text
stringlengths
1
2.05k
use orion::numbers::NumberTrait; use orion::operators::tensor::helpers::replace_index; use orion::operators::tensor::core::{Tensor, TensorTrait, ravel_index, unravel_index}; fn cumsum< T, MAG, impl TTensorTrait: TensorTrait<T>, impl TNumber: NumberTrait<T, MAG>, impl TAddEq: AddEq<T>, impl TAdd: Add<T>, impl TSub: Sub<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>, >( self: @Tensor<T>, axis: usize, exclusive: Option<bool>, reverse: Option<bool> ) -> Tensor<T> { let reverse = match reverse { Option::Some(val) => val, Option::None => false }; if reverse { cumsum_reverse::<T>(self, axis, exclusive, NumberTrait::zero()) } else { cumsum_forward::<T>(self, axis, exclusive, NumberTrait::zero()) } } fn cumsum_forward< T, impl TTensorTrait: TensorTrait<T>, impl TAdd: Add<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>, >( self: @Tensor<T>, axis: usize, exclusive: Option<bool>, zero: T, ) -> Tensor<T> { let exclusive = match exclusive { Option::Some(val) => val, Option::None => false, }; assert(axis < (*self.shape).len(), 'axis out of dimensions'); let data = *self.data; let mut output_data = array![]; let mut index: usize = 0; while index != data.len() { let current_indices = unravel_index(index, *self.shape); let axis_value = *current_indices[axis]; if axis_value == 0 { if exclusive { output_data.append(zero); } else { output_data.append(*(data)[index]); } } else { let previous_axis_element_indices = replace_index( current_indices, axis, axis_value - 1 ); let previous_axis_element_index = ravel_index( *self.shape, previous_axis_element_indices ); if exclusive { output_data .append( *output_data[previous_axis_e
lement_index] + *(data)[previous_axis_element_index] ); } else { output_data.append(*output_data[previous_axis_element_index] + *(data)[index]); }; } index += 1; }; TensorTrait::<T>::new(*self.shape, output_data.span()) } fn cumsum_reverse< T, impl TTensorTrait: TensorTrait<T>, impl TAddEq: AddEq<T>, impl TSub: Sub<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>, >( self: @Tensor<T>, axis: usize, exclusive: Option<bool>, zero: T, ) -> Tensor<T> { let exclusive = match exclusive { Option::Some(val) => val, Option::None => false, }; assert(axis < (*self.shape).len(), 'axis out of dimensions'); let data = *self.data; let mut output_data = array![]; let mut index: usize = 0; while index != data.len() { let current_indices = unravel_index(index, *self.shape); let mut axis_value = *current_indices[axis]; if axis_value == 0 { let mut sum = *(data)[index]; if exclusive { sum = zero; } let end_index = *(*self.shape)[axis] - 1; loop { axis_value += 1; if axis_value > end_index { break (); } let next_axis_element_indices = replace_index(current_indices, axis, axis_value); let next_axis_element_index = ravel_index(*self.shape, next_axis_element_indices); sum += *data[next_axis_element_index]; }; output_data.append(sum); } else { let previous_axis_element_indices = replace_index( current_indices, axis, axis_value - 1 ); let previous_axis_element_index = ravel_index( *self.shape, previous_axis_element_indices ); if exclusive { output_data.append(*outp
ut_data[previous_axis_element_index] - *(data)[index]); } else { output_data .append( *output_data[previous_axis_element_index] - *(data)[previous_axis_element_index] ); } } index += 1; }; TensorTrait::<T>::new(*self.shape, output_data.span()) }
use orion::operators::tensor::core::{Tensor, TensorTrait, unravel_index}; use orion::operators::tensor::helpers::{ broadcast_shape, broadcast_index_mapping, len_from_shape, check_compatibility }; /// Cf: TensorTrait::equal docstring fn equal< T, impl UsizeFTensor: TensorTrait<usize>, impl TPartialEq: PartialEq<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T> >( y: @Tensor<T>, z: @Tensor<T> ) -> Tensor<usize> { let broadcasted_shape = broadcast_shape(*y.shape, *z.shape); let mut result: Array<usize> = array![]; let num_elements = len_from_shape(broadcasted_shape); let mut n: usize = 0; while n != num_elements { let indices_broadcasted = unravel_index(n, broadcasted_shape); let indices_self = broadcast_index_mapping(*y.shape, indices_broadcasted); let indices_other = broadcast_index_mapping(*z.shape, indices_broadcasted); if *(*y.data)[indices_self] == *(*z.data)[indices_other] { result.append(1); } else { result.append(0); } n += 1; }; TensorTrait::new(broadcasted_shape, result.span()) }
use orion::numbers::fixed_point::core::FixedTrait; use orion::numbers::NumberTrait; use orion::operators::tensor::core::{Tensor, TensorTrait}; /// Cf: TensorTrait::erf docstring fn erf< T, MAG, impl TTensor: TensorTrait<T>, impl TFixed: FixedTrait<T, MAG>, impl TCopy: Copy<T>, impl TDrop: Drop<T>, >( mut z: Tensor<T> ) -> Tensor<T> { let mut data_result: Array<T> = array![]; loop { match z.data.pop_front() { Option::Some(item) => { data_result.append((*item).erf()); }, Option::None => { break; } }; }; TensorTrait::<T>::new(z.shape, data_result.span()) }
use orion::numbers::NumberTrait; use orion::numbers::fixed_point::core::FixedTrait; use orion::operators::tensor::core::{Tensor, TensorTrait}; /// Cf: TensorTrait::exp docstring fn exp< T, MAG, impl TNumberTrait: NumberTrait<T, MAG>, impl TTensor: TensorTrait<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>, >( mut self: Tensor<T> ) -> Tensor<T> { let mut result = array![]; loop { match self.data.pop_front() { Option::Some(item) => { result.append((*item).exp()); }, Option::None => { break; } }; }; TensorTrait::new(self.shape, result.span()) } /// Cf: TensorTrait::exp docstring fn exp_upcast< T, TMAG, W, WMAG, impl TFixedTrait: FixedTrait<T, TMAG>, impl TTensor: TensorTrait<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>, impl WFixedTrait: FixedTrait<W, WMAG>, impl WTensor: TensorTrait<W>, impl WCopy: Copy<W>, impl WDrop: Drop<W>, impl TIntoW: Into<T, W>, >( mut self: Tensor<T> ) -> Tensor<W> { let mut result = array![]; loop { match self.data.pop_front() { Option::Some(item) => { result.append((TIntoW::into(*item)).exp()); }, Option::None => { break; } }; }; TensorTrait::new(self.shape, result.span()) }
use orion::operators::tensor::core::{Tensor, TensorTrait}; /// Cf: TensorTrait::flatten docstring fn flatten<T, impl TTensorTrait: TensorTrait<T>>(self: @Tensor<T>, axis: usize) -> Tensor<T> { let mut shape = *self.shape; assert(axis < shape.len(), 'axis out of dimensions'); let mut new_shape_first_axis = 1; let mut index = 0; loop { match shape.pop_front() { Option::Some(val) => { if index == axis { break; } new_shape_first_axis *= *val; index += 1; }, Option::None => { break; } }; }; let new_shape_second_axis = (*self.data).len() / new_shape_first_axis; self .reshape( array![ new_shape_first_axis.try_into().unwrap(), new_shape_second_axis.try_into().unwrap() ] .span(), false ) }
use core::option::OptionTrait; use core::traits::TryInto; use alexandria_data_structures::array_ext::SpanTraitExt; use orion::numbers::NumberTrait; use orion::operators::tensor::{TensorTrait, Tensor}; fn gather<T, impl TTensorTrait: TensorTrait<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>,>( self: @Tensor<T>, indices: Tensor<i32>, axis: Option<i32> ) -> Tensor<T> { let axis: usize = match axis { Option::Some(val) => { if val < 0 { (((*self.shape).len()).try_into().unwrap() + val).try_into().unwrap() } else { val.try_into().unwrap() } }, Option::None => 0 }; assert(axis < (*self.shape).len(), 'axis out of dimensions'); let axis_shape = *(*self.shape).at(axis); let mut adjusted_indices = array![]; let mut indices_data = indices.data.clone(); loop { match indices_data.pop_front() { Option::Some(index) => { let adjusted_index: usize = if *index < 0 { let val: u32 = (axis_shape.try_into().unwrap() + *index).try_into().unwrap(); val } else { let val: u32 = (*index).try_into().unwrap(); val }; assert(adjusted_index >= 0 && adjusted_index < axis_shape, 'Index out of bounds'); adjusted_indices.append(adjusted_index); }, Option::None => { break; } }; }; let mut output_data = array![]; let mut output_size = array![]; let mut self_shape = *self.shape; let mut i: usize = 0; loop { match self_shape.pop_front() { Option::Some(val) => { if i == axis { let mut indices_shape = indices.shape; loop { match indices_shape.pop_front() { Option::Some(item) => { output_size.append(*item); }, Option::None => { break; }
}; }; } else { output_size.append(*val); } i += 1; }, Option::None => { break; } }; }; let mut outer_loop_break = 1; let mut divisor = (*self.data).len(); let mut self_shape = *self.shape; let mut i: usize = 0; loop { match self_shape.pop_front() { Option::Some(val) => { if i == axis { divisor /= *val; break (); }; outer_loop_break *= *val; divisor /= *val; i += 1; }, Option::None => { break; } }; }; let mut break_loop: usize = 1; let mut self_shape = *self.shape; loop { match self_shape.pop_back() { Option::Some(val) => { if self_shape.len() + 1 == axis { break; } break_loop *= *val; }, Option::None => { break; } }; }; let mut outer_loop: usize = 0; let axis_index = *self.shape[axis]; while outer_loop != outer_loop_break { let mut adjusted_indices_iter = adjusted_indices.clone(); loop { match adjusted_indices_iter.pop_front() { Option::Some(indice) => { let mut inner_loop = 0; while inner_loop != break_loop { let new_val = inner_loop / divisor % axis_index; if indice == new_val { output_data.append(*self.data[break_loop * outer_loop + inner_loop]); } inner_loop += 1; } }, Option::None => { break; }, }; }; outer_loop += 1; }; let mut output_tensor = TensorTrait::<T>::new(output_size.span(), output_data.span()); output_tensor }
use alexandria_data_structures::array_ext::SpanTraitExt; use orion::numbers::NumberTrait; use orion::operators::tensor::{TensorTrait, Tensor}; fn gather_elements<T, impl TTensorTrait: TensorTrait<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>,>( self: @Tensor<T>, indices: Tensor<i32>, axis: Option<i32> ) -> Tensor<T> { let axis: usize = match axis { Option::Some(val) => { if val < 0 { (((*self.shape).len()).try_into().unwrap() + val).try_into().unwrap() } else { val.try_into().unwrap() } }, Option::None => 0 }; assert(axis < (*self.shape).len(), 'axis out of dimensions'); let axis_shape = *(*self.shape).at(axis); let mut adjusted_indices = array![]; let mut indices_data = indices.data.clone(); loop { match indices_data.pop_front() { Option::Some(index) => { let adjusted_index: usize = if *index < 0 { let val: u32 = (axis_shape.try_into().unwrap() + *index).try_into().unwrap(); val } else { let val: u32 = (*index).try_into().unwrap(); val }; assert(adjusted_index >= 0 && adjusted_index < axis_shape, 'Index out of bounds'); adjusted_indices.append(adjusted_index); }, Option::None => { break; } }; }; let mut output_data = array![]; let mut data_shape_clone = (*self.shape).clone(); let mut multiplier = 1; let mut looper = 1; let mut ind = 0; loop { match data_shape_clone.pop_front() { Option::Some(val) => { if ind >= axis { multiplier *= *val; } if ind > axis { looper *= *val; } ind += 1; }, Option::None => { break; } }; }; let inner_loop = multiplier / axis_shape; let
mut adjusted_indices_iter = adjusted_indices.clone(); let mut i: usize = 0; loop { match adjusted_indices_iter.pop_front() { Option::Some(indice) => { let value = if axis == 0 { indice * inner_loop + (i % inner_loop) } else if axis == (*self.shape).len() - 1 { indice + axis_shape * (i / axis_shape) } else { indice * looper + (i % looper) + (multiplier / axis_shape) * (i / (multiplier / axis_shape)) }; output_data.append(*self.data[value]); i += 1; }, Option::None => { break; } }; }; TensorTrait::<T>::new(indices.shape, output_data.span()) }
use alexandria_data_structures::array_ext::SpanTraitExt; use orion::numbers::NumberTrait; use orion::operators::tensor::U32TensorPartialEq; use orion::operators::tensor::{TensorTrait, Tensor, U32Tensor}; fn gather_nd<T, impl TTensorTrait: TensorTrait<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>,>( self: @Tensor<T>, indices: Tensor<usize>, batch_dims: Option<usize> ) -> Tensor<T> { let batch_dims = match batch_dims { Option::Some(val) => val, Option::None => 0 }; let data_rank = (*self.shape).len(); let indices_rank = (indices.shape).len(); assert((data_rank >= 1) & (indices_rank >= 1), 'rank must > 1'); let mut data_shape = *self.shape; let mut indices_shape = indices.shape; let mut data_shape_clone = data_shape.clone(); let mut indices_shape_clone = indices_shape.clone(); let indices_shape_last = indices_shape_clone.pop_back().unwrap(); assert( (*indices_shape_last >= 1) & (*indices_shape_last <= data_rank - batch_dims), 'check indices' ); let mut batch_dims_shape = array![]; let mut output_shape = array![]; let mut index_data = array![]; let mut output_data = array![]; let mut batch_dims_size = batch_dims; let mut total_data_len = 1; let mut multiple_data_len = array![]; let mut ind = 0; while ind != batch_dims { match indices_shape_clone.pop_front() { Option::Some(val) => { batch_dims_size *= *val; batch_dims_shape.append(*val); ind += 1; }, Option::None => { break; } }; }; loop { match indices_shape_clone.pop_front() { Option::Some(val) => { batch_dims_shape.append(*val); }, Option::None => { break; } }; }; if (*indices_shape_last == data_rank - batch_dims) { output_shape = batch_dims_shape; } else { let mut ind = 0; output_shape = batch_dims_shape; loop { match data_shape_clone.p
op_front() { Option::Some(val) => { if (ind >= (batch_dims + *indices_shape_last)) { output_shape.append(*val); } ind += 1; }, Option::None => { break; } }; }; } let mut ind = 0; let mut multiple = 1; let mut incrementer = 1; let mut data_shape_clone = data_shape.clone(); loop { match data_shape_clone.pop_front() { Option::Some(val) => { if (ind >= batch_dims) { multiple *= *val; multiple_data_len.append(multiple); } if (ind >= batch_dims + *indices_shape_last) { incrementer *= *val; } ind += 1; }, Option::None => { break; } }; }; let mut ind = 0; let mut indices_shape_clone = indices_shape.clone(); let mut breaker = 1; loop { match indices_shape_clone.pop_front() { Option::Some(val) => { if (ind >= batch_dims) { breaker *= *val; } ind += 1; }, Option::None => { break; } }; }; total_data_len = *multiple_data_len.at(multiple_data_len.len() - 1); let mut data_indices = indices.data; let mut ind = 0; let mut result = 0; loop { match data_indices.pop_front() { Option::Some(val) => { let index = ind % *indices_shape_last; let incr = total_data_len * (ind / breaker); result += (*val * total_data_len / *multiple_data_len.at(index)); ind += 1; if (index == *indices_shape_last - 1) { let mut data_ind: usize = result; while data_ind != result + incrementer { index_data.append(data_ind + incr); data_ind += 1;
}; result = 0; }; }, Option::None => { break; } }; }; loop { match index_data.pop_front() { Option::Some(val) => { output_data.append(*self.data[val]); }, Option::None => { break; } }; }; let mut output_tensor = TensorTrait::<T>::new(output_shape.span(), output_data.span()); output_tensor }
use orion::operators::tensor::core::{Tensor, TensorTrait, unravel_index}; use orion::operators::tensor::helpers::{ broadcast_shape, broadcast_index_mapping, len_from_shape, check_compatibility }; /// Cf: TensorTrait::greater docstring fn greater< T, impl UsizeFTensor: TensorTrait<usize>, impl TPartialOrd: PartialOrd<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T> >( y: @Tensor<T>, z: @Tensor<T> ) -> Tensor<usize> { let broadcasted_shape = broadcast_shape(*y.shape, *z.shape); let mut result: Array<usize> = array![]; let num_elements = len_from_shape(broadcasted_shape); let mut n: usize = 0; while n != num_elements { let indices_broadcasted = unravel_index(n, broadcasted_shape); let indices_self = broadcast_index_mapping(*y.shape, indices_broadcasted); let indices_other = broadcast_index_mapping(*z.shape, indices_broadcasted); if *(*y.data)[indices_self] > *(*z.data)[indices_other] { result.append(1); } else { result.append(0); } n += 1; }; TensorTrait::new(broadcasted_shape, result.span()) }
use orion::operators::tensor::core::{Tensor, TensorTrait, unravel_index}; use orion::operators::tensor::helpers::{ broadcast_shape, broadcast_index_mapping, len_from_shape, check_compatibility }; /// Cf: TensorTrait::greater_equal docstring fn greater_equal< T, impl UsizeFTensor: TensorTrait<usize>, impl TPartialOrd: PartialOrd<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T> >( y: @Tensor<T>, z: @Tensor<T> ) -> Tensor<usize> { let broadcasted_shape = broadcast_shape(*y.shape, *z.shape); let mut result: Array<usize> = array![]; let num_elements = len_from_shape(broadcasted_shape); let mut n: usize = 0; while n != num_elements { let indices_broadcasted = unravel_index(n, broadcasted_shape); let indices_self = broadcast_index_mapping(*y.shape, indices_broadcasted); let indices_other = broadcast_index_mapping(*z.shape, indices_broadcasted); if *(*y.data)[indices_self] >= *(*z.data)[indices_other] { result.append(1); } else { result.append(0); } n += 1; }; TensorTrait::new(broadcasted_shape, result.span()) }
use orion::numbers::fixed_point::core::FixedTrait; use orion::numbers::NumberTrait; use orion::operators::tensor::core::{Tensor, TensorTrait}; fn hamming_window< T, MAG, impl TTensor: TensorTrait<T>, impl TNumber: NumberTrait<T, MAG>, impl TAdd: Add<T>, impl TSub: Sub<T>, impl TMul: Mul<T>, impl TDiv: Div<T>, impl TTensorAdd: Add<Tensor<T>>, impl TPartialOrd: PartialOrd<T>, impl TAddEq: AddEq<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>, >( size: T, PI: T, periodic: Option<usize> ) -> Tensor<T> { let start: T = NumberTrait::zero(); let one_step: T = NumberTrait::one(); let two: T = one_step + one_step; let three: T = two + one_step; let n25: T = three.pow(three) - two; let n46: T = n25 * two - two * two; let alpha: T = n25 / n46; let beta: T = one_step - alpha; let ni = TensorTrait::range(start, size, one_step); assert((ni.shape).len() == 1, 'Unexpected shape 1.'); let mut N_1 = size; if periodic != Option::Some(1) { N_1 = N_1 - one_step; }; let len = *(ni.shape).at(0); let mut arr: Array<T> = array![]; let mut i: usize = 0; while i != len { let v = *(ni.data).at(i); let r = v * PI * two / N_1; arr.append(r); i += 1; }; let window = TensorTrait::<T>::new(ni.shape, arr.span()); let window_cos = window.cos(); let len2 = *(ni.shape).at(0); let mut arr2: Array<T> = array![]; let mut j: usize = 0; while j != len2 { let v = *(window_cos.data).at(j); let v_2 = alpha - v * beta; arr2.append(v_2); j += 1; }; let window_cos_2 = TensorTrait::<T>::new(ni.shape, arr2.span()); window_cos_2 }
use orion::numbers::fixed_point::core::FixedTrait; use orion::numbers::NumberTrait; use orion::operators::tensor::core::{Tensor, TensorTrait}; fn hann_window< T, MAG, impl TTensor: TensorTrait<T>, impl TNumber: NumberTrait<T, MAG>, impl TAdd: Add<T>, impl TSub: Sub<T>, impl TMul: Mul<T>, impl TDiv: Div<T>, impl TTensorAdd: Add<Tensor<T>>, impl TPartialOrd: PartialOrd<T>, impl TAddEq: AddEq<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>, >( size: T, PI: T, periodic: Option<usize> ) -> Tensor<T> { let start: T = NumberTrait::zero(); let one_step: T = NumberTrait::one(); let ni = TensorTrait::range(start, size, one_step); assert((ni.shape).len() == 1, 'Unexpected shape 1.'); let mut N_1 = size; if periodic != Option::Some(1) { N_1 = N_1 - one_step; }; let len = *(ni.shape).at(0); let mut arr: Array<T> = array![]; let mut i: usize = 0; while i != len { let v = *(ni.data).at(i); let r = v * PI / N_1; arr.append(r); i += 1; }; let window = TensorTrait::<T>::new(ni.shape, arr.span()); let window_sin = window.sin(); let len2 = *(ni.shape).at(0); let mut arr2: Array<T> = array![]; let mut j: usize = 0; while j != len2 { let v = *(window_sin.data).at(j); let v_2 = v * v; arr2.append(v_2); j += 1; }; let window_sin_2 = TensorTrait::<T>::new(ni.shape, arr2.span()); window_sin_2 }
use orion::numbers::NumberTrait; use orion::operators::tensor::core::{Tensor, TensorTrait}; use orion::operators::tensor::implementations::tensor_bool::BoolTensor; fn is_inf< T, MAG, impl TNumber: NumberTrait<T, MAG>, impl TTensor: TensorTrait<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T> >( x: @Tensor<T>, detect_negative: Option<u8>, detect_positive: Option<u8> ) -> Tensor<bool> { let neg_opt = match detect_negative { Option::Some(val) => { if val == 0 { 0 } else { 1 } }, Option::None => 1, }; let pos_opt = match detect_positive { Option::Some(val) => { if val == 0 { 0 } else { 1 } }, Option::None => 1, }; if neg_opt == 0 && pos_opt == 0 { return TensorTrait::new(*x.shape, ArrayTrait::<bool>::new().span()); } if neg_opt == 0 && pos_opt == 1 { return is_pos_inf(x); } if neg_opt == 1 && pos_opt == 0 { return is_neg_inf(x); } let mut data_result: Array<bool> = array![]; let mut y: Span<T> = *x.data; loop { match y.pop_front() { Option::Some(item) => { data_result.append((*item).is_inf()); }, Option::None => { break; } }; }; TensorTrait::new(*x.shape, data_result.span()) } fn is_pos_inf< T, MAG, impl TNumber: NumberTrait<T, MAG>, impl TTensor: TensorTrait<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T> >( x: @Tensor<T> ) -> Tensor<bool> { let mut data_result: Array<bool> = array![]; let mut y: Span<T> = *x.data; loop { match y.pop_front() { Option::Some(item) => { data_result.append((*item).is_pos_inf()); }, Option::None => { break; } }; }; TensorTrait::new(*x.shape, data_result.span()) } fn is_neg_inf< T, MAG, impl TNumber: NumberTrait<T, MAG>, impl TTensor: TensorTrait<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T> >( x: @Tensor<T> )
-> Tensor<bool> { let mut data_result: Array<bool> = array![]; let mut y: Span<T> = *x.data; loop { match y.pop_front() { Option::Some(item) => { data_result.append((*item).is_neg_inf()); }, Option::None => { break; } }; }; TensorTrait::new(*x.shape, data_result.span()) }
use orion::numbers::NumberTrait; use orion::operators::tensor::core::{Tensor, TensorTrait}; use orion::operators::tensor::implementations::tensor_bool::BoolTensor; /// Cf: TensorTrait::is_nan docstring fn is_nan< T, MAG, impl TNumber: NumberTrait<T, MAG>, impl TTensor: TensorTrait<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T> >( x: @Tensor<T> ) -> Tensor<bool> { let mut data_result: Array<bool> = array![]; let mut y: Span<T> = *x.data; loop { match y.pop_front() { Option::Some(item) => { data_result.append((*item).is_nan()); }, Option::None => { break; } }; }; TensorTrait::new(*x.shape, data_result.span()) }
use core::option::OptionTrait; use core::traits::TryInto; use orion::numbers::{NumberTrait, I32IntoU32}; use orion::numbers::{FP16x16, FP16x16Impl, FP32x32, FP32x32Impl, FixedTrait}; use orion::operators::tensor::{ TensorTrait, Tensor, I8Tensor, I32Tensor, U32Tensor, FP16x16Tensor, BoolTensor }; use orion::operators::vec::{VecTrait, NullableVec, NullableVecImpl}; fn layer_normalization< T, MAG, +TensorTrait<T>, +NumberTrait<T, MAG>, +PartialEq<T>, +Copy<T>, +Drop<T>, +Div<Tensor<T>>, +Sub<Tensor<T>>, +Add<Tensor<T>>, +Mul<Tensor<T>>, +Into<usize, MAG>, >( self: @Tensor<T>, scale: @Tensor<T>, B: Option<@Tensor<T>>, axis: Option<i32>, epsilon: Option<T>, stash_type: Option<usize>, ) -> (Tensor<T>, Tensor<T>, Tensor<T>) { let X_rank = (*self).shape.len(); let mut axis = match axis { Option::Some(axis) => axis, Option::None => -1, }; let epsilon = match epsilon { Option::Some(epsilon) => epsilon, Option::None => NumberTrait::zero(), }; let axis = if axis < 0 { X_rank - axis.into() } else { axis.into() }; let unsqueezed_rank = X_rank - axis; let mut reduction_shape = array![]; let mut i = 0; while i != axis { reduction_shape.append(*(*self).shape.at(i)); i += 1; }; let mut i = 0; while i != unsqueezed_rank { reduction_shape.append(1); i += 1; }; let mut row_number = 1; let mut col_number = 1; let mut i = 0; while i != X_rank { if i < axis { row_number *= *(*self).shape.at(i); } else { col_number *= *(*self).shape.at(i); } i += 1; }; let mut shape_matrix = array![]; shape_matrix.append(row_number.try_into().unwrap()); shape_matrix.append(col_number.try_into().unwrap()); let mut shape_one = array![]; shape_one.append(1); shape_one.append(1); let mut col_number_tensor = array![]; co
l_number_tensor.append(NumberTrait::new_unscaled(col_number.into(), false)); let mut epsilon_tensor = array![]; epsilon_tensor.append(epsilon); let mut one_tensor = array![]; one_tensor.append(NumberTrait::one()); let x_mat = self.reshape(shape_matrix.span(), false); let x_mean = x_mat .reduce_sum(Option::Some(array![1].span()), Option::Some(true), Option::Some(false)) / TensorTrait::new(shape_one.span(), col_number_tensor.span()); let x_diff = x_mat - x_mean; let x_squared_diff = x_diff * x_diff; let variance = x_squared_diff.reduce_sum(Option::Some(array![1].span()), Option::Some(true), Option::Some(false)) / TensorTrait::new(shape_one.span(), col_number_tensor.span()); let variance_eps = variance + TensorTrait::new(shape_one.span(), epsilon_tensor.span()); let std_dev = variance_eps.sqrt(); let inv_std_dev = TensorTrait::new(shape_one.span(), one_tensor.span()) / std_dev; let y_mat = x_diff * inv_std_dev; let scale = if (*scale).shape.len() < (*self).shape.len() { let mut shape = array![]; let mut i = 0; while i != (*self).shape.len() - (*scale).shape.len() { shape.append(1); i += 1; }; let mut i = 0; while i != (*scale).shape.len() { shape.append(*(*scale).shape.at(i)); i += 1; }; TensorTrait::new(shape.span(), (*scale).data) } else { *scale }; let mut i = 0; let mut target_shape: Array<i32> = array![]; while i < (*self) .shape .len() { target_shape.append((*(*self).shape.at(i)).try_into().unwrap()); i += 1; }; let Y = y_mat.reshape(target_shape.span(), false) * scale; let Y = match B { Option::Some(B) => { let B = if (*B).shape.len() < (*self).shape.len() { let mut shape = array![]; let mut i = 0; while i != (*self).shape.len() - (*
B).shape.len() { shape.append(1); i += 1; }; let mut i = 0; while i != (*B).shape.len() { shape.append(*(*B).shape.at(i)); i += 1; }; TensorTrait::new(shape.span(), (*B).data) } else { *B }; Y + B }, Option::None => Y, }; let X_mean = TensorTrait::new(reduction_shape.span(), x_mean.data); let X_inv_std_dev = TensorTrait::new(reduction_shape.span(), inv_std_dev.data); (Y, X_mean, X_inv_std_dev) }
use orion::operators::tensor::{core::{Tensor, TensorTrait, unravel_index}, I32Tensor}; use orion::operators::tensor::helpers::{ broadcast_shape, broadcast_index_mapping, len_from_shape, check_compatibility }; /// Cf: TensorTrait::less docstring fn less<T, impl TPartialOrd: PartialOrd<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>>( y: @Tensor<T>, z: @Tensor<T> ) -> Tensor<i32> { let broadcasted_shape = broadcast_shape(*y.shape, *z.shape); let mut result: Array<i32> = array![]; let num_elements = len_from_shape(broadcasted_shape); let mut n: usize = 0; while n != num_elements { let indices_broadcasted = unravel_index(n, broadcasted_shape); let indices_self = broadcast_index_mapping(*y.shape, indices_broadcasted); let indices_other = broadcast_index_mapping(*z.shape, indices_broadcasted); if *(*y.data)[indices_self] < *(*z.data)[indices_other] { result.append(1); } else { result.append(0); } n += 1; }; TensorTrait::new(broadcasted_shape, result.span()) }
use orion::operators::tensor::{core::{Tensor, TensorTrait, unravel_index}, I32Tensor}; use orion::operators::tensor::helpers::{ broadcast_shape, broadcast_index_mapping, len_from_shape, check_compatibility }; /// Cf: TensorTrait::less_equal docstring fn less_equal< T, impl TPartialOrd: PartialOrd<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T> >( y: @Tensor<T>, z: @Tensor<T> ) -> Tensor<i32> { let broadcasted_shape = broadcast_shape(*y.shape, *z.shape); let mut result: Array<i32> = array![]; let num_elements = len_from_shape(broadcasted_shape); let mut n: usize = 0; while n != num_elements { let indices_broadcasted = unravel_index(n, broadcasted_shape); let indices_self = broadcast_index_mapping(*y.shape, indices_broadcasted); let indices_other = broadcast_index_mapping(*z.shape, indices_broadcasted); if *(*y.data)[indices_self] <= *(*z.data)[indices_other] { result.append(1); } else { result.append(0); } n += 1; }; TensorTrait::new(broadcasted_shape, result.span()) }
use orion::numbers::NumberTrait; use orion::numbers::fixed_point::core::FixedTrait; use orion::operators::tensor::core::{Tensor, TensorTrait}; /// Cf: TensorTrait::log docstring fn log< T, MAG, impl TNumberTrait: NumberTrait<T, MAG>, impl TTensor: TensorTrait<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>, >( mut self: Tensor<T> ) -> Tensor<T> { let mut result = array![]; loop { match self.data.pop_front() { Option::Some(item) => { result.append((*item).ln()); }, Option::None => { break; } }; }; TensorTrait::<T>::new(self.shape, result.span()) }
use orion::numbers::NumberTrait; use orion::operators::tensor::core::{Tensor, TensorTrait, unravel_index}; use orion::operators::tensor::helpers::{ broadcast_shape, broadcast_index_mapping, len_from_shape, check_compatibility }; /// Cf: TensorTrait::max docstring fn max< T, MAG, impl TTensorTrait: TensorTrait<T>, impl TNumber: NumberTrait<T, MAG>, impl TCopy: Copy<T>, impl TDrop: Drop<T> >( tensors: Span<Tensor<T>> ) -> Tensor<T> { assert(tensors.len() >= 1, 'Input tensors must be >= 1'); let first_tensor = *tensors.at(0); if tensors.len() == 1 { return first_tensor; } let mut max_shape: Span<usize> = first_tensor.shape; let mut max_data: Span<T> = first_tensor.data; let mut tensor_counter: usize = 1; while tensor_counter != tensors.len() { let mut new_max_data: Array<T> = array![]; let mut current_tensor = *tensors.at(tensor_counter); let mut broadcasted_shape = broadcast_shape(max_shape, current_tensor.shape); let num_elements = len_from_shape(broadcasted_shape); let mut n: usize = 0; while n != num_elements { let mut indices_broadcasted = unravel_index(n, broadcasted_shape); let mut indices_self = broadcast_index_mapping(max_shape, indices_broadcasted); let mut indices_other = broadcast_index_mapping( current_tensor.shape, indices_broadcasted ); let mut max_value = NumberTrait::max( *(max_data)[indices_self], *(current_tensor.data)[indices_other] ); new_max_data.append(max_value); n += 1; }; max_shape = broadcasted_shape; max_data = new_max_data.span(); tensor_counter += 1; }; TensorTrait::<T>::new(max_shape, max_data) }
use orion::numbers::NumberTrait; /// Cf: TensorTrait::max_in_tensor docstring fn max_in_tensor< T, MAG, impl TNumber: NumberTrait<T, MAG>, impl TPartialOrd: PartialOrd<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T> >( mut vec: Span::<T> ) -> T { let mut max_value: T = NumberTrait::min_value(); loop { match vec.pop_front() { Option::Some(item) => { let check_max = max_value.max(*item); if (max_value < check_max) { max_value = check_max; } }, Option::None => { break; } }; }; max_value }
use orion::numbers::NumberTrait; use orion::operators::tensor::core::{Tensor, TensorTrait, unravel_index}; use orion::operators::tensor::helpers::{ broadcast_shape, broadcast_index_mapping, len_from_shape, check_compatibility }; /// Cf: TensorTrait::min docstring fn min< T, MAG, impl TTensorTrait: TensorTrait<T>, impl TNumber: NumberTrait<T, MAG>, impl TCopy: Copy<T>, impl TDrop: Drop<T> >( tensors: Span<Tensor<T>> ) -> Tensor<T> { assert(tensors.len() >= 1, 'Input tensors must be >= 1'); let first_tensor = *tensors.at(0); if tensors.len() == 1 { return first_tensor; } let mut min_shape: Span<usize> = first_tensor.shape; let mut min_data: Span<T> = first_tensor.data; let mut tensor_counter: usize = 1; while tensor_counter != tensors.len() { let mut new_min_data: Array<T> = array![]; let mut current_tensor = *tensors.at(tensor_counter); let mut broadcasted_shape = broadcast_shape(min_shape, current_tensor.shape); let num_elements = len_from_shape(broadcasted_shape); let mut n: usize = 0; while n != num_elements { let mut indices_broadcasted = unravel_index(n, broadcasted_shape); let mut indices_self = broadcast_index_mapping(min_shape, indices_broadcasted); let mut indices_other = broadcast_index_mapping( current_tensor.shape, indices_broadcasted ); let mut min_value = NumberTrait::min( *(min_data)[indices_self], *(current_tensor.data)[indices_other] ); new_min_data.append(min_value); n += 1; }; min_shape = broadcasted_shape; min_data = new_min_data.span(); tensor_counter += 1; }; TensorTrait::<T>::new(min_shape, min_data) }
use orion::numbers::NumberTrait; /// Cf: TensorTrait::min_in_tensor docstring fn min_in_tensor< T, MAG, impl TNumber: NumberTrait<T, MAG>, impl TPartialOrd: PartialOrd<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T> >( mut vec: Span::<T> ) -> T { let mut min_value: T = NumberTrait::max_value(); loop { match vec.pop_front() { Option::Some(item) => { let check_min = min_value.min(*item); if (min_value > check_min) { min_value = check_min; } }, Option::None => { break; } }; }; min_value }
use orion::numbers::NumberTrait; use orion::operators::tensor::core::{Tensor, TensorTrait}; /// Cf: TensorTrait::neg docstring fn neg< T, MAG, impl TTensor: TensorTrait<T>, impl TNumberTrait: NumberTrait<T, MAG>, impl TCopy: Copy<T>, impl TDrop: Drop<T> >( mut z: Tensor<T> ) -> Tensor<T> { let mut data_result: Array<T> = array![]; loop { match z.data.pop_front() { Option::Some(item) => { data_result.append((*item).neg()); }, Option::None => { break; } }; }; TensorTrait::<T>::new(z.shape, data_result.span()) }
use orion::numbers::NumberTrait; use orion::operators::tensor::core::{Tensor, TensorTrait}; use orion::operators::tensor::implementations::{tensor_bool::BoolTensor}; // Cf TensorTrait::not docstring fn not(mut z: Tensor<bool>) -> Tensor<bool> { let mut data_result: Array<bool> = array![]; loop { match z.data.pop_front() { Option::Some(item) => { data_result.append((!*item)); }, Option::None => { break; } }; }; TensorTrait::new(z.shape, data_result.span()) }
use orion::numbers::NumberTrait; use orion::numbers::fixed_point::core::FixedTrait; use orion::operators::tensor::{TensorTrait, Tensor}; fn onehot_encode< T, MAG, impl FFixed: FixedTrait<T, MAG>, impl FTensorTrait: TensorTrait<T>, impl FNumber: NumberTrait<T, MAG>, impl U32TryIntoMAG: TryInto<u32, MAG>, impl FPartialEq: PartialEq<T>, impl FAdd: Add<T>, impl FCopy: Copy<T>, impl FDrop: Drop<T>, >( self: @Tensor<T>, depth: usize, axis: Option<usize>, values: Tensor<T> ) -> Tensor<T> { let mut data = *self.data; let mut shape = *self.shape; let rank = shape.len(); let axis = match axis { Option::Some(val) => val, Option::None => 999 }; assert(((axis == 999) | (axis.into() <= rank)), 'axis out of dimensions'); let mut output_data = array![]; let mut output_size: Array<usize> = array![]; loop { match shape.pop_front() { Option::Some(size) => { output_size.append(*size); }, Option::None => { break; } }; }; output_size.append(depth.into()); loop { match data.pop_front() { Option::Some(outer_index) => { let mut fixed_number = *outer_index; if fixed_number.is_neg() { fixed_number = FixedTrait::<T, MAG>::new_unscaled(depth.try_into().unwrap(), false) + fixed_number } let mut inner_index = 0; while inner_index != depth { let ind = FixedTrait::< T, MAG >::new_unscaled(inner_index.try_into().unwrap(), false); if fixed_number == ind { output_data.append(*values.data.at(1)); } else { output_data.append(*values.data.at(0)); }; inner_index += 1; }; }, Option::None =>
{ break; } }; }; let mut output_tensor = TensorTrait::new(output_size.span(), output_data.span()); let mut tranpose_axes = array![]; if (axis != 999) & (axis.into() != rank) { let mut index: usize = 0; loop { let max_dim = output_size.len() - 1; if index.into() == max_dim { break (); }; if axis == index { tranpose_axes.append(max_dim.into()) } tranpose_axes.append(index.into()); index += 1; }; output_tensor = output_tensor.transpose(tranpose_axes.span()); } output_tensor } fn onehot< T, MAG, impl FFixed: FixedTrait<T, MAG>, impl FTensorTrait: TensorTrait<T>, impl FNumber: NumberTrait<T, MAG>, impl U32TryIntoMAG: TryInto<u32, MAG>, impl FPartialEq: PartialEq<T>, impl FAdd: Add<T>, impl FCopy: Copy<T>, impl FDrop: Drop<T>, >( self: @Tensor<T>, depth: usize, axis: Option<usize>, mut values: Span<usize>, ) -> Tensor<T> { assert(values.len() == 2, 'Wrong values dimensions'); let mut sizes = array![]; sizes.append(2); let mut first = *values.pop_front().unwrap(); let mut second = *values.pop_front().unwrap(); let mut data = array![]; data.append(FixedTrait::<T, MAG>::new_unscaled(first.try_into().unwrap(), false)); data.append(FixedTrait::<T, MAG>::new_unscaled(second.try_into().unwrap(), false)); let values = TensorTrait::new(sizes.span(), data.span()); onehot_encode(self, depth, axis, values) }
use orion::numbers::NumberTrait; use orion::operators::tensor::core::{Tensor, TensorTrait}; /// Cf: TensorTrait::optional_get_element docstring fn optional_get_element< T, MAG, impl TTensor: TensorTrait<T>, impl TNumberTrait: NumberTrait<T, MAG>, impl TCopy: Copy<T>, impl TDrop: Drop<T> >( mut z: Tensor<T>, index: usize ) -> Tensor<T> { let mut data_result: Array<T> = array![]; // use of match to get element within and out the array bound match z.data.get(index) { Option::Some(item) => { data_result.append((*item.unbox())); }, Option::None => {} }; TensorTrait::<T>::new(z.shape, data_result.span()) }
use orion::numbers::NumberTrait; use orion::operators::tensor::core::{Tensor, TensorTrait, unravel_index}; use orion::operators::tensor::helpers::{ broadcast_shape, broadcast_index_mapping, len_from_shape, check_compatibility }; /// Cf: TensorTrait::or docstring fn or< T, MAG, impl TNumber: NumberTrait<T, MAG>, impl UsizeFTensor: TensorTrait<usize>, impl TCopy: Copy<T>, impl TDrop: Drop<T> >( y: @Tensor<T>, z: @Tensor<T> ) -> Tensor<usize> { let broadcasted_shape = broadcast_shape(*y.shape, *z.shape); let mut result: Array<usize> = array![]; let num_elements = len_from_shape(broadcasted_shape); let mut n: usize = 0; while n != num_elements { let indices_broadcasted = unravel_index(n, broadcasted_shape); let indices_self = broadcast_index_mapping(*y.shape, indices_broadcasted); let indices_other = broadcast_index_mapping(*z.shape, indices_broadcasted); if NumberTrait::or(*(*y.data)[indices_self], *(*z.data)[indices_other]) { result.append(1); } else { result.append(0); } n += 1; }; TensorTrait::new(broadcasted_shape, result.span()) }
use orion::numbers::NumberTrait; use orion::operators::tensor::core::{Tensor, TensorTrait, unravel_index}; use orion::operators::tensor::helpers::{broadcast_shape, broadcast_index_mapping, len_from_shape}; /// Cf: TensorTrait::pow docstring fn pow< T, MAG, impl TNumber: NumberTrait<T, MAG>, impl TTensorTrait: TensorTrait<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T> >( y: @Tensor<T>, z: @Tensor<T> ) -> Tensor<T> { let broadcasted_shape = broadcast_shape(*y.shape, *z.shape); let mut result: Array<T> = array![]; let num_elements = len_from_shape(broadcasted_shape); let mut n: usize = 0; while n != num_elements { let indices_broadcasted = unravel_index(n, broadcasted_shape); let indices_self = broadcast_index_mapping(*y.shape, indices_broadcasted); let indices_other = broadcast_index_mapping(*z.shape, indices_broadcasted); result.append(NumberTrait::pow(*(*y.data)[indices_self], *(*z.data)[indices_other])); n += 1; }; TensorTrait::new(broadcasted_shape, result.span()) }
use core::integer; use alexandria_merkle_tree::merkle_tree::{pedersen::PedersenHasherImpl}; use orion::numbers::fixed_point::core::FixedTrait; use orion::numbers::NumberTrait; use orion::operators::tensor::core::{Tensor, TensorTrait}; use orion::operators::tensor::helpers::{reduce_output_shape, len_from_shape, combine_indices}; use orion::operators::tensor::math::{reduce_sum::accumulate_sum, arithmetic::div_downcast}; fn random_uniform_like< T, MAG, impl TTensor: TensorTrait<T>, impl TNumber: NumberTrait<T, MAG>, impl TAdd: Add<T>, impl TSub: Sub<T>, impl TMul: Mul<T>, impl TDiv: Div<T>, impl TRem: Rem<T>, impl TTensorAdd: Add<Tensor<T>>, impl TPartialOrd: PartialOrd<T>, impl TPartialEq: PartialEq<T>, impl TAddEq: AddEq<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>, >( tensor: Tensor<T>, high: Option<T>, low: Option<T>, seed: Option<usize> ) -> Tensor<T> { let mut seed: usize = match seed { Option::Some(seed) => seed, Option::None => NumberTrait::max_value(), }; let mut high = match high { Option::Some(high) => high, Option::None => NumberTrait::one(), }; let mut low = match low { Option::Some(low) => low, Option::None => NumberTrait::zero(), }; assert!(high > low, "high must be larger than low"); let res = tensor_get_state(tensor, seed, high, low); res } fn tensor_get_state< T, MAG, impl TTensor: TensorTrait<T>, impl TNumber: NumberTrait<T, MAG>, impl TAdd: Add<T>, impl TSub: Sub<T>, impl TMul: Mul<T>, impl TDiv: Div<T>, impl TRem: Rem<T>, impl TTensorAdd: Add<Tensor<T>>, impl TPartialOrd: PartialOrd<T>, impl TPartialEq: PartialEq<T>, impl TAddEq: AddEq<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>, >( tensor: Tensor<T>, mut seed: usize, high: T, low: T ) -> Tensor<T> { let mut data = array![]; let mut count = (tensor.data).len(); let mut i = 0; while count != i { let mut v =
NumberTrait::one(); v = hash_random_range(seed, low, high); let a: u64 = 1664525; let c: u64 = 1013904223; let m: u64 = 4294967295; let s: u64 = (a * seed.try_into().unwrap() + c) % m; seed = s.try_into().unwrap(); data.append(v); i += 1; }; TensorTrait::new(tensor.shape, data.span()) } fn hash_random_range< T, MAG, impl TNumber: NumberTrait<T, MAG>, impl TAdd: Add<T>, impl TSub: Sub<T>, impl TMul: Mul<T>, impl TDiv: Div<T>, impl TRem: Rem<T>, impl TPartialOrd: PartialOrd<T>, impl TPartialEq: PartialEq<T>, impl TAddEq: AddEq<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>, >( seed: usize, min: T, max: T ) -> T { let mut key = PedersenHasherImpl::new(); let hash: felt252 = key.hash(seed.into(), 1); let a: u128 = 4294967295; let b: u128 = match integer::u128s_from_felt252(hash) { integer::U128sFromFelt252Result::Narrow(x) => x, integer::U128sFromFelt252Result::Wide((x, _)) => x, } % a; let c: felt252 = b.into(); let rnd: T = NumberTrait::from_felt(c); let range = max - min + NumberTrait::one(); min + rnd % range }
use orion::numbers::NumberTrait; use orion::operators::tensor::core::{Tensor, TensorTrait}; fn range< T, MAG, impl TTensor: TensorTrait<T>, impl TNumber: NumberTrait<T, MAG>, impl TAdd: Add<T>, impl TSub: Sub<T>, impl TMul: Mul<T>, impl TPartialOrd: PartialOrd<T>, impl TAddEq: AddEq<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>, >( mut start: T, end: T, step: T ) -> Tensor<T> { let mut result: Array<T> = array![]; let zero: T = NumberTrait::zero(); while !(step >= zero && start >= end) && !(step <= zero && start <= end) { let v = start; result.append(v); start += step; }; let shape = array![result.len()]; TensorTrait::<T>::new(shape.span(), result.span()) }
use orion::numbers::NumberTrait; use orion::numbers::fixed_point::core::FixedTrait; use orion::operators::tensor::core::{Tensor, TensorTrait, ravel_index, unravel_index}; /// Cf: TensorTrait::reduce_sum docstring fn reduce_l1< T, MAG, impl TTensor: TensorTrait<T>, impl TNumber: NumberTrait<T, MAG>, impl TAddEq: AddEq<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>, >( self: @Tensor<T>, axis: usize, keepdims: bool ) -> Tensor<T> { let data_abs = self.abs(); data_abs.reduce_sum(Option::Some(array![axis.try_into().unwrap()].span()), Option::Some(keepdims), Option::Some(false)) }
use core::debug::PrintTrait; use orion::numbers::NumberTrait; use orion::numbers::fixed_point::core::FixedTrait; use orion::operators::tensor::core::{Tensor, TensorTrait, ravel_index, unravel_index}; fn square< T, MAG, impl TTensorTrait: TensorTrait<T>, impl TNumber: NumberTrait<T, MAG>, impl TMul: Mul<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>, >( self: @Tensor<T> ) -> Tensor<T> { let mut data = *self.data; let mut output_data = array![]; loop { match data.pop_front() { Option::Some(item) => { let ele = *item; output_data.append(ele * ele); }, Option::None => { break; } }; }; let tensor_square = TensorTrait::new(*self.shape, output_data.span()); tensor_square } /// Cf: TensorTrait::reduce_l2 docstring fn reduce_l2< T, MAG, impl TTensor: TensorTrait<T>, impl TNumber: NumberTrait<T, MAG>, impl TMul: Mul<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>, >( self: @Tensor<T>, axis: usize, keepdims: bool ) -> Tensor<T> { let tensor_square = square(self); let tensor_square_sum = tensor_square .reduce_sum( Option::Some(array![axis.try_into().unwrap()].span()), Option::Some(keepdims), Option::Some(false) ); tensor_square_sum.sqrt() } fn reduce_l2_complex< T, MAG, impl TTensor: TensorTrait<T>, impl TNumber: NumberTrait<T, MAG>, impl TMul: Mul<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>, impl TPrint: PrintTrait<T> >( self: @Tensor<T>, axis: usize, keepdims: bool ) -> Tensor<T> { let mut tensor_square = square(@self.abs()); let mut tensor_square_sum = tensor_square .reduce_sum( Option::Some(array![axis.try_into().unwrap()].span()), Option::Some(keepdims), Option::Some(false) ); tensor_square_sum.sqrt() }
use orion::numbers::NumberTrait; use orion::numbers::fixed_point::core::FixedTrait; use orion::operators::tensor::core::{Tensor, TensorTrait, ravel_index, unravel_index}; /// Cf: TensorTrait::reduce_sum_square docstring fn reduce_log_sum< T, MAG, impl TTensor: TensorTrait<T>, impl TNumber: NumberTrait<T, MAG>, impl TMul: Mul<T>, impl TAddEq: AddEq<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>, >( self: @Tensor<T>, axis: usize, keepdims: bool ) -> Tensor<T> { let tensor_square_sum = self .reduce_sum( Option::Some(array![axis.try_into().unwrap()].span()), Option::Some(keepdims), Option::Some(false) ); let tensor_square_sum_log = tensor_square_sum.log(); tensor_square_sum_log }
use core::option::OptionTrait; use core::array::ArrayTrait; use core::array::SpanTrait; use core::debug::PrintTrait; use orion::numbers::NumberTrait; use orion::operators::tensor::core::{Tensor, TensorTrait, ravel_index, unravel_index}; use orion::numbers::fixed_point::core::FixedTrait; use orion::operators::tensor::math::{exp::exp_upcast, arithmetic::div_downcast}; /// Cf: TensorTrait::reduce_log_sum_exp docstring // fn reduce_log_sum_exp_wide< // T, // TMAG, // W, // WMAG, // impl TIntoW: Into<T, W>, // impl WTryIntoT: TryInto<W, T>, // impl WCopy: Copy<W>, // impl WDrop: Drop<W>, // impl TCopy: Copy<T>, // impl TDrop: Drop<T>, // impl TDiv: Div<T>, // impl TTensor: TensorTrait<T>, // impl WTensor: TensorTrait<W>, // impl TFixed: FixedTrait<T, TMAG>, // impl WFixed: FixedTrait<W, WMAG> // >( // self: @Tensor<T>, axis: usize, keepdims: bool // ) -> Tensor<W> { // let tensor_exp: Tensor<W> = exp_upcast(*self); // let tensor_exp_log_sum = tensor_exp.reduce_log_sum(axis, keepdims); // return tensor_exp_log_sum; // } fn reduce_log_sum_exp< T, MAG, impl Tensor: TensorTrait<T>, impl TNumber: NumberTrait<T, MAG>, impl TMul: Mul<T>, impl TAddEq: AddEq<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>, >( self: @Tensor<T>, axis: usize, keepdims: bool ) -> Tensor<T> { let tensor_exp = self.exp(); let tensor_exp_log_sum = tensor_exp.reduce_log_sum(axis: axis, keepdims: keepdims); return tensor_exp_log_sum; }
use alexandria_sorting::bubble_sort; use alexandria_data_structures::array_ext::{SpanTraitExt}; use orion::numbers::fixed_point::core::FixedTrait; use orion::numbers::NumberTrait; use orion::operators::tensor::core::{Tensor, TensorTrait, ravel_index, unravel_index}; use orion::operators::tensor::helpers::{ reduce_output_shape, len_from_shape, combine_indices, get_all_axes }; fn reduce_mean< T, MAG, impl TTensor: TensorTrait<T>, impl TNumber: NumberTrait<T, MAG>, impl TDiv: Div<T>, impl TAddEq: AddEq<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T> >( self: @Tensor<T>, axes: Option<Span<usize>>, keepdims: Option<bool>, noop_with_empty_axes: Option<bool> ) -> Tensor<T> { let noop_with_empty_axes = match noop_with_empty_axes { Option::Some(noop_with_empty_axes) => noop_with_empty_axes, Option::None => false, }; let axes = match axes { Option::Some(axes) => { if (axes.len() == 0) { get_all_axes(*self.shape) } else { assert(axes.len() == axes.unique().len(), 'duplicated axis.'); let mut axes_arr = array![]; let mut copy_axes = axes; loop { match copy_axes.pop_front() { Option::Some(axis) => { axes_arr.append(*axis); }, Option::None => { break; } }; }; let sorted_axes = bubble_sort::bubble_sort_elements(axes_arr, true).span(); sorted_axes } }, Option::None => { if noop_with_empty_axes { return *self; } get_all_axes(*self.shape) }, }; let keepdims = match keepdims { Option::Some(keepdims) => keepdims, Option::None => true, }; let mut axis_c = 0; let mut copy_axes = axes; let mut shape = *self.shape; let mut data = *self.data; loop { match copy_axes.pop_fron
t() { Option::Some(axis) => { if (shape.len() == 1) { let current_mean = accumulate_mean::<T>(data, shape, shape, 0); shape = array![].span(); data = array![current_mean].span(); break (); } let mut temp_data = array![]; let mut temp_shape = reduce_output_shape(shape, *axis - axis_c, false); let data_len = len_from_shape(temp_shape); let mut index: usize = 0; while index != data_len { let indices = unravel_index(index, temp_shape); let current_mean = accumulate_mean::<T>(data, shape, indices, *axis - axis_c); temp_data.append(current_mean); index += 1; }; shape = temp_shape; data = temp_data.span(); axis_c += 1; }, Option::None => { break; } }; }; let mut axes_copy = axes; if keepdims { shape = *self.shape; loop { match axes_copy.pop_front() { Option::Some(axis) => { shape = reduce_output_shape(shape, *axis, true); }, Option::None => { break; } }; }; TensorTrait::<T>::new(shape, data) } else { TensorTrait::<T>::new(shape, data) } } fn accumulate_mean< T, MAG, impl TNumber: NumberTrait<T, MAG>, impl TDiv: Div<T>, impl TAddEq: AddEq<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T> >( mut input_data: Span<T>, input_shape: Span<usize>, output_indices: Span<usize>, axis: usize ) -> T { let axis_len = *(input_shape)[axis]; let mut acc: T = NumberTrait::zero(); let mut axis_index: T = NumberTrait::zero(); let mut axis_indexu32 = 0; if (input_shape).len() > 1 { while axis_indexu32 != axis_len { let input_indices = combine_indices(output_indices, a
xis_indexu32, axis); let input_index = ravel_index(input_shape, input_indices); let ele = *(input_data)[input_index]; acc += ele; axis_index += NumberTrait::one(); axis_indexu32 += 1; }; } else { loop { match input_data.pop_front() { Option::Some(item) => { acc += *item; axis_index += NumberTrait::one(); axis_indexu32 += 1; }, Option::None => { break; } }; }; } acc / axis_index }
use alexandria_sorting::bubble_sort; use alexandria_data_structures::array_ext::{SpanTraitExt}; use orion::numbers::fixed_point::core::FixedTrait; use orion::numbers::NumberTrait; use orion::operators::tensor::core::{Tensor, TensorTrait, ravel_index, unravel_index}; use orion::operators::tensor::helpers::{ reduce_output_shape, len_from_shape, combine_indices, get_all_axes }; fn reduce_min< T, MAG, impl TTensor: TensorTrait<T>, impl TNumber: NumberTrait<T, MAG>, impl TPartialOrd: PartialOrd<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T> >( self: @Tensor<T>, axes: Option<Span<usize>>, keepdims: Option<bool>, noop_with_empty_axes: Option<bool> ) -> Tensor<T> { let noop_with_empty_axes = match noop_with_empty_axes { Option::Some(noop_with_empty_axes) => noop_with_empty_axes, Option::None => false, }; let axes = match axes { Option::Some(axes) => { if (axes.len() == 0) { get_all_axes(*self.shape) } else { assert(axes.len() == axes.unique().len(), 'duplicated axis.'); let mut axes_arr: Array<usize> = array![]; let mut copy_axes = axes; loop { match copy_axes.pop_front() { Option::Some(axis) => { axes_arr.append(*axis); }, Option::None => { break; } }; }; let sorted_axes = bubble_sort::bubble_sort_elements(axes_arr, true).span(); sorted_axes } }, Option::None => { if noop_with_empty_axes { return *self; } get_all_axes(*self.shape) }, }; let keepdims = match keepdims { Option::Some(keepdims) => keepdims, Option::None => true, }; let mut axis_c = 0; let mut copy_axes = axes; let mut shape = *self.shape; let mut data = *self.data; loop { match copy_axes.pop_fron
t() { Option::Some(axis) => { if (shape.len() == 1) { let current_min = accumulate_min::<T>(data, shape, shape, 0); shape = array![].span(); data = array![current_min].span(); break (); } let mut temp_data = array![]; let mut temp_shape = reduce_output_shape(shape, *axis - axis_c, false); let data_len = len_from_shape(temp_shape); let mut index: usize = 0; while index != data_len { let indices = unravel_index(index, temp_shape); let current_min = accumulate_min::<T>(data, shape, indices, *axis - axis_c); temp_data.append(current_min); index += 1; }; shape = temp_shape; data = temp_data.span(); axis_c += 1; }, Option::None => { break; } }; }; let mut axes_copy = axes; if keepdims { shape = *self.shape; loop { match axes_copy.pop_front() { Option::Some(axis) => { shape = reduce_output_shape(shape, *axis, true); }, Option::None => { break; } }; }; TensorTrait::<T>::new(shape, data) } else { TensorTrait::<T>::new(shape, data) } } fn accumulate_min< T, MAG, impl TNumber: NumberTrait<T, MAG>, impl TPartialOrd: PartialOrd<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T> >( mut input_data: Span<T>, input_shape: Span<usize>, output_indices: Span<usize>, axis: usize ) -> T { let axis_len = *(input_shape)[axis]; let mut min: T = NumberTrait::max_value(); let mut axis_index = 0; if (input_shape).len() > 1 { while axis_index != axis_len { let input_indices = combine_indices(output_indices, axis_index, axis); let input_index = ravel_index(input_shap
e, input_indices); let ele = *(input_data)[input_index]; if (ele < min) { min = ele; } axis_index += 1; }; } else { loop { match input_data.pop_front() { Option::Some(item) => { if (*item < min) { min = *item; } }, Option::None => { break; } }; }; } min }
use orion::numbers::NumberTrait; use orion::operators::tensor::core::{Tensor, TensorTrait, ravel_index, unravel_index}; use orion::operators::tensor::helpers::{reduce_output_shape, len_from_shape, combine_indices}; fn reduce_prod< T, MAG, impl TTensor: TensorTrait<T>, impl TNumber: NumberTrait<T, MAG>, impl TAddEq: AddEq<T>, impl TMulEq: MulEq<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T> >( self: @Tensor<T>, axis: usize, keepdims: bool ) -> Tensor<T> { let mut output_data = array![]; if (*self.shape).len() == 1 { assert(axis == 0, 'axis out of dimensions'); let current_prod = accumulate_production::<T>(*self.data, *self.shape, *self.shape, axis); output_data.append(current_prod); let mut output_shape = array![]; output_shape.append(1); return TensorTrait::new(output_shape.span(), output_data.span()); } else { assert(axis <= (*self.shape).len(), 'axis out of dimensions'); let output_shape = reduce_output_shape(*self.shape, axis, false); let output_data_len = len_from_shape(output_shape); let mut index: usize = 0; while index != output_data_len { let output_indices = unravel_index(index, output_shape); let current_sum = accumulate_production::< T >(*self.data, *self.shape, output_indices, axis); output_data.append(current_sum); index += 1; }; if keepdims { let output_shape = reduce_output_shape(*self.shape, axis, true); TensorTrait::<T>::new(output_shape, output_data.span()) } else { TensorTrait::<T>::new(output_shape, output_data.span()) } } } fn accumulate_production< T, MAG, impl TN
umber: NumberTrait<T, MAG>, impl TAddEq: AddEq<T>, impl TMulEq: MulEq<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T> >( mut input_data: Span<T>, input_shape: Span<usize>, output_indices: Span<usize>, axis: usize ) -> T { let axis_len = *(input_shape)[axis]; let mut acc: T = NumberTrait::one(); let mut axis_index: usize = 0; if (input_shape).len() > 1 { loop { if axis_index == axis_len { break (); } let input_indices = combine_indices(output_indices, axis_index, axis); let input_index = ravel_index(input_shape, input_indices); let ele = *(input_data)[input_index]; acc *= ele; axis_index += 1; }; } else { loop { match input_data.pop_front() { Option::Some(item) => { acc *= *item; }, Option::None => { break; } }; }; } return acc; }
use core::option::OptionTrait; use core::traits::TryInto; use alexandria_sorting::bubble_sort; use alexandria_data_structures::array_ext::{SpanTraitExt}; use orion::numbers::fixed_point::core::FixedTrait; use orion::numbers::NumberTrait; use orion::operators::tensor::core::{Tensor, TensorTrait, ravel_index, unravel_index}; use orion::operators::tensor::helpers::{ reduce_output_shape, len_from_shape, combine_indices, get_all_axes }; fn reduce_sum< T, MAG, impl TTensor: TensorTrait<T>, impl TNumber: NumberTrait<T, MAG>, impl TCopy: Copy<T>, impl TDrop: Drop<T> >( self: @Tensor<T>, axes: Option<Span<i32>>, keepdims: Option<bool>, noop_with_empty_axes: Option<bool> ) -> Tensor<T> { let noop_with_empty_axes = match noop_with_empty_axes { Option::Some(noop_with_empty_axes) => noop_with_empty_axes, Option::None => false, }; let axes = match axes { Option::Some(axes) => { if (axes.len() == 0) { get_all_axes(*self.shape) } else { assert(axes.len() == axes.unique().len(), 'duplicated axis.'); let mut axes_arr: Array<usize> = array![]; let mut copy_axes = axes.clone(); loop { match copy_axes.pop_front() { Option::Some(axis) => { let adjusted_axis = if *axis < 0 { ((*self.shape).len().try_into().unwrap() + *axis) .try_into() .unwrap() } else { (*axis).try_into().unwrap() }; axes_arr.append(adjusted_axis); }, Option::None => { break; } }; }; let sorted_axes = bubble_sort::bubble_sort_elements(axes_arr, true).span();
sorted_axes } }, Option::None => { if noop_with_empty_axes { return *self; } get_all_axes(*self.shape) }, }; let keepdims = match keepdims { Option::Some(keepdims) => keepdims, Option::None => true, }; let mut axis_c = 0; let mut copy_axes = axes.clone(); let mut shape = *self.shape; let mut data = *self.data; loop { match copy_axes.pop_front() { Option::Some(axis) => { if (shape.len() == 1) { let current_sum = accumulate_sum::<T>(data, shape, shape, 0); shape = array![].span(); data = array![current_sum].span(); break (); } let mut temp_data = array![]; let mut temp_shape = reduce_output_shape(shape, *axis - axis_c, false); let data_len = len_from_shape(temp_shape); let mut index: usize = 0; while index != data_len { let indices = unravel_index(index, temp_shape); let current_sum = accumulate_sum::<T>(data, shape, indices, *axis - axis_c); temp_data.append(current_sum); index += 1; }; shape = temp_shape; data = temp_data.span(); axis_c += 1; }, Option::None => { break; } }; }; let mut axes_copy = axes.clone(); if keepdims { shape = *self.shape; loop { match axes_copy.pop_front() { Option::Some(axis) => { shape = reduce_output_shape(shape, *axis, true); }, Option::None => { break; } }; }; TensorTrait::<T>::new(shape, data) } else { TensorTrait::<T>::new(shape, data) } } fn accumulate_sum< T, MAG, impl TNumber: NumberTrait<T, MAG>, impl TCopy: Copy<T>, impl TD
rop: Drop<T> >( mut input_data: Span<T>, input_shape: Span<usize>, output_indices: Span<usize>, axis: usize ) -> T { let axis_len = *(input_shape)[axis]; let mut sum: T = NumberTrait::zero(); let mut axis_index = 0; if (input_shape).len() > 1 { while axis_index != axis_len { let input_indices = combine_indices(output_indices, axis_index, axis); let input_index = ravel_index(input_shape, input_indices); let ele = *(input_data)[input_index]; sum = NumberTrait::add(sum, ele); axis_index += 1; }; } else { loop { match input_data.pop_front() { Option::Some(item) => sum = NumberTrait::add(sum, *item), Option::None => { break; } }; }; } sum }
use orion::numbers::NumberTrait; use orion::operators::tensor::core::{Tensor, TensorTrait, ravel_index, unravel_index}; use orion::numbers::fixed_point::core::FixedTrait; fn square< T, MAG, impl FTensorTrait: TensorTrait<T>, impl FNumber: NumberTrait<T, MAG>, impl TMul: Mul<T>, impl FCopy: Copy<T>, impl FDrop: Drop<T>, >( self: @Tensor<T> ) -> Tensor<T> { let mut data = *self.data; let mut output_data = array![]; loop { match data.pop_front() { Option::Some(item) => { let ele = *item; output_data.append(ele * ele); }, Option::None => { break; } }; }; let tensor_square = TensorTrait::new(*self.shape, output_data.span()); tensor_square } /// Cf: TensorTrait::reduce_sum_square docstring fn reduce_sum_square< T, MAG, impl TTensor: TensorTrait<T>, impl TNumber: NumberTrait<T, MAG>, impl TMul: Mul<T>, impl TAddEq: AddEq<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>, >( self: @Tensor<T>, axis: usize, keepdims: bool ) -> Tensor<T> { let tensor_square = square(self); let tensor_square_sum = tensor_square .reduce_sum( Option::Some(array![axis.try_into().unwrap()].span()), Option::Some(keepdims), Option::Some(false) ); tensor_square_sum }
use alexandria_sorting::bubble_sort; use orion::numbers::NumberTrait; use orion::operators::tensor::{ TensorTrait, Tensor, I8Tensor, I32Tensor, U32Tensor, FP16x16Tensor, BoolTensor }; use orion::numbers::{FP16x16, FP16x16Impl, FP32x32, FP32x32Impl, FixedTrait}; enum MODE { NEAREST, LINEAR, CUBIC, } enum NEAREST_MODE { ROUND_PREFER_FLOOR, ROUND_PREFER_CEIL, FLOOR, CEIL } enum KEEP_ASPECT_RATIO_POLICY { STRETCH, NOT_LARGER, NOT_SMALLER } enum TRANSFORMATION_MODE { HALF_PIXEL, ALIGN_CORNERS, ASYMMETRIC, TF_CROP_AND_RESIZE, PYTORCH_HALF_PIXEL, HALF_PIXEL_SYMMETRIC } fn resize< T, MAG, +TensorTrait<T>, +NumberTrait<T, MAG>, +PartialOrd<T>, +PartialEq<T>, +Copy<T>, +Drop<T>, +TryInto<T, usize>, +Into<usize, MAG>, +AddEq<T>, +Add<T>, +Div<T>, +Mul<T>, +Sub<T>, >( self: @Tensor<T>, roi: Option<Tensor<T>>, scales: Option<Span<T>>, sizes: Option<Span<usize>>, antialias: Option<usize>, axes: Option<Span<usize>>, coordinate_transformation_mode: Option<TRANSFORMATION_MODE>, cubic_coeff_a: Option<T>, exclude_outside: Option<bool>, extrapolation_value: Option<T>, keep_aspect_ratio_policy: Option<KEEP_ASPECT_RATIO_POLICY>, mode: Option<MODE>, nearest_mode: Option<NEAREST_MODE>, ) -> Tensor<T> { let output = interpolate_nd( self, antialias, mode, nearest_mode, scales, sizes, roi, keep_aspect_ratio_policy, exclude_outside, coordinate_transformation_mode, extrapolation_value, axes, cubic_coeff_a ); output } fn interpolate_nd< T, MAG, +TensorTrait<T>, +NumberTrait<T, MAG>, +PartialOrd<T>, +PartialEq<T>, +Copy<T>, +Drop<T>, +TryInto<T, usize>, +Into<usize, MAG>, +AddEq<T>, +Add<T>, +Div<T>, +Mul<T>, +Sub<T>, >( data: @Tensor<T>, antialias: Option<usize>, mode:
Option<MODE>, nearest_mode: Option<NEAREST_MODE>, scale_factors: Option<Span<T>>, output_size: Option<Span<usize>>, roi: Option<Tensor<T>>, keep_aspect_ratio_policy: Option<KEEP_ASPECT_RATIO_POLICY>, exclude_outside: Option<bool>, coordinate_transformation_mode: Option<TRANSFORMATION_MODE>, extrapolation_value: Option<T>, axes: Option<Span<usize>>, cubic_coeff_a: Option<T>, ) -> Tensor<T> { let mode = match mode { Option::Some(mode) => mode, Option::None => { MODE::NEAREST }, }; let keep_aspect_ratio_policy = match keep_aspect_ratio_policy { Option::Some(keep_aspect_ratio_policy) => keep_aspect_ratio_policy, Option::None => { KEEP_ASPECT_RATIO_POLICY::STRETCH }, }; let exclude_outside = match exclude_outside { Option::Some(exclude_outside) => exclude_outside, Option::None => { false }, }; let extrapolation_value = match extrapolation_value { Option::Some(extrapolation_value) => extrapolation_value, Option::None => { NumberTrait::zero() }, }; if output_size.is_none() && scale_factors.is_none() { core::panic_with_felt252('size and scale are None'); } let r = (*data).shape.len(); let (axes, scale_factors, output_size, roi) = match axes { Option::Some(axes) => { let mut scale_factors = match scale_factors { Option::Some(scale_factors) => { let mut new_scale_factors = ArrayTrait::<T>::new(); let mut d = 0; while d != r { let mut i = 0; let item = loop { if i == axes.len() { break NumberTrait::one(); } if *axes.at(i) == d { break *scale_factors.at(i); } i += 1; };
new_scale_factors.append(item); d += 1; }; Option::Some(new_scale_factors.span()) }, Option::None => { Option::None }, }; let mut output_size = match output_size { Option::Some(output_size) => { let mut new_output_size = array![]; let mut d = 0; while d != r { let mut i = 0; let item = loop { if i == axes.len() { break *(*data).shape.at(d); } if *axes.at(i) == d { break *output_size.at(i); } i += 1; }; new_output_size.append(item); d += 1; }; Option::Some(new_output_size.span()) }, Option::None => { Option::None }, }; let mut roi = match roi { Option::Some(roi) => { let mut new_roi_data = array![]; let naxes = axes.len(); let mut d = 0; while d != r { let mut i = 0; let item = loop { if i == axes.len() { break NumberTrait::zero(); } if *axes.at(i) == d { break *roi.data.at(i); } i += 1; }; new_roi_data.append(item); d += 1; }; let mut d = 0; while d != r { let mut i = 0; let item =
loop { if i == axes.len() { break NumberTrait::one(); } if *axes.at(i) == d { break *roi.data.at(i + naxes); } i += 1; }; new_roi_data.append(item); d += 1; }; let mut shape = ArrayTrait::new(); shape.append(r * 2); Option::Some(TensorTrait::new(shape.span(), new_roi_data.span())) }, Option::None => { Option::None }, }; (axes, scale_factors, output_size, roi) }, Option::None => { let mut axes = array![]; let mut i = 0; while i != r { axes.append(i); i += 1; }; (axes.span(), scale_factors, output_size, roi) } }; let (mut output_size, mut scale_factors) = match output_size { Option::Some(output_size) => { let mut scale_factors: Array<T> = array![]; let mut i = 0; while i != r { let output_size_i: T = NumberTrait::new_unscaled( (*output_size.at(i)).into(), false ); let data_shape_i: T = NumberTrait::new_unscaled( (*(*data).shape.at(i)).into(), false ); scale_factors.append(output_size_i / data_shape_i); i += 1; }; let (mut output_size, mut scale_factors) = match keep_aspect_ratio_policy { KEEP_ASPECT_RATIO_POLICY::STRETCH => { (output_size, scale_factors.span()) }, KEEP_ASPECT_RATIO_POLICY::NOT_LARGER => { let mut scale = *scale_factors.at(*axes.at(0)); let mut i = 1; while i != axes.len() {
if scale > *scale_factors.at(*axes.at(i)) { scale = *scale_factors.at(*axes.at(i)); } i += 1; }; let mut scale_factors: Array<T> = array![]; let mut d = 0; while d != r { let mut i = 0; let item = loop { if i == axes.len() { break NumberTrait::one(); } if *axes.at(i) == d { break scale; } i += 1; }; scale_factors.append(item); d += 1; }; let mut output_size = array![]; let mut d = 0; while d != r { let mut i = 0; let item = loop { if i == axes.len() { break *(*data).shape.at(d); } if *axes.at(i) == d { break NumberTrait::round( scale * NumberTrait::new_unscaled( (*(*data).shape.at(d)).into(), false ) ) .try_into() .unwrap(); } i += 1; }; output_size.append(item); d += 1; }; (output_size.span(), scale_factors.span()) }, KEEP_ASPECT_RATIO_POLICY::NOT_SMALLER => { let
mut scale = *scale_factors.at(*axes.at(0)); let mut i = 1; while i != axes.len() { if scale < *scale_factors.at(*axes.at(i)) { scale = *scale_factors.at(*axes.at(i)); } i += 1; }; let mut scale_factors: Array<T> = array![]; let mut d = 0; while d != r { let mut i = 0; let item = loop { if i == axes.len() { break NumberTrait::one(); } if *axes.at(i) == d { break scale; } i += 1; }; scale_factors.append(item); d += 1; }; let mut output_size = array![]; let mut d = 0; while d != r { let mut i = 0; let item = loop { if i == axes.len() { break *(*data).shape.at(d); } if *axes.at(i) == d { break NumberTrait::round( scale * NumberTrait::new_unscaled( (*(*data).shape.at(d)).into(), false ) ) .try_into() .unwrap(); } i += 1; }; output_size.append(item); d += 1; }; (output_size.span(),
scale_factors.span()) }, }; (output_size, scale_factors) }, Option::None => { let mut output_size: Array<usize> = array![]; let scale_factors = match scale_factors { Option::Some(scale_factors) => scale_factors, Option::None => { core::panic_with_felt252('size and scale None') }, }; let mut i = 0; while i != scale_factors.len() { let item = *scale_factors.at(i) * NumberTrait::new_unscaled((*(*(data).shape).at(i)).into(), false); output_size.append(item.try_into().unwrap()); i += 1; }; (output_size.span(), scale_factors) }, }; let mut ret: Array<Span<usize>> = array![]; let mut i = 0; while i != output_size.len() { let mut temp = ArrayTrait::<usize>::new(); let mut j = 0; while j != *output_size.at(i) { temp.append(j); j += 1; }; ret.append(temp.span()); i += 1; }; let mut ret = cartesian(ret.span()); let mut ret_data = array![]; loop { match ret.pop_front() { Option::Some(X) => { let mut x: Array<T> = array![]; let mut i = 0; while i != X.len() { x.append(NumberTrait::new_unscaled((*X.at(i)).into(), false)); i += 1; }; let mut x = x.span(); let item = interpolate_nd_with_x( data, (*data).shape.len(), scale_factors, output_size, x, antialias, mode, nearest_mode, roi, extrapolation_value, coordinate_transformation_mode, exclude_outside, cubic_coeff_a
); ret_data.append(*item.data.at(0)); }, Option::None => { break; } } }; let mut shape = array![]; shape.append(ret_data.len()); TensorTrait::new(output_size, ret_data.span()) } fn cartesian(mut arrays: Span<Span<usize>>,) -> Array<Array<usize>> { let mut n = 1; let mut i = arrays.len() - 1; loop { n = n * (*(arrays.at(i))).len(); if i == 0 { break; } i -= 1; }; let mut i = 0; let mut size_arrays = array![]; while i != arrays.len() { size_arrays.append((*(arrays.at(i))).len()); i += 1; }; let size_arrays = size_arrays.span(); let mut output_arrays = array![]; let mut m = n; let mut i = 0; while i != arrays.len() { m = m / (*(arrays.at(i))).len(); let mut out = repeat(*(arrays.at(i)), m); out = repeat_2(out, size_arrays, i); output_arrays.append(out); i += 1; }; let output_arrays = output_arrays.span(); let mut i = 0; let mut ret = array![]; while i != n { let mut j = 0; let mut x = array![]; while j != arrays.len() { x.append(*(output_arrays.at(j)).at(i)); j += 1; }; ret.append(x); i += 1; }; ret } fn repeat_2(mut array: Array<usize>, size_array: Span<usize>, index: usize) -> Array<usize> { let mut size = array.len(); let mut i = 0; while i != index { let mut j = 1; while j != *size_array.at(index - 1 - i) { let mut k = 0; while k != size { array.append(*array.at(k)); k += 1; }; j += 1; }; size = size * *size_array.at(index - 1 - i); i += 1; }; array } fn repeat(array: Span<usize>, m: usize,) -> Array<usize> { let mut out = array![]; let mut j = 0; while j != array.len() { let mut k = 0; while k != m {
out.append(*array.at(j)); k += 1; }; j += 1; }; out } fn interpolate_nd_with_x< T, MAG, +TensorTrait<T>, +NumberTrait<T, MAG>, +PartialOrd<T>, +PartialEq<T>, +Copy<T>, +Drop<T>, +TryInto<T, usize>, +Into<usize, MAG>, +AddEq<T>, +Add<T>, +Div<T>, +Mul<T>, +Sub<T>, >( data: @Tensor<T>, n: usize, mut scale_factor: Span<T>, mut output_size: Span<usize>, mut x: Span<T>, antialias: Option<usize>, mode: MODE, nearest_mode: Option<NEAREST_MODE>, roi: Option<Tensor<T>>, extrapolation_value: T, coordinate_transformation_mode: Option<TRANSFORMATION_MODE>, exclude_outside: bool, cubic_coeff_a: Option<T>, ) -> Tensor<T> { if n == 1 { return interpolate_1d_with_x( data, *scale_factor.at(0), *output_size.at(0), *x.at(0), antialias, mode, nearest_mode, roi, extrapolation_value, coordinate_transformation_mode, exclude_outside, cubic_coeff_a ); } let mut res1d = array![]; let scale_factor_zero = match scale_factor.pop_front() { Option::Some(item) => { *item }, Option::None => core::panic_with_felt252('scale factor empty') }; let output_size_zero = match output_size.pop_front() { Option::Some(item) => { *item }, Option::None => core::panic_with_felt252('output_size empty') }; let x_zero = match x.pop_front() { Option::Some(item) => { *item }, Option::None => core::panic_with_felt252('x empty') }; let reduced_roi = match roi { Option::Some(roi) => { let mut reduced_roi = ArrayTrait::new(); let mut reduced_roi_shape = ArrayTrait::new(); reduced_roi_shape.append(roi.data.len() - 2); let mut i = 1; while i != 2 * n { if i != n { re
duced_roi.append(*roi.data.at(i)); } i += 1; }; Option::Some(TensorTrait::new(reduced_roi_shape.span(), reduced_roi.span())) }, Option::None => { Option::None } }; let mut i = 0; while i != *(*data).shape.at(0) { let data = get_row_n(data, i); let mut r = interpolate_nd_with_x( @data, n - 1, scale_factor, output_size, x, antialias, mode, nearest_mode, reduced_roi, extrapolation_value, coordinate_transformation_mode, exclude_outside, cubic_coeff_a ); loop { match r.data.pop_front() { Option::Some(item) => { res1d.append(*item); }, Option::None => { break; } } }; i += 1; }; let mut shape = array![]; shape.append(res1d.len()); let res1d = TensorTrait::new(shape.span(), res1d.span()); let reduced_roi = match roi { Option::Some(roi) => { let mut reduced_roi = array![]; let mut reduced_roi_shape = array![]; reduced_roi_shape.append(2); reduced_roi.append(*roi.data.at(0)); reduced_roi.append(*roi.data.at(n)); Option::Some(TensorTrait::new(reduced_roi_shape.span(), reduced_roi.span())) }, Option::None => { Option::None } }; let a = interpolate_1d_with_x( @res1d, scale_factor_zero, output_size_zero, x_zero, antialias, mode, nearest_mode, reduced_roi, extrapolation_value, coordinate_transformation_mode, exclude_outside, cubic_coeff_a ); a } fn get_row_n<T, +TensorTrait<T>, +Copy<T>, +Drop<T>,>( data: @Tensor<T>, index: usize, ) -> Tensor<T> { let mut output_data = array![]; let mut output_shape = array![]; let mu
t stride_output = 1; let mut i = 0; while i != (*data).shape.len() { if i != 0 { output_shape.append(*(*data).shape.at(i)); stride_output = stride_output * *(*data).shape.at(i); } i += 1; }; let mut i = 0; while i != stride_output { output_data.append(*(*data).data.at(index * stride_output + i)); i += 1; }; TensorTrait::new(output_shape.span(), output_data.span()) } fn interpolate_1d_with_x< T, MAG, +TensorTrait<T>, +NumberTrait<T, MAG>, +PartialOrd<T>, +PartialEq<T>, +Copy<T>, +Drop<T>, +TryInto<T, usize>, +Into<usize, MAG>, +AddEq<T>, +Add<T>, +Div<T>, +Mul<T>, +Sub<T>, >( data: @Tensor<T>, scale_factor: T, output_width_int: usize, x: T, antialias: Option<usize>, mode: MODE, nearest_mode: Option<NEAREST_MODE>, roi: Option<Tensor<T>>, extrapolation_value: T, coordinate_transformation_mode: Option<TRANSFORMATION_MODE>, exclude_outside: bool, cubic_coeff_a: Option<T>, ) -> Tensor<T> { let coordinate_transformation_mode = match coordinate_transformation_mode { Option::Some(coordinate_transformation_mode) => coordinate_transformation_mode, Option::None => { TRANSFORMATION_MODE::HALF_PIXEL }, }; let input_width = (*data).data.len(); let output_width = (scale_factor * NumberTrait::new_unscaled((input_width).into(), false)); let x_ori: T = match coordinate_transformation_mode { TRANSFORMATION_MODE::HALF_PIXEL => { (x + NumberTrait::half()) / scale_factor - NumberTrait::half() }, TRANSFORMATION_MODE::ALIGN_CORNERS => { let mut x_ori = NumberTrait::zero(); if output_width != NumberTrait::one() { x_ori = x * (NumberTrait::new_unscaled(input_width.into(), false) - NumberTrait::one()) / (output_width - NumberTrait::one()); } x_ori },
TRANSFORMATION_MODE::ASYMMETRIC => { x / scale_factor }, TRANSFORMATION_MODE::TF_CROP_AND_RESIZE => { let x_ori = match roi { Option::Some(roi) => { let mut x_ori = if output_width == NumberTrait::one() { (*roi.data.at(1) - *roi.data.at(0)) * (NumberTrait::new_unscaled(input_width.into(), false) - NumberTrait::one()) / (NumberTrait::one() + NumberTrait::one()) } else { x * (*roi.data.at(1) - *roi.data.at(0)) * (NumberTrait::new_unscaled(input_width.into(), false) - NumberTrait::one()) / (output_width - NumberTrait::one()) }; x_ori = x_ori + *roi.data.at(0) * (NumberTrait::new_unscaled(input_width.into(), false) - NumberTrait::one()); if x_ori < NumberTrait::zero() || x_ori > (NumberTrait::new_unscaled(input_width.into(), false) - NumberTrait::one()) { let mut ret = ArrayTrait::new(); let mut shape = ArrayTrait::new(); shape.append(1); ret.append(extrapolation_value); return TensorTrait::new(shape.span(), ret.span()); }; x_ori }, Option::None => { core::panic_with_felt252('roi cannot be None.') }, }; x_ori }, TRANSFORMATION_MODE::PYTORCH_HALF_PIXEL => { if output_width == NumberTrait::one() { NumberTrait::neg(NumberTrait::<T>::half()) } else { (x + NumberTrait::half()) / scale_factor - NumberTrait::half()
} }, TRANSFORMATION_MODE::HALF_PIXEL_SYMMETRIC => { let adjustement: T = NumberTrait::new_unscaled(output_width_int.into(), false) / output_width; let center: T = NumberTrait::new_unscaled(input_width.into(), false) / (NumberTrait::one() + NumberTrait::one()); let offset = center * (NumberTrait::one() - adjustement); offset + (x + NumberTrait::half()) / scale_factor - NumberTrait::half() }, }; let x_ori_int = x_ori.floor(); let ratio = if x_ori_int.try_into().unwrap() == x_ori { NumberTrait::one() } else { x_ori - x_ori_int.try_into().unwrap() }; let mut coeffs = match mode { MODE::NEAREST => { let coeffs = match antialias { Option::Some => core::panic_with_felt252('antialias not for mode NEAREST'), Option::None => { nearest_coeffs(ratio, nearest_mode) }, }; coeffs }, MODE::LINEAR => { let coeffs = match antialias { Option::Some(antialias) => { let coeffs = if antialias == 0 { linear_coeffs(ratio) } else { linear_coeffs_antialias(ratio, scale_factor) }; coeffs }, Option::None => { linear_coeffs(ratio) }, }; coeffs }, MODE::CUBIC => { let coeffs = match antialias { Option::Some => { cubic_coeffs_antialias(ratio, scale_factor, cubic_coeff_a) }, Option::None => { cubic_coeffs(ratio, cubic_coeff_a) }, }; coeffs }, }; let n = coeffs.data.len(); let (idxes, points) = get_neighbor(x_ori, n, data); if exclude_outside { let mut coeffs_exclude_outside: Array<T> = array![]; let mut sum = NumberTrait::zero(); let mut i = 0; while i != idx
es.data.len() { if *idxes.data.at(i) { coeffs_exclude_outside.append(NumberTrait::zero()); sum += NumberTrait::zero(); } else { coeffs_exclude_outside.append(*coeffs.data.at(i)); sum += *coeffs.data.at(i); } i += 1; }; let mut coeff_div: Array<T> = array![]; let mut i = 0; while i != n { coeff_div.append(*coeffs_exclude_outside.at(i) / sum); i += 1; }; coeffs = TensorTrait::new(coeffs.shape, coeff_div.span()); } TensorTrait::matmul(@coeffs, @points) } fn get_neighbor< T, MAG, +TensorTrait<T>, +NumberTrait<T, MAG>, +PartialOrd<T>, +PartialEq<T>, +Copy<T>, +Drop<T>, +TryInto<T, usize>, +Into<usize, MAG>, +AddEq<T>, +Add<T>, +Div<T>, +Mul<T>, +Sub<T>, >( mut x: T, n: usize, data: @Tensor<T>, ) -> (Tensor<bool>, Tensor<T>) { let pad_width: usize = NumberTrait::ceil( NumberTrait::new_unscaled(n.into(), false) / (NumberTrait::<T>::one() + NumberTrait::<T>::one()) ) .try_into() .unwrap(); let mut padded = array![]; let mut i = 0; while i != pad_width { padded.append(*(*data).data.at(0)); i += 1; }; let mut i = 0; while i != (*data).data.len() { padded.append(*(*data).data.at(i)); i += 1; }; let mut i = 0; while i != pad_width { padded.append(*(*data).data.at((*data).data.len() - 1)); i += 1; }; x = x + NumberTrait::new_unscaled(pad_width.into(), false); let mut idxes = get_neighbor_idxes(x, n, padded.len()); let mut idxes_centered = array![]; let mut ret = array![]; let mut i = 0; while i != idxes.data.len() { ret.append(*padded.at(*idxes.data.at(i))); if *idxes.data.at(i) >= pad_width { if (*idxes.data.at(i) - pad_width) >= (*data).data.len() { idxes_centered.
append(true); } else { idxes_centered.append(false); } } else { idxes_centered.append(true); } i += 1; }; let mut shape = array![]; shape.append(idxes.data.len()); ( TensorTrait::new(shape.span(), idxes_centered.span()), TensorTrait::new(shape.span(), ret.span()) ) } fn get_neighbor_idxes< T, MAG, +TensorTrait<T>, +NumberTrait<T, MAG>, +PartialOrd<T>, +PartialEq<T>, +Copy<T>, +Drop<T>, +TryInto<T, usize>, +Into<usize, MAG>, +AddEq<T>, +Add<T>, +Div<T>, +Mul<T>, +Sub<T>, >( mut x: T, n: usize, limit: usize, ) -> Tensor<usize> { let _pad_width: usize = NumberTrait::< T >::ceil( NumberTrait::new_unscaled(n.into(), false) / (NumberTrait::<T>::one() + NumberTrait::<T>::one()) ) .try_into() .unwrap(); let mut idxes = array![]; if n % 2 == 0 { let (mut i_low, mut i_high) = if x < NumberTrait::zero() { (0, 1) } else { (NumberTrait::floor(x).try_into().unwrap(), NumberTrait::ceil(x).try_into().unwrap()) }; if i_high >= limit { i_low = limit - 2; i_high = limit - 1; } if i_low == i_high { if i_low == 0 { i_high = i_high + 1; } else { i_low = i_low - 1; } } let mut i = 0; while i != n / 2 { if i_low - i < 0 { idxes.append(i_high + i); i_high += 1; } else { idxes.append(i_low - i); } if i_high + i >= limit { i_low -= 1; idxes.append(i_low - i); } else { idxes.append(i_high + i); } i += 1; } } else { core::panic_with_felt252('MUST BE EVEN'); } idxes = bubble_sort::bubble_sort_elements(idxes,
true); let mut shape = array![]; shape.append(n); TensorTrait::new(shape.span(), idxes.span()) } fn linear_coeffs< T, MAG, +NumberTrait<T, MAG>, +PartialOrd<T>, +PartialEq<T>, +TensorTrait<T>, +Copy<T>, +Drop<T>, +Sub<T> >( mut ratio: T ) -> Tensor<T> { let mut ret = array![]; let mut shape = array![]; shape.append(2); ret.append(NumberTrait::one() - ratio); ret.append(ratio); TensorTrait::new(shape.span(), ret.span()) } fn linear_coeffs_antialias< T, MAG, +TensorTrait<T>, +NumberTrait<T, MAG>, +PartialOrd<T>, +PartialEq<T>, +Copy<T>, +Drop<T>, +TryInto<T, usize>, +Into<usize, MAG>, +AddEq<T>, +Add<T>, +Div<T>, +Mul<T>, +Sub<T>, >( mut ratio: T, scale: T ) -> Tensor<T> { let scale = NumberTrait::min(scale, NumberTrait::one()); let start = (NumberTrait::floor(NumberTrait::neg(NumberTrait::one()) / scale) + NumberTrait::one()); let footprint = (NumberTrait::one() + NumberTrait::one()) - (NumberTrait::one() + NumberTrait::one()) * start; let mut coeffs: Array<T> = array![]; let mut sum = NumberTrait::zero(); let mut i = start; while i != start + footprint { let value = NumberTrait::one() - NumberTrait::abs((i - ratio) * scale); if value < NumberTrait::zero() { coeffs.append(NumberTrait::zero()); } else if value > NumberTrait::one() { coeffs.append(NumberTrait::one()); sum += NumberTrait::one(); } else { coeffs.append(value); sum += value; } i += NumberTrait::one(); }; let n = coeffs.len(); let mut coeff_div: Array<T> = array![]; let mut i = 0; while i != n { coeff_div.append(*coeffs.at(i) / sum); i += 1; }; let mut shape = array![]; shape.append(n); TensorTrait::new(shape.span(), coeff_div.span()) } fn cubic_coeffs< T, MAG, +TensorTrait<T>, +Nu
mberTrait<T, MAG>, +PartialOrd<T>, +PartialEq<T>, +Copy<T>, +Drop<T>, +AddEq<T>, +Add<T>, +Div<T>, +Mul<T>, +Sub<T>, >( mut ratio: T, A: Option<T> ) -> Tensor<T> { let one = NumberTrait::one(); let two = one + NumberTrait::one(); let three = two + NumberTrait::one(); let four = three + NumberTrait::one(); let five = four + NumberTrait::one(); let eigth = four + four; let A = match A { Option::Some(A) => A, Option::None => { NumberTrait::neg(three / four) }, }; let mut coeffs = array![]; let mut shape = array![]; coeffs .append( ((A * (ratio + one) - five * A) * (ratio + one) + eigth * A) * (ratio + one) - four * A ); coeffs.append(((A + two) * ratio - (A + three)) * ratio * ratio + one); coeffs.append(((A + two) * (one - ratio) - (A + three)) * (one - ratio) * (one - ratio) + one); coeffs .append( ((A * ((one - ratio) + one) - five * A) * ((one - ratio) + one) + eigth * A) * ((one - ratio) + one) - four * A ); shape.append(4); TensorTrait::new(shape.span(), coeffs.span()) } fn cubic_coeffs_antialias< T, MAG, +TensorTrait<T>, +NumberTrait<T, MAG>, +PartialOrd<T>, +PartialEq<T>, +Copy<T>, +Drop<T>, +TryInto<T, usize>, +Into<usize, MAG>, +AddEq<T>, +Add<T>, +Div<T>, +Mul<T>, +Sub<T>, >( mut ratio: T, scale: T, A: Option<T> ) -> Tensor<T> { let one = NumberTrait::one(); let two = one + NumberTrait::one(); let three = two + NumberTrait::one(); let four = three + NumberTrait::one(); let scale = NumberTrait::min(scale, NumberTrait::one()); let i_start = NumberTrait::floor(NumberTrait::neg(two) / scale) + NumberTrait::one(); let i_end = two - i_start; assert(i_end > i_start, 'i_end must be greater'); let A = match A { Option::Some(A) => A, Option::None => { NumberTrait::neg(three / four) },
}; let mut coeffs = array![]; let mut sum = NumberTrait::zero(); let mut i = i_start; while i != i_end { let value = compute_coeff(scale * (i - ratio), A); coeffs.append(value); sum += value; i += NumberTrait::one(); }; let n = coeffs.len(); let mut coeff_div: Array<T> = array![]; let mut i = 0; while i != n { coeff_div.append(*coeffs.at(i) / sum); i += 1; }; let mut shape = array![]; shape.append(n); TensorTrait::new(shape.span(), coeff_div.span()) } fn compute_coeff< T, MAG, +TensorTrait<T>, +NumberTrait<T, MAG>, +PartialOrd<T>, +PartialEq<T>, +Copy<T>, +Drop<T>, +AddEq<T>, +Add<T>, +Div<T>, +Mul<T>, +Sub<T>, >( mut x: T, A: T ) -> T { let one = NumberTrait::one(); let two = one + NumberTrait::one(); let three = two + NumberTrait::one(); let four = three + NumberTrait::one(); let five = four + NumberTrait::one(); let eigth = four + four; x = x.abs(); let mut x_2 = x * x; let mut x_3 = x * x_2; if x <= one { return (A + two) * x_3 - (A + three) * x_2 + one; } if x < two { return A * x_3 - five * A * x_2 + eigth * A * x - four * A; } NumberTrait::zero() } fn nearest_coeffs< T, MAG, +TensorTrait<T>, +NumberTrait<T, MAG>, +PartialOrd<T>, +PartialEq<T>, +Copy<T>, +Drop<T>, +AddEq<T>, +Add<T>, +Div<T>, +Mul<T>, +Sub<T>, >( mut ratio: T, nearest_mode: Option<NEAREST_MODE> ) -> Tensor<T> { let nearest_mode = match nearest_mode { Option::Some(nearest_mode) => { nearest_mode }, Option::None => { NEAREST_MODE::ROUND_PREFER_FLOOR }, }; let mut ret = array![]; let mut shape = array![]; shape.append(2); if ratio == NumberTrait::one() { ret.append(NumberTrait::zero()); ret.append(NumberTrait::one()); return TensorTrait::new(shape.span(), ret.span()); } matc
h nearest_mode { NEAREST_MODE::ROUND_PREFER_FLOOR => { if ratio <= NumberTrait::half() { ret.append(NumberTrait::one()); ret.append(NumberTrait::zero()); return TensorTrait::new(shape.span(), ret.span()); } else { ret.append(NumberTrait::zero()); ret.append(NumberTrait::one()); return TensorTrait::new(shape.span(), ret.span()); } }, NEAREST_MODE::ROUND_PREFER_CEIL => { if ratio < NumberTrait::half() { ret.append(NumberTrait::one()); ret.append(NumberTrait::zero()); return TensorTrait::new(shape.span(), ret.span()); } else { ret.append(NumberTrait::zero()); ret.append(NumberTrait::one()); return TensorTrait::new(shape.span(), ret.span()); } }, NEAREST_MODE::FLOOR => { ret.append(NumberTrait::one()); ret.append(NumberTrait::zero()); return TensorTrait::new(shape.span(), ret.span()); }, NEAREST_MODE::CEIL => { ret.append(NumberTrait::zero()); ret.append(NumberTrait::one()); return TensorTrait::new(shape.span(), ret.span()); }, } }
use orion::numbers::NumberTrait; use orion::operators::tensor::core::{Tensor, TensorTrait}; fn round< T, MAG, impl TNumberTrait: NumberTrait<T, MAG>, impl FTensor: TensorTrait<T>, impl FCopy: Copy<T>, impl FDrop: Drop<T> >( mut self: Tensor<T> ) -> Tensor<T> { let mut result: Array<T> = array![]; loop { match self.data.pop_front() { Option::Some(item) => { result.append((*item).round()); }, Option::None => { break; } }; }; return TensorTrait::new(self.shape, result.span()); }
use alexandria_data_structures::array_ext::SpanTraitExt; use orion::numbers::NumberTrait; use orion::operators::tensor::{TensorTrait, Tensor, U32Tensor}; use core::dict::Felt252DictTrait; use core::nullable::{nullable_from_box, match_nullable, FromNullableResult}; fn scatter< T, impl TTensorTrait: TensorTrait<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>, impl TAddEq: AddEq<T>, impl TMulEq: MulEq<T>, impl TPartialOrd: PartialOrd<T>, impl TPartialEq: PartialEq<T>, >( self: @Tensor<T>, updates: Tensor<T>, indices: Tensor<usize>, axis: Option<usize>, reduction: Option<usize> ) -> Tensor<T> { let mut axis = match axis { Option::Some(val) => val, Option::None => 0 }; let reduction = match reduction { Option::Some(val) => val, Option::None => 'none' }; let data_rank = (*self.shape).len(); let indices_rank = (indices.shape).len(); let updates_rank = (updates.shape).len(); assert((data_rank == updates_rank) & (updates_rank == indices_rank), 'must be same rank'); let data_shape = *self.shape; let ind_max = indices.data.max().unwrap(); assert(ind_max < *data_shape.at(axis), 'index is out of bound'); let data_shape = *self.shape; let mut indices_shape = indices.shape; let updates_shape = updates.shape; assert( (*indices_shape[0] == *updates_shape[0]) & (*indices_shape[1] == *updates_shape[1]), 'shape must be same' ); let mut output_data = array![]; let mut data_indices = indices.data; let mut data_updates = updates.data; let mut indices_updates: Felt252Dict<usize> = Default::default(); let mut indices_updates_reduction: Felt252Dict<Nullable<Span<usize>>> = Default::default(); let mut data_shape_copy = data_shape; let mut indices_shape_copy = indices_shape; *data_shape_copy.pop_front().unwrap(); *indices_shape_copy.pop_front().unwrap(); let mut indices_loop: usize = 1; let mut data_loop: usize = 1; if (axis
== 0) { loop { match indices_shape_copy.pop_front() { Option::Some(val) => { indices_loop *= *val; }, Option::None => { break; } }; }; loop { match data_shape_copy.pop_front() { Option::Some(val) => { data_loop *= *val; }, Option::None => { break; } }; }; } let mut transpose = false; if ((data_rank > 2) & (axis == 1)) { let index = indices.transpose(axes: array![0, 2, 1].span()); let update = updates.transpose(axes: array![0, 2, 1].span()); data_indices = index.data; data_updates = update.data; indices_shape = index.shape; axis = 2; transpose = true; } if (axis == (data_rank - 1)) { data_loop = *data_shape_copy.pop_back().unwrap(); indices_loop = *indices_shape_copy.pop_back().unwrap(); } let mut total_count: usize = 0; let mut shift = 0; loop { let mut result: usize = 0; match data_indices.pop_front() { Option::Some(val) => { let value = total_count + 1; if (axis == 0) { let column = total_count % indices_loop; result = (*val * data_loop) + (column); if ((result % *data_shape.at(data_rank - 1)) != total_count % *indices_shape .at(data_rank - 1)) { result += (*data_shape.at(data_rank - 1) - *indices_shape.at(data_rank - 1)); } } if (axis == (data_rank - 1)) { let mut row = total_count / indices_loop; if ((data_rank > 2) & (row % *data_shape.at(1) >= *indices_shape.at(1))) { shift = (*data_shape.at(1) - *indices_shape.at(1)); } result = *val + (data_loop * (row + shift)); } if (r
eduction == 'none') { indices_updates.insert(result.into(), value.into()); } else { let mut arr = array![]; let val = indices_updates_reduction.get(result.into()); let mut a = ArrayTrait::new(); let mut span = match match_nullable(val) { FromNullableResult::Null(()) => a.span(), FromNullableResult::NotNull(val) => val.unbox(), }; loop { match span.pop_front() { Option::Some(val) => { arr.append(*val); }, Option::None => { break; } }; }; arr.append(total_count); indices_updates_reduction .insert(result.into(), nullable_from_box(BoxTrait::new(arr.span()))); } total_count += 1; }, Option::None => { break; } }; }; let mut data = *self.data; let mut i: usize = 0; loop { match data.pop_front() { Option::Some(val) => { if (reduction == 'none') { let value = indices_updates.get(i.into()); if (value == 0) { output_data.append(*val); } else { let data_value = data_updates[value - 1]; output_data.append(*data_value); } } else { let value = indices_updates_reduction.get(i.into()); let mut a = array![]; let mut span = match match_nullable(value) { FromNullableResult::Null(()) => a.span(), FromNullableResult::NotNull(value) => value.unbox(), }; if (span.len() == 0) { output_data.append(*va
l); } else { let mut result = *val; if (reduction == 'add') { loop { match span.pop_front() { Option::Some(val) => { result += *data_updates[*val]; }, Option::None => { break; } }; }; output_data.append(result); } if (reduction == 'mul') { loop { match span.pop_front() { Option::Some(val) => { result *= *data_updates[*val]; }, Option::None => { break; } }; }; output_data.append(result); } if (reduction == 'max') { loop { match span.pop_front() { Option::Some(val) => { let holder = *data_updates[*val]; if (holder > result) { result = holder; } }, Option::None => { break; } }; }; output_data.append(result); } if (reduction == 'min') { loop { match span.pop_front() { Option::Some(val) => { let holder = *data_updates[*val]; if (holder < result) {
result = holder; } }, Option::None => { break; } }; }; output_data.append(result); } } } i += 1; }, Option::None => { break; } }; }; let mut output_tensor = TensorTrait::<T>::new(*self.shape, output_data.span()); if transpose { output_tensor = output_tensor.transpose(axes: array![0, 2, 1].span()) } output_tensor }
use core::nullable::{nullable_from_box, match_nullable, FromNullableResult}; use alexandria_data_structures::array_ext::SpanTraitExt; use orion::numbers::NumberTrait; use orion::operators::tensor::{TensorTrait, Tensor, U32Tensor}; fn scatter_nd< T, impl TTensorTrait: TensorTrait<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>, impl TAdd: Add<T>, impl TMul: Mul<T>, impl TPartialOrd: PartialOrd<T>, impl TPartialEq: PartialEq<T>, >( self: @Tensor<T>, updates: Tensor<T>, indices: Tensor<usize>, reduction: Option<usize> ) -> Tensor<T> { let reduction = match reduction { Option::Some(val) => val, Option::None => 'none' }; let data_rank = (*self.shape).len(); let mut data_shape = *self.shape; let mut indices_shape = indices.shape; let updates_shape = updates.shape; let indices_last_axis = indices_shape.pop_back().unwrap(); assert(*indices_last_axis <= data_rank, 'must be <= data rank'); let ind_max = indices.data.max().unwrap(); if (data_rank > 1) { assert(ind_max < data_rank, 'index is out of bound'); } let mut batch_dims_shape = array![]; let mut ind: usize = 0; loop { match indices_shape.pop_front() { Option::Some(val) => { batch_dims_shape.append(*val); }, Option::None => { break; } }; }; let mut data_shape_clone = data_shape.clone(); loop { match data_shape_clone.pop_front() { Option::Some(val) => { if (ind >= *indices_last_axis) { batch_dims_shape.append(*val); } }, Option::None => { break; } }; }; let mut ind: usize = 0; loop { match batch_dims_shape.pop_front() { Option::Some(val) => { assert(val == *updates_shape[ind], 'must be same'); }, Option::None => { break; } }; }; let mut data_indices = indices.data; let mut data_updates = updates.data; let mut data_shape_clone
= data_shape.clone(); let mut indexer = 1; let data_shape_first = data_shape_clone.pop_front(); if data_rank >= 1 { loop { match data_shape_clone.pop_front() { Option::Some(val) => { indexer *= *val; }, Option::None => { break; } }; } } let mut updates_index_dict: Felt252Dict<u32> = Default::default(); let mut dict_ind: usize = 1; loop { match data_indices.pop_front() { Option::Some(val) => { updates_index_dict.insert((*val).into(), dict_ind); dict_ind += 1; }, Option::None => { break; } }; }; let mut output_data: Array<T> = array![]; let mut data = *self.data; let mut index: usize = 0; let mut inner_index: usize = 0; let num = *data_shape_first.unwrap(); while index != num { let comp_index = updates_index_dict.get(index.into()); if comp_index == 0 { loop { if (inner_index == indexer) { inner_index = 0; break; } let val = *data.at((index * indexer) + inner_index); output_data.append(val); inner_index += 1; }; } else { loop { if (inner_index == indexer) { inner_index = 0; break; } if (reduction == 'none') { let val = data_updates.at(((comp_index - 1) * indexer) + inner_index); output_data.append(*val); } if (reduction == 'add') { let val = data_updates.at(((comp_index - 1) * indexer) + inner_index); let data_val = *data.at((index * indexer) + inner_index); output_data.append(*val + data_val); } if (reduction == 'mul') { let val = data_updates.at(((comp_index
- 1) * indexer) + inner_index); let data_val = *data.at((index * indexer) + inner_index); output_data.append((*val) * data_val); } if (reduction == 'max') { let val = data_updates.at(((comp_index - 1) * indexer) + inner_index); let data_val = *data.at((index * indexer) + inner_index); if (*val > data_val) { output_data.append(*val); } else { output_data.append(data_val); } } if (reduction == 'min') { let val = data_updates.at(((comp_index - 1) * indexer) + inner_index); let data_val = *data.at((index * indexer) + inner_index); if (*val > data_val) { output_data.append(data_val); } else { output_data.append(*val); } } inner_index += 1; } } index += 1; }; let mut output_tensor = TensorTrait::<T>::new(*self.shape, output_data.span()); output_tensor }
use orion::numbers::NumberTrait; use orion::operators::tensor::core::{Tensor, TensorTrait}; /// Cf: TensorTrait::shrink docstring fn shrink< T, MAG, impl TTensor: TensorTrait<T>, impl TNumber: NumberTrait<T, MAG>, impl TPartialOrd: PartialOrd<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T> >( mut self: Tensor<T>, bias: Option<T>, lambd: Option<T> ) -> Tensor<T> { let bias: T = if bias.is_some() { bias.unwrap() } else { NumberTrait::zero() }; let lambd: T = if lambd.is_some() { lambd.unwrap() } else { NumberTrait::half() }; let mut data_result: Array<T> = array![]; loop { match self.data.pop_front() { Option::Some(item) => { if (*item) < lambd.neg() { let mut y = NumberTrait::add(*item, bias); data_result.append(y); } else if (*item) > lambd { let mut y = NumberTrait::sub(*item, bias); data_result.append(y); } else { data_result.append(NumberTrait::zero()); } }, Option::None => { break; } }; }; TensorTrait::new(self.shape, data_result.span()) }
use orion::numbers::NumberTrait; use orion::operators::tensor::core::{Tensor, TensorTrait}; fn sign< T, MAG, impl TNumberTrait: NumberTrait<T, MAG>, impl FTensor: TensorTrait<T>, impl FCopy: Copy<T>, impl FDrop: Drop<T>, >( mut self: Tensor<T> ) -> Tensor<T> { let mut result: Array<T> = array![]; loop { match self.data.pop_front() { Option::Some(item) => { result.append((*item).sign()); }, Option::None => { break; } }; }; TensorTrait::new(self.shape, result.span()) }
use orion::numbers::NumberTrait; use orion::numbers::fixed_point::core::FixedTrait; use orion::operators::tensor::core::{Tensor, TensorTrait}; /// Cf: TensorTrait::sin docstring fn sin< T, MAG, impl TNumberTrait: NumberTrait<T, MAG>, impl TTensor: TensorTrait<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>, >( mut self: Tensor<T> ) -> Tensor<T> { let mut result: Array<T> = array![]; loop { match self.data.pop_front() { Option::Some(item) => { result.append((*item).sin()); }, Option::None => { break; } }; }; TensorTrait::new(self.shape, result.span()) }
use orion::numbers::NumberTrait; use orion::numbers::fixed_point::core::FixedTrait; use orion::operators::tensor::core::{Tensor, TensorTrait}; /// Cf: TensorTrait::sinh docstring fn sinh< T, MAG, impl TNumberTrait: NumberTrait<T, MAG>, impl TTensor: TensorTrait<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>, >( mut self: Tensor<T> ) -> Tensor<T> { let mut result: Array<T> = array![]; loop { match self.data.pop_front() { Option::Some(item) => { result.append((*item).sinh()); }, Option::None => { break; } }; }; TensorTrait::new(self.shape, result.span()) }
use orion::numbers::NumberTrait; use orion::numbers::fixed_point::core::FixedTrait; use orion::operators::tensor::core::{Tensor, TensorTrait}; fn sqrt< T, MAG, impl TNumberTrait: NumberTrait<T, MAG>, impl TTensor: TensorTrait<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>, >( mut self: Tensor<T> ) -> Tensor<T> { let mut result: Array<T> = array![]; loop { match self.data.pop_front() { Option::Some(item) => { result.append((*item).sqrt()); }, Option::None => { break; } }; }; TensorTrait::new(self.shape, result.span()) }
use orion::numbers::NumberTrait; use orion::numbers::fixed_point::core::FixedTrait; use orion::operators::tensor::core::{Tensor, TensorTrait}; /// Cf: TensorTrait::tanh docstring fn tanh< T, MAG, impl TNumberTrait: NumberTrait<T, MAG>, impl TTensor: TensorTrait<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>, >( mut self: Tensor<T> ) -> Tensor<T> { let mut result: Array<T> = array![]; loop { match self.data.pop_front() { Option::Some(item) => { result.append((*item).tanh()); }, Option::None => { break; } }; }; TensorTrait::new(self.shape, result.span()) }
use orion::numbers::NumberTrait; use orion::operators::tensor::core::{Tensor, TensorTrait, unravel_index}; use orion::operators::tensor::helpers::{ broadcast_shape, broadcast_index_mapping, len_from_shape, check_compatibility }; /// Cf: TensorTrait::where docstring fn where< T, MAG, impl TNumber: NumberTrait<T, MAG>, impl TFTensor: TensorTrait<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T> >( self: @Tensor<T>, x: @Tensor<T>, y: @Tensor<T> ) -> Tensor<T> { let xy_shape = broadcast_shape(*x.shape, *y.shape); let broadcasted_shape = broadcast_shape(*self.shape, xy_shape); let mut result: Array<T> = array![]; let num_elements = len_from_shape(broadcasted_shape); let mut n: usize = 0; while n != num_elements { let indices_broadcasted = unravel_index(n, broadcasted_shape); let indices_cond = broadcast_index_mapping(*self.shape, indices_broadcasted); let indices_x = broadcast_index_mapping(*x.shape, indices_broadcasted); let indices_y = broadcast_index_mapping(*y.shape, indices_broadcasted); let res = NumberTrait::where( *(*self.data)[indices_cond], *(*x.data)[indices_x], *(*y.data)[indices_y] ); result.append(res); n += 1; }; TensorTrait::new(broadcasted_shape, result.span()) }
use orion::numbers::NumberTrait; use orion::operators::tensor::core::{Tensor, TensorTrait, unravel_index}; use orion::operators::tensor::helpers::{ broadcast_shape, broadcast_index_mapping, len_from_shape, check_compatibility }; /// Cf: TensorTrait::xor docstring fn xor< T, MAG, impl TNumber: NumberTrait<T, MAG>, impl UsizeFTensor: TensorTrait<usize>, impl TCopy: Copy<T>, impl TDrop: Drop<T> >( y: @Tensor<T>, z: @Tensor<T> ) -> Tensor<usize> { let broadcasted_shape = broadcast_shape(*y.shape, *z.shape); let mut result: Array<usize> = array![]; let num_elements = len_from_shape(broadcasted_shape); let mut n: usize = 0; while n != num_elements { let indices_broadcasted = unravel_index(n, broadcasted_shape); let indices_self = broadcast_index_mapping(*y.shape, indices_broadcasted); let indices_other = broadcast_index_mapping(*z.shape, indices_broadcasted); if NumberTrait::xor(*(*y.data)[indices_self], *(*z.data)[indices_other]) { result.append(1); } else { result.append(0); } n += 1; }; TensorTrait::new(broadcasted_shape, result.span()) }
mod array_feature_extractor; mod label_encoder;
use orion::operators::tensor::core::{Tensor, TensorTrait}; use orion::numbers::NumberTrait; fn array_feature_extractor< T, impl TTensor: TensorTrait<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T> >( self: Tensor<T>, indices: Tensor<usize> ) -> Tensor<T> { assert(indices.shape.len() == 1, 'Indices must be a 1D tensor'); if self.shape.len() == 1 { return process_1D_tensor(self, indices); } let (output_shape, total_elements) = calculate_output_shape::<T>(self.shape, indices); let output_data = calculate_output_data::<T>(self, indices, total_elements); TensorTrait::new(output_shape.span(), output_data.span()) } fn process_1D_tensor<T, impl TTensor: TensorTrait<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>>( self: Tensor<T>, indices: Tensor<usize> ) -> Tensor<T> { let mut output_data: Array<T> = array![]; let mut indices_values: Span<usize> = indices.data; let self_len = *self.shape.at(0); loop { match indices_values.pop_front() { Option::Some(current_indices_value) => { assert(*current_indices_value < self_len, 'Indices out of range'); let mut current_data_value = *self.data.at(*current_indices_value); output_data.append(current_data_value); }, Option::None => { break; } }; }; TensorTrait::new(indices.shape, output_data.span()) } fn calculate_output_shape< T, impl TTensor: TensorTrait<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T> >( input_shape: Span<usize>, indices: Tensor<usize> ) -> (Array<usize>, usize) { let mut total_elements: usize = 1; let mut output_shape: Array<usize> = array![]; let mut input_shape_copy = input_shape; let mut input_shape_counter: usize = 0; let breaker = input_shape.len() - 2; loop { match input_shape_copy.pop_front() { Option::Some(current_shape_value) => { if input_shape_counter > breaker { break; }
output_shape.append(*current_shape_value); total_elements = total_elements * *current_shape_value; input_shape_counter += 1; }, Option::None => { break; } }; }; output_shape.append(indices.data.len()); (output_shape, total_elements) } fn calculate_output_data<T, impl TTensor: TensorTrait<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>>( self: Tensor<T>, indices: Tensor<usize>, total_elements: usize ) -> Array<T> { let last_tensor_axis: usize = *self.shape.at(self.shape.len() - 1); let mut output_data: Array<T> = array![]; let strides: Span<usize> = TensorTrait::stride(@self); let mut element_counter: usize = 0; let mut stride_l2 = *strides.at(strides.len() - 2); let mut stride_l1 = *strides.at(strides.len() - 1); while element_counter != total_elements { let mut base_index = if strides.len() > 1 { element_counter * stride_l2 } else { 0 }; let mut indices_values = indices.data; loop { match indices_values.pop_front() { Option::Some(current_indices_value) => { assert(*current_indices_value < last_tensor_axis, 'Indices out of range'); let mut flat_index = base_index + *current_indices_value * (stride_l1); let mut current_data_value = *self.data.at(flat_index); output_data.append(current_data_value); }, Option::None => { break; } }; }; element_counter += 1; }; output_data }
use core::array::ArrayTrait; use core::option::OptionTrait; use core::array::SpanTrait; use orion::operators::tensor::core::{Tensor, TensorTrait}; use orion::numbers::NumberTrait; use core::dict::Felt252DictTrait; use core::nullable::{nullable_from_box, match_nullable, FromNullableResult}; use core::debug::PrintTrait; use core::traits::Into; use core::traits::TryInto; fn label_encoder< T, +Drop<T>, +Copy<T>, +AddEq<T>, +TensorTrait<T>, +PartialOrd<T>, +Into<T, felt252>, >( self: @Tensor<T>, default_list: Option<Span<T>>, default_tensor: Option<Tensor<T>>, keys: Option<Span<T>>, keys_tensor: Option<Tensor<T>>, values: Option<Span<T>>, values_tensor: Option<Tensor<T>>, ) -> Tensor<T> { let mut default = match default_list { Option::Some(value) => value, Option::None => { match default_tensor { Option::Some(value) => value.data, Option::None => { core::panic_with_felt252('None') }, } } }; let default = match default.pop_front() { Option::Some(value) => *value, Option::None => { core::panic_with_felt252('None') } }; let mut keys = match keys { Option::Some(value) => { value }, Option::None => { match keys_tensor { Option::Some(value) => { value.data }, Option::None => { core::panic_with_felt252('None') }, } } }; let mut values = match values { Option::Some(value) => { value }, Option::None => { match values_tensor { Option::Some(value) => { value.data }, Option::None => { core::panic_with_felt252('None') }, } } }; assert(keys.len() == values.len(), 'keys must be eq to values'); let mut key_value_dict: Felt252Dict<Nullable<T>> = Default::default(); let mut output_data = ArrayTrait::<T>::new(); loop { let key = match keys.pop_front() { Option::Some(key) =>
key, Option::None => { break; } }; let value = match values.pop_front() { Option::Some(value) => value, Option::None => { break; } }; key_value_dict.insert((*key).into(), nullable_from_box(BoxTrait::new(*value))); }; let mut data = *self.data; loop { match data.pop_front() { Option::Some(val) => { let value = *val; let res = key_value_dict.get(value.into()); let mut span = match match_nullable(res) { FromNullableResult::Null => default, FromNullableResult::NotNull(res) => res.unbox(), }; output_data.append(span); }, Option::None => { break; } }; }; let mut output_tensor = TensorTrait::<T>::new(*self.shape, output_data.span()); return output_tensor; }
mod quantize_linear; mod dynamic_quantize_linear; mod dequantize_linear; mod qlinear_matmul; mod qlinear_concat; mod qlinear_add; mod qlinear_mul; mod qlinear_leakyrelu;
use orion::operators::tensor::core::{Tensor, TensorTrait}; use orion::operators::tensor::helpers::check_compatibility; use orion::utils::saturate; fn dequantize_linear< Q, T, impl TTensor: TensorTrait<T>, impl QIntoT: Into<Q, T>, impl TSub: Sub<T>, impl TMul: Mul<T>, impl TTensorSub: Sub<Tensor<T>>, impl TTensorMul: Mul<Tensor<T>>, impl QTensorIntoTTensor: Into<Tensor<Q>, Tensor<T>>, impl TDrop: Drop<T>, impl TCopy: Copy<T>, impl QCopy: Copy<Q>, impl QDrop: Drop<Q> >( x: @Tensor<Q>, x_scale: @Tensor<T>, x_zero_point: @Tensor<T> ) -> Tensor::<T> { if (*x_scale.data).len() == 1 && (*x_zero_point.data).len() == 1 { dequantize_element_wise(*x, *x_scale.data[0], *x_zero_point.data[0]) } else { check_compatibility(*x.shape, *x_scale.shape); check_compatibility(*x.shape, *x_zero_point.shape); check_compatibility(*x_scale.shape, *x_zero_point.shape); dequantize_per_axis(@(*x).into(), x_scale, x_zero_point) } } fn dequantize_per_axis< T, impl TTensor: TensorTrait<T>, impl TTensorSub: Sub<Tensor<T>>, impl TTensorMul: Mul<Tensor<T>>, impl TCopy: Copy<T>, impl TDrop: Drop<T> >( x: @Tensor<T>, x_scale: @Tensor<T>, x_zero_point: @Tensor<T> ) -> Tensor::<T> { (*x - *x_zero_point) * *x_scale } fn dequantize_element_wise< Q, T, impl TTensor: TensorTrait<T>, impl QIntoT: Into<Q, T>, impl TSub: Sub<T>, impl TMul: Mul<T>, impl TDrop: Drop<T>, impl TCopy: Copy<T>, impl QCopy: Copy<Q>, impl QDrop: Drop<Q> >( mut x: Tensor::<Q>, x_scale: T, x_zero_point: T ) -> Tensor::<T> { let mut result_data: Array<T> = array![]; loop { match x.data.pop_front() { Option::Some(item) => { let dequantized = dequantize(*item, x_scale, x_zero_point); result_data.append(dequantized); }, Option::None => { break; } }; }; TensorTrait::new(x.shape, result_data.span()) } fn