text
stringlengths
1
2.05k
float32] = (); ()", relay.Let(relay.Var("_", relay.TensorType((1, 1), "float32")), UNIT, UNIT), ) assert_parses_as( "let %_ : Tensor[(?, 1), float32] = (); ()", relay.Let(relay.Var("_", relay.TensorType((tvm.tir.Any(), 1), "float32")), UNIT, UNIT), ) def test_function_type(): assert_parses_as( """ let %_: fn () -> int32 = fn () -> int32 { 0 }; () """, relay.Let( relay.Var("_", relay.FuncType([], int32, [], [])), relay.Function([], relay.const(0), int32, []), UNIT, ), ) assert_parses_as( """ let %_: fn (int32) -> int32 = fn (%x: int32) -> int32 { 0 }; () """, relay.Let( relay.Var("_", relay.FuncType([int32], int32, [], [])), relay.Function([relay.Var("x", int32)], relay.const(0), int32, []), UNIT, ), ) assert_parses_as( """ let %_: fn (int32, int32) -> int32 = fn (%x: int32, %y: int32) -> int32 { 0 }; () """, relay.Let( relay.Var("_", relay.FuncType([int32, int32], int32, [], [])), relay.Function( [relay.Var("x", int32), relay.Var("y", int32)], relay.const(0), int32, [] ), UNIT, ), ) def test_tuple_type(): assert_parses_as( """ let %_: () = (); () """, relay.Let(relay.Var("_", relay.TupleType([])), UNIT, UNIT), ) assert_parses_as( """ let %_: (int32,) = (0,); () """, relay.Let(relay.Var("_", relay.TupleType([int32])), relay.Tuple([relay.const(0)]), UNIT), ) assert_parses_as( """ let %_: (int32, int32) = (0, 1); () """, relay.Let( relay.Var("_", relay.TupleType([int32, int32])), relay.Tuple([relay.const(0), relay.const(1)]), UNIT, ), ) def test_adt_defn(): mod = tvm.IRModule() glob_typ_var = relay.GlobalTypeVar("Ayy") pr
og = relay.TypeData(glob_typ_var, [], [relay.Constructor("Nil", [], glob_typ_var)]) mod[glob_typ_var] = prog assert_parse_module_as( """ type Ayy { Nil } """, mod, ) def test_adt_any(): code = """ type my_dtype { my_cons(Tensor[(?, 1), uint16]), } """ mod = parse_module(code) items = mod.type_definitions.items() global_type_var, type_data = items[0] assert global_type_var.name_hint == "my_dtype" ctors = type_data.constructors assert len(ctors) == 1 my_cons = ctors[0] assert my_cons.name_hint == "my_cons" ty_shape = my_cons.inputs[0].shape assert isinstance(ty_shape[0], tvm.tir.Any) assert ty_shape[1] == 1 def test_empty_adt_defn(): mod = tvm.IRModule() glob_typ_var = relay.GlobalTypeVar("Ayy") prog = relay.TypeData(glob_typ_var, [], []) mod[glob_typ_var] = prog assert_parse_module_as( """ type Ayy { } """, mod, ) def test_multiple_cons_defn(): mod = tvm.IRModule() list_var = relay.GlobalTypeVar("List") typ_var = relay.TypeVar("A") prog = relay.TypeData( list_var, [typ_var], [ relay.Constructor("Cons", [typ_var, list_var(typ_var)], list_var), relay.Constructor("Nil", [], list_var), ], ) mod[list_var] = prog assert_parse_module_as(LIST_DEFN, mod) def test_multiple_type_param_defn(): glob_typ_var = relay.GlobalTypeVar("Either") typ_var_a = relay.TypeVar("A") typ_var_b = relay.TypeVar("B") prog = relay.TypeData( glob_typ_var, [typ_var_a, typ_var_b], [ relay.Constructor("Left", [typ_var_a], glob_typ_var), relay.Constructor("Right", [typ_var_b], glob_typ_var), ], ) mod = tvm.IRModule() mod[glob_typ_var] = prog assert_parse_module_as( """ type Either[A, B] { Left(A), Right(B), } """, mod, ) def test_match():
match_keywords = [("match", True), ("match?", False)] for (match_keyword, is_complete) in match_keywords: mod = tvm.IRModule() list_var = relay.GlobalTypeVar("List") typ_var = relay.TypeVar("A") cons_constructor = relay.Constructor("Cons", [typ_var, list_var(typ_var)], list_var) nil_constructor = relay.Constructor("Nil", [], list_var) list_def = relay.TypeData(list_var, [typ_var], [cons_constructor, nil_constructor]) mod[list_var] = list_def length_var = relay.GlobalVar("length") typ_var = relay.TypeVar("A") input_type = list_var(typ_var) input_var = relay.Var("xs", input_type) rest_var = relay.Var("rest") cons_case = relay.Let( relay.var("", type_annotation=None), UNIT, relay.add(relay.const(1), relay.Call(length_var, [rest_var])), ) body = relay.Match( input_var, [ relay.Clause( relay.PatternConstructor( cons_constructor, [relay.PatternWildcard(), relay.PatternVar(rest_var)] ), cons_case, ), relay.Clause(relay.PatternConstructor(nil_constructor, []), relay.const(0)), ], complete=is_complete, ) length_func = relay.Function([input_var], body, int32, [typ_var]) mod[length_var] = length_func assert_parse_module_as( """ %s def @length[A](%%xs: List[A]) -> int32 { %s (%%xs) { Cons(_, %%rest : List[A]) => { (); 1 + @length(%%rest) }, Nil => 0, } } """ % (LIST_DEFN, match_keyword), mod, ) def test_adt_cons_expr(): mod = tvm.IRModule() list_var = relay.GlobalTypeVar("List") typ_var = relay.TypeVar("A") cons_constructor = relay
.Constructor("Cons", [typ_var, list_var(typ_var)], list_var) nil_constructor = relay.Constructor("Nil", [], list_var) list_def = relay.TypeData(list_var, [typ_var], [cons_constructor, nil_constructor]) mod[list_var] = list_def make_singleton_var = relay.GlobalVar("make_singleton") input_var = relay.Var("x", int32) make_singleton_func = relay.Function( [input_var], cons_constructor(input_var, nil_constructor()), list_var(int32) ) mod[make_singleton_var] = make_singleton_func assert_parse_module_as( """ %s def @make_singleton(%%x: int32) -> List[int32] { Cons(%%x, Nil) } """ % LIST_DEFN, mod, ) def test_duplicate_adt_defn(): with pytest.raises(tvm.error.DiagnosticError): parse_module( """ %s type List[A] { Cons(A, List[A]), Nil, } """ % LIST_DEFN ) def test_duplicate_adt_cons(): with pytest.raises(tvm.error.DiagnosticError): parse_text( """ type Ayy { Lmao } type Haha { Lmao } """ ) def test_duplicate_adt_cons_defn(): with pytest.raises(tvm.error.DiagnosticError): parse_text( """ type Ayy { Lmao } type Lmao { Ayy } """ ) def test_duplicate_global_var(): with pytest.raises(tvm.error.DiagnosticError): parse_text( """ def @id[A](%x: A) -> A { x } def @id[A](%x: A) -> A { x } """ ) def test_extern_adt_defn(): mod = tvm.IRModule() extern_var = relay.GlobalTypeVar("T") typ_var = relay.TypeVar("A") extern_def = relay.TypeData(extern_var, [typ_var], []) mod[extern_var] = extern_def assert_parse_module_as( """ extern type T[A] """, mod, ) def test_import_grad(): mod = tvm.IRModule() mod.import_from_std("gradient.r
ly") def test_mlp(): mod, _ = relay.testing.mlp.get_workload(1) text = mod.astext() parsed_mod = tvm.parser.parse(text) tvm.ir.assert_structural_equal(mod, parsed_mod) def inline_params(mod, params): main_fn = mod["main"] str_to_var = {} for param in main_fn.params: str_to_var[param.name_hint] = param bind_map = {} for param in params: bind_map[str_to_var[param]] = relay.const(params[param]) body = relay.bind(main_fn.body, bind_map) main_fn = relay.Function(relay.analysis.free_vars(body), body) mod._add("main", main_fn, True) return mod def test_mlp_inlined_params(): mod, params = relay.testing.mlp.get_workload(1) mod = inline_params(mod, params) mod = relay.transform.InferType()(mod) text = mod.astext() parsed_mod = tvm.parser.parse(text) tvm.ir.assert_structural_equal(mod, parsed_mod) def test_tuple_return_value(): program = """ type Box[T] { constructor(T) } def @example() { %0 = (); %1 = constructor(%0); %2 = constructor(0f); (%1, %2,) } """ parse_module(program) def test_parse_if_in_binding(): program = """ def @example(%b: bool) { %0 = if (%b) { 1 } else { 0 }; %0 } """ parse_module(program) def test_op_string_attr(): call = parse_text( """ free_var %x: Tensor[(1, 32, 32, 3), float32]; free_var %y: Tensor[(1, 1, 3, 3), float32]; nn.conv2d(%x, %y, data_layout="NHWC", kernel_layout="HWIO") """ ) assert isinstance(call.op, tvm.ir.Op) assert call.op.name == "nn.conv2d" assert call.attrs.data_layout == "NHWC" assert call.attrs.kernel_layout == "HWIO" def test_load_prelude(): mod = tvm.IRModule() mod.import_from_std("prelude.rly") tvm.parser.parse(mod.astext()) def test_call_attrs(): def get_func(shape, dtype): x0 = relay.var("data", shape=shape, dtype=dtype) w0 = rel
ay.var("weight", shape=shape, dtype=dtype) a = relay.nn.dense(x0, w0) b = relay.nn.relu(a) d = relay.add(b, relay.const(1.0, dtype=dtype)) return relay.Function([x0, w0], d) shape = (2, 4) dtype = "float32" sub_func = get_func(shape, dtype) p0 = relay.var("p0", shape=shape, dtype=dtype) p1 = relay.var("p1", shape=shape, dtype=dtype) attr = tvm.ir.make_node("attrs.TestAttrs", name="func_call_attrs") call = relay.Call(sub_func, [p0, p1], attrs=attr) func = relay.Function([p0, p1], call) mod = tvm.IRModule() mod["main"] = func mod = tvm.relay.transform.InferType()(mod) program = """ def @main(%p0: Tensor[(2, 4), float32], %p1: Tensor[(2, 4), float32]) { %2 = fn (%data: Tensor[(2, 4), float32], %weight: Tensor[(2, 4), float32]) { %0 = nn.dense(%data, %weight, units=None); %1 = nn.relu(%0); add(%1, 1f) }; %2(%p0, %p1, name="func_call_attrs", attrs_type_key="attrs.TestAttrs") } """ parsed = parse_module(program) assert_graph_equal(parsed, mod) def test_tokenize_inf(): x = relay.var("x", shape=(3, 4), dtype="float32") y = relay.clip(x, -np.inf, np.inf) f = relay.Function([x], y) mod = tvm.IRModule.from_expr(f) mod = relay.transform.AnnotateSpans()(mod) def test_func_attrs(): attrs = tvm.ir.make_node("DictAttrs", **{"Primitive": 1, "relay.reshape_only": 1}) x = relay.var("x", shape=(2, 3)) func = relay.Function([x], relay.reshape(x, (-1,)), attrs=attrs) assert_parses_as(func.astext(), func) def test_init_module_and_metatable(): init_metatable = {"relay.Constant": [relay.const(np.random.rand(2, 3), dtype="float32")]} init_module = tvm.parser.fromtext( SEMVER + """ def @f(%y : Tensor[(2, 3), float32]) -> Tensor[(2, 3), float32] { negative(%y) } """, ) mod = tvm.parser.parse( SEMVER + """ def @main(%x: Tensor[(2, 3), float32]
) { add(@f(%x), meta[relay.Constant][0]) } """, "from_string", init_module, init_metatable, ) roundtrip(mod) if __name__ == "__main__": tvm.testing.main()
import numpy as np
import tvm
import tvm.testing from tvm
import relay from tvm.relay.testing
import run_opt_pass def consistent_equal(x, y, map_free_vars=False): struct_equal0 = tvm.ir.structural_equal(x, y, map_free_vars) struct_equal1 = tvm.ir.structural_equal(y, x, map_free_vars) xhash = tvm.ir.structural_hash(x, map_free_vars) yhash = tvm.ir.structural_hash(y, map_free_vars) if struct_equal0 != struct_equal1: raise ValueError( "Non-communicative {} vs {}, sequal0={}, sequal1={}".format( x, y, struct_equal0, struct_equal1 ) ) if struct_equal0 != (xhash == yhash): raise ValueError( "Inconsistent {} vs {}, sequal={}, xhash={}, yhash={}".format( x, y, struct_equal0, xhash, yhash ) ) return struct_equal0 def test_tensor_type_sequal(): t1 = relay.TensorType((3, 4), "float32") t2 = relay.TensorType((3, 4), "float32") t3 = relay.TensorType((3, 4, 5), "float32") assert t1 == t2 assert t1 != t3 t1 = relay.TensorType((), "float32") t2 = relay.TensorType((), "float32") assert t1 == t2 def test_incomplete_type_sequal(): t1 = relay.IncompleteType(relay.TypeKind.ShapeVar) t2 = relay.IncompleteType(relay.TypeKind.Type) t3 = relay.IncompleteType(relay.TypeKind.Type) assert t2 == t2 assert t1 == t1 assert t1 != t2 assert t2 != t3 def test_type_param_sequal(): t1 = relay.TypeVar("v1", relay.TypeKind.Type) t2 = relay.TypeVar("v2", relay.TypeKind.ShapeVar) t3 = relay.TypeVar("v3", relay.TypeKind.Type) assert t1 == t1 assert t2 == t2 assert t1 != t2 assert t1 != t3 ft1 = relay.FuncType( tvm.runtime.convert([]), t1, tvm.runtime.convert([t1]), tvm.runtime.convert([]) ) ft2 = relay.FuncType( tvm.runtime.convert([]), t3, tvm.runtime.convert([t3]), tvm.runtime.convert([]) ) ft3 = relay.FuncType( tvm.runtime.convert([]), t2, tvm.runtime.convert([t2]), tvm.runtime.convert([]) ) assert ft1 == ft2
assert ft1 != ft3 def test_func_type_sequal(): t1 = relay.TensorType((1, 2), "float32") t2 = relay.TensorType((1, 2, 3), "float32") tp1 = relay.TypeVar("v1", relay.TypeKind.Type) tp2 = relay.TypeVar("v2", relay.TypeKind.Type) tp3 = relay.TypeVar("v3", relay.TypeKind.ShapeVar) tp4 = relay.TypeVar("v3", relay.TypeKind.ShapeVar) broadcast = tvm.ir.EnvFunc.get("tvm.relay.type_relation.Broadcast") identity = tvm.ir.EnvFunc.get("tvm.relay.type_relation.Identity") tr1 = relay.TypeRelation(broadcast, tvm.runtime.convert([tp1, tp3]), 1, None) tr2 = relay.TypeRelation(broadcast, tvm.runtime.convert([tp2, tp4]), 1, None) tr3 = relay.TypeRelation(identity, tvm.runtime.convert([tp1, tp3]), 1, None) ft = relay.FuncType( tvm.runtime.convert([t1, t2]), tp1, tvm.runtime.convert([tp1, tp3]), tvm.runtime.convert([tr1]), ) translate_vars = relay.FuncType( tvm.runtime.convert([t1, t2]), tp2, tvm.runtime.convert([tp2, tp4]), tvm.runtime.convert([tr2]), ) assert ft == translate_vars different_args = relay.FuncType( tvm.runtime.convert([t1]), tp1, tvm.runtime.convert([tp1, tp3]), tvm.runtime.convert([tr1]) ) assert ft != different_args different_order = relay.FuncType( tvm.runtime.convert([t2, t1]), tp1, tvm.runtime.convert([tp1, tp3]), tvm.runtime.convert([tr1]), ) assert ft != different_order no_rel = relay.FuncType( tvm.runtime.convert([t1, t2]), tp1, tvm.runtime.convert([tp1, tp3]), tvm.runtime.convert([]) ) assert ft != no_rel more_vars = relay.FuncType( tvm.runtime.convert([t1, t2]), tp2, tvm.runtime.convert([tp1, tp2, tp3]), tvm.runtime.convert([tr1]), ) assert ft != more_vars all_the_vars = relay.FuncType( tvm.runtime.convert([t1, t2]), tp1, tvm.runtime.convert([tp1, tp2, tp3, tp4]), tvm.runtime.convert([tr1, tr2]), ) ass
ert ft != all_the_vars different_rel = relay.FuncType( tvm.runtime.convert([t1, t2]), tp1, tvm.runtime.convert([tp1, tp3]), tvm.runtime.convert([tr3]), ) assert ft != different_rel more_rels = relay.FuncType( tvm.runtime.convert([t1, t2]), tp1, tvm.runtime.convert([tp1, tp3]), tvm.runtime.convert([tr1, tr3]), ) assert ft != more_rels def test_tuple_type_sequal(): t1 = relay.TensorType((1, 2, 3), "float32") t2 = relay.TensorType((1, 2, 3, 4), "float32") tp1 = relay.TypeVar("v1", relay.TypeKind.Type) tp2 = relay.TypeVar("v2", relay.TypeKind.Type) tup1 = relay.TupleType(tvm.runtime.convert([t1, t2, tp1])) tup2 = relay.TupleType(tvm.runtime.convert([t1, t2, tp1])) tup3 = relay.TupleType(tvm.runtime.convert([t2, t1, tp1])) tup4 = relay.TupleType(tvm.runtime.convert([t1, t2, tp2])) assert tup1 == tup2 assert tup1 != tup3 assert tup1 != tup4 def test_type_relation_sequal(): t1 = relay.TensorType((1, 2), "float32") t2 = relay.TensorType((1, 2, 3), "float32") t3 = relay.TensorType((1, 2, 3, 4), "float32") broadcast = tvm.ir.EnvFunc.get("tvm.relay.type_relation.Broadcast") identity = tvm.ir.EnvFunc.get("tvm.relay.type_relation.Identity") attr1 = tvm.ir.make_node("attrs.TestAttrs", name="attr", padding=(3, 4)) attr1_same = tvm.ir.make_node("attrs.TestAttrs", name="attr", padding=(3, 4)) attr2 = tvm.ir.make_node("attrs.TestAttrs", name="attr", padding=(3, 4, 4)) tr = relay.TypeRelation(broadcast, tvm.runtime.convert([t1, t2]), 1, attr1) same = relay.TypeRelation(broadcast, tvm.runtime.convert([t1, t2]), 1, attr1) diff_func = relay.TypeRelation(identity, tvm.runtime.convert([t1, t2]), 1, attr1) diff_order = relay.TypeRelation(broadcast, tvm.runtime.convert([t2, t1]), 1, attr1) diff_args = relay.TypeRelation(broadcast, tvm.runtime.convert([t2, t3]), 1, attr1) diff_attr = relay.TypeRelation(broadcast, tvm.runtime
.convert([t1, t2]), 1, attr2) same_attr = relay.TypeRelation(broadcast, tvm.runtime.convert([t1, t2]), 1, attr1_same) bigger = relay.TypeRelation(identity, tvm.runtime.convert([t1, t3, t2]), 2, attr1) diff_num_inputs = relay.TypeRelation(identity, tvm.runtime.convert([t1, t3, t2]), 1, attr2) assert tr == same assert tr != diff_func assert tr != diff_order assert tr != diff_args assert tr != diff_attr assert tr == same_attr assert tr != bigger assert bigger != diff_num_inputs def test_type_call_sequal(): h1 = relay.GlobalTypeVar("h1") h2 = relay.GlobalTypeVar("h2") t1 = relay.TensorType((1, 2), "float32") t2 = relay.TensorType((1, 2, 3), "float32") t3 = relay.TensorType((1, 2, 3, 4), "float32") t4 = relay.TensorType((), "float32") tc = relay.TypeCall(h1, [t1, t2, t3]) same = relay.TypeCall(h1, [t1, t2, t3]) different_func = relay.TypeCall(h2, [t1, t2, t3]) different_arg = relay.TypeCall(h1, [t1, t2, t4]) fewer_args = relay.TypeCall(h1, [t1, t2]) more_args = relay.TypeCall(h1, [t1, t2, t3, t4]) different_order_args = relay.TypeCall(h1, [t3, t2, t1]) assert tc == same assert tc != different_func assert tc != fewer_args assert tc != more_args assert tc != different_order_args def test_constant_sequal(): x = relay.const(1) y = relay.const(2) assert consistent_equal(x, x) assert not consistent_equal(x, y) assert consistent_equal(x, relay.const(1)) def test_type_node_sequal(): v1 = relay.TypeVar("v1", 6) v2 = relay.TypeVar("v2", 6) assert not consistent_equal(v1, v2) v1 = relay.TypeVar("v1", 0) v2 = relay.TypeVar("v2", 6) assert not consistent_equal(v1, v2) def test_type_node_incompatible_sequal(): v1 = relay.TypeVar("v1", 6) v2 = relay.Var("v2") assert not consistent_equal(v1, v2) def test_expr_node_incompatible_sequal(): v1 = relay.Var("v1") v2 = relay.PatternVar(relay.Var("v2")) assert not consistent_equal(v1, v2)
def test_var_sequal(): v1 = relay.Var("v1") v2 = relay.Var("v2") assert consistent_equal(v1, v1) assert not consistent_equal(v1, v2) l1 = relay.Let(v1, relay.const(1), v1) l2 = relay.Let(v2, relay.const(1), v2) l3 = relay.Let(v1, relay.const(1), v2) assert consistent_equal(l1, l2) assert not consistent_equal(l1, l3) tt1 = relay.TensorType([], "int32") tt2 = relay.TensorType([], "int32") tt3 = relay.TensorType([], "int64") v3 = relay.Var("v3", tt1) v4 = relay.Var("v4", tt2) v5 = relay.Var("v5", tt3) l4 = relay.Let(v3, relay.const(1), v3) l5 = relay.Let(v4, relay.const(1), v4) l6 = relay.Let(v5, relay.const(1), v5) assert consistent_equal(l4, l5) assert not consistent_equal(l4, l6) assert not consistent_equal(l1, l4) def test_global_var_sequal(): v1 = relay.GlobalVar("v1") v2 = relay.GlobalVar("v2") assert consistent_equal(v1, v1) assert not consistent_equal(v1, v2) def test_tuple_sequal(): v0 = relay.Var("v0") v1 = relay.Var("v1") v2 = relay.Var("v2") assert consistent_equal(relay.Tuple([]), relay.Tuple([])) tup = relay.Tuple([v0, relay.const(2), relay.const(3), relay.Tuple([relay.const(4)])]) same = relay.Tuple([v0, relay.const(2), relay.const(3), relay.Tuple([relay.const(4)])]) assert consistent_equal(tup, same) let_tup = relay.Let(v1, tup, v1) let_mapped = relay.Let( v2, relay.Tuple([v0, relay.const(2), relay.const(3), relay.Tuple([relay.const(4)])]), v2 ) assert consistent_equal(let_tup, let_mapped) more_fields = relay.Tuple( [v1, relay.const(2), relay.const(3), relay.Tuple([relay.const(4)]), v2] ) assert not consistent_equal(tup, more_fields) fewer_fields = relay.Tuple([v1, relay.const(2), relay.const(3)]) assert not consistent_equal(tup, fewer_fields) different_end = relay.Tuple([v1, relay.const(2), relay.const(3), relay.Tuple([relay.const(5)])]) assert not
consistent_equal(tup, different_end) different_start = relay.Tuple( [v2, relay.const(2), relay.const(3), relay.Tuple([relay.const(4)])] ) assert not consistent_equal(tup, different_start) longer_at_end = relay.Tuple( [v1, relay.const(2), relay.const(3), relay.Tuple([relay.const(4), relay.const(5)])] ) assert not consistent_equal(tup, longer_at_end) def test_tuple_get_item_sequal(): x = relay.Var("x") y = relay.Var("y") assert not consistent_equal(relay.TupleGetItem(x, 1), relay.TupleGetItem(y, 1)) assert not consistent_equal(relay.TupleGetItem(x, 1), relay.TupleGetItem(x, 2)) assert consistent_equal(relay.TupleGetItem(x, 1), relay.TupleGetItem(x, 1)) def test_function_attr(): x0 = relay.var("x0", shape=(10, 10)) w00 = relay.var("w00", shape=(10, 10)) w01 = relay.var("w01", shape=(10, 10)) w02 = relay.var("w02", shape=(10, 10)) z00 = relay.add(x0, w00) p00 = relay.subtract(z00, w01) q00 = relay.multiply(p00, w02) func0 = relay.Function([x0, w00, w01, w02], q00) func0 = func0.with_attr("FuncName", "a") x1 = relay.var("x1", shape=(10, 10)) w10 = relay.var("w10", shape=(10, 10)) w11 = relay.var("w11", shape=(10, 10)) w12 = relay.var("w12", shape=(10, 10)) z10 = relay.add(x1, w10) p10 = relay.subtract(z10, w11) q10 = relay.multiply(p10, w12) func1 = relay.Function([x1, w10, w11, w12], q10) func1 = func1.with_attr("FuncName", "b") assert not consistent_equal(func0, func1) def test_function_sequal(): tt1 = relay.TensorType((1, 2, 3), "float32") tt2 = relay.TensorType((4, 5, 6), "int8") tt3 = relay.TupleType([tt1, tt2]) v1 = relay.Var("v1", tt1) v2 = relay.Var("v2", tt2) v3 = relay.Var("v3", tt3) v4 = relay.Var("v4", tt2) vret = relay.Constant(tvm.nd.array(np.ones(1))) tp1 = relay.TypeVar("tp1", relay.TypeKind.Type) tp2 = relay.TypeVar("tp2", relay.TypeKind.Type) tp3 = relay.TypeVar("tp3", relay.TypeKind.ShapeVar) tp4 = relay.Typ
eVar("tp4", relay.TypeKind.ShapeVar) basic_args = [relay.Var("v3", tt1), relay.Var("v4", tt2)] basic_tps = [tp1, tp2] func = relay.Function([v1, v2], v1, tt2, basic_tps) mapped = relay.Function(basic_args, basic_args[0], tt2, basic_tps) assert consistent_equal(func, mapped) fewer_params = relay.Function([relay.Var("v4", tt2)], v4, tt2, basic_tps) assert not consistent_equal(func, fewer_params) more_params = relay.Function( [relay.Var("v3", tt1), relay.Var("v4", tt2), relay.Var("v2", tt2)], v4, tt2, basic_tps ) assert not consistent_equal(func, more_params) params_unordered = relay.Function([v2, v1], v1, tt2, basic_tps) assert not consistent_equal(func, params_unordered) params_mismatch = relay.Function([v1, v3], v1, tt2, basic_tps) assert not consistent_equal(func, params_mismatch) ret_type_mismatch = relay.Function(basic_args, v4, tt1, basic_tps) assert not consistent_equal(func, ret_type_mismatch) different_body = relay.Function(basic_args, v3, tt2, basic_tps) assert not consistent_equal(func, different_body) fewer_type_params = relay.Function(basic_args, v4, tt2, [tp1]) assert not consistent_equal(func, fewer_type_params) more_type_params = relay.Function(basic_args, v4, tt2, [tp1, tp2, tp3]) assert not consistent_equal(func, more_type_params) type_params_unordered = relay.Function(basic_args, v4, tt2, [tp2, tp1]) assert not consistent_equal(func, type_params_unordered) different_type_params = relay.Function(basic_args, v4, tt2, [tp3, tp4]) assert not consistent_equal(func, different_type_params) tupled_example = relay.Function(basic_args, relay.Tuple([v3, v4]), tt3) assert not consistent_equal(func, tupled_example) no_ret_type = relay.Function(basic_args, v4, None, [tp1, tp2]) assert consistent_equal(no_ret_type, no_ret_type) assert not consistent_equal(func, no_ret_type) assert not consistent_equal(no_ret_type, func) def test_cal
l_sequal(): v1 = relay.Var("v1") v2 = relay.Var("v2") attr1 = tvm.ir.make_node("attrs.TestAttrs", name="attr", padding=(3, 4)) attr1_same = tvm.ir.make_node("attrs.TestAttrs", name="attr", padding=(3, 4)) attr2 = tvm.ir.make_node("attrs.TestAttrs", name="attr", padding=(3, 4, 4)) tt1 = relay.TensorType((1, 2, 3), "float32") tt2 = relay.TensorType((), "int8") basic_args = [relay.const(1), relay.const(2), v2, relay.Tuple([])] call = relay.Call(v1, [relay.const(1), relay.const(2), v2, relay.Tuple([])], attr1, [tt1]) same = relay.Call(v1, basic_args, attr1, [tt1]) assert consistent_equal(call, same) different_fn = relay.Call(v2, basic_args, attr1, [tt1]) assert not consistent_equal(call, different_fn) fewer_args = relay.Call(v1, [relay.const(1), relay.const(2), v2], attr1, [tt1]) assert not consistent_equal(call, fewer_args) reordered_args = relay.Call( v1, [relay.const(2), relay.const(1), relay.Tuple([]), v2], attr1, [tt1] ) assert not consistent_equal(call, reordered_args) different_args = relay.Call(v1, [relay.const(1), relay.const(2), relay.const(3)], attr1, [tt1]) assert not consistent_equal(call, different_args) more_args = relay.Call( v1, [relay.const(1), relay.const(2), v2, relay.Tuple([]), relay.const(3), relay.const(4)], attr1, [tt1], ) assert not consistent_equal(call, more_args) different_attrs = relay.Call(v1, basic_args, attr2, [tt1]) assert not consistent_equal(call, different_attrs) same_attrs = relay.Call(v1, basic_args, attr1_same, [tt1]) assert consistent_equal(call, same_attrs) no_type_args = relay.Call(v1, basic_args, attr1) assert not consistent_equal(call, no_type_args) more_type_args = relay.Call(v1, basic_args, attr1, [tt1, tt2]) assert not consistent_equal(call, more_type_args) different_type_arg = relay.Call(v1, basic_args, attr1, [tt2]) assert not consistent_equal(call, different_type_arg) def t
est_let_sequal(): tt1 = relay.TensorType((), "float32") tt2 = relay.TensorType((), "int8") v1 = relay.Var("v1") v1_wtype = relay.Var("v1", tt1) v2 = relay.Var("v2") v3 = relay.Var("v3") let = relay.Let(v1, relay.const(2), v1) mapped = relay.Let(v2, relay.const(2), v2) assert consistent_equal(let, mapped) mismatched_var = relay.Let(v2, relay.const(2), v3) assert not consistent_equal(let, mismatched_var) different_value = relay.Let(v2, relay.const(3), v2) assert not consistent_equal(let, different_value) different_body = relay.Let(v2, relay.const(3), relay.const(12)) assert not consistent_equal(let, different_body) let_with_type = relay.Let(v1_wtype, relay.const(2), v1_wtype) same_type = relay.Let(v1_wtype, relay.const(2), v1_wtype) assert consistent_equal(let_with_type, same_type) assert not consistent_equal(let, let_with_type) v2 = relay.Var("v1", tt2) different_type = relay.Let(v2, relay.const(2), v2) assert not consistent_equal(let_with_type, different_type) def test_if_sequal(): v1 = relay.Var("v1") v2 = relay.Var("v2") if_sample = relay.If(v1, relay.const(1), relay.Tuple([relay.const(2), relay.const(3)])) same = relay.If(v1, relay.const(1), relay.Tuple([relay.const(2), relay.const(3)])) assert consistent_equal(if_sample, same) different_cond = relay.If(v2, relay.const(1), relay.Tuple([relay.const(2), relay.const(3)])) assert not consistent_equal(if_sample, different_cond) different_true = relay.If(v1, relay.const(2), relay.Tuple([relay.const(2), relay.const(3)])) assert not consistent_equal(if_sample, different_true) different_false = relay.If(v1, relay.const(1), relay.Tuple([])) assert not consistent_equal(if_sample, different_false) def test_constructor_sequal(): mod = tvm.IRModule() p = relay.prelude.Prelude(mod) _, cons, nil = p.mod.get_type("List") assert consistent_equal(nil, nil) assert consistent_equal(cons, cons) assert no
t consistent_equal(nil, cons) def test_match_sequal(): mod = tvm.IRModule() p = relay.prelude.Prelude(mod) _, cons, nil = p.mod.get_type("List") _, none, some = p.mod.get_type("Option") x = relay.Var("x") y = relay.Var("y") nil_case = relay.Clause(relay.PatternConstructor(nil), nil()) cons_case = relay.Clause( relay.PatternConstructor(cons, [relay.PatternVar(x), relay.PatternVar(y)]), cons(x, y) ) z = relay.Var("z") a = relay.Var("a") equivalent_cons = relay.Clause( relay.PatternConstructor(cons, [relay.PatternVar(z), relay.PatternVar(a)]), cons(z, a) ) data = cons(relay.const(1), cons(relay.const(2), nil())) match = relay.Match(data, [nil_case, cons_case]) equivalent = relay.Match(data, [nil_case, equivalent_cons]) empty = relay.Match(data, []) no_cons = relay.Match(data, [nil_case]) no_nil = relay.Match(data, [cons_case]) different_data = relay.Match(nil(), [nil_case, cons_case]) different_order = relay.Match(data, [cons_case, nil_case]) different_nil = relay.Match( data, [relay.Clause(relay.PatternConstructor(nil), cons(nil(), nil())), cons_case] ) different_cons = relay.Match( data, [ nil_case, relay.Clause( relay.PatternConstructor(cons, [relay.PatternWildcard(), relay.PatternWildcard()]), nil(), ), ], ) another_case = relay.Match( data, [nil_case, cons_case, relay.Clause(relay.PatternWildcard(), nil())] ) wrong_constructors = relay.Match( data, [ relay.Clause(relay.PatternConstructor(none), nil()), relay.Clause(relay.PatternConstructor(some, [relay.PatternVar(x)]), cons(x, nil())), ], ) tvm.ir.assert_structural_equal(match, match) assert consistent_equal(match, match) assert consistent_equal(match, equivalent) assert not consistent_equal(match, no_cons) assert not consistent_equal(match, no_nil)
assert not consistent_equal(match, empty) assert not consistent_equal(match, different_data) assert not consistent_equal(match, different_order) assert not consistent_equal(match, different_nil) assert not consistent_equal(match, different_cons) assert not consistent_equal(match, another_case) assert not consistent_equal(match, wrong_constructors) def test_op_sequal(): op1 = relay.op.get("add") op2 = relay.op.get("add") assert consistent_equal(op1, op2) op3 = relay.op.get("take") assert not consistent_equal(op1, op3) def test_graph_equal(): x = relay.var("x") y0 = relay.add(x, x) z0 = relay.add(y0, y0) y1 = relay.add(x, x) z1 = relay.add(y1, y1) z3 = relay.add(relay.add(x, x), relay.add(x, x)) assert consistent_equal(z0, z1) assert consistent_equal(z0, z1) assert not consistent_equal(z0, z3) def test_hash_unequal(): x1 = relay.var("x1", shape=(10, 10), dtype="float32") y1 = relay.var("y1", shape=(10, 10), dtype="float32") func1 = relay.Function([x1, y1], relay.add(x1, y1)) x2 = relay.var("x2", shape=(10, 10), dtype="float32") y2 = relay.var("y2", shape=(10, 10), dtype="float32") func2 = relay.Function([x2, y2], relay.add(x2, y2)) assert consistent_equal(func1, func2) x3 = relay.var("x3", shape=(20, 10), dtype="float32") y3 = relay.var("y3", shape=(20, 10), dtype="float32") func3 = relay.Function([x3, y3], relay.add(x3, y3)) assert not consistent_equal(func1, func3) def test_tuple_match(): a = relay.Var("a") b = relay.Var("b") clause = relay.Clause(relay.PatternTuple([relay.PatternVar(a), relay.PatternVar(b)]), a + b) x = relay.Match(relay.Tuple([relay.const(1), relay.const(1)]), [clause]) a = relay.Var("a") b = relay.Var("b") clause = relay.Clause(relay.PatternTuple([relay.PatternVar(a), relay.PatternVar(b)]), a + b) y = relay.Match(relay.Tuple([relay.const(1), relay.const(1)]), [clause]) assert consi
stent_equal(x, y) def test_fn_attribute(): a = relay.var("a", shape=(10, 10)) b = relay.var("b", shape=(10, 10)) add = relay.add(a, b) add_fn = relay.Function([a, b], add) add_fn = run_opt_pass(add_fn, relay.transform.InferType()) c = relay.var("c", shape=(10, 10)) d = relay.var("d", shape=(10, 10)) add_1 = relay.add(c, d) add_1_fn = relay.Function([c, d], add_1) add_1_fn = add_1_fn.with_attr("TestAttribute", "test") add_1_fn = run_opt_pass(add_1_fn, relay.transform.InferType()) assert not consistent_equal(add_1_fn, add_fn) assert not consistent_equal(add_fn, add_1_fn) def test_fn_vid_map(): def get_fn(with_vid): x = relay.var("x", shape=(10,), dtype="float32") f = relay.Function([x], x).with_attr("dict", {x.vid: 1} if with_vid else {x: 1}) return f assert consistent_equal(get_fn(True), get_fn(True)) assert consistent_equal(get_fn(False), get_fn(False)) def test_lets(): shape = (5, 5) def func1(): sb = relay.ScopeBuilder() p0 = relay.var("p0", shape=shape) p1 = relay.var("p1", shape=shape) a0 = sb.let("a0", relay.add(p0, relay.const(1))) a1 = sb.let("a1", relay.add(p1, relay.const(1))) a2 = sb.let("a2", relay.add(a0, a1)) sb.ret(a2) return relay.Function([p0, p1], sb.get()) def func2(): sb = relay.ScopeBuilder() p0 = relay.var("p0", shape=shape) p1 = relay.var("p1", shape=shape) a1 = sb.let("a1", relay.add(p0, relay.const(1))) a0 = sb.let("a0", relay.add(p1, relay.const(1))) a2 = sb.let("a2", relay.add(a1, a0)) sb.ret(a2) return relay.Function([p0, p1], sb.get()) def func3(): sb = relay.ScopeBuilder() p0 = relay.var("p0", shape=shape) p1 = relay.var("p1", shape=shape) a1 = sb.let("a1", relay.add(p1, relay.const(1))) a0 = sb.let("a0", relay.add(p0, relay.const(1))) a2 = sb.let("a2", relay.ad
d(a1, a0)) sb.ret(a2) return relay.Function([p0, p1], sb.get()) assert tvm.ir.structural_equal(func1(), func2()) assert not tvm.ir.structural_equal(func1(), func3()) if __name__ == "__main__": tvm.testing.main()
import tvm
import tvm.testing from tvm
import te from tvm
import relay from tvm.relay
import testing
import numpy as np from tvm.relay
import Expr from tvm.relay.analysis
import free_vars
import pytest DEBUG_PRINT = False SEMVER = ' def astext(program, unify_free_vars=False): text = program.astext() if isinstance(program, Expr): roundtrip_program = tvm.parser.parse_expr(text) else: roundtrip_program = tvm.parser.fromtext(text) tvm.ir.assert_structural_equal(roundtrip_program, program, map_free_vars=True) return text def show(text): if DEBUG_PRINT: print("---------------------------") print(text) def assert_prints_as(expr, str): assert astext(expr) == SEMVER + str def test_scalars(): assert_prints_as(relay.const(42, "int16"), "42i16") assert_prints_as(relay.const(42, "int32"), "42") assert_prints_as(relay.const(42, "int64"), "42i64") assert_prints_as(relay.const(3.0, "float16"), "3f16") assert_prints_as(relay.const(3.0, "float32"), "3f") assert_prints_as(relay.const(3.0, "float64"), "3f64") def test_large_graph(): x = relay.var("x", shape=(3, 2)) y = relay.var("y") one = relay.const(10e10, dtype="float32") z = relay.add(x, one) for i in range(int(9e4)): z = relay.add(z, one) f = relay.Function([x, y], z) show(astext(f)) def test_func(): x = relay.var("x", shape=(3, 2)) y = relay.var("y") one = relay.const(10e10, dtype="float32") z = relay.add(x, one) z = relay.add(z, z) f = relay.Function([x, y], z) show(astext(z)) show(astext(f)) def test_mod(): x = relay.var("x", "float32") y = relay.var("y", "float32") z = relay.add(x, y) z = relay.add(z, z) f = relay.Function([x, y], z) mod = tvm.IRModule() mod["myf"] = f mod = relay.transform.InferType()(mod) text = astext(mod) assert "def @myf" in text assert "def @myf" in str(mod) assert "add(%0, %0) /* ty=float32 */" in text assert "add(%0, %0) /* ty=float32 */" in str(mod) show(mod.astext(annotate=lambda x: str(x.checked_type.dtype) if type(x) == relay.Call else "")) show(text) def test_meta_data(): n, c, h, w = te.size_var
("n"), 10, 224, 224 x = relay.var("x", shape=(n, c, h, w)) w = relay.var("w") z = relay.nn.conv2d(x, w, kernel_size=(3, 3), padding=(1, 1), channels=2) f = relay.Function([x, w], z) text = astext(f, unify_free_vars=True) text_no_meta = str(f) assert "channels=2" in text assert "channels=2" in text_no_meta assert "meta[tir.SizeVar][0]" in text assert "meta[tir.SizeVar][0]" in text_no_meta assert "type_key" in text assert "type_key" not in text_no_meta text = astext(relay.const([1, 2, 3])) assert "meta[relay.Constant][0]" in text def test_call_attrs(): x = relay.var("x") z = relay.nn.softmax(x, axis=2) assert "axis=2" in astext(z) z = relay.nn.softmax(x) assert "softmax(%x)" in astext(z) z = relay.expand_dims(x, axis=2, num_newaxis=2) assert "num_newaxis=2" in astext(z) def test_let_if_scope(): x = relay.var("x", "float32") y = relay.var("y", "float32") cond = relay.var("cond", "bool") sb = relay.ScopeBuilder() with sb.if_scope(cond): v1 = sb.let("v", relay.const(1, "float32")) v2 = sb.let("v", x) sb.ret(relay.subtract(v1, v2)) with sb.else_scope(): v3 = relay.var("v") let2 = relay.Let(v3, y, v3) sb.ret(relay.add(let2, let2)) result = sb.get() f = relay.Function([x, y, cond], result) text = astext(f) assert text.count("{") == 3 assert "%cond: bool" in text show(astext(f)) def test_variable_name(): v1 = relay.var("1") assert "%v1" in astext(v1) def test_mlp(): net, _ = tvm.relay.testing.mlp.get_workload(batch_size=1) astext(net) def test_resnet(): net, _ = tvm.relay.testing.resnet.get_workload(batch_size=1) astext(net) def test_mobilenet(): net, _ = tvm.relay.testing.mobilenet.get_workload(batch_size=1) astext(net) def test_dqn(): net, _ = tvm.relay.testing.dqn.get_workload(batch_size=1) astext(net) def test_dcgan(): net, _ = tvm.relay.testing.dcgan.get_work
load(batch_size=1) astext(net) def test_lstm(): net, _ = tvm.relay.testing.lstm.get_workload(1, 1) astext(net) net, _ = tvm.relay.testing.lstm.get_workload(4, 4) astext(net) def test_inception_v3(): net, _ = tvm.relay.testing.inception_v3.get_workload(batch_size=1) astext(net) def test_squeezenet(): for version in ["1.0", "1.1"]: net, _ = tvm.relay.testing.squeezenet.get_workload(batch_size=1, version=version) astext(net) def test_densenet(): net, _ = tvm.relay.testing.densenet.get_workload(batch_size=1) astext(net) def test_call_node_order(): x = relay.var("x") y = relay.var("y") prog = relay.Call( relay.Function([x], x), [relay.Call(relay.Function([y], y), [relay.const(1)])] ) assert astext(prog) == SEMVER + ( "%0 = fn (%y) {\n" " %y\n" "};\n" "%1 = %0(1);\n" "%2 = fn (%x) {\n" " %x\n" "};\n" "%2(%1)" ) def test_let_inlining(): tup = relay.Tuple([relay.const(0), relay.const(0)]) x = relay.var("x") assert astext(relay.Let(x, tup, tup)) == SEMVER + ("%0 = (0, 0);\n" "let %x = %0;\n" "%0") assert astext(relay.Let(x, tup, x)) == SEMVER + ("let %x = (0, 0);\n" "%x") def test_zeros(): x = relay.op.zeros([], "float32") astext(x) def test_unapplied_constructor(): type_def_str = r""" type List[A] { Cons(A, List[A]), Nil, } """ main_def_str = r""" def @main[A]() -> fn (A, List[A]) -> List[A] { Cons } """ mod = tvm.parser.parse(SEMVER + type_def_str + main_def_str) mod_str = str(mod) assert type_def_str.strip() in mod_str assert main_def_str.strip() in mod_str def test_null_attribute(): x = relay.var("x") y = relay.var("y") z = relay.Function([x], y) z = z.with_attr("TestAttribute", None) txt = astext(z) assert "TestAttribute=None" in txt def test_span(): x = relay.var("x", shape=(3, 2)) y = relay.var("y") one = relay.const(10e10, dtype="float
32") z = relay.add(x, one) z = relay.Call( z.op, z.args, z.attrs, z.type_args, relay.Span(relay.SourceName("Add0"), 0, 0, 0, 0) ) z = relay.add(z, z) z = relay.Call( z.op, z.args, z.attrs, z.type_args, relay.Span(relay.SourceName("Add1"), 0, 0, 0, 0) ) f = relay.Function([x, y], z) txt = astext(f) assert "Add0" in txt assert "Add1" in txt def test_optional_info(): c = relay.const(1) call = relay.add(c, c) m = tvm.IRModule.from_expr(call) m = relay.transform.InferType()(m) txt = astext(m) assert txt.count("/* ty=int32 */") == 3 def test_slash_in_identifier(): x = relay.var("base/x") y = relay.var("base/y") z = x + y txt = astext(z) assert "base/x" in txt assert "base/y" in txt if __name__ == "__main__": tvm.testing.main()
import tvm from tvm
import te from tvm
import relay from tvm.relay.analysis
import well_formed from tvm.relay.prelude
import Prelude def test_let(): x = relay.Var("x") assert well_formed(x) v = relay.Constant(tvm.nd.array(10)) ty = None let = relay.Let(x, v, x) assert well_formed(let) assert not well_formed(relay.Let(x, v, let)) f = relay.Function([x], x, ty) assert well_formed(f) assert well_formed(relay.Let(relay.Var("y"), f, relay.Let(relay.Var("z"), f, v))) def test_tuple(): x = relay.Var("x") assert well_formed(x) v = relay.Constant(tvm.nd.array(10)) let = relay.Let(x, v, x) assert well_formed(let) assert well_formed(relay.Tuple([v, v])) assert not well_formed(relay.Tuple([let, relay.Let(x, v, x)])) def test_tuple_get_item(): t = relay.Var("t") assert well_formed(relay.TupleGetItem(t, 2)) def test_adt(): mod = tvm.IRModule() p = Prelude(mod) _, none, some = p.mod.get_type("Option") x = relay.Var("x") some_case = relay.Clause(relay.PatternConstructor(some, [relay.PatternVar(x)]), x) default_case = relay.Clause(relay.PatternVar(x), x) m0 = relay.Match(none(), [default_case]) m1 = relay.Match(none(), [some_case, default_case]) assert well_formed(m0) assert not well_formed(m1) if __name__ == "__main__": test_let() test_tuple() test_tuple_get_item() test_adt()
import tvm from tvm
import relay from tvm
import te
import json def test_type_var(): nodes = [ {"type_key": ""}, {"type_key": "relay.TypeVar", "attrs": {"kind": "0", "span": "0", "var": "2"}}, {"type_key": "Variable", "attrs": {"dtype": "int32", "name": "in0"}}, ] data = { "root": 1, "nodes": nodes, "attrs": {"tvm_version": "0.6.0"}, "b64ndarrays": [], } tvar = tvm.ir.load_json(json.dumps(data)) assert isinstance(tvar, tvm.ir.TypeVar) assert tvar.name_hint == "in0" nodes[1]["type_key"] = "relay.GlobalTypeVar" tvar = tvm.ir.load_json(json.dumps(data)) assert isinstance(tvar, tvm.ir.GlobalTypeVar) assert tvar.name_hint == "in0" def test_var(): nodes = [ {"type_key": ""}, { "type_key": "relay.Var", "attrs": { "_checked_type_": "0", "span": "0", "type_annotation": "0", "vid": "2", }, }, {"type_key": "relay.Id", "attrs": {"name_hint": "a3"}}, {"type_key": "relay.TensorType", "attrs": {"dtype": "float32", "shape": "4", "span": "0"}}, {"type_key": "Array", "data": [5, 6]}, {"type_key": "IntImm", "attrs": {"dtype": "int32", "value": "16", "span": "0"}}, {"type_key": "IntImm", "attrs": {"dtype": "int32", "value": "8", "span": "0"}}, ] data = { "root": 1, "nodes": nodes, "attrs": {"tvm_version": "0.6.0"}, "b64ndarrays": [], } tvar = tvm.ir.load_json(json.dumps(data)) assert isinstance(tvar, relay.Var) assert tvar.name_hint == "a3" def test_incomplete_type(): nodes = [ {"type_key": ""}, {"type_key": "relay.IncompleteType", "attrs": {"kind": "0", "span": "0"}}, ] data = { "root": 1, "nodes": nodes, "attrs": {"tvm_version": "0.6.0"}, "b64ndarrays": [], } tvar = tvm.ir.load_json(json.dumps(data)) assert isinstance(tvar, tvm.ir.IncompleteType) def test_func_tuple_type()
: nodes = [ {"type_key": ""}, { "type_key": "relay.FuncType", "attrs": { "arg_types": "2", "ret_type": "3", "span": "0", "type_constraints": "6", "type_params": "5", }, }, {"type_key": "Array"}, {"type_key": "relay.TupleType", "attrs": {"fields": "4", "span": "0"}}, {"type_key": "Array"}, {"type_key": "Array"}, {"type_key": "Array"}, ] data = { "root": 1, "nodes": nodes, "attrs": {"tvm_version": "0.6.0"}, "b64ndarrays": [], } tvar = tvm.ir.load_json(json.dumps(data)) assert isinstance(tvar, tvm.ir.FuncType) def test_global_var(): nodes = [ {"type_key": ""}, { "type_key": "relay.GlobalVar", "attrs": {"_checked_type_": "0", "name_hint": "x", "span": "0"}, }, ] data = { "root": 1, "nodes": nodes, "attrs": {"tvm_version": "0.6.0"}, "b64ndarrays": [], } tvar = tvm.ir.load_json(json.dumps(data)) assert isinstance(tvar, tvm.ir.GlobalVar) nodes = [ {"type_key": ""}, { "type_key": "GlobalVar", "attrs": {"_checked_type_": "0", "name_hint": "x", "span": "0"}, }, ] data = { "root": 1, "nodes": nodes, "attrs": {"tvm_version": "0.6.0"}, "b64ndarrays": [], } tvar = tvm.ir.load_json(json.dumps(data)) assert isinstance(tvar, tvm.ir.GlobalVar) def test_op(): nodes = [{"type_key": ""}, {"type_key": "relay.Op", "global_key": "nn.conv2d"}] data = { "root": 1, "nodes": nodes, "attrs": {"tvm_version": "0.6.0"}, "b64ndarrays": [], } op = tvm.ir.load_json(json.dumps(data)) assert op == relay.op.get("nn.conv2d") def test_tir_var(): nodes = [ {"type_key": ""}, {"type_key": "Variable", "attrs": {"dtype": "int32", "name": "x", "s
pan": "0"}}, {"type_key": "SizeVar", "attrs": {"dtype": "int32", "name": "y", "span": "0"}}, ] data = { "root": 1, "nodes": nodes, "attrs": {"tvm_version": "0.6.0"}, "b64ndarrays": [], } x = tvm.ir.load_json(json.dumps(data)) assert isinstance(x, tvm.tir.Var) assert x.name == "x" data["root"] = 2 y = tvm.ir.load_json(json.dumps(data)) assert isinstance(y, tvm.tir.SizeVar) assert y.name == "y" def test_str_map(): nodes = [ {"type_key": ""}, {"type_key": "StrMap", "keys": ["z", "x"], "data": [2, 3]}, {"type_key": "IntImm", "attrs": {"dtype": "int32", "value": "2", "span": "0"}}, {"type_key": "Max", "attrs": {"a": "4", "b": "10", "dtype": "int32", "span": "0"}}, {"type_key": "Add", "attrs": {"a": "5", "b": "9", "dtype": "int32", "span": "0"}}, {"type_key": "Add", "attrs": {"a": "6", "b": "8", "dtype": "int32", "span": "0"}}, { "type_key": "tir.Var", "attrs": {"dtype": "int32", "name": "7", "type_annotation": "0", "span": "0"}, }, {"type_key": "runtime.String", "repr_str": "x"}, {"type_key": "IntImm", "attrs": {"dtype": "int32", "value": "1", "span": "0"}}, {"type_key": "IntImm", "attrs": {"dtype": "int32", "value": "2", "span": "0"}}, {"type_key": "IntImm", "attrs": {"dtype": "int32", "value": "100", "span": "0"}}, ] data = { "root": 1, "nodes": nodes, "attrs": {"tvm_version": "0.6.0"}, "b64ndarrays": [], } x = tvm.ir.load_json(json.dumps(data)) assert isinstance(x, tvm.ir.container.Map) assert len(x) == 2 assert "x" in x assert "z" in x assert bool(x["z"] == 2) def test_irmodule_attributes(): nodes = [ {"type_key": ""}, { "type_key": "IRModule", "attrs": { "functions": "0", "global_type_var_map_": "0", "global_var_map_": "0", "source_m
ap": "0", "type_definitions": "0", }, }, ] data = { "root": 1, "nodes": nodes, "attrs": {"tvm_version": "0.7.0"}, "b64ndarrays": [], } mod = tvm.ir.load_json(json.dumps(data)) assert isinstance(mod, tvm.ir.IRModule) assert not mod.attrs def test_virtual_device(): nodes = [ {"type_key": ""}, { "type_key": "relay.Function", "attrs": { "_checked_type_": "0", "attrs": "0", "body": "0", "params": "0", "ret_type": "0", "span": "0", "type_params": "0", }, }, ] data = { "root": 1, "nodes": nodes, "attrs": {"tvm_version": "0.8.0"}, "b64ndarrays": [], } func = tvm.ir.load_json(json.dumps(data)) assert isinstance(func, relay.Function) assert not func.virtual_device_ if __name__ == "__main__": test_op() test_type_var() test_var() test_incomplete_type() test_func_tuple_type() test_global_var() test_tir_var() test_str_map()
"""Unit tests for JSON codegen and runtime."""
import os
import sys
import numpy as np
import tvm
import tvm.relay.op as reg
import tvm.relay.testing from tvm
import relay, runtime from tvm.contrib
import utils from tvm.relay
import transform from tvm.relay.backend
import te_compiler from tvm.relay.build_module
import bind_params_by_name from tvm.relay.op.contrib.register
import get_pattern_table def set_func_attr(func, compile_name, symbol_name): func = func.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) func = func.with_attr("Inline", tvm.tir.IntImm("int32", 1)) func = func.with_attr("Compiler", compile_name) func = func.with_attr("global_symbol", symbol_name) return func def check_result( mod, ref_mod, map_inputs, out_shape, tol=1e-5, target="llvm", device=tvm.cpu(), params=None ): if sys.platform == "win32": print("Skip test on Windows for now") return te_compiler.get().clear() with tvm.transform.PassContext(opt_level=3): json, lib, param = relay.build(ref_mod, target=target, params=params) rt_mod = tvm.contrib.graph_executor.create(json, lib, device) for name, data in map_inputs.items(): rt_mod.set_input(name, data) rt_mod.set_input(**param) rt_mod.run() out = tvm.nd.empty(out_shape, device=device) out = rt_mod.get_output(0, out) ref_result = out.numpy() def check_vm_result(): te_compiler.get().clear() with relay.build_config(opt_level=3): exe = relay.vm.compile(mod, target=target, params=params) code, lib = exe.save() exe = runtime.vm.Executable.load_exec(code, lib) vm = runtime.vm.VirtualMachine(exe, device) out = vm.run(**map_inputs) tvm.testing.assert_allclose(out.numpy(), ref_result, rtol=tol, atol=tol) def check_graph_executor_result(): te_compiler.get().clear() with relay.build_config(opt_level=3): json, lib, param = relay.build(mod, target=target, params=params) rt_mod = tvm.contrib.graph_executor.create(json, lib, device) for name, data in map_inputs.items(): rt_mod.set_input(name, data) rt_mod.set_input(**param) rt_mod.run() out = tvm.nd.empty(out_shape, device=device) out = rt_mod.get_output(0, out) tvm.testing.assert_allclose(out.numpy(), ref_result, rtol=tol, atol=tol) check_vm
_result() check_graph_executor_result() def test_conv2d(): """Test a subgraph with a single conv2d operator.""" if not tvm.get_global_func("runtime.DNNLJSONRuntimeCreate", True): print("skip because DNNL codegen is not available") return def conv2d_direct(): dtype = "float32" ishape = (1, 1, 99, 12) w1shape = (54, 1, 3, 3) data0 = relay.var("data", shape=ishape, dtype=dtype) weight0 = relay.var("weight", shape=w1shape, dtype=dtype) out = relay.nn.conv2d( data0, weight0, kernel_size=(3, 3), strides=(2, 2), padding=(1, 0, 1, 1) ) func = relay.Function([data0, weight0], out) func = set_func_attr(func, "dnnl", "tvmgen_default_dnnl_0") glb_var = relay.GlobalVar("tvmgen_default_dnnl_0") mod = tvm.IRModule() mod[glb_var] = func mod = transform.InferType()(mod) data = relay.var("data", shape=(ishape), dtype=dtype) weight = relay.var("weight", shape=(w1shape), dtype=dtype) main_f = relay.Function([data, weight], glb_var(data, weight)) mod["main"] = main_f mod = transform.InferType()(mod) data0 = relay.var("data", shape=ishape, dtype=dtype) weight0 = relay.var("weight", shape=w1shape, dtype=dtype) out = relay.nn.conv2d( data0, weight0, kernel_size=(3, 3), strides=(2, 2), padding=(1, 0, 1, 1) ) main_f = relay.Function([data0, weight0], out) ref_mod = tvm.IRModule() ref_mod["main"] = main_f ref_mod = transform.InferType()(ref_mod) i_data = np.random.uniform(0, 1, ishape).astype(dtype) w1_data = np.random.uniform(0, 1, w1shape).astype(dtype) return mod, ref_mod, {"data": i_data, "weight": w1_data}, (1, 54, 50, 6) def group_conv2d(): dtype = "float32" ishape = (1, 32, 14, 14) w2shape = (32, 1, 3, 3) data0 = relay.var("data", shape=(ishape), dtype=dtype) weight0 = relay.var("weight", shape=(
w2shape), dtype=dtype) out = relay.nn.conv2d(data0, weight0, kernel_size=(3, 3), padding=(1, 1), groups=32) func = relay.Function([data0, weight0], out) func = set_func_attr(func, "dnnl", "tvmgen_default_dnnl_0") glb_var = relay.GlobalVar("tvmgen_default_dnnl_0") mod = tvm.IRModule() mod[glb_var] = func mod = transform.InferType()(mod) data = relay.var("data", shape=(ishape), dtype=dtype) weight = relay.var("weight", shape=(w2shape), dtype=dtype) main_f = relay.Function([data, weight], glb_var(data, weight)) mod["main"] = main_f mod = transform.InferType()(mod) data0 = relay.var("data", shape=(ishape), dtype=dtype) weight0 = relay.var("weight", shape=(w2shape), dtype=dtype) out = relay.nn.conv2d(data0, weight0, kernel_size=(3, 3), padding=(1, 1), groups=32) main_f = relay.Function([data0, weight0], out) ref_mod = tvm.IRModule() ref_mod["main"] = main_f ref_mod = transform.InferType()(ref_mod) i_data = np.random.uniform(0, 1, ishape).astype(dtype) w_data = np.random.uniform(0, 1, w2shape).astype(dtype) return mod, ref_mod, {"data": i_data, "weight": w_data}, (1, 32, 14, 14) for mod, ref_mod, map_inputs, out_shape in [conv2d_direct(), group_conv2d()]: check_result(mod, ref_mod, map_inputs, out_shape, tol=1e-5) def test_add(): """Test a subgraph with a single add operator.""" if not tvm.get_global_func("runtime.DNNLJSONRuntimeCreate", True): print("skip because DNNL codegen is not available") return dtype = "float32" shape = (10, 10) def gen_add(): data0 = relay.var("data0", shape=shape, dtype=dtype) data1 = relay.var("data1", shape=shape, dtype=dtype) out = relay.add(data0, data1) func = relay.Function([data0, data1], out) func = set_func_attr(func, "dnnl", "tvmgen_default_dnnl_0") glb_var = relay.GlobalVar("tvmgen_default_dnnl_0")
mod = tvm.IRModule() mod[glb_var] = func mod = transform.InferType()(mod) data0 = relay.var("data0", shape=shape, dtype=dtype) data1 = relay.var("data1", shape=shape, dtype=dtype) main_f = relay.Function([data0, data1], glb_var(data0, data1)) mod["main"] = main_f mod = transform.InferType()(mod) data0 = relay.var("data0", shape=shape, dtype=dtype) data1 = relay.var("data1", shape=shape, dtype=dtype) out = relay.add(data0, data1) main_f = relay.Function([data0, data1], out) ref_mod = tvm.IRModule() ref_mod["main"] = main_f ref_mod = transform.InferType()(ref_mod) return mod, ref_mod mod, ref_mod = gen_add() data0 = np.random.uniform(0, 1, shape).astype(dtype) data1 = np.random.uniform(0, 1, shape).astype(dtype) check_result(mod, ref_mod, {"data0": data0, "data1": data1}, shape, tol=1e-5) def test_multiply(): """Test a subgraph with a single add operator.""" if not tvm.get_global_func("runtime.DNNLJSONRuntimeCreate", True): print("skip because DNNL codegen is not available") return dtype = "float32" shape = (10, 10) def gen_multiply(): data0 = relay.var("data0", shape=shape, dtype=dtype) data1 = relay.var("data1", shape=shape, dtype=dtype) out = relay.multiply(data0, data1) func = relay.Function([data0, data1], out) func = set_func_attr(func, "dnnl", "tvmgen_default_dnnl_0") glb_var = relay.GlobalVar("tvmgen_default_dnnl_0") mod = tvm.IRModule() mod[glb_var] = func mod = transform.InferType()(mod) data0 = relay.var("data0", shape=shape, dtype=dtype) data1 = relay.var("data1", shape=shape, dtype=dtype) main_f = relay.Function([data0, data1], glb_var(data0, data1)) mod["main"] = main_f mod = transform.InferType()(mod) data0 = relay.var("data0", shape=shape, dtype=dtype) data1 = relay.var("data1", shape=shape
, dtype=dtype) out = relay.multiply(data0, data1) main_f = relay.Function([data0, data1], out) ref_mod = tvm.IRModule() ref_mod["main"] = main_f ref_mod = transform.InferType()(ref_mod) return mod, ref_mod mod, ref_mod = gen_multiply() data0 = np.random.uniform(0, 1, shape).astype(dtype) data1 = np.random.uniform(0, 1, shape).astype(dtype) check_result(mod, ref_mod, {"data0": data0, "data1": data1}, shape, tol=1e-5) def test_relu(): """Test a subgraph with a single ReLU operator.""" if not tvm.get_global_func("runtime.DNNLJSONRuntimeCreate", True): print("skip because DNNL codegen is not available") return dtype = "float32" shape = (1, 32, 14, 14) def gen_relu(shape): data0 = relay.var("data0", shape=shape, dtype=dtype) out = relay.nn.relu(data0) func = relay.Function([data0], out) func = set_func_attr(func, "dnnl", "tvmgen_default_dnnl_0") glb_var = relay.GlobalVar("tvmgen_default_dnnl_0") mod = tvm.IRModule() mod[glb_var] = func mod = transform.InferType()(mod) data0 = relay.var("data0", shape=shape, dtype=dtype) main_f = relay.Function([data0], glb_var(data0)) mod["main"] = main_f mod = transform.InferType()(mod) data0 = relay.var("data0", shape=shape, dtype=dtype) out = relay.nn.relu(data0) main_f = relay.Function([data0], out) ref_mod = tvm.IRModule() ref_mod["main"] = main_f ref_mod = transform.InferType()(ref_mod) return mod, ref_mod def check(shape): mod, ref_mod = gen_relu(shape) data0 = np.random.uniform(-1, 1, shape).astype(dtype) check_result( mod, ref_mod, { "data0": data0, }, shape, tol=1e-5, ) check(shape=(1, 32, 14, 14)) check(shape=(1, 32)) def test_dense(): """Test a subgraph with a single dense ope
rator.""" if not tvm.get_global_func("runtime.DNNLJSONRuntimeCreate", True): print("skip because DNNL codegen is not available") return dtype = "float32" a_shape = (1, 512) b_shape = (1024, 512) def gen_dense(): a = relay.var("A", shape=a_shape, dtype=dtype) b = relay.var("B", shape=b_shape, dtype=dtype) out = relay.nn.dense(a, b) func = relay.Function([a, b], out) func = set_func_attr(func, "dnnl", "tvmgen_default_dnnl_0") glb_var = relay.GlobalVar("tvmgen_default_dnnl_0") mod = tvm.IRModule() mod[glb_var] = func mod = transform.InferType()(mod) a = relay.var("A", shape=a_shape, dtype=dtype) b = relay.var("B", shape=b_shape, dtype=dtype) main_f = relay.Function([a, b], glb_var(a, b)) mod["main"] = main_f mod = transform.InferType()(mod) a = relay.var("A", shape=a_shape, dtype=dtype) b = relay.var("B", shape=b_shape, dtype=dtype) out = relay.nn.dense(a, b) main_f = relay.Function([a, b], out) ref_mod = tvm.IRModule() ref_mod["main"] = main_f ref_mod = transform.InferType()(ref_mod) return mod, ref_mod mod, ref_mod = gen_dense() data_a = np.random.uniform(0, 1, a_shape).astype(dtype) data_b = np.random.uniform(0, 1, b_shape).astype(dtype) check_result(mod, ref_mod, {"A": data_a, "B": data_b}, (1, 1024), tol=1e-5) def test_bn(): """Test a subgraph with a single batch_norm operator.""" if not tvm.get_global_func("runtime.DNNLJSONRuntimeCreate", True): print("skip because DNNL codegen is not available") return dtype = "float32" d_shape = (1, 8) c_shape = (8,) def gen_bn(): data = relay.var("data", shape=d_shape) gamma = relay.var("gamma", shape=c_shape) beta = relay.var("beta", shape=c_shape) moving_mean = relay.var("moving_mean", shape=c_shape) moving_var = relay.var("moving_var", shape=c_shape)
bn = relay.nn.batch_norm(data, gamma, beta, moving_mean, moving_var) out = bn[0] func = relay.Function([data, gamma, beta, moving_mean, moving_var], out) func = set_func_attr(func, "dnnl", "tvmgen_default_dnnl_0") glb_var = relay.GlobalVar("tvmgen_default_dnnl_0") mod = tvm.IRModule() mod[glb_var] = func mod = transform.InferType()(mod) data = relay.var("data", shape=d_shape) gamma = relay.var("gamma", shape=c_shape) beta = relay.var("beta", shape=c_shape) moving_mean = relay.var("moving_mean", shape=c_shape) moving_var = relay.var("moving_var", shape=c_shape) main_f = relay.Function( [data, gamma, beta, moving_mean, moving_var], glb_var(data, gamma, beta, moving_mean, moving_var), ) mod["main"] = main_f mod = transform.InferType()(mod) data = relay.var("data", shape=d_shape) gamma = relay.var("gamma", shape=c_shape) beta = relay.var("beta", shape=c_shape) moving_mean = relay.var("moving_mean", shape=c_shape) moving_var = relay.var("moving_var", shape=c_shape) bn = relay.nn.batch_norm(data, gamma, beta, moving_mean, moving_var) out = bn[0] main_f = relay.Function([data, gamma, beta, moving_mean, moving_var], out) ref_mod = tvm.IRModule() ref_mod["main"] = main_f ref_mod = transform.InferType()(ref_mod) return mod, ref_mod mod, ref_mod = gen_bn() data = np.random.uniform(-1, 1, d_shape).astype(dtype) gamma = np.random.uniform(-1, 1, c_shape).astype(dtype) beta = np.random.uniform(-1, 1, c_shape).astype(dtype) moving_mean = np.random.uniform(-1, 1, c_shape).astype(dtype) moving_var = np.random.uniform(-1, 1, c_shape).astype(dtype) check_result( mod, ref_mod, { "data": data, "gamma": gamma, "beta": beta, "moving_mean": moving_mean, "moving_var": moving_va
r, }, d_shape, tol=1e-5, ) def test_multiple_ops(): """Test a subgraph with multiple operators.""" if not tvm.get_global_func("runtime.DNNLJSONRuntimeCreate", True): print("skip because DNNL codegen is not available") return dtype = "float32" ishape = (1, 32, 14, 14) w1shape = (32, 32, 3, 3) w2shape = (64, 32, 5, 5) def get_net(): data = relay.var("data", relay.TensorType(ishape, dtype)) w1 = relay.var("w1", relay.TensorType(w1shape, dtype)) w2 = relay.var("w2", relay.TensorType(w2shape, dtype)) layer = relay.nn.conv2d(data=data, weight=w1, kernel_size=(3, 3), padding=(1, 1)) layer = relay.nn.relu(layer) layer = relay.nn.conv2d(data=layer, weight=w2, kernel_size=(5, 5), padding=(2, 2)) layer = relay.nn.relu(layer) main_f = relay.Function([data, w1, w2], layer) mod = tvm.IRModule() mod["main"] = main_f return mod def get_partitoned_mod(mod): remove_bn_pass = tvm.transform.Sequential( [ transform.InferType(), transform.SimplifyInference(), transform.FoldConstant(), transform.FoldScaleAxis(), ] ) byoc_pass = tvm.transform.Sequential( [ remove_bn_pass, transform.AnnotateTarget("dnnl"), transform.MergeCompilerRegions(), transform.PartitionGraph(), ] ) with tvm.transform.PassContext(opt_level=3, disabled_pass=["AlterOpLayout"]): return byoc_pass(mod) ref_mod = get_net() mod = get_partitoned_mod(ref_mod) data = np.random.uniform(0, 1, ishape).astype(dtype) w1 = np.random.uniform(0, 1, w1shape).astype(dtype) w2 = np.random.uniform(0, 1, w2shape).astype(dtype) check_result( mod, ref_mod, { "data": data, "w1": w1, "w2": w2, }, (1,
64, 14, 14), tol=1e-5, ) def test_composite(): """Test DNNL patterns and there composite functions.""" if not tvm.get_global_func("runtime.DNNLJSONRuntimeCreate", True): print("skip because DNNL codegen is not available") return dtype = "float32" def conv2d_relu(): ishape = (1, 32, 14, 14) w1shape = (32, 32, 3, 3) in_1 = relay.var("in_1", shape=ishape, dtype=dtype) in_2 = relay.var("in_2", shape=w1shape, dtype=dtype) conv2d = relay.nn.conv2d(in_1, in_2, kernel_size=(3, 3), padding=(1, 1)) relu = relay.nn.relu(conv2d) func = relay.Function([in_1, in_2], relu) func = func.with_attr("Composite", "dnnl.conv2d_relu") func = func.with_attr("PartitionedFromPattern", "nn.conv2d_nn.relu_") arg_1 = relay.var("arg_1", shape=ishape, dtype=dtype) arg_2 = relay.var("arg_2", shape=w1shape, dtype=dtype) call = relay.Call(func, [arg_1, arg_2]) p_func = relay.Function([arg_1, arg_2], call) p_func = set_func_attr(p_func, "dnnl", "tvmgen_default_dnnl_0") glb_var = relay.GlobalVar("tvmgen_default_dnnl_0") mod = tvm.IRModule() mod[glb_var] = p_func mod = transform.InferType()(mod) data = relay.var("data", shape=ishape, dtype=dtype) weight = relay.var("weight", shape=w1shape, dtype=dtype) main_func = relay.Function([data, weight], glb_var(data, weight)) mod["main"] = main_func mod = transform.InferType()(mod) data = relay.var("data", shape=ishape, dtype=dtype) weight = relay.var("weight", shape=w1shape, dtype=dtype) conv2d = relay.nn.conv2d(data, weight, kernel_size=(3, 3), padding=(1, 1)) relu = relay.nn.relu(conv2d) main_func = relay.Function([data, weight], relu) ref_mod = tvm.IRModule() ref_mod["main"] = main_func ref_mod = transform.InferType()(ref_mod) i_data = np.random.uniform(0, 1, ishap
e).astype(dtype) w1_data = np.random.uniform(0, 1, w1shape).astype(dtype) return mod, ref_mod, {"data": i_data, "weight": w1_data}, (1, 32, 14, 14) def conv2d_bias_relu(): ishape = (1, 32, 14, 14) w1shape = (32, 32, 3, 3) bshape = (32, 1, 1) in_1 = relay.var("in_1", shape=ishape, dtype=dtype) in_2 = relay.var("in_2", shape=w1shape, dtype=dtype) in_3 = relay.var("in_3", shape=bshape, dtype=dtype) conv2d = relay.nn.conv2d(in_1, in_2, kernel_size=(3, 3), padding=(1, 1)) add = relay.add(conv2d, in_3) relu = relay.nn.relu(add) func = relay.Function([in_1, in_2, in_3], relu) func = func.with_attr("Composite", "dnnl.conv2d_bias_relu") func = func.with_attr("PartitionedFromPattern", "nn.conv2d_add_nn.relu_") arg_1 = relay.var("arg_1", shape=ishape, dtype=dtype) arg_2 = relay.var("arg_2", shape=w1shape, dtype=dtype) arg_3 = relay.var("arg_3", shape=bshape, dtype=dtype) call = relay.Call(func, [arg_1, arg_2, arg_3]) p_func = relay.Function([arg_1, arg_2, arg_3], call) p_func = set_func_attr(p_func, "dnnl", "tvmgen_default_dnnl_0") glb_var = relay.GlobalVar("tvmgen_default_dnnl_0") mod = tvm.IRModule() mod[glb_var] = p_func mod = transform.InferType()(mod) data = relay.var("data", shape=ishape, dtype=dtype) weight = relay.var("weight", shape=w1shape, dtype=dtype) bias = relay.var("bias", shape=bshape, dtype=dtype) main_func = relay.Function([data, weight, bias], glb_var(data, weight, bias)) mod["main"] = main_func mod = transform.InferType()(mod) data = relay.var("data", shape=ishape, dtype=dtype) weight = relay.var("weight", shape=w1shape, dtype=dtype) bias = relay.var("bias", shape=bshape, dtype=dtype) conv2d = relay.nn.conv2d(data, weight, kernel_size=(3, 3), padding=(1, 1)) add = relay.add(conv2d, bi
as) relu = relay.nn.relu(add) main_func = relay.Function([data, weight, bias], relu) ref_mod = tvm.IRModule() ref_mod["main"] = main_func ref_mod = transform.InferType()(ref_mod) i_data = np.random.uniform(0, 1, ishape).astype(dtype) w1_data = np.random.uniform(0, 1, w1shape).astype(dtype) b_data = np.random.uniform(0, 1, bshape).astype(dtype) return mod, ref_mod, {"data": i_data, "weight": w1_data, "bias": b_data}, (1, 32, 14, 14) for mod, ref_mod, input_maps, out_shape in [conv2d_relu(), conv2d_bias_relu()]: check_result(mod, ref_mod, input_maps, out_shape, tol=1e-5) def test_constant(): """Test the subgraph with (var, const, ...) arguments.""" if not tvm.get_global_func("runtime.DNNLJSONRuntimeCreate", True): print("skip because DNNL codegen is not available") return dtype = "float32" ishape = (1, 32, 14, 14) wshape = (32, 32, 3, 3) data = relay.var("data", shape=ishape, dtype=dtype) weight = relay.var("weight", shape=wshape, dtype=dtype) bn_gamma = relay.var("bn_gamma") bn_beta = relay.var("bn_beta") bn_mmean = relay.var("bn_mean") bn_mvar = relay.var("bn_var") layer = relay.nn.conv2d(data=data, weight=weight, kernel_size=(3, 3), padding=(1, 1)) bn_output = relay.nn.batch_norm(layer, bn_gamma, bn_beta, bn_mmean, bn_mvar) out = bn_output[0] out = relay.nn.relu(out) func = relay.Function(relay.analysis.free_vars(out), out) ref_mod, params = tvm.relay.testing.create_workload(func) ref_mod["main"] = bind_params_by_name(ref_mod["main"], params) remove_bn_pass = tvm.transform.Sequential( [ transform.InferType(), transform.SimplifyInference(), transform.FoldConstant(), transform.FoldScaleAxis(), ] ) dnnl_patterns = get_pattern_table("dnnl") composite_partition = tvm.transform.Sequential( [ transform.MergeComposite(dnnl_patterns),
transform.AnnotateTarget("dnnl"), transform.PartitionGraph(), ] ) with tvm.transform.PassContext(opt_level=3, disabled_pass=["AlterOpLayout"]): ref_mod = remove_bn_pass(ref_mod) mod = composite_partition(ref_mod) i_data = np.random.uniform(0, 1, ishape).astype(dtype) check_result(mod, ref_mod, {"data": i_data}, (1, 32, 14, 14), tol=1e-5) def test_partial_constant(): """Test the subgraph with (const, var, const, var) arguments.""" if not tvm.get_global_func("runtime.DNNLJSONRuntimeCreate", True): print("skip because DNNL codegen is not available") return dtype = "float32" ishape = (10, 10) in_1 = relay.var("in_1", shape=ishape, dtype=dtype) in_2 = relay.var("in_2", shape=ishape, dtype=dtype) in_3 = relay.var("in_3", shape=ishape, dtype=dtype) in_4 = relay.var("in_4", shape=ishape, dtype=dtype) add1 = relay.add(in_1, in_2) add2 = relay.add(add1, in_3) add3 = relay.add(add2, in_3) add4 = relay.add(add3, in_3) func = relay.Function([in_1, in_2, in_3, in_4], add4) ref_mod = tvm.IRModule.from_expr(func) ref_mod = relay.transform.InferType()(ref_mod) data1 = np.random.uniform(0, 1, ishape).astype(dtype) data3 = np.random.uniform(0, 1, ishape).astype(dtype) params = { "in_1": tvm.nd.array(data1, device=tvm.cpu(0)), "in_3": tvm.nd.array(data3, device=tvm.cpu(0)), } ref_mod["main"] = bind_params_by_name(ref_mod["main"], params) opt_pass = tvm.transform.Sequential( [ transform.InferType(), transform.SimplifyInference(), transform.FoldConstant(), transform.FoldScaleAxis(), transform.AnnotateTarget("dnnl"), transform.MergeCompilerRegions(), transform.PartitionGraph(), ] ) with tvm.transform.PassContext(opt_level=3, disabled_pass=["AlterOpLayout"]): mod = opt_pass(ref_mod) data2 = np.random.uniform(0, 1, ishape).astype(dtype)
data4 = np.random.uniform(0, 1, ishape).astype(dtype) check_result(mod, ref_mod, {"in_2": data2, "in_4": data4}, (10, 10), tol=1e-5) if __name__ == "__main__": test_conv2d() test_add() test_multiply() test_relu() test_dense() test_bn() test_multiple_ops() test_composite() test_constant() test_partial_constant()
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from tvm.relay.testing import resnet from tvm.relay.analysis import count_layers def test_layer_count(): def verify(num_layers): # Load a resnet with a known number of layers. mod, _ = resnet.get_workload(num_layers=num_layers) # Count the number of conv and dense layers. count = count_layers(mod, valid_ops=["nn.conv2d", "nn.dense"]) assert count == num_layers verify(18) verify(50) if __name__ == "__main__": test_layer_count()
import tvm from tvm
import te
import numpy as np from tvm
import relay def check_memory_plan(func, check_fn): mod = tvm.IRModule().from_expr(func) args = [] for param in func.params: param = param.type_annotation sh = [int(sh) for sh in param.shape] data = np.random.rand(*sh).astype(param.dtype) args.append(tvm.nd.array(data)) ex = relay.create_executor("vm", mod) no_plan_result = ex.evaluate()(*args) with tvm.transform.PassContext(opt_level=1, disabled_pass=["MemoryPlan"]): plan_result = ex.evaluate()(*args) py_res = check_fn(*[arg.numpy() for arg in args]) np.testing.assert_allclose(no_plan_result.numpy(), plan_result.numpy()) np.testing.assert_allclose(plan_result.numpy(), py_res) def storage_type(mod): return relay.TypeCall(mod.get_global_type_var("Storage"), []) def test_tyck_alloc_storage(): mod = tvm.IRModule() mod.import_from_std("core.rly") def test_tyck_alloc_tensor(): mod = tvm.IRModule() mod.import_from_std("core.rly") sto = relay.Var("x", storage_type(mod)) sh = relay.const(np.array([1, 2]), dtype="int64") at = relay.op.memory.alloc_tensor(sto, relay.const(0, dtype="int64"), sh) mod["main"] = relay.Function([sto], at) relay.transform.InferType()(mod) def check_add(x): return x + x def test_add(): x = relay.var("x", shape=(2,)) z = x + x func = relay.Function( [ x, ], z, ) check_memory_plan(func, check_add) def check_add_sub(x, y): z = x + x return z - y def test_add_sub(): x = relay.var("x", shape=(10,)) y = relay.var("y", shape=(10,)) z = x + x z = z - y func = relay.Function([x, y], z) check_memory_plan(func, check_add_sub) def check_no_fuse(x, y, w): z = x + y return np.matmul(z, np.transpose(w)) def test_no_fuse(): x = relay.var("x", shape=(5, 1)) y = relay.var("y", shape=(5, 1)) w = relay.var("w", shape=(5, 1)) z = x + y out = relay.op.nn.dense(z, w)
func = relay.Function([x, y, w], out) check_memory_plan(func, check_no_fuse) if __name__ == "__main__": test_tyck_alloc_tensor() test_add() test_add_sub()
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License import tvm import tvm.testing import tvm.relay as relay import tvm.relay.backend.utils as utils import pytest def test_mangle_mod_name(): assert utils.mangle_module_name("default") == "tvmgen_default" assert utils.mangle_module_name("ccompiler") == "tvmgen_ccompiler" assert utils.mangle_module_name("1234"), "tvmgen_1234" assert utils.mangle_module_name(""), "tvmgen" assert utils.mangle_module_name(None), "tvmgen" with pytest.raises(ValueError): utils.mangle_module_name("\u018e") utils.mangle_module_name("\xf1") if __name__ == "__main__": pytest.main([__file__])
import tvm
import tvm.testing from tvm
import relay from tvm.ir
import GlobalVar, structural_equal from tvm.ir.supply
import NameSupply from tvm.ir.supply
import GlobalVarSupply def test_name_supply(): name_supply = NameSupply("prefix") name_supply.reserve_name("test") assert name_supply.contains_name("test") assert name_supply.fresh_name("test") == "prefix_test_1" assert name_supply.contains_name("test_1") assert not name_supply.contains_name("test_1", False) assert not name_supply.contains_name("test_2") def test_global_var_supply_from_none(): var_supply = GlobalVarSupply() global_var = GlobalVar("test") var_supply.reserve_global(global_var) assert structural_equal(var_supply.unique_global_for("test"), global_var) assert not structural_equal(var_supply.fresh_global("test"), global_var) def test_global_var_supply_from_name_supply(): name_supply = NameSupply("prefix") var_supply = GlobalVarSupply(name_supply) global_var = GlobalVar("test") var_supply.reserve_global(global_var) assert structural_equal(var_supply.unique_global_for("test", False), global_var) assert not structural_equal(var_supply.unique_global_for("test"), global_var) def test_global_var_supply_from_ir_mod(): x = relay.var("x") y = relay.var("y") mod = tvm.IRModule() global_var = GlobalVar("test") mod[global_var] = relay.Function([x, y], relay.add(x, y)) var_supply = GlobalVarSupply(mod) second_global_var = var_supply.fresh_global("test", False) assert structural_equal(var_supply.unique_global_for("test", False), global_var) assert not structural_equal(var_supply.unique_global_for("test"), global_var) assert not structural_equal(second_global_var, global_var) if __name__ == "__main__": tvm.testing.main()
import pytest from tvm
import TVMError from tvm.relay.backend.name_transforms
import ( to_c_function_style, to_c_variable_style, to_c_constant_style, prefix_name, prefix_generated_name, ) from tvm.runtime.name_transforms
import sanitize_name def test_to_c_function_style(): assert to_c_function_style("TVM_Woof") == "TVMWoof" assert to_c_function_style("TVM_woof") == "TVMWoof" assert to_c_function_style("TVM_woof_woof") == "TVMWoofWoof" assert to_c_function_style("TVMGen_woof_woof") == "TVMGenWoofWoof" with pytest.raises(TVMError, match="Function not TVM prefixed"): to_c_function_style("Cake_Bakery") with pytest.raises(TVMError, match="Function name is empty"): to_c_function_style("") def test_to_c_variable_style(): assert to_c_variable_style("TVM_Woof") == "tvm_woof" assert to_c_variable_style("TVM_woof") == "tvm_woof" assert to_c_variable_style("TVM_woof_Woof") == "tvm_woof_woof" with pytest.raises(TVMError, match="Variable not TVM prefixed"): to_c_variable_style("Cake_Bakery") with pytest.raises(TVMError, match="Variable name is empty"): to_c_variable_style("") def test_to_c_constant_style(): assert to_c_constant_style("TVM_Woof") == "TVM_WOOF" assert to_c_constant_style("TVM_woof") == "TVM_WOOF" assert to_c_constant_style("TVM_woof_Woof") == "TVM_WOOF_WOOF" with pytest.raises(TVMError, match="Constant not TVM prefixed"): to_c_constant_style("Cake_Bakery") with pytest.raises(TVMError): to_c_constant_style("") def test_prefix_name(): assert prefix_name("Woof") == "TVM_Woof" assert prefix_name(["Woof"]) == "TVM_Woof" assert prefix_name(["woof"]) == "TVM_woof" assert prefix_name(["woof", "moo"]) == "TVM_woof_moo" with pytest.raises(TVMError, match="Name is empty"): prefix_name("") with pytest.raises(TVMError, match="Name segments empty"): prefix_name([]) with pytest.raises(TVMError, match="Name segment is empty"): prefix_name([""]) def test_prefix_generated_name(): assert prefix_generated_name("Woof") == "TVMGen_Woof" assert prefix_generated_name(["Woof"]) == "TVMGen_Woof" assert prefix_generated_name(["Woof"]) == "TVMGen_Woof" ass
ert prefix_generated_name(["woof"]) == "TVMGen_woof" assert prefix_generated_name(["woof", "moo"]) == "TVMGen_woof_moo" with pytest.raises(TVMError, match="Name is empty"): prefix_generated_name("") with pytest.raises(TVMError, match="Name segments empty"): prefix_generated_name([]) with pytest.raises(TVMError, match="Name segment is empty"): prefix_generated_name([""]) def test_sanitize_name(): assert sanitize_name("+_+ ") == "____" assert sanitize_name("input+") == "input_" assert sanitize_name("input-") == "input_" assert sanitize_name("input++") == "input__" assert sanitize_name("woof:1") == "woof_1" with pytest.raises(TVMError, match="Name is empty"): sanitize_name("") def test_combined_logic(): assert ( to_c_function_style(prefix_name(["Device", "target", "Invoke"])) == "TVMDeviceTargetInvoke" ) assert to_c_function_style(prefix_generated_name(["model", "Run"])) == "TVMGenModelRun" assert to_c_variable_style(prefix_name(["Device", "target", "t"])) == "tvm_device_target_t" assert ( to_c_variable_style(prefix_generated_name(["model", "Devices"])) == "tvmgen_model_devices" )
import numpy as np
import scipy from scipy
import special
import tvm
import tvm.testing
import tvm.relay as relay from tvm
import topi from tvm
import te from tvm.contrib
import graph_executor from tvm.topi