } }.scanLeft(0)(_ + _) // Cumulative list of resolved inward binding range starting points val iSum = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar) case BIND_QUERY => n.oStar case BIND_STAR => iStar } }.scanLeft(0)(_ + _) // Create ranges for each binding based on the running sums and return // those along with resolved values for the star operations. (oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar) } catch { case c: StarCycleException => throw c.copy(loop = context +: c.loop) } } /** Sequence of inward ports. * * This should be called after all star bindings are resolved. * * Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. * `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this * connection was made in the source code. */ protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oBindings.flatMap { case (i, n, _, p, s) => // for each binding operator in this node, look at what it connects to val (start, end) = n.iPortMapping(i) (start until end).map { j => (j, n, p, s) } } /** Sequence of outward ports. * * This should be called after all star bindings are resolved. * * `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of * outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection * was made in the source code. */ protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iBindings.flatMap { case (i, n, _, p, s) => // query this port index range of this node in the other side of node. val (start, end) = n.oPortMapping(i) (start until end).map { j => (j, n, p, s) } } // Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree // Thus, there must exist an Eulerian path and the below algorithms terminate @scala.annotation.tailrec private def oTrace( tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) ): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.iForward(i) match { case None => (i, n, p, s) case Some((j, m)) => oTrace((j, m, p, s)) } } @scala.annotation.tailrec private def iTrace( tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) ): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.oForward(i) match { case None => (i, n, p, s) case Some((j, m)) => iTrace((j, m, p, s)) } } /** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - Numeric index of this binding in the [[InwardNode]] on the other end. * - [[InwardNode]] on the other end of this binding. * - A view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace) /** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - numeric index of this binding in [[OutwardNode]] on the other end. * - [[OutwardNode]] on the other end of this binding. * - a view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace) private var oParamsCycleGuard = false protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) } protected[diplomacy] lazy val doParams: Seq[DO] = { try { if (oParamsCycleGuard) throw DownwardCycleException() oParamsCycleGuard = true val o = mapParamsD(oPorts.size, diParams) require( o.size == oPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of outward ports should equal the number of produced outward parameters. |$context |$connectedPortsInfo |Downstreamed inward parameters: [${diParams.mkString(",")}] |Produced outward parameters: [${o.mkString(",")}] |""".stripMargin ) o.map(outer.mixO(_, this)) } catch { case c: DownwardCycleException => throw c.copy(loop = context +: c.loop) } } private var iParamsCycleGuard = false protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) } protected[diplomacy] lazy val uiParams: Seq[UI] = { try { if (iParamsCycleGuard) throw UpwardCycleException() iParamsCycleGuard = true val i = mapParamsU(iPorts.size, uoParams) require( i.size == iPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of inward ports should equal the number of produced inward parameters. |$context |$connectedPortsInfo |Upstreamed outward parameters: [${uoParams.mkString(",")}] |Produced inward parameters: [${i.mkString(",")}] |""".stripMargin ) i.map(inner.mixI(_, this)) } catch { case c: UpwardCycleException => throw c.copy(loop = context +: c.loop) } } /** Outward edge parameters. */ protected[diplomacy] lazy val edgesOut: Seq[EO] = (oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) } /** Inward edge parameters. */ protected[diplomacy] lazy val edgesIn: Seq[EI] = (iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) } /** A tuple of the input edge parameters and output edge parameters for the edges bound to this node. * * If you need to access to the edges of a foreign Node, use this method (in/out create bundles). */ lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut) /** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */ protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e => val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } /** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */ protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e => val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(serial, i), sink = HalfEdge(n.serial, j), flipped = false, name = wirePrefix + "out", dataOpt = None ) } private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(n.serial, j), sink = HalfEdge(serial, i), flipped = true, name = wirePrefix + "in", dataOpt = None ) } /** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */ protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleOut(i))) } /** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */ protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleIn(i))) } private[diplomacy] var instantiated = false /** Gather Bundle and edge parameters of outward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def out: Seq[(BO, EO)] = { require( instantiated, s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleOut.zip(edgesOut) } /** Gather Bundle and edge parameters of inward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def in: Seq[(BI, EI)] = { require( instantiated, s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleIn.zip(edgesIn) } /** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires, * instantiate monitors on all input ports if appropriate, and return all the dangles of this node. */ protected[diplomacy] def instantiate(): Seq[Dangle] = { instantiated = true if (!circuitIdentity) { (iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) } } danglesOut ++ danglesIn } protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn /** Connects the outward part of a node with the inward part of this node. */ protected[diplomacy] def bind( h: OutwardNode[DI, UI, BI], binding: NodeBinding )( implicit p: Parameters, sourceInfo: SourceInfo ): Unit = { val x = this // x := y val y = h sourceLine(sourceInfo, " at ", "") val i = x.iPushed val o = y.oPushed y.oPush( i, x, binding match { case BIND_ONCE => BIND_ONCE case BIND_FLEX => BIND_FLEX case BIND_STAR => BIND_QUERY case BIND_QUERY => BIND_STAR } ) x.iPush(o, y, binding) } /* Metadata for printing the node graph. */ def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) => val re = inner.render(e) (n, re.copy(flipped = re.flipped != p(RenderFlipped))) } /** Metadata for printing the node graph */ def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) } }
module TLInterconnectCoupler_cbus_to_l2_ctrl( // @[LazyModuleImp.scala:138:7] input clock, // @[LazyModuleImp.scala:138:7] input reset, // @[LazyModuleImp.scala:138:7] input auto_buffer_out_a_ready, // @[LazyModuleImp.scala:107:25] output auto_buffer_out_a_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_buffer_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25] output [2:0] auto_buffer_out_a_bits_param, // @[LazyModuleImp.scala:107:25] output [1:0] auto_buffer_out_a_bits_size, // @[LazyModuleImp.scala:107:25] output [10:0] auto_buffer_out_a_bits_source, // @[LazyModuleImp.scala:107:25] output [25:0] auto_buffer_out_a_bits_address, // @[LazyModuleImp.scala:107:25] output [7:0] auto_buffer_out_a_bits_mask, // @[LazyModuleImp.scala:107:25] output [63:0] auto_buffer_out_a_bits_data, // @[LazyModuleImp.scala:107:25] output auto_buffer_out_a_bits_corrupt, // @[LazyModuleImp.scala:107:25] output auto_buffer_out_d_ready, // @[LazyModuleImp.scala:107:25] input auto_buffer_out_d_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_buffer_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25] input [1:0] auto_buffer_out_d_bits_size, // @[LazyModuleImp.scala:107:25] input [10:0] auto_buffer_out_d_bits_source, // @[LazyModuleImp.scala:107:25] input [63:0] auto_buffer_out_d_bits_data, // @[LazyModuleImp.scala:107:25] output auto_tl_in_a_ready, // @[LazyModuleImp.scala:107:25] input auto_tl_in_a_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_tl_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25] input [2:0] auto_tl_in_a_bits_param, // @[LazyModuleImp.scala:107:25] input [2:0] auto_tl_in_a_bits_size, // @[LazyModuleImp.scala:107:25] input [6:0] auto_tl_in_a_bits_source, // @[LazyModuleImp.scala:107:25] input [25:0] auto_tl_in_a_bits_address, // @[LazyModuleImp.scala:107:25] input [7:0] auto_tl_in_a_bits_mask, // @[LazyModuleImp.scala:107:25] input [63:0] auto_tl_in_a_bits_data, // @[LazyModuleImp.scala:107:25] input auto_tl_in_a_bits_corrupt, // @[LazyModuleImp.scala:107:25] input auto_tl_in_d_ready, // @[LazyModuleImp.scala:107:25] output auto_tl_in_d_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_tl_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25] output [1:0] auto_tl_in_d_bits_param, // @[LazyModuleImp.scala:107:25] output [2:0] auto_tl_in_d_bits_size, // @[LazyModuleImp.scala:107:25] output [6:0] auto_tl_in_d_bits_source, // @[LazyModuleImp.scala:107:25] output auto_tl_in_d_bits_sink, // @[LazyModuleImp.scala:107:25] output auto_tl_in_d_bits_denied, // @[LazyModuleImp.scala:107:25] output [63:0] auto_tl_in_d_bits_data, // @[LazyModuleImp.scala:107:25] output auto_tl_in_d_bits_corrupt // @[LazyModuleImp.scala:107:25] ); wire tlOut_d_valid; // @[MixedNode.scala:542:17] wire tlOut_d_bits_corrupt; // @[MixedNode.scala:542:17] wire [63:0] tlOut_d_bits_data; // @[MixedNode.scala:542:17] wire tlOut_d_bits_denied; // @[MixedNode.scala:542:17] wire tlOut_d_bits_sink; // @[MixedNode.scala:542:17] wire [6:0] tlOut_d_bits_source; // @[MixedNode.scala:542:17] wire [2:0] tlOut_d_bits_size; // @[MixedNode.scala:542:17] wire [1:0] tlOut_d_bits_param; // @[MixedNode.scala:542:17] wire [2:0] tlOut_d_bits_opcode; // @[MixedNode.scala:542:17] wire tlOut_a_ready; // @[MixedNode.scala:542:17] wire _fragmenter_auto_anon_out_a_valid; // @[Fragmenter.scala:345:34] wire [2:0] _fragmenter_auto_anon_out_a_bits_opcode; // @[Fragmenter.scala:345:34] wire [2:0] _fragmenter_auto_anon_out_a_bits_param; // @[Fragmenter.scala:345:34] wire [1:0] _fragmenter_auto_anon_out_a_bits_size; // @[Fragmenter.scala:345:34] wire [10:0] _fragmenter_auto_anon_out_a_bits_source; // @[Fragmenter.scala:345:34] wire [25:0] _fragmenter_auto_anon_out_a_bits_address; // @[Fragmenter.scala:345:34] wire [7:0] _fragmenter_auto_anon_out_a_bits_mask; // @[Fragmenter.scala:345:34] wire [63:0] _fragmenter_auto_anon_out_a_bits_data; // @[Fragmenter.scala:345:34] wire _fragmenter_auto_anon_out_a_bits_corrupt; // @[Fragmenter.scala:345:34] wire _fragmenter_auto_anon_out_d_ready; // @[Fragmenter.scala:345:34] wire _buffer_auto_in_a_ready; // @[Buffer.scala:75:28] wire _buffer_auto_in_d_valid; // @[Buffer.scala:75:28] wire [2:0] _buffer_auto_in_d_bits_opcode; // @[Buffer.scala:75:28] wire [1:0] _buffer_auto_in_d_bits_param; // @[Buffer.scala:75:28] wire [1:0] _buffer_auto_in_d_bits_size; // @[Buffer.scala:75:28] wire [10:0] _buffer_auto_in_d_bits_source; // @[Buffer.scala:75:28] wire _buffer_auto_in_d_bits_sink; // @[Buffer.scala:75:28] wire _buffer_auto_in_d_bits_denied; // @[Buffer.scala:75:28] wire [63:0] _buffer_auto_in_d_bits_data; // @[Buffer.scala:75:28] wire _buffer_auto_in_d_bits_corrupt; // @[Buffer.scala:75:28] wire auto_buffer_out_a_ready_0 = auto_buffer_out_a_ready; // @[LazyModuleImp.scala:138:7] wire auto_buffer_out_d_valid_0 = auto_buffer_out_d_valid; // @[LazyModuleImp.scala:138:7] wire [2:0] auto_buffer_out_d_bits_opcode_0 = auto_buffer_out_d_bits_opcode; // @[LazyModuleImp.scala:138:7] wire [1:0] auto_buffer_out_d_bits_size_0 = auto_buffer_out_d_bits_size; // @[LazyModuleImp.scala:138:7] wire [10:0] auto_buffer_out_d_bits_source_0 = auto_buffer_out_d_bits_source; // @[LazyModuleImp.scala:138:7] wire [63:0] auto_buffer_out_d_bits_data_0 = auto_buffer_out_d_bits_data; // @[LazyModuleImp.scala:138:7] wire auto_tl_in_a_valid_0 = auto_tl_in_a_valid; // @[LazyModuleImp.scala:138:7] wire [2:0] auto_tl_in_a_bits_opcode_0 = auto_tl_in_a_bits_opcode; // @[LazyModuleImp.scala:138:7] wire [2:0] auto_tl_in_a_bits_param_0 = auto_tl_in_a_bits_param; // @[LazyModuleImp.scala:138:7] wire [2:0] auto_tl_in_a_bits_size_0 = auto_tl_in_a_bits_size; // @[LazyModuleImp.scala:138:7] wire [6:0] auto_tl_in_a_bits_source_0 = auto_tl_in_a_bits_source; // @[LazyModuleImp.scala:138:7] wire [25:0] auto_tl_in_a_bits_address_0 = auto_tl_in_a_bits_address; // @[LazyModuleImp.scala:138:7] wire [7:0] auto_tl_in_a_bits_mask_0 = auto_tl_in_a_bits_mask; // @[LazyModuleImp.scala:138:7] wire [63:0] auto_tl_in_a_bits_data_0 = auto_tl_in_a_bits_data; // @[LazyModuleImp.scala:138:7] wire auto_tl_in_a_bits_corrupt_0 = auto_tl_in_a_bits_corrupt; // @[LazyModuleImp.scala:138:7] wire auto_tl_in_d_ready_0 = auto_tl_in_d_ready; // @[LazyModuleImp.scala:138:7] wire auto_buffer_out_d_bits_sink = 1'h0; // @[Buffer.scala:75:28] wire auto_buffer_out_d_bits_denied = 1'h0; // @[Buffer.scala:75:28] wire auto_buffer_out_d_bits_corrupt = 1'h0; // @[Buffer.scala:75:28] wire [1:0] auto_buffer_out_d_bits_param = 2'h0; // @[Buffer.scala:75:28] wire tlIn_a_ready; // @[MixedNode.scala:551:17] wire tlIn_a_valid = auto_tl_in_a_valid_0; // @[MixedNode.scala:551:17] wire [2:0] tlIn_a_bits_opcode = auto_tl_in_a_bits_opcode_0; // @[MixedNode.scala:551:17] wire [2:0] tlIn_a_bits_param = auto_tl_in_a_bits_param_0; // @[MixedNode.scala:551:17] wire [2:0] tlIn_a_bits_size = auto_tl_in_a_bits_size_0; // @[MixedNode.scala:551:17] wire [6:0] tlIn_a_bits_source = auto_tl_in_a_bits_source_0; // @[MixedNode.scala:551:17] wire [25:0] tlIn_a_bits_address = auto_tl_in_a_bits_address_0; // @[MixedNode.scala:551:17] wire [7:0] tlIn_a_bits_mask = auto_tl_in_a_bits_mask_0; // @[MixedNode.scala:551:17] wire [63:0] tlIn_a_bits_data = auto_tl_in_a_bits_data_0; // @[MixedNode.scala:551:17] wire tlIn_a_bits_corrupt = auto_tl_in_a_bits_corrupt_0; // @[MixedNode.scala:551:17] wire tlIn_d_ready = auto_tl_in_d_ready_0; // @[MixedNode.scala:551:17] wire tlIn_d_valid; // @[MixedNode.scala:551:17] wire [2:0] tlIn_d_bits_opcode; // @[MixedNode.scala:551:17] wire [1:0] tlIn_d_bits_param; // @[MixedNode.scala:551:17] wire [2:0] tlIn_d_bits_size; // @[MixedNode.scala:551:17] wire [6:0] tlIn_d_bits_source; // @[MixedNode.scala:551:17] wire tlIn_d_bits_sink; // @[MixedNode.scala:551:17] wire tlIn_d_bits_denied; // @[MixedNode.scala:551:17] wire [63:0] tlIn_d_bits_data; // @[MixedNode.scala:551:17] wire tlIn_d_bits_corrupt; // @[MixedNode.scala:551:17] wire [2:0] auto_buffer_out_a_bits_opcode_0; // @[LazyModuleImp.scala:138:7] wire [2:0] auto_buffer_out_a_bits_param_0; // @[LazyModuleImp.scala:138:7] wire [1:0] auto_buffer_out_a_bits_size_0; // @[LazyModuleImp.scala:138:7] wire [10:0] auto_buffer_out_a_bits_source_0; // @[LazyModuleImp.scala:138:7] wire [25:0] auto_buffer_out_a_bits_address_0; // @[LazyModuleImp.scala:138:7] wire [7:0] auto_buffer_out_a_bits_mask_0; // @[LazyModuleImp.scala:138:7] wire [63:0] auto_buffer_out_a_bits_data_0; // @[LazyModuleImp.scala:138:7] wire auto_buffer_out_a_bits_corrupt_0; // @[LazyModuleImp.scala:138:7] wire auto_buffer_out_a_valid_0; // @[LazyModuleImp.scala:138:7] wire auto_buffer_out_d_ready_0; // @[LazyModuleImp.scala:138:7] wire auto_tl_in_a_ready_0; // @[LazyModuleImp.scala:138:7] wire [2:0] auto_tl_in_d_bits_opcode_0; // @[LazyModuleImp.scala:138:7] wire [1:0] auto_tl_in_d_bits_param_0; // @[LazyModuleImp.scala:138:7] wire [2:0] auto_tl_in_d_bits_size_0; // @[LazyModuleImp.scala:138:7] wire [6:0] auto_tl_in_d_bits_source_0; // @[LazyModuleImp.scala:138:7] wire auto_tl_in_d_bits_sink_0; // @[LazyModuleImp.scala:138:7] wire auto_tl_in_d_bits_denied_0; // @[LazyModuleImp.scala:138:7] wire [63:0] auto_tl_in_d_bits_data_0; // @[LazyModuleImp.scala:138:7] wire auto_tl_in_d_bits_corrupt_0; // @[LazyModuleImp.scala:138:7] wire auto_tl_in_d_valid_0; // @[LazyModuleImp.scala:138:7] assign tlIn_a_ready = tlOut_a_ready; // @[MixedNode.scala:542:17, :551:17] assign tlIn_d_valid = tlOut_d_valid; // @[MixedNode.scala:542:17, :551:17] assign tlIn_d_bits_opcode = tlOut_d_bits_opcode; // @[MixedNode.scala:542:17, :551:17] assign tlIn_d_bits_param = tlOut_d_bits_param; // @[MixedNode.scala:542:17, :551:17] assign tlIn_d_bits_size = tlOut_d_bits_size; // @[MixedNode.scala:542:17, :551:17] assign tlIn_d_bits_source = tlOut_d_bits_source; // @[MixedNode.scala:542:17, :551:17] assign tlIn_d_bits_sink = tlOut_d_bits_sink; // @[MixedNode.scala:542:17, :551:17] assign tlIn_d_bits_denied = tlOut_d_bits_denied; // @[MixedNode.scala:542:17, :551:17] assign tlIn_d_bits_data = tlOut_d_bits_data; // @[MixedNode.scala:542:17, :551:17] wire [2:0] tlOut_a_bits_opcode; // @[MixedNode.scala:542:17] wire [2:0] tlOut_a_bits_param; // @[MixedNode.scala:542:17] wire [2:0] tlOut_a_bits_size; // @[MixedNode.scala:542:17] wire [6:0] tlOut_a_bits_source; // @[MixedNode.scala:542:17] wire [25:0] tlOut_a_bits_address; // @[MixedNode.scala:542:17] wire [7:0] tlOut_a_bits_mask; // @[MixedNode.scala:542:17] wire [63:0] tlOut_a_bits_data; // @[MixedNode.scala:542:17] wire tlOut_a_bits_corrupt; // @[MixedNode.scala:542:17] assign tlIn_d_bits_corrupt = tlOut_d_bits_corrupt; // @[MixedNode.scala:542:17, :551:17] wire tlOut_a_valid; // @[MixedNode.scala:542:17] wire tlOut_d_ready; // @[MixedNode.scala:542:17] assign auto_tl_in_a_ready_0 = tlIn_a_ready; // @[MixedNode.scala:551:17] assign tlOut_a_valid = tlIn_a_valid; // @[MixedNode.scala:542:17, :551:17] assign tlOut_a_bits_opcode = tlIn_a_bits_opcode; // @[MixedNode.scala:542:17, :551:17] assign tlOut_a_bits_param = tlIn_a_bits_param; // @[MixedNode.scala:542:17, :551:17] assign tlOut_a_bits_size = tlIn_a_bits_size; // @[MixedNode.scala:542:17, :551:17] assign tlOut_a_bits_source = tlIn_a_bits_source; // @[MixedNode.scala:542:17, :551:17] assign tlOut_a_bits_address = tlIn_a_bits_address; // @[MixedNode.scala:542:17, :551:17] assign tlOut_a_bits_mask = tlIn_a_bits_mask; // @[MixedNode.scala:542:17, :551:17] assign tlOut_a_bits_data = tlIn_a_bits_data; // @[MixedNode.scala:542:17, :551:17] assign tlOut_a_bits_corrupt = tlIn_a_bits_corrupt; // @[MixedNode.scala:542:17, :551:17] assign tlOut_d_ready = tlIn_d_ready; // @[MixedNode.scala:542:17, :551:17] assign auto_tl_in_d_valid_0 = tlIn_d_valid; // @[MixedNode.scala:551:17] assign auto_tl_in_d_bits_opcode_0 = tlIn_d_bits_opcode; // @[MixedNode.scala:551:17] assign auto_tl_in_d_bits_param_0 = tlIn_d_bits_param; // @[MixedNode.scala:551:17] assign auto_tl_in_d_bits_size_0 = tlIn_d_bits_size; // @[MixedNode.scala:551:17] assign auto_tl_in_d_bits_source_0 = tlIn_d_bits_source; // @[MixedNode.scala:551:17] assign auto_tl_in_d_bits_sink_0 = tlIn_d_bits_sink; // @[MixedNode.scala:551:17] assign auto_tl_in_d_bits_denied_0 = tlIn_d_bits_denied; // @[MixedNode.scala:551:17] assign auto_tl_in_d_bits_data_0 = tlIn_d_bits_data; // @[MixedNode.scala:551:17] assign auto_tl_in_d_bits_corrupt_0 = tlIn_d_bits_corrupt; // @[MixedNode.scala:551:17] TLBuffer_a26d64s11k1z2u buffer ( // @[Buffer.scala:75:28] .clock (clock), .reset (reset), .auto_in_a_ready (_buffer_auto_in_a_ready), .auto_in_a_valid (_fragmenter_auto_anon_out_a_valid), // @[Fragmenter.scala:345:34] .auto_in_a_bits_opcode (_fragmenter_auto_anon_out_a_bits_opcode), // @[Fragmenter.scala:345:34] .auto_in_a_bits_param (_fragmenter_auto_anon_out_a_bits_param), // @[Fragmenter.scala:345:34] .auto_in_a_bits_size (_fragmenter_auto_anon_out_a_bits_size), // @[Fragmenter.scala:345:34] .auto_in_a_bits_source (_fragmenter_auto_anon_out_a_bits_source), // @[Fragmenter.scala:345:34] .auto_in_a_bits_address (_fragmenter_auto_anon_out_a_bits_address), // @[Fragmenter.scala:345:34] .auto_in_a_bits_mask (_fragmenter_auto_anon_out_a_bits_mask), // @[Fragmenter.scala:345:34] .auto_in_a_bits_data (_fragmenter_auto_anon_out_a_bits_data), // @[Fragmenter.scala:345:34] .auto_in_a_bits_corrupt (_fragmenter_auto_anon_out_a_bits_corrupt), // @[Fragmenter.scala:345:34] .auto_in_d_ready (_fragmenter_auto_anon_out_d_ready), // @[Fragmenter.scala:345:34] .auto_in_d_valid (_buffer_auto_in_d_valid), .auto_in_d_bits_opcode (_buffer_auto_in_d_bits_opcode), .auto_in_d_bits_param (_buffer_auto_in_d_bits_param), .auto_in_d_bits_size (_buffer_auto_in_d_bits_size), .auto_in_d_bits_source (_buffer_auto_in_d_bits_source), .auto_in_d_bits_sink (_buffer_auto_in_d_bits_sink), .auto_in_d_bits_denied (_buffer_auto_in_d_bits_denied), .auto_in_d_bits_data (_buffer_auto_in_d_bits_data), .auto_in_d_bits_corrupt (_buffer_auto_in_d_bits_corrupt), .auto_out_a_ready (auto_buffer_out_a_ready_0), // @[LazyModuleImp.scala:138:7] .auto_out_a_valid (auto_buffer_out_a_valid_0), .auto_out_a_bits_opcode (auto_buffer_out_a_bits_opcode_0), .auto_out_a_bits_param (auto_buffer_out_a_bits_param_0), .auto_out_a_bits_size (auto_buffer_out_a_bits_size_0), .auto_out_a_bits_source (auto_buffer_out_a_bits_source_0), .auto_out_a_bits_address (auto_buffer_out_a_bits_address_0), .auto_out_a_bits_mask (auto_buffer_out_a_bits_mask_0), .auto_out_a_bits_data (auto_buffer_out_a_bits_data_0), .auto_out_a_bits_corrupt (auto_buffer_out_a_bits_corrupt_0), .auto_out_d_ready (auto_buffer_out_d_ready_0), .auto_out_d_valid (auto_buffer_out_d_valid_0), // @[LazyModuleImp.scala:138:7] .auto_out_d_bits_opcode (auto_buffer_out_d_bits_opcode_0), // @[LazyModuleImp.scala:138:7] .auto_out_d_bits_size (auto_buffer_out_d_bits_size_0), // @[LazyModuleImp.scala:138:7] .auto_out_d_bits_source (auto_buffer_out_d_bits_source_0), // @[LazyModuleImp.scala:138:7] .auto_out_d_bits_data (auto_buffer_out_d_bits_data_0) // @[LazyModuleImp.scala:138:7] ); // @[Buffer.scala:75:28] TLFragmenter_LLCCtrl fragmenter ( // @[Fragmenter.scala:345:34] .clock (clock), .reset (reset), .auto_anon_in_a_ready (tlOut_a_ready), .auto_anon_in_a_valid (tlOut_a_valid), // @[MixedNode.scala:542:17] .auto_anon_in_a_bits_opcode (tlOut_a_bits_opcode), // @[MixedNode.scala:542:17] .auto_anon_in_a_bits_param (tlOut_a_bits_param), // @[MixedNode.scala:542:17] .auto_anon_in_a_bits_size (tlOut_a_bits_size), // @[MixedNode.scala:542:17] .auto_anon_in_a_bits_source (tlOut_a_bits_source), // @[MixedNode.scala:542:17] .auto_anon_in_a_bits_address (tlOut_a_bits_address), // @[MixedNode.scala:542:17] .auto_anon_in_a_bits_mask (tlOut_a_bits_mask), // @[MixedNode.scala:542:17] .auto_anon_in_a_bits_data (tlOut_a_bits_data), // @[MixedNode.scala:542:17] .auto_anon_in_a_bits_corrupt (tlOut_a_bits_corrupt), // @[MixedNode.scala:542:17] .auto_anon_in_d_ready (tlOut_d_ready), // @[MixedNode.scala:542:17] .auto_anon_in_d_valid (tlOut_d_valid), .auto_anon_in_d_bits_opcode (tlOut_d_bits_opcode), .auto_anon_in_d_bits_param (tlOut_d_bits_param), .auto_anon_in_d_bits_size (tlOut_d_bits_size), .auto_anon_in_d_bits_source (tlOut_d_bits_source), .auto_anon_in_d_bits_sink (tlOut_d_bits_sink), .auto_anon_in_d_bits_denied (tlOut_d_bits_denied), .auto_anon_in_d_bits_data (tlOut_d_bits_data), .auto_anon_in_d_bits_corrupt (tlOut_d_bits_corrupt), .auto_anon_out_a_ready (_buffer_auto_in_a_ready), // @[Buffer.scala:75:28] .auto_anon_out_a_valid (_fragmenter_auto_anon_out_a_valid), .auto_anon_out_a_bits_opcode (_fragmenter_auto_anon_out_a_bits_opcode), .auto_anon_out_a_bits_param (_fragmenter_auto_anon_out_a_bits_param), .auto_anon_out_a_bits_size (_fragmenter_auto_anon_out_a_bits_size), .auto_anon_out_a_bits_source (_fragmenter_auto_anon_out_a_bits_source), .auto_anon_out_a_bits_address (_fragmenter_auto_anon_out_a_bits_address), .auto_anon_out_a_bits_mask (_fragmenter_auto_anon_out_a_bits_mask), .auto_anon_out_a_bits_data (_fragmenter_auto_anon_out_a_bits_data), .auto_anon_out_a_bits_corrupt (_fragmenter_auto_anon_out_a_bits_corrupt), .auto_anon_out_d_ready (_fragmenter_auto_anon_out_d_ready), .auto_anon_out_d_valid (_buffer_auto_in_d_valid), // @[Buffer.scala:75:28] .auto_anon_out_d_bits_opcode (_buffer_auto_in_d_bits_opcode), // @[Buffer.scala:75:28] .auto_anon_out_d_bits_param (_buffer_auto_in_d_bits_param), // @[Buffer.scala:75:28] .auto_anon_out_d_bits_size (_buffer_auto_in_d_bits_size), // @[Buffer.scala:75:28] .auto_anon_out_d_bits_source (_buffer_auto_in_d_bits_source), // @[Buffer.scala:75:28] .auto_anon_out_d_bits_sink (_buffer_auto_in_d_bits_sink), // @[Buffer.scala:75:28] .auto_anon_out_d_bits_denied (_buffer_auto_in_d_bits_denied), // @[Buffer.scala:75:28] .auto_anon_out_d_bits_data (_buffer_auto_in_d_bits_data), // @[Buffer.scala:75:28] .auto_anon_out_d_bits_corrupt (_buffer_auto_in_d_bits_corrupt) // @[Buffer.scala:75:28] ); // @[Fragmenter.scala:345:34] assign auto_buffer_out_a_valid = auto_buffer_out_a_valid_0; // @[LazyModuleImp.scala:138:7] assign auto_buffer_out_a_bits_opcode = auto_buffer_out_a_bits_opcode_0; // @[LazyModuleImp.scala:138:7] assign auto_buffer_out_a_bits_param = auto_buffer_out_a_bits_param_0; // @[LazyModuleImp.scala:138:7] assign auto_buffer_out_a_bits_size = auto_buffer_out_a_bits_size_0; // @[LazyModuleImp.scala:138:7] assign auto_buffer_out_a_bits_source = auto_buffer_out_a_bits_source_0; // @[LazyModuleImp.scala:138:7] assign auto_buffer_out_a_bits_address = auto_buffer_out_a_bits_address_0; // @[LazyModuleImp.scala:138:7] assign auto_buffer_out_a_bits_mask = auto_buffer_out_a_bits_mask_0; // @[LazyModuleImp.scala:138:7] assign auto_buffer_out_a_bits_data = auto_buffer_out_a_bits_data_0; // @[LazyModuleImp.scala:138:7] assign auto_buffer_out_a_bits_corrupt = auto_buffer_out_a_bits_corrupt_0; // @[LazyModuleImp.scala:138:7] assign auto_buffer_out_d_ready = auto_buffer_out_d_ready_0; // @[LazyModuleImp.scala:138:7] assign auto_tl_in_a_ready = auto_tl_in_a_ready_0; // @[LazyModuleImp.scala:138:7] assign auto_tl_in_d_valid = auto_tl_in_d_valid_0; // @[LazyModuleImp.scala:138:7] assign auto_tl_in_d_bits_opcode = auto_tl_in_d_bits_opcode_0; // @[LazyModuleImp.scala:138:7] assign auto_tl_in_d_bits_param = auto_tl_in_d_bits_param_0; // @[LazyModuleImp.scala:138:7] assign auto_tl_in_d_bits_size = auto_tl_in_d_bits_size_0; // @[LazyModuleImp.scala:138:7] assign auto_tl_in_d_bits_source = auto_tl_in_d_bits_source_0; // @[LazyModuleImp.scala:138:7] assign auto_tl_in_d_bits_sink = auto_tl_in_d_bits_sink_0; // @[LazyModuleImp.scala:138:7] assign auto_tl_in_d_bits_denied = auto_tl_in_d_bits_denied_0; // @[LazyModuleImp.scala:138:7] assign auto_tl_in_d_bits_data = auto_tl_in_d_bits_data_0; // @[LazyModuleImp.scala:138:7] assign auto_tl_in_d_bits_corrupt = auto_tl_in_d_bits_corrupt_0; // @[LazyModuleImp.scala:138:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Fragmenter.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import org.chipsalliance.diplomacy.lazymodule._ import freechips.rocketchip.diplomacy.{AddressSet, BufferParams, IdRange, TransferSizes} import freechips.rocketchip.util.{Repeater, OH1ToUInt, UIntToOH1} import scala.math.min import freechips.rocketchip.util.DataToAugmentedData object EarlyAck { sealed trait T case object AllPuts extends T case object PutFulls extends T case object None extends T } // minSize: minimum size of transfers supported by all outward managers // maxSize: maximum size of transfers supported after the Fragmenter is applied // alwaysMin: fragment all requests down to minSize (else fragment to maximum supported by manager) // earlyAck: should a multibeat Put should be acknowledged on the first beat or last beat // holdFirstDeny: allow the Fragmenter to unsafely combine multibeat Gets by taking the first denied for the whole burst // nameSuffix: appends a suffix to the module name // Fragmenter modifies: PutFull, PutPartial, LogicalData, Get, Hint // Fragmenter passes: ArithmeticData (truncated to minSize if alwaysMin) // Fragmenter cannot modify acquire (could livelock); thus it is unsafe to put caches on both sides class TLFragmenter(val minSize: Int, val maxSize: Int, val alwaysMin: Boolean = false, val earlyAck: EarlyAck.T = EarlyAck.None, val holdFirstDeny: Boolean = false, val nameSuffix: Option[String] = None)(implicit p: Parameters) extends LazyModule { require(isPow2 (maxSize), s"TLFragmenter expects pow2(maxSize), but got $maxSize") require(isPow2 (minSize), s"TLFragmenter expects pow2(minSize), but got $minSize") require(minSize <= maxSize, s"TLFragmenter expects min <= max, but got $minSize > $maxSize") val fragmentBits = log2Ceil(maxSize / minSize) val fullBits = if (earlyAck == EarlyAck.PutFulls) 1 else 0 val toggleBits = 1 val addedBits = fragmentBits + toggleBits + fullBits def expandTransfer(x: TransferSizes, op: String) = if (!x) x else { // validate that we can apply the fragmenter correctly require (x.max >= minSize, s"TLFragmenter (with parent $parent) max transfer size $op(${x.max}) must be >= min transfer size (${minSize})") TransferSizes(x.min, maxSize) } private def noChangeRequired = minSize == maxSize private def shrinkTransfer(x: TransferSizes) = if (!alwaysMin) x else if (x.min <= minSize) TransferSizes(x.min, min(minSize, x.max)) else TransferSizes.none private def mapManager(m: TLSlaveParameters) = m.v1copy( supportsArithmetic = shrinkTransfer(m.supportsArithmetic), supportsLogical = shrinkTransfer(m.supportsLogical), supportsGet = expandTransfer(m.supportsGet, "Get"), supportsPutFull = expandTransfer(m.supportsPutFull, "PutFull"), supportsPutPartial = expandTransfer(m.supportsPutPartial, "PutParital"), supportsHint = expandTransfer(m.supportsHint, "Hint")) val node = new TLAdapterNode( // We require that all the responses are mutually FIFO // Thus we need to compact all of the masters into one big master clientFn = { c => (if (noChangeRequired) c else c.v2copy( masters = Seq(TLMasterParameters.v2( name = "TLFragmenter", sourceId = IdRange(0, if (minSize == maxSize) c.endSourceId else (c.endSourceId << addedBits)), requestFifo = true, emits = TLMasterToSlaveTransferSizes( acquireT = shrinkTransfer(c.masters.map(_.emits.acquireT) .reduce(_ mincover _)), acquireB = shrinkTransfer(c.masters.map(_.emits.acquireB) .reduce(_ mincover _)), arithmetic = shrinkTransfer(c.masters.map(_.emits.arithmetic).reduce(_ mincover _)), logical = shrinkTransfer(c.masters.map(_.emits.logical) .reduce(_ mincover _)), get = shrinkTransfer(c.masters.map(_.emits.get) .reduce(_ mincover _)), putFull = shrinkTransfer(c.masters.map(_.emits.putFull) .reduce(_ mincover _)), putPartial = shrinkTransfer(c.masters.map(_.emits.putPartial).reduce(_ mincover _)), hint = shrinkTransfer(c.masters.map(_.emits.hint) .reduce(_ mincover _)) ) )) ))}, managerFn = { m => if (noChangeRequired) m else m.v2copy(slaves = m.slaves.map(mapManager)) } ) { override def circuitIdentity = noChangeRequired } lazy val module = new Impl class Impl extends LazyModuleImp(this) { override def desiredName = (Seq("TLFragmenter") ++ nameSuffix).mkString("_") (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => if (noChangeRequired) { out <> in } else { // All managers must share a common FIFO domain (responses might end up interleaved) val manager = edgeOut.manager val managers = manager.managers val beatBytes = manager.beatBytes val fifoId = managers(0).fifoId require (fifoId.isDefined && managers.map(_.fifoId == fifoId).reduce(_ && _)) require (!manager.anySupportAcquireB || !edgeOut.client.anySupportProbe, s"TLFragmenter (with parent $parent) can't fragment a caching client's requests into a cacheable region") require (minSize >= beatBytes, s"TLFragmenter (with parent $parent) can't support fragmenting ($minSize) to sub-beat ($beatBytes) accesses") // We can't support devices which are cached on both sides of us require (!edgeOut.manager.anySupportAcquireB || !edgeIn.client.anySupportProbe) // We can't support denied because we reassemble fragments require (!edgeOut.manager.mayDenyGet || holdFirstDeny, s"TLFragmenter (with parent $parent) can't support denials without holdFirstDeny=true") require (!edgeOut.manager.mayDenyPut || earlyAck == EarlyAck.None) /* The Fragmenter is a bit tricky, because there are 5 sizes in play: * max size -- the maximum transfer size possible * orig size -- the original pre-fragmenter size * frag size -- the modified post-fragmenter size * min size -- the threshold below which frag=orig * beat size -- the amount transfered on any given beat * * The relationships are as follows: * max >= orig >= frag * max > min >= beat * It IS possible that orig <= min (then frag=orig; ie: no fragmentation) * * The fragment# (sent via TL.source) is measured in multiples of min size. * Meanwhile, to track the progress, counters measure in multiples of beat size. * * Here is an example of a bus with max=256, min=8, beat=4 and a device supporting 16. * * in.A out.A (frag#) out.D (frag#) in.D gen# ack# * get64 get16 6 ackD16 6 ackD64 12 15 * ackD16 6 ackD64 14 * ackD16 6 ackD64 13 * ackD16 6 ackD64 12 * get16 4 ackD16 4 ackD64 8 11 * ackD16 4 ackD64 10 * ackD16 4 ackD64 9 * ackD16 4 ackD64 8 * get16 2 ackD16 2 ackD64 4 7 * ackD16 2 ackD64 6 * ackD16 2 ackD64 5 * ackD16 2 ackD64 4 * get16 0 ackD16 0 ackD64 0 3 * ackD16 0 ackD64 2 * ackD16 0 ackD64 1 * ackD16 0 ackD64 0 * * get8 get8 0 ackD8 0 ackD8 0 1 * ackD8 0 ackD8 0 * * get4 get4 0 ackD4 0 ackD4 0 0 * get1 get1 0 ackD1 0 ackD1 0 0 * * put64 put16 6 15 * put64 put16 6 14 * put64 put16 6 13 * put64 put16 6 ack16 6 12 12 * put64 put16 4 11 * put64 put16 4 10 * put64 put16 4 9 * put64 put16 4 ack16 4 8 8 * put64 put16 2 7 * put64 put16 2 6 * put64 put16 2 5 * put64 put16 2 ack16 2 4 4 * put64 put16 0 3 * put64 put16 0 2 * put64 put16 0 1 * put64 put16 0 ack16 0 ack64 0 0 * * put8 put8 0 1 * put8 put8 0 ack8 0 ack8 0 0 * * put4 put4 0 ack4 0 ack4 0 0 * put1 put1 0 ack1 0 ack1 0 0 */ val counterBits = log2Up(maxSize/beatBytes) val maxDownSize = if (alwaysMin) minSize else min(manager.maxTransfer, maxSize) // Consider the following waveform for two 4-beat bursts: // ---A----A------------ // -------D-----DDD-DDDD // Under TL rules, the second A can use the same source as the first A, // because the source is released for reuse on the first response beat. // // However, if we fragment the requests, it looks like this: // ---3210-3210--------- // -------3-----210-3210 // ... now we've broken the rules because 210 are twice inflight. // // This phenomenon means we can have essentially 2*maxSize/minSize-1 // fragmented transactions in flight per original transaction source. // // To keep the source unique, we encode the beat counter in the low // bits of the source. To solve the overlap, we use a toggle bit. // Whatever toggle bit the D is reassembling, A will use the opposite. // First, handle the return path val acknum = RegInit(0.U(counterBits.W)) val dOrig = Reg(UInt()) val dToggle = RegInit(false.B) val dFragnum = out.d.bits.source(fragmentBits-1, 0) val dFirst = acknum === 0.U val dLast = dFragnum === 0.U // only for AccessAck (!Data) val dsizeOH = UIntToOH (out.d.bits.size, log2Ceil(maxDownSize)+1) val dsizeOH1 = UIntToOH1(out.d.bits.size, log2Up(maxDownSize)) val dHasData = edgeOut.hasData(out.d.bits) // calculate new acknum val acknum_fragment = dFragnum << log2Ceil(minSize/beatBytes) val acknum_size = dsizeOH1 >> log2Ceil(beatBytes) assert (!out.d.valid || (acknum_fragment & acknum_size) === 0.U) val dFirst_acknum = acknum_fragment | Mux(dHasData, acknum_size, 0.U) val ack_decrement = Mux(dHasData, 1.U, dsizeOH >> log2Ceil(beatBytes)) // calculate the original size val dFirst_size = OH1ToUInt((dFragnum << log2Ceil(minSize)) | dsizeOH1) when (out.d.fire) { acknum := Mux(dFirst, dFirst_acknum, acknum - ack_decrement) when (dFirst) { dOrig := dFirst_size dToggle := out.d.bits.source(fragmentBits) } } // Swallow up non-data ack fragments val doEarlyAck = earlyAck match { case EarlyAck.AllPuts => true.B case EarlyAck.PutFulls => out.d.bits.source(fragmentBits+1) case EarlyAck.None => false.B } val drop = !dHasData && !Mux(doEarlyAck, dFirst, dLast) out.d.ready := in.d.ready || drop in.d.valid := out.d.valid && !drop in.d.bits := out.d.bits // pass most stuff unchanged in.d.bits.source := out.d.bits.source >> addedBits in.d.bits.size := Mux(dFirst, dFirst_size, dOrig) if (edgeOut.manager.mayDenyPut) { val r_denied = Reg(Bool()) val d_denied = (!dFirst && r_denied) || out.d.bits.denied when (out.d.fire) { r_denied := d_denied } in.d.bits.denied := d_denied } if (edgeOut.manager.mayDenyGet) { // Take denied only from the first beat and hold that value val d_denied = out.d.bits.denied holdUnless dFirst when (dHasData) { in.d.bits.denied := d_denied in.d.bits.corrupt := d_denied || out.d.bits.corrupt } } // What maximum transfer sizes do downstream devices support? val maxArithmetics = managers.map(_.supportsArithmetic.max) val maxLogicals = managers.map(_.supportsLogical.max) val maxGets = managers.map(_.supportsGet.max) val maxPutFulls = managers.map(_.supportsPutFull.max) val maxPutPartials = managers.map(_.supportsPutPartial.max) val maxHints = managers.map(m => if (m.supportsHint) maxDownSize else 0) // We assume that the request is valid => size 0 is impossible val lgMinSize = log2Ceil(minSize).U val maxLgArithmetics = maxArithmetics.map(m => if (m == 0) lgMinSize else log2Ceil(m).U) val maxLgLogicals = maxLogicals .map(m => if (m == 0) lgMinSize else log2Ceil(m).U) val maxLgGets = maxGets .map(m => if (m == 0) lgMinSize else log2Ceil(m).U) val maxLgPutFulls = maxPutFulls .map(m => if (m == 0) lgMinSize else log2Ceil(m).U) val maxLgPutPartials = maxPutPartials.map(m => if (m == 0) lgMinSize else log2Ceil(m).U) val maxLgHints = maxHints .map(m => if (m == 0) lgMinSize else log2Ceil(m).U) // Make the request repeatable val repeater = Module(new Repeater(in.a.bits)) repeater.io.enq <> in.a val in_a = repeater.io.deq // If this is infront of a single manager, these become constants val find = manager.findFast(edgeIn.address(in_a.bits)) val maxLgArithmetic = Mux1H(find, maxLgArithmetics) val maxLgLogical = Mux1H(find, maxLgLogicals) val maxLgGet = Mux1H(find, maxLgGets) val maxLgPutFull = Mux1H(find, maxLgPutFulls) val maxLgPutPartial = Mux1H(find, maxLgPutPartials) val maxLgHint = Mux1H(find, maxLgHints) val limit = if (alwaysMin) lgMinSize else MuxLookup(in_a.bits.opcode, lgMinSize)(Array( TLMessages.PutFullData -> maxLgPutFull, TLMessages.PutPartialData -> maxLgPutPartial, TLMessages.ArithmeticData -> maxLgArithmetic, TLMessages.LogicalData -> maxLgLogical, TLMessages.Get -> maxLgGet, TLMessages.Hint -> maxLgHint)) val aOrig = in_a.bits.size val aFrag = Mux(aOrig > limit, limit, aOrig) val aOrigOH1 = UIntToOH1(aOrig, log2Ceil(maxSize)) val aFragOH1 = UIntToOH1(aFrag, log2Up(maxDownSize)) val aHasData = edgeIn.hasData(in_a.bits) val aMask = Mux(aHasData, 0.U, aFragOH1) val gennum = RegInit(0.U(counterBits.W)) val aFirst = gennum === 0.U val old_gennum1 = Mux(aFirst, aOrigOH1 >> log2Ceil(beatBytes), gennum - 1.U) val new_gennum = ~(~old_gennum1 | (aMask >> log2Ceil(beatBytes))) // ~(~x|y) is width safe val aFragnum = ~(~(old_gennum1 >> log2Ceil(minSize/beatBytes)) | (aFragOH1 >> log2Ceil(minSize))) val aLast = aFragnum === 0.U val aToggle = !Mux(aFirst, dToggle, RegEnable(dToggle, aFirst)) val aFull = if (earlyAck == EarlyAck.PutFulls) Some(in_a.bits.opcode === TLMessages.PutFullData) else None when (out.a.fire) { gennum := new_gennum } repeater.io.repeat := !aHasData && aFragnum =/= 0.U out.a <> in_a out.a.bits.address := in_a.bits.address | ~(old_gennum1 << log2Ceil(beatBytes) | ~aOrigOH1 | aFragOH1 | (minSize-1).U) out.a.bits.source := Cat(Seq(in_a.bits.source) ++ aFull ++ Seq(aToggle.asUInt, aFragnum)) out.a.bits.size := aFrag // Optimize away some of the Repeater's registers assert (!repeater.io.full || !aHasData) out.a.bits.data := in.a.bits.data val fullMask = ((BigInt(1) << beatBytes) - 1).U assert (!repeater.io.full || in_a.bits.mask === fullMask) out.a.bits.mask := Mux(repeater.io.full, fullMask, in.a.bits.mask) out.a.bits.user.waiveAll :<= in.a.bits.user.subset(_.isData) // Tie off unused channels in.b.valid := false.B in.c.ready := true.B in.e.ready := true.B out.b.ready := true.B out.c.valid := false.B out.e.valid := false.B } } } } object TLFragmenter { def apply(minSize: Int, maxSize: Int, alwaysMin: Boolean = false, earlyAck: EarlyAck.T = EarlyAck.None, holdFirstDeny: Boolean = false, nameSuffix: Option[String] = None)(implicit p: Parameters): TLNode = { if (minSize <= maxSize) { val fragmenter = LazyModule(new TLFragmenter(minSize, maxSize, alwaysMin, earlyAck, holdFirstDeny, nameSuffix)) fragmenter.node } else { TLEphemeralNode()(ValName("no_fragmenter")) } } def apply(wrapper: TLBusWrapper, nameSuffix: Option[String])(implicit p: Parameters): TLNode = apply(wrapper.beatBytes, wrapper.blockBytes, nameSuffix = nameSuffix) def apply(wrapper: TLBusWrapper)(implicit p: Parameters): TLNode = apply(wrapper, None) } // Synthesizable unit tests import freechips.rocketchip.unittest._ class TLRAMFragmenter(ramBeatBytes: Int, maxSize: Int, txns: Int)(implicit p: Parameters) extends LazyModule { val fuzz = LazyModule(new TLFuzzer(txns)) val model = LazyModule(new TLRAMModel("Fragmenter")) val ram = LazyModule(new TLRAM(AddressSet(0x0, 0x3ff), beatBytes = ramBeatBytes)) (ram.node := TLDelayer(0.1) := TLBuffer(BufferParams.flow) := TLDelayer(0.1) := TLFragmenter(ramBeatBytes, maxSize, earlyAck = EarlyAck.AllPuts) := TLDelayer(0.1) := TLBuffer(BufferParams.flow) := TLFragmenter(ramBeatBytes, maxSize/2) := TLDelayer(0.1) := TLBuffer(BufferParams.flow) := model.node := fuzz.node) lazy val module = new Impl class Impl extends LazyModuleImp(this) with UnitTestModule { io.finished := fuzz.module.io.finished } } class TLRAMFragmenterTest(ramBeatBytes: Int, maxSize: Int, txns: Int = 5000, timeout: Int = 500000)(implicit p: Parameters) extends UnitTest(timeout) { val dut = Module(LazyModule(new TLRAMFragmenter(ramBeatBytes,maxSize,txns)).module) io.finished := dut.io.finished dut.io.start := io.start } File Nodes.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import org.chipsalliance.diplomacy.nodes._ import freechips.rocketchip.util.{AsyncQueueParams,RationalDirection} case object TLMonitorBuilder extends Field[TLMonitorArgs => TLMonitorBase](args => new TLMonitor(args)) object TLImp extends NodeImp[TLMasterPortParameters, TLSlavePortParameters, TLEdgeOut, TLEdgeIn, TLBundle] { def edgeO(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeOut(pd, pu, p, sourceInfo) def edgeI(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeIn (pd, pu, p, sourceInfo) def bundleO(eo: TLEdgeOut) = TLBundle(eo.bundle) def bundleI(ei: TLEdgeIn) = TLBundle(ei.bundle) def render(ei: TLEdgeIn) = RenderedEdge(colour = "#000000" /* black */, label = (ei.manager.beatBytes * 8).toString) override def monitor(bundle: TLBundle, edge: TLEdgeIn): Unit = { val monitor = Module(edge.params(TLMonitorBuilder)(TLMonitorArgs(edge))) monitor.io.in := bundle } override def mixO(pd: TLMasterPortParameters, node: OutwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLMasterPortParameters = pd.v1copy(clients = pd.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }) override def mixI(pu: TLSlavePortParameters, node: InwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLSlavePortParameters = pu.v1copy(managers = pu.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }) } trait TLFormatNode extends FormatNode[TLEdgeIn, TLEdgeOut] case class TLClientNode(portParams: Seq[TLMasterPortParameters])(implicit valName: ValName) extends SourceNode(TLImp)(portParams) with TLFormatNode case class TLManagerNode(portParams: Seq[TLSlavePortParameters])(implicit valName: ValName) extends SinkNode(TLImp)(portParams) with TLFormatNode case class TLAdapterNode( clientFn: TLMasterPortParameters => TLMasterPortParameters = { s => s }, managerFn: TLSlavePortParameters => TLSlavePortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLImp)(clientFn, managerFn) with TLFormatNode case class TLJunctionNode( clientFn: Seq[TLMasterPortParameters] => Seq[TLMasterPortParameters], managerFn: Seq[TLSlavePortParameters] => Seq[TLSlavePortParameters])( implicit valName: ValName) extends JunctionNode(TLImp)(clientFn, managerFn) with TLFormatNode case class TLIdentityNode()(implicit valName: ValName) extends IdentityNode(TLImp)() with TLFormatNode object TLNameNode { def apply(name: ValName) = TLIdentityNode()(name) def apply(name: Option[String]): TLIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLIdentityNode = apply(Some(name)) } case class TLEphemeralNode()(implicit valName: ValName) extends EphemeralNode(TLImp)() object TLTempNode { def apply(): TLEphemeralNode = TLEphemeralNode()(ValName("temp")) } case class TLNexusNode( clientFn: Seq[TLMasterPortParameters] => TLMasterPortParameters, managerFn: Seq[TLSlavePortParameters] => TLSlavePortParameters)( implicit valName: ValName) extends NexusNode(TLImp)(clientFn, managerFn) with TLFormatNode abstract class TLCustomNode(implicit valName: ValName) extends CustomNode(TLImp) with TLFormatNode // Asynchronous crossings trait TLAsyncFormatNode extends FormatNode[TLAsyncEdgeParameters, TLAsyncEdgeParameters] object TLAsyncImp extends SimpleNodeImp[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncEdgeParameters, TLAsyncBundle] { def edge(pd: TLAsyncClientPortParameters, pu: TLAsyncManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLAsyncEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLAsyncEdgeParameters) = new TLAsyncBundle(e.bundle) def render(e: TLAsyncEdgeParameters) = RenderedEdge(colour = "#ff0000" /* red */, label = e.manager.async.depth.toString) override def mixO(pd: TLAsyncClientPortParameters, node: OutwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLAsyncManagerPortParameters, node: InwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLAsyncAdapterNode( clientFn: TLAsyncClientPortParameters => TLAsyncClientPortParameters = { s => s }, managerFn: TLAsyncManagerPortParameters => TLAsyncManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLAsyncImp)(clientFn, managerFn) with TLAsyncFormatNode case class TLAsyncIdentityNode()(implicit valName: ValName) extends IdentityNode(TLAsyncImp)() with TLAsyncFormatNode object TLAsyncNameNode { def apply(name: ValName) = TLAsyncIdentityNode()(name) def apply(name: Option[String]): TLAsyncIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLAsyncIdentityNode = apply(Some(name)) } case class TLAsyncSourceNode(sync: Option[Int])(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLAsyncImp)( dFn = { p => TLAsyncClientPortParameters(p) }, uFn = { p => p.base.v1copy(minLatency = p.base.minLatency + sync.getOrElse(p.async.sync)) }) with FormatNode[TLEdgeIn, TLAsyncEdgeParameters] // discard cycles in other clock domain case class TLAsyncSinkNode(async: AsyncQueueParams)(implicit valName: ValName) extends MixedAdapterNode(TLAsyncImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = p.base.minLatency + async.sync) }, uFn = { p => TLAsyncManagerPortParameters(async, p) }) with FormatNode[TLAsyncEdgeParameters, TLEdgeOut] // Rationally related crossings trait TLRationalFormatNode extends FormatNode[TLRationalEdgeParameters, TLRationalEdgeParameters] object TLRationalImp extends SimpleNodeImp[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalEdgeParameters, TLRationalBundle] { def edge(pd: TLRationalClientPortParameters, pu: TLRationalManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLRationalEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLRationalEdgeParameters) = new TLRationalBundle(e.bundle) def render(e: TLRationalEdgeParameters) = RenderedEdge(colour = "#00ff00" /* green */) override def mixO(pd: TLRationalClientPortParameters, node: OutwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLRationalManagerPortParameters, node: InwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLRationalAdapterNode( clientFn: TLRationalClientPortParameters => TLRationalClientPortParameters = { s => s }, managerFn: TLRationalManagerPortParameters => TLRationalManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLRationalImp)(clientFn, managerFn) with TLRationalFormatNode case class TLRationalIdentityNode()(implicit valName: ValName) extends IdentityNode(TLRationalImp)() with TLRationalFormatNode object TLRationalNameNode { def apply(name: ValName) = TLRationalIdentityNode()(name) def apply(name: Option[String]): TLRationalIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLRationalIdentityNode = apply(Some(name)) } case class TLRationalSourceNode()(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLRationalImp)( dFn = { p => TLRationalClientPortParameters(p) }, uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLRationalEdgeParameters] // discard cycles from other clock domain case class TLRationalSinkNode(direction: RationalDirection)(implicit valName: ValName) extends MixedAdapterNode(TLRationalImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = 1) }, uFn = { p => TLRationalManagerPortParameters(direction, p) }) with FormatNode[TLRationalEdgeParameters, TLEdgeOut] // Credited version of TileLink channels trait TLCreditedFormatNode extends FormatNode[TLCreditedEdgeParameters, TLCreditedEdgeParameters] object TLCreditedImp extends SimpleNodeImp[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedEdgeParameters, TLCreditedBundle] { def edge(pd: TLCreditedClientPortParameters, pu: TLCreditedManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLCreditedEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLCreditedEdgeParameters) = new TLCreditedBundle(e.bundle) def render(e: TLCreditedEdgeParameters) = RenderedEdge(colour = "#ffff00" /* yellow */, e.delay.toString) override def mixO(pd: TLCreditedClientPortParameters, node: OutwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLCreditedManagerPortParameters, node: InwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLCreditedAdapterNode( clientFn: TLCreditedClientPortParameters => TLCreditedClientPortParameters = { s => s }, managerFn: TLCreditedManagerPortParameters => TLCreditedManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLCreditedImp)(clientFn, managerFn) with TLCreditedFormatNode case class TLCreditedIdentityNode()(implicit valName: ValName) extends IdentityNode(TLCreditedImp)() with TLCreditedFormatNode object TLCreditedNameNode { def apply(name: ValName) = TLCreditedIdentityNode()(name) def apply(name: Option[String]): TLCreditedIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLCreditedIdentityNode = apply(Some(name)) } case class TLCreditedSourceNode(delay: TLCreditedDelay)(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLCreditedImp)( dFn = { p => TLCreditedClientPortParameters(delay, p) }, uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLCreditedEdgeParameters] // discard cycles from other clock domain case class TLCreditedSinkNode(delay: TLCreditedDelay)(implicit valName: ValName) extends MixedAdapterNode(TLCreditedImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = 1) }, uFn = { p => TLCreditedManagerPortParameters(delay, p) }) with FormatNode[TLCreditedEdgeParameters, TLEdgeOut] File LazyModuleImp.scala: package org.chipsalliance.diplomacy.lazymodule import chisel3.{withClockAndReset, Module, RawModule, Reset, _} import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo} import firrtl.passes.InlineAnnotation import org.chipsalliance.cde.config.Parameters import org.chipsalliance.diplomacy.nodes.Dangle import scala.collection.immutable.SortedMap /** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]]. * * This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy. */ sealed trait LazyModuleImpLike extends RawModule { /** [[LazyModule]] that contains this instance. */ val wrapper: LazyModule /** IOs that will be automatically "punched" for this instance. */ val auto: AutoBundle /** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */ protected[diplomacy] val dangles: Seq[Dangle] // [[wrapper.module]] had better not be accessed while LazyModules are still being built! require( LazyModule.scope.isEmpty, s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}" ) /** Set module name. Defaults to the containing LazyModule's desiredName. */ override def desiredName: String = wrapper.desiredName suggestName(wrapper.suggestedName) /** [[Parameters]] for chisel [[Module]]s. */ implicit val p: Parameters = wrapper.p /** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and * submodules. */ protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = { // 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]], // 2. return [[Dangle]]s from each module. val childDangles = wrapper.children.reverse.flatMap { c => implicit val sourceInfo: SourceInfo = c.info c.cloneProto.map { cp => // If the child is a clone, then recursively set cloneProto of its children as well def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = { require(bases.size == clones.size) (bases.zip(clones)).map { case (l, r) => require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}") l.cloneProto = Some(r) assignCloneProtos(l.children, r.children) } } assignCloneProtos(c.children, cp.children) // Clone the child module as a record, and get its [[AutoBundle]] val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName) val clonedAuto = clone("auto").asInstanceOf[AutoBundle] // Get the empty [[Dangle]]'s of the cloned child val rawDangles = c.cloneDangles() require(rawDangles.size == clonedAuto.elements.size) // Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) } dangles }.getOrElse { // For non-clones, instantiate the child module val mod = try { Module(c.module) } catch { case e: ChiselException => { println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}") throw e } } mod.dangles } } // Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]]. // This will result in a sequence of [[Dangle]] from these [[BaseNode]]s. val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate()) // Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]] val allDangles = nodeDangles ++ childDangles // Group [[allDangles]] by their [[source]]. val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*) // For each [[source]] set of [[Dangle]]s of size 2, ensure that these // can be connected as a source-sink pair (have opposite flipped value). // Make the connection and mark them as [[done]]. val done = Set() ++ pairing.values.filter(_.size == 2).map { case Seq(a, b) => require(a.flipped != b.flipped) // @todo <> in chisel3 makes directionless connection. if (a.flipped) { a.data <> b.data } else { b.data <> a.data } a.source case _ => None } // Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module. val forward = allDangles.filter(d => !done(d.source)) // Generate [[AutoBundle]] IO from [[forward]]. val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*)) // Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]] val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) => if (d.flipped) { d.data <> io } else { io <> d.data } d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name) } // Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]]. wrapper.inModuleBody.reverse.foreach { _() } if (wrapper.shouldBeInlined) { chisel3.experimental.annotate(new ChiselAnnotation { def toFirrtl = InlineAnnotation(toNamed) }) } // Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]]. (auto, dangles) } } /** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike { /** Instantiate hardware of this `Module`. */ val (auto, dangles) = instantiate() } /** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike { // These wires are the default clock+reset for all LazyModule children. // It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the // [[LazyRawModuleImp]] children. // Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly. /** drive clock explicitly. */ val childClock: Clock = Wire(Clock()) /** drive reset explicitly. */ val childReset: Reset = Wire(Reset()) // the default is that these are disabled childClock := false.B.asClock childReset := chisel3.DontCare def provideImplicitClockToLazyChildren: Boolean = false val (auto, dangles) = if (provideImplicitClockToLazyChildren) { withClockAndReset(childClock, childReset) { instantiate() } } else { instantiate() } } File Parameters.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy.nodes._ import freechips.rocketchip.diplomacy.{ AddressDecoder, AddressSet, BufferParams, DirectedBuffers, IdMap, IdMapEntry, IdRange, RegionType, TransferSizes } import freechips.rocketchip.resources.{Resource, ResourceAddress, ResourcePermissions} import freechips.rocketchip.util.{ AsyncQueueParams, BundleField, BundleFieldBase, BundleKeyBase, CreditedDelay, groupByIntoSeq, RationalDirection, SimpleProduct } import scala.math.max //These transfer sizes describe requests issued from masters on the A channel that will be responded by slaves on the D channel case class TLMasterToSlaveTransferSizes( // Supports both Acquire+Release of the following two sizes: acquireT: TransferSizes = TransferSizes.none, acquireB: TransferSizes = TransferSizes.none, arithmetic: TransferSizes = TransferSizes.none, logical: TransferSizes = TransferSizes.none, get: TransferSizes = TransferSizes.none, putFull: TransferSizes = TransferSizes.none, putPartial: TransferSizes = TransferSizes.none, hint: TransferSizes = TransferSizes.none) extends TLCommonTransferSizes { def intersect(rhs: TLMasterToSlaveTransferSizes) = TLMasterToSlaveTransferSizes( acquireT = acquireT .intersect(rhs.acquireT), acquireB = acquireB .intersect(rhs.acquireB), arithmetic = arithmetic.intersect(rhs.arithmetic), logical = logical .intersect(rhs.logical), get = get .intersect(rhs.get), putFull = putFull .intersect(rhs.putFull), putPartial = putPartial.intersect(rhs.putPartial), hint = hint .intersect(rhs.hint)) def mincover(rhs: TLMasterToSlaveTransferSizes) = TLMasterToSlaveTransferSizes( acquireT = acquireT .mincover(rhs.acquireT), acquireB = acquireB .mincover(rhs.acquireB), arithmetic = arithmetic.mincover(rhs.arithmetic), logical = logical .mincover(rhs.logical), get = get .mincover(rhs.get), putFull = putFull .mincover(rhs.putFull), putPartial = putPartial.mincover(rhs.putPartial), hint = hint .mincover(rhs.hint)) // Reduce rendering to a simple yes/no per field override def toString = { def str(x: TransferSizes, flag: String) = if (x.none) "" else flag def flags = Vector( str(acquireT, "T"), str(acquireB, "B"), str(arithmetic, "A"), str(logical, "L"), str(get, "G"), str(putFull, "F"), str(putPartial, "P"), str(hint, "H")) flags.mkString } // Prints out the actual information in a user readable way def infoString = { s"""acquireT = ${acquireT} |acquireB = ${acquireB} |arithmetic = ${arithmetic} |logical = ${logical} |get = ${get} |putFull = ${putFull} |putPartial = ${putPartial} |hint = ${hint} | |""".stripMargin } } object TLMasterToSlaveTransferSizes { def unknownEmits = TLMasterToSlaveTransferSizes( acquireT = TransferSizes(1, 4096), acquireB = TransferSizes(1, 4096), arithmetic = TransferSizes(1, 4096), logical = TransferSizes(1, 4096), get = TransferSizes(1, 4096), putFull = TransferSizes(1, 4096), putPartial = TransferSizes(1, 4096), hint = TransferSizes(1, 4096)) def unknownSupports = TLMasterToSlaveTransferSizes() } //These transfer sizes describe requests issued from slaves on the B channel that will be responded by masters on the C channel case class TLSlaveToMasterTransferSizes( probe: TransferSizes = TransferSizes.none, arithmetic: TransferSizes = TransferSizes.none, logical: TransferSizes = TransferSizes.none, get: TransferSizes = TransferSizes.none, putFull: TransferSizes = TransferSizes.none, putPartial: TransferSizes = TransferSizes.none, hint: TransferSizes = TransferSizes.none ) extends TLCommonTransferSizes { def intersect(rhs: TLSlaveToMasterTransferSizes) = TLSlaveToMasterTransferSizes( probe = probe .intersect(rhs.probe), arithmetic = arithmetic.intersect(rhs.arithmetic), logical = logical .intersect(rhs.logical), get = get .intersect(rhs.get), putFull = putFull .intersect(rhs.putFull), putPartial = putPartial.intersect(rhs.putPartial), hint = hint .intersect(rhs.hint) ) def mincover(rhs: TLSlaveToMasterTransferSizes) = TLSlaveToMasterTransferSizes( probe = probe .mincover(rhs.probe), arithmetic = arithmetic.mincover(rhs.arithmetic), logical = logical .mincover(rhs.logical), get = get .mincover(rhs.get), putFull = putFull .mincover(rhs.putFull), putPartial = putPartial.mincover(rhs.putPartial), hint = hint .mincover(rhs.hint) ) // Reduce rendering to a simple yes/no per field override def toString = { def str(x: TransferSizes, flag: String) = if (x.none) "" else flag def flags = Vector( str(probe, "P"), str(arithmetic, "A"), str(logical, "L"), str(get, "G"), str(putFull, "F"), str(putPartial, "P"), str(hint, "H")) flags.mkString } // Prints out the actual information in a user readable way def infoString = { s"""probe = ${probe} |arithmetic = ${arithmetic} |logical = ${logical} |get = ${get} |putFull = ${putFull} |putPartial = ${putPartial} |hint = ${hint} | |""".stripMargin } } object TLSlaveToMasterTransferSizes { def unknownEmits = TLSlaveToMasterTransferSizes( arithmetic = TransferSizes(1, 4096), logical = TransferSizes(1, 4096), get = TransferSizes(1, 4096), putFull = TransferSizes(1, 4096), putPartial = TransferSizes(1, 4096), hint = TransferSizes(1, 4096), probe = TransferSizes(1, 4096)) def unknownSupports = TLSlaveToMasterTransferSizes() } trait TLCommonTransferSizes { def arithmetic: TransferSizes def logical: TransferSizes def get: TransferSizes def putFull: TransferSizes def putPartial: TransferSizes def hint: TransferSizes } class TLSlaveParameters private( val nodePath: Seq[BaseNode], val resources: Seq[Resource], setName: Option[String], val address: Seq[AddressSet], val regionType: RegionType.T, val executable: Boolean, val fifoId: Option[Int], val supports: TLMasterToSlaveTransferSizes, val emits: TLSlaveToMasterTransferSizes, // By default, slaves are forbidden from issuing 'denied' responses (it prevents Fragmentation) val alwaysGrantsT: Boolean, // typically only true for CacheCork'd read-write devices; dual: neverReleaseData // If fifoId=Some, all accesses sent to the same fifoId are executed and ACK'd in FIFO order // Note: you can only rely on this FIFO behaviour if your TLMasterParameters include requestFifo val mayDenyGet: Boolean, // applies to: AccessAckData, GrantData val mayDenyPut: Boolean) // applies to: AccessAck, Grant, HintAck // ReleaseAck may NEVER be denied extends SimpleProduct { def sortedAddress = address.sorted override def canEqual(that: Any): Boolean = that.isInstanceOf[TLSlaveParameters] override def productPrefix = "TLSlaveParameters" // We intentionally omit nodePath for equality testing / formatting def productArity: Int = 11 def productElement(n: Int): Any = n match { case 0 => name case 1 => address case 2 => resources case 3 => regionType case 4 => executable case 5 => fifoId case 6 => supports case 7 => emits case 8 => alwaysGrantsT case 9 => mayDenyGet case 10 => mayDenyPut case _ => throw new IndexOutOfBoundsException(n.toString) } def supportsAcquireT: TransferSizes = supports.acquireT def supportsAcquireB: TransferSizes = supports.acquireB def supportsArithmetic: TransferSizes = supports.arithmetic def supportsLogical: TransferSizes = supports.logical def supportsGet: TransferSizes = supports.get def supportsPutFull: TransferSizes = supports.putFull def supportsPutPartial: TransferSizes = supports.putPartial def supportsHint: TransferSizes = supports.hint require (!address.isEmpty, "Address cannot be empty") address.foreach { a => require (a.finite, "Address must be finite") } address.combinations(2).foreach { case Seq(x,y) => require (!x.overlaps(y), s"$x and $y overlap.") } require (supportsPutFull.contains(supportsPutPartial), s"PutFull($supportsPutFull) < PutPartial($supportsPutPartial)") require (supportsPutFull.contains(supportsArithmetic), s"PutFull($supportsPutFull) < Arithmetic($supportsArithmetic)") require (supportsPutFull.contains(supportsLogical), s"PutFull($supportsPutFull) < Logical($supportsLogical)") require (supportsGet.contains(supportsArithmetic), s"Get($supportsGet) < Arithmetic($supportsArithmetic)") require (supportsGet.contains(supportsLogical), s"Get($supportsGet) < Logical($supportsLogical)") require (supportsAcquireB.contains(supportsAcquireT), s"AcquireB($supportsAcquireB) < AcquireT($supportsAcquireT)") require (!alwaysGrantsT || supportsAcquireT, s"Must supportAcquireT if promising to always grantT") // Make sure that the regionType agrees with the capabilities require (!supportsAcquireB || regionType >= RegionType.UNCACHED) // acquire -> uncached, tracked, cached require (regionType <= RegionType.UNCACHED || supportsAcquireB) // tracked, cached -> acquire require (regionType != RegionType.UNCACHED || supportsGet) // uncached -> supportsGet val name = setName.orElse(nodePath.lastOption.map(_.lazyModule.name)).getOrElse("disconnected") val maxTransfer = List( // Largest supported transfer of all types supportsAcquireT.max, supportsAcquireB.max, supportsArithmetic.max, supportsLogical.max, supportsGet.max, supportsPutFull.max, supportsPutPartial.max).max val maxAddress = address.map(_.max).max val minAlignment = address.map(_.alignment).min // The device had better not support a transfer larger than its alignment require (minAlignment >= maxTransfer, s"Bad $address: minAlignment ($minAlignment) must be >= maxTransfer ($maxTransfer)") def toResource: ResourceAddress = { ResourceAddress(address, ResourcePermissions( r = supportsAcquireB || supportsGet, w = supportsAcquireT || supportsPutFull, x = executable, c = supportsAcquireB, a = supportsArithmetic && supportsLogical)) } def findTreeViolation() = nodePath.find { case _: MixedAdapterNode[_, _, _, _, _, _, _, _] => false case _: SinkNode[_, _, _, _, _] => false case node => node.inputs.size != 1 } def isTree = findTreeViolation() == None def infoString = { s"""Slave Name = ${name} |Slave Address = ${address} |supports = ${supports.infoString} | |""".stripMargin } def v1copy( address: Seq[AddressSet] = address, resources: Seq[Resource] = resources, regionType: RegionType.T = regionType, executable: Boolean = executable, nodePath: Seq[BaseNode] = nodePath, supportsAcquireT: TransferSizes = supports.acquireT, supportsAcquireB: TransferSizes = supports.acquireB, supportsArithmetic: TransferSizes = supports.arithmetic, supportsLogical: TransferSizes = supports.logical, supportsGet: TransferSizes = supports.get, supportsPutFull: TransferSizes = supports.putFull, supportsPutPartial: TransferSizes = supports.putPartial, supportsHint: TransferSizes = supports.hint, mayDenyGet: Boolean = mayDenyGet, mayDenyPut: Boolean = mayDenyPut, alwaysGrantsT: Boolean = alwaysGrantsT, fifoId: Option[Int] = fifoId) = { new TLSlaveParameters( setName = setName, address = address, resources = resources, regionType = regionType, executable = executable, nodePath = nodePath, supports = TLMasterToSlaveTransferSizes( acquireT = supportsAcquireT, acquireB = supportsAcquireB, arithmetic = supportsArithmetic, logical = supportsLogical, get = supportsGet, putFull = supportsPutFull, putPartial = supportsPutPartial, hint = supportsHint), emits = emits, mayDenyGet = mayDenyGet, mayDenyPut = mayDenyPut, alwaysGrantsT = alwaysGrantsT, fifoId = fifoId) } def v2copy( nodePath: Seq[BaseNode] = nodePath, resources: Seq[Resource] = resources, name: Option[String] = setName, address: Seq[AddressSet] = address, regionType: RegionType.T = regionType, executable: Boolean = executable, fifoId: Option[Int] = fifoId, supports: TLMasterToSlaveTransferSizes = supports, emits: TLSlaveToMasterTransferSizes = emits, alwaysGrantsT: Boolean = alwaysGrantsT, mayDenyGet: Boolean = mayDenyGet, mayDenyPut: Boolean = mayDenyPut) = { new TLSlaveParameters( nodePath = nodePath, resources = resources, setName = name, address = address, regionType = regionType, executable = executable, fifoId = fifoId, supports = supports, emits = emits, alwaysGrantsT = alwaysGrantsT, mayDenyGet = mayDenyGet, mayDenyPut = mayDenyPut) } @deprecated("Use v1copy instead of copy","") def copy( address: Seq[AddressSet] = address, resources: Seq[Resource] = resources, regionType: RegionType.T = regionType, executable: Boolean = executable, nodePath: Seq[BaseNode] = nodePath, supportsAcquireT: TransferSizes = supports.acquireT, supportsAcquireB: TransferSizes = supports.acquireB, supportsArithmetic: TransferSizes = supports.arithmetic, supportsLogical: TransferSizes = supports.logical, supportsGet: TransferSizes = supports.get, supportsPutFull: TransferSizes = supports.putFull, supportsPutPartial: TransferSizes = supports.putPartial, supportsHint: TransferSizes = supports.hint, mayDenyGet: Boolean = mayDenyGet, mayDenyPut: Boolean = mayDenyPut, alwaysGrantsT: Boolean = alwaysGrantsT, fifoId: Option[Int] = fifoId) = { v1copy( address = address, resources = resources, regionType = regionType, executable = executable, nodePath = nodePath, supportsAcquireT = supportsAcquireT, supportsAcquireB = supportsAcquireB, supportsArithmetic = supportsArithmetic, supportsLogical = supportsLogical, supportsGet = supportsGet, supportsPutFull = supportsPutFull, supportsPutPartial = supportsPutPartial, supportsHint = supportsHint, mayDenyGet = mayDenyGet, mayDenyPut = mayDenyPut, alwaysGrantsT = alwaysGrantsT, fifoId = fifoId) } } object TLSlaveParameters { def v1( address: Seq[AddressSet], resources: Seq[Resource] = Seq(), regionType: RegionType.T = RegionType.GET_EFFECTS, executable: Boolean = false, nodePath: Seq[BaseNode] = Seq(), supportsAcquireT: TransferSizes = TransferSizes.none, supportsAcquireB: TransferSizes = TransferSizes.none, supportsArithmetic: TransferSizes = TransferSizes.none, supportsLogical: TransferSizes = TransferSizes.none, supportsGet: TransferSizes = TransferSizes.none, supportsPutFull: TransferSizes = TransferSizes.none, supportsPutPartial: TransferSizes = TransferSizes.none, supportsHint: TransferSizes = TransferSizes.none, mayDenyGet: Boolean = false, mayDenyPut: Boolean = false, alwaysGrantsT: Boolean = false, fifoId: Option[Int] = None) = { new TLSlaveParameters( setName = None, address = address, resources = resources, regionType = regionType, executable = executable, nodePath = nodePath, supports = TLMasterToSlaveTransferSizes( acquireT = supportsAcquireT, acquireB = supportsAcquireB, arithmetic = supportsArithmetic, logical = supportsLogical, get = supportsGet, putFull = supportsPutFull, putPartial = supportsPutPartial, hint = supportsHint), emits = TLSlaveToMasterTransferSizes.unknownEmits, mayDenyGet = mayDenyGet, mayDenyPut = mayDenyPut, alwaysGrantsT = alwaysGrantsT, fifoId = fifoId) } def v2( address: Seq[AddressSet], nodePath: Seq[BaseNode] = Seq(), resources: Seq[Resource] = Seq(), name: Option[String] = None, regionType: RegionType.T = RegionType.GET_EFFECTS, executable: Boolean = false, fifoId: Option[Int] = None, supports: TLMasterToSlaveTransferSizes = TLMasterToSlaveTransferSizes.unknownSupports, emits: TLSlaveToMasterTransferSizes = TLSlaveToMasterTransferSizes.unknownEmits, alwaysGrantsT: Boolean = false, mayDenyGet: Boolean = false, mayDenyPut: Boolean = false) = { new TLSlaveParameters( nodePath = nodePath, resources = resources, setName = name, address = address, regionType = regionType, executable = executable, fifoId = fifoId, supports = supports, emits = emits, alwaysGrantsT = alwaysGrantsT, mayDenyGet = mayDenyGet, mayDenyPut = mayDenyPut) } } object TLManagerParameters { @deprecated("Use TLSlaveParameters.v1 instead of TLManagerParameters","") def apply( address: Seq[AddressSet], resources: Seq[Resource] = Seq(), regionType: RegionType.T = RegionType.GET_EFFECTS, executable: Boolean = false, nodePath: Seq[BaseNode] = Seq(), supportsAcquireT: TransferSizes = TransferSizes.none, supportsAcquireB: TransferSizes = TransferSizes.none, supportsArithmetic: TransferSizes = TransferSizes.none, supportsLogical: TransferSizes = TransferSizes.none, supportsGet: TransferSizes = TransferSizes.none, supportsPutFull: TransferSizes = TransferSizes.none, supportsPutPartial: TransferSizes = TransferSizes.none, supportsHint: TransferSizes = TransferSizes.none, mayDenyGet: Boolean = false, mayDenyPut: Boolean = false, alwaysGrantsT: Boolean = false, fifoId: Option[Int] = None) = TLSlaveParameters.v1( address, resources, regionType, executable, nodePath, supportsAcquireT, supportsAcquireB, supportsArithmetic, supportsLogical, supportsGet, supportsPutFull, supportsPutPartial, supportsHint, mayDenyGet, mayDenyPut, alwaysGrantsT, fifoId, ) } case class TLChannelBeatBytes(a: Option[Int], b: Option[Int], c: Option[Int], d: Option[Int]) { def members = Seq(a, b, c, d) members.collect { case Some(beatBytes) => require (isPow2(beatBytes), "Data channel width must be a power of 2") } } object TLChannelBeatBytes{ def apply(beatBytes: Int): TLChannelBeatBytes = TLChannelBeatBytes( Some(beatBytes), Some(beatBytes), Some(beatBytes), Some(beatBytes)) def apply(): TLChannelBeatBytes = TLChannelBeatBytes( None, None, None, None) } class TLSlavePortParameters private( val slaves: Seq[TLSlaveParameters], val channelBytes: TLChannelBeatBytes, val endSinkId: Int, val minLatency: Int, val responseFields: Seq[BundleFieldBase], val requestKeys: Seq[BundleKeyBase]) extends SimpleProduct { def sortedSlaves = slaves.sortBy(_.sortedAddress.head) override def canEqual(that: Any): Boolean = that.isInstanceOf[TLSlavePortParameters] override def productPrefix = "TLSlavePortParameters" def productArity: Int = 6 def productElement(n: Int): Any = n match { case 0 => slaves case 1 => channelBytes case 2 => endSinkId case 3 => minLatency case 4 => responseFields case 5 => requestKeys case _ => throw new IndexOutOfBoundsException(n.toString) } require (!slaves.isEmpty, "Slave ports must have slaves") require (endSinkId >= 0, "Sink ids cannot be negative") require (minLatency >= 0, "Minimum required latency cannot be negative") // Using this API implies you cannot handle mixed-width busses def beatBytes = { channelBytes.members.foreach { width => require (width.isDefined && width == channelBytes.a) } channelBytes.a.get } // TODO this should be deprecated def managers = slaves def requireFifo(policy: TLFIFOFixer.Policy = TLFIFOFixer.allFIFO) = { val relevant = slaves.filter(m => policy(m)) relevant.foreach { m => require(m.fifoId == relevant.head.fifoId, s"${m.name} had fifoId ${m.fifoId}, which was not homogeneous (${slaves.map(s => (s.name, s.fifoId))}) ") } } // Bounds on required sizes def maxAddress = slaves.map(_.maxAddress).max def maxTransfer = slaves.map(_.maxTransfer).max def mayDenyGet = slaves.exists(_.mayDenyGet) def mayDenyPut = slaves.exists(_.mayDenyPut) // Diplomatically determined operation sizes emitted by all outward Slaves // as opposed to emits* which generate circuitry to check which specific addresses val allEmitClaims = slaves.map(_.emits).reduce( _ intersect _) // Operation Emitted by at least one outward Slaves // as opposed to emits* which generate circuitry to check which specific addresses val anyEmitClaims = slaves.map(_.emits).reduce(_ mincover _) // Diplomatically determined operation sizes supported by all outward Slaves // as opposed to supports* which generate circuitry to check which specific addresses val allSupportClaims = slaves.map(_.supports).reduce( _ intersect _) val allSupportAcquireT = allSupportClaims.acquireT val allSupportAcquireB = allSupportClaims.acquireB val allSupportArithmetic = allSupportClaims.arithmetic val allSupportLogical = allSupportClaims.logical val allSupportGet = allSupportClaims.get val allSupportPutFull = allSupportClaims.putFull val allSupportPutPartial = allSupportClaims.putPartial val allSupportHint = allSupportClaims.hint // Operation supported by at least one outward Slaves // as opposed to supports* which generate circuitry to check which specific addresses val anySupportClaims = slaves.map(_.supports).reduce(_ mincover _) val anySupportAcquireT = !anySupportClaims.acquireT.none val anySupportAcquireB = !anySupportClaims.acquireB.none val anySupportArithmetic = !anySupportClaims.arithmetic.none val anySupportLogical = !anySupportClaims.logical.none val anySupportGet = !anySupportClaims.get.none val anySupportPutFull = !anySupportClaims.putFull.none val anySupportPutPartial = !anySupportClaims.putPartial.none val anySupportHint = !anySupportClaims.hint.none // Supporting Acquire means being routable for GrantAck require ((endSinkId == 0) == !anySupportAcquireB) // These return Option[TLSlaveParameters] for your convenience def find(address: BigInt) = slaves.find(_.address.exists(_.contains(address))) // The safe version will check the entire address def findSafe(address: UInt) = VecInit(sortedSlaves.map(_.address.map(_.contains(address)).reduce(_ || _))) // The fast version assumes the address is valid (you probably want fastProperty instead of this function) def findFast(address: UInt) = { val routingMask = AddressDecoder(slaves.map(_.address)) VecInit(sortedSlaves.map(_.address.map(_.widen(~routingMask)).distinct.map(_.contains(address)).reduce(_ || _))) } // Compute the simplest AddressSets that decide a key def fastPropertyGroup[K](p: TLSlaveParameters => K): Seq[(K, Seq[AddressSet])] = { val groups = groupByIntoSeq(sortedSlaves.map(m => (p(m), m.address)))( _._1).map { case (k, vs) => k -> vs.flatMap(_._2) } val reductionMask = AddressDecoder(groups.map(_._2)) groups.map { case (k, seq) => k -> AddressSet.unify(seq.map(_.widen(~reductionMask)).distinct) } } // Select a property def fastProperty[K, D <: Data](address: UInt, p: TLSlaveParameters => K, d: K => D): D = Mux1H(fastPropertyGroup(p).map { case (v, a) => (a.map(_.contains(address)).reduce(_||_), d(v)) }) // Note: returns the actual fifoId + 1 or 0 if None def findFifoIdFast(address: UInt) = fastProperty(address, _.fifoId.map(_+1).getOrElse(0), (i:Int) => i.U) def hasFifoIdFast(address: UInt) = fastProperty(address, _.fifoId.isDefined, (b:Boolean) => b.B) // Does this Port manage this ID/address? def containsSafe(address: UInt) = findSafe(address).reduce(_ || _) private def addressHelper( // setting safe to false indicates that all addresses are expected to be legal, which might reduce circuit complexity safe: Boolean, // member filters out the sizes being checked based on the opcode being emitted or supported member: TLSlaveParameters => TransferSizes, address: UInt, lgSize: UInt, // range provides a limit on the sizes that are expected to be evaluated, which might reduce circuit complexity range: Option[TransferSizes]): Bool = { // trim reduces circuit complexity by intersecting checked sizes with the range argument def trim(x: TransferSizes) = range.map(_.intersect(x)).getOrElse(x) // groupBy returns an unordered map, convert back to Seq and sort the result for determinism // groupByIntoSeq is turning slaves into trimmed membership sizes // We are grouping all the slaves by their transfer size where // if they support the trimmed size then // member is the type of transfer that you are looking for (What you are trying to filter on) // When you consider membership, you are trimming the sizes to only the ones that you care about // you are filtering the slaves based on both whether they support a particular opcode and the size // Grouping the slaves based on the actual transfer size range they support // intersecting the range and checking their membership // FOR SUPPORTCASES instead of returning the list of slaves, // you are returning a map from transfer size to the set of // address sets that are supported for that transfer size // find all the slaves that support a certain type of operation and then group their addresses by the supported size // for every size there could be multiple address ranges // safety is a trade off between checking between all possible addresses vs only the addresses // that are known to have supported sizes // the trade off is 'checking all addresses is a more expensive circuit but will always give you // the right answer even if you give it an illegal address' // the not safe version is a cheaper circuit but if you give it an illegal address then it might produce the wrong answer // fast presumes address legality // This groupByIntoSeq deterministically groups all address sets for which a given `member` transfer size applies. // In the resulting Map of cases, the keys are transfer sizes and the values are all address sets which emit or support that size. val supportCases = groupByIntoSeq(slaves)(m => trim(member(m))).map { case (k: TransferSizes, vs: Seq[TLSlaveParameters]) => k -> vs.flatMap(_.address) } // safe produces a circuit that compares against all possible addresses, // whereas fast presumes that the address is legal but uses an efficient address decoder val mask = if (safe) ~BigInt(0) else AddressDecoder(supportCases.map(_._2)) // Simplified creates the most concise possible representation of each cases' address sets based on the mask. val simplified = supportCases.map { case (k, seq) => k -> AddressSet.unify(seq.map(_.widen(~mask)).distinct) } simplified.map { case (s, a) => // s is a size, you are checking for this size either the size of the operation is in s // We return an or-reduction of all the cases, checking whether any contains both the dynamic size and dynamic address on the wire. ((Some(s) == range).B || s.containsLg(lgSize)) && a.map(_.contains(address)).reduce(_||_) }.foldLeft(false.B)(_||_) } def supportsAcquireTSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.acquireT, address, lgSize, range) def supportsAcquireBSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.acquireB, address, lgSize, range) def supportsArithmeticSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.arithmetic, address, lgSize, range) def supportsLogicalSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.logical, address, lgSize, range) def supportsGetSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.get, address, lgSize, range) def supportsPutFullSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.putFull, address, lgSize, range) def supportsPutPartialSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.putPartial, address, lgSize, range) def supportsHintSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.hint, address, lgSize, range) def supportsAcquireTFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.acquireT, address, lgSize, range) def supportsAcquireBFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.acquireB, address, lgSize, range) def supportsArithmeticFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.arithmetic, address, lgSize, range) def supportsLogicalFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.logical, address, lgSize, range) def supportsGetFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.get, address, lgSize, range) def supportsPutFullFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.putFull, address, lgSize, range) def supportsPutPartialFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.putPartial, address, lgSize, range) def supportsHintFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.hint, address, lgSize, range) def emitsProbeSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.probe, address, lgSize, range) def emitsArithmeticSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.arithmetic, address, lgSize, range) def emitsLogicalSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.logical, address, lgSize, range) def emitsGetSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.get, address, lgSize, range) def emitsPutFullSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.putFull, address, lgSize, range) def emitsPutPartialSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.putPartial, address, lgSize, range) def emitsHintSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.hint, address, lgSize, range) def findTreeViolation() = slaves.flatMap(_.findTreeViolation()).headOption def isTree = !slaves.exists(!_.isTree) def infoString = "Slave Port Beatbytes = " + beatBytes + "\n" + "Slave Port MinLatency = " + minLatency + "\n\n" + slaves.map(_.infoString).mkString def v1copy( managers: Seq[TLSlaveParameters] = slaves, beatBytes: Int = -1, endSinkId: Int = endSinkId, minLatency: Int = minLatency, responseFields: Seq[BundleFieldBase] = responseFields, requestKeys: Seq[BundleKeyBase] = requestKeys) = { new TLSlavePortParameters( slaves = managers, channelBytes = if (beatBytes != -1) TLChannelBeatBytes(beatBytes) else channelBytes, endSinkId = endSinkId, minLatency = minLatency, responseFields = responseFields, requestKeys = requestKeys) } def v2copy( slaves: Seq[TLSlaveParameters] = slaves, channelBytes: TLChannelBeatBytes = channelBytes, endSinkId: Int = endSinkId, minLatency: Int = minLatency, responseFields: Seq[BundleFieldBase] = responseFields, requestKeys: Seq[BundleKeyBase] = requestKeys) = { new TLSlavePortParameters( slaves = slaves, channelBytes = channelBytes, endSinkId = endSinkId, minLatency = minLatency, responseFields = responseFields, requestKeys = requestKeys) } @deprecated("Use v1copy instead of copy","") def copy( managers: Seq[TLSlaveParameters] = slaves, beatBytes: Int = -1, endSinkId: Int = endSinkId, minLatency: Int = minLatency, responseFields: Seq[BundleFieldBase] = responseFields, requestKeys: Seq[BundleKeyBase] = requestKeys) = { v1copy( managers, beatBytes, endSinkId, minLatency, responseFields, requestKeys) } } object TLSlavePortParameters { def v1( managers: Seq[TLSlaveParameters], beatBytes: Int, endSinkId: Int = 0, minLatency: Int = 0, responseFields: Seq[BundleFieldBase] = Nil, requestKeys: Seq[BundleKeyBase] = Nil) = { new TLSlavePortParameters( slaves = managers, channelBytes = TLChannelBeatBytes(beatBytes), endSinkId = endSinkId, minLatency = minLatency, responseFields = responseFields, requestKeys = requestKeys) } } object TLManagerPortParameters { @deprecated("Use TLSlavePortParameters.v1 instead of TLManagerPortParameters","") def apply( managers: Seq[TLSlaveParameters], beatBytes: Int, endSinkId: Int = 0, minLatency: Int = 0, responseFields: Seq[BundleFieldBase] = Nil, requestKeys: Seq[BundleKeyBase] = Nil) = { TLSlavePortParameters.v1( managers, beatBytes, endSinkId, minLatency, responseFields, requestKeys) } } class TLMasterParameters private( val nodePath: Seq[BaseNode], val resources: Seq[Resource], val name: String, val visibility: Seq[AddressSet], val unusedRegionTypes: Set[RegionType.T], val executesOnly: Boolean, val requestFifo: Boolean, // only a request, not a requirement. applies to A, not C. val supports: TLSlaveToMasterTransferSizes, val emits: TLMasterToSlaveTransferSizes, val neverReleasesData: Boolean, val sourceId: IdRange) extends SimpleProduct { override def canEqual(that: Any): Boolean = that.isInstanceOf[TLMasterParameters] override def productPrefix = "TLMasterParameters" // We intentionally omit nodePath for equality testing / formatting def productArity: Int = 10 def productElement(n: Int): Any = n match { case 0 => name case 1 => sourceId case 2 => resources case 3 => visibility case 4 => unusedRegionTypes case 5 => executesOnly case 6 => requestFifo case 7 => supports case 8 => emits case 9 => neverReleasesData case _ => throw new IndexOutOfBoundsException(n.toString) } require (!sourceId.isEmpty) require (!visibility.isEmpty) require (supports.putFull.contains(supports.putPartial)) // We only support these operations if we support Probe (ie: we're a cache) require (supports.probe.contains(supports.arithmetic)) require (supports.probe.contains(supports.logical)) require (supports.probe.contains(supports.get)) require (supports.probe.contains(supports.putFull)) require (supports.probe.contains(supports.putPartial)) require (supports.probe.contains(supports.hint)) visibility.combinations(2).foreach { case Seq(x,y) => require (!x.overlaps(y), s"$x and $y overlap.") } val maxTransfer = List( supports.probe.max, supports.arithmetic.max, supports.logical.max, supports.get.max, supports.putFull.max, supports.putPartial.max).max def infoString = { s"""Master Name = ${name} |visibility = ${visibility} |emits = ${emits.infoString} |sourceId = ${sourceId} | |""".stripMargin } def v1copy( name: String = name, sourceId: IdRange = sourceId, nodePath: Seq[BaseNode] = nodePath, requestFifo: Boolean = requestFifo, visibility: Seq[AddressSet] = visibility, supportsProbe: TransferSizes = supports.probe, supportsArithmetic: TransferSizes = supports.arithmetic, supportsLogical: TransferSizes = supports.logical, supportsGet: TransferSizes = supports.get, supportsPutFull: TransferSizes = supports.putFull, supportsPutPartial: TransferSizes = supports.putPartial, supportsHint: TransferSizes = supports.hint) = { new TLMasterParameters( nodePath = nodePath, resources = this.resources, name = name, visibility = visibility, unusedRegionTypes = this.unusedRegionTypes, executesOnly = this.executesOnly, requestFifo = requestFifo, supports = TLSlaveToMasterTransferSizes( probe = supportsProbe, arithmetic = supportsArithmetic, logical = supportsLogical, get = supportsGet, putFull = supportsPutFull, putPartial = supportsPutPartial, hint = supportsHint), emits = this.emits, neverReleasesData = this.neverReleasesData, sourceId = sourceId) } def v2copy( nodePath: Seq[BaseNode] = nodePath, resources: Seq[Resource] = resources, name: String = name, visibility: Seq[AddressSet] = visibility, unusedRegionTypes: Set[RegionType.T] = unusedRegionTypes, executesOnly: Boolean = executesOnly, requestFifo: Boolean = requestFifo, supports: TLSlaveToMasterTransferSizes = supports, emits: TLMasterToSlaveTransferSizes = emits, neverReleasesData: Boolean = neverReleasesData, sourceId: IdRange = sourceId) = { new TLMasterParameters( nodePath = nodePath, resources = resources, name = name, visibility = visibility, unusedRegionTypes = unusedRegionTypes, executesOnly = executesOnly, requestFifo = requestFifo, supports = supports, emits = emits, neverReleasesData = neverReleasesData, sourceId = sourceId) } @deprecated("Use v1copy instead of copy","") def copy( name: String = name, sourceId: IdRange = sourceId, nodePath: Seq[BaseNode] = nodePath, requestFifo: Boolean = requestFifo, visibility: Seq[AddressSet] = visibility, supportsProbe: TransferSizes = supports.probe, supportsArithmetic: TransferSizes = supports.arithmetic, supportsLogical: TransferSizes = supports.logical, supportsGet: TransferSizes = supports.get, supportsPutFull: TransferSizes = supports.putFull, supportsPutPartial: TransferSizes = supports.putPartial, supportsHint: TransferSizes = supports.hint) = { v1copy( name = name, sourceId = sourceId, nodePath = nodePath, requestFifo = requestFifo, visibility = visibility, supportsProbe = supportsProbe, supportsArithmetic = supportsArithmetic, supportsLogical = supportsLogical, supportsGet = supportsGet, supportsPutFull = supportsPutFull, supportsPutPartial = supportsPutPartial, supportsHint = supportsHint) } } object TLMasterParameters { def v1( name: String, sourceId: IdRange = IdRange(0,1), nodePath: Seq[BaseNode] = Seq(), requestFifo: Boolean = false, visibility: Seq[AddressSet] = Seq(AddressSet(0, ~0)), supportsProbe: TransferSizes = TransferSizes.none, supportsArithmetic: TransferSizes = TransferSizes.none, supportsLogical: TransferSizes = TransferSizes.none, supportsGet: TransferSizes = TransferSizes.none, supportsPutFull: TransferSizes = TransferSizes.none, supportsPutPartial: TransferSizes = TransferSizes.none, supportsHint: TransferSizes = TransferSizes.none) = { new TLMasterParameters( nodePath = nodePath, resources = Nil, name = name, visibility = visibility, unusedRegionTypes = Set(), executesOnly = false, requestFifo = requestFifo, supports = TLSlaveToMasterTransferSizes( probe = supportsProbe, arithmetic = supportsArithmetic, logical = supportsLogical, get = supportsGet, putFull = supportsPutFull, putPartial = supportsPutPartial, hint = supportsHint), emits = TLMasterToSlaveTransferSizes.unknownEmits, neverReleasesData = false, sourceId = sourceId) } def v2( nodePath: Seq[BaseNode] = Seq(), resources: Seq[Resource] = Nil, name: String, visibility: Seq[AddressSet] = Seq(AddressSet(0, ~0)), unusedRegionTypes: Set[RegionType.T] = Set(), executesOnly: Boolean = false, requestFifo: Boolean = false, supports: TLSlaveToMasterTransferSizes = TLSlaveToMasterTransferSizes.unknownSupports, emits: TLMasterToSlaveTransferSizes = TLMasterToSlaveTransferSizes.unknownEmits, neverReleasesData: Boolean = false, sourceId: IdRange = IdRange(0,1)) = { new TLMasterParameters( nodePath = nodePath, resources = resources, name = name, visibility = visibility, unusedRegionTypes = unusedRegionTypes, executesOnly = executesOnly, requestFifo = requestFifo, supports = supports, emits = emits, neverReleasesData = neverReleasesData, sourceId = sourceId) } } object TLClientParameters { @deprecated("Use TLMasterParameters.v1 instead of TLClientParameters","") def apply( name: String, sourceId: IdRange = IdRange(0,1), nodePath: Seq[BaseNode] = Seq(), requestFifo: Boolean = false, visibility: Seq[AddressSet] = Seq(AddressSet.everything), supportsProbe: TransferSizes = TransferSizes.none, supportsArithmetic: TransferSizes = TransferSizes.none, supportsLogical: TransferSizes = TransferSizes.none, supportsGet: TransferSizes = TransferSizes.none, supportsPutFull: TransferSizes = TransferSizes.none, supportsPutPartial: TransferSizes = TransferSizes.none, supportsHint: TransferSizes = TransferSizes.none) = { TLMasterParameters.v1( name = name, sourceId = sourceId, nodePath = nodePath, requestFifo = requestFifo, visibility = visibility, supportsProbe = supportsProbe, supportsArithmetic = supportsArithmetic, supportsLogical = supportsLogical, supportsGet = supportsGet, supportsPutFull = supportsPutFull, supportsPutPartial = supportsPutPartial, supportsHint = supportsHint) } } class TLMasterPortParameters private( val masters: Seq[TLMasterParameters], val channelBytes: TLChannelBeatBytes, val minLatency: Int, val echoFields: Seq[BundleFieldBase], val requestFields: Seq[BundleFieldBase], val responseKeys: Seq[BundleKeyBase]) extends SimpleProduct { override def canEqual(that: Any): Boolean = that.isInstanceOf[TLMasterPortParameters] override def productPrefix = "TLMasterPortParameters" def productArity: Int = 6 def productElement(n: Int): Any = n match { case 0 => masters case 1 => channelBytes case 2 => minLatency case 3 => echoFields case 4 => requestFields case 5 => responseKeys case _ => throw new IndexOutOfBoundsException(n.toString) } require (!masters.isEmpty) require (minLatency >= 0) def clients = masters // Require disjoint ranges for Ids IdRange.overlaps(masters.map(_.sourceId)).foreach { case (x, y) => require (!x.overlaps(y), s"TLClientParameters.sourceId ${x} overlaps ${y}") } // Bounds on required sizes def endSourceId = masters.map(_.sourceId.end).max def maxTransfer = masters.map(_.maxTransfer).max // The unused sources < endSourceId def unusedSources: Seq[Int] = { val usedSources = masters.map(_.sourceId).sortBy(_.start) ((Seq(0) ++ usedSources.map(_.end)) zip usedSources.map(_.start)) flatMap { case (end, start) => end until start } } // Diplomatically determined operation sizes emitted by all inward Masters // as opposed to emits* which generate circuitry to check which specific addresses val allEmitClaims = masters.map(_.emits).reduce( _ intersect _) // Diplomatically determined operation sizes Emitted by at least one inward Masters // as opposed to emits* which generate circuitry to check which specific addresses val anyEmitClaims = masters.map(_.emits).reduce(_ mincover _) // Diplomatically determined operation sizes supported by all inward Masters // as opposed to supports* which generate circuitry to check which specific addresses val allSupportProbe = masters.map(_.supports.probe) .reduce(_ intersect _) val allSupportArithmetic = masters.map(_.supports.arithmetic).reduce(_ intersect _) val allSupportLogical = masters.map(_.supports.logical) .reduce(_ intersect _) val allSupportGet = masters.map(_.supports.get) .reduce(_ intersect _) val allSupportPutFull = masters.map(_.supports.putFull) .reduce(_ intersect _) val allSupportPutPartial = masters.map(_.supports.putPartial).reduce(_ intersect _) val allSupportHint = masters.map(_.supports.hint) .reduce(_ intersect _) // Diplomatically determined operation sizes supported by at least one master // as opposed to supports* which generate circuitry to check which specific addresses val anySupportProbe = masters.map(!_.supports.probe.none) .reduce(_ || _) val anySupportArithmetic = masters.map(!_.supports.arithmetic.none).reduce(_ || _) val anySupportLogical = masters.map(!_.supports.logical.none) .reduce(_ || _) val anySupportGet = masters.map(!_.supports.get.none) .reduce(_ || _) val anySupportPutFull = masters.map(!_.supports.putFull.none) .reduce(_ || _) val anySupportPutPartial = masters.map(!_.supports.putPartial.none).reduce(_ || _) val anySupportHint = masters.map(!_.supports.hint.none) .reduce(_ || _) // These return Option[TLMasterParameters] for your convenience def find(id: Int) = masters.find(_.sourceId.contains(id)) // Synthesizable lookup methods def find(id: UInt) = VecInit(masters.map(_.sourceId.contains(id))) def contains(id: UInt) = find(id).reduce(_ || _) def requestFifo(id: UInt) = Mux1H(find(id), masters.map(c => c.requestFifo.B)) // Available during RTL runtime, checks to see if (id, size) is supported by the master's (client's) diplomatic parameters private def sourceIdHelper(member: TLMasterParameters => TransferSizes)(id: UInt, lgSize: UInt) = { val allSame = masters.map(member(_) == member(masters(0))).reduce(_ && _) // this if statement is a coarse generalization of the groupBy in the sourceIdHelper2 version; // the case where there is only one group. if (allSame) member(masters(0)).containsLg(lgSize) else { // Find the master associated with ID and returns whether that particular master is able to receive transaction of lgSize Mux1H(find(id), masters.map(member(_).containsLg(lgSize))) } } // Check for support of a given operation at a specific id val supportsProbe = sourceIdHelper(_.supports.probe) _ val supportsArithmetic = sourceIdHelper(_.supports.arithmetic) _ val supportsLogical = sourceIdHelper(_.supports.logical) _ val supportsGet = sourceIdHelper(_.supports.get) _ val supportsPutFull = sourceIdHelper(_.supports.putFull) _ val supportsPutPartial = sourceIdHelper(_.supports.putPartial) _ val supportsHint = sourceIdHelper(_.supports.hint) _ // TODO: Merge sourceIdHelper2 with sourceIdHelper private def sourceIdHelper2( member: TLMasterParameters => TransferSizes, sourceId: UInt, lgSize: UInt): Bool = { // Because sourceIds are uniquely owned by each master, we use them to group the // cases that have to be checked. val emitCases = groupByIntoSeq(masters)(m => member(m)).map { case (k, vs) => k -> vs.map(_.sourceId) } emitCases.map { case (s, a) => (s.containsLg(lgSize)) && a.map(_.contains(sourceId)).reduce(_||_) }.foldLeft(false.B)(_||_) } // Check for emit of a given operation at a specific id def emitsAcquireT (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.acquireT, sourceId, lgSize) def emitsAcquireB (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.acquireB, sourceId, lgSize) def emitsArithmetic(sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.arithmetic, sourceId, lgSize) def emitsLogical (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.logical, sourceId, lgSize) def emitsGet (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.get, sourceId, lgSize) def emitsPutFull (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.putFull, sourceId, lgSize) def emitsPutPartial(sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.putPartial, sourceId, lgSize) def emitsHint (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.hint, sourceId, lgSize) def infoString = masters.map(_.infoString).mkString def v1copy( clients: Seq[TLMasterParameters] = masters, minLatency: Int = minLatency, echoFields: Seq[BundleFieldBase] = echoFields, requestFields: Seq[BundleFieldBase] = requestFields, responseKeys: Seq[BundleKeyBase] = responseKeys) = { new TLMasterPortParameters( masters = clients, channelBytes = channelBytes, minLatency = minLatency, echoFields = echoFields, requestFields = requestFields, responseKeys = responseKeys) } def v2copy( masters: Seq[TLMasterParameters] = masters, channelBytes: TLChannelBeatBytes = channelBytes, minLatency: Int = minLatency, echoFields: Seq[BundleFieldBase] = echoFields, requestFields: Seq[BundleFieldBase] = requestFields, responseKeys: Seq[BundleKeyBase] = responseKeys) = { new TLMasterPortParameters( masters = masters, channelBytes = channelBytes, minLatency = minLatency, echoFields = echoFields, requestFields = requestFields, responseKeys = responseKeys) } @deprecated("Use v1copy instead of copy","") def copy( clients: Seq[TLMasterParameters] = masters, minLatency: Int = minLatency, echoFields: Seq[BundleFieldBase] = echoFields, requestFields: Seq[BundleFieldBase] = requestFields, responseKeys: Seq[BundleKeyBase] = responseKeys) = { v1copy( clients, minLatency, echoFields, requestFields, responseKeys) } } object TLClientPortParameters { @deprecated("Use TLMasterPortParameters.v1 instead of TLClientPortParameters","") def apply( clients: Seq[TLMasterParameters], minLatency: Int = 0, echoFields: Seq[BundleFieldBase] = Nil, requestFields: Seq[BundleFieldBase] = Nil, responseKeys: Seq[BundleKeyBase] = Nil) = { TLMasterPortParameters.v1( clients, minLatency, echoFields, requestFields, responseKeys) } } object TLMasterPortParameters { def v1( clients: Seq[TLMasterParameters], minLatency: Int = 0, echoFields: Seq[BundleFieldBase] = Nil, requestFields: Seq[BundleFieldBase] = Nil, responseKeys: Seq[BundleKeyBase] = Nil) = { new TLMasterPortParameters( masters = clients, channelBytes = TLChannelBeatBytes(), minLatency = minLatency, echoFields = echoFields, requestFields = requestFields, responseKeys = responseKeys) } def v2( masters: Seq[TLMasterParameters], channelBytes: TLChannelBeatBytes = TLChannelBeatBytes(), minLatency: Int = 0, echoFields: Seq[BundleFieldBase] = Nil, requestFields: Seq[BundleFieldBase] = Nil, responseKeys: Seq[BundleKeyBase] = Nil) = { new TLMasterPortParameters( masters = masters, channelBytes = channelBytes, minLatency = minLatency, echoFields = echoFields, requestFields = requestFields, responseKeys = responseKeys) } } case class TLBundleParameters( addressBits: Int, dataBits: Int, sourceBits: Int, sinkBits: Int, sizeBits: Int, echoFields: Seq[BundleFieldBase], requestFields: Seq[BundleFieldBase], responseFields: Seq[BundleFieldBase], hasBCE: Boolean) { // Chisel has issues with 0-width wires require (addressBits >= 1) require (dataBits >= 8) require (sourceBits >= 1) require (sinkBits >= 1) require (sizeBits >= 1) require (isPow2(dataBits)) echoFields.foreach { f => require (f.key.isControl, s"${f} is not a legal echo field") } val addrLoBits = log2Up(dataBits/8) // Used to uniquify bus IP names def shortName = s"a${addressBits}d${dataBits}s${sourceBits}k${sinkBits}z${sizeBits}" + (if (hasBCE) "c" else "u") def union(x: TLBundleParameters) = TLBundleParameters( max(addressBits, x.addressBits), max(dataBits, x.dataBits), max(sourceBits, x.sourceBits), max(sinkBits, x.sinkBits), max(sizeBits, x.sizeBits), echoFields = BundleField.union(echoFields ++ x.echoFields), requestFields = BundleField.union(requestFields ++ x.requestFields), responseFields = BundleField.union(responseFields ++ x.responseFields), hasBCE || x.hasBCE) } object TLBundleParameters { val emptyBundleParams = TLBundleParameters( addressBits = 1, dataBits = 8, sourceBits = 1, sinkBits = 1, sizeBits = 1, echoFields = Nil, requestFields = Nil, responseFields = Nil, hasBCE = false) def union(x: Seq[TLBundleParameters]) = x.foldLeft(emptyBundleParams)((x,y) => x.union(y)) def apply(master: TLMasterPortParameters, slave: TLSlavePortParameters) = new TLBundleParameters( addressBits = log2Up(slave.maxAddress + 1), dataBits = slave.beatBytes * 8, sourceBits = log2Up(master.endSourceId), sinkBits = log2Up(slave.endSinkId), sizeBits = log2Up(log2Ceil(max(master.maxTransfer, slave.maxTransfer))+1), echoFields = master.echoFields, requestFields = BundleField.accept(master.requestFields, slave.requestKeys), responseFields = BundleField.accept(slave.responseFields, master.responseKeys), hasBCE = master.anySupportProbe && slave.anySupportAcquireB) } case class TLEdgeParameters( master: TLMasterPortParameters, slave: TLSlavePortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge { // legacy names: def manager = slave def client = master val maxTransfer = max(master.maxTransfer, slave.maxTransfer) val maxLgSize = log2Ceil(maxTransfer) // Sanity check the link... require (maxTransfer >= slave.beatBytes, s"Link's max transfer (${maxTransfer}) < ${slave.slaves.map(_.name)}'s beatBytes (${slave.beatBytes})") def diplomaticClaimsMasterToSlave = master.anyEmitClaims.intersect(slave.anySupportClaims) val bundle = TLBundleParameters(master, slave) def formatEdge = master.infoString + "\n" + slave.infoString } case class TLCreditedDelay( a: CreditedDelay, b: CreditedDelay, c: CreditedDelay, d: CreditedDelay, e: CreditedDelay) { def + (that: TLCreditedDelay): TLCreditedDelay = TLCreditedDelay( a = a + that.a, b = b + that.b, c = c + that.c, d = d + that.d, e = e + that.e) override def toString = s"(${a}, ${b}, ${c}, ${d}, ${e})" } object TLCreditedDelay { def apply(delay: CreditedDelay): TLCreditedDelay = apply(delay, delay.flip, delay, delay.flip, delay) } case class TLCreditedManagerPortParameters(delay: TLCreditedDelay, base: TLSlavePortParameters) {def infoString = base.infoString} case class TLCreditedClientPortParameters(delay: TLCreditedDelay, base: TLMasterPortParameters) {def infoString = base.infoString} case class TLCreditedEdgeParameters(client: TLCreditedClientPortParameters, manager: TLCreditedManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge { val delay = client.delay + manager.delay val bundle = TLBundleParameters(client.base, manager.base) def formatEdge = client.infoString + "\n" + manager.infoString } case class TLAsyncManagerPortParameters(async: AsyncQueueParams, base: TLSlavePortParameters) {def infoString = base.infoString} case class TLAsyncClientPortParameters(base: TLMasterPortParameters) {def infoString = base.infoString} case class TLAsyncBundleParameters(async: AsyncQueueParams, base: TLBundleParameters) case class TLAsyncEdgeParameters(client: TLAsyncClientPortParameters, manager: TLAsyncManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge { val bundle = TLAsyncBundleParameters(manager.async, TLBundleParameters(client.base, manager.base)) def formatEdge = client.infoString + "\n" + manager.infoString } case class TLRationalManagerPortParameters(direction: RationalDirection, base: TLSlavePortParameters) {def infoString = base.infoString} case class TLRationalClientPortParameters(base: TLMasterPortParameters) {def infoString = base.infoString} case class TLRationalEdgeParameters(client: TLRationalClientPortParameters, manager: TLRationalManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge { val bundle = TLBundleParameters(client.base, manager.base) def formatEdge = client.infoString + "\n" + manager.infoString } // To be unified, devices must agree on all of these terms case class ManagerUnificationKey( resources: Seq[Resource], regionType: RegionType.T, executable: Boolean, supportsAcquireT: TransferSizes, supportsAcquireB: TransferSizes, supportsArithmetic: TransferSizes, supportsLogical: TransferSizes, supportsGet: TransferSizes, supportsPutFull: TransferSizes, supportsPutPartial: TransferSizes, supportsHint: TransferSizes) object ManagerUnificationKey { def apply(x: TLSlaveParameters): ManagerUnificationKey = ManagerUnificationKey( resources = x.resources, regionType = x.regionType, executable = x.executable, supportsAcquireT = x.supportsAcquireT, supportsAcquireB = x.supportsAcquireB, supportsArithmetic = x.supportsArithmetic, supportsLogical = x.supportsLogical, supportsGet = x.supportsGet, supportsPutFull = x.supportsPutFull, supportsPutPartial = x.supportsPutPartial, supportsHint = x.supportsHint) } object ManagerUnification { def apply(slaves: Seq[TLSlaveParameters]): List[TLSlaveParameters] = { slaves.groupBy(ManagerUnificationKey.apply).values.map { seq => val agree = seq.forall(_.fifoId == seq.head.fifoId) seq(0).v1copy( address = AddressSet.unify(seq.flatMap(_.address)), fifoId = if (agree) seq(0).fifoId else None) }.toList } } case class TLBufferParams( a: BufferParams = BufferParams.none, b: BufferParams = BufferParams.none, c: BufferParams = BufferParams.none, d: BufferParams = BufferParams.none, e: BufferParams = BufferParams.none ) extends DirectedBuffers[TLBufferParams] { def copyIn(x: BufferParams) = this.copy(b = x, d = x) def copyOut(x: BufferParams) = this.copy(a = x, c = x, e = x) def copyInOut(x: BufferParams) = this.copyIn(x).copyOut(x) } /** Pretty printing of TL source id maps */ class TLSourceIdMap(tl: TLMasterPortParameters) extends IdMap[TLSourceIdMapEntry] { private val tlDigits = String.valueOf(tl.endSourceId-1).length() protected val fmt = s"\t[%${tlDigits}d, %${tlDigits}d) %s%s%s" private val sorted = tl.masters.sortBy(_.sourceId) val mapping: Seq[TLSourceIdMapEntry] = sorted.map { case c => TLSourceIdMapEntry(c.sourceId, c.name, c.supports.probe, c.requestFifo) } } case class TLSourceIdMapEntry(tlId: IdRange, name: String, isCache: Boolean, requestFifo: Boolean) extends IdMapEntry { val from = tlId val to = tlId val maxTransactionsInFlight = Some(tlId.size) } File MixedNode.scala: package org.chipsalliance.diplomacy.nodes import chisel3.{Data, DontCare, Wire} import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.{Field, Parameters} import org.chipsalliance.diplomacy.ValName import org.chipsalliance.diplomacy.sourceLine /** One side metadata of a [[Dangle]]. * * Describes one side of an edge going into or out of a [[BaseNode]]. * * @param serial * the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to. * @param index * the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to. */ case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] { import scala.math.Ordered.orderingToOrdered def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that)) } /** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]] * connects. * * [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] , * [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]]. * * @param source * the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within * that [[BaseNode]]. * @param sink * sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that * [[BaseNode]]. * @param flipped * flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to * `danglesIn`. * @param dataOpt * actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module */ case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) { def data = dataOpt.get } /** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often * derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually * implement the protocol. */ case class Edges[EI, EO](in: Seq[EI], out: Seq[EO]) /** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */ case object MonitorsEnabled extends Field[Boolean](true) /** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented. * * For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but * [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink * nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the * [[LazyModule]]. */ case object RenderFlipped extends Field[Boolean](false) /** The sealed node class in the package, all node are derived from it. * * @param inner * Sink interface implementation. * @param outer * Source interface implementation. * @param valName * val name of this node. * @tparam DI * Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters * describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected * [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port * parameters. * @tparam UI * Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing * the protocol parameters of a sink. For an [[InwardNode]], it is determined itself. * @tparam EI * Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers * specified for a sink according to protocol. * @tparam BI * Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface. * It should extends from [[chisel3.Data]], which represents the real hardware. * @tparam DO * Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters * describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself. * @tparam UO * Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing * the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]]. * Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters. * @tparam EO * Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers * specified for a source according to protocol. * @tparam BO * Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source * interface. It should extends from [[chisel3.Data]], which represents the real hardware. * * @note * Call Graph of [[MixedNode]] * - line `─`: source is process by a function and generate pass to others * - Arrow `→`: target of arrow is generated by source * * {{{ * (from the other node) * ┌─────────────────────────────────────────────────────────[[InwardNode.uiParams]]─────────────┐ * ↓ │ * (binding node when elaboration) [[OutwardNode.uoParams]]────────────────────────[[MixedNode.mapParamsU]]→──────────┐ │ * [[InwardNode.accPI]] │ │ │ * │ │ (based on protocol) │ * │ │ [[MixedNode.inner.edgeI]] │ * │ │ ↓ │ * ↓ │ │ │ * (immobilize after elaboration) (inward port from [[OutwardNode]]) │ ↓ │ * [[InwardNode.iBindings]]──┐ [[MixedNode.iDirectPorts]]────────────────────→[[MixedNode.iPorts]] [[InwardNode.uiParams]] │ * │ │ ↑ │ │ │ * │ │ │ [[OutwardNode.doParams]] │ │ * │ │ │ (from the other node) │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * │ │ │ └────────┬──────────────┤ │ * │ │ │ │ │ │ * │ │ │ │ (based on protocol) │ * │ │ │ │ [[MixedNode.inner.edgeI]] │ * │ │ │ │ │ │ * │ │ (from the other node) │ ↓ │ * │ └───[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] │ [[MixedNode.edgesIn]]───┐ │ * │ ↑ ↑ │ │ ↓ │ * │ │ │ │ │ [[MixedNode.in]] │ * │ │ │ │ ↓ ↑ │ * │ (solve star connection) │ │ │ [[MixedNode.bundleIn]]──┘ │ * ├───[[MixedNode.resolveStar]]→─┼─────────────────────────────┤ └────────────────────────────────────┐ │ * │ │ │ [[MixedNode.bundleOut]]─┐ │ │ * │ │ │ ↑ ↓ │ │ * │ │ │ │ [[MixedNode.out]] │ │ * │ ↓ ↓ │ ↑ │ │ * │ ┌─────[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]──┘ │ │ * │ │ (from the other node) ↑ │ │ * │ │ │ │ │ │ * │ │ │ [[MixedNode.outer.edgeO]] │ │ * │ │ │ (based on protocol) │ │ * │ │ │ │ │ │ * │ │ │ ┌────────────────────────────────────────┤ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * (immobilize after elaboration)│ ↓ │ │ │ │ * [[OutwardNode.oBindings]]─┘ [[MixedNode.oDirectPorts]]───→[[MixedNode.oPorts]] [[OutwardNode.doParams]] │ │ * ↑ (inward port from [[OutwardNode]]) │ │ │ │ * │ ┌─────────────────────────────────────────┤ │ │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * [[OutwardNode.accPO]] │ ↓ │ │ │ * (binding node when elaboration) │ [[InwardNode.diParams]]─────→[[MixedNode.mapParamsD]]────────────────────────────┘ │ │ * │ ↑ │ │ * │ └──────────────────────────────────────────────────────────────────────────────────────────┘ │ * └──────────────────────────────────────────────────────────────────────────────────────────────────────────┘ * }}} */ abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data]( val inner: InwardNodeImp[DI, UI, EI, BI], val outer: OutwardNodeImp[DO, UO, EO, BO] )( implicit valName: ValName) extends BaseNode with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO] with InwardNode[DI, UI, BI] with OutwardNode[DO, UO, BO] { // Generate a [[NodeHandle]] with inward and outward node are both this node. val inward = this val outward = this /** Debug info of nodes binding. */ def bindingInfo: String = s"""$iBindingInfo |$oBindingInfo |""".stripMargin /** Debug info of ports connecting. */ def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}] |${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}] |""".stripMargin /** Debug info of parameters propagations. */ def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}] |${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}] |${diParams.size} downstream inward parameters: [${diParams.mkString(",")}] |${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}] |""".stripMargin /** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and * [[MixedNode.iPortMapping]]. * * Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward * stars and outward stars. * * This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type * of node. * * @param iKnown * Number of known-size ([[BIND_ONCE]]) input bindings. * @param oKnown * Number of known-size ([[BIND_ONCE]]) output bindings. * @param iStar * Number of unknown size ([[BIND_STAR]]) input bindings. * @param oStar * Number of unknown size ([[BIND_STAR]]) output bindings. * @return * A Tuple of the resolved number of input and output connections. */ protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int) /** Function to generate downward-flowing outward params from the downward-flowing input params and the current output * ports. * * @param n * The size of the output sequence to generate. * @param p * Sequence of downward-flowing input parameters of this node. * @return * A `n`-sized sequence of downward-flowing output edge parameters. */ protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO] /** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]]. * * @param n * Size of the output sequence. * @param p * Upward-flowing output edge parameters. * @return * A n-sized sequence of upward-flowing input edge parameters. */ protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI] /** @return * The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with * [[BIND_STAR]]. */ protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR) /** @return * The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of * output bindings bound with [[BIND_STAR]]. */ protected[diplomacy] lazy val sourceCard: Int = iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR) /** @return list of nodes involved in flex bindings with this node. */ protected[diplomacy] lazy val flexes: Seq[BaseNode] = oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2) /** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin * greedily taking up the remaining connections. * * @return * A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return * value is not relevant. */ protected[diplomacy] lazy val flexOffset: Int = { /** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex * operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a * connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of * each node in the current set and decide whether they should be added to the set or not. * * @return * the mapping of [[BaseNode]] indexed by their serial numbers. */ def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = { if (visited.contains(v.serial) || !v.flexibleArityDirection) { visited } else { v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum)) } } /** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node. * * @example * {{{ * a :*=* b :*=* c * d :*=* b * e :*=* f * }}} * * `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)` */ val flexSet = DFS(this, Map()).values /** The total number of :*= operators where we're on the left. */ val allSink = flexSet.map(_.sinkCard).sum /** The total number of :=* operators used when we're on the right. */ val allSource = flexSet.map(_.sourceCard).sum require( allSink == 0 || allSource == 0, s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction." ) allSink - allSource } /** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */ protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = { if (flexibleArityDirection) flexOffset else if (n.flexibleArityDirection) n.flexOffset else 0 } /** For a node which is connected between two nodes, select the one that will influence the direction of the flex * resolution. */ protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = { val dir = edgeArityDirection(n) if (dir < 0) l else if (dir > 0) r else 1 } /** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */ private var starCycleGuard = false /** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star" * connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also * need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct * edge parameters and later build up correct bundle connections. * * [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding * operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort * (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*= * bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N` */ protected[diplomacy] lazy val ( oPortMapping: Seq[(Int, Int)], iPortMapping: Seq[(Int, Int)], oStar: Int, iStar: Int ) = { try { if (starCycleGuard) throw StarCycleException() starCycleGuard = true // For a given node N... // Number of foo :=* N // + Number of bar :=* foo :*=* N val oStars = oBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0) } // Number of N :*= foo // + Number of N :*=* foo :*= bar val iStars = iBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0) } // 1 for foo := N // + bar.iStar for bar :*= foo :*=* N // + foo.iStar for foo :*= N // + 0 for foo :=* N val oKnown = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, 0, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => 0 } }.sum // 1 for N := foo // + bar.oStar for N :*=* foo :=* bar // + foo.oStar for N :=* foo // + 0 for N :*= foo val iKnown = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, 0) case BIND_QUERY => n.oStar case BIND_STAR => 0 } }.sum // Resolve star depends on the node subclass to implement the algorithm for this. val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars) // Cumulative list of resolved outward binding range starting points val oSum = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => oStar } }.scanLeft(0)(_ + _) // Cumulative list of resolved inward binding range starting points val iSum = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar) case BIND_QUERY => n.oStar case BIND_STAR => iStar } }.scanLeft(0)(_ + _) // Create ranges for each binding based on the running sums and return // those along with resolved values for the star operations. (oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar) } catch { case c: StarCycleException => throw c.copy(loop = context +: c.loop) } } /** Sequence of inward ports. * * This should be called after all star bindings are resolved. * * Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. * `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this * connection was made in the source code. */ protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oBindings.flatMap { case (i, n, _, p, s) => // for each binding operator in this node, look at what it connects to val (start, end) = n.iPortMapping(i) (start until end).map { j => (j, n, p, s) } } /** Sequence of outward ports. * * This should be called after all star bindings are resolved. * * `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of * outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection * was made in the source code. */ protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iBindings.flatMap { case (i, n, _, p, s) => // query this port index range of this node in the other side of node. val (start, end) = n.oPortMapping(i) (start until end).map { j => (j, n, p, s) } } // Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree // Thus, there must exist an Eulerian path and the below algorithms terminate @scala.annotation.tailrec private def oTrace( tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) ): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.iForward(i) match { case None => (i, n, p, s) case Some((j, m)) => oTrace((j, m, p, s)) } } @scala.annotation.tailrec private def iTrace( tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) ): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.oForward(i) match { case None => (i, n, p, s) case Some((j, m)) => iTrace((j, m, p, s)) } } /** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - Numeric index of this binding in the [[InwardNode]] on the other end. * - [[InwardNode]] on the other end of this binding. * - A view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace) /** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - numeric index of this binding in [[OutwardNode]] on the other end. * - [[OutwardNode]] on the other end of this binding. * - a view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace) private var oParamsCycleGuard = false protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) } protected[diplomacy] lazy val doParams: Seq[DO] = { try { if (oParamsCycleGuard) throw DownwardCycleException() oParamsCycleGuard = true val o = mapParamsD(oPorts.size, diParams) require( o.size == oPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of outward ports should equal the number of produced outward parameters. |$context |$connectedPortsInfo |Downstreamed inward parameters: [${diParams.mkString(",")}] |Produced outward parameters: [${o.mkString(",")}] |""".stripMargin ) o.map(outer.mixO(_, this)) } catch { case c: DownwardCycleException => throw c.copy(loop = context +: c.loop) } } private var iParamsCycleGuard = false protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) } protected[diplomacy] lazy val uiParams: Seq[UI] = { try { if (iParamsCycleGuard) throw UpwardCycleException() iParamsCycleGuard = true val i = mapParamsU(iPorts.size, uoParams) require( i.size == iPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of inward ports should equal the number of produced inward parameters. |$context |$connectedPortsInfo |Upstreamed outward parameters: [${uoParams.mkString(",")}] |Produced inward parameters: [${i.mkString(",")}] |""".stripMargin ) i.map(inner.mixI(_, this)) } catch { case c: UpwardCycleException => throw c.copy(loop = context +: c.loop) } } /** Outward edge parameters. */ protected[diplomacy] lazy val edgesOut: Seq[EO] = (oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) } /** Inward edge parameters. */ protected[diplomacy] lazy val edgesIn: Seq[EI] = (iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) } /** A tuple of the input edge parameters and output edge parameters for the edges bound to this node. * * If you need to access to the edges of a foreign Node, use this method (in/out create bundles). */ lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut) /** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */ protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e => val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } /** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */ protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e => val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(serial, i), sink = HalfEdge(n.serial, j), flipped = false, name = wirePrefix + "out", dataOpt = None ) } private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(n.serial, j), sink = HalfEdge(serial, i), flipped = true, name = wirePrefix + "in", dataOpt = None ) } /** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */ protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleOut(i))) } /** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */ protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleIn(i))) } private[diplomacy] var instantiated = false /** Gather Bundle and edge parameters of outward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def out: Seq[(BO, EO)] = { require( instantiated, s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleOut.zip(edgesOut) } /** Gather Bundle and edge parameters of inward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def in: Seq[(BI, EI)] = { require( instantiated, s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleIn.zip(edgesIn) } /** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires, * instantiate monitors on all input ports if appropriate, and return all the dangles of this node. */ protected[diplomacy] def instantiate(): Seq[Dangle] = { instantiated = true if (!circuitIdentity) { (iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) } } danglesOut ++ danglesIn } protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn /** Connects the outward part of a node with the inward part of this node. */ protected[diplomacy] def bind( h: OutwardNode[DI, UI, BI], binding: NodeBinding )( implicit p: Parameters, sourceInfo: SourceInfo ): Unit = { val x = this // x := y val y = h sourceLine(sourceInfo, " at ", "") val i = x.iPushed val o = y.oPushed y.oPush( i, x, binding match { case BIND_ONCE => BIND_ONCE case BIND_FLEX => BIND_FLEX case BIND_STAR => BIND_QUERY case BIND_QUERY => BIND_STAR } ) x.iPush(o, y, binding) } /* Metadata for printing the node graph. */ def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) => val re = inner.render(e) (n, re.copy(flipped = re.flipped != p(RenderFlipped))) } /** Metadata for printing the node graph */ def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) } }
module TLFragmenter_LLCCtrl( // @[Fragmenter.scala:92:9] input clock, // @[Fragmenter.scala:92:9] input reset, // @[Fragmenter.scala:92:9] output auto_anon_in_a_ready, // @[LazyModuleImp.scala:107:25] input auto_anon_in_a_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_anon_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25] input [2:0] auto_anon_in_a_bits_param, // @[LazyModuleImp.scala:107:25] input [2:0] auto_anon_in_a_bits_size, // @[LazyModuleImp.scala:107:25] input [8:0] auto_anon_in_a_bits_source, // @[LazyModuleImp.scala:107:25] input [25:0] auto_anon_in_a_bits_address, // @[LazyModuleImp.scala:107:25] input [7:0] auto_anon_in_a_bits_mask, // @[LazyModuleImp.scala:107:25] input [63:0] auto_anon_in_a_bits_data, // @[LazyModuleImp.scala:107:25] input auto_anon_in_a_bits_corrupt, // @[LazyModuleImp.scala:107:25] input auto_anon_in_d_ready, // @[LazyModuleImp.scala:107:25] output auto_anon_in_d_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_anon_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25] output [1:0] auto_anon_in_d_bits_param, // @[LazyModuleImp.scala:107:25] output [2:0] auto_anon_in_d_bits_size, // @[LazyModuleImp.scala:107:25] output [8:0] auto_anon_in_d_bits_source, // @[LazyModuleImp.scala:107:25] output auto_anon_in_d_bits_sink, // @[LazyModuleImp.scala:107:25] output auto_anon_in_d_bits_denied, // @[LazyModuleImp.scala:107:25] output [63:0] auto_anon_in_d_bits_data, // @[LazyModuleImp.scala:107:25] output auto_anon_in_d_bits_corrupt, // @[LazyModuleImp.scala:107:25] input auto_anon_out_a_ready, // @[LazyModuleImp.scala:107:25] output auto_anon_out_a_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_anon_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25] output [2:0] auto_anon_out_a_bits_param, // @[LazyModuleImp.scala:107:25] output [1:0] auto_anon_out_a_bits_size, // @[LazyModuleImp.scala:107:25] output [12:0] auto_anon_out_a_bits_source, // @[LazyModuleImp.scala:107:25] output [25:0] auto_anon_out_a_bits_address, // @[LazyModuleImp.scala:107:25] output [7:0] auto_anon_out_a_bits_mask, // @[LazyModuleImp.scala:107:25] output [63:0] auto_anon_out_a_bits_data, // @[LazyModuleImp.scala:107:25] output auto_anon_out_a_bits_corrupt, // @[LazyModuleImp.scala:107:25] output auto_anon_out_d_ready, // @[LazyModuleImp.scala:107:25] input auto_anon_out_d_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_anon_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25] input [1:0] auto_anon_out_d_bits_param, // @[LazyModuleImp.scala:107:25] input [1:0] auto_anon_out_d_bits_size, // @[LazyModuleImp.scala:107:25] input [12:0] auto_anon_out_d_bits_source, // @[LazyModuleImp.scala:107:25] input auto_anon_out_d_bits_sink, // @[LazyModuleImp.scala:107:25] input auto_anon_out_d_bits_denied, // @[LazyModuleImp.scala:107:25] input [63:0] auto_anon_out_d_bits_data, // @[LazyModuleImp.scala:107:25] input auto_anon_out_d_bits_corrupt // @[LazyModuleImp.scala:107:25] ); wire _repeater_io_full; // @[Fragmenter.scala:274:30] wire [2:0] _repeater_io_deq_bits_opcode; // @[Fragmenter.scala:274:30] wire [2:0] _repeater_io_deq_bits_size; // @[Fragmenter.scala:274:30] wire [8:0] _repeater_io_deq_bits_source; // @[Fragmenter.scala:274:30] wire [25:0] _repeater_io_deq_bits_address; // @[Fragmenter.scala:274:30] wire [7:0] _repeater_io_deq_bits_mask; // @[Fragmenter.scala:274:30] wire auto_anon_in_a_valid_0 = auto_anon_in_a_valid; // @[Fragmenter.scala:92:9] wire [2:0] auto_anon_in_a_bits_opcode_0 = auto_anon_in_a_bits_opcode; // @[Fragmenter.scala:92:9] wire [2:0] auto_anon_in_a_bits_param_0 = auto_anon_in_a_bits_param; // @[Fragmenter.scala:92:9] wire [2:0] auto_anon_in_a_bits_size_0 = auto_anon_in_a_bits_size; // @[Fragmenter.scala:92:9] wire [8:0] auto_anon_in_a_bits_source_0 = auto_anon_in_a_bits_source; // @[Fragmenter.scala:92:9] wire [25:0] auto_anon_in_a_bits_address_0 = auto_anon_in_a_bits_address; // @[Fragmenter.scala:92:9] wire [7:0] auto_anon_in_a_bits_mask_0 = auto_anon_in_a_bits_mask; // @[Fragmenter.scala:92:9] wire [63:0] auto_anon_in_a_bits_data_0 = auto_anon_in_a_bits_data; // @[Fragmenter.scala:92:9] wire auto_anon_in_a_bits_corrupt_0 = auto_anon_in_a_bits_corrupt; // @[Fragmenter.scala:92:9] wire auto_anon_in_d_ready_0 = auto_anon_in_d_ready; // @[Fragmenter.scala:92:9] wire auto_anon_out_a_ready_0 = auto_anon_out_a_ready; // @[Fragmenter.scala:92:9] wire auto_anon_out_d_valid_0 = auto_anon_out_d_valid; // @[Fragmenter.scala:92:9] wire [2:0] auto_anon_out_d_bits_opcode_0 = auto_anon_out_d_bits_opcode; // @[Fragmenter.scala:92:9] wire [1:0] auto_anon_out_d_bits_param_0 = auto_anon_out_d_bits_param; // @[Fragmenter.scala:92:9] wire [1:0] auto_anon_out_d_bits_size_0 = auto_anon_out_d_bits_size; // @[Fragmenter.scala:92:9] wire [12:0] auto_anon_out_d_bits_source_0 = auto_anon_out_d_bits_source; // @[Fragmenter.scala:92:9] wire auto_anon_out_d_bits_sink_0 = auto_anon_out_d_bits_sink; // @[Fragmenter.scala:92:9] wire auto_anon_out_d_bits_denied_0 = auto_anon_out_d_bits_denied; // @[Fragmenter.scala:92:9] wire [63:0] auto_anon_out_d_bits_data_0 = auto_anon_out_d_bits_data; // @[Fragmenter.scala:92:9] wire auto_anon_out_d_bits_corrupt_0 = auto_anon_out_d_bits_corrupt; // @[Fragmenter.scala:92:9] wire acknum_size = 1'h0; // @[Fragmenter.scala:213:36] wire _dFirst_acknum_T = 1'h0; // @[Fragmenter.scala:215:50] wire _new_gennum_T_1 = 1'h0; // @[Fragmenter.scala:306:50] wire _aFragnum_T_2 = 1'h0; // @[Fragmenter.scala:307:84] wire [1:0] _limit_T_1 = 2'h3; // @[Fragmenter.scala:288:49] wire [1:0] _limit_T_3 = 2'h3; // @[Fragmenter.scala:288:49] wire [1:0] _limit_T_5 = 2'h3; // @[Fragmenter.scala:288:49] wire [1:0] _limit_T_7 = 2'h3; // @[Fragmenter.scala:288:49] wire [1:0] _limit_T_9 = 2'h3; // @[Fragmenter.scala:288:49] wire [1:0] limit = 2'h3; // @[Fragmenter.scala:288:49] wire _find_T_4 = 1'h1; // @[Parameters.scala:137:59] wire find_0 = 1'h1; // @[Parameters.scala:616:12] wire [26:0] _find_T_2 = 27'h0; // @[Parameters.scala:137:46] wire [26:0] _find_T_3 = 27'h0; // @[Parameters.scala:137:46] wire anonIn_a_ready; // @[MixedNode.scala:551:17] wire anonIn_a_valid = auto_anon_in_a_valid_0; // @[Fragmenter.scala:92:9] wire [2:0] anonIn_a_bits_opcode = auto_anon_in_a_bits_opcode_0; // @[Fragmenter.scala:92:9] wire [2:0] anonIn_a_bits_param = auto_anon_in_a_bits_param_0; // @[Fragmenter.scala:92:9] wire [2:0] anonIn_a_bits_size = auto_anon_in_a_bits_size_0; // @[Fragmenter.scala:92:9] wire [8:0] anonIn_a_bits_source = auto_anon_in_a_bits_source_0; // @[Fragmenter.scala:92:9] wire [25:0] anonIn_a_bits_address = auto_anon_in_a_bits_address_0; // @[Fragmenter.scala:92:9] wire [7:0] anonIn_a_bits_mask = auto_anon_in_a_bits_mask_0; // @[Fragmenter.scala:92:9] wire [63:0] anonIn_a_bits_data = auto_anon_in_a_bits_data_0; // @[Fragmenter.scala:92:9] wire anonIn_a_bits_corrupt = auto_anon_in_a_bits_corrupt_0; // @[Fragmenter.scala:92:9] wire anonIn_d_ready = auto_anon_in_d_ready_0; // @[Fragmenter.scala:92:9] wire anonIn_d_valid; // @[MixedNode.scala:551:17] wire [2:0] anonIn_d_bits_opcode; // @[MixedNode.scala:551:17] wire [1:0] anonIn_d_bits_param; // @[MixedNode.scala:551:17] wire [2:0] anonIn_d_bits_size; // @[MixedNode.scala:551:17] wire [8:0] anonIn_d_bits_source; // @[MixedNode.scala:551:17] wire anonIn_d_bits_sink; // @[MixedNode.scala:551:17] wire anonIn_d_bits_denied; // @[MixedNode.scala:551:17] wire [63:0] anonIn_d_bits_data; // @[MixedNode.scala:551:17] wire anonIn_d_bits_corrupt; // @[MixedNode.scala:551:17] wire anonOut_a_ready = auto_anon_out_a_ready_0; // @[Fragmenter.scala:92:9] wire anonOut_a_valid; // @[MixedNode.scala:542:17] wire [2:0] anonOut_a_bits_opcode; // @[MixedNode.scala:542:17] wire [2:0] anonOut_a_bits_param; // @[MixedNode.scala:542:17] wire [1:0] anonOut_a_bits_size; // @[MixedNode.scala:542:17] wire [12:0] anonOut_a_bits_source; // @[MixedNode.scala:542:17] wire [25:0] anonOut_a_bits_address; // @[MixedNode.scala:542:17] wire [7:0] anonOut_a_bits_mask; // @[MixedNode.scala:542:17] wire [63:0] anonOut_a_bits_data; // @[MixedNode.scala:542:17] wire anonOut_a_bits_corrupt; // @[MixedNode.scala:542:17] wire anonOut_d_ready; // @[MixedNode.scala:542:17] wire anonOut_d_valid = auto_anon_out_d_valid_0; // @[Fragmenter.scala:92:9] wire [2:0] anonOut_d_bits_opcode = auto_anon_out_d_bits_opcode_0; // @[Fragmenter.scala:92:9] wire [1:0] anonOut_d_bits_param = auto_anon_out_d_bits_param_0; // @[Fragmenter.scala:92:9] wire [1:0] anonOut_d_bits_size = auto_anon_out_d_bits_size_0; // @[Fragmenter.scala:92:9] wire [12:0] anonOut_d_bits_source = auto_anon_out_d_bits_source_0; // @[Fragmenter.scala:92:9] wire anonOut_d_bits_sink = auto_anon_out_d_bits_sink_0; // @[Fragmenter.scala:92:9] wire anonOut_d_bits_denied = auto_anon_out_d_bits_denied_0; // @[Fragmenter.scala:92:9] wire [63:0] anonOut_d_bits_data = auto_anon_out_d_bits_data_0; // @[Fragmenter.scala:92:9] wire anonOut_d_bits_corrupt = auto_anon_out_d_bits_corrupt_0; // @[Fragmenter.scala:92:9] wire auto_anon_in_a_ready_0; // @[Fragmenter.scala:92:9] wire [2:0] auto_anon_in_d_bits_opcode_0; // @[Fragmenter.scala:92:9] wire [1:0] auto_anon_in_d_bits_param_0; // @[Fragmenter.scala:92:9] wire [2:0] auto_anon_in_d_bits_size_0; // @[Fragmenter.scala:92:9] wire [8:0] auto_anon_in_d_bits_source_0; // @[Fragmenter.scala:92:9] wire auto_anon_in_d_bits_sink_0; // @[Fragmenter.scala:92:9] wire auto_anon_in_d_bits_denied_0; // @[Fragmenter.scala:92:9] wire [63:0] auto_anon_in_d_bits_data_0; // @[Fragmenter.scala:92:9] wire auto_anon_in_d_bits_corrupt_0; // @[Fragmenter.scala:92:9] wire auto_anon_in_d_valid_0; // @[Fragmenter.scala:92:9] wire [2:0] auto_anon_out_a_bits_opcode_0; // @[Fragmenter.scala:92:9] wire [2:0] auto_anon_out_a_bits_param_0; // @[Fragmenter.scala:92:9] wire [1:0] auto_anon_out_a_bits_size_0; // @[Fragmenter.scala:92:9] wire [12:0] auto_anon_out_a_bits_source_0; // @[Fragmenter.scala:92:9] wire [25:0] auto_anon_out_a_bits_address_0; // @[Fragmenter.scala:92:9] wire [7:0] auto_anon_out_a_bits_mask_0; // @[Fragmenter.scala:92:9] wire [63:0] auto_anon_out_a_bits_data_0; // @[Fragmenter.scala:92:9] wire auto_anon_out_a_bits_corrupt_0; // @[Fragmenter.scala:92:9] wire auto_anon_out_a_valid_0; // @[Fragmenter.scala:92:9] wire auto_anon_out_d_ready_0; // @[Fragmenter.scala:92:9] assign auto_anon_in_a_ready_0 = anonIn_a_ready; // @[Fragmenter.scala:92:9] assign anonOut_a_bits_data = anonIn_a_bits_data; // @[MixedNode.scala:542:17, :551:17] wire _anonIn_d_valid_T_1; // @[Fragmenter.scala:236:36] assign auto_anon_in_d_valid_0 = anonIn_d_valid; // @[Fragmenter.scala:92:9] assign auto_anon_in_d_bits_opcode_0 = anonIn_d_bits_opcode; // @[Fragmenter.scala:92:9] assign auto_anon_in_d_bits_param_0 = anonIn_d_bits_param; // @[Fragmenter.scala:92:9] wire [2:0] _anonIn_d_bits_size_T; // @[Fragmenter.scala:239:32] assign auto_anon_in_d_bits_size_0 = anonIn_d_bits_size; // @[Fragmenter.scala:92:9] wire [8:0] _anonIn_d_bits_source_T; // @[Fragmenter.scala:238:47] assign auto_anon_in_d_bits_source_0 = anonIn_d_bits_source; // @[Fragmenter.scala:92:9] assign auto_anon_in_d_bits_sink_0 = anonIn_d_bits_sink; // @[Fragmenter.scala:92:9] assign auto_anon_in_d_bits_denied_0 = anonIn_d_bits_denied; // @[Fragmenter.scala:92:9] assign auto_anon_in_d_bits_data_0 = anonIn_d_bits_data; // @[Fragmenter.scala:92:9] assign auto_anon_in_d_bits_corrupt_0 = anonIn_d_bits_corrupt; // @[Fragmenter.scala:92:9] assign auto_anon_out_a_valid_0 = anonOut_a_valid; // @[Fragmenter.scala:92:9] assign auto_anon_out_a_bits_opcode_0 = anonOut_a_bits_opcode; // @[Fragmenter.scala:92:9] assign auto_anon_out_a_bits_param_0 = anonOut_a_bits_param; // @[Fragmenter.scala:92:9] assign auto_anon_out_a_bits_size_0 = anonOut_a_bits_size; // @[Fragmenter.scala:92:9] wire [12:0] _anonOut_a_bits_source_T; // @[Fragmenter.scala:317:33] assign auto_anon_out_a_bits_source_0 = anonOut_a_bits_source; // @[Fragmenter.scala:92:9] wire [25:0] _anonOut_a_bits_address_T_6; // @[Fragmenter.scala:316:49] assign auto_anon_out_a_bits_address_0 = anonOut_a_bits_address; // @[Fragmenter.scala:92:9] wire [7:0] _anonOut_a_bits_mask_T; // @[Fragmenter.scala:325:31] assign auto_anon_out_a_bits_mask_0 = anonOut_a_bits_mask; // @[Fragmenter.scala:92:9] assign auto_anon_out_a_bits_data_0 = anonOut_a_bits_data; // @[Fragmenter.scala:92:9] assign auto_anon_out_a_bits_corrupt_0 = anonOut_a_bits_corrupt; // @[Fragmenter.scala:92:9] wire _anonOut_d_ready_T; // @[Fragmenter.scala:235:35] assign auto_anon_out_d_ready_0 = anonOut_d_ready; // @[Fragmenter.scala:92:9] assign anonIn_d_bits_opcode = anonOut_d_bits_opcode; // @[MixedNode.scala:542:17, :551:17] assign anonIn_d_bits_param = anonOut_d_bits_param; // @[MixedNode.scala:542:17, :551:17] wire [1:0] dsizeOH_shiftAmount = anonOut_d_bits_size; // @[OneHot.scala:64:49] assign anonIn_d_bits_sink = anonOut_d_bits_sink; // @[MixedNode.scala:542:17, :551:17] assign anonIn_d_bits_denied = anonOut_d_bits_denied; // @[MixedNode.scala:542:17, :551:17] assign anonIn_d_bits_data = anonOut_d_bits_data; // @[MixedNode.scala:542:17, :551:17] assign anonIn_d_bits_corrupt = anonOut_d_bits_corrupt; // @[MixedNode.scala:542:17, :551:17] reg [2:0] acknum; // @[Fragmenter.scala:201:29] reg [2:0] dOrig; // @[Fragmenter.scala:202:24] reg dToggle; // @[Fragmenter.scala:203:30] wire [2:0] dFragnum = anonOut_d_bits_source[2:0]; // @[Fragmenter.scala:204:41] wire [2:0] acknum_fragment = dFragnum; // @[Fragmenter.scala:204:41, :212:40] wire dFirst = acknum == 3'h0; // @[Fragmenter.scala:201:29, :205:29] wire dLast = dFragnum == 3'h0; // @[Fragmenter.scala:204:41, :206:30] wire _drop_T_1 = dLast; // @[Fragmenter.scala:206:30, :234:37] wire [3:0] _dsizeOH_T = 4'h1 << dsizeOH_shiftAmount; // @[OneHot.scala:64:49, :65:12] wire [3:0] dsizeOH = _dsizeOH_T; // @[OneHot.scala:65:{12,27}] wire [5:0] _dsizeOH1_T = 6'h7 << anonOut_d_bits_size; // @[package.scala:243:71] wire [2:0] _dsizeOH1_T_1 = _dsizeOH1_T[2:0]; // @[package.scala:243:{71,76}] wire [2:0] dsizeOH1 = ~_dsizeOH1_T_1; // @[package.scala:243:{46,76}] wire dHasData = anonOut_d_bits_opcode[0]; // @[Edges.scala:106:36] wire [2:0] dFirst_acknum = acknum_fragment; // @[Fragmenter.scala:212:40, :215:45] wire _ack_decrement_T = dsizeOH[3]; // @[OneHot.scala:65:27] wire ack_decrement = dHasData | _ack_decrement_T; // @[Fragmenter.scala:216:{32,56}] wire [5:0] _dFirst_size_T = {dFragnum, 3'h0}; // @[Fragmenter.scala:204:41, :218:47] wire [5:0] _dFirst_size_T_1 = {_dFirst_size_T[5:3], _dFirst_size_T[2:0] | dsizeOH1}; // @[package.scala:243:46] wire [6:0] _dFirst_size_T_2 = {_dFirst_size_T_1, 1'h0}; // @[package.scala:241:35] wire [6:0] _dFirst_size_T_3 = {_dFirst_size_T_2[6:1], 1'h1}; // @[package.scala:241:{35,40}] wire [6:0] _dFirst_size_T_4 = {1'h0, _dFirst_size_T_1}; // @[package.scala:241:53] wire [6:0] _dFirst_size_T_5 = ~_dFirst_size_T_4; // @[package.scala:241:{49,53}] wire [6:0] _dFirst_size_T_6 = _dFirst_size_T_3 & _dFirst_size_T_5; // @[package.scala:241:{40,47,49}] wire [2:0] dFirst_size_hi = _dFirst_size_T_6[6:4]; // @[OneHot.scala:30:18] wire [3:0] dFirst_size_lo = _dFirst_size_T_6[3:0]; // @[OneHot.scala:31:18] wire _dFirst_size_T_7 = |dFirst_size_hi; // @[OneHot.scala:30:18, :32:14] wire [3:0] _dFirst_size_T_8 = {1'h0, dFirst_size_hi} | dFirst_size_lo; // @[OneHot.scala:30:18, :31:18, :32:28] wire [1:0] dFirst_size_hi_1 = _dFirst_size_T_8[3:2]; // @[OneHot.scala:30:18, :32:28] wire [1:0] dFirst_size_lo_1 = _dFirst_size_T_8[1:0]; // @[OneHot.scala:31:18, :32:28] wire _dFirst_size_T_9 = |dFirst_size_hi_1; // @[OneHot.scala:30:18, :32:14] wire [1:0] _dFirst_size_T_10 = dFirst_size_hi_1 | dFirst_size_lo_1; // @[OneHot.scala:30:18, :31:18, :32:28] wire _dFirst_size_T_11 = _dFirst_size_T_10[1]; // @[OneHot.scala:32:28] wire [1:0] _dFirst_size_T_12 = {_dFirst_size_T_9, _dFirst_size_T_11}; // @[OneHot.scala:32:{10,14}] wire [2:0] dFirst_size = {_dFirst_size_T_7, _dFirst_size_T_12}; // @[OneHot.scala:32:{10,14}] wire [3:0] _acknum_T = {1'h0, acknum} - {3'h0, ack_decrement}; // @[Fragmenter.scala:201:29, :216:32, :221:55] wire [2:0] _acknum_T_1 = _acknum_T[2:0]; // @[Fragmenter.scala:221:55] wire [2:0] _acknum_T_2 = dFirst ? dFirst_acknum : _acknum_T_1; // @[Fragmenter.scala:205:29, :215:45, :221:{24,55}] wire _dToggle_T = anonOut_d_bits_source[3]; // @[Fragmenter.scala:224:41] wire _drop_T = ~dHasData; // @[Fragmenter.scala:234:20] wire _drop_T_2 = ~_drop_T_1; // @[Fragmenter.scala:234:{33,37}] wire drop = _drop_T & _drop_T_2; // @[Fragmenter.scala:234:{20,30,33}] assign _anonOut_d_ready_T = anonIn_d_ready | drop; // @[Fragmenter.scala:234:30, :235:35] assign anonOut_d_ready = _anonOut_d_ready_T; // @[Fragmenter.scala:235:35] wire _anonIn_d_valid_T = ~drop; // @[Fragmenter.scala:234:30, :236:39] assign _anonIn_d_valid_T_1 = anonOut_d_valid & _anonIn_d_valid_T; // @[Fragmenter.scala:236:{36,39}] assign anonIn_d_valid = _anonIn_d_valid_T_1; // @[Fragmenter.scala:236:36] assign _anonIn_d_bits_source_T = anonOut_d_bits_source[12:4]; // @[Fragmenter.scala:238:47] assign anonIn_d_bits_source = _anonIn_d_bits_source_T; // @[Fragmenter.scala:238:47] assign _anonIn_d_bits_size_T = dFirst ? dFirst_size : dOrig; // @[OneHot.scala:32:10] assign anonIn_d_bits_size = _anonIn_d_bits_size_T; // @[Fragmenter.scala:239:32] wire [25:0] _find_T; // @[Parameters.scala:137:31] wire [26:0] _find_T_1 = {1'h0, _find_T}; // @[Parameters.scala:137:{31,41}] wire _limit_T = _repeater_io_deq_bits_opcode == 3'h0; // @[Fragmenter.scala:274:30, :288:49] wire _limit_T_2 = _repeater_io_deq_bits_opcode == 3'h1; // @[Fragmenter.scala:274:30, :288:49] wire _limit_T_4 = _repeater_io_deq_bits_opcode == 3'h2; // @[Fragmenter.scala:274:30, :288:49] wire _limit_T_6 = _repeater_io_deq_bits_opcode == 3'h3; // @[Fragmenter.scala:274:30, :288:49] wire _limit_T_8 = _repeater_io_deq_bits_opcode == 3'h4; // @[Fragmenter.scala:274:30, :288:49] wire _limit_T_10 = _repeater_io_deq_bits_opcode == 3'h5; // @[Fragmenter.scala:274:30, :288:49] wire _aFrag_T = _repeater_io_deq_bits_size[2]; // @[Fragmenter.scala:274:30, :297:31] wire [2:0] aFrag = _aFrag_T ? 3'h3 : _repeater_io_deq_bits_size; // @[Fragmenter.scala:274:30, :297:{24,31}] wire [12:0] _aOrigOH1_T = 13'h3F << _repeater_io_deq_bits_size; // @[package.scala:243:71] wire [5:0] _aOrigOH1_T_1 = _aOrigOH1_T[5:0]; // @[package.scala:243:{71,76}] wire [5:0] aOrigOH1 = ~_aOrigOH1_T_1; // @[package.scala:243:{46,76}] wire [9:0] _aFragOH1_T = 10'h7 << aFrag; // @[package.scala:243:71] wire [2:0] _aFragOH1_T_1 = _aFragOH1_T[2:0]; // @[package.scala:243:{71,76}] wire [2:0] aFragOH1 = ~_aFragOH1_T_1; // @[package.scala:243:{46,76}] wire _aHasData_opdata_T = _repeater_io_deq_bits_opcode[2]; // @[Fragmenter.scala:274:30] wire aHasData = ~_aHasData_opdata_T; // @[Edges.scala:92:{28,37}] wire [2:0] aMask = aHasData ? 3'h0 : aFragOH1; // @[package.scala:243:46] reg [2:0] gennum; // @[Fragmenter.scala:303:29] wire aFirst = gennum == 3'h0; // @[Fragmenter.scala:303:29, :304:29] wire [2:0] _old_gennum1_T = aOrigOH1[5:3]; // @[package.scala:243:46] wire [3:0] _old_gennum1_T_1 = {1'h0, gennum} - 4'h1; // @[Fragmenter.scala:303:29, :305:79] wire [2:0] _old_gennum1_T_2 = _old_gennum1_T_1[2:0]; // @[Fragmenter.scala:305:79] wire [2:0] old_gennum1 = aFirst ? _old_gennum1_T : _old_gennum1_T_2; // @[Fragmenter.scala:304:29, :305:{30,48,79}] wire [2:0] _aFragnum_T = old_gennum1; // @[Fragmenter.scala:305:30, :307:40] wire [2:0] _new_gennum_T = ~old_gennum1; // @[Fragmenter.scala:305:30, :306:28] wire [2:0] _new_gennum_T_2 = _new_gennum_T; // @[Fragmenter.scala:306:{28,41}] wire [2:0] new_gennum = ~_new_gennum_T_2; // @[Fragmenter.scala:306:{26,41}] wire [2:0] _aFragnum_T_1 = ~_aFragnum_T; // @[Fragmenter.scala:307:{26,40}] wire [2:0] _aFragnum_T_3 = _aFragnum_T_1; // @[Fragmenter.scala:307:{26,72}] wire [2:0] aFragnum = ~_aFragnum_T_3; // @[Fragmenter.scala:307:{24,72}] wire aLast = ~(|aFragnum); // @[Fragmenter.scala:307:24, :308:30] reg aToggle_r; // @[Fragmenter.scala:309:54] wire _aToggle_T = aFirst ? dToggle : aToggle_r; // @[Fragmenter.scala:203:30, :304:29, :309:{27,54}] wire aToggle = ~_aToggle_T; // @[Fragmenter.scala:309:{23,27}] wire _repeater_io_repeat_T = ~aHasData; // @[Fragmenter.scala:314:31] wire _repeater_io_repeat_T_1 = |aFragnum; // @[Fragmenter.scala:307:24, :308:30, :314:53] wire _repeater_io_repeat_T_2 = _repeater_io_repeat_T & _repeater_io_repeat_T_1; // @[Fragmenter.scala:314:{31,41,53}] wire [5:0] _anonOut_a_bits_address_T = {old_gennum1, 3'h0}; // @[Fragmenter.scala:305:30, :316:65] wire [5:0] _anonOut_a_bits_address_T_1 = ~aOrigOH1; // @[package.scala:243:46] wire [5:0] _anonOut_a_bits_address_T_2 = _anonOut_a_bits_address_T | _anonOut_a_bits_address_T_1; // @[Fragmenter.scala:316:{65,88,90}] wire [5:0] _anonOut_a_bits_address_T_3 = {_anonOut_a_bits_address_T_2[5:3], _anonOut_a_bits_address_T_2[2:0] | aFragOH1}; // @[package.scala:243:46] wire [5:0] _anonOut_a_bits_address_T_4 = {_anonOut_a_bits_address_T_3[5:3], 3'h7}; // @[Fragmenter.scala:316:{100,111}] wire [5:0] _anonOut_a_bits_address_T_5 = ~_anonOut_a_bits_address_T_4; // @[Fragmenter.scala:316:{51,111}] assign _anonOut_a_bits_address_T_6 = {_repeater_io_deq_bits_address[25:6], _repeater_io_deq_bits_address[5:0] | _anonOut_a_bits_address_T_5}; // @[Fragmenter.scala:274:30, :316:{49,51}] assign anonOut_a_bits_address = _anonOut_a_bits_address_T_6; // @[Fragmenter.scala:316:49] wire [9:0] anonOut_a_bits_source_hi = {_repeater_io_deq_bits_source, aToggle}; // @[Fragmenter.scala:274:30, :309:23, :317:33] assign _anonOut_a_bits_source_T = {anonOut_a_bits_source_hi, aFragnum}; // @[Fragmenter.scala:307:24, :317:33] assign anonOut_a_bits_source = _anonOut_a_bits_source_T; // @[Fragmenter.scala:317:33] assign anonOut_a_bits_size = aFrag[1:0]; // @[Fragmenter.scala:297:24, :318:25]
Generate the Verilog code corresponding to the following Chisel files. File TilelinkAdapters.scala: package constellation.protocol import chisel3._ import chisel3.util._ import constellation.channel._ import constellation.noc._ import constellation.soc.{CanAttachToGlobalNoC} import org.chipsalliance.cde.config._ import freechips.rocketchip.diplomacy._ import freechips.rocketchip.util._ import freechips.rocketchip.tilelink._ import scala.collection.immutable.{ListMap} abstract class TLChannelToNoC[T <: TLChannel](gen: => T, edge: TLEdge, idToEgress: Int => Int)(implicit val p: Parameters) extends Module with TLFieldHelper { val flitWidth = minTLPayloadWidth(gen) val io = IO(new Bundle { val protocol = Flipped(Decoupled(gen)) val flit = Decoupled(new IngressFlit(flitWidth)) }) def unique(x: Vector[Boolean]): Bool = (x.filter(x=>x).size <= 1).B // convert decoupled to irrevocable val q = Module(new Queue(gen, 1, pipe=true, flow=true)) val protocol = q.io.deq val has_body = Wire(Bool()) val body_fields = getBodyFields(protocol.bits) val const_fields = getConstFields(protocol.bits) val head = edge.first(protocol.bits, protocol.fire) val tail = edge.last(protocol.bits, protocol.fire) def requestOH: Seq[Bool] val body = Cat( body_fields.filter(_.getWidth > 0).map(_.asUInt)) val const = Cat(const_fields.filter(_.getWidth > 0).map(_.asUInt)) val is_body = RegInit(false.B) io.flit.valid := protocol.valid protocol.ready := io.flit.ready && (is_body || !has_body) io.flit.bits.head := head && !is_body io.flit.bits.tail := tail && (is_body || !has_body) io.flit.bits.egress_id := Mux1H(requestOH.zipWithIndex.map { case (r, i) => r -> idToEgress(i).U }) io.flit.bits.payload := Mux(is_body, body, const) when (io.flit.fire && io.flit.bits.head) { is_body := true.B } when (io.flit.fire && io.flit.bits.tail) { is_body := false.B } } abstract class TLChannelFromNoC[T <: TLChannel](gen: => T)(implicit val p: Parameters) extends Module with TLFieldHelper { val flitWidth = minTLPayloadWidth(gen) val io = IO(new Bundle { val protocol = Decoupled(gen) val flit = Flipped(Decoupled(new EgressFlit(flitWidth))) }) // Handle size = 1 gracefully (Chisel3 empty range is broken) def trim(id: UInt, size: Int): UInt = if (size <= 1) 0.U else id(log2Ceil(size)-1, 0) val protocol = Wire(Decoupled(gen)) val body_fields = getBodyFields(protocol.bits) val const_fields = getConstFields(protocol.bits) val is_const = RegInit(true.B) val const_reg = Reg(UInt(const_fields.map(_.getWidth).sum.W)) val const = Mux(io.flit.bits.head, io.flit.bits.payload, const_reg) io.flit.ready := (is_const && !io.flit.bits.tail) || protocol.ready protocol.valid := (!is_const || io.flit.bits.tail) && io.flit.valid def assign(i: UInt, sigs: Seq[Data]) = { var t = i for (s <- sigs.reverse) { s := t.asTypeOf(s.cloneType) t = t >> s.getWidth } } assign(const, const_fields) assign(io.flit.bits.payload, body_fields) when (io.flit.fire && io.flit.bits.head) { is_const := false.B; const_reg := io.flit.bits.payload } when (io.flit.fire && io.flit.bits.tail) { is_const := true.B } } trait HasAddressDecoder { // Filter a list to only those elements selected def filter[T](data: Seq[T], mask: Seq[Boolean]) = (data zip mask).filter(_._2).map(_._1) val edgeIn: TLEdge val edgesOut: Seq[TLEdge] lazy val reacheableIO = edgesOut.map { mp => edgeIn.client.clients.exists { c => mp.manager.managers.exists { m => c.visibility.exists { ca => m.address.exists { ma => ca.overlaps(ma) }} }} }.toVector lazy val releaseIO = (edgesOut zip reacheableIO).map { case (mp, reachable) => reachable && edgeIn.client.anySupportProbe && mp.manager.anySupportAcquireB }.toVector def outputPortFn(connectIO: Seq[Boolean]) = { val port_addrs = edgesOut.map(_.manager.managers.flatMap(_.address)) val routingMask = AddressDecoder(filter(port_addrs, connectIO)) val route_addrs = port_addrs.map(seq => AddressSet.unify(seq.map(_.widen(~routingMask)).distinct)) route_addrs.map(seq => (addr: UInt) => seq.map(_.contains(addr)).reduce(_||_)) } } class TLAToNoC( val edgeIn: TLEdge, val edgesOut: Seq[TLEdge], bundle: TLBundleParameters, slaveToAEgress: Int => Int, sourceStart: Int )(implicit p: Parameters) extends TLChannelToNoC(new TLBundleA(bundle), edgeIn, slaveToAEgress)(p) with HasAddressDecoder { has_body := edgeIn.hasData(protocol.bits) || (~protocol.bits.mask =/= 0.U) lazy val connectAIO = reacheableIO lazy val requestOH = outputPortFn(connectAIO).zipWithIndex.map { case (o, j) => connectAIO(j).B && (unique(connectAIO) || o(protocol.bits.address)) } q.io.enq <> io.protocol q.io.enq.bits.source := io.protocol.bits.source | sourceStart.U } class TLAFromNoC(edgeOut: TLEdge, bundle: TLBundleParameters)(implicit p: Parameters) extends TLChannelFromNoC(new TLBundleA(bundle))(p) { io.protocol <> protocol when (io.flit.bits.head) { io.protocol.bits.mask := ~(0.U(io.protocol.bits.mask.getWidth.W)) } } class TLBToNoC( edgeOut: TLEdge, edgesIn: Seq[TLEdge], bundle: TLBundleParameters, masterToBIngress: Int => Int )(implicit p: Parameters) extends TLChannelToNoC(new TLBundleB(bundle), edgeOut, masterToBIngress)(p) { has_body := edgeOut.hasData(protocol.bits) || (~protocol.bits.mask =/= 0.U) lazy val inputIdRanges = TLXbar.mapInputIds(edgesIn.map(_.client)) lazy val requestOH = inputIdRanges.map { i => i.contains(protocol.bits.source) } q.io.enq <> io.protocol } class TLBFromNoC(edgeIn: TLEdge, bundle: TLBundleParameters, sourceSize: Int)(implicit p: Parameters) extends TLChannelFromNoC(new TLBundleB(bundle))(p) { io.protocol <> protocol io.protocol.bits.source := trim(protocol.bits.source, sourceSize) when (io.flit.bits.head) { io.protocol.bits.mask := ~(0.U(io.protocol.bits.mask.getWidth.W)) } } class TLCToNoC( val edgeIn: TLEdge, val edgesOut: Seq[TLEdge], bundle: TLBundleParameters, slaveToCEgress: Int => Int, sourceStart: Int )(implicit p: Parameters) extends TLChannelToNoC(new TLBundleC(bundle), edgeIn, slaveToCEgress)(p) with HasAddressDecoder { has_body := edgeIn.hasData(protocol.bits) lazy val connectCIO = releaseIO lazy val requestOH = outputPortFn(connectCIO).zipWithIndex.map { case (o, j) => connectCIO(j).B && (unique(connectCIO) || o(protocol.bits.address)) } q.io.enq <> io.protocol q.io.enq.bits.source := io.protocol.bits.source | sourceStart.U } class TLCFromNoC(edgeOut: TLEdge, bundle: TLBundleParameters)(implicit p: Parameters) extends TLChannelFromNoC(new TLBundleC(bundle))(p) { io.protocol <> protocol } class TLDToNoC( edgeOut: TLEdge, edgesIn: Seq[TLEdge], bundle: TLBundleParameters, masterToDIngress: Int => Int, sourceStart: Int )(implicit p: Parameters) extends TLChannelToNoC(new TLBundleD(bundle), edgeOut, masterToDIngress)(p) { has_body := edgeOut.hasData(protocol.bits) lazy val inputIdRanges = TLXbar.mapInputIds(edgesIn.map(_.client)) lazy val requestOH = inputIdRanges.map { i => i.contains(protocol.bits.source) } q.io.enq <> io.protocol q.io.enq.bits.sink := io.protocol.bits.sink | sourceStart.U } class TLDFromNoC(edgeIn: TLEdge, bundle: TLBundleParameters, sourceSize: Int)(implicit p: Parameters) extends TLChannelFromNoC(new TLBundleD(bundle))(p) { io.protocol <> protocol io.protocol.bits.source := trim(protocol.bits.source, sourceSize) } class TLEToNoC( val edgeIn: TLEdge, val edgesOut: Seq[TLEdge], bundle: TLBundleParameters, slaveToEEgress: Int => Int )(implicit p: Parameters) extends TLChannelToNoC(new TLBundleE(bundle), edgeIn, slaveToEEgress)(p) { has_body := edgeIn.hasData(protocol.bits) lazy val outputIdRanges = TLXbar.mapOutputIds(edgesOut.map(_.manager)) lazy val requestOH = outputIdRanges.map { o => o.contains(protocol.bits.sink) } q.io.enq <> io.protocol } class TLEFromNoC(edgeOut: TLEdge, bundle: TLBundleParameters, sourceSize: Int)(implicit p: Parameters) extends TLChannelFromNoC(new TLBundleE(bundle))(p) { io.protocol <> protocol io.protocol.bits.sink := trim(protocol.bits.sink, sourceSize) }
module TLEFromNoC_4( // @[TilelinkAdapters.scala:202:7] input clock, // @[TilelinkAdapters.scala:202:7] input reset, // @[TilelinkAdapters.scala:202:7] output io_protocol_valid, // @[TilelinkAdapters.scala:56:14] output [4:0] io_protocol_bits_sink, // @[TilelinkAdapters.scala:56:14] input io_flit_valid, // @[TilelinkAdapters.scala:56:14] input io_flit_bits_head, // @[TilelinkAdapters.scala:56:14] input io_flit_bits_tail, // @[TilelinkAdapters.scala:56:14] input [4:0] io_flit_bits_payload // @[TilelinkAdapters.scala:56:14] ); reg is_const; // @[TilelinkAdapters.scala:68:25] reg [4:0] const_reg; // @[TilelinkAdapters.scala:69:22] wire _GEN = io_flit_valid & io_flit_bits_head; // @[TilelinkAdapters.scala:84:22] always @(posedge clock) begin // @[TilelinkAdapters.scala:202:7] if (reset) // @[TilelinkAdapters.scala:202:7] is_const <= 1'h1; // @[TilelinkAdapters.scala:68:25, :202:7] else // @[TilelinkAdapters.scala:202:7] is_const <= io_flit_valid & io_flit_bits_tail | ~_GEN & is_const; // @[TilelinkAdapters.scala:68:25, :84:{22,44,55}, :85:{22,44,55}] if (_GEN) // @[TilelinkAdapters.scala:84:22] const_reg <= io_flit_bits_payload; // @[TilelinkAdapters.scala:69:22] always @(posedge)
Generate the Verilog code corresponding to the following Chisel files. File Crossing.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.interrupts import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy.lazymodule._ import freechips.rocketchip.util.{SynchronizerShiftReg, AsyncResetReg} @deprecated("IntXing does not ensure interrupt source is glitch free. Use IntSyncSource and IntSyncSink", "rocket-chip 1.2") class IntXing(sync: Int = 3)(implicit p: Parameters) extends LazyModule { val intnode = IntAdapterNode() lazy val module = new Impl class Impl extends LazyModuleImp(this) { (intnode.in zip intnode.out) foreach { case ((in, _), (out, _)) => out := SynchronizerShiftReg(in, sync) } } } object IntSyncCrossingSource { def apply(alreadyRegistered: Boolean = false)(implicit p: Parameters) = { val intsource = LazyModule(new IntSyncCrossingSource(alreadyRegistered)) intsource.node } } class IntSyncCrossingSource(alreadyRegistered: Boolean = false)(implicit p: Parameters) extends LazyModule { val node = IntSyncSourceNode(alreadyRegistered) lazy val module = if (alreadyRegistered) (new ImplRegistered) else (new Impl) class Impl extends LazyModuleImp(this) { def outSize = node.out.headOption.map(_._1.sync.size).getOrElse(0) override def desiredName = s"IntSyncCrossingSource_n${node.out.size}x${outSize}" (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => out.sync := AsyncResetReg(Cat(in.reverse)).asBools } } class ImplRegistered extends LazyRawModuleImp(this) { def outSize = node.out.headOption.map(_._1.sync.size).getOrElse(0) override def desiredName = s"IntSyncCrossingSource_n${node.out.size}x${outSize}_Registered" (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => out.sync := in } } } object IntSyncCrossingSink { @deprecated("IntSyncCrossingSink which used the `sync` parameter to determine crossing type is deprecated. Use IntSyncAsyncCrossingSink, IntSyncRationalCrossingSink, or IntSyncSyncCrossingSink instead for > 1, 1, and 0 sync values respectively", "rocket-chip 1.2") def apply(sync: Int = 3)(implicit p: Parameters) = { val intsink = LazyModule(new IntSyncAsyncCrossingSink(sync)) intsink.node } } class IntSyncAsyncCrossingSink(sync: Int = 3)(implicit p: Parameters) extends LazyModule { val node = IntSyncSinkNode(sync) lazy val module = new Impl class Impl extends LazyModuleImp(this) { override def desiredName = s"IntSyncAsyncCrossingSink_n${node.out.size}x${node.out.head._1.size}" (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => out := SynchronizerShiftReg(in.sync, sync) } } } object IntSyncAsyncCrossingSink { def apply(sync: Int = 3)(implicit p: Parameters) = { val intsink = LazyModule(new IntSyncAsyncCrossingSink(sync)) intsink.node } } class IntSyncSyncCrossingSink()(implicit p: Parameters) extends LazyModule { val node = IntSyncSinkNode(0) lazy val module = new Impl class Impl extends LazyRawModuleImp(this) { def outSize = node.out.headOption.map(_._1.size).getOrElse(0) override def desiredName = s"IntSyncSyncCrossingSink_n${node.out.size}x${outSize}" (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => out := in.sync } } } object IntSyncSyncCrossingSink { def apply()(implicit p: Parameters) = { val intsink = LazyModule(new IntSyncSyncCrossingSink()) intsink.node } } class IntSyncRationalCrossingSink()(implicit p: Parameters) extends LazyModule { val node = IntSyncSinkNode(1) lazy val module = new Impl class Impl extends LazyModuleImp(this) { def outSize = node.out.headOption.map(_._1.size).getOrElse(0) override def desiredName = s"IntSyncRationalCrossingSink_n${node.out.size}x${outSize}" (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => out := RegNext(in.sync) } } } object IntSyncRationalCrossingSink { def apply()(implicit p: Parameters) = { val intsink = LazyModule(new IntSyncRationalCrossingSink()) intsink.node } } File LazyModuleImp.scala: package org.chipsalliance.diplomacy.lazymodule import chisel3.{withClockAndReset, Module, RawModule, Reset, _} import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo} import firrtl.passes.InlineAnnotation import org.chipsalliance.cde.config.Parameters import org.chipsalliance.diplomacy.nodes.Dangle import scala.collection.immutable.SortedMap /** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]]. * * This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy. */ sealed trait LazyModuleImpLike extends RawModule { /** [[LazyModule]] that contains this instance. */ val wrapper: LazyModule /** IOs that will be automatically "punched" for this instance. */ val auto: AutoBundle /** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */ protected[diplomacy] val dangles: Seq[Dangle] // [[wrapper.module]] had better not be accessed while LazyModules are still being built! require( LazyModule.scope.isEmpty, s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}" ) /** Set module name. Defaults to the containing LazyModule's desiredName. */ override def desiredName: String = wrapper.desiredName suggestName(wrapper.suggestedName) /** [[Parameters]] for chisel [[Module]]s. */ implicit val p: Parameters = wrapper.p /** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and * submodules. */ protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = { // 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]], // 2. return [[Dangle]]s from each module. val childDangles = wrapper.children.reverse.flatMap { c => implicit val sourceInfo: SourceInfo = c.info c.cloneProto.map { cp => // If the child is a clone, then recursively set cloneProto of its children as well def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = { require(bases.size == clones.size) (bases.zip(clones)).map { case (l, r) => require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}") l.cloneProto = Some(r) assignCloneProtos(l.children, r.children) } } assignCloneProtos(c.children, cp.children) // Clone the child module as a record, and get its [[AutoBundle]] val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName) val clonedAuto = clone("auto").asInstanceOf[AutoBundle] // Get the empty [[Dangle]]'s of the cloned child val rawDangles = c.cloneDangles() require(rawDangles.size == clonedAuto.elements.size) // Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) } dangles }.getOrElse { // For non-clones, instantiate the child module val mod = try { Module(c.module) } catch { case e: ChiselException => { println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}") throw e } } mod.dangles } } // Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]]. // This will result in a sequence of [[Dangle]] from these [[BaseNode]]s. val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate()) // Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]] val allDangles = nodeDangles ++ childDangles // Group [[allDangles]] by their [[source]]. val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*) // For each [[source]] set of [[Dangle]]s of size 2, ensure that these // can be connected as a source-sink pair (have opposite flipped value). // Make the connection and mark them as [[done]]. val done = Set() ++ pairing.values.filter(_.size == 2).map { case Seq(a, b) => require(a.flipped != b.flipped) // @todo <> in chisel3 makes directionless connection. if (a.flipped) { a.data <> b.data } else { b.data <> a.data } a.source case _ => None } // Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module. val forward = allDangles.filter(d => !done(d.source)) // Generate [[AutoBundle]] IO from [[forward]]. val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*)) // Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]] val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) => if (d.flipped) { d.data <> io } else { io <> d.data } d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name) } // Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]]. wrapper.inModuleBody.reverse.foreach { _() } if (wrapper.shouldBeInlined) { chisel3.experimental.annotate(new ChiselAnnotation { def toFirrtl = InlineAnnotation(toNamed) }) } // Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]]. (auto, dangles) } } /** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike { /** Instantiate hardware of this `Module`. */ val (auto, dangles) = instantiate() } /** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike { // These wires are the default clock+reset for all LazyModule children. // It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the // [[LazyRawModuleImp]] children. // Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly. /** drive clock explicitly. */ val childClock: Clock = Wire(Clock()) /** drive reset explicitly. */ val childReset: Reset = Wire(Reset()) // the default is that these are disabled childClock := false.B.asClock childReset := chisel3.DontCare def provideImplicitClockToLazyChildren: Boolean = false val (auto, dangles) = if (provideImplicitClockToLazyChildren) { withClockAndReset(childClock, childReset) { instantiate() } } else { instantiate() } } File MixedNode.scala: package org.chipsalliance.diplomacy.nodes import chisel3.{Data, DontCare, Wire} import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.{Field, Parameters} import org.chipsalliance.diplomacy.ValName import org.chipsalliance.diplomacy.sourceLine /** One side metadata of a [[Dangle]]. * * Describes one side of an edge going into or out of a [[BaseNode]]. * * @param serial * the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to. * @param index * the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to. */ case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] { import scala.math.Ordered.orderingToOrdered def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that)) } /** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]] * connects. * * [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] , * [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]]. * * @param source * the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within * that [[BaseNode]]. * @param sink * sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that * [[BaseNode]]. * @param flipped * flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to * `danglesIn`. * @param dataOpt * actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module */ case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) { def data = dataOpt.get } /** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often * derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually * implement the protocol. */ case class Edges[EI, EO](in: Seq[EI], out: Seq[EO]) /** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */ case object MonitorsEnabled extends Field[Boolean](true) /** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented. * * For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but * [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink * nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the * [[LazyModule]]. */ case object RenderFlipped extends Field[Boolean](false) /** The sealed node class in the package, all node are derived from it. * * @param inner * Sink interface implementation. * @param outer * Source interface implementation. * @param valName * val name of this node. * @tparam DI * Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters * describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected * [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port * parameters. * @tparam UI * Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing * the protocol parameters of a sink. For an [[InwardNode]], it is determined itself. * @tparam EI * Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers * specified for a sink according to protocol. * @tparam BI * Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface. * It should extends from [[chisel3.Data]], which represents the real hardware. * @tparam DO * Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters * describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself. * @tparam UO * Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing * the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]]. * Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters. * @tparam EO * Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers * specified for a source according to protocol. * @tparam BO * Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source * interface. It should extends from [[chisel3.Data]], which represents the real hardware. * * @note * Call Graph of [[MixedNode]] * - line `─`: source is process by a function and generate pass to others * - Arrow `→`: target of arrow is generated by source * * {{{ * (from the other node) * ┌─────────────────────────────────────────────────────────[[InwardNode.uiParams]]─────────────┐ * ↓ │ * (binding node when elaboration) [[OutwardNode.uoParams]]────────────────────────[[MixedNode.mapParamsU]]→──────────┐ │ * [[InwardNode.accPI]] │ │ │ * │ │ (based on protocol) │ * │ │ [[MixedNode.inner.edgeI]] │ * │ │ ↓ │ * ↓ │ │ │ * (immobilize after elaboration) (inward port from [[OutwardNode]]) │ ↓ │ * [[InwardNode.iBindings]]──┐ [[MixedNode.iDirectPorts]]────────────────────→[[MixedNode.iPorts]] [[InwardNode.uiParams]] │ * │ │ ↑ │ │ │ * │ │ │ [[OutwardNode.doParams]] │ │ * │ │ │ (from the other node) │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * │ │ │ └────────┬──────────────┤ │ * │ │ │ │ │ │ * │ │ │ │ (based on protocol) │ * │ │ │ │ [[MixedNode.inner.edgeI]] │ * │ │ │ │ │ │ * │ │ (from the other node) │ ↓ │ * │ └───[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] │ [[MixedNode.edgesIn]]───┐ │ * │ ↑ ↑ │ │ ↓ │ * │ │ │ │ │ [[MixedNode.in]] │ * │ │ │ │ ↓ ↑ │ * │ (solve star connection) │ │ │ [[MixedNode.bundleIn]]──┘ │ * ├───[[MixedNode.resolveStar]]→─┼─────────────────────────────┤ └────────────────────────────────────┐ │ * │ │ │ [[MixedNode.bundleOut]]─┐ │ │ * │ │ │ ↑ ↓ │ │ * │ │ │ │ [[MixedNode.out]] │ │ * │ ↓ ↓ │ ↑ │ │ * │ ┌─────[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]──┘ │ │ * │ │ (from the other node) ↑ │ │ * │ │ │ │ │ │ * │ │ │ [[MixedNode.outer.edgeO]] │ │ * │ │ │ (based on protocol) │ │ * │ │ │ │ │ │ * │ │ │ ┌────────────────────────────────────────┤ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * (immobilize after elaboration)│ ↓ │ │ │ │ * [[OutwardNode.oBindings]]─┘ [[MixedNode.oDirectPorts]]───→[[MixedNode.oPorts]] [[OutwardNode.doParams]] │ │ * ↑ (inward port from [[OutwardNode]]) │ │ │ │ * │ ┌─────────────────────────────────────────┤ │ │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * [[OutwardNode.accPO]] │ ↓ │ │ │ * (binding node when elaboration) │ [[InwardNode.diParams]]─────→[[MixedNode.mapParamsD]]────────────────────────────┘ │ │ * │ ↑ │ │ * │ └──────────────────────────────────────────────────────────────────────────────────────────┘ │ * └──────────────────────────────────────────────────────────────────────────────────────────────────────────┘ * }}} */ abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data]( val inner: InwardNodeImp[DI, UI, EI, BI], val outer: OutwardNodeImp[DO, UO, EO, BO] )( implicit valName: ValName) extends BaseNode with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO] with InwardNode[DI, UI, BI] with OutwardNode[DO, UO, BO] { // Generate a [[NodeHandle]] with inward and outward node are both this node. val inward = this val outward = this /** Debug info of nodes binding. */ def bindingInfo: String = s"""$iBindingInfo |$oBindingInfo |""".stripMargin /** Debug info of ports connecting. */ def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}] |${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}] |""".stripMargin /** Debug info of parameters propagations. */ def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}] |${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}] |${diParams.size} downstream inward parameters: [${diParams.mkString(",")}] |${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}] |""".stripMargin /** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and * [[MixedNode.iPortMapping]]. * * Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward * stars and outward stars. * * This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type * of node. * * @param iKnown * Number of known-size ([[BIND_ONCE]]) input bindings. * @param oKnown * Number of known-size ([[BIND_ONCE]]) output bindings. * @param iStar * Number of unknown size ([[BIND_STAR]]) input bindings. * @param oStar * Number of unknown size ([[BIND_STAR]]) output bindings. * @return * A Tuple of the resolved number of input and output connections. */ protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int) /** Function to generate downward-flowing outward params from the downward-flowing input params and the current output * ports. * * @param n * The size of the output sequence to generate. * @param p * Sequence of downward-flowing input parameters of this node. * @return * A `n`-sized sequence of downward-flowing output edge parameters. */ protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO] /** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]]. * * @param n * Size of the output sequence. * @param p * Upward-flowing output edge parameters. * @return * A n-sized sequence of upward-flowing input edge parameters. */ protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI] /** @return * The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with * [[BIND_STAR]]. */ protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR) /** @return * The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of * output bindings bound with [[BIND_STAR]]. */ protected[diplomacy] lazy val sourceCard: Int = iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR) /** @return list of nodes involved in flex bindings with this node. */ protected[diplomacy] lazy val flexes: Seq[BaseNode] = oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2) /** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin * greedily taking up the remaining connections. * * @return * A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return * value is not relevant. */ protected[diplomacy] lazy val flexOffset: Int = { /** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex * operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a * connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of * each node in the current set and decide whether they should be added to the set or not. * * @return * the mapping of [[BaseNode]] indexed by their serial numbers. */ def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = { if (visited.contains(v.serial) || !v.flexibleArityDirection) { visited } else { v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum)) } } /** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node. * * @example * {{{ * a :*=* b :*=* c * d :*=* b * e :*=* f * }}} * * `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)` */ val flexSet = DFS(this, Map()).values /** The total number of :*= operators where we're on the left. */ val allSink = flexSet.map(_.sinkCard).sum /** The total number of :=* operators used when we're on the right. */ val allSource = flexSet.map(_.sourceCard).sum require( allSink == 0 || allSource == 0, s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction." ) allSink - allSource } /** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */ protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = { if (flexibleArityDirection) flexOffset else if (n.flexibleArityDirection) n.flexOffset else 0 } /** For a node which is connected between two nodes, select the one that will influence the direction of the flex * resolution. */ protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = { val dir = edgeArityDirection(n) if (dir < 0) l else if (dir > 0) r else 1 } /** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */ private var starCycleGuard = false /** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star" * connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also * need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct * edge parameters and later build up correct bundle connections. * * [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding * operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort * (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*= * bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N` */ protected[diplomacy] lazy val ( oPortMapping: Seq[(Int, Int)], iPortMapping: Seq[(Int, Int)], oStar: Int, iStar: Int ) = { try { if (starCycleGuard) throw StarCycleException() starCycleGuard = true // For a given node N... // Number of foo :=* N // + Number of bar :=* foo :*=* N val oStars = oBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0) } // Number of N :*= foo // + Number of N :*=* foo :*= bar val iStars = iBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0) } // 1 for foo := N // + bar.iStar for bar :*= foo :*=* N // + foo.iStar for foo :*= N // + 0 for foo :=* N val oKnown = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, 0, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => 0 } }.sum // 1 for N := foo // + bar.oStar for N :*=* foo :=* bar // + foo.oStar for N :=* foo // + 0 for N :*= foo val iKnown = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, 0) case BIND_QUERY => n.oStar case BIND_STAR => 0 } }.sum // Resolve star depends on the node subclass to implement the algorithm for this. val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars) // Cumulative list of resolved outward binding range starting points val oSum = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => oStar } }.scanLeft(0)(_ + _) // Cumulative list of resolved inward binding range starting points val iSum = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar) case BIND_QUERY => n.oStar case BIND_STAR => iStar } }.scanLeft(0)(_ + _) // Create ranges for each binding based on the running sums and return // those along with resolved values for the star operations. (oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar) } catch { case c: StarCycleException => throw c.copy(loop = context +: c.loop) } } /** Sequence of inward ports. * * This should be called after all star bindings are resolved. * * Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. * `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this * connection was made in the source code. */ protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oBindings.flatMap { case (i, n, _, p, s) => // for each binding operator in this node, look at what it connects to val (start, end) = n.iPortMapping(i) (start until end).map { j => (j, n, p, s) } } /** Sequence of outward ports. * * This should be called after all star bindings are resolved. * * `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of * outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection * was made in the source code. */ protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iBindings.flatMap { case (i, n, _, p, s) => // query this port index range of this node in the other side of node. val (start, end) = n.oPortMapping(i) (start until end).map { j => (j, n, p, s) } } // Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree // Thus, there must exist an Eulerian path and the below algorithms terminate @scala.annotation.tailrec private def oTrace( tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) ): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.iForward(i) match { case None => (i, n, p, s) case Some((j, m)) => oTrace((j, m, p, s)) } } @scala.annotation.tailrec private def iTrace( tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) ): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.oForward(i) match { case None => (i, n, p, s) case Some((j, m)) => iTrace((j, m, p, s)) } } /** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - Numeric index of this binding in the [[InwardNode]] on the other end. * - [[InwardNode]] on the other end of this binding. * - A view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace) /** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - numeric index of this binding in [[OutwardNode]] on the other end. * - [[OutwardNode]] on the other end of this binding. * - a view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace) private var oParamsCycleGuard = false protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) } protected[diplomacy] lazy val doParams: Seq[DO] = { try { if (oParamsCycleGuard) throw DownwardCycleException() oParamsCycleGuard = true val o = mapParamsD(oPorts.size, diParams) require( o.size == oPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of outward ports should equal the number of produced outward parameters. |$context |$connectedPortsInfo |Downstreamed inward parameters: [${diParams.mkString(",")}] |Produced outward parameters: [${o.mkString(",")}] |""".stripMargin ) o.map(outer.mixO(_, this)) } catch { case c: DownwardCycleException => throw c.copy(loop = context +: c.loop) } } private var iParamsCycleGuard = false protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) } protected[diplomacy] lazy val uiParams: Seq[UI] = { try { if (iParamsCycleGuard) throw UpwardCycleException() iParamsCycleGuard = true val i = mapParamsU(iPorts.size, uoParams) require( i.size == iPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of inward ports should equal the number of produced inward parameters. |$context |$connectedPortsInfo |Upstreamed outward parameters: [${uoParams.mkString(",")}] |Produced inward parameters: [${i.mkString(",")}] |""".stripMargin ) i.map(inner.mixI(_, this)) } catch { case c: UpwardCycleException => throw c.copy(loop = context +: c.loop) } } /** Outward edge parameters. */ protected[diplomacy] lazy val edgesOut: Seq[EO] = (oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) } /** Inward edge parameters. */ protected[diplomacy] lazy val edgesIn: Seq[EI] = (iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) } /** A tuple of the input edge parameters and output edge parameters for the edges bound to this node. * * If you need to access to the edges of a foreign Node, use this method (in/out create bundles). */ lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut) /** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */ protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e => val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } /** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */ protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e => val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(serial, i), sink = HalfEdge(n.serial, j), flipped = false, name = wirePrefix + "out", dataOpt = None ) } private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(n.serial, j), sink = HalfEdge(serial, i), flipped = true, name = wirePrefix + "in", dataOpt = None ) } /** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */ protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleOut(i))) } /** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */ protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleIn(i))) } private[diplomacy] var instantiated = false /** Gather Bundle and edge parameters of outward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def out: Seq[(BO, EO)] = { require( instantiated, s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleOut.zip(edgesOut) } /** Gather Bundle and edge parameters of inward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def in: Seq[(BI, EI)] = { require( instantiated, s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleIn.zip(edgesIn) } /** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires, * instantiate monitors on all input ports if appropriate, and return all the dangles of this node. */ protected[diplomacy] def instantiate(): Seq[Dangle] = { instantiated = true if (!circuitIdentity) { (iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) } } danglesOut ++ danglesIn } protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn /** Connects the outward part of a node with the inward part of this node. */ protected[diplomacy] def bind( h: OutwardNode[DI, UI, BI], binding: NodeBinding )( implicit p: Parameters, sourceInfo: SourceInfo ): Unit = { val x = this // x := y val y = h sourceLine(sourceInfo, " at ", "") val i = x.iPushed val o = y.oPushed y.oPush( i, x, binding match { case BIND_ONCE => BIND_ONCE case BIND_FLEX => BIND_FLEX case BIND_STAR => BIND_QUERY case BIND_QUERY => BIND_STAR } ) x.iPush(o, y, binding) } /* Metadata for printing the node graph. */ def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) => val re = inner.render(e) (n, re.copy(flipped = re.flipped != p(RenderFlipped))) } /** Metadata for printing the node graph */ def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) } } File AsyncResetReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ /** This black-boxes an Async Reset * (or Set) * Register. * * Because Chisel doesn't support * parameterized black boxes, * we unfortunately have to * instantiate a number of these. * * We also have to hard-code the set/ * reset behavior. * * Do not confuse an asynchronous * reset signal with an asynchronously * reset reg. You should still * properly synchronize your reset * deassertion. * * @param d Data input * @param q Data Output * @param clk Clock Input * @param rst Reset Input * @param en Write Enable Input * */ class AsyncResetReg(resetValue: Int = 0) extends RawModule { val io = IO(new Bundle { val d = Input(Bool()) val q = Output(Bool()) val en = Input(Bool()) val clk = Input(Clock()) val rst = Input(Reset()) }) val reg = withClockAndReset(io.clk, io.rst.asAsyncReset)(RegInit(resetValue.U(1.W))) when (io.en) { reg := io.d } io.q := reg } class SimpleRegIO(val w: Int) extends Bundle{ val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) val en = Input(Bool()) } class AsyncResetRegVec(val w: Int, val init: BigInt) extends Module { override def desiredName = s"AsyncResetRegVec_w${w}_i${init}" val io = IO(new SimpleRegIO(w)) val reg = withReset(reset.asAsyncReset)(RegInit(init.U(w.W))) when (io.en) { reg := io.d } io.q := reg } object AsyncResetReg { // Create Single Registers def apply(d: Bool, clk: Clock, rst: Bool, init: Boolean, name: Option[String]): Bool = { val reg = Module(new AsyncResetReg(if (init) 1 else 0)) reg.io.d := d reg.io.clk := clk reg.io.rst := rst reg.io.en := true.B name.foreach(reg.suggestName(_)) reg.io.q } def apply(d: Bool, clk: Clock, rst: Bool): Bool = apply(d, clk, rst, false, None) def apply(d: Bool, clk: Clock, rst: Bool, name: String): Bool = apply(d, clk, rst, false, Some(name)) // Create Vectors of Registers def apply(updateData: UInt, resetData: BigInt, enable: Bool, name: Option[String] = None): UInt = { val w = updateData.getWidth max resetData.bitLength val reg = Module(new AsyncResetRegVec(w, resetData)) name.foreach(reg.suggestName(_)) reg.io.d := updateData reg.io.en := enable reg.io.q } def apply(updateData: UInt, resetData: BigInt, enable: Bool, name: String): UInt = apply(updateData, resetData, enable, Some(name)) def apply(updateData: UInt, resetData: BigInt): UInt = apply(updateData, resetData, enable = true.B) def apply(updateData: UInt, resetData: BigInt, name: String): UInt = apply(updateData, resetData, enable = true.B, Some(name)) def apply(updateData: UInt, enable: Bool): UInt = apply(updateData, resetData=BigInt(0), enable) def apply(updateData: UInt, enable: Bool, name: String): UInt = apply(updateData, resetData = BigInt(0), enable, Some(name)) def apply(updateData: UInt): UInt = apply(updateData, resetData = BigInt(0), enable = true.B) def apply(updateData: UInt, name:String): UInt = apply(updateData, resetData = BigInt(0), enable = true.B, Some(name)) }
module IntSyncCrossingSource_n1x1_18( // @[Crossing.scala:41:9] input clock, // @[Crossing.scala:41:9] input reset, // @[Crossing.scala:41:9] input auto_in_0, // @[LazyModuleImp.scala:107:25] output auto_out_sync_0 // @[LazyModuleImp.scala:107:25] ); wire auto_in_0_0 = auto_in_0; // @[Crossing.scala:41:9] wire nodeIn_0 = auto_in_0_0; // @[Crossing.scala:41:9] wire nodeOut_sync_0; // @[MixedNode.scala:542:17] wire auto_out_sync_0_0; // @[Crossing.scala:41:9] assign auto_out_sync_0_0 = nodeOut_sync_0; // @[Crossing.scala:41:9] AsyncResetRegVec_w1_i0_18 reg_0 ( // @[AsyncResetReg.scala:86:21] .clock (clock), .reset (reset), .io_d (nodeIn_0), // @[MixedNode.scala:551:17] .io_q (nodeOut_sync_0) ); // @[AsyncResetReg.scala:86:21] assign auto_out_sync_0 = auto_out_sync_0_0; // @[Crossing.scala:41:9] endmodule
Generate the Verilog code corresponding to the following Chisel files. File SegmentBuffer.scala: package saturn.mem import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config._ import freechips.rocketchip.rocket._ import freechips.rocketchip.util._ import freechips.rocketchip.tile._ import saturn.common._ class LoadSegmentBuffer(doubleBuffer: Boolean)(implicit p: Parameters) extends CoreModule()(p) with HasVectorParams { val io = IO(new Bundle { val in = Flipped(Decoupled(new Bundle { val data = UInt(dLen.W) val eew = UInt(2.W) val nf = UInt(3.W) val eidx = UInt(log2Ceil(maxVLMax).W) val segstart = UInt(3.W) val sidx = UInt(3.W) val sidx_tail = Bool() val tail = Bool() val debug_id = UInt(debugIdSz.W) })) val out = Decoupled(new Bundle { val data = UInt(dLen.W) val debug_id = UInt(debugIdSz.W) }) val busy = Output(Bool()) }) val nB = if (doubleBuffer) 2 else 1 val rows = 8 val cols = dLenB val wdata = Wire(Vec(4, UInt((rows*8*8).W))) val warr = wdata(io.in.bits.eew).asTypeOf(Vec(rows, Vec(8, UInt(8.W)))) val wrow = WireInit(0.U(rows.W)) val wcol = WireInit(0.U(cols.W)) val wmode = Wire(Bool()) val array = Seq.tabulate(rows, cols, nB) { case (_,_,_) => Reg(UInt(8.W)) } for (r <- 0 until 8) { for (c <- 0 until cols) { for (s <- 0 until nB) { when (wrow(r) && wcol(c) && wmode === s.U) { array(r)(c)(s) := warr(r)(c % 8) } } } } val modes = RegInit(VecInit.fill(nB)(false.B)) val in_sel = RegInit(false.B) val out_sel = RegInit(false.B) val out_nf = Reg(Vec(nB, UInt(3.W))) val out_row = Reg(Vec(nB, UInt(3.W))) val out_id = Reg(Vec(nB, UInt(debugIdSz.W))) io.in.ready := !modes(in_sel) io.out.valid := modes(out_sel) io.out.bits.data := Mux1H(UIntToOH(out_row(out_sel)), array.map(row => VecInit(row.map(_(out_sel))).asUInt)) io.out.bits.debug_id := out_id(out_sel) when (io.in.fire) { wrow := ((1.U << (dLenB.U >> io.in.bits.eew)) - 1.U)(7,0) << io.in.bits.sidx } wcol := ((1.U << (1.U << io.in.bits.eew)) - 1.U)(7,0) << (io.in.bits.eidx(log2Ceil(dLenB)-1,0) << io.in.bits.eew)(log2Ceil(dLenB)-1,0) wmode := in_sel for (eew <- 0 until 4) { val in_rows = 8 min (dLenB >> eew) val in_cols = 8 >> eew val in_elems = dLenB >> eew val col = Wire(Vec(in_rows, UInt((8 << eew).W))) val arr = Wire(Vec(in_rows, Vec(in_cols, UInt((8 << eew).W)))) col := io.in.bits.data.asTypeOf(Vec(in_rows, UInt((8 << eew).W))) for (r <- 0 until in_rows) { for (c <- 0 until in_cols) { arr(r)(c) := col(r) } } wdata(eew) := Fill(8 / in_rows, arr.asUInt) } when (io.in.fire && io.in.bits.sidx_tail && (wcol(cols-1) || io.in.bits.tail)) { in_sel := (if (doubleBuffer) (!in_sel) else false.B) modes(in_sel) := true.B out_nf(in_sel) := io.in.bits.nf out_row(in_sel) := io.in.bits.segstart out_id(in_sel) := io.in.bits.debug_id } when (io.out.fire) { when (out_row(out_sel) === out_nf(out_sel)) { out_sel := (if (doubleBuffer) (!out_sel) else false.B) modes(out_sel) := false.B } .otherwise { out_row(out_sel) := out_row(out_sel) + 1.U } } io.busy := modes.orR } class StoreSegmentBuffer(doubleBuffer: Boolean)(implicit p: Parameters) extends CoreModule()(p) with HasVectorParams { val io = IO(new Bundle { val in = Flipped(Decoupled(new Bundle { val data = UInt(dLen.W) val mask = UInt(dLenB.W) val debug_id = UInt(debugIdSz.W) val eew = UInt(2.W) val nf = UInt(3.W) val rows = UInt(4.W) val sidx = UInt(3.W) val segstart = UInt(3.W) val segend = UInt(3.W) })) val out = Decoupled(new Bundle { val data = new StoreDataMicroOp val head = UInt(log2Ceil(dLenB).W) val tail = UInt(log2Ceil(dLenB).W) }) val busy = Output(Bool()) }) val nB = if (doubleBuffer) 2 else 1 val rows = 8 val cols = dLenB val wdata = Wire(Vec(4, UInt((rows*8*8).W))) val warr = wdata(io.in.bits.eew).asTypeOf(Vec(rows, Vec(8, UInt(8.W)))) val wrow = WireInit(0.U(rows.W)) val wcol = WireInit(0.U(cols.W)) val wmode = Wire(Bool()) val array = Seq.tabulate(rows, cols, nB) { case (_,_,_) => Reg(UInt(8.W)) } val mask = Seq.fill(nB) { Reg(UInt(dLenB.W)) } for (r <- 0 until 8) { for (c <- 0 until cols) { for (s <- 0 until nB) { when (wrow(r) && wcol(c) && wmode === s.U) { array(r)(c)(s) := warr(r)(c % 8) } } } } val modes = RegInit(VecInit.fill(nB)(false.B)) val in_sel = RegInit(false.B) val out_sidx = Reg(Vec(nB, UInt(3.W))) val out_row = RegInit(0.U(3.W)) val out_sel = RegInit(false.B) val out_nf = Reg(Vec(nB, UInt(3.W))) val out_eew = Reg(Vec(nB, UInt(2.W))) val out_rows = Reg(Vec(nB, UInt(4.W))) val out_segstart = Reg(Vec(nB, UInt(3.W))) val out_id = Reg(Vec(nB, UInt(debugIdSz.W))) def sidxOff(sidx: UInt, eew: UInt) = sidx & ~((1.U << (log2Ceil(cols).U - eew)) - 1.U) io.in.ready := !modes(in_sel) io.out.valid := modes(out_sel) val row_sel = out_row + sidxOff(out_sidx(out_sel), out_eew(out_sel)) io.out.bits.data.tail := DontCare io.out.bits.data.vat := DontCare io.out.bits.data.stdata := Mux1H(UIntToOH(row_sel), array.map(row => VecInit(row.map(_(out_sel))).asUInt)) io.out.bits.data.stmask := Fill(dLenB, (Mux1H(UIntToOH(out_sel), mask) >> (out_row << out_eew(out_sel)))(0)) io.out.bits.data.debug_id := out_id(out_sel) io.out.bits.head := out_sidx(out_sel) << out_eew(out_sel) val remaining_bytes = (out_nf(out_sel) +& 1.U - out_sidx(out_sel)) << out_eew(out_sel) io.out.bits.tail := Mux((remaining_bytes +& io.out.bits.head) >= dLenB.U, dLenB.U, remaining_bytes + io.out.bits.head) when (io.in.fire) { wrow := ((1.U << (1.U << (log2Ceil(cols).U - io.in.bits.eew))) - 1.U)(7,0) << sidxOff(io.in.bits.sidx, io.in.bits.eew) for (s <- 0 until nB) { when (wmode === s.U && io.in.bits.sidx === 0.U) { mask(s) := io.in.bits.mask } } } wcol := ((1.U << (1.U << io.in.bits.eew)) - 1.U)(7,0) << (io.in.bits.sidx << io.in.bits.eew)(log2Ceil(cols)-1,0) wmode := in_sel for (eew <- 0 until 4) { val in_rows = 8 min (dLenB >> eew) val in_cols = 8 >> eew val in_elems = cols >> eew val col = Wire(Vec(in_rows, UInt((8 << eew).W))) val arr = Wire(Vec(in_rows, Vec(in_cols, UInt((8 << eew).W)))) col := io.in.bits.data.asTypeOf(Vec(in_rows, UInt((8 << eew).W))) for (r <- 0 until in_rows) { for (c <- 0 until in_cols) { arr(r)(c) := col(r) } } wdata(eew) := Fill(8 / in_rows, arr.asUInt) } when (io.in.fire && io.in.bits.sidx === io.in.bits.nf) { in_sel := (if (doubleBuffer) (!in_sel) else false.B) modes(in_sel) := true.B out_sidx(in_sel) := io.in.bits.segstart out_nf(in_sel) := io.in.bits.segend out_eew(in_sel) := io.in.bits.eew out_rows(in_sel) := io.in.bits.rows out_segstart(in_sel) := io.in.bits.segstart out_id(in_sel) := io.in.bits.debug_id } when (io.out.fire) { val sidx_tail = ((out_sidx(out_sel) +& (cols.U >> out_eew(out_sel))) > out_nf(out_sel)) when ((out_row +& 1.U === out_rows(out_sel)) && sidx_tail) { out_sel := (if (doubleBuffer) (!out_sel) else false.B) out_row := 0.U modes(out_sel) := false.B } .elsewhen (sidx_tail) { out_sidx(out_sel) := out_segstart(out_sel) out_row := out_row + 1.U } .otherwise { out_sidx(out_sel) := out_sidx(out_sel) + (cols.U >> out_eew(out_sel)) } } io.busy := modes.orR }
module StoreSegmentBuffer( // @[SegmentBuffer.scala:109:7] input clock, // @[SegmentBuffer.scala:109:7] input reset, // @[SegmentBuffer.scala:109:7] output io_in_ready, // @[SegmentBuffer.scala:111:14] input io_in_valid, // @[SegmentBuffer.scala:111:14] input [63:0] io_in_bits_data, // @[SegmentBuffer.scala:111:14] input [7:0] io_in_bits_mask, // @[SegmentBuffer.scala:111:14] input [15:0] io_in_bits_debug_id, // @[SegmentBuffer.scala:111:14] input [1:0] io_in_bits_eew, // @[SegmentBuffer.scala:111:14] input [2:0] io_in_bits_nf, // @[SegmentBuffer.scala:111:14] input [3:0] io_in_bits_rows, // @[SegmentBuffer.scala:111:14] input [2:0] io_in_bits_sidx, // @[SegmentBuffer.scala:111:14] input [2:0] io_in_bits_segstart, // @[SegmentBuffer.scala:111:14] input [2:0] io_in_bits_segend, // @[SegmentBuffer.scala:111:14] input io_out_ready, // @[SegmentBuffer.scala:111:14] output io_out_valid, // @[SegmentBuffer.scala:111:14] output [63:0] io_out_bits_data_stdata, // @[SegmentBuffer.scala:111:14] output [7:0] io_out_bits_data_stmask, // @[SegmentBuffer.scala:111:14] output [15:0] io_out_bits_data_debug_id, // @[SegmentBuffer.scala:111:14] output [2:0] io_out_bits_head, // @[SegmentBuffer.scala:111:14] output [2:0] io_out_bits_tail, // @[SegmentBuffer.scala:111:14] output io_busy // @[SegmentBuffer.scala:111:14] ); reg [7:0] array_0_0_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_0_0_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_0_1_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_0_1_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_0_2_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_0_2_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_0_3_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_0_3_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_0_4_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_0_4_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_0_5_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_0_5_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_0_6_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_0_6_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_0_7_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_0_7_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_1_0_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_1_0_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_1_1_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_1_1_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_1_2_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_1_2_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_1_3_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_1_3_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_1_4_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_1_4_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_1_5_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_1_5_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_1_6_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_1_6_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_1_7_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_1_7_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_2_0_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_2_0_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_2_1_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_2_1_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_2_2_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_2_2_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_2_3_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_2_3_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_2_4_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_2_4_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_2_5_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_2_5_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_2_6_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_2_6_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_2_7_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_2_7_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_3_0_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_3_0_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_3_1_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_3_1_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_3_2_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_3_2_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_3_3_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_3_3_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_3_4_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_3_4_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_3_5_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_3_5_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_3_6_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_3_6_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_3_7_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_3_7_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_4_0_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_4_0_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_4_1_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_4_1_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_4_2_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_4_2_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_4_3_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_4_3_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_4_4_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_4_4_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_4_5_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_4_5_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_4_6_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_4_6_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_4_7_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_4_7_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_5_0_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_5_0_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_5_1_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_5_1_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_5_2_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_5_2_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_5_3_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_5_3_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_5_4_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_5_4_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_5_5_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_5_5_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_5_6_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_5_6_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_5_7_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_5_7_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_6_0_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_6_0_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_6_1_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_6_1_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_6_2_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_6_2_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_6_3_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_6_3_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_6_4_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_6_4_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_6_5_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_6_5_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_6_6_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_6_6_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_6_7_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_6_7_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_7_0_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_7_0_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_7_1_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_7_1_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_7_2_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_7_2_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_7_3_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_7_3_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_7_4_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_7_4_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_7_5_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_7_5_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_7_6_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_7_6_1; // @[SegmentBuffer.scala:141:65] reg [7:0] array_7_7_0; // @[SegmentBuffer.scala:141:65] reg [7:0] array_7_7_1; // @[SegmentBuffer.scala:141:65] reg [7:0] mask_0; // @[SegmentBuffer.scala:142:32] reg [7:0] mask_1; // @[SegmentBuffer.scala:142:32] reg modes_0; // @[SegmentBuffer.scala:153:22] reg modes_1; // @[SegmentBuffer.scala:153:22] reg in_sel; // @[SegmentBuffer.scala:154:23] reg [2:0] out_sidx_0; // @[SegmentBuffer.scala:155:21] reg [2:0] out_sidx_1; // @[SegmentBuffer.scala:155:21] reg [2:0] out_row; // @[SegmentBuffer.scala:156:24] reg out_sel; // @[SegmentBuffer.scala:157:24] reg [2:0] out_nf_0; // @[SegmentBuffer.scala:158:19] reg [2:0] out_nf_1; // @[SegmentBuffer.scala:158:19] reg [1:0] out_eew_0; // @[SegmentBuffer.scala:159:20] reg [1:0] out_eew_1; // @[SegmentBuffer.scala:159:20] reg [3:0] out_rows_0; // @[SegmentBuffer.scala:160:21] reg [3:0] out_rows_1; // @[SegmentBuffer.scala:160:21] reg [2:0] out_segstart_0; // @[SegmentBuffer.scala:161:25] reg [2:0] out_segstart_1; // @[SegmentBuffer.scala:161:25] reg [15:0] out_id_0; // @[SegmentBuffer.scala:162:19] reg [15:0] out_id_1; // @[SegmentBuffer.scala:162:19] wire _GEN = in_sel ? modes_1 : modes_0; // @[SegmentBuffer.scala:153:22, :154:23, :167:18] wire io_out_valid_0 = out_sel ? modes_1 : modes_0; // @[SegmentBuffer.scala:153:22, :157:24, :168:16] wire [1:0] _GEN_0 = out_sel ? out_eew_1 : out_eew_0; // @[SegmentBuffer.scala:157:24, :159:20, :165:75] wire [3:0] _row_sel_T_2 = 4'h1 << 2'h3 - _GEN_0; // @[SegmentBuffer.scala:165:{54,75}] wire [2:0] _GEN_1 = out_sel ? out_sidx_1 : out_sidx_0; // @[SegmentBuffer.scala:155:21, :157:24, :165:45] wire [3:0] _GEN_2 = {1'h0, out_row}; // @[SegmentBuffer.scala:156:24, :165:45, :169:25] wire [3:0] row_sel = {1'h0, ~(_row_sel_T_2[2:0] - 3'h1) & _GEN_1} + _GEN_2; // @[SegmentBuffer.scala:165:{45,47,54,83}, :169:25] wire [5:0] _GEN_3 = {4'h0, _GEN_0}; // @[SegmentBuffer.scala:165:75, :173:86] wire [7:0] _io_out_bits_data_stmask_T_7 = ((out_sel ? 8'h0 : mask_0) | (out_sel ? mask_1 : 8'h0)) >> ({3'h0, out_row} << _GEN_3); // @[Mux.scala:30:73] wire [5:0] _io_out_bits_head_T = {3'h0, _GEN_1} << _GEN_3; // @[SegmentBuffer.scala:165:45, :173:86, :175:41] wire [2:0] _GEN_4 = out_sel ? out_nf_1 : out_nf_0; // @[SegmentBuffer.scala:157:24, :158:19, :176:42] wire [7:0] _io_out_bits_tail_T_2 = {1'h0, {3'h0, {1'h0, _GEN_4} + 4'h1 - {1'h0, _GEN_1}} << _GEN_0} + {5'h0, _io_out_bits_head_T[2:0]}; // @[SegmentBuffer.scala:165:{45,75}, :175:{20,41}, :176:{42,49,70}, :177:44] wire _GEN_5 = ~_GEN & io_in_valid; // @[Decoupled.scala:51:35] wire [3:0] _GEN_6 = {2'h0, 2'h3 - io_in_bits_eew}; // @[SegmentBuffer.scala:165:54, :180:{27,48}] wire [15:0] _wrow_T_3 = 16'h1 << (4'h1 << _GEN_6); // @[SegmentBuffer.scala:180:{19,27}] wire [3:0] _wrow_T_9 = 4'h1 << _GEN_6; // @[SegmentBuffer.scala:165:54, :180:27] wire [22:0] _wrow_T_14 = {15'h0, _wrow_T_3[7:0] - 8'h1} << (~(_wrow_T_9[2:0] - 3'h1) & io_in_bits_sidx); // @[OneHot.scala:58:35] wire [7:0] wrow = _GEN_5 ? _wrow_T_14[7:0] : 8'h0; // @[Decoupled.scala:51:35] wire [15:0] _wcol_T_1 = 16'h1 << (4'h1 << io_in_bits_eew); // @[SegmentBuffer.scala:187:{17,25}] wire [5:0] _wcol_T_5 = {3'h0, io_in_bits_sidx} << io_in_bits_eew; // @[SegmentBuffer.scala:187:77] wire [14:0] _wcol_T_7 = {7'h0, _wcol_T_1[7:0] - 8'h1} << _wcol_T_5[2:0]; // @[SegmentBuffer.scala:187:{17,45,57,77,95}] wire [63:0] _wdata_1_T = {4{io_in_bits_data[15:0]}}; // @[SegmentBuffer.scala:199:36, :206:41] wire [63:0] _wdata_1_T_1 = {4{io_in_bits_data[31:16]}}; // @[SegmentBuffer.scala:199:36, :206:41] wire [63:0] _wdata_1_T_2 = {4{io_in_bits_data[47:32]}}; // @[SegmentBuffer.scala:199:36, :206:41] wire [63:0] _wdata_1_T_3 = {4{io_in_bits_data[63:48]}}; // @[SegmentBuffer.scala:199:36, :206:41] wire [63:0] _wdata_2_T = {2{io_in_bits_data[31:0]}}; // @[SegmentBuffer.scala:199:36, :206:41] wire [63:0] _wdata_2_T_1 = {2{io_in_bits_data[63:32]}}; // @[SegmentBuffer.scala:199:36, :206:41] wire [3:0][511:0] _GEN_7 = {{{2{{2{{2{io_in_bits_data}}}}}}}, {{_wdata_2_T_1, _wdata_2_T, _wdata_2_T_1, _wdata_2_T, _wdata_2_T_1, _wdata_2_T, _wdata_2_T_1, _wdata_2_T}}, {{_wdata_1_T_3, _wdata_1_T_2, _wdata_1_T_1, _wdata_1_T, _wdata_1_T_3, _wdata_1_T_2, _wdata_1_T_1, _wdata_1_T}}, {{{8{io_in_bits_data[63:56]}}, {8{io_in_bits_data[55:48]}}, {8{io_in_bits_data[47:40]}}, {8{io_in_bits_data[39:32]}}, {8{io_in_bits_data[31:24]}}, {8{io_in_bits_data[23:16]}}, {8{io_in_bits_data[15:8]}}, {8{io_in_bits_data[7:0]}}}}}; // @[SegmentBuffer.scala:137:44, :199:36, :206:{23,41}] wire _GEN_8 = wrow[0] & _wcol_T_7[0]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_9 = wrow[0] & _wcol_T_7[1]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_10 = wrow[0] & _wcol_T_7[2]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_11 = wrow[0] & _wcol_T_7[3]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_12 = wrow[0] & _wcol_T_7[4]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_13 = wrow[0] & _wcol_T_7[5]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_14 = wrow[0] & _wcol_T_7[6]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_15 = wrow[0] & _wcol_T_7[7]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_16 = wrow[1] & _wcol_T_7[0]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_17 = wrow[1] & _wcol_T_7[1]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_18 = wrow[1] & _wcol_T_7[2]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_19 = wrow[1] & _wcol_T_7[3]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_20 = wrow[1] & _wcol_T_7[4]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_21 = wrow[1] & _wcol_T_7[5]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_22 = wrow[1] & _wcol_T_7[6]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_23 = wrow[1] & _wcol_T_7[7]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_24 = wrow[2] & _wcol_T_7[0]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_25 = wrow[2] & _wcol_T_7[1]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_26 = wrow[2] & _wcol_T_7[2]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_27 = wrow[2] & _wcol_T_7[3]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_28 = wrow[2] & _wcol_T_7[4]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_29 = wrow[2] & _wcol_T_7[5]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_30 = wrow[2] & _wcol_T_7[6]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_31 = wrow[2] & _wcol_T_7[7]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_32 = wrow[3] & _wcol_T_7[0]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_33 = wrow[3] & _wcol_T_7[1]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_34 = wrow[3] & _wcol_T_7[2]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_35 = wrow[3] & _wcol_T_7[3]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_36 = wrow[3] & _wcol_T_7[4]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_37 = wrow[3] & _wcol_T_7[5]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_38 = wrow[3] & _wcol_T_7[6]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_39 = wrow[3] & _wcol_T_7[7]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_40 = wrow[4] & _wcol_T_7[0]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_41 = wrow[4] & _wcol_T_7[1]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_42 = wrow[4] & _wcol_T_7[2]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_43 = wrow[4] & _wcol_T_7[3]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_44 = wrow[4] & _wcol_T_7[4]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_45 = wrow[4] & _wcol_T_7[5]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_46 = wrow[4] & _wcol_T_7[6]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_47 = wrow[4] & _wcol_T_7[7]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_48 = wrow[5] & _wcol_T_7[0]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_49 = wrow[5] & _wcol_T_7[1]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_50 = wrow[5] & _wcol_T_7[2]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_51 = wrow[5] & _wcol_T_7[3]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_52 = wrow[5] & _wcol_T_7[4]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_53 = wrow[5] & _wcol_T_7[5]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_54 = wrow[5] & _wcol_T_7[6]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_55 = wrow[5] & _wcol_T_7[7]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_56 = wrow[6] & _wcol_T_7[0]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_57 = wrow[6] & _wcol_T_7[1]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_58 = wrow[6] & _wcol_T_7[2]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_59 = wrow[6] & _wcol_T_7[3]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_60 = wrow[6] & _wcol_T_7[4]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_61 = wrow[6] & _wcol_T_7[5]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_62 = wrow[6] & _wcol_T_7[6]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_63 = wrow[6] & _wcol_T_7[7]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_64 = wrow[7] & _wcol_T_7[0]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_65 = wrow[7] & _wcol_T_7[1]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_66 = wrow[7] & _wcol_T_7[2]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_67 = wrow[7] & _wcol_T_7[3]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_68 = wrow[7] & _wcol_T_7[4]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_69 = wrow[7] & _wcol_T_7[5]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_70 = wrow[7] & _wcol_T_7[6]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_71 = wrow[7] & _wcol_T_7[7]; // @[SegmentBuffer.scala:138:22, :147:{19,23,30}, :179:21, :180:10, :187:57] wire _GEN_72 = io_in_bits_sidx == 3'h0; // @[SegmentBuffer.scala:182:46] wire _GEN_73 = _GEN_5 & io_in_bits_sidx == io_in_bits_nf; // @[Decoupled.scala:51:35] wire _GEN_74 = _GEN_73 & ~in_sel; // @[SegmentBuffer.scala:147:43, :153:22, :154:23, :209:{20,58}, :211:19] wire _GEN_75 = _GEN_73 & in_sel; // @[SegmentBuffer.scala:153:22, :154:23, :209:{20,58}, :211:19] wire _GEN_76 = io_out_ready & io_out_valid_0; // @[Decoupled.scala:51:35] wire [3:0] _out_sidx_T = 4'h8 >> _GEN_0; // @[SegmentBuffer.scala:165:75, :221:52] wire sidx_tail = {2'h0, _GEN_1} + {1'h0, _out_sidx_T} > {2'h0, _GEN_4}; // @[SegmentBuffer.scala:165:{45,54}, :176:{42,49}, :221:{41,52,74}] wire [3:0] _out_row_T = _GEN_2 + 4'h1; // @[SegmentBuffer.scala:165:45, :169:25, :222:20] wire _GEN_77 = _out_row_T == (out_sel ? out_rows_1 : out_rows_0) & sidx_tail; // @[SegmentBuffer.scala:157:24, :160:21, :221:74, :222:{20,27,50}] wire [2:0] _out_sidx_T_1 = _GEN_1 + _out_sidx_T[2:0]; // @[SegmentBuffer.scala:165:45, :221:{41,52}, :230:46] always @(posedge clock) begin // @[SegmentBuffer.scala:109:7] if (_GEN_8 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_0_0_0 <= _GEN_7[io_in_bits_eew][7:0]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_8 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_0_0_1 <= _GEN_7[io_in_bits_eew][7:0]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_9 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_0_1_0 <= _GEN_7[io_in_bits_eew][15:8]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_9 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_0_1_1 <= _GEN_7[io_in_bits_eew][15:8]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_10 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_0_2_0 <= _GEN_7[io_in_bits_eew][23:16]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_10 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_0_2_1 <= _GEN_7[io_in_bits_eew][23:16]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_11 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_0_3_0 <= _GEN_7[io_in_bits_eew][31:24]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_11 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_0_3_1 <= _GEN_7[io_in_bits_eew][31:24]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_12 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_0_4_0 <= _GEN_7[io_in_bits_eew][39:32]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_12 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_0_4_1 <= _GEN_7[io_in_bits_eew][39:32]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_13 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_0_5_0 <= _GEN_7[io_in_bits_eew][47:40]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_13 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_0_5_1 <= _GEN_7[io_in_bits_eew][47:40]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_14 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_0_6_0 <= _GEN_7[io_in_bits_eew][55:48]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_14 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_0_6_1 <= _GEN_7[io_in_bits_eew][55:48]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_15 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_0_7_0 <= _GEN_7[io_in_bits_eew][63:56]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_15 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_0_7_1 <= _GEN_7[io_in_bits_eew][63:56]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_16 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_1_0_0 <= _GEN_7[io_in_bits_eew][71:64]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_16 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_1_0_1 <= _GEN_7[io_in_bits_eew][71:64]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_17 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_1_1_0 <= _GEN_7[io_in_bits_eew][79:72]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_17 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_1_1_1 <= _GEN_7[io_in_bits_eew][79:72]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_18 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_1_2_0 <= _GEN_7[io_in_bits_eew][87:80]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_18 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_1_2_1 <= _GEN_7[io_in_bits_eew][87:80]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_19 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_1_3_0 <= _GEN_7[io_in_bits_eew][95:88]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_19 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_1_3_1 <= _GEN_7[io_in_bits_eew][95:88]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_20 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_1_4_0 <= _GEN_7[io_in_bits_eew][103:96]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_20 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_1_4_1 <= _GEN_7[io_in_bits_eew][103:96]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_21 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_1_5_0 <= _GEN_7[io_in_bits_eew][111:104]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_21 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_1_5_1 <= _GEN_7[io_in_bits_eew][111:104]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_22 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_1_6_0 <= _GEN_7[io_in_bits_eew][119:112]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_22 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_1_6_1 <= _GEN_7[io_in_bits_eew][119:112]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_23 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_1_7_0 <= _GEN_7[io_in_bits_eew][127:120]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_23 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_1_7_1 <= _GEN_7[io_in_bits_eew][127:120]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_24 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_2_0_0 <= _GEN_7[io_in_bits_eew][135:128]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_24 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_2_0_1 <= _GEN_7[io_in_bits_eew][135:128]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_25 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_2_1_0 <= _GEN_7[io_in_bits_eew][143:136]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_25 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_2_1_1 <= _GEN_7[io_in_bits_eew][143:136]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_26 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_2_2_0 <= _GEN_7[io_in_bits_eew][151:144]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_26 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_2_2_1 <= _GEN_7[io_in_bits_eew][151:144]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_27 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_2_3_0 <= _GEN_7[io_in_bits_eew][159:152]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_27 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_2_3_1 <= _GEN_7[io_in_bits_eew][159:152]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_28 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_2_4_0 <= _GEN_7[io_in_bits_eew][167:160]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_28 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_2_4_1 <= _GEN_7[io_in_bits_eew][167:160]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_29 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_2_5_0 <= _GEN_7[io_in_bits_eew][175:168]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_29 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_2_5_1 <= _GEN_7[io_in_bits_eew][175:168]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_30 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_2_6_0 <= _GEN_7[io_in_bits_eew][183:176]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_30 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_2_6_1 <= _GEN_7[io_in_bits_eew][183:176]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_31 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_2_7_0 <= _GEN_7[io_in_bits_eew][191:184]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_31 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_2_7_1 <= _GEN_7[io_in_bits_eew][191:184]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_32 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_3_0_0 <= _GEN_7[io_in_bits_eew][199:192]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_32 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_3_0_1 <= _GEN_7[io_in_bits_eew][199:192]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_33 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_3_1_0 <= _GEN_7[io_in_bits_eew][207:200]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_33 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_3_1_1 <= _GEN_7[io_in_bits_eew][207:200]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_34 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_3_2_0 <= _GEN_7[io_in_bits_eew][215:208]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_34 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_3_2_1 <= _GEN_7[io_in_bits_eew][215:208]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_35 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_3_3_0 <= _GEN_7[io_in_bits_eew][223:216]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_35 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_3_3_1 <= _GEN_7[io_in_bits_eew][223:216]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_36 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_3_4_0 <= _GEN_7[io_in_bits_eew][231:224]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_36 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_3_4_1 <= _GEN_7[io_in_bits_eew][231:224]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_37 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_3_5_0 <= _GEN_7[io_in_bits_eew][239:232]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_37 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_3_5_1 <= _GEN_7[io_in_bits_eew][239:232]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_38 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_3_6_0 <= _GEN_7[io_in_bits_eew][247:240]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_38 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_3_6_1 <= _GEN_7[io_in_bits_eew][247:240]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_39 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_3_7_0 <= _GEN_7[io_in_bits_eew][255:248]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_39 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_3_7_1 <= _GEN_7[io_in_bits_eew][255:248]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_40 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_4_0_0 <= _GEN_7[io_in_bits_eew][263:256]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_40 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_4_0_1 <= _GEN_7[io_in_bits_eew][263:256]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_41 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_4_1_0 <= _GEN_7[io_in_bits_eew][271:264]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_41 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_4_1_1 <= _GEN_7[io_in_bits_eew][271:264]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_42 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_4_2_0 <= _GEN_7[io_in_bits_eew][279:272]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_42 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_4_2_1 <= _GEN_7[io_in_bits_eew][279:272]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_43 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_4_3_0 <= _GEN_7[io_in_bits_eew][287:280]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_43 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_4_3_1 <= _GEN_7[io_in_bits_eew][287:280]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_44 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_4_4_0 <= _GEN_7[io_in_bits_eew][295:288]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_44 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_4_4_1 <= _GEN_7[io_in_bits_eew][295:288]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_45 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_4_5_0 <= _GEN_7[io_in_bits_eew][303:296]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_45 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_4_5_1 <= _GEN_7[io_in_bits_eew][303:296]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_46 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_4_6_0 <= _GEN_7[io_in_bits_eew][311:304]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_46 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_4_6_1 <= _GEN_7[io_in_bits_eew][311:304]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_47 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_4_7_0 <= _GEN_7[io_in_bits_eew][319:312]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_47 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_4_7_1 <= _GEN_7[io_in_bits_eew][319:312]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_48 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_5_0_0 <= _GEN_7[io_in_bits_eew][327:320]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_48 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_5_0_1 <= _GEN_7[io_in_bits_eew][327:320]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_49 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_5_1_0 <= _GEN_7[io_in_bits_eew][335:328]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_49 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_5_1_1 <= _GEN_7[io_in_bits_eew][335:328]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_50 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_5_2_0 <= _GEN_7[io_in_bits_eew][343:336]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_50 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_5_2_1 <= _GEN_7[io_in_bits_eew][343:336]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_51 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_5_3_0 <= _GEN_7[io_in_bits_eew][351:344]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_51 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_5_3_1 <= _GEN_7[io_in_bits_eew][351:344]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_52 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_5_4_0 <= _GEN_7[io_in_bits_eew][359:352]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_52 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_5_4_1 <= _GEN_7[io_in_bits_eew][359:352]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_53 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_5_5_0 <= _GEN_7[io_in_bits_eew][367:360]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_53 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_5_5_1 <= _GEN_7[io_in_bits_eew][367:360]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_54 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_5_6_0 <= _GEN_7[io_in_bits_eew][375:368]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_54 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_5_6_1 <= _GEN_7[io_in_bits_eew][375:368]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_55 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_5_7_0 <= _GEN_7[io_in_bits_eew][383:376]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_55 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_5_7_1 <= _GEN_7[io_in_bits_eew][383:376]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_56 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_6_0_0 <= _GEN_7[io_in_bits_eew][391:384]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_56 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_6_0_1 <= _GEN_7[io_in_bits_eew][391:384]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_57 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_6_1_0 <= _GEN_7[io_in_bits_eew][399:392]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_57 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_6_1_1 <= _GEN_7[io_in_bits_eew][399:392]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_58 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_6_2_0 <= _GEN_7[io_in_bits_eew][407:400]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_58 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_6_2_1 <= _GEN_7[io_in_bits_eew][407:400]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_59 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_6_3_0 <= _GEN_7[io_in_bits_eew][415:408]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_59 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_6_3_1 <= _GEN_7[io_in_bits_eew][415:408]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_60 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_6_4_0 <= _GEN_7[io_in_bits_eew][423:416]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_60 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_6_4_1 <= _GEN_7[io_in_bits_eew][423:416]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_61 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_6_5_0 <= _GEN_7[io_in_bits_eew][431:424]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_61 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_6_5_1 <= _GEN_7[io_in_bits_eew][431:424]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_62 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_6_6_0 <= _GEN_7[io_in_bits_eew][439:432]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_62 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_6_6_1 <= _GEN_7[io_in_bits_eew][439:432]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_63 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_6_7_0 <= _GEN_7[io_in_bits_eew][447:440]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_63 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_6_7_1 <= _GEN_7[io_in_bits_eew][447:440]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_64 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_7_0_0 <= _GEN_7[io_in_bits_eew][455:448]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_64 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_7_0_1 <= _GEN_7[io_in_bits_eew][455:448]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_65 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_7_1_0 <= _GEN_7[io_in_bits_eew][463:456]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_65 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_7_1_1 <= _GEN_7[io_in_bits_eew][463:456]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_66 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_7_2_0 <= _GEN_7[io_in_bits_eew][471:464]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_66 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_7_2_1 <= _GEN_7[io_in_bits_eew][471:464]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_67 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_7_3_0 <= _GEN_7[io_in_bits_eew][479:472]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_67 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_7_3_1 <= _GEN_7[io_in_bits_eew][479:472]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_68 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_7_4_0 <= _GEN_7[io_in_bits_eew][487:480]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_68 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_7_4_1 <= _GEN_7[io_in_bits_eew][487:480]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_69 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_7_5_0 <= _GEN_7[io_in_bits_eew][495:488]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_69 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_7_5_1 <= _GEN_7[io_in_bits_eew][495:488]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_70 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_7_6_0 <= _GEN_7[io_in_bits_eew][503:496]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_70 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_7_6_1 <= _GEN_7[io_in_bits_eew][503:496]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_71 & ~in_sel) // @[SegmentBuffer.scala:147:{23,34,43}, :154:23] array_7_7_0 <= _GEN_7[io_in_bits_eew][511:504]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_71 & in_sel) // @[SegmentBuffer.scala:147:{23,34}, :154:23] array_7_7_1 <= _GEN_7[io_in_bits_eew][511:504]; // @[SegmentBuffer.scala:137:44, :141:65] if (_GEN_5 & ~in_sel & _GEN_72) // @[Decoupled.scala:51:35] mask_0 <= io_in_bits_mask; // @[SegmentBuffer.scala:142:32] if (_GEN_5 & in_sel & _GEN_72) // @[Decoupled.scala:51:35] mask_1 <= io_in_bits_mask; // @[SegmentBuffer.scala:142:32] if (~_GEN_76 | _GEN_77 | out_sel) begin // @[Decoupled.scala:51:35] if (_GEN_74) // @[SegmentBuffer.scala:153:22, :209:58, :211:19] out_sidx_0 <= io_in_bits_segstart; // @[SegmentBuffer.scala:155:21] end else // @[SegmentBuffer.scala:209:58, :220:22, :222:64, :226:29] out_sidx_0 <= sidx_tail ? out_segstart_0 : _out_sidx_T_1; // @[SegmentBuffer.scala:155:21, :161:25, :209:58, :221:74, :227:25, :230:{25,46}] if (~_GEN_76 | _GEN_77 | ~out_sel) begin // @[Decoupled.scala:51:35] if (_GEN_75) // @[SegmentBuffer.scala:153:22, :209:58, :211:19] out_sidx_1 <= io_in_bits_segstart; // @[SegmentBuffer.scala:155:21] end else // @[SegmentBuffer.scala:209:58, :220:22, :222:64, :226:29] out_sidx_1 <= sidx_tail ? out_segstart_1 : _out_sidx_T_1; // @[SegmentBuffer.scala:155:21, :161:25, :209:58, :221:74, :227:25, :230:{25,46}] if (_GEN_74) begin // @[SegmentBuffer.scala:153:22, :209:58, :211:19] out_nf_0 <= io_in_bits_segend; // @[SegmentBuffer.scala:158:19] out_eew_0 <= io_in_bits_eew; // @[SegmentBuffer.scala:159:20] out_rows_0 <= io_in_bits_rows; // @[SegmentBuffer.scala:160:21] out_segstart_0 <= io_in_bits_segstart; // @[SegmentBuffer.scala:161:25] out_id_0 <= io_in_bits_debug_id; // @[SegmentBuffer.scala:162:19] end if (_GEN_75) begin // @[SegmentBuffer.scala:153:22, :209:58, :211:19] out_nf_1 <= io_in_bits_segend; // @[SegmentBuffer.scala:158:19] out_eew_1 <= io_in_bits_eew; // @[SegmentBuffer.scala:159:20] out_rows_1 <= io_in_bits_rows; // @[SegmentBuffer.scala:160:21] out_segstart_1 <= io_in_bits_segstart; // @[SegmentBuffer.scala:161:25] out_id_1 <= io_in_bits_debug_id; // @[SegmentBuffer.scala:162:19] end if (reset) begin // @[SegmentBuffer.scala:109:7] modes_0 <= 1'h0; // @[SegmentBuffer.scala:153:22] modes_1 <= 1'h0; // @[SegmentBuffer.scala:153:22] in_sel <= 1'h0; // @[SegmentBuffer.scala:154:23] out_row <= 3'h0; // @[SegmentBuffer.scala:156:24] out_sel <= 1'h0; // @[SegmentBuffer.scala:157:24] end else begin // @[SegmentBuffer.scala:109:7] modes_0 <= ~(_GEN_76 & _GEN_77 & ~out_sel) & (_GEN_74 | modes_0); // @[Decoupled.scala:51:35] modes_1 <= ~(_GEN_76 & _GEN_77 & out_sel) & (_GEN_75 | modes_1); // @[Decoupled.scala:51:35] in_sel <= _GEN_73 ^ in_sel; // @[SegmentBuffer.scala:154:23, :209:{20,58}, :210:12] if (_GEN_76) begin // @[Decoupled.scala:51:35] if (_GEN_77) // @[SegmentBuffer.scala:222:50] out_row <= 3'h0; // @[SegmentBuffer.scala:156:24] else if (sidx_tail) // @[SegmentBuffer.scala:221:74] out_row <= _out_row_T[2:0]; // @[SegmentBuffer.scala:156:24, :222:20, :228:26] end out_sel <= _GEN_76 & _GEN_77 ^ out_sel; // @[Decoupled.scala:51:35] end always @(posedge)
Generate the Verilog code corresponding to the following Chisel files. File SourceX.scala: /* * Copyright 2019 SiFive, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You should have received a copy of LICENSE.Apache2 along with * this software. If not, you may obtain a copy at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package sifive.blocks.inclusivecache import chisel3._ import chisel3.util._ // The control port response source class SourceXRequest(params: InclusiveCacheParameters) extends InclusiveCacheBundle(params) { val fail = Bool() } class SourceX(params: InclusiveCacheParameters) extends Module { val io = IO(new Bundle { val req = Flipped(Decoupled(new SourceXRequest(params))) val x = Decoupled(new SourceXRequest(params)) }) val x = Wire(chiselTypeOf(io.x)) // ready must not depend on valid io.x <> Queue(x, 1) io.req.ready := x.ready x.valid := io.req.valid params.ccover(x.valid && !x.ready, "SOURCEX_STALL", "Backpressure when sending a control message") x.bits := io.req.bits }
module SourceX( // @[SourceX.scala:29:7] input clock, // @[SourceX.scala:29:7] input reset, // @[SourceX.scala:29:7] output io_req_ready, // @[SourceX.scala:31:14] input io_req_valid, // @[SourceX.scala:31:14] output io_x_valid // @[SourceX.scala:31:14] ); Queue1_SourceXRequest io_x_q ( // @[Decoupled.scala:362:21] .clock (clock), .reset (reset), .io_enq_ready (io_req_ready), .io_enq_valid (io_req_valid), .io_deq_valid (io_x_valid) ); // @[Decoupled.scala:362:21] endmodule
Generate the Verilog code corresponding to the following Chisel files. File PE.scala: // See README.md for license details. package gemmini import chisel3._ import chisel3.util._ class PEControl[T <: Data : Arithmetic](accType: T) extends Bundle { val dataflow = UInt(1.W) // TODO make this an Enum val propagate = UInt(1.W) // Which register should be propagated (and which should be accumulated)? val shift = UInt(log2Up(accType.getWidth).W) // TODO this isn't correct for Floats } class MacUnit[T <: Data](inputType: T, cType: T, dType: T) (implicit ev: Arithmetic[T]) extends Module { import ev._ val io = IO(new Bundle { val in_a = Input(inputType) val in_b = Input(inputType) val in_c = Input(cType) val out_d = Output(dType) }) io.out_d := io.in_c.mac(io.in_a, io.in_b) } // TODO update documentation /** * A PE implementing a MAC operation. Configured as fully combinational when integrated into a Mesh. * @param width Data width of operands */ class PE[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, max_simultaneous_matmuls: Int) (implicit ev: Arithmetic[T]) extends Module { // Debugging variables import ev._ val io = IO(new Bundle { val in_a = Input(inputType) val in_b = Input(outputType) val in_d = Input(outputType) val out_a = Output(inputType) val out_b = Output(outputType) val out_c = Output(outputType) val in_control = Input(new PEControl(accType)) val out_control = Output(new PEControl(accType)) val in_id = Input(UInt(log2Up(max_simultaneous_matmuls).W)) val out_id = Output(UInt(log2Up(max_simultaneous_matmuls).W)) val in_last = Input(Bool()) val out_last = Output(Bool()) val in_valid = Input(Bool()) val out_valid = Output(Bool()) val bad_dataflow = Output(Bool()) }) val cType = if (df == Dataflow.WS) inputType else accType // When creating PEs that support multiple dataflows, the // elaboration/synthesis tools often fail to consolidate and de-duplicate // MAC units. To force mac circuitry to be re-used, we create a "mac_unit" // module here which just performs a single MAC operation val mac_unit = Module(new MacUnit(inputType, if (df == Dataflow.WS) outputType else accType, outputType)) val a = io.in_a val b = io.in_b val d = io.in_d val c1 = Reg(cType) val c2 = Reg(cType) val dataflow = io.in_control.dataflow val prop = io.in_control.propagate val shift = io.in_control.shift val id = io.in_id val last = io.in_last val valid = io.in_valid io.out_a := a io.out_control.dataflow := dataflow io.out_control.propagate := prop io.out_control.shift := shift io.out_id := id io.out_last := last io.out_valid := valid mac_unit.io.in_a := a val last_s = RegEnable(prop, valid) val flip = last_s =/= prop val shift_offset = Mux(flip, shift, 0.U) // Which dataflow are we using? val OUTPUT_STATIONARY = Dataflow.OS.id.U(1.W) val WEIGHT_STATIONARY = Dataflow.WS.id.U(1.W) // Is c1 being computed on, or propagated forward (in the output-stationary dataflow)? val COMPUTE = 0.U(1.W) val PROPAGATE = 1.U(1.W) io.bad_dataflow := false.B when ((df == Dataflow.OS).B || ((df == Dataflow.BOTH).B && dataflow === OUTPUT_STATIONARY)) { when(prop === PROPAGATE) { io.out_c := (c1 >> shift_offset).clippedToWidthOf(outputType) io.out_b := b mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c2 c2 := mac_unit.io.out_d c1 := d.withWidthOf(cType) }.otherwise { io.out_c := (c2 >> shift_offset).clippedToWidthOf(outputType) io.out_b := b mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c1 c1 := mac_unit.io.out_d c2 := d.withWidthOf(cType) } }.elsewhen ((df == Dataflow.WS).B || ((df == Dataflow.BOTH).B && dataflow === WEIGHT_STATIONARY)) { when(prop === PROPAGATE) { io.out_c := c1 mac_unit.io.in_b := c2.asTypeOf(inputType) mac_unit.io.in_c := b io.out_b := mac_unit.io.out_d c1 := d }.otherwise { io.out_c := c2 mac_unit.io.in_b := c1.asTypeOf(inputType) mac_unit.io.in_c := b io.out_b := mac_unit.io.out_d c2 := d } }.otherwise { io.bad_dataflow := true.B //assert(false.B, "unknown dataflow") io.out_c := DontCare io.out_b := DontCare mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c2 } when (!valid) { c1 := c1 c2 := c2 mac_unit.io.in_b := DontCare mac_unit.io.in_c := DontCare } } File Arithmetic.scala: // A simple type class for Chisel datatypes that can add and multiply. To add your own type, simply create your own: // implicit MyTypeArithmetic extends Arithmetic[MyType] { ... } package gemmini import chisel3._ import chisel3.util._ import hardfloat._ // Bundles that represent the raw bits of custom datatypes case class Float(expWidth: Int, sigWidth: Int) extends Bundle { val bits = UInt((expWidth + sigWidth).W) val bias: Int = (1 << (expWidth-1)) - 1 } case class DummySInt(w: Int) extends Bundle { val bits = UInt(w.W) def dontCare: DummySInt = { val o = Wire(new DummySInt(w)) o.bits := 0.U o } } // The Arithmetic typeclass which implements various arithmetic operations on custom datatypes abstract class Arithmetic[T <: Data] { implicit def cast(t: T): ArithmeticOps[T] } abstract class ArithmeticOps[T <: Data](self: T) { def *(t: T): T def mac(m1: T, m2: T): T // Returns (m1 * m2 + self) def +(t: T): T def -(t: T): T def >>(u: UInt): T // This is a rounding shift! Rounds away from 0 def >(t: T): Bool def identity: T def withWidthOf(t: T): T def clippedToWidthOf(t: T): T // Like "withWidthOf", except that it saturates def relu: T def zero: T def minimum: T // Optional parameters, which only need to be defined if you want to enable various optimizations for transformers def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[T])] = None def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[T])] = None def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = None def mult_with_reciprocal[U <: Data](reciprocal: U) = self } object Arithmetic { implicit object UIntArithmetic extends Arithmetic[UInt] { override implicit def cast(self: UInt) = new ArithmeticOps(self) { override def *(t: UInt) = self * t override def mac(m1: UInt, m2: UInt) = m1 * m2 + self override def +(t: UInt) = self + t override def -(t: UInt) = self - t override def >>(u: UInt) = { // The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm // TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here? val point_five = Mux(u === 0.U, 0.U, self(u - 1.U)) val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U val ones_digit = self(u) val r = point_five & (zeros | ones_digit) (self >> u).asUInt + r } override def >(t: UInt): Bool = self > t override def withWidthOf(t: UInt) = self.asTypeOf(t) override def clippedToWidthOf(t: UInt) = { val sat = ((1 << (t.getWidth-1))-1).U Mux(self > sat, sat, self)(t.getWidth-1, 0) } override def relu: UInt = self override def zero: UInt = 0.U override def identity: UInt = 1.U override def minimum: UInt = 0.U } } implicit object SIntArithmetic extends Arithmetic[SInt] { override implicit def cast(self: SInt) = new ArithmeticOps(self) { override def *(t: SInt) = self * t override def mac(m1: SInt, m2: SInt) = m1 * m2 + self override def +(t: SInt) = self + t override def -(t: SInt) = self - t override def >>(u: UInt) = { // The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm // TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here? val point_five = Mux(u === 0.U, 0.U, self(u - 1.U)) val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U val ones_digit = self(u) val r = (point_five & (zeros | ones_digit)).asBool (self >> u).asSInt + Mux(r, 1.S, 0.S) } override def >(t: SInt): Bool = self > t override def withWidthOf(t: SInt) = { if (self.getWidth >= t.getWidth) self(t.getWidth-1, 0).asSInt else { val sign_bits = t.getWidth - self.getWidth val sign = self(self.getWidth-1) Cat(Cat(Seq.fill(sign_bits)(sign)), self).asTypeOf(t) } } override def clippedToWidthOf(t: SInt): SInt = { val maxsat = ((1 << (t.getWidth-1))-1).S val minsat = (-(1 << (t.getWidth-1))).S MuxCase(self, Seq((self > maxsat) -> maxsat, (self < minsat) -> minsat))(t.getWidth-1, 0).asSInt } override def relu: SInt = Mux(self >= 0.S, self, 0.S) override def zero: SInt = 0.S override def identity: SInt = 1.S override def minimum: SInt = (-(1 << (self.getWidth-1))).S override def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = { // TODO this uses a floating point divider, but we should use an integer divider instead val input = Wire(Decoupled(denom_t.cloneType)) val output = Wire(Decoupled(self.cloneType)) // We translate our integer to floating-point form so that we can use the hardfloat divider val expWidth = log2Up(self.getWidth) + 1 val sigWidth = self.getWidth def sin_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def uin_to_float(x: UInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := false.B in_to_rec_fn.io.in := x in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag rec_fn_to_in.io.out.asSInt } val self_rec = sin_to_float(self) val denom_rec = uin_to_float(input.bits) // Instantiate the hardloat divider val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options)) input.ready := divider.io.inReady divider.io.inValid := input.valid divider.io.sqrtOp := false.B divider.io.a := self_rec divider.io.b := denom_rec divider.io.roundingMode := consts.round_minMag divider.io.detectTininess := consts.tininess_afterRounding output.valid := divider.io.outValid_div output.bits := float_to_in(divider.io.out) assert(!output.valid || output.ready) Some((input, output)) } override def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = { // TODO this uses a floating point divider, but we should use an integer divider instead val input = Wire(Decoupled(UInt(0.W))) val output = Wire(Decoupled(self.cloneType)) input.bits := DontCare // We translate our integer to floating-point form so that we can use the hardfloat divider val expWidth = log2Up(self.getWidth) + 1 val sigWidth = self.getWidth def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag rec_fn_to_in.io.out.asSInt } val self_rec = in_to_float(self) // Instantiate the hardloat sqrt val sqrter = Module(new DivSqrtRecFN_small(expWidth, sigWidth, 0)) input.ready := sqrter.io.inReady sqrter.io.inValid := input.valid sqrter.io.sqrtOp := true.B sqrter.io.a := self_rec sqrter.io.b := DontCare sqrter.io.roundingMode := consts.round_minMag sqrter.io.detectTininess := consts.tininess_afterRounding output.valid := sqrter.io.outValid_sqrt output.bits := float_to_in(sqrter.io.out) assert(!output.valid || output.ready) Some((input, output)) } override def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = u match { case Float(expWidth, sigWidth) => val input = Wire(Decoupled(UInt(0.W))) val output = Wire(Decoupled(u.cloneType)) input.bits := DontCare // We translate our integer to floating-point form so that we can use the hardfloat divider def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } val self_rec = in_to_float(self) val one_rec = in_to_float(1.S) // Instantiate the hardloat divider val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options)) input.ready := divider.io.inReady divider.io.inValid := input.valid divider.io.sqrtOp := false.B divider.io.a := one_rec divider.io.b := self_rec divider.io.roundingMode := consts.round_near_even divider.io.detectTininess := consts.tininess_afterRounding output.valid := divider.io.outValid_div output.bits := fNFromRecFN(expWidth, sigWidth, divider.io.out).asTypeOf(u) assert(!output.valid || output.ready) Some((input, output)) case _ => None } override def mult_with_reciprocal[U <: Data](reciprocal: U): SInt = reciprocal match { case recip @ Float(expWidth, sigWidth) => def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag rec_fn_to_in.io.out.asSInt } val self_rec = in_to_float(self) val reciprocal_rec = recFNFromFN(expWidth, sigWidth, recip.bits) // Instantiate the hardloat divider val muladder = Module(new MulRecFN(expWidth, sigWidth)) muladder.io.roundingMode := consts.round_near_even muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := reciprocal_rec float_to_in(muladder.io.out) case _ => self } } } implicit object FloatArithmetic extends Arithmetic[Float] { // TODO Floating point arithmetic currently switches between recoded and standard formats for every operation. However, it should stay in the recoded format as it travels through the systolic array override implicit def cast(self: Float): ArithmeticOps[Float] = new ArithmeticOps(self) { override def *(t: Float): Float = { val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth)) muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := t_rec_resized val out = Wire(Float(self.expWidth, self.sigWidth)) out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) out } override def mac(m1: Float, m2: Float): Float = { // Recode all operands val m1_rec = recFNFromFN(m1.expWidth, m1.sigWidth, m1.bits) val m2_rec = recFNFromFN(m2.expWidth, m2.sigWidth, m2.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Resize m1 to self's width val m1_resizer = Module(new RecFNToRecFN(m1.expWidth, m1.sigWidth, self.expWidth, self.sigWidth)) m1_resizer.io.in := m1_rec m1_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag m1_resizer.io.detectTininess := consts.tininess_afterRounding val m1_rec_resized = m1_resizer.io.out // Resize m2 to self's width val m2_resizer = Module(new RecFNToRecFN(m2.expWidth, m2.sigWidth, self.expWidth, self.sigWidth)) m2_resizer.io.in := m2_rec m2_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag m2_resizer.io.detectTininess := consts.tininess_afterRounding val m2_rec_resized = m2_resizer.io.out // Perform multiply-add val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth)) muladder.io.op := 0.U muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := m1_rec_resized muladder.io.b := m2_rec_resized muladder.io.c := self_rec // Convert result to standard format // TODO remove these intermediate recodings val out = Wire(Float(self.expWidth, self.sigWidth)) out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) out } override def +(t: Float): Float = { require(self.getWidth >= t.getWidth) // This just makes it easier to write the resizing code // Recode all operands val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Generate 1 as a float val in_to_rec_fn = Module(new INToRecFN(1, self.expWidth, self.sigWidth)) in_to_rec_fn.io.signedIn := false.B in_to_rec_fn.io.in := 1.U in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding val one_rec = in_to_rec_fn.io.out // Resize t val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out // Perform addition val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth)) muladder.io.op := 0.U muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := t_rec_resized muladder.io.b := one_rec muladder.io.c := self_rec val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) result } override def -(t: Float): Float = { val t_sgn = t.bits(t.getWidth-1) val neg_t = Cat(~t_sgn, t.bits(t.getWidth-2,0)).asTypeOf(t) self + neg_t } override def >>(u: UInt): Float = { // Recode self val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Get 2^(-u) as a recoded float val shift_exp = Wire(UInt(self.expWidth.W)) shift_exp := self.bias.U - u val shift_fn = Cat(0.U(1.W), shift_exp, 0.U((self.sigWidth-1).W)) val shift_rec = recFNFromFN(self.expWidth, self.sigWidth, shift_fn) assert(shift_exp =/= 0.U, "scaling by denormalized numbers is not currently supported") // Multiply self and 2^(-u) val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth)) muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := shift_rec val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) result } override def >(t: Float): Bool = { // Recode all operands val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Resize t to self's width val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out val comparator = Module(new CompareRecFN(self.expWidth, self.sigWidth)) comparator.io.a := self_rec comparator.io.b := t_rec_resized comparator.io.signaling := false.B comparator.io.gt } override def withWidthOf(t: Float): Float = { val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth)) resizer.io.in := self_rec resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag resizer.io.detectTininess := consts.tininess_afterRounding val result = Wire(Float(t.expWidth, t.sigWidth)) result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out) result } override def clippedToWidthOf(t: Float): Float = { // TODO check for overflow. Right now, we just assume that overflow doesn't happen val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth)) resizer.io.in := self_rec resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag resizer.io.detectTininess := consts.tininess_afterRounding val result = Wire(Float(t.expWidth, t.sigWidth)) result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out) result } override def relu: Float = { val raw = rawFloatFromFN(self.expWidth, self.sigWidth, self.bits) val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := Mux(!raw.isZero && raw.sign, 0.U, self.bits) result } override def zero: Float = 0.U.asTypeOf(self) override def identity: Float = Cat(0.U(2.W), ~(0.U((self.expWidth-1).W)), 0.U((self.sigWidth-1).W)).asTypeOf(self) override def minimum: Float = Cat(1.U, ~(0.U(self.expWidth.W)), 0.U((self.sigWidth-1).W)).asTypeOf(self) } } implicit object DummySIntArithmetic extends Arithmetic[DummySInt] { override implicit def cast(self: DummySInt) = new ArithmeticOps(self) { override def *(t: DummySInt) = self.dontCare override def mac(m1: DummySInt, m2: DummySInt) = self.dontCare override def +(t: DummySInt) = self.dontCare override def -(t: DummySInt) = self.dontCare override def >>(t: UInt) = self.dontCare override def >(t: DummySInt): Bool = false.B override def identity = self.dontCare override def withWidthOf(t: DummySInt) = self.dontCare override def clippedToWidthOf(t: DummySInt) = self.dontCare override def relu = self.dontCare override def zero = self.dontCare override def minimum: DummySInt = self.dontCare } } }
module MacUnit_82( // @[PE.scala:14:7] input clock, // @[PE.scala:14:7] input reset, // @[PE.scala:14:7] input [7:0] io_in_a, // @[PE.scala:16:14] input [7:0] io_in_b, // @[PE.scala:16:14] input [19:0] io_in_c, // @[PE.scala:16:14] output [19:0] io_out_d // @[PE.scala:16:14] ); wire [7:0] io_in_a_0 = io_in_a; // @[PE.scala:14:7] wire [7:0] io_in_b_0 = io_in_b; // @[PE.scala:14:7] wire [19:0] io_in_c_0 = io_in_c; // @[PE.scala:14:7] wire [19:0] _io_out_d_T_3; // @[Arithmetic.scala:93:54] wire [19:0] io_out_d_0; // @[PE.scala:14:7] wire [15:0] _io_out_d_T = {{8{io_in_a_0[7]}}, io_in_a_0} * {{8{io_in_b_0[7]}}, io_in_b_0}; // @[PE.scala:14:7] wire [20:0] _io_out_d_T_1 = {{5{_io_out_d_T[15]}}, _io_out_d_T} + {io_in_c_0[19], io_in_c_0}; // @[PE.scala:14:7] wire [19:0] _io_out_d_T_2 = _io_out_d_T_1[19:0]; // @[Arithmetic.scala:93:54] assign _io_out_d_T_3 = _io_out_d_T_2; // @[Arithmetic.scala:93:54] assign io_out_d_0 = _io_out_d_T_3; // @[PE.scala:14:7] assign io_out_d = io_out_d_0; // @[PE.scala:14:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag } File FPU.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.tile import chisel3._ import chisel3.util._ import chisel3.{DontCare, WireInit, withClock, withReset} import chisel3.experimental.SourceInfo import chisel3.experimental.dataview._ import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.rocket._ import freechips.rocketchip.rocket.Instructions._ import freechips.rocketchip.util._ import freechips.rocketchip.util.property case class FPUParams( minFLen: Int = 32, fLen: Int = 64, divSqrt: Boolean = true, sfmaLatency: Int = 3, dfmaLatency: Int = 4, fpmuLatency: Int = 2, ifpuLatency: Int = 2 ) object FPConstants { val RM_SZ = 3 val FLAGS_SZ = 5 } trait HasFPUCtrlSigs { val ldst = Bool() val wen = Bool() val ren1 = Bool() val ren2 = Bool() val ren3 = Bool() val swap12 = Bool() val swap23 = Bool() val typeTagIn = UInt(2.W) val typeTagOut = UInt(2.W) val fromint = Bool() val toint = Bool() val fastpipe = Bool() val fma = Bool() val div = Bool() val sqrt = Bool() val wflags = Bool() val vec = Bool() } class FPUCtrlSigs extends Bundle with HasFPUCtrlSigs class FPUDecoder(implicit p: Parameters) extends FPUModule()(p) { val io = IO(new Bundle { val inst = Input(Bits(32.W)) val sigs = Output(new FPUCtrlSigs()) }) private val X2 = BitPat.dontCare(2) val default = List(X,X,X,X,X,X,X,X2,X2,X,X,X,X,X,X,X,N) val h: Array[(BitPat, List[BitPat])] = Array(FLH -> List(Y,Y,N,N,N,X,X,X2,X2,N,N,N,N,N,N,N,N), FSH -> List(Y,N,N,Y,N,Y,X, I, H,N,Y,N,N,N,N,N,N), FMV_H_X -> List(N,Y,N,N,N,X,X, H, I,Y,N,N,N,N,N,N,N), FCVT_H_W -> List(N,Y,N,N,N,X,X, H, H,Y,N,N,N,N,N,Y,N), FCVT_H_WU-> List(N,Y,N,N,N,X,X, H, H,Y,N,N,N,N,N,Y,N), FCVT_H_L -> List(N,Y,N,N,N,X,X, H, H,Y,N,N,N,N,N,Y,N), FCVT_H_LU-> List(N,Y,N,N,N,X,X, H, H,Y,N,N,N,N,N,Y,N), FMV_X_H -> List(N,N,Y,N,N,N,X, I, H,N,Y,N,N,N,N,N,N), FCLASS_H -> List(N,N,Y,N,N,N,X, H, H,N,Y,N,N,N,N,N,N), FCVT_W_H -> List(N,N,Y,N,N,N,X, H,X2,N,Y,N,N,N,N,Y,N), FCVT_WU_H-> List(N,N,Y,N,N,N,X, H,X2,N,Y,N,N,N,N,Y,N), FCVT_L_H -> List(N,N,Y,N,N,N,X, H,X2,N,Y,N,N,N,N,Y,N), FCVT_LU_H-> List(N,N,Y,N,N,N,X, H,X2,N,Y,N,N,N,N,Y,N), FCVT_S_H -> List(N,Y,Y,N,N,N,X, H, S,N,N,Y,N,N,N,Y,N), FCVT_H_S -> List(N,Y,Y,N,N,N,X, S, H,N,N,Y,N,N,N,Y,N), FEQ_H -> List(N,N,Y,Y,N,N,N, H, H,N,Y,N,N,N,N,Y,N), FLT_H -> List(N,N,Y,Y,N,N,N, H, H,N,Y,N,N,N,N,Y,N), FLE_H -> List(N,N,Y,Y,N,N,N, H, H,N,Y,N,N,N,N,Y,N), FSGNJ_H -> List(N,Y,Y,Y,N,N,N, H, H,N,N,Y,N,N,N,N,N), FSGNJN_H -> List(N,Y,Y,Y,N,N,N, H, H,N,N,Y,N,N,N,N,N), FSGNJX_H -> List(N,Y,Y,Y,N,N,N, H, H,N,N,Y,N,N,N,N,N), FMIN_H -> List(N,Y,Y,Y,N,N,N, H, H,N,N,Y,N,N,N,Y,N), FMAX_H -> List(N,Y,Y,Y,N,N,N, H, H,N,N,Y,N,N,N,Y,N), FADD_H -> List(N,Y,Y,Y,N,N,Y, H, H,N,N,N,Y,N,N,Y,N), FSUB_H -> List(N,Y,Y,Y,N,N,Y, H, H,N,N,N,Y,N,N,Y,N), FMUL_H -> List(N,Y,Y,Y,N,N,N, H, H,N,N,N,Y,N,N,Y,N), FMADD_H -> List(N,Y,Y,Y,Y,N,N, H, H,N,N,N,Y,N,N,Y,N), FMSUB_H -> List(N,Y,Y,Y,Y,N,N, H, H,N,N,N,Y,N,N,Y,N), FNMADD_H -> List(N,Y,Y,Y,Y,N,N, H, H,N,N,N,Y,N,N,Y,N), FNMSUB_H -> List(N,Y,Y,Y,Y,N,N, H, H,N,N,N,Y,N,N,Y,N), FDIV_H -> List(N,Y,Y,Y,N,N,N, H, H,N,N,N,N,Y,N,Y,N), FSQRT_H -> List(N,Y,Y,N,N,N,X, H, H,N,N,N,N,N,Y,Y,N)) val f: Array[(BitPat, List[BitPat])] = Array(FLW -> List(Y,Y,N,N,N,X,X,X2,X2,N,N,N,N,N,N,N,N), FSW -> List(Y,N,N,Y,N,Y,X, I, S,N,Y,N,N,N,N,N,N), FMV_W_X -> List(N,Y,N,N,N,X,X, S, I,Y,N,N,N,N,N,N,N), FCVT_S_W -> List(N,Y,N,N,N,X,X, S, S,Y,N,N,N,N,N,Y,N), FCVT_S_WU-> List(N,Y,N,N,N,X,X, S, S,Y,N,N,N,N,N,Y,N), FCVT_S_L -> List(N,Y,N,N,N,X,X, S, S,Y,N,N,N,N,N,Y,N), FCVT_S_LU-> List(N,Y,N,N,N,X,X, S, S,Y,N,N,N,N,N,Y,N), FMV_X_W -> List(N,N,Y,N,N,N,X, I, S,N,Y,N,N,N,N,N,N), FCLASS_S -> List(N,N,Y,N,N,N,X, S, S,N,Y,N,N,N,N,N,N), FCVT_W_S -> List(N,N,Y,N,N,N,X, S,X2,N,Y,N,N,N,N,Y,N), FCVT_WU_S-> List(N,N,Y,N,N,N,X, S,X2,N,Y,N,N,N,N,Y,N), FCVT_L_S -> List(N,N,Y,N,N,N,X, S,X2,N,Y,N,N,N,N,Y,N), FCVT_LU_S-> List(N,N,Y,N,N,N,X, S,X2,N,Y,N,N,N,N,Y,N), FEQ_S -> List(N,N,Y,Y,N,N,N, S, S,N,Y,N,N,N,N,Y,N), FLT_S -> List(N,N,Y,Y,N,N,N, S, S,N,Y,N,N,N,N,Y,N), FLE_S -> List(N,N,Y,Y,N,N,N, S, S,N,Y,N,N,N,N,Y,N), FSGNJ_S -> List(N,Y,Y,Y,N,N,N, S, S,N,N,Y,N,N,N,N,N), FSGNJN_S -> List(N,Y,Y,Y,N,N,N, S, S,N,N,Y,N,N,N,N,N), FSGNJX_S -> List(N,Y,Y,Y,N,N,N, S, S,N,N,Y,N,N,N,N,N), FMIN_S -> List(N,Y,Y,Y,N,N,N, S, S,N,N,Y,N,N,N,Y,N), FMAX_S -> List(N,Y,Y,Y,N,N,N, S, S,N,N,Y,N,N,N,Y,N), FADD_S -> List(N,Y,Y,Y,N,N,Y, S, S,N,N,N,Y,N,N,Y,N), FSUB_S -> List(N,Y,Y,Y,N,N,Y, S, S,N,N,N,Y,N,N,Y,N), FMUL_S -> List(N,Y,Y,Y,N,N,N, S, S,N,N,N,Y,N,N,Y,N), FMADD_S -> List(N,Y,Y,Y,Y,N,N, S, S,N,N,N,Y,N,N,Y,N), FMSUB_S -> List(N,Y,Y,Y,Y,N,N, S, S,N,N,N,Y,N,N,Y,N), FNMADD_S -> List(N,Y,Y,Y,Y,N,N, S, S,N,N,N,Y,N,N,Y,N), FNMSUB_S -> List(N,Y,Y,Y,Y,N,N, S, S,N,N,N,Y,N,N,Y,N), FDIV_S -> List(N,Y,Y,Y,N,N,N, S, S,N,N,N,N,Y,N,Y,N), FSQRT_S -> List(N,Y,Y,N,N,N,X, S, S,N,N,N,N,N,Y,Y,N)) val d: Array[(BitPat, List[BitPat])] = Array(FLD -> List(Y,Y,N,N,N,X,X,X2,X2,N,N,N,N,N,N,N,N), FSD -> List(Y,N,N,Y,N,Y,X, I, D,N,Y,N,N,N,N,N,N), FMV_D_X -> List(N,Y,N,N,N,X,X, D, I,Y,N,N,N,N,N,N,N), FCVT_D_W -> List(N,Y,N,N,N,X,X, D, D,Y,N,N,N,N,N,Y,N), FCVT_D_WU-> List(N,Y,N,N,N,X,X, D, D,Y,N,N,N,N,N,Y,N), FCVT_D_L -> List(N,Y,N,N,N,X,X, D, D,Y,N,N,N,N,N,Y,N), FCVT_D_LU-> List(N,Y,N,N,N,X,X, D, D,Y,N,N,N,N,N,Y,N), FMV_X_D -> List(N,N,Y,N,N,N,X, I, D,N,Y,N,N,N,N,N,N), FCLASS_D -> List(N,N,Y,N,N,N,X, D, D,N,Y,N,N,N,N,N,N), FCVT_W_D -> List(N,N,Y,N,N,N,X, D,X2,N,Y,N,N,N,N,Y,N), FCVT_WU_D-> List(N,N,Y,N,N,N,X, D,X2,N,Y,N,N,N,N,Y,N), FCVT_L_D -> List(N,N,Y,N,N,N,X, D,X2,N,Y,N,N,N,N,Y,N), FCVT_LU_D-> List(N,N,Y,N,N,N,X, D,X2,N,Y,N,N,N,N,Y,N), FCVT_S_D -> List(N,Y,Y,N,N,N,X, D, S,N,N,Y,N,N,N,Y,N), FCVT_D_S -> List(N,Y,Y,N,N,N,X, S, D,N,N,Y,N,N,N,Y,N), FEQ_D -> List(N,N,Y,Y,N,N,N, D, D,N,Y,N,N,N,N,Y,N), FLT_D -> List(N,N,Y,Y,N,N,N, D, D,N,Y,N,N,N,N,Y,N), FLE_D -> List(N,N,Y,Y,N,N,N, D, D,N,Y,N,N,N,N,Y,N), FSGNJ_D -> List(N,Y,Y,Y,N,N,N, D, D,N,N,Y,N,N,N,N,N), FSGNJN_D -> List(N,Y,Y,Y,N,N,N, D, D,N,N,Y,N,N,N,N,N), FSGNJX_D -> List(N,Y,Y,Y,N,N,N, D, D,N,N,Y,N,N,N,N,N), FMIN_D -> List(N,Y,Y,Y,N,N,N, D, D,N,N,Y,N,N,N,Y,N), FMAX_D -> List(N,Y,Y,Y,N,N,N, D, D,N,N,Y,N,N,N,Y,N), FADD_D -> List(N,Y,Y,Y,N,N,Y, D, D,N,N,N,Y,N,N,Y,N), FSUB_D -> List(N,Y,Y,Y,N,N,Y, D, D,N,N,N,Y,N,N,Y,N), FMUL_D -> List(N,Y,Y,Y,N,N,N, D, D,N,N,N,Y,N,N,Y,N), FMADD_D -> List(N,Y,Y,Y,Y,N,N, D, D,N,N,N,Y,N,N,Y,N), FMSUB_D -> List(N,Y,Y,Y,Y,N,N, D, D,N,N,N,Y,N,N,Y,N), FNMADD_D -> List(N,Y,Y,Y,Y,N,N, D, D,N,N,N,Y,N,N,Y,N), FNMSUB_D -> List(N,Y,Y,Y,Y,N,N, D, D,N,N,N,Y,N,N,Y,N), FDIV_D -> List(N,Y,Y,Y,N,N,N, D, D,N,N,N,N,Y,N,Y,N), FSQRT_D -> List(N,Y,Y,N,N,N,X, D, D,N,N,N,N,N,Y,Y,N)) val fcvt_hd: Array[(BitPat, List[BitPat])] = Array(FCVT_H_D -> List(N,Y,Y,N,N,N,X, D, H,N,N,Y,N,N,N,Y,N), FCVT_D_H -> List(N,Y,Y,N,N,N,X, H, D,N,N,Y,N,N,N,Y,N)) val vfmv_f_s: Array[(BitPat, List[BitPat])] = Array(VFMV_F_S -> List(N,Y,N,N,N,N,X,X2,X2,N,N,N,N,N,N,N,Y)) val insns = ((minFLen, fLen) match { case (32, 32) => f case (16, 32) => h ++ f case (32, 64) => f ++ d case (16, 64) => h ++ f ++ d ++ fcvt_hd case other => throw new Exception(s"minFLen = ${minFLen} & fLen = ${fLen} is an unsupported configuration") }) ++ (if (usingVector) vfmv_f_s else Array[(BitPat, List[BitPat])]()) val decoder = DecodeLogic(io.inst, default, insns) val s = io.sigs val sigs = Seq(s.ldst, s.wen, s.ren1, s.ren2, s.ren3, s.swap12, s.swap23, s.typeTagIn, s.typeTagOut, s.fromint, s.toint, s.fastpipe, s.fma, s.div, s.sqrt, s.wflags, s.vec) sigs zip decoder map {case(s,d) => s := d} } class FPUCoreIO(implicit p: Parameters) extends CoreBundle()(p) { val hartid = Input(UInt(hartIdLen.W)) val time = Input(UInt(xLen.W)) val inst = Input(Bits(32.W)) val fromint_data = Input(Bits(xLen.W)) val fcsr_rm = Input(Bits(FPConstants.RM_SZ.W)) val fcsr_flags = Valid(Bits(FPConstants.FLAGS_SZ.W)) val v_sew = Input(UInt(3.W)) val store_data = Output(Bits(fLen.W)) val toint_data = Output(Bits(xLen.W)) val ll_resp_val = Input(Bool()) val ll_resp_type = Input(Bits(3.W)) val ll_resp_tag = Input(UInt(5.W)) val ll_resp_data = Input(Bits(fLen.W)) val valid = Input(Bool()) val fcsr_rdy = Output(Bool()) val nack_mem = Output(Bool()) val illegal_rm = Output(Bool()) val killx = Input(Bool()) val killm = Input(Bool()) val dec = Output(new FPUCtrlSigs()) val sboard_set = Output(Bool()) val sboard_clr = Output(Bool()) val sboard_clra = Output(UInt(5.W)) val keep_clock_enabled = Input(Bool()) } class FPUIO(implicit p: Parameters) extends FPUCoreIO ()(p) { val cp_req = Flipped(Decoupled(new FPInput())) //cp doesn't pay attn to kill sigs val cp_resp = Decoupled(new FPResult()) } class FPResult(implicit p: Parameters) extends CoreBundle()(p) { val data = Bits((fLen+1).W) val exc = Bits(FPConstants.FLAGS_SZ.W) } class IntToFPInput(implicit p: Parameters) extends CoreBundle()(p) with HasFPUCtrlSigs { val rm = Bits(FPConstants.RM_SZ.W) val typ = Bits(2.W) val in1 = Bits(xLen.W) } class FPInput(implicit p: Parameters) extends CoreBundle()(p) with HasFPUCtrlSigs { val rm = Bits(FPConstants.RM_SZ.W) val fmaCmd = Bits(2.W) val typ = Bits(2.W) val fmt = Bits(2.W) val in1 = Bits((fLen+1).W) val in2 = Bits((fLen+1).W) val in3 = Bits((fLen+1).W) } case class FType(exp: Int, sig: Int) { def ieeeWidth = exp + sig def recodedWidth = ieeeWidth + 1 def ieeeQNaN = ((BigInt(1) << (ieeeWidth - 1)) - (BigInt(1) << (sig - 2))).U(ieeeWidth.W) def qNaN = ((BigInt(7) << (exp + sig - 3)) + (BigInt(1) << (sig - 2))).U(recodedWidth.W) def isNaN(x: UInt) = x(sig + exp - 1, sig + exp - 3).andR def isSNaN(x: UInt) = isNaN(x) && !x(sig - 2) def classify(x: UInt) = { val sign = x(sig + exp) val code = x(exp + sig - 1, exp + sig - 3) val codeHi = code(2, 1) val isSpecial = codeHi === 3.U val isHighSubnormalIn = x(exp + sig - 3, sig - 1) < 2.U val isSubnormal = code === 1.U || codeHi === 1.U && isHighSubnormalIn val isNormal = codeHi === 1.U && !isHighSubnormalIn || codeHi === 2.U val isZero = code === 0.U val isInf = isSpecial && !code(0) val isNaN = code.andR val isSNaN = isNaN && !x(sig-2) val isQNaN = isNaN && x(sig-2) Cat(isQNaN, isSNaN, isInf && !sign, isNormal && !sign, isSubnormal && !sign, isZero && !sign, isZero && sign, isSubnormal && sign, isNormal && sign, isInf && sign) } // convert between formats, ignoring rounding, range, NaN def unsafeConvert(x: UInt, to: FType) = if (this == to) x else { val sign = x(sig + exp) val fractIn = x(sig - 2, 0) val expIn = x(sig + exp - 1, sig - 1) val fractOut = fractIn << to.sig >> sig val expOut = { val expCode = expIn(exp, exp - 2) val commonCase = (expIn + (1 << to.exp).U) - (1 << exp).U Mux(expCode === 0.U || expCode >= 6.U, Cat(expCode, commonCase(to.exp - 3, 0)), commonCase(to.exp, 0)) } Cat(sign, expOut, fractOut) } private def ieeeBundle = { val expWidth = exp class IEEEBundle extends Bundle { val sign = Bool() val exp = UInt(expWidth.W) val sig = UInt((ieeeWidth-expWidth-1).W) } new IEEEBundle } def unpackIEEE(x: UInt) = x.asTypeOf(ieeeBundle) def recode(x: UInt) = hardfloat.recFNFromFN(exp, sig, x) def ieee(x: UInt) = hardfloat.fNFromRecFN(exp, sig, x) } object FType { val H = new FType(5, 11) val S = new FType(8, 24) val D = new FType(11, 53) val all = List(H, S, D) } trait HasFPUParameters { require(fLen == 0 || FType.all.exists(_.ieeeWidth == fLen)) val minFLen: Int val fLen: Int def xLen: Int val minXLen = 32 val nIntTypes = log2Ceil(xLen/minXLen) + 1 def floatTypes = FType.all.filter(t => minFLen <= t.ieeeWidth && t.ieeeWidth <= fLen) def minType = floatTypes.head def maxType = floatTypes.last def prevType(t: FType) = floatTypes(typeTag(t) - 1) def maxExpWidth = maxType.exp def maxSigWidth = maxType.sig def typeTag(t: FType) = floatTypes.indexOf(t) def typeTagWbOffset = (FType.all.indexOf(minType) + 1).U def typeTagGroup(t: FType) = (if (floatTypes.contains(t)) typeTag(t) else typeTag(maxType)).U // typeTag def H = typeTagGroup(FType.H) def S = typeTagGroup(FType.S) def D = typeTagGroup(FType.D) def I = typeTag(maxType).U private def isBox(x: UInt, t: FType): Bool = x(t.sig + t.exp, t.sig + t.exp - 4).andR private def box(x: UInt, xt: FType, y: UInt, yt: FType): UInt = { require(xt.ieeeWidth == 2 * yt.ieeeWidth) val swizzledNaN = Cat( x(xt.sig + xt.exp, xt.sig + xt.exp - 3), x(xt.sig - 2, yt.recodedWidth - 1).andR, x(xt.sig + xt.exp - 5, xt.sig), y(yt.recodedWidth - 2), x(xt.sig - 2, yt.recodedWidth - 1), y(yt.recodedWidth - 1), y(yt.recodedWidth - 3, 0)) Mux(xt.isNaN(x), swizzledNaN, x) } // implement NaN unboxing for FU inputs def unbox(x: UInt, tag: UInt, exactType: Option[FType]): UInt = { val outType = exactType.getOrElse(maxType) def helper(x: UInt, t: FType): Seq[(Bool, UInt)] = { val prev = if (t == minType) { Seq() } else { val prevT = prevType(t) val unswizzled = Cat( x(prevT.sig + prevT.exp - 1), x(t.sig - 1), x(prevT.sig + prevT.exp - 2, 0)) val prev = helper(unswizzled, prevT) val isbox = isBox(x, t) prev.map(p => (isbox && p._1, p._2)) } prev :+ (true.B, t.unsafeConvert(x, outType)) } val (oks, floats) = helper(x, maxType).unzip if (exactType.isEmpty || floatTypes.size == 1) { Mux(oks(tag), floats(tag), maxType.qNaN) } else { val t = exactType.get floats(typeTag(t)) | Mux(oks(typeTag(t)), 0.U, t.qNaN) } } // make sure that the redundant bits in the NaN-boxed encoding are consistent def consistent(x: UInt): Bool = { def helper(x: UInt, t: FType): Bool = if (typeTag(t) == 0) true.B else { val prevT = prevType(t) val unswizzled = Cat( x(prevT.sig + prevT.exp - 1), x(t.sig - 1), x(prevT.sig + prevT.exp - 2, 0)) val prevOK = !isBox(x, t) || helper(unswizzled, prevT) val curOK = !t.isNaN(x) || x(t.sig + t.exp - 4) === x(t.sig - 2, prevT.recodedWidth - 1).andR prevOK && curOK } helper(x, maxType) } // generate a NaN box from an FU result def box(x: UInt, t: FType): UInt = { if (t == maxType) { x } else { val nt = floatTypes(typeTag(t) + 1) val bigger = box(((BigInt(1) << nt.recodedWidth)-1).U, nt, x, t) bigger | ((BigInt(1) << maxType.recodedWidth) - (BigInt(1) << nt.recodedWidth)).U } } // generate a NaN box from an FU result def box(x: UInt, tag: UInt): UInt = { val opts = floatTypes.map(t => box(x, t)) opts(tag) } // zap bits that hardfloat thinks are don't-cares, but we do care about def sanitizeNaN(x: UInt, t: FType): UInt = { if (typeTag(t) == 0) { x } else { val maskedNaN = x & ~((BigInt(1) << (t.sig-1)) | (BigInt(1) << (t.sig+t.exp-4))).U(t.recodedWidth.W) Mux(t.isNaN(x), maskedNaN, x) } } // implement NaN boxing and recoding for FL*/fmv.*.x def recode(x: UInt, tag: UInt): UInt = { def helper(x: UInt, t: FType): UInt = { if (typeTag(t) == 0) { t.recode(x) } else { val prevT = prevType(t) box(t.recode(x), t, helper(x, prevT), prevT) } } // fill MSBs of subword loads to emulate a wider load of a NaN-boxed value val boxes = floatTypes.map(t => ((BigInt(1) << maxType.ieeeWidth) - (BigInt(1) << t.ieeeWidth)).U) helper(boxes(tag) | x, maxType) } // implement NaN unboxing and un-recoding for FS*/fmv.x.* def ieee(x: UInt, t: FType = maxType): UInt = { if (typeTag(t) == 0) { t.ieee(x) } else { val unrecoded = t.ieee(x) val prevT = prevType(t) val prevRecoded = Cat( x(prevT.recodedWidth-2), x(t.sig-1), x(prevT.recodedWidth-3, 0)) val prevUnrecoded = ieee(prevRecoded, prevT) Cat(unrecoded >> prevT.ieeeWidth, Mux(t.isNaN(x), prevUnrecoded, unrecoded(prevT.ieeeWidth-1, 0))) } } } abstract class FPUModule(implicit val p: Parameters) extends Module with HasCoreParameters with HasFPUParameters class FPToInt(implicit p: Parameters) extends FPUModule()(p) with ShouldBeRetimed { class Output extends Bundle { val in = new FPInput val lt = Bool() val store = Bits(fLen.W) val toint = Bits(xLen.W) val exc = Bits(FPConstants.FLAGS_SZ.W) } val io = IO(new Bundle { val in = Flipped(Valid(new FPInput)) val out = Valid(new Output) }) val in = RegEnable(io.in.bits, io.in.valid) val valid = RegNext(io.in.valid) val dcmp = Module(new hardfloat.CompareRecFN(maxExpWidth, maxSigWidth)) dcmp.io.a := in.in1 dcmp.io.b := in.in2 dcmp.io.signaling := !in.rm(1) val tag = in.typeTagOut val toint_ieee = (floatTypes.map(t => if (t == FType.H) Fill(maxType.ieeeWidth / minXLen, ieee(in.in1)(15, 0).sextTo(minXLen)) else Fill(maxType.ieeeWidth / t.ieeeWidth, ieee(in.in1)(t.ieeeWidth - 1, 0))): Seq[UInt])(tag) val toint = WireDefault(toint_ieee) val intType = WireDefault(in.fmt(0)) io.out.bits.store := (floatTypes.map(t => Fill(fLen / t.ieeeWidth, ieee(in.in1)(t.ieeeWidth - 1, 0))): Seq[UInt])(tag) io.out.bits.toint := ((0 until nIntTypes).map(i => toint((minXLen << i) - 1, 0).sextTo(xLen)): Seq[UInt])(intType) io.out.bits.exc := 0.U when (in.rm(0)) { val classify_out = (floatTypes.map(t => t.classify(maxType.unsafeConvert(in.in1, t))): Seq[UInt])(tag) toint := classify_out | (toint_ieee >> minXLen << minXLen) intType := false.B } when (in.wflags) { // feq/flt/fle, fcvt toint := (~in.rm & Cat(dcmp.io.lt, dcmp.io.eq)).orR | (toint_ieee >> minXLen << minXLen) io.out.bits.exc := dcmp.io.exceptionFlags intType := false.B when (!in.ren2) { // fcvt val cvtType = in.typ.extract(log2Ceil(nIntTypes), 1) intType := cvtType val conv = Module(new hardfloat.RecFNToIN(maxExpWidth, maxSigWidth, xLen)) conv.io.in := in.in1 conv.io.roundingMode := in.rm conv.io.signedOut := ~in.typ(0) toint := conv.io.out io.out.bits.exc := Cat(conv.io.intExceptionFlags(2, 1).orR, 0.U(3.W), conv.io.intExceptionFlags(0)) for (i <- 0 until nIntTypes-1) { val w = minXLen << i when (cvtType === i.U) { val narrow = Module(new hardfloat.RecFNToIN(maxExpWidth, maxSigWidth, w)) narrow.io.in := in.in1 narrow.io.roundingMode := in.rm narrow.io.signedOut := ~in.typ(0) val excSign = in.in1(maxExpWidth + maxSigWidth) && !maxType.isNaN(in.in1) val excOut = Cat(conv.io.signedOut === excSign, Fill(w-1, !excSign)) val invalid = conv.io.intExceptionFlags(2) || narrow.io.intExceptionFlags(1) when (invalid) { toint := Cat(conv.io.out >> w, excOut) } io.out.bits.exc := Cat(invalid, 0.U(3.W), !invalid && conv.io.intExceptionFlags(0)) } } } } io.out.valid := valid io.out.bits.lt := dcmp.io.lt || (dcmp.io.a.asSInt < 0.S && dcmp.io.b.asSInt >= 0.S) io.out.bits.in := in } class IntToFP(val latency: Int)(implicit p: Parameters) extends FPUModule()(p) with ShouldBeRetimed { val io = IO(new Bundle { val in = Flipped(Valid(new IntToFPInput)) val out = Valid(new FPResult) }) val in = Pipe(io.in) val tag = in.bits.typeTagIn val mux = Wire(new FPResult) mux.exc := 0.U mux.data := recode(in.bits.in1, tag) val intValue = { val res = WireDefault(in.bits.in1.asSInt) for (i <- 0 until nIntTypes-1) { val smallInt = in.bits.in1((minXLen << i) - 1, 0) when (in.bits.typ.extract(log2Ceil(nIntTypes), 1) === i.U) { res := Mux(in.bits.typ(0), smallInt.zext, smallInt.asSInt) } } res.asUInt } when (in.bits.wflags) { // fcvt // could be improved for RVD/RVQ with a single variable-position rounding // unit, rather than N fixed-position ones val i2fResults = for (t <- floatTypes) yield { val i2f = Module(new hardfloat.INToRecFN(xLen, t.exp, t.sig)) i2f.io.signedIn := ~in.bits.typ(0) i2f.io.in := intValue i2f.io.roundingMode := in.bits.rm i2f.io.detectTininess := hardfloat.consts.tininess_afterRounding (sanitizeNaN(i2f.io.out, t), i2f.io.exceptionFlags) } val (data, exc) = i2fResults.unzip val dataPadded = data.init.map(d => Cat(data.last >> d.getWidth, d)) :+ data.last mux.data := dataPadded(tag) mux.exc := exc(tag) } io.out <> Pipe(in.valid, mux, latency-1) } class FPToFP(val latency: Int)(implicit p: Parameters) extends FPUModule()(p) with ShouldBeRetimed { val io = IO(new Bundle { val in = Flipped(Valid(new FPInput)) val out = Valid(new FPResult) val lt = Input(Bool()) // from FPToInt }) val in = Pipe(io.in) val signNum = Mux(in.bits.rm(1), in.bits.in1 ^ in.bits.in2, Mux(in.bits.rm(0), ~in.bits.in2, in.bits.in2)) val fsgnj = Cat(signNum(fLen), in.bits.in1(fLen-1, 0)) val fsgnjMux = Wire(new FPResult) fsgnjMux.exc := 0.U fsgnjMux.data := fsgnj when (in.bits.wflags) { // fmin/fmax val isnan1 = maxType.isNaN(in.bits.in1) val isnan2 = maxType.isNaN(in.bits.in2) val isInvalid = maxType.isSNaN(in.bits.in1) || maxType.isSNaN(in.bits.in2) val isNaNOut = isnan1 && isnan2 val isLHS = isnan2 || in.bits.rm(0) =/= io.lt && !isnan1 fsgnjMux.exc := isInvalid << 4 fsgnjMux.data := Mux(isNaNOut, maxType.qNaN, Mux(isLHS, in.bits.in1, in.bits.in2)) } val inTag = in.bits.typeTagIn val outTag = in.bits.typeTagOut val mux = WireDefault(fsgnjMux) for (t <- floatTypes.init) { when (outTag === typeTag(t).U) { mux.data := Cat(fsgnjMux.data >> t.recodedWidth, maxType.unsafeConvert(fsgnjMux.data, t)) } } when (in.bits.wflags && !in.bits.ren2) { // fcvt if (floatTypes.size > 1) { // widening conversions simply canonicalize NaN operands val widened = Mux(maxType.isNaN(in.bits.in1), maxType.qNaN, in.bits.in1) fsgnjMux.data := widened fsgnjMux.exc := maxType.isSNaN(in.bits.in1) << 4 // narrowing conversions require rounding (for RVQ, this could be // optimized to use a single variable-position rounding unit, rather // than two fixed-position ones) for (outType <- floatTypes.init) when (outTag === typeTag(outType).U && ((typeTag(outType) == 0).B || outTag < inTag)) { val narrower = Module(new hardfloat.RecFNToRecFN(maxType.exp, maxType.sig, outType.exp, outType.sig)) narrower.io.in := in.bits.in1 narrower.io.roundingMode := in.bits.rm narrower.io.detectTininess := hardfloat.consts.tininess_afterRounding val narrowed = sanitizeNaN(narrower.io.out, outType) mux.data := Cat(fsgnjMux.data >> narrowed.getWidth, narrowed) mux.exc := narrower.io.exceptionFlags } } } io.out <> Pipe(in.valid, mux, latency-1) } class MulAddRecFNPipe(latency: Int, expWidth: Int, sigWidth: Int) extends Module { override def desiredName = s"MulAddRecFNPipe_l${latency}_e${expWidth}_s${sigWidth}" require(latency<=2) val io = IO(new Bundle { val validin = Input(Bool()) val op = Input(Bits(2.W)) val a = Input(Bits((expWidth + sigWidth + 1).W)) val b = Input(Bits((expWidth + sigWidth + 1).W)) val c = Input(Bits((expWidth + sigWidth + 1).W)) val roundingMode = Input(UInt(3.W)) val detectTininess = Input(UInt(1.W)) val out = Output(Bits((expWidth + sigWidth + 1).W)) val exceptionFlags = Output(Bits(5.W)) val validout = Output(Bool()) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val mulAddRecFNToRaw_preMul = Module(new hardfloat.MulAddRecFNToRaw_preMul(expWidth, sigWidth)) val mulAddRecFNToRaw_postMul = Module(new hardfloat.MulAddRecFNToRaw_postMul(expWidth, sigWidth)) mulAddRecFNToRaw_preMul.io.op := io.op mulAddRecFNToRaw_preMul.io.a := io.a mulAddRecFNToRaw_preMul.io.b := io.b mulAddRecFNToRaw_preMul.io.c := io.c val mulAddResult = (mulAddRecFNToRaw_preMul.io.mulAddA * mulAddRecFNToRaw_preMul.io.mulAddB) +& mulAddRecFNToRaw_preMul.io.mulAddC val valid_stage0 = Wire(Bool()) val roundingMode_stage0 = Wire(UInt(3.W)) val detectTininess_stage0 = Wire(UInt(1.W)) val postmul_regs = if(latency>0) 1 else 0 mulAddRecFNToRaw_postMul.io.fromPreMul := Pipe(io.validin, mulAddRecFNToRaw_preMul.io.toPostMul, postmul_regs).bits mulAddRecFNToRaw_postMul.io.mulAddResult := Pipe(io.validin, mulAddResult, postmul_regs).bits mulAddRecFNToRaw_postMul.io.roundingMode := Pipe(io.validin, io.roundingMode, postmul_regs).bits roundingMode_stage0 := Pipe(io.validin, io.roundingMode, postmul_regs).bits detectTininess_stage0 := Pipe(io.validin, io.detectTininess, postmul_regs).bits valid_stage0 := Pipe(io.validin, false.B, postmul_regs).valid //------------------------------------------------------------------------ //------------------------------------------------------------------------ val roundRawFNToRecFN = Module(new hardfloat.RoundRawFNToRecFN(expWidth, sigWidth, 0)) val round_regs = if(latency==2) 1 else 0 roundRawFNToRecFN.io.invalidExc := Pipe(valid_stage0, mulAddRecFNToRaw_postMul.io.invalidExc, round_regs).bits roundRawFNToRecFN.io.in := Pipe(valid_stage0, mulAddRecFNToRaw_postMul.io.rawOut, round_regs).bits roundRawFNToRecFN.io.roundingMode := Pipe(valid_stage0, roundingMode_stage0, round_regs).bits roundRawFNToRecFN.io.detectTininess := Pipe(valid_stage0, detectTininess_stage0, round_regs).bits io.validout := Pipe(valid_stage0, false.B, round_regs).valid roundRawFNToRecFN.io.infiniteExc := false.B io.out := roundRawFNToRecFN.io.out io.exceptionFlags := roundRawFNToRecFN.io.exceptionFlags } class FPUFMAPipe(val latency: Int, val t: FType) (implicit p: Parameters) extends FPUModule()(p) with ShouldBeRetimed { override def desiredName = s"FPUFMAPipe_l${latency}_f${t.ieeeWidth}" require(latency>0) val io = IO(new Bundle { val in = Flipped(Valid(new FPInput)) val out = Valid(new FPResult) }) val valid = RegNext(io.in.valid) val in = Reg(new FPInput) when (io.in.valid) { val one = 1.U << (t.sig + t.exp - 1) val zero = (io.in.bits.in1 ^ io.in.bits.in2) & (1.U << (t.sig + t.exp)) val cmd_fma = io.in.bits.ren3 val cmd_addsub = io.in.bits.swap23 in := io.in.bits when (cmd_addsub) { in.in2 := one } when (!(cmd_fma || cmd_addsub)) { in.in3 := zero } } val fma = Module(new MulAddRecFNPipe((latency-1) min 2, t.exp, t.sig)) fma.io.validin := valid fma.io.op := in.fmaCmd fma.io.roundingMode := in.rm fma.io.detectTininess := hardfloat.consts.tininess_afterRounding fma.io.a := in.in1 fma.io.b := in.in2 fma.io.c := in.in3 val res = Wire(new FPResult) res.data := sanitizeNaN(fma.io.out, t) res.exc := fma.io.exceptionFlags io.out := Pipe(fma.io.validout, res, (latency-3) max 0) } class FPU(cfg: FPUParams)(implicit p: Parameters) extends FPUModule()(p) { val io = IO(new FPUIO) val (useClockGating, useDebugROB) = coreParams match { case r: RocketCoreParams => val sz = if (r.debugROB.isDefined) r.debugROB.get.size else 1 (r.clockGate, sz < 1) case _ => (false, false) } val clock_en_reg = Reg(Bool()) val clock_en = clock_en_reg || io.cp_req.valid val gated_clock = if (!useClockGating) clock else ClockGate(clock, clock_en, "fpu_clock_gate") val fp_decoder = Module(new FPUDecoder) fp_decoder.io.inst := io.inst val id_ctrl = WireInit(fp_decoder.io.sigs) coreParams match { case r: RocketCoreParams => r.vector.map(v => { val v_decode = v.decoder(p) // Only need to get ren1 v_decode.io.inst := io.inst v_decode.io.vconfig := DontCare // core deals with this when (v_decode.io.legal && v_decode.io.read_frs1) { id_ctrl.ren1 := true.B id_ctrl.swap12 := false.B id_ctrl.toint := true.B id_ctrl.typeTagIn := I id_ctrl.typeTagOut := Mux(io.v_sew === 3.U, D, S) } when (v_decode.io.write_frd) { id_ctrl.wen := true.B } })} val ex_reg_valid = RegNext(io.valid, false.B) val ex_reg_inst = RegEnable(io.inst, io.valid) val ex_reg_ctrl = RegEnable(id_ctrl, io.valid) val ex_ra = List.fill(3)(Reg(UInt())) // load/vector response val load_wb = RegNext(io.ll_resp_val) val load_wb_typeTag = RegEnable(io.ll_resp_type(1,0) - typeTagWbOffset, io.ll_resp_val) val load_wb_data = RegEnable(io.ll_resp_data, io.ll_resp_val) val load_wb_tag = RegEnable(io.ll_resp_tag, io.ll_resp_val) class FPUImpl { // entering gated-clock domain val req_valid = ex_reg_valid || io.cp_req.valid val ex_cp_valid = io.cp_req.fire val mem_cp_valid = RegNext(ex_cp_valid, false.B) val wb_cp_valid = RegNext(mem_cp_valid, false.B) val mem_reg_valid = RegInit(false.B) val killm = (io.killm || io.nack_mem) && !mem_cp_valid // Kill X-stage instruction if M-stage is killed. This prevents it from // speculatively being sent to the div-sqrt unit, which can cause priority // inversion for two back-to-back divides, the first of which is killed. val killx = io.killx || mem_reg_valid && killm mem_reg_valid := ex_reg_valid && !killx || ex_cp_valid val mem_reg_inst = RegEnable(ex_reg_inst, ex_reg_valid) val wb_reg_valid = RegNext(mem_reg_valid && (!killm || mem_cp_valid), false.B) val cp_ctrl = Wire(new FPUCtrlSigs) cp_ctrl :<>= io.cp_req.bits.viewAsSupertype(new FPUCtrlSigs) io.cp_resp.valid := false.B io.cp_resp.bits.data := 0.U io.cp_resp.bits.exc := DontCare val ex_ctrl = Mux(ex_cp_valid, cp_ctrl, ex_reg_ctrl) val mem_ctrl = RegEnable(ex_ctrl, req_valid) val wb_ctrl = RegEnable(mem_ctrl, mem_reg_valid) // CoreMonitorBundle to monitor fp register file writes val frfWriteBundle = Seq.fill(2)(WireInit(new CoreMonitorBundle(xLen, fLen), DontCare)) frfWriteBundle.foreach { i => i.clock := clock i.reset := reset i.hartid := io.hartid i.timer := io.time(31,0) i.valid := false.B i.wrenx := false.B i.wrenf := false.B i.excpt := false.B } // regfile val regfile = Mem(32, Bits((fLen+1).W)) when (load_wb) { val wdata = recode(load_wb_data, load_wb_typeTag) regfile(load_wb_tag) := wdata assert(consistent(wdata)) if (enableCommitLog) printf("f%d p%d 0x%x\n", load_wb_tag, load_wb_tag + 32.U, ieee(wdata)) if (useDebugROB) DebugROB.pushWb(clock, reset, io.hartid, load_wb, load_wb_tag + 32.U, ieee(wdata)) frfWriteBundle(0).wrdst := load_wb_tag frfWriteBundle(0).wrenf := true.B frfWriteBundle(0).wrdata := ieee(wdata) } val ex_rs = ex_ra.map(a => regfile(a)) when (io.valid) { when (id_ctrl.ren1) { when (!id_ctrl.swap12) { ex_ra(0) := io.inst(19,15) } when (id_ctrl.swap12) { ex_ra(1) := io.inst(19,15) } } when (id_ctrl.ren2) { when (id_ctrl.swap12) { ex_ra(0) := io.inst(24,20) } when (id_ctrl.swap23) { ex_ra(2) := io.inst(24,20) } when (!id_ctrl.swap12 && !id_ctrl.swap23) { ex_ra(1) := io.inst(24,20) } } when (id_ctrl.ren3) { ex_ra(2) := io.inst(31,27) } } val ex_rm = Mux(ex_reg_inst(14,12) === 7.U, io.fcsr_rm, ex_reg_inst(14,12)) def fuInput(minT: Option[FType]): FPInput = { val req = Wire(new FPInput) val tag = ex_ctrl.typeTagIn req.viewAsSupertype(new Bundle with HasFPUCtrlSigs) :#= ex_ctrl.viewAsSupertype(new Bundle with HasFPUCtrlSigs) req.rm := ex_rm req.in1 := unbox(ex_rs(0), tag, minT) req.in2 := unbox(ex_rs(1), tag, minT) req.in3 := unbox(ex_rs(2), tag, minT) req.typ := ex_reg_inst(21,20) req.fmt := ex_reg_inst(26,25) req.fmaCmd := ex_reg_inst(3,2) | (!ex_ctrl.ren3 && ex_reg_inst(27)) when (ex_cp_valid) { req := io.cp_req.bits when (io.cp_req.bits.swap12) { req.in1 := io.cp_req.bits.in2 req.in2 := io.cp_req.bits.in1 } when (io.cp_req.bits.swap23) { req.in2 := io.cp_req.bits.in3 req.in3 := io.cp_req.bits.in2 } } req } val sfma = Module(new FPUFMAPipe(cfg.sfmaLatency, FType.S)) sfma.io.in.valid := req_valid && ex_ctrl.fma && ex_ctrl.typeTagOut === S sfma.io.in.bits := fuInput(Some(sfma.t)) val fpiu = Module(new FPToInt) fpiu.io.in.valid := req_valid && (ex_ctrl.toint || ex_ctrl.div || ex_ctrl.sqrt || (ex_ctrl.fastpipe && ex_ctrl.wflags)) fpiu.io.in.bits := fuInput(None) io.store_data := fpiu.io.out.bits.store io.toint_data := fpiu.io.out.bits.toint when(fpiu.io.out.valid && mem_cp_valid && mem_ctrl.toint){ io.cp_resp.bits.data := fpiu.io.out.bits.toint io.cp_resp.valid := true.B } val ifpu = Module(new IntToFP(cfg.ifpuLatency)) ifpu.io.in.valid := req_valid && ex_ctrl.fromint ifpu.io.in.bits := fpiu.io.in.bits ifpu.io.in.bits.in1 := Mux(ex_cp_valid, io.cp_req.bits.in1, io.fromint_data) val fpmu = Module(new FPToFP(cfg.fpmuLatency)) fpmu.io.in.valid := req_valid && ex_ctrl.fastpipe fpmu.io.in.bits := fpiu.io.in.bits fpmu.io.lt := fpiu.io.out.bits.lt val divSqrt_wen = WireDefault(false.B) val divSqrt_inFlight = WireDefault(false.B) val divSqrt_waddr = Reg(UInt(5.W)) val divSqrt_cp = Reg(Bool()) val divSqrt_typeTag = Wire(UInt(log2Up(floatTypes.size).W)) val divSqrt_wdata = Wire(UInt((fLen+1).W)) val divSqrt_flags = Wire(UInt(FPConstants.FLAGS_SZ.W)) divSqrt_typeTag := DontCare divSqrt_wdata := DontCare divSqrt_flags := DontCare // writeback arbitration case class Pipe(p: Module, lat: Int, cond: (FPUCtrlSigs) => Bool, res: FPResult) val pipes = List( Pipe(fpmu, fpmu.latency, (c: FPUCtrlSigs) => c.fastpipe, fpmu.io.out.bits), Pipe(ifpu, ifpu.latency, (c: FPUCtrlSigs) => c.fromint, ifpu.io.out.bits), Pipe(sfma, sfma.latency, (c: FPUCtrlSigs) => c.fma && c.typeTagOut === S, sfma.io.out.bits)) ++ (fLen > 32).option({ val dfma = Module(new FPUFMAPipe(cfg.dfmaLatency, FType.D)) dfma.io.in.valid := req_valid && ex_ctrl.fma && ex_ctrl.typeTagOut === D dfma.io.in.bits := fuInput(Some(dfma.t)) Pipe(dfma, dfma.latency, (c: FPUCtrlSigs) => c.fma && c.typeTagOut === D, dfma.io.out.bits) }) ++ (minFLen == 16).option({ val hfma = Module(new FPUFMAPipe(cfg.sfmaLatency, FType.H)) hfma.io.in.valid := req_valid && ex_ctrl.fma && ex_ctrl.typeTagOut === H hfma.io.in.bits := fuInput(Some(hfma.t)) Pipe(hfma, hfma.latency, (c: FPUCtrlSigs) => c.fma && c.typeTagOut === H, hfma.io.out.bits) }) def latencyMask(c: FPUCtrlSigs, offset: Int) = { require(pipes.forall(_.lat >= offset)) pipes.map(p => Mux(p.cond(c), (1 << p.lat-offset).U, 0.U)).reduce(_|_) } def pipeid(c: FPUCtrlSigs) = pipes.zipWithIndex.map(p => Mux(p._1.cond(c), p._2.U, 0.U)).reduce(_|_) val maxLatency = pipes.map(_.lat).max val memLatencyMask = latencyMask(mem_ctrl, 2) class WBInfo extends Bundle { val rd = UInt(5.W) val typeTag = UInt(log2Up(floatTypes.size).W) val cp = Bool() val pipeid = UInt(log2Ceil(pipes.size).W) } val wen = RegInit(0.U((maxLatency-1).W)) val wbInfo = Reg(Vec(maxLatency-1, new WBInfo)) val mem_wen = mem_reg_valid && (mem_ctrl.fma || mem_ctrl.fastpipe || mem_ctrl.fromint) val write_port_busy = RegEnable(mem_wen && (memLatencyMask & latencyMask(ex_ctrl, 1)).orR || (wen & latencyMask(ex_ctrl, 0)).orR, req_valid) ccover(mem_reg_valid && write_port_busy, "WB_STRUCTURAL", "structural hazard on writeback") for (i <- 0 until maxLatency-2) { when (wen(i+1)) { wbInfo(i) := wbInfo(i+1) } } wen := wen >> 1 when (mem_wen) { when (!killm) { wen := wen >> 1 | memLatencyMask } for (i <- 0 until maxLatency-1) { when (!write_port_busy && memLatencyMask(i)) { wbInfo(i).cp := mem_cp_valid wbInfo(i).typeTag := mem_ctrl.typeTagOut wbInfo(i).pipeid := pipeid(mem_ctrl) wbInfo(i).rd := mem_reg_inst(11,7) } } } val waddr = Mux(divSqrt_wen, divSqrt_waddr, wbInfo(0).rd) val wb_cp = Mux(divSqrt_wen, divSqrt_cp, wbInfo(0).cp) val wtypeTag = Mux(divSqrt_wen, divSqrt_typeTag, wbInfo(0).typeTag) val wdata = box(Mux(divSqrt_wen, divSqrt_wdata, (pipes.map(_.res.data): Seq[UInt])(wbInfo(0).pipeid)), wtypeTag) val wexc = (pipes.map(_.res.exc): Seq[UInt])(wbInfo(0).pipeid) when ((!wbInfo(0).cp && wen(0)) || divSqrt_wen) { assert(consistent(wdata)) regfile(waddr) := wdata if (enableCommitLog) { printf("f%d p%d 0x%x\n", waddr, waddr + 32.U, ieee(wdata)) } frfWriteBundle(1).wrdst := waddr frfWriteBundle(1).wrenf := true.B frfWriteBundle(1).wrdata := ieee(wdata) } if (useDebugROB) { DebugROB.pushWb(clock, reset, io.hartid, (!wbInfo(0).cp && wen(0)) || divSqrt_wen, waddr + 32.U, ieee(wdata)) } when (wb_cp && (wen(0) || divSqrt_wen)) { io.cp_resp.bits.data := wdata io.cp_resp.valid := true.B } assert(!io.cp_req.valid || pipes.forall(_.lat == pipes.head.lat).B, s"FPU only supports coprocessor if FMA pipes have uniform latency ${pipes.map(_.lat)}") // Avoid structural hazards and nacking of external requests // toint responds in the MEM stage, so an incoming toint can induce a structural hazard against inflight FMAs io.cp_req.ready := !ex_reg_valid && !(cp_ctrl.toint && wen =/= 0.U) && !divSqrt_inFlight val wb_toint_valid = wb_reg_valid && wb_ctrl.toint val wb_toint_exc = RegEnable(fpiu.io.out.bits.exc, mem_ctrl.toint) io.fcsr_flags.valid := wb_toint_valid || divSqrt_wen || wen(0) io.fcsr_flags.bits := Mux(wb_toint_valid, wb_toint_exc, 0.U) | Mux(divSqrt_wen, divSqrt_flags, 0.U) | Mux(wen(0), wexc, 0.U) val divSqrt_write_port_busy = (mem_ctrl.div || mem_ctrl.sqrt) && wen.orR io.fcsr_rdy := !(ex_reg_valid && ex_ctrl.wflags || mem_reg_valid && mem_ctrl.wflags || wb_reg_valid && wb_ctrl.toint || wen.orR || divSqrt_inFlight) io.nack_mem := (write_port_busy || divSqrt_write_port_busy || divSqrt_inFlight) && !mem_cp_valid io.dec <> id_ctrl def useScoreboard(f: ((Pipe, Int)) => Bool) = pipes.zipWithIndex.filter(_._1.lat > 3).map(x => f(x)).fold(false.B)(_||_) io.sboard_set := wb_reg_valid && !wb_cp_valid && RegNext(useScoreboard(_._1.cond(mem_ctrl)) || mem_ctrl.div || mem_ctrl.sqrt || mem_ctrl.vec) io.sboard_clr := !wb_cp_valid && (divSqrt_wen || (wen(0) && useScoreboard(x => wbInfo(0).pipeid === x._2.U))) io.sboard_clra := waddr ccover(io.sboard_clr && load_wb, "DUAL_WRITEBACK", "load and FMA writeback on same cycle") // we don't currently support round-max-magnitude (rm=4) io.illegal_rm := io.inst(14,12).isOneOf(5.U, 6.U) || io.inst(14,12) === 7.U && io.fcsr_rm >= 5.U if (cfg.divSqrt) { val divSqrt_inValid = mem_reg_valid && (mem_ctrl.div || mem_ctrl.sqrt) && !divSqrt_inFlight val divSqrt_killed = RegNext(divSqrt_inValid && killm, true.B) when (divSqrt_inValid) { divSqrt_waddr := mem_reg_inst(11,7) divSqrt_cp := mem_cp_valid } ccover(divSqrt_inFlight && divSqrt_killed, "DIV_KILLED", "divide killed after issued to divider") ccover(divSqrt_inFlight && mem_reg_valid && (mem_ctrl.div || mem_ctrl.sqrt), "DIV_BUSY", "divider structural hazard") ccover(mem_reg_valid && divSqrt_write_port_busy, "DIV_WB_STRUCTURAL", "structural hazard on division writeback") for (t <- floatTypes) { val tag = mem_ctrl.typeTagOut val divSqrt = withReset(divSqrt_killed) { Module(new hardfloat.DivSqrtRecFN_small(t.exp, t.sig, 0)) } divSqrt.io.inValid := divSqrt_inValid && tag === typeTag(t).U divSqrt.io.sqrtOp := mem_ctrl.sqrt divSqrt.io.a := maxType.unsafeConvert(fpiu.io.out.bits.in.in1, t) divSqrt.io.b := maxType.unsafeConvert(fpiu.io.out.bits.in.in2, t) divSqrt.io.roundingMode := fpiu.io.out.bits.in.rm divSqrt.io.detectTininess := hardfloat.consts.tininess_afterRounding when (!divSqrt.io.inReady) { divSqrt_inFlight := true.B } // only 1 in flight when (divSqrt.io.outValid_div || divSqrt.io.outValid_sqrt) { divSqrt_wen := !divSqrt_killed divSqrt_wdata := sanitizeNaN(divSqrt.io.out, t) divSqrt_flags := divSqrt.io.exceptionFlags divSqrt_typeTag := typeTag(t).U } } when (divSqrt_killed) { divSqrt_inFlight := false.B } } else { when (id_ctrl.div || id_ctrl.sqrt) { io.illegal_rm := true.B } } // gate the clock clock_en_reg := !useClockGating.B || io.keep_clock_enabled || // chicken bit io.valid || // ID stage req_valid || // EX stage mem_reg_valid || mem_cp_valid || // MEM stage wb_reg_valid || wb_cp_valid || // WB stage wen.orR || divSqrt_inFlight || // post-WB stage io.ll_resp_val // load writeback } // leaving gated-clock domain val fpuImpl = withClock (gated_clock) { new FPUImpl } def ccover(cond: Bool, label: String, desc: String)(implicit sourceInfo: SourceInfo) = property.cover(cond, s"FPU_$label", "Core;;" + desc) } File Configs.scala: package ara import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config._ import freechips.rocketchip.rocket._ import freechips.rocketchip.tile._ import freechips.rocketchip.subsystem._ import shuttle.common.{ShuttleTileAttachParams, ShuttleCoreVectorParams} class WithAraRocketVectorUnit(vLen: Int = 4096, nLanes: Int = 2, axiIdBits: Int = 4, cores: Option[Seq[Int]] = None, enableDelay: Boolean = false) extends Config((site, here, up) => { case TilesLocated(InSubsystem) => up(TilesLocated(InSubsystem), site) map { case tp: RocketTileAttachParams => { val buildVector = cores.map(_.contains(tp.tileParams.tileId)).getOrElse(true) require(nLanes >= 2) if (buildVector) tp.copy(tileParams = tp.tileParams.copy( core = tp.tileParams.core.copy( vector = Some(RocketCoreVectorParams( build = ((p: Parameters) => new AraRocketUnit(nLanes, axiIdBits, enableDelay)(p)), vLen = vLen, eLen = 64, vfLen = 64, vfh = false, vMemDataBits = 0, decoder = ((p: Parameters) => { val decoder = Module(new AraEarlyVectorDecode()(p)) decoder }), useDCache = false, issueVConfig = true, vExts = Nil )), ) )) else tp } case other => other } }) class WithAraShuttleVectorUnit(vLen: Int = 4096, nLanes: Int = 2, axiIdBits: Int = 4, cores: Option[Seq[Int]] = None, enableDelay: Boolean = false) extends Config((site, here, up) => { case TilesLocated(InSubsystem) => up(TilesLocated(InSubsystem), site) map { case tp: ShuttleTileAttachParams => { val buildVector = cores.map(_.contains(tp.tileParams.tileId)).getOrElse(true) if (buildVector) tp.copy(tileParams = tp.tileParams.copy( core = tp.tileParams.core.copy( vector = Some(ShuttleCoreVectorParams( build = ((p: Parameters) => new AraShuttleUnit(nLanes, axiIdBits, enableDelay)(p)), vLen = vLen, vfLen = 64, vfh = false, decoder = ((p: Parameters) => { val decoder = Module(new AraEarlyVectorDecode()(p)) decoder }), issueVConfig = true, vExts = Nil )), ) )) else tp } case other => other } }) File fNFromRecFN.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import chisel3.util._ object fNFromRecFN { def apply(expWidth: Int, sigWidth: Int, in: Bits) = { val minNormExp = (BigInt(1)<<(expWidth - 1)) + 2 val rawIn = rawFloatFromRecFN(expWidth, sigWidth, in) val isSubnormal = rawIn.sExp < minNormExp.S val denormShiftDist = 1.U - rawIn.sExp(log2Up(sigWidth - 1) - 1, 0) val denormFract = ((rawIn.sig>>1)>>denormShiftDist)(sigWidth - 2, 0) val expOut = Mux(isSubnormal, 0.U, rawIn.sExp(expWidth - 1, 0) - ((BigInt(1)<<(expWidth - 1)) + 1).U ) | Fill(expWidth, rawIn.isNaN || rawIn.isInf) val fractOut = Mux(isSubnormal, denormFract, Mux(rawIn.isInf, 0.U, rawIn.sig(sigWidth - 2, 0)) ) Cat(rawIn.sign, expOut, fractOut) } } File rawFloatFromFN.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ object rawFloatFromFN { def apply(expWidth: Int, sigWidth: Int, in: Bits) = { val sign = in(expWidth + sigWidth - 1) val expIn = in(expWidth + sigWidth - 2, sigWidth - 1) val fractIn = in(sigWidth - 2, 0) val isZeroExpIn = (expIn === 0.U) val isZeroFractIn = (fractIn === 0.U) val normDist = countLeadingZeros(fractIn) val subnormFract = (fractIn << normDist) (sigWidth - 3, 0) << 1 val adjustedExp = Mux(isZeroExpIn, normDist ^ ((BigInt(1) << (expWidth + 1)) - 1).U, expIn ) + ((BigInt(1) << (expWidth - 1)).U | Mux(isZeroExpIn, 2.U, 1.U)) val isZero = isZeroExpIn && isZeroFractIn val isSpecial = adjustedExp(expWidth, expWidth - 1) === 3.U val out = Wire(new RawFloat(expWidth, sigWidth)) out.isNaN := isSpecial && !isZeroFractIn out.isInf := isSpecial && isZeroFractIn out.isZero := isZero out.sign := sign out.sExp := adjustedExp(expWidth, 0).zext out.sig := 0.U(1.W) ## !isZero ## Mux(isZeroExpIn, subnormFract, fractIn) out } } File rawFloatFromRecFN.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import chisel3.util._ /*---------------------------------------------------------------------------- | In the result, no more than one of 'isNaN', 'isInf', and 'isZero' will be | set. *----------------------------------------------------------------------------*/ object rawFloatFromRecFN { def apply(expWidth: Int, sigWidth: Int, in: Bits): RawFloat = { val exp = in(expWidth + sigWidth - 1, sigWidth - 1) val isZero = exp(expWidth, expWidth - 2) === 0.U val isSpecial = exp(expWidth, expWidth - 1) === 3.U val out = Wire(new RawFloat(expWidth, sigWidth)) out.isNaN := isSpecial && exp(expWidth - 2) out.isInf := isSpecial && ! exp(expWidth - 2) out.isZero := isZero out.sign := in(expWidth + sigWidth) out.sExp := exp.zext out.sig := 0.U(1.W) ## ! isZero ## in(sigWidth - 2, 0) out } }
module FPU( // @[FPU.scala:735:7] input clock, // @[FPU.scala:735:7] input reset, // @[FPU.scala:735:7] input io_hartid, // @[FPU.scala:736:14] input [63:0] io_time, // @[FPU.scala:736:14] input [31:0] io_inst, // @[FPU.scala:736:14] input [63:0] io_fromint_data, // @[FPU.scala:736:14] input [2:0] io_fcsr_rm, // @[FPU.scala:736:14] output io_fcsr_flags_valid, // @[FPU.scala:736:14] output [4:0] io_fcsr_flags_bits, // @[FPU.scala:736:14] input [2:0] io_v_sew, // @[FPU.scala:736:14] output [63:0] io_store_data, // @[FPU.scala:736:14] output [63:0] io_toint_data, // @[FPU.scala:736:14] input io_ll_resp_val, // @[FPU.scala:736:14] input [2:0] io_ll_resp_type, // @[FPU.scala:736:14] input [4:0] io_ll_resp_tag, // @[FPU.scala:736:14] input [63:0] io_ll_resp_data, // @[FPU.scala:736:14] input io_valid, // @[FPU.scala:736:14] output io_fcsr_rdy, // @[FPU.scala:736:14] output io_nack_mem, // @[FPU.scala:736:14] output io_illegal_rm, // @[FPU.scala:736:14] input io_killx, // @[FPU.scala:736:14] input io_killm, // @[FPU.scala:736:14] output io_dec_ldst, // @[FPU.scala:736:14] output io_dec_wen, // @[FPU.scala:736:14] output io_dec_ren1, // @[FPU.scala:736:14] output io_dec_ren2, // @[FPU.scala:736:14] output io_dec_ren3, // @[FPU.scala:736:14] output io_dec_swap12, // @[FPU.scala:736:14] output io_dec_swap23, // @[FPU.scala:736:14] output [1:0] io_dec_typeTagIn, // @[FPU.scala:736:14] output [1:0] io_dec_typeTagOut, // @[FPU.scala:736:14] output io_dec_fromint, // @[FPU.scala:736:14] output io_dec_toint, // @[FPU.scala:736:14] output io_dec_fastpipe, // @[FPU.scala:736:14] output io_dec_fma, // @[FPU.scala:736:14] output io_dec_div, // @[FPU.scala:736:14] output io_dec_sqrt, // @[FPU.scala:736:14] output io_dec_wflags, // @[FPU.scala:736:14] output io_dec_vec, // @[FPU.scala:736:14] output io_sboard_set, // @[FPU.scala:736:14] output io_sboard_clr, // @[FPU.scala:736:14] output [4:0] io_sboard_clra, // @[FPU.scala:736:14] input io_keep_clock_enabled, // @[FPU.scala:736:14] output io_cp_req_ready, // @[FPU.scala:736:14] output io_cp_resp_valid, // @[FPU.scala:736:14] output [64:0] io_cp_resp_bits_data // @[FPU.scala:736:14] ); wire wdata_rawIn_2_isNaN; // @[rawFloatFromFN.scala:63:19] wire wdata_rawIn_1_isNaN; // @[rawFloatFromFN.scala:63:19] wire wdata_rawIn_isNaN; // @[rawFloatFromFN.scala:63:19] wire _divSqrt_2_io_inReady; // @[FPU.scala:1027:55] wire _divSqrt_2_io_outValid_div; // @[FPU.scala:1027:55] wire _divSqrt_2_io_outValid_sqrt; // @[FPU.scala:1027:55] wire [64:0] _divSqrt_2_io_out; // @[FPU.scala:1027:55] wire [4:0] _divSqrt_2_io_exceptionFlags; // @[FPU.scala:1027:55] wire _divSqrt_1_io_inReady; // @[FPU.scala:1027:55] wire _divSqrt_1_io_outValid_div; // @[FPU.scala:1027:55] wire _divSqrt_1_io_outValid_sqrt; // @[FPU.scala:1027:55] wire [32:0] _divSqrt_1_io_out; // @[FPU.scala:1027:55] wire [4:0] _divSqrt_1_io_exceptionFlags; // @[FPU.scala:1027:55] wire _divSqrt_io_inReady; // @[FPU.scala:1027:55] wire _divSqrt_io_outValid_div; // @[FPU.scala:1027:55] wire _divSqrt_io_outValid_sqrt; // @[FPU.scala:1027:55] wire [16:0] _divSqrt_io_out; // @[FPU.scala:1027:55] wire [4:0] _divSqrt_io_exceptionFlags; // @[FPU.scala:1027:55] wire [64:0] _hfma_io_out_bits_data; // @[FPU.scala:919:28] wire [4:0] _hfma_io_out_bits_exc; // @[FPU.scala:919:28] wire [64:0] _dfma_io_out_bits_data; // @[FPU.scala:913:28] wire [4:0] _dfma_io_out_bits_exc; // @[FPU.scala:913:28] wire [64:0] _fpmu_io_out_bits_data; // @[FPU.scala:891:20] wire [4:0] _fpmu_io_out_bits_exc; // @[FPU.scala:891:20] wire [64:0] _ifpu_io_out_bits_data; // @[FPU.scala:886:20] wire [4:0] _ifpu_io_out_bits_exc; // @[FPU.scala:886:20] wire [2:0] _fpiu_io_out_bits_in_rm; // @[FPU.scala:876:20] wire [64:0] _fpiu_io_out_bits_in_in1; // @[FPU.scala:876:20] wire [64:0] _fpiu_io_out_bits_in_in2; // @[FPU.scala:876:20] wire _fpiu_io_out_bits_lt; // @[FPU.scala:876:20] wire [4:0] _fpiu_io_out_bits_exc; // @[FPU.scala:876:20] wire [64:0] _sfma_io_out_bits_data; // @[FPU.scala:872:20] wire [4:0] _sfma_io_out_bits_exc; // @[FPU.scala:872:20] wire [64:0] _regfile_ext_R0_data; // @[FPU.scala:818:20] wire [64:0] _regfile_ext_R1_data; // @[FPU.scala:818:20] wire [64:0] _regfile_ext_R2_data; // @[FPU.scala:818:20] wire _v_decode_io_legal; // @[Configs.scala:26:35] wire _v_decode_io_read_frs1; // @[Configs.scala:26:35] wire _v_decode_io_write_frd; // @[Configs.scala:26:35] wire _fp_decoder_io_sigs_wen; // @[FPU.scala:750:26] wire _fp_decoder_io_sigs_ren1; // @[FPU.scala:750:26] wire _fp_decoder_io_sigs_swap12; // @[FPU.scala:750:26] wire [1:0] _fp_decoder_io_sigs_typeTagIn; // @[FPU.scala:750:26] wire [1:0] _fp_decoder_io_sigs_typeTagOut; // @[FPU.scala:750:26] wire _fp_decoder_io_sigs_toint; // @[FPU.scala:750:26] wire io_hartid_0 = io_hartid; // @[FPU.scala:735:7] wire [63:0] io_time_0 = io_time; // @[FPU.scala:735:7] wire [31:0] io_inst_0 = io_inst; // @[FPU.scala:735:7] wire [63:0] io_fromint_data_0 = io_fromint_data; // @[FPU.scala:735:7] wire [2:0] io_fcsr_rm_0 = io_fcsr_rm; // @[FPU.scala:735:7] wire [2:0] io_v_sew_0 = io_v_sew; // @[FPU.scala:735:7] wire io_ll_resp_val_0 = io_ll_resp_val; // @[FPU.scala:735:7] wire [2:0] io_ll_resp_type_0 = io_ll_resp_type; // @[FPU.scala:735:7] wire [4:0] io_ll_resp_tag_0 = io_ll_resp_tag; // @[FPU.scala:735:7] wire [63:0] io_ll_resp_data_0 = io_ll_resp_data; // @[FPU.scala:735:7] wire io_valid_0 = io_valid; // @[FPU.scala:735:7] wire io_killx_0 = io_killx; // @[FPU.scala:735:7] wire io_killm_0 = io_killm; // @[FPU.scala:735:7] wire io_keep_clock_enabled_0 = io_keep_clock_enabled; // @[FPU.scala:735:7] wire frfWriteBundle_0_clock = clock; // @[FPU.scala:805:44] wire frfWriteBundle_0_reset = reset; // @[FPU.scala:805:44] wire frfWriteBundle_1_clock = clock; // @[FPU.scala:805:44] wire frfWriteBundle_1_reset = reset; // @[FPU.scala:805:44] wire clock_en = 1'h1; // @[FPU.scala:735:7, :745:31] wire _killm_T_1 = 1'h1; // @[FPU.scala:735:7, :785:44] wire prevOK_prevOK = 1'h1; // @[FPU.scala:384:33, :735:7] wire _wdata_opts_bigger_swizzledNaN_T = 1'h1; // @[FPU.scala:338:42, :735:7] wire _wdata_opts_bigger_T = 1'h1; // @[FPU.scala:249:56, :735:7] wire _wdata_opts_bigger_swizzledNaN_T_4 = 1'h1; // @[FPU.scala:338:42, :735:7] wire _wdata_opts_bigger_T_1 = 1'h1; // @[FPU.scala:249:56, :735:7] wire prevOK_prevOK_1 = 1'h1; // @[FPU.scala:384:33, :735:7] wire _io_cp_req_ready_T_3 = 1'h1; // @[FPU.scala:735:7, :991:39] wire _io_nack_mem_T_2 = 1'h1; // @[FPU.scala:735:7, :1003:86] wire _io_sboard_set_T = 1'h1; // @[FPU.scala:735:7, :1006:36] wire _io_sboard_clr_T = 1'h1; // @[FPU.scala:735:7, :1007:20] wire _clock_en_reg_T = 1'h1; // @[FPU.scala:735:7, :1051:19] wire _clock_en_reg_T_1 = 1'h1; // @[FPU.scala:735:7, :1051:37] wire _clock_en_reg_T_2 = 1'h1; // @[FPU.scala:735:7, :1052:27] wire _clock_en_reg_T_3 = 1'h1; // @[FPU.scala:735:7, :1053:14] wire _clock_en_reg_T_4 = 1'h1; // @[FPU.scala:735:7, :1054:15] wire _clock_en_reg_T_5 = 1'h1; // @[FPU.scala:735:7, :1055:19] wire _clock_en_reg_T_6 = 1'h1; // @[FPU.scala:735:7, :1055:35] wire _clock_en_reg_T_7 = 1'h1; // @[FPU.scala:735:7, :1056:18] wire _clock_en_reg_T_9 = 1'h1; // @[FPU.scala:735:7, :1056:33] wire _clock_en_reg_T_10 = 1'h1; // @[FPU.scala:735:7, :1057:13] wire _clock_en_reg_T_11 = 1'h1; // @[FPU.scala:735:7, :1057:33] wire io_cp_req_valid = 1'h0; // @[FPU.scala:735:7] wire io_cp_req_bits_ldst = 1'h0; // @[FPU.scala:735:7] wire io_cp_req_bits_wen = 1'h0; // @[FPU.scala:735:7] wire io_cp_req_bits_ren1 = 1'h0; // @[FPU.scala:735:7] wire io_cp_req_bits_ren2 = 1'h0; // @[FPU.scala:735:7] wire io_cp_req_bits_ren3 = 1'h0; // @[FPU.scala:735:7] wire io_cp_req_bits_swap12 = 1'h0; // @[FPU.scala:735:7] wire io_cp_req_bits_swap23 = 1'h0; // @[FPU.scala:735:7] wire io_cp_req_bits_fromint = 1'h0; // @[FPU.scala:735:7] wire io_cp_req_bits_toint = 1'h0; // @[FPU.scala:735:7] wire io_cp_req_bits_fastpipe = 1'h0; // @[FPU.scala:735:7] wire io_cp_req_bits_fma = 1'h0; // @[FPU.scala:735:7] wire io_cp_req_bits_div = 1'h0; // @[FPU.scala:735:7] wire io_cp_req_bits_sqrt = 1'h0; // @[FPU.scala:735:7] wire io_cp_req_bits_wflags = 1'h0; // @[FPU.scala:735:7] wire io_cp_req_bits_vec = 1'h0; // @[FPU.scala:735:7] wire io_cp_resp_ready = 1'h0; // @[FPU.scala:735:7] wire ex_cp_valid = 1'h0; // @[Decoupled.scala:51:35] wire cp_ctrl_ldst = 1'h0; // @[FPU.scala:794:21] wire cp_ctrl_wen = 1'h0; // @[FPU.scala:794:21] wire cp_ctrl_ren1 = 1'h0; // @[FPU.scala:794:21] wire cp_ctrl_ren2 = 1'h0; // @[FPU.scala:794:21] wire cp_ctrl_ren3 = 1'h0; // @[FPU.scala:794:21] wire cp_ctrl_swap12 = 1'h0; // @[FPU.scala:794:21] wire cp_ctrl_swap23 = 1'h0; // @[FPU.scala:794:21] wire cp_ctrl_fromint = 1'h0; // @[FPU.scala:794:21] wire cp_ctrl_toint = 1'h0; // @[FPU.scala:794:21] wire cp_ctrl_fastpipe = 1'h0; // @[FPU.scala:794:21] wire cp_ctrl_fma = 1'h0; // @[FPU.scala:794:21] wire cp_ctrl_div = 1'h0; // @[FPU.scala:794:21] wire cp_ctrl_sqrt = 1'h0; // @[FPU.scala:794:21] wire cp_ctrl_wflags = 1'h0; // @[FPU.scala:794:21] wire cp_ctrl_vec = 1'h0; // @[FPU.scala:794:21] wire frfWriteBundle_0_excpt = 1'h0; // @[FPU.scala:805:44] wire frfWriteBundle_0_valid = 1'h0; // @[FPU.scala:805:44] wire frfWriteBundle_0_wrenx = 1'h0; // @[FPU.scala:805:44] wire frfWriteBundle_1_excpt = 1'h0; // @[FPU.scala:805:44] wire frfWriteBundle_1_valid = 1'h0; // @[FPU.scala:805:44] wire frfWriteBundle_1_wrenx = 1'h0; // @[FPU.scala:805:44] wire _wbInfo_0_pipeid_T = 1'h0; // @[FPU.scala:928:63] wire _wbInfo_1_pipeid_T = 1'h0; // @[FPU.scala:928:63] wire _wbInfo_2_pipeid_T = 1'h0; // @[FPU.scala:928:63] wire _io_cp_req_ready_T_2 = 1'h0; // @[FPU.scala:991:55] wire [64:0] io_cp_req_bits_in1 = 65'h0; // @[FPU.scala:735:7] wire [64:0] io_cp_req_bits_in2 = 65'h0; // @[FPU.scala:735:7] wire [64:0] io_cp_req_bits_in3 = 65'h0; // @[FPU.scala:735:7] wire [64:0] _dfma_io_in_bits_req_in1_T = 65'h0; // @[FPU.scala:372:31] wire [64:0] _dfma_io_in_bits_req_in2_T = 65'h0; // @[FPU.scala:372:31] wire [64:0] _dfma_io_in_bits_req_in3_T = 65'h0; // @[FPU.scala:372:31] wire [1:0] io_cp_req_bits_typeTagIn = 2'h0; // @[FPU.scala:735:7] wire [1:0] io_cp_req_bits_typeTagOut = 2'h0; // @[FPU.scala:735:7] wire [1:0] io_cp_req_bits_fmaCmd = 2'h0; // @[FPU.scala:735:7] wire [1:0] io_cp_req_bits_typ = 2'h0; // @[FPU.scala:735:7] wire [1:0] io_cp_req_bits_fmt = 2'h0; // @[FPU.scala:735:7] wire [1:0] cp_ctrl_typeTagIn = 2'h0; // @[FPU.scala:794:21] wire [1:0] cp_ctrl_typeTagOut = 2'h0; // @[FPU.scala:794:21] wire [2:0] io_cp_req_bits_rm = 3'h0; // @[FPU.scala:735:7] wire [2:0] frfWriteBundle_0_priv_mode = 3'h0; // @[FPU.scala:805:44] wire [2:0] frfWriteBundle_1_priv_mode = 3'h0; // @[FPU.scala:805:44] wire [4:0] io_cp_resp_bits_exc = 5'h0; // @[FPU.scala:735:7] wire [4:0] frfWriteBundle_0_rd0src = 5'h0; // @[FPU.scala:805:44] wire [4:0] frfWriteBundle_0_rd1src = 5'h0; // @[FPU.scala:805:44] wire [4:0] frfWriteBundle_1_rd0src = 5'h0; // @[FPU.scala:805:44] wire [4:0] frfWriteBundle_1_rd1src = 5'h0; // @[FPU.scala:805:44] wire [64:0] _divSqrt_wdata_maskedNaN_T_1 = 65'h1EFEFFFFFFFFFFFFF; // @[FPU.scala:413:27] wire [32:0] _divSqrt_wdata_maskedNaN_T = 33'h1EF7FFFFF; // @[FPU.scala:413:27] wire [4:0] wdata_opts_bigger_swizzledNaN_hi_hi = 5'h1F; // @[FPU.scala:336:26] wire [4:0] wdata_opts_bigger_swizzledNaN_hi_hi_1 = 5'h1F; // @[FPU.scala:336:26] wire [31:0] frfWriteBundle_0_inst = 32'h0; // @[FPU.scala:805:44] wire [31:0] frfWriteBundle_1_inst = 32'h0; // @[FPU.scala:805:44] wire [63:0] frfWriteBundle_0_pc = 64'h0; // @[FPU.scala:805:44] wire [63:0] frfWriteBundle_0_rd0val = 64'h0; // @[FPU.scala:805:44] wire [63:0] frfWriteBundle_0_rd1val = 64'h0; // @[FPU.scala:805:44] wire [63:0] frfWriteBundle_1_pc = 64'h0; // @[FPU.scala:805:44] wire [63:0] frfWriteBundle_1_rd0val = 64'h0; // @[FPU.scala:805:44] wire [63:0] frfWriteBundle_1_rd1val = 64'h0; // @[FPU.scala:805:44] wire _io_fcsr_flags_valid_T_2; // @[FPU.scala:995:56] wire [4:0] _io_fcsr_flags_bits_T_5; // @[FPU.scala:998:42] wire _io_fcsr_rdy_T_8; // @[FPU.scala:1002:18] wire _io_nack_mem_T_3; // @[FPU.scala:1003:83] wire _io_illegal_rm_T_8; // @[FPU.scala:1011:53] wire id_ctrl_ldst; // @[FPU.scala:752:25] wire id_ctrl_wen; // @[FPU.scala:752:25] wire id_ctrl_ren1; // @[FPU.scala:752:25] wire id_ctrl_ren2; // @[FPU.scala:752:25] wire id_ctrl_ren3; // @[FPU.scala:752:25] wire id_ctrl_swap12; // @[FPU.scala:752:25] wire id_ctrl_swap23; // @[FPU.scala:752:25] wire [1:0] id_ctrl_typeTagIn; // @[FPU.scala:752:25] wire [1:0] id_ctrl_typeTagOut; // @[FPU.scala:752:25] wire id_ctrl_fromint; // @[FPU.scala:752:25] wire id_ctrl_toint; // @[FPU.scala:752:25] wire id_ctrl_fastpipe; // @[FPU.scala:752:25] wire id_ctrl_fma; // @[FPU.scala:752:25] wire id_ctrl_div; // @[FPU.scala:752:25] wire id_ctrl_sqrt; // @[FPU.scala:752:25] wire id_ctrl_wflags; // @[FPU.scala:752:25] wire id_ctrl_vec; // @[FPU.scala:752:25] wire _io_sboard_set_T_8; // @[FPU.scala:1006:49] wire _io_sboard_clr_T_6; // @[FPU.scala:1007:33] wire [4:0] waddr; // @[FPU.scala:963:18] wire _io_cp_req_ready_T_6; // @[FPU.scala:991:71] wire io_fcsr_flags_valid_0; // @[FPU.scala:735:7] wire [4:0] io_fcsr_flags_bits_0; // @[FPU.scala:735:7] wire io_dec_ldst_0; // @[FPU.scala:735:7] wire io_dec_wen_0; // @[FPU.scala:735:7] wire io_dec_ren1_0; // @[FPU.scala:735:7] wire io_dec_ren2_0; // @[FPU.scala:735:7] wire io_dec_ren3_0; // @[FPU.scala:735:7] wire io_dec_swap12_0; // @[FPU.scala:735:7] wire io_dec_swap23_0; // @[FPU.scala:735:7] wire [1:0] io_dec_typeTagIn_0; // @[FPU.scala:735:7] wire [1:0] io_dec_typeTagOut_0; // @[FPU.scala:735:7] wire io_dec_fromint_0; // @[FPU.scala:735:7] wire io_dec_toint_0; // @[FPU.scala:735:7] wire io_dec_fastpipe_0; // @[FPU.scala:735:7] wire io_dec_fma_0; // @[FPU.scala:735:7] wire io_dec_div_0; // @[FPU.scala:735:7] wire io_dec_sqrt_0; // @[FPU.scala:735:7] wire io_dec_wflags_0; // @[FPU.scala:735:7] wire io_dec_vec_0; // @[FPU.scala:735:7] wire io_cp_req_ready_0; // @[FPU.scala:735:7] wire [64:0] io_cp_resp_bits_data_0; // @[FPU.scala:735:7] wire io_cp_resp_valid_0; // @[FPU.scala:735:7] wire [63:0] io_store_data_0; // @[FPU.scala:735:7] wire [63:0] io_toint_data_0; // @[FPU.scala:735:7] wire io_fcsr_rdy_0; // @[FPU.scala:735:7] wire io_nack_mem_0; // @[FPU.scala:735:7] wire io_illegal_rm_0; // @[FPU.scala:735:7] wire io_sboard_set_0; // @[FPU.scala:735:7] wire io_sboard_clr_0; // @[FPU.scala:735:7] wire [4:0] io_sboard_clra_0; // @[FPU.scala:735:7] assign io_dec_ldst_0 = id_ctrl_ldst; // @[FPU.scala:735:7, :752:25] assign io_dec_wen_0 = id_ctrl_wen; // @[FPU.scala:735:7, :752:25] assign io_dec_ren1_0 = id_ctrl_ren1; // @[FPU.scala:735:7, :752:25] assign io_dec_ren2_0 = id_ctrl_ren2; // @[FPU.scala:735:7, :752:25] assign io_dec_ren3_0 = id_ctrl_ren3; // @[FPU.scala:735:7, :752:25] assign io_dec_swap12_0 = id_ctrl_swap12; // @[FPU.scala:735:7, :752:25] assign io_dec_swap23_0 = id_ctrl_swap23; // @[FPU.scala:735:7, :752:25] assign io_dec_typeTagIn_0 = id_ctrl_typeTagIn; // @[FPU.scala:735:7, :752:25] assign io_dec_typeTagOut_0 = id_ctrl_typeTagOut; // @[FPU.scala:735:7, :752:25] assign io_dec_fromint_0 = id_ctrl_fromint; // @[FPU.scala:735:7, :752:25] assign io_dec_toint_0 = id_ctrl_toint; // @[FPU.scala:735:7, :752:25] assign io_dec_fastpipe_0 = id_ctrl_fastpipe; // @[FPU.scala:735:7, :752:25] assign io_dec_fma_0 = id_ctrl_fma; // @[FPU.scala:735:7, :752:25] assign io_dec_div_0 = id_ctrl_div; // @[FPU.scala:735:7, :752:25] assign io_dec_sqrt_0 = id_ctrl_sqrt; // @[FPU.scala:735:7, :752:25] assign io_dec_wflags_0 = id_ctrl_wflags; // @[FPU.scala:735:7, :752:25] assign io_dec_vec_0 = id_ctrl_vec; // @[FPU.scala:735:7, :752:25] wire _T = _v_decode_io_legal & _v_decode_io_read_frs1; // @[FPU.scala:757:29] assign id_ctrl_ren1 = _T | _fp_decoder_io_sigs_ren1; // @[FPU.scala:750:26, :752:25, :757:{29,55}, :758:20] assign id_ctrl_swap12 = ~_T & _fp_decoder_io_sigs_swap12; // @[FPU.scala:750:26, :752:25, :757:{29,55}, :759:22] assign id_ctrl_toint = _T | _fp_decoder_io_sigs_toint; // @[FPU.scala:750:26, :752:25, :757:{29,55}, :760:21] assign id_ctrl_typeTagIn = _T ? 2'h2 : _fp_decoder_io_sigs_typeTagIn; // @[FPU.scala:750:26, :752:25, :757:{29,55}, :761:25] wire _id_ctrl_typeTagOut_T = io_v_sew_0 == 3'h3; // @[FPU.scala:735:7, :762:42] wire [1:0] _id_ctrl_typeTagOut_T_1 = _id_ctrl_typeTagOut_T ? 2'h2 : 2'h1; // @[FPU.scala:762:{32,42}] assign id_ctrl_typeTagOut = _T ? _id_ctrl_typeTagOut_T_1 : _fp_decoder_io_sigs_typeTagOut; // @[FPU.scala:750:26, :752:25, :757:{29,55}, :762:{26,32}] assign id_ctrl_wen = _v_decode_io_write_frd | _fp_decoder_io_sigs_wen; // @[FPU.scala:750:26, :752:25, :764:{34,48}] reg ex_reg_valid; // @[FPU.scala:767:29] wire req_valid = ex_reg_valid; // @[FPU.scala:767:29, :780:32] reg [31:0] ex_reg_inst; // @[FPU.scala:768:30] reg ex_reg_ctrl_ldst; // @[FPU.scala:769:30] wire ex_ctrl_ldst = ex_reg_ctrl_ldst; // @[FPU.scala:769:30, :800:20] reg ex_reg_ctrl_wen; // @[FPU.scala:769:30] wire ex_ctrl_wen = ex_reg_ctrl_wen; // @[FPU.scala:769:30, :800:20] reg ex_reg_ctrl_ren1; // @[FPU.scala:769:30] wire ex_ctrl_ren1 = ex_reg_ctrl_ren1; // @[FPU.scala:769:30, :800:20] reg ex_reg_ctrl_ren2; // @[FPU.scala:769:30] wire ex_ctrl_ren2 = ex_reg_ctrl_ren2; // @[FPU.scala:769:30, :800:20] reg ex_reg_ctrl_ren3; // @[FPU.scala:769:30] wire ex_ctrl_ren3 = ex_reg_ctrl_ren3; // @[FPU.scala:769:30, :800:20] reg ex_reg_ctrl_swap12; // @[FPU.scala:769:30] wire ex_ctrl_swap12 = ex_reg_ctrl_swap12; // @[FPU.scala:769:30, :800:20] reg ex_reg_ctrl_swap23; // @[FPU.scala:769:30] wire ex_ctrl_swap23 = ex_reg_ctrl_swap23; // @[FPU.scala:769:30, :800:20] reg [1:0] ex_reg_ctrl_typeTagIn; // @[FPU.scala:769:30] wire [1:0] ex_ctrl_typeTagIn = ex_reg_ctrl_typeTagIn; // @[FPU.scala:769:30, :800:20] reg [1:0] ex_reg_ctrl_typeTagOut; // @[FPU.scala:769:30] wire [1:0] ex_ctrl_typeTagOut = ex_reg_ctrl_typeTagOut; // @[FPU.scala:769:30, :800:20] reg ex_reg_ctrl_fromint; // @[FPU.scala:769:30] wire ex_ctrl_fromint = ex_reg_ctrl_fromint; // @[FPU.scala:769:30, :800:20] reg ex_reg_ctrl_toint; // @[FPU.scala:769:30] wire ex_ctrl_toint = ex_reg_ctrl_toint; // @[FPU.scala:769:30, :800:20] reg ex_reg_ctrl_fastpipe; // @[FPU.scala:769:30] wire ex_ctrl_fastpipe = ex_reg_ctrl_fastpipe; // @[FPU.scala:769:30, :800:20] reg ex_reg_ctrl_fma; // @[FPU.scala:769:30] wire ex_ctrl_fma = ex_reg_ctrl_fma; // @[FPU.scala:769:30, :800:20] reg ex_reg_ctrl_div; // @[FPU.scala:769:30] wire ex_ctrl_div = ex_reg_ctrl_div; // @[FPU.scala:769:30, :800:20] reg ex_reg_ctrl_sqrt; // @[FPU.scala:769:30] wire ex_ctrl_sqrt = ex_reg_ctrl_sqrt; // @[FPU.scala:769:30, :800:20] reg ex_reg_ctrl_wflags; // @[FPU.scala:769:30] wire ex_ctrl_wflags = ex_reg_ctrl_wflags; // @[FPU.scala:769:30, :800:20] reg ex_reg_ctrl_vec; // @[FPU.scala:769:30] wire ex_ctrl_vec = ex_reg_ctrl_vec; // @[FPU.scala:769:30, :800:20] reg [4:0] ex_ra_0; // @[FPU.scala:770:31] wire [4:0] _ex_rs_T = ex_ra_0; // @[FPU.scala:770:31, :832:37] reg [4:0] ex_ra_1; // @[FPU.scala:770:31] wire [4:0] _ex_rs_T_2 = ex_ra_1; // @[FPU.scala:770:31, :832:37] reg [4:0] ex_ra_2; // @[FPU.scala:770:31] wire [4:0] _ex_rs_T_4 = ex_ra_2; // @[FPU.scala:770:31, :832:37] reg load_wb; // @[FPU.scala:773:24] wire frfWriteBundle_0_wrenf = load_wb; // @[FPU.scala:773:24, :805:44] wire [1:0] _load_wb_typeTag_T = io_ll_resp_type_0[1:0]; // @[FPU.scala:735:7, :774:50] wire [2:0] _load_wb_typeTag_T_1 = {1'h0, _load_wb_typeTag_T} - 3'h1; // @[FPU.scala:774:{50,56}] wire [1:0] _load_wb_typeTag_T_2 = _load_wb_typeTag_T_1[1:0]; // @[FPU.scala:774:56] reg [1:0] load_wb_typeTag; // @[FPU.scala:774:34] reg [63:0] load_wb_data; // @[FPU.scala:775:31] reg [4:0] load_wb_tag; // @[FPU.scala:776:30] wire [4:0] frfWriteBundle_0_wrdst = load_wb_tag; // @[FPU.scala:776:30, :805:44] reg mem_reg_valid; // @[FPU.scala:784:30] wire _killm_T = io_killm_0 | io_nack_mem_0; // @[FPU.scala:735:7, :785:25] wire killm = _killm_T; // @[FPU.scala:785:{25,41}] wire _killx_T = mem_reg_valid & killm; // @[FPU.scala:784:30, :785:41, :789:41] wire killx = io_killx_0 | _killx_T; // @[FPU.scala:735:7, :789:{24,41}] wire _mem_reg_valid_T = ~killx; // @[FPU.scala:789:24, :790:36] wire _mem_reg_valid_T_1 = ex_reg_valid & _mem_reg_valid_T; // @[FPU.scala:767:29, :790:{33,36}] wire _mem_reg_valid_T_2 = _mem_reg_valid_T_1; // @[FPU.scala:790:{33,43}] reg [31:0] mem_reg_inst; // @[FPU.scala:791:31] wire _wb_reg_valid_T = ~killm; // @[FPU.scala:785:41, :792:48] wire _wb_reg_valid_T_1 = _wb_reg_valid_T; // @[FPU.scala:792:{48,55}] wire _wb_reg_valid_T_2 = mem_reg_valid & _wb_reg_valid_T_1; // @[FPU.scala:784:30, :792:{44,55}] reg wb_reg_valid; // @[FPU.scala:792:29] wire _io_sboard_set_T_1 = wb_reg_valid; // @[FPU.scala:792:29, :1006:33] wire sfma_io_in_bits_req_ldst = ex_ctrl_ldst; // @[FPU.scala:800:20, :848:19] wire fpiu_io_in_bits_req_ldst = ex_ctrl_ldst; // @[FPU.scala:800:20, :848:19] wire dfma_io_in_bits_req_ldst = ex_ctrl_ldst; // @[FPU.scala:800:20, :848:19] wire hfma_io_in_bits_req_ldst = ex_ctrl_ldst; // @[FPU.scala:800:20, :848:19] wire sfma_io_in_bits_req_wen = ex_ctrl_wen; // @[FPU.scala:800:20, :848:19] wire fpiu_io_in_bits_req_wen = ex_ctrl_wen; // @[FPU.scala:800:20, :848:19] wire dfma_io_in_bits_req_wen = ex_ctrl_wen; // @[FPU.scala:800:20, :848:19] wire hfma_io_in_bits_req_wen = ex_ctrl_wen; // @[FPU.scala:800:20, :848:19] wire sfma_io_in_bits_req_ren1 = ex_ctrl_ren1; // @[FPU.scala:800:20, :848:19] wire fpiu_io_in_bits_req_ren1 = ex_ctrl_ren1; // @[FPU.scala:800:20, :848:19] wire dfma_io_in_bits_req_ren1 = ex_ctrl_ren1; // @[FPU.scala:800:20, :848:19] wire hfma_io_in_bits_req_ren1 = ex_ctrl_ren1; // @[FPU.scala:800:20, :848:19] wire sfma_io_in_bits_req_ren2 = ex_ctrl_ren2; // @[FPU.scala:800:20, :848:19] wire fpiu_io_in_bits_req_ren2 = ex_ctrl_ren2; // @[FPU.scala:800:20, :848:19] wire dfma_io_in_bits_req_ren2 = ex_ctrl_ren2; // @[FPU.scala:800:20, :848:19] wire hfma_io_in_bits_req_ren2 = ex_ctrl_ren2; // @[FPU.scala:800:20, :848:19] wire sfma_io_in_bits_req_ren3 = ex_ctrl_ren3; // @[FPU.scala:800:20, :848:19] wire fpiu_io_in_bits_req_ren3 = ex_ctrl_ren3; // @[FPU.scala:800:20, :848:19] wire dfma_io_in_bits_req_ren3 = ex_ctrl_ren3; // @[FPU.scala:800:20, :848:19] wire hfma_io_in_bits_req_ren3 = ex_ctrl_ren3; // @[FPU.scala:800:20, :848:19] wire sfma_io_in_bits_req_swap12 = ex_ctrl_swap12; // @[FPU.scala:800:20, :848:19] wire fpiu_io_in_bits_req_swap12 = ex_ctrl_swap12; // @[FPU.scala:800:20, :848:19] wire dfma_io_in_bits_req_swap12 = ex_ctrl_swap12; // @[FPU.scala:800:20, :848:19] wire hfma_io_in_bits_req_swap12 = ex_ctrl_swap12; // @[FPU.scala:800:20, :848:19] wire sfma_io_in_bits_req_swap23 = ex_ctrl_swap23; // @[FPU.scala:800:20, :848:19] wire fpiu_io_in_bits_req_swap23 = ex_ctrl_swap23; // @[FPU.scala:800:20, :848:19] wire dfma_io_in_bits_req_swap23 = ex_ctrl_swap23; // @[FPU.scala:800:20, :848:19] wire hfma_io_in_bits_req_swap23 = ex_ctrl_swap23; // @[FPU.scala:800:20, :848:19] wire [1:0] sfma_io_in_bits_req_typeTagIn = ex_ctrl_typeTagIn; // @[FPU.scala:800:20, :848:19] wire [1:0] fpiu_io_in_bits_req_typeTagIn = ex_ctrl_typeTagIn; // @[FPU.scala:800:20, :848:19] wire [1:0] dfma_io_in_bits_req_typeTagIn = ex_ctrl_typeTagIn; // @[FPU.scala:800:20, :848:19] wire [1:0] hfma_io_in_bits_req_typeTagIn = ex_ctrl_typeTagIn; // @[FPU.scala:800:20, :848:19] wire [1:0] sfma_io_in_bits_req_typeTagOut = ex_ctrl_typeTagOut; // @[FPU.scala:800:20, :848:19] wire [1:0] fpiu_io_in_bits_req_typeTagOut = ex_ctrl_typeTagOut; // @[FPU.scala:800:20, :848:19] wire [1:0] dfma_io_in_bits_req_typeTagOut = ex_ctrl_typeTagOut; // @[FPU.scala:800:20, :848:19] wire [1:0] hfma_io_in_bits_req_typeTagOut = ex_ctrl_typeTagOut; // @[FPU.scala:800:20, :848:19] wire sfma_io_in_bits_req_fromint = ex_ctrl_fromint; // @[FPU.scala:800:20, :848:19] wire fpiu_io_in_bits_req_fromint = ex_ctrl_fromint; // @[FPU.scala:800:20, :848:19] wire dfma_io_in_bits_req_fromint = ex_ctrl_fromint; // @[FPU.scala:800:20, :848:19] wire hfma_io_in_bits_req_fromint = ex_ctrl_fromint; // @[FPU.scala:800:20, :848:19] wire sfma_io_in_bits_req_toint = ex_ctrl_toint; // @[FPU.scala:800:20, :848:19] wire fpiu_io_in_bits_req_toint = ex_ctrl_toint; // @[FPU.scala:800:20, :848:19] wire dfma_io_in_bits_req_toint = ex_ctrl_toint; // @[FPU.scala:800:20, :848:19] wire hfma_io_in_bits_req_toint = ex_ctrl_toint; // @[FPU.scala:800:20, :848:19] wire sfma_io_in_bits_req_fastpipe = ex_ctrl_fastpipe; // @[FPU.scala:800:20, :848:19] wire fpiu_io_in_bits_req_fastpipe = ex_ctrl_fastpipe; // @[FPU.scala:800:20, :848:19] wire dfma_io_in_bits_req_fastpipe = ex_ctrl_fastpipe; // @[FPU.scala:800:20, :848:19] wire hfma_io_in_bits_req_fastpipe = ex_ctrl_fastpipe; // @[FPU.scala:800:20, :848:19] wire sfma_io_in_bits_req_fma = ex_ctrl_fma; // @[FPU.scala:800:20, :848:19] wire fpiu_io_in_bits_req_fma = ex_ctrl_fma; // @[FPU.scala:800:20, :848:19] wire dfma_io_in_bits_req_fma = ex_ctrl_fma; // @[FPU.scala:800:20, :848:19] wire hfma_io_in_bits_req_fma = ex_ctrl_fma; // @[FPU.scala:800:20, :848:19] wire sfma_io_in_bits_req_div = ex_ctrl_div; // @[FPU.scala:800:20, :848:19] wire fpiu_io_in_bits_req_div = ex_ctrl_div; // @[FPU.scala:800:20, :848:19] wire dfma_io_in_bits_req_div = ex_ctrl_div; // @[FPU.scala:800:20, :848:19] wire hfma_io_in_bits_req_div = ex_ctrl_div; // @[FPU.scala:800:20, :848:19] wire sfma_io_in_bits_req_sqrt = ex_ctrl_sqrt; // @[FPU.scala:800:20, :848:19] wire fpiu_io_in_bits_req_sqrt = ex_ctrl_sqrt; // @[FPU.scala:800:20, :848:19] wire dfma_io_in_bits_req_sqrt = ex_ctrl_sqrt; // @[FPU.scala:800:20, :848:19] wire hfma_io_in_bits_req_sqrt = ex_ctrl_sqrt; // @[FPU.scala:800:20, :848:19] wire sfma_io_in_bits_req_wflags = ex_ctrl_wflags; // @[FPU.scala:800:20, :848:19] wire fpiu_io_in_bits_req_wflags = ex_ctrl_wflags; // @[FPU.scala:800:20, :848:19] wire dfma_io_in_bits_req_wflags = ex_ctrl_wflags; // @[FPU.scala:800:20, :848:19] wire hfma_io_in_bits_req_wflags = ex_ctrl_wflags; // @[FPU.scala:800:20, :848:19] wire sfma_io_in_bits_req_vec = ex_ctrl_vec; // @[FPU.scala:800:20, :848:19] wire fpiu_io_in_bits_req_vec = ex_ctrl_vec; // @[FPU.scala:800:20, :848:19] wire dfma_io_in_bits_req_vec = ex_ctrl_vec; // @[FPU.scala:800:20, :848:19] wire hfma_io_in_bits_req_vec = ex_ctrl_vec; // @[FPU.scala:800:20, :848:19] reg mem_ctrl_ldst; // @[FPU.scala:801:27] reg mem_ctrl_wen; // @[FPU.scala:801:27] reg mem_ctrl_ren1; // @[FPU.scala:801:27] reg mem_ctrl_ren2; // @[FPU.scala:801:27] reg mem_ctrl_ren3; // @[FPU.scala:801:27] reg mem_ctrl_swap12; // @[FPU.scala:801:27] reg mem_ctrl_swap23; // @[FPU.scala:801:27] reg [1:0] mem_ctrl_typeTagIn; // @[FPU.scala:801:27] reg [1:0] mem_ctrl_typeTagOut; // @[FPU.scala:801:27] reg mem_ctrl_fromint; // @[FPU.scala:801:27] wire _memLatencyMask_T_1 = mem_ctrl_fromint; // @[FPU.scala:801:27, :926:23] wire _wbInfo_0_pipeid_T_1 = mem_ctrl_fromint; // @[FPU.scala:801:27, :928:63] wire _wbInfo_1_pipeid_T_1 = mem_ctrl_fromint; // @[FPU.scala:801:27, :928:63] wire _wbInfo_2_pipeid_T_1 = mem_ctrl_fromint; // @[FPU.scala:801:27, :928:63] reg mem_ctrl_toint; // @[FPU.scala:801:27] reg mem_ctrl_fastpipe; // @[FPU.scala:801:27] wire _memLatencyMask_T = mem_ctrl_fastpipe; // @[FPU.scala:801:27, :926:23] reg mem_ctrl_fma; // @[FPU.scala:801:27] reg mem_ctrl_div; // @[FPU.scala:801:27] reg mem_ctrl_sqrt; // @[FPU.scala:801:27] reg mem_ctrl_wflags; // @[FPU.scala:801:27] reg mem_ctrl_vec; // @[FPU.scala:801:27] reg wb_ctrl_ldst; // @[FPU.scala:802:26] reg wb_ctrl_wen; // @[FPU.scala:802:26] reg wb_ctrl_ren1; // @[FPU.scala:802:26] reg wb_ctrl_ren2; // @[FPU.scala:802:26] reg wb_ctrl_ren3; // @[FPU.scala:802:26] reg wb_ctrl_swap12; // @[FPU.scala:802:26] reg wb_ctrl_swap23; // @[FPU.scala:802:26] reg [1:0] wb_ctrl_typeTagIn; // @[FPU.scala:802:26] reg [1:0] wb_ctrl_typeTagOut; // @[FPU.scala:802:26] reg wb_ctrl_fromint; // @[FPU.scala:802:26] reg wb_ctrl_toint; // @[FPU.scala:802:26] reg wb_ctrl_fastpipe; // @[FPU.scala:802:26] reg wb_ctrl_fma; // @[FPU.scala:802:26] reg wb_ctrl_div; // @[FPU.scala:802:26] reg wb_ctrl_sqrt; // @[FPU.scala:802:26] reg wb_ctrl_wflags; // @[FPU.scala:802:26] reg wb_ctrl_vec; // @[FPU.scala:802:26] wire [31:0] _frfWriteBundle_0_timer_T; // @[FPU.scala:810:23] wire [63:0] _frfWriteBundle_0_wrdata_T_5; // @[FPU.scala:446:10] wire [63:0] frfWriteBundle_0_hartid; // @[FPU.scala:805:44] wire [31:0] frfWriteBundle_0_timer; // @[FPU.scala:805:44] wire [63:0] frfWriteBundle_0_wrdata; // @[FPU.scala:805:44] wire [31:0] _frfWriteBundle_1_timer_T; // @[FPU.scala:810:23] wire [63:0] _frfWriteBundle_1_wrdata_T_5; // @[FPU.scala:446:10] wire [63:0] frfWriteBundle_1_hartid; // @[FPU.scala:805:44] wire [31:0] frfWriteBundle_1_timer; // @[FPU.scala:805:44] wire [4:0] frfWriteBundle_1_wrdst; // @[FPU.scala:805:44] wire [63:0] frfWriteBundle_1_wrdata; // @[FPU.scala:805:44] wire frfWriteBundle_1_wrenf; // @[FPU.scala:805:44] wire [63:0] _GEN = {63'h0, io_hartid_0}; // @[FPU.scala:735:7, :809:14] assign frfWriteBundle_0_hartid = _GEN; // @[FPU.scala:805:44, :809:14] assign frfWriteBundle_1_hartid = _GEN; // @[FPU.scala:805:44, :809:14] assign _frfWriteBundle_0_timer_T = io_time_0[31:0]; // @[FPU.scala:735:7, :810:23] assign _frfWriteBundle_1_timer_T = io_time_0[31:0]; // @[FPU.scala:735:7, :810:23] assign frfWriteBundle_0_timer = _frfWriteBundle_0_timer_T; // @[FPU.scala:805:44, :810:23] assign frfWriteBundle_1_timer = _frfWriteBundle_1_timer_T; // @[FPU.scala:805:44, :810:23] wire _wdata_T = load_wb_typeTag == 2'h1; // @[package.scala:39:86] wire [63:0] _wdata_T_1 = _wdata_T ? 64'hFFFFFFFF00000000 : 64'hFFFFFFFFFFFF0000; // @[package.scala:39:{76,86}] wire _wdata_T_2 = load_wb_typeTag == 2'h2; // @[package.scala:39:86] wire [63:0] _wdata_T_3 = _wdata_T_2 ? 64'h0 : _wdata_T_1; // @[package.scala:39:{76,86}] wire _wdata_T_4 = &load_wb_typeTag; // @[package.scala:39:86] wire [63:0] _wdata_T_5 = _wdata_T_4 ? 64'h0 : _wdata_T_3; // @[package.scala:39:{76,86}] wire [63:0] _wdata_T_6 = _wdata_T_5 | load_wb_data; // @[package.scala:39:76] wire wdata_rawIn_sign = _wdata_T_6[63]; // @[FPU.scala:431:23] wire wdata_rawIn_sign_0 = wdata_rawIn_sign; // @[rawFloatFromFN.scala:44:18, :63:19] wire [10:0] wdata_rawIn_expIn = _wdata_T_6[62:52]; // @[FPU.scala:431:23] wire [51:0] wdata_rawIn_fractIn = _wdata_T_6[51:0]; // @[FPU.scala:431:23] wire wdata_rawIn_isZeroExpIn = wdata_rawIn_expIn == 11'h0; // @[rawFloatFromFN.scala:45:19, :48:30] wire wdata_rawIn_isZeroFractIn = wdata_rawIn_fractIn == 52'h0; // @[rawFloatFromFN.scala:46:21, :49:34] wire _wdata_rawIn_normDist_T = wdata_rawIn_fractIn[0]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_1 = wdata_rawIn_fractIn[1]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_2 = wdata_rawIn_fractIn[2]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_3 = wdata_rawIn_fractIn[3]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_4 = wdata_rawIn_fractIn[4]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_5 = wdata_rawIn_fractIn[5]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_6 = wdata_rawIn_fractIn[6]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_7 = wdata_rawIn_fractIn[7]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_8 = wdata_rawIn_fractIn[8]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_9 = wdata_rawIn_fractIn[9]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_10 = wdata_rawIn_fractIn[10]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_11 = wdata_rawIn_fractIn[11]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_12 = wdata_rawIn_fractIn[12]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_13 = wdata_rawIn_fractIn[13]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_14 = wdata_rawIn_fractIn[14]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_15 = wdata_rawIn_fractIn[15]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_16 = wdata_rawIn_fractIn[16]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_17 = wdata_rawIn_fractIn[17]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_18 = wdata_rawIn_fractIn[18]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_19 = wdata_rawIn_fractIn[19]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_20 = wdata_rawIn_fractIn[20]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_21 = wdata_rawIn_fractIn[21]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_22 = wdata_rawIn_fractIn[22]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_23 = wdata_rawIn_fractIn[23]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_24 = wdata_rawIn_fractIn[24]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_25 = wdata_rawIn_fractIn[25]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_26 = wdata_rawIn_fractIn[26]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_27 = wdata_rawIn_fractIn[27]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_28 = wdata_rawIn_fractIn[28]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_29 = wdata_rawIn_fractIn[29]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_30 = wdata_rawIn_fractIn[30]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_31 = wdata_rawIn_fractIn[31]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_32 = wdata_rawIn_fractIn[32]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_33 = wdata_rawIn_fractIn[33]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_34 = wdata_rawIn_fractIn[34]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_35 = wdata_rawIn_fractIn[35]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_36 = wdata_rawIn_fractIn[36]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_37 = wdata_rawIn_fractIn[37]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_38 = wdata_rawIn_fractIn[38]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_39 = wdata_rawIn_fractIn[39]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_40 = wdata_rawIn_fractIn[40]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_41 = wdata_rawIn_fractIn[41]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_42 = wdata_rawIn_fractIn[42]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_43 = wdata_rawIn_fractIn[43]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_44 = wdata_rawIn_fractIn[44]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_45 = wdata_rawIn_fractIn[45]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_46 = wdata_rawIn_fractIn[46]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_47 = wdata_rawIn_fractIn[47]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_48 = wdata_rawIn_fractIn[48]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_49 = wdata_rawIn_fractIn[49]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_50 = wdata_rawIn_fractIn[50]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_51 = wdata_rawIn_fractIn[51]; // @[rawFloatFromFN.scala:46:21] wire [5:0] _wdata_rawIn_normDist_T_52 = {5'h19, ~_wdata_rawIn_normDist_T_1}; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_53 = _wdata_rawIn_normDist_T_2 ? 6'h31 : _wdata_rawIn_normDist_T_52; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_54 = _wdata_rawIn_normDist_T_3 ? 6'h30 : _wdata_rawIn_normDist_T_53; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_55 = _wdata_rawIn_normDist_T_4 ? 6'h2F : _wdata_rawIn_normDist_T_54; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_56 = _wdata_rawIn_normDist_T_5 ? 6'h2E : _wdata_rawIn_normDist_T_55; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_57 = _wdata_rawIn_normDist_T_6 ? 6'h2D : _wdata_rawIn_normDist_T_56; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_58 = _wdata_rawIn_normDist_T_7 ? 6'h2C : _wdata_rawIn_normDist_T_57; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_59 = _wdata_rawIn_normDist_T_8 ? 6'h2B : _wdata_rawIn_normDist_T_58; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_60 = _wdata_rawIn_normDist_T_9 ? 6'h2A : _wdata_rawIn_normDist_T_59; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_61 = _wdata_rawIn_normDist_T_10 ? 6'h29 : _wdata_rawIn_normDist_T_60; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_62 = _wdata_rawIn_normDist_T_11 ? 6'h28 : _wdata_rawIn_normDist_T_61; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_63 = _wdata_rawIn_normDist_T_12 ? 6'h27 : _wdata_rawIn_normDist_T_62; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_64 = _wdata_rawIn_normDist_T_13 ? 6'h26 : _wdata_rawIn_normDist_T_63; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_65 = _wdata_rawIn_normDist_T_14 ? 6'h25 : _wdata_rawIn_normDist_T_64; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_66 = _wdata_rawIn_normDist_T_15 ? 6'h24 : _wdata_rawIn_normDist_T_65; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_67 = _wdata_rawIn_normDist_T_16 ? 6'h23 : _wdata_rawIn_normDist_T_66; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_68 = _wdata_rawIn_normDist_T_17 ? 6'h22 : _wdata_rawIn_normDist_T_67; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_69 = _wdata_rawIn_normDist_T_18 ? 6'h21 : _wdata_rawIn_normDist_T_68; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_70 = _wdata_rawIn_normDist_T_19 ? 6'h20 : _wdata_rawIn_normDist_T_69; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_71 = _wdata_rawIn_normDist_T_20 ? 6'h1F : _wdata_rawIn_normDist_T_70; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_72 = _wdata_rawIn_normDist_T_21 ? 6'h1E : _wdata_rawIn_normDist_T_71; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_73 = _wdata_rawIn_normDist_T_22 ? 6'h1D : _wdata_rawIn_normDist_T_72; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_74 = _wdata_rawIn_normDist_T_23 ? 6'h1C : _wdata_rawIn_normDist_T_73; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_75 = _wdata_rawIn_normDist_T_24 ? 6'h1B : _wdata_rawIn_normDist_T_74; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_76 = _wdata_rawIn_normDist_T_25 ? 6'h1A : _wdata_rawIn_normDist_T_75; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_77 = _wdata_rawIn_normDist_T_26 ? 6'h19 : _wdata_rawIn_normDist_T_76; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_78 = _wdata_rawIn_normDist_T_27 ? 6'h18 : _wdata_rawIn_normDist_T_77; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_79 = _wdata_rawIn_normDist_T_28 ? 6'h17 : _wdata_rawIn_normDist_T_78; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_80 = _wdata_rawIn_normDist_T_29 ? 6'h16 : _wdata_rawIn_normDist_T_79; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_81 = _wdata_rawIn_normDist_T_30 ? 6'h15 : _wdata_rawIn_normDist_T_80; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_82 = _wdata_rawIn_normDist_T_31 ? 6'h14 : _wdata_rawIn_normDist_T_81; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_83 = _wdata_rawIn_normDist_T_32 ? 6'h13 : _wdata_rawIn_normDist_T_82; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_84 = _wdata_rawIn_normDist_T_33 ? 6'h12 : _wdata_rawIn_normDist_T_83; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_85 = _wdata_rawIn_normDist_T_34 ? 6'h11 : _wdata_rawIn_normDist_T_84; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_86 = _wdata_rawIn_normDist_T_35 ? 6'h10 : _wdata_rawIn_normDist_T_85; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_87 = _wdata_rawIn_normDist_T_36 ? 6'hF : _wdata_rawIn_normDist_T_86; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_88 = _wdata_rawIn_normDist_T_37 ? 6'hE : _wdata_rawIn_normDist_T_87; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_89 = _wdata_rawIn_normDist_T_38 ? 6'hD : _wdata_rawIn_normDist_T_88; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_90 = _wdata_rawIn_normDist_T_39 ? 6'hC : _wdata_rawIn_normDist_T_89; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_91 = _wdata_rawIn_normDist_T_40 ? 6'hB : _wdata_rawIn_normDist_T_90; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_92 = _wdata_rawIn_normDist_T_41 ? 6'hA : _wdata_rawIn_normDist_T_91; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_93 = _wdata_rawIn_normDist_T_42 ? 6'h9 : _wdata_rawIn_normDist_T_92; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_94 = _wdata_rawIn_normDist_T_43 ? 6'h8 : _wdata_rawIn_normDist_T_93; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_95 = _wdata_rawIn_normDist_T_44 ? 6'h7 : _wdata_rawIn_normDist_T_94; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_96 = _wdata_rawIn_normDist_T_45 ? 6'h6 : _wdata_rawIn_normDist_T_95; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_97 = _wdata_rawIn_normDist_T_46 ? 6'h5 : _wdata_rawIn_normDist_T_96; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_98 = _wdata_rawIn_normDist_T_47 ? 6'h4 : _wdata_rawIn_normDist_T_97; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_99 = _wdata_rawIn_normDist_T_48 ? 6'h3 : _wdata_rawIn_normDist_T_98; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_100 = _wdata_rawIn_normDist_T_49 ? 6'h2 : _wdata_rawIn_normDist_T_99; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_normDist_T_101 = _wdata_rawIn_normDist_T_50 ? 6'h1 : _wdata_rawIn_normDist_T_100; // @[Mux.scala:50:70] wire [5:0] wdata_rawIn_normDist = _wdata_rawIn_normDist_T_51 ? 6'h0 : _wdata_rawIn_normDist_T_101; // @[Mux.scala:50:70] wire [114:0] _wdata_rawIn_subnormFract_T = {63'h0, wdata_rawIn_fractIn} << wdata_rawIn_normDist; // @[Mux.scala:50:70] wire [50:0] _wdata_rawIn_subnormFract_T_1 = _wdata_rawIn_subnormFract_T[50:0]; // @[rawFloatFromFN.scala:52:{33,46}] wire [51:0] wdata_rawIn_subnormFract = {_wdata_rawIn_subnormFract_T_1, 1'h0}; // @[rawFloatFromFN.scala:52:{46,64}] wire [11:0] _wdata_rawIn_adjustedExp_T = {6'h3F, ~wdata_rawIn_normDist}; // @[Mux.scala:50:70] wire [11:0] _wdata_rawIn_adjustedExp_T_1 = wdata_rawIn_isZeroExpIn ? _wdata_rawIn_adjustedExp_T : {1'h0, wdata_rawIn_expIn}; // @[rawFloatFromFN.scala:45:19, :48:30, :54:10, :55:18] wire [1:0] _wdata_rawIn_adjustedExp_T_2 = wdata_rawIn_isZeroExpIn ? 2'h2 : 2'h1; // @[rawFloatFromFN.scala:48:30, :58:14] wire [10:0] _wdata_rawIn_adjustedExp_T_3 = {9'h100, _wdata_rawIn_adjustedExp_T_2}; // @[rawFloatFromFN.scala:58:{9,14}] wire [12:0] _wdata_rawIn_adjustedExp_T_4 = {1'h0, _wdata_rawIn_adjustedExp_T_1} + {2'h0, _wdata_rawIn_adjustedExp_T_3}; // @[rawFloatFromFN.scala:54:10, :57:9, :58:9] wire [11:0] wdata_rawIn_adjustedExp = _wdata_rawIn_adjustedExp_T_4[11:0]; // @[rawFloatFromFN.scala:57:9] wire [11:0] _wdata_rawIn_out_sExp_T = wdata_rawIn_adjustedExp; // @[rawFloatFromFN.scala:57:9, :68:28] wire wdata_rawIn_isZero = wdata_rawIn_isZeroExpIn & wdata_rawIn_isZeroFractIn; // @[rawFloatFromFN.scala:48:30, :49:34, :60:30] wire wdata_rawIn_isZero_0 = wdata_rawIn_isZero; // @[rawFloatFromFN.scala:60:30, :63:19] wire [1:0] _wdata_rawIn_isSpecial_T = wdata_rawIn_adjustedExp[11:10]; // @[rawFloatFromFN.scala:57:9, :61:32] wire wdata_rawIn_isSpecial = &_wdata_rawIn_isSpecial_T; // @[rawFloatFromFN.scala:61:{32,57}] wire _wdata_rawIn_out_isNaN_T_1; // @[rawFloatFromFN.scala:64:28] wire _wdata_rawIn_out_isInf_T; // @[rawFloatFromFN.scala:65:28] wire _wdata_T_9 = wdata_rawIn_isNaN; // @[recFNFromFN.scala:49:20] wire [12:0] _wdata_rawIn_out_sExp_T_1; // @[rawFloatFromFN.scala:68:42] wire [53:0] _wdata_rawIn_out_sig_T_3; // @[rawFloatFromFN.scala:70:27] wire wdata_rawIn_isInf; // @[rawFloatFromFN.scala:63:19] wire [12:0] wdata_rawIn_sExp; // @[rawFloatFromFN.scala:63:19] wire [53:0] wdata_rawIn_sig; // @[rawFloatFromFN.scala:63:19] wire _wdata_rawIn_out_isNaN_T = ~wdata_rawIn_isZeroFractIn; // @[rawFloatFromFN.scala:49:34, :64:31] assign _wdata_rawIn_out_isNaN_T_1 = wdata_rawIn_isSpecial & _wdata_rawIn_out_isNaN_T; // @[rawFloatFromFN.scala:61:57, :64:{28,31}] assign wdata_rawIn_isNaN = _wdata_rawIn_out_isNaN_T_1; // @[rawFloatFromFN.scala:63:19, :64:28] assign _wdata_rawIn_out_isInf_T = wdata_rawIn_isSpecial & wdata_rawIn_isZeroFractIn; // @[rawFloatFromFN.scala:49:34, :61:57, :65:28] assign wdata_rawIn_isInf = _wdata_rawIn_out_isInf_T; // @[rawFloatFromFN.scala:63:19, :65:28] assign _wdata_rawIn_out_sExp_T_1 = {1'h0, _wdata_rawIn_out_sExp_T}; // @[rawFloatFromFN.scala:68:{28,42}] assign wdata_rawIn_sExp = _wdata_rawIn_out_sExp_T_1; // @[rawFloatFromFN.scala:63:19, :68:42] wire _wdata_rawIn_out_sig_T = ~wdata_rawIn_isZero; // @[rawFloatFromFN.scala:60:30, :70:19] wire [1:0] _wdata_rawIn_out_sig_T_1 = {1'h0, _wdata_rawIn_out_sig_T}; // @[rawFloatFromFN.scala:70:{16,19}] wire [51:0] _wdata_rawIn_out_sig_T_2 = wdata_rawIn_isZeroExpIn ? wdata_rawIn_subnormFract : wdata_rawIn_fractIn; // @[rawFloatFromFN.scala:46:21, :48:30, :52:64, :70:33] assign _wdata_rawIn_out_sig_T_3 = {_wdata_rawIn_out_sig_T_1, _wdata_rawIn_out_sig_T_2}; // @[rawFloatFromFN.scala:70:{16,27,33}] assign wdata_rawIn_sig = _wdata_rawIn_out_sig_T_3; // @[rawFloatFromFN.scala:63:19, :70:27] wire [2:0] _wdata_T_7 = wdata_rawIn_sExp[11:9]; // @[recFNFromFN.scala:48:50] wire [2:0] _wdata_T_8 = wdata_rawIn_isZero_0 ? 3'h0 : _wdata_T_7; // @[recFNFromFN.scala:48:{15,50}] wire [2:0] _wdata_T_10 = {_wdata_T_8[2:1], _wdata_T_8[0] | _wdata_T_9}; // @[recFNFromFN.scala:48:{15,76}, :49:20] wire [3:0] _wdata_T_11 = {wdata_rawIn_sign_0, _wdata_T_10}; // @[recFNFromFN.scala:47:20, :48:76] wire [8:0] _wdata_T_12 = wdata_rawIn_sExp[8:0]; // @[recFNFromFN.scala:50:23] wire [12:0] _wdata_T_13 = {_wdata_T_11, _wdata_T_12}; // @[recFNFromFN.scala:47:20, :49:45, :50:23] wire [51:0] _wdata_T_14 = wdata_rawIn_sig[51:0]; // @[recFNFromFN.scala:51:22] wire [64:0] _wdata_T_15 = {_wdata_T_13, _wdata_T_14}; // @[recFNFromFN.scala:49:45, :50:41, :51:22] wire wdata_rawIn_sign_1 = _wdata_T_6[31]; // @[FPU.scala:431:23] wire wdata_rawIn_1_sign = wdata_rawIn_sign_1; // @[rawFloatFromFN.scala:44:18, :63:19] wire [7:0] wdata_rawIn_expIn_1 = _wdata_T_6[30:23]; // @[FPU.scala:431:23] wire [22:0] wdata_rawIn_fractIn_1 = _wdata_T_6[22:0]; // @[FPU.scala:431:23] wire wdata_rawIn_isZeroExpIn_1 = wdata_rawIn_expIn_1 == 8'h0; // @[rawFloatFromFN.scala:45:19, :48:30] wire wdata_rawIn_isZeroFractIn_1 = wdata_rawIn_fractIn_1 == 23'h0; // @[rawFloatFromFN.scala:46:21, :49:34] wire _wdata_rawIn_normDist_T_102 = wdata_rawIn_fractIn_1[0]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_103 = wdata_rawIn_fractIn_1[1]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_104 = wdata_rawIn_fractIn_1[2]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_105 = wdata_rawIn_fractIn_1[3]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_106 = wdata_rawIn_fractIn_1[4]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_107 = wdata_rawIn_fractIn_1[5]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_108 = wdata_rawIn_fractIn_1[6]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_109 = wdata_rawIn_fractIn_1[7]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_110 = wdata_rawIn_fractIn_1[8]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_111 = wdata_rawIn_fractIn_1[9]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_112 = wdata_rawIn_fractIn_1[10]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_113 = wdata_rawIn_fractIn_1[11]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_114 = wdata_rawIn_fractIn_1[12]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_115 = wdata_rawIn_fractIn_1[13]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_116 = wdata_rawIn_fractIn_1[14]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_117 = wdata_rawIn_fractIn_1[15]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_118 = wdata_rawIn_fractIn_1[16]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_119 = wdata_rawIn_fractIn_1[17]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_120 = wdata_rawIn_fractIn_1[18]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_121 = wdata_rawIn_fractIn_1[19]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_122 = wdata_rawIn_fractIn_1[20]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_123 = wdata_rawIn_fractIn_1[21]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_124 = wdata_rawIn_fractIn_1[22]; // @[rawFloatFromFN.scala:46:21] wire [4:0] _wdata_rawIn_normDist_T_125 = _wdata_rawIn_normDist_T_103 ? 5'h15 : 5'h16; // @[Mux.scala:50:70] wire [4:0] _wdata_rawIn_normDist_T_126 = _wdata_rawIn_normDist_T_104 ? 5'h14 : _wdata_rawIn_normDist_T_125; // @[Mux.scala:50:70] wire [4:0] _wdata_rawIn_normDist_T_127 = _wdata_rawIn_normDist_T_105 ? 5'h13 : _wdata_rawIn_normDist_T_126; // @[Mux.scala:50:70] wire [4:0] _wdata_rawIn_normDist_T_128 = _wdata_rawIn_normDist_T_106 ? 5'h12 : _wdata_rawIn_normDist_T_127; // @[Mux.scala:50:70] wire [4:0] _wdata_rawIn_normDist_T_129 = _wdata_rawIn_normDist_T_107 ? 5'h11 : _wdata_rawIn_normDist_T_128; // @[Mux.scala:50:70] wire [4:0] _wdata_rawIn_normDist_T_130 = _wdata_rawIn_normDist_T_108 ? 5'h10 : _wdata_rawIn_normDist_T_129; // @[Mux.scala:50:70] wire [4:0] _wdata_rawIn_normDist_T_131 = _wdata_rawIn_normDist_T_109 ? 5'hF : _wdata_rawIn_normDist_T_130; // @[Mux.scala:50:70] wire [4:0] _wdata_rawIn_normDist_T_132 = _wdata_rawIn_normDist_T_110 ? 5'hE : _wdata_rawIn_normDist_T_131; // @[Mux.scala:50:70] wire [4:0] _wdata_rawIn_normDist_T_133 = _wdata_rawIn_normDist_T_111 ? 5'hD : _wdata_rawIn_normDist_T_132; // @[Mux.scala:50:70] wire [4:0] _wdata_rawIn_normDist_T_134 = _wdata_rawIn_normDist_T_112 ? 5'hC : _wdata_rawIn_normDist_T_133; // @[Mux.scala:50:70] wire [4:0] _wdata_rawIn_normDist_T_135 = _wdata_rawIn_normDist_T_113 ? 5'hB : _wdata_rawIn_normDist_T_134; // @[Mux.scala:50:70] wire [4:0] _wdata_rawIn_normDist_T_136 = _wdata_rawIn_normDist_T_114 ? 5'hA : _wdata_rawIn_normDist_T_135; // @[Mux.scala:50:70] wire [4:0] _wdata_rawIn_normDist_T_137 = _wdata_rawIn_normDist_T_115 ? 5'h9 : _wdata_rawIn_normDist_T_136; // @[Mux.scala:50:70] wire [4:0] _wdata_rawIn_normDist_T_138 = _wdata_rawIn_normDist_T_116 ? 5'h8 : _wdata_rawIn_normDist_T_137; // @[Mux.scala:50:70] wire [4:0] _wdata_rawIn_normDist_T_139 = _wdata_rawIn_normDist_T_117 ? 5'h7 : _wdata_rawIn_normDist_T_138; // @[Mux.scala:50:70] wire [4:0] _wdata_rawIn_normDist_T_140 = _wdata_rawIn_normDist_T_118 ? 5'h6 : _wdata_rawIn_normDist_T_139; // @[Mux.scala:50:70] wire [4:0] _wdata_rawIn_normDist_T_141 = _wdata_rawIn_normDist_T_119 ? 5'h5 : _wdata_rawIn_normDist_T_140; // @[Mux.scala:50:70] wire [4:0] _wdata_rawIn_normDist_T_142 = _wdata_rawIn_normDist_T_120 ? 5'h4 : _wdata_rawIn_normDist_T_141; // @[Mux.scala:50:70] wire [4:0] _wdata_rawIn_normDist_T_143 = _wdata_rawIn_normDist_T_121 ? 5'h3 : _wdata_rawIn_normDist_T_142; // @[Mux.scala:50:70] wire [4:0] _wdata_rawIn_normDist_T_144 = _wdata_rawIn_normDist_T_122 ? 5'h2 : _wdata_rawIn_normDist_T_143; // @[Mux.scala:50:70] wire [4:0] _wdata_rawIn_normDist_T_145 = _wdata_rawIn_normDist_T_123 ? 5'h1 : _wdata_rawIn_normDist_T_144; // @[Mux.scala:50:70] wire [4:0] wdata_rawIn_normDist_1 = _wdata_rawIn_normDist_T_124 ? 5'h0 : _wdata_rawIn_normDist_T_145; // @[Mux.scala:50:70] wire [53:0] _wdata_rawIn_subnormFract_T_2 = {31'h0, wdata_rawIn_fractIn_1} << wdata_rawIn_normDist_1; // @[Mux.scala:50:70] wire [21:0] _wdata_rawIn_subnormFract_T_3 = _wdata_rawIn_subnormFract_T_2[21:0]; // @[rawFloatFromFN.scala:52:{33,46}] wire [22:0] wdata_rawIn_subnormFract_1 = {_wdata_rawIn_subnormFract_T_3, 1'h0}; // @[rawFloatFromFN.scala:52:{46,64}] wire [8:0] _wdata_rawIn_adjustedExp_T_5 = {4'hF, ~wdata_rawIn_normDist_1}; // @[Mux.scala:50:70] wire [8:0] _wdata_rawIn_adjustedExp_T_6 = wdata_rawIn_isZeroExpIn_1 ? _wdata_rawIn_adjustedExp_T_5 : {1'h0, wdata_rawIn_expIn_1}; // @[rawFloatFromFN.scala:45:19, :48:30, :54:10, :55:18] wire [1:0] _wdata_rawIn_adjustedExp_T_7 = wdata_rawIn_isZeroExpIn_1 ? 2'h2 : 2'h1; // @[rawFloatFromFN.scala:48:30, :58:14] wire [7:0] _wdata_rawIn_adjustedExp_T_8 = {6'h20, _wdata_rawIn_adjustedExp_T_7}; // @[rawFloatFromFN.scala:58:{9,14}] wire [9:0] _wdata_rawIn_adjustedExp_T_9 = {1'h0, _wdata_rawIn_adjustedExp_T_6} + {2'h0, _wdata_rawIn_adjustedExp_T_8}; // @[rawFloatFromFN.scala:54:10, :57:9, :58:9] wire [8:0] wdata_rawIn_adjustedExp_1 = _wdata_rawIn_adjustedExp_T_9[8:0]; // @[rawFloatFromFN.scala:57:9] wire [8:0] _wdata_rawIn_out_sExp_T_2 = wdata_rawIn_adjustedExp_1; // @[rawFloatFromFN.scala:57:9, :68:28] wire wdata_rawIn_isZero_1 = wdata_rawIn_isZeroExpIn_1 & wdata_rawIn_isZeroFractIn_1; // @[rawFloatFromFN.scala:48:30, :49:34, :60:30] wire wdata_rawIn_1_isZero = wdata_rawIn_isZero_1; // @[rawFloatFromFN.scala:60:30, :63:19] wire [1:0] _wdata_rawIn_isSpecial_T_1 = wdata_rawIn_adjustedExp_1[8:7]; // @[rawFloatFromFN.scala:57:9, :61:32] wire wdata_rawIn_isSpecial_1 = &_wdata_rawIn_isSpecial_T_1; // @[rawFloatFromFN.scala:61:{32,57}] wire _wdata_rawIn_out_isNaN_T_3; // @[rawFloatFromFN.scala:64:28] wire _wdata_rawIn_out_isInf_T_1; // @[rawFloatFromFN.scala:65:28] wire _wdata_T_18 = wdata_rawIn_1_isNaN; // @[recFNFromFN.scala:49:20] wire [9:0] _wdata_rawIn_out_sExp_T_3; // @[rawFloatFromFN.scala:68:42] wire [24:0] _wdata_rawIn_out_sig_T_7; // @[rawFloatFromFN.scala:70:27] wire wdata_rawIn_1_isInf; // @[rawFloatFromFN.scala:63:19] wire [9:0] wdata_rawIn_1_sExp; // @[rawFloatFromFN.scala:63:19] wire [24:0] wdata_rawIn_1_sig; // @[rawFloatFromFN.scala:63:19] wire _wdata_rawIn_out_isNaN_T_2 = ~wdata_rawIn_isZeroFractIn_1; // @[rawFloatFromFN.scala:49:34, :64:31] assign _wdata_rawIn_out_isNaN_T_3 = wdata_rawIn_isSpecial_1 & _wdata_rawIn_out_isNaN_T_2; // @[rawFloatFromFN.scala:61:57, :64:{28,31}] assign wdata_rawIn_1_isNaN = _wdata_rawIn_out_isNaN_T_3; // @[rawFloatFromFN.scala:63:19, :64:28] assign _wdata_rawIn_out_isInf_T_1 = wdata_rawIn_isSpecial_1 & wdata_rawIn_isZeroFractIn_1; // @[rawFloatFromFN.scala:49:34, :61:57, :65:28] assign wdata_rawIn_1_isInf = _wdata_rawIn_out_isInf_T_1; // @[rawFloatFromFN.scala:63:19, :65:28] assign _wdata_rawIn_out_sExp_T_3 = {1'h0, _wdata_rawIn_out_sExp_T_2}; // @[rawFloatFromFN.scala:68:{28,42}] assign wdata_rawIn_1_sExp = _wdata_rawIn_out_sExp_T_3; // @[rawFloatFromFN.scala:63:19, :68:42] wire _wdata_rawIn_out_sig_T_4 = ~wdata_rawIn_isZero_1; // @[rawFloatFromFN.scala:60:30, :70:19] wire [1:0] _wdata_rawIn_out_sig_T_5 = {1'h0, _wdata_rawIn_out_sig_T_4}; // @[rawFloatFromFN.scala:70:{16,19}] wire [22:0] _wdata_rawIn_out_sig_T_6 = wdata_rawIn_isZeroExpIn_1 ? wdata_rawIn_subnormFract_1 : wdata_rawIn_fractIn_1; // @[rawFloatFromFN.scala:46:21, :48:30, :52:64, :70:33] assign _wdata_rawIn_out_sig_T_7 = {_wdata_rawIn_out_sig_T_5, _wdata_rawIn_out_sig_T_6}; // @[rawFloatFromFN.scala:70:{16,27,33}] assign wdata_rawIn_1_sig = _wdata_rawIn_out_sig_T_7; // @[rawFloatFromFN.scala:63:19, :70:27] wire [2:0] _wdata_T_16 = wdata_rawIn_1_sExp[8:6]; // @[recFNFromFN.scala:48:50] wire [2:0] _wdata_T_17 = wdata_rawIn_1_isZero ? 3'h0 : _wdata_T_16; // @[recFNFromFN.scala:48:{15,50}] wire [2:0] _wdata_T_19 = {_wdata_T_17[2:1], _wdata_T_17[0] | _wdata_T_18}; // @[recFNFromFN.scala:48:{15,76}, :49:20] wire [3:0] _wdata_T_20 = {wdata_rawIn_1_sign, _wdata_T_19}; // @[recFNFromFN.scala:47:20, :48:76] wire [5:0] _wdata_T_21 = wdata_rawIn_1_sExp[5:0]; // @[recFNFromFN.scala:50:23] wire [9:0] _wdata_T_22 = {_wdata_T_20, _wdata_T_21}; // @[recFNFromFN.scala:47:20, :49:45, :50:23] wire [22:0] _wdata_T_23 = wdata_rawIn_1_sig[22:0]; // @[recFNFromFN.scala:51:22] wire [32:0] _wdata_T_24 = {_wdata_T_22, _wdata_T_23}; // @[recFNFromFN.scala:49:45, :50:41, :51:22] wire wdata_rawIn_sign_2 = _wdata_T_6[15]; // @[FPU.scala:431:23] wire wdata_rawIn_2_sign = wdata_rawIn_sign_2; // @[rawFloatFromFN.scala:44:18, :63:19] wire [4:0] wdata_rawIn_expIn_2 = _wdata_T_6[14:10]; // @[FPU.scala:431:23] wire [9:0] wdata_rawIn_fractIn_2 = _wdata_T_6[9:0]; // @[FPU.scala:431:23] wire wdata_rawIn_isZeroExpIn_2 = wdata_rawIn_expIn_2 == 5'h0; // @[rawFloatFromFN.scala:45:19, :48:30] wire wdata_rawIn_isZeroFractIn_2 = wdata_rawIn_fractIn_2 == 10'h0; // @[rawFloatFromFN.scala:46:21, :49:34] wire _wdata_rawIn_normDist_T_146 = wdata_rawIn_fractIn_2[0]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_147 = wdata_rawIn_fractIn_2[1]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_148 = wdata_rawIn_fractIn_2[2]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_149 = wdata_rawIn_fractIn_2[3]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_150 = wdata_rawIn_fractIn_2[4]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_151 = wdata_rawIn_fractIn_2[5]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_152 = wdata_rawIn_fractIn_2[6]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_153 = wdata_rawIn_fractIn_2[7]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_154 = wdata_rawIn_fractIn_2[8]; // @[rawFloatFromFN.scala:46:21] wire _wdata_rawIn_normDist_T_155 = wdata_rawIn_fractIn_2[9]; // @[rawFloatFromFN.scala:46:21] wire [3:0] _wdata_rawIn_normDist_T_156 = {3'h4, ~_wdata_rawIn_normDist_T_147}; // @[Mux.scala:50:70] wire [3:0] _wdata_rawIn_normDist_T_157 = _wdata_rawIn_normDist_T_148 ? 4'h7 : _wdata_rawIn_normDist_T_156; // @[Mux.scala:50:70] wire [3:0] _wdata_rawIn_normDist_T_158 = _wdata_rawIn_normDist_T_149 ? 4'h6 : _wdata_rawIn_normDist_T_157; // @[Mux.scala:50:70] wire [3:0] _wdata_rawIn_normDist_T_159 = _wdata_rawIn_normDist_T_150 ? 4'h5 : _wdata_rawIn_normDist_T_158; // @[Mux.scala:50:70] wire [3:0] _wdata_rawIn_normDist_T_160 = _wdata_rawIn_normDist_T_151 ? 4'h4 : _wdata_rawIn_normDist_T_159; // @[Mux.scala:50:70] wire [3:0] _wdata_rawIn_normDist_T_161 = _wdata_rawIn_normDist_T_152 ? 4'h3 : _wdata_rawIn_normDist_T_160; // @[Mux.scala:50:70] wire [3:0] _wdata_rawIn_normDist_T_162 = _wdata_rawIn_normDist_T_153 ? 4'h2 : _wdata_rawIn_normDist_T_161; // @[Mux.scala:50:70] wire [3:0] _wdata_rawIn_normDist_T_163 = _wdata_rawIn_normDist_T_154 ? 4'h1 : _wdata_rawIn_normDist_T_162; // @[Mux.scala:50:70] wire [3:0] wdata_rawIn_normDist_2 = _wdata_rawIn_normDist_T_155 ? 4'h0 : _wdata_rawIn_normDist_T_163; // @[Mux.scala:50:70] wire [24:0] _wdata_rawIn_subnormFract_T_4 = {15'h0, wdata_rawIn_fractIn_2} << wdata_rawIn_normDist_2; // @[Mux.scala:50:70] wire [8:0] _wdata_rawIn_subnormFract_T_5 = _wdata_rawIn_subnormFract_T_4[8:0]; // @[rawFloatFromFN.scala:52:{33,46}] wire [9:0] wdata_rawIn_subnormFract_2 = {_wdata_rawIn_subnormFract_T_5, 1'h0}; // @[rawFloatFromFN.scala:52:{46,64}] wire [5:0] _wdata_rawIn_adjustedExp_T_10 = {2'h3, ~wdata_rawIn_normDist_2}; // @[Mux.scala:50:70] wire [5:0] _wdata_rawIn_adjustedExp_T_11 = wdata_rawIn_isZeroExpIn_2 ? _wdata_rawIn_adjustedExp_T_10 : {1'h0, wdata_rawIn_expIn_2}; // @[rawFloatFromFN.scala:45:19, :48:30, :54:10, :55:18] wire [1:0] _wdata_rawIn_adjustedExp_T_12 = wdata_rawIn_isZeroExpIn_2 ? 2'h2 : 2'h1; // @[rawFloatFromFN.scala:48:30, :58:14] wire [4:0] _wdata_rawIn_adjustedExp_T_13 = {3'h4, _wdata_rawIn_adjustedExp_T_12}; // @[rawFloatFromFN.scala:58:{9,14}] wire [6:0] _wdata_rawIn_adjustedExp_T_14 = {1'h0, _wdata_rawIn_adjustedExp_T_11} + {2'h0, _wdata_rawIn_adjustedExp_T_13}; // @[rawFloatFromFN.scala:54:10, :57:9, :58:9] wire [5:0] wdata_rawIn_adjustedExp_2 = _wdata_rawIn_adjustedExp_T_14[5:0]; // @[rawFloatFromFN.scala:57:9] wire [5:0] _wdata_rawIn_out_sExp_T_4 = wdata_rawIn_adjustedExp_2; // @[rawFloatFromFN.scala:57:9, :68:28] wire wdata_rawIn_isZero_2 = wdata_rawIn_isZeroExpIn_2 & wdata_rawIn_isZeroFractIn_2; // @[rawFloatFromFN.scala:48:30, :49:34, :60:30] wire wdata_rawIn_2_isZero = wdata_rawIn_isZero_2; // @[rawFloatFromFN.scala:60:30, :63:19] wire [1:0] _wdata_rawIn_isSpecial_T_2 = wdata_rawIn_adjustedExp_2[5:4]; // @[rawFloatFromFN.scala:57:9, :61:32] wire wdata_rawIn_isSpecial_2 = &_wdata_rawIn_isSpecial_T_2; // @[rawFloatFromFN.scala:61:{32,57}] wire _wdata_rawIn_out_isNaN_T_5; // @[rawFloatFromFN.scala:64:28] wire _wdata_rawIn_out_isInf_T_2; // @[rawFloatFromFN.scala:65:28] wire _wdata_T_27 = wdata_rawIn_2_isNaN; // @[recFNFromFN.scala:49:20] wire [6:0] _wdata_rawIn_out_sExp_T_5; // @[rawFloatFromFN.scala:68:42] wire [11:0] _wdata_rawIn_out_sig_T_11; // @[rawFloatFromFN.scala:70:27] wire wdata_rawIn_2_isInf; // @[rawFloatFromFN.scala:63:19] wire [6:0] wdata_rawIn_2_sExp; // @[rawFloatFromFN.scala:63:19] wire [11:0] wdata_rawIn_2_sig; // @[rawFloatFromFN.scala:63:19] wire _wdata_rawIn_out_isNaN_T_4 = ~wdata_rawIn_isZeroFractIn_2; // @[rawFloatFromFN.scala:49:34, :64:31] assign _wdata_rawIn_out_isNaN_T_5 = wdata_rawIn_isSpecial_2 & _wdata_rawIn_out_isNaN_T_4; // @[rawFloatFromFN.scala:61:57, :64:{28,31}] assign wdata_rawIn_2_isNaN = _wdata_rawIn_out_isNaN_T_5; // @[rawFloatFromFN.scala:63:19, :64:28] assign _wdata_rawIn_out_isInf_T_2 = wdata_rawIn_isSpecial_2 & wdata_rawIn_isZeroFractIn_2; // @[rawFloatFromFN.scala:49:34, :61:57, :65:28] assign wdata_rawIn_2_isInf = _wdata_rawIn_out_isInf_T_2; // @[rawFloatFromFN.scala:63:19, :65:28] assign _wdata_rawIn_out_sExp_T_5 = {1'h0, _wdata_rawIn_out_sExp_T_4}; // @[rawFloatFromFN.scala:68:{28,42}] assign wdata_rawIn_2_sExp = _wdata_rawIn_out_sExp_T_5; // @[rawFloatFromFN.scala:63:19, :68:42] wire _wdata_rawIn_out_sig_T_8 = ~wdata_rawIn_isZero_2; // @[rawFloatFromFN.scala:60:30, :70:19] wire [1:0] _wdata_rawIn_out_sig_T_9 = {1'h0, _wdata_rawIn_out_sig_T_8}; // @[rawFloatFromFN.scala:70:{16,19}] wire [9:0] _wdata_rawIn_out_sig_T_10 = wdata_rawIn_isZeroExpIn_2 ? wdata_rawIn_subnormFract_2 : wdata_rawIn_fractIn_2; // @[rawFloatFromFN.scala:46:21, :48:30, :52:64, :70:33] assign _wdata_rawIn_out_sig_T_11 = {_wdata_rawIn_out_sig_T_9, _wdata_rawIn_out_sig_T_10}; // @[rawFloatFromFN.scala:70:{16,27,33}] assign wdata_rawIn_2_sig = _wdata_rawIn_out_sig_T_11; // @[rawFloatFromFN.scala:63:19, :70:27] wire [2:0] _wdata_T_25 = wdata_rawIn_2_sExp[5:3]; // @[recFNFromFN.scala:48:50] wire [2:0] _wdata_T_26 = wdata_rawIn_2_isZero ? 3'h0 : _wdata_T_25; // @[recFNFromFN.scala:48:{15,50}] wire [2:0] _wdata_T_28 = {_wdata_T_26[2:1], _wdata_T_26[0] | _wdata_T_27}; // @[recFNFromFN.scala:48:{15,76}, :49:20] wire [3:0] _wdata_T_29 = {wdata_rawIn_2_sign, _wdata_T_28}; // @[recFNFromFN.scala:47:20, :48:76] wire [2:0] _wdata_T_30 = wdata_rawIn_2_sExp[2:0]; // @[recFNFromFN.scala:50:23] wire [6:0] _wdata_T_31 = {_wdata_T_29, _wdata_T_30}; // @[recFNFromFN.scala:47:20, :49:45, :50:23] wire [9:0] _wdata_T_32 = wdata_rawIn_2_sig[9:0]; // @[recFNFromFN.scala:51:22] wire [16:0] _wdata_T_33 = {_wdata_T_31, _wdata_T_32}; // @[recFNFromFN.scala:49:45, :50:41, :51:22] wire [3:0] _wdata_swizzledNaN_T = _wdata_T_24[32:29]; // @[FPU.scala:337:8] wire [6:0] _wdata_swizzledNaN_T_1 = _wdata_T_24[22:16]; // @[FPU.scala:338:8] wire [6:0] _wdata_swizzledNaN_T_5 = _wdata_T_24[22:16]; // @[FPU.scala:338:8, :341:8] wire _wdata_swizzledNaN_T_2 = &_wdata_swizzledNaN_T_1; // @[FPU.scala:338:{8,42}] wire [3:0] _wdata_swizzledNaN_T_3 = _wdata_T_24[27:24]; // @[FPU.scala:339:8] wire _wdata_swizzledNaN_T_4 = _wdata_T_33[15]; // @[FPU.scala:340:8] wire _wdata_swizzledNaN_T_6 = _wdata_T_33[16]; // @[FPU.scala:342:8] wire [14:0] _wdata_swizzledNaN_T_7 = _wdata_T_33[14:0]; // @[FPU.scala:343:8] wire [7:0] wdata_swizzledNaN_lo_hi = {_wdata_swizzledNaN_T_5, _wdata_swizzledNaN_T_6}; // @[FPU.scala:336:26, :341:8, :342:8] wire [22:0] wdata_swizzledNaN_lo = {wdata_swizzledNaN_lo_hi, _wdata_swizzledNaN_T_7}; // @[FPU.scala:336:26, :343:8] wire [4:0] wdata_swizzledNaN_hi_lo = {_wdata_swizzledNaN_T_3, _wdata_swizzledNaN_T_4}; // @[FPU.scala:336:26, :339:8, :340:8] wire [4:0] wdata_swizzledNaN_hi_hi = {_wdata_swizzledNaN_T, _wdata_swizzledNaN_T_2}; // @[FPU.scala:336:26, :337:8, :338:42] wire [9:0] wdata_swizzledNaN_hi = {wdata_swizzledNaN_hi_hi, wdata_swizzledNaN_hi_lo}; // @[FPU.scala:336:26] wire [32:0] wdata_swizzledNaN = {wdata_swizzledNaN_hi, wdata_swizzledNaN_lo}; // @[FPU.scala:336:26] wire [2:0] _wdata_T_34 = _wdata_T_24[31:29]; // @[FPU.scala:249:25] wire _wdata_T_35 = &_wdata_T_34; // @[FPU.scala:249:{25,56}] wire [32:0] _wdata_T_36 = _wdata_T_35 ? wdata_swizzledNaN : _wdata_T_24; // @[FPU.scala:249:56, :336:26, :344:8] wire [3:0] _wdata_swizzledNaN_T_8 = _wdata_T_15[64:61]; // @[FPU.scala:337:8] wire [19:0] _wdata_swizzledNaN_T_9 = _wdata_T_15[51:32]; // @[FPU.scala:338:8] wire [19:0] _wdata_swizzledNaN_T_13 = _wdata_T_15[51:32]; // @[FPU.scala:338:8, :341:8] wire _wdata_swizzledNaN_T_10 = &_wdata_swizzledNaN_T_9; // @[FPU.scala:338:{8,42}] wire [6:0] _wdata_swizzledNaN_T_11 = _wdata_T_15[59:53]; // @[FPU.scala:339:8] wire _wdata_swizzledNaN_T_12 = _wdata_T_36[31]; // @[FPU.scala:340:8, :344:8] wire _wdata_swizzledNaN_T_14 = _wdata_T_36[32]; // @[FPU.scala:342:8, :344:8] wire [30:0] _wdata_swizzledNaN_T_15 = _wdata_T_36[30:0]; // @[FPU.scala:343:8, :344:8] wire [20:0] wdata_swizzledNaN_lo_hi_1 = {_wdata_swizzledNaN_T_13, _wdata_swizzledNaN_T_14}; // @[FPU.scala:336:26, :341:8, :342:8] wire [51:0] wdata_swizzledNaN_lo_1 = {wdata_swizzledNaN_lo_hi_1, _wdata_swizzledNaN_T_15}; // @[FPU.scala:336:26, :343:8] wire [7:0] wdata_swizzledNaN_hi_lo_1 = {_wdata_swizzledNaN_T_11, _wdata_swizzledNaN_T_12}; // @[FPU.scala:336:26, :339:8, :340:8] wire [4:0] wdata_swizzledNaN_hi_hi_1 = {_wdata_swizzledNaN_T_8, _wdata_swizzledNaN_T_10}; // @[FPU.scala:336:26, :337:8, :338:42] wire [12:0] wdata_swizzledNaN_hi_1 = {wdata_swizzledNaN_hi_hi_1, wdata_swizzledNaN_hi_lo_1}; // @[FPU.scala:336:26] wire [64:0] wdata_swizzledNaN_1 = {wdata_swizzledNaN_hi_1, wdata_swizzledNaN_lo_1}; // @[FPU.scala:336:26] wire [2:0] _wdata_T_37 = _wdata_T_15[63:61]; // @[FPU.scala:249:25] wire _wdata_T_38 = &_wdata_T_37; // @[FPU.scala:249:{25,56}] wire [64:0] wdata = _wdata_T_38 ? wdata_swizzledNaN_1 : _wdata_T_15; // @[FPU.scala:249:56, :336:26, :344:8] wire _unswizzled_T = wdata[31]; // @[FPU.scala:344:8, :381:10] wire _frfWriteBundle_0_wrdata_prevRecoded_T = wdata[31]; // @[FPU.scala:344:8, :381:10, :442:10] wire _unswizzled_T_1 = wdata[52]; // @[FPU.scala:344:8, :382:10] wire _frfWriteBundle_0_wrdata_prevRecoded_T_1 = wdata[52]; // @[FPU.scala:344:8, :382:10, :443:10] wire [30:0] _unswizzled_T_2 = wdata[30:0]; // @[FPU.scala:344:8, :383:10] wire [30:0] _frfWriteBundle_0_wrdata_prevRecoded_T_2 = wdata[30:0]; // @[FPU.scala:344:8, :383:10, :444:10] wire [1:0] unswizzled_hi = {_unswizzled_T, _unswizzled_T_1}; // @[FPU.scala:380:27, :381:10, :382:10] wire [32:0] unswizzled = {unswizzled_hi, _unswizzled_T_2}; // @[FPU.scala:380:27, :383:10] wire [4:0] _prevOK_T = wdata[64:60]; // @[FPU.scala:332:49, :344:8] wire _prevOK_T_1 = &_prevOK_T; // @[FPU.scala:332:{49,84}] wire _prevOK_T_2 = ~_prevOK_T_1; // @[FPU.scala:332:84, :384:20] wire _prevOK_unswizzled_T = unswizzled[15]; // @[FPU.scala:380:27, :381:10] wire _prevOK_unswizzled_T_1 = unswizzled[23]; // @[FPU.scala:380:27, :382:10] wire [14:0] _prevOK_unswizzled_T_2 = unswizzled[14:0]; // @[FPU.scala:380:27, :383:10] wire [1:0] prevOK_unswizzled_hi = {_prevOK_unswizzled_T, _prevOK_unswizzled_T_1}; // @[FPU.scala:380:27, :381:10, :382:10] wire [16:0] prevOK_unswizzled = {prevOK_unswizzled_hi, _prevOK_unswizzled_T_2}; // @[FPU.scala:380:27, :383:10] wire [4:0] _prevOK_prevOK_T = unswizzled[32:28]; // @[FPU.scala:332:49, :380:27] wire _prevOK_prevOK_T_1 = &_prevOK_prevOK_T; // @[FPU.scala:332:{49,84}] wire _prevOK_prevOK_T_2 = ~_prevOK_prevOK_T_1; // @[FPU.scala:332:84, :384:20] wire [2:0] _prevOK_curOK_T = unswizzled[31:29]; // @[FPU.scala:249:25, :380:27] wire _prevOK_curOK_T_1 = &_prevOK_curOK_T; // @[FPU.scala:249:{25,56}] wire _prevOK_curOK_T_2 = ~_prevOK_curOK_T_1; // @[FPU.scala:249:56, :385:19] wire _prevOK_curOK_T_3 = unswizzled[28]; // @[FPU.scala:380:27, :385:35] wire [6:0] _prevOK_curOK_T_4 = unswizzled[22:16]; // @[FPU.scala:380:27, :385:60] wire _prevOK_curOK_T_5 = &_prevOK_curOK_T_4; // @[FPU.scala:385:{60,96}] wire _prevOK_curOK_T_6 = _prevOK_curOK_T_3 == _prevOK_curOK_T_5; // @[FPU.scala:385:{35,55,96}] wire prevOK_curOK = _prevOK_curOK_T_2 | _prevOK_curOK_T_6; // @[FPU.scala:385:{19,31,55}] wire _prevOK_T_3 = prevOK_curOK; // @[FPU.scala:385:31, :386:14] wire prevOK = _prevOK_T_2 | _prevOK_T_3; // @[FPU.scala:384:{20,33}, :386:14] wire [2:0] _curOK_T = wdata[63:61]; // @[FPU.scala:249:25, :344:8] wire [2:0] _frfWriteBundle_0_wrdata_T_1 = wdata[63:61]; // @[FPU.scala:249:25, :344:8] wire _curOK_T_1 = &_curOK_T; // @[FPU.scala:249:{25,56}] wire _curOK_T_2 = ~_curOK_T_1; // @[FPU.scala:249:56, :385:19] wire _curOK_T_3 = wdata[60]; // @[FPU.scala:344:8, :385:35] wire [19:0] _curOK_T_4 = wdata[51:32]; // @[FPU.scala:344:8, :385:60] wire _curOK_T_5 = &_curOK_T_4; // @[FPU.scala:385:{60,96}] wire _curOK_T_6 = _curOK_T_3 == _curOK_T_5; // @[FPU.scala:385:{35,55,96}] wire curOK = _curOK_T_2 | _curOK_T_6; // @[FPU.scala:385:{19,31,55}] wire [11:0] frfWriteBundle_0_wrdata_unrecoded_rawIn_exp = wdata[63:52]; // @[FPU.scala:344:8] wire [2:0] _frfWriteBundle_0_wrdata_unrecoded_rawIn_isZero_T = frfWriteBundle_0_wrdata_unrecoded_rawIn_exp[11:9]; // @[rawFloatFromRecFN.scala:51:21, :52:28] wire frfWriteBundle_0_wrdata_unrecoded_rawIn_isZero = _frfWriteBundle_0_wrdata_unrecoded_rawIn_isZero_T == 3'h0; // @[rawFloatFromRecFN.scala:52:{28,53}] wire frfWriteBundle_0_wrdata_unrecoded_rawIn_isZero_0 = frfWriteBundle_0_wrdata_unrecoded_rawIn_isZero; // @[rawFloatFromRecFN.scala:52:53, :55:23] wire [1:0] _frfWriteBundle_0_wrdata_unrecoded_rawIn_isSpecial_T = frfWriteBundle_0_wrdata_unrecoded_rawIn_exp[11:10]; // @[rawFloatFromRecFN.scala:51:21, :53:28] wire frfWriteBundle_0_wrdata_unrecoded_rawIn_isSpecial = &_frfWriteBundle_0_wrdata_unrecoded_rawIn_isSpecial_T; // @[rawFloatFromRecFN.scala:53:{28,53}] wire _frfWriteBundle_0_wrdata_unrecoded_rawIn_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:56:33] wire _frfWriteBundle_0_wrdata_unrecoded_rawIn_out_isInf_T_2; // @[rawFloatFromRecFN.scala:57:33] wire _frfWriteBundle_0_wrdata_unrecoded_rawIn_out_sign_T; // @[rawFloatFromRecFN.scala:59:25] wire [12:0] _frfWriteBundle_0_wrdata_unrecoded_rawIn_out_sExp_T; // @[rawFloatFromRecFN.scala:60:27] wire [53:0] _frfWriteBundle_0_wrdata_unrecoded_rawIn_out_sig_T_3; // @[rawFloatFromRecFN.scala:61:44] wire frfWriteBundle_0_wrdata_unrecoded_rawIn_isNaN; // @[rawFloatFromRecFN.scala:55:23] wire frfWriteBundle_0_wrdata_unrecoded_rawIn_isInf; // @[rawFloatFromRecFN.scala:55:23] wire frfWriteBundle_0_wrdata_unrecoded_rawIn_sign; // @[rawFloatFromRecFN.scala:55:23] wire [12:0] frfWriteBundle_0_wrdata_unrecoded_rawIn_sExp; // @[rawFloatFromRecFN.scala:55:23] wire [53:0] frfWriteBundle_0_wrdata_unrecoded_rawIn_sig; // @[rawFloatFromRecFN.scala:55:23] wire _frfWriteBundle_0_wrdata_unrecoded_rawIn_out_isNaN_T = frfWriteBundle_0_wrdata_unrecoded_rawIn_exp[9]; // @[rawFloatFromRecFN.scala:51:21, :56:41] wire _frfWriteBundle_0_wrdata_unrecoded_rawIn_out_isInf_T = frfWriteBundle_0_wrdata_unrecoded_rawIn_exp[9]; // @[rawFloatFromRecFN.scala:51:21, :56:41, :57:41] assign _frfWriteBundle_0_wrdata_unrecoded_rawIn_out_isNaN_T_1 = frfWriteBundle_0_wrdata_unrecoded_rawIn_isSpecial & _frfWriteBundle_0_wrdata_unrecoded_rawIn_out_isNaN_T; // @[rawFloatFromRecFN.scala:53:53, :56:{33,41}] assign frfWriteBundle_0_wrdata_unrecoded_rawIn_isNaN = _frfWriteBundle_0_wrdata_unrecoded_rawIn_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:55:23, :56:33] wire _frfWriteBundle_0_wrdata_unrecoded_rawIn_out_isInf_T_1 = ~_frfWriteBundle_0_wrdata_unrecoded_rawIn_out_isInf_T; // @[rawFloatFromRecFN.scala:57:{36,41}] assign _frfWriteBundle_0_wrdata_unrecoded_rawIn_out_isInf_T_2 = frfWriteBundle_0_wrdata_unrecoded_rawIn_isSpecial & _frfWriteBundle_0_wrdata_unrecoded_rawIn_out_isInf_T_1; // @[rawFloatFromRecFN.scala:53:53, :57:{33,36}] assign frfWriteBundle_0_wrdata_unrecoded_rawIn_isInf = _frfWriteBundle_0_wrdata_unrecoded_rawIn_out_isInf_T_2; // @[rawFloatFromRecFN.scala:55:23, :57:33] assign _frfWriteBundle_0_wrdata_unrecoded_rawIn_out_sign_T = wdata[64]; // @[FPU.scala:344:8] assign frfWriteBundle_0_wrdata_unrecoded_rawIn_sign = _frfWriteBundle_0_wrdata_unrecoded_rawIn_out_sign_T; // @[rawFloatFromRecFN.scala:55:23, :59:25] assign _frfWriteBundle_0_wrdata_unrecoded_rawIn_out_sExp_T = {1'h0, frfWriteBundle_0_wrdata_unrecoded_rawIn_exp}; // @[rawFloatFromRecFN.scala:51:21, :60:27] assign frfWriteBundle_0_wrdata_unrecoded_rawIn_sExp = _frfWriteBundle_0_wrdata_unrecoded_rawIn_out_sExp_T; // @[rawFloatFromRecFN.scala:55:23, :60:27] wire _frfWriteBundle_0_wrdata_unrecoded_rawIn_out_sig_T = ~frfWriteBundle_0_wrdata_unrecoded_rawIn_isZero; // @[rawFloatFromRecFN.scala:52:53, :61:35] wire [1:0] _frfWriteBundle_0_wrdata_unrecoded_rawIn_out_sig_T_1 = {1'h0, _frfWriteBundle_0_wrdata_unrecoded_rawIn_out_sig_T}; // @[rawFloatFromRecFN.scala:61:{32,35}] wire [51:0] _frfWriteBundle_0_wrdata_unrecoded_rawIn_out_sig_T_2 = wdata[51:0]; // @[FPU.scala:344:8] assign _frfWriteBundle_0_wrdata_unrecoded_rawIn_out_sig_T_3 = {_frfWriteBundle_0_wrdata_unrecoded_rawIn_out_sig_T_1, _frfWriteBundle_0_wrdata_unrecoded_rawIn_out_sig_T_2}; // @[rawFloatFromRecFN.scala:61:{32,44,49}] assign frfWriteBundle_0_wrdata_unrecoded_rawIn_sig = _frfWriteBundle_0_wrdata_unrecoded_rawIn_out_sig_T_3; // @[rawFloatFromRecFN.scala:55:23, :61:44] wire frfWriteBundle_0_wrdata_unrecoded_isSubnormal = $signed(frfWriteBundle_0_wrdata_unrecoded_rawIn_sExp) < 13'sh402; // @[rawFloatFromRecFN.scala:55:23] wire [5:0] _frfWriteBundle_0_wrdata_unrecoded_denormShiftDist_T = frfWriteBundle_0_wrdata_unrecoded_rawIn_sExp[5:0]; // @[rawFloatFromRecFN.scala:55:23] wire [6:0] _frfWriteBundle_0_wrdata_unrecoded_denormShiftDist_T_1 = 7'h1 - {1'h0, _frfWriteBundle_0_wrdata_unrecoded_denormShiftDist_T}; // @[fNFromRecFN.scala:52:{35,47}] wire [5:0] frfWriteBundle_0_wrdata_unrecoded_denormShiftDist = _frfWriteBundle_0_wrdata_unrecoded_denormShiftDist_T_1[5:0]; // @[fNFromRecFN.scala:52:35] wire [52:0] _frfWriteBundle_0_wrdata_unrecoded_denormFract_T = frfWriteBundle_0_wrdata_unrecoded_rawIn_sig[53:1]; // @[rawFloatFromRecFN.scala:55:23] wire [52:0] _frfWriteBundle_0_wrdata_unrecoded_denormFract_T_1 = _frfWriteBundle_0_wrdata_unrecoded_denormFract_T >> frfWriteBundle_0_wrdata_unrecoded_denormShiftDist; // @[fNFromRecFN.scala:52:35, :53:{38,42}] wire [51:0] frfWriteBundle_0_wrdata_unrecoded_denormFract = _frfWriteBundle_0_wrdata_unrecoded_denormFract_T_1[51:0]; // @[fNFromRecFN.scala:53:{42,60}] wire [10:0] _frfWriteBundle_0_wrdata_unrecoded_expOut_T = frfWriteBundle_0_wrdata_unrecoded_rawIn_sExp[10:0]; // @[rawFloatFromRecFN.scala:55:23] wire [11:0] _frfWriteBundle_0_wrdata_unrecoded_expOut_T_1 = {1'h0, _frfWriteBundle_0_wrdata_unrecoded_expOut_T} - 12'h401; // @[fNFromRecFN.scala:58:{27,45}] wire [10:0] _frfWriteBundle_0_wrdata_unrecoded_expOut_T_2 = _frfWriteBundle_0_wrdata_unrecoded_expOut_T_1[10:0]; // @[fNFromRecFN.scala:58:45] wire [10:0] _frfWriteBundle_0_wrdata_unrecoded_expOut_T_3 = frfWriteBundle_0_wrdata_unrecoded_isSubnormal ? 11'h0 : _frfWriteBundle_0_wrdata_unrecoded_expOut_T_2; // @[fNFromRecFN.scala:51:38, :56:16, :58:45] wire _frfWriteBundle_0_wrdata_unrecoded_expOut_T_4 = frfWriteBundle_0_wrdata_unrecoded_rawIn_isNaN | frfWriteBundle_0_wrdata_unrecoded_rawIn_isInf; // @[rawFloatFromRecFN.scala:55:23] wire [10:0] _frfWriteBundle_0_wrdata_unrecoded_expOut_T_5 = {11{_frfWriteBundle_0_wrdata_unrecoded_expOut_T_4}}; // @[fNFromRecFN.scala:60:{21,44}] wire [10:0] frfWriteBundle_0_wrdata_unrecoded_expOut = _frfWriteBundle_0_wrdata_unrecoded_expOut_T_3 | _frfWriteBundle_0_wrdata_unrecoded_expOut_T_5; // @[fNFromRecFN.scala:56:16, :60:{15,21}] wire [51:0] _frfWriteBundle_0_wrdata_unrecoded_fractOut_T = frfWriteBundle_0_wrdata_unrecoded_rawIn_sig[51:0]; // @[rawFloatFromRecFN.scala:55:23] wire [51:0] _frfWriteBundle_0_wrdata_unrecoded_fractOut_T_1 = frfWriteBundle_0_wrdata_unrecoded_rawIn_isInf ? 52'h0 : _frfWriteBundle_0_wrdata_unrecoded_fractOut_T; // @[rawFloatFromRecFN.scala:55:23] wire [51:0] frfWriteBundle_0_wrdata_unrecoded_fractOut = frfWriteBundle_0_wrdata_unrecoded_isSubnormal ? frfWriteBundle_0_wrdata_unrecoded_denormFract : _frfWriteBundle_0_wrdata_unrecoded_fractOut_T_1; // @[fNFromRecFN.scala:51:38, :53:60, :62:16, :64:20] wire [11:0] frfWriteBundle_0_wrdata_unrecoded_hi = {frfWriteBundle_0_wrdata_unrecoded_rawIn_sign, frfWriteBundle_0_wrdata_unrecoded_expOut}; // @[rawFloatFromRecFN.scala:55:23] wire [63:0] frfWriteBundle_0_wrdata_unrecoded = {frfWriteBundle_0_wrdata_unrecoded_hi, frfWriteBundle_0_wrdata_unrecoded_fractOut}; // @[fNFromRecFN.scala:62:16, :66:12] wire [1:0] frfWriteBundle_0_wrdata_prevRecoded_hi = {_frfWriteBundle_0_wrdata_prevRecoded_T, _frfWriteBundle_0_wrdata_prevRecoded_T_1}; // @[FPU.scala:441:28, :442:10, :443:10] wire [32:0] frfWriteBundle_0_wrdata_prevRecoded = {frfWriteBundle_0_wrdata_prevRecoded_hi, _frfWriteBundle_0_wrdata_prevRecoded_T_2}; // @[FPU.scala:441:28, :444:10] wire [8:0] frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_exp = frfWriteBundle_0_wrdata_prevRecoded[31:23]; // @[FPU.scala:441:28] wire [2:0] _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_isZero_T = frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_exp[8:6]; // @[rawFloatFromRecFN.scala:51:21, :52:28] wire frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_isZero = _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_isZero_T == 3'h0; // @[rawFloatFromRecFN.scala:52:{28,53}] wire frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_isZero_0 = frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_isZero; // @[rawFloatFromRecFN.scala:52:53, :55:23] wire [1:0] _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_isSpecial_T = frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_exp[8:7]; // @[rawFloatFromRecFN.scala:51:21, :53:28] wire frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_isSpecial = &_frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_isSpecial_T; // @[rawFloatFromRecFN.scala:53:{28,53}] wire _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:56:33] wire _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_out_isInf_T_2; // @[rawFloatFromRecFN.scala:57:33] wire _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_out_sign_T; // @[rawFloatFromRecFN.scala:59:25] wire [9:0] _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_out_sExp_T; // @[rawFloatFromRecFN.scala:60:27] wire [24:0] _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_out_sig_T_3; // @[rawFloatFromRecFN.scala:61:44] wire frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_isNaN; // @[rawFloatFromRecFN.scala:55:23] wire frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_isInf; // @[rawFloatFromRecFN.scala:55:23] wire frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_sign; // @[rawFloatFromRecFN.scala:55:23] wire [9:0] frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_sExp; // @[rawFloatFromRecFN.scala:55:23] wire [24:0] frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_sig; // @[rawFloatFromRecFN.scala:55:23] wire _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_out_isNaN_T = frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41] wire _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_out_isInf_T = frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41, :57:41] assign _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_out_isNaN_T_1 = frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_isSpecial & _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_out_isNaN_T; // @[rawFloatFromRecFN.scala:53:53, :56:{33,41}] assign frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_isNaN = _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:55:23, :56:33] wire _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_out_isInf_T_1 = ~_frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_out_isInf_T; // @[rawFloatFromRecFN.scala:57:{36,41}] assign _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_out_isInf_T_2 = frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_isSpecial & _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_out_isInf_T_1; // @[rawFloatFromRecFN.scala:53:53, :57:{33,36}] assign frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_isInf = _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_out_isInf_T_2; // @[rawFloatFromRecFN.scala:55:23, :57:33] assign _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_out_sign_T = frfWriteBundle_0_wrdata_prevRecoded[32]; // @[FPU.scala:441:28] assign frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_sign = _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_out_sign_T; // @[rawFloatFromRecFN.scala:55:23, :59:25] assign _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_out_sExp_T = {1'h0, frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_exp}; // @[rawFloatFromRecFN.scala:51:21, :60:27] assign frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_sExp = _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_out_sExp_T; // @[rawFloatFromRecFN.scala:55:23, :60:27] wire _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_out_sig_T = ~frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_isZero; // @[rawFloatFromRecFN.scala:52:53, :61:35] wire [1:0] _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_out_sig_T_1 = {1'h0, _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_out_sig_T}; // @[rawFloatFromRecFN.scala:61:{32,35}] wire [22:0] _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_out_sig_T_2 = frfWriteBundle_0_wrdata_prevRecoded[22:0]; // @[FPU.scala:441:28] assign _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_out_sig_T_3 = {_frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_out_sig_T_1, _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_out_sig_T_2}; // @[rawFloatFromRecFN.scala:61:{32,44,49}] assign frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_sig = _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_out_sig_T_3; // @[rawFloatFromRecFN.scala:55:23, :61:44] wire frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_isSubnormal = $signed(frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_sExp) < 10'sh82; // @[rawFloatFromRecFN.scala:55:23] wire [4:0] _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_denormShiftDist_T = frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_sExp[4:0]; // @[rawFloatFromRecFN.scala:55:23] wire [5:0] _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_denormShiftDist_T_1 = 6'h1 - {1'h0, _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_denormShiftDist_T}; // @[fNFromRecFN.scala:52:{35,47}] wire [4:0] frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_denormShiftDist = _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_denormShiftDist_T_1[4:0]; // @[fNFromRecFN.scala:52:35] wire [23:0] _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_denormFract_T = frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_sig[24:1]; // @[rawFloatFromRecFN.scala:55:23] wire [23:0] _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_denormFract_T_1 = _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_denormFract_T >> frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_denormShiftDist; // @[fNFromRecFN.scala:52:35, :53:{38,42}] wire [22:0] frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_denormFract = _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_denormFract_T_1[22:0]; // @[fNFromRecFN.scala:53:{42,60}] wire [7:0] _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_expOut_T = frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_sExp[7:0]; // @[rawFloatFromRecFN.scala:55:23] wire [8:0] _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_expOut_T_1 = {1'h0, _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_expOut_T} - 9'h81; // @[fNFromRecFN.scala:58:{27,45}] wire [7:0] _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_expOut_T_2 = _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_expOut_T_1[7:0]; // @[fNFromRecFN.scala:58:45] wire [7:0] _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_expOut_T_3 = frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_isSubnormal ? 8'h0 : _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_expOut_T_2; // @[fNFromRecFN.scala:51:38, :56:16, :58:45] wire _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_expOut_T_4 = frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_isNaN | frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_isInf; // @[rawFloatFromRecFN.scala:55:23] wire [7:0] _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_expOut_T_5 = {8{_frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_expOut_T_4}}; // @[fNFromRecFN.scala:60:{21,44}] wire [7:0] frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_expOut = _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_expOut_T_3 | _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_expOut_T_5; // @[fNFromRecFN.scala:56:16, :60:{15,21}] wire [22:0] _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_fractOut_T = frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_sig[22:0]; // @[rawFloatFromRecFN.scala:55:23] wire [22:0] _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_fractOut_T_1 = frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_isInf ? 23'h0 : _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_fractOut_T; // @[rawFloatFromRecFN.scala:55:23] wire [22:0] frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_fractOut = frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_isSubnormal ? frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_denormFract : _frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_fractOut_T_1; // @[fNFromRecFN.scala:51:38, :53:60, :62:16, :64:20] wire [8:0] frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_hi = {frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_rawIn_sign, frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_expOut}; // @[rawFloatFromRecFN.scala:55:23] wire [31:0] frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded = {frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_hi, frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded_fractOut}; // @[fNFromRecFN.scala:62:16, :66:12] wire _frfWriteBundle_0_wrdata_prevUnrecoded_prevRecoded_T = frfWriteBundle_0_wrdata_prevRecoded[15]; // @[FPU.scala:441:28, :442:10] wire _frfWriteBundle_0_wrdata_prevUnrecoded_prevRecoded_T_1 = frfWriteBundle_0_wrdata_prevRecoded[23]; // @[FPU.scala:441:28, :443:10] wire [14:0] _frfWriteBundle_0_wrdata_prevUnrecoded_prevRecoded_T_2 = frfWriteBundle_0_wrdata_prevRecoded[14:0]; // @[FPU.scala:441:28, :444:10] wire [1:0] frfWriteBundle_0_wrdata_prevUnrecoded_prevRecoded_hi = {_frfWriteBundle_0_wrdata_prevUnrecoded_prevRecoded_T, _frfWriteBundle_0_wrdata_prevUnrecoded_prevRecoded_T_1}; // @[FPU.scala:441:28, :442:10, :443:10] wire [16:0] frfWriteBundle_0_wrdata_prevUnrecoded_prevRecoded = {frfWriteBundle_0_wrdata_prevUnrecoded_prevRecoded_hi, _frfWriteBundle_0_wrdata_prevUnrecoded_prevRecoded_T_2}; // @[FPU.scala:441:28, :444:10] wire [5:0] frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_exp = frfWriteBundle_0_wrdata_prevUnrecoded_prevRecoded[15:10]; // @[FPU.scala:441:28] wire [2:0] _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_isZero_T = frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_exp[5:3]; // @[rawFloatFromRecFN.scala:51:21, :52:28] wire frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_isZero = _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_isZero_T == 3'h0; // @[rawFloatFromRecFN.scala:52:{28,53}] wire frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_isZero_0 = frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_isZero; // @[rawFloatFromRecFN.scala:52:53, :55:23] wire [1:0] _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_isSpecial_T = frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_exp[5:4]; // @[rawFloatFromRecFN.scala:51:21, :53:28] wire frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_isSpecial = &_frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_isSpecial_T; // @[rawFloatFromRecFN.scala:53:{28,53}] wire _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:56:33] wire _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_out_isInf_T_2; // @[rawFloatFromRecFN.scala:57:33] wire _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_out_sign_T; // @[rawFloatFromRecFN.scala:59:25] wire [6:0] _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_out_sExp_T; // @[rawFloatFromRecFN.scala:60:27] wire [11:0] _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_out_sig_T_3; // @[rawFloatFromRecFN.scala:61:44] wire frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_isNaN; // @[rawFloatFromRecFN.scala:55:23] wire frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_isInf; // @[rawFloatFromRecFN.scala:55:23] wire frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_sign; // @[rawFloatFromRecFN.scala:55:23] wire [6:0] frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_sExp; // @[rawFloatFromRecFN.scala:55:23] wire [11:0] frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_sig; // @[rawFloatFromRecFN.scala:55:23] wire _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_out_isNaN_T = frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_exp[3]; // @[rawFloatFromRecFN.scala:51:21, :56:41] wire _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_out_isInf_T = frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_exp[3]; // @[rawFloatFromRecFN.scala:51:21, :56:41, :57:41] assign _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_out_isNaN_T_1 = frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_isSpecial & _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_out_isNaN_T; // @[rawFloatFromRecFN.scala:53:53, :56:{33,41}] assign frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_isNaN = _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:55:23, :56:33] wire _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_out_isInf_T_1 = ~_frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_out_isInf_T; // @[rawFloatFromRecFN.scala:57:{36,41}] assign _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_out_isInf_T_2 = frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_isSpecial & _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_out_isInf_T_1; // @[rawFloatFromRecFN.scala:53:53, :57:{33,36}] assign frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_isInf = _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_out_isInf_T_2; // @[rawFloatFromRecFN.scala:55:23, :57:33] assign _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_out_sign_T = frfWriteBundle_0_wrdata_prevUnrecoded_prevRecoded[16]; // @[FPU.scala:441:28] assign frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_sign = _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_out_sign_T; // @[rawFloatFromRecFN.scala:55:23, :59:25] assign _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_out_sExp_T = {1'h0, frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_exp}; // @[rawFloatFromRecFN.scala:51:21, :60:27] assign frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_sExp = _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_out_sExp_T; // @[rawFloatFromRecFN.scala:55:23, :60:27] wire _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_out_sig_T = ~frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_isZero; // @[rawFloatFromRecFN.scala:52:53, :61:35] wire [1:0] _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_out_sig_T_1 = {1'h0, _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_out_sig_T}; // @[rawFloatFromRecFN.scala:61:{32,35}] wire [9:0] _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_out_sig_T_2 = frfWriteBundle_0_wrdata_prevUnrecoded_prevRecoded[9:0]; // @[FPU.scala:441:28] assign _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_out_sig_T_3 = {_frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_out_sig_T_1, _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_out_sig_T_2}; // @[rawFloatFromRecFN.scala:61:{32,44,49}] assign frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_sig = _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_out_sig_T_3; // @[rawFloatFromRecFN.scala:55:23, :61:44] wire frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_isSubnormal = $signed(frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_sExp) < 7'sh12; // @[rawFloatFromRecFN.scala:55:23] wire [3:0] _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_denormShiftDist_T = frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_sExp[3:0]; // @[rawFloatFromRecFN.scala:55:23] wire [4:0] _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_denormShiftDist_T_1 = 5'h1 - {1'h0, _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_denormShiftDist_T}; // @[fNFromRecFN.scala:52:{35,47}] wire [3:0] frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_denormShiftDist = _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_denormShiftDist_T_1[3:0]; // @[fNFromRecFN.scala:52:35] wire [10:0] _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_denormFract_T = frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_sig[11:1]; // @[rawFloatFromRecFN.scala:55:23] wire [10:0] _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_denormFract_T_1 = _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_denormFract_T >> frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_denormShiftDist; // @[fNFromRecFN.scala:52:35, :53:{38,42}] wire [9:0] frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_denormFract = _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_denormFract_T_1[9:0]; // @[fNFromRecFN.scala:53:{42,60}] wire [4:0] _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_expOut_T = frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_sExp[4:0]; // @[rawFloatFromRecFN.scala:55:23] wire [5:0] _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_expOut_T_1 = {1'h0, _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_expOut_T} - 6'h11; // @[fNFromRecFN.scala:58:{27,45}] wire [4:0] _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_expOut_T_2 = _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_expOut_T_1[4:0]; // @[fNFromRecFN.scala:58:45] wire [4:0] _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_expOut_T_3 = frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_isSubnormal ? 5'h0 : _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_expOut_T_2; // @[fNFromRecFN.scala:51:38, :56:16, :58:45] wire _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_expOut_T_4 = frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_isNaN | frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_isInf; // @[rawFloatFromRecFN.scala:55:23] wire [4:0] _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_expOut_T_5 = {5{_frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_expOut_T_4}}; // @[fNFromRecFN.scala:60:{21,44}] wire [4:0] frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_expOut = _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_expOut_T_3 | _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_expOut_T_5; // @[fNFromRecFN.scala:56:16, :60:{15,21}] wire [9:0] _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_fractOut_T = frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_sig[9:0]; // @[rawFloatFromRecFN.scala:55:23] wire [9:0] _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_fractOut_T_1 = frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_isInf ? 10'h0 : _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_fractOut_T; // @[rawFloatFromRecFN.scala:55:23] wire [9:0] frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_fractOut = frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_isSubnormal ? frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_denormFract : _frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_fractOut_T_1; // @[fNFromRecFN.scala:51:38, :53:60, :62:16, :64:20] wire [5:0] frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_hi = {frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_rawIn_sign, frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_expOut}; // @[rawFloatFromRecFN.scala:55:23] wire [15:0] frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded = {frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_hi, frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded_fractOut}; // @[fNFromRecFN.scala:62:16, :66:12] wire [15:0] _frfWriteBundle_0_wrdata_prevUnrecoded_T = frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded[31:16]; // @[FPU.scala:446:21] wire [2:0] _frfWriteBundle_0_wrdata_prevUnrecoded_T_1 = frfWriteBundle_0_wrdata_prevRecoded[31:29]; // @[FPU.scala:249:25, :441:28] wire _frfWriteBundle_0_wrdata_prevUnrecoded_T_2 = &_frfWriteBundle_0_wrdata_prevUnrecoded_T_1; // @[FPU.scala:249:{25,56}] wire [15:0] _frfWriteBundle_0_wrdata_prevUnrecoded_T_3 = frfWriteBundle_0_wrdata_prevUnrecoded_unrecoded[15:0]; // @[FPU.scala:446:81] wire [15:0] _frfWriteBundle_0_wrdata_prevUnrecoded_T_4 = _frfWriteBundle_0_wrdata_prevUnrecoded_T_2 ? frfWriteBundle_0_wrdata_prevUnrecoded_prevUnrecoded : _frfWriteBundle_0_wrdata_prevUnrecoded_T_3; // @[FPU.scala:249:56, :446:{44,81}] wire [31:0] frfWriteBundle_0_wrdata_prevUnrecoded = {_frfWriteBundle_0_wrdata_prevUnrecoded_T, _frfWriteBundle_0_wrdata_prevUnrecoded_T_4}; // @[FPU.scala:446:{10,21,44}] wire [31:0] _frfWriteBundle_0_wrdata_T = frfWriteBundle_0_wrdata_unrecoded[63:32]; // @[FPU.scala:446:21] wire _frfWriteBundle_0_wrdata_T_2 = &_frfWriteBundle_0_wrdata_T_1; // @[FPU.scala:249:{25,56}] wire [31:0] _frfWriteBundle_0_wrdata_T_3 = frfWriteBundle_0_wrdata_unrecoded[31:0]; // @[FPU.scala:446:81] wire [31:0] _frfWriteBundle_0_wrdata_T_4 = _frfWriteBundle_0_wrdata_T_2 ? frfWriteBundle_0_wrdata_prevUnrecoded : _frfWriteBundle_0_wrdata_T_3; // @[FPU.scala:249:56, :446:{10,44,81}] assign _frfWriteBundle_0_wrdata_T_5 = {_frfWriteBundle_0_wrdata_T, _frfWriteBundle_0_wrdata_T_4}; // @[FPU.scala:446:{10,21,44}] assign frfWriteBundle_0_wrdata = _frfWriteBundle_0_wrdata_T_5; // @[FPU.scala:446:10, :805:44] wire [4:0] _ex_rs_T_1 = _ex_rs_T; // @[FPU.scala:832:37] wire [4:0] _ex_rs_T_3 = _ex_rs_T_2; // @[FPU.scala:832:37] wire [4:0] _ex_rs_T_5 = _ex_rs_T_4; // @[FPU.scala:832:37] wire [4:0] _ex_ra_0_T = io_inst_0[19:15]; // @[FPU.scala:735:7, :835:51] wire [4:0] _ex_ra_1_T = io_inst_0[19:15]; // @[FPU.scala:735:7, :835:51, :836:50] wire [4:0] _ex_ra_0_T_1 = io_inst_0[24:20]; // @[FPU.scala:735:7, :839:50] wire [4:0] _ex_ra_2_T = io_inst_0[24:20]; // @[FPU.scala:735:7, :839:50, :840:50] wire [4:0] _ex_ra_1_T_1 = io_inst_0[24:20]; // @[FPU.scala:735:7, :839:50, :841:70] wire [4:0] _ex_ra_2_T_1 = io_inst_0[31:27]; // @[FPU.scala:735:7, :843:46] wire [2:0] _ex_rm_T = ex_reg_inst[14:12]; // @[FPU.scala:768:30, :845:30] wire [2:0] _ex_rm_T_2 = ex_reg_inst[14:12]; // @[FPU.scala:768:30, :845:{30,70}] wire _ex_rm_T_1 = &_ex_rm_T; // @[FPU.scala:845:{30,38}] wire [2:0] ex_rm = _ex_rm_T_1 ? io_fcsr_rm_0 : _ex_rm_T_2; // @[FPU.scala:735:7, :845:{18,38,70}] wire [2:0] sfma_io_in_bits_req_rm = ex_rm; // @[FPU.scala:845:18, :848:19] wire [2:0] fpiu_io_in_bits_req_rm = ex_rm; // @[FPU.scala:845:18, :848:19] wire [2:0] dfma_io_in_bits_req_rm = ex_rm; // @[FPU.scala:845:18, :848:19] wire [2:0] hfma_io_in_bits_req_rm = ex_rm; // @[FPU.scala:845:18, :848:19] wire _GEN_0 = req_valid & ex_ctrl_fma; // @[FPU.scala:780:32, :800:20, :873:33] wire _sfma_io_in_valid_T; // @[FPU.scala:873:33] assign _sfma_io_in_valid_T = _GEN_0; // @[FPU.scala:873:33] wire _dfma_io_in_valid_T; // @[FPU.scala:914:41] assign _dfma_io_in_valid_T = _GEN_0; // @[FPU.scala:873:33, :914:41] wire _hfma_io_in_valid_T; // @[FPU.scala:920:41] assign _hfma_io_in_valid_T = _GEN_0; // @[FPU.scala:873:33, :920:41] wire _GEN_1 = ex_ctrl_typeTagOut == 2'h1; // @[FPU.scala:800:20, :873:70] wire _sfma_io_in_valid_T_1; // @[FPU.scala:873:70] assign _sfma_io_in_valid_T_1 = _GEN_1; // @[FPU.scala:873:70] wire _write_port_busy_T_2; // @[FPU.scala:911:72] assign _write_port_busy_T_2 = _GEN_1; // @[FPU.scala:873:70, :911:72] wire _write_port_busy_T_20; // @[FPU.scala:911:72] assign _write_port_busy_T_20 = _GEN_1; // @[FPU.scala:873:70, :911:72] wire _sfma_io_in_valid_T_2 = _sfma_io_in_valid_T & _sfma_io_in_valid_T_1; // @[FPU.scala:873:{33,48,70}] wire [1:0] _sfma_io_in_bits_req_fmaCmd_T_4; // @[FPU.scala:857:36] wire [1:0] _sfma_io_in_bits_req_typ_T; // @[FPU.scala:855:27] wire [1:0] _sfma_io_in_bits_req_fmt_T; // @[FPU.scala:856:27] wire [1:0] sfma_io_in_bits_req_fmaCmd; // @[FPU.scala:848:19] wire [1:0] sfma_io_in_bits_req_typ; // @[FPU.scala:848:19] wire [1:0] sfma_io_in_bits_req_fmt; // @[FPU.scala:848:19] wire [64:0] sfma_io_in_bits_req_in1; // @[FPU.scala:848:19] wire [64:0] sfma_io_in_bits_req_in2; // @[FPU.scala:848:19] wire [64:0] sfma_io_in_bits_req_in3; // @[FPU.scala:848:19] wire _sfma_io_in_bits_req_in1_prev_unswizzled_T = _regfile_ext_R2_data[31]; // @[FPU.scala:357:14, :818:20] wire _fpiu_io_in_bits_req_in1_prev_unswizzled_T = _regfile_ext_R2_data[31]; // @[FPU.scala:357:14, :818:20] wire _dfma_io_in_bits_req_in1_prev_unswizzled_T = _regfile_ext_R2_data[31]; // @[FPU.scala:357:14, :818:20] wire _hfma_io_in_bits_req_in1_prev_unswizzled_T = _regfile_ext_R2_data[31]; // @[FPU.scala:357:14, :818:20] wire _sfma_io_in_bits_req_in1_prev_unswizzled_T_1 = _regfile_ext_R2_data[52]; // @[FPU.scala:358:14, :818:20] wire _fpiu_io_in_bits_req_in1_prev_unswizzled_T_1 = _regfile_ext_R2_data[52]; // @[FPU.scala:358:14, :818:20] wire _dfma_io_in_bits_req_in1_prev_unswizzled_T_1 = _regfile_ext_R2_data[52]; // @[FPU.scala:358:14, :818:20] wire _hfma_io_in_bits_req_in1_prev_unswizzled_T_1 = _regfile_ext_R2_data[52]; // @[FPU.scala:358:14, :818:20] wire [30:0] _sfma_io_in_bits_req_in1_prev_unswizzled_T_2 = _regfile_ext_R2_data[30:0]; // @[FPU.scala:359:14, :818:20] wire [30:0] _fpiu_io_in_bits_req_in1_prev_unswizzled_T_2 = _regfile_ext_R2_data[30:0]; // @[FPU.scala:359:14, :818:20] wire [30:0] _dfma_io_in_bits_req_in1_prev_unswizzled_T_2 = _regfile_ext_R2_data[30:0]; // @[FPU.scala:359:14, :818:20] wire [30:0] _hfma_io_in_bits_req_in1_prev_unswizzled_T_2 = _regfile_ext_R2_data[30:0]; // @[FPU.scala:359:14, :818:20] wire [1:0] sfma_io_in_bits_req_in1_prev_unswizzled_hi = {_sfma_io_in_bits_req_in1_prev_unswizzled_T, _sfma_io_in_bits_req_in1_prev_unswizzled_T_1}; // @[FPU.scala:356:31, :357:14, :358:14] wire [32:0] sfma_io_in_bits_req_in1_floats_1 = {sfma_io_in_bits_req_in1_prev_unswizzled_hi, _sfma_io_in_bits_req_in1_prev_unswizzled_T_2}; // @[FPU.scala:356:31, :359:14] wire _sfma_io_in_bits_req_in1_prev_prev_prev_unswizzled_T = sfma_io_in_bits_req_in1_floats_1[15]; // @[FPU.scala:356:31, :357:14] wire _sfma_io_in_bits_req_in1_prev_prev_prev_unswizzled_T_1 = sfma_io_in_bits_req_in1_floats_1[23]; // @[FPU.scala:356:31, :358:14] wire [14:0] _sfma_io_in_bits_req_in1_prev_prev_prev_unswizzled_T_2 = sfma_io_in_bits_req_in1_floats_1[14:0]; // @[FPU.scala:356:31, :359:14] wire [1:0] sfma_io_in_bits_req_in1_prev_prev_prev_unswizzled_hi = {_sfma_io_in_bits_req_in1_prev_prev_prev_unswizzled_T, _sfma_io_in_bits_req_in1_prev_prev_prev_unswizzled_T_1}; // @[FPU.scala:356:31, :357:14, :358:14] wire [16:0] sfma_io_in_bits_req_in1_prev_prev_prev_unswizzled = {sfma_io_in_bits_req_in1_prev_prev_prev_unswizzled_hi, _sfma_io_in_bits_req_in1_prev_prev_prev_unswizzled_T_2}; // @[FPU.scala:356:31, :359:14] wire sfma_io_in_bits_req_in1_prev_prev_prev_prev_sign = sfma_io_in_bits_req_in1_prev_prev_prev_unswizzled[16]; // @[FPU.scala:274:17, :356:31] wire [9:0] sfma_io_in_bits_req_in1_prev_prev_prev_prev_fractIn = sfma_io_in_bits_req_in1_prev_prev_prev_unswizzled[9:0]; // @[FPU.scala:275:20, :356:31] wire [5:0] sfma_io_in_bits_req_in1_prev_prev_prev_prev_expIn = sfma_io_in_bits_req_in1_prev_prev_prev_unswizzled[15:10]; // @[FPU.scala:276:18, :356:31] wire [33:0] _sfma_io_in_bits_req_in1_prev_prev_prev_prev_fractOut_T = {sfma_io_in_bits_req_in1_prev_prev_prev_prev_fractIn, 24'h0}; // @[FPU.scala:275:20, :277:28] wire [22:0] sfma_io_in_bits_req_in1_prev_prev_prev_prev_fractOut = _sfma_io_in_bits_req_in1_prev_prev_prev_prev_fractOut_T[33:11]; // @[FPU.scala:277:{28,38}] wire [2:0] sfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_expCode = sfma_io_in_bits_req_in1_prev_prev_prev_prev_expIn[5:3]; // @[FPU.scala:276:18, :279:26] wire [9:0] _sfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_commonCase_T = {4'h0, sfma_io_in_bits_req_in1_prev_prev_prev_prev_expIn} + 10'h100; // @[FPU.scala:276:18, :280:31] wire [8:0] _sfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_commonCase_T_1 = _sfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_commonCase_T[8:0]; // @[FPU.scala:280:31] wire [9:0] _sfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_commonCase_T_2 = {1'h0, _sfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_commonCase_T_1} - 10'h20; // @[FPU.scala:280:{31,50}] wire [8:0] sfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_commonCase = _sfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_commonCase_T_2[8:0]; // @[FPU.scala:280:50] wire [8:0] _sfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_T_5 = sfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_commonCase; // @[FPU.scala:280:50, :281:97] wire _sfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_T = sfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_expCode == 3'h0; // @[FPU.scala:279:26, :281:19] wire _sfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_T_1 = sfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_expCode > 3'h5; // @[FPU.scala:279:26, :281:38] wire _sfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_T_2 = _sfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_T | _sfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_T_1; // @[FPU.scala:281:{19,27,38}] wire [5:0] _sfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_T_3 = sfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_commonCase[5:0]; // @[FPU.scala:280:50, :281:69] wire [8:0] _sfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_T_4 = {sfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_expCode, _sfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_T_3}; // @[FPU.scala:279:26, :281:{49,69}] wire [8:0] sfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut = _sfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_T_2 ? _sfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_T_4 : _sfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_T_5; // @[FPU.scala:281:{10,27,49,97}] wire [9:0] sfma_io_in_bits_req_in1_prev_prev_prev_prev_hi = {sfma_io_in_bits_req_in1_prev_prev_prev_prev_sign, sfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut}; // @[FPU.scala:274:17, :281:10, :283:8] wire [32:0] sfma_io_in_bits_req_in1_floats_0 = {sfma_io_in_bits_req_in1_prev_prev_prev_prev_hi, sfma_io_in_bits_req_in1_prev_prev_prev_prev_fractOut}; // @[FPU.scala:277:38, :283:8] wire [4:0] _sfma_io_in_bits_req_in1_prev_prev_prev_isbox_T = sfma_io_in_bits_req_in1_floats_1[32:28]; // @[FPU.scala:332:49, :356:31] wire sfma_io_in_bits_req_in1_prev_prev_prev_isbox = &_sfma_io_in_bits_req_in1_prev_prev_prev_isbox_T; // @[FPU.scala:332:{49,84}] wire sfma_io_in_bits_req_in1_prev_prev_0_1 = sfma_io_in_bits_req_in1_prev_prev_prev_isbox; // @[FPU.scala:332:84, :362:32] wire [4:0] _sfma_io_in_bits_req_in1_prev_isbox_T = _regfile_ext_R2_data[64:60]; // @[FPU.scala:332:49, :818:20] wire [4:0] _fpiu_io_in_bits_req_in1_prev_isbox_T = _regfile_ext_R2_data[64:60]; // @[FPU.scala:332:49, :818:20] wire [4:0] _dfma_io_in_bits_req_in1_prev_isbox_T = _regfile_ext_R2_data[64:60]; // @[FPU.scala:332:49, :818:20] wire [4:0] _hfma_io_in_bits_req_in1_prev_isbox_T = _regfile_ext_R2_data[64:60]; // @[FPU.scala:332:49, :818:20] wire sfma_io_in_bits_req_in1_prev_isbox = &_sfma_io_in_bits_req_in1_prev_isbox_T; // @[FPU.scala:332:{49,84}] wire sfma_io_in_bits_req_in1_oks_1 = sfma_io_in_bits_req_in1_prev_isbox; // @[FPU.scala:332:84, :362:32] wire sfma_io_in_bits_req_in1_oks_0 = sfma_io_in_bits_req_in1_prev_isbox & sfma_io_in_bits_req_in1_prev_prev_0_1; // @[FPU.scala:332:84, :362:32] wire sfma_io_in_bits_req_in1_sign = _regfile_ext_R2_data[64]; // @[FPU.scala:274:17, :818:20] wire hfma_io_in_bits_req_in1_sign = _regfile_ext_R2_data[64]; // @[FPU.scala:274:17, :818:20] wire [51:0] sfma_io_in_bits_req_in1_fractIn = _regfile_ext_R2_data[51:0]; // @[FPU.scala:275:20, :818:20] wire [51:0] hfma_io_in_bits_req_in1_fractIn = _regfile_ext_R2_data[51:0]; // @[FPU.scala:275:20, :818:20] wire [11:0] sfma_io_in_bits_req_in1_expIn = _regfile_ext_R2_data[63:52]; // @[FPU.scala:276:18, :818:20] wire [11:0] hfma_io_in_bits_req_in1_expIn = _regfile_ext_R2_data[63:52]; // @[FPU.scala:276:18, :818:20] wire [75:0] _sfma_io_in_bits_req_in1_fractOut_T = {sfma_io_in_bits_req_in1_fractIn, 24'h0}; // @[FPU.scala:275:20, :277:28] wire [22:0] sfma_io_in_bits_req_in1_fractOut = _sfma_io_in_bits_req_in1_fractOut_T[75:53]; // @[FPU.scala:277:{28,38}] wire [2:0] sfma_io_in_bits_req_in1_expOut_expCode = sfma_io_in_bits_req_in1_expIn[11:9]; // @[FPU.scala:276:18, :279:26] wire [12:0] _sfma_io_in_bits_req_in1_expOut_commonCase_T = {1'h0, sfma_io_in_bits_req_in1_expIn} + 13'h100; // @[FPU.scala:276:18, :280:31] wire [11:0] _sfma_io_in_bits_req_in1_expOut_commonCase_T_1 = _sfma_io_in_bits_req_in1_expOut_commonCase_T[11:0]; // @[FPU.scala:280:31] wire [12:0] _sfma_io_in_bits_req_in1_expOut_commonCase_T_2 = {1'h0, _sfma_io_in_bits_req_in1_expOut_commonCase_T_1} - 13'h800; // @[FPU.scala:280:{31,50}] wire [11:0] sfma_io_in_bits_req_in1_expOut_commonCase = _sfma_io_in_bits_req_in1_expOut_commonCase_T_2[11:0]; // @[FPU.scala:280:50] wire _sfma_io_in_bits_req_in1_expOut_T = sfma_io_in_bits_req_in1_expOut_expCode == 3'h0; // @[FPU.scala:279:26, :281:19] wire _sfma_io_in_bits_req_in1_expOut_T_1 = sfma_io_in_bits_req_in1_expOut_expCode > 3'h5; // @[FPU.scala:279:26, :281:38] wire _sfma_io_in_bits_req_in1_expOut_T_2 = _sfma_io_in_bits_req_in1_expOut_T | _sfma_io_in_bits_req_in1_expOut_T_1; // @[FPU.scala:281:{19,27,38}] wire [5:0] _sfma_io_in_bits_req_in1_expOut_T_3 = sfma_io_in_bits_req_in1_expOut_commonCase[5:0]; // @[FPU.scala:280:50, :281:69] wire [8:0] _sfma_io_in_bits_req_in1_expOut_T_4 = {sfma_io_in_bits_req_in1_expOut_expCode, _sfma_io_in_bits_req_in1_expOut_T_3}; // @[FPU.scala:279:26, :281:{49,69}] wire [8:0] _sfma_io_in_bits_req_in1_expOut_T_5 = sfma_io_in_bits_req_in1_expOut_commonCase[8:0]; // @[FPU.scala:280:50, :281:97] wire [8:0] sfma_io_in_bits_req_in1_expOut = _sfma_io_in_bits_req_in1_expOut_T_2 ? _sfma_io_in_bits_req_in1_expOut_T_4 : _sfma_io_in_bits_req_in1_expOut_T_5; // @[FPU.scala:281:{10,27,49,97}] wire [9:0] sfma_io_in_bits_req_in1_hi = {sfma_io_in_bits_req_in1_sign, sfma_io_in_bits_req_in1_expOut}; // @[FPU.scala:274:17, :281:10, :283:8] wire [32:0] sfma_io_in_bits_req_in1_floats_2 = {sfma_io_in_bits_req_in1_hi, sfma_io_in_bits_req_in1_fractOut}; // @[FPU.scala:277:38, :283:8] wire [32:0] _sfma_io_in_bits_req_in1_T = sfma_io_in_bits_req_in1_oks_1 ? 33'h0 : 33'hE0400000; // @[FPU.scala:362:32, :372:31] wire [32:0] _sfma_io_in_bits_req_in1_T_1 = sfma_io_in_bits_req_in1_floats_1 | _sfma_io_in_bits_req_in1_T; // @[FPU.scala:356:31, :372:{26,31}] assign sfma_io_in_bits_req_in1 = {32'h0, _sfma_io_in_bits_req_in1_T_1}; // @[FPU.scala:372:26, :848:19, :852:13] wire _sfma_io_in_bits_req_in2_prev_unswizzled_T = _regfile_ext_R1_data[31]; // @[FPU.scala:357:14, :818:20] wire _fpiu_io_in_bits_req_in2_prev_unswizzled_T = _regfile_ext_R1_data[31]; // @[FPU.scala:357:14, :818:20] wire _dfma_io_in_bits_req_in2_prev_unswizzled_T = _regfile_ext_R1_data[31]; // @[FPU.scala:357:14, :818:20] wire _hfma_io_in_bits_req_in2_prev_unswizzled_T = _regfile_ext_R1_data[31]; // @[FPU.scala:357:14, :818:20] wire _sfma_io_in_bits_req_in2_prev_unswizzled_T_1 = _regfile_ext_R1_data[52]; // @[FPU.scala:358:14, :818:20] wire _fpiu_io_in_bits_req_in2_prev_unswizzled_T_1 = _regfile_ext_R1_data[52]; // @[FPU.scala:358:14, :818:20] wire _dfma_io_in_bits_req_in2_prev_unswizzled_T_1 = _regfile_ext_R1_data[52]; // @[FPU.scala:358:14, :818:20] wire _hfma_io_in_bits_req_in2_prev_unswizzled_T_1 = _regfile_ext_R1_data[52]; // @[FPU.scala:358:14, :818:20] wire [30:0] _sfma_io_in_bits_req_in2_prev_unswizzled_T_2 = _regfile_ext_R1_data[30:0]; // @[FPU.scala:359:14, :818:20] wire [30:0] _fpiu_io_in_bits_req_in2_prev_unswizzled_T_2 = _regfile_ext_R1_data[30:0]; // @[FPU.scala:359:14, :818:20] wire [30:0] _dfma_io_in_bits_req_in2_prev_unswizzled_T_2 = _regfile_ext_R1_data[30:0]; // @[FPU.scala:359:14, :818:20] wire [30:0] _hfma_io_in_bits_req_in2_prev_unswizzled_T_2 = _regfile_ext_R1_data[30:0]; // @[FPU.scala:359:14, :818:20] wire [1:0] sfma_io_in_bits_req_in2_prev_unswizzled_hi = {_sfma_io_in_bits_req_in2_prev_unswizzled_T, _sfma_io_in_bits_req_in2_prev_unswizzled_T_1}; // @[FPU.scala:356:31, :357:14, :358:14] wire [32:0] sfma_io_in_bits_req_in2_floats_1 = {sfma_io_in_bits_req_in2_prev_unswizzled_hi, _sfma_io_in_bits_req_in2_prev_unswizzled_T_2}; // @[FPU.scala:356:31, :359:14] wire _sfma_io_in_bits_req_in2_prev_prev_prev_unswizzled_T = sfma_io_in_bits_req_in2_floats_1[15]; // @[FPU.scala:356:31, :357:14] wire _sfma_io_in_bits_req_in2_prev_prev_prev_unswizzled_T_1 = sfma_io_in_bits_req_in2_floats_1[23]; // @[FPU.scala:356:31, :358:14] wire [14:0] _sfma_io_in_bits_req_in2_prev_prev_prev_unswizzled_T_2 = sfma_io_in_bits_req_in2_floats_1[14:0]; // @[FPU.scala:356:31, :359:14] wire [1:0] sfma_io_in_bits_req_in2_prev_prev_prev_unswizzled_hi = {_sfma_io_in_bits_req_in2_prev_prev_prev_unswizzled_T, _sfma_io_in_bits_req_in2_prev_prev_prev_unswizzled_T_1}; // @[FPU.scala:356:31, :357:14, :358:14] wire [16:0] sfma_io_in_bits_req_in2_prev_prev_prev_unswizzled = {sfma_io_in_bits_req_in2_prev_prev_prev_unswizzled_hi, _sfma_io_in_bits_req_in2_prev_prev_prev_unswizzled_T_2}; // @[FPU.scala:356:31, :359:14] wire sfma_io_in_bits_req_in2_prev_prev_prev_prev_sign = sfma_io_in_bits_req_in2_prev_prev_prev_unswizzled[16]; // @[FPU.scala:274:17, :356:31] wire [9:0] sfma_io_in_bits_req_in2_prev_prev_prev_prev_fractIn = sfma_io_in_bits_req_in2_prev_prev_prev_unswizzled[9:0]; // @[FPU.scala:275:20, :356:31] wire [5:0] sfma_io_in_bits_req_in2_prev_prev_prev_prev_expIn = sfma_io_in_bits_req_in2_prev_prev_prev_unswizzled[15:10]; // @[FPU.scala:276:18, :356:31] wire [33:0] _sfma_io_in_bits_req_in2_prev_prev_prev_prev_fractOut_T = {sfma_io_in_bits_req_in2_prev_prev_prev_prev_fractIn, 24'h0}; // @[FPU.scala:275:20, :277:28] wire [22:0] sfma_io_in_bits_req_in2_prev_prev_prev_prev_fractOut = _sfma_io_in_bits_req_in2_prev_prev_prev_prev_fractOut_T[33:11]; // @[FPU.scala:277:{28,38}] wire [2:0] sfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_expCode = sfma_io_in_bits_req_in2_prev_prev_prev_prev_expIn[5:3]; // @[FPU.scala:276:18, :279:26] wire [9:0] _sfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_commonCase_T = {4'h0, sfma_io_in_bits_req_in2_prev_prev_prev_prev_expIn} + 10'h100; // @[FPU.scala:276:18, :280:31] wire [8:0] _sfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_commonCase_T_1 = _sfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_commonCase_T[8:0]; // @[FPU.scala:280:31] wire [9:0] _sfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_commonCase_T_2 = {1'h0, _sfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_commonCase_T_1} - 10'h20; // @[FPU.scala:280:{31,50}] wire [8:0] sfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_commonCase = _sfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_commonCase_T_2[8:0]; // @[FPU.scala:280:50] wire [8:0] _sfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_T_5 = sfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_commonCase; // @[FPU.scala:280:50, :281:97] wire _sfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_T = sfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_expCode == 3'h0; // @[FPU.scala:279:26, :281:19] wire _sfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_T_1 = sfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_expCode > 3'h5; // @[FPU.scala:279:26, :281:38] wire _sfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_T_2 = _sfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_T | _sfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_T_1; // @[FPU.scala:281:{19,27,38}] wire [5:0] _sfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_T_3 = sfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_commonCase[5:0]; // @[FPU.scala:280:50, :281:69] wire [8:0] _sfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_T_4 = {sfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_expCode, _sfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_T_3}; // @[FPU.scala:279:26, :281:{49,69}] wire [8:0] sfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut = _sfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_T_2 ? _sfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_T_4 : _sfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_T_5; // @[FPU.scala:281:{10,27,49,97}] wire [9:0] sfma_io_in_bits_req_in2_prev_prev_prev_prev_hi = {sfma_io_in_bits_req_in2_prev_prev_prev_prev_sign, sfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut}; // @[FPU.scala:274:17, :281:10, :283:8] wire [32:0] sfma_io_in_bits_req_in2_floats_0 = {sfma_io_in_bits_req_in2_prev_prev_prev_prev_hi, sfma_io_in_bits_req_in2_prev_prev_prev_prev_fractOut}; // @[FPU.scala:277:38, :283:8] wire [4:0] _sfma_io_in_bits_req_in2_prev_prev_prev_isbox_T = sfma_io_in_bits_req_in2_floats_1[32:28]; // @[FPU.scala:332:49, :356:31] wire sfma_io_in_bits_req_in2_prev_prev_prev_isbox = &_sfma_io_in_bits_req_in2_prev_prev_prev_isbox_T; // @[FPU.scala:332:{49,84}] wire sfma_io_in_bits_req_in2_prev_prev_0_1 = sfma_io_in_bits_req_in2_prev_prev_prev_isbox; // @[FPU.scala:332:84, :362:32] wire [4:0] _sfma_io_in_bits_req_in2_prev_isbox_T = _regfile_ext_R1_data[64:60]; // @[FPU.scala:332:49, :818:20] wire [4:0] _fpiu_io_in_bits_req_in2_prev_isbox_T = _regfile_ext_R1_data[64:60]; // @[FPU.scala:332:49, :818:20] wire [4:0] _dfma_io_in_bits_req_in2_prev_isbox_T = _regfile_ext_R1_data[64:60]; // @[FPU.scala:332:49, :818:20] wire [4:0] _hfma_io_in_bits_req_in2_prev_isbox_T = _regfile_ext_R1_data[64:60]; // @[FPU.scala:332:49, :818:20] wire sfma_io_in_bits_req_in2_prev_isbox = &_sfma_io_in_bits_req_in2_prev_isbox_T; // @[FPU.scala:332:{49,84}] wire sfma_io_in_bits_req_in2_oks_1 = sfma_io_in_bits_req_in2_prev_isbox; // @[FPU.scala:332:84, :362:32] wire sfma_io_in_bits_req_in2_oks_0 = sfma_io_in_bits_req_in2_prev_isbox & sfma_io_in_bits_req_in2_prev_prev_0_1; // @[FPU.scala:332:84, :362:32] wire sfma_io_in_bits_req_in2_sign = _regfile_ext_R1_data[64]; // @[FPU.scala:274:17, :818:20] wire hfma_io_in_bits_req_in2_sign = _regfile_ext_R1_data[64]; // @[FPU.scala:274:17, :818:20] wire [51:0] sfma_io_in_bits_req_in2_fractIn = _regfile_ext_R1_data[51:0]; // @[FPU.scala:275:20, :818:20] wire [51:0] hfma_io_in_bits_req_in2_fractIn = _regfile_ext_R1_data[51:0]; // @[FPU.scala:275:20, :818:20] wire [11:0] sfma_io_in_bits_req_in2_expIn = _regfile_ext_R1_data[63:52]; // @[FPU.scala:276:18, :818:20] wire [11:0] hfma_io_in_bits_req_in2_expIn = _regfile_ext_R1_data[63:52]; // @[FPU.scala:276:18, :818:20] wire [75:0] _sfma_io_in_bits_req_in2_fractOut_T = {sfma_io_in_bits_req_in2_fractIn, 24'h0}; // @[FPU.scala:275:20, :277:28] wire [22:0] sfma_io_in_bits_req_in2_fractOut = _sfma_io_in_bits_req_in2_fractOut_T[75:53]; // @[FPU.scala:277:{28,38}] wire [2:0] sfma_io_in_bits_req_in2_expOut_expCode = sfma_io_in_bits_req_in2_expIn[11:9]; // @[FPU.scala:276:18, :279:26] wire [12:0] _sfma_io_in_bits_req_in2_expOut_commonCase_T = {1'h0, sfma_io_in_bits_req_in2_expIn} + 13'h100; // @[FPU.scala:276:18, :280:31] wire [11:0] _sfma_io_in_bits_req_in2_expOut_commonCase_T_1 = _sfma_io_in_bits_req_in2_expOut_commonCase_T[11:0]; // @[FPU.scala:280:31] wire [12:0] _sfma_io_in_bits_req_in2_expOut_commonCase_T_2 = {1'h0, _sfma_io_in_bits_req_in2_expOut_commonCase_T_1} - 13'h800; // @[FPU.scala:280:{31,50}] wire [11:0] sfma_io_in_bits_req_in2_expOut_commonCase = _sfma_io_in_bits_req_in2_expOut_commonCase_T_2[11:0]; // @[FPU.scala:280:50] wire _sfma_io_in_bits_req_in2_expOut_T = sfma_io_in_bits_req_in2_expOut_expCode == 3'h0; // @[FPU.scala:279:26, :281:19] wire _sfma_io_in_bits_req_in2_expOut_T_1 = sfma_io_in_bits_req_in2_expOut_expCode > 3'h5; // @[FPU.scala:279:26, :281:38] wire _sfma_io_in_bits_req_in2_expOut_T_2 = _sfma_io_in_bits_req_in2_expOut_T | _sfma_io_in_bits_req_in2_expOut_T_1; // @[FPU.scala:281:{19,27,38}] wire [5:0] _sfma_io_in_bits_req_in2_expOut_T_3 = sfma_io_in_bits_req_in2_expOut_commonCase[5:0]; // @[FPU.scala:280:50, :281:69] wire [8:0] _sfma_io_in_bits_req_in2_expOut_T_4 = {sfma_io_in_bits_req_in2_expOut_expCode, _sfma_io_in_bits_req_in2_expOut_T_3}; // @[FPU.scala:279:26, :281:{49,69}] wire [8:0] _sfma_io_in_bits_req_in2_expOut_T_5 = sfma_io_in_bits_req_in2_expOut_commonCase[8:0]; // @[FPU.scala:280:50, :281:97] wire [8:0] sfma_io_in_bits_req_in2_expOut = _sfma_io_in_bits_req_in2_expOut_T_2 ? _sfma_io_in_bits_req_in2_expOut_T_4 : _sfma_io_in_bits_req_in2_expOut_T_5; // @[FPU.scala:281:{10,27,49,97}] wire [9:0] sfma_io_in_bits_req_in2_hi = {sfma_io_in_bits_req_in2_sign, sfma_io_in_bits_req_in2_expOut}; // @[FPU.scala:274:17, :281:10, :283:8] wire [32:0] sfma_io_in_bits_req_in2_floats_2 = {sfma_io_in_bits_req_in2_hi, sfma_io_in_bits_req_in2_fractOut}; // @[FPU.scala:277:38, :283:8] wire [32:0] _sfma_io_in_bits_req_in2_T = sfma_io_in_bits_req_in2_oks_1 ? 33'h0 : 33'hE0400000; // @[FPU.scala:362:32, :372:31] wire [32:0] _sfma_io_in_bits_req_in2_T_1 = sfma_io_in_bits_req_in2_floats_1 | _sfma_io_in_bits_req_in2_T; // @[FPU.scala:356:31, :372:{26,31}] assign sfma_io_in_bits_req_in2 = {32'h0, _sfma_io_in_bits_req_in2_T_1}; // @[FPU.scala:372:26, :848:19, :853:13] wire _sfma_io_in_bits_req_in3_prev_unswizzled_T = _regfile_ext_R0_data[31]; // @[FPU.scala:357:14, :818:20] wire _fpiu_io_in_bits_req_in3_prev_unswizzled_T = _regfile_ext_R0_data[31]; // @[FPU.scala:357:14, :818:20] wire _dfma_io_in_bits_req_in3_prev_unswizzled_T = _regfile_ext_R0_data[31]; // @[FPU.scala:357:14, :818:20] wire _hfma_io_in_bits_req_in3_prev_unswizzled_T = _regfile_ext_R0_data[31]; // @[FPU.scala:357:14, :818:20] wire _sfma_io_in_bits_req_in3_prev_unswizzled_T_1 = _regfile_ext_R0_data[52]; // @[FPU.scala:358:14, :818:20] wire _fpiu_io_in_bits_req_in3_prev_unswizzled_T_1 = _regfile_ext_R0_data[52]; // @[FPU.scala:358:14, :818:20] wire _dfma_io_in_bits_req_in3_prev_unswizzled_T_1 = _regfile_ext_R0_data[52]; // @[FPU.scala:358:14, :818:20] wire _hfma_io_in_bits_req_in3_prev_unswizzled_T_1 = _regfile_ext_R0_data[52]; // @[FPU.scala:358:14, :818:20] wire [30:0] _sfma_io_in_bits_req_in3_prev_unswizzled_T_2 = _regfile_ext_R0_data[30:0]; // @[FPU.scala:359:14, :818:20] wire [30:0] _fpiu_io_in_bits_req_in3_prev_unswizzled_T_2 = _regfile_ext_R0_data[30:0]; // @[FPU.scala:359:14, :818:20] wire [30:0] _dfma_io_in_bits_req_in3_prev_unswizzled_T_2 = _regfile_ext_R0_data[30:0]; // @[FPU.scala:359:14, :818:20] wire [30:0] _hfma_io_in_bits_req_in3_prev_unswizzled_T_2 = _regfile_ext_R0_data[30:0]; // @[FPU.scala:359:14, :818:20] wire [1:0] sfma_io_in_bits_req_in3_prev_unswizzled_hi = {_sfma_io_in_bits_req_in3_prev_unswizzled_T, _sfma_io_in_bits_req_in3_prev_unswizzled_T_1}; // @[FPU.scala:356:31, :357:14, :358:14] wire [32:0] sfma_io_in_bits_req_in3_floats_1 = {sfma_io_in_bits_req_in3_prev_unswizzled_hi, _sfma_io_in_bits_req_in3_prev_unswizzled_T_2}; // @[FPU.scala:356:31, :359:14] wire _sfma_io_in_bits_req_in3_prev_prev_prev_unswizzled_T = sfma_io_in_bits_req_in3_floats_1[15]; // @[FPU.scala:356:31, :357:14] wire _sfma_io_in_bits_req_in3_prev_prev_prev_unswizzled_T_1 = sfma_io_in_bits_req_in3_floats_1[23]; // @[FPU.scala:356:31, :358:14] wire [14:0] _sfma_io_in_bits_req_in3_prev_prev_prev_unswizzled_T_2 = sfma_io_in_bits_req_in3_floats_1[14:0]; // @[FPU.scala:356:31, :359:14] wire [1:0] sfma_io_in_bits_req_in3_prev_prev_prev_unswizzled_hi = {_sfma_io_in_bits_req_in3_prev_prev_prev_unswizzled_T, _sfma_io_in_bits_req_in3_prev_prev_prev_unswizzled_T_1}; // @[FPU.scala:356:31, :357:14, :358:14] wire [16:0] sfma_io_in_bits_req_in3_prev_prev_prev_unswizzled = {sfma_io_in_bits_req_in3_prev_prev_prev_unswizzled_hi, _sfma_io_in_bits_req_in3_prev_prev_prev_unswizzled_T_2}; // @[FPU.scala:356:31, :359:14] wire sfma_io_in_bits_req_in3_prev_prev_prev_prev_sign = sfma_io_in_bits_req_in3_prev_prev_prev_unswizzled[16]; // @[FPU.scala:274:17, :356:31] wire [9:0] sfma_io_in_bits_req_in3_prev_prev_prev_prev_fractIn = sfma_io_in_bits_req_in3_prev_prev_prev_unswizzled[9:0]; // @[FPU.scala:275:20, :356:31] wire [5:0] sfma_io_in_bits_req_in3_prev_prev_prev_prev_expIn = sfma_io_in_bits_req_in3_prev_prev_prev_unswizzled[15:10]; // @[FPU.scala:276:18, :356:31] wire [33:0] _sfma_io_in_bits_req_in3_prev_prev_prev_prev_fractOut_T = {sfma_io_in_bits_req_in3_prev_prev_prev_prev_fractIn, 24'h0}; // @[FPU.scala:275:20, :277:28] wire [22:0] sfma_io_in_bits_req_in3_prev_prev_prev_prev_fractOut = _sfma_io_in_bits_req_in3_prev_prev_prev_prev_fractOut_T[33:11]; // @[FPU.scala:277:{28,38}] wire [2:0] sfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_expCode = sfma_io_in_bits_req_in3_prev_prev_prev_prev_expIn[5:3]; // @[FPU.scala:276:18, :279:26] wire [9:0] _sfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_commonCase_T = {4'h0, sfma_io_in_bits_req_in3_prev_prev_prev_prev_expIn} + 10'h100; // @[FPU.scala:276:18, :280:31] wire [8:0] _sfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_commonCase_T_1 = _sfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_commonCase_T[8:0]; // @[FPU.scala:280:31] wire [9:0] _sfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_commonCase_T_2 = {1'h0, _sfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_commonCase_T_1} - 10'h20; // @[FPU.scala:280:{31,50}] wire [8:0] sfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_commonCase = _sfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_commonCase_T_2[8:0]; // @[FPU.scala:280:50] wire [8:0] _sfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_T_5 = sfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_commonCase; // @[FPU.scala:280:50, :281:97] wire _sfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_T = sfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_expCode == 3'h0; // @[FPU.scala:279:26, :281:19] wire _sfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_T_1 = sfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_expCode > 3'h5; // @[FPU.scala:279:26, :281:38] wire _sfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_T_2 = _sfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_T | _sfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_T_1; // @[FPU.scala:281:{19,27,38}] wire [5:0] _sfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_T_3 = sfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_commonCase[5:0]; // @[FPU.scala:280:50, :281:69] wire [8:0] _sfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_T_4 = {sfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_expCode, _sfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_T_3}; // @[FPU.scala:279:26, :281:{49,69}] wire [8:0] sfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut = _sfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_T_2 ? _sfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_T_4 : _sfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_T_5; // @[FPU.scala:281:{10,27,49,97}] wire [9:0] sfma_io_in_bits_req_in3_prev_prev_prev_prev_hi = {sfma_io_in_bits_req_in3_prev_prev_prev_prev_sign, sfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut}; // @[FPU.scala:274:17, :281:10, :283:8] wire [32:0] sfma_io_in_bits_req_in3_floats_0 = {sfma_io_in_bits_req_in3_prev_prev_prev_prev_hi, sfma_io_in_bits_req_in3_prev_prev_prev_prev_fractOut}; // @[FPU.scala:277:38, :283:8] wire [4:0] _sfma_io_in_bits_req_in3_prev_prev_prev_isbox_T = sfma_io_in_bits_req_in3_floats_1[32:28]; // @[FPU.scala:332:49, :356:31] wire sfma_io_in_bits_req_in3_prev_prev_prev_isbox = &_sfma_io_in_bits_req_in3_prev_prev_prev_isbox_T; // @[FPU.scala:332:{49,84}] wire sfma_io_in_bits_req_in3_prev_prev_0_1 = sfma_io_in_bits_req_in3_prev_prev_prev_isbox; // @[FPU.scala:332:84, :362:32] wire [4:0] _sfma_io_in_bits_req_in3_prev_isbox_T = _regfile_ext_R0_data[64:60]; // @[FPU.scala:332:49, :818:20] wire [4:0] _fpiu_io_in_bits_req_in3_prev_isbox_T = _regfile_ext_R0_data[64:60]; // @[FPU.scala:332:49, :818:20] wire [4:0] _dfma_io_in_bits_req_in3_prev_isbox_T = _regfile_ext_R0_data[64:60]; // @[FPU.scala:332:49, :818:20] wire [4:0] _hfma_io_in_bits_req_in3_prev_isbox_T = _regfile_ext_R0_data[64:60]; // @[FPU.scala:332:49, :818:20] wire sfma_io_in_bits_req_in3_prev_isbox = &_sfma_io_in_bits_req_in3_prev_isbox_T; // @[FPU.scala:332:{49,84}] wire sfma_io_in_bits_req_in3_oks_1 = sfma_io_in_bits_req_in3_prev_isbox; // @[FPU.scala:332:84, :362:32] wire sfma_io_in_bits_req_in3_oks_0 = sfma_io_in_bits_req_in3_prev_isbox & sfma_io_in_bits_req_in3_prev_prev_0_1; // @[FPU.scala:332:84, :362:32] wire sfma_io_in_bits_req_in3_sign = _regfile_ext_R0_data[64]; // @[FPU.scala:274:17, :818:20] wire hfma_io_in_bits_req_in3_sign = _regfile_ext_R0_data[64]; // @[FPU.scala:274:17, :818:20] wire [51:0] sfma_io_in_bits_req_in3_fractIn = _regfile_ext_R0_data[51:0]; // @[FPU.scala:275:20, :818:20] wire [51:0] hfma_io_in_bits_req_in3_fractIn = _regfile_ext_R0_data[51:0]; // @[FPU.scala:275:20, :818:20] wire [11:0] sfma_io_in_bits_req_in3_expIn = _regfile_ext_R0_data[63:52]; // @[FPU.scala:276:18, :818:20] wire [11:0] hfma_io_in_bits_req_in3_expIn = _regfile_ext_R0_data[63:52]; // @[FPU.scala:276:18, :818:20] wire [75:0] _sfma_io_in_bits_req_in3_fractOut_T = {sfma_io_in_bits_req_in3_fractIn, 24'h0}; // @[FPU.scala:275:20, :277:28] wire [22:0] sfma_io_in_bits_req_in3_fractOut = _sfma_io_in_bits_req_in3_fractOut_T[75:53]; // @[FPU.scala:277:{28,38}] wire [2:0] sfma_io_in_bits_req_in3_expOut_expCode = sfma_io_in_bits_req_in3_expIn[11:9]; // @[FPU.scala:276:18, :279:26] wire [12:0] _sfma_io_in_bits_req_in3_expOut_commonCase_T = {1'h0, sfma_io_in_bits_req_in3_expIn} + 13'h100; // @[FPU.scala:276:18, :280:31] wire [11:0] _sfma_io_in_bits_req_in3_expOut_commonCase_T_1 = _sfma_io_in_bits_req_in3_expOut_commonCase_T[11:0]; // @[FPU.scala:280:31] wire [12:0] _sfma_io_in_bits_req_in3_expOut_commonCase_T_2 = {1'h0, _sfma_io_in_bits_req_in3_expOut_commonCase_T_1} - 13'h800; // @[FPU.scala:280:{31,50}] wire [11:0] sfma_io_in_bits_req_in3_expOut_commonCase = _sfma_io_in_bits_req_in3_expOut_commonCase_T_2[11:0]; // @[FPU.scala:280:50] wire _sfma_io_in_bits_req_in3_expOut_T = sfma_io_in_bits_req_in3_expOut_expCode == 3'h0; // @[FPU.scala:279:26, :281:19] wire _sfma_io_in_bits_req_in3_expOut_T_1 = sfma_io_in_bits_req_in3_expOut_expCode > 3'h5; // @[FPU.scala:279:26, :281:38] wire _sfma_io_in_bits_req_in3_expOut_T_2 = _sfma_io_in_bits_req_in3_expOut_T | _sfma_io_in_bits_req_in3_expOut_T_1; // @[FPU.scala:281:{19,27,38}] wire [5:0] _sfma_io_in_bits_req_in3_expOut_T_3 = sfma_io_in_bits_req_in3_expOut_commonCase[5:0]; // @[FPU.scala:280:50, :281:69] wire [8:0] _sfma_io_in_bits_req_in3_expOut_T_4 = {sfma_io_in_bits_req_in3_expOut_expCode, _sfma_io_in_bits_req_in3_expOut_T_3}; // @[FPU.scala:279:26, :281:{49,69}] wire [8:0] _sfma_io_in_bits_req_in3_expOut_T_5 = sfma_io_in_bits_req_in3_expOut_commonCase[8:0]; // @[FPU.scala:280:50, :281:97] wire [8:0] sfma_io_in_bits_req_in3_expOut = _sfma_io_in_bits_req_in3_expOut_T_2 ? _sfma_io_in_bits_req_in3_expOut_T_4 : _sfma_io_in_bits_req_in3_expOut_T_5; // @[FPU.scala:281:{10,27,49,97}] wire [9:0] sfma_io_in_bits_req_in3_hi = {sfma_io_in_bits_req_in3_sign, sfma_io_in_bits_req_in3_expOut}; // @[FPU.scala:274:17, :281:10, :283:8] wire [32:0] sfma_io_in_bits_req_in3_floats_2 = {sfma_io_in_bits_req_in3_hi, sfma_io_in_bits_req_in3_fractOut}; // @[FPU.scala:277:38, :283:8] wire [32:0] _sfma_io_in_bits_req_in3_T = sfma_io_in_bits_req_in3_oks_1 ? 33'h0 : 33'hE0400000; // @[FPU.scala:362:32, :372:31] wire [32:0] _sfma_io_in_bits_req_in3_T_1 = sfma_io_in_bits_req_in3_floats_1 | _sfma_io_in_bits_req_in3_T; // @[FPU.scala:356:31, :372:{26,31}] assign sfma_io_in_bits_req_in3 = {32'h0, _sfma_io_in_bits_req_in3_T_1}; // @[FPU.scala:372:26, :848:19, :854:13] assign _sfma_io_in_bits_req_typ_T = ex_reg_inst[21:20]; // @[FPU.scala:768:30, :855:27] wire [1:0] _fpiu_io_in_bits_req_typ_T = ex_reg_inst[21:20]; // @[FPU.scala:768:30, :855:27] wire [1:0] _dfma_io_in_bits_req_typ_T = ex_reg_inst[21:20]; // @[FPU.scala:768:30, :855:27] wire [1:0] _hfma_io_in_bits_req_typ_T = ex_reg_inst[21:20]; // @[FPU.scala:768:30, :855:27] assign sfma_io_in_bits_req_typ = _sfma_io_in_bits_req_typ_T; // @[FPU.scala:848:19, :855:27] assign _sfma_io_in_bits_req_fmt_T = ex_reg_inst[26:25]; // @[FPU.scala:768:30, :856:27] wire [1:0] _fpiu_io_in_bits_req_fmt_T = ex_reg_inst[26:25]; // @[FPU.scala:768:30, :856:27] wire [1:0] _dfma_io_in_bits_req_fmt_T = ex_reg_inst[26:25]; // @[FPU.scala:768:30, :856:27] wire [1:0] _hfma_io_in_bits_req_fmt_T = ex_reg_inst[26:25]; // @[FPU.scala:768:30, :856:27] assign sfma_io_in_bits_req_fmt = _sfma_io_in_bits_req_fmt_T; // @[FPU.scala:848:19, :856:27] wire [1:0] _sfma_io_in_bits_req_fmaCmd_T = ex_reg_inst[3:2]; // @[FPU.scala:768:30, :857:30] wire [1:0] _fpiu_io_in_bits_req_fmaCmd_T = ex_reg_inst[3:2]; // @[FPU.scala:768:30, :857:30] wire [1:0] _dfma_io_in_bits_req_fmaCmd_T = ex_reg_inst[3:2]; // @[FPU.scala:768:30, :857:30] wire [1:0] _hfma_io_in_bits_req_fmaCmd_T = ex_reg_inst[3:2]; // @[FPU.scala:768:30, :857:30] wire _sfma_io_in_bits_req_fmaCmd_T_1 = ~ex_ctrl_ren3; // @[FPU.scala:800:20, :857:39] wire _sfma_io_in_bits_req_fmaCmd_T_2 = ex_reg_inst[27]; // @[FPU.scala:768:30, :857:67] wire _fpiu_io_in_bits_req_fmaCmd_T_2 = ex_reg_inst[27]; // @[FPU.scala:768:30, :857:67] wire _dfma_io_in_bits_req_fmaCmd_T_2 = ex_reg_inst[27]; // @[FPU.scala:768:30, :857:67] wire _hfma_io_in_bits_req_fmaCmd_T_2 = ex_reg_inst[27]; // @[FPU.scala:768:30, :857:67] wire _sfma_io_in_bits_req_fmaCmd_T_3 = _sfma_io_in_bits_req_fmaCmd_T_1 & _sfma_io_in_bits_req_fmaCmd_T_2; // @[FPU.scala:857:{39,53,67}] assign _sfma_io_in_bits_req_fmaCmd_T_4 = {_sfma_io_in_bits_req_fmaCmd_T[1], _sfma_io_in_bits_req_fmaCmd_T[0] | _sfma_io_in_bits_req_fmaCmd_T_3}; // @[FPU.scala:857:{30,36,53}] assign sfma_io_in_bits_req_fmaCmd = _sfma_io_in_bits_req_fmaCmd_T_4; // @[FPU.scala:848:19, :857:36] wire _fpiu_io_in_valid_T = ex_ctrl_toint | ex_ctrl_div; // @[FPU.scala:800:20, :877:51] wire _fpiu_io_in_valid_T_1 = _fpiu_io_in_valid_T | ex_ctrl_sqrt; // @[FPU.scala:800:20, :877:{51,66}] wire _fpiu_io_in_valid_T_2 = ex_ctrl_fastpipe & ex_ctrl_wflags; // @[FPU.scala:800:20, :877:103] wire _fpiu_io_in_valid_T_3 = _fpiu_io_in_valid_T_1 | _fpiu_io_in_valid_T_2; // @[FPU.scala:877:{66,82,103}] wire _fpiu_io_in_valid_T_4 = req_valid & _fpiu_io_in_valid_T_3; // @[FPU.scala:780:32, :877:{33,82}] wire [1:0] _fpiu_io_in_bits_req_fmaCmd_T_4; // @[FPU.scala:857:36] wire [64:0] _fpiu_io_in_bits_req_in1_T_12; // @[FPU.scala:369:10] wire [64:0] _fpiu_io_in_bits_req_in2_T_12; // @[FPU.scala:369:10] wire [64:0] _fpiu_io_in_bits_req_in3_T_12; // @[FPU.scala:369:10] wire [1:0] fpiu_io_in_bits_req_fmaCmd; // @[FPU.scala:848:19] wire [1:0] fpiu_io_in_bits_req_typ; // @[FPU.scala:848:19] wire [1:0] fpiu_io_in_bits_req_fmt; // @[FPU.scala:848:19] wire [64:0] fpiu_io_in_bits_req_in1; // @[FPU.scala:848:19] wire [64:0] fpiu_io_in_bits_req_in2; // @[FPU.scala:848:19] wire [64:0] fpiu_io_in_bits_req_in3; // @[FPU.scala:848:19] wire [1:0] fpiu_io_in_bits_req_in1_prev_unswizzled_hi = {_fpiu_io_in_bits_req_in1_prev_unswizzled_T, _fpiu_io_in_bits_req_in1_prev_unswizzled_T_1}; // @[FPU.scala:356:31, :357:14, :358:14] wire [32:0] fpiu_io_in_bits_req_in1_prev_unswizzled = {fpiu_io_in_bits_req_in1_prev_unswizzled_hi, _fpiu_io_in_bits_req_in1_prev_unswizzled_T_2}; // @[FPU.scala:356:31, :359:14] wire _fpiu_io_in_bits_req_in1_prev_prev_prev_unswizzled_T = fpiu_io_in_bits_req_in1_prev_unswizzled[15]; // @[FPU.scala:356:31, :357:14] wire _fpiu_io_in_bits_req_in1_prev_prev_prev_unswizzled_T_1 = fpiu_io_in_bits_req_in1_prev_unswizzled[23]; // @[FPU.scala:356:31, :358:14] wire [14:0] _fpiu_io_in_bits_req_in1_prev_prev_prev_unswizzled_T_2 = fpiu_io_in_bits_req_in1_prev_unswizzled[14:0]; // @[FPU.scala:356:31, :359:14] wire [1:0] fpiu_io_in_bits_req_in1_prev_prev_prev_unswizzled_hi = {_fpiu_io_in_bits_req_in1_prev_prev_prev_unswizzled_T, _fpiu_io_in_bits_req_in1_prev_prev_prev_unswizzled_T_1}; // @[FPU.scala:356:31, :357:14, :358:14] wire [16:0] fpiu_io_in_bits_req_in1_prev_prev_prev_unswizzled = {fpiu_io_in_bits_req_in1_prev_prev_prev_unswizzled_hi, _fpiu_io_in_bits_req_in1_prev_prev_prev_unswizzled_T_2}; // @[FPU.scala:356:31, :359:14] wire fpiu_io_in_bits_req_in1_prev_prev_prev_prev_sign = fpiu_io_in_bits_req_in1_prev_prev_prev_unswizzled[16]; // @[FPU.scala:274:17, :356:31] wire [9:0] fpiu_io_in_bits_req_in1_prev_prev_prev_prev_fractIn = fpiu_io_in_bits_req_in1_prev_prev_prev_unswizzled[9:0]; // @[FPU.scala:275:20, :356:31] wire [5:0] fpiu_io_in_bits_req_in1_prev_prev_prev_prev_expIn = fpiu_io_in_bits_req_in1_prev_prev_prev_unswizzled[15:10]; // @[FPU.scala:276:18, :356:31] wire [62:0] _fpiu_io_in_bits_req_in1_prev_prev_prev_prev_fractOut_T = {fpiu_io_in_bits_req_in1_prev_prev_prev_prev_fractIn, 53'h0}; // @[FPU.scala:275:20, :277:28] wire [51:0] fpiu_io_in_bits_req_in1_prev_prev_prev_prev_fractOut = _fpiu_io_in_bits_req_in1_prev_prev_prev_prev_fractOut_T[62:11]; // @[FPU.scala:277:{28,38}] wire [2:0] fpiu_io_in_bits_req_in1_prev_prev_prev_prev_expOut_expCode = fpiu_io_in_bits_req_in1_prev_prev_prev_prev_expIn[5:3]; // @[FPU.scala:276:18, :279:26] wire [12:0] _fpiu_io_in_bits_req_in1_prev_prev_prev_prev_expOut_commonCase_T = {7'h0, fpiu_io_in_bits_req_in1_prev_prev_prev_prev_expIn} + 13'h800; // @[FPU.scala:276:18, :280:31] wire [11:0] _fpiu_io_in_bits_req_in1_prev_prev_prev_prev_expOut_commonCase_T_1 = _fpiu_io_in_bits_req_in1_prev_prev_prev_prev_expOut_commonCase_T[11:0]; // @[FPU.scala:280:31] wire [12:0] _fpiu_io_in_bits_req_in1_prev_prev_prev_prev_expOut_commonCase_T_2 = {1'h0, _fpiu_io_in_bits_req_in1_prev_prev_prev_prev_expOut_commonCase_T_1} - 13'h20; // @[FPU.scala:280:{31,50}] wire [11:0] fpiu_io_in_bits_req_in1_prev_prev_prev_prev_expOut_commonCase = _fpiu_io_in_bits_req_in1_prev_prev_prev_prev_expOut_commonCase_T_2[11:0]; // @[FPU.scala:280:50] wire [11:0] _fpiu_io_in_bits_req_in1_prev_prev_prev_prev_expOut_T_5 = fpiu_io_in_bits_req_in1_prev_prev_prev_prev_expOut_commonCase; // @[FPU.scala:280:50, :281:97] wire _fpiu_io_in_bits_req_in1_prev_prev_prev_prev_expOut_T = fpiu_io_in_bits_req_in1_prev_prev_prev_prev_expOut_expCode == 3'h0; // @[FPU.scala:279:26, :281:19] wire _fpiu_io_in_bits_req_in1_prev_prev_prev_prev_expOut_T_1 = fpiu_io_in_bits_req_in1_prev_prev_prev_prev_expOut_expCode > 3'h5; // @[FPU.scala:279:26, :281:38] wire _fpiu_io_in_bits_req_in1_prev_prev_prev_prev_expOut_T_2 = _fpiu_io_in_bits_req_in1_prev_prev_prev_prev_expOut_T | _fpiu_io_in_bits_req_in1_prev_prev_prev_prev_expOut_T_1; // @[FPU.scala:281:{19,27,38}] wire [8:0] _fpiu_io_in_bits_req_in1_prev_prev_prev_prev_expOut_T_3 = fpiu_io_in_bits_req_in1_prev_prev_prev_prev_expOut_commonCase[8:0]; // @[FPU.scala:280:50, :281:69] wire [11:0] _fpiu_io_in_bits_req_in1_prev_prev_prev_prev_expOut_T_4 = {fpiu_io_in_bits_req_in1_prev_prev_prev_prev_expOut_expCode, _fpiu_io_in_bits_req_in1_prev_prev_prev_prev_expOut_T_3}; // @[FPU.scala:279:26, :281:{49,69}] wire [11:0] fpiu_io_in_bits_req_in1_prev_prev_prev_prev_expOut = _fpiu_io_in_bits_req_in1_prev_prev_prev_prev_expOut_T_2 ? _fpiu_io_in_bits_req_in1_prev_prev_prev_prev_expOut_T_4 : _fpiu_io_in_bits_req_in1_prev_prev_prev_prev_expOut_T_5; // @[FPU.scala:281:{10,27,49,97}] wire [12:0] fpiu_io_in_bits_req_in1_prev_prev_prev_prev_hi = {fpiu_io_in_bits_req_in1_prev_prev_prev_prev_sign, fpiu_io_in_bits_req_in1_prev_prev_prev_prev_expOut}; // @[FPU.scala:274:17, :281:10, :283:8] wire [64:0] fpiu_io_in_bits_req_in1_floats_0 = {fpiu_io_in_bits_req_in1_prev_prev_prev_prev_hi, fpiu_io_in_bits_req_in1_prev_prev_prev_prev_fractOut}; // @[FPU.scala:277:38, :283:8] wire [4:0] _fpiu_io_in_bits_req_in1_prev_prev_prev_isbox_T = fpiu_io_in_bits_req_in1_prev_unswizzled[32:28]; // @[FPU.scala:332:49, :356:31] wire fpiu_io_in_bits_req_in1_prev_prev_prev_isbox = &_fpiu_io_in_bits_req_in1_prev_prev_prev_isbox_T; // @[FPU.scala:332:{49,84}] wire fpiu_io_in_bits_req_in1_prev_prev_0_1 = fpiu_io_in_bits_req_in1_prev_prev_prev_isbox; // @[FPU.scala:332:84, :362:32] wire fpiu_io_in_bits_req_in1_prev_prev_sign = fpiu_io_in_bits_req_in1_prev_unswizzled[32]; // @[FPU.scala:274:17, :356:31] wire [22:0] fpiu_io_in_bits_req_in1_prev_prev_fractIn = fpiu_io_in_bits_req_in1_prev_unswizzled[22:0]; // @[FPU.scala:275:20, :356:31] wire [8:0] fpiu_io_in_bits_req_in1_prev_prev_expIn = fpiu_io_in_bits_req_in1_prev_unswizzled[31:23]; // @[FPU.scala:276:18, :356:31] wire [75:0] _fpiu_io_in_bits_req_in1_prev_prev_fractOut_T = {fpiu_io_in_bits_req_in1_prev_prev_fractIn, 53'h0}; // @[FPU.scala:275:20, :277:28] wire [51:0] fpiu_io_in_bits_req_in1_prev_prev_fractOut = _fpiu_io_in_bits_req_in1_prev_prev_fractOut_T[75:24]; // @[FPU.scala:277:{28,38}] wire [2:0] fpiu_io_in_bits_req_in1_prev_prev_expOut_expCode = fpiu_io_in_bits_req_in1_prev_prev_expIn[8:6]; // @[FPU.scala:276:18, :279:26] wire [12:0] _fpiu_io_in_bits_req_in1_prev_prev_expOut_commonCase_T = {4'h0, fpiu_io_in_bits_req_in1_prev_prev_expIn} + 13'h800; // @[FPU.scala:276:18, :280:31] wire [11:0] _fpiu_io_in_bits_req_in1_prev_prev_expOut_commonCase_T_1 = _fpiu_io_in_bits_req_in1_prev_prev_expOut_commonCase_T[11:0]; // @[FPU.scala:280:31] wire [12:0] _fpiu_io_in_bits_req_in1_prev_prev_expOut_commonCase_T_2 = {1'h0, _fpiu_io_in_bits_req_in1_prev_prev_expOut_commonCase_T_1} - 13'h100; // @[FPU.scala:280:{31,50}] wire [11:0] fpiu_io_in_bits_req_in1_prev_prev_expOut_commonCase = _fpiu_io_in_bits_req_in1_prev_prev_expOut_commonCase_T_2[11:0]; // @[FPU.scala:280:50] wire [11:0] _fpiu_io_in_bits_req_in1_prev_prev_expOut_T_5 = fpiu_io_in_bits_req_in1_prev_prev_expOut_commonCase; // @[FPU.scala:280:50, :281:97] wire _fpiu_io_in_bits_req_in1_prev_prev_expOut_T = fpiu_io_in_bits_req_in1_prev_prev_expOut_expCode == 3'h0; // @[FPU.scala:279:26, :281:19] wire _fpiu_io_in_bits_req_in1_prev_prev_expOut_T_1 = fpiu_io_in_bits_req_in1_prev_prev_expOut_expCode > 3'h5; // @[FPU.scala:279:26, :281:38] wire _fpiu_io_in_bits_req_in1_prev_prev_expOut_T_2 = _fpiu_io_in_bits_req_in1_prev_prev_expOut_T | _fpiu_io_in_bits_req_in1_prev_prev_expOut_T_1; // @[FPU.scala:281:{19,27,38}] wire [8:0] _fpiu_io_in_bits_req_in1_prev_prev_expOut_T_3 = fpiu_io_in_bits_req_in1_prev_prev_expOut_commonCase[8:0]; // @[FPU.scala:280:50, :281:69] wire [11:0] _fpiu_io_in_bits_req_in1_prev_prev_expOut_T_4 = {fpiu_io_in_bits_req_in1_prev_prev_expOut_expCode, _fpiu_io_in_bits_req_in1_prev_prev_expOut_T_3}; // @[FPU.scala:279:26, :281:{49,69}] wire [11:0] fpiu_io_in_bits_req_in1_prev_prev_expOut = _fpiu_io_in_bits_req_in1_prev_prev_expOut_T_2 ? _fpiu_io_in_bits_req_in1_prev_prev_expOut_T_4 : _fpiu_io_in_bits_req_in1_prev_prev_expOut_T_5; // @[FPU.scala:281:{10,27,49,97}] wire [12:0] fpiu_io_in_bits_req_in1_prev_prev_hi = {fpiu_io_in_bits_req_in1_prev_prev_sign, fpiu_io_in_bits_req_in1_prev_prev_expOut}; // @[FPU.scala:274:17, :281:10, :283:8] wire [64:0] fpiu_io_in_bits_req_in1_floats_1 = {fpiu_io_in_bits_req_in1_prev_prev_hi, fpiu_io_in_bits_req_in1_prev_prev_fractOut}; // @[FPU.scala:277:38, :283:8] wire fpiu_io_in_bits_req_in1_prev_isbox = &_fpiu_io_in_bits_req_in1_prev_isbox_T; // @[FPU.scala:332:{49,84}] wire fpiu_io_in_bits_req_in1_oks_1 = fpiu_io_in_bits_req_in1_prev_isbox; // @[FPU.scala:332:84, :362:32] wire fpiu_io_in_bits_req_in1_oks_0 = fpiu_io_in_bits_req_in1_prev_isbox & fpiu_io_in_bits_req_in1_prev_prev_0_1; // @[FPU.scala:332:84, :362:32] wire _GEN_2 = ex_ctrl_typeTagIn == 2'h1; // @[package.scala:39:86] wire _fpiu_io_in_bits_req_in1_T; // @[package.scala:39:86] assign _fpiu_io_in_bits_req_in1_T = _GEN_2; // @[package.scala:39:86] wire _fpiu_io_in_bits_req_in1_T_6; // @[package.scala:39:86] assign _fpiu_io_in_bits_req_in1_T_6 = _GEN_2; // @[package.scala:39:86] wire _fpiu_io_in_bits_req_in2_T; // @[package.scala:39:86] assign _fpiu_io_in_bits_req_in2_T = _GEN_2; // @[package.scala:39:86] wire _fpiu_io_in_bits_req_in2_T_6; // @[package.scala:39:86] assign _fpiu_io_in_bits_req_in2_T_6 = _GEN_2; // @[package.scala:39:86] wire _fpiu_io_in_bits_req_in3_T; // @[package.scala:39:86] assign _fpiu_io_in_bits_req_in3_T = _GEN_2; // @[package.scala:39:86] wire _fpiu_io_in_bits_req_in3_T_6; // @[package.scala:39:86] assign _fpiu_io_in_bits_req_in3_T_6 = _GEN_2; // @[package.scala:39:86] wire _fpiu_io_in_bits_req_in1_T_1 = _fpiu_io_in_bits_req_in1_T ? fpiu_io_in_bits_req_in1_oks_1 : fpiu_io_in_bits_req_in1_oks_0; // @[package.scala:39:{76,86}] wire _GEN_3 = ex_ctrl_typeTagIn == 2'h2; // @[package.scala:39:86] wire _fpiu_io_in_bits_req_in1_T_2; // @[package.scala:39:86] assign _fpiu_io_in_bits_req_in1_T_2 = _GEN_3; // @[package.scala:39:86] wire _fpiu_io_in_bits_req_in1_T_8; // @[package.scala:39:86] assign _fpiu_io_in_bits_req_in1_T_8 = _GEN_3; // @[package.scala:39:86] wire _fpiu_io_in_bits_req_in2_T_2; // @[package.scala:39:86] assign _fpiu_io_in_bits_req_in2_T_2 = _GEN_3; // @[package.scala:39:86] wire _fpiu_io_in_bits_req_in2_T_8; // @[package.scala:39:86] assign _fpiu_io_in_bits_req_in2_T_8 = _GEN_3; // @[package.scala:39:86] wire _fpiu_io_in_bits_req_in3_T_2; // @[package.scala:39:86] assign _fpiu_io_in_bits_req_in3_T_2 = _GEN_3; // @[package.scala:39:86] wire _fpiu_io_in_bits_req_in3_T_8; // @[package.scala:39:86] assign _fpiu_io_in_bits_req_in3_T_8 = _GEN_3; // @[package.scala:39:86] wire _fpiu_io_in_bits_req_in1_T_3 = _fpiu_io_in_bits_req_in1_T_2 | _fpiu_io_in_bits_req_in1_T_1; // @[package.scala:39:{76,86}] wire _fpiu_io_in_bits_req_in1_T_4 = &ex_ctrl_typeTagIn; // @[package.scala:39:86] wire _fpiu_io_in_bits_req_in1_T_5 = _fpiu_io_in_bits_req_in1_T_4 | _fpiu_io_in_bits_req_in1_T_3; // @[package.scala:39:{76,86}] wire [64:0] _fpiu_io_in_bits_req_in1_T_7 = _fpiu_io_in_bits_req_in1_T_6 ? fpiu_io_in_bits_req_in1_floats_1 : fpiu_io_in_bits_req_in1_floats_0; // @[package.scala:39:{76,86}] wire [64:0] _fpiu_io_in_bits_req_in1_T_9 = _fpiu_io_in_bits_req_in1_T_8 ? _regfile_ext_R2_data : _fpiu_io_in_bits_req_in1_T_7; // @[package.scala:39:{76,86}] wire _fpiu_io_in_bits_req_in1_T_10 = &ex_ctrl_typeTagIn; // @[package.scala:39:86] wire [64:0] _fpiu_io_in_bits_req_in1_T_11 = _fpiu_io_in_bits_req_in1_T_10 ? _regfile_ext_R2_data : _fpiu_io_in_bits_req_in1_T_9; // @[package.scala:39:{76,86}] assign _fpiu_io_in_bits_req_in1_T_12 = _fpiu_io_in_bits_req_in1_T_5 ? _fpiu_io_in_bits_req_in1_T_11 : 65'hE008000000000000; // @[package.scala:39:76] assign fpiu_io_in_bits_req_in1 = _fpiu_io_in_bits_req_in1_T_12; // @[FPU.scala:369:10, :848:19] wire [1:0] fpiu_io_in_bits_req_in2_prev_unswizzled_hi = {_fpiu_io_in_bits_req_in2_prev_unswizzled_T, _fpiu_io_in_bits_req_in2_prev_unswizzled_T_1}; // @[FPU.scala:356:31, :357:14, :358:14] wire [32:0] fpiu_io_in_bits_req_in2_prev_unswizzled = {fpiu_io_in_bits_req_in2_prev_unswizzled_hi, _fpiu_io_in_bits_req_in2_prev_unswizzled_T_2}; // @[FPU.scala:356:31, :359:14] wire _fpiu_io_in_bits_req_in2_prev_prev_prev_unswizzled_T = fpiu_io_in_bits_req_in2_prev_unswizzled[15]; // @[FPU.scala:356:31, :357:14] wire _fpiu_io_in_bits_req_in2_prev_prev_prev_unswizzled_T_1 = fpiu_io_in_bits_req_in2_prev_unswizzled[23]; // @[FPU.scala:356:31, :358:14] wire [14:0] _fpiu_io_in_bits_req_in2_prev_prev_prev_unswizzled_T_2 = fpiu_io_in_bits_req_in2_prev_unswizzled[14:0]; // @[FPU.scala:356:31, :359:14] wire [1:0] fpiu_io_in_bits_req_in2_prev_prev_prev_unswizzled_hi = {_fpiu_io_in_bits_req_in2_prev_prev_prev_unswizzled_T, _fpiu_io_in_bits_req_in2_prev_prev_prev_unswizzled_T_1}; // @[FPU.scala:356:31, :357:14, :358:14] wire [16:0] fpiu_io_in_bits_req_in2_prev_prev_prev_unswizzled = {fpiu_io_in_bits_req_in2_prev_prev_prev_unswizzled_hi, _fpiu_io_in_bits_req_in2_prev_prev_prev_unswizzled_T_2}; // @[FPU.scala:356:31, :359:14] wire fpiu_io_in_bits_req_in2_prev_prev_prev_prev_sign = fpiu_io_in_bits_req_in2_prev_prev_prev_unswizzled[16]; // @[FPU.scala:274:17, :356:31] wire [9:0] fpiu_io_in_bits_req_in2_prev_prev_prev_prev_fractIn = fpiu_io_in_bits_req_in2_prev_prev_prev_unswizzled[9:0]; // @[FPU.scala:275:20, :356:31] wire [5:0] fpiu_io_in_bits_req_in2_prev_prev_prev_prev_expIn = fpiu_io_in_bits_req_in2_prev_prev_prev_unswizzled[15:10]; // @[FPU.scala:276:18, :356:31] wire [62:0] _fpiu_io_in_bits_req_in2_prev_prev_prev_prev_fractOut_T = {fpiu_io_in_bits_req_in2_prev_prev_prev_prev_fractIn, 53'h0}; // @[FPU.scala:275:20, :277:28] wire [51:0] fpiu_io_in_bits_req_in2_prev_prev_prev_prev_fractOut = _fpiu_io_in_bits_req_in2_prev_prev_prev_prev_fractOut_T[62:11]; // @[FPU.scala:277:{28,38}] wire [2:0] fpiu_io_in_bits_req_in2_prev_prev_prev_prev_expOut_expCode = fpiu_io_in_bits_req_in2_prev_prev_prev_prev_expIn[5:3]; // @[FPU.scala:276:18, :279:26] wire [12:0] _fpiu_io_in_bits_req_in2_prev_prev_prev_prev_expOut_commonCase_T = {7'h0, fpiu_io_in_bits_req_in2_prev_prev_prev_prev_expIn} + 13'h800; // @[FPU.scala:276:18, :280:31] wire [11:0] _fpiu_io_in_bits_req_in2_prev_prev_prev_prev_expOut_commonCase_T_1 = _fpiu_io_in_bits_req_in2_prev_prev_prev_prev_expOut_commonCase_T[11:0]; // @[FPU.scala:280:31] wire [12:0] _fpiu_io_in_bits_req_in2_prev_prev_prev_prev_expOut_commonCase_T_2 = {1'h0, _fpiu_io_in_bits_req_in2_prev_prev_prev_prev_expOut_commonCase_T_1} - 13'h20; // @[FPU.scala:280:{31,50}] wire [11:0] fpiu_io_in_bits_req_in2_prev_prev_prev_prev_expOut_commonCase = _fpiu_io_in_bits_req_in2_prev_prev_prev_prev_expOut_commonCase_T_2[11:0]; // @[FPU.scala:280:50] wire [11:0] _fpiu_io_in_bits_req_in2_prev_prev_prev_prev_expOut_T_5 = fpiu_io_in_bits_req_in2_prev_prev_prev_prev_expOut_commonCase; // @[FPU.scala:280:50, :281:97] wire _fpiu_io_in_bits_req_in2_prev_prev_prev_prev_expOut_T = fpiu_io_in_bits_req_in2_prev_prev_prev_prev_expOut_expCode == 3'h0; // @[FPU.scala:279:26, :281:19] wire _fpiu_io_in_bits_req_in2_prev_prev_prev_prev_expOut_T_1 = fpiu_io_in_bits_req_in2_prev_prev_prev_prev_expOut_expCode > 3'h5; // @[FPU.scala:279:26, :281:38] wire _fpiu_io_in_bits_req_in2_prev_prev_prev_prev_expOut_T_2 = _fpiu_io_in_bits_req_in2_prev_prev_prev_prev_expOut_T | _fpiu_io_in_bits_req_in2_prev_prev_prev_prev_expOut_T_1; // @[FPU.scala:281:{19,27,38}] wire [8:0] _fpiu_io_in_bits_req_in2_prev_prev_prev_prev_expOut_T_3 = fpiu_io_in_bits_req_in2_prev_prev_prev_prev_expOut_commonCase[8:0]; // @[FPU.scala:280:50, :281:69] wire [11:0] _fpiu_io_in_bits_req_in2_prev_prev_prev_prev_expOut_T_4 = {fpiu_io_in_bits_req_in2_prev_prev_prev_prev_expOut_expCode, _fpiu_io_in_bits_req_in2_prev_prev_prev_prev_expOut_T_3}; // @[FPU.scala:279:26, :281:{49,69}] wire [11:0] fpiu_io_in_bits_req_in2_prev_prev_prev_prev_expOut = _fpiu_io_in_bits_req_in2_prev_prev_prev_prev_expOut_T_2 ? _fpiu_io_in_bits_req_in2_prev_prev_prev_prev_expOut_T_4 : _fpiu_io_in_bits_req_in2_prev_prev_prev_prev_expOut_T_5; // @[FPU.scala:281:{10,27,49,97}] wire [12:0] fpiu_io_in_bits_req_in2_prev_prev_prev_prev_hi = {fpiu_io_in_bits_req_in2_prev_prev_prev_prev_sign, fpiu_io_in_bits_req_in2_prev_prev_prev_prev_expOut}; // @[FPU.scala:274:17, :281:10, :283:8] wire [64:0] fpiu_io_in_bits_req_in2_floats_0 = {fpiu_io_in_bits_req_in2_prev_prev_prev_prev_hi, fpiu_io_in_bits_req_in2_prev_prev_prev_prev_fractOut}; // @[FPU.scala:277:38, :283:8] wire [4:0] _fpiu_io_in_bits_req_in2_prev_prev_prev_isbox_T = fpiu_io_in_bits_req_in2_prev_unswizzled[32:28]; // @[FPU.scala:332:49, :356:31] wire fpiu_io_in_bits_req_in2_prev_prev_prev_isbox = &_fpiu_io_in_bits_req_in2_prev_prev_prev_isbox_T; // @[FPU.scala:332:{49,84}] wire fpiu_io_in_bits_req_in2_prev_prev_0_1 = fpiu_io_in_bits_req_in2_prev_prev_prev_isbox; // @[FPU.scala:332:84, :362:32] wire fpiu_io_in_bits_req_in2_prev_prev_sign = fpiu_io_in_bits_req_in2_prev_unswizzled[32]; // @[FPU.scala:274:17, :356:31] wire [22:0] fpiu_io_in_bits_req_in2_prev_prev_fractIn = fpiu_io_in_bits_req_in2_prev_unswizzled[22:0]; // @[FPU.scala:275:20, :356:31] wire [8:0] fpiu_io_in_bits_req_in2_prev_prev_expIn = fpiu_io_in_bits_req_in2_prev_unswizzled[31:23]; // @[FPU.scala:276:18, :356:31] wire [75:0] _fpiu_io_in_bits_req_in2_prev_prev_fractOut_T = {fpiu_io_in_bits_req_in2_prev_prev_fractIn, 53'h0}; // @[FPU.scala:275:20, :277:28] wire [51:0] fpiu_io_in_bits_req_in2_prev_prev_fractOut = _fpiu_io_in_bits_req_in2_prev_prev_fractOut_T[75:24]; // @[FPU.scala:277:{28,38}] wire [2:0] fpiu_io_in_bits_req_in2_prev_prev_expOut_expCode = fpiu_io_in_bits_req_in2_prev_prev_expIn[8:6]; // @[FPU.scala:276:18, :279:26] wire [12:0] _fpiu_io_in_bits_req_in2_prev_prev_expOut_commonCase_T = {4'h0, fpiu_io_in_bits_req_in2_prev_prev_expIn} + 13'h800; // @[FPU.scala:276:18, :280:31] wire [11:0] _fpiu_io_in_bits_req_in2_prev_prev_expOut_commonCase_T_1 = _fpiu_io_in_bits_req_in2_prev_prev_expOut_commonCase_T[11:0]; // @[FPU.scala:280:31] wire [12:0] _fpiu_io_in_bits_req_in2_prev_prev_expOut_commonCase_T_2 = {1'h0, _fpiu_io_in_bits_req_in2_prev_prev_expOut_commonCase_T_1} - 13'h100; // @[FPU.scala:280:{31,50}] wire [11:0] fpiu_io_in_bits_req_in2_prev_prev_expOut_commonCase = _fpiu_io_in_bits_req_in2_prev_prev_expOut_commonCase_T_2[11:0]; // @[FPU.scala:280:50] wire [11:0] _fpiu_io_in_bits_req_in2_prev_prev_expOut_T_5 = fpiu_io_in_bits_req_in2_prev_prev_expOut_commonCase; // @[FPU.scala:280:50, :281:97] wire _fpiu_io_in_bits_req_in2_prev_prev_expOut_T = fpiu_io_in_bits_req_in2_prev_prev_expOut_expCode == 3'h0; // @[FPU.scala:279:26, :281:19] wire _fpiu_io_in_bits_req_in2_prev_prev_expOut_T_1 = fpiu_io_in_bits_req_in2_prev_prev_expOut_expCode > 3'h5; // @[FPU.scala:279:26, :281:38] wire _fpiu_io_in_bits_req_in2_prev_prev_expOut_T_2 = _fpiu_io_in_bits_req_in2_prev_prev_expOut_T | _fpiu_io_in_bits_req_in2_prev_prev_expOut_T_1; // @[FPU.scala:281:{19,27,38}] wire [8:0] _fpiu_io_in_bits_req_in2_prev_prev_expOut_T_3 = fpiu_io_in_bits_req_in2_prev_prev_expOut_commonCase[8:0]; // @[FPU.scala:280:50, :281:69] wire [11:0] _fpiu_io_in_bits_req_in2_prev_prev_expOut_T_4 = {fpiu_io_in_bits_req_in2_prev_prev_expOut_expCode, _fpiu_io_in_bits_req_in2_prev_prev_expOut_T_3}; // @[FPU.scala:279:26, :281:{49,69}] wire [11:0] fpiu_io_in_bits_req_in2_prev_prev_expOut = _fpiu_io_in_bits_req_in2_prev_prev_expOut_T_2 ? _fpiu_io_in_bits_req_in2_prev_prev_expOut_T_4 : _fpiu_io_in_bits_req_in2_prev_prev_expOut_T_5; // @[FPU.scala:281:{10,27,49,97}] wire [12:0] fpiu_io_in_bits_req_in2_prev_prev_hi = {fpiu_io_in_bits_req_in2_prev_prev_sign, fpiu_io_in_bits_req_in2_prev_prev_expOut}; // @[FPU.scala:274:17, :281:10, :283:8] wire [64:0] fpiu_io_in_bits_req_in2_floats_1 = {fpiu_io_in_bits_req_in2_prev_prev_hi, fpiu_io_in_bits_req_in2_prev_prev_fractOut}; // @[FPU.scala:277:38, :283:8] wire fpiu_io_in_bits_req_in2_prev_isbox = &_fpiu_io_in_bits_req_in2_prev_isbox_T; // @[FPU.scala:332:{49,84}] wire fpiu_io_in_bits_req_in2_oks_1 = fpiu_io_in_bits_req_in2_prev_isbox; // @[FPU.scala:332:84, :362:32] wire fpiu_io_in_bits_req_in2_oks_0 = fpiu_io_in_bits_req_in2_prev_isbox & fpiu_io_in_bits_req_in2_prev_prev_0_1; // @[FPU.scala:332:84, :362:32] wire _fpiu_io_in_bits_req_in2_T_1 = _fpiu_io_in_bits_req_in2_T ? fpiu_io_in_bits_req_in2_oks_1 : fpiu_io_in_bits_req_in2_oks_0; // @[package.scala:39:{76,86}] wire _fpiu_io_in_bits_req_in2_T_3 = _fpiu_io_in_bits_req_in2_T_2 | _fpiu_io_in_bits_req_in2_T_1; // @[package.scala:39:{76,86}] wire _fpiu_io_in_bits_req_in2_T_4 = &ex_ctrl_typeTagIn; // @[package.scala:39:86] wire _fpiu_io_in_bits_req_in2_T_5 = _fpiu_io_in_bits_req_in2_T_4 | _fpiu_io_in_bits_req_in2_T_3; // @[package.scala:39:{76,86}] wire [64:0] _fpiu_io_in_bits_req_in2_T_7 = _fpiu_io_in_bits_req_in2_T_6 ? fpiu_io_in_bits_req_in2_floats_1 : fpiu_io_in_bits_req_in2_floats_0; // @[package.scala:39:{76,86}] wire [64:0] _fpiu_io_in_bits_req_in2_T_9 = _fpiu_io_in_bits_req_in2_T_8 ? _regfile_ext_R1_data : _fpiu_io_in_bits_req_in2_T_7; // @[package.scala:39:{76,86}] wire _fpiu_io_in_bits_req_in2_T_10 = &ex_ctrl_typeTagIn; // @[package.scala:39:86] wire [64:0] _fpiu_io_in_bits_req_in2_T_11 = _fpiu_io_in_bits_req_in2_T_10 ? _regfile_ext_R1_data : _fpiu_io_in_bits_req_in2_T_9; // @[package.scala:39:{76,86}] assign _fpiu_io_in_bits_req_in2_T_12 = _fpiu_io_in_bits_req_in2_T_5 ? _fpiu_io_in_bits_req_in2_T_11 : 65'hE008000000000000; // @[package.scala:39:76] assign fpiu_io_in_bits_req_in2 = _fpiu_io_in_bits_req_in2_T_12; // @[FPU.scala:369:10, :848:19] wire [1:0] fpiu_io_in_bits_req_in3_prev_unswizzled_hi = {_fpiu_io_in_bits_req_in3_prev_unswizzled_T, _fpiu_io_in_bits_req_in3_prev_unswizzled_T_1}; // @[FPU.scala:356:31, :357:14, :358:14] wire [32:0] fpiu_io_in_bits_req_in3_prev_unswizzled = {fpiu_io_in_bits_req_in3_prev_unswizzled_hi, _fpiu_io_in_bits_req_in3_prev_unswizzled_T_2}; // @[FPU.scala:356:31, :359:14] wire _fpiu_io_in_bits_req_in3_prev_prev_prev_unswizzled_T = fpiu_io_in_bits_req_in3_prev_unswizzled[15]; // @[FPU.scala:356:31, :357:14] wire _fpiu_io_in_bits_req_in3_prev_prev_prev_unswizzled_T_1 = fpiu_io_in_bits_req_in3_prev_unswizzled[23]; // @[FPU.scala:356:31, :358:14] wire [14:0] _fpiu_io_in_bits_req_in3_prev_prev_prev_unswizzled_T_2 = fpiu_io_in_bits_req_in3_prev_unswizzled[14:0]; // @[FPU.scala:356:31, :359:14] wire [1:0] fpiu_io_in_bits_req_in3_prev_prev_prev_unswizzled_hi = {_fpiu_io_in_bits_req_in3_prev_prev_prev_unswizzled_T, _fpiu_io_in_bits_req_in3_prev_prev_prev_unswizzled_T_1}; // @[FPU.scala:356:31, :357:14, :358:14] wire [16:0] fpiu_io_in_bits_req_in3_prev_prev_prev_unswizzled = {fpiu_io_in_bits_req_in3_prev_prev_prev_unswizzled_hi, _fpiu_io_in_bits_req_in3_prev_prev_prev_unswizzled_T_2}; // @[FPU.scala:356:31, :359:14] wire fpiu_io_in_bits_req_in3_prev_prev_prev_prev_sign = fpiu_io_in_bits_req_in3_prev_prev_prev_unswizzled[16]; // @[FPU.scala:274:17, :356:31] wire [9:0] fpiu_io_in_bits_req_in3_prev_prev_prev_prev_fractIn = fpiu_io_in_bits_req_in3_prev_prev_prev_unswizzled[9:0]; // @[FPU.scala:275:20, :356:31] wire [5:0] fpiu_io_in_bits_req_in3_prev_prev_prev_prev_expIn = fpiu_io_in_bits_req_in3_prev_prev_prev_unswizzled[15:10]; // @[FPU.scala:276:18, :356:31] wire [62:0] _fpiu_io_in_bits_req_in3_prev_prev_prev_prev_fractOut_T = {fpiu_io_in_bits_req_in3_prev_prev_prev_prev_fractIn, 53'h0}; // @[FPU.scala:275:20, :277:28] wire [51:0] fpiu_io_in_bits_req_in3_prev_prev_prev_prev_fractOut = _fpiu_io_in_bits_req_in3_prev_prev_prev_prev_fractOut_T[62:11]; // @[FPU.scala:277:{28,38}] wire [2:0] fpiu_io_in_bits_req_in3_prev_prev_prev_prev_expOut_expCode = fpiu_io_in_bits_req_in3_prev_prev_prev_prev_expIn[5:3]; // @[FPU.scala:276:18, :279:26] wire [12:0] _fpiu_io_in_bits_req_in3_prev_prev_prev_prev_expOut_commonCase_T = {7'h0, fpiu_io_in_bits_req_in3_prev_prev_prev_prev_expIn} + 13'h800; // @[FPU.scala:276:18, :280:31] wire [11:0] _fpiu_io_in_bits_req_in3_prev_prev_prev_prev_expOut_commonCase_T_1 = _fpiu_io_in_bits_req_in3_prev_prev_prev_prev_expOut_commonCase_T[11:0]; // @[FPU.scala:280:31] wire [12:0] _fpiu_io_in_bits_req_in3_prev_prev_prev_prev_expOut_commonCase_T_2 = {1'h0, _fpiu_io_in_bits_req_in3_prev_prev_prev_prev_expOut_commonCase_T_1} - 13'h20; // @[FPU.scala:280:{31,50}] wire [11:0] fpiu_io_in_bits_req_in3_prev_prev_prev_prev_expOut_commonCase = _fpiu_io_in_bits_req_in3_prev_prev_prev_prev_expOut_commonCase_T_2[11:0]; // @[FPU.scala:280:50] wire [11:0] _fpiu_io_in_bits_req_in3_prev_prev_prev_prev_expOut_T_5 = fpiu_io_in_bits_req_in3_prev_prev_prev_prev_expOut_commonCase; // @[FPU.scala:280:50, :281:97] wire _fpiu_io_in_bits_req_in3_prev_prev_prev_prev_expOut_T = fpiu_io_in_bits_req_in3_prev_prev_prev_prev_expOut_expCode == 3'h0; // @[FPU.scala:279:26, :281:19] wire _fpiu_io_in_bits_req_in3_prev_prev_prev_prev_expOut_T_1 = fpiu_io_in_bits_req_in3_prev_prev_prev_prev_expOut_expCode > 3'h5; // @[FPU.scala:279:26, :281:38] wire _fpiu_io_in_bits_req_in3_prev_prev_prev_prev_expOut_T_2 = _fpiu_io_in_bits_req_in3_prev_prev_prev_prev_expOut_T | _fpiu_io_in_bits_req_in3_prev_prev_prev_prev_expOut_T_1; // @[FPU.scala:281:{19,27,38}] wire [8:0] _fpiu_io_in_bits_req_in3_prev_prev_prev_prev_expOut_T_3 = fpiu_io_in_bits_req_in3_prev_prev_prev_prev_expOut_commonCase[8:0]; // @[FPU.scala:280:50, :281:69] wire [11:0] _fpiu_io_in_bits_req_in3_prev_prev_prev_prev_expOut_T_4 = {fpiu_io_in_bits_req_in3_prev_prev_prev_prev_expOut_expCode, _fpiu_io_in_bits_req_in3_prev_prev_prev_prev_expOut_T_3}; // @[FPU.scala:279:26, :281:{49,69}] wire [11:0] fpiu_io_in_bits_req_in3_prev_prev_prev_prev_expOut = _fpiu_io_in_bits_req_in3_prev_prev_prev_prev_expOut_T_2 ? _fpiu_io_in_bits_req_in3_prev_prev_prev_prev_expOut_T_4 : _fpiu_io_in_bits_req_in3_prev_prev_prev_prev_expOut_T_5; // @[FPU.scala:281:{10,27,49,97}] wire [12:0] fpiu_io_in_bits_req_in3_prev_prev_prev_prev_hi = {fpiu_io_in_bits_req_in3_prev_prev_prev_prev_sign, fpiu_io_in_bits_req_in3_prev_prev_prev_prev_expOut}; // @[FPU.scala:274:17, :281:10, :283:8] wire [64:0] fpiu_io_in_bits_req_in3_floats_0 = {fpiu_io_in_bits_req_in3_prev_prev_prev_prev_hi, fpiu_io_in_bits_req_in3_prev_prev_prev_prev_fractOut}; // @[FPU.scala:277:38, :283:8] wire [4:0] _fpiu_io_in_bits_req_in3_prev_prev_prev_isbox_T = fpiu_io_in_bits_req_in3_prev_unswizzled[32:28]; // @[FPU.scala:332:49, :356:31] wire fpiu_io_in_bits_req_in3_prev_prev_prev_isbox = &_fpiu_io_in_bits_req_in3_prev_prev_prev_isbox_T; // @[FPU.scala:332:{49,84}] wire fpiu_io_in_bits_req_in3_prev_prev_0_1 = fpiu_io_in_bits_req_in3_prev_prev_prev_isbox; // @[FPU.scala:332:84, :362:32] wire fpiu_io_in_bits_req_in3_prev_prev_sign = fpiu_io_in_bits_req_in3_prev_unswizzled[32]; // @[FPU.scala:274:17, :356:31] wire [22:0] fpiu_io_in_bits_req_in3_prev_prev_fractIn = fpiu_io_in_bits_req_in3_prev_unswizzled[22:0]; // @[FPU.scala:275:20, :356:31] wire [8:0] fpiu_io_in_bits_req_in3_prev_prev_expIn = fpiu_io_in_bits_req_in3_prev_unswizzled[31:23]; // @[FPU.scala:276:18, :356:31] wire [75:0] _fpiu_io_in_bits_req_in3_prev_prev_fractOut_T = {fpiu_io_in_bits_req_in3_prev_prev_fractIn, 53'h0}; // @[FPU.scala:275:20, :277:28] wire [51:0] fpiu_io_in_bits_req_in3_prev_prev_fractOut = _fpiu_io_in_bits_req_in3_prev_prev_fractOut_T[75:24]; // @[FPU.scala:277:{28,38}] wire [2:0] fpiu_io_in_bits_req_in3_prev_prev_expOut_expCode = fpiu_io_in_bits_req_in3_prev_prev_expIn[8:6]; // @[FPU.scala:276:18, :279:26] wire [12:0] _fpiu_io_in_bits_req_in3_prev_prev_expOut_commonCase_T = {4'h0, fpiu_io_in_bits_req_in3_prev_prev_expIn} + 13'h800; // @[FPU.scala:276:18, :280:31] wire [11:0] _fpiu_io_in_bits_req_in3_prev_prev_expOut_commonCase_T_1 = _fpiu_io_in_bits_req_in3_prev_prev_expOut_commonCase_T[11:0]; // @[FPU.scala:280:31] wire [12:0] _fpiu_io_in_bits_req_in3_prev_prev_expOut_commonCase_T_2 = {1'h0, _fpiu_io_in_bits_req_in3_prev_prev_expOut_commonCase_T_1} - 13'h100; // @[FPU.scala:280:{31,50}] wire [11:0] fpiu_io_in_bits_req_in3_prev_prev_expOut_commonCase = _fpiu_io_in_bits_req_in3_prev_prev_expOut_commonCase_T_2[11:0]; // @[FPU.scala:280:50] wire [11:0] _fpiu_io_in_bits_req_in3_prev_prev_expOut_T_5 = fpiu_io_in_bits_req_in3_prev_prev_expOut_commonCase; // @[FPU.scala:280:50, :281:97] wire _fpiu_io_in_bits_req_in3_prev_prev_expOut_T = fpiu_io_in_bits_req_in3_prev_prev_expOut_expCode == 3'h0; // @[FPU.scala:279:26, :281:19] wire _fpiu_io_in_bits_req_in3_prev_prev_expOut_T_1 = fpiu_io_in_bits_req_in3_prev_prev_expOut_expCode > 3'h5; // @[FPU.scala:279:26, :281:38] wire _fpiu_io_in_bits_req_in3_prev_prev_expOut_T_2 = _fpiu_io_in_bits_req_in3_prev_prev_expOut_T | _fpiu_io_in_bits_req_in3_prev_prev_expOut_T_1; // @[FPU.scala:281:{19,27,38}] wire [8:0] _fpiu_io_in_bits_req_in3_prev_prev_expOut_T_3 = fpiu_io_in_bits_req_in3_prev_prev_expOut_commonCase[8:0]; // @[FPU.scala:280:50, :281:69] wire [11:0] _fpiu_io_in_bits_req_in3_prev_prev_expOut_T_4 = {fpiu_io_in_bits_req_in3_prev_prev_expOut_expCode, _fpiu_io_in_bits_req_in3_prev_prev_expOut_T_3}; // @[FPU.scala:279:26, :281:{49,69}] wire [11:0] fpiu_io_in_bits_req_in3_prev_prev_expOut = _fpiu_io_in_bits_req_in3_prev_prev_expOut_T_2 ? _fpiu_io_in_bits_req_in3_prev_prev_expOut_T_4 : _fpiu_io_in_bits_req_in3_prev_prev_expOut_T_5; // @[FPU.scala:281:{10,27,49,97}] wire [12:0] fpiu_io_in_bits_req_in3_prev_prev_hi = {fpiu_io_in_bits_req_in3_prev_prev_sign, fpiu_io_in_bits_req_in3_prev_prev_expOut}; // @[FPU.scala:274:17, :281:10, :283:8] wire [64:0] fpiu_io_in_bits_req_in3_floats_1 = {fpiu_io_in_bits_req_in3_prev_prev_hi, fpiu_io_in_bits_req_in3_prev_prev_fractOut}; // @[FPU.scala:277:38, :283:8] wire fpiu_io_in_bits_req_in3_prev_isbox = &_fpiu_io_in_bits_req_in3_prev_isbox_T; // @[FPU.scala:332:{49,84}] wire fpiu_io_in_bits_req_in3_oks_1 = fpiu_io_in_bits_req_in3_prev_isbox; // @[FPU.scala:332:84, :362:32] wire fpiu_io_in_bits_req_in3_oks_0 = fpiu_io_in_bits_req_in3_prev_isbox & fpiu_io_in_bits_req_in3_prev_prev_0_1; // @[FPU.scala:332:84, :362:32] wire _fpiu_io_in_bits_req_in3_T_1 = _fpiu_io_in_bits_req_in3_T ? fpiu_io_in_bits_req_in3_oks_1 : fpiu_io_in_bits_req_in3_oks_0; // @[package.scala:39:{76,86}] wire _fpiu_io_in_bits_req_in3_T_3 = _fpiu_io_in_bits_req_in3_T_2 | _fpiu_io_in_bits_req_in3_T_1; // @[package.scala:39:{76,86}] wire _fpiu_io_in_bits_req_in3_T_4 = &ex_ctrl_typeTagIn; // @[package.scala:39:86] wire _fpiu_io_in_bits_req_in3_T_5 = _fpiu_io_in_bits_req_in3_T_4 | _fpiu_io_in_bits_req_in3_T_3; // @[package.scala:39:{76,86}] wire [64:0] _fpiu_io_in_bits_req_in3_T_7 = _fpiu_io_in_bits_req_in3_T_6 ? fpiu_io_in_bits_req_in3_floats_1 : fpiu_io_in_bits_req_in3_floats_0; // @[package.scala:39:{76,86}] wire [64:0] _fpiu_io_in_bits_req_in3_T_9 = _fpiu_io_in_bits_req_in3_T_8 ? _regfile_ext_R0_data : _fpiu_io_in_bits_req_in3_T_7; // @[package.scala:39:{76,86}] wire _fpiu_io_in_bits_req_in3_T_10 = &ex_ctrl_typeTagIn; // @[package.scala:39:86] wire [64:0] _fpiu_io_in_bits_req_in3_T_11 = _fpiu_io_in_bits_req_in3_T_10 ? _regfile_ext_R0_data : _fpiu_io_in_bits_req_in3_T_9; // @[package.scala:39:{76,86}] assign _fpiu_io_in_bits_req_in3_T_12 = _fpiu_io_in_bits_req_in3_T_5 ? _fpiu_io_in_bits_req_in3_T_11 : 65'hE008000000000000; // @[package.scala:39:76] assign fpiu_io_in_bits_req_in3 = _fpiu_io_in_bits_req_in3_T_12; // @[FPU.scala:369:10, :848:19] assign fpiu_io_in_bits_req_typ = _fpiu_io_in_bits_req_typ_T; // @[FPU.scala:848:19, :855:27] assign fpiu_io_in_bits_req_fmt = _fpiu_io_in_bits_req_fmt_T; // @[FPU.scala:848:19, :856:27] wire _fpiu_io_in_bits_req_fmaCmd_T_1 = ~ex_ctrl_ren3; // @[FPU.scala:800:20, :857:39] wire _fpiu_io_in_bits_req_fmaCmd_T_3 = _fpiu_io_in_bits_req_fmaCmd_T_1 & _fpiu_io_in_bits_req_fmaCmd_T_2; // @[FPU.scala:857:{39,53,67}] assign _fpiu_io_in_bits_req_fmaCmd_T_4 = {_fpiu_io_in_bits_req_fmaCmd_T[1], _fpiu_io_in_bits_req_fmaCmd_T[0] | _fpiu_io_in_bits_req_fmaCmd_T_3}; // @[FPU.scala:857:{30,36,53}] assign fpiu_io_in_bits_req_fmaCmd = _fpiu_io_in_bits_req_fmaCmd_T_4; // @[FPU.scala:848:19, :857:36] wire _ifpu_io_in_valid_T = req_valid & ex_ctrl_fromint; // @[FPU.scala:780:32, :800:20, :887:33] wire [64:0] _ifpu_io_in_bits_in1_T = {1'h0, io_fromint_data_0}; // @[FPU.scala:735:7, :889:29] wire _fpmu_io_in_valid_T = req_valid & ex_ctrl_fastpipe; // @[FPU.scala:780:32, :800:20, :892:33] wire divSqrt_wen; // @[FPU.scala:896:32] wire divSqrt_inFlight; // @[FPU.scala:897:37] reg [4:0] divSqrt_waddr; // @[FPU.scala:898:26] reg divSqrt_cp; // @[FPU.scala:899:23] wire [1:0] divSqrt_typeTag; // @[FPU.scala:900:29] wire [64:0] divSqrt_wdata; // @[FPU.scala:901:27] wire [4:0] divSqrt_flags; // @[FPU.scala:902:27] wire _GEN_4 = ex_ctrl_typeTagOut == 2'h2; // @[FPU.scala:800:20, :914:78] wire _dfma_io_in_valid_T_1; // @[FPU.scala:914:78] assign _dfma_io_in_valid_T_1 = _GEN_4; // @[FPU.scala:914:78] wire _write_port_busy_T_5; // @[FPU.scala:916:78] assign _write_port_busy_T_5 = _GEN_4; // @[FPU.scala:914:78, :916:78] wire _write_port_busy_T_23; // @[FPU.scala:916:78] assign _write_port_busy_T_23 = _GEN_4; // @[FPU.scala:914:78, :916:78] wire _dfma_io_in_valid_T_2 = _dfma_io_in_valid_T & _dfma_io_in_valid_T_1; // @[FPU.scala:914:{41,56,78}] wire [1:0] _dfma_io_in_bits_req_fmaCmd_T_4; // @[FPU.scala:857:36] wire [64:0] _dfma_io_in_bits_req_in1_T_1; // @[FPU.scala:372:26] wire [64:0] _dfma_io_in_bits_req_in2_T_1; // @[FPU.scala:372:26] wire [64:0] _dfma_io_in_bits_req_in3_T_1; // @[FPU.scala:372:26] wire [1:0] dfma_io_in_bits_req_fmaCmd; // @[FPU.scala:848:19] wire [1:0] dfma_io_in_bits_req_typ; // @[FPU.scala:848:19] wire [1:0] dfma_io_in_bits_req_fmt; // @[FPU.scala:848:19] wire [64:0] dfma_io_in_bits_req_in1; // @[FPU.scala:848:19] wire [64:0] dfma_io_in_bits_req_in2; // @[FPU.scala:848:19] wire [64:0] dfma_io_in_bits_req_in3; // @[FPU.scala:848:19] wire [1:0] dfma_io_in_bits_req_in1_prev_unswizzled_hi = {_dfma_io_in_bits_req_in1_prev_unswizzled_T, _dfma_io_in_bits_req_in1_prev_unswizzled_T_1}; // @[FPU.scala:356:31, :357:14, :358:14] wire [32:0] dfma_io_in_bits_req_in1_prev_unswizzled = {dfma_io_in_bits_req_in1_prev_unswizzled_hi, _dfma_io_in_bits_req_in1_prev_unswizzled_T_2}; // @[FPU.scala:356:31, :359:14] wire _dfma_io_in_bits_req_in1_prev_prev_prev_unswizzled_T = dfma_io_in_bits_req_in1_prev_unswizzled[15]; // @[FPU.scala:356:31, :357:14] wire _dfma_io_in_bits_req_in1_prev_prev_prev_unswizzled_T_1 = dfma_io_in_bits_req_in1_prev_unswizzled[23]; // @[FPU.scala:356:31, :358:14] wire [14:0] _dfma_io_in_bits_req_in1_prev_prev_prev_unswizzled_T_2 = dfma_io_in_bits_req_in1_prev_unswizzled[14:0]; // @[FPU.scala:356:31, :359:14] wire [1:0] dfma_io_in_bits_req_in1_prev_prev_prev_unswizzled_hi = {_dfma_io_in_bits_req_in1_prev_prev_prev_unswizzled_T, _dfma_io_in_bits_req_in1_prev_prev_prev_unswizzled_T_1}; // @[FPU.scala:356:31, :357:14, :358:14] wire [16:0] dfma_io_in_bits_req_in1_prev_prev_prev_unswizzled = {dfma_io_in_bits_req_in1_prev_prev_prev_unswizzled_hi, _dfma_io_in_bits_req_in1_prev_prev_prev_unswizzled_T_2}; // @[FPU.scala:356:31, :359:14] wire dfma_io_in_bits_req_in1_prev_prev_prev_prev_sign = dfma_io_in_bits_req_in1_prev_prev_prev_unswizzled[16]; // @[FPU.scala:274:17, :356:31] wire [9:0] dfma_io_in_bits_req_in1_prev_prev_prev_prev_fractIn = dfma_io_in_bits_req_in1_prev_prev_prev_unswizzled[9:0]; // @[FPU.scala:275:20, :356:31] wire [5:0] dfma_io_in_bits_req_in1_prev_prev_prev_prev_expIn = dfma_io_in_bits_req_in1_prev_prev_prev_unswizzled[15:10]; // @[FPU.scala:276:18, :356:31] wire [62:0] _dfma_io_in_bits_req_in1_prev_prev_prev_prev_fractOut_T = {dfma_io_in_bits_req_in1_prev_prev_prev_prev_fractIn, 53'h0}; // @[FPU.scala:275:20, :277:28] wire [51:0] dfma_io_in_bits_req_in1_prev_prev_prev_prev_fractOut = _dfma_io_in_bits_req_in1_prev_prev_prev_prev_fractOut_T[62:11]; // @[FPU.scala:277:{28,38}] wire [2:0] dfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_expCode = dfma_io_in_bits_req_in1_prev_prev_prev_prev_expIn[5:3]; // @[FPU.scala:276:18, :279:26] wire [12:0] _dfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_commonCase_T = {7'h0, dfma_io_in_bits_req_in1_prev_prev_prev_prev_expIn} + 13'h800; // @[FPU.scala:276:18, :280:31] wire [11:0] _dfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_commonCase_T_1 = _dfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_commonCase_T[11:0]; // @[FPU.scala:280:31] wire [12:0] _dfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_commonCase_T_2 = {1'h0, _dfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_commonCase_T_1} - 13'h20; // @[FPU.scala:280:{31,50}] wire [11:0] dfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_commonCase = _dfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_commonCase_T_2[11:0]; // @[FPU.scala:280:50] wire [11:0] _dfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_T_5 = dfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_commonCase; // @[FPU.scala:280:50, :281:97] wire _dfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_T = dfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_expCode == 3'h0; // @[FPU.scala:279:26, :281:19] wire _dfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_T_1 = dfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_expCode > 3'h5; // @[FPU.scala:279:26, :281:38] wire _dfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_T_2 = _dfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_T | _dfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_T_1; // @[FPU.scala:281:{19,27,38}] wire [8:0] _dfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_T_3 = dfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_commonCase[8:0]; // @[FPU.scala:280:50, :281:69] wire [11:0] _dfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_T_4 = {dfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_expCode, _dfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_T_3}; // @[FPU.scala:279:26, :281:{49,69}] wire [11:0] dfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut = _dfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_T_2 ? _dfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_T_4 : _dfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut_T_5; // @[FPU.scala:281:{10,27,49,97}] wire [12:0] dfma_io_in_bits_req_in1_prev_prev_prev_prev_hi = {dfma_io_in_bits_req_in1_prev_prev_prev_prev_sign, dfma_io_in_bits_req_in1_prev_prev_prev_prev_expOut}; // @[FPU.scala:274:17, :281:10, :283:8] wire [64:0] dfma_io_in_bits_req_in1_floats_0 = {dfma_io_in_bits_req_in1_prev_prev_prev_prev_hi, dfma_io_in_bits_req_in1_prev_prev_prev_prev_fractOut}; // @[FPU.scala:277:38, :283:8] wire [4:0] _dfma_io_in_bits_req_in1_prev_prev_prev_isbox_T = dfma_io_in_bits_req_in1_prev_unswizzled[32:28]; // @[FPU.scala:332:49, :356:31] wire dfma_io_in_bits_req_in1_prev_prev_prev_isbox = &_dfma_io_in_bits_req_in1_prev_prev_prev_isbox_T; // @[FPU.scala:332:{49,84}] wire dfma_io_in_bits_req_in1_prev_prev_0_1 = dfma_io_in_bits_req_in1_prev_prev_prev_isbox; // @[FPU.scala:332:84, :362:32] wire dfma_io_in_bits_req_in1_prev_prev_sign = dfma_io_in_bits_req_in1_prev_unswizzled[32]; // @[FPU.scala:274:17, :356:31] wire [22:0] dfma_io_in_bits_req_in1_prev_prev_fractIn = dfma_io_in_bits_req_in1_prev_unswizzled[22:0]; // @[FPU.scala:275:20, :356:31] wire [8:0] dfma_io_in_bits_req_in1_prev_prev_expIn = dfma_io_in_bits_req_in1_prev_unswizzled[31:23]; // @[FPU.scala:276:18, :356:31] wire [75:0] _dfma_io_in_bits_req_in1_prev_prev_fractOut_T = {dfma_io_in_bits_req_in1_prev_prev_fractIn, 53'h0}; // @[FPU.scala:275:20, :277:28] wire [51:0] dfma_io_in_bits_req_in1_prev_prev_fractOut = _dfma_io_in_bits_req_in1_prev_prev_fractOut_T[75:24]; // @[FPU.scala:277:{28,38}] wire [2:0] dfma_io_in_bits_req_in1_prev_prev_expOut_expCode = dfma_io_in_bits_req_in1_prev_prev_expIn[8:6]; // @[FPU.scala:276:18, :279:26] wire [12:0] _dfma_io_in_bits_req_in1_prev_prev_expOut_commonCase_T = {4'h0, dfma_io_in_bits_req_in1_prev_prev_expIn} + 13'h800; // @[FPU.scala:276:18, :280:31] wire [11:0] _dfma_io_in_bits_req_in1_prev_prev_expOut_commonCase_T_1 = _dfma_io_in_bits_req_in1_prev_prev_expOut_commonCase_T[11:0]; // @[FPU.scala:280:31] wire [12:0] _dfma_io_in_bits_req_in1_prev_prev_expOut_commonCase_T_2 = {1'h0, _dfma_io_in_bits_req_in1_prev_prev_expOut_commonCase_T_1} - 13'h100; // @[FPU.scala:280:{31,50}] wire [11:0] dfma_io_in_bits_req_in1_prev_prev_expOut_commonCase = _dfma_io_in_bits_req_in1_prev_prev_expOut_commonCase_T_2[11:0]; // @[FPU.scala:280:50] wire [11:0] _dfma_io_in_bits_req_in1_prev_prev_expOut_T_5 = dfma_io_in_bits_req_in1_prev_prev_expOut_commonCase; // @[FPU.scala:280:50, :281:97] wire _dfma_io_in_bits_req_in1_prev_prev_expOut_T = dfma_io_in_bits_req_in1_prev_prev_expOut_expCode == 3'h0; // @[FPU.scala:279:26, :281:19] wire _dfma_io_in_bits_req_in1_prev_prev_expOut_T_1 = dfma_io_in_bits_req_in1_prev_prev_expOut_expCode > 3'h5; // @[FPU.scala:279:26, :281:38] wire _dfma_io_in_bits_req_in1_prev_prev_expOut_T_2 = _dfma_io_in_bits_req_in1_prev_prev_expOut_T | _dfma_io_in_bits_req_in1_prev_prev_expOut_T_1; // @[FPU.scala:281:{19,27,38}] wire [8:0] _dfma_io_in_bits_req_in1_prev_prev_expOut_T_3 = dfma_io_in_bits_req_in1_prev_prev_expOut_commonCase[8:0]; // @[FPU.scala:280:50, :281:69] wire [11:0] _dfma_io_in_bits_req_in1_prev_prev_expOut_T_4 = {dfma_io_in_bits_req_in1_prev_prev_expOut_expCode, _dfma_io_in_bits_req_in1_prev_prev_expOut_T_3}; // @[FPU.scala:279:26, :281:{49,69}] wire [11:0] dfma_io_in_bits_req_in1_prev_prev_expOut = _dfma_io_in_bits_req_in1_prev_prev_expOut_T_2 ? _dfma_io_in_bits_req_in1_prev_prev_expOut_T_4 : _dfma_io_in_bits_req_in1_prev_prev_expOut_T_5; // @[FPU.scala:281:{10,27,49,97}] wire [12:0] dfma_io_in_bits_req_in1_prev_prev_hi = {dfma_io_in_bits_req_in1_prev_prev_sign, dfma_io_in_bits_req_in1_prev_prev_expOut}; // @[FPU.scala:274:17, :281:10, :283:8] wire [64:0] dfma_io_in_bits_req_in1_floats_1 = {dfma_io_in_bits_req_in1_prev_prev_hi, dfma_io_in_bits_req_in1_prev_prev_fractOut}; // @[FPU.scala:277:38, :283:8] wire dfma_io_in_bits_req_in1_prev_isbox = &_dfma_io_in_bits_req_in1_prev_isbox_T; // @[FPU.scala:332:{49,84}] wire dfma_io_in_bits_req_in1_oks_1 = dfma_io_in_bits_req_in1_prev_isbox; // @[FPU.scala:332:84, :362:32] wire dfma_io_in_bits_req_in1_oks_0 = dfma_io_in_bits_req_in1_prev_isbox & dfma_io_in_bits_req_in1_prev_prev_0_1; // @[FPU.scala:332:84, :362:32] assign dfma_io_in_bits_req_in1 = _dfma_io_in_bits_req_in1_T_1; // @[FPU.scala:372:26, :848:19] wire [1:0] dfma_io_in_bits_req_in2_prev_unswizzled_hi = {_dfma_io_in_bits_req_in2_prev_unswizzled_T, _dfma_io_in_bits_req_in2_prev_unswizzled_T_1}; // @[FPU.scala:356:31, :357:14, :358:14] wire [32:0] dfma_io_in_bits_req_in2_prev_unswizzled = {dfma_io_in_bits_req_in2_prev_unswizzled_hi, _dfma_io_in_bits_req_in2_prev_unswizzled_T_2}; // @[FPU.scala:356:31, :359:14] wire _dfma_io_in_bits_req_in2_prev_prev_prev_unswizzled_T = dfma_io_in_bits_req_in2_prev_unswizzled[15]; // @[FPU.scala:356:31, :357:14] wire _dfma_io_in_bits_req_in2_prev_prev_prev_unswizzled_T_1 = dfma_io_in_bits_req_in2_prev_unswizzled[23]; // @[FPU.scala:356:31, :358:14] wire [14:0] _dfma_io_in_bits_req_in2_prev_prev_prev_unswizzled_T_2 = dfma_io_in_bits_req_in2_prev_unswizzled[14:0]; // @[FPU.scala:356:31, :359:14] wire [1:0] dfma_io_in_bits_req_in2_prev_prev_prev_unswizzled_hi = {_dfma_io_in_bits_req_in2_prev_prev_prev_unswizzled_T, _dfma_io_in_bits_req_in2_prev_prev_prev_unswizzled_T_1}; // @[FPU.scala:356:31, :357:14, :358:14] wire [16:0] dfma_io_in_bits_req_in2_prev_prev_prev_unswizzled = {dfma_io_in_bits_req_in2_prev_prev_prev_unswizzled_hi, _dfma_io_in_bits_req_in2_prev_prev_prev_unswizzled_T_2}; // @[FPU.scala:356:31, :359:14] wire dfma_io_in_bits_req_in2_prev_prev_prev_prev_sign = dfma_io_in_bits_req_in2_prev_prev_prev_unswizzled[16]; // @[FPU.scala:274:17, :356:31] wire [9:0] dfma_io_in_bits_req_in2_prev_prev_prev_prev_fractIn = dfma_io_in_bits_req_in2_prev_prev_prev_unswizzled[9:0]; // @[FPU.scala:275:20, :356:31] wire [5:0] dfma_io_in_bits_req_in2_prev_prev_prev_prev_expIn = dfma_io_in_bits_req_in2_prev_prev_prev_unswizzled[15:10]; // @[FPU.scala:276:18, :356:31] wire [62:0] _dfma_io_in_bits_req_in2_prev_prev_prev_prev_fractOut_T = {dfma_io_in_bits_req_in2_prev_prev_prev_prev_fractIn, 53'h0}; // @[FPU.scala:275:20, :277:28] wire [51:0] dfma_io_in_bits_req_in2_prev_prev_prev_prev_fractOut = _dfma_io_in_bits_req_in2_prev_prev_prev_prev_fractOut_T[62:11]; // @[FPU.scala:277:{28,38}] wire [2:0] dfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_expCode = dfma_io_in_bits_req_in2_prev_prev_prev_prev_expIn[5:3]; // @[FPU.scala:276:18, :279:26] wire [12:0] _dfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_commonCase_T = {7'h0, dfma_io_in_bits_req_in2_prev_prev_prev_prev_expIn} + 13'h800; // @[FPU.scala:276:18, :280:31] wire [11:0] _dfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_commonCase_T_1 = _dfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_commonCase_T[11:0]; // @[FPU.scala:280:31] wire [12:0] _dfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_commonCase_T_2 = {1'h0, _dfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_commonCase_T_1} - 13'h20; // @[FPU.scala:280:{31,50}] wire [11:0] dfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_commonCase = _dfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_commonCase_T_2[11:0]; // @[FPU.scala:280:50] wire [11:0] _dfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_T_5 = dfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_commonCase; // @[FPU.scala:280:50, :281:97] wire _dfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_T = dfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_expCode == 3'h0; // @[FPU.scala:279:26, :281:19] wire _dfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_T_1 = dfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_expCode > 3'h5; // @[FPU.scala:279:26, :281:38] wire _dfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_T_2 = _dfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_T | _dfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_T_1; // @[FPU.scala:281:{19,27,38}] wire [8:0] _dfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_T_3 = dfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_commonCase[8:0]; // @[FPU.scala:280:50, :281:69] wire [11:0] _dfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_T_4 = {dfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_expCode, _dfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_T_3}; // @[FPU.scala:279:26, :281:{49,69}] wire [11:0] dfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut = _dfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_T_2 ? _dfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_T_4 : _dfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut_T_5; // @[FPU.scala:281:{10,27,49,97}] wire [12:0] dfma_io_in_bits_req_in2_prev_prev_prev_prev_hi = {dfma_io_in_bits_req_in2_prev_prev_prev_prev_sign, dfma_io_in_bits_req_in2_prev_prev_prev_prev_expOut}; // @[FPU.scala:274:17, :281:10, :283:8] wire [64:0] dfma_io_in_bits_req_in2_floats_0 = {dfma_io_in_bits_req_in2_prev_prev_prev_prev_hi, dfma_io_in_bits_req_in2_prev_prev_prev_prev_fractOut}; // @[FPU.scala:277:38, :283:8] wire [4:0] _dfma_io_in_bits_req_in2_prev_prev_prev_isbox_T = dfma_io_in_bits_req_in2_prev_unswizzled[32:28]; // @[FPU.scala:332:49, :356:31] wire dfma_io_in_bits_req_in2_prev_prev_prev_isbox = &_dfma_io_in_bits_req_in2_prev_prev_prev_isbox_T; // @[FPU.scala:332:{49,84}] wire dfma_io_in_bits_req_in2_prev_prev_0_1 = dfma_io_in_bits_req_in2_prev_prev_prev_isbox; // @[FPU.scala:332:84, :362:32] wire dfma_io_in_bits_req_in2_prev_prev_sign = dfma_io_in_bits_req_in2_prev_unswizzled[32]; // @[FPU.scala:274:17, :356:31] wire [22:0] dfma_io_in_bits_req_in2_prev_prev_fractIn = dfma_io_in_bits_req_in2_prev_unswizzled[22:0]; // @[FPU.scala:275:20, :356:31] wire [8:0] dfma_io_in_bits_req_in2_prev_prev_expIn = dfma_io_in_bits_req_in2_prev_unswizzled[31:23]; // @[FPU.scala:276:18, :356:31] wire [75:0] _dfma_io_in_bits_req_in2_prev_prev_fractOut_T = {dfma_io_in_bits_req_in2_prev_prev_fractIn, 53'h0}; // @[FPU.scala:275:20, :277:28] wire [51:0] dfma_io_in_bits_req_in2_prev_prev_fractOut = _dfma_io_in_bits_req_in2_prev_prev_fractOut_T[75:24]; // @[FPU.scala:277:{28,38}] wire [2:0] dfma_io_in_bits_req_in2_prev_prev_expOut_expCode = dfma_io_in_bits_req_in2_prev_prev_expIn[8:6]; // @[FPU.scala:276:18, :279:26] wire [12:0] _dfma_io_in_bits_req_in2_prev_prev_expOut_commonCase_T = {4'h0, dfma_io_in_bits_req_in2_prev_prev_expIn} + 13'h800; // @[FPU.scala:276:18, :280:31] wire [11:0] _dfma_io_in_bits_req_in2_prev_prev_expOut_commonCase_T_1 = _dfma_io_in_bits_req_in2_prev_prev_expOut_commonCase_T[11:0]; // @[FPU.scala:280:31] wire [12:0] _dfma_io_in_bits_req_in2_prev_prev_expOut_commonCase_T_2 = {1'h0, _dfma_io_in_bits_req_in2_prev_prev_expOut_commonCase_T_1} - 13'h100; // @[FPU.scala:280:{31,50}] wire [11:0] dfma_io_in_bits_req_in2_prev_prev_expOut_commonCase = _dfma_io_in_bits_req_in2_prev_prev_expOut_commonCase_T_2[11:0]; // @[FPU.scala:280:50] wire [11:0] _dfma_io_in_bits_req_in2_prev_prev_expOut_T_5 = dfma_io_in_bits_req_in2_prev_prev_expOut_commonCase; // @[FPU.scala:280:50, :281:97] wire _dfma_io_in_bits_req_in2_prev_prev_expOut_T = dfma_io_in_bits_req_in2_prev_prev_expOut_expCode == 3'h0; // @[FPU.scala:279:26, :281:19] wire _dfma_io_in_bits_req_in2_prev_prev_expOut_T_1 = dfma_io_in_bits_req_in2_prev_prev_expOut_expCode > 3'h5; // @[FPU.scala:279:26, :281:38] wire _dfma_io_in_bits_req_in2_prev_prev_expOut_T_2 = _dfma_io_in_bits_req_in2_prev_prev_expOut_T | _dfma_io_in_bits_req_in2_prev_prev_expOut_T_1; // @[FPU.scala:281:{19,27,38}] wire [8:0] _dfma_io_in_bits_req_in2_prev_prev_expOut_T_3 = dfma_io_in_bits_req_in2_prev_prev_expOut_commonCase[8:0]; // @[FPU.scala:280:50, :281:69] wire [11:0] _dfma_io_in_bits_req_in2_prev_prev_expOut_T_4 = {dfma_io_in_bits_req_in2_prev_prev_expOut_expCode, _dfma_io_in_bits_req_in2_prev_prev_expOut_T_3}; // @[FPU.scala:279:26, :281:{49,69}] wire [11:0] dfma_io_in_bits_req_in2_prev_prev_expOut = _dfma_io_in_bits_req_in2_prev_prev_expOut_T_2 ? _dfma_io_in_bits_req_in2_prev_prev_expOut_T_4 : _dfma_io_in_bits_req_in2_prev_prev_expOut_T_5; // @[FPU.scala:281:{10,27,49,97}] wire [12:0] dfma_io_in_bits_req_in2_prev_prev_hi = {dfma_io_in_bits_req_in2_prev_prev_sign, dfma_io_in_bits_req_in2_prev_prev_expOut}; // @[FPU.scala:274:17, :281:10, :283:8] wire [64:0] dfma_io_in_bits_req_in2_floats_1 = {dfma_io_in_bits_req_in2_prev_prev_hi, dfma_io_in_bits_req_in2_prev_prev_fractOut}; // @[FPU.scala:277:38, :283:8] wire dfma_io_in_bits_req_in2_prev_isbox = &_dfma_io_in_bits_req_in2_prev_isbox_T; // @[FPU.scala:332:{49,84}] wire dfma_io_in_bits_req_in2_oks_1 = dfma_io_in_bits_req_in2_prev_isbox; // @[FPU.scala:332:84, :362:32] wire dfma_io_in_bits_req_in2_oks_0 = dfma_io_in_bits_req_in2_prev_isbox & dfma_io_in_bits_req_in2_prev_prev_0_1; // @[FPU.scala:332:84, :362:32] assign dfma_io_in_bits_req_in2 = _dfma_io_in_bits_req_in2_T_1; // @[FPU.scala:372:26, :848:19] wire [1:0] dfma_io_in_bits_req_in3_prev_unswizzled_hi = {_dfma_io_in_bits_req_in3_prev_unswizzled_T, _dfma_io_in_bits_req_in3_prev_unswizzled_T_1}; // @[FPU.scala:356:31, :357:14, :358:14] wire [32:0] dfma_io_in_bits_req_in3_prev_unswizzled = {dfma_io_in_bits_req_in3_prev_unswizzled_hi, _dfma_io_in_bits_req_in3_prev_unswizzled_T_2}; // @[FPU.scala:356:31, :359:14] wire _dfma_io_in_bits_req_in3_prev_prev_prev_unswizzled_T = dfma_io_in_bits_req_in3_prev_unswizzled[15]; // @[FPU.scala:356:31, :357:14] wire _dfma_io_in_bits_req_in3_prev_prev_prev_unswizzled_T_1 = dfma_io_in_bits_req_in3_prev_unswizzled[23]; // @[FPU.scala:356:31, :358:14] wire [14:0] _dfma_io_in_bits_req_in3_prev_prev_prev_unswizzled_T_2 = dfma_io_in_bits_req_in3_prev_unswizzled[14:0]; // @[FPU.scala:356:31, :359:14] wire [1:0] dfma_io_in_bits_req_in3_prev_prev_prev_unswizzled_hi = {_dfma_io_in_bits_req_in3_prev_prev_prev_unswizzled_T, _dfma_io_in_bits_req_in3_prev_prev_prev_unswizzled_T_1}; // @[FPU.scala:356:31, :357:14, :358:14] wire [16:0] dfma_io_in_bits_req_in3_prev_prev_prev_unswizzled = {dfma_io_in_bits_req_in3_prev_prev_prev_unswizzled_hi, _dfma_io_in_bits_req_in3_prev_prev_prev_unswizzled_T_2}; // @[FPU.scala:356:31, :359:14] wire dfma_io_in_bits_req_in3_prev_prev_prev_prev_sign = dfma_io_in_bits_req_in3_prev_prev_prev_unswizzled[16]; // @[FPU.scala:274:17, :356:31] wire [9:0] dfma_io_in_bits_req_in3_prev_prev_prev_prev_fractIn = dfma_io_in_bits_req_in3_prev_prev_prev_unswizzled[9:0]; // @[FPU.scala:275:20, :356:31] wire [5:0] dfma_io_in_bits_req_in3_prev_prev_prev_prev_expIn = dfma_io_in_bits_req_in3_prev_prev_prev_unswizzled[15:10]; // @[FPU.scala:276:18, :356:31] wire [62:0] _dfma_io_in_bits_req_in3_prev_prev_prev_prev_fractOut_T = {dfma_io_in_bits_req_in3_prev_prev_prev_prev_fractIn, 53'h0}; // @[FPU.scala:275:20, :277:28] wire [51:0] dfma_io_in_bits_req_in3_prev_prev_prev_prev_fractOut = _dfma_io_in_bits_req_in3_prev_prev_prev_prev_fractOut_T[62:11]; // @[FPU.scala:277:{28,38}] wire [2:0] dfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_expCode = dfma_io_in_bits_req_in3_prev_prev_prev_prev_expIn[5:3]; // @[FPU.scala:276:18, :279:26] wire [12:0] _dfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_commonCase_T = {7'h0, dfma_io_in_bits_req_in3_prev_prev_prev_prev_expIn} + 13'h800; // @[FPU.scala:276:18, :280:31] wire [11:0] _dfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_commonCase_T_1 = _dfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_commonCase_T[11:0]; // @[FPU.scala:280:31] wire [12:0] _dfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_commonCase_T_2 = {1'h0, _dfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_commonCase_T_1} - 13'h20; // @[FPU.scala:280:{31,50}] wire [11:0] dfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_commonCase = _dfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_commonCase_T_2[11:0]; // @[FPU.scala:280:50] wire [11:0] _dfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_T_5 = dfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_commonCase; // @[FPU.scala:280:50, :281:97] wire _dfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_T = dfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_expCode == 3'h0; // @[FPU.scala:279:26, :281:19] wire _dfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_T_1 = dfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_expCode > 3'h5; // @[FPU.scala:279:26, :281:38] wire _dfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_T_2 = _dfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_T | _dfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_T_1; // @[FPU.scala:281:{19,27,38}] wire [8:0] _dfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_T_3 = dfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_commonCase[8:0]; // @[FPU.scala:280:50, :281:69] wire [11:0] _dfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_T_4 = {dfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_expCode, _dfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_T_3}; // @[FPU.scala:279:26, :281:{49,69}] wire [11:0] dfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut = _dfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_T_2 ? _dfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_T_4 : _dfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut_T_5; // @[FPU.scala:281:{10,27,49,97}] wire [12:0] dfma_io_in_bits_req_in3_prev_prev_prev_prev_hi = {dfma_io_in_bits_req_in3_prev_prev_prev_prev_sign, dfma_io_in_bits_req_in3_prev_prev_prev_prev_expOut}; // @[FPU.scala:274:17, :281:10, :283:8] wire [64:0] dfma_io_in_bits_req_in3_floats_0 = {dfma_io_in_bits_req_in3_prev_prev_prev_prev_hi, dfma_io_in_bits_req_in3_prev_prev_prev_prev_fractOut}; // @[FPU.scala:277:38, :283:8] wire [4:0] _dfma_io_in_bits_req_in3_prev_prev_prev_isbox_T = dfma_io_in_bits_req_in3_prev_unswizzled[32:28]; // @[FPU.scala:332:49, :356:31] wire dfma_io_in_bits_req_in3_prev_prev_prev_isbox = &_dfma_io_in_bits_req_in3_prev_prev_prev_isbox_T; // @[FPU.scala:332:{49,84}] wire dfma_io_in_bits_req_in3_prev_prev_0_1 = dfma_io_in_bits_req_in3_prev_prev_prev_isbox; // @[FPU.scala:332:84, :362:32] wire dfma_io_in_bits_req_in3_prev_prev_sign = dfma_io_in_bits_req_in3_prev_unswizzled[32]; // @[FPU.scala:274:17, :356:31] wire [22:0] dfma_io_in_bits_req_in3_prev_prev_fractIn = dfma_io_in_bits_req_in3_prev_unswizzled[22:0]; // @[FPU.scala:275:20, :356:31] wire [8:0] dfma_io_in_bits_req_in3_prev_prev_expIn = dfma_io_in_bits_req_in3_prev_unswizzled[31:23]; // @[FPU.scala:276:18, :356:31] wire [75:0] _dfma_io_in_bits_req_in3_prev_prev_fractOut_T = {dfma_io_in_bits_req_in3_prev_prev_fractIn, 53'h0}; // @[FPU.scala:275:20, :277:28] wire [51:0] dfma_io_in_bits_req_in3_prev_prev_fractOut = _dfma_io_in_bits_req_in3_prev_prev_fractOut_T[75:24]; // @[FPU.scala:277:{28,38}] wire [2:0] dfma_io_in_bits_req_in3_prev_prev_expOut_expCode = dfma_io_in_bits_req_in3_prev_prev_expIn[8:6]; // @[FPU.scala:276:18, :279:26] wire [12:0] _dfma_io_in_bits_req_in3_prev_prev_expOut_commonCase_T = {4'h0, dfma_io_in_bits_req_in3_prev_prev_expIn} + 13'h800; // @[FPU.scala:276:18, :280:31] wire [11:0] _dfma_io_in_bits_req_in3_prev_prev_expOut_commonCase_T_1 = _dfma_io_in_bits_req_in3_prev_prev_expOut_commonCase_T[11:0]; // @[FPU.scala:280:31] wire [12:0] _dfma_io_in_bits_req_in3_prev_prev_expOut_commonCase_T_2 = {1'h0, _dfma_io_in_bits_req_in3_prev_prev_expOut_commonCase_T_1} - 13'h100; // @[FPU.scala:280:{31,50}] wire [11:0] dfma_io_in_bits_req_in3_prev_prev_expOut_commonCase = _dfma_io_in_bits_req_in3_prev_prev_expOut_commonCase_T_2[11:0]; // @[FPU.scala:280:50] wire [11:0] _dfma_io_in_bits_req_in3_prev_prev_expOut_T_5 = dfma_io_in_bits_req_in3_prev_prev_expOut_commonCase; // @[FPU.scala:280:50, :281:97] wire _dfma_io_in_bits_req_in3_prev_prev_expOut_T = dfma_io_in_bits_req_in3_prev_prev_expOut_expCode == 3'h0; // @[FPU.scala:279:26, :281:19] wire _dfma_io_in_bits_req_in3_prev_prev_expOut_T_1 = dfma_io_in_bits_req_in3_prev_prev_expOut_expCode > 3'h5; // @[FPU.scala:279:26, :281:38] wire _dfma_io_in_bits_req_in3_prev_prev_expOut_T_2 = _dfma_io_in_bits_req_in3_prev_prev_expOut_T | _dfma_io_in_bits_req_in3_prev_prev_expOut_T_1; // @[FPU.scala:281:{19,27,38}] wire [8:0] _dfma_io_in_bits_req_in3_prev_prev_expOut_T_3 = dfma_io_in_bits_req_in3_prev_prev_expOut_commonCase[8:0]; // @[FPU.scala:280:50, :281:69] wire [11:0] _dfma_io_in_bits_req_in3_prev_prev_expOut_T_4 = {dfma_io_in_bits_req_in3_prev_prev_expOut_expCode, _dfma_io_in_bits_req_in3_prev_prev_expOut_T_3}; // @[FPU.scala:279:26, :281:{49,69}] wire [11:0] dfma_io_in_bits_req_in3_prev_prev_expOut = _dfma_io_in_bits_req_in3_prev_prev_expOut_T_2 ? _dfma_io_in_bits_req_in3_prev_prev_expOut_T_4 : _dfma_io_in_bits_req_in3_prev_prev_expOut_T_5; // @[FPU.scala:281:{10,27,49,97}] wire [12:0] dfma_io_in_bits_req_in3_prev_prev_hi = {dfma_io_in_bits_req_in3_prev_prev_sign, dfma_io_in_bits_req_in3_prev_prev_expOut}; // @[FPU.scala:274:17, :281:10, :283:8] wire [64:0] dfma_io_in_bits_req_in3_floats_1 = {dfma_io_in_bits_req_in3_prev_prev_hi, dfma_io_in_bits_req_in3_prev_prev_fractOut}; // @[FPU.scala:277:38, :283:8] wire dfma_io_in_bits_req_in3_prev_isbox = &_dfma_io_in_bits_req_in3_prev_isbox_T; // @[FPU.scala:332:{49,84}] wire dfma_io_in_bits_req_in3_oks_1 = dfma_io_in_bits_req_in3_prev_isbox; // @[FPU.scala:332:84, :362:32] wire dfma_io_in_bits_req_in3_oks_0 = dfma_io_in_bits_req_in3_prev_isbox & dfma_io_in_bits_req_in3_prev_prev_0_1; // @[FPU.scala:332:84, :362:32] assign dfma_io_in_bits_req_in3 = _dfma_io_in_bits_req_in3_T_1; // @[FPU.scala:372:26, :848:19] assign dfma_io_in_bits_req_typ = _dfma_io_in_bits_req_typ_T; // @[FPU.scala:848:19, :855:27] assign dfma_io_in_bits_req_fmt = _dfma_io_in_bits_req_fmt_T; // @[FPU.scala:848:19, :856:27] wire _dfma_io_in_bits_req_fmaCmd_T_1 = ~ex_ctrl_ren3; // @[FPU.scala:800:20, :857:39] wire _dfma_io_in_bits_req_fmaCmd_T_3 = _dfma_io_in_bits_req_fmaCmd_T_1 & _dfma_io_in_bits_req_fmaCmd_T_2; // @[FPU.scala:857:{39,53,67}] assign _dfma_io_in_bits_req_fmaCmd_T_4 = {_dfma_io_in_bits_req_fmaCmd_T[1], _dfma_io_in_bits_req_fmaCmd_T[0] | _dfma_io_in_bits_req_fmaCmd_T_3}; // @[FPU.scala:857:{30,36,53}] assign dfma_io_in_bits_req_fmaCmd = _dfma_io_in_bits_req_fmaCmd_T_4; // @[FPU.scala:848:19, :857:36] wire _GEN_5 = ex_ctrl_typeTagOut == 2'h0; // @[FPU.scala:800:20, :920:78] wire _hfma_io_in_valid_T_1; // @[FPU.scala:920:78] assign _hfma_io_in_valid_T_1 = _GEN_5; // @[FPU.scala:920:78] wire _write_port_busy_T_8; // @[FPU.scala:922:78] assign _write_port_busy_T_8 = _GEN_5; // @[FPU.scala:920:78, :922:78] wire _write_port_busy_T_26; // @[FPU.scala:922:78] assign _write_port_busy_T_26 = _GEN_5; // @[FPU.scala:920:78, :922:78] wire _hfma_io_in_valid_T_2 = _hfma_io_in_valid_T & _hfma_io_in_valid_T_1; // @[FPU.scala:920:{41,56,78}] wire [1:0] _hfma_io_in_bits_req_fmaCmd_T_4; // @[FPU.scala:857:36] wire [1:0] hfma_io_in_bits_req_fmaCmd; // @[FPU.scala:848:19] wire [1:0] hfma_io_in_bits_req_typ; // @[FPU.scala:848:19] wire [1:0] hfma_io_in_bits_req_fmt; // @[FPU.scala:848:19] wire [64:0] hfma_io_in_bits_req_in1; // @[FPU.scala:848:19] wire [64:0] hfma_io_in_bits_req_in2; // @[FPU.scala:848:19] wire [64:0] hfma_io_in_bits_req_in3; // @[FPU.scala:848:19] wire [1:0] hfma_io_in_bits_req_in1_prev_unswizzled_hi = {_hfma_io_in_bits_req_in1_prev_unswizzled_T, _hfma_io_in_bits_req_in1_prev_unswizzled_T_1}; // @[FPU.scala:356:31, :357:14, :358:14] wire [32:0] hfma_io_in_bits_req_in1_prev_unswizzled = {hfma_io_in_bits_req_in1_prev_unswizzled_hi, _hfma_io_in_bits_req_in1_prev_unswizzled_T_2}; // @[FPU.scala:356:31, :359:14] wire _hfma_io_in_bits_req_in1_prev_prev_prev_unswizzled_T = hfma_io_in_bits_req_in1_prev_unswizzled[15]; // @[FPU.scala:356:31, :357:14] wire _hfma_io_in_bits_req_in1_prev_prev_prev_unswizzled_T_1 = hfma_io_in_bits_req_in1_prev_unswizzled[23]; // @[FPU.scala:356:31, :358:14] wire [14:0] _hfma_io_in_bits_req_in1_prev_prev_prev_unswizzled_T_2 = hfma_io_in_bits_req_in1_prev_unswizzled[14:0]; // @[FPU.scala:356:31, :359:14] wire [1:0] hfma_io_in_bits_req_in1_prev_prev_prev_unswizzled_hi = {_hfma_io_in_bits_req_in1_prev_prev_prev_unswizzled_T, _hfma_io_in_bits_req_in1_prev_prev_prev_unswizzled_T_1}; // @[FPU.scala:356:31, :357:14, :358:14] wire [16:0] hfma_io_in_bits_req_in1_floats_0 = {hfma_io_in_bits_req_in1_prev_prev_prev_unswizzled_hi, _hfma_io_in_bits_req_in1_prev_prev_prev_unswizzled_T_2}; // @[FPU.scala:356:31, :359:14] wire [4:0] _hfma_io_in_bits_req_in1_prev_prev_prev_isbox_T = hfma_io_in_bits_req_in1_prev_unswizzled[32:28]; // @[FPU.scala:332:49, :356:31] wire hfma_io_in_bits_req_in1_prev_prev_prev_isbox = &_hfma_io_in_bits_req_in1_prev_prev_prev_isbox_T; // @[FPU.scala:332:{49,84}] wire hfma_io_in_bits_req_in1_prev_prev_0_1 = hfma_io_in_bits_req_in1_prev_prev_prev_isbox; // @[FPU.scala:332:84, :362:32] wire hfma_io_in_bits_req_in1_prev_prev_sign = hfma_io_in_bits_req_in1_prev_unswizzled[32]; // @[FPU.scala:274:17, :356:31] wire [22:0] hfma_io_in_bits_req_in1_prev_prev_fractIn = hfma_io_in_bits_req_in1_prev_unswizzled[22:0]; // @[FPU.scala:275:20, :356:31] wire [8:0] hfma_io_in_bits_req_in1_prev_prev_expIn = hfma_io_in_bits_req_in1_prev_unswizzled[31:23]; // @[FPU.scala:276:18, :356:31] wire [33:0] _hfma_io_in_bits_req_in1_prev_prev_fractOut_T = {hfma_io_in_bits_req_in1_prev_prev_fractIn, 11'h0}; // @[FPU.scala:275:20, :277:28] wire [9:0] hfma_io_in_bits_req_in1_prev_prev_fractOut = _hfma_io_in_bits_req_in1_prev_prev_fractOut_T[33:24]; // @[FPU.scala:277:{28,38}] wire [2:0] hfma_io_in_bits_req_in1_prev_prev_expOut_expCode = hfma_io_in_bits_req_in1_prev_prev_expIn[8:6]; // @[FPU.scala:276:18, :279:26] wire [9:0] _hfma_io_in_bits_req_in1_prev_prev_expOut_commonCase_T = {1'h0, hfma_io_in_bits_req_in1_prev_prev_expIn} + 10'h20; // @[FPU.scala:276:18, :280:31] wire [8:0] _hfma_io_in_bits_req_in1_prev_prev_expOut_commonCase_T_1 = _hfma_io_in_bits_req_in1_prev_prev_expOut_commonCase_T[8:0]; // @[FPU.scala:280:31] wire [9:0] _hfma_io_in_bits_req_in1_prev_prev_expOut_commonCase_T_2 = {1'h0, _hfma_io_in_bits_req_in1_prev_prev_expOut_commonCase_T_1} - 10'h100; // @[FPU.scala:280:{31,50}] wire [8:0] hfma_io_in_bits_req_in1_prev_prev_expOut_commonCase = _hfma_io_in_bits_req_in1_prev_prev_expOut_commonCase_T_2[8:0]; // @[FPU.scala:280:50] wire _hfma_io_in_bits_req_in1_prev_prev_expOut_T = hfma_io_in_bits_req_in1_prev_prev_expOut_expCode == 3'h0; // @[FPU.scala:279:26, :281:19] wire _hfma_io_in_bits_req_in1_prev_prev_expOut_T_1 = hfma_io_in_bits_req_in1_prev_prev_expOut_expCode > 3'h5; // @[FPU.scala:279:26, :281:38] wire _hfma_io_in_bits_req_in1_prev_prev_expOut_T_2 = _hfma_io_in_bits_req_in1_prev_prev_expOut_T | _hfma_io_in_bits_req_in1_prev_prev_expOut_T_1; // @[FPU.scala:281:{19,27,38}] wire [2:0] _hfma_io_in_bits_req_in1_prev_prev_expOut_T_3 = hfma_io_in_bits_req_in1_prev_prev_expOut_commonCase[2:0]; // @[FPU.scala:280:50, :281:69] wire [5:0] _hfma_io_in_bits_req_in1_prev_prev_expOut_T_4 = {hfma_io_in_bits_req_in1_prev_prev_expOut_expCode, _hfma_io_in_bits_req_in1_prev_prev_expOut_T_3}; // @[FPU.scala:279:26, :281:{49,69}] wire [5:0] _hfma_io_in_bits_req_in1_prev_prev_expOut_T_5 = hfma_io_in_bits_req_in1_prev_prev_expOut_commonCase[5:0]; // @[FPU.scala:280:50, :281:97] wire [5:0] hfma_io_in_bits_req_in1_prev_prev_expOut = _hfma_io_in_bits_req_in1_prev_prev_expOut_T_2 ? _hfma_io_in_bits_req_in1_prev_prev_expOut_T_4 : _hfma_io_in_bits_req_in1_prev_prev_expOut_T_5; // @[FPU.scala:281:{10,27,49,97}] wire [6:0] hfma_io_in_bits_req_in1_prev_prev_hi = {hfma_io_in_bits_req_in1_prev_prev_sign, hfma_io_in_bits_req_in1_prev_prev_expOut}; // @[FPU.scala:274:17, :281:10, :283:8] wire [16:0] hfma_io_in_bits_req_in1_floats_1 = {hfma_io_in_bits_req_in1_prev_prev_hi, hfma_io_in_bits_req_in1_prev_prev_fractOut}; // @[FPU.scala:277:38, :283:8] wire hfma_io_in_bits_req_in1_prev_isbox = &_hfma_io_in_bits_req_in1_prev_isbox_T; // @[FPU.scala:332:{49,84}] wire hfma_io_in_bits_req_in1_oks_1 = hfma_io_in_bits_req_in1_prev_isbox; // @[FPU.scala:332:84, :362:32] wire hfma_io_in_bits_req_in1_oks_0 = hfma_io_in_bits_req_in1_prev_isbox & hfma_io_in_bits_req_in1_prev_prev_0_1; // @[FPU.scala:332:84, :362:32] wire [62:0] _hfma_io_in_bits_req_in1_fractOut_T = {hfma_io_in_bits_req_in1_fractIn, 11'h0}; // @[FPU.scala:275:20, :277:28] wire [9:0] hfma_io_in_bits_req_in1_fractOut = _hfma_io_in_bits_req_in1_fractOut_T[62:53]; // @[FPU.scala:277:{28,38}] wire [2:0] hfma_io_in_bits_req_in1_expOut_expCode = hfma_io_in_bits_req_in1_expIn[11:9]; // @[FPU.scala:276:18, :279:26] wire [12:0] _hfma_io_in_bits_req_in1_expOut_commonCase_T = {1'h0, hfma_io_in_bits_req_in1_expIn} + 13'h20; // @[FPU.scala:276:18, :280:31] wire [11:0] _hfma_io_in_bits_req_in1_expOut_commonCase_T_1 = _hfma_io_in_bits_req_in1_expOut_commonCase_T[11:0]; // @[FPU.scala:280:31] wire [12:0] _hfma_io_in_bits_req_in1_expOut_commonCase_T_2 = {1'h0, _hfma_io_in_bits_req_in1_expOut_commonCase_T_1} - 13'h800; // @[FPU.scala:280:{31,50}] wire [11:0] hfma_io_in_bits_req_in1_expOut_commonCase = _hfma_io_in_bits_req_in1_expOut_commonCase_T_2[11:0]; // @[FPU.scala:280:50] wire _hfma_io_in_bits_req_in1_expOut_T = hfma_io_in_bits_req_in1_expOut_expCode == 3'h0; // @[FPU.scala:279:26, :281:19] wire _hfma_io_in_bits_req_in1_expOut_T_1 = hfma_io_in_bits_req_in1_expOut_expCode > 3'h5; // @[FPU.scala:279:26, :281:38] wire _hfma_io_in_bits_req_in1_expOut_T_2 = _hfma_io_in_bits_req_in1_expOut_T | _hfma_io_in_bits_req_in1_expOut_T_1; // @[FPU.scala:281:{19,27,38}] wire [2:0] _hfma_io_in_bits_req_in1_expOut_T_3 = hfma_io_in_bits_req_in1_expOut_commonCase[2:0]; // @[FPU.scala:280:50, :281:69] wire [5:0] _hfma_io_in_bits_req_in1_expOut_T_4 = {hfma_io_in_bits_req_in1_expOut_expCode, _hfma_io_in_bits_req_in1_expOut_T_3}; // @[FPU.scala:279:26, :281:{49,69}] wire [5:0] _hfma_io_in_bits_req_in1_expOut_T_5 = hfma_io_in_bits_req_in1_expOut_commonCase[5:0]; // @[FPU.scala:280:50, :281:97] wire [5:0] hfma_io_in_bits_req_in1_expOut = _hfma_io_in_bits_req_in1_expOut_T_2 ? _hfma_io_in_bits_req_in1_expOut_T_4 : _hfma_io_in_bits_req_in1_expOut_T_5; // @[FPU.scala:281:{10,27,49,97}] wire [6:0] hfma_io_in_bits_req_in1_hi = {hfma_io_in_bits_req_in1_sign, hfma_io_in_bits_req_in1_expOut}; // @[FPU.scala:274:17, :281:10, :283:8] wire [16:0] hfma_io_in_bits_req_in1_floats_2 = {hfma_io_in_bits_req_in1_hi, hfma_io_in_bits_req_in1_fractOut}; // @[FPU.scala:277:38, :283:8] wire [16:0] _hfma_io_in_bits_req_in1_T = hfma_io_in_bits_req_in1_oks_0 ? 17'h0 : 17'hE200; // @[FPU.scala:362:32, :372:31] wire [16:0] _hfma_io_in_bits_req_in1_T_1 = hfma_io_in_bits_req_in1_floats_0 | _hfma_io_in_bits_req_in1_T; // @[FPU.scala:356:31, :372:{26,31}] assign hfma_io_in_bits_req_in1 = {48'h0, _hfma_io_in_bits_req_in1_T_1}; // @[FPU.scala:372:26, :848:19, :852:13] wire [1:0] hfma_io_in_bits_req_in2_prev_unswizzled_hi = {_hfma_io_in_bits_req_in2_prev_unswizzled_T, _hfma_io_in_bits_req_in2_prev_unswizzled_T_1}; // @[FPU.scala:356:31, :357:14, :358:14] wire [32:0] hfma_io_in_bits_req_in2_prev_unswizzled = {hfma_io_in_bits_req_in2_prev_unswizzled_hi, _hfma_io_in_bits_req_in2_prev_unswizzled_T_2}; // @[FPU.scala:356:31, :359:14] wire _hfma_io_in_bits_req_in2_prev_prev_prev_unswizzled_T = hfma_io_in_bits_req_in2_prev_unswizzled[15]; // @[FPU.scala:356:31, :357:14] wire _hfma_io_in_bits_req_in2_prev_prev_prev_unswizzled_T_1 = hfma_io_in_bits_req_in2_prev_unswizzled[23]; // @[FPU.scala:356:31, :358:14] wire [14:0] _hfma_io_in_bits_req_in2_prev_prev_prev_unswizzled_T_2 = hfma_io_in_bits_req_in2_prev_unswizzled[14:0]; // @[FPU.scala:356:31, :359:14] wire [1:0] hfma_io_in_bits_req_in2_prev_prev_prev_unswizzled_hi = {_hfma_io_in_bits_req_in2_prev_prev_prev_unswizzled_T, _hfma_io_in_bits_req_in2_prev_prev_prev_unswizzled_T_1}; // @[FPU.scala:356:31, :357:14, :358:14] wire [16:0] hfma_io_in_bits_req_in2_floats_0 = {hfma_io_in_bits_req_in2_prev_prev_prev_unswizzled_hi, _hfma_io_in_bits_req_in2_prev_prev_prev_unswizzled_T_2}; // @[FPU.scala:356:31, :359:14] wire [4:0] _hfma_io_in_bits_req_in2_prev_prev_prev_isbox_T = hfma_io_in_bits_req_in2_prev_unswizzled[32:28]; // @[FPU.scala:332:49, :356:31] wire hfma_io_in_bits_req_in2_prev_prev_prev_isbox = &_hfma_io_in_bits_req_in2_prev_prev_prev_isbox_T; // @[FPU.scala:332:{49,84}] wire hfma_io_in_bits_req_in2_prev_prev_0_1 = hfma_io_in_bits_req_in2_prev_prev_prev_isbox; // @[FPU.scala:332:84, :362:32] wire hfma_io_in_bits_req_in2_prev_prev_sign = hfma_io_in_bits_req_in2_prev_unswizzled[32]; // @[FPU.scala:274:17, :356:31] wire [22:0] hfma_io_in_bits_req_in2_prev_prev_fractIn = hfma_io_in_bits_req_in2_prev_unswizzled[22:0]; // @[FPU.scala:275:20, :356:31] wire [8:0] hfma_io_in_bits_req_in2_prev_prev_expIn = hfma_io_in_bits_req_in2_prev_unswizzled[31:23]; // @[FPU.scala:276:18, :356:31] wire [33:0] _hfma_io_in_bits_req_in2_prev_prev_fractOut_T = {hfma_io_in_bits_req_in2_prev_prev_fractIn, 11'h0}; // @[FPU.scala:275:20, :277:28] wire [9:0] hfma_io_in_bits_req_in2_prev_prev_fractOut = _hfma_io_in_bits_req_in2_prev_prev_fractOut_T[33:24]; // @[FPU.scala:277:{28,38}] wire [2:0] hfma_io_in_bits_req_in2_prev_prev_expOut_expCode = hfma_io_in_bits_req_in2_prev_prev_expIn[8:6]; // @[FPU.scala:276:18, :279:26] wire [9:0] _hfma_io_in_bits_req_in2_prev_prev_expOut_commonCase_T = {1'h0, hfma_io_in_bits_req_in2_prev_prev_expIn} + 10'h20; // @[FPU.scala:276:18, :280:31] wire [8:0] _hfma_io_in_bits_req_in2_prev_prev_expOut_commonCase_T_1 = _hfma_io_in_bits_req_in2_prev_prev_expOut_commonCase_T[8:0]; // @[FPU.scala:280:31] wire [9:0] _hfma_io_in_bits_req_in2_prev_prev_expOut_commonCase_T_2 = {1'h0, _hfma_io_in_bits_req_in2_prev_prev_expOut_commonCase_T_1} - 10'h100; // @[FPU.scala:280:{31,50}] wire [8:0] hfma_io_in_bits_req_in2_prev_prev_expOut_commonCase = _hfma_io_in_bits_req_in2_prev_prev_expOut_commonCase_T_2[8:0]; // @[FPU.scala:280:50] wire _hfma_io_in_bits_req_in2_prev_prev_expOut_T = hfma_io_in_bits_req_in2_prev_prev_expOut_expCode == 3'h0; // @[FPU.scala:279:26, :281:19] wire _hfma_io_in_bits_req_in2_prev_prev_expOut_T_1 = hfma_io_in_bits_req_in2_prev_prev_expOut_expCode > 3'h5; // @[FPU.scala:279:26, :281:38] wire _hfma_io_in_bits_req_in2_prev_prev_expOut_T_2 = _hfma_io_in_bits_req_in2_prev_prev_expOut_T | _hfma_io_in_bits_req_in2_prev_prev_expOut_T_1; // @[FPU.scala:281:{19,27,38}] wire [2:0] _hfma_io_in_bits_req_in2_prev_prev_expOut_T_3 = hfma_io_in_bits_req_in2_prev_prev_expOut_commonCase[2:0]; // @[FPU.scala:280:50, :281:69] wire [5:0] _hfma_io_in_bits_req_in2_prev_prev_expOut_T_4 = {hfma_io_in_bits_req_in2_prev_prev_expOut_expCode, _hfma_io_in_bits_req_in2_prev_prev_expOut_T_3}; // @[FPU.scala:279:26, :281:{49,69}] wire [5:0] _hfma_io_in_bits_req_in2_prev_prev_expOut_T_5 = hfma_io_in_bits_req_in2_prev_prev_expOut_commonCase[5:0]; // @[FPU.scala:280:50, :281:97] wire [5:0] hfma_io_in_bits_req_in2_prev_prev_expOut = _hfma_io_in_bits_req_in2_prev_prev_expOut_T_2 ? _hfma_io_in_bits_req_in2_prev_prev_expOut_T_4 : _hfma_io_in_bits_req_in2_prev_prev_expOut_T_5; // @[FPU.scala:281:{10,27,49,97}] wire [6:0] hfma_io_in_bits_req_in2_prev_prev_hi = {hfma_io_in_bits_req_in2_prev_prev_sign, hfma_io_in_bits_req_in2_prev_prev_expOut}; // @[FPU.scala:274:17, :281:10, :283:8] wire [16:0] hfma_io_in_bits_req_in2_floats_1 = {hfma_io_in_bits_req_in2_prev_prev_hi, hfma_io_in_bits_req_in2_prev_prev_fractOut}; // @[FPU.scala:277:38, :283:8] wire hfma_io_in_bits_req_in2_prev_isbox = &_hfma_io_in_bits_req_in2_prev_isbox_T; // @[FPU.scala:332:{49,84}] wire hfma_io_in_bits_req_in2_oks_1 = hfma_io_in_bits_req_in2_prev_isbox; // @[FPU.scala:332:84, :362:32] wire hfma_io_in_bits_req_in2_oks_0 = hfma_io_in_bits_req_in2_prev_isbox & hfma_io_in_bits_req_in2_prev_prev_0_1; // @[FPU.scala:332:84, :362:32] wire [62:0] _hfma_io_in_bits_req_in2_fractOut_T = {hfma_io_in_bits_req_in2_fractIn, 11'h0}; // @[FPU.scala:275:20, :277:28] wire [9:0] hfma_io_in_bits_req_in2_fractOut = _hfma_io_in_bits_req_in2_fractOut_T[62:53]; // @[FPU.scala:277:{28,38}] wire [2:0] hfma_io_in_bits_req_in2_expOut_expCode = hfma_io_in_bits_req_in2_expIn[11:9]; // @[FPU.scala:276:18, :279:26] wire [12:0] _hfma_io_in_bits_req_in2_expOut_commonCase_T = {1'h0, hfma_io_in_bits_req_in2_expIn} + 13'h20; // @[FPU.scala:276:18, :280:31] wire [11:0] _hfma_io_in_bits_req_in2_expOut_commonCase_T_1 = _hfma_io_in_bits_req_in2_expOut_commonCase_T[11:0]; // @[FPU.scala:280:31] wire [12:0] _hfma_io_in_bits_req_in2_expOut_commonCase_T_2 = {1'h0, _hfma_io_in_bits_req_in2_expOut_commonCase_T_1} - 13'h800; // @[FPU.scala:280:{31,50}] wire [11:0] hfma_io_in_bits_req_in2_expOut_commonCase = _hfma_io_in_bits_req_in2_expOut_commonCase_T_2[11:0]; // @[FPU.scala:280:50] wire _hfma_io_in_bits_req_in2_expOut_T = hfma_io_in_bits_req_in2_expOut_expCode == 3'h0; // @[FPU.scala:279:26, :281:19] wire _hfma_io_in_bits_req_in2_expOut_T_1 = hfma_io_in_bits_req_in2_expOut_expCode > 3'h5; // @[FPU.scala:279:26, :281:38] wire _hfma_io_in_bits_req_in2_expOut_T_2 = _hfma_io_in_bits_req_in2_expOut_T | _hfma_io_in_bits_req_in2_expOut_T_1; // @[FPU.scala:281:{19,27,38}] wire [2:0] _hfma_io_in_bits_req_in2_expOut_T_3 = hfma_io_in_bits_req_in2_expOut_commonCase[2:0]; // @[FPU.scala:280:50, :281:69] wire [5:0] _hfma_io_in_bits_req_in2_expOut_T_4 = {hfma_io_in_bits_req_in2_expOut_expCode, _hfma_io_in_bits_req_in2_expOut_T_3}; // @[FPU.scala:279:26, :281:{49,69}] wire [5:0] _hfma_io_in_bits_req_in2_expOut_T_5 = hfma_io_in_bits_req_in2_expOut_commonCase[5:0]; // @[FPU.scala:280:50, :281:97] wire [5:0] hfma_io_in_bits_req_in2_expOut = _hfma_io_in_bits_req_in2_expOut_T_2 ? _hfma_io_in_bits_req_in2_expOut_T_4 : _hfma_io_in_bits_req_in2_expOut_T_5; // @[FPU.scala:281:{10,27,49,97}] wire [6:0] hfma_io_in_bits_req_in2_hi = {hfma_io_in_bits_req_in2_sign, hfma_io_in_bits_req_in2_expOut}; // @[FPU.scala:274:17, :281:10, :283:8] wire [16:0] hfma_io_in_bits_req_in2_floats_2 = {hfma_io_in_bits_req_in2_hi, hfma_io_in_bits_req_in2_fractOut}; // @[FPU.scala:277:38, :283:8] wire [16:0] _hfma_io_in_bits_req_in2_T = hfma_io_in_bits_req_in2_oks_0 ? 17'h0 : 17'hE200; // @[FPU.scala:362:32, :372:31] wire [16:0] _hfma_io_in_bits_req_in2_T_1 = hfma_io_in_bits_req_in2_floats_0 | _hfma_io_in_bits_req_in2_T; // @[FPU.scala:356:31, :372:{26,31}] assign hfma_io_in_bits_req_in2 = {48'h0, _hfma_io_in_bits_req_in2_T_1}; // @[FPU.scala:372:26, :848:19, :852:13, :853:13] wire [1:0] hfma_io_in_bits_req_in3_prev_unswizzled_hi = {_hfma_io_in_bits_req_in3_prev_unswizzled_T, _hfma_io_in_bits_req_in3_prev_unswizzled_T_1}; // @[FPU.scala:356:31, :357:14, :358:14] wire [32:0] hfma_io_in_bits_req_in3_prev_unswizzled = {hfma_io_in_bits_req_in3_prev_unswizzled_hi, _hfma_io_in_bits_req_in3_prev_unswizzled_T_2}; // @[FPU.scala:356:31, :359:14] wire _hfma_io_in_bits_req_in3_prev_prev_prev_unswizzled_T = hfma_io_in_bits_req_in3_prev_unswizzled[15]; // @[FPU.scala:356:31, :357:14] wire _hfma_io_in_bits_req_in3_prev_prev_prev_unswizzled_T_1 = hfma_io_in_bits_req_in3_prev_unswizzled[23]; // @[FPU.scala:356:31, :358:14] wire [14:0] _hfma_io_in_bits_req_in3_prev_prev_prev_unswizzled_T_2 = hfma_io_in_bits_req_in3_prev_unswizzled[14:0]; // @[FPU.scala:356:31, :359:14] wire [1:0] hfma_io_in_bits_req_in3_prev_prev_prev_unswizzled_hi = {_hfma_io_in_bits_req_in3_prev_prev_prev_unswizzled_T, _hfma_io_in_bits_req_in3_prev_prev_prev_unswizzled_T_1}; // @[FPU.scala:356:31, :357:14, :358:14] wire [16:0] hfma_io_in_bits_req_in3_floats_0 = {hfma_io_in_bits_req_in3_prev_prev_prev_unswizzled_hi, _hfma_io_in_bits_req_in3_prev_prev_prev_unswizzled_T_2}; // @[FPU.scala:356:31, :359:14] wire [4:0] _hfma_io_in_bits_req_in3_prev_prev_prev_isbox_T = hfma_io_in_bits_req_in3_prev_unswizzled[32:28]; // @[FPU.scala:332:49, :356:31] wire hfma_io_in_bits_req_in3_prev_prev_prev_isbox = &_hfma_io_in_bits_req_in3_prev_prev_prev_isbox_T; // @[FPU.scala:332:{49,84}] wire hfma_io_in_bits_req_in3_prev_prev_0_1 = hfma_io_in_bits_req_in3_prev_prev_prev_isbox; // @[FPU.scala:332:84, :362:32] wire hfma_io_in_bits_req_in3_prev_prev_sign = hfma_io_in_bits_req_in3_prev_unswizzled[32]; // @[FPU.scala:274:17, :356:31] wire [22:0] hfma_io_in_bits_req_in3_prev_prev_fractIn = hfma_io_in_bits_req_in3_prev_unswizzled[22:0]; // @[FPU.scala:275:20, :356:31] wire [8:0] hfma_io_in_bits_req_in3_prev_prev_expIn = hfma_io_in_bits_req_in3_prev_unswizzled[31:23]; // @[FPU.scala:276:18, :356:31] wire [33:0] _hfma_io_in_bits_req_in3_prev_prev_fractOut_T = {hfma_io_in_bits_req_in3_prev_prev_fractIn, 11'h0}; // @[FPU.scala:275:20, :277:28] wire [9:0] hfma_io_in_bits_req_in3_prev_prev_fractOut = _hfma_io_in_bits_req_in3_prev_prev_fractOut_T[33:24]; // @[FPU.scala:277:{28,38}] wire [2:0] hfma_io_in_bits_req_in3_prev_prev_expOut_expCode = hfma_io_in_bits_req_in3_prev_prev_expIn[8:6]; // @[FPU.scala:276:18, :279:26] wire [9:0] _hfma_io_in_bits_req_in3_prev_prev_expOut_commonCase_T = {1'h0, hfma_io_in_bits_req_in3_prev_prev_expIn} + 10'h20; // @[FPU.scala:276:18, :280:31] wire [8:0] _hfma_io_in_bits_req_in3_prev_prev_expOut_commonCase_T_1 = _hfma_io_in_bits_req_in3_prev_prev_expOut_commonCase_T[8:0]; // @[FPU.scala:280:31] wire [9:0] _hfma_io_in_bits_req_in3_prev_prev_expOut_commonCase_T_2 = {1'h0, _hfma_io_in_bits_req_in3_prev_prev_expOut_commonCase_T_1} - 10'h100; // @[FPU.scala:280:{31,50}] wire [8:0] hfma_io_in_bits_req_in3_prev_prev_expOut_commonCase = _hfma_io_in_bits_req_in3_prev_prev_expOut_commonCase_T_2[8:0]; // @[FPU.scala:280:50] wire _hfma_io_in_bits_req_in3_prev_prev_expOut_T = hfma_io_in_bits_req_in3_prev_prev_expOut_expCode == 3'h0; // @[FPU.scala:279:26, :281:19] wire _hfma_io_in_bits_req_in3_prev_prev_expOut_T_1 = hfma_io_in_bits_req_in3_prev_prev_expOut_expCode > 3'h5; // @[FPU.scala:279:26, :281:38] wire _hfma_io_in_bits_req_in3_prev_prev_expOut_T_2 = _hfma_io_in_bits_req_in3_prev_prev_expOut_T | _hfma_io_in_bits_req_in3_prev_prev_expOut_T_1; // @[FPU.scala:281:{19,27,38}] wire [2:0] _hfma_io_in_bits_req_in3_prev_prev_expOut_T_3 = hfma_io_in_bits_req_in3_prev_prev_expOut_commonCase[2:0]; // @[FPU.scala:280:50, :281:69] wire [5:0] _hfma_io_in_bits_req_in3_prev_prev_expOut_T_4 = {hfma_io_in_bits_req_in3_prev_prev_expOut_expCode, _hfma_io_in_bits_req_in3_prev_prev_expOut_T_3}; // @[FPU.scala:279:26, :281:{49,69}] wire [5:0] _hfma_io_in_bits_req_in3_prev_prev_expOut_T_5 = hfma_io_in_bits_req_in3_prev_prev_expOut_commonCase[5:0]; // @[FPU.scala:280:50, :281:97] wire [5:0] hfma_io_in_bits_req_in3_prev_prev_expOut = _hfma_io_in_bits_req_in3_prev_prev_expOut_T_2 ? _hfma_io_in_bits_req_in3_prev_prev_expOut_T_4 : _hfma_io_in_bits_req_in3_prev_prev_expOut_T_5; // @[FPU.scala:281:{10,27,49,97}] wire [6:0] hfma_io_in_bits_req_in3_prev_prev_hi = {hfma_io_in_bits_req_in3_prev_prev_sign, hfma_io_in_bits_req_in3_prev_prev_expOut}; // @[FPU.scala:274:17, :281:10, :283:8] wire [16:0] hfma_io_in_bits_req_in3_floats_1 = {hfma_io_in_bits_req_in3_prev_prev_hi, hfma_io_in_bits_req_in3_prev_prev_fractOut}; // @[FPU.scala:277:38, :283:8] wire hfma_io_in_bits_req_in3_prev_isbox = &_hfma_io_in_bits_req_in3_prev_isbox_T; // @[FPU.scala:332:{49,84}] wire hfma_io_in_bits_req_in3_oks_1 = hfma_io_in_bits_req_in3_prev_isbox; // @[FPU.scala:332:84, :362:32] wire hfma_io_in_bits_req_in3_oks_0 = hfma_io_in_bits_req_in3_prev_isbox & hfma_io_in_bits_req_in3_prev_prev_0_1; // @[FPU.scala:332:84, :362:32] wire [62:0] _hfma_io_in_bits_req_in3_fractOut_T = {hfma_io_in_bits_req_in3_fractIn, 11'h0}; // @[FPU.scala:275:20, :277:28] wire [9:0] hfma_io_in_bits_req_in3_fractOut = _hfma_io_in_bits_req_in3_fractOut_T[62:53]; // @[FPU.scala:277:{28,38}] wire [2:0] hfma_io_in_bits_req_in3_expOut_expCode = hfma_io_in_bits_req_in3_expIn[11:9]; // @[FPU.scala:276:18, :279:26] wire [12:0] _hfma_io_in_bits_req_in3_expOut_commonCase_T = {1'h0, hfma_io_in_bits_req_in3_expIn} + 13'h20; // @[FPU.scala:276:18, :280:31] wire [11:0] _hfma_io_in_bits_req_in3_expOut_commonCase_T_1 = _hfma_io_in_bits_req_in3_expOut_commonCase_T[11:0]; // @[FPU.scala:280:31] wire [12:0] _hfma_io_in_bits_req_in3_expOut_commonCase_T_2 = {1'h0, _hfma_io_in_bits_req_in3_expOut_commonCase_T_1} - 13'h800; // @[FPU.scala:280:{31,50}] wire [11:0] hfma_io_in_bits_req_in3_expOut_commonCase = _hfma_io_in_bits_req_in3_expOut_commonCase_T_2[11:0]; // @[FPU.scala:280:50] wire _hfma_io_in_bits_req_in3_expOut_T = hfma_io_in_bits_req_in3_expOut_expCode == 3'h0; // @[FPU.scala:279:26, :281:19] wire _hfma_io_in_bits_req_in3_expOut_T_1 = hfma_io_in_bits_req_in3_expOut_expCode > 3'h5; // @[FPU.scala:279:26, :281:38] wire _hfma_io_in_bits_req_in3_expOut_T_2 = _hfma_io_in_bits_req_in3_expOut_T | _hfma_io_in_bits_req_in3_expOut_T_1; // @[FPU.scala:281:{19,27,38}] wire [2:0] _hfma_io_in_bits_req_in3_expOut_T_3 = hfma_io_in_bits_req_in3_expOut_commonCase[2:0]; // @[FPU.scala:280:50, :281:69] wire [5:0] _hfma_io_in_bits_req_in3_expOut_T_4 = {hfma_io_in_bits_req_in3_expOut_expCode, _hfma_io_in_bits_req_in3_expOut_T_3}; // @[FPU.scala:279:26, :281:{49,69}] wire [5:0] _hfma_io_in_bits_req_in3_expOut_T_5 = hfma_io_in_bits_req_in3_expOut_commonCase[5:0]; // @[FPU.scala:280:50, :281:97] wire [5:0] hfma_io_in_bits_req_in3_expOut = _hfma_io_in_bits_req_in3_expOut_T_2 ? _hfma_io_in_bits_req_in3_expOut_T_4 : _hfma_io_in_bits_req_in3_expOut_T_5; // @[FPU.scala:281:{10,27,49,97}] wire [6:0] hfma_io_in_bits_req_in3_hi = {hfma_io_in_bits_req_in3_sign, hfma_io_in_bits_req_in3_expOut}; // @[FPU.scala:274:17, :281:10, :283:8] wire [16:0] hfma_io_in_bits_req_in3_floats_2 = {hfma_io_in_bits_req_in3_hi, hfma_io_in_bits_req_in3_fractOut}; // @[FPU.scala:277:38, :283:8] wire [16:0] _hfma_io_in_bits_req_in3_T = hfma_io_in_bits_req_in3_oks_0 ? 17'h0 : 17'hE200; // @[FPU.scala:362:32, :372:31] wire [16:0] _hfma_io_in_bits_req_in3_T_1 = hfma_io_in_bits_req_in3_floats_0 | _hfma_io_in_bits_req_in3_T; // @[FPU.scala:356:31, :372:{26,31}] assign hfma_io_in_bits_req_in3 = {48'h0, _hfma_io_in_bits_req_in3_T_1}; // @[FPU.scala:372:26, :848:19, :852:13, :854:13] assign hfma_io_in_bits_req_typ = _hfma_io_in_bits_req_typ_T; // @[FPU.scala:848:19, :855:27] assign hfma_io_in_bits_req_fmt = _hfma_io_in_bits_req_fmt_T; // @[FPU.scala:848:19, :856:27] wire _hfma_io_in_bits_req_fmaCmd_T_1 = ~ex_ctrl_ren3; // @[FPU.scala:800:20, :857:39] wire _hfma_io_in_bits_req_fmaCmd_T_3 = _hfma_io_in_bits_req_fmaCmd_T_1 & _hfma_io_in_bits_req_fmaCmd_T_2; // @[FPU.scala:857:{39,53,67}] assign _hfma_io_in_bits_req_fmaCmd_T_4 = {_hfma_io_in_bits_req_fmaCmd_T[1], _hfma_io_in_bits_req_fmaCmd_T[0] | _hfma_io_in_bits_req_fmaCmd_T_3}; // @[FPU.scala:857:{30,36,53}] assign hfma_io_in_bits_req_fmaCmd = _hfma_io_in_bits_req_fmaCmd_T_4; // @[FPU.scala:848:19, :857:36] wire _GEN_6 = mem_ctrl_typeTagOut == 2'h1; // @[FPU.scala:801:27, :911:72] wire _memLatencyMask_T_2; // @[FPU.scala:911:72] assign _memLatencyMask_T_2 = _GEN_6; // @[FPU.scala:911:72] wire _wbInfo_0_pipeid_T_2; // @[FPU.scala:911:72] assign _wbInfo_0_pipeid_T_2 = _GEN_6; // @[FPU.scala:911:72] wire _wbInfo_1_pipeid_T_2; // @[FPU.scala:911:72] assign _wbInfo_1_pipeid_T_2 = _GEN_6; // @[FPU.scala:911:72] wire _wbInfo_2_pipeid_T_2; // @[FPU.scala:911:72] assign _wbInfo_2_pipeid_T_2 = _GEN_6; // @[FPU.scala:911:72] wire _divSqrt_io_inValid_T_2; // @[FPU.scala:1028:52] assign _divSqrt_io_inValid_T_2 = _GEN_6; // @[FPU.scala:911:72, :1028:52] wire _memLatencyMask_T_3 = mem_ctrl_fma & _memLatencyMask_T_2; // @[FPU.scala:801:27, :911:{56,72}] wire [1:0] _memLatencyMask_T_4 = {_memLatencyMask_T_3, 1'h0}; // @[FPU.scala:911:56, :926:23] wire _GEN_7 = mem_ctrl_typeTagOut == 2'h2; // @[FPU.scala:801:27, :916:78] wire _memLatencyMask_T_5; // @[FPU.scala:916:78] assign _memLatencyMask_T_5 = _GEN_7; // @[FPU.scala:916:78] wire _wbInfo_0_pipeid_T_5; // @[FPU.scala:916:78] assign _wbInfo_0_pipeid_T_5 = _GEN_7; // @[FPU.scala:916:78] wire _wbInfo_1_pipeid_T_5; // @[FPU.scala:916:78] assign _wbInfo_1_pipeid_T_5 = _GEN_7; // @[FPU.scala:916:78] wire _wbInfo_2_pipeid_T_5; // @[FPU.scala:916:78] assign _wbInfo_2_pipeid_T_5 = _GEN_7; // @[FPU.scala:916:78] wire _io_sboard_set_T_2; // @[FPU.scala:916:78] assign _io_sboard_set_T_2 = _GEN_7; // @[FPU.scala:916:78] wire _divSqrt_io_inValid_T_4; // @[FPU.scala:1028:52] assign _divSqrt_io_inValid_T_4 = _GEN_7; // @[FPU.scala:916:78, :1028:52] wire _memLatencyMask_T_6 = mem_ctrl_fma & _memLatencyMask_T_5; // @[FPU.scala:801:27, :916:{62,78}] wire [2:0] _memLatencyMask_T_7 = {_memLatencyMask_T_6, 2'h0}; // @[FPU.scala:916:62, :926:23] wire _GEN_8 = mem_ctrl_typeTagOut == 2'h0; // @[FPU.scala:801:27, :922:78] wire _memLatencyMask_T_8; // @[FPU.scala:922:78] assign _memLatencyMask_T_8 = _GEN_8; // @[FPU.scala:922:78] wire _wbInfo_0_pipeid_T_8; // @[FPU.scala:922:78] assign _wbInfo_0_pipeid_T_8 = _GEN_8; // @[FPU.scala:922:78] wire _wbInfo_1_pipeid_T_8; // @[FPU.scala:922:78] assign _wbInfo_1_pipeid_T_8 = _GEN_8; // @[FPU.scala:922:78] wire _wbInfo_2_pipeid_T_8; // @[FPU.scala:922:78] assign _wbInfo_2_pipeid_T_8 = _GEN_8; // @[FPU.scala:922:78] wire _divSqrt_io_inValid_T; // @[FPU.scala:1028:52] assign _divSqrt_io_inValid_T = _GEN_8; // @[FPU.scala:922:78, :1028:52] wire _memLatencyMask_T_9 = mem_ctrl_fma & _memLatencyMask_T_8; // @[FPU.scala:801:27, :922:{62,78}] wire [1:0] _memLatencyMask_T_10 = {_memLatencyMask_T_9, 1'h0}; // @[FPU.scala:922:62, :926:23] wire _memLatencyMask_T_11 = _memLatencyMask_T | _memLatencyMask_T_1; // @[FPU.scala:926:{23,72}] wire [1:0] _memLatencyMask_T_12 = {1'h0, _memLatencyMask_T_11} | _memLatencyMask_T_4; // @[FPU.scala:926:{23,72}] wire [2:0] _memLatencyMask_T_13 = {1'h0, _memLatencyMask_T_12} | _memLatencyMask_T_7; // @[FPU.scala:926:{23,72}] wire [2:0] memLatencyMask = {_memLatencyMask_T_13[2], _memLatencyMask_T_13[1:0] | _memLatencyMask_T_10}; // @[FPU.scala:926:{23,72}] reg [2:0] wen; // @[FPU.scala:939:20] reg [4:0] wbInfo_0_rd; // @[FPU.scala:940:19] reg [1:0] wbInfo_0_typeTag; // @[FPU.scala:940:19] reg wbInfo_0_cp; // @[FPU.scala:940:19] reg [2:0] wbInfo_0_pipeid; // @[FPU.scala:940:19] reg [4:0] wbInfo_1_rd; // @[FPU.scala:940:19] reg [1:0] wbInfo_1_typeTag; // @[FPU.scala:940:19] reg wbInfo_1_cp; // @[FPU.scala:940:19] reg [2:0] wbInfo_1_pipeid; // @[FPU.scala:940:19] reg [4:0] wbInfo_2_rd; // @[FPU.scala:940:19] reg [1:0] wbInfo_2_typeTag; // @[FPU.scala:940:19] reg wbInfo_2_cp; // @[FPU.scala:940:19] reg [2:0] wbInfo_2_pipeid; // @[FPU.scala:940:19] wire _mem_wen_T = mem_ctrl_fma | mem_ctrl_fastpipe; // @[FPU.scala:801:27, :941:48] wire _mem_wen_T_1 = _mem_wen_T | mem_ctrl_fromint; // @[FPU.scala:801:27, :941:{48,69}] wire mem_wen = mem_reg_valid & _mem_wen_T_1; // @[FPU.scala:784:30, :941:{31,69}] wire [1:0] _write_port_busy_T = {ex_ctrl_fastpipe, 1'h0}; // @[FPU.scala:800:20, :926:23] wire [1:0] _write_port_busy_T_1 = {ex_ctrl_fromint, 1'h0}; // @[FPU.scala:800:20, :926:23] wire _write_port_busy_T_3 = ex_ctrl_fma & _write_port_busy_T_2; // @[FPU.scala:800:20, :911:{56,72}] wire [2:0] _write_port_busy_T_4 = {_write_port_busy_T_3, 2'h0}; // @[FPU.scala:911:56, :926:23] wire _write_port_busy_T_6 = ex_ctrl_fma & _write_port_busy_T_5; // @[FPU.scala:800:20, :916:{62,78}] wire [3:0] _write_port_busy_T_7 = {_write_port_busy_T_6, 3'h0}; // @[FPU.scala:916:62, :926:23] wire _write_port_busy_T_9 = ex_ctrl_fma & _write_port_busy_T_8; // @[FPU.scala:800:20, :922:{62,78}] wire [2:0] _write_port_busy_T_10 = {_write_port_busy_T_9, 2'h0}; // @[FPU.scala:922:62, :926:23] wire [1:0] _write_port_busy_T_11 = _write_port_busy_T | _write_port_busy_T_1; // @[FPU.scala:926:{23,72}] wire [2:0] _write_port_busy_T_12 = {1'h0, _write_port_busy_T_11} | _write_port_busy_T_4; // @[FPU.scala:926:{23,72}] wire [3:0] _write_port_busy_T_13 = {1'h0, _write_port_busy_T_12} | _write_port_busy_T_7; // @[FPU.scala:926:{23,72}] wire [3:0] _write_port_busy_T_14 = {_write_port_busy_T_13[3], _write_port_busy_T_13[2:0] | _write_port_busy_T_10}; // @[FPU.scala:926:{23,72}] wire [3:0] _write_port_busy_T_15 = {1'h0, _write_port_busy_T_14[2:0] & memLatencyMask}; // @[FPU.scala:926:72, :942:62] wire _write_port_busy_T_16 = |_write_port_busy_T_15; // @[FPU.scala:942:{62,89}] wire _write_port_busy_T_17 = mem_wen & _write_port_busy_T_16; // @[FPU.scala:941:31, :942:{43,89}] wire [2:0] _write_port_busy_T_18 = {ex_ctrl_fastpipe, 2'h0}; // @[FPU.scala:800:20, :926:23] wire [2:0] _write_port_busy_T_19 = {ex_ctrl_fromint, 2'h0}; // @[FPU.scala:800:20, :926:23] wire _write_port_busy_T_21 = ex_ctrl_fma & _write_port_busy_T_20; // @[FPU.scala:800:20, :911:{56,72}] wire [3:0] _write_port_busy_T_22 = {_write_port_busy_T_21, 3'h0}; // @[FPU.scala:911:56, :926:23] wire _write_port_busy_T_24 = ex_ctrl_fma & _write_port_busy_T_23; // @[FPU.scala:800:20, :916:{62,78}] wire [4:0] _write_port_busy_T_25 = {_write_port_busy_T_24, 4'h0}; // @[FPU.scala:916:62, :926:23] wire _write_port_busy_T_27 = ex_ctrl_fma & _write_port_busy_T_26; // @[FPU.scala:800:20, :922:{62,78}] wire [3:0] _write_port_busy_T_28 = {_write_port_busy_T_27, 3'h0}; // @[FPU.scala:922:62, :926:23] wire [2:0] _write_port_busy_T_29 = _write_port_busy_T_18 | _write_port_busy_T_19; // @[FPU.scala:926:{23,72}] wire [3:0] _write_port_busy_T_30 = {1'h0, _write_port_busy_T_29} | _write_port_busy_T_22; // @[FPU.scala:926:{23,72}] wire [4:0] _write_port_busy_T_31 = {1'h0, _write_port_busy_T_30} | _write_port_busy_T_25; // @[FPU.scala:926:{23,72}] wire [4:0] _write_port_busy_T_32 = {_write_port_busy_T_31[4], _write_port_busy_T_31[3:0] | _write_port_busy_T_28}; // @[FPU.scala:926:{23,72}] wire [4:0] _write_port_busy_T_33 = {2'h0, _write_port_busy_T_32[2:0] & wen}; // @[FPU.scala:926:72, :939:20, :942:101] wire _write_port_busy_T_34 = |_write_port_busy_T_33; // @[FPU.scala:942:{101,128}] wire _write_port_busy_T_35 = _write_port_busy_T_17 | _write_port_busy_T_34; // @[FPU.scala:942:{43,93,128}] reg write_port_busy; // @[FPU.scala:942:34] wire [1:0] _wen_T = wen[2:1]; // @[FPU.scala:939:20, :948:14] wire [1:0] _wen_T_1 = wen[2:1]; // @[FPU.scala:939:20, :948:14, :951:18] wire [2:0] _wen_T_2 = {1'h0, _wen_T_1} | memLatencyMask; // @[FPU.scala:926:72, :951:{18,23}] wire _wbInfo_0_pipeid_T_11 = _wbInfo_0_pipeid_T_1; // @[FPU.scala:928:{63,100}] wire _wbInfo_0_pipeid_T_3 = mem_ctrl_fma & _wbInfo_0_pipeid_T_2; // @[FPU.scala:801:27, :911:{56,72}] wire [1:0] _wbInfo_0_pipeid_T_4 = {_wbInfo_0_pipeid_T_3, 1'h0}; // @[FPU.scala:911:56, :928:63] wire _wbInfo_0_pipeid_T_6 = mem_ctrl_fma & _wbInfo_0_pipeid_T_5; // @[FPU.scala:801:27, :916:{62,78}] wire [1:0] _wbInfo_0_pipeid_T_7 = {2{_wbInfo_0_pipeid_T_6}}; // @[FPU.scala:916:62, :928:63] wire _wbInfo_0_pipeid_T_9 = mem_ctrl_fma & _wbInfo_0_pipeid_T_8; // @[FPU.scala:801:27, :922:{62,78}] wire [2:0] _wbInfo_0_pipeid_T_10 = {_wbInfo_0_pipeid_T_9, 2'h0}; // @[FPU.scala:922:62, :928:63] wire [1:0] _wbInfo_0_pipeid_T_12 = {1'h0, _wbInfo_0_pipeid_T_11} | _wbInfo_0_pipeid_T_4; // @[FPU.scala:928:{63,100}] wire [1:0] _wbInfo_0_pipeid_T_13 = _wbInfo_0_pipeid_T_12 | _wbInfo_0_pipeid_T_7; // @[FPU.scala:928:{63,100}] wire [2:0] _wbInfo_0_pipeid_T_14 = {1'h0, _wbInfo_0_pipeid_T_13} | _wbInfo_0_pipeid_T_10; // @[FPU.scala:928:{63,100}] wire [4:0] _wbInfo_0_rd_T = mem_reg_inst[11:7]; // @[FPU.scala:791:31, :958:37] wire [4:0] _wbInfo_1_rd_T = mem_reg_inst[11:7]; // @[FPU.scala:791:31, :958:37] wire [4:0] _wbInfo_2_rd_T = mem_reg_inst[11:7]; // @[FPU.scala:791:31, :958:37] wire [4:0] _divSqrt_waddr_T = mem_reg_inst[11:7]; // @[FPU.scala:791:31, :958:37, :1017:36] wire _wbInfo_1_pipeid_T_11 = _wbInfo_1_pipeid_T_1; // @[FPU.scala:928:{63,100}] wire _wbInfo_1_pipeid_T_3 = mem_ctrl_fma & _wbInfo_1_pipeid_T_2; // @[FPU.scala:801:27, :911:{56,72}] wire [1:0] _wbInfo_1_pipeid_T_4 = {_wbInfo_1_pipeid_T_3, 1'h0}; // @[FPU.scala:911:56, :928:63] wire _wbInfo_1_pipeid_T_6 = mem_ctrl_fma & _wbInfo_1_pipeid_T_5; // @[FPU.scala:801:27, :916:{62,78}] wire [1:0] _wbInfo_1_pipeid_T_7 = {2{_wbInfo_1_pipeid_T_6}}; // @[FPU.scala:916:62, :928:63] wire _wbInfo_1_pipeid_T_9 = mem_ctrl_fma & _wbInfo_1_pipeid_T_8; // @[FPU.scala:801:27, :922:{62,78}] wire [2:0] _wbInfo_1_pipeid_T_10 = {_wbInfo_1_pipeid_T_9, 2'h0}; // @[FPU.scala:922:62, :928:63] wire [1:0] _wbInfo_1_pipeid_T_12 = {1'h0, _wbInfo_1_pipeid_T_11} | _wbInfo_1_pipeid_T_4; // @[FPU.scala:928:{63,100}] wire [1:0] _wbInfo_1_pipeid_T_13 = _wbInfo_1_pipeid_T_12 | _wbInfo_1_pipeid_T_7; // @[FPU.scala:928:{63,100}] wire [2:0] _wbInfo_1_pipeid_T_14 = {1'h0, _wbInfo_1_pipeid_T_13} | _wbInfo_1_pipeid_T_10; // @[FPU.scala:928:{63,100}] wire _wbInfo_2_pipeid_T_11 = _wbInfo_2_pipeid_T_1; // @[FPU.scala:928:{63,100}] wire _wbInfo_2_pipeid_T_3 = mem_ctrl_fma & _wbInfo_2_pipeid_T_2; // @[FPU.scala:801:27, :911:{56,72}] wire [1:0] _wbInfo_2_pipeid_T_4 = {_wbInfo_2_pipeid_T_3, 1'h0}; // @[FPU.scala:911:56, :928:63] wire _wbInfo_2_pipeid_T_6 = mem_ctrl_fma & _wbInfo_2_pipeid_T_5; // @[FPU.scala:801:27, :916:{62,78}] wire [1:0] _wbInfo_2_pipeid_T_7 = {2{_wbInfo_2_pipeid_T_6}}; // @[FPU.scala:916:62, :928:63] wire _wbInfo_2_pipeid_T_9 = mem_ctrl_fma & _wbInfo_2_pipeid_T_8; // @[FPU.scala:801:27, :922:{62,78}] wire [2:0] _wbInfo_2_pipeid_T_10 = {_wbInfo_2_pipeid_T_9, 2'h0}; // @[FPU.scala:922:62, :928:63] wire [1:0] _wbInfo_2_pipeid_T_12 = {1'h0, _wbInfo_2_pipeid_T_11} | _wbInfo_2_pipeid_T_4; // @[FPU.scala:928:{63,100}] wire [1:0] _wbInfo_2_pipeid_T_13 = _wbInfo_2_pipeid_T_12 | _wbInfo_2_pipeid_T_7; // @[FPU.scala:928:{63,100}] wire [2:0] _wbInfo_2_pipeid_T_14 = {1'h0, _wbInfo_2_pipeid_T_13} | _wbInfo_2_pipeid_T_10; // @[FPU.scala:928:{63,100}] assign waddr = divSqrt_wen ? divSqrt_waddr : wbInfo_0_rd; // @[FPU.scala:896:32, :898:26, :940:19, :963:18] assign io_sboard_clra_0 = waddr; // @[FPU.scala:735:7, :963:18] assign frfWriteBundle_1_wrdst = waddr; // @[FPU.scala:805:44, :963:18] wire wb_cp = divSqrt_wen ? divSqrt_cp : wbInfo_0_cp; // @[FPU.scala:896:32, :899:23, :940:19, :964:18] wire [1:0] wtypeTag = divSqrt_wen ? divSqrt_typeTag : wbInfo_0_typeTag; // @[FPU.scala:896:32, :900:29, :940:19, :965:21] wire _GEN_9 = wbInfo_0_pipeid == 3'h1; // @[package.scala:39:86] wire _wdata_T_39; // @[package.scala:39:86] assign _wdata_T_39 = _GEN_9; // @[package.scala:39:86] wire _wexc_T; // @[package.scala:39:86] assign _wexc_T = _GEN_9; // @[package.scala:39:86] wire [64:0] _wdata_T_40 = _wdata_T_39 ? _ifpu_io_out_bits_data : _fpmu_io_out_bits_data; // @[package.scala:39:{76,86}] wire _GEN_10 = wbInfo_0_pipeid == 3'h2; // @[package.scala:39:86] wire _wdata_T_41; // @[package.scala:39:86] assign _wdata_T_41 = _GEN_10; // @[package.scala:39:86] wire _wexc_T_2; // @[package.scala:39:86] assign _wexc_T_2 = _GEN_10; // @[package.scala:39:86] wire [64:0] _wdata_T_42 = _wdata_T_41 ? _sfma_io_out_bits_data : _wdata_T_40; // @[package.scala:39:{76,86}] wire _GEN_11 = wbInfo_0_pipeid == 3'h3; // @[package.scala:39:86] wire _wdata_T_43; // @[package.scala:39:86] assign _wdata_T_43 = _GEN_11; // @[package.scala:39:86] wire _wexc_T_4; // @[package.scala:39:86] assign _wexc_T_4 = _GEN_11; // @[package.scala:39:86] wire _io_sboard_clr_T_2; // @[FPU.scala:1007:99] assign _io_sboard_clr_T_2 = _GEN_11; // @[package.scala:39:86] wire [64:0] _wdata_T_44 = _wdata_T_43 ? _dfma_io_out_bits_data : _wdata_T_42; // @[package.scala:39:{76,86}] wire _GEN_12 = wbInfo_0_pipeid == 3'h4; // @[package.scala:39:86] wire _wdata_T_45; // @[package.scala:39:86] assign _wdata_T_45 = _GEN_12; // @[package.scala:39:86] wire _wexc_T_6; // @[package.scala:39:86] assign _wexc_T_6 = _GEN_12; // @[package.scala:39:86] wire [64:0] _wdata_T_46 = _wdata_T_45 ? _hfma_io_out_bits_data : _wdata_T_44; // @[package.scala:39:{76,86}] wire _GEN_13 = wbInfo_0_pipeid == 3'h5; // @[package.scala:39:86] wire _wdata_T_47; // @[package.scala:39:86] assign _wdata_T_47 = _GEN_13; // @[package.scala:39:86] wire _wexc_T_8; // @[package.scala:39:86] assign _wexc_T_8 = _GEN_13; // @[package.scala:39:86] wire [64:0] _wdata_T_48 = _wdata_T_47 ? _hfma_io_out_bits_data : _wdata_T_46; // @[package.scala:39:{76,86}] wire _GEN_14 = wbInfo_0_pipeid == 3'h6; // @[package.scala:39:86] wire _wdata_T_49; // @[package.scala:39:86] assign _wdata_T_49 = _GEN_14; // @[package.scala:39:86] wire _wexc_T_10; // @[package.scala:39:86] assign _wexc_T_10 = _GEN_14; // @[package.scala:39:86] wire [64:0] _wdata_T_50 = _wdata_T_49 ? _hfma_io_out_bits_data : _wdata_T_48; // @[package.scala:39:{76,86}] wire _wdata_T_51 = &wbInfo_0_pipeid; // @[package.scala:39:86] wire [64:0] _wdata_T_52 = _wdata_T_51 ? _hfma_io_out_bits_data : _wdata_T_50; // @[package.scala:39:{76,86}] wire [64:0] _wdata_T_53 = divSqrt_wen ? divSqrt_wdata : _wdata_T_52; // @[package.scala:39:76] wire _wdata_opts_bigger_swizzledNaN_T_1 = _wdata_T_53[15]; // @[FPU.scala:340:8, :966:22] wire _wdata_opts_bigger_swizzledNaN_T_2 = _wdata_T_53[16]; // @[FPU.scala:342:8, :966:22] wire [14:0] _wdata_opts_bigger_swizzledNaN_T_3 = _wdata_T_53[14:0]; // @[FPU.scala:343:8, :966:22] wire [7:0] wdata_opts_bigger_swizzledNaN_lo_hi = {7'h7F, _wdata_opts_bigger_swizzledNaN_T_2}; // @[FPU.scala:336:26, :342:8] wire [22:0] wdata_opts_bigger_swizzledNaN_lo = {wdata_opts_bigger_swizzledNaN_lo_hi, _wdata_opts_bigger_swizzledNaN_T_3}; // @[FPU.scala:336:26, :343:8] wire [4:0] wdata_opts_bigger_swizzledNaN_hi_lo = {4'hF, _wdata_opts_bigger_swizzledNaN_T_1}; // @[FPU.scala:336:26, :340:8] wire [9:0] wdata_opts_bigger_swizzledNaN_hi = {5'h1F, wdata_opts_bigger_swizzledNaN_hi_lo}; // @[FPU.scala:336:26] wire [32:0] wdata_opts_bigger_swizzledNaN = {wdata_opts_bigger_swizzledNaN_hi, wdata_opts_bigger_swizzledNaN_lo}; // @[FPU.scala:336:26] wire [32:0] wdata_opts_bigger = wdata_opts_bigger_swizzledNaN; // @[FPU.scala:336:26, :344:8] wire [64:0] wdata_opts_0 = {32'hFFFFFFFF, wdata_opts_bigger}; // @[FPU.scala:344:8, :398:14] wire _wdata_opts_bigger_swizzledNaN_T_5 = _wdata_T_53[31]; // @[FPU.scala:340:8, :966:22] wire _wdata_opts_bigger_swizzledNaN_T_6 = _wdata_T_53[32]; // @[FPU.scala:342:8, :966:22] wire [30:0] _wdata_opts_bigger_swizzledNaN_T_7 = _wdata_T_53[30:0]; // @[FPU.scala:343:8, :966:22] wire [20:0] wdata_opts_bigger_swizzledNaN_lo_hi_1 = {20'hFFFFF, _wdata_opts_bigger_swizzledNaN_T_6}; // @[FPU.scala:336:26, :342:8] wire [51:0] wdata_opts_bigger_swizzledNaN_lo_1 = {wdata_opts_bigger_swizzledNaN_lo_hi_1, _wdata_opts_bigger_swizzledNaN_T_7}; // @[FPU.scala:336:26, :343:8] wire [7:0] wdata_opts_bigger_swizzledNaN_hi_lo_1 = {7'h7F, _wdata_opts_bigger_swizzledNaN_T_5}; // @[FPU.scala:336:26, :340:8] wire [12:0] wdata_opts_bigger_swizzledNaN_hi_1 = {5'h1F, wdata_opts_bigger_swizzledNaN_hi_lo_1}; // @[FPU.scala:336:26] wire [64:0] wdata_opts_bigger_swizzledNaN_1 = {wdata_opts_bigger_swizzledNaN_hi_1, wdata_opts_bigger_swizzledNaN_lo_1}; // @[FPU.scala:336:26] wire [64:0] wdata_opts_bigger_1 = wdata_opts_bigger_swizzledNaN_1; // @[FPU.scala:336:26, :344:8] wire [64:0] wdata_opts_1 = wdata_opts_bigger_1; // @[FPU.scala:344:8, :398:14] wire _wdata_T_54 = wtypeTag == 2'h1; // @[package.scala:39:86] wire [64:0] _wdata_T_55 = _wdata_T_54 ? wdata_opts_1 : wdata_opts_0; // @[package.scala:39:{76,86}] wire _wdata_T_56 = wtypeTag == 2'h2; // @[package.scala:39:86] wire [64:0] _wdata_T_57 = _wdata_T_56 ? _wdata_T_53 : _wdata_T_55; // @[package.scala:39:{76,86}] wire _wdata_T_58 = &wtypeTag; // @[package.scala:39:86] wire [64:0] wdata_1 = _wdata_T_58 ? _wdata_T_53 : _wdata_T_57; // @[package.scala:39:{76,86}] wire [4:0] _wexc_T_1 = _wexc_T ? _ifpu_io_out_bits_exc : _fpmu_io_out_bits_exc; // @[package.scala:39:{76,86}] wire [4:0] _wexc_T_3 = _wexc_T_2 ? _sfma_io_out_bits_exc : _wexc_T_1; // @[package.scala:39:{76,86}] wire [4:0] _wexc_T_5 = _wexc_T_4 ? _dfma_io_out_bits_exc : _wexc_T_3; // @[package.scala:39:{76,86}] wire [4:0] _wexc_T_7 = _wexc_T_6 ? _hfma_io_out_bits_exc : _wexc_T_5; // @[package.scala:39:{76,86}] wire [4:0] _wexc_T_9 = _wexc_T_8 ? _hfma_io_out_bits_exc : _wexc_T_7; // @[package.scala:39:{76,86}] wire [4:0] _wexc_T_11 = _wexc_T_10 ? _hfma_io_out_bits_exc : _wexc_T_9; // @[package.scala:39:{76,86}] wire _wexc_T_12 = &wbInfo_0_pipeid; // @[package.scala:39:86] wire [4:0] wexc = _wexc_T_12 ? _hfma_io_out_bits_exc : _wexc_T_11; // @[package.scala:39:{76,86}] wire _io_fcsr_flags_valid_T_1 = wen[0]; // @[FPU.scala:939:20, :968:30, :995:62] wire _io_fcsr_flags_bits_T_3 = wen[0]; // @[FPU.scala:939:20, :968:30, :999:12] wire _io_sboard_clr_T_1 = wen[0]; // @[FPU.scala:939:20, :968:30, :1007:56] assign frfWriteBundle_1_wrenf = ~wbInfo_0_cp & wen[0] | divSqrt_wen; // @[FPU.scala:805:44, :896:32, :939:20, :940:19, :968:{10,24,30,35}] wire _unswizzled_T_3 = wdata_1[31]; // @[package.scala:39:76] wire _frfWriteBundle_1_wrdata_prevRecoded_T = wdata_1[31]; // @[package.scala:39:76] wire _unswizzled_T_4 = wdata_1[52]; // @[package.scala:39:76] wire _frfWriteBundle_1_wrdata_prevRecoded_T_1 = wdata_1[52]; // @[package.scala:39:76] wire [30:0] _unswizzled_T_5 = wdata_1[30:0]; // @[package.scala:39:76] wire [30:0] _frfWriteBundle_1_wrdata_prevRecoded_T_2 = wdata_1[30:0]; // @[package.scala:39:76] wire [1:0] unswizzled_hi_1 = {_unswizzled_T_3, _unswizzled_T_4}; // @[FPU.scala:380:27, :381:10, :382:10] wire [32:0] unswizzled_1 = {unswizzled_hi_1, _unswizzled_T_5}; // @[FPU.scala:380:27, :383:10] wire [4:0] _prevOK_T_4 = wdata_1[64:60]; // @[package.scala:39:76] wire _prevOK_T_5 = &_prevOK_T_4; // @[FPU.scala:332:{49,84}] wire _prevOK_T_6 = ~_prevOK_T_5; // @[FPU.scala:332:84, :384:20] wire _prevOK_unswizzled_T_3 = unswizzled_1[15]; // @[FPU.scala:380:27, :381:10] wire _prevOK_unswizzled_T_4 = unswizzled_1[23]; // @[FPU.scala:380:27, :382:10] wire [14:0] _prevOK_unswizzled_T_5 = unswizzled_1[14:0]; // @[FPU.scala:380:27, :383:10] wire [1:0] prevOK_unswizzled_hi_1 = {_prevOK_unswizzled_T_3, _prevOK_unswizzled_T_4}; // @[FPU.scala:380:27, :381:10, :382:10] wire [16:0] prevOK_unswizzled_1 = {prevOK_unswizzled_hi_1, _prevOK_unswizzled_T_5}; // @[FPU.scala:380:27, :383:10] wire [4:0] _prevOK_prevOK_T_3 = unswizzled_1[32:28]; // @[FPU.scala:332:49, :380:27] wire _prevOK_prevOK_T_4 = &_prevOK_prevOK_T_3; // @[FPU.scala:332:{49,84}] wire _prevOK_prevOK_T_5 = ~_prevOK_prevOK_T_4; // @[FPU.scala:332:84, :384:20] wire [2:0] _prevOK_curOK_T_7 = unswizzled_1[31:29]; // @[FPU.scala:249:25, :380:27] wire _prevOK_curOK_T_8 = &_prevOK_curOK_T_7; // @[FPU.scala:249:{25,56}] wire _prevOK_curOK_T_9 = ~_prevOK_curOK_T_8; // @[FPU.scala:249:56, :385:19] wire _prevOK_curOK_T_10 = unswizzled_1[28]; // @[FPU.scala:380:27, :385:35] wire [6:0] _prevOK_curOK_T_11 = unswizzled_1[22:16]; // @[FPU.scala:380:27, :385:60] wire _prevOK_curOK_T_12 = &_prevOK_curOK_T_11; // @[FPU.scala:385:{60,96}] wire _prevOK_curOK_T_13 = _prevOK_curOK_T_10 == _prevOK_curOK_T_12; // @[FPU.scala:385:{35,55,96}] wire prevOK_curOK_1 = _prevOK_curOK_T_9 | _prevOK_curOK_T_13; // @[FPU.scala:385:{19,31,55}] wire _prevOK_T_7 = prevOK_curOK_1; // @[FPU.scala:385:31, :386:14] wire prevOK_1 = _prevOK_T_6 | _prevOK_T_7; // @[FPU.scala:384:{20,33}, :386:14] wire [2:0] _curOK_T_7 = wdata_1[63:61]; // @[package.scala:39:76] wire [2:0] _frfWriteBundle_1_wrdata_T_1 = wdata_1[63:61]; // @[package.scala:39:76] wire _curOK_T_8 = &_curOK_T_7; // @[FPU.scala:249:{25,56}] wire _curOK_T_9 = ~_curOK_T_8; // @[FPU.scala:249:56, :385:19] wire _curOK_T_10 = wdata_1[60]; // @[package.scala:39:76] wire [19:0] _curOK_T_11 = wdata_1[51:32]; // @[package.scala:39:76] wire _curOK_T_12 = &_curOK_T_11; // @[FPU.scala:385:{60,96}] wire _curOK_T_13 = _curOK_T_10 == _curOK_T_12; // @[FPU.scala:385:{35,55,96}] wire curOK_1 = _curOK_T_9 | _curOK_T_13; // @[FPU.scala:385:{19,31,55}]