text
stringlengths
1
2.05k
import transform from tvm.relay.testing
import run_infer_type
import tvm.topi.testing
import tvm.testing executor_kind = tvm.testing.parameter("debug", "vm") def test_resize2d_infer_type(): n, c, h, w = te.size_var("n"), te.size_var("c"), te.size_var("h"), te.size_var("w") x = relay.var("x", relay.TensorType((n, c, h, w), "int8")) size = relay.var("size", relay.TensorType((2,), "int8")) z = relay.image.resize2d(x, size) zz = run_infer_type(z) assert zz.checked_type == relay.TensorType((n, c, relay.Any(), relay.Any()), "int8") @tvm.testing.uses_gpu def test_resize2d(executor_kind): def verify_resize2d(dshape, scale, method, layout): if layout == "NHWC": size = (dshape[1] * scale, dshape[2] * scale) else: size = (dshape[2] * scale, dshape[3] * scale) size = np.array(size).astype("int64") x_data = np.random.uniform(size=dshape).astype("float32") x = relay.var("x", relay.TensorType(dshape, "float32")) size_var = relay.var("size", relay.TensorType((2,), "int64")) coord_trans = "asymmetric" if method == "nearest_neighbor" else "align_corners" z = relay.image.resize2d( x, size_var, None, layout, method, coordinate_transformation_mode=coord_trans ) zz = run_infer_type(z) func = relay.Function([x, size_var], z) ref_res = tvm.topi.testing.resize2d_python( x_data, (scale, scale), layout, method, coord_trans ) for target, dev in tvm.testing.enabled_targets(): mod = tvm.ir.IRModule.from_expr(func) op_res = relay.create_executor( executor_kind, mod=mod, device=dev, target=target ).evaluate()(x_data, size) tvm.testing.assert_allclose(op_res.numpy(), ref_res, rtol=1e-4, atol=1e-6) for method in ["linear", "nearest_neighbor"]: for layout in ["NCHW", "NHWC"]: verify_resize2d((1, 4, 4, 4), 2, method, layout) verify_resize2d((2, 8, 17, 20), 7, method, layout) if __name__ == "__main__": test_resize2d_infer_type() t
est_resize2d()
""" Support level6 operator test cases. """
import numpy as np
import tvm from tvm
import te from tvm
import relay
import tvm.testing executor_kind = tvm.testing.parameter("debug", "vm") @tvm.testing.uses_gpu def test_dynamic_topk(executor_kind): def verify_topk(k, axis, ret_type, is_ascend, dtype): shape = (20, 100) x = relay.var("x", relay.TensorType(shape, "float32")) k_var = relay.var("x", relay.TensorType((1,), "float32")) out = relay.topk(x, k_var, axis, ret_type, is_ascend, dtype) if isinstance(out, relay.expr.TupleWrapper): out = out.astuple() func = relay.Function([x, k_var], out) np_data = np.random.uniform(size=shape).astype("float32") if is_ascend: np_indices = np.argsort(np_data, axis=axis) else: np_indices = np.argsort(-np_data, axis=axis) kk = k if k >= 1 else shape[axis] if axis == 0: np_indices = np_indices[:kk, :] np_values = np.zeros(np_indices.shape).astype("float32") for i in range(shape[1]): np_values[:, i] = np_data[np_indices[:, i], i] else: np_indices = np_indices[:, :kk] np_values = np.zeros(np_indices.shape).astype("float32") for i in range(shape[0]): np_values[i, :] = np_data[i, np_indices[i, :]] np_indices = np_indices.astype(dtype) for target, dev in tvm.testing.enabled_targets(): mod = tvm.ir.IRModule.from_expr(func) op_res = relay.create_executor( executor_kind, mod=mod, device=dev, target=target ).evaluate()(np_data, np.array([k]).astype("float32")) if ret_type == "both": tvm.testing.assert_allclose(op_res[0].numpy(), np_values) tvm.testing.assert_allclose(op_res[1].numpy(), np_indices) elif ret_type == "values": tvm.testing.assert_allclose(op_res.numpy(), np_values) else: tvm.testing.assert_allclose(op_res.numpy(), np_indices) np.random.seed(0) for k in [0, 1, 5]: for ax
is in [0, -1, 1]: for ret_type in ["both", "values", "indices"]: verify_topk(k, axis, ret_type, True, "int64") verify_topk(k, axis, ret_type, False, "float32") if __name__ == "__main__": test_dynamic_topk()
"""Unit tests for annotations."""
import tvm
import tvm.testing from tvm
import relay
import pytest def test_on_device_via_string(): x = relay.Var("x") call = relay.annotation.on_device(x, "cuda") assert isinstance(call, relay.Call) assert len(call.args) == 1 assert call.args[0] == x assert call.attrs.virtual_device.device_type_int == 2 assert call.attrs.virtual_device.virtual_device_id == 0 assert call.attrs.virtual_device.target is None assert call.attrs.virtual_device.memory_scope == "" assert call.attrs.constrain_body assert not call.attrs.constrain_result def test_on_device_via_device(): x = relay.Var("x") call = relay.annotation.on_device(x, tvm.device("cpu")) assert call.attrs.virtual_device.device_type_int == 1 def test_on_device_invalid_device(): x = relay.Var("x") pytest.raises(ValueError, lambda: relay.annotation.on_device(x, "bogus")) def test_on_device_fixed(): x = relay.Var("x") call = relay.annotation.on_device(x, "cuda", constrain_result=True) assert call.attrs.virtual_device.device_type_int == 2 assert call.attrs.constrain_body assert call.attrs.constrain_result def test_on_device_free(): x = relay.Var("x") call = relay.annotation.on_device(x, "cuda", constrain_result=False, constrain_body=False) assert call.attrs.virtual_device.device_type_int == -1 assert not call.attrs.constrain_body assert not call.attrs.constrain_result if __name__ == "__main__": tvm.testing.main()
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Unit tests for tensor helpers.""" import tvm import tvm.testing from tvm import relay import pytest def test_device_copy_via_string(): x = relay.var("x") call = relay.op.device_copy(x, "cuda", "cpu") assert isinstance(call, relay.Call) assert len(call.args) == 1 assert call.args[0] == x assert call.attrs.src_virtual_device.device_type_int == 2 # ie kDLCUDA assert call.attrs.src_virtual_device.virtual_device_id == 0 assert call.attrs.src_virtual_device.target is None assert call.attrs.src_virtual_device.memory_scope == "" assert call.attrs.dst_virtual_device.device_type_int == 1 # ie kDLCPU assert call.attrs.dst_virtual_device.virtual_device_id == 0 assert call.attrs.dst_virtual_device.target is None assert call.attrs.dst_virtual_device.memory_scope == "" def test_device_copy_via_device(): x = relay.var("x") call = relay.op.device_copy(x, tvm.device("cuda"), tvm.device("cpu")) assert isinstance(call, relay.Call) assert len(call.args) == 1 assert call.args[0] == x assert call.attrs.src_virtual_device.device_type_int == 2 # ie kDLCUDA assert call.attrs.dst_virtual_device.device_type_int == 1 # ie kDLCPU if __name__ == "__main__": tvm.testing.main()
import re
import tvm
import numpy as np from tvm
import relay from tvm.relay
import testing from tvm.contrib
import utils from utils.adreno_utils
import gpu_preprocess, build_run_compare
import pytest dtype = tvm.testing.parameter("float32") @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_conv2d_inceptionv3_64x35x35_96x64x3x3_nopad(target, dtype): input_shape = (1, 32, 42, 42) filter_shape = (96, 32, 3, 3) bias_shape = (1, 96, 1, 1) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("weight", shape=filter_shape, dtype=dtype) bias = relay.var("bias", shape=bias_shape, dtype=dtype) conv = relay.nn.conv2d( A, B, data_layout="NCHW", kernel_layout="OIHW", padding=[0, 0, 0, 0], strides=[2, 2], out_dtype=dtype, channels=96, kernel_size=(3, 3), ) D = relay.op.add(conv, bias) D = relay.op.nn.relu(D) mod = relay.Function([A, B, bias], D) np.random.seed(0) initializer = relay.testing.init.Xavier() filter_data = np.zeros(filter_shape).astype(dtype) bias_data = np.zeros(bias_shape).astype(dtype) initializer("weight", filter_data) initializer("bias", bias_data) params1 = { "weight": tvm.nd.array(filter_data), "bias": tvm.nd.array(bias_data), } build_run_compare(mod, params1, {"data": input_shape}, dtype, target, [], gpu_preprocess) @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_conv2d_inceptionv3_64x35x35_96x64x3x3_nopad_pass(target, dtype): input_shape = (1, 32, 40, 40) filter_shape = (96, 32, 2, 2) bias_shape = (1, 96, 1, 1) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("weight", shape=filter_shape, dtype=dtype) bias = relay.var("bias", shape=bias_shape, dtype=dtype) conv = relay.nn.conv2d( A, B, data_layout="NCHW", kernel_layout="OIHW", padding=[0, 0, 0, 0], strides=[2, 2], out_dtype=dtype, channels=96, kernel_size=(2, 2), ) D = relay.op.add(conv, bias) D = relay.op.nn.relu(D)
mod = relay.Function([A, B, bias], D) np.random.seed(0) initializer = relay.testing.init.Xavier() filter_data = np.zeros(filter_shape).astype(dtype) bias_data = np.zeros(bias_shape).astype(dtype) initializer("weight", filter_data) initializer("bias", bias_data) params1 = { "weight": tvm.nd.array(filter_data), "bias": tvm.nd.array(bias_data), } build_run_compare(mod, params1, {"data": input_shape}, dtype, target, [], gpu_preprocess) @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_conv2d_inceptionv3_35_35_strides(target, dtype): input_shape = (1, 48, 35, 35) filter_shape = (64, 48, 5, 5) bias_shape = (1, 64, 1, 1) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("weight", shape=filter_shape, dtype=dtype) bias = relay.var("bias", shape=bias_shape, dtype=dtype) conv = relay.nn.conv2d( A, B, data_layout="NCHW", kernel_layout="OIHW", padding=[2, 2, 2, 2], strides=[1, 1], out_dtype=dtype, channels=64, kernel_size=(5, 5), ) D = relay.op.add(conv, bias) D = relay.op.nn.relu(D) mod = relay.Function([A, B, bias], D) np.random.seed(0) initializer = relay.testing.init.Xavier() filter_data = np.zeros(filter_shape).astype(dtype) bias_data = np.zeros(bias_shape).astype(dtype) initializer("weight", filter_data) initializer("bias", bias_data) params1 = { "weight": tvm.nd.array(filter_data), "bias": tvm.nd.array(bias_data), } build_run_compare(mod, params1, {"data": input_shape}, dtype, target, [], gpu_preprocess) @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_conv2d_resnet50_v2_nchw_3c(target, dtype): input_shape = (1, 3, 224, 224) filter_shape = (64, 3, 7, 7) bias_shape = (1, 64, 1, 1) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("weight", sh
ape=filter_shape, dtype=dtype) bias = relay.var("bias", shape=bias_shape, dtype=dtype) conv = relay.nn.conv2d( A, B, data_layout="NCHW", kernel_layout="OIHW", padding=[3, 3, 3, 3], strides=[2, 2], out_dtype=dtype, channels=64, kernel_size=(7, 7), ) D = relay.op.add(conv, bias) D = relay.op.nn.relu(D) mod = relay.Function([A, B, bias], D) np.random.seed(1) initializer = relay.testing.init.Xavier() filter_data = np.zeros(filter_shape).astype(dtype) bias_data = np.zeros(bias_shape).astype(dtype) initializer("weight", filter_data) initializer("bias", bias_data) params1 = { "weight": tvm.nd.array(filter_data), "bias": tvm.nd.array(bias_data), } build_run_compare(mod, params1, {"data": input_shape}, dtype, target) @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_conv2d_inceptionv3_nchw_3c(target, dtype): input_shape = (1, 3, 299, 299) filter_shape = (64, 3, 3, 3) bias_shape = (1, 64, 1, 1) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("weight", shape=filter_shape, dtype=dtype) bias = relay.var("bias", shape=bias_shape, dtype=dtype) conv = relay.nn.conv2d( A, B, data_layout="NCHW", kernel_layout="OIHW", padding=[0, 0, 0, 0], strides=[2, 2], out_dtype=dtype, channels=64, kernel_size=(3, 3), ) D = relay.op.add(conv, bias) D = relay.op.nn.relu(D) mod = relay.Function([A, B, bias], D) np.random.seed(0) initializer = relay.testing.init.Xavier() filter_data = np.zeros(filter_shape).astype(dtype) bias_data = np.zeros(bias_shape).astype(dtype) initializer("weight", filter_data) initializer("bias", bias_data) params1 = { "weight": tvm.nd.array(filter_data), "bias": tvm.nd.array(bias_data), } build_run_compare(mod, params1, {"dat
a": input_shape}, dtype, target) @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_conv2d_1x1_16c16spatial(target, dtype): input_shape = (1, 16, 256, 256) filter_shape = (32, 16, 4, 4) bias_shape = (1, 32, 1, 1) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("weight", shape=filter_shape, dtype=dtype) bias = relay.var("bias", shape=bias_shape, dtype=dtype) conv = relay.nn.conv2d( A, B, data_layout="NCHW", kernel_layout="OIHW", padding=[0, 0, 0, 0], strides=[2, 2], out_dtype=dtype, channels=32, kernel_size=(4, 4), ) D = relay.op.add(conv, bias) D = relay.op.nn.relu(D) mod = relay.Function([A, B, bias], D) np.random.seed(0) initializer = relay.testing.init.Xavier() filter_data = np.zeros(filter_shape).astype(dtype) bias_data = np.zeros(bias_shape).astype(dtype) initializer("weight", filter_data) initializer("bias", bias_data) params1 = { "weight": tvm.nd.array(filter_data), "bias": tvm.nd.array(bias_data), } build_run_compare(mod, params1, {"data": input_shape}, dtype, target) @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_conv2d_4x4_16c16pad(target, dtype): input_shape = (1, 32, 256, 256) filter_shape = (32, 32, 4, 4) bias_shape = (1, 32, 1, 1) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("weight", shape=filter_shape, dtype=dtype) bias = relay.var("bias", shape=bias_shape, dtype=dtype) conv = relay.nn.conv2d( A, B, data_layout="NCHW", kernel_layout="OIHW", padding=[3, 3, 0, 0], strides=[2, 2], out_dtype=dtype, channels=32, kernel_size=(4, 4), ) D = relay.op.add(conv, bias) D = relay.op.nn.relu(D) mod = relay.Function([A, B, bias], D) np.random.seed(0) initializer = relay.te
sting.init.Xavier() filter_data = np.zeros(filter_shape).astype(dtype) bias_data = np.zeros(bias_shape).astype(dtype) initializer("weight", filter_data) initializer("bias", bias_data) params1 = { "weight": tvm.nd.array(filter_data), "bias": tvm.nd.array(bias_data), } build_run_compare(mod, params1, {"data": input_shape}, dtype, target) @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_conv2d_4x4x4_16c16pad(target, dtype): input_shape = (1, 32, 256, 256) filter_shape = (4, 32, 4, 4) bias_shape = (1, 4, 1, 1) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("weight", shape=filter_shape, dtype=dtype) bias = relay.var("bias", shape=bias_shape, dtype=dtype) conv = relay.nn.conv2d( A, B, data_layout="NCHW", kernel_layout="OIHW", padding=[3, 3, 0, 0], strides=[2, 2], out_dtype=dtype, channels=4, kernel_size=(4, 4), ) D = relay.op.add(conv, bias) D = relay.op.nn.relu(D) mod = relay.Function([A, B, bias], D) np.random.seed(0) initializer = relay.testing.init.Xavier() filter_data = np.zeros(filter_shape).astype(dtype) bias_data = np.zeros(bias_shape).astype(dtype) initializer("weight", filter_data) initializer("bias", bias_data) params1 = { "weight": tvm.nd.array(filter_data), "bias": tvm.nd.array(bias_data), } build_run_compare(mod, params1, {"data": input_shape}, dtype, target) @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_conv2d_yolov3_v2_nchw_3c(target, dtype): input_shape = (1, 1024, 13, 13) filter_shape = (255, 1024, 1, 1) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("weight", shape=filter_shape, dtype=dtype) conv = relay.nn.conv2d( A, B, data_layout="NCHW", kernel_layout="OIHW", padding=[0, 0, 0, 0],
strides=[1, 1], out_dtype=dtype, channels=255, kernel_size=(1, 1), ) mod = relay.Function([A, B], conv) np.random.seed(0) initializer = relay.testing.init.Xavier() filter_data = np.zeros(filter_shape).astype(dtype) initializer("weight", filter_data) params = { "weight": tvm.nd.array(filter_data), } build_run_compare(mod, params, {"data": input_shape}, dtype, target) @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_conv2d_vgg16_winograd_4d(target, dtype): input_shape = (1, 512, 28, 28) filter_shape = (512, 512, 3, 3) bias_shape = (1, 512, 1, 1) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("weight", shape=filter_shape, dtype=dtype) bias = relay.var("bias", shape=bias_shape, dtype=dtype) conv = relay.nn.conv2d( A, B, data_layout="NCHW", kernel_layout="OIHW", padding=[1, 1, 1, 1], channels=512, kernel_size=[3, 3], out_dtype=dtype, ) D = relay.op.add(conv, bias) D = relay.op.nn.relu(D) mod = relay.Function([A, B, bias], D) np.random.seed(0) initializer = relay.testing.init.Xavier() filter_data = np.zeros(filter_shape).astype(dtype) bias_data = np.zeros(bias_shape).astype(dtype) initializer("weight", filter_data) initializer("bias", bias_data) params1 = { "weight": tvm.nd.array(filter_data), "bias": tvm.nd.array(bias_data), } temp = utils.tempdir() stat_file = temp.relpath("stat.log") with open(stat_file, "w") as f: f.write( f'{{"input": ["opencl -keys=adreno,opencl,gpu -device=adreno -max_num_threads=256", "conv2d_nchw_winograd.image2d", [["TENSOR", [1, 512, 28, 28], "{dtype}"], ["TENSOR", [512, 512, 3, 3], "{dtype}"], [1, 1], [1, 1, 1, 1], [1, 1], "{dtype}"], {{}}], "config": {{"index": 1591, "code_hash": null, "entity": [["auto_unroll_max_step", "ot", 4], ["tile_y", "sp", [-1
, 1, 32]], ["tile_x", "sp", [-1, 4, 2]], ["tile_rc", "sp", [-1, 8]]]}}, "result": [[0.0037244], 0, 7.06374192237854, 1653898629.7427933], "version": 0.2, "tvm_version": "0.8.dev0"}}\n' ) graph = build_run_compare( mod, params1, {"data": input_shape}, dtype, target, stat_file=stat_file ) matches = re.findall("winograd", graph) assert len(matches) > 0 @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_conv2d_winograd_conv(target, dtype): input_shape = (1, 4, 3, 3) A = relay.var("data", shape=input_shape, dtype=dtype) filter_shape3 = (8, 4, 3, 3) bias_shape3 = (8,) B3 = relay.var("weight3", shape=filter_shape3, dtype=dtype) D = relay.nn.conv2d( A, B3, padding=[1, 1, 1, 1], channels=8, kernel_size=[3, 3], out_dtype=dtype ) filter_shape4 = (8, 8, 3, 3) bias_shape4 = (8,) B4 = relay.var("weight4", shape=filter_shape4, dtype=dtype) D = relay.nn.conv2d( D, B4, padding=[1, 1, 1, 1], channels=8, kernel_size=[3, 3], out_dtype=dtype ) mod = relay.Function([A, B3, B4], D) np.random.seed(1) initializer = relay.testing.init.Xavier() filter_data3 = np.zeros(filter_shape3).astype(dtype) bias_data3 = np.zeros(bias_shape3).astype(dtype) filter_data4 = np.zeros(filter_shape4).astype(dtype) bias_data4 = np.zeros(bias_shape4).astype(dtype) initializer("weight", filter_data3) initializer("bias", bias_data3) initializer("weight", filter_data4) initializer("bias", bias_data4) params1 = { "weight3": tvm.nd.array(filter_data3), "weight4": tvm.nd.array(filter_data4), } temp = utils.tempdir() stat_file = temp.relpath("stat.log") with open(stat_file, "w") as f: f.write( f'{{"input": ["opencl -keys=adreno,opencl,gpu -device=adreno -max_num_threads=256", "conv2d_nchw_winograd.image2d", [["TENSOR", [1, 4, 3, 3], "{dtype}"], ["TENSOR", [8, 4, 3, 3], "{dtype}"], [1, 1], [1, 1, 1, 1], [1, 1], "{dtype}"], {{}
}], "config": {{"index": 1591, "code_hash": null, "entity": [["auto_unroll_max_step", "ot", 4], ["tile_y", "sp", [-1, 1, 32]], ["tile_x", "sp", [-1, 4, 2]], ["tile_rc", "sp", [-1, 8]]]}}, "result": [[0.0037244], 0, 7.06374192237854, 1653898629.7427933], "version": 0.2, "tvm_version": "0.8.dev0"}}\n' ) graph = build_run_compare( mod, params1, {"data": input_shape}, dtype, target, stat_file=stat_file ) matches = re.findall("winograd", graph) assert len(matches) > 0 @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_residual_block(target, dtype): """ - some kind of residual block followed by convolution to have texture after residual block - scalar data type verification which should be mapped to global memory scope layout_transform (NCHW->NCHW4c) | <- buffer conv2d (1) <- to get textures as output / \ conv2d (2) | \ / add <- add should be fused into conv2d (2) multiply to scalar <- buffer to the input of multiply scalar value relu | <- texture in intermediate tensor conv2d (3) relu | <- buffer layout_transform (NCHW4c->NCHW) """ input_shape = (1, 32, 40, 40) filter_shape1 = (32, 32, 2, 2) filter_shape2 = (32, 32, 1, 1) filter_shape3 = (32, 32, 2, 2) bias_shape1 = (1, 32, 1, 1) A = relay.var("data", shape=input_shape, dtype=dtype) W1 = relay.var("weight1", shape=filter_shape1, dtype=dtype) B1 = relay.var("bias1", shape=bias_shape1, dtype=dtype) W2 = relay.var("weight2", shape=filter_shape2, dtype=dtype) W3 = relay.var("weight3", shape=filter_shape3, dtype=dtype) conv1 = relay.nn.conv2d( A, W1, data_l
ayout="NCHW", kernel_layout="OIHW", padding=[0, 0, 0, 0], strides=[2, 2], out_dtype=dtype, channels=32, kernel_size=(2, 2), ) D = relay.op.add(conv1, B1) D = relay.op.nn.relu(D) conv2 = relay.nn.conv2d( D, W2, data_layout="NCHW", kernel_layout="OIHW", padding=[0, 0, 0, 0], strides=[1, 1], out_dtype=dtype, channels=32, kernel_size=(1, 1), ) D = relay.op.add(conv2, D) D = D * relay.const(0.15, dtype) D = relay.op.nn.relu(D) conv3 = relay.nn.conv2d( D, W3, data_layout="NCHW", kernel_layout="OIHW", padding=[0, 0, 0, 0], strides=[2, 2], out_dtype=dtype, channels=32, kernel_size=(2, 2), ) D = relay.op.nn.relu(conv3) mod = relay.Function([A, W1, B1, W2, W3], D) np.random.seed(0) initializer = relay.testing.init.Xavier() filter_data1 = np.zeros(filter_shape1).astype(dtype) bias_data1 = np.zeros(bias_shape1).astype(dtype) initializer("weight", filter_data1) initializer("bias", bias_data1) filter_data2 = np.zeros(filter_shape2).astype(dtype) initializer("weight", filter_data2) filter_data3 = np.zeros(filter_shape3).astype(dtype) initializer("weight", filter_data3) params1 = { "weight1": tvm.nd.array(filter_data1), "bias1": tvm.nd.array(bias_data1), "weight2": tvm.nd.array(filter_data2), "weight3": tvm.nd.array(filter_data3), } if dtype == "float16": static_memory_scope = [ "global", "global.texture", "global.texture-weight", "global.texture-weight", "global.texture", "global.texture-weight", "global", "global.texture", "global.texture-weight", "", "", ] else: static_memory_scope = [ "global", "global.texture",
"global.texture-weight", "global.texture-weight", "global.texture", "global.texture-weight", "global.texture", "global.texture-weight", "", "", ] build_run_compare(mod, params1, {"data": input_shape}, dtype, target, static_memory_scope) @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_concat(target, dtype): """ layout_transform (NCHW->NCHW4c) | <- buffer conv2d (1) <- to get textures as output / \ conv2d (2) conv2d (3) \ / <- concat does not support textures, there we should have buffers concatenation | <- buffer layout_transform (NCHW4c->NCHW) """ input_shape = (1, 32, 40, 40) filter_shape1 = (96, 32, 2, 2) filter_shape2 = (32, 96, 2, 2) filter_shape3 = (5, 96, 2, 2) bias_shape1 = (1, 96, 1, 1) bias_shape2 = (1, 32, 1, 1) A = relay.var("data", shape=input_shape, dtype=dtype) W1 = relay.var("weight1", shape=filter_shape1, dtype=dtype) B1 = relay.var("bias1", shape=bias_shape1, dtype=dtype) W2 = relay.var("weight2", shape=filter_shape2, dtype=dtype) W3 = relay.var("weight3", shape=filter_shape3, dtype=dtype) B2 = relay.var("bias2", shape=bias_shape2, dtype=dtype) conv1 = relay.nn.conv2d( A, W1, data_layout="NCHW", kernel_layout="OIHW", padding=[0, 0, 0, 0], strides=[2, 2], out_dtype=dtype, channels=96, kernel_size=(2, 2), ) D = relay.op.add(conv1, B1) D = relay.op.nn.relu(D) conv2 = relay.nn.conv2d( D, W2, data_layout="NCHW", kernel_layout="OIHW", padding=[0, 0, 0, 0], strides=[2, 2], out_dtype=dtype, channels=32, kernel_size=(2,
2), ) conv2 = relay.op.add(conv2, B2) conv2 = relay.op.nn.relu(conv2) conv3 = relay.nn.conv2d( D, W3, data_layout="NCHW", kernel_layout="OIHW", padding=[0, 0, 0, 0], strides=[2, 2], out_dtype=dtype, channels=5, kernel_size=(2, 2), ) t = relay.Tuple([conv2, conv3]) c = relay.op.concatenate(t, axis=1) mod = relay.Function([A, W1, B1, W2, B2, W3], c) np.random.seed(0) initializer = relay.testing.init.Xavier() filter_data1 = np.zeros(filter_shape1).astype(dtype) bias_data1 = np.zeros(bias_shape1).astype(dtype) initializer("weight", filter_data1) initializer("bias", bias_data1) filter_data2 = np.zeros(filter_shape2).astype(dtype) bias_data2 = np.zeros(bias_shape2).astype(dtype) initializer("weight", filter_data2) initializer("bias", bias_data2) filter_data3 = np.zeros(filter_shape3).astype(dtype) initializer("weight", filter_data3) params1 = { "weight1": tvm.nd.array(filter_data1), "bias1": tvm.nd.array(bias_data1), "weight2": tvm.nd.array(filter_data2), "bias2": tvm.nd.array(bias_data2), "weight3": tvm.nd.array(filter_data3), } static_memory_scope = [ "", "global", "global.texture-weight", "global.texture-weight", "global", "global.texture-weight", "global.texture-weight", "", "", "", "", "", ] static_memory_scope = [] build_run_compare(mod, params1, {"data": input_shape}, dtype, target, static_memory_scope) @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_pooling_branching_texture_params(target, dtype): """ Verification of the pooling and many branches having textures layout_transform (NCHW->NCHW4c) | <- buffer conv2d (0) <- to get textures
| <- textures pooling / \ \ <- textures conv2d (1) conv2d (2) conv2d (3) \ / | add | <- to have the only one output, will be fused \ / add <- to have the only one output, will be fused | <- buffer layout_transform (NCHW4c->NCHW) """ input_shape = (1, 32, 40, 40) filter_shape0 = (32, 32, 1, 1) filter_shape1 = (32, 32, 2, 2) filter_shape2 = (32, 32, 1, 1) filter_shape3 = (32, 32, 2, 2) bias_shape1 = (1, 32, 1, 1) A = relay.var("data", shape=input_shape, dtype=dtype) W0 = relay.var("weight0", shape=filter_shape0, dtype=dtype) W1 = relay.var("weight1", shape=filter_shape1, dtype=dtype) B1 = relay.var("bias1", shape=bias_shape1, dtype=dtype) W2 = relay.var("weight2", shape=filter_shape2, dtype=dtype) W3 = relay.var("weight3", shape=filter_shape3, dtype=dtype) conv0 = relay.nn.conv2d( A, W0, data_layout="NCHW", kernel_layout="OIHW", padding=[0, 0, 0, 0], strides=[1, 1], out_dtype=dtype, channels=32, kernel_size=(1, 1), ) pool = relay.nn.avg_pool2d(conv0, pool_size=(2, 2), strides=(2, 2)) conv1 = relay.nn.conv2d( pool, W1, data_layout="NCHW", kernel_layout="OIHW", padding=[0, 0, 1, 1], strides=[1, 1], out_dtype=dtype, channels=32, kernel_size=(2, 2), ) conv1 = relay.op.add(conv1, B1) conv1 = relay.op.nn.relu(conv1) conv2 = relay.nn.conv2d( pool, W2, data_layout="NCHW", kernel_layout="OIHW", padding=[0, 0, 0, 0], strides=[1, 1], out_dtype=dtype, channels=32, kernel
_size=(1, 1), ) conv3 = relay.nn.conv2d( pool, W3, data_layout="NCHW", kernel_layout="OIHW", padding=[0, 1, 1, 0], strides=[1, 1], out_dtype=dtype, channels=32, kernel_size=(2, 2), ) conv3 = relay.op.nn.relu(conv3) res = relay.op.add(conv1, conv2) res = relay.op.add(res, conv3) mod = relay.Function([A, W0, W1, B1, W2, W3], res) np.random.seed(0) initializer = relay.testing.init.Xavier() filter_data0 = np.zeros(filter_shape0).astype(dtype) filter_data1 = np.zeros(filter_shape1).astype(dtype) bias_data1 = np.zeros(bias_shape1).astype(dtype) initializer("weight", filter_data1) initializer("bias", bias_data1) filter_data2 = np.zeros(filter_shape2).astype(dtype) initializer("weight", filter_data2) filter_data3 = np.zeros(filter_shape3).astype(dtype) initializer("weight", filter_data3) params1 = { "weight0": tvm.nd.array(filter_data0), "weight1": tvm.nd.array(filter_data1), "bias1": tvm.nd.array(bias_data1), "weight2": tvm.nd.array(filter_data2), "weight3": tvm.nd.array(filter_data3), } static_memory_scope = [ "global", "global.texture", "global.texture-weight", "global.texture", "global.texture", "global.texture-weight", "global.texture-weight", "global.texture-weight", "global.texture", "global.texture-weight", "global.texture", "", "", ] build_run_compare(mod, params1, {"data": input_shape}, dtype, target, static_memory_scope) @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_branching_texture_params(target, dtype): """ Verification of passing texture to several consumers markup of relay variables in primary functions + on_device layout_transform (NCHW->NCHW4c) | <- buffer
conv2d (0) <- to get textures / \ \ <- here should be textures and textures in params conv2d (1) conv2d (2) conv2d (3) \ / | add | <- to have the only one output \ / add <- to have the only one output | <- buffer layout_transform (NCHW4c->NCHW) """ input_shape = (1, 32, 40, 40) filter_shape0 = (32, 32, 1, 1) filter_shape1 = (32, 32, 2, 2) filter_shape2 = (32, 32, 1, 1) filter_shape3 = (32, 32, 2, 2) bias_shape1 = (1, 32, 1, 1) A = relay.var("data", shape=input_shape, dtype=dtype) W0 = relay.var("weight0", shape=filter_shape0, dtype=dtype) W1 = relay.var("weight1", shape=filter_shape1, dtype=dtype) B1 = relay.var("bias1", shape=bias_shape1, dtype=dtype) W2 = relay.var("weight2", shape=filter_shape2, dtype=dtype) W3 = relay.var("weight3", shape=filter_shape3, dtype=dtype) conv0 = relay.nn.conv2d( A, W0, data_layout="NCHW", kernel_layout="OIHW", padding=[0, 0, 0, 0], strides=[1, 1], out_dtype=dtype, channels=32, kernel_size=(1, 1), ) conv1 = relay.nn.conv2d( conv0, W1, data_layout="NCHW", kernel_layout="OIHW", padding=[0, 0, 1, 1], strides=[1, 1], out_dtype=dtype, channels=32, kernel_size=(2, 2), ) conv1 = relay.op.add(conv1, B1) conv1 = relay.op.nn.relu(conv1) conv2 = relay.nn.conv2d( conv0, W2, data_layout="NCHW", kernel_layout="OIHW", padding=[0, 0, 0, 0], strides=[1, 1], out_dtype=dtype, channels=32, kernel_size=(1, 1), ) conv3 = relay.nn.conv2d( conv0, W3, data_layout="NCHW",
kernel_layout="OIHW", padding=[0, 1, 1, 0], strides=[1, 1], out_dtype=dtype, channels=32, kernel_size=(2, 2), ) conv3 = relay.op.nn.relu(conv3) res = relay.op.add(conv1, conv2) res = relay.op.add(res, conv3) mod = relay.Function([A, W0, W1, B1, W2, W3], res) np.random.seed(0) initializer = relay.testing.init.Xavier() filter_data0 = np.zeros(filter_shape0).astype(dtype) filter_data1 = np.zeros(filter_shape1).astype(dtype) bias_data1 = np.zeros(bias_shape1).astype(dtype) initializer("weight", filter_data1) initializer("bias", bias_data1) filter_data2 = np.zeros(filter_shape2).astype(dtype) initializer("weight", filter_data2) filter_data3 = np.zeros(filter_shape3).astype(dtype) initializer("weight", filter_data3) params1 = { "weight0": tvm.nd.array(filter_data0), "weight1": tvm.nd.array(filter_data1), "bias1": tvm.nd.array(bias_data1), "weight2": tvm.nd.array(filter_data2), "weight3": tvm.nd.array(filter_data3), } static_memory_scope = [ "global", "global.texture", "global.texture-weight", "global.texture", "global.texture-weight", "global.texture-weight", "global.texture-weight", "global.texture", "global.texture-weight", "global.texture", "", "", ] build_run_compare(mod, params1, {"data": input_shape}, dtype, target, static_memory_scope) @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_conv2d_different_lowering_same_op(target, dtype): """ Use case for verification of caching compiled functions Three convolutions following by each other in this case should be compiled in three different entities and lowered differently because they are differ in input param memory scopes and in output memory scope layout_transform (NCHW->NCHW4c) |
<- buffer conv2d (1) <- buffer as input tensor and texture as output | <- texture conv2d (2) <- texture as input and texture as output | <- texture conv2d (3) <- texture as input and buffer as output | <- buffer layout_transform (NCHW4c->NCHW) """ input_shape = (1, 32, 40, 40) filter_shape1 = (32, 32, 1, 1) A = relay.var("data", shape=input_shape, dtype=dtype) W1 = relay.var("weight1", shape=filter_shape1, dtype=dtype) conv1 = relay.nn.conv2d( A, W1, data_layout="NCHW", kernel_layout="OIHW", padding=[0, 0, 0, 0], strides=[1, 1], out_dtype=dtype, channels=32, kernel_size=(1, 1), ) conv2 = relay.nn.conv2d( conv1, W1, data_layout="NCHW", kernel_layout="OIHW", padding=[0, 0, 0, 0], strides=[1, 1], out_dtype=dtype, channels=32, kernel_size=(1, 1), ) conv3 = relay.nn.conv2d( conv2, W1, data_layout="NCHW", kernel_layout="OIHW", padding=[0, 0, 0, 0], strides=[1, 1], out_dtype=dtype, channels=32, kernel_size=(1, 1), ) mod = relay.Function([A, W1], conv3) np.random.seed(0) initializer = relay.testing.init.Xavier() filter_data1 = np.zeros(filter_shape1).astype(dtype) params1 = { "weight1": tvm.nd.array(filter_data1), } static_memory_scope = [ "global", "global.texture", "global.texture-weight", "global.texture", "global.texture", "", "", ] build_run_compare(mod, params1, {"data": input_shape}, dtype, target, static_memory_scope) @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("ope
ncl -device=adreno") def test_conv2d_winograd_non_rect(target, dtype): input_shape = (1, 771, 36, 64) A = relay.var("data", shape=input_shape, dtype=dtype) filter_shape = (128, 771, 3, 3) B = relay.var("weight", shape=filter_shape, dtype=dtype) D = relay.nn.conv2d( A, B, padding=[1, 1, 1, 1], channels=128, kernel_size=[3, 3], out_dtype=dtype ) mod = relay.Function([A, B], D) np.random.seed(1) initializer = relay.testing.init.Xavier() filter_data = np.zeros(filter_shape).astype(dtype) initializer("weight", filter_data) params1 = { "weight": tvm.nd.array(filter_data), } temp = utils.tempdir() stat_file = temp.relpath("stat.log") with open(stat_file, "w") as f: f.write( f'{{"input": ["opencl -keys=adreno,opencl,gpu -device=adreno -max_num_threads=256 -texture_spatial_limit=16384 -thread_warp_size=1", "conv2d_nchw_winograd.image2d", [["TENSOR", [1, 771, 36, 64], "{dtype}"], ["TENSOR", [128, 771, 3, 3], "{dtype}"], [1, 1], [1, 1, 1, 1], [1, 1], "{dtype}"], {{}}], "config": {{"index": 5399, "code_hash": null, "entity": [["auto_unroll_max_step", "ot", 16], ["tile_y", "sp", [-1, 1, 32]], ["tile_x", "sp", [-1, 4, 8]], ["tile_rc", "sp", [-1, 193]]]}}, "result": [[0.0037244], 0, 7.06374192237854, 1653898629.7427933], "version": 0.2, "tvm_version": "0.8.dev0"}}\n' ) graph = build_run_compare( mod, params1, {"data": input_shape}, dtype, target, stat_file=stat_file ) matches = re.findall("winograd", graph) assert len(matches) > 0 @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_injective_nwo_inputs1(target, dtype): """ Use case for verification of stability of annotation primary functions having several ops accepting data outside of Primary function The visiting of ops during traversing of graph inside primary function can depend on order of relay graph creation. Thus the annotation mechanism should be reliable for graph t
raversal order The current decision if Prim Function support textures or not depend on *any* op accepting input of the function and if op support textures Input / \ layout_transform (NCHW->NCHW4c) | | / conv2d (1) / | / conv2d (2) mean / / \ / <- Primary function several head ops (1)add (2)layout_transform | | (NCHW4c->NCHW) | | | \ / | | (3) add | | | layout_transform \ / (NCHW4c->NCHW) \ / \ mul \ / add This test verifies a case when the latest op which is visited is (3) and does not support textures, but there is (1) supporting textures, thus the whole func will support textures """ input_shape = (1, 4, 40, 40) filter_shape1 = (4, 4, 3, 3) filter_shape2 = (4, 4, 3, 3) filter_shape3 = (4, 4, 3, 3) A = relay.var("data", shape=input_shape, dtype=dtype) W1 = relay.var("weight1", shape=filter_shape1, dtype=dtype) W2 = relay.var("weight2", shape=filter_shape2, dtype=dtype) mean = relay.mean(A, axis=1, keepdims=True) conv1 = relay.nn.conv2d( A, W1, data_layout="NCHW", kernel_layout="OIHW", padding=[1, 1, 1, 1], strides=[1, 1], out_dtype=dtype, channels=4, kernel_size=(3, 3), ) conv2 = relay.nn.conv2d( conv1, W2, data_layout="NCHW", kernel_layout="OIHW", padding=[1, 1, 1, 1], strides=[1, 1], out_dtype=dtype, channels=4, kernel_s
ize=(3, 3), ) ad3 = relay.op.add(conv1, conv2) ad1 = relay.op.add(mean, conv1) ad2 = relay.op.multiply(ad1, conv2) ad4 = relay.op.add(ad3, ad2) mod = relay.Function([A, W1, W2], ad4) np.random.seed(0) initializer = relay.testing.init.Xavier() filter_data1 = np.zeros(filter_shape1).astype(dtype) filter_data2 = np.zeros(filter_shape2).astype(dtype) initializer("weight", filter_data1) initializer("weight", filter_data2) params1 = { "weight1": tvm.nd.array(filter_data1), "weight2": tvm.nd.array(filter_data2), } static_memory_scope = [ "global", "global.texture", "global.texture-nhwc", "global.texture", "global.texture-nhwc", "global.texture", "global", "global", ] build_run_compare(mod, params1, {"data": input_shape}, dtype, target, static_memory_scope) @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_injective_nwo_inputs2(target, dtype): """ Use case for verification of stability of annotation primary functions having several ops accepting data outside of Primary function The visiting of ops during traversing of graph inside primary function can depend on order of relay graph creation. Thus the annotation mechanism should be reliable for graph traversal order The current decision if Prim Function support textures or not depend on *any* op accepting input of the function and if op support textures Input / \ layout_transform (NCHW->NCHW4c) | | / conv2d (1) / | / conv2d (2) mean / / \ / <- Primary function several head ops (1)add (2)layout_transform |
| (NCHW4c->NCHW) | | | \ / | | (3) add | | | layout_transform \ / (NCHW4c->NCHW) \ / \ mul \ / add This test verifies a case when the latest op which is (1), it supports textures an whole prim function is considered as a func working with textures """ input_shape = (1, 4, 40, 40) filter_shape1 = (4, 4, 3, 3) filter_shape2 = (4, 4, 3, 3) filter_shape3 = (4, 4, 3, 3) A = relay.var("data", shape=input_shape, dtype=dtype) W1 = relay.var("weight1", shape=filter_shape1, dtype=dtype) W2 = relay.var("weight2", shape=filter_shape2, dtype=dtype) mean = relay.mean(A, axis=1, keepdims=True) conv1 = relay.nn.conv2d( A, W1, data_layout="NCHW", kernel_layout="OIHW", padding=[1, 1, 1, 1], strides=[1, 1], out_dtype=dtype, channels=4, kernel_size=(3, 3), ) conv2 = relay.nn.conv2d( conv1, W2, data_layout="NCHW", kernel_layout="OIHW", padding=[1, 1, 1, 1], strides=[1, 1], out_dtype=dtype, channels=4, kernel_size=(3, 3), ) ad3 = relay.op.add(conv1, conv2) ad1 = relay.op.add(mean, conv1) ad2 = relay.op.multiply(ad1, conv2) ad4 = relay.op.add(ad2, ad3) mod = relay.Function([A, W1, W2], ad4) np.random.seed(0) initializer = relay.testing.init.Xavier() filter_data1 = np.zeros(filter_shape1).astype(dtype) filter_data2 = np.zeros(filter_shape2).astype(dtype) initializer("weight", filter_data1) initializer("weight", filter_data2) params1 = { "weight1": tvm.nd.array(filter_data1), "weight2": tvm.nd.array(filter_data2), } static_memory_scope = [ "global", "global.texture", "global.texture-nhwc",
"global.texture", "global", "global.texture-nhwc", "global.texture", "global", ] build_run_compare(mod, params1, {"data": input_shape}, dtype, target, static_memory_scope)
import os
import re
import tvm
import numpy as np from tvm
import relay from tvm.relay
import testing from tvm.contrib
import utils from utils.adreno_utils
import gpu_preprocess, build_run_compare
import pytest dtype = tvm.testing.parameter("float32") @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_conv2d_deeplabv3_1_257_257_32x1_1_32_16(target, dtype): input_shape = (1, 257, 257, 32) filter_shape = (1, 1, 32, 16) bias_shape = (filter_shape[-1],) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("weight", shape=filter_shape, dtype=dtype) bias = relay.var("bias", shape=bias_shape, dtype=dtype) conv = relay.nn.conv2d( A, B, data_layout="NHWC", kernel_layout="HWIO", out_dtype=dtype, channels=filter_shape[-1], kernel_size=(1, 1), ) D = relay.op.add(conv, bias) D = relay.op.nn.relu(D) mod = relay.Function([A, B, bias], D) np.random.seed(1) initializer = relay.testing.init.Xavier() filter_data = np.zeros(filter_shape).astype(dtype) bias_data = np.zeros(bias_shape).astype(dtype) initializer("weight", filter_data) initializer("bias", bias_data) params1 = { "weight": tvm.nd.array(filter_data), "bias": tvm.nd.array(bias_data), } build_run_compare(mod, params1, {"data": input_shape}, dtype, target) @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_conv2d_deeplabv3_1_257_257_32x1_1_32_16_with_padding(target, dtype): input_shape = (1, 257, 257, 32) filter_shape = (1, 1, 32, 16) bias_shape = (filter_shape[-1],) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("weight", shape=filter_shape, dtype=dtype) bias = relay.var("bias", shape=bias_shape, dtype=dtype) conv = relay.nn.conv2d( A, B, data_layout="NHWC", kernel_layout="HWIO", padding=[3, 3, 3, 3], strides=[2, 2], out_dtype=dtype, channels=filter_shape[-1], kernel_size=(1, 1), ) D = relay.op.add(conv, bias) D = relay.op.nn.relu(D) mod = relay.Function([A, B, bias], D)
np.random.seed(1) initializer = relay.testing.init.Xavier() filter_data = np.zeros(filter_shape).astype(dtype) bias_data = np.zeros(bias_shape).astype(dtype) initializer("weight", filter_data) initializer("bias", bias_data) params1 = { "weight": tvm.nd.array(filter_data), "bias": tvm.nd.array(bias_data), } build_run_compare(mod, params1, {"data": input_shape}, dtype, target) @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_conv2d_4_35_35_32x3_3_144_16(target, dtype): input_shape = (4, 35, 35, 32) filter_shape = (3, 3, 32, 16) bias_shape = (filter_shape[-1],) kernel_size = (filter_shape[0], filter_shape[1]) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("weight", shape=filter_shape, dtype=dtype) bias = relay.var("bias", shape=bias_shape, dtype=dtype) conv = relay.nn.conv2d( A, B, data_layout="NHWC", kernel_layout="HWIO", out_dtype=dtype, channels=filter_shape[-1], kernel_size=kernel_size, ) D = relay.op.add(conv, bias) D = relay.op.nn.relu(D) mod = relay.Function([A, B, bias], D) np.random.seed(1) initializer = relay.testing.init.Xavier() filter_data = np.zeros(filter_shape).astype(dtype) bias_data = np.zeros(bias_shape).astype(dtype) initializer("weight", filter_data) initializer("bias", bias_data) params1 = { "weight": tvm.nd.array(filter_data), "bias": tvm.nd.array(bias_data), } build_run_compare(mod, params1, {"data": input_shape}, dtype, target) @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_conv2d_deeplabv3_1_513_513_3x3_3_3_32(target, dtype): input_shape = (1, 513, 513, 3) filter_shape = (3, 3, 3, 32) bias_shape = (filter_shape[-1],) kernel_size = (filter_shape[0], filter_shape[1]) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("w
eight", shape=filter_shape, dtype=dtype) bias = relay.var("bias", shape=bias_shape, dtype=dtype) conv = relay.nn.conv2d( A, B, data_layout="NHWC", kernel_layout="HWIO", out_dtype=dtype, channels=filter_shape[-1], kernel_size=kernel_size, ) D = relay.op.add(conv, bias) D = relay.op.nn.relu(D) mod = relay.Function([A, B, bias], D) np.random.seed(1) initializer = relay.testing.init.Xavier() filter_data = np.ones(filter_shape).astype(dtype) bias_data = np.ones(bias_shape).astype(dtype) initializer("weight", filter_data) initializer("bias", bias_data) params1 = { "weight": tvm.nd.array(filter_data), "bias": tvm.nd.array(bias_data), } build_run_compare(mod, params1, {"data": input_shape}, dtype, target) @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_conv2d_inceptionv3_64x35x35_96x64x3x3_nopad(target, dtype): input_shape = (1, 42, 42, 32) filter_shape = (3, 3, 32, 96) bias_shape = (1, 1, 1, 96) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("weight", shape=filter_shape, dtype=dtype) bias = relay.var("bias", shape=bias_shape, dtype=dtype) conv = relay.nn.conv2d( A, B, data_layout="NHWC", kernel_layout="HWIO", padding=[0, 0, 0, 0], strides=[2, 2], out_dtype=dtype, channels=96, kernel_size=(3, 3), ) D = relay.op.add(conv, bias) D = relay.op.nn.relu(D) mod = relay.Function([A, B, bias], D) np.random.seed(0) initializer = relay.testing.init.Xavier() filter_data = np.zeros(filter_shape).astype(dtype) bias_data = np.zeros(bias_shape).astype(dtype) initializer("weight", filter_data) initializer("bias", bias_data) params1 = { "weight": tvm.nd.array(filter_data), "bias": tvm.nd.array(bias_data), } build_run_compare(mod, params1, {"data": input_shape}, dt
ype, target, [], gpu_preprocess) @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_conv2d_inceptionv3_64x35x35_96x64x3x3_nopad_pass(target, dtype): input_shape = (1, 40, 40, 32) filter_shape = (2, 2, 32, 96) bias_shape = (1, 1, 1, 96) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("weight", shape=filter_shape, dtype=dtype) bias = relay.var("bias", shape=bias_shape, dtype=dtype) conv = relay.nn.conv2d( A, B, data_layout="NHWC", kernel_layout="HWIO", padding=[0, 0, 0, 0], strides=[2, 2], out_dtype=dtype, channels=96, kernel_size=(2, 2), ) D = relay.op.add(conv, bias) D = relay.op.nn.relu(D) mod = relay.Function([A, B, bias], D) np.random.seed(0) initializer = relay.testing.init.Xavier() filter_data = np.zeros(filter_shape).astype(dtype) bias_data = np.zeros(bias_shape).astype(dtype) initializer("weight", filter_data) initializer("bias", bias_data) params1 = { "weight": tvm.nd.array(filter_data), "bias": tvm.nd.array(bias_data), } build_run_compare(mod, params1, {"data": input_shape}, dtype, target, [], gpu_preprocess) @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_conv2d_inceptionv3_35_35_strides(target, dtype): input_shape = (1, 35, 35, 48) filter_shape = (5, 5, 48, 64) bias_shape = (1, 1, 1, 64) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("weight", shape=filter_shape, dtype=dtype) bias = relay.var("bias", shape=bias_shape, dtype=dtype) conv = relay.nn.conv2d( A, B, data_layout="NHWC", kernel_layout="HWIO", padding=[2, 2, 2, 2], strides=[1, 1], out_dtype=dtype, channels=64, kernel_size=(5, 5), ) D = relay.op.add(conv, bias) D = relay.op.nn.relu(D) mod = relay.Function([A, B, bias
], D) np.random.seed(0) initializer = relay.testing.init.Xavier() filter_data = np.zeros(filter_shape).astype(dtype) bias_data = np.zeros(bias_shape).astype(dtype) initializer("weight", filter_data) initializer("bias", bias_data) params1 = { "weight": tvm.nd.array(filter_data), "bias": tvm.nd.array(bias_data), } build_run_compare(mod, params1, {"data": input_shape}, dtype, target, [], gpu_preprocess) @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_conv2d_resnet50_v2_nhwc_3c(target, dtype): input_shape = (1, 224, 224, 3) filter_shape = (7, 7, 3, 64) bias_shape = (1, 1, 1, 64) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("weight", shape=filter_shape, dtype=dtype) bias = relay.var("bias", shape=bias_shape, dtype=dtype) conv = relay.nn.conv2d( A, B, data_layout="NHWC", kernel_layout="HWIO", padding=[3, 3, 3, 3], strides=[2, 2], out_dtype=dtype, channels=64, kernel_size=(7, 7), ) D = relay.op.add(conv, bias) D = relay.op.nn.relu(D) mod = relay.Function([A, B, bias], D) np.random.seed(1) initializer = relay.testing.init.Xavier() filter_data = np.zeros(filter_shape).astype(dtype) bias_data = np.zeros(bias_shape).astype(dtype) initializer("weight", filter_data) initializer("bias", bias_data) params1 = { "weight": tvm.nd.array(filter_data), "bias": tvm.nd.array(bias_data), } build_run_compare(mod, params1, {"data": input_shape}, dtype, target) @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_conv2d_inceptionv3_nhwc_3c(target, dtype): input_shape = (1, 299, 299, 3) filter_shape = (3, 3, 3, 64) bias_shape = (1, 1, 1, 64) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("weight", shape=filter_shape, dtype=dtype) bias = relay.var("bia
s", shape=bias_shape, dtype=dtype) conv = relay.nn.conv2d( A, B, data_layout="NHWC", kernel_layout="HWIO", padding=[0, 0, 0, 0], strides=[2, 2], out_dtype=dtype, channels=64, kernel_size=(3, 3), ) D = relay.op.add(conv, bias) D = relay.op.nn.relu(D) mod = relay.Function([A, B, bias], D) np.random.seed(0) initializer = relay.testing.init.Xavier() filter_data = np.zeros(filter_shape).astype(dtype) bias_data = np.zeros(bias_shape).astype(dtype) initializer("weight", filter_data) initializer("bias", bias_data) params1 = { "weight": tvm.nd.array(filter_data), "bias": tvm.nd.array(bias_data), } build_run_compare(mod, params1, {"data": input_shape}, dtype, target) @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_conv2d_1x1_16c16spatial(target, dtype): input_shape = (1, 128, 128, 16) filter_shape = (4, 4, 16, 32) bias_shape = (1, 1, 1, 32) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("weight", shape=filter_shape, dtype=dtype) bias = relay.var("bias", shape=bias_shape, dtype=dtype) conv = relay.nn.conv2d( A, B, data_layout="NHWC", kernel_layout="HWIO", padding=[0, 0, 0, 0], strides=[2, 2], out_dtype=dtype, channels=32, kernel_size=(4, 4), ) D = relay.op.add(conv, bias) D = relay.op.nn.relu(D) mod = relay.Function([A, B, bias], D) np.random.seed(0) initializer = relay.testing.init.Xavier() filter_data = np.zeros(filter_shape).astype(dtype) bias_data = np.zeros(bias_shape).astype(dtype) initializer("weight", filter_data) initializer("bias", bias_data) params1 = { "weight": tvm.nd.array(filter_data), "bias": tvm.nd.array(bias_data), } build_run_compare(mod, params1, {"data": input_shape}, dtype, target) @tvm.testing.requires_openc
l @tvm.testing.parametrize_targets("opencl -device=adreno") def test_conv2d_4x4_16c16pad(target, dtype): input_shape = (1, 256, 256, 32) filter_shape = (4, 4, 32, 32) bias_shape = (1, 1, 1, 32) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("weight", shape=filter_shape, dtype=dtype) bias = relay.var("bias", shape=bias_shape, dtype=dtype) conv = relay.nn.conv2d( A, B, data_layout="NHWC", kernel_layout="HWIO", padding=[3, 3, 0, 0], strides=[2, 2], out_dtype=dtype, channels=32, kernel_size=(4, 4), ) D = relay.op.add(conv, bias) D = relay.op.nn.relu(D) mod = relay.Function([A, B, bias], D) np.random.seed(0) initializer = relay.testing.init.Xavier() filter_data = np.zeros(filter_shape).astype(dtype) bias_data = np.zeros(bias_shape).astype(dtype) initializer("weight", filter_data) initializer("bias", bias_data) params1 = { "weight": tvm.nd.array(filter_data), "bias": tvm.nd.array(bias_data), } build_run_compare(mod, params1, {"data": input_shape}, dtype, target) @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_conv2d_4x4x4_16c16pad(target, dtype): input_shape = (1, 256, 256, 32) filter_shape = (4, 4, 32, 4) bias_shape = (1, 1, 1, 4) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("weight", shape=filter_shape, dtype=dtype) bias = relay.var("bias", shape=bias_shape, dtype=dtype) conv = relay.nn.conv2d( A, B, data_layout="NHWC", kernel_layout="HWIO", padding=[3, 3, 0, 0], strides=[2, 2], out_dtype=dtype, channels=4, kernel_size=(4, 4), ) D = relay.op.add(conv, bias) D = relay.op.nn.relu(D) mod = relay.Function([A, B, bias], D) np.random.seed(0) initializer = relay.testing.init.Xavier() filter_data = np.zeros(filter_shape).astype(dtyp
e) bias_data = np.zeros(bias_shape).astype(dtype) initializer("weight", filter_data) initializer("bias", bias_data) params1 = { "weight": tvm.nd.array(filter_data), "bias": tvm.nd.array(bias_data), } build_run_compare(mod, params1, {"data": input_shape}, dtype, target) @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_conv2d_yolov3_v2_nhwc_3c(target, dtype): input_shape = (1, 13, 13, 1024) filter_shape = (1, 1, 1024, 255) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("weight", shape=filter_shape, dtype=dtype) conv = relay.nn.conv2d( A, B, data_layout="NHWC", kernel_layout="HWIO", padding=[0, 0, 0, 0], strides=[1, 1], out_dtype=dtype, channels=255, kernel_size=(1, 1), ) mod = relay.Function([A, B], conv) np.random.seed(0) initializer = relay.testing.init.Xavier() filter_data = np.zeros(filter_shape).astype(dtype) initializer("weight", filter_data) params = { "weight": tvm.nd.array(filter_data), } build_run_compare(mod, params, {"data": input_shape}, dtype, target) @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_conv2d_vgg16_winograd_4d(target, dtype): input_shape = (1, 28, 28, 512) filter_shape = (3, 3, 512, 512) bias_shape = (1, 1, 1, 512) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("weight", shape=filter_shape, dtype=dtype) bias = relay.var("bias", shape=bias_shape, dtype=dtype) conv = relay.nn.conv2d( A, B, data_layout="NHWC", kernel_layout="HWIO", padding=[1, 1, 1, 1], channels=512, kernel_size=[3, 3], out_dtype=dtype, ) D = relay.op.add(conv, bias) D = relay.op.nn.relu(D) mod = relay.Function([A, B, bias], D) np.random.seed(0) initializer = relay.testing.init.Xavier()
filter_data = np.zeros(filter_shape).astype(dtype) bias_data = np.zeros(bias_shape).astype(dtype) initializer("weight", filter_data) initializer("bias", bias_data) params1 = { "weight": tvm.nd.array(filter_data), "bias": tvm.nd.array(bias_data), } temp = utils.tempdir() stat_file = temp.relpath("stat.log") with open(stat_file, "w") as f: f.write( f'{{"input": ["opencl -keys=adreno,opencl,gpu -device=adreno -max_num_threads=256", "conv2d_nhwc_winograd.image2d", [["TENSOR", [1, 28, 28, 512], "{dtype}"], ["TENSOR", [3, 3, 512, 512], "{dtype}"], [1, 1], [1, 1, 1, 1], [1, 1], "{dtype}"], {{}}], "config": {{"index": 1591, "code_hash": null, "entity": [["auto_unroll_max_step", "ot", 4], ["tile_y", "sp", [-1, 1, 32]], ["tile_x", "sp", [-1, 4, 2]], ["tile_rc", "sp", [-1, 8]]]}}, "result": [[0.0037244], 0, 7.06374192237854, 1653898629.7427933], "version": 0.2, "tvm_version": "0.8.dev0"}}\n' ) graph = build_run_compare( mod, params1, {"data": input_shape}, dtype, target, stat_file=stat_file ) matches = re.findall("winograd", graph) assert len(matches) > 0 @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_conv2d_winograd_conv(target, dtype): input_shape = (1, 3, 3, 4) A = relay.var("data", shape=input_shape, dtype=dtype) filter_shape3 = (3, 3, 4, 8) bias_shape3 = (1, 1, 1, 8) B3 = relay.var("weight3", shape=filter_shape3, dtype=dtype) D = relay.nn.conv2d( A, B3, data_layout="NHWC", kernel_layout="HWIO", padding=[1, 1, 1, 1], channels=8, kernel_size=[3, 3], out_dtype=dtype, ) filter_shape4 = (3, 3, 8, 8) bias_shape4 = (1, 1, 1, 8) B4 = relay.var("weight4", shape=filter_shape4, dtype=dtype) D = relay.nn.conv2d( D, B4, data_layout="NHWC", kernel_layout="HWIO", padding=[1, 1, 1, 1], channels=8, kernel_size=[3, 3],
out_dtype=dtype, ) mod = relay.Function([A, B3, B4], D) np.random.seed(1) initializer = relay.testing.init.Xavier() filter_data3 = np.zeros(filter_shape3).astype(dtype) bias_data3 = np.zeros(bias_shape3).astype(dtype) filter_data4 = np.zeros(filter_shape4).astype(dtype) bias_data4 = np.zeros(bias_shape4).astype(dtype) initializer("weight", filter_data3) initializer("bias", bias_data3) initializer("weight", filter_data4) initializer("bias", bias_data4) params1 = { "weight3": tvm.nd.array(filter_data3), "weight4": tvm.nd.array(filter_data4), } temp = utils.tempdir() stat_file = temp.relpath("stat.log") with open(stat_file, "w") as f: f.write( f'{{"input": ["opencl -keys=adreno,opencl,gpu -device=adreno -max_num_threads=256", "conv2d_nhwc_winograd.image2d", [["TENSOR", [1, 3, 3, 4], "{dtype}"], ["TENSOR", [3, 3, 4, 8], "{dtype}"], [1, 1], [1, 1, 1, 1], [1, 1], "{dtype}"], {{}}], "config": {{"index": 1591, "code_hash": null, "entity": [["auto_unroll_max_step", "ot", 4], ["tile_y", "sp", [-1, 1, 32]], ["tile_x", "sp", [-1, 4, 2]], ["tile_rc", "sp", [-1, 8]]]}}, "result": [[0.0037244], 0, 7.06374192237854, 1653898629.7427933], "version": 0.2, "tvm_version": "0.8.dev0"}}\n' ) graph = build_run_compare( mod, params1, {"data": input_shape}, dtype, target, stat_file=stat_file ) matches = re.findall("winograd", graph) assert len(matches) > 0 @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_conv2d_winograd_non_rect(target, dtype): input_shape = (1, 36, 64, 771) A = relay.var("data", shape=input_shape, dtype=dtype) filter_shape = (3, 3, 771, 128) B = relay.var("weight", shape=filter_shape, dtype=dtype) D = relay.nn.conv2d( A, B, data_layout="NHWC", kernel_layout="HWIO", padding=[1, 1, 1, 1], channels=128, kernel_size=[3, 3], out_dtype=dtype, ) mod
= relay.Function([A, B], D) np.random.seed(1) initializer = relay.testing.init.Xavier() filter_data = np.zeros(filter_shape).astype(dtype) initializer("weight", filter_data) params1 = { "weight": tvm.nd.array(filter_data), } temp = utils.tempdir() stat_file = temp.relpath("stat.log") with open(stat_file, "w") as f: f.write( f'{{"input": ["opencl -keys=adreno,opencl,gpu -device=adreno -max_num_threads=256 -texture_spatial_limit=16384 -thread_warp_size=1", "conv2d_nhwc_winograd.image2d", [["TENSOR", [1, 36, 64, 771], "{dtype}"], ["TENSOR", [3, 3, 771, 128], "{dtype}"], [1, 1], [1, 1, 1, 1], [1, 1], "{dtype}"], {{}}], "config": {{"index": 5399, "code_hash": null, "entity": [["auto_unroll_max_step", "ot", 16], ["tile_y", "sp", [-1, 1, 32]], ["tile_x", "sp", [-1, 4, 8]], ["tile_rc", "sp", [-1, 193]]]}}, "result": [[0.0037244], 0, 7.06374192237854, 1653898629.7427933], "version": 0.2, "tvm_version": "0.8.dev0"}}\n' ) graph = build_run_compare( mod, params1, {"data": input_shape}, dtype, target, stat_file=stat_file ) matches = re.findall("winograd", graph) assert len(matches) > 0
import os
import tvm
import numpy as np from tvm
import relay from tvm.relay
import testing from utils.adreno_utils
import gpu_preprocess, build_run_compare dtype = tvm.testing.parameter("float32") @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_depthwise_conv2d_bias_nchwc(target, dtype): input_shape = (1, 64, 112, 112) filter_shape = (64, 1, 3, 3) bias_shape = (1, 64, 1, 1) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("weight", shape=filter_shape, dtype=dtype) bias = relay.var("bias", shape=bias_shape, dtype=dtype) conv = relay.nn.conv2d( A, B, data_layout="NCHW", kernel_layout="OIHW", padding=[1, 1, 1, 1], strides=[2, 2], out_dtype=dtype, channels=64, groups=64, kernel_size=(3, 3), ) D = relay.op.add(conv, bias) D = relay.op.nn.relu(D) mod = relay.Function([A, B, bias], D) np.random.seed(1) initializer = relay.testing.init.Xavier() filter_data = np.zeros(filter_shape).astype(dtype) bias_data = np.zeros(bias_shape).astype(dtype) initializer("weight", filter_data) initializer("bias", bias_data) params1 = { "weight": tvm.nd.array(filter_data), "bias": tvm.nd.array(bias_data), } build_run_compare(mod, params1, {"data": input_shape}, dtype, target, [], gpu_preprocess) @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_depthwise_conv2d_nchwc(target, dtype): input_shape = (1, 64, 112, 112) filter_shape = (64, 1, 3, 3) bias_shape = (1, 64, 1, 1) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("weight", shape=filter_shape, dtype=dtype) conv = relay.nn.conv2d( A, B, data_layout="NCHW", kernel_layout="OIHW", padding=[1, 1, 1, 1], strides=[2, 2], out_dtype=dtype, channels=64, groups=64, kernel_size=(3, 3), ) mod = relay.Function([A, B], conv) np.random.seed(1) initializer = relay.tes
ting.init.Xavier() filter_data = np.zeros(filter_shape).astype(dtype) bias_data = np.zeros(bias_shape).astype(dtype) initializer("weight", filter_data) params1 = { "weight": tvm.nd.array(filter_data), } build_run_compare(mod, params1, {"data": input_shape}, dtype, target, [], gpu_preprocess) @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_depthwise_conv2d_bias_nchw(target, dtype): input_shape = (1, 64, 112, 112) filter_shape = (64, 1, 3, 3) bias_shape = (1, 64, 1, 1) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("weight", shape=filter_shape, dtype=dtype) bias = relay.var("bias", shape=bias_shape, dtype=dtype) conv = relay.nn.conv2d( A, B, data_layout="NCHW", kernel_layout="OIHW", padding=[1, 1, 1, 1], strides=[2, 2], out_dtype=dtype, channels=64, groups=64, kernel_size=(3, 3), ) D = relay.op.add(conv, bias) D = relay.op.nn.relu(D) mod = relay.Function([A, B, bias], D) np.random.seed(1) initializer = relay.testing.init.Xavier() filter_data = np.zeros(filter_shape).astype(dtype) bias_data = np.zeros(bias_shape).astype(dtype) initializer("weight", filter_data) initializer("bias", bias_data) params1 = { "weight": tvm.nd.array(filter_data), "bias": tvm.nd.array(bias_data), } build_run_compare(mod, params1, {"data": input_shape}, dtype, target) @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_depthwise_conv2d_repack_bias_nchw(target, dtype): input_shape = (1, 63, 112, 112) filter_shape = (63, 1, 3, 3) bias_shape = (1, 63, 1, 1) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("weight", shape=filter_shape, dtype=dtype) bias = relay.var("bias", shape=bias_shape, dtype=dtype) conv = relay.nn.conv2d( A, B, data
_layout="NCHW", kernel_layout="OIHW", padding=[1, 1, 1, 1], strides=[2, 2], out_dtype=dtype, channels=63, groups=63, kernel_size=(3, 3), ) D = relay.op.add(conv, bias) D = relay.op.nn.relu(D) mod = relay.Function([A, B, bias], D) np.random.seed(1) initializer = relay.testing.init.Xavier() filter_data = np.zeros(filter_shape).astype(dtype) bias_data = np.zeros(bias_shape).astype(dtype) initializer("weight", filter_data) initializer("bias", bias_data) params1 = { "weight": tvm.nd.array(filter_data), "bias": tvm.nd.array(bias_data), } build_run_compare(mod, params1, {"data": input_shape}, dtype, target)
import os
import tvm
import numpy as np from tvm
import relay from tvm.relay
import testing from utils.adreno_utils
import build_run_compare dtype = tvm.testing.parameter("float32") @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_depthwise_conv2d_deeplabv3_1_129_129_144x3_3_144_1(target, dtype): input_shape = (1, 129, 129, 144) filter_shape = (3, 3, 144, 1) kernel_size = (filter_shape[0], filter_shape[1]) bias_shape = (filter_shape[2],) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("weight", shape=filter_shape, dtype=dtype) bias = relay.var("bias", shape=bias_shape, dtype=dtype) conv = relay.nn.conv2d( A, B, data_layout="NHWC", kernel_layout="HWOI", out_dtype=dtype, groups=filter_shape[2], channels=filter_shape[2], kernel_size=kernel_size, ) D = relay.op.add(conv, bias) D = relay.op.nn.relu(D) mod = relay.Function([A, B, bias], D) mod = relay.Function([A, B, bias], conv) np.random.seed(1) initializer = relay.testing.init.Xavier() filter_data = np.zeros(filter_shape).astype(dtype) bias_data = np.zeros(bias_shape).astype(dtype) initializer("weight", filter_data) initializer("bias", bias_data) params1 = { "weight": tvm.nd.array(filter_data), "bias": tvm.nd.array(bias_data), } build_run_compare(mod, params1, {"data": input_shape}, dtype, target) @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_depthwise_conv2d_deeplabv3_4_35_35_576x3_3_576_1(target, dtype): input_shape = (4, 35, 35, 576) filter_shape = (3, 3, 576, 1) kernel_size = (filter_shape[0], filter_shape[1]) bias_shape = (filter_shape[2],) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("weight", shape=filter_shape, dtype=dtype) bias = relay.var("bias", shape=bias_shape, dtype=dtype) conv = relay.nn.conv2d( A, B, data_layout="NHWC", kernel_layout="HWOI", out_dtype=dtype, groups=filter_sh
ape[2], channels=filter_shape[2], kernel_size=kernel_size, ) D = relay.op.add(conv, bias) D = relay.op.nn.relu(D) mod = relay.Function([A, B, bias], D) mod = relay.Function([A, B, bias], conv) np.random.seed(1) initializer = relay.testing.init.Xavier() filter_data = np.zeros(filter_shape).astype(dtype) bias_data = np.zeros(bias_shape).astype(dtype) initializer("weight", filter_data) initializer("bias", bias_data) params1 = { "weight": tvm.nd.array(filter_data), "bias": tvm.nd.array(bias_data), } build_run_compare(mod, params1, {"data": input_shape}, dtype, target) @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_depthwise_conv2d_deeplabv3_1_129_129_144x3_3_144_1_with_padding(target, dtype): input_shape = (1, 129, 129, 144) filter_shape = (3, 3, 144, 1) kernel_size = (filter_shape[0], filter_shape[1]) bias_shape = (filter_shape[2],) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("weight", shape=filter_shape, dtype=dtype) bias = relay.var("bias", shape=bias_shape, dtype=dtype) conv = relay.nn.conv2d( A, B, data_layout="NHWC", kernel_layout="HWOI", padding=[3, 3, 3, 3], strides=[2, 2], out_dtype=dtype, groups=filter_shape[2], channels=filter_shape[2], kernel_size=kernel_size, ) D = relay.op.add(conv, bias) D = relay.op.nn.relu(D) mod = relay.Function([A, B, bias], D) np.random.seed(1) initializer = relay.testing.init.Xavier() filter_data = np.zeros(filter_shape).astype(dtype) bias_data = np.zeros(bias_shape).astype(dtype) initializer("weight", filter_data) initializer("bias", bias_data) params1 = { "weight": tvm.nd.array(filter_data), "bias": tvm.nd.array(bias_data), } build_run_compare(mod, params1, {"data": input_shape}, dtype, target) @tvm.testing.requires_opencl @tvm.t
esting.parametrize_targets("opencl -device=adreno") def test_depthwise_conv2d_1_513_513_7x3_3_7_1(target, dtype): input_shape = (1, 513, 513, 7) filter_shape = (3, 3, 7, 1) bias_shape = (filter_shape[2],) kernel_size = (filter_shape[0], filter_shape[1]) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("weight", shape=filter_shape, dtype=dtype) bias = relay.var("bias", shape=bias_shape, dtype=dtype) conv = relay.nn.conv2d( A, B, data_layout="NHWC", kernel_layout="HWOI", out_dtype=dtype, channels=filter_shape[2], groups=filter_shape[2], kernel_size=kernel_size, ) D = relay.op.add(conv, bias) D = relay.op.nn.relu(D) mod = relay.Function([A, B, bias], D) np.random.seed(1) initializer = relay.testing.init.Xavier() filter_data = np.ones(filter_shape).astype(dtype) bias_data = np.ones(bias_shape).astype(dtype) initializer("weight", filter_data) initializer("bias", bias_data) params1 = { "weight": tvm.nd.array(filter_data), "bias": tvm.nd.array(bias_data), } build_run_compare(mod, params1, {"data": input_shape}, dtype, target) @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_depthwise_conv2d_1_513_513_3x3_3_3_1(target, dtype): input_shape = (1, 513, 513, 3) filter_shape = (3, 3, 3, 1) bias_shape = (filter_shape[2],) kernel_size = (filter_shape[0], filter_shape[1]) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("weight", shape=filter_shape, dtype=dtype) bias = relay.var("bias", shape=bias_shape, dtype=dtype) conv = relay.nn.conv2d( A, B, data_layout="NHWC", kernel_layout="HWOI", out_dtype=dtype, channels=filter_shape[2], groups=filter_shape[2], kernel_size=kernel_size, ) D = relay.op.add(conv, bias) D = relay.op.nn.relu(D) mod = relay.Function([A, B, bias], D
) np.random.seed(1) initializer = relay.testing.init.Xavier() filter_data = np.ones(filter_shape).astype(dtype) bias_data = np.ones(bias_shape).astype(dtype) initializer("weight", filter_data) initializer("bias", bias_data) params1 = { "weight": tvm.nd.array(filter_data), "bias": tvm.nd.array(bias_data), } build_run_compare(mod, params1, {"data": input_shape}, dtype, target)
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import re import tvm import numpy as np from tvm import relay from tvm.relay import testing from tvm.contrib import utils from utils.adreno_utils import gpu_preprocess, build_run_compare dtype = tvm.testing.parameter("float32") @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_mean(target, dtype): # NCHW input_shape = (1, 3, 720, 1280) A = relay.var("data", shape=input_shape, dtype=dtype) mean = relay.mean(A, axis=1, keepdims=True) mod = relay.Function([A], mean) build_run_compare(mod, {}, {"data": input_shape}, dtype, target) @tvm.testing.requires_opencl @tvm.testing.parametrize_targets("opencl -device=adreno") def test_argmax(target, dtype): # NCHW input_shape = (1, 3, 720, 1280) A = relay.var("data", shape=input_shape, dtype=dtype) argmax = relay.op.argmax(A, axis=[1]) mod = relay.Function([A], argmax) build_run_compare(mod, {}, {"data": input_shape}, dtype, target)
"""Utils for adreno compute/schedules"""
import os
import tvm
import numpy as np from tvm
import relay from tvm
import autotvm from tvm.relay
import testing from tvm.relay.transform
import recast from tvm.contrib
import graph_runtime
import json def get_cpu_reference(mod, params1, input_shape, inputs): mod_fp32 = recast(mod, "float32", "float32", ops=["nn.conv2d", "add", "nn.relu"]) with relay.build_config(opt_level=3): graph, lib, params = relay.build(mod_fp32, "llvm", params=params1) ctx = tvm.cpu() m = graph_runtime.create(graph, lib, ctx) if isinstance(input_shape, dict): for key in input_shape: m.set_input(key, inputs[-1]) else: m.set_input("data", inputs[-1]) m.set_input(**params) m.run() return [ m.get_output(0).asnumpy(), ] def build_run_compare( tvm_mod, params1, input_shape, dtype="float32", target="llvm", static_mem_scopes=[], gpu_preprocess=None, stat_file=None, ): if "TVM_TRACKER_HOST" in os.environ and "TVM_TRACKER_PORT" in os.environ: rpc_tracker_host = os.environ["TVM_TRACKER_HOST"] rpc_tracker_port = os.environ["TVM_TRACKER_PORT"] run_on_host = 0 target_host = "llvm -mtriple=arm64-linux-android" rpc_tracker_port = int(rpc_tracker_port) else: run_on_host = 1 target_host = "llvm" if gpu_preprocess: tvm_mod_nchwc = gpu_preprocess(tvm_mod) else: tvm_mod_nchwc = tvm_mod if stat_file is not None: with autotvm.apply_history_best(stat_file): with tvm.transform.PassContext(opt_level=3): graph, lib, params = relay.build( tvm_mod_nchwc, target_host=target_host, target=target, params=params1 ) else: with tvm.transform.PassContext(opt_level=3): graph, lib, params = relay.build( tvm_mod_nchwc, target_host=target_host, target=target, params=params1 ) graph_json = json.loads(graph) if "storage_scope" in graph_json["attrs"]: assert ( len(static_mem_scopes) == len(graph_json["attrs"]["storage_scope"][1]) or len(static_mem_scopes) == 0 ) else: as
sert len(static_mem_scopes) == 0 for i in range(0, len(static_mem_scopes)): assert static_mem_scopes[i] == graph_json["attrs"]["storage_scope"][1][i] if run_on_host: ctx = tvm.opencl() m = graph_runtime.create(graph, lib, ctx) else: from tvm
import rpc from tvm.contrib
import utils, ndk rpc_key = "android" tracker = rpc.connect_tracker(rpc_tracker_host, rpc_tracker_port) remote = tracker.request(rpc_key, priority=0, session_timeout=600) temp = utils.tempdir() dso_binary = "dev_lib_cl.so" dso_binary_path = temp.relpath(dso_binary) ctx = remote.cl(0) lib.export_library(dso_binary_path, ndk.create_shared) remote.upload(dso_binary_path) rlib = remote.load_module(dso_binary) m = graph_runtime.create(graph, rlib, ctx) m.set_input(**params) inputs = [] if isinstance(input_shape, dict): for key in input_shape: inputs.append(np.random.normal(size=input_shape[key]).astype(dtype)) m.set_input(key, inputs[-1]) else: inputs.append(np.random.normal(size=input_shape).astype(dtype)) m.set_input("data", inputs[-1]) m.run() ref_outputs = get_cpu_reference(tvm_mod, params1, input_shape, inputs) for i, ref_output in enumerate(ref_outputs): tvm_output = m.get_output(i) output = tvm_output.asnumpy() np.testing.assert_allclose(output, ref_output, rtol=1e-1, atol=1e-1) return graph def gpu_preprocess(tvm_mod): layout_config = relay.transform.LayoutConfig() desired_layouts = {"nn.conv2d": ["NCHW4c", "OIHW4o"]} with layout_config: seq = tvm.transform.Sequential([relay.transform.ConvertLayout(desired_layouts)]) with tvm.transform.PassContext(opt_level=3): mod = tvm.IRModule.from_expr(tvm_mod) tvm_mod_nchwc = seq(mod) return tvm_mod_nchwc
from typing
import Callable
import numpy as np from tvm
import relay from tvm.relay.qnn.op