text
stringlengths
1
2.05k
attern) assert ty_pat.type == ttype def test_DataTypePattern(): dtype = "float16" pattern = has_dtype(dtype) assert isinstance(pattern, DataTypePattern) assert pattern.dtype == dtype def test_ShapePattern(): shape = [10, 10] pattern = has_shape(shape) assert isinstance(pattern, ShapePattern) assert tvm.ir.structural_equal(pattern.shape, shape) def test_AttrPattern(): op = is_op("add").has_attr({"TOpPattern": K_ELEMWISE}) assert isinstance(op, AttrPattern) assert op.attrs["TOpPattern"] == K_ELEMWISE def test_IfPattern(): x = is_var("x") y = is_var("y") pat = is_if(is_op("less")(x, y), x, y) assert isinstance(pat, IfPattern) assert isinstance(pat.cond, CallPattern) assert isinstance(pat.true_branch, VarPattern) assert isinstance(pat.false_branch, VarPattern) def test_LetPattern(): x = is_var("x") y = is_var("y") let_var = is_var("let") pat = is_let(let_var, is_op("less")(x, y), let_var) assert isinstance(pat, LetPattern) assert isinstance(pat.var, VarPattern) assert isinstance(pat.value, CallPattern) assert isinstance(pat.body, VarPattern) def test_match_op(): assert is_op("add").match(relay.op.op.get("add")) def test_no_match_op(): assert not is_op("add").match(relay.op.op.get("subtract")) def test_match_op_or(): is_add_or_sub = is_op("add") | is_op("subtract") assert is_add_or_sub.match(relay.op.op.get("add")) assert is_add_or_sub.match(relay.op.op.get("subtract")) def test_match_call_commutive(): x = relay.var("x") y = relay.var("y") add_pattern = is_op("add")(is_var("x"), is_var("y")) assert add_pattern.match(x + y) assert add_pattern.match(y + x) mul_pattern = is_op("multiply")(is_var("x"), is_var("y")) assert mul_pattern.match(x * y) assert mul_pattern.match(y * x) def test_no_match_call_commutive(): x = relay.var("x") y = relay.var("y") add_pattern = is_op("subtract")(is_var("x"), is_var("y")) assert add_patter
n.match(x - y) assert not add_pattern.match(y - x) add_pattern = is_op("divide")(is_var("x"), is_var("y")) assert add_pattern.match(x / y) assert not add_pattern.match(y / x) def test_match_call(): x = relay.var("x") y = relay.var("y") add_pattern = is_op("add")(wildcard(), wildcard()) assert add_pattern.match(x + y) call_pattern = wildcard()(None) assert call_pattern.match(relay.op.nn.relu(x)) assert call_pattern.match(relay.op.add(x, y)) def test_no_match_call(): x = relay.var("x") y = relay.var("y") add_pattern = is_op("add")(wildcard(), wildcard()) assert not add_pattern.match(x - y) def test_match_func(): x = relay.var("x") y = relay.var("y") wc1 = wildcard() wc2 = wildcard() func_pattern = FunctionPattern([wc1, wc2], wc1 + wc2) assert func_pattern.match(relay.Function([x, y], x + y)) func_pattern = FunctionPattern(None, wildcard()) assert func_pattern.match(relay.Function([x], x)) assert func_pattern.match(relay.Function([x, y], x + y)) def test_no_match_func(): x = relay.var("x") y = relay.var("y") wc1 = wildcard() wc2 = wildcard() func_pattern = FunctionPattern([wc1, wc2], wc1 + wc2) assert not func_pattern.match(relay.Function([x, y], x - y)) def test_match_if(): x = is_var("x") y = is_var("y") pat = is_if(is_op("less")(x, y), x, y) x = relay.var("x") y = relay.var("y") cond = x < y assert pat.match(relay.expr.If(cond, x, y)) def test_no_match_if(): x = is_var("x") y = is_var("y") pat = is_if(is_op("less")(x, y), x, y) x = relay.var("x") y = relay.var("y") assert not pat.match(relay.expr.If(x > y, x, y)) assert not pat.match(relay.expr.If(x < y, y, x)) def test_match_let(): x = is_var("x") y = is_var("y") let_var = is_var("let") pat = is_let(let_var, is_op("less")(x, y), let_var) x = relay.var("x") y = relay.var("y") lv = relay.var("let") cond = x < y assert pat.mat
ch(relay.expr.Let(lv, cond, lv)) def test_no_match_let(): x = is_var("x") y = is_var("y") let_var = is_var("let") pat = is_let(let_var, is_op("less")(x, y), let_var) x = relay.var("x") y = relay.var("y") lv = relay.var("let") assert not pat.match(relay.expr.Let(lv, x > y, lv)) assert not pat.match(relay.expr.Let(lv, x < y, lv * x)) def test_match_option(): x = relay.var("x") w = relay.var("w") b = relay.var("b") pattern = is_op("nn.relu")( is_op("nn.conv2d")(wildcard(), wildcard()).optional( lambda x: is_op("nn.bias_add")(x, wildcard()) ) ) conv2d = relay.op.nn.conv2d(x, w) relu = relay.op.nn.relu(conv2d) assert pattern.match(relu) conv2d = relay.op.nn.conv2d(x, w) bias_add = relay.op.nn.bias_add(conv2d, b) relu = relay.op.nn.relu(bias_add) assert pattern.match(relu) pattern = is_op("nn.conv2d")(wildcard(), wildcard()) pattern = pattern.optional(is_op("nn.relu")).optional(is_op("tanh")) conv2d = relay.op.nn.conv2d(x, w) relu = relay.op.nn.relu(conv2d) tanh = relay.op.tanh(conv2d) tanh2 = relay.op.tanh(relu) relu2 = relay.op.nn.relu(tanh) assert pattern.match(conv2d) assert pattern.match(relu) assert pattern.match(tanh) assert pattern.match(tanh2) assert not pattern.match(relu2) def test_no_match_option(): x = relay.var("x") w = relay.var("w") b = relay.var("b") pattern = is_op("nn.relu")( is_op("nn.conv2d")(wildcard(), wildcard()).optional( lambda x: is_op("nn.bias_add")(x, wildcard()) ) ) conv2d = relay.op.nn.conv2d(x, w) relu = relay.op.tanh(conv2d) assert not pattern.match(relu) conv2d = relay.op.nn.dense(x, w) relu = relay.op.tanh(conv2d) assert not pattern.match(relu) conv2d = relay.op.nn.dense(x, w) bias_add = relay.op.nn.bias_add(conv2d, b) relu = relay.op.nn.relu(bias_add) assert not pattern.match(relu) conv2d = relay.op.nn.conv2d(x, w) b
ias_add = conv2d + w relu = relay.op.nn.relu(bias_add) assert not pattern.match(relu) def test_match_const(): conv2d = is_op("nn.conv2d")(wildcard(), is_constant()) pattern = is_op("nn.bias_add")(conv2d, wildcard()) x = relay.var("x", shape=(1, 3, 224, 224)) w = relay.var("w", shape=(3, 3, 3, 3)) b = relay.var("b", shape=(3,)) conv2d = relay.op.nn.conv2d(x, w) out = relay.op.nn.bias_add(conv2d, b) func = relay.Function([x, w, b], out) mod = tvm.IRModule.from_expr(func) assert not pattern.match(mod["main"].body) mod["main"] = bind_params_by_name(mod["main"], {"w": tvm.nd.array(np.ones(shape=(3, 3, 3, 3)))}) assert pattern.match(mod["main"].body) def test_match_tuple(): x = relay.var("x") y = relay.var("y") z = relay.op.op.get("add") tuple_pattern = is_tuple((is_var("x"), wildcard(), is_op("add"))) assert tuple_pattern.match(relay.expr.Tuple((x, y, z))) tuple_pattern = is_tuple((is_var("x"), wildcard(), is_op("add"))) tuple_get_item_pattern = is_tuple_get_item(tuple_pattern, 1) assert tuple_get_item_pattern.match(relay.expr.TupleGetItem(relay.expr.Tuple((x, y, z)), 1)) tuple_get_item_pattern = is_tuple_get_item(tuple_pattern) assert tuple_get_item_pattern.match(relay.expr.TupleGetItem(relay.expr.Tuple((x, y, z)), 0)) assert tuple_get_item_pattern.match(relay.expr.TupleGetItem(relay.expr.Tuple((x, y, z)), 1)) assert tuple_get_item_pattern.match(relay.expr.TupleGetItem(relay.expr.Tuple((x, y, z)), 2)) tuple_pattern = is_tuple(None) concat_pattern = is_op("concatenate")(tuple_pattern) assert concat_pattern.match(relay.op.concatenate(relay.expr.Tuple((x,)), axis=0)) assert concat_pattern.match(relay.op.concatenate(relay.expr.Tuple((x, y)), axis=0)) assert concat_pattern.match(relay.op.concatenate(relay.expr.Tuple((x, y, z)), axis=0)) def test_no_match_tuple(): x = relay.var("x") y = relay.var("y") z = relay.op.op.get("add") tuple_pattern = is_tuple((is_var("x"), w
ildcard(), is_op("add"), wildcard())) assert not tuple_pattern.match(relay.expr.Tuple((x, y, z))) tuple_pattern = is_tuple((is_var("x"), wildcard(), is_op("add"))) tuple_get_item_pattern = is_tuple_get_item(tuple_pattern, 1) assert not tuple_get_item_pattern.match(relay.expr.TupleGetItem(relay.expr.Tuple((x, y, z)), 2)) def test_match_type(): x = relay.var("x", shape=(10, 10), dtype="float32") ty_pat = has_type(relay.TensorType((10, 10), "float32")) assert ty_pat.match(x) def test_no_match_type(): x = relay.var("x", shape=(10, 10), dtype="int32") ty_pat = has_type(relay.TensorType((10, 10), "float32")) assert not ty_pat.match(x) def test_match_dtype(): x = relay.var("x", shape=(10, 10), dtype="float32") ty_pat = has_dtype("float32") assert ty_pat.match(x) def test_no_match_dtype(): x = relay.var("x", shape=(10, 10), dtype="int32") ty_pat = has_dtype("float32") assert not ty_pat.match(x) def test_match_shape(): x = relay.var("x", shape=(10, 10), dtype="float32") ty_pat = has_shape((10, 10)) assert ty_pat.match(x) def test_no_match_shape(): x = relay.var("x", shape=(10, 10), dtype="int32") ty_pat = has_shape((10, 5)) assert not ty_pat.match(x) def test_match_op_attr(): op = is_op("add").has_attr({"TOpPattern": K_BROADCAST}) op_pat = op(wildcard(), wildcard()) x = relay.var("x") y = relay.var("y") assert op_pat.match(x + y) def test_no_match_op_attr(): op = is_op("nn.dense").has_attr({"TOpPattern": K_ELEMWISE}) op_pat = op(wildcard(), wildcard()) x = relay.var("x") y = relay.var("y") assert not op_pat.match(relay.op.nn.dense(x, y)) op = is_op("add").has_attr({"TOpPattern": K_BROADCAST}) op_pat = op(wildcard(), wildcard()) x = relay.var("x") y = relay.var("y") assert not op_pat.match(x - y) z = relay.var("z") assert not op_pat.match(relay.Let(z, x + y, z)) def test_match_func_attr(): pattern = wildcard().has_attr({"Composite": "add"}) x
= relay.var("x") y = relay.var("y") f = relay.Function([x, y], x + y).with_attr("Composite", "add") assert pattern.match(f) def test_no_match_func_attr(): pattern = wildcard().has_attr({"Composite": "add"}) x = relay.var("x") y = relay.var("y") f = relay.Function([x, y], x + y).with_attr("RandomTest", "add") assert not pattern.match(f) f = relay.Function([x, y], x + y).with_attr("Composite", "conv_bias") assert not pattern.match(f) def test_match_call_attr(): is_conv2d = is_op("nn.conv2d")(wildcard(), wildcard()).has_attr({"data_layout": "NCHW"}) x = relay.var("x") y = relay.var("y") assert is_conv2d.match(relay.op.nn.conv2d(x, y)) is_conv2d = is_op("nn.conv2d")(wildcard(), wildcard()).has_attr({"kernel_size": [3, 3]}) out = relay.op.nn.conv2d(x, y, kernel_size=[3, 3]) assert is_conv2d.match(out) attr_dict = {"call_attr": "attr"} call_has_attr = wildcard()(wildcard()).has_attr(attr_dict) call_attr = tvm.ir.make_node("DictAttrs", **attr_dict) a = relay.Var("a") b = relay.Var("b") assert call_has_attr.match(relay.Call(a, [b], attrs=call_attr)) empty_attrs = tvm.ir.make_node("DictAttrs", **{}) call_has_empty_attrs = wildcard()(wildcard()).has_attr({}) assert call_has_empty_attrs.match(relay.Call(a, [b], attrs=empty_attrs)) assert call_has_empty_attrs.match(relay.Call(a, [b], attrs=call_attr)) def test_no_match_call_attr(): x = relay.var("x") y = relay.var("y") is_conv2d = is_op("nn.conv2d")(wildcard(), wildcard()).has_attr({"data_layout": "NHWC"}) assert not is_conv2d.match(relay.op.nn.conv2d(x, y)) is_conv2d = is_op("nn.conv2d")(wildcard(), wildcard()).has_attr({"RandomAttr": "NCHW"}) assert not is_conv2d.match(relay.op.nn.conv2d(x, y)) is_conv2d = is_op("nn.conv2d")(wildcard(), wildcard()).has_attr({"kernel_size": [3, 3]}) out = relay.op.nn.conv2d(x, y, kernel_size=[2, 1]) assert not is_conv2d.match(out) call_has_attr = wildc
ard()(wildcard()).has_attr({"call_attr": "attr"}) wrong_key = tvm.ir.make_node("DictAttrs", **{"wrong": "attr"}) wrong_value = tvm.ir.make_node("DictAttrs", **{"call_attr": "wrong"}) empty_attrs = tvm.ir.make_node("DictAttrs", **{}) a = relay.Var("a") b = relay.Var("b") assert not call_has_attr.match(relay.Call(a, [b])) assert not call_has_attr.match(relay.Call(a, [b], attrs=wrong_key)) assert not call_has_attr.match(relay.Call(a, [b], attrs=wrong_value)) assert not call_has_attr.match(relay.Call(a, [b], attrs=empty_attrs)) def test_match_call_attr_dtype(): is_cast = is_op("cast")(wildcard()).has_attr({"dtype": "float32"}) x = relay.var("x") assert is_cast.match(relay.op.cast(x, "float32")) def test_match_diamond(): is_conv2d = is_op("nn.conv2d")(wildcard(), wildcard()) path1 = is_op("nn.relu")(is_conv2d) path2 = is_op("nn.leaky_relu")(is_conv2d) diamond = is_op("add")(path1, path2) inp = relay.var("input") weight = relay.var("weight") conv2d = relay.op.nn.conv2d(inp, weight) relu = relay.op.nn.relu(conv2d) leaky_relu = relay.op.nn.leaky_relu(conv2d, alpha=0) out = relu + leaky_relu assert diamond.match(out) def test_no_match_diamond(): is_conv2d = is_op("nn.conv2d")(wildcard(), wildcard()) path1 = is_op("nn.relu")(is_conv2d) path2 = is_op("nn.leaky_relu")(is_conv2d) diamond = is_op("add")(path1, path2) inp = relay.var("input") weight = relay.var("weight") conv2d = relay.op.nn.conv2d(inp, weight) relu = relay.op.nn.relu(conv2d) leaky_relu = relay.op.nn.leaky_relu(conv2d, alpha=0) assert not diamond.match(leaky_relu) assert not diamond.match(relu) def test_match_fake_diamond(): is_conv2d = is_op("nn.conv2d")(wildcard(), wildcard()) path1 = is_op("nn.relu")(is_conv2d) path2 = is_op("nn.leaky_relu")(is_conv2d) diamond = is_op("add")(path1, path2) input1 = relay.var("input1") weight1 = relay.var("
weight1") conv2d1 = relay.op.nn.conv2d(input1, weight1) inp2 = relay.var("input2") weight2 = relay.var("weight2") conv2d2 = relay.op.nn.conv2d(inp2, weight2) relu = relay.op.nn.relu(conv2d1) leaky_relu = relay.op.nn.leaky_relu(conv2d2, alpha=0) out = relu + leaky_relu assert not diamond.match(out) def test_at_most_one_parent(): P = is_op("nn.conv2d")(wildcard(), wildcard()) I = is_op("nn.relu")(wildcard()) C = is_op("add")(wildcard(), wildcard()) pattern = dominates(P, I, C) x = relay.var("x") w = relay.var("w") n6 = relay.op.nn.conv2d(x, w) n7 = relay.op.tanh(n6) n8 = relay.op.nn.conv2d(n7, w) n9 = relay.op.nn.relu(n8) n10 = relay.op.nn.relu(n6) n11 = relay.add(n9, n10) assert not pattern.match(n11) def test_match_dominator(): is_conv2d = is_op("nn.conv2d")(wildcard(), wildcard()) is_unary_elemwise = (wildcard().has_attr({"TOpPattern": K_ELEMWISE}))(wildcard()) reduction = is_op("add")(wildcard(), wildcard()) diamond = dominates(is_conv2d, is_unary_elemwise, reduction) inp = relay.var("input") weight = relay.var("weight") conv2d = relay.op.nn.conv2d(inp, weight) relu = relay.op.nn.relu(conv2d) relu = relay.op.nn.relu(relu) leaky_relu = relay.op.nn.leaky_relu(conv2d, alpha=0) out = relu + leaky_relu assert diamond.match(out) inp = relay.var("input") weight = relay.var("weight") conv2d = relay.op.nn.conv2d(inp, weight) relu = relay.op.nn.relu(conv2d) relu = relay.op.nn.relu(relu) relu = relay.op.tanh(relu) leaky_relu = relay.op.nn.leaky_relu(conv2d, alpha=0) out = relu + leaky_relu assert diamond.match(out) inp = relay.var("input") weight = relay.var("weight") conv2d = relay.op.nn.conv2d(inp, weight) relu = relay.op.nn.relu(conv2d) relu = relay.op.nn.relu(relu) tanh = relay.op.tanh(relu) out =
relu + tanh assert diamond.match(out) is_conv2d = is_op("nn.conv2d")(wildcard(), wildcard()) is_unary_elemwise = (wildcard().has_attr({"TOpPattern": K_ELEMWISE}))(wildcard()) | is_op( "add" )(wildcard(), wildcard()) reduction = is_op("add")(wildcard(), wildcard()) diamond = dominates(is_conv2d, is_unary_elemwise, reduction) inp = relay.var("input") weight = relay.var("weight") conv2d = relay.op.nn.conv2d(inp, weight) relu = relay.op.nn.relu(conv2d) relu = relu + relu tanh = relay.op.tanh(relu) leaky_relu = relay.op.nn.leaky_relu(conv2d, alpha=0) out = tanh + leaky_relu assert diamond.match(out) def test_not_match_dominator(): is_conv2d = is_op("nn.conv2d")(wildcard(), wildcard()) is_unary_elemwise = (wildcard().has_attr({"TOpPattern": K_ELEMWISE}))(wildcard()) reduction = is_op("add")(wildcard(), wildcard()) diamond = dominates(is_conv2d, is_unary_elemwise, reduction) input1 = relay.var("input1") weight1 = relay.var("weight1") conv2d1 = relay.op.nn.conv2d(input1, weight1) inp2 = relay.var("input2") weight2 = relay.var("weight2") conv2d2 = relay.op.nn.conv2d(inp2, weight2) relu = relay.op.nn.relu(conv2d1) leaky_relu = relay.op.nn.leaky_relu(conv2d2, alpha=0) out = relu + leaky_relu assert not diamond.match(out) inp = relay.var("input") weight = relay.var("weight") conv2d = relay.op.nn.conv2d(inp, weight) relu = relay.op.nn.relu(conv2d) relu = relu + relu leaky_relu = relay.op.nn.leaky_relu(conv2d, alpha=0) out = relu + leaky_relu assert not diamond.match(out) inp = relay.var("input") weight = relay.var("weight") conv2d = relay.op.nn.conv2d(inp, weight) relu = relay.op.nn.relu(inp) leaky_relu = relay.op.nn.leaky_relu(conv2d, alpha=0) out = relu + leaky_relu assert not diamond.match(out) inp = relay.var("input") relu = relay.op.nn.relu(inp) relu = relay.op.nn.relu(r
elu) tanh = relay.op.tanh(relu) out = relu + tanh assert not diamond.match(out) def test_match_typed_dominator(): is_conv2d = is_op("nn.conv2d")(wildcard(), wildcard()) is_unary_elemwise = (wildcard().has_attr({"TOpPattern": K_ELEMWISE}))(wildcard()).has_dtype( "float32" ) reduction = is_op("add")(wildcard(), wildcard()).has_shape([1, 3, 10, 10]) diamond = dominates(is_conv2d, is_unary_elemwise, reduction) inp = relay.var("input", relay.TensorType((1, 3, 12, 12), "float32")) weight = relay.var("weight", relay.TensorType((3, 3, 3, 3), "float32")) conv2d = relay.op.nn.conv2d(inp, weight) relu = relay.op.nn.relu(conv2d) relu = relay.op.nn.relu(relu) leaky_relu = relay.op.nn.leaky_relu(conv2d, alpha=0) out = relu + leaky_relu assert diamond.match(out) def test_no_match_typed_dominator(): inp = relay.var("input", relay.TensorType((1, 3, 12, 12), "float32")) weight = relay.var("weight", relay.TensorType((3, 3, 3, 3), "float32")) conv2d = relay.op.nn.conv2d(inp, weight) relu = relay.op.nn.relu(conv2d) relu = relay.op.nn.relu(relu) leaky_relu = relay.op.nn.leaky_relu(conv2d, alpha=0) out = relu + leaky_relu is_conv2d = is_op("nn.conv2d")(wildcard(), wildcard()) is_unary_elemwise = (wildcard().has_attr({"TOpPattern": K_ELEMWISE}))(wildcard()).has_dtype( "float32" ) reduction = is_op("add")(wildcard(), wildcard()).has_shape([1, 1, 10, 10]) diamond = dominates(is_conv2d, is_unary_elemwise, reduction) assert not diamond.match(out) is_conv2d = is_op("nn.conv2d")(wildcard(), wildcard()) is_unary_elemwise = (wildcard().has_attr({"TOpPattern": K_ELEMWISE}))(wildcard()).has_dtype( "float16" ) reduction = is_op("add")(wildcard(), wildcard()).has_shape([1, 3, 10, 10]) diamond = dominates(is_conv2d, is_unary_elemwise, reduction) assert not diamond.match(out) def test_rewrite(): x = relay.var("x") y = relay.
var("y") add_pattern = is_op("add")(wildcard(), wildcard()) sub_pattern = is_op("subtract")(wildcard(), wildcard())
class TestRewrite(DFPatternCallback): def __init__(self): super(TestRewrite, self).__init__() self.pattern = add_pattern def callback(self, pre, post, node_map): return post.args[0] - post.args[1] out = rewrite(TestRewrite(), x + y) assert sub_pattern.match(out) def test_rewrite_func(): x = relay.var("x") w = relay.var("w") y = relay.var("y") add_pattern = is_op("add")(wildcard(), wildcard()) sub_pattern = is_op("subtract")(wildcard(), wildcard())
class TestRewrite(DFPatternCallback): def __init__(self): super(TestRewrite, self).__init__() self.pattern = add_pattern def callback(self, pre, post, node_map): return post.args[0] - post.args[1] inpf = relay.var("input") weightf = relay.var("weight") func = relay.Function( [inpf, weightf], relay.op.nn.relu(relay.op.nn.conv2d(inpf, weightf)), attrs=None ) out = rewrite(TestRewrite(), func(x, w) + y) assert sub_pattern.match(out) def test_rewrite_func_with_attr(): x = relay.var("x") y = relay.var("y") f = relay.Function([x, y], x + y).with_attr("Composite", "add") a = relay.var("a") b = relay.var("b") c = relay.Call(f, [a, b]) c_abs = relay.abs(c)
class TestRewrite(DFPatternCallback): def __init__(self): super(TestRewrite, self).__init__() self.pattern = wildcard().has_attr({"Composite": "add"})(wildcard(), wildcard()) def callback(self, pre, post, node_map): return post.args[0] + post.args[1] out = rewrite(TestRewrite(), c_abs) inlined_add_pattern = is_op("abs")(is_op("add")(wildcard(), wildcard())) assert inlined_add_pattern.match(out) def test_nested_rewrite():
class PatternCallback(DFPatternCallback): def __init__(self, pattern): super(PatternCallback, self).__init__() self.pattern = pattern def callback(self, pre, post, node_map): return post def gen(): x = relay.var("x") y = relay.var("y") y_add = relay.add(y, y) n0 = relay.add(x, y_add) n1 = relay.add(x, n0) return relay.add(n1, n0) def pattern(): a = wildcard() b = wildcard() n0 = is_op("add")(a, b) n1 = is_op("add")(n0, a) return is_op("add")(n0, n1) out = gen() pat = pattern() new_out = rewrite(PatternCallback(pat), out) assert tvm.ir.structural_equal(out, new_out) def test_not_fuse_multi_diamond(): is_conv2d = is_op("nn.conv2d")(wildcard(), wildcard()) path1 = is_op("nn.relu")(is_conv2d) path2 = is_op("nn.leaky_relu")(is_conv2d) diamond = is_op("add")(path1, path2) inp = relay.var("input") weight = relay.var("weight") conv2d = relay.op.nn.conv2d(inp, weight) relu = relay.op.nn.relu(conv2d) leaky_relu = relay.op.nn.leaky_relu(conv2d, alpha=0) out = relu + leaky_relu out = out + conv2d assert not diamond.match(out)
class BatchnormCallback(DFPatternCallback): def __init__(self): super(BatchnormCallback, self).__init__() self.x = wildcard() self.var = wildcard() self.mean = wildcard() self.beta = wildcard() self.gamma = wildcard() self.eps = is_constant() self.pattern = ( self.gamma * (self.x - self.mean) / is_op("sqrt")(self.var + self.eps) + self.beta ) def callback(self, pre, post, node_map): x = node_map[self.x][0] var = node_map[self.var][0] mean = node_map[self.mean][0] beta = node_map[self.beta][0] gamma = node_map[self.gamma][0] eps = node_map[self.eps][0] return relay.op.nn.batch_norm(x, gamma, beta, mean, var, epsilon=eps.data.numpy().item())[0] def test_fuse_batchnorm(): x = relay.var("x") var = relay.var("var") mean = relay.var("mean") beta = relay.var("beta") gamma = relay.var("gamma") BN = gamma * (x - mean) / relay.op.sqrt(var + relay.const(1e-5)) + beta out = rewrite(BatchnormCallback(), BN) assert tvm.ir.structural_equal( out, relay.op.nn.batch_norm(x, gamma, beta, mean, var, epsilon=1e-5)[0] ) def test_no_fuse_batchnorm(): x = relay.var("x") var = relay.var("var") mean = relay.var("mean") beta = relay.var("beta") gamma = relay.var("gamma") fake_BN = gamma * (x - mean) / relay.op.sqrt(var + relay.const(1e-5)) - beta out = rewrite(BatchnormCallback(), fake_BN) assert tvm.ir.structural_equal(out, fake_BN) def test_fuse_double_batchnorm(): x = relay.var("x") var = relay.var("var") mean = relay.var("mean") beta = relay.var("beta") gamma = relay.var("gamma") BN = gamma * (x - mean) / relay.op.sqrt(var + relay.const(1e-5)) + beta BN2 = gamma * (BN - mean) / relay.op.sqrt(var + relay.const(1e-5)) + beta out = rewrite(BatchnormCallback(), BN2) bn = relay.op.nn.batch_norm(x, gamma, beta, mean, var, epsilon=1e-5)[0] bn2 = relay.op.nn.batch_norm(
bn, gamma, beta, mean, var, epsilon=1e-5)[0] assert tvm.ir.structural_equal(out, bn2) def test_partial_fuse_double_batchnorm(): x = relay.var("x") var = relay.var("var") mean = relay.var("mean") beta = relay.var("beta") gamma = relay.var("gamma") BN = gamma * (x - mean) / relay.op.sqrt(var + relay.const(1e-5)) - beta BN2 = gamma * (BN - mean) / relay.op.sqrt(var + relay.const(1e-5)) + beta out = rewrite(BatchnormCallback(), BN2) bn2 = relay.op.nn.batch_norm(BN, gamma, beta, mean, var, epsilon=1e-5)[0] assert tvm.ir.structural_equal(out, bn2) def test_fuse_batchnorm_commutation(): x = relay.var("x") var = relay.var("var") mean = relay.var("mean") beta = relay.var("beta") gamma = relay.var("gamma") BN = beta + gamma * (x - mean) / relay.op.sqrt(var + relay.const(1e-5)) out = rewrite(BatchnormCallback(), BN) assert tvm.ir.structural_equal( out, relay.op.nn.batch_norm(x, gamma, beta, mean, var, epsilon=1e-5)[0] ) BN = (gamma * (x - mean)) / relay.op.sqrt(var + relay.const(1e-5)) + beta out = rewrite(BatchnormCallback(), BN) assert tvm.ir.structural_equal( out, relay.op.nn.batch_norm(x, gamma, beta, mean, var, epsilon=1e-5)[0] ) BN = gamma * ((x - mean) / relay.op.sqrt(var + relay.const(1e-5))) + beta out = rewrite(BatchnormCallback(), BN) assert tvm.ir.structural_equal( out, relay.op.nn.batch_norm(x, gamma, beta, mean, var, epsilon=1e-5)[0] ) def test_quadruple_rewrite_dominator():
class DominatorRemovalCallback(DFPatternCallback): def __init__(self): super(DominatorRemovalCallback, self).__init__() self.inp = wildcard() self.weight = wildcard() is_conv2d = is_op("nn.conv2d")(self.inp, self.weight) is_unary_elemwise = (wildcard().has_attr({"TOpPattern": K_ELEMWISE}))( wildcard() ) | is_op("add")(wildcard(), wildcard()) reduction = is_op("add")(wildcard(), wildcard()) self.pattern = dominates(is_conv2d, is_unary_elemwise, reduction) def callback(self, pre, post, node_map): inp = node_map[self.inp][0] weight = node_map[self.weight][0] return relay.op.nn.conv2d(inp, weight) inp = relay.var("input") weight = relay.var("weight") conv2d = relay.op.nn.conv2d(inp, weight) relu = relay.op.nn.relu(conv2d) relu = relay.op.nn.relu(relu) leaky_relu = relay.op.nn.leaky_relu(conv2d, alpha=0) out = relu + leaky_relu conv2d = relay.op.nn.conv2d(out, weight) relu = relay.op.nn.relu(conv2d) relu = relay.op.nn.relu(relu) relu = relay.op.tanh(relu) leaky_relu = relay.op.nn.leaky_relu(conv2d, alpha=0) out = relu + leaky_relu conv2d = relay.op.nn.conv2d(out, weight) relu = relay.op.nn.relu(conv2d) relu = relay.op.nn.relu(relu) tanh = relay.op.tanh(relu) out = relu + tanh conv2d = relay.op.nn.conv2d(out, weight) relu = relay.op.nn.relu(conv2d) relu = relu + relu tanh = relay.op.tanh(relu) leaky_relu = relay.op.nn.leaky_relu(conv2d, alpha=0) out = tanh + leaky_relu one = relay.op.nn.conv2d(inp, weight) two = relay.op.nn.conv2d(one, weight) three = relay.op.nn.conv2d(two, weight) four = relay.op.nn.conv2d(three, weight) assert tvm.ir.structural_equal(DominatorRemovalCallback().rewrite(out), four) def algebraic_simplify(expr): zero = is_expr(relay.const(0)) | is_expr(relay.const(0.0)) one = is_expr(relay.co
nst(1)) | is_expr(relay.const(1.0))
class ElwiseNullCallback(DFPatternCallback): def callback(self, pre, post, node_map): return node_map[self.x][0]
class AddCallback(ElwiseNullCallback): def __init__(self): super(AddCallback, self).__init__() self.x = wildcard() self.pattern = self.x + zero
class SubCallback(ElwiseNullCallback): def __init__(self): super(SubCallback, self).__init__() self.x = wildcard() self.pattern = self.x - zero
class MulCallback(ElwiseNullCallback): def __init__(self): super(MulCallback, self).__init__() self.x = wildcard() self.pattern = self.x * one
class DivCallback(ElwiseNullCallback): def __init__(self): super(DivCallback, self).__init__() self.x = wildcard() self.pattern = self.x / one
class MulZeroCallback(ElwiseNullCallback): def __init__(self): super(MulZeroCallback, self).__init__() self.x = zero self.pattern = self.x * wildcard()
class ZeroDivCallback(ElwiseNullCallback): def __init__(self): super(ZeroDivCallback, self).__init__() self.x = zero self.pattern = self.x / wildcard() return rewrite( [ AddCallback(), SubCallback(), MulCallback(), DivCallback(), MulZeroCallback(), ZeroDivCallback(), ], expr, ) def test_algebraic_simplify(): x = relay.Var("x") y = relay.Var("y") one = relay.const(1) zero = relay.const(0) onef = relay.const(1.0) zerof = relay.const(0.0) assert algebraic_simplify(x + zero) == x assert algebraic_simplify(x + zerof) == x assert algebraic_simplify(zero + x) == x assert algebraic_simplify(zerof + x) == x assert algebraic_simplify(x - zero) == x assert algebraic_simplify(x - zerof) == x assert algebraic_simplify(x * one) == x assert algebraic_simplify(x * onef) == x assert algebraic_simplify(one * x) == x assert algebraic_simplify(onef * x) == x assert algebraic_simplify(x * zero) == zero assert algebraic_simplify(x * zerof) == zerof assert algebraic_simplify(x / one) == x assert algebraic_simplify(x / onef) == x assert algebraic_simplify(zero / x) == zero assert algebraic_simplify(zerof / x) == zerof assert tvm.ir.structural_equal( algebraic_simplify((x + zero * y) / one + (y * one) - zero / x), x + y ) def test_double_partition(): conv2d_p = is_op("nn.conv2d")(wildcard(), wildcard()) bias_add_p = is_op("nn.bias_add")(conv2d_p, wildcard()) relu_p = is_op("nn.relu")(bias_add_p) x = relay.var("input") w = relay.var("weight") b = relay.var("bias") w2 = relay.var("weight") b2 = relay.var("bias") conv2d = relay.op.nn.conv2d(x, w) bias_add = relay.op.nn.bias_add(conv2d, b) relu = relay.op.nn.relu(bias_add) conv2d2 = relay.op.nn.conv2d(relu, w2) bias_add2 = relay.op.nn.bias_add(conv2d2, b2) partitione
d = bias_add2 for pat, label in [(relu_p, "conv_bias_relu"), (bias_add_p, "conv_bias")]: partitioned = pat.partition(partitioned, {"Composite": label}) inpf = relay.var("input") weightf = relay.var("weight") biasf = relay.var("bias") func0 = ( relay.Function( [inpf, weightf, biasf], relay.op.nn.relu(relay.op.nn.bias_add(relay.op.nn.conv2d(inpf, weightf), biasf)), ) .with_attr("Composite", "conv_bias_relu") .with_attr("PartitionedFromPattern", "nn.conv2d_nn.bias_add_nn.relu_") ) inpf = relay.var("input") weightf = relay.var("weight") biasf = relay.var("bias") func1 = ( relay.Function( [inpf, weightf, biasf], relay.op.nn.bias_add(relay.op.nn.conv2d(inpf, weightf), biasf) ) .with_attr("Composite", "conv_bias") .with_attr("PartitionedFromPattern", "nn.conv2d_nn.bias_add_") ) expected = func1(func0(x, w, b), w2, b2) assert tvm.ir.structural_equal(partitioned, expected) def test_partition_dominator(): is_conv2d = is_op("nn.conv2d")(wildcard(), wildcard()) is_unary_elemwise = (wildcard().has_attr({"TOpPattern": K_ELEMWISE}))(wildcard()) reduction = is_op("add")(wildcard(), wildcard()) diamond = dominates(is_conv2d, is_unary_elemwise, reduction) inp = relay.var("input") weight = relay.var("weight") def generate_diamond(inp, weight): conv2d = relay.op.nn.conv2d(inp, weight) relu = relay.op.nn.relu(conv2d) relu = relay.op.nn.relu(relu) leaky_relu = relay.op.nn.leaky_relu(conv2d, alpha=0) return relu + leaky_relu out = generate_diamond(inp * inp, weight * weight) partitioned = diamond.partition(out) i = relay.Var("input") w = relay.Var("weight") f = relay.Function([i, w], generate_diamond(i, w)).with_attr( "PartitionedFromPattern", "nn.conv2d_nn.relu_nn.relu_nn.leaky_relu_add_" ) assert tvm.ir.structural_equal(partitioned, f(inp * inp, weight
* weight)) def test_quadruple_partition_dominator(): is_conv2d = is_op("nn.conv2d")(wildcard(), wildcard()) is_unary_elemwise = (wildcard().has_attr({"TOpPattern": K_ELEMWISE}))(wildcard()) | is_op( "add" )(wildcard(), wildcard()) reduction = is_op("add")(wildcard(), wildcard()) diamond = dominates(is_conv2d, is_unary_elemwise, reduction) inp = relay.var("input") weight = relay.var("weight") def classic_diamond(inp, weight): conv2d = relay.op.nn.conv2d(inp, weight) relu = relay.op.nn.relu(conv2d) relu = relay.op.nn.relu(relu) leaky_relu = relay.op.nn.leaky_relu(conv2d, alpha=0) return relu + leaky_relu def deeper_diamond(inp, weight): conv2d = relay.op.nn.conv2d(inp, weight) relu = relay.op.nn.relu(conv2d) relu = relay.op.nn.relu(relu) relu = relay.op.tanh(relu) leaky_relu = relay.op.nn.leaky_relu(conv2d, alpha=0) return relu + leaky_relu def single_branch(inp, weight): conv2d = relay.op.nn.conv2d(inp, weight) relu = relay.op.nn.relu(conv2d) relu = relay.op.nn.relu(relu) tanh = relay.op.tanh(relu) return relu + tanh def nested_diamond(inp, weight): conv2d = relay.op.nn.conv2d(inp, weight) relu = relay.op.nn.relu(conv2d) relu = relu + relu tanh = relay.op.tanh(relu) leaky_relu = relay.op.nn.leaky_relu(conv2d, alpha=0) return tanh + leaky_relu partitioned = diamond.partition( nested_diamond( single_branch(deeper_diamond(classic_diamond(inp, weight), weight), weight), weight ) ) functions = [] partition_names = [ "nn.conv2d_nn.relu_nn.relu_nn.leaky_relu_add_", "nn.conv2d_nn.relu_nn.relu_tanh_nn.leaky_relu_add_", "nn.conv2d_nn.relu_nn.relu_tanh_add_", "nn.conv2d_nn.relu_add_tanh_nn.leaky_relu_add_", ] for i, f in enumerate([classic_diamond, deeper_diamond, single_branch, neste
d_diamond]): inpf = relay.var("input") weightf = relay.var("weight") functions.append( relay.Function([inpf, weightf], f(inpf, weightf)).with_attr( "PartitionedFromPattern", partition_names[i] ) ) reference = functions[3]( functions[2](functions[1](functions[0](inp, weight), weight), weight), weight ) assert tvm.ir.structural_equal(partitioned, reference) def get_BN(x, var, mean, beta, gamma, eps): return gamma * (x - mean) / relay.op.sqrt(var + eps) + beta def test_partition_batchnorm(): x = relay.var("x") var = relay.var("var") mean = relay.var("mean") beta = relay.var("beta") gamma = relay.var("gamma") eps = relay.const(1e-5) BN = get_BN(x, var, mean, beta, gamma, eps) xf = relay.var("xf") varf = relay.var("varf") meanf = relay.var("meanf") betaf = relay.var("betaf") gammaf = relay.var("gammaf") f = relay.Function( [gammaf, xf, meanf, varf, betaf], get_BN(xf, varf, meanf, betaf, gammaf, eps) ).with_attr("PartitionedFromPattern", "subtract_multiply_add_sqrt_divide_add_") partitioned = BatchnormCallback().pattern.partition(BN) reference = f(gamma, x, mean, var, beta) assert tvm.ir.structural_equal(partitioned, reference) def test_partition_double_batchnorm(): x = relay.var("x") var = relay.var("var") mean = relay.var("mean") beta = relay.var("beta") gamma = relay.var("gamma") eps = relay.const(1e-5) BN = gamma * (x - mean) / relay.op.sqrt(var + eps) + beta BN2 = gamma * (BN - mean) / relay.op.sqrt(var + eps) + beta xf = relay.var("xf") varf = relay.var("varf") meanf = relay.var("meanf") betaf = relay.var("betaf") gammaf = relay.var("gammaf") f1 = relay.Function( [gammaf, xf, meanf, varf, betaf], get_BN(xf, varf, meanf, betaf, gammaf, eps) ).with_attr("PartitionedFromPattern", "subtract_multiply_add_sqrt_divide_add_") xf2 = relay.var("xf2") varf2 =
relay.var("varf2") meanf2 = relay.var("meanf2") betaf2 = relay.var("betaf2") gammaf2 = relay.var("gammaf2") f2 = relay.Function( [gammaf2, xf2, meanf2, varf2, betaf2], get_BN(xf2, varf2, meanf2, betaf2, gammaf2, eps) ).with_attr("PartitionedFromPattern", "subtract_multiply_add_sqrt_divide_add_") partitioned = BatchnormCallback().pattern.partition(BN2) reference = f2(gamma, f1(gamma, x, mean, var, beta), mean, var, beta) assert tvm.ir.structural_equal(partitioned, reference) def test_overlappting_partitions(): x = wildcard() gamma = wildcard() beta = wildcard() moving_mean = wildcard() moving_var = wildcard() bn_node = is_op("nn.batch_norm")(x, gamma, beta, moving_mean, moving_var) tuple_get_item_node = TupleGetItemPattern(bn_node, 0) x = relay.var("x") var = relay.var("var") mean = relay.var("mean") beta = relay.var("beta") gamma = relay.var("gamma") BN = relay.op.nn.batch_norm(x, gamma, beta, mean, var, epsilon=1e-5) T1 = BN[0] T2 = BN[0] add = T1 + T2 assert tuple_get_item_node.partition(add) == add def test_partition_overused(): pattern = is_op("nn.relu")(is_op("nn.conv2d")(wildcard(), wildcard())) x = relay.var("input") w = relay.var("weight") conv2d = relay.op.nn.conv2d(x, w) relu = relay.op.nn.relu(conv2d) out = relu + conv2d assert pattern.partition(out) == out def test_partition_fuzzy_tuple(): x = relay.var("x") y = relay.var("y") z = x + y tuple_pattern = is_tuple(None) concat_pattern = is_op("concatenate")(tuple_pattern) xp = relay.var("xp") yp = relay.var("yp") zp = relay.var("zp") def create_func(args, body): return relay.Function(args, body).with_attr("PartitionedFromPattern", "Tuple_concatenate_") def concat(*args): return relay.op.concatenate(relay.expr.Tuple(args), axis=0) one = concat_pattern.partition(concat(x)) assert tvm.ir.structural_equal(one, create_func([xp], concat(xp))(x))
two = concat_pattern.partition(concat(x, y)) assert tvm.ir.structural_equal(two, create_func([xp, yp], concat(xp, yp))(x, y)) three = concat_pattern.partition(concat(x, y, z)) assert tvm.ir.structural_equal(three, create_func([xp, yp, zp], concat(xp, yp, zp))(x, y, z)) def test_partition_fuzzy_function_args(): func_pattern = FunctionPattern(None, wildcard() + wildcard())(None) + wildcard() x = relay.var("x") y = relay.var("y") z = relay.var("z") b = relay.var("b") xp = relay.var("xp") yp = relay.var("yp") zp = relay.var("zp") def create_func(call): N = len(call.op.params) new_params = [relay.var(str(i)) for i in range(N + 1)] label = "add_FunctionCall_add_" if N == 3: label = "add_" + label return relay.Function( new_params, relay.Call(call.op, (new_params[0:-1])) + new_params[-1] ).with_attr("PartitionedFromPattern", label)(*([x, y, z][0:N] + [b])) f1 = relay.Function([xp], xp + xp)(x) one = func_pattern.partition(f1 + b) assert tvm.ir.structural_equal(one, create_func(f1)) f2 = relay.Function([xp, yp], xp + yp)(x, y) two = func_pattern.partition(f2 + b) assert tvm.ir.structural_equal(two, create_func(f2)) f3 = relay.Function([xp, yp, zp], xp + yp + zp)(x, y, z) three = func_pattern.partition(f3 + b) assert tvm.ir.structural_equal(three, create_func(f3)) def test_partition_check(): pattern = is_op("nn.relu")(is_op("nn.conv2d")(is_var("input"), wildcard())) def check(pre): return pre.args[0].attrs.data_layout == "NCHW" x = relay.var("input") w = relay.var("weight") conv2d = relay.op.nn.conv2d(x, w) relu = relay.op.nn.relu(conv2d) xf = relay.var("input") wf = relay.var("weight") conv2df = relay.op.nn.conv2d(xf, wf) reluf = relay.op.nn.relu(conv2df) func = relay.Function([xf, wf], reluf).with_attr("PartitionedFromPattern", "nn.conv2d_nn.relu_") reference = func(x, w) partitioned = pattern.par
tition(relu, check=check) assert tvm.ir.structural_equal(partitioned, reference) conv2d = relay.op.nn.conv2d(x, w, data_layout="NHWC") relu = relay.op.nn.relu(conv2d) assert relu == pattern.partition(relu, check=check) def test_partition_check_types(): pattern = is_op("nn.relu")(is_op("nn.conv2d")(wildcard(), wildcard())) def check(pre): conv = pre.args[0] return (conv.attrs.data_layout == "NCHW") and bool(conv.checked_type.shape[0] == 1) x = relay.var("input", shape=(1, 10, 10, 10)) w = relay.var("weight", shape=(10, 10, 3, 3)) conv2d = relay.op.nn.conv2d(x, w) relu = relay.op.nn.relu(conv2d) relu = run_opt_pass(relu, relay.transform.InferType()) partitioned = pattern.partition(relu, check=check) assert partitioned.op.attrs["PartitionedFromPattern"] == "nn.conv2d_nn.relu_" conv2d = relay.op.nn.conv2d(x, w, data_layout="NHWC") relu = relay.op.nn.relu(conv2d) relu = run_opt_pass(relu, relay.transform.InferType()) assert relu == pattern.partition(relu, check=check) x = relay.var("input", shape=(2, 10, 10, 10)) w = relay.var("weight", shape=(10, 10, 3, 3)) conv2d = relay.op.nn.conv2d(x, w) relu = relay.op.nn.relu(conv2d) relu = run_opt_pass(relu, relay.transform.InferType()) assert relu == pattern.partition(relu, check=check) def conv_bias_relu(x, w, b): conv2d = relay.op.nn.conv2d(x, w) bias_add = relay.op.nn.bias_add(conv2d, b) relu = relay.op.nn.relu(bias_add) return relu def test_partition_option(): x = relay.var("x") w = relay.var("w") b = relay.var("b") conv2d = is_op("nn.conv2d")(wildcard(), wildcard()) bias = conv2d.optional(lambda x: is_op("nn.bias_add")(x, wildcard())) pattern1 = is_op("nn.relu")(bias) conv2d = is_op("nn.conv2d")(wildcard(), wildcard()) bias = is_op("nn.bias_add")(conv2d, wildcard()) pattern2 = bias.optional(lambda x: is_op("nn.relu")(x)) relu = conv_bias_relu(x, w, b) xf = relay.var("x") wf = relay.var("
w") bf = relay.var("b") func = relay.Function([xf, wf, bf], conv_bias_relu(xf, wf, bf)).with_attr( "PartitionedFromPattern", "nn.conv2d_nn.bias_add_nn.relu_" ) assert pattern1.match(relu) assert tvm.ir.structural_equal(func(x, w, b), pattern1.partition(relu)) assert pattern2.match(relu) assert tvm.ir.structural_equal(func(x, w, b), pattern2.partition(relu)) def test_partition_function(): x = relay.var("x") w = relay.var("w") b = relay.var("b") x1 = relay.var("x1") w1 = relay.var("w1") wc_x = wildcard() wc_w = wildcard() wc_b = wildcard() wc_x1 = wildcard() wc_w1 = wildcard() func_pattern = FunctionPattern([wc_x1, wc_w1], is_op("nn.conv2d")(wc_x1, wc_w1)) pattern = func_pattern(wc_x, wc_w) + wc_b func = relay.Function([x1, w1], relay.nn.conv2d(x1, w1)) expr = func(x, w) + b + b x2 = relay.var("x2") w2 = relay.var("w2") b2 = relay.var("b2") func2 = relay.Function([x2, w2, b2], func(x2, w2) + b2).with_attr( "PartitionedFromPattern", "nn.conv2d_FunctionCall_add_" ) expr2 = func2(x, w, b) + b assert tvm.ir.structural_equal(pattern.partition(expr), expr2) def test_partition_optional_function(): x = relay.var("x") w = relay.var("w") b = relay.var("b") x1 = relay.var("x1") w1 = relay.var("w1") wc_x = wildcard() wc_w = wildcard() wc_x1 = wildcard() wc_w1 = wildcard() func_pattern0 = FunctionPattern( [wc_x1, wc_w1], is_op("sigmoid")(is_op("nn.conv2d")(wc_x1, wc_w1)) ) func_pattern1 = FunctionPattern( [wc_x1, wc_w1], is_op("nn.relu")(is_op("nn.conv2d")(wc_x1, wc_w1)) ) pattern = func_pattern0(wc_x, wc_w) | func_pattern1(wc_x, wc_w) func = relay.Function([x1, w1], relay.nn.relu(relay.nn.conv2d(x1, w1))) expr = func(x, w) + b x2 = relay.var("x2") w2 = relay.var("w2") func2 = relay.Function([x2, w2], func(x2, w2)).with_attr( "PartitionedFromPattern", "nn.conv2d_nn.relu_FunctionCall_"
) expr2 = func2(x, w) + b assert tvm.ir.structural_equal(pattern.partition(expr), expr2) def test_rewrite_function_with_fuzzy_body(): """Allow Rewriting a function with a fuzzy body via dominator analysis""" x = relay.var("x") w = relay.var("w") b = relay.var("b") x1 = relay.var("x1") w1 = relay.var("w1") wc_x = wildcard() wc_w = wildcard() wc_b = wildcard() wc_x1 = wildcard() wc_w1 = wildcard() func_pattern = FunctionPattern([wc_x1, wc_w1], wildcard()) pattern = func_pattern(wc_x, wc_w) + wc_b func = relay.Function([x1, w1], relay.nn.conv2d(x1, w1)) expr = func(x, w) + b + b
class TestRewrite(DFPatternCallback): def __init__(self): super(TestRewrite, self).__init__() self.pattern = pattern def callback(self, pre, post, node_map): return x + w out = rewrite(TestRewrite(), expr) assert tvm.ir.structural_equal(out, x + w + b) def test_partition_function_with_fuzzy_body(): """ Allow Rewriting a function with a fuzzy body via dominator analysis """ x = relay.var("x") w = relay.var("w") b = relay.var("b") x1 = relay.var("x1") w1 = relay.var("w1") wc_x = wildcard() wc_w = wildcard() wc_b = wildcard() wc_x1 = wildcard() wc_w1 = wildcard() func_pattern = FunctionPattern([wc_x1, wc_w1], wildcard()) pattern = func_pattern(wc_x, wc_w) + wc_b func = relay.Function([x1, w1], relay.nn.conv2d(x1, w1)) expr = func(x, w) + b + b x2 = relay.var("x2") w2 = relay.var("w2") b2 = relay.var("b2") func2 = relay.Function([x2, w2, b2], func(x2, w2) + b2).with_attr( "PartitionedFromPattern", "nn.conv2d_FunctionCall_add_" ) expr2 = func2(x, w, b) + b assert tvm.ir.structural_equal(pattern.partition(expr), expr2) def test_match_match(): add_pattern = is_op("add")(wildcard(), wildcard())
class TestRewrite(DFPatternCallback): def __init__(self): super(TestRewrite, self).__init__() self.pattern = add_pattern def callback(self, pre, post, node_map): return post.args[0] - post.args[1] mod = tvm.IRModule({}) tvm.relay.prelude.Prelude(mod) out = rewrite(TestRewrite(), mod["tensor_concatenate_int64"]) assert tvm.ir.structural_equal(mod["tensor_concatenate_int64"], out) def test_partition_constant_embedding(): x = relay.var("x") w = relay.var("w") wc = relay.const(1) b = relay.var("b") xf = relay.var("x") wf = relay.var("w") bf = relay.var("b") embeded_func = relay.Function([xf, bf], conv_bias_relu(xf, wc, bf)).with_attr( "PartitionedFromPattern", "nn.conv2d_nn.bias_add_nn.relu_" ) xf = relay.var("x") wf = relay.var("w") bf = relay.var("b") lifted_func = relay.Function([xf, wf, bf], conv_bias_relu(xf, wf, bf)).with_attr( "PartitionedFromPattern", "nn.conv2d_nn.bias_add_nn.relu_" ) relu = conv_bias_relu(x, w, b) reluc = conv_bias_relu(x, wc, b) pattern = is_op("nn.relu")( is_op("nn.bias_add")(is_op("nn.conv2d")(wildcard(), wildcard()), wildcard()) ) assert tvm.ir.structural_equal(lifted_func(x, w, b), pattern.partition(relu)) assert tvm.ir.structural_equal(lifted_func(x, wc, b), pattern.partition(reluc)) pattern = is_op("nn.relu")( is_op("nn.bias_add")(is_op("nn.conv2d")(wildcard(), is_var()), wildcard()) ) assert tvm.ir.structural_equal(lifted_func(x, w, b), pattern.partition(relu)) assert tvm.ir.structural_equal(reluc, pattern.partition(reluc)) pattern = is_op("nn.relu")( is_op("nn.bias_add")(is_op("nn.conv2d")(wildcard(), is_constant()), wildcard()) ) assert tvm.ir.structural_equal(relu, pattern.partition(relu)) assert tvm.ir.structural_equal(embeded_func(x, b), pattern.partition(reluc)) pattern = is_op("nn.relu")( is_op("nn.bias_add")(is_
op("nn.conv2d")(wildcard(), is_expr(wc)), wildcard()) ) assert tvm.ir.structural_equal(relu, pattern.partition(relu)) assert tvm.ir.structural_equal(embeded_func(x, b), pattern.partition(reluc)) pattern = is_op("nn.relu")( is_op("nn.bias_add")(is_op("nn.conv2d")(wildcard(), is_var() | is_constant()), wildcard()) ) assert tvm.ir.structural_equal(lifted_func(x, w, b), pattern.partition(relu)) assert tvm.ir.structural_equal(embeded_func(x, b), pattern.partition(reluc)) pattern = is_op("nn.relu")( is_op("nn.bias_add")(is_op("nn.conv2d")(wildcard(), is_constant() | is_var()), wildcard()) ) assert tvm.ir.structural_equal(lifted_func(x, w, b), pattern.partition(relu)) assert tvm.ir.structural_equal(embeded_func(x, b), pattern.partition(reluc)) def test_rewrite_once():
class ConcatRewriter(DFPatternCallback): def __init__(self, rewrite_once): super().__init__(rewrite_once=rewrite_once) self.pattern = is_op("concatenate")(None) def callback(self, pre, post, node_map): concat_args = post.args[0] new_args = [concat_args[i] for i in range(len(concat_args) - 1)] if new_args: return relay.op.concatenate(relay.expr.Tuple(new_args), axis=0) else: return concat_args x = relay.var("x") y = relay.var("y") z = relay.var("z") concat = relay.op.concatenate(relay.expr.Tuple([x, y, z]), axis=0) out = rewrite(ConcatRewriter(False), concat) expected = relay.expr.Tuple([x]) assert tvm.ir.structural_equal(out, expected) out = rewrite(ConcatRewriter(True), concat) expected = relay.op.concatenate(relay.expr.Tuple([x, y]), axis=0) assert tvm.ir.structural_equal(out, expected) def test_matched_outside_but_dominated(): """In this example the pattern matches the nn.conv2d/add/multiply flow. Even though the add output is consumed by the sigmoid, the sigmoid itself is dominated by the multiply. So partitioning can proceed, all be it with a duplication of the add.""" in_mod = tvm.parser.parse( """ def @main(%data: Tensor[(16, 16, 32, 32), float16], %weight: Tensor[(32, 16, 3, 3), float16], %bias: Tensor[(32), float32]) -> Tensor[(16, 32, 32, 32), float32] { %0 = layout_transform(%data, src_layout="NCHW", dst_layout="NHWC"); %1 = layout_transform(%weight, src_layout="OIHW", dst_layout="OHWI"); %2 = expand_dims(%bias, axis=1, num_newaxis=2); %3 = expand_dims(%2, axis=0); %4 = nn.conv2d(%0, %1, padding=[1, 1, 1, 1], channels=32, kernel_size=[3, 3], data_layout="NHWC", kernel_layout="OHWI", out_dtype="float32"); %5 = layout_transform(%3, src_layout="NCHW", dst_layout="NHWC"); %6 = add(%4, %5); %7 = sigmoid
(%6); %8 = multiply(%6, %7); layout_transform(%8, src_layout="NHWC", dst_layout="NCHW") } """ ) expected_mod = tvm.parser.parse( """ def @main(%data: Tensor[(16, 16, 32, 32), float16], %weight: Tensor[(32, 16, 3, 3), float16], %bias: Tensor[(32), float32]) -> Tensor[(16, 32, 32, 32), float32] { %2 = expand_dims(%bias, axis=1, num_newaxis=2); %3 = expand_dims(%2, axis=0); %4 = layout_transform(%data, src_layout="NCHW", dst_layout="NHWC"); %5 = layout_transform(%weight, src_layout="OIHW", dst_layout="OHWI"); %6 = nn.conv2d(%4, %5, padding=[1, 1, 1, 1], channels=32, kernel_size=[3, 3], data_layout="NHWC", kernel_layout="OHWI", out_dtype="float32"); %7 = layout_transform(%3, src_layout="NCHW", dst_layout="NHWC"); %8 = add(%6, %7); %9 = sigmoid(%8); %10 = fn (%FunctionVar_0_0, %FunctionVar_0_1, %FunctionVar_0_2, %FunctionVar_0_3, PartitionedFromPattern="nn.conv2d_add_multiply_") { %0 = nn.conv2d(%FunctionVar_0_0, %FunctionVar_0_1, padding=[1, 1, 1, 1], channels=32, kernel_size=[3, 3], data_layout="NHWC", kernel_layout="OHWI", out_dtype="float32"); %1 = add(%0, %FunctionVar_0_2); multiply(%1, %FunctionVar_0_3) }; %11 = %10(%4, %5, %7, %9); layout_transform(%11, src_layout="NHWC", dst_layout="NCHW") } """ ) pattern = is_op("multiply")( is_op("add")(is_op("nn.conv2d")(wildcard(), wildcard()), wildcard()), wildcard() ) actual_mod = tvm.IRModule.from_expr(pattern.partition(in_mod["main"])) actual_mod = relay.transform.InferType()(actual_mod) tvm.ir.assert_structural_equal(actual_mod, expected_mod) def test_partition_parallel_branch_with_same_input(): """In this example, conv2d's two consumer(add and multiply) on two different branches are merged into one partition, make sure that the partitioned function has no redundant parameters""" p
ath1 = is_op("multiply")(wildcard(), wildcard()) path2 = is_op("add")(wildcard(), wildcard()) pattern = is_op("add")(path1, path2) i = relay.Var("input") w = relay.Var("weight") l = relay.Var("left") r = relay.Var("right") conv2d = relay.op.nn.conv2d(i, w) branch1 = relay.multiply(l, conv2d) branch2 = relay.add(conv2d, r) add = relay.add(branch1, branch2) lf = relay.Var("leftf") mf = relay.Var("midf") rf = relay.Var("rightf") f = relay.Function([lf, mf, rf], (lf * mf) + (mf + rf)).with_attr( "PartitionedFromPattern", "multiply_add_add_" ) partitioned = pattern.partition(add) reference = f(l, conv2d, r) assert tvm.ir.structural_equal(partitioned, reference) if __name__ == "__main__": tvm.testing.main()
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from tvm.relay import var, const, create_executor from tvm.relay.op import debug _test_debug_hit = False def test_debug(): global _test_debug_hit x = var("x", shape=(), dtype="int32") _test_debug_hit = False def did_exec(x): global _test_debug_hit _test_debug_hit = True prog = debug(x, debug_func=did_exec) result = create_executor().evaluate(prog, {x: const(1, "int32")}) assert _test_debug_hit assert result.numpy() == 1 def test_debug_with_expr(): global _test_debug_hit _test_debug_hit = False x = var("x", shape=(), dtype="int32") _test_debug_hit = False def did_exec(x): global _test_debug_hit _test_debug_hit = True prog = debug(x + x * x, debug_func=did_exec) result = create_executor().evaluate(prog, {x: const(2, "int32")}) assert _test_debug_hit assert result.numpy() == 6
import pytest from tvm
import TVMError from tvm.relay.backend
import Executor def test_create_executor(): executor = Executor("aot") assert executor.name == "aot" def test_create_executor_with_options(): executor = Executor("aot", {"interface-api": "c"}) assert executor.name == "aot" assert executor["interface-api"] == "c" def test_create_executor_with_default(): executor = Executor("graph") assert not executor["link-params"] def test_attr_check(): executor = Executor("aot", {"interface-api": "c"}) assert "woof" not in executor assert "interface-api" in executor def test_create_executor_not_found(): with pytest.raises(TVMError, match='Executor "woof" is not defined'): Executor("woof", {}) def test_create_executor_attr_not_found(): with pytest.raises(TVMError, match='Attribute "woof" is not available on this Executor'): Executor("aot", {"woof": "bark"}) def test_create_executor_attr_type_incorrect(): with pytest.raises( TVMError, match='Attribute "interface-api" should have type "runtime.String"' ' but instead found "IntImm"', ): Executor("aot", {"interface-api": True}) def test_list_executors(): assert "aot" in Executor.list_registered() @pytest.mark.parametrize("executor", [Executor("aot").name, "aot"]) def test_list_executor_options(executor): aot_options = Executor.list_registered_options(executor) assert "interface-api" in aot_options assert aot_options["interface-api"] == "runtime.String" def test_list_executor_options_not_found(): with pytest.raises(TVMError, match='Executor "woof" is not defined'): Executor.list_registered_options("woof")
import tvm from tvm
import te from tvm
import relay from tvm.relay
import ExprFunctor, ExprMutator, ExprVisitor def check_visit(expr): try: ef = ExprFunctor() ef.visit(expr) assert False except NotImplementedError: pass ev = ExprVisitor() ev.visit(expr) em = ExprMutator() assert em.visit(expr) def test_constant(): check_visit(relay.const(1.0)) def test_tuple(): t = relay.Tuple([relay.var("x", shape=())]) check_visit(t) def test_var(): v = relay.var("x", shape=()) check_visit(v) def test_global(): v = relay.GlobalVar("f") check_visit(v) def test_function(): x = relay.var("x", shape=()) y = relay.var("y", shape=()) params = [x, y] body = x + y ret_type = relay.TensorType(()) type_params = [] attrs = None f = relay.Function(params, body, ret_type, type_params, attrs) check_visit(f) def test_call(): x = relay.var("x", shape=()) y = relay.var("y", shape=()) call = relay.op.add(x, y) check_visit(call) def test_let(): x = relay.var("x", shape=()) value = relay.const(2.0) body = x + x l = relay.Let(x, value, body) check_visit(l) def test_ite(): cond = relay.var("x", shape=(), dtype="bool") ite = relay.If(cond, cond, cond) check_visit(ite) def test_get_item(): t = relay.Tuple([relay.var("x", shape=())]) t = relay.TupleGetItem(t, 0) check_visit(t) def test_ref_create(): r = relay.expr.RefCreate(relay.const(1.0)) check_visit(r) def test_ref_read(): ref = relay.expr.RefCreate(relay.const(1.0)) r = relay.expr.RefRead(ref) check_visit(r) def test_ref_write(): ref = relay.expr.RefCreate(relay.const(1.0)) r = relay.expr.RefWrite(ref, relay.const(2.0)) check_visit(r) def test_memo(): expr = relay.const(1) for _ in range(100): expr = expr + expr check_visit(expr) def test_match(): p = relay.prelude.Prelude() check_visit(p.mod[p.map]) def test_match_completeness(): p = relay.prelude.Prelude() _, _, nil = p.mod.get_type
("List") for completeness in [True, False]: match_expr = relay.adt.Match(nil, [], complete=completeness) result_expr = ExprMutator().visit(match_expr) assert result_expr.complete == completeness if __name__ == "__main__": test_constant() test_tuple() test_var() test_global() test_function() test_call() test_let() test_ite() test_ref_create() test_ref_read() test_ref_write() test_memo() test_match() test_match_completeness()
"""Unit tests for graph partitioning."""
import sys from collections
import OrderedDict
import numpy as np
import pytest
import tvm
import tvm.testing from tvm
import relay, runtime from tvm.relay.build_module
import bind_params_by_name from tvm.relay.op.annotation
import compiler_begin, compiler_end from utils.external_codegen
import ( update_lib, set_external_func_attr, parametrize_external_codegen_checks, parametrize_external_json_codegen_checks, check_graph_executor_result, check_vm_result, ) @parametrize_external_codegen_checks def test_multi_node_subgraph(check_result): x = relay.var("x", shape=(10, 10)) w0 = relay.var("w0", shape=(10, 10)) w1 = relay.var("w1", shape=(10, 10)) w2 = relay.var("w2", shape=(10, 10)) w3 = relay.var("w3", shape=(10, 10)) w4 = relay.var("w4", shape=(10, 10)) w5 = relay.var("w5", shape=(10, 10)) w6 = relay.var("w6", shape=(10, 10)) w7 = relay.var("w7", shape=(10, 10)) x0 = relay.var("x0", shape=(10, 10)) w00 = relay.var("w00", shape=(10, 10)) w01 = relay.var("w01", shape=(10, 10)) w02 = relay.var("w02", shape=(10, 10)) z00 = relay.add(x0, w00) p00 = relay.subtract(z00, w01) q00 = relay.multiply(p00, w02) subgraph0 = relay.Function([x0, w00, w01, w02], q00) subgraph0 = set_external_func_attr(subgraph0, "ccompiler", "ccompiler_0") call0 = relay.Call(subgraph0, [x, w0, w1, w2]) x1 = relay.var("x1", shape=(10, 10)) w10 = relay.var("w10", shape=(10, 10)) w11 = relay.var("w11", shape=(10, 10)) w12 = relay.var("w12", shape=(10, 10)) z10 = relay.add(x1, w10) p10 = relay.subtract(z10, w11) q10 = relay.multiply(p10, w12) subgraph1 = relay.Function([x1, w10, w11, w12], q10) subgraph1 = set_external_func_attr(subgraph1, "ccompiler", "ccompiler_1") call1 = relay.Call(subgraph1, [x, w3, w4, w5]) z2 = relay.add(x, w6) q2 = relay.subtract(z2, w7) r = relay.concatenate((call0, call1, q2), axis=0) f = relay.Function([x, w0, w1, w2, w3, w4, w5, w6, w7], r) mod = tvm.IRModule() mod["main"] = f mod = relay.transform.InferType()(mod) x_data = np.random.rand(10, 10).astype("float32") w_data = [] for _ in range(8): w_data.append(np.random.rand(10, 10).astype("float32")) map_inputs = OrderedDict([("x", x_data)] + [("w
{}".format(i), w_data[i]) for i in range(8)]) check_result( mod, map_inputs, (30, 10), np.concatenate( ( ((x_data + w_data[0]) - w_data[1]) * w_data[2], ((x_data + w_data[3]) - w_data[4]) * w_data[5], x_data + w_data[6] - w_data[7], ), axis=0, ), ) @parametrize_external_codegen_checks def test_extern_gcc_single_op(check_result): x = relay.var("x", shape=(8, 8)) y = relay.var("y", shape=(8, 8)) x0 = relay.var("x0", shape=(8, 8)) y0 = relay.var("y0", shape=(8, 8)) z = x0 + y0 f = relay.Function([x0, y0], z) f = set_external_func_attr(f, "ccompiler", "ccompiler_0") call = relay.Call(f, [x, y]) mod = tvm.IRModule.from_expr(call) x_data = np.random.rand(8, 8).astype("float32") y_data = np.random.rand(8, 8).astype("float32") check_result(mod, {"x": x_data, "y": y_data}, (8, 8), x_data + y_data) @parametrize_external_codegen_checks def test_extern_gcc_single_op_int(check_result): x = relay.var("x", shape=(8, 8), dtype="int32") y = relay.var("y", shape=(8, 8), dtype="int32") x0 = relay.var("x0", shape=(8, 8), dtype="int32") y0 = relay.var("y0", shape=(8, 8), dtype="int32") z = x0 + y0 f = relay.Function([x0, y0], z) f = set_external_func_attr(f, "ccompiler", "ccompiler_0") call = relay.Call(f, [x, y]) mod = tvm.IRModule.from_expr(call) x_data = np.random.rand(8, 8).astype("int32") y_data = np.random.rand(8, 8).astype("int32") check_result(mod, {"x": x_data, "y": y_data}, (8, 8), x_data + y_data) @parametrize_external_codegen_checks def test_extern_gcc(check_result): x = relay.var("x", shape=(2, 2)) y = relay.var("y", shape=(2, 2)) x0 = relay.var("x0", shape=(2, 2)) y0 = relay.var("y0", shape=(2, 2)) mul = x0 * y0 mul = relay.Function([x0, y0], mul) mul = set_external_func_attr(mul, "ccompiler", "ccompiler_2") call_mul = relay.Call(mul, [y, y])
x1 = relay.var("x1", shape=(2, 2)) y1 = relay.var("y1", shape=(2, 2)) add = x1 + y1 add = relay.Function([x1, y1], add) add = set_external_func_attr(add, "ccompiler", "ccompiler_1") call_add = relay.Call(add, [x, x]) x2 = relay.var("x2", shape=(2, 2)) y2 = relay.var("y2", shape=(2, 2)) sub = x2 - y2 sub = relay.Function([x2, y2], sub) sub = set_external_func_attr(sub, "ccompiler", "ccompiler_0") call_sub = relay.Call(sub, [call_mul, call_add]) mod = tvm.IRModule.from_expr(call_sub) x_data = np.random.rand(2, 2).astype("float32") y_data = np.random.rand(2, 2).astype("float32") inputs = OrderedDict( [ ("y", y_data), ("x", x_data), ] ) check_result(mod, inputs, (2, 2), (y_data * y_data) - (x_data + x_data)) @pytest.mark.parametrize("check_result", [check_graph_executor_result, check_vm_result]) def test_extern_gcc_with_target_instance(check_result): shape = (8, 8) dtype = "int32" def make_mod(): x0 = relay.var("x0", shape=shape, dtype=dtype) y0 = relay.var("y0", shape=shape, dtype=dtype) z = x0 + y0 f = relay.Function([x0, y0], z) f = set_external_func_attr(f, "ccompiler", "ccompiler_0") x = relay.var("x", shape=shape, dtype=dtype) y = relay.var("y", shape=shape, dtype=dtype) call = relay.Call(f, [x, y]) return tvm.IRModule.from_expr(call) host_target = tvm.target.Target("llvm") generic_target = tvm.target.Target("llvm", host=host_target) good_extern_codegen_target = tvm.target.Target( {"kind": "ccompiler", "header": " ) bogus_extern_codegen_target = tvm.target.Target( {"kind": "ccompiler", "header": "Bogus"}, host=host_target ) mod = make_mod() x_data = np.random.rand(*shape).astype(dtype) y_data = np.random.rand(*shape).astype(dtype) expected_result = x_data + y_data inputs = {"x": x_data, "y": y_data} check_result( mod,
inputs, shape, expected_result, target=[generic_target, good_extern_codegen_target] ) with pytest.raises(RuntimeError): check_result( mod, inputs, shape, expected_result, target=[generic_target, bogus_extern_codegen_target], ) @pytest.mark.skipif(sys.platform == "win32", reason="Skip test on Windows for now") @pytest.mark.parametrize("check_result", [check_graph_executor_result, check_vm_result]) def test_extern_gcc_consts(check_result): shape = (8, 8) dtype = "float32" x = relay.var("x", shape=shape) y0_data = np.random.uniform(0, 1, shape).astype(dtype) x0 = relay.var("x0", shape=shape) y0_const = relay.const(y0_data, dtype) z = x0 + y0_const f = relay.Function([x0], z) f = set_external_func_attr(f, "ccompiler", "ccompiler_0") call = relay.Call(f, [x]) mod = tvm.IRModule.from_expr(call) x_data = np.random.rand(*shape).astype(dtype) inputs = {"x": x_data} expected_result = x_data + y0_data check_result(mod, inputs, shape, expected_result, target="llvm") @pytest.mark.skipif( not tvm.get_global_func("relay.ext.dnnl", True), reason="skip because DNNL codegen is not available", ) @parametrize_external_json_codegen_checks def test_extern_dnnl_padding(check_result): dtype = "float32" ishape = (1, 1, 99, 12) w1shape = (54, 1, 3, 3) data0 = relay.var("data0", shape=(ishape), dtype=dtype) weight0 = relay.var("weight0", shape=(w1shape), dtype=dtype) out = relay.nn.conv2d(data0, weight0, kernel_size=(3, 3), strides=(2, 2), padding=(1, 0, 1, 1)) f = relay.Function([data0, weight0], out) ref_mod = tvm.IRModule() ref_mod["main"] = f data1 = relay.var("data0", shape=(ishape), dtype=dtype) weight1 = relay.var("weight0", shape=(w1shape), dtype=dtype) f = set_external_func_attr(f, "dnnl", "dnnl_0") call = relay.Call(f, [data1, weight1]) mod = tvm.IRModule.from_expr(call) i_data = np.random.uni
form(0, 1, ishape).astype(dtype) w_data = np.random.uniform(0, 1, w1shape).astype(dtype) ref_res = relay.create_executor("graph", mod=ref_mod, device=tvm.cpu()).evaluate()( i_data, w_data ) check_result( mod, {"data0": i_data, "weight0": w_data}, (1, 54, 50, 6), ref_res.numpy(), tol=1e-5 ) @pytest.mark.skipif( not tvm.get_global_func("relay.ext.dnnl", True), reason="skip because DNNL codegen is not available", ) @parametrize_external_json_codegen_checks def test_extern_dnnl(check_result): dtype = "float32" ishape = (1, 32, 14, 14) w1shape = (32, 1, 3, 3) data0 = relay.var("data0", shape=(ishape), dtype=dtype) weight0 = relay.var("weight0", shape=(w1shape), dtype=dtype) data1 = relay.var("data0", shape=(ishape), dtype=dtype) weight1 = relay.var("weight0", shape=(w1shape), dtype=dtype) weight2 = relay.var("weight1", shape=(w1shape), dtype=dtype) depthwise_conv2d_1 = relay.nn.conv2d( data1, weight1, kernel_size=(3, 3), padding=(1, 1), groups=32 ) depthwise_conv2d_2 = relay.nn.conv2d( depthwise_conv2d_1, weight2, kernel_size=(3, 3), padding=(1, 1), groups=32 ) out = relay.add(depthwise_conv2d_1, depthwise_conv2d_2) f = relay.Function([data1, weight1, weight2], out) ref_mod = tvm.IRModule() ref_mod["main"] = f f = set_external_func_attr(f, "dnnl", "dnnl_0") call = relay.Call(f, [data0, weight0, weight0]) mod = tvm.IRModule.from_expr(call) i_data = np.random.uniform(0, 1, ishape).astype(dtype) w_data = np.random.uniform(0, 1, w1shape).astype(dtype) ref_res = relay.create_executor("graph", mod=ref_mod, device=tvm.cpu()).evaluate()( i_data, w_data, w_data ) check_result( mod, {"data0": i_data, "weight0": w_data}, (1, 32, 14, 14), ref_res.numpy(), tol=1e-5 ) @pytest.mark.skipif( not tvm.get_global_func("relay.ext.dnnl", True), reason="skip because DNNL codegen is not available", ) @parametrize_external_json_codegen_checks def test_
extern_dnnl_const(check_result): dtype = "float32" ishape = (1, 32, 14, 14) w1shape = (32, 1, 3, 3) data0 = relay.var("data0", shape=(ishape), dtype=dtype) w_data = np.random.uniform(0, 1, w1shape).astype(dtype) data1 = relay.var("data0", shape=(ishape), dtype=dtype) weight1 = relay.const(w_data, dtype=dtype) weight2 = relay.const(w_data, dtype=dtype) depthwise_conv2d_1 = relay.nn.conv2d( data1, weight1, kernel_size=(3, 3), padding=(1, 1), groups=32 ) depthwise_conv2d_2 = relay.nn.conv2d( depthwise_conv2d_1, weight2, kernel_size=(3, 3), padding=(1, 1), groups=32 ) out = relay.add(depthwise_conv2d_1, depthwise_conv2d_2) f = relay.Function([data1], out) ref_mod = tvm.IRModule() ref_mod["main"] = f f = set_external_func_attr(f, "dnnl", "dnnl_0") call = relay.Call(f, [data0]) mod = tvm.IRModule.from_expr(call) i_data = np.random.uniform(0, 1, ishape).astype(dtype) ref_res = relay.create_executor("graph", mod=ref_mod, device=tvm.cpu()).evaluate()(i_data) check_result(mod, {"data0": i_data}, (1, 32, 14, 14), ref_res.numpy(), tol=1e-5) def test_load_params_with_constants_in_ext_codegen(): y_in = np.ones((1,)).astype("float32") params = {"y": y_in} mod = tvm.IRModule() x = relay.var("x", shape=(1, 10)) y = relay.var("y", shape=(1,)) xcb = compiler_begin(x, "ccompiler") ycb = compiler_begin(y, "ccompiler") z = relay.add(xcb, ycb) zce = compiler_end(z, "ccompiler") mod["main"] = relay.Function([x, y], zce) mod["main"] = bind_params_by_name(mod["main"], params) mod = relay.transform.PartitionGraph()(mod) graph_module = relay.build(mod, target="llvm", params=params) assert len(graph_module.get_params()) == 0 lib = update_lib(graph_module.get_lib()) rt_mod = tvm.contrib.graph_executor.create(graph_module.get_graph_json(), lib, tvm.cpu(0)) rt_mod.load_params(runtime.save_param_dict(graph_module.get_params())) if __name__ == "__m
ain__": tvm.testing.main()
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ test bind function.""" import pytest import tvm from tvm import te from tvm import relay from tvm import TVMError def test_bind_params(): x = relay.var("x") y = relay.var("y") z = relay.add(x, y) f = relay.Function([x, y], z) fbinded = relay.bind(f, {x: relay.const(1, "float32")}) fexpected = relay.Function([y], relay.add(relay.const(1, "float32"), y)) assert tvm.ir.structural_equal(fbinded, fexpected) zbinded = relay.bind(z, {y: x}) zexpected = relay.add(x, x) assert tvm.ir.structural_equal(zbinded, zexpected) def test_bind_duplicated_params(): a = relay.var("a", shape=(1,)) aa = relay.var("a", shape=(1,)) s = a + aa func = relay.Function([a, aa], s) with pytest.raises(TVMError): relay.build_module.bind_params_by_name(func, {"a": [1.0]}) if __name__ == "__main__": test_bind_params() test_bind_duplicated_params()
"""Tests for module functionality."""
import tvm from tvm
import te from tvm
import relay from tvm.relay.prelude
import Prelude def constructor_list(p): list_ctors = p.mod.get_type("List") optional_ctors = p.mod.get_type("Option") nat_ctors = p.mod.get_type("nat") rose_ctors = p.mod.get_type("Tree") return list_ctors[1:] + optional_ctors[1:] + nat_ctors[1:] + rose_ctors[1:] def adt_list(p): list_ctors = p.mod.get_type("List") optional_ctors = p.mod.get_type("Option") nat_ctors = p.mod.get_type("nat") rose_ctors = p.mod.get_type("Tree") return list_ctors[:1] + optional_ctors[:1] + nat_ctors[:1] + rose_ctors[:1] def test_constructor_tag_round_trip(): mod1 = tvm.IRModule() p1 = Prelude(mod1) p1.mod.import_from_std("nat.rly") mod2 = tvm.IRModule() p2 = Prelude(mod2) p2.mod.import_from_std("nat.rly") ctors1 = constructor_list(p1) ctors2 = constructor_list(p2) for i in range(len(ctors1)): tag = ctors1[i].tag ctor = mod2.get_constructor(tag) assert ctor == ctors2[i] assert ctor.name_hint == ctors1[i].name_hint def test_constructor_tag_differences(): mod = tvm.IRModule() p = Prelude(mod) p.mod.import_from_std("nat.rly") adts = adt_list(p) for adt in adts: data = mod[adt] for i in range(len(data.constructors) - 1): ctor1 = data.constructors[i] ctor2 = data.constructors[i + 1] assert ctor2.tag - ctor1.tag == 1 assert ctor1.tag - i != 0 assert ctor2.tag - (i + 1) != 0
""" test ir"""
import pytest
import tvm from tvm
import te from tvm
import relay from tvm.tir.expr
import * from tvm.relay
import op
import numpy as np def check_json_roundtrip(node): json_str = tvm.ir.save_json(node) back = tvm.ir.load_json(json_str) assert tvm.ir.structural_equal(back, node, map_free_vars=True) def test_span(): span = relay.Span(None, 1, 2, 3, 4) assert span.source_name == None assert span.line == 1 assert span.end_line == 2 assert span.column == 3 assert span.end_column == 4 assert span.same_as(span) assert span == span assert isinstance(span, relay.base.Span) str(span) back = tvm.ir.load_json(tvm.ir.save_json(span)) assert back.source_name == span.source_name assert back.line == span.line assert back.end_line == span.end_line assert back.column == span.column assert back.end_column == span.end_column def test_constant(): arr = tvm.nd.array(10) const = relay.Constant(arr) assert const.data == arr assert const.span == None str(const) check_json_roundtrip(const) def test_tuple(): fields = tvm.runtime.convert([]) tup = relay.Tuple(fields) assert tup.fields == fields assert tup.span == None str(tup) check_json_roundtrip(tup) def test_local_var(): name_hint = "s" lv = relay.Var(name_hint) assert lv.name_hint == name_hint assert lv.type_annotation is None str(lv) check_json_roundtrip(lv) t1 = relay.ty.TensorType((), "float") lv = relay.Var(name_hint, t1) assert lv.name_hint == name_hint assert lv.type_annotation == t1 def test_global_var(): name_hint = "g" gv = relay.GlobalVar(name_hint) gv.name_hint == name_hint str(gv) check_json_roundtrip(gv) def test_function(): param_names = ["a", "b", "c", "d"] params = tvm.runtime.convert([relay.Var(n) for n in param_names]) ret_type = relay.TupleType(tvm.runtime.convert([])) body = relay.Tuple(tvm.runtime.convert([])) type_params = tvm.runtime.convert([]) fn = relay.Function(params, body, ret_type, type_params) fn = fn.with_attr("test_attribute
", "value") fn = fn.with_attr("test_attribute1", "value1") assert fn.params == params assert fn.body == body assert fn.type_params == type_params assert fn.span == None assert fn.attrs["test_attribute"] == "value" assert fn.attrs["test_attribute1"] == "value1" str(fn) check_json_roundtrip(fn) def test_function_attrs(): param_names = ["a", "b", "c", "d"] params = tvm.runtime.convert([relay.var(n, shape=(5, 2)) for n in param_names]) ret_type = relay.TupleType(tvm.runtime.convert([])) body = relay.Tuple(tvm.runtime.convert([])) type_params = tvm.runtime.convert([]) fn = relay.Function(params, body, ret_type, type_params) model_params = {} for param in params[:1]: cty = param.type_annotation tensor = np.random.rand(*[int(sh) for sh in cty.shape]).astype(cty.dtype) model_params[param] = relay.Constant(tvm.nd.array(tensor)) fn = fn.with_attr("__params__", model_params) assert fn.params == params assert fn.body == body assert fn.type_params == type_params assert fn.span == None str(fn) check_json_roundtrip(fn) json_str = tvm.ir.save_json(fn) fn_after = tvm.ir.load_json(json_str) model_params_after = fn_after.attrs["__params__"] after_keys = [item[0] for item in model_params_after.items()] for key1, key2 in zip(model_params, after_keys): assert key1.name_hint == key2.name_hint p1 = model_params[key1] p2 = model_params_after[key2] np.testing.assert_allclose(p1.data.numpy(), p2.data.numpy()) def test_call(): op = relay.Var("f") arg_names = ["a", "b", "c", "d"] args = tvm.runtime.convert([relay.Var(n) for n in arg_names]) call = relay.Call(op, args, None, None) assert call.op == op assert call.args == args assert call.span == None str(call) check_json_roundtrip(call) def test_let(): lv = relay.Var("x") ty = None arr = tvm.nd.array(10) value = relay.Constant(arr) let = relay.Let(lv,
value, lv) assert let.var == lv assert let.value == value assert let.body == lv assert let.span == None str(let) check_json_roundtrip(let) def test_if(): cond = relay.Var("cond") left = relay.Var("left") right = relay.Var("right") ife = relay.If(cond, left, right) assert ife.cond == cond assert ife.true_branch == left assert ife.false_branch == right assert ife.span == None str(ife) check_json_roundtrip(ife) def test_tuple_get_item(): tup = relay.Var("tuple") get = relay.TupleGetItem(tup, 1) assert get.tuple_value == tup assert get.index == 1 str(get) check_json_roundtrip(get) def test_op(): add = op.op.get("add") check_json_roundtrip(add) def test_conv2d_attrs(): data = relay.var("data", shape=(1, 3, 224, 224)) param = relay.var("param", shape=(64, 3, 7, 7)) out = op.nn.conv2d(data, param, strides=(2, 2), padding=(3, 3), channels=64, kernel_size=(7, 7)) check_json_roundtrip(out) if __name__ == "__main__": test_span() test_constant() test_tuple() test_local_var() test_global_var() test_function() test_function_attrs() test_call() test_let() test_if() test_tuple_get_item() test_op() test_conv2d_attrs()
import tvm from tvm
import relay from tvm.relay.testing.temp_op_attr
import TempOpAttr from tvm.relay.op
import op as _op def test_op_attr(): log_op = relay.op.get("log") @tvm.ir.register_op_attr("exp", "ftest") def test(x): return x + 1 assert log_op.num_inputs == 1 assert log_op.get_attr("ftest") is None assert relay.op.get("exp").get_attr("ftest")(1) == 2 def test_op_reset_attr(): """Tests reset_attr functionality.""" def add1(x): return x + 1 def add2(x): return x + 2 tvm.ir.register_op_attr("exp", "fadd1", add1) tvm.ir.register_op_attr("log", "fadd1", add1) tvm.ir.register_op_attr("log", "fadd2", add2) log_op = relay.op.get("log") log_op.reset_attr("fadd1") assert log_op.get_attr("fadd1") is None assert relay.op.get("exp").get_attr("fadd1")(1) == 2 assert relay.op.get("log").get_attr("fadd2")(1) == 3 def test_op_temp_attr(): """Tests reset_attr functionality.""" def add1(x): return x + 1 def add2(x): return x + 2 tvm.ir.register_op_attr("sqrt", "ftest", add1) with TempOpAttr("sqrt", "ftest", add2): assert relay.op.get("sqrt").get_attr("ftest")(1) == 3 assert relay.op.get("sqrt").get_attr("ftest")(1) == 2 def test_op_level1(): x = relay.Var("x") for op_name in ["log", "exp", "sqrt", "rsqrt", "tanh"]: y = getattr(relay, op_name)(x) assert y.op.name == op_name assert y.op.support_level == 1 assert y.args[0] == x def test_op_level3(): x = relay.Var("x") for op_name in ["ceil", "floor", "trunc", "round", "abs", "negative"]: y = getattr(relay, op_name)(x) assert y.op.name == op_name assert y.op.support_level == 3 assert y.args[0] == x def test_op_register(): """Tests register_op functionality.""" op_name = "custom_op" _op.register(op_name, r"code(Add two tensor with inner broadcasting.)code") _op.get(op_name).set_num_inputs(2) _op.get(op_name).add_argument("data_0", "Tensor", "The input data tensor.") _op.
get(op_name).add_argument("data_1", "Tensor", "The input data tensor.") _op.get(op_name).add_type_rel("Identity") _op.get(op_name).set_support_level(1) _op.register_pattern(op_name, _op.OpPattern.ELEMWISE) _op.register_stateful(op_name, False) assert _op.get(op_name).name == op_name assert _op.get(op_name).num_inputs == 2 assert _op.get(op_name).get_attr("TOpPattern") == _op.OpPattern.ELEMWISE assert _op.get(op_name).get_attr("TOpIsStateful") == False if __name__ == "__main__": test_op_attr() test_op_reset_attr() test_op_temp_attr() test_op_level1() test_op_level3() test_op_register()
import numpy as np
import pytest
import tvm
import tvm.testing from tvm
import relay
import tvm.relay.testing from numpy
import isclose from typing
import Union SEMVER = ' BINARY_OPS = { "*": relay.multiply, "/": relay.divide, "+": relay.add, "-": relay.subtract, "<": relay.less, ">": relay.greater, "<=": relay.less_equal, ">=": relay.greater_equal, "==": relay.equal, "!=": relay.not_equal, } TYPES = { "int8", "int16", "int32", "int64", "uint8", "uint16", "uint32", "uint64", "float16", "float32", "float64", "bool", "int8x4", "uint1x4", "float16x4", } LIST_DEFN = """ type List[A] { Cons(A, List[A]), Nil, } """ def assert_graph_equal(lhs, rhs): tvm.ir.assert_structural_equal(lhs, rhs, map_free_vars=True) def graph_equal(lhs, rhs): return tvm.ir.structural_equal(lhs, rhs, map_free_vars=True) def roundtrip_expr(expr): text = tvm.relay.Expr.astext(expr, show_meta_data=False) x = tvm.parser.parse_expr(text) assert_graph_equal(x, expr) def roundtrip(expr): x = tvm.parser.fromtext(expr.astext()) assert_graph_equal(x, expr) def parse_text(code): expr = tvm.parser.parse_expr(code) roundtrip_expr(expr) return expr def parses_as(code, expr): parsed = parse_text(code) result = graph_equal(parsed, expr) return result def parse_module(code): mod = tvm.parser.parse(SEMVER + code) roundtrip(mod) return mod def assert_parses_as(code, expr): parsed = parse_text(code) assert_graph_equal(parsed, expr) def assert_parse_module_as(code, mod): mod = tvm.relay.transform.InferType()(mod) parsed = parse_module(code) assert_graph_equal(parsed, mod) def get_scalar(x): return x.data.numpy().item() int32 = relay.scalar_type("int32") _ = relay.Var("_") X = relay.Var("x") Y = relay.Var("y") X_ANNO = relay.Var("x", int32) Y_ANNO = relay.Var("y", int32) UNIT = relay.Tuple([]) def test_comments(): assert_parses_as( """ () """, UNIT, ) assert_parses_as( """ /* This is a block comment!
This is still a block comment! */ () """, UNIT, ) assert_parses_as( """ /* This is a block comment! /*Block comment is recursive!*/ */ () """, UNIT, ) def test_int_literal(): assert isinstance(parse_text("1"), relay.Constant) assert isinstance(parse_text("1").data, tvm.nd.NDArray) assert get_scalar(parse_text("1")) == 1 assert get_scalar(parse_text("10")) == 10 assert get_scalar(parse_text("0")) == 0 assert get_scalar(parse_text("-100")) == -100 assert get_scalar(parse_text("-05")) == -5 assert get_scalar(parse_text("9223372036854775807")) == 9223372036854775807 assert get_scalar(parse_text("-42i")) == -42 assert get_scalar(parse_text("-42i16")) == -42 assert get_scalar(parse_text("-42i32")) == -42 assert get_scalar(parse_text("-42i64")) == -42 assert_parses_as("-42i16", relay.const(-42, "int16")) assert_parses_as("-42i32", relay.const(-42, "int32")) assert_parses_as("-42i", relay.const(-42, "int32")) assert_parses_as("-42", relay.const(-42, "int32")) assert_parses_as("-42i64", relay.const(-42, "int64")) assert_parses_as("2147483647", relay.const(2147483647, "int32")) assert_parses_as("2147483648", relay.const(2147483648, "int64")) with pytest.raises(tvm.error.DiagnosticError): parse_text("2147483648i32") with pytest.raises(tvm.error.DiagnosticError): parse_text("32768i16") def test_float_literal(): assert get_scalar(parse_text("1.0f")) == 1.0 assert isclose(get_scalar(parse_text("1.56667f")), 1.56667) assert get_scalar(parse_text("0.0f")) == 0.0 assert get_scalar(parse_text("-10.0f")) == -10.0 assert isclose(get_scalar(parse_text("1e-1f")), 1e-1) assert get_scalar(parse_text("1e+1f")) == 1e1 assert isclose(get_scalar(parse_text("1E-1f")), 1e-1) assert get_scalar(parse_text("1E+1f")) == 1e1 assert isclose(get_scalar(parse_text("1.0e-1f")), 1.
0e-1) assert get_scalar(parse_text("1.0e+1f")) == 1.0e1 assert isclose(get_scalar(parse_text("1.0E-1f")), 1.0e-1) assert get_scalar(parse_text("1.0E+1f")) == 1.0e1 assert get_scalar(parse_text("3f16")) == 3.0 assert get_scalar(parse_text("3f32")) == 3.0 assert_parses_as("3f16", relay.const(3.0, "float16")) assert_parses_as("3f32", relay.const(3.0, "float32")) assert_parses_as("3f", relay.const(3.0, "float32")) assert_parses_as("3f64", relay.const(3.0, "float64")) with pytest.raises(tvm.error.DiagnosticError): parse_text("3.40283e+38f32") with pytest.raises(tvm.error.DiagnosticError): parse_text("65505f16") def test_bool_literal(): assert get_scalar(parse_text("True")) == True assert get_scalar(parse_text("False")) == False assert_parses_as("True", relay.const(True, "bool")) def test_negative(): assert get_scalar(parse_text("--10")) == 10 assert get_scalar(parse_text("---10")) == -10 def test_bin_op(): for bin_op in BINARY_OPS.keys(): assert_parses_as( "1 {} 1".format(bin_op), BINARY_OPS.get(bin_op)(relay.const(1), relay.const(1)) ) def test_parens(): assert graph_equal(parse_text("1 * 1 + 1"), parse_text("(1 * 1) + 1")) assert not graph_equal(parse_text("1 * 1 + 1"), parse_text("1 * (1 + 1)")) def test_op_assoc(): assert graph_equal(parse_text("1 * 1 + 1 < 1 == 1"), parse_text("(((1 * 1) + 1) < 1) == 1")) assert graph_equal(parse_text("1 == 1 < 1 + 1 * 1"), parse_text("1 == (1 < (1 + (1 * 1)))")) def test_vars(): var = parse_text("let %foo = (); %foo") assert isinstance(var.body, relay.Var) assert var.body.name_hint == "foo" global_var = parse_text("@foo") assert isinstance(global_var, relay.GlobalVar) assert global_var.name_hint == "foo" op = parse_text("add") assert isinstance(op, tvm.ir.Op) assert op.name == "add" op = parse_text("nn.global_avg_pool2d") assert isinstance(op,
tvm.ir.Op) assert op.name == "nn.global_avg_pool2d" def test_meta_ref(): with pytest.raises(tvm.error.DiagnosticError): meta_op = parse_text("meta[type_key][1337]") assert meta_op.attrs.node_type_key == "type_key" assert meta_op.attrs.node_index == 1337 def test_let(): assert_parses_as("let %x = 1; ()", relay.Let(X, relay.const(1), UNIT)) assert_parses_as( """ let %x = 1; let %y = 2; () """, relay.Let(X, relay.const(1), relay.Let(Y, relay.const(2), UNIT)), ) def test_seq(): assert_parses_as("(); ()", relay.Let(_, UNIT, UNIT)) assert_parses_as("let %_ = 1; ()", relay.Let(X, relay.const(1), UNIT)) def test_graph(): code = "%0 = (); %1 = 1; (%0, %0, %1)" assert_parses_as(code, relay.Tuple([UNIT, UNIT, relay.const(1)])) def test_graph_single(): assert_parses_as("%1 = (); %1", relay.Tuple([])) def test_let_global_var(): with pytest.raises(tvm.error.DiagnosticError): parse_text("let @x = 1; ()") def test_let_op(): with pytest.raises(tvm.error.DiagnosticError): parse_text("let x = 1; ()") def test_tuple(): assert_parses_as("()", relay.Tuple([])) assert_parses_as("(0,)", relay.Tuple([relay.const(0)])) assert_parses_as("(0, 1)", relay.Tuple([relay.const(0), relay.const(1)])) assert_parses_as("(0, 1, 2)", relay.Tuple([relay.const(0), relay.const(1), relay.const(2)])) def test_tuple_proj(): x = relay.var("x", shape=()) assert_parses_as( "free_var %x: float32; %x((%x,).0, %x)", relay.Call(x, [relay.TupleGetItem(relay.Tuple([x]), 0), x]), ) def test_func(): assert_parses_as("fn () { 0 }", relay.Function([], relay.const(0), None, [])) assert_parses_as("fn (%x) { %x }", relay.Function([X], X, None, [])) assert_parses_as("fn (%x, %y) { %x + %y }", relay.Function([X, Y], relay.add(X, Y), None, [])) assert_parses_as("fn (%x: int32) -> int32 { %x }", relay.Function([X_ANNO], X_ANNO, int32, []
)) def test_defn(): id_defn = parse_module( """ def @id(%x: int32) -> int32 { %x } """ ) assert isinstance(id_defn, tvm.IRModule) def test_recursive_call(): id_defn = parse_module( """ def @id(%x: int32) -> int32 { @id(%x) } """ ) assert isinstance(id_defn, tvm.IRModule) def test_ifelse(): assert_parses_as( """ if (True) { 0 } else { 1 } """, relay.If(relay.const(True), relay.const(0), relay.const(1)), ) def test_ifelse_scope(): with pytest.raises(tvm.error.DiagnosticError): parse_text( """ if (True) { let %x = (); () } else { %x } """ ) def test_ref(): program = """ def @main(%x: float32) { %0 = ref(%x); ref_write(%0, 1f); ref_read(%0) } """ tvm.parser.parse(program) def test_call(): id_func = relay.Var("id") assert_parses_as( """ let %id = fn (%x) { %x }; 10 * %id(10) """, relay.Let( id_func, relay.Function([X], X, None, []), relay.multiply(relay.const(10), relay.Call(id_func, [relay.const(10)])), ), ) constant = relay.Var("constant") assert_parses_as( """ let %constant = fn () { 0 }; %constant() """, relay.Let( constant, relay.Function([], relay.const(0), None, []), relay.Call(constant, [], None, None), ), ) id_var = relay.Var("id") assert_parses_as( """ let %id = fn (%x) { %x }; %id(1) """, relay.Let( id_var, relay.Function([X], X, None, []), relay.Call(id_var, [relay.const(1)], None, None), ), )
multiply = relay.Var("multiply") assert_parses_as( """ let %multiply = fn (%x, %y) { %x * %y }; %multiply(0, 0) """, relay.Let( multiply, relay.Function([X, Y], relay.multiply(X, Y), None, []), relay.Call(multiply, [relay.const(0), relay.const(0)], None, None), ), ) assert_parses_as( """ (fn (%x) { %x })(0) """, relay.Call(relay.Function([X], X, None, []), [relay.const(0)], None, None), ) curried_mult = relay.Var("curried_mult") assert_parses_as( """ let %curried_mult = fn (%x) { fn (%y) { %x * %y } }; %curried_mult(0); %curried_mult(0)(0) """, relay.Let( curried_mult, relay.Function([X], relay.Function([Y], relay.multiply(X, Y), None, []), None, []), relay.Let( _, relay.Call(curried_mult, [relay.const(0)], None, None), relay.Call( relay.Call(curried_mult, [relay.const(0)], None, None), [relay.const(0)], None, None, ), ), ), ) assert_parses_as("abs(1)", relay.Call(relay.op.get("abs"), [relay.const(1)], None, None)) def test_incomplete_type(): assert_parses_as("let %_ : _ = (); ()", relay.Let(_, UNIT, UNIT)) def test_builtin_types(): for builtin_type in TYPES: parse_text("let %_ : {} = (); ()".format(builtin_type)) def test_tensor_type(): assert_parses_as( "let %_ : Tensor[(), float32] = (); ()", relay.Let(relay.Var("_", relay.TensorType((), "float32")), UNIT, UNIT), ) assert_parses_as( "let %_ : Tensor[(1), float32] = (); ()", relay.Let(relay.Var("_", relay.TensorType((1,), "float32")), UNIT, UNIT), ) assert_parses_as( "let %_ : Tensor[(1, 1),