text
stringlengths
1
2.05k
%15.0; %17 = nn.relu(%16); %18 = nn.conv2d(%17, meta[relay.Constant][23], padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1]); %19 = nn.conv2d(%9, meta[relay.Constant][24], padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1]); %20 = add(%18, %19); %21 = nn.batch_norm(%20, meta[relay.Constant][25], meta[relay.Constant][26], meta[relay.Constant][27], meta[relay.Constant][28]); %22 = %21.0; %23 = nn.relu(%22); %24 = nn.conv2d(%23, meta[relay.Constant][29], padding=[0, 0, 0, 0], channels=64, kernel_size=[1, 1]); %25 = nn.batch_norm(%24, meta[relay.Constant][30], meta[relay.Constant][31], meta[relay.Constant][32], meta[relay.Constant][33]); %26 = %25.0; %27 = nn.relu(%26); %28 = nn.conv2d(%27, meta[relay.Constant][34], padding=[1, 1, 1, 1], channels=64, kernel_size=[3, 3]); %29 = nn.batch_norm(%28, meta[relay.Constant][35], meta[relay.Constant][36], meta[relay.Constant][37], meta[relay.Constant][38]); %30 = %29.0; %31 = nn.relu(%30); %32 = nn.conv2d(%31, meta[relay.Constant][39], padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1]); %33 = add(%32, %20); %34 = nn.batch_norm(%33, meta[relay.Constant][40], meta[relay.Constant][41], meta[relay.Constant][42], meta[relay.Constant][43]); %35 = %34.0; %36 = nn.relu(%35); %37 = nn.conv2d(%36, meta[relay.Constant][44], padding=[0, 0, 0, 0], channels=64, kernel_size=[1, 1]); %38 = nn.batch_norm(%37, meta[relay.Constant][45], meta[relay.Constant][46], meta[relay.Constant][47], meta[relay.Constant][48]); %39 = %38.0; %40 = nn.relu(%39); %41 = nn.conv2d(%40, meta[relay.Constant][49], padding=[1, 1, 1, 1], channels=64, kernel_size=[3, 3]); %42 = nn.batch_norm(%41, meta[relay.Constant][50], meta[relay.Constant][51], meta[relay.Constant][52], meta[relay.Constant][53]); %43 = %42.0; %44 = nn.relu(%43
); %45 = nn.conv2d(%44, meta[relay.Constant][54], padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1]); %46 = add(%45, %33); %47 = nn.batch_norm(%46, meta[relay.Constant][55], meta[relay.Constant][56], meta[relay.Constant][57], meta[relay.Constant][58]); %48 = %47.0; %49 = nn.relu(%48); %50 = nn.conv2d(%49, meta[relay.Constant][59], padding=[0, 0, 0, 0], channels=128, kernel_size=[1, 1]); %51 = nn.batch_norm(%50, meta[relay.Constant][60], meta[relay.Constant][61], meta[relay.Constant][62], meta[relay.Constant][63]); %52 = %51.0; %53 = nn.relu(%52); %54 = nn.conv2d(%53, meta[relay.Constant][64], strides=[2, 2], padding=[1, 1, 1, 1], channels=128, kernel_size=[3, 3]); %55 = nn.batch_norm(%54, meta[relay.Constant][65], meta[relay.Constant][66], meta[relay.Constant][67], meta[relay.Constant][68]); %56 = %55.0; %57 = nn.relu(%56); %58 = nn.conv2d(%57, meta[relay.Constant][69], padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1]); %59 = nn.conv2d(%49, meta[relay.Constant][70], strides=[2, 2], padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1]); %60 = add(%58, %59); %61 = nn.batch_norm(%60, meta[relay.Constant][71], meta[relay.Constant][72], meta[relay.Constant][73], meta[relay.Constant][74]); %62 = %61.0; %63 = nn.relu(%62); %64 = nn.conv2d(%63, meta[relay.Constant][75], padding=[0, 0, 0, 0], channels=128, kernel_size=[1, 1]); %65 = nn.batch_norm(%64, meta[relay.Constant][76], meta[relay.Constant][77], meta[relay.Constant][78], meta[relay.Constant][79]); %66 = %65.0; %67 = nn.relu(%66); %68 = nn.conv2d(%67, meta[relay.Constant][80], padding=[1, 1, 1, 1], channels=128, kernel_size=[3, 3]); %69 = nn.batch_norm(%68, meta[relay.Constant][81], meta[relay.Constant][82], meta[relay.Constant][83], meta[relay.Constant][84]); %70 = %69.0; %71 = nn.relu(%
70); %72 = nn.conv2d(%71, meta[relay.Constant][85], padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1]); %73 = add(%72, %60); %74 = nn.batch_norm(%73, meta[relay.Constant][86], meta[relay.Constant][87], meta[relay.Constant][88], meta[relay.Constant][89]); %75 = %74.0; %76 = nn.relu(%75); %77 = nn.conv2d(%76, meta[relay.Constant][90], padding=[0, 0, 0, 0], channels=128, kernel_size=[1, 1]); %78 = nn.batch_norm(%77, meta[relay.Constant][91], meta[relay.Constant][92], meta[relay.Constant][93], meta[relay.Constant][94]); %79 = %78.0; %80 = nn.relu(%79); %81 = nn.conv2d(%80, meta[relay.Constant][95], padding=[1, 1, 1, 1], channels=128, kernel_size=[3, 3]); %82 = nn.batch_norm(%81, meta[relay.Constant][96], meta[relay.Constant][97], meta[relay.Constant][98], meta[relay.Constant][99]); %83 = %82.0; %84 = nn.relu(%83); %85 = nn.conv2d(%84, meta[relay.Constant][100], padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1]); %86 = add(%85, %73); %87 = nn.batch_norm(%86, meta[relay.Constant][101], meta[relay.Constant][102], meta[relay.Constant][103], meta[relay.Constant][104]); %88 = %87.0; %89 = nn.relu(%88); %90 = nn.conv2d(%89, meta[relay.Constant][105], padding=[0, 0, 0, 0], channels=128, kernel_size=[1, 1]); %91 = nn.batch_norm(%90, meta[relay.Constant][106], meta[relay.Constant][107], meta[relay.Constant][108], meta[relay.Constant][109]); %92 = %91.0; %93 = nn.relu(%92); %94 = nn.conv2d(%93, meta[relay.Constant][110], padding=[1, 1, 1, 1], channels=128, kernel_size=[3, 3]); %95 = nn.batch_norm(%94, meta[relay.Constant][111], meta[relay.Constant][112], meta[relay.Constant][113], meta[relay.Constant][114]); %96 = %95.0; %97 = nn.relu(%96); %98 = nn.conv2d(%97, meta[relay.Constant][115], padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1]);
%99 = add(%98, %86); %100 = nn.batch_norm(%99, meta[relay.Constant][116], meta[relay.Constant][117], meta[relay.Constant][118], meta[relay.Constant][119]); %101 = %100.0; %102 = nn.relu(%101); %103 = nn.conv2d(%102, meta[relay.Constant][120], padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1]); %104 = nn.batch_norm(%103, meta[relay.Constant][121], meta[relay.Constant][122], meta[relay.Constant][123], meta[relay.Constant][124]); %105 = %104.0; %106 = nn.relu(%105); %107 = nn.conv2d(%106, meta[relay.Constant][125], strides=[2, 2], padding=[1, 1, 1, 1], channels=256, kernel_size=[3, 3]); %108 = nn.batch_norm(%107, meta[relay.Constant][126], meta[relay.Constant][127], meta[relay.Constant][128], meta[relay.Constant][129]); %109 = %108.0; %110 = nn.relu(%109); %111 = nn.conv2d(%110, meta[relay.Constant][130], padding=[0, 0, 0, 0], channels=1024, kernel_size=[1, 1]); %112 = nn.conv2d(%102, meta[relay.Constant][131], strides=[2, 2], padding=[0, 0, 0, 0], channels=1024, kernel_size=[1, 1]); %113 = add(%111, %112); %114 = nn.batch_norm(%113, meta[relay.Constant][132], meta[relay.Constant][133], meta[relay.Constant][134], meta[relay.Constant][135]); %115 = %114.0; %116 = nn.relu(%115); %117 = nn.conv2d(%116, meta[relay.Constant][136], padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1]); %118 = nn.batch_norm(%117, meta[relay.Constant][137], meta[relay.Constant][138], meta[relay.Constant][139], meta[relay.Constant][140]); %119 = %118.0; %120 = nn.relu(%119); %121 = nn.conv2d(%120, meta[relay.Constant][141], padding=[1, 1, 1, 1], channels=256, kernel_size=[3, 3]); %122 = nn.batch_norm(%121, meta[relay.Constant][142], meta[relay.Constant][143], meta[relay.Constant][144], meta[relay.Constant][145]); %123 = %122.0; %124 = nn.relu(%123); %125 = nn.conv2d(%124, meta[r
elay.Constant][146], padding=[0, 0, 0, 0], channels=1024, kernel_size=[1, 1]); %126 = add(%125, %113); %127 = nn.batch_norm(%126, meta[relay.Constant][147], meta[relay.Constant][148], meta[relay.Constant][149], meta[relay.Constant][150]); %128 = %127.0; %129 = nn.relu(%128); %130 = nn.conv2d(%129, meta[relay.Constant][151], padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1]); %131 = nn.batch_norm(%130, meta[relay.Constant][152], meta[relay.Constant][153], meta[relay.Constant][154], meta[relay.Constant][155]); %132 = %131.0; %133 = nn.relu(%132); %134 = nn.conv2d(%133, meta[relay.Constant][156], padding=[1, 1, 1, 1], channels=256, kernel_size=[3, 3]); %135 = nn.batch_norm(%134, meta[relay.Constant][157], meta[relay.Constant][158], meta[relay.Constant][159], meta[relay.Constant][160]); %136 = %135.0; %137 = nn.relu(%136); %138 = nn.conv2d(%137, meta[relay.Constant][161], padding=[0, 0, 0, 0], channels=1024, kernel_size=[1, 1]); %139 = add(%138, %126); %140 = nn.batch_norm(%139, meta[relay.Constant][162], meta[relay.Constant][163], meta[relay.Constant][164], meta[relay.Constant][165]); %141 = %140.0; %142 = nn.relu(%141); %143 = nn.conv2d(%142, meta[relay.Constant][166], padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1]); %144 = nn.batch_norm(%143, meta[relay.Constant][167], meta[relay.Constant][168], meta[relay.Constant][169], meta[relay.Constant][170]); %145 = %144.0; %146 = nn.relu(%145); %147 = nn.conv2d(%146, meta[relay.Constant][171], padding=[1, 1, 1, 1], channels=256, kernel_size=[3, 3]); %148 = nn.batch_norm(%147, meta[relay.Constant][172], meta[relay.Constant][173], meta[relay.Constant][174], meta[relay.Constant][175]); %149 = %148.0; %150 = nn.relu(%149); %151 = nn.conv2d(%150, meta[relay.Constant][176], padding=[0, 0, 0, 0], channels=1024,
kernel_size=[1, 1]); %152 = add(%151, %139); %153 = nn.batch_norm(%152, meta[relay.Constant][177], meta[relay.Constant][178], meta[relay.Constant][179], meta[relay.Constant][180]); %154 = %153.0; %155 = nn.relu(%154); %156 = nn.conv2d(%155, meta[relay.Constant][181], padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1]); %157 = nn.batch_norm(%156, meta[relay.Constant][182], meta[relay.Constant][183], meta[relay.Constant][184], meta[relay.Constant][185]); %158 = %157.0; %159 = nn.relu(%158); %160 = nn.conv2d(%159, meta[relay.Constant][186], padding=[1, 1, 1, 1], channels=256, kernel_size=[3, 3]); %161 = nn.batch_norm(%160, meta[relay.Constant][187], meta[relay.Constant][188], meta[relay.Constant][189], meta[relay.Constant][190]); %162 = %161.0; %163 = nn.relu(%162); %164 = nn.conv2d(%163, meta[relay.Constant][191], padding=[0, 0, 0, 0], channels=1024, kernel_size=[1, 1]); %165 = add(%164, %152); %166 = nn.batch_norm(%165, meta[relay.Constant][192], meta[relay.Constant][193], meta[relay.Constant][194], meta[relay.Constant][195]); %167 = %166.0; %168 = nn.relu(%167); %169 = nn.conv2d(%168, meta[relay.Constant][196], padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1]); %170 = nn.batch_norm(%169, meta[relay.Constant][197], meta[relay.Constant][198], meta[relay.Constant][199], meta[relay.Constant][200]); %171 = %170.0; %172 = nn.relu(%171); %173 = nn.conv2d(%172, meta[relay.Constant][201], padding=[1, 1, 1, 1], channels=256, kernel_size=[3, 3]); %174 = nn.batch_norm(%173, meta[relay.Constant][202], meta[relay.Constant][203], meta[relay.Constant][204], meta[relay.Constant][205]); %175 = %174.0; %176 = nn.relu(%175); %177 = nn.conv2d(%176, meta[relay.Constant][206], padding=[0, 0, 0, 0], channels=1024, kernel_size=[1, 1]); %178 = add(%177, %165);
%179 = nn.batch_norm(%178, meta[relay.Constant][207], meta[relay.Constant][208], meta[relay.Constant][209], meta[relay.Constant][210]); %180 = %179.0; %181 = nn.relu(%180); %182 = nn.conv2d(%181, meta[relay.Constant][211], padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1]); %183 = nn.batch_norm(%182, meta[relay.Constant][212], meta[relay.Constant][213], meta[relay.Constant][214], meta[relay.Constant][215]); %184 = %183.0; %185 = nn.relu(%184); %186 = nn.conv2d(%185, meta[relay.Constant][216], strides=[2, 2], padding=[1, 1, 1, 1], channels=512, kernel_size=[3, 3]); %187 = nn.batch_norm(%186, meta[relay.Constant][217], meta[relay.Constant][218], meta[relay.Constant][219], meta[relay.Constant][220]); %188 = %187.0; %189 = nn.relu(%188); %190 = nn.conv2d(%189, meta[relay.Constant][221], padding=[0, 0, 0, 0], channels=2048, kernel_size=[1, 1]); %191 = nn.conv2d(%181, meta[relay.Constant][222], strides=[2, 2], padding=[0, 0, 0, 0], channels=2048, kernel_size=[1, 1]); %192 = add(%190, %191); %193 = nn.batch_norm(%192, meta[relay.Constant][223], meta[relay.Constant][224], meta[relay.Constant][225], meta[relay.Constant][226]); %194 = %193.0; %195 = nn.relu(%194); %196 = nn.conv2d(%195, meta[relay.Constant][227], padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1]); %197 = nn.batch_norm(%196, meta[relay.Constant][228], meta[relay.Constant][229], meta[relay.Constant][230], meta[relay.Constant][231]); %198 = %197.0; %199 = nn.relu(%198); %200 = nn.conv2d(%199, meta[relay.Constant][232], padding=[1, 1, 1, 1], channels=512, kernel_size=[3, 3]); %201 = nn.batch_norm(%200, meta[relay.Constant][233], meta[relay.Constant][234], meta[relay.Constant][235], meta[relay.Constant][236]); %202 = %201.0; %203 = nn.relu(%202); %204 = nn.conv2d(%203, meta[relay.Constant][237], pad
ding=[0, 0, 0, 0], channels=2048, kernel_size=[1, 1]); %205 = add(%204, %192); %206 = nn.batch_norm(%205, meta[relay.Constant][238], meta[relay.Constant][239], meta[relay.Constant][240], meta[relay.Constant][241]); %207 = %206.0; %208 = nn.relu(%207); %209 = nn.conv2d(%208, meta[relay.Constant][242], padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1]); %210 = nn.batch_norm(%209, meta[relay.Constant][243], meta[relay.Constant][244], meta[relay.Constant][245], meta[relay.Constant][246]); %211 = %210.0; %212 = nn.relu(%211); %213 = nn.conv2d(%212, meta[relay.Constant][247], padding=[1, 1, 1, 1], channels=512, kernel_size=[3, 3]); %214 = nn.batch_norm(%213, meta[relay.Constant][248], meta[relay.Constant][249], meta[relay.Constant][250], meta[relay.Constant][251]); %215 = %214.0; %216 = nn.relu(%215); %217 = nn.conv2d(%216, meta[relay.Constant][252], padding=[0, 0, 0, 0], channels=2048, kernel_size=[1, 1]); %218 = add(%217, %205); %219 = nn.batch_norm(%218, meta[relay.Constant][253], meta[relay.Constant][254], meta[relay.Constant][255], meta[relay.Constant][256]); %220 = %219.0; %221 = nn.relu(%220); %222 = nn.global_avg_pool2d(%221); %223 = reshape(%222, newshape=[0, -1]); %224 = nn.dense(%223, meta[relay.Constant][257], units=1000); add(%224, meta[relay.Constant][258]) } """, "from_string", None, metatable, ) return { "name": "resnet50_16", "input_shapes": {"data": [1, 3, 224, 224]}, "input_dtypes": {"data": "float16"}, "mod": mod, "params": None, "main_dtype": "float16", } def mobilenet_consts(dtype): return make_consts( dtype, [ (32, 3, 3, 3), (32,), (32,), (32,), (32,), (32, 32, 1, 1), (32
,), (32,), (32,), (32,), (32, 1, 3, 3), (32,), (32,), (32,), (32,), (16, 32, 1, 1), (16,), (16,), (16,), (16,), (96, 16, 1, 1), (96,), (96,), (96,), (96,), (96, 1, 3, 3), (96,), (96,), (96,), (96,), (24, 96, 1, 1), (24,), (24,), (24,), (24,), (144, 24, 1, 1), (144,), (144,), (144,), (144,), (144, 1, 3, 3), (144,), (144,), (144,), (144,), (24, 144, 1, 1), (24,), (24,), (24,), (24,), (144, 24, 1, 1), (144,), (144,), (144,), (144,), (144, 1, 3, 3), (144,), (144,), (144,), (144,), (32, 144, 1, 1), (32,), (32,), (32,), (32,), (192, 32, 1, 1), (192,), (192,), (192,), (192,), (192, 1, 3, 3), (192,), (192,), (192,), (192,), (32, 192, 1, 1), (32,), (32,), (32,), (32,), (192, 32, 1, 1), (192,), (192,), (192,), (192,), (192, 1, 3, 3), (192,), (192,), (192,), (192,), (32, 192, 1, 1), (32,), (32,), (32,), (32,),
(192, 32, 1, 1), (192,), (192,), (192,), (192,), (192, 1, 3, 3), (192,), (192,), (192,), (192,), (64, 192, 1, 1), (64,), (64,), (64,), (64,), (384, 64, 1, 1), (384,), (384,), (384,), (384,), (384, 1, 3, 3), (384,), (384,), (384,), (384,), (64, 384, 1, 1), (64,), (64,), (64,), (64,), (384, 64, 1, 1), (384,), (384,), (384,), (384,), (384, 1, 3, 3), (384,), (384,), (384,), (384,), (64, 384, 1, 1), (64,), (64,), (64,), (64,), (384, 64, 1, 1), (384,), (384,), (384,), (384,), (384, 1, 3, 3), (384,), (384,), (384,), (384,), (64, 384, 1, 1), (64,), (64,), (64,), (64,), (384, 64, 1, 1), (384,), (384,), (384,), (384,), (384, 1, 3, 3), (384,), (384,), (384,), (384,), (96, 384, 1, 1), (96,), (96,), (96,), (96,), (576, 96, 1, 1), (576,), (576,), (576,), (576,), (576, 1, 3, 3), (576,), (576,), (576,), (576,), (96, 576, 1, 1), (96,),
(96,), (96,), (96,), (576, 96, 1, 1), (576,), (576,), (576,), (576,), (576, 1, 3, 3), (576,), (576,), (576,), (576,), (96, 576, 1, 1), (96,), (96,), (96,), (96,), (576, 96, 1, 1), (576,), (576,), (576,), (576,), (576, 1, 3, 3), (576,), (576,), (576,), (576,), (160, 576, 1, 1), (160,), (160,), (160,), (160,), (960, 160, 1, 1), (960,), (960,), (960,), (960,), (960, 1, 3, 3), (960,), (960,), (960,), (960,), (160, 960, 1, 1), (160,), (160,), (160,), (160,), (960, 160, 1, 1), (960,), (960,), (960,), (960,), (960, 1, 3, 3), (960,), (960,), (960,), (960,), (160, 960, 1, 1), (160,), (160,), (160,), (160,), (960, 160, 1, 1), (960,), (960,), (960,), (960,), (960, 1, 3, 3), (960,), (960,), (960,), (960,), (320, 960, 1, 1), (320,), (320,), (320,), (320,), (1280, 320, 1, 1), (1280,), (1280,), (1280,), (1280,), (1000, 1280, 1, 1), ], ) def mobilenet(): metat
able = {"relay.Constant": mobilenet_consts("float32")} mod = tvm.parser.parse( """ def @main(%data: Tensor[(1, 3, 224, 224), float32]) -> Tensor[(1, 1000), float32] { %0 = nn.conv2d(%data, meta[relay.Constant][0], strides=[2, 2], padding=[1, 1, 1, 1], channels=32, kernel_size=[3, 3]); %1 = nn.batch_norm(%0, meta[relay.Constant][1], meta[relay.Constant][2], meta[relay.Constant][3], meta[relay.Constant][4]); %2 = %1.0; %3 = nn.relu(%2); %4 = nn.conv2d(%3, meta[relay.Constant][5], padding=[0, 0, 0, 0], channels=32, kernel_size=[1, 1]); %5 = nn.batch_norm(%4, meta[relay.Constant][6], meta[relay.Constant][7], meta[relay.Constant][8], meta[relay.Constant][9]); %6 = %5.0; %7 = nn.relu(%6); %8 = nn.conv2d(%7, meta[relay.Constant][10], padding=[1, 1, 1, 1], groups=32, channels=32, kernel_size=[3, 3]); %9 = nn.batch_norm(%8, meta[relay.Constant][11], meta[relay.Constant][12], meta[relay.Constant][13], meta[relay.Constant][14]); %10 = %9.0; %11 = nn.relu(%10); %12 = nn.conv2d(%11, meta[relay.Constant][15], padding=[0, 0, 0, 0], channels=16, kernel_size=[1, 1]); %13 = nn.batch_norm(%12, meta[relay.Constant][16], meta[relay.Constant][17], meta[relay.Constant][18], meta[relay.Constant][19]); %14 = %13.0; %15 = nn.conv2d(%14, meta[relay.Constant][20], padding=[0, 0, 0, 0], channels=96, kernel_size=[1, 1]); %16 = nn.batch_norm(%15, meta[relay.Constant][21], meta[relay.Constant][22], meta[relay.Constant][23], meta[relay.Constant][24]); %17 = %16.0; %18 = nn.relu(%17); %19 = nn.conv2d(%18, meta[relay.Constant][25], strides=[2, 2], padding=[1, 1, 1, 1], groups=96, channels=96, kernel_size=[3, 3]); %20 = nn.batch_norm(%19, meta[relay.Constant][26], meta[relay.Constant][27], meta[relay.Constant][28], meta[relay.Constant][29]); %21 = %20.0; %22 = nn.relu(%21); %23 = nn.c
onv2d(%22, meta[relay.Constant][30], padding=[0, 0, 0, 0], channels=24, kernel_size=[1, 1]); %24 = nn.batch_norm(%23, meta[relay.Constant][31], meta[relay.Constant][32], meta[relay.Constant][33], meta[relay.Constant][34]); %25 = %24.0; %26 = nn.conv2d(%25, meta[relay.Constant][35], padding=[0, 0, 0, 0], channels=144, kernel_size=[1, 1]); %27 = nn.batch_norm(%26, meta[relay.Constant][36], meta[relay.Constant][37], meta[relay.Constant][38], meta[relay.Constant][39]); %28 = %27.0; %29 = nn.relu(%28); %30 = nn.conv2d(%29, meta[relay.Constant][40], padding=[1, 1, 1, 1], groups=144, channels=144, kernel_size=[3, 3]); %31 = nn.batch_norm(%30, meta[relay.Constant][41], meta[relay.Constant][42], meta[relay.Constant][43], meta[relay.Constant][44]); %32 = %31.0; %33 = nn.relu(%32); %34 = nn.conv2d(%33, meta[relay.Constant][45], padding=[0, 0, 0, 0], channels=24, kernel_size=[1, 1]); %35 = nn.batch_norm(%34, meta[relay.Constant][46], meta[relay.Constant][47], meta[relay.Constant][48], meta[relay.Constant][49]); %36 = %35.0; %37 = add(%36, %25); %38 = nn.conv2d(%37, meta[relay.Constant][50], padding=[0, 0, 0, 0], channels=144, kernel_size=[1, 1]); %39 = nn.batch_norm(%38, meta[relay.Constant][51], meta[relay.Constant][52], meta[relay.Constant][53], meta[relay.Constant][54]); %40 = %39.0; %41 = nn.relu(%40); %42 = nn.conv2d(%41, meta[relay.Constant][55], strides=[2, 2], padding=[1, 1, 1, 1], groups=144, channels=144, kernel_size=[3, 3]); %43 = nn.batch_norm(%42, meta[relay.Constant][56], meta[relay.Constant][57], meta[relay.Constant][58], meta[relay.Constant][59]); %44 = %43.0; %45 = nn.relu(%44); %46 = nn.conv2d(%45, meta[relay.Constant][60], padding=[0, 0, 0, 0], channels=32, kernel_size=[1, 1]); %47 = nn.batch_norm(%46, meta[relay.Constant][61], meta[relay.Constant][62], meta[relay.Consta
nt][63], meta[relay.Constant][64]); %48 = %47.0; %49 = nn.conv2d(%48, meta[relay.Constant][65], padding=[0, 0, 0, 0], channels=192, kernel_size=[1, 1]); %50 = nn.batch_norm(%49, meta[relay.Constant][66], meta[relay.Constant][67], meta[relay.Constant][68], meta[relay.Constant][69]); %51 = %50.0; %52 = nn.relu(%51); %53 = nn.conv2d(%52, meta[relay.Constant][70], padding=[1, 1, 1, 1], groups=192, channels=192, kernel_size=[3, 3]); %54 = nn.batch_norm(%53, meta[relay.Constant][71], meta[relay.Constant][72], meta[relay.Constant][73], meta[relay.Constant][74]); %55 = %54.0; %56 = nn.relu(%55); %57 = nn.conv2d(%56, meta[relay.Constant][75], padding=[0, 0, 0, 0], channels=32, kernel_size=[1, 1]); %58 = nn.batch_norm(%57, meta[relay.Constant][76], meta[relay.Constant][77], meta[relay.Constant][78], meta[relay.Constant][79]); %59 = %58.0; %60 = add(%59, %48); %61 = nn.conv2d(%60, meta[relay.Constant][80], padding=[0, 0, 0, 0], channels=192, kernel_size=[1, 1]); %62 = nn.batch_norm(%61, meta[relay.Constant][81], meta[relay.Constant][82], meta[relay.Constant][83], meta[relay.Constant][84]); %63 = %62.0; %64 = nn.relu(%63); %65 = nn.conv2d(%64, meta[relay.Constant][85], padding=[1, 1, 1, 1], groups=192, channels=192, kernel_size=[3, 3]); %66 = nn.batch_norm(%65, meta[relay.Constant][86], meta[relay.Constant][87], meta[relay.Constant][88], meta[relay.Constant][89]); %67 = %66.0; %68 = nn.relu(%67); %69 = nn.conv2d(%68, meta[relay.Constant][90], padding=[0, 0, 0, 0], channels=32, kernel_size=[1, 1]); %70 = nn.batch_norm(%69, meta[relay.Constant][91], meta[relay.Constant][92], meta[relay.Constant][93], meta[relay.Constant][94]); %71 = %70.0; %72 = add(%71, %60); %73 = nn.conv2d(%72, meta[relay.Constant][95], padding=[0, 0, 0, 0], channels=192, kernel_size=[1, 1]);
%74 = nn.batch_norm(%73, meta[relay.Constant][96], meta[relay.Constant][97], meta[relay.Constant][98], meta[relay.Constant][99]); %75 = %74.0; %76 = nn.relu(%75); %77 = nn.conv2d(%76, meta[relay.Constant][100], padding=[1, 1, 1, 1], groups=192, channels=192, kernel_size=[3, 3]); %78 = nn.batch_norm(%77, meta[relay.Constant][101], meta[relay.Constant][102], meta[relay.Constant][103], meta[relay.Constant][104]); %79 = %78.0; %80 = nn.relu(%79); %81 = nn.conv2d(%80, meta[relay.Constant][105], padding=[0, 0, 0, 0], channels=64, kernel_size=[1, 1]); %82 = nn.batch_norm(%81, meta[relay.Constant][106], meta[relay.Constant][107], meta[relay.Constant][108], meta[relay.Constant][109]); %83 = %82.0; %84 = nn.conv2d(%83, meta[relay.Constant][110], padding=[0, 0, 0, 0], channels=384, kernel_size=[1, 1]); %85 = nn.batch_norm(%84, meta[relay.Constant][111], meta[relay.Constant][112], meta[relay.Constant][113], meta[relay.Constant][114]); %86 = %85.0; %87 = nn.relu(%86); %88 = nn.conv2d(%87, meta[relay.Constant][115], padding=[1, 1, 1, 1], groups=384, channels=384, kernel_size=[3, 3]); %89 = nn.batch_norm(%88, meta[relay.Constant][116], meta[relay.Constant][117], meta[relay.Constant][118], meta[relay.Constant][119]); %90 = %89.0; %91 = nn.relu(%90); %92 = nn.conv2d(%91, meta[relay.Constant][120], padding=[0, 0, 0, 0], channels=64, kernel_size=[1, 1]); %93 = nn.batch_norm(%92, meta[relay.Constant][121], meta[relay.Constant][122], meta[relay.Constant][123], meta[relay.Constant][124]); %94 = %93.0; %95 = add(%94, %83); %96 = nn.conv2d(%95, meta[relay.Constant][125], padding=[0, 0, 0, 0], channels=384, kernel_size=[1, 1]); %97 = nn.batch_norm(%96, meta[relay.Constant][126], meta[relay.Constant][127], meta[relay.Constant][128], meta[relay.Constant][129]); %98 = %97.0; %99 = nn.relu(%98);
%100 = nn.conv2d(%99, meta[relay.Constant][130], padding=[1, 1, 1, 1], groups=384, channels=384, kernel_size=[3, 3]); %101 = nn.batch_norm(%100, meta[relay.Constant][131], meta[relay.Constant][132], meta[relay.Constant][133], meta[relay.Constant][134]); %102 = %101.0; %103 = nn.relu(%102); %104 = nn.conv2d(%103, meta[relay.Constant][135], padding=[0, 0, 0, 0], channels=64, kernel_size=[1, 1]); %105 = nn.batch_norm(%104, meta[relay.Constant][136], meta[relay.Constant][137], meta[relay.Constant][138], meta[relay.Constant][139]); %106 = %105.0; %107 = add(%106, %95); %108 = nn.conv2d(%107, meta[relay.Constant][140], padding=[0, 0, 0, 0], channels=384, kernel_size=[1, 1]); %109 = nn.batch_norm(%108, meta[relay.Constant][141], meta[relay.Constant][142], meta[relay.Constant][143], meta[relay.Constant][144]); %110 = %109.0; %111 = nn.relu(%110); %112 = nn.conv2d(%111, meta[relay.Constant][145], padding=[1, 1, 1, 1], groups=384, channels=384, kernel_size=[3, 3]); %113 = nn.batch_norm(%112, meta[relay.Constant][146], meta[relay.Constant][147], meta[relay.Constant][148], meta[relay.Constant][149]); %114 = %113.0; %115 = nn.relu(%114); %116 = nn.conv2d(%115, meta[relay.Constant][150], padding=[0, 0, 0, 0], channels=64, kernel_size=[1, 1]); %117 = nn.batch_norm(%116, meta[relay.Constant][151], meta[relay.Constant][152], meta[relay.Constant][153], meta[relay.Constant][154]); %118 = %117.0; %119 = add(%118, %107); %120 = nn.conv2d(%119, meta[relay.Constant][155], padding=[0, 0, 0, 0], channels=384, kernel_size=[1, 1]); %121 = nn.batch_norm(%120, meta[relay.Constant][156], meta[relay.Constant][157], meta[relay.Constant][158], meta[relay.Constant][159]); %122 = %121.0; %123 = nn.relu(%122); %124 = nn.conv2d(%123, meta[relay.Constant][160], strides=[2, 2], padding=[1, 1, 1, 1], group
s=384, channels=384, kernel_size=[3, 3]); %125 = nn.batch_norm(%124, meta[relay.Constant][161], meta[relay.Constant][162], meta[relay.Constant][163], meta[relay.Constant][164]); %126 = %125.0; %127 = nn.relu(%126); %128 = nn.conv2d(%127, meta[relay.Constant][165], padding=[0, 0, 0, 0], channels=96, kernel_size=[1, 1]); %129 = nn.batch_norm(%128, meta[relay.Constant][166], meta[relay.Constant][167], meta[relay.Constant][168], meta[relay.Constant][169]); %130 = %129.0; %131 = nn.conv2d(%130, meta[relay.Constant][170], padding=[0, 0, 0, 0], channels=576, kernel_size=[1, 1]); %132 = nn.batch_norm(%131, meta[relay.Constant][171], meta[relay.Constant][172], meta[relay.Constant][173], meta[relay.Constant][174]); %133 = %132.0; %134 = nn.relu(%133); %135 = nn.conv2d(%134, meta[relay.Constant][175], padding=[1, 1, 1, 1], groups=576, channels=576, kernel_size=[3, 3]); %136 = nn.batch_norm(%135, meta[relay.Constant][176], meta[relay.Constant][177], meta[relay.Constant][178], meta[relay.Constant][179]); %137 = %136.0; %138 = nn.relu(%137); %139 = nn.conv2d(%138, meta[relay.Constant][180], padding=[0, 0, 0, 0], channels=96, kernel_size=[1, 1]); %140 = nn.batch_norm(%139, meta[relay.Constant][181], meta[relay.Constant][182], meta[relay.Constant][183], meta[relay.Constant][184]); %141 = %140.0; %142 = add(%141, %130); %143 = nn.conv2d(%142, meta[relay.Constant][185], padding=[0, 0, 0, 0], channels=576, kernel_size=[1, 1]); %144 = nn.batch_norm(%143, meta[relay.Constant][186], meta[relay.Constant][187], meta[relay.Constant][188], meta[relay.Constant][189]); %145 = %144.0; %146 = nn.relu(%145); %147 = nn.conv2d(%146, meta[relay.Constant][190], padding=[1, 1, 1, 1], groups=576, channels=576, kernel_size=[3, 3]); %148 = nn.batch_norm(%147, meta[relay.Constant][191], meta[relay.Constant][192], met
a[relay.Constant][193], meta[relay.Constant][194]); %149 = %148.0; %150 = nn.relu(%149); %151 = nn.conv2d(%150, meta[relay.Constant][195], padding=[0, 0, 0, 0], channels=96, kernel_size=[1, 1]); %152 = nn.batch_norm(%151, meta[relay.Constant][196], meta[relay.Constant][197], meta[relay.Constant][198], meta[relay.Constant][199]); %153 = %152.0; %154 = add(%153, %142); %155 = nn.conv2d(%154, meta[relay.Constant][200], padding=[0, 0, 0, 0], channels=576, kernel_size=[1, 1]); %156 = nn.batch_norm(%155, meta[relay.Constant][201], meta[relay.Constant][202], meta[relay.Constant][203], meta[relay.Constant][204]); %157 = %156.0; %158 = nn.relu(%157); %159 = nn.conv2d(%158, meta[relay.Constant][205], strides=[2, 2], padding=[1, 1, 1, 1], groups=576, channels=576, kernel_size=[3, 3]); %160 = nn.batch_norm(%159, meta[relay.Constant][206], meta[relay.Constant][207], meta[relay.Constant][208], meta[relay.Constant][209]); %161 = %160.0; %162 = nn.relu(%161); %163 = nn.conv2d(%162, meta[relay.Constant][210], padding=[0, 0, 0, 0], channels=160, kernel_size=[1, 1]); %164 = nn.batch_norm(%163, meta[relay.Constant][211], meta[relay.Constant][212], meta[relay.Constant][213], meta[relay.Constant][214]); %165 = %164.0; %166 = nn.conv2d(%165, meta[relay.Constant][215], padding=[0, 0, 0, 0], channels=960, kernel_size=[1, 1]); %167 = nn.batch_norm(%166, meta[relay.Constant][216], meta[relay.Constant][217], meta[relay.Constant][218], meta[relay.Constant][219]); %168 = %167.0; %169 = nn.relu(%168); %170 = nn.conv2d(%169, meta[relay.Constant][220], padding=[1, 1, 1, 1], groups=960, channels=960, kernel_size=[3, 3]); %171 = nn.batch_norm(%170, meta[relay.Constant][221], meta[relay.Constant][222], meta[relay.Constant][223], meta[relay.Constant][224]); %172 = %171.0; %173 = nn.relu(%172);
%174 = nn.conv2d(%173, meta[relay.Constant][225], padding=[0, 0, 0, 0], channels=160, kernel_size=[1, 1]); %175 = nn.batch_norm(%174, meta[relay.Constant][226], meta[relay.Constant][227], meta[relay.Constant][228], meta[relay.Constant][229]); %176 = %175.0; %177 = add(%176, %165); %178 = nn.conv2d(%177, meta[relay.Constant][230], padding=[0, 0, 0, 0], channels=960, kernel_size=[1, 1]); %179 = nn.batch_norm(%178, meta[relay.Constant][231], meta[relay.Constant][232], meta[relay.Constant][233], meta[relay.Constant][234]); %180 = %179.0; %181 = nn.relu(%180); %182 = nn.conv2d(%181, meta[relay.Constant][235], padding=[1, 1, 1, 1], groups=960, channels=960, kernel_size=[3, 3]); %183 = nn.batch_norm(%182, meta[relay.Constant][236], meta[relay.Constant][237], meta[relay.Constant][238], meta[relay.Constant][239]); %184 = %183.0; %185 = nn.relu(%184); %186 = nn.conv2d(%185, meta[relay.Constant][240], padding=[0, 0, 0, 0], channels=160, kernel_size=[1, 1]); %187 = nn.batch_norm(%186, meta[relay.Constant][241], meta[relay.Constant][242], meta[relay.Constant][243], meta[relay.Constant][244]); %188 = %187.0; %189 = add(%188, %177); %190 = nn.conv2d(%189, meta[relay.Constant][245], padding=[0, 0, 0, 0], channels=960, kernel_size=[1, 1]); %191 = nn.batch_norm(%190, meta[relay.Constant][246], meta[relay.Constant][247], meta[relay.Constant][248], meta[relay.Constant][249]); %192 = %191.0; %193 = nn.relu(%192); %194 = nn.conv2d(%193, meta[relay.Constant][250], padding=[1, 1, 1, 1], groups=960, channels=960, kernel_size=[3, 3]); %195 = nn.batch_norm(%194, meta[relay.Constant][251], meta[relay.Constant][252], meta[relay.Constant][253], meta[relay.Constant][254]); %196 = %195.0; %197 = nn.relu(%196); %198 = nn.conv2d(%197, meta[relay.Constant][255], padding=[0, 0, 0, 0], channels=320, kernel_size=[1
, 1]); %199 = nn.batch_norm(%198, meta[relay.Constant][256], meta[relay.Constant][257], meta[relay.Constant][258], meta[relay.Constant][259]); %200 = %199.0; %201 = nn.conv2d(%200, meta[relay.Constant][260], padding=[0, 0, 0, 0], channels=1280, kernel_size=[1, 1]); %202 = nn.batch_norm(%201, meta[relay.Constant][261], meta[relay.Constant][262], meta[relay.Constant][263], meta[relay.Constant][264]); %203 = %202.0; %204 = nn.relu(%203); %205 = nn.global_avg_pool2d(%204); %206 = nn.conv2d(%205, meta[relay.Constant][265], padding=[0, 0, 0, 0], channels=1000, kernel_size=[1, 1]); reshape(%206, newshape=[0, -1]) } """, "from_string", None, metatable, ) return { "name": "mobilenet", "input_shapes": {"data": [1, 3, 224, 224]}, "input_dtypes": {"data": "float32"}, "mod": mod, "params": None, "main_dtype": "float32", } def mobilenet_16(): metatable = {"relay.Constant": mobilenet_consts("float16")} mod = tvm.parser.parse( """ def @main(%data: Tensor[(1, 3, 224, 224), float16]) -> Tensor[(1, 1000), float16] { %0 = nn.conv2d(%data, meta[relay.Constant][0], strides=[2, 2], padding=[1, 1, 1, 1], channels=32, kernel_size=[3, 3]); %1 = nn.batch_norm(%0, meta[relay.Constant][1], meta[relay.Constant][2], meta[relay.Constant][3], meta[relay.Constant][4]); %2 = %1.0; %3 = nn.relu(%2); %4 = nn.conv2d(%3, meta[relay.Constant][5], padding=[0, 0, 0, 0], channels=32, kernel_size=[1, 1]); %5 = nn.batch_norm(%4, meta[relay.Constant][6], meta[relay.Constant][7], meta[relay.Constant][8], meta[relay.Constant][9]); %6 = %5.0; %7 = nn.relu(%6); %8 = nn.conv2d(%7, meta[relay.Constant][10], padding=[1, 1, 1, 1], groups=32, channels=32, kernel_size=[3, 3]); %9 = nn.batch_norm(%8, meta[relay.Constant][11], meta[relay.Constant][12]
, meta[relay.Constant][13], meta[relay.Constant][14]); %10 = %9.0; %11 = nn.relu(%10); %12 = nn.conv2d(%11, meta[relay.Constant][15], padding=[0, 0, 0, 0], channels=16, kernel_size=[1, 1]); %13 = nn.batch_norm(%12, meta[relay.Constant][16], meta[relay.Constant][17], meta[relay.Constant][18], meta[relay.Constant][19]); %14 = %13.0; %15 = nn.conv2d(%14, meta[relay.Constant][20], padding=[0, 0, 0, 0], channels=96, kernel_size=[1, 1]); %16 = nn.batch_norm(%15, meta[relay.Constant][21], meta[relay.Constant][22], meta[relay.Constant][23], meta[relay.Constant][24]); %17 = %16.0; %18 = nn.relu(%17); %19 = nn.conv2d(%18, meta[relay.Constant][25], strides=[2, 2], padding=[1, 1, 1, 1], groups=96, channels=96, kernel_size=[3, 3]); %20 = nn.batch_norm(%19, meta[relay.Constant][26], meta[relay.Constant][27], meta[relay.Constant][28], meta[relay.Constant][29]); %21 = %20.0; %22 = nn.relu(%21); %23 = nn.conv2d(%22, meta[relay.Constant][30], padding=[0, 0, 0, 0], channels=24, kernel_size=[1, 1]); %24 = nn.batch_norm(%23, meta[relay.Constant][31], meta[relay.Constant][32], meta[relay.Constant][33], meta[relay.Constant][34]); %25 = %24.0; %26 = nn.conv2d(%25, meta[relay.Constant][35], padding=[0, 0, 0, 0], channels=144, kernel_size=[1, 1]); %27 = nn.batch_norm(%26, meta[relay.Constant][36], meta[relay.Constant][37], meta[relay.Constant][38], meta[relay.Constant][39]); %28 = %27.0; %29 = nn.relu(%28); %30 = nn.conv2d(%29, meta[relay.Constant][40], padding=[1, 1, 1, 1], groups=144, channels=144, kernel_size=[3, 3]); %31 = nn.batch_norm(%30, meta[relay.Constant][41], meta[relay.Constant][42], meta[relay.Constant][43], meta[relay.Constant][44]); %32 = %31.0; %33 = nn.relu(%32); %34 = nn.conv2d(%33, meta[relay.Constant][45], padding=[0, 0, 0, 0], channels=24, kernel_size=[1, 1]); %
35 = nn.batch_norm(%34, meta[relay.Constant][46], meta[relay.Constant][47], meta[relay.Constant][48], meta[relay.Constant][49]); %36 = %35.0; %37 = add(%36, %25); %38 = nn.conv2d(%37, meta[relay.Constant][50], padding=[0, 0, 0, 0], channels=144, kernel_size=[1, 1]); %39 = nn.batch_norm(%38, meta[relay.Constant][51], meta[relay.Constant][52], meta[relay.Constant][53], meta[relay.Constant][54]); %40 = %39.0; %41 = nn.relu(%40); %42 = nn.conv2d(%41, meta[relay.Constant][55], strides=[2, 2], padding=[1, 1, 1, 1], groups=144, channels=144, kernel_size=[3, 3]); %43 = nn.batch_norm(%42, meta[relay.Constant][56], meta[relay.Constant][57], meta[relay.Constant][58], meta[relay.Constant][59]); %44 = %43.0; %45 = nn.relu(%44); %46 = nn.conv2d(%45, meta[relay.Constant][60], padding=[0, 0, 0, 0], channels=32, kernel_size=[1, 1]); %47 = nn.batch_norm(%46, meta[relay.Constant][61], meta[relay.Constant][62], meta[relay.Constant][63], meta[relay.Constant][64]); %48 = %47.0; %49 = nn.conv2d(%48, meta[relay.Constant][65], padding=[0, 0, 0, 0], channels=192, kernel_size=[1, 1]); %50 = nn.batch_norm(%49, meta[relay.Constant][66], meta[relay.Constant][67], meta[relay.Constant][68], meta[relay.Constant][69]); %51 = %50.0; %52 = nn.relu(%51); %53 = nn.conv2d(%52, meta[relay.Constant][70], padding=[1, 1, 1, 1], groups=192, channels=192, kernel_size=[3, 3]); %54 = nn.batch_norm(%53, meta[relay.Constant][71], meta[relay.Constant][72], meta[relay.Constant][73], meta[relay.Constant][74]); %55 = %54.0; %56 = nn.relu(%55); %57 = nn.conv2d(%56, meta[relay.Constant][75], padding=[0, 0, 0, 0], channels=32, kernel_size=[1, 1]); %58 = nn.batch_norm(%57, meta[relay.Constant][76], meta[relay.Constant][77], meta[relay.Constant][78], meta[relay.Constant][79]); %59 = %58.0; %60 = add(%59, %48); %61
= nn.conv2d(%60, meta[relay.Constant][80], padding=[0, 0, 0, 0], channels=192, kernel_size=[1, 1]); %62 = nn.batch_norm(%61, meta[relay.Constant][81], meta[relay.Constant][82], meta[relay.Constant][83], meta[relay.Constant][84]); %63 = %62.0; %64 = nn.relu(%63); %65 = nn.conv2d(%64, meta[relay.Constant][85], padding=[1, 1, 1, 1], groups=192, channels=192, kernel_size=[3, 3]); %66 = nn.batch_norm(%65, meta[relay.Constant][86], meta[relay.Constant][87], meta[relay.Constant][88], meta[relay.Constant][89]); %67 = %66.0; %68 = nn.relu(%67); %69 = nn.conv2d(%68, meta[relay.Constant][90], padding=[0, 0, 0, 0], channels=32, kernel_size=[1, 1]); %70 = nn.batch_norm(%69, meta[relay.Constant][91], meta[relay.Constant][92], meta[relay.Constant][93], meta[relay.Constant][94]); %71 = %70.0; %72 = add(%71, %60); %73 = nn.conv2d(%72, meta[relay.Constant][95], padding=[0, 0, 0, 0], channels=192, kernel_size=[1, 1]); %74 = nn.batch_norm(%73, meta[relay.Constant][96], meta[relay.Constant][97], meta[relay.Constant][98], meta[relay.Constant][99]); %75 = %74.0; %76 = nn.relu(%75); %77 = nn.conv2d(%76, meta[relay.Constant][100], padding=[1, 1, 1, 1], groups=192, channels=192, kernel_size=[3, 3]); %78 = nn.batch_norm(%77, meta[relay.Constant][101], meta[relay.Constant][102], meta[relay.Constant][103], meta[relay.Constant][104]); %79 = %78.0; %80 = nn.relu(%79); %81 = nn.conv2d(%80, meta[relay.Constant][105], padding=[0, 0, 0, 0], channels=64, kernel_size=[1, 1]); %82 = nn.batch_norm(%81, meta[relay.Constant][106], meta[relay.Constant][107], meta[relay.Constant][108], meta[relay.Constant][109]); %83 = %82.0; %84 = nn.conv2d(%83, meta[relay.Constant][110], padding=[0, 0, 0, 0], channels=384, kernel_size=[1, 1]); %85 = nn.batch_norm(%84, meta[relay.Constant][111], meta[relay.Constant][112], meta[relay.Co
nstant][113], meta[relay.Constant][114]); %86 = %85.0; %87 = nn.relu(%86); %88 = nn.conv2d(%87, meta[relay.Constant][115], padding=[1, 1, 1, 1], groups=384, channels=384, kernel_size=[3, 3]); %89 = nn.batch_norm(%88, meta[relay.Constant][116], meta[relay.Constant][117], meta[relay.Constant][118], meta[relay.Constant][119]); %90 = %89.0; %91 = nn.relu(%90); %92 = nn.conv2d(%91, meta[relay.Constant][120], padding=[0, 0, 0, 0], channels=64, kernel_size=[1, 1]); %93 = nn.batch_norm(%92, meta[relay.Constant][121], meta[relay.Constant][122], meta[relay.Constant][123], meta[relay.Constant][124]); %94 = %93.0; %95 = add(%94, %83); %96 = nn.conv2d(%95, meta[relay.Constant][125], padding=[0, 0, 0, 0], channels=384, kernel_size=[1, 1]); %97 = nn.batch_norm(%96, meta[relay.Constant][126], meta[relay.Constant][127], meta[relay.Constant][128], meta[relay.Constant][129]); %98 = %97.0; %99 = nn.relu(%98); %100 = nn.conv2d(%99, meta[relay.Constant][130], padding=[1, 1, 1, 1], groups=384, channels=384, kernel_size=[3, 3]); %101 = nn.batch_norm(%100, meta[relay.Constant][131], meta[relay.Constant][132], meta[relay.Constant][133], meta[relay.Constant][134]); %102 = %101.0; %103 = nn.relu(%102); %104 = nn.conv2d(%103, meta[relay.Constant][135], padding=[0, 0, 0, 0], channels=64, kernel_size=[1, 1]); %105 = nn.batch_norm(%104, meta[relay.Constant][136], meta[relay.Constant][137], meta[relay.Constant][138], meta[relay.Constant][139]); %106 = %105.0; %107 = add(%106, %95); %108 = nn.conv2d(%107, meta[relay.Constant][140], padding=[0, 0, 0, 0], channels=384, kernel_size=[1, 1]); %109 = nn.batch_norm(%108, meta[relay.Constant][141], meta[relay.Constant][142], meta[relay.Constant][143], meta[relay.Constant][144]); %110 = %109.0; %111 = nn.relu(%110); %112 = nn.conv2d(%111, m
eta[relay.Constant][145], padding=[1, 1, 1, 1], groups=384, channels=384, kernel_size=[3, 3]); %113 = nn.batch_norm(%112, meta[relay.Constant][146], meta[relay.Constant][147], meta[relay.Constant][148], meta[relay.Constant][149]); %114 = %113.0; %115 = nn.relu(%114); %116 = nn.conv2d(%115, meta[relay.Constant][150], padding=[0, 0, 0, 0], channels=64, kernel_size=[1, 1]); %117 = nn.batch_norm(%116, meta[relay.Constant][151], meta[relay.Constant][152], meta[relay.Constant][153], meta[relay.Constant][154]); %118 = %117.0; %119 = add(%118, %107); %120 = nn.conv2d(%119, meta[relay.Constant][155], padding=[0, 0, 0, 0], channels=384, kernel_size=[1, 1]); %121 = nn.batch_norm(%120, meta[relay.Constant][156], meta[relay.Constant][157], meta[relay.Constant][158], meta[relay.Constant][159]); %122 = %121.0; %123 = nn.relu(%122); %124 = nn.conv2d(%123, meta[relay.Constant][160], strides=[2, 2], padding=[1, 1, 1, 1], groups=384, channels=384, kernel_size=[3, 3]); %125 = nn.batch_norm(%124, meta[relay.Constant][161], meta[relay.Constant][162], meta[relay.Constant][163], meta[relay.Constant][164]); %126 = %125.0; %127 = nn.relu(%126); %128 = nn.conv2d(%127, meta[relay.Constant][165], padding=[0, 0, 0, 0], channels=96, kernel_size=[1, 1]); %129 = nn.batch_norm(%128, meta[relay.Constant][166], meta[relay.Constant][167], meta[relay.Constant][168], meta[relay.Constant][169]); %130 = %129.0; %131 = nn.conv2d(%130, meta[relay.Constant][170], padding=[0, 0, 0, 0], channels=576, kernel_size=[1, 1]); %132 = nn.batch_norm(%131, meta[relay.Constant][171], meta[relay.Constant][172], meta[relay.Constant][173], meta[relay.Constant][174]); %133 = %132.0; %134 = nn.relu(%133); %135 = nn.conv2d(%134, meta[relay.Constant][175], padding=[1, 1, 1, 1], groups=576, channels=576, kernel_size=[3, 3]); %136 = nn.batch
_norm(%135, meta[relay.Constant][176], meta[relay.Constant][177], meta[relay.Constant][178], meta[relay.Constant][179]); %137 = %136.0; %138 = nn.relu(%137); %139 = nn.conv2d(%138, meta[relay.Constant][180], padding=[0, 0, 0, 0], channels=96, kernel_size=[1, 1]); %140 = nn.batch_norm(%139, meta[relay.Constant][181], meta[relay.Constant][182], meta[relay.Constant][183], meta[relay.Constant][184]); %141 = %140.0; %142 = add(%141, %130); %143 = nn.conv2d(%142, meta[relay.Constant][185], padding=[0, 0, 0, 0], channels=576, kernel_size=[1, 1]); %144 = nn.batch_norm(%143, meta[relay.Constant][186], meta[relay.Constant][187], meta[relay.Constant][188], meta[relay.Constant][189]); %145 = %144.0; %146 = nn.relu(%145); %147 = nn.conv2d(%146, meta[relay.Constant][190], padding=[1, 1, 1, 1], groups=576, channels=576, kernel_size=[3, 3]); %148 = nn.batch_norm(%147, meta[relay.Constant][191], meta[relay.Constant][192], meta[relay.Constant][193], meta[relay.Constant][194]); %149 = %148.0; %150 = nn.relu(%149); %151 = nn.conv2d(%150, meta[relay.Constant][195], padding=[0, 0, 0, 0], channels=96, kernel_size=[1, 1]); %152 = nn.batch_norm(%151, meta[relay.Constant][196], meta[relay.Constant][197], meta[relay.Constant][198], meta[relay.Constant][199]); %153 = %152.0; %154 = add(%153, %142); %155 = nn.conv2d(%154, meta[relay.Constant][200], padding=[0, 0, 0, 0], channels=576, kernel_size=[1, 1]); %156 = nn.batch_norm(%155, meta[relay.Constant][201], meta[relay.Constant][202], meta[relay.Constant][203], meta[relay.Constant][204]); %157 = %156.0; %158 = nn.relu(%157); %159 = nn.conv2d(%158, meta[relay.Constant][205], strides=[2, 2], padding=[1, 1, 1, 1], groups=576, channels=576, kernel_size=[3, 3]); %160 = nn.batch_norm(%159, meta[relay.Constant][206], meta[relay.Constant][207], meta[relay.Constant]
[208], meta[relay.Constant][209]); %161 = %160.0; %162 = nn.relu(%161); %163 = nn.conv2d(%162, meta[relay.Constant][210], padding=[0, 0, 0, 0], channels=160, kernel_size=[1, 1]); %164 = nn.batch_norm(%163, meta[relay.Constant][211], meta[relay.Constant][212], meta[relay.Constant][213], meta[relay.Constant][214]); %165 = %164.0; %166 = nn.conv2d(%165, meta[relay.Constant][215], padding=[0, 0, 0, 0], channels=960, kernel_size=[1, 1]); %167 = nn.batch_norm(%166, meta[relay.Constant][216], meta[relay.Constant][217], meta[relay.Constant][218], meta[relay.Constant][219]); %168 = %167.0; %169 = nn.relu(%168); %170 = nn.conv2d(%169, meta[relay.Constant][220], padding=[1, 1, 1, 1], groups=960, channels=960, kernel_size=[3, 3]); %171 = nn.batch_norm(%170, meta[relay.Constant][221], meta[relay.Constant][222], meta[relay.Constant][223], meta[relay.Constant][224]); %172 = %171.0; %173 = nn.relu(%172); %174 = nn.conv2d(%173, meta[relay.Constant][225], padding=[0, 0, 0, 0], channels=160, kernel_size=[1, 1]); %175 = nn.batch_norm(%174, meta[relay.Constant][226], meta[relay.Constant][227], meta[relay.Constant][228], meta[relay.Constant][229]); %176 = %175.0; %177 = add(%176, %165); %178 = nn.conv2d(%177, meta[relay.Constant][230], padding=[0, 0, 0, 0], channels=960, kernel_size=[1, 1]); %179 = nn.batch_norm(%178, meta[relay.Constant][231], meta[relay.Constant][232], meta[relay.Constant][233], meta[relay.Constant][234]); %180 = %179.0; %181 = nn.relu(%180); %182 = nn.conv2d(%181, meta[relay.Constant][235], padding=[1, 1, 1, 1], groups=960, channels=960, kernel_size=[3, 3]); %183 = nn.batch_norm(%182, meta[relay.Constant][236], meta[relay.Constant][237], meta[relay.Constant][238], meta[relay.Constant][239]); %184 = %183.0; %185 = nn.relu(%184); %186 = nn.conv2d(%185, meta[rela
y.Constant][240], padding=[0, 0, 0, 0], channels=160, kernel_size=[1, 1]); %187 = nn.batch_norm(%186, meta[relay.Constant][241], meta[relay.Constant][242], meta[relay.Constant][243], meta[relay.Constant][244]); %188 = %187.0; %189 = add(%188, %177); %190 = nn.conv2d(%189, meta[relay.Constant][245], padding=[0, 0, 0, 0], channels=960, kernel_size=[1, 1]); %191 = nn.batch_norm(%190, meta[relay.Constant][246], meta[relay.Constant][247], meta[relay.Constant][248], meta[relay.Constant][249]); %192 = %191.0; %193 = nn.relu(%192); %194 = nn.conv2d(%193, meta[relay.Constant][250], padding=[1, 1, 1, 1], groups=960, channels=960, kernel_size=[3, 3]); %195 = nn.batch_norm(%194, meta[relay.Constant][251], meta[relay.Constant][252], meta[relay.Constant][253], meta[relay.Constant][254]); %196 = %195.0; %197 = nn.relu(%196); %198 = nn.conv2d(%197, meta[relay.Constant][255], padding=[0, 0, 0, 0], channels=320, kernel_size=[1, 1]); %199 = nn.batch_norm(%198, meta[relay.Constant][256], meta[relay.Constant][257], meta[relay.Constant][258], meta[relay.Constant][259]); %200 = %199.0; %201 = nn.conv2d(%200, meta[relay.Constant][260], padding=[0, 0, 0, 0], channels=1280, kernel_size=[1, 1]); %202 = nn.batch_norm(%201, meta[relay.Constant][261], meta[relay.Constant][262], meta[relay.Constant][263], meta[relay.Constant][264]); %203 = %202.0; %204 = nn.relu(%203); %205 = nn.global_avg_pool2d(%204); %206 = nn.conv2d(%205, meta[relay.Constant][265], padding=[0, 0, 0, 0], channels=1000, kernel_size=[1, 1]); reshape(%206, newshape=[0, -1]) } """, "from_string", None, metatable, ) return { "name": "mobilenet_16", "input_shapes": {"data": [1, 3, 224, 224]}, "input_dtypes": {"data": "float16"}, "mod": mod, "params": None, "main_dtype": "float16"
, } def batch_norm_extract(): consts = make_consts( "float32", [ (32,), (32,), (32,), (32,), ], ) metatable = {"relay.Constant": consts} mod = tvm.parser.parse( """ def @main(%FunctionVar_0: Tensor[(1, 32, 112, 112), float32]) -> Tensor[(1, 32, 112, 112), float32] { %3 = nn.batch_norm(%FunctionVar_0, meta[relay.Constant][0], meta[relay.Constant][1], meta[relay.Constant][2], meta[relay.Constant][3]); %3.0 } """, "from_string", None, metatable, ) return { "name": "batch_norm_extract", "input_shapes": {"FunctionVar_0": [1, 32, 112, 112]}, "input_dtypes": {"FunctionVar_0": "float32"}, "mod": mod, "params": None, "main_dtype": "float32", } def resnext50_32x4d_consts(dtype): return make_consts( dtype, [ (128, 64, 1, 1), (128, 4, 3, 3), (256, 128, 1, 1), (256, 64, 1, 1), (128, 256, 1, 1), (128, 4, 3, 3), (256, 128, 1, 1), (128, 256, 1, 1), (128, 4, 3, 3), (256, 128, 1, 1), (256, 256, 1, 1), (256, 8, 3, 3), (512, 256, 1, 1), (512, 256, 1, 1), (256, 512, 1, 1), (256, 8, 3, 3), (512, 256, 1, 1), (256, 512, 1, 1), (256, 8, 3, 3), (512, 256, 1, 1), (256, 512, 1, 1), (256, 8, 3, 3), (512, 256, 1, 1), (512, 512, 1, 1), (512, 16, 3, 3), (1024, 512, 1, 1), (1024, 512, 1, 1), (512, 1024, 1, 1), (512, 16, 3, 3), (1024, 512, 1, 1), (512, 1024, 1, 1), (512, 16, 3, 3), (1024, 512, 1, 1), (512, 1024, 1, 1)
, (512, 16, 3, 3), (1024, 512, 1, 1), (512, 1024, 1, 1), (512, 16, 3, 3), (1024, 512, 1, 1), (512, 1024, 1, 1), (512, 16, 3, 3), (1024, 512, 1, 1), (1024, 1024, 1, 1), (1024, 32, 3, 3), (2048, 1024, 1, 1), (2048, 1024, 1, 1), (1024, 2048, 1, 1), (1024, 32, 3, 3), (2048, 1024, 1, 1), (1024, 2048, 1, 1), (1024, 32, 3, 3), (2048, 1024, 1, 1), ], ) def resnext50_32x4d(): metatable = {"relay.Constant": resnext50_32x4d_consts("float32")} mod = tvm.parser.parse( """ def @main(%x: Tensor[(1, 64, 56, 56), float32]) { %0 = nn.conv2d(%x, meta[relay.Constant][0], padding=[0, 0, 0, 0], channels=128, kernel_size=[1, 1]); %1 = nn.relu(%0); %2 = nn.conv2d(%1, meta[relay.Constant][1], padding=[1, 1, 1, 1], groups=32, channels=128, kernel_size=[3, 3]); %3 = nn.relu(%2); %4 = nn.conv2d(%3, meta[relay.Constant][2], padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1]); %5 = nn.conv2d(%x, meta[relay.Constant][3], padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1]); %6 = add(%4, %5); %7 = nn.relu(%6); %8 = nn.conv2d(%7, meta[relay.Constant][4], padding=[0, 0, 0, 0], channels=128, kernel_size=[1, 1]); %9 = nn.relu(%8); %10 = nn.conv2d(%9, meta[relay.Constant][5], padding=[1, 1, 1, 1], groups=32, channels=128, kernel_size=[3, 3]); %11 = nn.relu(%10); %12 = nn.conv2d(%11, meta[relay.Constant][6], padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1]); %13 = add(%12, %7); %14 = nn.relu(%13); %15 = nn.conv2d(%14, meta[relay.Constant][7], padding=[0, 0, 0, 0], channels=128, kernel_size=[1, 1]); %16 = nn.relu(%15); %17 = nn.conv2d(%16, meta[relay.Constant][8], pa
dding=[1, 1, 1, 1], groups=32, channels=128, kernel_size=[3, 3]); %18 = nn.relu(%17); %19 = nn.conv2d(%18, meta[relay.Constant][9], padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1]); %20 = add(%19, %14); %21 = nn.relu(%20); %22 = nn.conv2d(%21, meta[relay.Constant][10], padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1]); %23 = nn.relu(%22); %24 = nn.conv2d(%23, meta[relay.Constant][11], strides=[2, 2], padding=[1, 1, 1, 1], groups=32, channels=256, kernel_size=[3, 3]); %25 = nn.relu(%24); %26 = nn.conv2d(%25, meta[relay.Constant][12], padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1]); %27 = nn.conv2d(%21, meta[relay.Constant][13], strides=[2, 2], padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1]); %28 = add(%26, %27); %29 = nn.relu(%28); %30 = nn.conv2d(%29, meta[relay.Constant][14], padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1]); %31 = nn.relu(%30); %32 = nn.conv2d(%31, meta[relay.Constant][15], padding=[1, 1, 1, 1], groups=32, channels=256, kernel_size=[3, 3]); %33 = nn.relu(%32); %34 = nn.conv2d(%33, meta[relay.Constant][16], padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1]); %35 = add(%34, %29); %36 = nn.relu(%35); %37 = nn.conv2d(%36, meta[relay.Constant][17], padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1]); %38 = nn.relu(%37); %39 = nn.conv2d(%38, meta[relay.Constant][18], padding=[1, 1, 1, 1], groups=32, channels=256, kernel_size=[3, 3]); %40 = nn.relu(%39); %41 = nn.conv2d(%40, meta[relay.Constant][19], padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1]); %42 = add(%41, %36); %43 = nn.relu(%42); %44 = nn.conv2d(%43, meta[relay.Constant][20], padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1]); %45 = nn.relu(%44); %46 = nn.conv2d(%45, meta[relay.Constant][21], padding=[
1, 1, 1, 1], groups=32, channels=256, kernel_size=[3, 3]); %47 = nn.relu(%46); %48 = nn.conv2d(%47, meta[relay.Constant][22], padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1]); %49 = add(%48, %43); %50 = nn.relu(%49); %51 = nn.conv2d(%50, meta[relay.Constant][23], padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1]); %52 = nn.relu(%51); %53 = nn.conv2d(%52, meta[relay.Constant][24], strides=[2, 2], padding=[1, 1, 1, 1], groups=32, channels=512, kernel_size=[3, 3]); %54 = nn.relu(%53); %55 = nn.conv2d(%54, meta[relay.Constant][25], padding=[0, 0, 0, 0], channels=1024, kernel_size=[1, 1]); %56 = nn.conv2d(%50, meta[relay.Constant][26], strides=[2, 2], padding=[0, 0, 0, 0], channels=1024, kernel_size=[1, 1]); %57 = add(%55, %56); %58 = nn.relu(%57); %59 = nn.conv2d(%58, meta[relay.Constant][27], padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1]); %60 = nn.relu(%59); %61 = nn.conv2d(%60, meta[relay.Constant][28], padding=[1, 1, 1, 1], groups=32, channels=512, kernel_size=[3, 3]); %62 = nn.relu(%61); %63 = nn.conv2d(%62, meta[relay.Constant][29], padding=[0, 0, 0, 0], channels=1024, kernel_size=[1, 1]); %64 = add(%63, %58); %65 = nn.relu(%64); %66 = nn.conv2d(%65, meta[relay.Constant][30], padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1]); %67 = nn.relu(%66); %68 = nn.conv2d(%67, meta[relay.Constant][31], padding=[1, 1, 1, 1], groups=32, channels=512, kernel_size=[3, 3]); %69 = nn.relu(%68); %70 = nn.conv2d(%69, meta[relay.Constant][32], padding=[0, 0, 0, 0], channels=1024, kernel_size=[1, 1]); %71 = add(%70, %65); %72 = nn.relu(%71); %73 = nn.conv2d(%72, meta[relay.Constant][33], padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1]); %74 = nn.relu(%73); %75 = nn.conv2d(%74, meta[relay.Constant][34], padding=[1,
1, 1, 1], groups=32, channels=512, kernel_size=[3, 3]); %76 = nn.relu(%75); %77 = nn.conv2d(%76, meta[relay.Constant][35], padding=[0, 0, 0, 0], channels=1024, kernel_size=[1, 1]); %78 = add(%77, %72); %79 = nn.relu(%78); %80 = nn.conv2d(%79, meta[relay.Constant][36], padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1]); %81 = nn.relu(%80); %82 = nn.conv2d(%81, meta[relay.Constant][37], padding=[1, 1, 1, 1], groups=32, channels=512, kernel_size=[3, 3]); %83 = nn.relu(%82); %84 = nn.conv2d(%83, meta[relay.Constant][38], padding=[0, 0, 0, 0], channels=1024, kernel_size=[1, 1]); %85 = add(%84, %79); %86 = nn.relu(%85); %87 = nn.conv2d(%86, meta[relay.Constant][39], padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1]); %88 = nn.relu(%87); %89 = nn.conv2d(%88, meta[relay.Constant][40], padding=[1, 1, 1, 1], groups=32, channels=512, kernel_size=[3, 3]); %90 = nn.relu(%89); %91 = nn.conv2d(%90, meta[relay.Constant][41], padding=[0, 0, 0, 0], channels=1024, kernel_size=[1, 1]); %92 = add(%91, %86); %93 = nn.relu(%92); %94 = nn.conv2d(%93, meta[relay.Constant][42], padding=[0, 0, 0, 0], channels=1024, kernel_size=[1, 1]); %95 = nn.relu(%94); %96 = nn.conv2d(%95, meta[relay.Constant][43], strides=[2, 2], padding=[1, 1, 1, 1], groups=32, channels=1024, kernel_size=[3, 3]); %97 = nn.relu(%96); %98 = nn.conv2d(%97, meta[relay.Constant][44], padding=[0, 0, 0, 0], channels=2048, kernel_size=[1, 1]); %99 = nn.conv2d(%93, meta[relay.Constant][45], strides=[2, 2], padding=[0, 0, 0, 0], channels=2048, kernel_size=[1, 1]); %100 = add(%98, %99); %101 = nn.relu(%100); %102 = nn.conv2d(%101, meta[relay.Constant][46], padding=[0, 0, 0, 0], channels=1024, kernel_size=[1, 1]); %103 = nn.relu(%102); %104 = nn.conv2d(%103, meta[relay.Constant][47],
padding=[1, 1, 1, 1], groups=32, channels=1024, kernel_size=[3, 3]); %105 = nn.relu(%104); %106 = nn.conv2d(%105, meta[relay.Constant][48], padding=[0, 0, 0, 0], channels=2048, kernel_size=[1, 1]); %107 = add(%106, %101); %108 = nn.relu(%107); %109 = nn.conv2d(%108, meta[relay.Constant][49], padding=[0, 0, 0, 0], channels=1024, kernel_size=[1, 1]); %110 = nn.relu(%109); %111 = nn.conv2d(%110, meta[relay.Constant][50], padding=[1, 1, 1, 1], groups=32, channels=1024, kernel_size=[3, 3]); %112 = nn.relu(%111); %113 = nn.conv2d(%112, meta[relay.Constant][51], padding=[0, 0, 0, 0], channels=2048, kernel_size=[1, 1]); %114 = add(%113, %108); nn.relu(%114) } """, "from_string", None, metatable, ) return { "name": "resnext50_32x4d", "input_shapes": {"x": [1, 64, 56, 56]}, "input_dtypes": {"x": "float32"}, "mod": mod, "params": None, "main_dtype": "float32", } def resnext50_32x4d_16(): metatable = {"relay.Constant": resnext50_32x4d_consts("float16")} mod = tvm.parser.parse( """ def @main(%x: Tensor[(1, 64, 56, 56), float16]) { %0 = nn.conv2d(%x, meta[relay.Constant][0], padding=[0, 0, 0, 0], channels=128, kernel_size=[1, 1]); %1 = nn.relu(%0); %2 = nn.conv2d(%1, meta[relay.Constant][1], padding=[1, 1, 1, 1], groups=32, channels=128, kernel_size=[3, 3]); %3 = nn.relu(%2); %4 = nn.conv2d(%3, meta[relay.Constant][2], padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1]); %5 = nn.conv2d(%x, meta[relay.Constant][3], padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1]); %6 = add(%4, %5); %7 = nn.relu(%6); %8 = nn.conv2d(%7, meta[relay.Constant][4], padding=[0, 0, 0, 0], channels=128, kernel_size=[1, 1]); %9 = nn.relu(%8); %10 = nn.conv2d(%9, meta[relay.Constant][5], padding=
[1, 1, 1, 1], groups=32, channels=128, kernel_size=[3, 3]); %11 = nn.relu(%10); %12 = nn.conv2d(%11, meta[relay.Constant][6], padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1]); %13 = add(%12, %7); %14 = nn.relu(%13); %15 = nn.conv2d(%14, meta[relay.Constant][7], padding=[0, 0, 0, 0], channels=128, kernel_size=[1, 1]); %16 = nn.relu(%15); %17 = nn.conv2d(%16, meta[relay.Constant][8], padding=[1, 1, 1, 1], groups=32, channels=128, kernel_size=[3, 3]); %18 = nn.relu(%17); %19 = nn.conv2d(%18, meta[relay.Constant][9], padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1]); %20 = add(%19, %14); %21 = nn.relu(%20); %22 = nn.conv2d(%21, meta[relay.Constant][10], padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1]); %23 = nn.relu(%22); %24 = nn.conv2d(%23, meta[relay.Constant][11], strides=[2, 2], padding=[1, 1, 1, 1], groups=32, channels=256, kernel_size=[3, 3]); %25 = nn.relu(%24); %26 = nn.conv2d(%25, meta[relay.Constant][12], padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1]); %27 = nn.conv2d(%21, meta[relay.Constant][13], strides=[2, 2], padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1]); %28 = add(%26, %27); %29 = nn.relu(%28); %30 = nn.conv2d(%29, meta[relay.Constant][14], padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1]); %31 = nn.relu(%30); %32 = nn.conv2d(%31, meta[relay.Constant][15], padding=[1, 1, 1, 1], groups=32, channels=256, kernel_size=[3, 3]); %33 = nn.relu(%32); %34 = nn.conv2d(%33, meta[relay.Constant][16], padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1]); %35 = add(%34, %29); %36 = nn.relu(%35); %37 = nn.conv2d(%36, meta[relay.Constant][17], padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1]); %38 = nn.relu(%37); %39 = nn.conv2d(%38, meta[relay.Constant][18], padding=[1, 1, 1, 1
], groups=32, channels=256, kernel_size=[3, 3]); %40 = nn.relu(%39); %41 = nn.conv2d(%40, meta[relay.Constant][19], padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1]); %42 = add(%41, %36); %43 = nn.relu(%42); %44 = nn.conv2d(%43, meta[relay.Constant][20], padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1]); %45 = nn.relu(%44); %46 = nn.conv2d(%45, meta[relay.Constant][21], padding=[1, 1, 1, 1], groups=32, channels=256, kernel_size=[3, 3]); %47 = nn.relu(%46); %48 = nn.conv2d(%47, meta[relay.Constant][22], padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1]); %49 = add(%48, %43); %50 = nn.relu(%49); %51 = nn.conv2d(%50, meta[relay.Constant][23], padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1]); %52 = nn.relu(%51); %53 = nn.conv2d(%52, meta[relay.Constant][24], strides=[2, 2], padding=[1, 1, 1, 1], groups=32, channels=512, kernel_size=[3, 3]); %54 = nn.relu(%53); %55 = nn.conv2d(%54, meta[relay.Constant][25], padding=[0, 0, 0, 0], channels=1024, kernel_size=[1, 1]); %56 = nn.conv2d(%50, meta[relay.Constant][26], strides=[2, 2], padding=[0, 0, 0, 0], channels=1024, kernel_size=[1, 1]); %57 = add(%55, %56); %58 = nn.relu(%57); %59 = nn.conv2d(%58, meta[relay.Constant][27], padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1]); %60 = nn.relu(%59); %61 = nn.conv2d(%60, meta[relay.Constant][28], padding=[1, 1, 1, 1], groups=32, channels=512, kernel_size=[3, 3]); %62 = nn.relu(%61); %63 = nn.conv2d(%62, meta[relay.Constant][29], padding=[0, 0, 0, 0], channels=1024, kernel_size=[1, 1]); %64 = add(%63, %58); %65 = nn.relu(%64); %66 = nn.conv2d(%65, meta[relay.Constant][30], padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1]); %67 = nn.relu(%66); %68 = nn.conv2d(%67, meta[relay.Constant][31], padding=[1, 1, 1, 1],
groups=32, channels=512, kernel_size=[3, 3]); %69 = nn.relu(%68); %70 = nn.conv2d(%69, meta[relay.Constant][32], padding=[0, 0, 0, 0], channels=1024, kernel_size=[1, 1]); %71 = add(%70, %65); %72 = nn.relu(%71); %73 = nn.conv2d(%72, meta[relay.Constant][33], padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1]); %74 = nn.relu(%73); %75 = nn.conv2d(%74, meta[relay.Constant][34], padding=[1, 1, 1, 1], groups=32, channels=512, kernel_size=[3, 3]); %76 = nn.relu(%75); %77 = nn.conv2d(%76, meta[relay.Constant][35], padding=[0, 0, 0, 0], channels=1024, kernel_size=[1, 1]); %78 = add(%77, %72); %79 = nn.relu(%78); %80 = nn.conv2d(%79, meta[relay.Constant][36], padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1]); %81 = nn.relu(%80); %82 = nn.conv2d(%81, meta[relay.Constant][37], padding=[1, 1, 1, 1], groups=32, channels=512, kernel_size=[3, 3]); %83 = nn.relu(%82); %84 = nn.conv2d(%83, meta[relay.Constant][38], padding=[0, 0, 0, 0], channels=1024, kernel_size=[1, 1]); %85 = add(%84, %79); %86 = nn.relu(%85); %87 = nn.conv2d(%86, meta[relay.Constant][39], padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1]); %88 = nn.relu(%87); %89 = nn.conv2d(%88, meta[relay.Constant][40], padding=[1, 1, 1, 1], groups=32, channels=512, kernel_size=[3, 3]); %90 = nn.relu(%89); %91 = nn.conv2d(%90, meta[relay.Constant][41], padding=[0, 0, 0, 0], channels=1024, kernel_size=[1, 1]); %92 = add(%91, %86); %93 = nn.relu(%92); %94 = nn.conv2d(%93, meta[relay.Constant][42], padding=[0, 0, 0, 0], channels=1024, kernel_size=[1, 1]); %95 = nn.relu(%94); %96 = nn.conv2d(%95, meta[relay.Constant][43], strides=[2, 2], padding=[1, 1, 1, 1], groups=32, channels=1024, kernel_size=[3, 3]); %97 = nn.relu(%96); %98 = nn.conv2d(%97, meta[relay.Constant][44
], padding=[0, 0, 0, 0], channels=2048, kernel_size=[1, 1]); %99 = nn.conv2d(%93, meta[relay.Constant][45], strides=[2, 2], padding=[0, 0, 0, 0], channels=2048, kernel_size=[1, 1]); %100 = add(%98, %99); %101 = nn.relu(%100); %102 = nn.conv2d(%101, meta[relay.Constant][46], padding=[0, 0, 0, 0], channels=1024, kernel_size=[1, 1]); %103 = nn.relu(%102); %104 = nn.conv2d(%103, meta[relay.Constant][47], padding=[1, 1, 1, 1], groups=32, channels=1024, kernel_size=[3, 3]); %105 = nn.relu(%104); %106 = nn.conv2d(%105, meta[relay.Constant][48], padding=[0, 0, 0, 0], channels=2048, kernel_size=[1, 1]); %107 = add(%106, %101); %108 = nn.relu(%107); %109 = nn.conv2d(%108, meta[relay.Constant][49], padding=[0, 0, 0, 0], channels=1024, kernel_size=[1, 1]); %110 = nn.relu(%109); %111 = nn.conv2d(%110, meta[relay.Constant][50], padding=[1, 1, 1, 1], groups=32, channels=1024, kernel_size=[3, 3]); %112 = nn.relu(%111); %113 = nn.conv2d(%112, meta[relay.Constant][51], padding=[0, 0, 0, 0], channels=2048, kernel_size=[1, 1]); %114 = add(%113, %108); nn.relu(%114) } """, "from_string", None, metatable, ) return { "name": "resnext50_32x4d_16", "input_shapes": {"x": [1, 64, 56, 56]}, "input_dtypes": {"x": "float16"}, "mod": mod, "params": None, "main_dtype": "float16", } def describe_onnx(name, filename): """Returns the description of the ONNX model at filename, which can be passed to from_onnx to actually load the model. Note that ? (ie unknown) shape dimensions must be manually changed to concrete dimensions which are consistent with the overall model.""" onnx_model = onnx.load(MODEL_PREFIX + filename) input_shapes = {} input_dtypes = {} initializer_names = [n.name for n in onnx_model.graph.initializer] for input_info in onnx_model.g
raph.input: if input_info.name not in initializer_names: _, shape, dtype, _ = tvm.relay.frontend.onnx.get_info(input_info) if dtype is None: raise ValueError(f"Unknown dtype on input '{input_info.name}' is not supported.") input_shapes.update({input_info.name: shape}) input_dtypes.update({input_info.name: dtype}) print( f"{{'name': '{name}', 'filename': '{filename}', 'input_shapes': {input_shapes}, 'input_dtypes': {input_dtypes}, 'main_dtype': 'float32'}}" ) def from_onnx(model): logging.info("-------------------- BEGIN ONNX IMPORT --------------------") filename = MODEL_PREFIX + model["filename"] logging.info(f"Loading ONNX model from {filename}") onnx_model = onnx.load(filename) logging.info(f"Loaded model from {filename}") mod, params = tvm.relay.frontend.from_onnx( onnx_model, model["input_shapes"], freeze_params=True ) mod = tvm.relay.transform.InferType()(mod) logging.info("-------------------- END ONNX IMPORT --------------------") logging.info(f"Imported model:\n{mod}") logging.info(f"Params:\n{params}") return { "name": model["name"], "input_shapes": model["input_shapes"], "input_dtypes": model["input_dtypes"], "mod": mod, "params": params, "main_dtype": model["main_dtype"], } def to_onnx(model): logging.info("-------------------- BEGIN ONNX EXPORT --------------------") short_filename = model["name"] + ".onnx" filename = MODEL_PREFIX + short_filename logging.info(f"Saving ONNX model to {filename}") params = model["params"] if params is None: params = {} tvm.contrib.target.onnx.to_onnx(model["mod"], params, model["name"], path=filename) logging.info("-------------------- END ONNX EXPORT --------------------") return { "name": model["name"], "filename": short_filename, "input_shapes": model["input_shapes"], "input_dtypes": mode
l["input_dtypes"], "main_dtype": model["main_dtype"], }
import tvm
import logging
import tvm.testing logging.basicConfig(level=logging.INFO) partition_for_testing = tvm._ffi.get_global_func("relay.collage.PartitionForTesting") def print_with_indexes(mod): mod = tvm.relay.transform.CapturePostDfsIndexInSpans()(mod) print(mod) def run(in_mod, expected_mod, max_outputs, allow_taps, compiler, map): expected_mod = tvm.relay.transform.InferType()(expected_mod) in_mod = tvm.relay.transform.InferType()(in_mod) in_mod = tvm.relay.transform.CapturePostDfsIndexInSpans()(in_mod) indexes = [i for l, iss in map.items() for i in iss] labels = [l for l, iss in map.items() for i in iss] actual_mod = partition_for_testing(max_outputs, allow_taps, compiler, indexes, labels)(in_mod) if not tvm.ir.structural_equal(actual_mod, expected_mod, True): print("Input module:") print(in_mod) print("Expected module:") print(expected_mod) print("Actual module:") print(actual_mod) tvm.ir.assert_structural_equal(actual_mod, expected_mod, map_free_vars=True) def test_single_op(): def input(): return tvm.parser.fromtext( """ def @main(%a: Tensor[(5, 7), float32], %b: Tensor[(5, 7), float32], %c: Tensor[(5, 7), float32], %d: Tensor[(5, 7), float32]) { %0 = add(%a, %b); %1 = add(%c, %d); subtract(%0, %1) } """ ) def expected(): return tvm.parser.fromtext( """ def @main(%a: Tensor[(5, 7), float32], %b: Tensor[(5, 7), float32], %c: Tensor[(5, 7), float32], %d: Tensor[(5, 7), float32]) { %0 = add(%a, %b); %1 = (fn(%x, %y, Compiler="foo") { add(%x, %y) })(%c, %d); subtract(%0, %1) } """ ) run(input(), expected(), 1, False, "foo", {"": [7]}) def test_multi_output(): def input(): return tvm.parser.fromtext(
""" def @main(%a: Tensor[(5, 7), float32], %b: Tensor[(5, 7), float32], %c: Tensor[(5, 7), float32], %d: Tensor[(5, 7), float32]) { %0 = add(%a, %b); %1 = add(%c, %d); subtract(%0, %1) } """ ) def expected(): return tvm.parser.fromtext( """ def @main(%a: Tensor[(5, 7), float32], %b: Tensor[(5, 7), float32], %c: Tensor[(5, 7), float32], %d: Tensor[(5, 7), float32]) { %0 = (fn(%w, %x, %y, %z, Compiler="foo") { (add(%y, %z), add(%w, %x)) })(%c, %d, %a, %b); %1 = %0.0; %2 = %0.1; subtract(%1, %2) } """ ) run(input(), input(), 1, False, "foo", {"": [6, 7]}) run(input(), expected(), 2, False, "foo", {"": [6, 7]}) def test_classic_conv2d_add_relu(): def input(): return tvm.parser.fromtext( """ def @main(%a: Tensor[(5, 3, 32, 32), float32], %b: Tensor[(2, 3, 5, 5), float32], %c: Tensor[(5, 2, 28, 28), float32], %d: Tensor[(5, 2, 28, 28), float32]) { %0 = nn.conv2d(%a, %b); %1 = add(%0, %c); %2 = nn.relu(%1); subtract(%2, %d) } """ ) def expected(): return tvm.parser.fromtext( """ def @main(%a: Tensor[(5, 3, 32, 32), float32], %b: Tensor[(2, 3, 5, 5), float32], %c: Tensor[(5, 2, 28, 28), float32], %d: Tensor[(5, 2, 28, 28), float32]) { %2 = (fn(%x, %y, %z, Compiler="foo") { %0 = nn.conv2d(%x, %y); %1 = add(%0, %z); nn.relu(%1) })(%a, %b, %c); subtract(%2, %d) } """ ) run(input(), expected(), 1, False, "foo", {"": [8, 9, 10]}) def test_diamond_single_output(): def
input(): return tvm.parser.fromtext( """ def @main(%a: Tensor[(5, 3, 32, 32), float32], %b: Tensor[(2, 3, 5, 5), float32]) { %0 = nn.conv2d(%a, %b, padding=[0, 0, 0, 0]); %1 = nn.relu(%0); %2 = nn.relu(%1); %3 = nn.leaky_relu(%0, alpha=0f); add(%2, %3) } """ ) def expected(): return tvm.parser.fromtext( """ def @main(%a: Tensor[(5, 3, 32, 32), float32], %b: Tensor[(2, 3, 5, 5), float32]) { (fn (%x: Tensor[(5, 3, 32, 32), float32], %y: Tensor[(2, 3, 5, 5), float32], Compiler="foo") { %0 = nn.conv2d(%x, %y, padding=[0, 0, 0, 0]); %1 = nn.relu(%0); %2 = nn.relu(%1); %3 = nn.leaky_relu(%0, alpha=0f); add(%2, %3) })(%a, %b) } """ ) run(input(), expected(), 1, False, "foo", {"": [5, 6, 7, 9, 10]}) def test_diamond_multi_output(): def input(): return tvm.parser.fromtext( """ def @main(%a: Tensor[(5, 3, 32, 32), float32], %b: Tensor[(2, 3, 5, 5), float32]) { %0 = nn.conv2d(%a, %b, padding=[0, 0, 0, 0]); %1 = nn.relu(%0); %2 = nn.relu(%1); %3 = nn.leaky_relu(%0, alpha=0f); add(%2, %3) } """ ) def expected(): return tvm.parser.fromtext( """ def @main(%a: Tensor[(5, 3, 32, 32), float32], %b: Tensor[(2, 3, 5, 5), float32]) { %4 = (fn (%x: Tensor[(5, 3, 32, 32), float32], %y: Tensor[(2, 3, 5, 5), float32], Compiler="foo") { %0 = nn.conv2d(%x, %y, padding=[0, 0, 0, 0]); %1 = nn.relu
(%0); %2 = nn.relu(%1); %3 = nn.leaky_relu(%0, alpha=0f); (%2, %3) })(%a, %b); %5 = %4.0; %6 = %4.1; add(%5, %6) } """ ) run(input(), expected(), 2, False, "foo", {"": [5, 6, 7, 9]}) def test_with_tap(): def input(): return tvm.parser.fromtext( """ def @main(%a: Tensor[(5, 3, 32, 32), float32], %b: Tensor[(2, 3, 5, 5), float32]) { %0 = nn.conv2d(%a, %b, padding=[0, 0, 0, 0]); %1 = nn.relu(%0); add(%1, %0) } """ ) def expected(): return tvm.parser.fromtext( """ def @main(%a: Tensor[(5, 3, 32, 32), float32], %b: Tensor[(2, 3, 5, 5), float32]) { %2 = (fn (%x, %y, Compiler="foo") { %0 = nn.conv2d(%x, %y, padding=[0, 0, 0, 0]); %1 = nn.relu(%0); (%0, %1) })(%a, %b); %3 = %2.1; %4 = %2.0; add(%3, %4) } """ ) run(input(), input(), 2, False, "foo", {"": [5, 6]}) run(input(), expected(), 2, True, "foo", {"": [5, 6]}) def test_no_cycles(): def input(): return tvm.parser.fromtext( """ def @main(%a: Tensor[(5, 7), float32], %b: Tensor[(5, 7), float32]) { %0 = add(%a, %b); %1 = add(%0, %b); add(%1, %b) } """ ) def expected(): return tvm.parser.fromtext( """ def @main(%a: Tensor[(5, 7), float32], %b: Tensor[(5, 7), float32]) { (fn(%x, %y, Compiler="foo") { %0 = add(%x, %y); %1 = add(%0, %y); add(%1, %y) })(%a, %b) } """ ) run(input(), input(), 2,
False, "foo", {"": [3, 5]}) run(input(), expected(), 2, False, "foo", {"": [3, 4, 5]}) def test_labels_direct_connection(): def input(): return tvm.parser.fromtext( """ def @main(%a: Tensor[(5, 7), float32]) { %0 = nn.relu(%a); %1 = nn.relu(%0); %2 = nn.relu(%1); %3 = nn.relu(%1); %4 = add(%2, %3); %5 = nn.relu(%4); %6 = nn.relu(%4); %7 = add(%5, %6); nn.relu(%7) } """ ) def expected(): return tvm.parser.fromtext( """ def @main(%a: Tensor[(5, 7), float32]) { (fn(%aa: Tensor[(5, 7), float32], Compiler="foo") { %0 = nn.relu(%aa); %4 = (fn(%y, Composite="a") { %1 = nn.relu(%y); %2 = nn.relu(%1); %3 = nn.relu(%1); add(%2, %3) })(%0); %7 = (fn(%z, Composite="b") { %5 = nn.relu(%z); %6 = nn.relu(%z); add(%5, %6) })(%4); nn.relu(%7) })(%a) } """ ) run(input(), expected(), 1, False, "foo", {"": [3, 11], "a": [4, 5, 6, 7], "b": [8, 9, 10]}) def test_labels_nested_tap(): def input(): return tvm.parser.fromtext( """ def @main(%a: Tensor[(5, 7), float32]) { %0 = nn.relu(%a); %1 = nn.relu(%0); %2 = nn.relu(%1); %3 = nn.relu(%1); %4 = add(%2, %3); %5 = nn.relu(%4); %6 = nn.relu(%4); %7 = add(%5, %6); add(%2, %7) } """ ) def expected(): return tvm.parser.fromtext( """ def @main(%a: Tensor[(5,
7), float32]) { %0 = nn.relu(%a); %9 = (fn(%x: Tensor[(5, 7), float32], Compiler="foo") { %5 = (fn(%y, Composite="a") { %1 = nn.relu(%y); %2 = nn.relu(%1); %3 = nn.relu(%1); %4 = add(%2, %3); (%2, %4) })(%x); %8 = (fn(%z, Composite="b") { %6 = nn.relu(%z); %7 = nn.relu(%z); add(%6, %7) })(%5.1); (%5.0, %8) })(%0); add(%9.0, %9.1) } """ ) run(input(), expected(), 2, True, "foo", {"a": [4, 5, 6, 7], "b": [8, 9, 10]}) if __name__ == "__main__": tvm.testing.main()
""" Support level10 operator test cases. """
import numpy as np
import tvm from tvm
import relay from tvm.relay.testing
import run_infer_type
import tvm.topi.testing
import random
import tvm.testing executor_kind = tvm.testing.parameter("debug", "vm") @tvm.testing.uses_gpu def test_broadcast_to(executor_kind): def verify_more_dynamic_broadcast_to(x_shape, out_shape): rank = len(out_shape) dtype = "float32" shape_type = "int64" reshape_shape = relay.Var("shape", relay.ty.TensorType((len(x_shape),), shape_type)) broadcast_shape = relay.Var("shape", relay.ty.TensorType((rank,), shape_type)) x = relay.Var("x", relay.ty.TensorType((np.prod(x_shape),), dtype)) r = relay.reshape(x, reshape_shape) z = relay.broadcast_to(r, broadcast_shape) func = relay.Function([x, reshape_shape, broadcast_shape], z) x = np.random.uniform(size=np.prod(x_shape)).astype(dtype) ref_res = np.broadcast_to(np.reshape(x, x_shape), out_shape) for target, dev in tvm.testing.enabled_targets(): mod = tvm.ir.IRModule.from_expr(func) op_res = relay.create_executor( executor_kind, mod=mod, device=dev, target=target ).evaluate(func)( x, np.array(x_shape).astype(shape_type), np.array(out_shape).astype(shape_type) ) tvm.testing.assert_allclose(op_res.numpy(), ref_res, rtol=1e-5) verify_more_dynamic_broadcast_to((4, 3), (3, 4, 3)) def verify_broadcast_to(x_shape, out_shape): rank = len(out_shape) dtype = "float32" shape_type = "int64" dyn_shape = relay.Var("shape", relay.ty.TensorType((rank,), shape_type)) x = relay.Var("x", relay.ty.TensorType(x_shape, dtype)) z = relay.broadcast_to(x, dyn_shape) zz = run_infer_type(z) assert zz.checked_type == relay.ty.TensorType((relay.Any(),) * rank, dtype) func = relay.Function([x, dyn_shape], z) x = np.random.uniform(size=x_shape).astype(dtype) ref_res = np.broadcast_to(x, out_shape) for target, dev in tvm.testing.enabled_targets(): mod = tvm.ir.IRModule.from_expr(func)
op_res = relay.create_executor( executor_kind, mod=mod, device=dev, target=target ).evaluate(func)(x, np.array(out_shape).astype(shape_type)) tvm.testing.assert_allclose(op_res.numpy(), ref_res, rtol=1e-5) verify_broadcast_to((1,), (1, 1, 1)) verify_broadcast_to((1, 1), (4, 1, 1)) verify_broadcast_to((4, 1), (1, 4, 3)) @tvm.testing.uses_gpu def test_dyn_broadcast_to(executor_kind): dtype = "uint8" rank = 3 shape_type = "int64" dyn_shape = relay.Var("shape", relay.ty.TensorType((rank,), shape_type)) x_shape = (1,) x = relay.Var("x", relay.ty.TensorType(x_shape, dtype)) z = relay.broadcast_to(x, dyn_shape) zz = run_infer_type(z) assert zz.checked_type == relay.ty.TensorType((relay.Any(),) * rank, dtype) func = relay.Function([x, dyn_shape], z) x = np.random.uniform(size=x_shape).astype(dtype) dyn_shape = (1,) * rank ref_res = np.broadcast_to(x, dyn_shape) for target, dev in tvm.testing.enabled_targets(): mod = tvm.ir.IRModule.from_expr(func) op_res = relay.create_executor(executor_kind, mod=mod, device=dev, target=target).evaluate( func )(x, np.array(dyn_shape).astype(shape_type)) tvm.testing.assert_allclose(op_res.numpy(), ref_res, rtol=1e-5) @tvm.testing.uses_gpu def test_dyn_one_hot(executor_kind): def _get_oshape(indices_shape, depth, axis): oshape = [] true_axis = len(indices_shape) if axis == -1 else axis ndim = len(indices_shape) + 1 indices_index = 0 for i in range(0, ndim): if i == true_axis: oshape.append(depth) else: oshape.append(indices_shape[indices_index]) indices_index += 1 return oshape def _verify(indices_shape, depth, on_value, off_value, axis, dtype): indices = relay.var("indices", relay.TensorType(indices_shape, "int32")) depth_var = relay.var("depth", relay.TensorType((), "int32")) o
n_value_const = relay.const(on_value) off_value_const = relay.const(off_value) out = relay.one_hot(indices, on_value_const, off_value_const, depth_var, axis, dtype) func = relay.Function([indices, depth_var], out) indices_np = np.random.randint(0, depth, size=indices_shape).astype("int32") out_np = tvm.topi.testing.one_hot(indices_np, on_value, off_value, depth, axis, dtype) for target, dev in tvm.testing.enabled_targets(): mod = tvm.ir.IRModule.from_expr(func) out_relay = relay.create_executor( executor_kind, mod=mod, device=dev, target=target ).evaluate()(indices_np, np.array(depth).astype("int32")) tvm.testing.assert_allclose(out_relay.numpy(), out_np) _verify((3,), 3, 1, 0, -1, "int32") _verify((3,), 3, 1.0, 0.0, -1, "float32") _verify((2, 2), 5, 2, -2, 0, "int32") _verify((2, 2), 5, 0.5, -0.5, 1, "float32") _verify((3, 2, 4, 5), 6, 1, 0, 1, "int32") _verify((3, 2, 4, 5), 6, 1.0, 0.0, 0, "float32") if __name__ == "__main__": tvm.testing.main()
""" Support level2 dynamic operator test cases. """
import numpy as np
import tvm from tvm
import relay from tvm
import te from tvm.relay.testing
import enabled_targets
import random from test_dynamic_op_level3
import verify_func
import tvm.topi.testing from tvm.relay.testing
import run_infer_type executor_kind = tvm.testing.parameter("debug", "vm") @tvm.testing.uses_gpu def test_dyn_upsampling_run(executor_kind): def verify_upsampling(dshape, scale_h, scale_w, layout, method, align_corners=False): if layout == "NCHW": (n, c, h, w) = dshape x_data = np.random.uniform(size=(n, c, h, w)).astype("float32") elif layout == "NHWC": (n, h, w, c) = dshape x_data = np.random.uniform(size=(n, h, w, c)).astype("float32") ref_res = tvm.topi.testing.resize2d_python( x_data, (scale_h, scale_w), layout, method[2:] if method[0:2] == "bi" else method, "align_corners" if align_corners else "asymmetric", ) x = relay.Var("x", relay.TensorType(dshape, "float32")) scale_h_var = relay.var("scale_h", relay.TensorType((), "float32")) scale_w_var = relay.var("scale_h", relay.TensorType((), "float32")) z = relay.nn.upsampling( x, scale_h_var, scale_w_var, method=method, layout=layout, align_corners=align_corners ) zz = run_infer_type(z) func = relay.Function([x, scale_h_var, scale_w_var], z) for target, dev in tvm.testing.enabled_targets(): mod = tvm.ir.IRModule.from_expr(func) op_res = relay.create_executor( executor_kind, mod=mod, device=dev, target=target ).evaluate()( x_data, np.array(scale_h).astype("float32"), np.array(scale_w).astype("float32") ) tvm.testing.assert_allclose(op_res.numpy(), ref_res, rtol=1e-4, atol=1e-6) verify_upsampling((1, 16, 32, 32), 3, 2.0, "NCHW", "nearest_neighbor") verify_upsampling((1, 16, 32, 32), 5, 2.0, "NCHW", "bilinear", True) verify_upsampling((1, 16, 32, 32), 2.0, 6, "NHWC", "nearest_neighbor") verify_upsampling((1, 16, 32, 32), 2.0, 2.0, "NHWC", "bilinear", True) @tvm.testing.uses_gpu def test_dyn_upsampling_infer_type_const(): n, c,
h, w = te.size_var("n"), te.size_var("c"), te.size_var("h"), te.size_var("w") data = relay.var("data", relay.TensorType((n, c, h, w), "int8")) scale_w = relay.Var("scale_w", relay.TensorType((), "float32")) z = relay.nn.upsampling(data, 2.0, scale_w) zz = run_infer_type(z) assert zz.checked_type == relay.TensorType((n, c, relay.Any(), relay.Any()), "int8") @tvm.testing.uses_gpu def test_dyn_upsampling3d_run(executor_kind): def verify_upsampling3d( dshape, scale_d, scale_h, scale_w, layout, method, coord_trans="asymmetric" ): if layout == "NCDHW": (n, c, d, h, w) = dshape x_data = np.random.uniform(size=(n, c, d, h, w)).astype("float32") elif layout == "NDHWC": (n, d, h, w, c) = dshape x_data = np.random.uniform(size=(n, d, h, w, c)).astype("float32") ref_res = tvm.topi.testing.resize3d_python( x_data, (scale_d, scale_h, scale_w), layout, method[3:] if method[0:3] == "tri" else method, coord_trans, ) x = relay.Var("x", relay.TensorType(dshape, "float32")) scale_d_var = relay.var("scale_d", relay.TensorType((), "float32")) scale_h_var = relay.var("scale_h", relay.TensorType((), "float32")) scale_w_var = relay.var("scale_h", relay.TensorType((), "float32")) z = relay.nn.upsampling3d( x, scale_d_var, scale_h_var, scale_w_var, method=method, layout=layout, coordinate_transformation_mode=coord_trans, ) zz = run_infer_type(z) func = relay.Function([x, scale_d_var, scale_h_var, scale_w_var], z) for target, dev in enabled_targets(): mod = tvm.ir.IRModule.from_expr(func) op_res = relay.create_executor( executor_kind, mod=mod, device=dev, target=target ).evaluate()( x_data, np.array(scale_d).astype("float
32"), np.array(scale_h).astype("float32"), np.array(scale_w).astype("float32"), ) tvm.testing.assert_allclose(op_res.numpy(), ref_res, rtol=1e-4, atol=1e-6) verify_upsampling3d((1, 1, 1, 1, 1), 2, 3, 4, "NCDHW", "nearest_neighbor") verify_upsampling3d((1, 8, 16, 16, 16), 2.0, 3.0, 4.0, "NCDHW", "nearest_neighbor") verify_upsampling3d((1, 8, 16, 16, 16), 2.0, 5.0, 1.0, "NCDHW", "trilinear", "align_corners") verify_upsampling3d((1, 20, 3, 4, 16), 2.0, 2.0, 2.0, "NDHWC", "nearest_neighbor") verify_upsampling3d((1, 8, 4, 16, 15), 2.0, 2.0, 2.0, "NDHWC", "trilinear", "align_corners") def test_dyn_upsampling3d_infer_type_const(): n, c, d, h, w = ( te.size_var("n"), te.size_var("c"), te.size_var("d"), te.size_var("h"), te.size_var("w"), ) data = relay.var("data", relay.TensorType((n, c, d, h, w), "int8")) scale_d = relay.Var("scale_h", relay.TensorType((), "float32")) scale_w = relay.Var("scale_w", relay.TensorType((), "float32")) z = relay.nn.upsampling3d(data, scale_d, 2.0, scale_w, layout="NCDHW", method="trilinear") zz = run_infer_type(z) assert zz.checked_type == relay.TensorType( (n, c, relay.Any(), relay.Any(), relay.Any()), "int8" ) @tvm.testing.uses_gpu def test_dyn_pad(executor_kind): def verify_pad(dshape, pad_width, pad_val, dtype): x = relay.var("x", relay.TensorType(dshape, dtype)) ndim = len(dshape) pad_width_var = relay.var("pad_width_var", relay.TensorType((ndim, 2), "int64")) pad_val_var = relay.var("pad_val_var", relay.TensorType((), dtype)) y = relay.nn.pad(x, pad_width_var, pad_val_var) yy = run_infer_type(y) assert yy.checked_type == relay.ty.TensorType((relay.Any(),) * ndim, dtype) func = relay.Function([x, pad_width_var, pad_val_var], y) data = np.random.uniform(size=dshape).astype(dtype) ref_res = np.pad(data, pad_width, "constant", constant_value
s=(((pad_val,) * 2),) * ndim) pad_width = np.array(pad_width).astype("int64") verify_func( executor_kind, func, [data, pad_width, np.array(pad_val).astype(dtype)], ref_res ) def verify_pad_default_fill(dshape, pad_width, dtype): x = relay.var("x", relay.TensorType(dshape, dtype)) ndim = len(dshape) pad_width_var = relay.var("pad_width_var", relay.TensorType((ndim, 2), "int64")) y = relay.nn.pad(x, pad_width_var) yy = run_infer_type(y) assert yy.checked_type == relay.ty.TensorType((relay.Any(),) * ndim, dtype) func = relay.Function([x, pad_width_var], y) data = np.random.uniform(size=dshape).astype(dtype) ref_res = np.pad(data, pad_width) pad_width = np.array(pad_width).astype("int64") verify_func(executor_kind, func, [data, pad_width], ref_res) verify_pad((4, 10, 7, 7), ((1, 1), (2, 2), (3, 3), (4, 4)), 2.0, "int32") verify_pad((2, 7), ((1, 4), (2, 2)), 4.0, "float64") verify_pad_default_fill((4, 10, 7, 7), ((1, 1), (2, 2), (3, 3), (4, 4)), "float64") verify_pad_default_fill((2, 7), ((1, 4), (2, 2)), "int32") if __name__ == "__main__": tvm.testing.main()
""" Support level3 operator test cases. """
import numpy as np
import pytest
import tvm
import tvm.testing from tvm
import relay, te from tvm.relay.testing
import check_grad, run_infer_type executor_kind = tvm.testing.parameter("debug", "vm") def verify_func(executor_kind, func, data, ref_res, target_device=tvm.testing.enabled_targets()): assert isinstance(data, list) for target, dev in target_device: mod = tvm.ir.IRModule.from_expr(func) op_res = relay.create_executor( executor_kind, mod=mod, device=dev, target=target ).evaluate()(*data) if isinstance(op_res, tvm.runtime.container.ADT): assert len(op_res) == len( ref_res ), "Outputs from TVM and Python implementation must be equal " for op_result, ref_result in zip(op_res, ref_res): tvm.testing.assert_allclose(op_result.numpy(), ref_result, rtol=1e-5) else: tvm.testing.assert_allclose(op_res.numpy(), ref_res, rtol=1e-5) relay.backend.te_compiler.get().clear() def check_on_vm(target, dev, args, expected_result, mod): """ Check that evaluating `expr` applied to the arguments produces `result` on Relay VM. """ rts_result = relay.create_executor("vm", device=dev, target=target, mod=mod).evaluate()(*args) tvm.testing.assert_allclose(expected_result, rts_result.numpy()) @tvm.testing.uses_gpu def test_dyn_reshape(executor_kind): def verify_reshape(shape, newshape, oshape): x = relay.var("x", relay.TensorType(shape, "float32")) y = relay.var("y", relay.TensorType((len(newshape),), "int64")) z = relay.reshape(x, y) func = relay.Function([x, y], z) x_data = np.random.uniform(low=-1, high=1, size=shape).astype("float32") x_data = np.ones(shape).astype("float32") ref_res = np.reshape(x_data, oshape) check_grad( run_infer_type(func), inputs=[x_data, np.array(newshape).astype("int64")], test_inputs=[x_data], eps=1e-3, ) verify_func(executor_kind, func, [x_data, np.array(newshape).astype("int64")], ref_res) verify_resh
ape((2, 3, 4), (8, 3), (8, 3)) verify_reshape((4, 7), (2, 7, 2), (2, 7, 2)) verify_reshape((2, 3, 4), (4, 0, 2), (4, 3, 2)) verify_reshape((2, 3, 4), (2, 0, 0), (2, 3, 4)) verify_reshape((2, 3, 4), (0, -1), (2, 12)) verify_reshape((2, 3, 4), (-1, 0), (8, 3)) verify_reshape((2, 3, 4), (-3, 4), (6, 4)) verify_reshape((2, 3, 4, 5), (-3, -3), (6, 20)) verify_reshape((2, 3, 4), (0, -3), (2, 12)) @tvm.testing.uses_gpu def test_dyn_shape_reshape(executor_kind): def verify_reshape(shape, newshape, oshape): x = relay.var("x", relay.TensorType(shape, "float32")) y = relay.var("y", relay.TensorType(newshape, "float32")) z = relay.reshape(x, relay.shape_of(y)) func = relay.Function([x, y], z) x_data = np.random.uniform(low=-1, high=1, size=shape).astype("float32") y_data = np.random.uniform(low=-1, high=1, size=newshape).astype("float32") ref_res = np.reshape(x_data, oshape) check_grad(run_infer_type(func), inputs=[x_data, y_data], eps=1e-3) verify_func(executor_kind, func, [x_data, y_data], ref_res) verify_reshape((2, 3, 4), (8, 3), (8, 3)) verify_reshape((4, 7), (2, 7, 2), (2, 7, 2)) def test_squeeze(executor_kind): def verify_squeeze(shape, dtype, axis): x = relay.var("x", relay.TensorType(shape, dtype)) assert axis is not None np_axis = tuple(axis) axis = relay.var("axis", relay.TensorType([len(axis)], "int64")) squeeze = relay.squeeze(x, axis=axis) func = relay.Function([x, axis], squeeze) x_data = np.random.random_sample(shape).astype(dtype) ref_res = np.squeeze(x_data, axis=np_axis) verify_func(executor_kind, func, [x_data, np.array(np_axis).astype("int64")], ref_res) verify_squeeze((1, 3, 1), "float32", [0]) verify_squeeze((1, 2, 1, 2, 1), "float32", [0, 2]) @tvm.testing.uses_gpu def test_dyn_expand_dims(executor_kind): def verify_expand_dims( dshape, dtype, oshape, axis, num_newaxis, target_device=t
vm.testing.enabled_targets() ): x = relay.Var("x", relay.TensorType(dshape, dtype)) y = relay.var("axis", shape=[], dtype="int64") z = relay.expand_dims(x, axis=y, num_newaxis=num_newaxis) func = relay.Function([x, y], z) data_np = np.random.uniform(size=dshape).astype(dtype) axis_np = np.array(axis).astype("int64") ref_res = data_np.reshape(oshape) verify_func(executor_kind, func, [data_np, axis_np], ref_res, target_device=target_device) for dtype in ["float16", "float32"]: verify_expand_dims((2, 2), dtype, (2, 2, 1), 2, 1) verify_expand_dims((2, 2), dtype, (2, 1, 2), 1, 1) verify_expand_dims((2, 2), dtype, (1, 2, 2), 0, 1) llvm_target_only = [x for x in tvm.testing.enabled_targets() if "llvm" in x] verify_expand_dims((2, 2), dtype, (2, 2, 1, 1), 2, 2, target_device=llvm_target_only) verify_expand_dims((2, 2), dtype, (2, 1, 1, 1, 2), 1, 3, target_device=llvm_target_only) verify_expand_dims((2, 2), dtype, (1, 1, 1, 1, 2, 2), 0, 4, target_device=llvm_target_only) @tvm.testing.uses_gpu def test_dyn_tile(executor_kind): def verify_tile(dshape, reps): x = relay.var("x", relay.TensorType(dshape, "float32")) r = relay.var("reps", relay.TensorType((len(reps),), "float32")) z = relay.tile(x, r) func = relay.Function([x, r], z) x_data = np.random.uniform(low=-1, high=1, size=dshape).astype("float32") ref_res = np.tile(x_data, reps=reps) reps_data = np.array(reps).astype("float32") verify_func(executor_kind, func, [x_data, np.array(reps).astype("float32")], ref_res) verify_tile((2, 3, 4), (3, 2, 1)) verify_tile((2, 3, 4), (1, 2)) verify_tile((2, 3), (3, 2, 1)) @tvm.testing.uses_gpu def test_dyn_zeros_ones(executor_kind): def verify_zeros_ones(shape, dtype): for op, ref in [(relay.zeros, np.zeros), (relay.ones, np.ones)]: rank = len(shape) dyn_shape
= relay.Var("shape", relay.ty.TensorType((rank,), "int64")) y = op(dyn_shape, dtype) yy = run_infer_type(y) assert yy.checked_type == relay.ty.TensorType((relay.Any(),) * rank, dtype) func = relay.Function([dyn_shape], y) ref_res = ref(shape, dtype) verify_func( executor_kind, func, [np.array(shape).astype("int64")], ref_res.astype("int64") ) verify_zeros_ones((1, 3), "int64") verify_zeros_ones((8, 9, 1, 2), "float32") @tvm.testing.uses_gpu def test_dyn_full(executor_kind): def verify_full(fill_value, src_shape, dtype): x = relay.var("x", relay.scalar_type(dtype)) rank = len(src_shape) dyn_src_shape = relay.var("dyn_scr_shape", relay.ty.TensorType((rank,), "int64")) z = relay.full(x, dyn_src_shape, dtype) func = relay.Function([x, dyn_src_shape], z) ref_res = np.full(src_shape, fill_value).astype(dtype) verify_func( executor_kind, func, [np.array(fill_value).astype(dtype), np.array(src_shape).astype("int64")], ref_res, ) verify_full(4, (1, 3, 4, 4), "int32") verify_full(4, (1, 3, 4, 4), "int64") verify_full(4.0, (2, 50), "float32") @tvm.testing.uses_gpu def test_dyn_sparse_to_dense(executor_kind): def verify_sparse_to_dense(sparse_indices, sparse_values, default_value, output_shape, xpected): sparse_indices_data = np.array(sparse_indices) sparse_values_data = np.array(sparse_values) default_value_data = np.array(default_value) output_shape_data = np.array(output_shape) a = relay.var( "a", relay.TensorType(sparse_indices_data.shape, str(sparse_indices_data.dtype)) ) b = relay.var( "b", relay.TensorType(sparse_values_data.shape, str(sparse_values_data.dtype)) ) output_shape_var = relay.var( "output_shape", relay.TensorType(output_shape_data.shape, str(output_shape
_data.dtype)) ) if default_value is None: args = [a, b, output_shape_var] d = relay.sparse_to_dense(a, output_shape_var, b) else: c = relay.var( "c", relay.TensorType(default_value_data.shape, str(default_value_data.dtype)) ) args = [a, b, c, output_shape_var] d = relay.sparse_to_dense(a, output_shape_var, b, c) zz = run_infer_type(d) assert len(zz.checked_type.shape) == len(output_shape) func = relay.Function(args, d) if default_value is None: arguments = [sparse_indices_data, sparse_values_data, output_shape_data] else: arguments = [ sparse_indices_data, sparse_values_data, default_value_data, output_shape_data, ] verify_func(executor_kind, func, arguments, xpected) verify_sparse_to_dense(1, 3, 0, [5], [0, 3, 0, 0, 0]) verify_sparse_to_dense([0, 1, 4], [3, 3, 3], 0, [5], [3, 3, 0, 0, 3]) verify_sparse_to_dense( [[0, 0], [1, 2]], [1, 2], 0, [3, 4], [[1, 0, 0, 0], [0, 0, 2, 0], [0, 0, 0, 0]] ) verify_sparse_to_dense( [[0, 0, 0], [1, 2, 3]], [1, 2], 4, [2, 3, 4], [[[1, 4, 4, 4], [4, 4, 4, 4], [4, 4, 4, 4]], [[4, 4, 4, 4], [4, 4, 4, 4], [4, 4, 4, 2]]], ) verify_sparse_to_dense( [0, 1, 4], [3.1, 3.1, 3.1], 3.5, [5], [3.1, 3.1, 3.5, 3.5, 3.1] ) verify_sparse_to_dense(1, 3, None, [5], [0, 3, 0, 0, 0]) @pytest.mark.parametrize( "sparse_indices, sparse_values, dense_shape, default_value", [ ( np.array([[0, 1], [0, 3], [2, 0], [3, 1]], dtype=np.int64), np.array([1, 2, 3, 4], dtype=np.int64), np.array([5, 6], dtype=np.int64), np.array([10], dtype=np.int64), ), ( np.array([[1, 1, 1], [1, 3, 1], [2, 0, 5], [3, 1, 6]], dtype=np.int64), np.array([1, 2, 3, 4
], dtype=np.int64), np.array([7, 7, 7], dtype=np.int64), np.array([5], dtype=np.int64), ), ( np.array([[1], [2]], dtype=np.int64), np.array([7, 8], dtype=np.int64), np.array([5], dtype=np.int64), np.array([4], dtype=np.int64), ), ( np.ones((0, 1), dtype=np.int64), np.array([], dtype=np.int64), np.array([5], dtype=np.int64), np.array([4], dtype=np.int64), ), ( np.ones((0, 3), dtype=np.int64), np.array([], dtype=np.int64), np.array([9, 3, 7], dtype=np.int64), np.array([100], dtype=np.int64), ), ], ) @pytest.mark.parametrize("dtype", [np.int64, np.int32]) @pytest.mark.parametrize("use_dyn", [True, False]) def test_sparse_fill_empty_rows( sparse_indices, sparse_values, dense_shape, default_value, dtype, use_dyn, executor_kind ): def ref_sparse_fill_empty_rows( sparse_indices: np.ndarray, sparse_values: np.ndarray, dense_shape: np.ndarray, default_value: np.ndarray, ) -> None: """ This function calculates the expected output of sparse_fill_empty_rows operator given the inputs. """ def check_add_rows(current_idx, limit_idx): while current_idx < limit_idx: new_sparse_indices.append([current_idx] + [0] * (num_cols - 1)) new_sparse_values.append(default_value[0]) empty_row_indicator[current_idx] = True current_idx += 1 return current_idx current_idx = 0 new_sparse_indices = [] new_sparse_values = [] empty_row_indicator = [False for _ in range(dense_shape[0])] num_cols = sparse_indices.shape[1] for sparse_row, sparse_value in zip(sparse_indices, sparse_values): limit_idx = sparse_row[0] current_idx = check_add_rows(current_idx, limit_idx) new_sp
arse_indices.append(list(sparse_row)) new_sparse_values.append(sparse_value) current_idx = limit_idx + 1 check_add_rows(current_idx, dense_shape[0]) return new_sparse_indices, new_sparse_values, empty_row_indicator def verify_sparse_fill_empty_rows( sparse_indices_np: np.ndarray, sparse_values_np: np.ndarray, dense_shape_np: np.ndarray, default_value_np: np.ndarray, ) -> None: """ This function verifies the relay output of sparse_fill_empty_rows with its expected output. """ if use_dyn: sparse_indices = relay.var( "sparse_indices", shape=[relay.Any(), relay.Any()], dtype=str(sparse_indices_np.dtype), ) sparse_values = relay.var( "sparse_values", shape=[relay.Any()], dtype=str(sparse_values_np.dtype), ) dense_shape = relay.var( "dense_shape", shape=[relay.Any()], dtype=str(dense_shape_np.dtype), ) default_value = relay.var( "default_value", shape=[relay.Any()], dtype=str(default_value_np.dtype), ) else: sparse_indices = relay.var( "sparse_indices", relay.TensorType(sparse_indices_np.shape, str(sparse_indices_np.dtype)), ) sparse_values = relay.var( "sparse_values", relay.TensorType(sparse_values_np.shape, str(sparse_values_np.dtype)), ) dense_shape = relay.var( "dense_shape", relay.TensorType(dense_shape_np.shape, str(dense_shape_np.dtype)), ) default_value = relay.var( "default_value", relay.TensorType(default_value_np.shape, str(default_value_np.dtype)), ) z = relay.sparse_fill_empt
y_rows(sparse_indices, sparse_values, dense_shape, default_value) func = relay.Function([sparse_indices, sparse_values, dense_shape, default_value], z) ref_res = ref_sparse_fill_empty_rows( sparse_indices_np, sparse_values_np, dense_shape_np, default_value_np, ) ( new_sparse_indices_infer_type, new_sparse_values_infer_type, empty_row_indicator_infer_type, ) = run_infer_type(z) assert new_sparse_indices_infer_type.checked_type.dtype == sparse_indices_np.dtype assert new_sparse_values_infer_type.checked_type.dtype == sparse_indices_np.dtype assert empty_row_indicator_infer_type.checked_type.dtype == "bool" verify_func( executor_kind, func, [sparse_indices_np, sparse_values_np, dense_shape_np, default_value_np], ref_res, [("llvm", tvm.cpu())], ) verify_sparse_fill_empty_rows( sparse_indices.astype(dtype), sparse_values.astype(dtype), dense_shape.astype(dtype), default_value.astype(dtype), ) def test_dyn_copy(): target = tvm.target.Target("llvm") dev = tvm.cpu() mod = tvm.parser.fromtext( """ def @main(%x: Tensor[(?, 3), int64]) -> Tensor[(?, 3), int64] { copy(%x) } """ ) x_data = np.random.rand(15, 3).astype("int64") expected = x_data check_on_vm(target, dev, [x_data], expected, mod) def test_dyn_copy_scalar(): target = tvm.target.Target("llvm") dev = tvm.cpu() mod = tvm.parser.fromtext( """ def @main(%x: int32, %y: Tensor[(?), int32]) -> Tensor[(?), int32] { %0 = copy(%x); %1 = expand_dims(%0, axis=0); %2 = (%y, %1); concatenate(%2) } """ ) x_data = 3 y_data = np.random.rand(7).astype("int32") expected = np.concatenate((y_data, np.expand_dims(x_data, axis=0)))
check_on_vm(target, dev, [x_data, y_data], expected, mod) def test_dyn_cast(): target = tvm.target.Target("llvm") dev = tvm.cpu() mod = tvm.parser.fromtext( """ def @main(%x: Tensor[(?, 3), int64]) -> Tensor[(?, 3), int32] { cast(%x, dtype="int32") } """ ) x_data = np.random.rand(15, 3).astype("int64") expected = x_data.astype("int32") check_on_vm(target, dev, [x_data], expected, mod) if __name__ == "__main__": tvm.testing.main()
import tvm from tvm
import te
import numpy as np from tvm
import relay from tvm.relay
import transform from tvm.relay.testing
import run_infer_type
import tvm.topi.testing @tvm.testing.uses_gpu def test_dynamic_strided_slice(): def verify(dshape, begin, end, strides, slice_mode="end", test_ref=True, dtype="int32"): x = relay.var("x", relay.TensorType(dshape, "float32")) ndim = len(dshape) slice_dim = len(begin) begin = begin if begin else [0] * ndim end = end if end else list(dshape)[:slice_dim] if strides: if len(strides) == 1: strides = strides * slice_dim else: strides = [1] * slice_dim num_static_axes = len(dshape) - len(begin) x_data = np.random.uniform(size=dshape).astype("float32") ref_res = tvm.topi.testing.strided_slice_python(x_data, begin, end, strides, slice_mode) data = [x_data, np.array(begin, dtype=dtype), np.array(end, dtype=dtype)] begin = relay.var("begin", shape=[len(begin)], dtype=dtype) end = relay.var("end", shape=[len(end)], dtype=dtype) inputs = [x, begin, end] if strides: data.append(np.array(strides, dtype=dtype)) strides = relay.var("strides", shape=[len(strides)], dtype=dtype) inputs.append(strides) z = relay.strided_slice(x, begin=begin, end=end, strides=strides, slice_mode=slice_mode) else: z = relay.strided_slice(x, begin=begin, end=end, slice_mode=slice_mode) func = relay.Function(inputs, z) func = run_infer_type(func) if num_static_axes > 0: oshape = run_infer_type(z).checked_type.shape assert tuple(oshape[-num_static_axes:]) == dshape[-num_static_axes:] if not test_ref: return for target, dev in tvm.testing.enabled_targets(): mod = tvm.ir.IRModule.from_expr(func) op_res = relay.create_executor("vm", mod=mod, device=dev, target=target).evaluate()( *data ) tvm.testing.assert_allclose(op_res.numpy(), ref_res) verify( (1, 224, 224, 3)
, [0, 20, 20, 0], [1, 140, 140, 3], [1, 1, 1, 1], dtype="int64", ) verify((3, 4, 3), [1, 1, 0], [4, 4, 3], [2, 1, 1], dtype="int16") verify((3, 4, 3), [0, 0, 0], [4, -5, 4], [1, -1, 2]) verify((3, 4, 3), [1, 1, 0], [4, 4, 3], None) verify((3, 4, 3), [1, 1, 0], [4, 1000, 3], None) verify((3, 4, 3), [1, 1, 0], [4, 4, 4], None) verify((3, 4, 3), [1, 1, 0], [4, 4, 3], None) verify((3, 4, 3), [1, -1, 0], [4, -5, 3], [2, -1, 1]) verify((3, 4, 3), [1, -1, 0], [2, -3, 3], [1, -1, 1]) verify((20, 10, 5), [20, 10, 4], [0, 0, 1], [-1, -3, -2]) verify((3, 4, 3), [1, 0, 0], [3, -1, 3], [1, 1, 1], slice_mode="size", test_ref=False) verify((3, 4, 3), [1, 0, 0], [-1, 2, 3], [1, 1, 1], slice_mode="size", test_ref=True) verify((3, 4, 3), [0], [2], None) verify((3, 4, 3), [1], [4], [2]) verify((3, 4, 3), [1, 0], [4, 2], [2, 1]) if __name__ == "__main__": test_dynamic_strided_slice()
""" Support level5 operator test cases. """
import math
import numpy as np
import tvm from tvm
import te from tvm
import relay from tvm.relay