text
stringlengths
1
2.05k
dequantize< Q, T, impl QIntoT: Into<Q, T>, impl TSub: Sub<T>, impl TMul: Mul<T>, impl TDrop: Drop<T> >( x: Q, x_scale: T, x_zero_point: T ) -> T { (x.into() - x_zero_point) * x_scale }
use orion::numbers::NumberTrait; use orion::operators::tensor::quantization::dequantize_linear::dequantize_linear; use orion::operators::tensor::quantization::quantize_linear::quantize_linear; use orion::operators::tensor::{TensorTrait, Tensor}; use orion::utils::saturate; fn dynamic_quantize_linear< T, Q, impl TTensor: TensorTrait<T>, impl QTensor: TensorTrait<Q>, impl TAdd: Add<T>, impl TSub: Sub<T>, impl TDiv: Div<T>, impl TTensorDiv: Div<Tensor<T>>, impl TPartialOrd: PartialOrd<T>, impl TPartialEq: PartialEq<T>, impl TTryInto: TryInto<T, Q>, impl TCopy: Copy<T>, impl TDrop: Drop<T>, impl QCopy: Copy<Q>, impl QDrop: Drop<Q>, >( x: @Tensor<T>, min: T, max: T, zero: T, one: T ) -> (Tensor<Q>, Tensor<T>, Tensor<T>) { let mut x_max: T = x.max_in_tensor(); let mut x_min: T = x.min_in_tensor(); if x_max < zero { x_max = zero; } if x_min > zero { x_min = zero } let mut y_scale_values = ArrayTrait::new(); let y_scale_value: T = (x_max - x_min) / (max - min); if x_max == x_min { y_scale_values.append(one); } else { y_scale_values.append(y_scale_value); } let mut y_scale_tensor_shape: Array<u32> = array![]; y_scale_tensor_shape.append(y_scale_values.len()); let y_scale = TensorTrait::< T >::new(shape: y_scale_tensor_shape.span(), data: y_scale_values.span(),); let intermediate_zero_point: T = min - x_min / y_scale_value; let mut y_zero_point_value: T = saturate(min, max, intermediate_zero_point); let mut y_zero_point_values: Array<T> = array![]; y_zero_point_values.append(y_zero_point_value); let mut y_zero_point_tensor_shape: Array<u32> = array![]; y_zero_point_tensor_shape.append(y_zero_point_values.len()); let mut y_zero_point_values: Array<T> = array![]; y_zero_point_values.append(y_zero_point_value); let mut y_zero_point = TensorTrait::< T >::new(shape: y_zero_point_tensor_shape.
span(), data: y_zero_point_values.span(),); (quantize_linear(x, @y_scale, @y_zero_point, min, max), y_scale, y_zero_point) }
use orion::numbers::{NumberTrait}; use orion::operators::tensor::quantization::dequantize_linear::dequantize_linear; use orion::operators::tensor::quantization::quantize_linear::quantize_linear; use orion::operators::tensor::{TensorTrait, Tensor}; fn qlinear_add< T, MAG, Q, impl TTensor: TensorTrait<T>, impl QTensor: TensorTrait<Q>, impl QIntoT: Into<Q, T>, impl QTensorIntoTTensor: Into<Tensor<Q>, Tensor<T>>, impl TAdd: Add<T>, impl TSub: Sub<T>, impl TDiv: Div<T>, impl TMul: Mul<T>, impl TTensorAdd: Add<Tensor<T>>, impl TTensorSub: Sub<Tensor<T>>, impl TTensorMul: Mul<Tensor<T>>, impl TTensorDiv: Div<Tensor<T>>, impl TPartialOrd: PartialOrd<T>, impl TNumber: NumberTrait<T, MAG>, impl TTryInto: TryInto<T, Q>, impl TAddEq: AddEq<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>, impl QCopy: Copy<Q>, impl QDrop: Drop<Q>, >( a: @Tensor<Q>, a_scale: @Tensor<T>, a_zero_point: @Tensor<T>, b: @Tensor<Q>, b_scale: @Tensor<T>, b_zero_point: @Tensor<T>, y_scale: @Tensor<T>, y_zero_point: @Tensor<T>, min: T, max: T ) -> Tensor<Q> { let mut dequantized_a = dequantize_linear(@(*a), a_scale, a_zero_point); let mut dequantized_b = dequantize_linear(@(*b), b_scale, b_zero_point); let mut x = (dequantized_a + dequantized_b).into(); quantize_linear(@x, y_scale, y_zero_point, min, max) }
use orion::numbers::{NumberTrait}; use orion::operators::tensor::quantization::dequantize_linear::dequantize_linear; use orion::operators::tensor::quantization::quantize_linear::quantize_linear; use orion::operators::tensor::{TensorTrait, Tensor}; use orion::operators::tensor::math::concat::{ validate_shapes, compute_output_size, concatenate_data }; fn qlinear_concat< T, MAG, Q, impl TTensor: TensorTrait<T>, impl QTensor: TensorTrait<Q>, impl QIntoT: Into<Q, T>, impl QTensorIntoTTensor: Into<Tensor<Q>, Tensor<T>>, impl TAdd: Add<T>, impl TSub: Sub<T>, impl TDiv: Div<T>, impl TMul: Mul<T>, impl TTensorAdd: Add<Tensor<T>>, impl TTensorSub: Sub<Tensor<T>>, impl TTensorMul: Mul<Tensor<T>>, impl TTensorDiv: Div<Tensor<T>>, impl TPartialOrd: PartialOrd<T>, impl TNumber: NumberTrait<T, MAG>, impl TTryInto: TryInto<T, Q>, impl TAddEq: AddEq<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>, impl QCopy: Copy<Q>, impl QDrop: Drop<Q>, >( tensors: Span<Tensor<Q>>, scales: Span<Tensor<T>>, zero_points: Span<Tensor<T>>, y_scale: @Tensor<T>, y_zero_point: @Tensor<T>, axis: usize, min: T, max: T ) -> Tensor<Q> { assert(tensors.len() == scales.len(), 'Each Tensors must have a scale'); assert(tensors.len() == zero_points.len(), 'Each Tensors must have a scale'); let mut x = concat_dequantize(tensors, scales, zero_points, axis, min, max); quantize_linear(@x, y_scale, y_zero_point, min, max) } fn concat_dequantize< T, MAG, Q, impl TTensor: TensorTrait<T>, impl QTensor: TensorTrait<Q>, impl QIntoT: Into<Q, T>, impl QTensorIntoTTensor: Into<Tensor<Q>, Tensor<T>>, impl TSub: Sub<T>, impl TMul: Mul<T>, impl TTensorSub: Sub<Tensor<T>>, impl TTensorMul: Mul<Tensor<T>>, impl TPartialOrd: PartialOrd<T>, impl TNumber: NumberTrait<T, MAG>, impl TTryInto: TryInto<T, Q>, impl TAddEq: AddEq<T>, impl TCopy: Copy<T>, impl TDrop: Drop<
T>, impl QCopy: Copy<Q>, impl QDrop: Drop<Q>, >( tensors: Span<Tensor<Q>>, scales: Span<Tensor<T>>, zero_points: Span<Tensor<T>>, axis: usize, min: T, max: T ) -> Tensor<T> { assert(tensors.len() >= 2, 'Input tensors must be > 1'); let base_tensor = *tensors.at(0); let base_shape = base_tensor.shape; let dimension = base_shape.len(); assert(dimension > axis, 'Out of bounds for dimension'); validate_shapes(tensors, base_shape, axis); let output_size = compute_output_size(base_shape, tensors, axis); let tensors = dequantize_tensors(tensors, scales, zero_points, min, max); let output_data: Array<T> = concatenate_data(tensors, axis, base_shape); TensorTrait::<T>::new(output_size.span(), output_data.span()) } fn dequantize_tensors< Q, T, impl TTensor: TensorTrait<T>, impl QIntoT: Into<Q, T>, impl TSub: Sub<T>, impl TMul: Mul<T>, impl TTensorSub: Sub<Tensor<T>>, impl TTensorMul: Mul<Tensor<T>>, impl QTensorIntoTTensor: Into<Tensor<Q>, Tensor<T>>, impl TDrop: Drop<T>, impl TCopy: Copy<T>, impl QCopy: Copy<Q>, impl QDrop: Drop<Q> >( mut tensors: Span<Tensor<Q>>, scales: Span<Tensor<T>>, zero_points: Span<Tensor<T>>, min: T, max: T ) -> Span<Tensor<T>> { let mut array: Array<Tensor<T>> = array![]; let mut i = 0; loop { match tensors.pop_front() { Option::Some(tensor) => { array .append(dequantize_linear(@(*tensor), @(*scales.at(i)), @(*zero_points.at(i)))); }, Option::None => { break; } }; i += 1; }; array.span() }
use orion::numbers::{NumberTrait}; use orion::operators::tensor::quantization::dequantize_linear::dequantize_linear; use orion::operators::tensor::quantization::quantize_linear::quantize_linear; use orion::operators::tensor::{TensorTrait, Tensor}; fn qlinear_leakyrelu< T, MAG, Q, impl TTensor: TensorTrait<T>, impl QTensor: TensorTrait<Q>, impl QIntoT: Into<Q, T>, impl QTensorIntoTTensor: Into<Tensor<Q>, Tensor<T>>, impl TAdd: Add<T>, impl TSub: Sub<T>, impl TDiv: Div<T>, impl TMul: Mul<T>, impl TTensorAdd: Add<Tensor<T>>, impl TTensorSub: Sub<Tensor<T>>, impl TTensorMul: Mul<Tensor<T>>, impl TTensorDiv: Div<Tensor<T>>, impl TPartialOrd: PartialOrd<T>, impl TNumber: NumberTrait<T, MAG>, impl TTryInto: TryInto<T, Q>, impl TAddEq: AddEq<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>, impl QCopy: Copy<Q>, impl QDrop: Drop<Q> >( a: @Tensor<Q>, a_scale: @Tensor<T>, a_zero_point: @Tensor<T>, alpha: T, min: T, max: T ) -> Tensor<Q> { let mut dequantized_a = dequantize_linear(@(*a), a_scale, a_zero_point); let mut result_data: Array<T> = array![]; loop { match dequantized_a.data.pop_front() { Option::Some(elem) => { if *elem < NumberTrait::zero() { result_data.append(*elem * alpha); } else { result_data.append(*elem); } }, Option::None => { break; } }; }; quantize_linear( @TensorTrait::new(dequantized_a.shape, result_data.span()), a_scale, a_zero_point, min, max ) }
use orion::numbers::{NumberTrait}; use orion::operators::tensor::quantization::dequantize_linear::dequantize_linear; use orion::operators::tensor::quantization::quantize_linear::quantize_linear; use orion::operators::tensor::{TensorTrait, Tensor}; fn qlinear_matmul< T, MAG, Q, impl TTensor: TensorTrait<T>, impl QTensor: TensorTrait<Q>, impl QIntoT: Into<Q, T>, impl QTensorIntoTTensor: Into<Tensor<Q>, Tensor<T>>, impl TAdd: Add<T>, impl TSub: Sub<T>, impl TDiv: Div<T>, impl TMul: Mul<T>, impl TTensorSub: Sub<Tensor<T>>, impl TTensorMul: Mul<Tensor<T>>, impl TTensorDiv: Div<Tensor<T>>, impl TPartialOrd: PartialOrd<T>, impl TNumber: NumberTrait<T, MAG>, impl TTryInto: TryInto<T, Q>, impl TAddEq: AddEq<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>, impl QCopy: Copy<Q>, impl QDrop: Drop<Q>, >( a: @Tensor<Q>, a_scale: @Tensor<T>, a_zero_point: @Tensor<T>, b: @Tensor<Q>, b_scale: @Tensor<T>, b_zero_point: @Tensor<T>, y_scale: @Tensor<T>, y_zero_point: @Tensor<T>, min: T, max: T ) -> Tensor<Q> { let a_shape = *a.shape; let b_shape = *b.shape; let a_ndim = (a_shape).len(); let b_ndim = (b_shape).len(); if a_ndim <= 2 && b_ndim <= 2 { let mut dequantized_a = dequantize_linear(@(*a), a_scale, a_zero_point); let mut dequantized_b = dequantize_linear(@(*b), b_scale, b_zero_point); let mut x = dequantized_a.matmul(@dequantized_b); return quantize_linear(@x, y_scale, y_zero_point, min, max); } assert(a_ndim == b_ndim, 'dim missmatch'); let mut dequantized_a = dequantize_linear(@(*a), a_scale, a_zero_point); let mut dequantized_b = dequantize_linear(@(*b), b_scale, b_zero_point); let mut x_shape: Array<usize> = array![]; let mut x_data: Array<T> = array![]; assert(a_shape[a_ndim - 1] == b_shape[b_ndim - 2], 'incompatible dim for matmul'); let m = *a_shape[a_ndim - 2]; let k = *a_shape[a_ndim -
1]; let n = *b_shape[b_ndim - 1]; let mut a_shape_reduced: Array<usize> = array![]; a_shape_reduced.append(m); a_shape_reduced.append(k); let mut b_shape_reduced: Array<usize> = array![]; b_shape_reduced.append(k); b_shape_reduced.append(n); let mut i = 0; while i != stride(a_shape) / (m * k) { result_updates( @subtensor(@dequantized_a, i * (m * k), a_shape_reduced.span()), @subtensor(@dequantized_b, i * (k * n), b_shape_reduced.span()), ref x_data ); i += 1; }; x_shape(ref x_shape, a_shape, m, n); let x = TensorTrait::new(x_shape.span(), x_data.span()); quantize_linear(@x, y_scale, y_zero_point, min, max) }
fn x_shape(ref x_data: Array<usize>, mut shape: Span<usize>, m: usize, n: usize) { while shape.len() != 2 { match shape.pop_front() { Option::Some(elem) => { x_data.append(*elem); }, Option::None => { break; } }; }; x_data.append(m); x_data.append(n); } fn stride(mut shape: Span<usize>) -> usize { let shape_len = shape.len(); assert(shape_len > 0, 'shape cannot be empty'); let mut accumulated: usize = 1; loop { match shape.pop_back() { Option::Some(i) => { accumulated *= *i; }, Option::None => { break; } }; }; accumulated } fn subtensor<T, impl TTensor: TensorTrait<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>>( x: @Tensor<T>, start: usize, shape: Span<usize> ) -> Tensor::<T> { let mut data = ArrayTrait::<T>::new(); let mut stride = stride(shape); let mut i = 0; while i != stride { data.append(*x.data[start + i]); i += 1; }; TensorTrait::new(shape, data.span()) } fn result_updates< T, MAG, impl TTensor: TensorTrait<T>, impl TNumber: NumberTrait<T, MAG>, impl TMul: Mul<T>, impl TAddEq: AddEq<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T> >( mat1: @Tensor<T>, mat2: @Tensor<T>, ref result_data: Array<T> ) { let m = *mat1.shape[0]; let n = *mat1.shape[1]; let p = *mat2.shape[1]; let mat1 = *mat1.data; let mat2 = *mat2.data; let mut result_shape: Array<usize> = array![]; result_shape.append(m); result_shape.append(p); let mut i = 0_usize; while i != m { let mut j = 0_usize; while j != p { let mut sum: T = NumberTrait::zero(); let mut k = 0_usize; while k != n { let mat1_index = i * n + k; let mat2_index = k * p + j; sum += *mat1[mat1_index] * *mat2[mat2_index]; k += 1; }; result_data.append(sum); j += 1; };
i += 1; }; }
use orion::numbers::{NumberTrait}; use orion::operators::tensor::quantization::dequantize_linear::dequantize_linear; use orion::operators::tensor::quantization::quantize_linear::quantize_linear; use orion::operators::tensor::{TensorTrait, Tensor}; fn qlinear_mul< T, MAG, Q, impl TTensor: TensorTrait<T>, impl QTensor: TensorTrait<Q>, impl QIntoT: Into<Q, T>, impl QTensorIntoTTensor: Into<Tensor<Q>, Tensor<T>>, impl TAdd: Add<T>, impl TSub: Sub<T>, impl TDiv: Div<T>, impl TMul: Mul<T>, impl TTensorAdd: Add<Tensor<T>>, impl TTensorSub: Sub<Tensor<T>>, impl TTensorMul: Mul<Tensor<T>>, impl TTensorDiv: Div<Tensor<T>>, impl TPartialOrd: PartialOrd<T>, impl TNumber: NumberTrait<T, MAG>, impl TTryInto: TryInto<T, Q>, impl TAddEq: AddEq<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>, impl QCopy: Copy<Q>, impl QDrop: Drop<Q>, >( a: @Tensor<Q>, a_scale: @Tensor<T>, a_zero_point: @Tensor<T>, b: @Tensor<Q>, b_scale: @Tensor<T>, b_zero_point: @Tensor<T>, y_scale: @Tensor<T>, y_zero_point: @Tensor<T>, min: T, max: T ) -> Tensor<Q> { let mut dequantized_a = dequantize_linear(@(*a), a_scale, a_zero_point); let mut dequantized_b = dequantize_linear(@(*b), b_scale, b_zero_point); let mut x = (dequantized_a * dequantized_b).into(); quantize_linear(@x, y_scale, y_zero_point, min, max) }
use orion::operators::tensor::core::{Tensor, TensorTrait}; use orion::operators::tensor::helpers::check_compatibility; use orion::operators::tensor::math::arithmetic::saturated_add; use orion::utils::saturate; fn quantize_linear< T, Q, impl TTensor: TensorTrait<T>, impl QTensor: TensorTrait<Q>, impl TAdd: Add<T>, impl TDiv: Div<T>, impl TTensorDiv: Div<Tensor<T>>, impl TPartialOrd: PartialOrd<T>, impl TTryInto: TryInto<T, Q>, impl TCopy: Copy<T>, impl TDrop: Drop<T>, impl QCopy: Copy<Q>, impl QDrop: Drop<Q>, >( x: @Tensor<T>, y_scale: @Tensor<T>, y_zero_point: @Tensor<T>, min: T, max: T ) -> Tensor::<Q> { if (*y_scale.data).len() == 1 && (*y_zero_point.data).len() == 1 { quantize_element_wise(*x, *y_scale.data[0], *y_zero_point.data[0], min, max) } else { check_compatibility(*x.shape, *y_scale.shape); check_compatibility(*x.shape, *y_zero_point.shape); check_compatibility(*y_scale.shape, *y_zero_point.shape); quantize_per_axis(x, y_scale, y_zero_point, min, max) } } fn quantize_per_axis< T, Q, impl TTensor: TensorTrait<T>, impl QTensor: TensorTrait<Q>, impl TAdd: Add<T>, impl TTensorDiv: Div<Tensor<T>>, impl TPartialOrd: PartialOrd<T>, impl TTryInto: TryInto<T, Q>, impl TCopy: Copy<T>, impl TDrop: Drop<T>, impl QDrop: Drop<Q>, >( x: @Tensor<T>, y_scale: @Tensor<T>, y_zero_point: @Tensor<T>, min: T, max: T ) -> Tensor::<Q> { saturated_add(@(*x / *y_scale), y_zero_point, min, max) } fn quantize_element_wise< T, Q, impl TCopy: Copy<T>, impl TDrop: Drop<T>, impl QCopy: Copy<Q>, impl QDrop: Drop<Q>, impl TPartialOrd: PartialOrd<T>, impl TDiv: Div<T>, impl TAdd: Add<T>, impl TTryIntoQ: TryInto<T, Q>, impl QTensor: TensorTrait<Q> >( mut x: Tensor::<T>, y_scale: T, y_zero_point: T, min: T, max: T ) -> Tensor::<Q> { let mut result_data: Array<Q> = array![]; loop { match x.data.pop_front() {
Option::Some(item) => { let quantized = quantize(*item, y_scale, y_zero_point, min, max); result_data.append(quantized); }, Option::None => { break; } }; }; TensorTrait::new(x.shape, result_data.span()) } fn quantize< T, Q, impl TCopy: Copy<T>, impl TDrop: Drop<T>, impl TPartialOrd: PartialOrd<T>, impl TDiv: Div<T>, impl TAdd: Add<T>, impl TTryIntoQ: TryInto<T, Q> >( x: T, y_scale: T, y_zero_point: T, min: T, max: T ) -> Q { saturate(min, max, ((x / y_scale) + y_zero_point)).try_into().unwrap() }
use core::box::BoxTrait; use core::traits::Into; use core::nullable::{Nullable, match_nullable, FromNullableResult, nullable_from_box}; use alexandria_data_structures::vec::{VecTrait}; use orion::numbers::NumberTrait; struct NullableVec<T> { items: Felt252Dict<Nullable<T>>, len: usize, } impl DestructNullableVec<T, impl TDrop: Drop<T>> of Destruct<NullableVec<T>> { fn destruct(self: NullableVec<T>) nopanic { self.items.squash(); } } impl NullableVecImpl< T, MAG, impl TDrop: Drop<T>, impl TCopy: Copy<T>, +NumberTrait<T, MAG> > of VecTrait<NullableVec<T>, T> { fn new() -> NullableVec<T> { NullableVec { items: Default::default(), len: 0 } } fn get(ref self: NullableVec<T>, index: usize) -> Option<T> { if (index < self.len()) { return match match_nullable(self.items.get(index.into())) { FromNullableResult::Null(()) => { Option::Some(NumberTrait::zero()) }, FromNullableResult::NotNull(val) => { Option::Some(val.unbox()) }, }; } else { Option::<T>::None } } fn at(ref self: NullableVec<T>, index: usize) -> T { assert(index < self.len(), 'Index out of bounds'); return match self.get(index) { Option::Some(val) => val, Option::None => NumberTrait::zero(), }; } fn push(ref self: NullableVec<T>, value: T) -> () { self.items.insert(self.len.into(), nullable_from_box(BoxTrait::new(value))); self.len = core::integer::u32_wrapping_add(self.len, 1_usize); } fn set(ref self: NullableVec<T>, index: usize, value: T) { if index >= self.len() { self.len = index + 1; } self.items.insert(index.into(), nullable_from_box(BoxTrait::new(value))); } fn len(self: @NullableVec<T>) -> usize { *self.len } }
mod tensor;
mod fixed_point; mod i32; mod i8; mod u32;
mod fp8x23; mod fp16x16;
use orion::numbers::fixed_point::core::{FixedTrait}; use orion::numbers::fixed_point::implementations::fp16x16::core::FP16x16; use orion::operators::tensor::implementations::tensor_fp16x16::FP16x16Tensor; use orion::operators::tensor::{TensorTrait, Tensor}; fn fp_tensor_1x3_helper() -> Tensor<FP16x16> { let mut sizes: Array<u32> = array![3]; let mut data = array![ FixedTrait::new_unscaled(0, false), FixedTrait::new_unscaled(1, false), FixedTrait::new_unscaled(2, false) ]; let tensor = TensorTrait::<FP16x16>::new(sizes.span(), data.span()); tensor } fn fp_tensor_1x3_neg_helper() -> Tensor<FP16x16> { let mut sizes: Array<u32> = array![3]; let mut data = array![ FixedTrait::new_unscaled(0, false), FixedTrait::new_unscaled(1, true), FixedTrait::new_unscaled(2, true) ]; let tensor = TensorTrait::<FP16x16>::new(sizes.span(), data.span()); tensor } fn fp_tensor_2x2_helper() -> Tensor<FP16x16> { let mut sizes: Array<u32> = array![2, 2]; let mut data = array![ FixedTrait::new_unscaled(0, false), FixedTrait::new_unscaled(1, false), FixedTrait::new_unscaled(2, false), FixedTrait::new_unscaled(3, false) ]; let tensor = TensorTrait::<FP16x16>::new(sizes.span(), data.span()); tensor } fn fp_tensor_2x2_neg_helper() -> Tensor<FP16x16> { let mut sizes: Array<u32> = array![2, 2]; let mut data = array![ FixedTrait::new_unscaled(0, false), FixedTrait::new_unscaled(1, true), FixedTrait::new_unscaled(2, true), FixedTrait::new_unscaled(3, true) ]; let tensor = TensorTrait::<FP16x16>::new(sizes.span(), data.span()); tensor } fn fp_tensor_3x3_helper() -> Tensor<FP16x16> { let mut sizes: Array<u32> = array![3, 3]; let mut data = array![ FixedTrait::new_unscaled(0, false), FixedTrait::new_unscaled(1, false), FixedTrait::new_unscaled(2, false), FixedTrait::new_unscaled(3, false), FixedTrait
::new_unscaled(4, false), FixedTrait::new_unscaled(5, false), FixedTrait::new_unscaled(6, false), FixedTrait::new_unscaled(7, false), FixedTrait::new_unscaled(8, false) ]; let tensor = TensorTrait::<FP16x16>::new(sizes.span(), data.span()); tensor } fn fp_tensor_3x3_neg_helper() -> Tensor<FP16x16> { let mut sizes: Array<u32> = array![3, 3]; let mut data = array![ FixedTrait::new_unscaled(0, false), FixedTrait::new_unscaled(1, true), FixedTrait::new_unscaled(2, true), FixedTrait::new_unscaled(3, true), FixedTrait::new_unscaled(4, true), FixedTrait::new_unscaled(5, true), FixedTrait::new_unscaled(6, true), FixedTrait::new_unscaled(7, true), FixedTrait::new_unscaled(8, true) ]; let tensor = TensorTrait::<FP16x16>::new(sizes.span(), data.span()); tensor } fn fp_tensor_3x2_helper() -> Tensor<FP16x16> { let mut sizes: Array<u32> = array![3, 2]; let mut data = array![ FixedTrait::new_unscaled(0, false), FixedTrait::new_unscaled(1, false), FixedTrait::new_unscaled(2, false), FixedTrait::new_unscaled(3, false), FixedTrait::new_unscaled(4, false), FixedTrait::new_unscaled(5, false) ]; let tensor = TensorTrait::<FP16x16>::new(sizes.span(), data.span()); tensor } fn fp_tensor_3x2_neg_helper() -> Tensor<FP16x16> { let mut sizes: Array<u32> = array![3, 2]; let mut data = array![ FixedTrait::new_unscaled(0, false), FixedTrait::new_unscaled(1, true), FixedTrait::new_unscaled(2, true), FixedTrait::new_unscaled(3, true), FixedTrait::new_unscaled(4, true), FixedTrait::new_unscaled(5, true) ]; let tensor = TensorTrait::<FP16x16>::new(sizes.span(), data.span()); tensor } fn fp_tensor_3x1_helper() -> Tensor<FP16x16> { let mut sizes: Array<u32> = array![3, 1]; let mut data = array![ FixedTrait::new_unscaled(0, false), FixedTrait::new
_unscaled(1, false), FixedTrait::new_unscaled(2, false) ]; let tensor = TensorTrait::<FP16x16>::new(sizes.span(), data.span()); tensor } fn fp_tensor_3x1_neg_helper() -> Tensor<FP16x16> { let mut sizes: Array<u32> = array![3, 1]; let mut data = array![ FixedTrait::new_unscaled(0, false), FixedTrait::new_unscaled(1, true), FixedTrait::new_unscaled(2, true) ]; let tensor = TensorTrait::<FP16x16>::new(sizes.span(), data.span()); tensor } fn fp_tensor_2x3_helper() -> Tensor<FP16x16> { let mut sizes: Array<u32> = array![2, 3]; let mut data = array![ FixedTrait::new_unscaled(0, false), FixedTrait::new_unscaled(1, false), FixedTrait::new_unscaled(2, false), FixedTrait::new_unscaled(3, false), FixedTrait::new_unscaled(4, false), FixedTrait::new_unscaled(5, false) ]; let tensor = TensorTrait::<FP16x16>::new(sizes.span(), data.span()); tensor } fn fp_tensor_2x3_neg_helper() -> Tensor<FP16x16> { let mut sizes: Array<u32> = array![2, 3]; let mut data = array![ FixedTrait::new_unscaled(0, false), FixedTrait::new_unscaled(1, true), FixedTrait::new_unscaled(2, true), FixedTrait::new_unscaled(3, true), FixedTrait::new_unscaled(4, true), FixedTrait::new_unscaled(5, true) ]; let tensor = TensorTrait::<FP16x16>::new(sizes.span(), data.span()); tensor } fn fp_tensor_2x2x2_helper() -> Tensor<FP16x16> { let mut sizes: Array<u32> = array![2, 2, 2]; let mut data = array![ FixedTrait::new_unscaled(0, false), FixedTrait::new_unscaled(1, false), FixedTrait::new_unscaled(2, false), FixedTrait::new_unscaled(3, false), FixedTrait::new_unscaled(4, false), FixedTrait::new_unscaled(5, false), FixedTrait::new_unscaled(6, false), FixedTrait::new_unscaled(7, false) ]; let tensor = TensorTrait::<FP16x16>::new(sizes.span(), data.span()); tensor } fn fp_ten
sor_2x2x2_neg_helper() -> Tensor<FP16x16> { let mut sizes: Array<u32> = array![2, 2, 2]; let mut data = array![ FixedTrait::new_unscaled(0, false), FixedTrait::new_unscaled(1, true), FixedTrait::new_unscaled(2, true), FixedTrait::new_unscaled(3, true), FixedTrait::new_unscaled(4, true), FixedTrait::new_unscaled(5, true), FixedTrait::new_unscaled(6, true), FixedTrait::new_unscaled(7, true) ]; let tensor = TensorTrait::<FP16x16>::new(sizes.span(), data.span()); tensor } fn fp_tensor_3x2x2_helper() -> Tensor<FP16x16> { let mut sizes: Array<u32> = array![3, 2, 2]; let mut data = array![ FixedTrait::new_unscaled(0, false), FixedTrait::new_unscaled(1, false), FixedTrait::new_unscaled(2, false), FixedTrait::new_unscaled(3, false), FixedTrait::new_unscaled(4, false), FixedTrait::new_unscaled(5, false), FixedTrait::new_unscaled(6, false), FixedTrait::new_unscaled(7, false), FixedTrait::new_unscaled(8, false), FixedTrait::new_unscaled(9, false), FixedTrait::new_unscaled(10, false), FixedTrait::new_unscaled(11, false) ]; let tensor = TensorTrait::<FP16x16>::new(sizes.span(), data.span()); tensor } fn fp_tensor_3x2x2_neg_helper() -> Tensor<FP16x16> { let mut sizes: Array<u32> = array![3, 2, 2]; let mut data = array![ FixedTrait::new_unscaled(0, false), FixedTrait::new_unscaled(1, true), FixedTrait::new_unscaled(2, true), FixedTrait::new_unscaled(3, true), FixedTrait::new_unscaled(4, true), FixedTrait::new_unscaled(5, true), FixedTrait::new_unscaled(6, true), FixedTrait::new_unscaled(7, true), FixedTrait::new_unscaled(8, true), FixedTrait::new_unscaled(9, true), FixedTrait::new_unscaled(10, true), FixedTrait::new_unscaled(11, true) ]; let tensor = TensorTrait::<FP16x16>::new(sizes.span(), data.span()); tenso
r } fn fp_tensor_3x3x3_helper() -> Tensor<FP16x16> { let mut sizes: Array<u32> = array![3, 3, 3]; let mut data = array![ FixedTrait::new_unscaled(0, false), FixedTrait::new_unscaled(1, false), FixedTrait::new_unscaled(2, false), FixedTrait::new_unscaled(3, false), FixedTrait::new_unscaled(4, false), FixedTrait::new_unscaled(5, false), FixedTrait::new_unscaled(6, false), FixedTrait::new_unscaled(7, false), FixedTrait::new_unscaled(8, false), FixedTrait::new_unscaled(9, false), FixedTrait::new_unscaled(10, false), FixedTrait::new_unscaled(11, false), FixedTrait::new_unscaled(12, false), FixedTrait::new_unscaled(13, false), FixedTrait::new_unscaled(14, false), FixedTrait::new_unscaled(15, false), FixedTrait::new_unscaled(16, false), FixedTrait::new_unscaled(17, false), FixedTrait::new_unscaled(18, false), FixedTrait::new_unscaled(19, false), FixedTrait::new_unscaled(20, false), FixedTrait::new_unscaled(21, false), FixedTrait::new_unscaled(22, false), FixedTrait::new_unscaled(23, false), FixedTrait::new_unscaled(24, false), FixedTrait::new_unscaled(25, false), FixedTrait::new_unscaled(26, false) ]; let tensor = TensorTrait::<FP16x16>::new(sizes.span(), data.span()); tensor } fn fp_tensor_3x3x3_neg_helper() -> Tensor<FP16x16> { let mut sizes: Array<u32> = array![3, 3, 3]; let mut data = array![ FixedTrait::new_unscaled(0, false), FixedTrait::new_unscaled(1, true), FixedTrait::new_unscaled(2, true), FixedTrait::new_unscaled(3, true), FixedTrait::new_unscaled(4, true), FixedTrait::new_unscaled(5, true), FixedTrait::new_unscaled(6, true), FixedTrait::new_unscaled(7, true), FixedTrait::new_unscaled(8, true), FixedTrait::new_unscaled(9, true), FixedTrait::new_unscaled(10, true), Fixed
Trait::new_unscaled(11, true), FixedTrait::new_unscaled(12, true), FixedTrait::new_unscaled(13, true), FixedTrait::new_unscaled(14, true), FixedTrait::new_unscaled(15, true), FixedTrait::new_unscaled(16, true), FixedTrait::new_unscaled(17, true), FixedTrait::new_unscaled(18, true), FixedTrait::new_unscaled(19, true), FixedTrait::new_unscaled(20, true), FixedTrait::new_unscaled(21, true), FixedTrait::new_unscaled(22, true), FixedTrait::new_unscaled(23, true), FixedTrait::new_unscaled(24, true), FixedTrait::new_unscaled(25, true), FixedTrait::new_unscaled(26, true) ]; let tensor = TensorTrait::<FP16x16>::new(sizes.span(), data.span()); tensor }
use orion::numbers::fixed_point::core::{FixedTrait}; use orion::numbers::fixed_point::implementations::fp8x23::core::FP8x23; use orion::operators::tensor::implementations::tensor_fp8x23::FP8x23Tensor; use orion::operators::tensor::{TensorTrait, Tensor}; fn fp_tensor_1x3_helper() -> Tensor<FP8x23> { let mut sizes: Array<u32> = array![3]; let mut data = array![ FixedTrait::new_unscaled(0, false), FixedTrait::new_unscaled(1, false), FixedTrait::new_unscaled(2, false) ]; let tensor = TensorTrait::<FP8x23>::new(sizes.span(), data.span()); tensor } fn fp_tensor_1x3_neg_helper() -> Tensor<FP8x23> { let mut sizes: Array<u32> = array![3]; let mut data = array![ FixedTrait::new_unscaled(0, false), FixedTrait::new_unscaled(1, true), FixedTrait::new_unscaled(2, true) ]; let tensor = TensorTrait::<FP8x23>::new(sizes.span(), data.span()); tensor } fn fp_tensor_2x2_helper() -> Tensor<FP8x23> { let mut sizes: Array<u32> = array![2, 2]; let mut data = array![ FixedTrait::new_unscaled(0, false), FixedTrait::new_unscaled(1, false), FixedTrait::new_unscaled(2, false), FixedTrait::new_unscaled(3, false) ]; let tensor = TensorTrait::<FP8x23>::new(sizes.span(), data.span()); tensor } fn fp_tensor_2x2_neg_helper() -> Tensor<FP8x23> { let mut sizes: Array<u32> = array![2, 2]; let mut data = array![ FixedTrait::new_unscaled(0, false), FixedTrait::new_unscaled(1, true), FixedTrait::new_unscaled(2, true), FixedTrait::new_unscaled(3, true) ]; let tensor = TensorTrait::<FP8x23>::new(sizes.span(), data.span()); tensor } fn fp_tensor_3x3_helper() -> Tensor<FP8x23> { let mut sizes: Array<u32> = array![3, 3]; let mut data = array![ FixedTrait::new_unscaled(0, false), FixedTrait::new_unscaled(1, false), FixedTrait::new_unscaled(2, false), FixedTrait::new_unscaled(3, false), FixedTrait::new_unscale
d(4, false), FixedTrait::new_unscaled(5, false), FixedTrait::new_unscaled(6, false), FixedTrait::new_unscaled(7, false), FixedTrait::new_unscaled(8, false) ]; let tensor = TensorTrait::<FP8x23>::new(sizes.span(), data.span()); tensor } fn fp_tensor_3x3_neg_helper() -> Tensor<FP8x23> { let mut sizes: Array<u32> = array![3, 3]; let mut data = array![ FixedTrait::new_unscaled(0, false), FixedTrait::new_unscaled(1, true), FixedTrait::new_unscaled(2, true), FixedTrait::new_unscaled(3, true), FixedTrait::new_unscaled(4, true), FixedTrait::new_unscaled(5, true), FixedTrait::new_unscaled(6, true), FixedTrait::new_unscaled(7, true), FixedTrait::new_unscaled(8, true) ]; let tensor = TensorTrait::<FP8x23>::new(sizes.span(), data.span()); tensor } fn fp_tensor_3x2_helper() -> Tensor<FP8x23> { let mut sizes: Array<u32> = array![3, 2]; let mut data = array![ FixedTrait::new_unscaled(0, false), FixedTrait::new_unscaled(1, false), FixedTrait::new_unscaled(2, false), FixedTrait::new_unscaled(3, false), FixedTrait::new_unscaled(4, false), FixedTrait::new_unscaled(5, false) ]; let tensor = TensorTrait::<FP8x23>::new(sizes.span(), data.span()); tensor } fn fp_tensor_3x2_neg_helper() -> Tensor<FP8x23> { let mut sizes: Array<u32> = array![3, 2]; let mut data = array![ FixedTrait::new_unscaled(0, false), FixedTrait::new_unscaled(1, true), FixedTrait::new_unscaled(2, true), FixedTrait::new_unscaled(3, true), FixedTrait::new_unscaled(4, true), FixedTrait::new_unscaled(5, true) ]; let tensor = TensorTrait::<FP8x23>::new(sizes.span(), data.span()); tensor } fn fp_tensor_3x1_helper() -> Tensor<FP8x23> { let mut sizes: Array<u32> = array![3, 1]; let mut data = array![ FixedTrait::new_unscaled(0, false), FixedTrait::new_unscaled(1, false),
FixedTrait::new_unscaled(2, false) ]; let tensor = TensorTrait::<FP8x23>::new(sizes.span(), data.span()); tensor } fn fp_tensor_3x1_neg_helper() -> Tensor<FP8x23> { let mut sizes: Array<u32> = array![3, 1]; let mut data = array![ FixedTrait::new_unscaled(0, false), FixedTrait::new_unscaled(1, true), FixedTrait::new_unscaled(2, true) ]; let tensor = TensorTrait::<FP8x23>::new(sizes.span(), data.span()); tensor } fn fp_tensor_2x3_helper() -> Tensor<FP8x23> { let mut sizes: Array<u32> = array![2, 3]; let mut data = array![ FixedTrait::new_unscaled(0, false), FixedTrait::new_unscaled(1, false), FixedTrait::new_unscaled(2, false), FixedTrait::new_unscaled(3, false), FixedTrait::new_unscaled(4, false), FixedTrait::new_unscaled(5, false) ]; let tensor = TensorTrait::<FP8x23>::new(sizes.span(), data.span()); tensor } fn fp_tensor_2x3_neg_helper() -> Tensor<FP8x23> { let mut sizes: Array<u32> = array![2, 3]; let mut data = array![ FixedTrait::new_unscaled(0, false), FixedTrait::new_unscaled(1, true), FixedTrait::new_unscaled(2, true), FixedTrait::new_unscaled(3, true), FixedTrait::new_unscaled(4, true), FixedTrait::new_unscaled(5, true) ]; let tensor = TensorTrait::<FP8x23>::new(sizes.span(), data.span()); tensor } fn fp_tensor_2x2x2_helper() -> Tensor<FP8x23> { let mut sizes: Array<u32> = array![2, 2, 2]; let mut data = array![ FixedTrait::new_unscaled(0, false), FixedTrait::new_unscaled(1, false), FixedTrait::new_unscaled(2, false), FixedTrait::new_unscaled(3, false), FixedTrait::new_unscaled(4, false), FixedTrait::new_unscaled(5, false), FixedTrait::new_unscaled(6, false), FixedTrait::new_unscaled(7, false) ]; let tensor = TensorTrait::<FP8x23>::new(sizes.span(), data.span()); tensor } fn fp_tensor_2x2x2_neg_helper() -> Tens
or<FP8x23> { let mut sizes: Array<u32> = array![2, 2, 2]; let mut data = array![ FixedTrait::new_unscaled(0, false), FixedTrait::new_unscaled(1, true), FixedTrait::new_unscaled(2, true), FixedTrait::new_unscaled(3, true), FixedTrait::new_unscaled(4, true), FixedTrait::new_unscaled(5, true), FixedTrait::new_unscaled(6, true), FixedTrait::new_unscaled(7, true) ]; let tensor = TensorTrait::<FP8x23>::new(sizes.span(), data.span()); tensor } fn fp_tensor_3x2x2_helper() -> Tensor<FP8x23> { let mut sizes: Array<u32> = array![3, 2, 2]; let mut data = array![ FixedTrait::new_unscaled(0, false), FixedTrait::new_unscaled(1, false), FixedTrait::new_unscaled(2, false), FixedTrait::new_unscaled(3, false), FixedTrait::new_unscaled(4, false), FixedTrait::new_unscaled(5, false), FixedTrait::new_unscaled(6, false), FixedTrait::new_unscaled(7, false), FixedTrait::new_unscaled(8, false), FixedTrait::new_unscaled(9, false), FixedTrait::new_unscaled(10, false), FixedTrait::new_unscaled(11, false) ]; let tensor = TensorTrait::<FP8x23>::new(sizes.span(), data.span()); tensor } fn fp_tensor_3x2x2_neg_helper() -> Tensor<FP8x23> { let mut sizes: Array<u32> = array![3, 2, 2]; let mut data = array![ FixedTrait::new_unscaled(0, false), FixedTrait::new_unscaled(1, true), FixedTrait::new_unscaled(2, true), FixedTrait::new_unscaled(3, true), FixedTrait::new_unscaled(4, true), FixedTrait::new_unscaled(5, true), FixedTrait::new_unscaled(6, true), FixedTrait::new_unscaled(7, true), FixedTrait::new_unscaled(8, true), FixedTrait::new_unscaled(9, true), FixedTrait::new_unscaled(10, true), FixedTrait::new_unscaled(11, true) ]; let tensor = TensorTrait::<FP8x23>::new(sizes.span(), data.span()); tensor } fn fp_tensor_3x3x3_helper() ->
Tensor<FP8x23> { let mut sizes: Array<u32> = array![3, 3, 3]; let mut data = array![ FixedTrait::new_unscaled(0, false), FixedTrait::new_unscaled(1, false), FixedTrait::new_unscaled(2, false), FixedTrait::new_unscaled(3, false), FixedTrait::new_unscaled(4, false), FixedTrait::new_unscaled(5, false), FixedTrait::new_unscaled(6, false), FixedTrait::new_unscaled(7, false), FixedTrait::new_unscaled(8, false), FixedTrait::new_unscaled(9, false), FixedTrait::new_unscaled(10, false), FixedTrait::new_unscaled(11, false), FixedTrait::new_unscaled(12, false), FixedTrait::new_unscaled(13, false), FixedTrait::new_unscaled(14, false), FixedTrait::new_unscaled(15, false), FixedTrait::new_unscaled(16, false), FixedTrait::new_unscaled(17, false), FixedTrait::new_unscaled(18, false), FixedTrait::new_unscaled(19, false), FixedTrait::new_unscaled(20, false), FixedTrait::new_unscaled(21, false), FixedTrait::new_unscaled(22, false), FixedTrait::new_unscaled(23, false), FixedTrait::new_unscaled(24, false), FixedTrait::new_unscaled(25, false), FixedTrait::new_unscaled(26, false) ]; let tensor = TensorTrait::<FP8x23>::new(sizes.span(), data.span()); tensor } fn fp_tensor_3x3x3_neg_helper() -> Tensor<FP8x23> { let mut sizes: Array<u32> = array![3, 3, 3]; let mut data = array![ FixedTrait::new_unscaled(0, false), FixedTrait::new_unscaled(1, true), FixedTrait::new_unscaled(2, true), FixedTrait::new_unscaled(3, true), FixedTrait::new_unscaled(4, true), FixedTrait::new_unscaled(5, true), FixedTrait::new_unscaled(6, true), FixedTrait::new_unscaled(7, true), FixedTrait::new_unscaled(8, true), FixedTrait::new_unscaled(9, true), FixedTrait::new_unscaled(10, true), FixedTrait::new_unscaled(11, true),
FixedTrait::new_unscaled(12, true), FixedTrait::new_unscaled(13, true), FixedTrait::new_unscaled(14, true), FixedTrait::new_unscaled(15, true), FixedTrait::new_unscaled(16, true), FixedTrait::new_unscaled(17, true), FixedTrait::new_unscaled(18, true), FixedTrait::new_unscaled(19, true), FixedTrait::new_unscaled(20, true), FixedTrait::new_unscaled(21, true), FixedTrait::new_unscaled(22, true), FixedTrait::new_unscaled(23, true), FixedTrait::new_unscaled(24, true), FixedTrait::new_unscaled(25, true), FixedTrait::new_unscaled(26, true) ]; let tensor = TensorTrait::<FP8x23>::new(sizes.span(), data.span()); tensor }
use orion::operators::tensor::{TensorTrait, Tensor}; use orion::operators::tensor::I32Tensor; fn i32_tensor_1x3_helper() -> Tensor<i32> { let mut sizes: Array<u32> = array![3]; let mut data: Array<i32> = array![0, 1, 2]; let tensor = TensorTrait::new(sizes.span(), data.span()); tensor } fn i32_tensor_1x3_neg_helper() -> Tensor<i32> { let mut sizes: Array<u32> = array![3]; let mut data: Array<i32> = array![0, -1, -2]; let tensor = TensorTrait::new(sizes.span(), data.span()); tensor } fn i32_tensor_2x2_helper() -> Tensor<i32> { let mut sizes: Array<u32> = array![2, 2]; let mut data: Array<i32> = array![0, 1, 2, 3]; let tensor = TensorTrait::new(sizes.span(), data.span()); tensor } fn i32_tensor_2x2_neg_helper() -> Tensor<i32> { let mut sizes: Array<u32> = array![2, 2]; let mut data: Array<i32> = array![0, -1, -2, -3]; let tensor = TensorTrait::new(sizes.span(), data.span()); tensor } fn i32_tensor_3x3_helper() -> Tensor<i32> { let mut sizes: Array<u32> = array![3, 3]; let mut data: Array<i32> = array![0, 1, 2, 3, 4, 5, 6, 7, 8]; let tensor = TensorTrait::new(sizes.span(), data.span()); tensor } fn i32_tensor_3x3_neg_helper() -> Tensor<i32> { let mut sizes: Array<u32> = array![3, 3]; let mut data: Array<i32> = array![0, -1, -2, -3, -4, -5, -6, -7, -8]; let tensor = TensorTrait::new(sizes.span(), data.span()); tensor } fn i32_tensor_3x2_helper() -> Tensor<i32> { let mut sizes: Array<u32> = array![3, 2]; let mut data: Array<i32> = array![0, 1, 2, 3, 4, 5]; let tensor = TensorTrait::new(sizes.span(), data.span()); tensor } fn i32_tensor_3x2_neg_helper() -> Tensor<i32> { let mut sizes: Array<u32> = array![3, 2]; let mut data: Array<i32> = array![0, -1, -2, -3, -4, -5]; let tensor = TensorTrait::new(sizes.span(), data.span()); tensor } fn i32_tensor_3x1_helper() -> Tensor<i32> { let mut sizes: Array<u32> = array![3, 1]; let mut data: Array<i32> = array![0, 1, 2
]; let tensor = TensorTrait::new(sizes.span(), data.span()); tensor } fn i32_tensor_3x1_neg_helper() -> Tensor<i32> { let mut sizes: Array<u32> = array![3, 1]; let mut data: Array<i32> = array![0, -1, -2]; let tensor = TensorTrait::new(sizes.span(), data.span()); tensor } fn i32_tensor_2x3_helper() -> Tensor<i32> { let mut sizes: Array<u32> = array![2, 3]; let mut data: Array<i32> = array![0, 1, 2, 3, 4, 5]; let tensor = TensorTrait::new(sizes.span(), data.span()); tensor } fn i32_tensor_2x3_neg_helper() -> Tensor<i32> { let mut sizes: Array<u32> = array![2, 3]; let mut data: Array<i32> = array![0, -1, -2, -3, -4, -5]; let tensor = TensorTrait::new(sizes.span(), data.span()); tensor } fn i32_tensor_2x2x2_helper() -> Tensor<i32> { let mut sizes: Array<u32> = array![2, 2, 2]; let mut data: Array<i32> = array![0, 1, 2, 3, 4, 5, 6, 7]; let tensor = TensorTrait::new(sizes.span(), data.span()); tensor } fn i32_tensor_2x2x2_neg_helper() -> Tensor<i32> { let mut sizes: Array<u32> = array![2, 2, 2]; let mut data: Array<i32> = array![0, -1, -2, -3, -4, -5, -6, -7]; let tensor = TensorTrait::new(sizes.span(), data.span()); tensor } fn i32_tensor_3x2x2_helper() -> Tensor<i32> { let mut sizes: Array<u32> = array![3, 2, 2]; let mut data: Array<i32> = array![0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]; let tensor = TensorTrait::new(sizes.span(), data.span()); tensor } fn i32_tensor_3x2x2_neg_helper() -> Tensor<i32> { let mut sizes: Array<u32> = array![3, 2, 2]; let mut data: Array<i32> = array![0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11]; let tensor = TensorTrait::new(sizes.span(), data.span()); tensor } fn i32_tensor_3x3x3_helper() -> Tensor<i32> { let mut sizes: Array<u32> = array![3, 3, 3]; let mut data: Array<i32> = array![ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 ]; let tensor = TensorTrait::new(sizes.span(), data.span()); tensor } fn i32_tensor_3x3x3_neg_helper() -> Tensor<i32> { let mut sizes: Array<u32> = array![3, 3, 3]; let mut data: Array<i32> = array![ 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26 ]; let tensor = TensorTrait::new(sizes.span(), data.span()); tensor }
use orion::operators::tensor::{TensorTrait, Tensor}; use orion::operators::tensor::I8Tensor; fn i8_tensor_1x3_helper() -> Tensor<i8> { let mut sizes: Array<u32> = array![3]; let mut data: Array<i8> = array![0, 1, 2]; let tensor = TensorTrait::new(sizes.span(), data.span()); tensor } fn i8_tensor_1x3_neg_helper() -> Tensor<i8> { let mut sizes: Array<u32> = array![3]; let mut data: Array<i8> = array![0, -1, 2]; let tensor = TensorTrait::new(sizes.span(), data.span()); tensor } fn i8_tensor_2x2_helper() -> Tensor<i8> { let mut sizes: Array<u32> = array![2, 2]; let mut data: Array<i8> = array![0, 1, 2, 3]; let tensor = TensorTrait::new(sizes.span(), data.span()); tensor } fn i8_tensor_2x2_neg_helper() -> Tensor<i8> { let mut sizes: Array<u32> = array![2, 2]; let mut data: Array<i8> = array![0, -1, -2, -3]; let tensor = TensorTrait::new(sizes.span(), data.span()); tensor } fn i8_tensor_3x3_helper() -> Tensor<i8> { let mut sizes: Array<u32> = array![3, 3]; let mut data: Array<i8> = array![0, 1, 2, 3, 4, 5, 6, 7, 8]; let tensor = TensorTrait::new(sizes.span(), data.span()); tensor } fn i8_tensor_3x3_neg_helper() -> Tensor<i8> { let mut sizes: Array<u32> = array![3, 3]; let mut data: Array<i8> = array![0, -1, -2, -3, -4, -5, -6, -7, -8]; let tensor = TensorTrait::new(sizes.span(), data.span()); tensor } fn i8_tensor_3x2_helper() -> Tensor<i8> { let mut sizes: Array<u32> = array![3, 2]; let mut data: Array<i8> = array![0, 1, 2, 3, 4, 5]; let tensor = TensorTrait::new(sizes.span(), data.span()); tensor } fn i8_tensor_3x2_neg_helper() -> Tensor<i8> { let mut sizes: Array<u32> = array![3, 2]; let mut data: Array<i8> = array![0, -1, -2, -3, -4, -5]; let tensor = TensorTrait::new(sizes.span(), data.span()); return tensor; } fn i8_tensor_3x1_helper() -> Tensor<i8> { let mut sizes: Array<u32> = array![3, 1]; let mut data: Array<i8> = array![0, 1, 2]; let tensor =
TensorTrait::new(sizes.span(), data.span()); tensor } fn i8_tensor_3x1_neg_helper() -> Tensor<i8> { let mut sizes: Array<u32> = array![3, 1]; let mut data: Array<i8> = array![0, -1, -2]; let tensor = TensorTrait::new(sizes.span(), data.span()); tensor } fn i8_tensor_2x3_helper() -> Tensor<i8> { let mut sizes: Array<u32> = array![2, 3]; let mut data: Array<i8> = array![0, 1, 2, 3, 4, 5]; let tensor = TensorTrait::new(sizes.span(), data.span()); tensor } fn i8_tensor_2x3_neg_helper() -> Tensor<i8> { let mut sizes: Array<u32> = array![2, 3]; let mut data: Array<i8> = array![0, -1, -2, -3, -4, -5]; let tensor = TensorTrait::new(sizes.span(), data.span()); tensor } fn i8_tensor_2x2x2_helper() -> Tensor<i8> { let mut sizes: Array<u32> = array![2, 2, 2]; let mut data: Array<i8> = array![0, 1, 2, 3, 4, 5, 6, 7]; let tensor = TensorTrait::new(sizes.span(), data.span()); tensor } fn i8_tensor_2x2x2_neg_helper() -> Tensor<i8> { let mut sizes: Array<u32> = array![2, 2, 2]; let mut data: Array<i8> = array![0, -1, -2, -3, -4, -5, -6, -7]; let tensor = TensorTrait::new(sizes.span(), data.span()); tensor } fn i8_tensor_3x2x2_helper() -> Tensor<i8> { let mut sizes: Array<u32> = array![3, 2, 2]; let mut data: Array<i8> = array![0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]; let tensor = TensorTrait::new(sizes.span(), data.span()); tensor } fn i8_tensor_3x2x2_neg_helper() -> Tensor<i8> { let mut sizes: Array<u32> = array![3, 2, 2]; let mut data: Array<i8> = array![0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11]; let tensor = TensorTrait::new(sizes.span(), data.span()); tensor } fn i8_tensor_3x3x3_helper() -> Tensor<i8> { let mut sizes: Array<u32> = array![3, 3, 3]; let mut data: Array<i8> = array![ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26 ]; let tensor = TensorTrait::new(sizes.span(), data.span()); tensor } fn i8_tensor_3x3x3_neg_helper() -> Tensor<i8> { let mut sizes: Array<u32> = array![3, 3, 3]; let mut data: Array<i8> = array![ 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26 ]; let tensor = TensorTrait::new(sizes.span(), data.span()); tensor }
use orion::operators::tensor::U32Tensor; use orion::operators::tensor::{TensorTrait, Tensor}; fn u32_tensor_1x3_helper() -> Tensor<u32> { let mut sizes: Array<u32> = array![3]; let mut data: Array<u32> = array![0, 1, 2]; let tensor = TensorTrait::<u32>::new(sizes.span(), data.span()); tensor } fn u32_tensor_2x2_helper() -> Tensor<u32> { let mut sizes: Array<u32> = array![2, 2]; let mut data: Array<u32> = array![0, 1, 2, 3]; let tensor = TensorTrait::<u32>::new(sizes.span(), data.span()); tensor } fn u32_tensor_3x3_helper() -> Tensor<u32> { let mut sizes: Array<u32> = array![3, 3]; let mut data: Array<u32> = array![0, 1, 2, 3, 4, 5, 6, 7, 8]; let tensor = TensorTrait::<u32>::new(sizes.span(), data.span()); tensor } fn u32_tensor_3x2_helper() -> Tensor<u32> { let mut sizes: Array<u32> = array![3, 2]; let mut data: Array<u32> = array![0, 1, 2, 3, 4, 5]; let tensor = TensorTrait::<u32>::new(sizes.span(), data.span()); tensor } fn u32_tensor_3x1_helper() -> Tensor<u32> { let mut sizes: Array<u32> = array![3, 1]; let mut data: Array<u32> = array![0, 1, 2]; let tensor = TensorTrait::<u32>::new(sizes.span(), data.span()); tensor } fn u32_tensor_2x3_helper() -> Tensor<u32> { let mut sizes: Array<u32> = array![2, 3]; let mut data: Array<u32> = array![0, 1, 2, 3, 4, 5]; let tensor = TensorTrait::<u32>::new(sizes.span(), data.span()); tensor } fn u32_tensor_2x2x2_helper() -> Tensor<u32> { let mut sizes: Array<u32> = array![2, 2, 2]; let mut data: Array<u32> = array![0, 1, 2, 3, 4, 5, 6, 7]; let tensor = TensorTrait::<u32>::new(sizes.span(), data.span()); tensor } fn u32_tensor_3x2x2_helper() -> Tensor<u32> { let mut sizes: Array<u32> = array![3, 2, 2]; let mut data: Array<u32> = array![0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]; let tensor = TensorTrait::<u32>::new(sizes.span(), data.span()); tensor } fn u32_tensor_3x3x3_helper() -> Tensor<u32> { let mut sizes: Array<u32>
= array![3, 3, 3]; let mut data: Array<u32> = array![ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 ]; let tensor = TensorTrait::<u32>::new(sizes.span(), data.span()); tensor }
use orion::operators::tensor::{Tensor, TensorTrait}; fn u32_max(a: u32, b: u32) -> u32 { if a > b { a } else { b } } fn saturate<T, impl TCopy: Copy<T>, impl TDrop: Drop<T>, impl PartialOrdT: PartialOrd<T>>( min: T, max: T, x: T ) -> T { if x < min { min } else if x > max { max } else { x } } fn assert_eq<T, impl TPartialEq: PartialEq<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>>( lhs: T, rhs: T ) { assert(lhs == rhs, 'should be equal'); } fn assert_seq_eq<T, impl TPartialEq: PartialEq<T>, impl TCopy: Copy<T>, impl TDrop: Drop<T>>( lhs: Array<T>, rhs: Array<T> ) { assert(lhs.len() == rhs.len(), 'should be equal'); let mut i = 0; while i != lhs.len() { assert_eq(lhs[i], rhs[i]); i += 1; } } fn get_row<T, +Drop<T>, +Copy<T>>(self: @Tensor<T>, row: usize) -> Span<T> { assert((*self).shape.len() == 2, 'Expected a 2D tensor'); let row_length = *self.shape[1]; let start = row * row_length; (*self).data.slice(start, row_length) }
mod numbers; mod performance; mod tensor_core; mod nodes; mod ml; mod operators;
mod tree_ensemble_classifier; mod tree_ensemble_regressor; mod linear_regressor_test; mod linear_classifier_test; mod svm_regressor_test; mod svm_classifier_test; mod normalizer_test;
use orion::numbers::FP16x16; use orion::operators::tensor::{Tensor, TensorTrait, FP16x16Tensor, U32Tensor}; use orion::operators::ml::linear::linear_classifier::{ LinearClassifierTrait, POST_TRANSFORM, LinearClassifier }; use core::debug::PrintTrait;
fn test_linear_classifier_multi_none() { let (mut classifier, X) = linear_classifier_helper(POST_TRANSFORM::NONE); let (labels, mut scores) = LinearClassifierTrait::predict(classifier, X); assert(*labels[0] == 0, 'labels[0]'); assert(*labels[1] == 2, 'labels[1]'); assert(*labels[2] == 2, 'labels[2]'); assert(labels.len() == 3, 'len(labels)'); assert(*scores.data[0] == FP16x16 { mag: 157942, sign: false }, '*scores[0] == 2.41'); assert(*scores.data[1] == FP16x16 { mag: 138936, sign: true }, '*scores[1] == -2.12'); assert(*scores.data[2] == FP16x16 { mag: 38666, sign: false }, '*scores[2] == 0.59'); assert(*scores.data[3] == FP16x16 { mag: 43910, sign: false }, '*scores[3] == 0.67'); assert(*scores.data[4] == FP16x16 { mag: 74710, sign: true }, '*scores[4] == -1.14'); assert(*scores.data[5] == FP16x16 { mag: 88472, sign: false }, '*scores[5] == 1.35'); assert(*scores.data[6] == FP16x16 { mag: 70122, sign: true }, '*scores[6] == -1.07'); assert(*scores.data[7] == FP16x16 { mag: 10484, sign: true }, '*scores[7] == -0.16'); assert(*scores.data[8] == FP16x16 { mag: 138278, sign: false }, '*scores[8] == 2.11'); }
fn test_linear_classifier_multi_softmax() { let (mut classifier, X) = linear_classifier_helper(POST_TRANSFORM::SOFTMAX); let (labels, mut scores) = LinearClassifierTrait::predict(classifier, X); assert(*labels[0] == 0, 'labels[0]'); assert(*labels[1] == 2, 'labels[1]'); assert(*labels[2] == 2, 'labels[2]'); assert(labels.len() == 3, 'len(labels)'); assert(*scores.data[0] == FP16x16 { mag: 55879, sign: false }, '*scores[0] == 0.852656'); assert(*scores.data[1] == FP16x16 { mag: 602, sign: false }, '*scores[1] == 0.009192'); assert(*scores.data[2] == FP16x16 { mag: 9053, sign: false }, '*scores[2] == 0.138152'); assert(*scores.data[3] == FP16x16 { mag: 20888, sign: false }, '*scores[3] == 0.318722'); assert(*scores.data[4] == FP16x16 { mag: 3418, sign: false }, '*scores[4] == 0.05216'); assert(*scores.data[5] == FP16x16 { mag: 41229, sign: false }, '*scores[5] == 0.629118'); assert(*scores.data[6] == FP16x16 { mag: 2380, sign: false }, '*scores[6] == 0.036323'); assert(*scores.data[7] == FP16x16 { mag: 5914, sign: false }, '*scores[7] == 0.090237'); assert(*scores.data[8] == FP16x16 { mag: 57241, sign: false }, '*scores[8] == 0.87344'); }
fn test_linear_classifier_multi_softmax_zero() { let (mut classifier, X) = linear_classifier_helper(POST_TRANSFORM::SOFTMAXZERO); let (labels, mut scores) = LinearClassifierTrait::predict(classifier, X); assert(*labels[0] == 0, 'labels[0]'); assert(*labels[1] == 2, 'labels[1]'); assert(*labels[2] == 2, 'labels[2]'); assert(labels.len() == 3, 'len(labels)'); assert(*scores.data[0] == FP16x16 { mag: 55879, sign: false }, '*scores[0] == 0.852656'); assert(*scores.data[1] == FP16x16 { mag: 602, sign: false }, '*scores[1] == 0.009192'); assert(*scores.data[2] == FP16x16 { mag: 9053, sign: false }, '*scores[2] == 0.138152'); assert(*scores.data[3] == FP16x16 { mag: 20888, sign: false }, '*scores[3] == 0.318722'); assert(*scores.data[4] == FP16x16 { mag: 3418, sign: false }, '*scores[4] == 0.05216'); assert(*scores.data[5] == FP16x16 { mag: 41229, sign: false }, '*scores[5] == 0.629118'); assert(*scores.data[6] == FP16x16 { mag: 2380, sign: false }, '*scores[6] == 0.036323'); assert(*scores.data[7] == FP16x16 { mag: 5914, sign: false }, '*scores[7] == 0.090237'); assert(*scores.data[8] == FP16x16 { mag: 57241, sign: false }, '*scores[8] == 0.87344'); }
fn test_linear_classifier_multi_logistic() { let (mut classifier, X) = linear_classifier_helper(POST_TRANSFORM::LOGISTIC); let (labels, mut scores) = LinearClassifierTrait::predict(classifier, X); assert(*labels[0] == 0, 'labels[0] == 0'); assert(*labels[1] == 2, 'labels[1] == 2'); assert(*labels[2] == 2, 'labels[2] == 2'); assert(labels.len() == 3, 'len(labels) == 3'); assert(*scores.data[0] == FP16x16 { mag: 60135, sign: false }, '*scores[0] == 0.917587'); assert(*scores.data[1] == FP16x16 { mag: 7023, sign: false }, '*scores[1] == 0.107168'); assert(*scores.data[2] == FP16x16 { mag: 42163, sign: false }, '*scores[2] == 0.643365'); assert(*scores.data[3] == FP16x16 { mag: 43351, sign: false }, '*scores[3] == 0.661503'); assert(*scores.data[4] == FP16x16 { mag: 15881, sign: false }, '*scores[4] == 0.24232'); assert(*scores.data[5] == FP16x16 { mag: 52043, sign: false }, '*scores[5] == 0.79413'); assert(*scores.data[6] == FP16x16 { mag: 16738, sign: false }, '*scores[6] == 0.255403'); assert(*scores.data[7] == FP16x16 { mag: 30152, sign: false }, '*scores[7] == 0.460085'); assert(*scores.data[8] == FP16x16 { mag: 58450, sign: false }, '*scores[8] == 0.891871'); }
fn test_linear_classifier_binary_none() { let (mut classifier, X) = linear_classifier_helper_binary(POST_TRANSFORM::NONE); let (labels, mut scores) = LinearClassifierTrait::predict(classifier, X); assert(*labels[0] == 1, 'labels[0]'); assert(*labels[1] == 1, 'labels[1]'); assert(labels.len() == 2, 'len(labels)'); assert(*scores.data[0] == FP16x16 { mag: 624559, sign: true }, '*scores[0] == -9.53'); assert(*scores.data[1] == FP16x16 { mag: 624559, sign: false }, '*scores[1] == 9.53'); assert(*scores.data[2] == FP16x16 { mag: 435817, sign: true }, '*scores[2] == -6.65'); assert(*scores.data[3] == FP16x16 { mag: 435817, sign: false }, '*scores[3] == 6.65'); }
fn test_linear_classifier_binary_logistic() { let (mut classifier, X) = linear_classifier_helper_binary(POST_TRANSFORM::LOGISTIC); let (labels, mut scores) = LinearClassifierTrait::predict(classifier, X); assert(*labels[0] == 1, 'labels[0]'); assert(*labels[1] == 1, 'labels[1]'); assert(labels.len() == 2, 'len(labels)'); assert(*scores.data[0] == FP16x16 { mag: 4, sign: false }, '*scores[0] == 7.263436e-05'); assert(*scores.data[1] == FP16x16 { mag: 65532, sign: false }, '*scores[1] == 9.999274e-01'); assert(*scores.data[2] == FP16x16 { mag: 84, sign: false }, '*scores[2] == 1.292350e-03'); assert(*scores.data[3] == FP16x16 { mag: 65452, sign: false }, '*scores[3] == 9.999983e-01'); }
fn test_linear_classifier_binary_softmax() { let (mut classifier, X) = linear_classifier_helper_binary(POST_TRANSFORM::SOFTMAX); let (labels, mut scores) = LinearClassifierTrait::predict(classifier, X); assert(*labels[0] == 1, 'labels[0]'); assert(*labels[1] == 1, 'labels[1]'); assert(labels.len() == 2, 'len(labels)'); assert(*scores.data[0] == FP16x16 { mag: 0, sign: false }, '*scores[0] == 5.276517e-09'); assert(*scores.data[1] == FP16x16 { mag: 65535, sign: false }, '*scores[1] == 1.000000'); assert(*scores.data[2] == FP16x16 { mag: 0, sign: false }, '*scores[2] == 1.674492e-06'); assert(*scores.data[3] == FP16x16 { mag: 65535, sign: false }, '*scores[3] == 9.999983e-01'); }
fn test_linear_classifier_binary_softmax_zero() { let (mut classifier, X) = linear_classifier_helper_binary(POST_TRANSFORM::SOFTMAXZERO); let (labels, mut scores) = LinearClassifierTrait::predict(classifier, X); assert(*labels[0] == 1, 'labels[0]'); assert(*labels[1] == 1, 'labels[1]'); assert(labels.len() == 2, 'len(labels)'); assert(*scores.data[0] == FP16x16 { mag: 0, sign: false }, '*scores[0] == 5.276517e-09'); assert(*scores.data[1] == FP16x16 { mag: 65535, sign: false }, '*scores[1] == 1.000000'); assert(*scores.data[2] == FP16x16 { mag: 0, sign: false }, '*scores[2] == 1.674492e-06'); assert(*scores.data[3] == FP16x16 { mag: 65535, sign: false }, '*scores[3] == 9.999983e-01'); }
fn test_linear_classifier_unary_none() { let (mut classifier, X) = linear_classifier_helper_unary(POST_TRANSFORM::NONE); let (labels, mut scores) = LinearClassifierTrait::predict(classifier, X); assert(*labels[0] == 1, 'labels[0]'); assert(*labels[1] == 0, 'labels[1]'); assert(labels.len() == 2, 'len(labels)'); assert(*scores.data[0] == FP16x16 { mag: 146146, sign: false }, '*scores[0] == 2.23'); assert(*scores.data[1] == FP16x16 { mag: 42596, sign: true }, '*scores[1] == -0.65'); }
fn test_linear_classifier_unary_logistic() { let (mut classifier, X) = linear_classifier_helper_unary(POST_TRANSFORM::LOGISTIC); let (labels, mut scores) = LinearClassifierTrait::predict(classifier, X); assert(*labels[0] == 1, 'labels[0]'); assert(*labels[1] == 0, 'labels[1]'); assert(labels.len() == 2, 'len(labels)'); assert(*scores.data[0] == FP16x16 { mag: 59173, sign: false }, '*scores[0] == 0.902911'); assert(*scores.data[1] == FP16x16 { mag: 22479, sign: false }, '*scores[1] == 0.34299'); }
fn test_linear_classifier_unary_softmax() { let (mut classifier, X) = linear_classifier_helper_unary(POST_TRANSFORM::SOFTMAX); let (labels, mut scores) = LinearClassifierTrait::predict(classifier, X); assert(*labels[0] == 1, 'labels[0]'); assert(*labels[1] == 1, 'labels[1]'); assert(labels.len() == 2, 'len(labels)'); assert(*scores.data[0] == FP16x16 { mag: 65536, sign: false }, '*scores[0] == 1'); assert(*scores.data[1] == FP16x16 { mag: 65536, sign: false }, '*scores[1] == 1'); }
fn test_linear_classifier_unary_softmax_zero() { let (mut classifier, X) = linear_classifier_helper_unary(POST_TRANSFORM::SOFTMAXZERO); let (labels, mut scores) = LinearClassifierTrait::predict(classifier, X); assert(*labels[0] == 1, 'labels[0]'); assert(*labels[1] == 1, 'labels[1]'); assert(labels.len() == 2, 'len(labels)'); assert(*scores.data[0] == FP16x16 { mag: 65536, sign: false }, '*scores[0] == 1'); assert(*scores.data[1] == FP16x16 { mag: 65536, sign: false }, '*scores[1] == 1'); } fn linear_classifier_helper( post_transform: POST_TRANSFORM ) -> (LinearClassifier<FP16x16>, Tensor<FP16x16>) { let classlabels: Span<usize> = array![0, 1, 2].span(); let classlabels = Option::Some(classlabels); let coefficients: Span<FP16x16> = array![ FP16x16 { mag: 38011, sign: true }, FP16x16 { mag: 19005, sign: true }, FP16x16 { mag: 5898, sign: true }, FP16x16 { mag: 38011, sign: false }, FP16x16 { mag: 19005, sign: false }, FP16x16 { mag: 5898, sign: false }, ] .span(); let intercepts: Span<FP16x16> = array![ FP16x16 { mag: 176947, sign: false }, FP16x16 { mag: 176947, sign: true }, FP16x16 { mag: 32768, sign: false }, ] .span(); let intercepts = Option::Some(intercepts); let multi_class: usize = 0; let mut classifier: LinearClassifier<FP16x16> = LinearClassifier { classlabels, coefficients, intercepts, multi_class, post_transform }; let mut X: Tensor<FP16x16> = TensorTrait::new( array![3, 2].span(), array![ FP16x16 { mag: 0, sign: false }, FP16x16 { mag: 65536, sign: false }, FP16x16 { mag: 131072, sign: false }, FP16x16 { mag: 196608, sign: false }, FP16x16 { mag: 262144, sign: false }, FP16x16 { mag: 327680, sign: false }, ] .span() ); (classifier, X) } fn linear_classifier_helper_binary( post_transform: P
OST_TRANSFORM ) -> (LinearClassifier<FP16x16>, Tensor<FP16x16>) { let classlabels: Span<usize> = array![0, 1].span(); let classlabels = Option::Some(classlabels); let coefficients: Span<FP16x16> = array![ FP16x16 { mag: 38011, sign: true }, FP16x16 { mag: 19005, sign: true }, FP16x16 { mag: 5898, sign: true }, ] .span(); let intercepts: Span<FP16x16> = array![FP16x16 { mag: 655360, sign: false },].span(); let intercepts = Option::Some(intercepts); let multi_class: usize = 0; let mut classifier: LinearClassifier<FP16x16> = LinearClassifier { classlabels, coefficients, intercepts, multi_class, post_transform }; let mut X: Tensor<FP16x16> = TensorTrait::new( array![2, 3].span(), array![ FP16x16 { mag: 0, sign: false }, FP16x16 { mag: 65536, sign: false }, FP16x16 { mag: 131072, sign: false }, FP16x16 { mag: 196608, sign: false }, FP16x16 { mag: 262144, sign: false }, FP16x16 { mag: 327680, sign: false }, ] .span() ); (classifier, X) } fn linear_classifier_helper_unary( post_transform: POST_TRANSFORM ) -> (LinearClassifier<FP16x16>, Tensor<FP16x16>) { let classlabels: Span<usize> = array![1].span(); let classlabels = Option::Some(classlabels); let coefficients: Span<FP16x16> = array![ FP16x16 { mag: 38011, sign: true }, FP16x16 { mag: 19005, sign: true }, FP16x16 { mag: 5898, sign: true }, ] .span(); let intercepts: Span<FP16x16> = array![FP16x16 { mag: 176947, sign: false },].span(); let intercepts = Option::Some(intercepts); let multi_class: usize = 0; let mut classifier: LinearClassifier<FP16x16> = LinearClassifier { classlabels, coefficients, intercepts, multi_class, post_transform }; let mut X: Tensor<FP16x16> = TensorTrait::new( array![2, 3].span(), array![ FP16x16 { mag: 0, sign: false },
FP16x16 { mag: 65536, sign: false }, FP16x16 { mag: 131072, sign: false }, FP16x16 { mag: 196608, sign: false }, FP16x16 { mag: 262144, sign: false }, FP16x16 { mag: 327680, sign: false }, ] .span() ); (classifier, X) }
use orion::operators::tensor::{Tensor, TensorTrait, FP16x16Tensor, U32Tensor, FP16x16TensorAdd}; use orion::operators::ml::linear::linear_regressor::{ LinearRegressorTrait, POST_TRANSFORM, LinearRegressor }; use orion::numbers::{FP16x16, FixedTrait}; use core::debug::PrintTrait; use orion::operators::nn::{NNTrait, FP16x16NN};
fn test_linear_regressor() { let mut X: Tensor<FP16x16> = TensorTrait::new( array![3, 2].span(), array![ FP16x16 { mag: 0, sign: false }, FP16x16 { mag: 65536, sign: false }, FP16x16 { mag: 131072, sign: false }, FP16x16 { mag: 196608, sign: false }, FP16x16 { mag: 262144, sign: false }, FP16x16 { mag: 327680, sign: false }, ] .span() ); let coefficients: Span<FP16x16> = array![ FP16x16 { mag: 19661, sign: false }, FP16x16 { mag: 50463, sign: true }, ] .span(); let intercepts: Span<FP16x16> = array![FP16x16 { mag: 32768, sign: false },].span(); let intercepts = Option::Some(intercepts); let target: usize = 1; let post_transform = POST_TRANSFORM::NONE; let mut regressor: LinearRegressor<FP16x16> = LinearRegressor { coefficients, intercepts, target, post_transform }; let scores = LinearRegressorTrait::predict(regressor, X); assert(*scores.data[0] == FP16x16 { mag: 17695, sign: true }, '*scores[0] == -0.27'); assert(*scores.data[1] == FP16x16 { mag: 79299, sign: true }, '*scores[1] == -1.21'); assert(*scores.data[2] == FP16x16 { mag: 140903, sign: true }, '*scores[2] == -2.15'); }
fn test_linear_regressor_2() { let mut X: Tensor<FP16x16> = TensorTrait::new( array![3, 2].span(), array![ FP16x16 { mag: 0, sign: false }, FP16x16 { mag: 65536, sign: false }, FP16x16 { mag: 131072, sign: false }, FP16x16 { mag: 196608, sign: false }, FP16x16 { mag: 262144, sign: false }, FP16x16 { mag: 327680, sign: false }, ] .span() ); let coefficients: Span<FP16x16> = array![ FP16x16 { mag: 19661, sign: false }, FP16x16 { mag: 50463, sign: true }, FP16x16 { mag: 19661, sign: false }, FP16x16 { mag: 50463, sign: true }, ] .span(); let intercepts: Span<FP16x16> = array![ FP16x16 { mag: 32768, sign: false }, FP16x16 { mag: 45875, sign: false }, ] .span(); let intercepts = Option::Some(intercepts); let target = 2; let post_transform = POST_TRANSFORM::NONE; let mut regressor: LinearRegressor<FP16x16> = LinearRegressor { coefficients, intercepts, target, post_transform }; let scores = LinearRegressorTrait::predict(regressor, X); assert(*scores.data[0] == FP16x16 { mag: 17695, sign: true }, '*scores[0] == -0.27'); assert(*scores.data[1] == FP16x16 { mag: 4588, sign: true }, '*scores[1] == -0.07'); assert(*scores.data[2] == FP16x16 { mag: 79299, sign: true }, '*scores[2] == -1.21'); assert(*scores.data[3] == FP16x16 { mag: 66192, sign: true }, '*scores[3] == -1.01'); assert(*scores.data[4] == FP16x16 { mag: 140903, sign: true }, '*scores[4] == -2.15'); assert(*scores.data[5] == FP16x16 { mag: 127796, sign: true }, '*scores[5] == -1.95'); }
use orion::operators::ml::normalizer::normalizer::{NormalizerTrait, NORM}; use orion::utils::{assert_eq, assert_seq_eq}; use orion::numbers::FP16x16; use orion::operators::tensor::{ Tensor, TensorTrait, FP16x16Tensor, FP16x16TensorDiv, FP16x16TensorPartialEq };
fn test_normalizer_max() { let mut shape = ArrayTrait::<usize>::new(); shape.append(3); shape.append(3); let mut data = ArrayTrait::new(); data.append(FP16x16 { mag: 65536, sign: true }); data.append(FP16x16 { mag: 52428, sign: true }); data.append(FP16x16 { mag: 39321, sign: true }); data.append(FP16x16 { mag: 26214, sign: true }); data.append(FP16x16 { mag: 13107, sign: true }); data.append(FP16x16 { mag: 0, sign: false }); data.append(FP16x16 { mag: 13107, sign: false }); data.append(FP16x16 { mag: 26214, sign: false }); data.append(FP16x16 { mag: 39321, sign: false }); let X = TensorTrait::new(shape.span(), data.span()); let mut shape = ArrayTrait::<usize>::new(); shape.append(3); shape.append(3); let mut data = ArrayTrait::new(); data.append(FP16x16 { mag: 65536, sign: true }); data.append(FP16x16 { mag: 52428, sign: true }); data.append(FP16x16 { mag: 39321, sign: true }); data.append(FP16x16 { mag: 65536, sign: true }); data.append(FP16x16 { mag: 32768, sign: true }); data.append(FP16x16 { mag: 0, sign: false }); data.append(FP16x16 { mag: 21845, sign: false }); data.append(FP16x16 { mag: 43690, sign: false }); data.append(FP16x16 { mag: 65536, sign: false }); let expected_output = TensorTrait::new(shape.span(), data.span()); let actual_output = NormalizerTrait::predict(X, NORM::MAX); assert_eq(actual_output, expected_output); }
fn test_normalizer_l1() { let mut shape = ArrayTrait::<usize>::new(); shape.append(3); shape.append(3); let mut data = ArrayTrait::new(); data.append(FP16x16 { mag: 65536, sign: true }); data.append(FP16x16 { mag: 52428, sign: true }); data.append(FP16x16 { mag: 39321, sign: true }); data.append(FP16x16 { mag: 26214, sign: true }); data.append(FP16x16 { mag: 13107, sign: true }); data.append(FP16x16 { mag: 0, sign: false }); data.append(FP16x16 { mag: 13107, sign: false }); data.append(FP16x16 { mag: 26214, sign: false }); data.append(FP16x16 { mag: 39321, sign: false }); let X = TensorTrait::new(shape.span(), data.span()); let mut shape = ArrayTrait::<usize>::new(); shape.append(3); shape.append(3); let mut data = ArrayTrait::new(); data.append(FP16x16 { mag: 27306, sign: true }); data.append(FP16x16 { mag: 21845, sign: true }); data.append(FP16x16 { mag: 16384, sign: true }); data.append(FP16x16 { mag: 43690, sign: true }); data.append(FP16x16 { mag: 21845, sign: true }); data.append(FP16x16 { mag: 0, sign: false }); data.append(FP16x16 { mag: 10922, sign: false }); data.append(FP16x16 { mag: 21845, sign: false }); data.append(FP16x16 { mag: 32768, sign: false }); let expected_output = TensorTrait::new(shape.span(), data.span()); let actual_output = NormalizerTrait::predict(X, NORM::L1); assert_eq(actual_output, expected_output); }
fn test_normalizer_l2() { let mut shape = ArrayTrait::<usize>::new(); shape.append(3); shape.append(3); let mut data = ArrayTrait::new(); data.append(FP16x16 { mag: 65536, sign: true }); data.append(FP16x16 { mag: 52428, sign: true }); data.append(FP16x16 { mag: 39321, sign: true }); data.append(FP16x16 { mag: 26214, sign: true }); data.append(FP16x16 { mag: 13107, sign: true }); data.append(FP16x16 { mag: 0, sign: false }); data.append(FP16x16 { mag: 13107, sign: false }); data.append(FP16x16 { mag: 26214, sign: false }); data.append(FP16x16 { mag: 39321, sign: false }); let X = TensorTrait::new(shape.span(), data.span()); let mut shape = ArrayTrait::<usize>::new(); shape.append(3); shape.append(3); let mut data = ArrayTrait::new(); data.append(FP16x16 { mag: 46340, sign: true }); data.append(FP16x16 { mag: 37072, sign: true }); data.append(FP16x16 { mag: 27804, sign: true }); data.append(FP16x16 { mag: 58617, sign: true }); data.append(FP16x16 { mag: 29308, sign: true }); data.append(FP16x16 { mag: 0, sign: false }); data.append(FP16x16 { mag: 17515, sign: false }); data.append(FP16x16 { mag: 35030, sign: false }); data.append(FP16x16 { mag: 52545, sign: false }); let expected_output = TensorTrait::new(shape.span(), data.span()); let actual_output = NormalizerTrait::predict(X, NORM::L2); assert_eq(actual_output, expected_output); }
fn test_normalizer_max_avoid_div_zero() { let mut shape = ArrayTrait::<usize>::new(); shape.append(3); shape.append(3); let mut data = ArrayTrait::new(); data.append(FP16x16 { mag: 0, sign: false }); data.append(FP16x16 { mag: 0, sign: false }); data.append(FP16x16 { mag: 0, sign: false }); data.append(FP16x16 { mag: 0, sign: false }); data.append(FP16x16 { mag: 0, sign: false }); data.append(FP16x16 { mag: 0, sign: false }); data.append(FP16x16 { mag: 0, sign: false }); data.append(FP16x16 { mag: 0, sign: false }); data.append(FP16x16 { mag: 0, sign: false }); let X = TensorTrait::new(shape.span(), data.span()); let mut shape = ArrayTrait::<usize>::new(); shape.append(3); shape.append(3); let mut data = ArrayTrait::new(); data.append(FP16x16 { mag: 0, sign: false }); data.append(FP16x16 { mag: 0, sign: false }); data.append(FP16x16 { mag: 0, sign: false }); data.append(FP16x16 { mag: 0, sign: false }); data.append(FP16x16 { mag: 0, sign: false }); data.append(FP16x16 { mag: 0, sign: false }); data.append(FP16x16 { mag: 0, sign: false }); data.append(FP16x16 { mag: 0, sign: false }); data.append(FP16x16 { mag: 0, sign: false }); let expected_output = TensorTrait::new(shape.span(), data.span()); let actual_output = NormalizerTrait::predict(X, NORM::MAX); assert_eq(actual_output, expected_output); }
use orion::numbers::FP16x16; use orion::operators::tensor::{Tensor, TensorTrait, FP16x16Tensor, U32Tensor}; use orion::utils::{assert_eq, assert_seq_eq}; use orion::operators::tensor::FP16x16TensorPartialEq; use orion::numbers::FP64x64; use orion::operators::tensor::implementations::tensor_fp64x64::{ FP64x64Tensor, FP64x64TensorPartialEq }; use orion::operators::ml::svm::svm_classifier::{SVMClassifierTrait, POST_TRANSFORM, SVMClassifier}; use orion::operators::ml::svm::core::{KERNEL_TYPE};
fn test_svm_classifier_noprob_linear_sv_none() { let post_transform = POST_TRANSFORM::NONE; let (mut classifier, X) = svm_classifier_binary_noprob_linear_sv(post_transform); let (labels, scores) = SVMClassifierTrait::predict(ref classifier, X); assert(*labels[0] == 0, 'labels[0]'); assert(*labels[1] == 0, 'labels[1]'); assert(*labels[2] == 0, 'labels[2]'); assert(labels.len() == 3, 'len(labels)'); let mut expected_scores: Tensor<FP16x16> = TensorTrait::new( array![3, 2].span(), array![ FP16x16 { mag: 174499, sign: true }, FP16x16 { mag: 174499, sign: false }, FP16x16 { mag: 145149, sign: true }, FP16x16 { mag: 145149, sign: false }, FP16x16 { mag: 115799, sign: true }, FP16x16 { mag: 115799, sign: false } ] .span() ); assert_eq(scores, expected_scores); }
fn test_svm_classifier_noprob_linear_sv_logistic() { let post_transform = POST_TRANSFORM::LOGISTIC; let (mut classifier, X) = svm_classifier_binary_noprob_linear_sv(post_transform); let (labels, scores) = SVMClassifierTrait::predict(ref classifier, X); assert(*labels[0] == 0, 'labels[0]'); assert(*labels[1] == 0, 'labels[1]'); assert(*labels[2] == 0, 'labels[2]'); assert(labels.len() == 3, 'len(labels)'); let mut expected_scores: Tensor<FP16x16> = TensorTrait::new( array![3, 2].span(), array![ FP16x16 { mag: 4273, sign: false }, FP16x16 { mag: 61262, sign: false }, FP16x16 { mag: 6450, sign: false }, FP16x16 { mag: 59085, sign: false }, FP16x16 { mag: 9563, sign: false }, FP16x16 { mag: 55972, sign: false } ] .span() ); assert_eq(scores, expected_scores); }
fn test_svm_classifier_noprob_linear_sv_softmax() { let post_transform = POST_TRANSFORM::SOFTMAX; let (mut classifier, X) = svm_classifier_binary_noprob_linear_sv(post_transform); let (labels, scores) = SVMClassifierTrait::predict(ref classifier, X); assert(*labels[0] == 0, 'labels[0]'); assert(*labels[1] == 0, 'labels[1]'); assert(*labels[2] == 0, 'labels[2]'); assert(labels.len() == 3, 'len(labels)'); let mut expected_scores: Tensor<FP16x16> = TensorTrait::new( array![3, 2].span(), array![ FP16x16 { mag: 317, sign: false }, FP16x16 { mag: 65218, sign: false }, FP16x16 { mag: 771, sign: false }, FP16x16 { mag: 64764, sign: false }, FP16x16 { mag: 1858, sign: false }, FP16x16 { mag: 63677, sign: false } ] .span() ); assert_eq(scores, expected_scores); }
fn test_svm_classifier_noprob_linear_sv_softmax_zero() { let post_transform = POST_TRANSFORM::SOFTMAXZERO; let (mut classifier, X) = svm_classifier_binary_noprob_linear_sv(post_transform); let (labels, scores) = SVMClassifierTrait::predict(ref classifier, X); assert(*labels[0] == 0, 'labels[0]'); assert(*labels[1] == 0, 'labels[1]'); assert(*labels[2] == 0, 'labels[2]'); assert(labels.len() == 3, 'len(labels)'); let mut expected_scores: Tensor<FP16x16> = TensorTrait::new( array![3, 2].span(), array![ FP16x16 { mag: 317, sign: false }, FP16x16 { mag: 65218, sign: false }, FP16x16 { mag: 771, sign: false }, FP16x16 { mag: 64764, sign: false }, FP16x16 { mag: 1858, sign: false }, FP16x16 { mag: 63677, sign: false } ] .span() ); assert_eq(scores, expected_scores); }
fn test_svm_classifier_noprob_linear_none() { let post_transform = POST_TRANSFORM::NONE; let (mut classifier, X) = svm_classifier_helper_noprob_linear(post_transform); let (labels, scores) = SVMClassifierTrait::predict(ref classifier, X); assert(*labels[0] == 2, 'labels[0]'); assert(*labels[1] == 3, 'labels[1]'); assert(*labels[2] == 0, 'labels[2]'); assert(labels.len() == 3, 'len(labels)'); let mut expected_scores: Tensor<FP16x16> = TensorTrait::new( array![3, 4].span(), array![ FP16x16 { mag: 7738, sign: true }, FP16x16 { mag: 29929, sign: true }, FP16x16 { mag: 27248, sign: false }, FP16x16 { mag: 21922, sign: false }, FP16x16 { mag: 4021, sign: true }, FP16x16 { mag: 15167, sign: true }, FP16x16 { mag: 4843, sign: false }, FP16x16 { mag: 5979, sign: false }, FP16x16 { mag: 304, sign: true }, FP16x16 { mag: 406, sign: true }, FP16x16 { mag: 17562, sign: true }, FP16x16 { mag: 9962, sign: true }, ] .span() ); assert_eq(scores, expected_scores); }
fn test_svm_classifier_noprob_linear_logistic() { let post_transform = POST_TRANSFORM::LOGISTIC; let (mut classifier, X) = svm_classifier_helper_noprob_linear(post_transform); let (labels, scores) = SVMClassifierTrait::predict(ref classifier, X); assert(*labels[0] == 2, 'labels[0]'); assert(*labels[1] == 3, 'labels[1]'); assert(*labels[2] == 0, 'labels[2]'); assert(labels.len() == 3, 'len(labels)'); let mut expected_scores: Tensor<FP16x16> = TensorTrait::new( array![3, 4].span(), array![ FP16x16 { mag: 30835, sign: false }, FP16x16 { mag: 25413, sign: false }, FP16x16 { mag: 39483, sign: false }, FP16x16 { mag: 38197, sign: false }, FP16x16 { mag: 31762, sign: false }, FP16x16 { mag: 28992, sign: false }, FP16x16 { mag: 33978, sign: false }, FP16x16 { mag: 34261, sign: false }, FP16x16 { mag: 32691, sign: false }, FP16x16 { mag: 32666, sign: false }, FP16x16 { mag: 28403, sign: false }, FP16x16 { mag: 30282, sign: false } ] .span() ); assert_eq(scores, expected_scores); }
fn test_svm_classifier_noprob_linear_softmax() { let post_transform = POST_TRANSFORM::SOFTMAX; let (mut classifier, X) = svm_classifier_helper_noprob_linear(post_transform); let (labels, scores) = SVMClassifierTrait::predict(ref classifier, X); assert(*labels[0] == 2, 'labels[0]'); assert(*labels[1] == 3, 'labels[1]'); assert(*labels[2] == 0, 'labels[2]'); assert(labels.len() == 3, 'len(labels)'); let mut expected_scores: Tensor<FP16x16> = TensorTrait::new( array![3, 4].span(), array![ FP16x16 { mag: 13131, sign: false }, FP16x16 { mag: 9359, sign: false }, FP16x16 { mag: 22396, sign: false }, FP16x16 { mag: 20648, sign: false }, FP16x16 { mag: 15779, sign: false }, FP16x16 { mag: 13311, sign: false }, FP16x16 { mag: 18064, sign: false }, FP16x16 { mag: 18380, sign: false }, FP16x16 { mag: 18054, sign: false }, FP16x16 { mag: 18026, sign: false }, FP16x16 { mag: 13874, sign: false }, FP16x16 { mag: 15580, sign: false }, ] .span() ); assert_eq(scores, expected_scores); }
fn test_svm_classifier_noprob_linear_softmax_zero() { let post_transform = POST_TRANSFORM::SOFTMAXZERO; let (mut classifier, X) = svm_classifier_helper_noprob_linear(post_transform); let (labels, scores) = SVMClassifierTrait::predict(ref classifier, X); assert(*labels[0] == 2, 'labels[0]'); assert(*labels[1] == 3, 'labels[1]'); assert(*labels[2] == 0, 'labels[2]'); assert(labels.len() == 3, 'len(labels)'); let mut expected_scores: Tensor<FP16x16> = TensorTrait::new( array![3, 4].span(), array![ FP16x16 { mag: 13131, sign: false }, FP16x16 { mag: 9359, sign: false }, FP16x16 { mag: 22396, sign: false }, FP16x16 { mag: 20648, sign: false }, FP16x16 { mag: 15779, sign: false }, FP16x16 { mag: 13311, sign: false }, FP16x16 { mag: 18064, sign: false }, FP16x16 { mag: 18380, sign: false }, FP16x16 { mag: 18054, sign: false }, FP16x16 { mag: 18026, sign: false }, FP16x16 { mag: 13874, sign: false }, FP16x16 { mag: 15580, sign: false }, ] .span() ); assert_eq(scores, expected_scores); }
fn test_svm_classifier_linear_none() { let post_transform = POST_TRANSFORM::NONE; let (mut classifier, X) = svm_classifier_helper_linear(post_transform); let (labels, scores) = SVMClassifierTrait::predict(ref classifier, X); assert(*labels[0] == 2, 'labels[0]'); assert(*labels[1] == 3, 'labels[1]'); assert(*labels[2] == 0, 'labels[2]'); assert(labels.len() == 3, 'len(labels)'); let mut expected_scores: Tensor<FP16x16> = TensorTrait::new( array![3, 4].span(), array![ FP16x16 { mag: 7738, sign: true }, FP16x16 { mag: 29929, sign: true }, FP16x16 { mag: 27248, sign: false }, FP16x16 { mag: 21922, sign: false }, FP16x16 { mag: 4021, sign: true }, FP16x16 { mag: 15167, sign: true }, FP16x16 { mag: 4843, sign: false }, FP16x16 { mag: 5979, sign: false }, FP16x16 { mag: 304, sign: true }, FP16x16 { mag: 406, sign: true }, FP16x16 { mag: 17562, sign: true }, FP16x16 { mag: 9962, sign: true }, ] .span() ); assert_eq(scores, expected_scores); }
fn test_svm_classifier_linear_logistic() { let post_transform = POST_TRANSFORM::LOGISTIC; let (mut classifier, X) = svm_classifier_helper_linear(post_transform); let (labels, scores) = SVMClassifierTrait::predict(ref classifier, X); assert(*labels[0] == 2, 'labels[0]'); assert(*labels[1] == 3, 'labels[1]'); assert(*labels[2] == 0, 'labels[2]'); assert(labels.len() == 3, 'len(labels)'); let mut expected_scores: Tensor<FP16x16> = TensorTrait::new( array![3, 4].span(), array![ FP16x16 { mag: 30835, sign: false }, FP16x16 { mag: 25413, sign: false }, FP16x16 { mag: 39483, sign: false }, FP16x16 { mag: 38197, sign: false }, FP16x16 { mag: 31762, sign: false }, FP16x16 { mag: 28992, sign: false }, FP16x16 { mag: 33978, sign: false }, FP16x16 { mag: 34261, sign: false }, FP16x16 { mag: 32691, sign: false }, FP16x16 { mag: 32666, sign: false }, FP16x16 { mag: 28403, sign: false }, FP16x16 { mag: 30282, sign: false } ] .span() ); assert_eq(scores, expected_scores); }
fn test_svm_classifier_linear_softmax() { let post_transform = POST_TRANSFORM::SOFTMAX; let (mut classifier, X) = svm_classifier_helper_linear(post_transform); let (labels, scores) = SVMClassifierTrait::predict(ref classifier, X); assert(*labels[0] == 2, 'labels[0]'); assert(*labels[1] == 3, 'labels[1]'); assert(*labels[2] == 0, 'labels[2]'); assert(labels.len() == 3, 'len(labels)'); let mut expected_scores: Tensor<FP16x16> = TensorTrait::new( array![3, 4].span(), array![ FP16x16 { mag: 13131, sign: false }, FP16x16 { mag: 9359, sign: false }, FP16x16 { mag: 22396, sign: false }, FP16x16 { mag: 20648, sign: false }, FP16x16 { mag: 15779, sign: false }, FP16x16 { mag: 13311, sign: false }, FP16x16 { mag: 18064, sign: false }, FP16x16 { mag: 18380, sign: false }, FP16x16 { mag: 18054, sign: false }, FP16x16 { mag: 18026, sign: false }, FP16x16 { mag: 13874, sign: false }, FP16x16 { mag: 15580, sign: false }, ] .span() ); assert_eq(scores, expected_scores); }
fn test_svm_classifier_linear_softmax_zero() { let post_transform = POST_TRANSFORM::SOFTMAXZERO; let (mut classifier, X) = svm_classifier_helper_linear(post_transform); let (labels, scores) = SVMClassifierTrait::predict(ref classifier, X); assert(*labels[0] == 2, 'labels[0]'); assert(*labels[1] == 3, 'labels[1]'); assert(*labels[2] == 0, 'labels[2]'); assert(labels.len() == 3, 'len(labels)'); let mut expected_scores: Tensor<FP16x16> = TensorTrait::new( array![3, 4].span(), array![ FP16x16 { mag: 13131, sign: false }, FP16x16 { mag: 9359, sign: false }, FP16x16 { mag: 22396, sign: false }, FP16x16 { mag: 20648, sign: false }, FP16x16 { mag: 15779, sign: false }, FP16x16 { mag: 13311, sign: false }, FP16x16 { mag: 18064, sign: false }, FP16x16 { mag: 18380, sign: false }, FP16x16 { mag: 18054, sign: false }, FP16x16 { mag: 18026, sign: false }, FP16x16 { mag: 13874, sign: false }, FP16x16 { mag: 15580, sign: false }, ] .span() ); assert_eq(scores, expected_scores); }
fn test_svm_classifier_binary_none_fp64x64() { let post_transform = POST_TRANSFORM::NONE; let (mut classifier, X) = svm_classifier_helper_fp64x64(post_transform); let (labels, scores) = SVMClassifierTrait::predict(ref classifier, X); assert(*labels[0] == 0, 'labels[0]'); assert(*labels[1] == 1, 'labels[1]'); assert(*labels[2] == 1, 'labels[2]'); assert(labels.len() == 3, 'len(labels)'); let mut expected_scores: Tensor<FP64x64> = TensorTrait::new( array![3, 2].span(), array![ FP64x64 { mag: 18322911080742739968, sign: false }, FP64x64 { mag: 123832992966812224, sign: false }, FP64x64 { mag: 8658920114943337472, sign: false }, FP64x64 { mag: 9787823958766215168, sign: false }, FP64x64 { mag: 276645820873422144, sign: false }, FP64x64 { mag: 18170098252836128768, sign: false } ] .span() ); assert_eq(scores, expected_scores); }
fn test_svm_classifier_binary_logistic_fp64x64() { let post_transform = POST_TRANSFORM::LOGISTIC; let (mut classifier, X) = svm_classifier_helper_fp64x64(post_transform); let (labels, scores) = SVMClassifierTrait::predict(ref classifier, X); assert(*labels[0] == 0, 'labels[0]'); assert(*labels[1] == 1, 'labels[1]'); assert(*labels[2] == 1, 'labels[2]'); assert(labels.len() == 3, 'len(labels)'); let mut expected_scores: Tensor<FP64x64> = TensorTrait::new( array![3, 2].span(), array![ FP64x64 { mag: 13461271680116586496, sign: false }, FP64x64 { mag: 9254325673410459648, sign: false }, FP64x64 { mag: 11349211717397211136, sign: false }, FP64x64 { mag: 11614494343921229824, sign: false }, FP64x64 { mag: 9292528880387112960, sign: false }, FP64x64 { mag: 13431074360067923968, sign: false } ] .span() ); assert_eq(scores, expected_scores); }
fn test_svm_classifier_binary_softmax_fp64x64() { let post_transform = POST_TRANSFORM::SOFTMAX; let (mut classifier, X) = svm_classifier_helper_fp64x64(post_transform); let (labels, scores) = SVMClassifierTrait::predict(ref classifier, X); assert(*labels[0] == 0, 'labels[0]'); assert(*labels[1] == 1, 'labels[1]'); assert(*labels[2] == 1, 'labels[2]'); assert(labels.len() == 3, 'len(labels)'); let mut expected_scores: Tensor<FP64x64> = TensorTrait::new( array![3, 2].span(), array![ FP64x64 { mag: 13436811297474848768, sign: false }, FP64x64 { mag: 5009932776234703872, sign: false }, FP64x64 { mag: 8941229086247388160, sign: false }, FP64x64 { mag: 9505514987462162432, sign: false }, FP64x64 { mag: 5070622564237207552, sign: false }, FP64x64 { mag: 13376121509472344064, sign: false } ] .span() ); assert_eq(scores, expected_scores); }
fn test_svm_classifier_binary_softmax_zero_fp64x64() { let post_transform = POST_TRANSFORM::SOFTMAXZERO; let (mut classifier, X) = svm_classifier_helper_fp64x64(post_transform); let (labels, scores) = SVMClassifierTrait::predict(ref classifier, X); assert(*labels[0] == 0, 'labels[0]'); assert(*labels[1] == 1, 'labels[1]'); assert(*labels[2] == 1, 'labels[2]'); assert(labels.len() == 3, 'len(labels)'); let mut expected_scores: Tensor<FP64x64> = TensorTrait::new( array![3, 2].span(), array![ FP64x64 { mag: 13436811297474848768, sign: false }, FP64x64 { mag: 5009932776234703872, sign: false }, FP64x64 { mag: 8941229086247388160, sign: false }, FP64x64 { mag: 9505514987462162432, sign: false }, FP64x64 { mag: 5070622564237207552, sign: false }, FP64x64 { mag: 13376121509472344064, sign: false } ] .span() ); assert_eq(scores, expected_scores); } fn svm_classifier_helper_linear( post_transform: POST_TRANSFORM ) -> (SVMClassifier<FP16x16>, Tensor<FP16x16>) { let coefficients: Span<FP16x16> = array![ FP16x16 { mag: 10169, sign: true }, FP16x16 { mag: 15905, sign: false }, FP16x16 { mag: 459, sign: false }, FP16x16 { mag: 26713, sign: false }, FP16x16 { mag: 2129, sign: true }, FP16x16 { mag: 18, sign: false }, FP16x16 { mag: 12830, sign: true }, FP16x16 { mag: 23097, sign: true }, FP16x16 { mag: 1415, sign: true }, FP16x16 { mag: 28717, sign: true }, FP16x16 { mag: 2994, sign: false }, FP16x16 { mag: 847, sign: true } ] .span(); let kernel_params: Span<FP16x16> = array![ FP16x16 { mag: 65, sign: false }, FP16x16 { mag: 0, sign: false }, FP16x16 { mag: 196608, sign: false } ] .span(); let kernel_type = KERNEL_TYPE::LINEAR; let prob_a: Span<FP16x16> = array![FP16x16 { mag: 336797, sign: true }].span
(); let prob_b: Span<FP16x16> = array![FP16x16 { mag: 4194, sign: false }].span(); let rho: Span<FP16x16> = array![ FP16x16 { mag: 4908, sign: true }, FP16x16 { mag: 11563, sign: true }, FP16x16 { mag: 13872, sign: true }, FP16x16 { mag: 33829, sign: true } ] .span(); let support_vectors: Span<FP16x16> = array![].span(); let classlabels: Span<usize> = array![0, 1, 2, 3].span(); let vectors_per_class = Option::None; let mut classifier: SVMClassifier<FP16x16> = SVMClassifier { classlabels, coefficients, kernel_params, kernel_type, post_transform, prob_a, prob_b, rho, support_vectors, vectors_per_class, }; let mut X: Tensor<FP16x16> = TensorTrait::new( array![3, 3].span(), array![ FP16x16 { mag: 65536, sign: true }, FP16x16 { mag: 52428, sign: true }, FP16x16 { mag: 39321, sign: true }, FP16x16 { mag: 26214, sign: true }, FP16x16 { mag: 13107, sign: true }, FP16x16 { mag: 0, sign: false }, FP16x16 { mag: 13107, sign: false }, FP16x16 { mag: 26214, sign: false }, FP16x16 { mag: 39321, sign: false }, ] .span() ); (classifier, X) } fn svm_classifier_binary_noprob_linear_sv( post_transform: POST_TRANSFORM ) -> (SVMClassifier<FP16x16>, Tensor<FP16x16>) { let coefficients: Span<FP16x16> = array![ FP16x16 { mag: 50226, sign: false }, FP16x16 { mag: 5711, sign: false }, FP16x16 { mag: 7236, sign: false }, FP16x16 { mag: 63175, sign: true } ] .span(); let kernel_params: Span<FP16x16> = array![ FP16x16 { mag: 8025, sign: false }, FP16x16 { mag: 0, sign: false }, FP16x16 { mag: 196608, sign: false } ] .span(); let kernel_type = KERNEL_TYPE::LINEAR; let prob_a: Span<FP16x16> = array![].span(); let prob_b: Span<FP16x1
6> = array![].span(); let rho: Span<FP16x16> = array![FP16x16 { mag: 146479, sign: false }].span(); let support_vectors: Span<FP16x16> = array![ FP16x16 { mag: 314572, sign: false }, FP16x16 { mag: 222822, sign: false }, FP16x16 { mag: 124518, sign: false }, FP16x16 { mag: 327680, sign: false }, FP16x16 { mag: 196608, sign: false }, FP16x16 { mag: 104857, sign: false }, FP16x16 { mag: 294912, sign: false }, FP16x16 { mag: 150732, sign: false }, FP16x16 { mag: 85196, sign: false }, FP16x16 { mag: 334233, sign: false }, FP16x16 { mag: 163840, sign: false }, FP16x16 { mag: 196608, sign: false } ] .span(); let classlabels: Span<usize> = array![0, 1].span(); let vectors_per_class = Option::Some(array![3, 1].span()); let mut classifier: SVMClassifier<FP16x16> = SVMClassifier { classlabels, coefficients, kernel_params, kernel_type, post_transform, prob_a, prob_b, rho, support_vectors, vectors_per_class, }; let mut X: Tensor<FP16x16> = TensorTrait::new( array![3, 3].span(), array![ FP16x16 { mag: 65536, sign: true }, FP16x16 { mag: 52428, sign: true }, FP16x16 { mag: 39321, sign: true }, FP16x16 { mag: 26214, sign: true }, FP16x16 { mag: 13107, sign: true }, FP16x16 { mag: 0, sign: false }, FP16x16 { mag: 13107, sign: false }, FP16x16 { mag: 26214, sign: false }, FP16x16 { mag: 39321, sign: false }, ] .span() ); (classifier, X) } fn svm_classifier_helper_noprob_linear( post_transform: POST_TRANSFORM ) -> (SVMClassifier<FP16x16>, Tensor<FP16x16>) { let coefficients: Span<FP16x16> = array![ FP16x16 { mag: 10169, sign: true }, FP16x16 { mag: 15905, sign: false }, FP16x16 { mag: 459, sign: false }, FP16x16 { mag: 2671
3, sign: false }, FP16x16 { mag: 2129, sign: true }, FP16x16 { mag: 18, sign: false }, FP16x16 { mag: 12830, sign: true }, FP16x16 { mag: 23097, sign: true }, FP16x16 { mag: 1415, sign: true }, FP16x16 { mag: 28717, sign: true }, FP16x16 { mag: 2994, sign: false }, FP16x16 { mag: 847, sign: true } ] .span(); let kernel_params: Span<FP16x16> = array![ FP16x16 { mag: 65, sign: false }, FP16x16 { mag: 0, sign: false }, FP16x16 { mag: 196608, sign: false } ] .span(); let kernel_type = KERNEL_TYPE::LINEAR; let prob_a: Span<FP16x16> = array![].span(); let prob_b: Span<FP16x16> = array![].span(); let rho: Span<FP16x16> = array![ FP16x16 { mag: 4908, sign: true }, FP16x16 { mag: 11563, sign: true }, FP16x16 { mag: 13872, sign: true }, FP16x16 { mag: 33829, sign: true } ] .span(); let support_vectors: Span<FP16x16> = array![].span(); let classlabels: Span<usize> = array![0, 1, 2, 3].span(); let vectors_per_class = Option::None; let mut classifier: SVMClassifier<FP16x16> = SVMClassifier { classlabels, coefficients, kernel_params, kernel_type, post_transform, prob_a, prob_b, rho, support_vectors, vectors_per_class, }; let mut X: Tensor<FP16x16> = TensorTrait::new( array![3, 3].span(), array![ FP16x16 { mag: 65536, sign: true }, FP16x16 { mag: 52428, sign: true }, FP16x16 { mag: 39321, sign: true }, FP16x16 { mag: 26214, sign: true }, FP16x16 { mag: 13107, sign: true }, FP16x16 { mag: 0, sign: false }, FP16x16 { mag: 13107, sign: false }, FP16x16 { mag: 26214, sign: false }, FP16x16 { mag: 39321, sign: false }, ] .span() ); (classifier, X) } fn svm_classifier_helper_fp64x64( post_transform:
POST_TRANSFORM ) -> (SVMClassifier<FP64x64>, Tensor<FP64x64>) { let coefficients: Span<FP64x64> = array![ FP64x64 { mag: 18446744073709551616, sign: false }, FP64x64 { mag: 18446744073709551616, sign: false }, FP64x64 { mag: 18446744073709551616, sign: false }, FP64x64 { mag: 18446744073709551616, sign: false }, FP64x64 { mag: 18446744073709551616, sign: true }, FP64x64 { mag: 18446744073709551616, sign: true }, FP64x64 { mag: 18446744073709551616, sign: true }, FP64x64 { mag: 18446744073709551616, sign: true } ] .span(); let kernel_params: Span<FP64x64> = array![ FP64x64 { mag: 7054933896252620800, sign: false }, FP64x64 { mag: 0, sign: false }, FP64x64 { mag: 55340232221128654848, sign: false } ] .span(); let kernel_type = KERNEL_TYPE::RBF; let prob_a: Span<FP64x64> = array![FP64x64 { mag: 94799998099962986496, sign: true }].span(); let prob_b: Span<FP64x64> = array![FP64x64 { mag: 1180576833385529344, sign: false }].span(); let rho: Span<FP64x64> = array![FP64x64 { mag: 3082192501545631744, sign: false }].span(); let support_vectors: Span<FP64x64> = array![ FP64x64 { mag: 3528081300248330240, sign: false }, FP64x64 { mag: 19594207602596118528, sign: true }, FP64x64 { mag: 9235613999318433792, sign: false }, FP64x64 { mag: 10869715877100519424, sign: true }, FP64x64 { mag: 5897111318564962304, sign: true }, FP64x64 { mag: 1816720038917308416, sign: false }, FP64x64 { mag: 4564890528671334400, sign: false }, FP64x64 { mag: 21278987070814027776, sign: true }, FP64x64 { mag: 7581529597213147136, sign: false }, FP64x64 { mag: 10953113834067329024, sign: true }, FP64x64 { mag: 24318984989010034688, sign: true }, FP64x64 { mag: 30296187483321270272, sign: true }, FP64x64 { mag: 10305112258191032320, sign: false }, FP64x64 { mag: 17005441559857987584, sign: true },
FP64x64 { mag: 11555205301925838848, sign: false }, FP64x64 { mag: 2962701975885447168, sign: true }, FP64x64 { mag: 11741665981322231808, sign: true }, FP64x64 { mag: 15376232508819505152, sign: false }, FP64x64 { mag: 13908474645692022784, sign: false }, FP64x64 { mag: 7323415394302033920, sign: true }, FP64x64 { mag: 3284258824352956416, sign: true }, FP64x64 { mag: 11374683084831064064, sign: true }, FP64x64 { mag: 9087138148126818304, sign: false }, FP64x64 { mag: 8247488946750095360, sign: false } ] .span(); let classlabels: Span<usize> = array![0, 1].span(); let vectors_per_class = Option::Some(array![4, 4].span()); let mut classifier: SVMClassifier<FP64x64> = SVMClassifier { classlabels, coefficients, kernel_params, kernel_type, post_transform, prob_a, prob_b, rho, support_vectors, vectors_per_class, }; let mut X: Tensor<FP64x64> = TensorTrait::new( array![3, 3].span(), array![ FP64x64 { mag: 18446744073709551616, sign: true }, FP64x64 { mag: 14757395258967642112, sign: true }, FP64x64 { mag: 11068046444225730560, sign: true }, FP64x64 { mag: 7378697629483821056, sign: true }, FP64x64 { mag: 3689348814741910528, sign: true }, FP64x64 { mag: 0, sign: false }, FP64x64 { mag: 3689348814741910528, sign: false }, FP64x64 { mag: 7378697629483821056, sign: false }, FP64x64 { mag: 11068046444225730560, sign: false } ] .span() ); (classifier, X) }
use orion::numbers::FP16x16; use orion::operators::tensor::{Tensor, TensorTrait, FP16x16Tensor, U32Tensor}; use orion::utils::{assert_eq, assert_seq_eq}; use orion::operators::tensor::FP16x16TensorPartialEq; use orion::operators::ml::svm::svm_regressor::{SVMRegressorTrait, POST_TRANSFORM, SVMRegressor}; use orion::operators::ml::svm::core::{KERNEL_TYPE};
fn test_svm_regressor_linear() { let kernel_params: Span<FP16x16> = array![ FP16x16 { mag: 27812, sign: false }, FP16x16 { mag: 0, sign: false }, FP16x16 { mag: 196608, sign: false } ] .span(); let kernel_type = KERNEL_TYPE::LINEAR; let (mut regressor, X) = svm_regressor_helper(kernel_type, kernel_params); let scores = SVMRegressorTrait::predict(ref regressor, X); let mut expected_scores: Tensor<FP16x16> = TensorTrait::new( array![3, 1].span(), array![ FP16x16 { mag: 30684, sign: true }, FP16x16 { mag: 14908, sign: false }, FP16x16 { mag: 60501, sign: false }, ] .span() ); assert_eq(scores, expected_scores); }
fn test_svm_regressor_poly() { let kernel_params: Span<FP16x16> = array![ FP16x16 { mag: 22456, sign: false }, FP16x16 { mag: 0, sign: false }, FP16x16 { mag: 196608, sign: false } ] .span(); let kernel_type = KERNEL_TYPE::POLY; let (mut regressor, X) = svm_regressor_helper(kernel_type, kernel_params); let scores = SVMRegressorTrait::predict(ref regressor, X); let mut expected_scores: Tensor<FP16x16> = TensorTrait::new( array![3, 1].span(), array![ FP16x16 { mag: 34542, sign: false }, FP16x16 { mag: 35623, sign: false }, FP16x16 { mag: 35815, sign: false }, ] .span() ); assert_eq(scores, expected_scores); }
fn test_svm_regressor_rbf() { let kernel_params: Span<FP16x16> = array![ FP16x16 { mag: 19848, sign: false }, FP16x16 { mag: 0, sign: false }, FP16x16 { mag: 196608, sign: false } ] .span(); let kernel_type = KERNEL_TYPE::RBF; let (mut regressor, X) = svm_regressor_helper(kernel_type, kernel_params); let scores = SVMRegressorTrait::predict(ref regressor, X); let mut expected_scores: Tensor<FP16x16> = TensorTrait::new( array![3, 1].span(), array![ FP16x16 { mag: 19376, sign: false }, FP16x16 { mag: 31318, sign: false }, FP16x16 { mag: 45566, sign: false }, ] .span() ); assert_eq(scores, expected_scores); }
fn test_svm_regressor_sigmoid() { let kernel_params: Span<FP16x16> = array![ FP16x16 { mag: 20108, sign: false }, FP16x16 { mag: 0, sign: false }, FP16x16 { mag: 196608, sign: false } ] .span(); let kernel_type = KERNEL_TYPE::SIGMOID; let (mut regressor, X) = svm_regressor_helper(kernel_type, kernel_params); let scores = SVMRegressorTrait::predict(ref regressor, X); let mut expected_scores: Tensor<FP16x16> = TensorTrait::new( array![3, 1].span(), array![ FP16x16 { mag: 15683, sign: false }, FP16x16 { mag: 29421, sign: false }, FP16x16 { mag: 43364, sign: false }, ] .span() ); assert_eq(scores, expected_scores); }
fn test_svm_regressor_linear_one_class_0() { let post_transform = POST_TRANSFORM::NONE; let one_class = 0; let (mut regressor, X) = svm_regressor_linear_helper(post_transform, one_class); let scores = SVMRegressorTrait::predict(ref regressor, X); let mut expected_scores: Tensor<FP16x16> = TensorTrait::new( array![3, 1].span(), array![ FP16x16 { mag: 63484, sign: false }, FP16x16 { mag: 74218, sign: false }, FP16x16 { mag: 84953, sign: false }, ] .span() ); assert_eq(scores, expected_scores); }
fn test_svm_regressor_linear_one_class_1() { let post_transform = POST_TRANSFORM::NONE; let one_class = 1; let (mut regressor, X) = svm_regressor_linear_helper(post_transform, one_class); let scores = SVMRegressorTrait::predict(ref regressor, X); let mut expected_scores: Tensor<FP16x16> = TensorTrait::new( array![3, 1].span(), array![ FP16x16 { mag: 65536, sign: false }, FP16x16 { mag: 65536, sign: false }, FP16x16 { mag: 65536, sign: false }, ] .span() ); assert_eq(scores, expected_scores); } fn svm_regressor_helper( kernel_type: KERNEL_TYPE, kernel_params: Span<FP16x16> ) -> (SVMRegressor<FP16x16>, Tensor<FP16x16>) { let coefficients: Span<FP16x16> = array![ FP16x16 { mag: 65536, sign: false }, FP16x16 { mag: 65536, sign: true }, FP16x16 { mag: 54959, sign: false }, FP16x16 { mag: 54959, sign: true }, FP16x16 { mag: 29299, sign: false }, FP16x16 { mag: 65536, sign: true }, FP16x16 { mag: 36236, sign: false } ] .span(); let n_supports: usize = 7; let one_class: usize = 0; let rho: Span<FP16x16> = array![FP16x16 { mag: 35788, sign: false }].span(); let support_vectors: Span<FP16x16> = array![ FP16x16 { mag: 8421, sign: true }, FP16x16 { mag: 5842, sign: false }, FP16x16 { mag: 4510, sign: false }, FP16x16 { mag: 5202, sign: true }, FP16x16 { mag: 14783, sign: true }, FP16x16 { mag: 17380, sign: true }, FP16x16 { mag: 60595, sign: false }, FP16x16 { mag: 1674, sign: true }, FP16x16 { mag: 38669, sign: true }, FP16x16 { mag: 63803, sign: false }, FP16x16 { mag: 87720, sign: true }, FP16x16 { mag: 22236, sign: false }, FP16x16 { mag: 61816, sign: false }, FP16x16 { mag: 34267, sign: true }, FP16x16 { mag: 36418, sign: false }, FP16x16 { mag: 27471, sign: false }, FP16x16 { mag: 28421, s
ign: false }, FP16x16 { mag: 69270, sign: true }, FP16x16 { mag: 152819, sign: false }, FP16x16 { mag: 4065, sign: false }, FP16x16 { mag: 62274, sign: true } ] .span(); let post_transform = POST_TRANSFORM::NONE; let mut regressor: SVMRegressor<FP16x16> = SVMRegressor { coefficients, kernel_params, kernel_type, n_supports, one_class, post_transform, rho, support_vectors, }; let mut X: Tensor<FP16x16> = TensorTrait::new( array![3, 3].span(), array![ FP16x16 { mag: 32768, sign: true }, FP16x16 { mag: 26214, sign: true }, FP16x16 { mag: 19660, sign: true }, FP16x16 { mag: 13107, sign: true }, FP16x16 { mag: 6553, sign: true }, FP16x16 { mag: 0, sign: false }, FP16x16 { mag: 6553, sign: false }, FP16x16 { mag: 13107, sign: false }, FP16x16 { mag: 19660, sign: false }, ] .span() ); (regressor, X) } fn svm_regressor_linear_helper( post_transform: POST_TRANSFORM, one_class: usize ) -> (SVMRegressor<FP16x16>, Tensor<FP16x16>) { let coefficients: Span<FP16x16> = array![ FP16x16 { mag: 18540, sign: false }, FP16x16 { mag: 1746, sign: true }, FP16x16 { mag: 1097, sign: false } ] .span(); let kernel_params: Span<FP16x16> = array![ FP16x16 { mag: 65, sign: false }, FP16x16 { mag: 0, sign: false }, FP16x16 { mag: 196608, sign: false } ] .span(); let kernel_type = KERNEL_TYPE::LINEAR; let n_supports: usize = 0; let rho: Span<FP16x16> = array![FP16x16 { mag: 81285, sign: false }].span(); let support_vectors: Span<FP16x16> = array![].span(); let mut regressor: SVMRegressor<FP16x16> = SVMRegressor { coefficients, kernel_params, kernel_type, n_supports, one_class, post_transform, rho, supp
ort_vectors, }; let mut X: Tensor<FP16x16> = TensorTrait::new( array![3, 3].span(), array![ FP16x16 { mag: 65536, sign: true }, FP16x16 { mag: 52428, sign: true }, FP16x16 { mag: 39321, sign: true }, FP16x16 { mag: 26214, sign: true }, FP16x16 { mag: 13107, sign: true }, FP16x16 { mag: 0, sign: false }, FP16x16 { mag: 13107, sign: false }, FP16x16 { mag: 26214, sign: false }, FP16x16 { mag: 39321, sign: false }, ] .span() ); (regressor, X) }
use orion::numbers::FP16x16; use orion::operators::tensor::{Tensor, TensorTrait, FP16x16Tensor, U32Tensor}; use orion::operators::ml::tree_ensemble::core::{NODE_MODES, TreeEnsembleAttributes, TreeEnsemble}; use orion::operators::ml::tree_ensemble::tree_ensemble_classifier::{ TreeEnsembleClassifier, POST_TRANSFORM, TreeEnsembleClassifierTrait }; use orion::operators::tensor::implementations::tensor_fp16x16::relative_eq; use orion::operators::matrix::{MutMatrix, MutMatrixImpl};
fn test_tree_ensemble_classifier_multi_pt_none() { let (mut classifier, X) = tree_ensemble_classifier_helper(POST_TRANSFORM::NONE); let (labels, mut scores) = TreeEnsembleClassifierTrait::predict(classifier, X); assert(*labels[0] == 0, 'labels[0]'); assert(*labels[1] == 0, 'labels[1]'); assert(*labels[2] == 1, 'labels[2]'); assert(labels.len() == 3, 'len(labels)'); assert( relative_eq(@scores.get(0, 0).unwrap(), @FP16x16 { mag: 60075, sign: false }) == true, 'score[0, 0]' ); assert( relative_eq(@scores.get(0, 1).unwrap(), @FP16x16 { mag: 0, sign: false }) == true, 'score[0, 1]' ); assert( relative_eq(@scores.get(0, 2).unwrap(), @FP16x16 { mag: 5461, sign: false }) == true, 'score[0, 2]' ); assert( relative_eq(@scores.get(1, 0).unwrap(), @FP16x16 { mag: 37329, sign: false }) == true, 'score[1, 0]' ); assert( relative_eq(@scores.get(1, 1).unwrap(), @FP16x16 { mag: 12528, sign: false }) == true, 'score[1, 1]' ); assert( relative_eq(@scores.get(1, 2).unwrap(), @FP16x16 { mag: 15677, sign: false }) == true, 'score[1, 2]' ); assert( relative_eq(@scores.get(2, 0).unwrap(), @FP16x16 { mag: 19853, sign: false }) == true, 'score[2, 0]' ); assert( relative_eq(@scores.get(2, 1).unwrap(), @FP16x16 { mag: 28257, sign: false }) == true, 'score[2, 1]' ); assert( relative_eq(@scores.get(2, 2).unwrap(), @FP16x16 { mag: 17424, sign: false }) == true, 'score[2, 2]' ); }
fn test_tree_ensemble_classifier_multi_pt_softmax() { let (mut classifier, X) = tree_ensemble_classifier_helper(POST_TRANSFORM::SOFTMAX); let (labels, mut scores) = TreeEnsembleClassifierTrait::predict(classifier, X); assert(*labels[0] == 0, 'labels[0]'); assert(*labels[1] == 0, 'labels[1]'); assert(*labels[2] == 1, 'labels[2]'); assert(labels.len() == 3, 'len(labels)'); assert( relative_eq(@scores.get(0, 0).unwrap(), @FP16x16 { mag: 35725, sign: false }) == true, 'score[0, 0]' ); assert( relative_eq(@scores.get(0, 1).unwrap(), @FP16x16 { mag: 14284, sign: false }) == true, 'score[0, 1]' ); assert( relative_eq(@scores.get(0, 2).unwrap(), @FP16x16 { mag: 15526, sign: false }) == true, 'score[0, 2]' ); assert( relative_eq(@scores.get(1, 0).unwrap(), @FP16x16 { mag: 27266, sign: false }) == true, 'score[1, 0]' ); assert( relative_eq(@scores.get(1, 1).unwrap(), @FP16x16 { mag: 18675, sign: false }) == true, 'score[1, 1]' ); assert( relative_eq(@scores.get(1, 2).unwrap(), @FP16x16 { mag: 19594, sign: false }) == true, 'score[1, 2]' ); assert( relative_eq(@scores.get(2, 0).unwrap(), @FP16x16 { mag: 21137, sign: false }) == true, 'score[2, 0]' ); assert( relative_eq(@scores.get(2, 1).unwrap(), @FP16x16 { mag: 24029, sign: false }) == true, 'score[2, 1]' ); assert( relative_eq(@scores.get(2, 2).unwrap(), @FP16x16 { mag: 20368, sign: false }) == true, 'score[2, 2]' ); }
fn test_tree_ensemble_classifier_multi_pt_softmax_zero() { let (mut classifier, X) = tree_ensemble_classifier_helper(POST_TRANSFORM::SOFTMAXZERO); let (labels, mut scores) = TreeEnsembleClassifierTrait::predict(classifier, X); assert(*labels[0] == 0, 'labels[0] == 0'); assert(*labels[1] == 0, 'labels[1] == 0'); assert(*labels[2] == 1, 'labels[2] == 1'); assert(labels.len() == 3, 'len(labels) == 3'); assert( relative_eq(@scores.get(0, 0).unwrap(), @FP16x16 { mag: 45682, sign: false }) == true, 'score[0, 0]' ); assert( relative_eq(@scores.get(0, 1).unwrap(), @FP16x16 { mag: 0, sign: false }) == true, 'score[0, 1]' ); assert( relative_eq(@scores.get(0, 2).unwrap(), @FP16x16 { mag: 19853, sign: false }) == true, 'score[0, 2]' ); assert( relative_eq(@scores.get(1, 0).unwrap(), @FP16x16 { mag: 27266, sign: false }) == true, 'score[1, 0]' ); assert( relative_eq(@scores.get(1, 1).unwrap(), @FP16x16 { mag: 18675, sign: false }) == true, 'score[1, 1]' ); assert( relative_eq(@scores.get(1, 2).unwrap(), @FP16x16 { mag: 19594, sign: false }) == true, 'score[1, 2]' ); assert( relative_eq(@scores.get(2, 0).unwrap(), @FP16x16 { mag: 21137, sign: false }) == true, 'score[2, 0]' ); assert( relative_eq(@scores.get(2, 1).unwrap(), @FP16x16 { mag: 24029, sign: false }) == true, 'score[2, 1]' ); assert( relative_eq(@scores.get(2, 2).unwrap(), @FP16x16 { mag: 20368, sign: false }) == true, 'score[2, 2]' ); }
fn test_tree_ensemble_classifier_multi_pt_logistic() { let (mut classifier, X) = tree_ensemble_classifier_helper(POST_TRANSFORM::LOGISTIC); let (labels, mut scores) = TreeEnsembleClassifierTrait::predict(classifier, X); assert(*labels[0] == 0, 'labels[0] == 0'); assert(*labels[1] == 0, 'labels[1] == 0'); assert(*labels[2] == 1, 'labels[2] == 1'); assert(labels.len() == 3, 'len(labels) == 3'); assert( relative_eq(@scores.get(0, 0).unwrap(), @FP16x16 { mag: 46816, sign: false }) == true, 'score[0, 0]' ); assert( relative_eq(@scores.get(0, 1).unwrap(), @FP16x16 { mag: 32768, sign: false }) == true, 'score[0, 1]' ); assert( relative_eq(@scores.get(0, 2).unwrap(), @FP16x16 { mag: 34132, sign: false }) == true, 'score[0, 2]' ); assert( relative_eq(@scores.get(1, 0).unwrap(), @FP16x16 { mag: 41856, sign: false }) == true, 'score[1, 0]' ); assert( relative_eq(@scores.get(1, 1).unwrap(), @FP16x16 { mag: 35890, sign: false }) == true, 'score[1, 1]' ); assert( relative_eq(@scores.get(1, 2).unwrap(), @FP16x16 { mag: 36668, sign: false }) == true, 'score[1, 2]' ); assert( relative_eq(@scores.get(2, 0).unwrap(), @FP16x16 { mag: 37693, sign: false }) == true, 'score[2, 0]' ); assert( relative_eq(@scores.get(2, 1).unwrap(), @FP16x16 { mag: 39724, sign: false }) == true, 'score[2, 1]' ); assert( relative_eq(@scores.get(2, 2).unwrap(), @FP16x16 { mag: 37098, sign: false }) == true, 'score[2, 2]' ); }