text
stringlengths
1
2.05k
import count as count_, make_nat_value, make_nat_expr
import numpy as np prelude = p = Prelude(tvm.IRModule({})) p.mod.import_from_std("nat.rly") def count(e): return count_(p, e) dev = tvm.device("llvm", 0) def eval(expr): return create_executor(mod=prelude.mod, device=dev, target="llvm").evaluate(expr) nat, z, s = prelude.mod.get_type("nat") double = p.mod.get_global_var("nat_double") add = p.mod.get_global_var("nat_add") optional, some, none = prelude.mod.get_type("Option") rlist, cons, nil = prelude.mod.get_type("List") hd = p.hd tl = p.tl nth = p.nth update = p.update length = p.length map = p.map foldl = p.foldl foldr = p.foldr foldr1 = p.foldr1 sum = p.sum concat = p.concat filter = p.filter zip = p.zip rev = p.rev unfoldl = p.unfoldl unfoldr = p.unfoldr map_accumr = p.map_accumr map_accuml = p.map_accuml tree, rose = prelude.mod.get_type("Tree") tmap = p.tmap size = p.size compose = p.compose iterate = p.iterate def to_list(l): assert isinstance(l, ConstructorValue) val = l ret = [] while True: if val.tag == cons.tag: ret.append(val.fields[0]) val = val.fields[1] else: assert val.tag == nil.tag break return ret def tree_to_dict(t): assert isinstance(t, ConstructorValue) ret = {} assert t.tag == rose.tag ret["member"] = t.fields[0] ret["children"] = [] for subtree in to_list(t.fields[1]): l = tree_to_dict(subtree) ret["children"].append(l) return ret def vmobj_to_list(o, dtype="float32"): if isinstance(o, tvm.nd.NDArray): return [o.numpy().tolist()] elif isinstance(o, tvm.runtime.container.ADT): if len(o) == 0: tensor_nil = p.get_var("tensor_nil", dtype=dtype) if tensor_nil.tag == o.tag: return [0] return [] result = [] for f in o: result.extend(vmobj_to_list(f, dtype)) return result elif isinstance(o, tvm.relay.backend.interpreter.ConstructorValue): if o.constructor
.name_hint == "Cons": tl = vmobj_to_list(o.fields[1], dtype) hd = vmobj_to_list(o.fields[0], dtype) hd.extend(tl) return hd elif o.constructor.name_hint == "Nil": return [] elif "tensor_nil" in o.constructor.name_hint: return [0] elif "tensor" in o.constructor.name_hint: return [o.fields[0].numpy()] else: raise RuntimeError("Unknown object type: %s" % o.constructor.name_hint) else: raise RuntimeError("Unknown object type: %s" % type(o)) def get_scalar(tv): return tv.numpy().item() def test_nat_value(): assert count(make_nat_value(p, 10)) == 10 assert count(eval(s(s(z())))) == 2 @tvm.testing.uses_gpu def test_nat_constructor(): func = relay.Function([], z()) test_z = relay.GlobalVar("test_z") test_sz = relay.GlobalVar("test_sz") prelude.mod[test_z] = func func = relay.Function([], s(z())) prelude.mod[test_sz] = func ck_mod = relay.transform.InferType()(prelude.mod) assert ck_mod[test_z].body.checked_type == nat() assert ck_mod[test_sz].body.checked_type == nat() @tvm.testing.uses_gpu def test_double(): assert prelude.mod[double].checked_type == relay.FuncType([nat()], nat()) res = eval(double(s(z()))) assert count(res) == 2 @tvm.testing.uses_gpu def test_add(): assert prelude.mod[add].checked_type == relay.FuncType([nat(), nat()], nat()) res = eval(add(s(z()), s(z()))) assert count(res) == 2 @tvm.testing.uses_gpu def test_list_constructor(): test_consz = relay.GlobalVar("test_consz") func = relay.Function([], cons(z(), nil())) prelude.mod[test_consz] = func ck_mod = relay.transform.InferType()(prelude.mod) assert ck_mod[test_consz].body.checked_type == rlist(nat()) @tvm.testing.uses_gpu def test_hd_tl(): expected = list(range(10)) l = nil() for i in reversed(expected): l = cons(make_nat_expr(prelude, i), l) got = [] for i in range(len(expecte
d)): got.append(count(eval(hd(l)))) l = tl(l) assert got == expected @tvm.testing.uses_gpu def test_nth(): expected = list(range(10)) l = nil() for i in reversed(expected): l = cons(relay.const(i), l) for i in range(len(expected)): nth = prelude.mod.get_global_var("nth") item = eval(nth(l, relay.const(i))) assert get_scalar(item) == i @tvm.testing.uses_gpu def test_update(): expected = list(range(10)) l = nil() for i in range(len(expected)): l = cons(make_nat_expr(prelude, 0), l) for i, v in enumerate(expected): l = update(l, relay.const(i), make_nat_expr(prelude, v)) got = [] for i in range(len(expected)): got.append(count(eval(nth(l, relay.const(i))))) assert got == expected @tvm.testing.uses_gpu def test_length(): a = relay.TypeVar("a") assert prelude.mod[length].checked_type == relay.FuncType( [rlist(a)], relay.scalar_type("int32"), [a] ) res = eval(length(cons(z(), cons(z(), cons(z(), nil()))))) assert get_scalar(res) == 3 @tvm.testing.uses_gpu def test_map(): a = relay.TypeVar("a") b = relay.TypeVar("b") lhs = prelude.mod[map].checked_type rhs = relay.FuncType([relay.FuncType([a], b), rlist(a)], rlist(b), [a, b]) assert lhs == rhs x = relay.Var("x") add_one = relay.Function([x], s(x)) res = eval(map(add_one, cons(z(), cons(z(), nil())))) ones = to_list(res) assert len(ones) == 2 assert count(ones[0]) == 1 and count(ones[1]) == 1 @tvm.testing.uses_gpu def test_foldl(): a = relay.TypeVar("a") b = relay.TypeVar("b") lhs = prelude.mod[foldl].checked_type rhs = relay.FuncType([relay.FuncType([a, b], a), a, rlist(b)], a, [a, b]) assert lhs == rhs x = relay.Var("x") y = relay.Var("y") rev_dup = relay.Function([y, x], cons(x, cons(x, y))) res = eval( foldl( rev_dup, nil(), cons( make_nat_expr(prelude, 1),
cons(make_nat_expr(prelude, 2), cons(make_nat_expr(prelude, 3), nil())), ), ) ) reversed = to_list(res) assert len(reversed) == 6 assert count(reversed[0]) == 3 and count(reversed[1]) == 3 assert count(reversed[2]) == 2 and count(reversed[3]) == 2 assert count(reversed[4]) == 1 and count(reversed[5]) == 1 @tvm.testing.uses_gpu def test_foldr(): a = relay.TypeVar("a") b = relay.TypeVar("b") lhs = prelude.mod[foldr].checked_type rhs = relay.FuncType([relay.FuncType([a, b], b), b, rlist(a)], b, [a, b]) assert lhs == rhs x = relay.Var("x") y = relay.Var("y") identity = relay.Function([x, y], cons(x, y)) res = eval( foldr( identity, nil(), cons( make_nat_expr(prelude, 1), cons(make_nat_expr(prelude, 2), cons(make_nat_expr(prelude, 3), nil())), ), ) ) same = to_list(res) assert len(same) == 3 assert count(same[0]) == 1 and count(same[1]) == 2 and count(same[2]) == 3 @tvm.testing.uses_gpu def test_foldr1(): a = relay.TypeVar("a") lhs = prelude.mod[foldr1].checked_type rhs = relay.FuncType([relay.FuncType([a, a], a), rlist(a)], a, [a]) assert lhs == rhs x = relay.Var("x") y = relay.Var("y") f = relay.Function([x, y], add(x, y)) res = eval( foldr1( f, cons( make_nat_expr(prelude, 1), cons(make_nat_expr(prelude, 2), cons(make_nat_expr(prelude, 3), nil())), ), ) ) assert count(res) == 6 @tvm.testing.uses_gpu def test_sum(): assert prelude.mod[sum].checked_type == relay.FuncType( [rlist(relay.scalar_type("int32"))], relay.scalar_type("int32") ) res = eval(sum(cons(relay.const(1), cons(relay.const(2), nil())))) assert get_scalar(res) == 3 @tvm.testing.uses_gpu def test_concat(): a = relay.TypeVar("a") assert prelude.mod[concat].checked_type == relay.FuncTyp
e([rlist(a), rlist(a)], rlist(a), [a]) l1 = cons(make_nat_expr(prelude, 1), cons(make_nat_expr(prelude, 2), nil())) l2 = cons(make_nat_expr(prelude, 3), cons(make_nat_expr(prelude, 4), nil())) res = eval(concat(l1, l2)) catted = to_list(res) assert len(catted) == 4 assert count(catted[0]) == 1 assert count(catted[1]) == 2 assert count(catted[2]) == 3 assert count(catted[3]) == 4 @tvm.testing.uses_gpu def test_filter(): a = relay.TypeVar("a") expected_type = relay.FuncType( [relay.FuncType([a], relay.scalar_type("bool")), rlist(a)], rlist(a), [a] ) assert prelude.mod[filter].checked_type == expected_type x = relay.Var("x", nat()) greater_than_one = relay.Function( [x], relay.Match( x, [ relay.Clause( relay.PatternConstructor( s, [relay.PatternConstructor(s, [relay.PatternWildcard()])] ), relay.const(True), ), relay.Clause(relay.PatternWildcard(), relay.const(False)), ], ), ) res = eval( filter( greater_than_one, cons( make_nat_expr(prelude, 1), cons( make_nat_expr(prelude, 1), cons( make_nat_expr(prelude, 3), cons( make_nat_expr(prelude, 1), cons(make_nat_expr(prelude, 5), cons(make_nat_expr(prelude, 1), nil())), ), ), ), ), ) ) filtered = to_list(res) assert len(filtered) == 2 assert count(filtered[0]) == 3 assert count(filtered[1]) == 5 @tvm.testing.uses_gpu def test_zip(): a = relay.TypeVar("a") b = relay.TypeVar("b") expected_type = relay.FuncType([rlist(a), rlist(b)], rlist(relay.TupleType([a, b])), [a, b]) assert prelude
.mod[zip].checked_type == expected_type l1 = cons( make_nat_expr(prelude, 1), cons(make_nat_expr(prelude, 2), cons(make_nat_expr(prelude, 3), nil())), ) l2 = cons(nil(), cons(cons(nil(), nil()), cons(cons(nil(), cons(nil(), nil())), nil()))) res = eval(zip(l1, l2)) zipped = to_list(res) assert len(zipped) == 3 assert count(zipped[0][0]) == 1 assert len(to_list(zipped[0][1])) == 0 assert count(zipped[1][0]) == 2 assert len(to_list(zipped[1][1])) == 1 assert count(zipped[2][0]) == 3 assert len(to_list(zipped[2][1])) == 2 l3 = cons(make_nat_expr(prelude, 4), cons(make_nat_expr(prelude, 5), nil())) shorter_res = eval(zip(l3, l2)) truncated = to_list(shorter_res) assert len(truncated) == 2 assert count(truncated[0][0]) == 4 assert len(to_list(truncated[0][1])) == 0 assert count(truncated[1][0]) == 5 assert len(to_list(truncated[1][1])) == 1 l4 = cons(nil(), nil()) shortest_res = eval(zip(l3, l4)) singleton = to_list(shortest_res) assert len(singleton) == 1 assert count(singleton[0][0]) == 4 assert len(to_list(singleton[0][1])) == 0 @tvm.testing.uses_gpu def test_rev(): a = relay.TypeVar("a") assert prelude.mod[rev].checked_type == relay.FuncType([rlist(a)], rlist(a), [a]) res = eval( rev( cons( make_nat_expr(prelude, 1), cons(make_nat_expr(prelude, 2), cons(make_nat_expr(prelude, 3), nil())), ) ) ) reversed = to_list(res) assert len(reversed) == 3 assert count(reversed[0]) == 3 assert count(reversed[1]) == 2 assert count(reversed[2]) == 1 @tvm.testing.uses_gpu def test_unfoldr(): a = relay.TypeVar("a") b = relay.TypeVar("b") expected_type = relay.FuncType( [relay.FuncType([a], optional(relay.TupleType([a, b]))), a], rlist(b), [a, b] ) x = relay.Var("x", nat()) n = relay.Var("n", nat()) count_down = relay.Function( [x], relay.Ma
tch( x, [ relay.Clause( relay.PatternConstructor(s, [relay.PatternVar(n)]), some(relay.Tuple([n, x])) ), relay.Clause(relay.PatternConstructor(z, []), none()), ], ), ) res = eval(unfoldr(count_down, make_nat_expr(prelude, 3))) unfolded = to_list(res) assert len(unfolded) == 3 assert count(unfolded[0]) == 3 assert count(unfolded[1]) == 2 assert count(unfolded[2]) == 1 @tvm.testing.uses_gpu def test_unfoldl(): a = relay.TypeVar("a") b = relay.TypeVar("b") expected_type = relay.FuncType( [relay.FuncType([a], optional(relay.TupleType([a, b]))), a], rlist(b), [a, b] ) x = relay.Var("x", nat()) n = relay.Var("n", nat()) count_down = relay.Function( [x], relay.Match( x, [ relay.Clause( relay.PatternConstructor(s, [relay.PatternVar(n)]), some(relay.Tuple([n, x])) ), relay.Clause(relay.PatternConstructor(z, []), none()), ], ), ) res = eval(unfoldl(count_down, make_nat_expr(prelude, 3))) unfolded = to_list(res) assert len(unfolded) == 3 assert count(unfolded[0]) == 1 assert count(unfolded[1]) == 2 assert count(unfolded[2]) == 3 @tvm.testing.uses_gpu def test_map_accumr(): a = relay.TypeVar("a") b = relay.TypeVar("b") c = relay.TypeVar("c") expected_type = relay.FuncType( [relay.FuncType([a, b], relay.TupleType([a, c])), a, rlist(b)], relay.TupleType([a, rlist(c)]), [a, b, c], ) assert prelude.mod[map_accumr].checked_type == expected_type acc = relay.Var("acc", nat()) x = relay.Var("x", nat()) add_acc_to_each = relay.Function([acc, x], relay.Tuple([add(x, acc), add(x, acc)])) vals = cons( make_nat_expr(prelude, 1), cons(make_nat_expr(prelude, 2), cons(make_nat_expr(prelude, 3), nil())), ) res = eval(m
ap_accumr(add_acc_to_each, z(), vals)) sum = count(res[0]) new_vals = to_list(res[1]) assert sum == 6 assert len(new_vals) == 3 assert count(new_vals[0]) == 6 assert count(new_vals[1]) == 5 assert count(new_vals[2]) == 3 @tvm.testing.uses_gpu def test_map_accuml(): a = relay.TypeVar("a") b = relay.TypeVar("b") c = relay.TypeVar("c") expected_type = relay.FuncType( [relay.FuncType([a, b], relay.TupleType([a, c])), a, rlist(b)], relay.TupleType([a, rlist(c)]), [a, b, c], ) assert prelude.mod[map_accuml].checked_type == expected_type acc = relay.Var("acc", nat()) x = relay.Var("x", nat()) add_to_acc = relay.Function([acc, x], relay.Tuple([add(x, acc), x])) vals = cons( make_nat_expr(prelude, 1), cons(make_nat_expr(prelude, 2), cons(make_nat_expr(prelude, 3), nil())), ) res = eval(map_accuml(add_to_acc, z(), vals)) sum = count(res[0]) new_vals = to_list(res[1]) assert sum == 6 assert len(new_vals) == 3 assert count(new_vals[0]) == 3 assert count(new_vals[1]) == 2 assert count(new_vals[2]) == 1 @tvm.testing.uses_gpu def test_optional_matching(): x = relay.Var("x") y = relay.Var("y") v = relay.Var("v") condense = relay.Function( [x, y], relay.Match( x, [ relay.Clause(relay.PatternConstructor(some, [relay.PatternVar(v)]), cons(v, y)), relay.Clause(relay.PatternConstructor(none), y), ], ), ) res = eval( foldr( condense, nil(), cons( some(make_nat_expr(prelude, 3)), cons(none(), cons(some(make_nat_expr(prelude, 1)), nil())), ), ) ) reduced = to_list(res) assert len(reduced) == 2 assert count(reduced[0]) == 3 assert count(reduced[1]) == 1 @tvm.testing.uses_gpu def test_tmap(): a = relay.TypeVar("a") b = relay.TypeVar("b") lhs =
prelude.mod[tmap].checked_type rhs = relay.FuncType([relay.FuncType([a], b), tree(a)], tree(b), [a, b]) assert lhs == rhs x = relay.Var("x") add_one = relay.Function([x], s(x)) res = eval(tmap(add_one, rose(z(), cons(rose(z(), nil()), cons(rose(z(), nil()), nil()))))) tree_dict = tree_to_dict(res) assert count(tree_dict["member"]) == 1 assert len(tree_dict["children"]) == 2 for subtree in tree_dict["children"]: assert count(subtree["member"]) == 1 assert len(subtree["children"]) == 0 @tvm.testing.uses_gpu def test_size(): a = relay.TypeVar("a") lhs = prelude.mod[size].checked_type rhs = relay.FuncType([tree(a)], relay.scalar_type("int32"), [a]) assert lhs == rhs root = rose(z(), cons(rose(z(), nil()), cons(rose(z(), nil()), nil()))) t = rose(z(), cons(root, cons(root, cons(root, nil())))) res = eval(size(t)) assert get_scalar(res) == 10 @tvm.testing.uses_gpu def test_wildcard_match_solo(): x = relay.Var("x", nat()) copy = relay.Function([x], relay.Match(x, [relay.Clause(relay.PatternWildcard(), x)]), nat()) res = eval(copy(s(s(s(z()))))) assert count(res) == 3 @tvm.testing.uses_gpu def test_wildcard_match_order(): x = relay.Var("x", rlist(nat())) y = relay.Var("y") a = relay.Var("a") return_zero = relay.Function( [x], relay.Match( x, [ relay.Clause(relay.PatternWildcard(), z()), relay.Clause( relay.PatternConstructor(cons, [relay.PatternVar(y), relay.PatternVar(a)]), y ), relay.Clause(relay.PatternConstructor(nil), s(z())), ], ), nat(), ) res = eval(return_zero(cons(s(z()), nil()))) assert count(res) == 0 @tvm.testing.uses_gpu def test_nested_matches(): a = relay.TypeVar("a") x = relay.Var("x", type_annotation=rlist(rlist(a))) y = relay.Var("y") w = relay.Var("w") h = relay.Var("h") t = relay
.Var("t") flatten = relay.GlobalVar("flatten") inner_match = relay.Match( y, [ relay.Clause(relay.PatternConstructor(nil), flatten(w)), relay.Clause( relay.PatternConstructor(cons, [relay.PatternVar(h), relay.PatternVar(t)]), cons(h, flatten(cons(t, w))), ), ], ) prelude.mod[flatten] = relay.Function( [x], relay.Match( x, [ relay.Clause(relay.PatternConstructor(nil), nil()), relay.Clause( relay.PatternConstructor(cons, [relay.PatternVar(y), relay.PatternVar(w)]), inner_match, ), ], ), rlist(a), [a], ) first_list = cons( make_nat_expr(prelude, 1), cons(make_nat_expr(prelude, 2), cons(make_nat_expr(prelude, 3), nil())), ) second_list = cons( make_nat_expr(prelude, 4), cons(make_nat_expr(prelude, 5), cons(make_nat_expr(prelude, 6), nil())), ) final_list = cons(first_list, cons(second_list, nil())) res = eval(flatten(final_list)) flat = to_list(res) assert len(flat) == 6 for i in range(6): assert count(flat[i]) == i + 1 @tvm.testing.uses_gpu def test_match_full_var(): x = relay.Var("x") v = relay.Var("v") id_func = relay.Function([x], relay.Match(x, [relay.Clause(relay.PatternVar(v), v)])) res1 = eval(id_func(nil())) res2 = eval(id_func(cons(z(), cons(z(), nil())))) empty = to_list(res1) assert len(empty) == 0 zeroes = to_list(res2) assert len(zeroes) == 2 assert count(zeroes[0]) == 0 assert count(zeroes[1]) == 0 @tvm.testing.uses_gpu def test_nested_pattern_match(): x = relay.Var("x", rlist(nat())) h1 = relay.Var("h1") h2 = relay.Var("h2") t = relay.Var("t") match = relay.Match( x, [ relay.Clause( relay.PatternConstructor( cons,
[ relay.PatternVar(h1), relay.PatternConstructor(cons, [relay.PatternVar(h2), relay.PatternVar(t)]), ], ), h2, ), relay.Clause(relay.PatternWildcard(), z()), ], ) get_second = relay.Function([x], match) res = eval(get_second(cons(s(z()), cons(s(s(z())), nil())))) assert count(res) == 2 @tvm.testing.uses_gpu def test_compose(): n = relay.Var("n") inc = relay.Function([n], s(n)) x = relay.Var("x") res = eval(relay.Call(compose(inc, double), [s(s(z()))])) assert count(res) == 5 @tvm.testing.uses_gpu def test_iterate(): expr = relay.Call(iterate(double, relay.const(2)), [make_nat_expr(prelude, 3)]) res = eval(relay.Function([], expr)()) assert count(res) == 12 if __name__ == "__main__": pytest.main([__file__])
import pytest
import tvm from tvm
import relay from tvm.relay.analysis
import check_basic_block_normal_form def test_one_block(): x = relay.var("x") y = relay.add(x, x) z = relay.add(x, y) check_basic_block_normal_form(z) def test_let(): x = relay.var("x") y = relay.var("y") body = relay.Let(y, x, y) check_basic_block_normal_form(body) @pytest.mark.xfail(raises=tvm.error.TVMError) def test_invalid_if(): cond = relay.var("cond", dtype="bool", shape=()) shared = relay.var("shared") true_branch = shared false_branch = relay.add(shared, shared) body = relay.If(cond, true_branch, false_branch) """ The program below violates basic block normal form, as the scope of %shared is ambiguous and should not be in that of true branch. free_var %cond: bool if (%cond) { free_var %shared %shared } else { add(%shared, %shared) } """ check_basic_block_normal_form(body) def test_valid_if(): cond = relay.var("cond", dtype="bool", shape=()) shared = relay.var("shared") true_branch = shared false_branch = relay.add(shared, shared) body = relay.If(cond, true_branch, false_branch) shared_bound = relay.var("shared_bound", shape=(1,), dtype="float32") body = relay.Let(shared, shared_bound, body) """ The program below uses let binding to control the scope of %shared, which follows the basic block normal form. free_var %shared_bound: Tensor[(1), float32] let %shared = %shared_bound; free_var %cond: bool if (%cond) { %shared } else { add(%shared, %shared) } """ check_basic_block_normal_form(body) @pytest.mark.xfail(raises=tvm.error.TVMError) def test_invalid_if2(): """ fn (%x: float32) { %0 = equal(%x, 2f); if (%0) { %1 = add(%x, 1f); multiply(%1, 2f) } else { multiply(%1, 1f) } } """ x = relay.var("x", shape=(), dtype="float32") one = relay.const(1, dtype="float32") two = relay.const(2, dtype="float32") v1 = relay.add(x, one) v2 =
relay.equal(x, two) true_branch = relay.multiply(v1, two) false_branch = relay.multiply(v1, one) body = relay.If(v2, true_branch, false_branch) func = relay.Function([x], body) check_basic_block_normal_form(func) def test_valid_if2(): """ fn (%x: float32) { let %v1 = add(%x, 1f); %0 = equal(%x, 2f); if (%0) { multiply(%v1, 2f) } else { multiply(%v1, 1f) } } """ x = relay.var("x", shape=(), dtype="float32") one = relay.const(1, dtype="float32") two = relay.const(2, dtype="float32") v1 = relay.var("v1") v2 = relay.equal(x, two) true_branch = relay.multiply(v1, two) false_branch = relay.multiply(v1, one) body = relay.If(v2, true_branch, false_branch) body = relay.Let(v1, relay.add(x, one), body) func = relay.Function([x], body) check_basic_block_normal_form(func) @pytest.mark.xfail(raises=tvm.error.TVMError) def test_func(): x = relay.var("x", shape=(1,), dtype="float32") y = relay.var("y", shape=(1,), dtype="float32") z = relay.var("z", shape=(1,), dtype="float32") x2 = relay.add(x, x) func_a = relay.Function([y], relay.add(x2, y)) func_b = relay.Function([z], relay.add(x2, z)) body = relay.Tuple([func_a, func_b]) body = relay.Function([x], body) """ fn (%x: Tensor[(1), float32]) { %1 = fn (%y: Tensor[(1), float32]) { %0 = add(%x, %x); add(%0, %y) }; %2 = fn (%z: Tensor[(1), float32]) { add(%0, %z) }; (%1, %2) } """ check_basic_block_normal_form(body) @pytest.mark.xfail(raises=tvm.error.TVMError) def test_higher_order_return(): x = relay.var("x", shape=(1,), dtype="float32") y = relay.var("y", shape=(1,), dtype="float32") z = relay.var("z", shape=(1,), dtype="float32") x2 = relay.add(x, x) func_a = relay.Function([y], relay.add(x2, y)) func_b = relay.Function([z], relay.add(x2, z)) body = relay.Tuple([func_a, func_b]) body = rela
y.Function([x], body) """ fn (%x: Tensor[(1), float32]) { %1 = fn (%y: Tensor[(1), float32]) { %0 = add(%x, %x); add(%0, %y) }; %2 = fn (%z: Tensor[(1), float32]) { add(%0, %z) }; (%1, %2) } """ check_basic_block_normal_form(body) @pytest.mark.xfail(raises=tvm.error.TVMError) def test_higher_order_nested(): x = relay.var("x", dtype="float32", shape=(1,)) s = relay.var("s", dtype="float32", shape=(1,)) shared = relay.add(s, s) func_true = relay.Function([x], relay.add(x, shared)) choice_t = relay.FuncType([], relay.scalar_type("bool")) f = relay.Var("f", choice_t) z = relay.Var("z") body = relay.If(f(), func_true, relay.Function([z], relay.add(z, shared))) top = relay.Function([f, s], body) """ fn (%f: fn () -> bool, %s: Tensor[(1), float32]) { %0 = %f(); if (%0) { fn (%x: Tensor[(1), float32]) { %1 = add(%s, %s); add(%x, %1) } } else { fn (%z) { add(%z, %1) } } } """ check_basic_block_normal_form(top) if __name__ == "__main__": pytest.main([__file__])
"""Test function extraction"""
import tvm from tvm
import relay def test_fake_quantize_conv(): x = relay.var("x", shape=[1, 3, 224, 224], dtype="int8") w = relay.var("w", shape=[16, 3, 5, 5], dtype="int8") zero = relay.const(0) op = relay.op.nn.conv2d( relay.qnn.op.dequantize(x, relay.const(2.0), zero), relay.qnn.op.dequantize(w, relay.const(0.5), zero), kernel_size=[5, 5], ) op = relay.qnn.op.quantize(op, relay.const(1.0), zero, out_dtype="int8") mod = tvm.IRModule.from_expr(op) fake_quantized_op_freqs = relay.analysis.list_fake_quantized_op_freqs(mod) assert dict(fake_quantized_op_freqs) == {"nn.conv2d": 1} def test_fake_quantize_dense(): x = relay.var("x", shape=[128, 64], dtype="int8") w = relay.var("w", shape=[256, 64], dtype="int8") zero = relay.const(0) op = relay.op.nn.dense( relay.qnn.op.dequantize(x, relay.const(2.0), zero), relay.qnn.op.dequantize(w, relay.const(0.5), zero), ) op = relay.qnn.op.quantize(op, relay.const(1.0), zero, out_dtype="int8") mod = tvm.IRModule.from_expr(op) fake_quantized_op_freqs = relay.analysis.list_fake_quantized_op_freqs(mod) assert dict(fake_quantized_op_freqs) == {"nn.dense": 1} def test_fake_quantize_multiple_regions(): x = relay.var("x", shape=[128, 64], dtype="int8") w = relay.var("w", shape=[256, 64], dtype="int8") zero = relay.const(0) op = relay.op.nn.dense( relay.qnn.op.dequantize(x, relay.const(2.0), zero), relay.qnn.op.dequantize(w, relay.const(0.5), zero), ) op = relay.qnn.op.quantize(op, relay.const(1.0), zero, out_dtype="int8") op = relay.qnn.op.dequantize(op, relay.const(2.0), relay.const(114)) op = relay.op.nn.relu(op) op = relay.qnn.op.quantize(op, relay.const(1.0), zero, out_dtype="int8") w2 = relay.var("w2", shape=[64, 256], dtype="int8") op = relay.op.nn.dense( relay.qnn.op.dequantize(op, relay.const(1.0), zero), relay.qnn.op.dequantize(w2, relay.const(0.5), zero), ) op = relay.qnn.op.quantize(op,
relay.const(1.0), zero, out_dtype="int8") op = relay.op.sigmoid(op) mod = tvm.IRModule.from_expr(op) fake_quantized_op_freqs = relay.analysis.list_fake_quantized_op_freqs(mod) assert dict(fake_quantized_op_freqs) == {"nn.dense": 2, "nn.relu": 1} def test_fake_quantize_maxpool(): x = relay.var("x", shape=[1, 3, 224, 224], dtype="int8") zero = relay.const(0) x = relay.qnn.op.dequantize(x, relay.const(2.0), zero) op = relay.op.nn.max_pool2d(x, [3, 3]) op = relay.qnn.op.quantize(op, relay.const(2.0), zero) mod = tvm.IRModule.from_expr(op) fake_quantized_op_freqs = relay.analysis.list_fake_quantized_op_freqs(mod) assert dict(fake_quantized_op_freqs) == {"nn.max_pool2d": 1} def test_fake_quantize_transpose_reshape(): x = relay.var("x", shape=[1, 3, 224, 224], dtype="int8") zero = relay.const(0) x = relay.qnn.op.dequantize(x, relay.const(2.0), zero) op = relay.op.transpose(x, [1, 0, 2, 3]) op = relay.op.reshape(op, [3, -1]) op = relay.qnn.op.quantize(op, relay.const(2.0), zero) mod = tvm.IRModule.from_expr(op) fake_quantized_op_freqs = relay.analysis.list_fake_quantized_op_freqs(mod) assert dict(fake_quantized_op_freqs) == {"transpose": 1, "reshape": 1} def test_fake_quantize_concat(): zero = relay.const(0) inputs = [] for i in range(4): inputs.append( relay.qnn.op.dequantize( relay.var("x%d" % i, shape=[1, 4], dtype="int8"), relay.const(i + 0.5), zero ) ) concat = relay.op.concatenate(inputs, axis=1) op = relay.qnn.op.quantize(concat, relay.const(3.5), zero) mod = tvm.IRModule.from_expr(op) fake_quantized_op_freqs = relay.analysis.list_fake_quantized_op_freqs(mod) assert dict(fake_quantized_op_freqs) == {"concatenate": 1}
"""Test function extraction"""
import tvm from tvm
import relay from tvm.relay.testing.synthetic
import get_workload def get_conv_net(): """This gets the net for a case described in fuse_ops.cc: conv2d / | \ / | \ op op op \ | / \ | / elemwise add | """ dshape = (1, 1, 5, 1) x = relay.var("x", shape=dshape) y = relay.nn.conv2d(x, relay.var("w1"), kernel_size=(3, 3), padding=(1, 1), channels=1) x1 = relay.nn.conv2d(y, relay.var("w2"), kernel_size=(3, 3), padding=(1, 1), channels=1) x2 = relay.nn.conv2d(y, relay.var("w3"), kernel_size=(3, 3), padding=(1, 1), channels=1) x3 = relay.nn.conv2d(y, relay.var("w4"), kernel_size=(3, 3), padding=(1, 1), channels=1) z = relay.add(x1, x2) z = relay.add(x3, z) return tvm.IRModule.from_expr(z) def get_conv2d(): x = relay.var("x", shape=(1, 56, 56, 64)) weight1 = relay.var("weight1", shape=(3, 3, 64, 32)) y = relay.nn.conv2d( x, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) return tvm.IRModule.from_expr(y) def test_extract_identity(): mod = get_conv2d() items = relay.analysis.extract_fused_functions(mod) assert len(items) == 1 mod["main"] = mod["main"].with_attr("Primitive", tvm.tir.IntImm("int32", 1)) tvm.ir.structural_equal(list(items.values())[0], mod["main"]) def test_extract_conv_net(): mod = get_conv_net() items = relay.analysis.extract_fused_functions(mod) functions = list(items.values()) assert len(functions) == 2 x = functions[0] y = functions[1] def is_conv(func): conv2d = relay.op.op.get("nn.conv2d") call_node = func.body return call_node.op == conv2d def is_conv_add(func): add = relay.op.op.get("add") call_node = func.body maybe_conv_module = tvm.IRModule.from_expr(call_node.args[0]) return call_node.op == add and is_conv(maybe_conv_module["main"])
assert (is_conv(x) and is_conv_add(y)) or (is_conv_add(x) and is_conv(y)) def test_extract_resnet(): mod, _params = get_workload() items = relay.analysis.extract_fused_functions(mod) assert len(items) == 7 if __name__ == "__main__": test_extract_identity() test_extract_conv_net() test_extract_resnet()
"""Test function extraction"""
import pytest
import tvm from tvm
import relay def get_conv_net(): """This gets the net for: conv2d / | / | conv2d | \ | \ | elemwise add | | | split | | | elemwise add """ dshape = (1, 1, 5, 1) x = relay.var("x", shape=dshape) y = relay.nn.conv2d(x, relay.var("w1"), kernel_size=(3, 3), padding=(1, 1), channels=1) x1 = relay.nn.conv2d(y, relay.var("w2"), kernel_size=(3, 3), padding=(1, 1), channels=1) z = relay.add(y, x1) tuple_out = relay.op.split(z, indices_or_sections=1, axis=0) tuple_0_add = relay.add(tuple_out[0], relay.const(1, dtype="float32")) return tvm.IRModule.from_expr(tuple_0_add) def get_conv2d(): x = relay.var("x", shape=(1, 56, 56, 64)) weight1 = relay.var("weight1", shape=(3, 3, 64, 32)) y = relay.nn.conv2d( x, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) return tvm.IRModule.from_expr(y) def test_extract(): dshape = (1, 1, 5, 1) def before(): return get_conv_net() def expected_0(): x = relay.var("x", shape=dshape) y = relay.nn.conv2d(x, relay.var("w1"), kernel_size=(3, 3), padding=(1, 1), channels=1) return tvm.IRModule.from_expr(y) def expected_1(): x = relay.var("x", shape=dshape) y = relay.nn.conv2d(x, relay.var("w1"), kernel_size=(3, 3), padding=(1, 1), channels=1) x1 = relay.nn.conv2d(y, relay.var("w2"), kernel_size=(3, 3), padding=(1, 1), channels=1) return tvm.IRModule.from_expr(x1) def expected_2(): x = relay.var("x", shape=dshape) y = relay.nn.conv2d(x, relay.var("w1"), kernel_size=(3, 3), padding=(1, 1), channels=1) x1 = relay.nn.conv2d(y, relay.var("w2"), kernel_size=(3, 3), padding=(1, 1), channels=1) z = relay.add(y, x1) return tvm.IRModule.from_expr
(z) def expected_3(): x = relay.var("x", shape=dshape) y = relay.nn.conv2d(x, relay.var("w1"), kernel_size=(3, 3), padding=(1, 1), channels=1) x1 = relay.nn.conv2d(y, relay.var("w2"), kernel_size=(3, 3), padding=(1, 1), channels=1) z = relay.add(y, x1) tuple_out = relay.op.split(z, indices_or_sections=1, axis=0) return tvm.IRModule.from_expr(tuple_out.astuple()) def expected_4(): x = relay.var("x", shape=dshape) y = relay.nn.conv2d(x, relay.var("w1"), kernel_size=(3, 3), padding=(1, 1), channels=1) x1 = relay.nn.conv2d(y, relay.var("w2"), kernel_size=(3, 3), padding=(1, 1), channels=1) z = relay.add(y, x1) tuple_out = relay.op.split(z, indices_or_sections=1, axis=0) return tvm.IRModule.from_expr(tuple_out[0]) assert tvm.ir.structural_equal( relay.analysis.extract_intermdeiate_expr(before(), 0), expected_0() ) assert tvm.ir.structural_equal( relay.analysis.extract_intermdeiate_expr(before(), 1), expected_1() ) assert tvm.ir.structural_equal( relay.analysis.extract_intermdeiate_expr(before(), 2), expected_2() ) assert tvm.ir.structural_equal( (relay.analysis.extract_intermdeiate_expr(before(), 3)), expected_3() ) assert tvm.ir.structural_equal( relay.analysis.extract_intermdeiate_expr(before(), 4), expected_4() ) assert tvm.ir.structural_equal(relay.analysis.extract_intermdeiate_expr(before(), 5), before()) if __name__ == "__main__": pytest.main([__file__])
"""Test function extraction"""
import pytest
import tvm from tvm
import relay from tvm.relay.testing.resnet
import get_workload from tvm.relay.testing
import run_opt_pass def get_conv_net(): """This gets the net for: conv2d / | / | conv2d | \ | \ | elemwise add | """ dshape = (1, 1, 5, 1) x = relay.var("x", shape=dshape) y = relay.nn.conv2d(x, relay.var("w1"), kernel_size=(3, 3), padding=(1, 1), channels=1) x1 = relay.nn.conv2d(y, relay.var("w2"), kernel_size=(3, 3), padding=(1, 1), channels=1) z = relay.add(y, x1) return tvm.IRModule.from_expr(z) def get_conv2d(): x = relay.var("x", shape=(1, 56, 56, 64)) weight1 = relay.var("weight1", shape=(3, 3, 64, 32)) y = relay.nn.conv2d( x, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) return tvm.IRModule.from_expr(y) def test_extract_identity(): mod = get_conv2d() op_freqs = relay.analysis.list_op_freqs(mod) assert len(op_freqs) == 1 assert op_freqs["nn.conv2d"] == 1 def test_extract_conv_net(): mod = get_conv_net() op_freqs = relay.analysis.list_op_freqs(mod) assert len(op_freqs) == 2 assert op_freqs["add"] == 1 assert op_freqs["nn.conv2d"] == 2 def test_extract_fused(): mod = get_conv_net() mod = relay.transform.InferType()(mod) mod = relay.transform.FuseOps(3)(mod) op_freqs = relay.analysis.list_op_freqs(mod) assert len(op_freqs) == 2 assert op_freqs["add"] == 1 assert op_freqs["nn.conv2d"] == 2 def test_extract_resnet(): mod, _params = get_workload() expected_op_freqs = { "nn.batch_norm": 19, "nn.conv2d": 21, "nn.relu": 18, "nn.max_pool2d": 1, "add": 8, "nn.global_avg_pool2d": 1, "nn.batch_flatten": 1, "nn.dense": 1, "nn.bias_add": 1, "nn.softmax": 1, } op_freqs = relay.analysis.list_op_freqs(mod) assert len(op_freqs) == len(expected_op_freqs) assert all([op_freqs[op] == expected_op_freqs[op] fo
r op in expected_op_freqs]) if __name__ == "__main__": pytest.main([__file__])
import tvm from tvm
import te from tvm
import relay from tvm.relay.analysis
import detect_feature, Feature from tvm.relay.transform
import gradient from tvm.relay.prelude
import Prelude from tvm.relay.testing
import run_infer_type def test_prelude(): p = Prelude() feats = detect_feature(p.mod) assert feats == set( [ Feature.fVar, Feature.fGlobalVar, Feature.fConstant, Feature.fTuple, Feature.fTupleGetItem, Feature.fFunction, Feature.fOp, Feature.fCall, Feature.fLet, Feature.fIf, Feature.fConstructor, Feature.fMatch, ] ) def test_ad(): shape = (10, 10) dtype = "float32" t = relay.TensorType(shape, dtype) x = relay.var("x", t) func = relay.Function([x], x + x) func = run_infer_type(func) mod = tvm.IRModule.from_expr(gradient(func)) mod = relay.transform.InferType()(mod) back_func = mod["main"] feats = detect_feature(back_func) assert feats == set( [ Feature.fVar, Feature.fTuple, Feature.fTupleGetItem, Feature.fFunction, Feature.fOp, Feature.fCall, Feature.fLet, Feature.fRefCreate, Feature.fRefRead, Feature.fRefWrite, ] ) if __name__ == "__main__": test_prelude() test_ad()
import numpy as np
import tvm
import tvm.relay.testing from tvm
import relay from tvm.relay
import transform from tvm.relay.analysis
import get_calibration_data def check_data_size(mod, data): assert len(data) == len(mod.functions) - 1 for key, value in mod.functions.items(): if key.name_hint != "main": assert len(data[key]["inputs"]) == len(value.params) if isinstance(value.body, relay.Tuple): assert len(data[key]["outputs"]) == len(value.body.fields) else: assert len(data[key]["outputs"]) == 1 def test_simple_graph(): mod = tvm.IRModule() x0 = relay.var("x0", shape=(8, 8)) y0 = relay.var("y0", shape=(8, 8)) z0 = x0 + y0 z1 = x0 - y0 z2 = relay.Tuple((z0, z1)) f0 = relay.Function([x0, y0], z2) f0 = f0.with_attr("Compiler", "test_graph") g0 = relay.GlobalVar("g0") mod[g0] = f0 mod = relay.transform.InferType()(mod) x1 = relay.var("x1", shape=(8, 8)) y1 = relay.var("y1", shape=(8, 8)) z1 = x1 - y1 f1 = relay.Function([x1, y1], z1) f1 = f1.with_attr("Compiler", "test_graph") g1 = relay.GlobalVar("g1") mod[g1] = f1 mod = relay.transform.InferType()(mod) x = relay.var("x", shape=(8, 8)) y = relay.var("y", shape=(8, 8)) z = relay.var("z", shape=(8, 8)) c0 = relay.Call(g0, [x, y]) c1 = relay.Call(g1, [relay.TupleGetItem(c0, 0), z]) fm = relay.Function([x, y, z], c1) mod["main"] = fm mod = relay.transform.InferType()(mod) x_data = np.random.rand(8, 8).astype("float32") y_data = np.random.rand(8, 8).astype("float32") z_data = np.random.rand(8, 8).astype("float32") data = get_calibration_data(mod, {"x": x_data, "y": y_data, "z": z_data}) check_data_size(mod, data) tvm.testing.assert_allclose(data[g0]["inputs"][0].numpy(), x_data) tvm.testing.assert_allclose(data[g0]["inputs"][1].numpy(), y_data) tvm.testing.assert_allclose(data[g0]["outputs"][0].numpy(), x_data + y_data) tvm.testing.assert_allclose(data[g0]["outputs"][1].numpy(), x_data - y_data) tvm.testing.assert_allclose(data[g1]["inputs"][0].numpy(), x
_data + y_data) tvm.testing.assert_allclose(data[g1]["inputs"][1].numpy(), z_data) tvm.testing.assert_allclose(data[g1]["outputs"][0].numpy(), x_data + y_data - z_data) def test_mobilenet_dnnl(): if not tvm.get_global_func("relay.ext.dnnl", True): print("skip because DNNL codegen is not available") return dtype = "float32" ishape = (1, 3, 224, 224) mod, params = relay.testing.mobilenet.get_workload(batch_size=1, dtype="float32") mod = transform.AnnotateTarget(["dnnl"])(mod) mod = transform.MergeCompilerRegions()(mod) mod = transform.PartitionGraph()(mod) i_data = np.random.uniform(0, 1, ishape).astype(dtype) data = get_calibration_data(mod, {"data": i_data, **params}) check_data_size(mod, data) if __name__ == "__main__": test_simple_graph() test_mobilenet_dnnl()
import tvm from tvm
import relay from tvm.relay.op.annotation
import compiler_begin, compiler_end def check_region(region_set, target, args, nodes, rets): region = region_set.get_region(args[0]) assert region assert target == region.target assert set(args) == set(region.args) assert set(nodes) == set(region.nodes) assert set(rets) == set(region.rets) def test_region_set_creator_diamond(): data = relay.var("data", shape=(10, 10)) cb_1 = compiler_begin(data, "test_target") O_1 = relay.abs(cb_1) ce_1 = compiler_end(O_1, "test_target") ce_2 = compiler_end(O_1, "test_target") cb_2 = compiler_begin(ce_1, "test_target") O_2 = relay.nn.relu(cb_2) ce_3 = compiler_end(O_2, "test_target") cb_d = compiler_begin(ce_2, "default") X = relay.tanh(cb_d) ce_d = compiler_end(X, "default") cb_3 = compiler_begin(ce_3, "test_target") cb_4 = compiler_begin(ce_d, "test_target") O_3 = relay.add(cb_3, cb_4) ce_4 = compiler_end(O_3, "test_target") diamond = relay.Function([data], ce_4) region_set = relay.analysis.AnnotatedRegionSet( diamond, relay.op.get("annotation.compiler_begin"), relay.op.get("annotation.compiler_end") ) assert len(region_set) == 4 check_region( region_set, "test_target", [cb_1], [cb_1, O_1, ce_1, ce_2], [ce_1, ce_2], ) check_region( region_set, "test_target", [cb_2], [cb_2, O_2, ce_3], [ce_3], ) check_region( region_set, "default", [cb_d], [cb_d, X, ce_d], [ce_d], ) check_region( region_set, "test_target", [cb_3, cb_4], [cb_3, cb_4, O_3, ce_4], [ce_4], ) def test_region_set_creator_merged(): data = relay.var("data", shape=(10, 10)) cb_1 = compiler_begin(data, "test_target") O_1 = relay.abs(cb_1) ce_2 = compiler_end(O_1, "test_target") O_2 = relay.nn.relu(O_1) ce_3 = compiler_end(O_2, "test_target") cb_d = compiler_begin(ce_2, "default") X = relay
.tanh(cb_d) ce_d = compiler_end(X, "default") cb_3 = compiler_begin(ce_3, "test_target") cb_4 = compiler_begin(ce_d, "test_target") O_3 = relay.add(cb_3, cb_4) O_4 = relay.add(cb_3, cb_4) O_5 = relay.Tuple([O_3, O_4]) ce_4 = compiler_end(O_5, "test_target") merged = relay.Function([data], ce_4) region_set = relay.analysis.AnnotatedRegionSet( merged, relay.op.get("annotation.compiler_begin"), relay.op.get("annotation.compiler_end") ) assert len(region_set) == 3 check_region( region_set, "test_target", [cb_1], [cb_1, O_1, O_2, ce_2, ce_3], [ce_2, ce_3], ) check_region( region_set, "default", [cb_d], [cb_d, X, ce_d], [ce_d], ) check_region( region_set, "test_target", [cb_3, cb_4], [cb_3, cb_4, O_3, O_4, O_5, ce_4], [ce_4], ) if __name__ == "__main__": test_region_set_creator_diamond() test_region_set_creator_merged()
import os
import numpy as np
import tvm
import tvm.testing
import tvm.topi.testing from tvm
import relay, te from tvm.relay.loops
import while_loop from tvm.relay.testing
import run_infer_type as infer_type from tvm.topi.testing
import searchsorted_ref from utils
import ref_funcs from utils.assert_diagnostic
import DiagnosticTesting def int32(val): return relay.const(val, "int32") def any_dims(ndim): shape = [] for _ in range(ndim): shape.append(relay.Any()) return tuple(shape) def check_result( args, mod, expected, flatten=False, assert_shape=False, only_vm=False, targets=None, disable_targets=None, ): if not isinstance(expected, list): expected = [expected] for kind in ["debug", "vm"]: targets = targets or tvm.testing.enabled_targets() for tgt, dev in targets: if disable_targets and tgt in disable_targets: continue if kind == "debug" and (only_vm or dev.device_type != tvm.cpu().device_type): continue result = relay.create_executor(kind, mod=mod, device=dev, target=tgt).evaluate()(*args) if isinstance(result, tvm.runtime.container.ADT): result = [r.numpy() for r in result] else: result = [result.numpy()] for r, e in zip(result, expected): if assert_shape: assert r.shape == e, "Shape mismatch: expect %s but got %s." % ( str(e), str(r), ) else: if flatten: r = r.flatten() e = e.flatten() tvm.testing.assert_allclose(r, e, atol=2e-6) def verify_any_broadcast(x_shape, y_shape, x_np_shape, y_np_shape, op, np_op): dtype = "float32" x = relay.var("x", shape=x_shape, dtype=dtype) y = relay.var("y", shape=y_shape, dtype=dtype) mod = tvm.IRModule() mod["main"] = relay.Function([x, y], op(x, y)) x_np = np.random.uniform(size=x_np_shape).astype(dtype) y_np = np.random.uniform(size=y_np_shape).astype(dtype) res_np = np_op(x_np, y_np) check_result([x_np, y_np], mod, res_np) @tvm.testing.uses_gpu def test_any_broadcast(): verify_any_broadcast((relay.Any
(),), (3, 2), (1,), (3, 2), relay.add, np.add) verify_any_broadcast((relay.Any(), 2), (1, 2), (1, 2), (1, 2), relay.add, np.add) verify_any_broadcast((relay.Any(), 2), (1, 2), (3, 2), (1, 2), relay.add, np.add) verify_any_broadcast((relay.Any(), 2), (3, 2), (1, 2), (3, 2), relay.add, np.add) verify_any_broadcast((relay.Any(), 2), (3, relay.Any()), (1, 2), (3, 1), relay.add, np.add) verify_any_broadcast((relay.Any(),), (3, 2), (2,), (3, 2), relay.add, np.add) verify_any_broadcast((relay.Any(), 2), (3, 2), (3, 2), (3, 2), relay.add, np.add) def verify_any_elemwise(x_shape, x_np_shape, op, np_op): dtype = "float32" x = relay.var("x", shape=x_shape, dtype=dtype) mod = tvm.IRModule() mod["main"] = relay.Function([x], op(x)) x_np = np.random.uniform(size=x_np_shape).astype(dtype) res_np = np_op(x_np) check_result([x_np], mod, res_np) @tvm.testing.uses_gpu def test_any_elemwise(): verify_any_elemwise((relay.Any(),), (3,), relay.sqrt, np.sqrt) verify_any_elemwise((relay.Any(), 2), (5, 2), relay.negative, np.negative) verify_any_elemwise((relay.Any(), relay.Any()), (5, 4), relay.exp, np.exp) verify_any_elemwise((relay.Any(),), (3,), relay.round, np.round) @tvm.testing.uses_gpu def test_any_broadcast_fail(): def check_fail(x_shape, y_shape, x_np_shape, y_np_shape, op, np_op): try: verify_any_broadcast(x_shape, y_shape, x_np_shape, y_np_shape, op, np_op) except tvm._ffi.base.TVMError: pass else: assert False check_fail((relay.Any(),), (3, 2), (1,), (4, 2), relay.add, np.add) check_fail((relay.Any(), 2), (3, 2), (4, 2), (4, 2), relay.add, np.add) check_fail((relay.Any(), 2), (3, relay.Any()), (1, 2), (4, 1), relay.add, np.add) check_fail((relay.Any(), 2), (3, 3), (1, 3), (3, 3), relay.add, np.add) check_fail((relay.Any(),), (3, 2), (2), (4, 2), relay.add, np.add) def verify_any_full_like(x_shape, x_np_shape, relay_op, np_op, dtype="float32"): x = relay
.var("x", shape=x_shape, dtype=dtype) mod = tvm.IRModule() mod["main"] = relay.Function([x], relay_op(x)) x_np = np.random.uniform(size=x_np_shape).astype(dtype) res_np = np_op(x_np) check_result([x_np], mod, res_np) @tvm.testing.uses_gpu def test_any_full_like(): verify_any_full_like(any_dims(3), (2, 3, 5), relay.zeros_like, np.zeros_like, "float32") verify_any_full_like(any_dims(3), (225, 115, 15), relay.zeros_like, np.zeros_like, "float32") verify_any_full_like( any_dims(5), (10, 11, 12, 13, 14), relay.zeros_like, np.zeros_like, "int32" ) verify_any_full_like(any_dims(3), (2, 3, 5), relay.ones_like, np.ones_like, "float32") verify_any_full_like(any_dims(3), (225, 115, 15), relay.ones_like, np.ones_like, "float32") verify_any_full_like(any_dims(5), (10, 11, 12, 13, 14), relay.ones_like, np.ones_like, "int32") def verify_any_full(x_np_shape, relay_op, np_op, dtype="float32", value=None): x = relay.var("x", shape=(len(x_np_shape),), dtype="int32") mod = tvm.IRModule() out = relay_op(x, dtype) if value is None else relay_op(relay.expr.const(value), x, dtype) mod["main"] = relay.Function([x], out) res_np = np_op(x_np_shape) if value is None else np_op(x_np_shape, value) x_np = np.array(x_np_shape).astype("int32") check_result([x_np], mod, res_np) @tvm.testing.uses_gpu def test_any_full(): verify_any_full((2, 3, 5), relay.zeros, np.zeros, "float32") verify_any_full((225, 115, 15), relay.zeros, np.zeros, "float32") verify_any_full((10, 11, 12, 13, 14), relay.zeros, np.zeros, "int32") verify_any_full((2, 3, 5), relay.ones, np.ones, "float32") verify_any_full((225, 115, 15), relay.ones, np.ones, "float32") verify_any_full((10, 11, 12, 13, 14), relay.ones, np.ones, "int32") verify_any_full((10, 11, 12, 13, 14), relay.full, np.full, "float32", 2.0) verify_any_full((1, 2, 3, 4), relay.full, np.full, "int32", -2) @tvm.testing.uses_gpu def test_any_concat(): x = relay.var("x", shape=(rela
y.Any(), 2), dtype="float32") y = relay.var("y", shape=(1, 2), dtype="float32") xx = x - relay.expr.const(3.0) yy = y * relay.expr.const(5.0) z = relay.op.concatenate([xx, yy], axis=0) mod = tvm.IRModule() mod["main"] = relay.Function([x, y], z) x_np = np.random.uniform(size=(3, 2)).astype("float32") y_np = np.random.uniform(size=(1, 2)).astype("float32") ref = np.concatenate([x_np - 3.0, y_np * 5.0], axis=0) check_result([x_np, y_np], mod, ref) num_inputs = 25 x = [relay.var("x", shape=(relay.Any(),), dtype="float32") for _ in range(num_inputs)] z = relay.op.concatenate(x, axis=0) mod = tvm.IRModule() mod["main"] = relay.Function(x, z) x_np = [np.random.uniform(size=(1,)).astype("float32") for _ in range(num_inputs)] ref = np.concatenate(x_np, axis=0) check_result(x_np, mod, ref) def test_oshape(in_vars, axis, oshape): z = relay.op.concatenate(in_vars, axis=axis) mod = tvm.IRModule() mod["main"] = relay.Function(in_vars, z) typed_mod = relay.transform.InferType()(mod) assert typed_mod["main"].body.checked_type == relay.TensorType(oshape, dtype="float32") x = [relay.var("x", shape=(relay.Any(), 3), dtype="float32") for _ in range(3)] x.append(relay.var("x", shape=(relay.Any(), relay.Any()), dtype="float32")) test_oshape(x, 0, (relay.Any(), 3)) test_oshape(x, 1, (relay.Any(), relay.Any())) x = [ relay.var("x", shape=(1, 3), dtype="float32"), relay.var("x", shape=(1, relay.Any()), dtype="float32"), ] test_oshape(x, 0, (2, relay.Any())) test_oshape(x, 1, (1, relay.Any())) def verify_any_reshape(x_shape, newshape, x_np_shape, out_shape, variable_newshape=False): x = relay.var("x", shape=x_shape, dtype="float32") relu_x = relay.nn.relu(x) data = np.random.uniform(size=x_np_shape).astype("float32") expected = data.reshape(out_shape) params = [x] args = [data] if variable_newshape: newshape_var = relay.var("new
shape", shape=(len(newshape),), dtype="int64") params.append(newshape_var) args.append(np.array(newshape, dtype="int64")) newshape = newshape_var y = relay.reshape(relu_x, newshape=newshape) mod = tvm.IRModule() mod["main"] = relay.Function(params, y) check_result(args, mod, expected) @tvm.testing.uses_gpu def test_any_reshape(): for variable_newshape in [False, True]: verify_any_reshape(any_dims(3), (1, -1), (2, 3, 4), (1, 24), variable_newshape) verify_any_reshape(any_dims(3), (0, -1), (2, 3, 4), (2, 12), variable_newshape) verify_any_reshape(any_dims(3), (0, -2), (2, 3, 4), (2, 3, 4)) verify_any_reshape(any_dims(3), (-4, -1, 2, -3), (6, 3, 4), (3, 2, 12)) verify_any_reshape(any_dims(3), (-4, 2, -1, -2), (6, 3, 4), (2, 3, 3, 4)) verify_any_reshape(any_dims(3), (1, -1, 0), (2, 3, 4), (1, 6, 4)) verify_any_reshape(any_dims(3), (-1, 1, 0), (2, 3, 4), (6, 1, 4)) def verify_any_one_hot(indices_shape, indices_np_shape, depth, on_value, off_value, axis, dtype): indices = relay.var("indices", shape=indices_shape, dtype="int32") on_value_const = relay.const(on_value, dtype) off_value_const = relay.const(off_value, dtype) y = relay.one_hot(indices, on_value_const, off_value_const, depth, axis=axis, dtype=dtype) params = [indices] mod = tvm.IRModule() mod["main"] = relay.Function(params, y) indices_npy = np.random.randint(0, depth, size=indices_np_shape).astype("int32") out_npy = tvm.topi.testing.one_hot(indices_npy, on_value, off_value, depth, axis, dtype) args = [indices_npy] check_result(args, mod, out_npy) @tvm.testing.uses_gpu def test_any_one_hot(): verify_any_one_hot(any_dims(1), (3,), 3, 1, 0, -1, "int32") verify_any_one_hot(any_dims(2), (2, 2), 5, 0.5, -0.5, 1, "float32") verify_any_one_hot(any_dims(4), (3, 2, 4, 5), 6, 1.0, 0.0, 0, "float32") def verify_any_argwhere(x_shape, x_np_shape, dtype="bool"): x = relay.var("x", shape=x_shape, dtype=dtype) y =
relay.argwhere(x) mod = tvm.IRModule() mod["main"] = relay.Function([x], y) data = np.random.choice([0, 1, 2, 3], size=x_np_shape).astype(dtype) expected = np.argwhere(data) check_result([data], mod, expected, flatten=True) @tvm.testing.uses_gpu def test_any_argwhere(): verify_any_argwhere(any_dims(1), (5,)) verify_any_argwhere(any_dims(2), (5, 5)) verify_any_argwhere(any_dims(2), (5, 5), "int32") verify_any_argwhere(any_dims(2), (5, 5), "int8") verify_any_argwhere(any_dims(3), (5, 5, 5)) verify_any_argwhere(any_dims(4), (5, 5, 5, 5)) verify_any_argwhere(any_dims(5), (5, 5, 5, 5, 5)) verify_any_argwhere(any_dims(1), (5,), "int32") verify_any_argwhere(any_dims(3), (5, 5, 5), "int32") verify_any_argwhere(any_dims(4), (5, 5, 5, 5), "int32") verify_any_argwhere(any_dims(5), (5, 5, 5, 5, 5), "int32") verify_any_argwhere(any_dims(1), (5,), "int8") verify_any_argwhere(any_dims(3), (5, 5, 5), "int8") verify_any_argwhere(any_dims(4), (5, 5, 5, 5), "int8") verify_any_argwhere(any_dims(5), (5, 5, 5, 5, 5), "int8") def verify_any_take(data_shape, indices_shape, axis, data_np_shape, indices_np_shape): mod = tvm.IRModule() data = relay.var("data", shape=data_shape, dtype="float32") indices = relay.var("indices", shape=indices_shape, dtype="int32") y = relay.take(data, indices, axis=axis) mod["main"] = relay.Function([data, indices], y) data_np = np.random.uniform(size=data_np_shape).astype("float32") if axis is None: max_index = data_np.size else: max_index = data_np.shape[axis] indices_np = np.random.randint(max_index, size=indices_np_shape).astype("int32") ref = np.take(data_np, indices_np, axis=axis) check_result([data_np, indices_np], mod, ref) @tvm.testing.uses_gpu def test_any_take(): verify_any_take(any_dims(2), (1,), 0, (4, 5), (1,)) verify_any_take(any_dims(2), (), 0, (4, 5), ()) verify_any_take(any_dims(2), (), None, (4, 5), ()) verify_any_take(any_dims(3),
any_dims(2), 1, (3, 4, 5), (2, 3)) verify_any_take(any_dims(2), any_dims(3), None, (4, 5), (2, 3, 4)) verify_any_take(any_dims(2), any_dims(4), -1, (4, 5), (2, 3, 4, 5)) def verify_any_tile(dshape, reps, np_dshape, np_reps): mod = tvm.IRModule() x = relay.var("x", shape=dshape, dtype="float32") y = relay.tile(x, reps=reps) mod["main"] = relay.Function([x], y) x_data = np.random.uniform(size=np_dshape).astype("float32") ref_res = np.tile(x_data, reps=np_reps) check_result([x_data], mod, ref_res) @tvm.testing.uses_gpu def test_any_tile(): verify_any_tile(any_dims(3), (3, 2, 1), (2, 3, 4), (3, 2, 1)) verify_any_tile(any_dims(3), (1, 2), (2, 3, 4), (1, 2)) verify_any_tile(any_dims(2), (3, 2, 1), (2, 3), (3, 2, 1)) verify_any_tile(any_dims(3), (1,), (2, 3, 4), (1,)) @tvm.testing.uses_gpu def test_any_shape_of(): x = relay.var("x", shape=any_dims(2), dtype="float32") y = relay.shape_of(x) mod = tvm.IRModule() mod["main"] = relay.Function([x], y) data = np.random.uniform(size=(3, 4)).astype("float32") check_result([data], mod, np.array([3, 4]).astype("int64")) x = relay.var("x", shape=any_dims(3), dtype="float32") y0 = relay.shape_of(x) y1 = relay.take(y0, relay.const(1, "int32")) mod = tvm.IRModule() mod["main"] = relay.Function([x], y1) data = np.random.uniform(size=(2, 3, 4)).astype("float32") check_result([data], mod, np.array(3).astype("int64")) class TestAnyReduce: config = { "argmax": (relay.argmax, any_dims(3), None, False, False, (3, 4, 5), ()), "argmin": (relay.argmin, any_dims(4), 1, False, True, (3, 4, 5, 6), (3, 1, 5, 6)), "all": (relay.all, any_dims(3), (1, 2), True, False, (3, 4, 5), (4, 5)), "max": (relay.max, any_dims(4), -1, True, True, (3, 4, 5, 6), (1, 1, 1, 6)), "min": (relay.min, any_dims(3), (0, 1), False, False, (4, 5, 6), (6,)), "prod": (relay.prod, any_dims(4), 2, True, True, (3, 4, 5, 6), (1, 1, 5, 1)), "mean": (relay.mean,
any_dims(2), 0, False, False, (1, 2), (2,)), "variance": (relay.variance, any_dims(5), (2, 4), False, False, (3, 4, 5, 6, 7), (3, 4, 6)), } ( reduce_op, data_shape, axis, exclude, keepdims, static_data_shape, ref_out_shape, ) = tvm.testing.parameters(*config.values(), ids=config.keys()) def test_any_reduce( self, target, dev, reduce_op, data_shape, axis, exclude, keepdims, static_data_shape, ref_out_shape, ): target = tvm.target.Target(target) if target.kind.name == "vulkan" and reduce_op == relay.all: pytest.xfail("Known failing test case for vulkan runtime") mod = tvm.IRModule() dtype = "bool" if reduce_op == relay.all else "float32" data = relay.var("data", shape=data_shape, dtype=dtype) y = reduce_op(data, axis, keepdims, exclude) mod["main"] = relay.Function([data], y) data_np = np.random.uniform(size=static_data_shape).astype(dtype) check_result([data_np], mod, ref_out_shape, assert_shape=True, targets=[(target, dev)]) def verify_any_layout_transform( data_shape, src_layout, dst_layout, static_data_shape, ref_out_shape ): mod = tvm.IRModule() dtype = "float32" data = relay.var("data", shape=data_shape, dtype=dtype) y = relay.layout_transform(data, src_layout, dst_layout) mod["main"] = relay.Function([data], y) data_np = np.random.uniform(size=static_data_shape).astype(dtype) check_result([data_np], mod, ref_out_shape, assert_shape=True) @tvm.testing.uses_gpu def test_any_layout_transform(): verify_any_layout_transform(any_dims(4), "NCHW", "NHWC", (3, 4, 5, 6), (3, 5, 6, 4)) verify_any_layout_transform( any_dims(5), "NCHW16c", "NCHW2c", (1, 2, 8, 8, 16), (1, 16, 8, 8, 2) ) verify_any_layout_transform(any_dims(5), "NCHW6n", "NHWC", (3, 4, 5, 6, 6), (18, 5, 6, 4)) verify_any_layout_transform(any_dims
(4), "NCHW", "NCHW4c", (3, 4, 5, 6), (3, 1, 5, 6, 4)) verify_any_layout_transform((16, 1), "CH", "C4cH", (16, 1), (4, 4, 1)) def verify_any_expand_dims(data_shape, axis, num_newaxis, static_data_shape, ref_out_shape): mod = tvm.IRModule() dtype = "float32" data = relay.var("data", shape=data_shape, dtype=dtype) y = relay.expand_dims(data, axis=axis, num_newaxis=num_newaxis) mod["main"] = relay.Function([data], y) data_np = np.random.uniform(size=static_data_shape).astype(dtype) check_result([data_np], mod, ref_out_shape, assert_shape=True) @tvm.testing.uses_gpu def test_any_expand_dims(): verify_any_expand_dims(any_dims(3), 1, 2, (1, 2, 3), (1, 1, 1, 2, 3)) verify_any_expand_dims(any_dims(3), -1, 2, (1, 2, 3), (1, 2, 3, 1, 1)) def verify_any_transpose(data_shape, axes, static_data_shape): mod = tvm.IRModule() dtype = "float32" data = relay.var("data", shape=data_shape, dtype=dtype) y = relay.transpose(data, axes=axes) mod["main"] = relay.Function([data], y) data_np = np.random.uniform(size=static_data_shape).astype(dtype) ref_out = np.transpose(data_np, axes) check_result([data_np], mod, ref_out) @tvm.testing.uses_gpu def test_any_transpose(): verify_any_transpose(any_dims(3), (1, 0, 2), (10, 3, 2)) verify_any_transpose(any_dims(3), None, (2, 3, 4)) verify_any_transpose(any_dims(6), (0, 1, 3, 2, 5, 4), (11, 12, 2, 1, 9, 17)) verify_any_transpose(any_dims(2), (-1, 0), (3, 2)) def verify_any_squeeze(data_shape, axis, static_data_shape): mod = tvm.IRModule() dtype = "float32" data = relay.var("data", shape=data_shape, dtype=dtype) y = relay.squeeze(data, axis=axis) mod["main"] = relay.Function([data], y) data_np = np.random.uniform(size=static_data_shape).astype(dtype) ref_out = np.squeeze(data_np, axis) check_result([data_np], mod, ref_out) @tvm.testing.uses_gpu def test_any_squeeze(): verify_any_squeeze((relay.Any(), relay.Any(), relay.Any()), (0,), (1, 9, 8)) verify_any_squee
ze((1, relay.Any(), relay.Any()), (0,), (1, 9, 8)) verify_any_squeeze( (1, relay.Any(), relay.Any(), 1, relay.Any(), relay.Any()), (0, 3), (1, 12, 2, 1, 9, 17) ) @tvm.testing.uses_gpu def test_any_reshape_like(): mod = tvm.IRModule() dtype = "float32" data = relay.var("data", shape=(relay.Any(), 3, 10), dtype=dtype) shape_like = relay.var("data", shape=(relay.Any(), 5, 6), dtype=dtype) y = relay.reshape_like(data, shape_like) mod["main"] = relay.Function([data, shape_like], y) data_np = np.random.uniform(size=(3, 3, 10)).astype(dtype) shape_like_np = np.random.uniform(size=(3, 5, 6)).astype(dtype) check_result([data_np, shape_like_np], mod, shape_like_np.shape, assert_shape=True) def verify_any_conv2d( data_shape, kernel_shape, strides, padding, dilation, static_data_shape, ref_out_shape, data_layout="NCHW", kernel_layout="OIHW", use_cudnn=False, ): mod = tvm.IRModule() dtype = "float32" data = relay.var("data", shape=data_shape, dtype=dtype) kernel = relay.var("kernel", shape=kernel_shape, dtype=dtype) y = relay.nn.conv2d( data, kernel, strides, padding, dilation, kernel_size=kernel_shape[2:4] if kernel_layout == "OIHW" else kernel_shape[0:2], data_layout=data_layout, kernel_layout=kernel_layout, ) mod["main"] = relay.Function([data, kernel], y) data_np = np.random.uniform(size=static_data_shape).astype(dtype) kernel_np = np.random.uniform(size=kernel_shape).astype(dtype) targets = None if use_cudnn and tvm.get_global_func("tvm.contrib.cudnn.conv2d.forward", True): targets = [("cuda -libs=cudnn", tvm.cuda(0))] check_result([data_np, kernel_np], mod, ref_out_shape, assert_shape=True, targets=targets) @tvm.testing.uses_gpu def test_any_conv2d(): verify_any_conv2d( (relay.Any(), 64, 224, 224), (64, 64, 3, 3), (1, 1), (1, 1), (1, 1), (1, 64, 224, 2
24), (1, 64, 224, 224), ) verify_any_conv2d( (relay.Any(), 64, 224, 224), (64, 64, 3, 3), (1, 1), (1, 1), (2, 2), (2, 64, 224, 224), (2, 64, 222, 222), ) verify_any_conv2d( (relay.Any(), 64, 224, 224), (64, 64, 3, 3), (1, 1), (1, 1), (1, 1), (1, 64, 224, 224), (1, 64, 224, 224), use_cudnn=True, ) verify_any_conv2d( (relay.Any(), 224, 224, 64), (3, 3, 64, 64), (1, 1), (1, 1), (1, 1), (1, 224, 224, 64), (1, 224, 224, 64), data_layout="NHWC", kernel_layout="HWIO", ) verify_any_conv2d( (relay.Any(), 224, 224, 64), (3, 3, 64, 64), (1, 1), (1, 1), (2, 2), (2, 224, 224, 64), (2, 222, 222, 64), data_layout="NHWC", kernel_layout="HWIO", ) class TestAnyConv2dNCHWc: data_shape = tvm.testing.parameter((relay.Any(), 8, 224, 224, 8)) kernel_shape = tvm.testing.parameter((8, 8, 3, 3, 8, 8)) strides = tvm.testing.parameter((1, 1)) padding = tvm.testing.parameter((1, 1)) data_layout = tvm.testing.parameter("NCHW8c") kernel_layout = tvm.testing.parameter("OIHW8i8o") out_layout = tvm.testing.parameter("NCHW8c") dilation, static_data_shape, ref_out_shape = tvm.testing.parameters( ((1, 1), (1, 8, 224, 224, 8), (1, 8, 224, 224, 8)), ((2, 2), (2, 8, 224, 224, 8), (2, 8, 222, 222, 8)), ) @tvm.testing.known_failing_targets("cuda", "vulkan") def test_any_conv2d_NCHWc( self, target, dev, data_shape, kernel_shape, strides, padding, dilation, data_layout, kernel_layout, out_layout, static_data_shape, ref_out_shape, ): mod = tvm.IRModule() dtype = "float32" data = relay.var("data", shape=data_shape, dtype=dtype) kernel = relay.var("kernel",
shape=kernel_shape, dtype=dtype) y = relay.nn.contrib_conv2d_nchwc( data, kernel, strides, padding, dilation, kernel_size=kernel_shape[2:4], channels=kernel_shape[0] * kernel_shape[-1], data_layout=data_layout, kernel_layout=kernel_layout, out_layout=out_layout, ) mod["main"] = relay.Function([data, kernel], y) data_np = np.random.uniform(size=static_data_shape).astype(dtype) kernel_np = np.random.uniform(size=kernel_shape).astype(dtype) check_result( [data_np, kernel_np], mod, ref_out_shape, assert_shape=True, targets=[(target, dev)] ) def verify_any_conv1d_transpose_ncw( data_shape, kernel_shape, strides, padding, dilation, groups, static_data_shape, ref_out_shape, output_padding, ): mod = tvm.IRModule() dtype = "float32" data = relay.var("data", shape=data_shape, dtype=dtype) kernel = relay.var("kernel", shape=kernel_shape, dtype=dtype) y = relay.nn.conv1d_transpose( data, kernel, strides, padding, dilation, groups, kernel_size=kernel_shape[2:], output_padding=output_padding, ) mod["main"] = relay.Function([data, kernel], y) data_np = np.random.uniform(size=static_data_shape).astype(dtype) kernel_np = np.random.uniform(size=kernel_shape).astype(dtype) check_result([data_np, kernel_np], mod, ref_out_shape, assert_shape=True) @tvm.testing.uses_gpu def test_any_conv1d_transpose_ncw(): verify_any_conv1d_transpose_ncw( (relay.Any(), 64, 224), (64, 192, 3), (1,), (1,), (1,), 1, (2, 64, 224), (2, 192, 224), (0, 0), ) verify_any_conv1d_transpose_ncw( (relay.Any(), 32, 224), (32, 64, 3), (2,), (1,), (1,), 1, (1, 32, 224), (1, 64, 448), (1,
1), ) def verify_any_conv2d_transpose_nchw( data_shape, kernel_shape, strides, padding, dilation, groups, static_data_shape, ref_out_shape, output_padding, ): mod = tvm.IRModule() dtype = "float32" data = relay.var("data", shape=data_shape, dtype=dtype) kernel = relay.var("kernel", shape=kernel_shape, dtype=dtype) y = relay.nn.conv2d_transpose( data, kernel, strides, padding, dilation, groups, kernel_size=kernel_shape[2:4], output_padding=output_padding, ) mod["main"] = relay.Function([data, kernel], y) data_np = np.random.uniform(size=static_data_shape).astype(dtype) kernel_np = np.random.uniform(size=kernel_shape).astype(dtype) check_result([data_np, kernel_np], mod, ref_out_shape, assert_shape=True) @tvm.testing.uses_gpu def test_any_conv2d_transpose_nchw(): verify_any_conv2d_transpose_nchw( (relay.Any(), 64, 224, 224), (64, 192, 3, 3), (1, 1), (1, 1), (1, 1), 1, (2, 64, 224, 224), (2, 192, 224, 224), (0, 0), ) verify_any_conv2d_transpose_nchw( (relay.Any(), 32, 224, 224), (32, 64, 3, 3), (2, 2), (1, 1), (1, 1), 1, (1, 32, 224, 224), (1, 64, 448, 448), (1, 1), ) def verify_any_pool2d( pool_type, data_shape, pool_size, strides, dilation, padding, layout, static_data_shape, ref_out_shape, ): mod = tvm.IRModule() dtype = "float32" pool_func = relay.nn.max_pool2d if pool_type == "max" else relay.nn.avg_pool2d data = relay.var("data", shape=data_shape, dtype=dtype) y = pool_func(data, pool_size, strides, dilation, padding, layout) mod["main"] = relay.Function([data], y) data_np = np.random.uniform(size=static_data_shape).astype(dtype) check_result([data_np], mod, ref_out_shape, assert_shape=True) @tvm.testing.uses_gpu def test_any_pool2d():
verify_any_pool2d( "max", (relay.Any(), 3, relay.Any(), relay.Any()), (3, 3), (1, 1), (1, 1), (1, 1), "NCHW", (2, 3, 220, 220), (2, 3, 220, 220), ) verify_any_pool2d( "avg", (relay.Any(), relay.Any(), relay.Any(), 4), (1, 1), (2, 2), (1, 1), (0, 0), "NHWC", (3, 220, 220, 4), (3, 110, 110, 4), ) verify_any_pool2d( "max", (relay.Any(), 3, relay.Any(), relay.Any(), 4), (3, 3), (2, 2), (1, 1), (1, 1), "NCHW4c", (2, 3, 220, 220, 4), (2, 3, 110, 110, 4), ) def verify_any_global_pool2d(pool_type, data_shape, layout, static_data_shape, ref_out_shape): mod = tvm.IRModule() dtype = "float32" pool_func = relay.nn.global_max_pool2d if pool_type == "max" else relay.nn.global_avg_pool2d data = relay.var("data", shape=data_shape, dtype=dtype) y = pool_func(data, layout) mod["main"] = relay.Function([data], y) data_np = np.random.uniform(size=static_data_shape).astype(dtype) check_result([data_np], mod, ref_out_shape, assert_shape=True) @tvm.testing.uses_gpu def test_any_global_pool2d(): verify_any_global_pool2d( "max", (relay.Any(), 3, relay.Any(), relay.Any()), "NCHW", (2, 3, 220, 220), (2, 3, 1, 1) ) verify_any_global_pool2d( "avg", (relay.Any(), relay.Any(), relay.Any(), 4), "NHWC", (3, 220, 220, 4), (3, 1, 1, 4) ) verify_any_global_pool2d( "max", (relay.Any(), 3, relay.Any(), relay.Any(), 4), "NCHW4c", (2, 3, 220, 220, 4), (2, 3, 1, 1, 4), ) def verify_any_split(data_shape, indices_or_sections, axis, static_data_shape, ref_out_shape): mod = tvm.IRModule() dtype = "float32" data = relay.var("data", shape=data_shape, dtype=dtype) y = relay.split(data, indices_or_sections, axis) mod["main"] = relay.Function([data], y.astuple()) data_np = np.random.uni
form(size=static_data_shape).astype(dtype) for kind in ["vm"]: result = relay.create_executor(kind, mod=mod, device=tvm.cpu(), target="llvm").evaluate()( data_np ) for ret, ref_ret in zip(result, ref_out_shape): assert ret.numpy().shape == ref_ret, "Shape mismatch: expect %s but got %s." % ( str(ref_ret), str(ret.numpy().shape), ) @tvm.testing.uses_gpu def test_any_split(): verify_any_split((relay.Any(), 4), 2, -1, (9, 4), [(9, 2), (9, 2)]) verify_any_split((relay.Any(), 4), 2, 1, (9, 4), [(9, 2), (9, 2)]) verify_any_split((relay.Any(), relay.Any()), 2, 1, (9, 4), [(9, 2), (9, 2)]) verify_any_split((relay.Any(), 12), (1, 4, 8), 1, (7, 12), [(7, 1), (7, 3), (7, 4)]) verify_any_split((relay.Any(), relay.Any()), (1, 4, 8), 1, (7, 12), [(7, 1), (7, 3), (7, 4)]) verify_any_split((relay.Any(), 12), (8,), 1, (7, 12), [(7, 8), (7, 4)]) verify_any_split((relay.Any(), relay.Any()), (8,), 1, (7, 12), [(7, 8), (7, 4)]) @tvm.testing.uses_gpu def test_any_batch_flatten(): mod = tvm.IRModule() dtype = "float32" data = relay.var("data", shape=any_dims(3), dtype=dtype) y = relay.nn.batch_flatten(data) mod["main"] = relay.Function([data], y) data_np = np.random.uniform(size=(3, 3, 10)).astype(dtype) ref_out_shape = (3, 30) check_result([data_np], mod, ref_out_shape, assert_shape=True) @tvm.testing.known_failing_targets("cuda", "vulkan") class TestAnyDense: ( data_shape, weight_shape, units, static_data_shape, static_weight_shape, ref_out_shape, ) = tvm.testing.parameters( (any_dims(2), any_dims(2), None, (4, 16), (8, 16), (4, 8)), (any_dims(2), (50, relay.Any()), 50, (4, 40), (50, 40), (4, 50)), ) @tvm.testing.known_failing_targets("cuda", "vulkan") def test_any_dense( self, target, dev, data_shape, weight_shape, units, static_data_
shape, static_weight_shape, ref_out_shape, ): mod = tvm.IRModule() dtype = "float32" data = relay.var("data", shape=data_shape, dtype=dtype) weight = relay.var("weight", shape=weight_shape, dtype=dtype) y = relay.nn.dense(data, weight, units) mod["main"] = relay.Function([data, weight], y) data_np = np.random.uniform(size=static_data_shape).astype(dtype) weight_np = np.random.uniform(size=static_weight_shape).astype(dtype) check_result( [data_np, weight_np], mod, ref_out_shape, assert_shape=True, targets=[(target, dev)] ) @tvm.testing.parametrize_targets("cuda -libs=cublas") @tvm.testing.known_failing_targets("cuda", "vulkan") def test_any_dense_cublas( self, target, dev, data_shape, weight_shape, units, static_data_shape, static_weight_shape, ref_out_shape, ): self.test_any_dense( target, dev, data_shape, weight_shape, units, static_data_shape, static_weight_shape, ref_out_shape, ) class TestAnyBatchMatmul: dtype = tvm.testing.parameter("float32") executor_kind = tvm.testing.parameter("vm", "debug") (x_shape, y_shape) = tvm.testing.parameters( ((1, 16, 32), (1, 32, 16)), ((5, 16, 32), (5, 32, 16)), ((5, 16, 32), (5, 32, 20)), ((30, 16, 32), (30, 32, 20)), ) any_x, any_y = tvm.testing.parameters( ("none", "batch"), ("none", "all"), ("batch", "none"), ("batch", "batch"), ("batch", "all") ) transpose_x = tvm.testing.parameter(True, False) transpose_y = tvm.testing.parameter(True, False) @tvm.testing.fixture def x_var_shape(self, x_shape, any_x): if any_x == "none": return x_shape elif any_x == "batch": return tuple(relay.Any() if i == 0 else size for i, size in enumerate(
x_shape)) elif any_x == "all": return tuple(relay.Any() for _ in x_shape) @tvm.testing.fixture def y_var_shape(self, y_shape, any_y): if any_y == "none": return y_shape elif any_y == "batch": return tuple(relay.Any() if i == 0 else size for i, size in enumerate(y_shape)) elif any_y == "all": return tuple(relay.Any() for _ in y_shape) @tvm.testing.known_failing_targets("cuda", "vulkan") def test_any_batch_matmul( self, target, dev, x_shape, y_shape, any_x, any_y, x_var_shape, y_var_shape, transpose_x, transpose_y, executor_kind, dtype, ): if transpose_x: x_shape = (x_shape[0], x_shape[2], x_shape[1]) x_var_shape = (x_var_shape[0], x_var_shape[2], x_var_shape[1]) if transpose_y: y_shape = (y_shape[0], y_shape[2], y_shape[1]) y_var_shape = (y_var_shape[0], y_var_shape[2], y_var_shape[1]) x = relay.var("x", relay.TensorType(x_var_shape, dtype)) y = relay.var("y", relay.TensorType(y_var_shape, dtype)) z = relay.nn.batch_matmul(x, y, transpose_a=transpose_x, transpose_b=transpose_y) func = relay.Function([x, y], z) x_np = np.random.uniform(size=x_shape).astype(dtype) y_np = np.random.uniform(size=y_shape).astype(dtype) z_np = tvm.topi.testing.batch_matmul(x_np, y_np, trans_x=transpose_x, trans_y=transpose_y) mod = tvm.ir.IRModule.from_expr(func) z = relay.create_executor(executor_kind, mod=mod, device=dev, target=target).evaluate()( x_np, y_np ) tvm.testing.assert_allclose(z.numpy(), z_np, rtol=1e-5) @tvm.testing.uses_gpu def verify_any_pad(data_shape, pad_width, static_data_shape): mod = tvm.IRModule() dtype = "float32" data = relay.var("data", shape=data_shape, dtype=dtype) y = relay.nn.pad(data, pad_width) mod["main"] = relay.F
unction([data], y) data_np = np.random.uniform(size=static_data_shape).astype(dtype) ref_out = np.pad(data_np, pad_width) check_result([data_np], mod, ref_out) @tvm.testing.uses_gpu def test_any_pad(): verify_any_pad(any_dims(3), ((0, 0), (1, 1), (2, 2)), (1, 2, 3)) verify_any_pad(any_dims(4), ((1, 0), (1, 3), (0, 2), (9, 0)), (13, 11, 3, 1)) def verify_any_dilate(data_shape, strides, static_data_shape, dilation_value=None): assert len(data_shape) == len(strides) mod = tvm.IRModule() dtype = "float32" data = relay.var("data", shape=data_shape, dtype=dtype) if dilation_value is None: y = relay.nn.dilate(data, strides) else: y = relay.nn.dilate(data, strides, dilation_value) mod["main"] = relay.Function([data], y) data_np = np.random.uniform(size=static_data_shape).astype(dtype) ref_shape = tuple( (static_data_shape[i] - 1) * strides[i] + 1 for i in range(len(static_data_shape)) ) if dilation_value is None: dilation_value = 0.0 ref_out = np.ones(shape=ref_shape, dtype=dtype) ref_out = dilation_value * ref_out ref_out[tuple(slice(None, None, strides[i]) for i in range(len(data_shape)))] = data_np check_result([data_np], mod, ref_out) @tvm.testing.uses_gpu def test_any_dilate(): verify_any_dilate(any_dims(1), (1,), (1,)) verify_any_dilate(any_dims(1), (1,), (5,)) verify_any_dilate(any_dims(1), (5,), (5,)) verify_any_dilate(any_dims(3), (1, 1, 1), (1, 2, 3)) verify_any_dilate(any_dims(3), (1, 1, 2), (1, 2, 3)) verify_any_dilate(any_dims(3), (1, 1, 5), (1, 2, 3)) verify_any_dilate(any_dims(3), (3, 7, 5), (1, 2, 3)) verify_any_dilate(any_dims(4), (3, 7, 1, 5), (1, 2, 3, 4)) verify_any_dilate(any_dims(4), (3, 7, 1, 5), (1, 2, 3, 4), 1.0) def verify_any_softmax(data_shape, axis, static_data_shape, ref_out_shape): mod = tvm.IRModule() dtype = "float32" data = relay.var("data", shape=data_shape, dtype=dtype) y = relay.nn.softmax(data, axis) mod["main"
] = relay.Function([data], y) data_np = np.random.uniform(size=static_data_shape).astype(dtype) check_result([data_np], mod, ref_out_shape, assert_shape=True) @tvm.testing.uses_gpu def test_any_softmax(): verify_any_softmax(any_dims(3), -1, (1, 2, 3), (1, 2, 3)) verify_any_softmax(any_dims(4), 2, (13, 11, 3, 1), (13, 11, 3, 1)) def verify_any_relu(data_shape, static_data_shape, ref_out_shape): mod = tvm.IRModule() dtype = "float32" data = relay.var("data", shape=data_shape, dtype=dtype) y = relay.nn.relu(data) mod["main"] = relay.Function([data], y) data_np = np.random.uniform(size=static_data_shape).astype(dtype) check_result([data_np], mod, ref_out_shape, assert_shape=True) @tvm.testing.uses_gpu def test_any_relu(): verify_any_relu(any_dims(3), (1, 2, 3), (1, 2, 3)) verify_any_relu(any_dims(4), (13, 11, 3, 1), (13, 11, 3, 1)) def verify_any_prelu(data_shape, alpha, static_data_shape, ref_out_shape): mod = tvm.IRModule() dtype = "float32" data = relay.var("data", shape=data_shape, dtype=dtype) alpha = relay.const(np.array([alpha]), dtype=dtype) y = relay.nn.prelu(data, alpha) mod["main"] = relay.Function([data], y) data_np = np.random.uniform(size=static_data_shape).astype(dtype) check_result([data_np], mod, ref_out_shape, assert_shape=True) @tvm.testing.uses_gpu def test_any_prelu(): verify_any_prelu(any_dims(3), 1, (1, 2, 3), (1, 2, 3)) verify_any_prelu(any_dims(4), 2, (13, 11, 3, 1), (13, 11, 3, 1)) def verify_any_leaky_relu(data_shape, alpha, static_data_shape, ref_out_shape): mod = tvm.IRModule() dtype = "float32" data = relay.var("data", shape=data_shape, dtype=dtype) y = relay.nn.leaky_relu(data, alpha) mod["main"] = relay.Function([data], y) data_np = np.random.uniform(size=static_data_shape).astype(dtype) check_result([data_np], mod, ref_out_shape, assert_shape=True) @tvm.testing.uses_gpu def test_any_leaky_relu(): verify_any_leaky_relu(any_dims(3), 0.1, (1, 2, 3), (1
, 2, 3)) verify_any_leaky_relu(any_dims(4), 0.2, (13, 11, 3, 1), (13, 11, 3, 1)) def verify_any_bias_add(data_shape, static_data_shape, ref_out_shape): mod = tvm.IRModule() dtype = "float32" data = relay.var("data", shape=data_shape, dtype=dtype) bias = relay.const(np.random.randn(1), dtype=dtype) y = relay.nn.bias_add(data, bias) mod["main"] = relay.Function([data], y) data_np = np.random.uniform(size=static_data_shape).astype(dtype) check_result([data_np], mod, ref_out_shape, assert_shape=True) @tvm.testing.uses_gpu def test_any_bias_add(): verify_any_bias_add(any_dims(3), (1, 2, 3), (1, 2, 3)) verify_any_bias_add(any_dims(4), (13, 11, 3, 1), (13, 11, 3, 1)) def verify_any_topk(data_shape, kval, np_dshape, dtype, ret_type="indices", const_k=False): mod = tvm.IRModule() data = relay.var("data", shape=data_shape, dtype=dtype) np_data = np.random.uniform(size=np_dshape).astype(dtype) if const_k: k = relay.const(kval) args = [data] in_vals = [np_data] else: k = relay.var("k", shape=(), dtype="int32") args = [data, k] in_vals = [np_data, kval] out = relay.topk(data, k, ret_type=ret_type) if ret_type == "both": out = out[0] mod["main"] = relay.Function(args, out) sorted = np.argsort(-np_data) if len(np_dshape) == 2: ref_out = sorted[:, 0:kval] else: ref_out = sorted[0:kval] check_result(in_vals, mod, ref_out) @tvm.testing.uses_gpu def test_any_topk(): verify_any_topk(any_dims(1), 5, (10,), "float32") verify_any_topk(any_dims(2), 2, (6, 3), "int32") verify_any_topk(any_dims(2), 3, (6, 3), "float32", const_k=True) verify_any_topk(any_dims(1), 0, (0,), "float32", ret_type="both") def verify_any_get_valid_counts(num_anchor_real, dtype, targets=None): mod = tvm.IRModule() batch_size = 1 num_anchor = relay.Any() data = relay.var("data", shape=(batch_size, num_anchor, 5), dtype=dtype) np_data = np.random.uniform(siz
e=(batch_size, num_anchor_real, 5)).astype(dtype) np_out1 = np.zeros(shape=(batch_size,)) np_out2 = np.zeros(shape=np_data.shape).astype(dtype) np_out3 = np.zeros(shape=(batch_size, num_anchor_real)) score_threshold = 0.95 for i in range(batch_size): np_out1[i] = 0 inter_idx = 0 for j in range(num_anchor_real): score = np_data[i, j, 0] if score > score_threshold: for k in range(5): np_out2[i, inter_idx, k] = np_data[i, j, k] np_out1[i] += 1 np_out3[i, inter_idx] = j inter_idx += 1 if j >= np_out1[i]: for k in range(5): np_out2[i, j, k] = -1.0 np_out3[i, j] = -1 z = relay.vision.get_valid_counts(data, score_threshold, 0, score_index=0) mod["main"] = relay.Function([data], z.astuple()) check_result([np_data], mod, [np_out1, np_out2, np_out3], targets=targets) @tvm.testing.uses_gpu def test_any_get_valid_counts(): verify_any_get_valid_counts(10, "float32") targets = [] for tgt, dev in tvm.testing.enabled_targets(): if "opencl" not in tgt: targets.append((tgt, dev)) verify_any_get_valid_counts(0, "float32", targets=targets) @tvm.testing.uses_gpu def test_fused_ops(): x = relay.var("x", shape=(relay.Any(), relay.Any()), dtype="float32") y0 = x + relay.const(1.0, "float32") y1 = y0 * relay.const(2.0, "float32") mod = tvm.IRModule() mod["main"] = relay.Function([x], y1) data = np.random.uniform(size=(5, 4)).astype("float32") check_result([data], mod, (data + 1) * 2) @tvm.testing.uses_gpu def test_arange_with_dynamic_shape(): m, n, k = relay.Any(), relay.Any(), relay.Any() x = relay.var("x", shape=(m, n, k), dtype="float32") y0 = relay.shape_of(x) y1 = relay.take(y0, relay.const(0, "int32")) y2 = relay.op.arange(y1, dtype="int32") y3 = y2 + relay.const(1, dtype="int32") data =
np.random.rand(10, 5, 3).astype("float32") mod = tvm.IRModule() mod["main"] = relay.Function([x], y3) check_result([data], mod, np.array(range(10)).astype("int32") + 1) def verify_any_random_strided_slice( begin_shape, end_shape, strides_shape, data_shape, slice_mode="end", const_attrs=False, ): np_begin = np.random.randint(2, size=begin_shape, dtype="int32") np_end = np.random.randint(5, 10, size=end_shape, dtype="int32") np_strides = np.random.randint( 1, 2 if slice_mode == "size" else 3, size=strides_shape, dtype="int32" ) verify_any_strided_slice( np_begin, np_end, np_strides, data_shape, slice_mode=slice_mode, const_attrs=const_attrs ) def verify_any_strided_slice( np_begin, np_end, np_strides, data_shape, axes=None, slice_mode="end", const_attrs=False, ): np_data = np.random.uniform(size=data_shape).astype("float32") ref_res = tvm.topi.testing.strided_slice_python( np_data, np_begin, np_end, np_strides, slice_mode, axes ) mod = tvm.IRModule() data = relay.var("data", shape=any_dims(len(data_shape)), dtype="float32") if const_attrs: begin = relay.const(np_begin) end = relay.const(np_end) strides = relay.const(np_strides) args = [data] np_inputs = [np_data] else: begin = relay.var("begin", shape=np_begin.shape, dtype="int32") end = relay.var("end", shape=np_end.shape, dtype="int32") strides = relay.var("strides", shape=np_strides.shape, dtype="int32") args = [data, begin, end, strides] np_inputs = [np_data, np_begin, np_end, np_strides] y = relay.strided_slice( data, begin=begin, end=end, strides=strides, axes=axes, slice_mode=slice_mode ) mod["main"] = relay.Function(args, y) check_result(np_inputs, mod, ref_res) @tvm.testing.uses_gpu def test_any_strided_slice(): verify_any_random_strided_slice((2,), (2,), (2,), (15, 21)) verify_any_r
andom_strided_slice((3,), (3,), (3,), (15, 17, 21)) verify_any_random_strided_slice((3,), (3,), (3,), (23, 29, 41)) verify_any_random_strided_slice((4,), (4,), (4,), (40, 50, 60, 70)) verify_any_random_strided_slice((3,), (3,), (3,), (15, 17, 21), slice_mode="size") verify_any_random_strided_slice((2,), (2,), (2,), (15, 21), const_attrs=True) begin = np.array([0, 1000000]).astype("int32") end = np.array([1000000, -1000000]).astype("int32") strides = np.array([1, -1]).astype("int32") verify_any_strided_slice(begin, end, strides, (15, 21), const_attrs=False) verify_any_strided_slice(begin, end, strides, (15, 21), const_attrs=True) verify_any_strided_slice(begin, end, strides, (15, 17, 21), axes=[0, 2], const_attrs=True) @tvm.testing.uses_gpu def test_recursive_concat(): """ fn @concat_loop(%i: int32, %st: (any, 1)) -> (any, 1) { if (%i < 10) { let %i = reshape(cast(i, "float32"), newshape=(1, )) let %new_st = concatenate((st, i), axis=0) concat_loop(%i + 1, ) } else { st } } """ i = relay.var("i", shape=(), dtype="int32") st = relay.var("st", shape=(relay.Any(), 1), dtype="int32") def _cond(i, st): return relay.op.min(relay.op.less(i, int32(10))) def _body(i, st): i_vec = relay.op.reshape(i, (1, 1)) ret = relay.op.concatenate([st, i_vec], axis=0) return i + int32(1), ret loop = while_loop(_cond, [i, st], _body) start = relay.var("start", shape=(), dtype="int32") body = loop(start, relay.op.reshape(relay.const(0), newshape=(1, 1))) func = relay.Function([start], relay.TupleGetItem(body, 1)) mod = tvm.IRModule() mod["main"] = func data = np.array(0.0, dtype="int32") ref = np.array([0] + list(range(10))).reshape((11, 1)).astype("int32") check_result([data], mod, ref) @tvm.testing.uses_gpu def test_recursive_concat_with_wrong_annotation(): """ v0.0.1 fn (%start: int32) { %7 = {
let %while_loop = fn (%i: int32, %st: Tensor[(1, 1), int32]) { %0 = less(%i, 10) %1 = min(%0) if (%1) { %2 = add(%i, 1) %3 = reshape(%i, newshape=[1, 1]) %4 = (%st, %3) /* The result of concat should be 1,1 but it is 2, 1. */ %5 = concatenate(%4) %while_loop(%2, %5) } else { (%i, %st) } } %6 = reshape(0, newshape=[1, 1]) %while_loop(%start, %6) } %7.1 } """ i = relay.var("i", shape=(), dtype="int32") st = relay.var("st", shape=(1, 1), dtype="int32") def _cond(i, st): return relay.op.min(relay.op.less(i, int32(10))) def _body(i, st): i_vec = relay.op.reshape(i, (1, 1)) ret = relay.op.concatenate([st, i_vec], axis=0) return i + int32(1), ret loop = while_loop(_cond, [i, st], _body) start = relay.var("start", shape=(), dtype="int32") body = loop(start, relay.op.reshape(relay.const(0), newshape=(1, 1))) func = relay.Function([start], relay.TupleGetItem(body, 1)) with DiagnosticTesting() as diagnostics: diagnostics.assert_message( "The Relay type checker is unable to show the following types match:\n" " Tensor[(2, 1), int32]\n" " Tensor[(1, 1), int32]\n" "In particular:\n" " dimension 0 conflicts: 2 does not match 1." ) func = infer_type(func) @tvm.testing.uses_gpu def test_tuple_get_item(): mod = tvm.IRModule() dtype = "float32" static_data_shape = (9, 4) data_shape = (relay.Any(), 4) indices_or_sections = 2 axis = 1 data = relay.var("data", shape=data_shape, dtype=dtype) y = relay.split(data, indices_or_sections, axis) y = relay.expr.TupleGetItem(y.astuple(), 0) mod["main"] = relay.Function([data], y) data_np = np.random.uniform(size=static_data_shape).astype(dtype) ref_out_shape = (9,
2) check_result([data_np], mod, ref_out_shape, assert_shape=True) @tvm.testing.uses_gpu def test_mixed_input_type(): mod = tvm.IRModule() dtype = "float32" static_data_shape = (9, 4) data_shape = (relay.Any(), 4) tensor_type = relay.TensorType(data_shape, dtype) tuple_type = relay.TupleType([tensor_type, tensor_type]) data0 = relay.var("d0", type_annotation=relay.TupleType([tuple_type, tensor_type])) data1 = relay.var("d1", shape=(relay.Any(), 4), dtype=dtype) data_tuple = relay.expr.TupleWrapper(data0, 2) nested_data_tuple = relay.expr.TupleWrapper(data_tuple[0], 2) y = nested_data_tuple[1] * data_tuple[1] + data1 mod["main"] = relay.Function([data0, data1], y) data_np0 = np.random.uniform(size=static_data_shape).astype(dtype) data_np1 = np.random.uniform(size=static_data_shape).astype(dtype) ref_out_shape = (9, 4) check_result( [[[data_np0, data_np0], data_np0], data_np1], mod, ref_out_shape, assert_shape=True, only_vm=True, ) def verify_any_crop_and_resize( data_shape, boxes_shape, box_indices_shape, crop_size, layout, static_boxes, static_box_indices_shape, ref_out_shape, ): mod = tvm.IRModule() dtype = "float32" indices_dtype = "int32" data = relay.var("data", shape=data_shape, dtype=dtype) boxes = relay.var("boxes", shape=boxes_shape, dtype=dtype) box_indices = relay.var("box_indices", shape=box_indices_shape, dtype=indices_dtype) y = relay.image.crop_and_resize(data, boxes, box_indices, crop_size, layout) mod["main"] = relay.Function([data, boxes, box_indices], y) data_np = np.random.uniform(size=data_shape).astype(dtype) boxes_np = np.random.uniform(size=static_boxes).astype(dtype) box_indices_np = np.random.uniform(size=static_box_indices_shape).astype(indices_dtype) check_result([data_np, boxes_np, box_indices_np], mod, ref_out_shape, assert_shape=True) @tvm.testing.uses_gpu def test_any_crop_and_resize():
verify_any_crop_and_resize( data_shape=(1, 234, 234, 256), boxes_shape=(relay.Any(), 4), box_indices_shape=(relay.Any(),), crop_size=(14, 14), layout="NHWC", static_boxes=(128, 4), static_box_indices_shape=(128,), ref_out_shape=(128, 14, 14, 256), ) verify_any_crop_and_resize( data_shape=(1, 256, 234, 234), boxes_shape=(relay.Any(), 4), box_indices_shape=(relay.Any(),), crop_size=(14, 14), layout="NCHW", static_boxes=(128, 4), static_box_indices_shape=(128,), ref_out_shape=(128, 256, 14, 14), ) def verify_any_mirror_pad(data_shape, pad_width, static_data_shape, ref_out_shape): mod = tvm.IRModule() dtype = "float32" data = relay.var("data", shape=data_shape, dtype=dtype) y = relay.nn.mirror_pad(data, pad_width) mod["main"] = relay.Function([data], y) data_np = np.random.uniform(size=static_data_shape).astype(dtype) check_result([data_np], mod, ref_out_shape, assert_shape=True) @tvm.testing.uses_gpu def test_any_mirror_pad(): verify_any_mirror_pad( data_shape=(1, 256, 232, 232), pad_width=((0, 0), (0, 0), (1, 1), (1, 1)), static_data_shape=(1, 256, 232, 232), ref_out_shape=(1, 256, 234, 234), ) def verify_any_ndarray_size(data_np_shape): v = relay.var("v", shape=any_dims(len(data_np_shape)), dtype="float32") n = relay.ndarray_size(v, dtype="int32") mod = tvm.IRModule() mod["main"] = relay.Function([v], n) np_data = np.zeros(data_np_shape, dtype="float32") ref_res = np.size(np_data) check_result([np_data], mod, ref_res) @tvm.testing.uses_gpu def test_any_ndarray_size(): verify_any_ndarray_size((2,)) verify_any_ndarray_size((2, 2)) verify_any_ndarray_size((1, 2, 3, 4)) def verify_any_resize2d(data_shape, scale, layout, static_data_shape, ref_out_shape): mod = tvm.IRModule() dtype = "float32" data = relay.var("data", shape=data_shape, dtype=dtype)
if layout == "NHWC": size = (data_shape[1] * scale, data_shape[2] * scale) else: size = (data_shape[2] * scale, data_shape[3] * scale) y = relay.image.resize2d(data, size, None, layout) mod["main"] = relay.Function([data], y) data_np = np.random.uniform(size=static_data_shape).astype(dtype) check_result([data_np], mod, ref_out_shape, assert_shape=True) @tvm.testing.uses_gpu def test_any_resize(): verify_any_resize2d( data_shape=(relay.Any(), 4, 4, 4), scale=2, layout="NHWC", static_data_shape=(1, 4, 4, 4), ref_out_shape=(1, 8, 8, 4), ) verify_any_resize2d( data_shape=(relay.Any(), 8, 17, 20), scale=3, layout="NCHW", static_data_shape=(2, 8, 17, 20), ref_out_shape=(2, 8, 51, 60), ) def verify_any_grid_sample(data_shape, grid_shape, static_data_shape, ref_out_shape): mod = tvm.IRModule() dtype = "float32" data = relay.var("data", shape=data_shape, dtype=dtype) grid = relay.var("grid", shape=grid_shape, dtype=dtype) y = relay.image.grid_sample(data, grid) mod["main"] = relay.Function([data, grid], y) data_np = np.random.uniform(size=static_data_shape).astype(dtype) grid_np = np.random.uniform(size=grid_shape).astype(dtype) check_result([data_np, grid_np], mod, ref_out_shape, assert_shape=True) @tvm.testing.uses_gpu def test_any_grid_sample(): verify_any_grid_sample( data_shape=(relay.Any(), 4, 16, 32), grid_shape=(4, 2, 8, 8), static_data_shape=(4, 4, 16, 32), ref_out_shape=(4, 4, 8, 8), ) verify_any_grid_sample( data_shape=(relay.Any(), 4, 16, 32), grid_shape=(4, 2, 32, 32), static_data_shape=(4, 4, 16, 32), ref_out_shape=(4, 4, 32, 32), ) def verify_any_affine_grid(num_batch, static_num_batch, target_shape, ref_out_shape): mod = tvm.IRModule() dtype = "float32" data_shape = (num_batch, 2, 3) static_data_shape = (static_num_batch, 2, 3) data =
relay.var("data", shape=data_shape, dtype=dtype) y = relay.image.affine_grid(data, target_shape) mod["main"] = relay.Function([data], y) data_np = np.random.uniform(size=static_data_shape).astype(dtype) check_result([data_np], mod, ref_out_shape, assert_shape=True) @tvm.testing.uses_gpu def test_any_affine_grid(): verify_any_affine_grid( num_batch=relay.Any(), static_num_batch=1, target_shape=(16, 32), ref_out_shape=(1, 2, 16, 32), ) verify_any_affine_grid( num_batch=relay.Any(), static_num_batch=8, target_shape=(32, 32), ref_out_shape=(8, 2, 32, 32), ) def test_any_consecutive_broadcast(): dtype = "float32" data0 = relay.var("data0", shape=any_dims(2), dtype=dtype) data1 = relay.var("data1", shape=any_dims(2), dtype=dtype) data2 = relay.var("data2", shape=any_dims(2), dtype=dtype) data3 = relay.var("data3", shape=any_dims(2), dtype=dtype) out0 = data0 + data1 out1 = data0 * data1 out2 = out0 - out1 out3 = data2 + data3 out4 = data2 * data3 out5 = out3 - out4 out6 = out2 * out5 mod = tvm.IRModule() mod["main"] = relay.Function([data0, data1, data2, data3], out6) np_data0 = np.random.uniform(size=(1, 4)).astype(dtype) np_data1 = np.random.uniform(size=(2, 4)).astype(dtype) np_data2 = np.random.uniform(size=(1, 4)).astype(dtype) np_data3 = np.random.uniform(size=(2, 4)).astype(dtype) ref_res = ((np_data0 + np_data1) - (np_data0 * np_data1)) * ( (np_data2 + np_data3) - (np_data2 * np_data3) ) check_result([np_data0, np_data1, np_data2, np_data3], mod, ref_res) def test_reshape_concat(): dtype = "float32" d0 = relay.var("d0", shape=any_dims(2), dtype=dtype) d1 = relay.var("d1", shape=any_dims(3), dtype=dtype) out = relay.op.concatenate([relay.op.reshape(d0, [-1]), relay.op.reshape(d1, [-1])], axis=0) mod = tvm.IRModule() mod["main"] = relay.Function([d0, d1], out) np_data0 = np.random.uniform(
size=(4, 5)).astype(dtype) np_data1 = np.random.uniform(size=(2, 5, 2)).astype(dtype) ref_res = np.concatenate([np.reshape(np_data0, [-1]), np.reshape(np_data1, [-1])], axis=0) check_result([np_data0, np_data1], mod, ref_res) d0 = relay.var("d0", shape=any_dims(2), dtype=dtype) d1 = relay.var("d1", shape=any_dims(2), dtype=dtype) s0 = relay.var("s0", shape=any_dims(3), dtype=dtype) s1 = relay.var("s1", shape=any_dims(3), dtype=dtype) out = relay.op.concatenate( [relay.op.reshape_like(d0, s0), relay.op.reshape_like(d1, s1)], axis=0 ) mod = tvm.IRModule() mod["main"] = relay.Function([d0, d1, s0, s1], out) np_data0 = np.random.uniform(size=(4, 5)).astype(dtype) np_data1 = np.random.uniform(size=(8, 5)).astype(dtype) np_shape_like0 = np.random.uniform(size=(2, 2, 5)).astype(dtype) np_shape_like1 = np.random.uniform(size=(4, 2, 5)).astype(dtype) ref_res = np.concatenate( [np.reshape(np_data0, np_shape_like0.shape), np.reshape(np_data1, np_shape_like1.shape)], axis=0, ) check_result([np_data0, np_data1, np_shape_like0, np_shape_like1], mod, ref_res) def test_any_adv_index(): data = relay.var("data", shape=(5, relay.Any(), relay.Any()), dtype="float32") index0 = relay.var("index0", shape=(1, relay.Any()), dtype="int64") index1 = relay.var("index1", shape=(relay.Any(), 1), dtype="int64") out = relay.adv_index([data, index0, index1]) mod = tvm.IRModule() mod["main"] = relay.Function([data, index0, index1], out) np_data_shape = (5, 5, 10) np_index0_shape = (1, 4) np_index1_shape = (4, 1) np_data = np.random.uniform(size=np_data_shape).astype("float32") np_index0 = np.random.uniform(0, np_data_shape[0], size=np_index0_shape).astype("int64") np_index1 = np.random.uniform(0, np_data_shape[0], size=np_index1_shape).astype("int64") ref_res = np_data[tuple([np_index0, np_index1])] print(ref_res.shape) check_result([np_data, np_index0, np_index1], mod, ref_res) def verif
y_any_repeat(data_shape, np_dshape, repeats, axis): mod = tvm.IRModule() dtype = "float32" data = relay.var("data", shape=data_shape, dtype=dtype) y = relay.repeat(data, repeats, axis) mod["main"] = relay.Function([data], y) np_data = np.random.uniform(size=np_dshape).astype(dtype) ref_res = np.repeat(np_data, repeats, axis) check_result([np_data], mod, ref_res) @tvm.testing.uses_gpu def test_any_repeat(): verify_any_repeat(any_dims(2), (1, 2), 2, 0) verify_any_repeat(any_dims(1), (3,), 3, -1) verify_any_repeat(any_dims(4), (2, 1, 1, 4), 4, 2) def verify_any_stack(data_shape, np_dshape, num_data, axis): mod = tvm.IRModule() dtype = "float32" inputs = [] for i in range(num_data): inputs.append(relay.var("data{}".format(i), shape=data_shape, dtype=dtype)) y = relay.stack(inputs, axis) mod["main"] = relay.Function(inputs, y) np_inputs = [] for _ in range(num_data): np_inputs.append(np.random.uniform(size=np_dshape).astype(dtype)) ref_res = np.stack(np_inputs, axis) check_result(np_inputs, mod, ref_res) @tvm.testing.uses_gpu def test_any_stack(): verify_any_stack(any_dims(2), (1, 2), 3, 0) verify_any_stack(any_dims(1), (3,), 4, -1) verify_any_stack(any_dims(4), (2, 1, 1, 4), 2, 2) def verify_any_where( cond_shape, x_shape, y_shape, cond_np_shape, x_np_shape, y_np_shape, y_np_shape_invalid=None ): dtype = "float32" cond = relay.var("cond", shape=cond_shape, dtype="bool") x = relay.var("x", shape=x_shape, dtype=dtype) y = relay.var("y", shape=y_shape, dtype=dtype) z = relay.where(cond, x, y) mod = tvm.IRModule() mod["main"] = relay.Function([cond, x, y], z) cond_np = np.random.randn(*cond_np_shape) > 0 x_np = np.random.randn(*x_np_shape).astype(dtype) y_np = np.random.randn(*y_np_shape).astype(dtype) expected = np.where(cond_np, x_np, y_np) check_result([cond_np, x_np, y_np], mod, expected) if y_np_shape_invalid: y_np_bad = np.ran
dom.randn(*y_np_shape_invalid).astype(dtype) try: check_result([cond_np, x_np, y_np_bad], mod, expected) except tvm.error.TVMError as e: error_msg = str(e).split("\n")[-1] assert "Invalid broadcast shapes" in error_msg @tvm.testing.uses_gpu def test_any_where(): verify_any_where(any_dims(1), (5,), (5,), (5,), (5,), (5,)) verify_any_where(any_dims(1), any_dims(1), (5,), (5,), (5,), (5,)) verify_any_where(any_dims(1), any_dims(1), any_dims(1), (5,), (5,), (5,)) verify_any_where((5,), any_dims(1), any_dims(1), (5,), (5,), (5,)) verify_any_where(any_dims(1), any_dims(1), any_dims(1), (5,), (1,), (5,)) verify_any_where(any_dims(1), any_dims(2), any_dims(2), (5,), (5, 5), (5, 5)) verify_any_where(any_dims(1), any_dims(1), any_dims(2), (5,), (5,), (5, 5)) verify_any_where( any_dims(2), any_dims(2), any_dims(2), (3, 4), (3, 1), (1, 4), y_np_shape_invalid=(2, 4) ) x = relay.var("x", shape=any_dims(1), dtype="int64") y = relay.var("y", shape=any_dims(2), dtype="float32") left = relay.take(x, relay.const(1, dtype="int32")) + relay.const(4, "int64") right = relay.const(4, "int64") where = relay.where(relay.const(False, "bool"), left, right) z = relay.take(y, where, axis=1) mod = tvm.IRModule() mod["main"] = relay.Function([x, y], z) x_np = np.random.randn(2).astype("int64") y_np = np.random.randn(2, 6).astype("float32") expected = y_np[:, 4] check_result([x_np, y_np], mod, expected) @tvm.testing.uses_gpu def test_non_max_suppression(): x0 = relay.var("x0", relay.ty.TensorType((1, relay.Any(), 6), "float32")) x1 = relay.var("x1", relay.ty.TensorType((1,), "int32")) x2 = relay.var("x2", relay.ty.TensorType((1, relay.Any()), "int32")) x3 = relay.var("x3", relay.ty.TensorType((), "int32")) z = relay.vision.non_max_suppression( x0, x1, x2, x3, iou_threshold=0.5, force_suppress=True, top_k=2,
return_indices=True, invalid_to_bottom=False, ) z = z.astuple() func = relay.Function([x0, x1, x2, x3], z) mod = tvm.IRModule() mod["main"] = func np_data = np.array( [ [ [0, 0.8, 1, 20, 25, 45], [1, 0.7, 30, 60, 50, 80], [0, 0.4, 4, 21, 19, 40], [2, 0.9, 35, 61, 52, 79], [1, 0.5, 100, 60, 70, 110], ] ] ).astype("float32") np_valid_count = np.array([4]).astype("int32") np_indices = np.array([[0, 1, 3, 4, -1]]).astype("int32") np_max_output_size = -1 np_indices_result = np.array([[4, 0, -1, -1, -1]]) np_valid_box_count = np.array([[2]]).astype("int32") check_result( [np_data, np_valid_count, np_indices, np_max_output_size], mod, [np_indices_result, np_valid_box_count], only_vm=False, ) np_data = np.zeros((1, 0, 6)).astype("float32") np_valid_count = np.array([0]).astype("int32") np_indices = np.zeros((1, 0)).astype("int32") np_max_output_size = -1 np_indices_result = np.zeros((1, 0)) np_valid_box_count = np.array([[0]]).astype("int32") check_result( [np_data, np_valid_count, np_indices, np_max_output_size], mod, [np_indices_result, np_valid_box_count], only_vm=False, ) @tvm.testing.uses_gpu def test_all_class_non_max_suppression(): def verify_all_class_non_max_suppression( boxes_np, scores_np, max_output_boxes_per_class, iou_threshold, score_threshold, expected, output_format="onnx", ): batch_size = boxes_np.shape[0] num_classes = scores_np.shape[1] num_boxes = relay.Any() boxes = relay.var("boxes", relay.ty.TensorType((batch_size, num_boxes, 4), "float32")) scores = relay.var( "scores", relay.ty.TensorType((batch_size, num_classes, num_boxes), "float32") ) nms_out = relay.vision.all_class_non_max
_suppression( boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold, output_format ) if output_format == "onnx": three = relay.const(np.array([3]), dtype="int64") begin = relay.const(np.array([0, 0]), dtype="int64") end = relay.op.concatenate([nms_out[1], three], axis=0) strides = relay.const(np.array([1, 1]), dtype="int64") out = relay.op.strided_slice(nms_out[0], begin, end, strides) mod = tvm.IRModule() mod["main"] = relay.Function([boxes, scores], out) check_result([boxes_np, scores_np], mod, [expected]) else: out = nms_out.tuple_value mod = tvm.IRModule() mod["main"] = relay.Function([boxes, scores], out) check_result([boxes_np, scores_np], mod, expected) boxes = np.array( [ [ [0.0, 0.0, 0.3, 0.3], [0.5, 0.5, 0.4, 0.4], [0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.9, 0.9], [0.5, 0.5, 1.0, 1.0], ], ] ).astype("float32") scores = np.array( [ [[0.1, 0.2, 0.6, 0.3, 0.9], [0.8, 0.2, 0.6, 0.3, 0.9]], ] ).astype("float32") max_output_boxes_per_class = 2 iou_threshold = 0.8 score_threshold = 0.4 expected = np.array([[0, 0, 4], [0, 0, 2], [0, 1, 4], [0, 1, 0]]) verify_all_class_non_max_suppression( boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold, expected ) expected = [ np.array( [[[0, 4], [0, 2], [1, 4], [1, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]]] ), np.array( [ [ 0.9, 0.6, 0.9, 0.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,