text
stringlengths
1
2.05k
evice(device): dev = tvm.device(device, 0) if not tvm.testing.device_enabled(dev): print("Skip because %s is not enabled" % device) return print("Running on target: %s" % device) with tvm.target.Target(device): C = topi.x86.conv2d_NCHWc( A, W, (stride, stride), (padding, padding), (dilation, dilation), "NCHW%dc" % ic_block, "NCHW%dc" % oc_block, dtype, ) s = topi.x86.schedule_conv2d_NCHWc([C]) a = tvm.nd.array(a_np, dev) w = tvm.nd.array(w_np, dev) c = tvm.nd.array(np.zeros(get_const_tuple(C.shape), dtype=C.dtype), dev) func = tvm.build( s, [A, W, C], device, name="relu_%d_%d_%d_%d_%d_%d_%d_%d" % (batch, in_channel, in_size, num_filter, kernel, stride, padding, dilation), ) func(a, w, c) tvm.testing.assert_allclose(c.numpy(), c_np, rtol=1e-3) for device in ["llvm -mcpu=skylake-avx512"]: with autotvm.tophub.context(device): check_device(device) autotvm.GLOBAL_SCOPE.silent = False @tvm.testing.uses_gpu @pytest.mark.skip def test_conv2d_NCHWc(): verify_group_conv2d_NCHWc_int8(1, 256, 32, 224, 64, 7, 2, 3) if __name__ == "__main__": pass
"""Example code to do group transpose convolution."""
import numpy as np
import tvm
import tvm.testing
import tvm.topi.testing from tvm
import te, topi from tvm.contrib.pickle_memoize
import memoize from tvm.topi.utils
import get_const_tuple _group_conv2d_nchw_implement = { "generic": ( topi.nn.group_conv2d_transpose_nchw, topi.generic.schedule_group_conv2d_transpose_nchw, ), "cuda": (topi.cuda.conv2d_transpose_nchw, topi.cuda.schedule_conv2d_transpose_nchw), } def verify_group_conv2d_transpose_nchw( batch, in_channel, in_size, num_filter, kernel, stride, padding, output_padding, groups, ): print( "Workload: (%d, %d, %s, %d, %s, %s, %s, %s, %d)" % (batch, in_channel, in_size, num_filter, kernel, stride, padding, output_padding, groups) ) in_height, in_width = in_size kernel_height, kernel_width = kernel A = te.placeholder((batch, in_channel, in_height, in_width), name="A") W = te.placeholder((in_channel, num_filter bias = te.placeholder((num_filter, 1, 1), name="bias") a_shape = get_const_tuple(A.shape) w_shape = get_const_tuple(W.shape) bias_shape = get_const_tuple(bias.shape) dtype = A.dtype @memoize("topi.tests.test_topi_group_conv2d_transpose.verify_group_conv2d_transpose_nchw") def get_ref_data(): a_np = np.random.uniform(size=a_shape).astype(dtype) w_np = np.random.uniform(size=w_shape).astype(dtype) b_np = np.random.uniform(size=bias_shape).astype(dtype) c_np = tvm.topi.testing.conv2d_transpose_nchw_python( a_np, w_np, stride, padding, output_padding, groups ).astype(dtype) return a_np, w_np, b_np, c_np a_np, w_np, b_np, c_np = get_ref_data() def check_target(target): dev = tvm.device(target, 0) if not tvm.testing.device_enabled(target): print("Skip because %s is not enabled" % target) return print("Running on target: %s" % target) with tvm.target.Target(target): fcompute, fschedule = tvm.topi.testing.dispatch(target, _group_conv2d_nchw_implement) C = fcompute(A, W, stride, padding, dtype, output_padding, groups) s = fsche
dule([C]) a = tvm.nd.array(a_np, dev) w = tvm.nd.array(w_np, dev) c = tvm.nd.array(np.zeros(get_const_tuple(C.shape), dtype=C.dtype), dev) func = tvm.build( s, [A, W, C], target, name="group_conv2d_transpose_%d_%d_%d_%d_%d_%d_%d_%d_%d_%d_%d_%d_%d_%d_%d_%d" % ( batch, in_channel, in_size[0], in_size[1], num_filter, kernel[0], kernel[1], stride[0], stride[1], padding[0], padding[1], padding[2], padding[3], output_padding[0], output_padding[1], groups, ), ) func(a, w, c) c = c.numpy() for measurement, reference in zip(c, c_np): tvm.testing.assert_allclose(measurement, reference, rtol=1e-5) for target in ["llvm", "cuda"]: check_target(target) @tvm.testing.uses_gpu def test_group_conv2d_transpose_nchw(): verify_group_conv2d_transpose_nchw(1, 4, (32, 32), 4, (5, 5), (1, 1), (0, 0, 0, 0), (0, 0), 2) verify_group_conv2d_transpose_nchw(1, 9, (32, 32), 9, (5, 5), (1, 1), (0, 0, 0, 0), (0, 0), 3) verify_group_conv2d_transpose_nchw(1, 4, (32, 32), 16, (5, 5), (2, 2), (1, 1, 1, 1), (0, 0), 4) verify_group_conv2d_transpose_nchw( 1, 32, (8192, 1), 8, (31, 1), (2, 1), (14, 0, 15, 0), (0, 0), 2 ) verify_group_conv2d_transpose_nchw( 1, 512, (8, 1), 256, (31, 1), (2, 1), (14, 0, 15, 0), (0, 0), 16 ) verify_group_conv2d_transpose_nchw( 1, 512, (8, 1), 256, (31, 1), (2, 1), (14, 0, 15, 0), (1, 0), 16 ) verify_group_conv2d_transpose_nchw( 1, 64, (64, 64), 64, (4, 4), (1, 1), (0, 0, 0, 0), (0, 0), 64 ) verify_group_conv2d_transpose_nchw( 1, 128, (32, 32), 128, (4, 4), (1, 1), (0, 0, 0, 0), (0, 0), 128 ) verify_group_conv2d_transp
ose_nchw( 1, 256, (16, 16), 256, (4, 4), (1, 1), (0, 0, 0, 0), (0, 0), 256 ) verify_group_conv2d_transpose_nchw(1, 1, (224, 224), 1, (1, 1), (1, 1), (0, 0, 0, 0), (0, 0), 1) verify_group_conv2d_transpose_nchw( 1, 3, (224, 224), 32, (3, 3), (1, 1), (0, 0, 0, 0), (0, 0), 1 ) verify_group_conv2d_transpose_nchw( 1, 3, (224, 224), 32, (3, 3), (3, 3), (0, 0, 0, 0), (0, 0), 1 ) verify_group_conv2d_transpose_nchw( 1, 3, (224, 224), 32, (3, 3), (1, 1), (0, 0, 0, 0), (0, 0), 1 ) verify_group_conv2d_transpose_nchw( 1, 3, (224, 224), 32, (3, 3), (2, 2), (1, 1, 1, 1), (0, 0), 1 ) verify_group_conv2d_transpose_nchw(1, 48, (64, 64), 12, (4, 4), (2, 2), (1, 1, 1, 1), (0, 0), 1) if __name__ == "__main__": test_group_conv2d_transpose_nchw()
"""Test code for bilinear scale """
import numpy as np
import tvm from tvm
import te from tvm
import topi
import tvm.testing
import tvm.topi.testing from tvm.contrib.pickle_memoize
import memoize def verify_resize2d( batch, in_channel, in_height, in_width, out_height, out_width, layout="NCHW", coord_trans="align_corners", method="linear", ): if layout == "NCHW": A = te.placeholder((batch, in_channel, in_height, in_width), name="A", dtype="float32") dtype = A.dtype out_shape = (batch, in_channel, out_height, out_width) a_np = np.random.uniform(size=(batch, in_channel, in_height, in_width)).astype(dtype) elif layout == "NHWC": A = te.placeholder((batch, in_height, in_width, in_channel), name="A", dtype="float32") dtype = A.dtype out_shape = (batch, out_height, out_width, in_channel) a_np = np.random.uniform(size=(batch, in_height, in_width, in_channel)).astype(dtype) else: raise NotImplementedError("Layout not supported {} ".format(layout)) B = topi.image.resize2d( A, [0.0] * 4, (out_height, out_width), layout=layout, coordinate_transformation_mode=coord_trans, method=method, ) scale_h = out_height / in_height scale_w = out_width / in_width b_np = tvm.topi.testing.resize2d_python(a_np, (scale_h, scale_w), layout, method, coord_trans) def check_target(target, dev): print("Running on target: %s" % target) with tvm.target.Target(target): s = tvm.topi.testing.get_injective_schedule(target)(B) a = tvm.nd.array(a_np, dev) b = tvm.nd.array(np.zeros(out_shape, dtype=dtype), dev) f = tvm.build(s, [A, B], target) f(a, b) tvm.testing.assert_allclose(b.numpy(), b_np, rtol=1e-3, atol=1e-3) for target, dev in tvm.testing.enabled_targets(): check_target(target, dev) @tvm.testing.uses_gpu def test_resize2d(): verify_resize2d(4, 16, 32, 32, 50, 50, "NCHW") verify_resize2d(6, 32, 64, 64, 20, 20, "NCHW") verify_resize2d(4, 16, 32, 32, 50, 50, "NHWC") verify_resize2d(6, 32, 64, 64, 20, 20, "NHWC") f
or layout in ["NCHW", "NHWC"]: verify_resize2d(4, 16, 32, 32, 50, 50, layout, "asymmetric", method="nearest_neighbor") verify_resize2d(4, 16, 32, 32, 64, 50, layout, "asymmetric", method="nearest_neighbor") verify_resize2d(4, 16, 32, 32, 50, 96, layout, "asymmetric", method="nearest_neighbor") verify_resize2d(4, 16, 32, 32, 96, 96, layout, "asymmetric", method="nearest_neighbor") verify_resize2d(4, 16, 32, 32, 50, 50, layout, "align_corners", method="nearest_neighbor") verify_resize2d(4, 16, 32, 32, 50, 50, layout, "half_pixel", method="nearest_neighbor") verify_resize2d(4, 16, 32, 32, 50, 50, layout, "asymmetric", method="linear") verify_resize2d(4, 16, 32, 32, 50, 50, layout, "half_pixel", method="linear") def verify_resize3d( batch, in_channel, in_depth, in_height, in_width, out_depth, out_height, out_width, layout="NCDHW", coordinate_transformation_mode="asymmetric", method="linear", ): if layout == "NCDHW": A = te.placeholder( (batch, in_channel, in_depth, in_height, in_width), name="A", dtype="float32" ) dtype = A.dtype out_shape = (batch, in_channel, out_depth, out_height, out_width) a_np = np.random.uniform(size=(batch, in_channel, in_depth, in_height, in_width)).astype( dtype ) elif layout == "NDHWC": A = te.placeholder( (batch, in_depth, in_height, in_width, in_channel), name="A", dtype="float32" ) dtype = A.dtype out_shape = (batch, out_depth, out_height, out_width, in_channel) a_np = np.random.uniform(size=(batch, in_depth, in_height, in_width, in_channel)).astype( dtype ) else: raise NotImplementedError("Layout not supported {} ".format(layout)) B = topi.image.resize3d( A, [0.0] * 6, (out_depth, out_height, out_width), layout=layout, coordinate_transformation_mode=coordinate_transformati
on_mode, method=method, ) scale_d = out_depth / in_depth scale_h = out_height / in_height scale_w = out_width / in_width b_np = tvm.topi.testing.resize3d_python( a_np, (scale_d, scale_h, scale_w), layout, method, coordinate_transformation_mode ) def check_target(target, dev): with tvm.target.Target(target): s = tvm.topi.testing.get_injective_schedule(target)(B) a = tvm.nd.array(a_np, dev) b = tvm.nd.array(np.zeros(out_shape, dtype=dtype), dev) f = tvm.build(s, [A, B], target) f(a, b) tvm.testing.assert_allclose(b.numpy(), b_np, rtol=1e-3, atol=1e-3) for target, dev in tvm.testing.enabled_targets(): check_target(target, dev) @tvm.testing.uses_gpu def test_resize3d(): for method in ["nearest_neighbor", "linear"]: for coord_trans in ["asymmetric", "align_corners", "half_pixel"]: for layout in ["NCDHW", "NDHWC"]: verify_resize3d(3, 16, 32, 32, 32, 10, 10, 10, layout, coord_trans, method) @tvm.testing.uses_gpu def test_crop_and_resize(): def verify_crop_and_resize( image_shape, np_boxes, np_box_indices, np_crop_size, layout="NHWC", method="bilinear", extrapolation_value=0.0, ): images = te.placeholder(image_shape, name="images", dtype="float32") np_images = np.random.uniform(size=image_shape).astype("float32") boxes = te.placeholder(np_boxes.shape, name="boxes", dtype="float32") box_ind = te.placeholder(np_box_indices.shape, name="box_ind", dtype="int32") batch = len(np_box_indices) target_height, target_width = np_crop_size[0], np_crop_size[1] if layout == "NHWC": channel = image_shape[3] out_shape = (batch, target_height, target_width, channel) elif layout == "NCHW": channel = image_shape[1] out_shape = (batch, channel, target_height, target_width) else: r
aise NotImplementedError("Layout {} is not supported.".format(layout)) out = topi.image.crop_and_resize( images, boxes, box_ind, np_crop_size, layout=layout, method=method, extrapolation_value=extrapolation_value, ) baseline_np = tvm.topi.testing.crop_and_resize_python( np_images, np_boxes, np_box_indices, np_crop_size, layout, method, extrapolation_value ) def check_target(target, dev): print("Running on target: %s" % target) with tvm.target.Target(target): s = tvm.topi.testing.get_injective_schedule(target)(out) tvm_images = tvm.nd.array(np_images, dev) tvm_boxes = tvm.nd.array(np_boxes, dev) tvm_indices = tvm.nd.array(np_box_indices, dev) tvm_out = tvm.nd.array(np.zeros(out_shape, dtype="float32"), dev) f = tvm.build(s, [images, boxes, box_ind, out], target, name="crop_and_resize") f(tvm_images, tvm_boxes, tvm_indices, tvm_out) tvm.testing.assert_allclose(tvm_out.numpy(), baseline_np, rtol=1e-3, atol=1e-3) for target, dev in tvm.testing.enabled_targets(): check_target(target, dev) boxes_1 = np.array([[0.2, 0.3, 0.7, 0.9]], dtype="float32") boxes_2 = np.array([[0.2, 0.3, 0.7, 0.9], [0, 0.1, 0.8, 1]], dtype="float32") indices_1 = np.array([0], dtype="int32") indices_2 = np.array([1, 0], dtype="int32") size_1 = (7, 11) size_2 = (90, 60) verify_crop_and_resize((1, 255, 255, 3), boxes_1, indices_1, size_1, layout="NHWC") verify_crop_and_resize( (10, 224, 224, 5), boxes_2, indices_2, size_2, extrapolation_value=0.3, layout="NHWC" ) verify_crop_and_resize((1, 100, 100, 3), boxes_1, indices_1, size_1, method="nearest_neighbor") verify_crop_and_resize((1, 3, 224, 224), boxes_1, indices_1, size_1, layout="NCHW") @tvm.testing.uses_gpu def test_affine_grid(): def verify_affine_grid(n
um_batch, target_shape): dtype = "float32" data_shape = (num_batch, 2, 3) data = te.placeholder(data_shape, dtype=dtype) out = topi.image.affine_grid(data, target_shape) @memoize("topi.tests.test_affine_grid.verify_affine_grid") def get_ref_data(): data_np = np.random.uniform(size=data_shape).astype(dtype) out_np = tvm.topi.testing.affine_grid_python(data_np, target_shape) return data_np, out_np data_np, out_np = get_ref_data() def check_target(target, dev): print("Running on target: %s" % target) with tvm.target.Target(target): s = tvm.topi.testing.get_injective_schedule(target)(out) tvm_data = tvm.nd.array(data_np, dev) tvm_out = tvm.nd.empty(out_np.shape, dtype, dev) f = tvm.build(s, [data, out], target) f(tvm_data, tvm_out) tvm.testing.assert_allclose(tvm_out.numpy(), out_np, rtol=1e-5, atol=1e-5) for target, dev in tvm.testing.enabled_targets(): check_target(target, dev) verify_affine_grid(1, (16, 32)) verify_affine_grid(4, (16, 32)) @tvm.testing.uses_gpu def test_grid_sample(): def verify_grid_sample( data_shape, grid_shape, method="bilinear", layout="NCHW", padding_mode="zeros", align_corners=True, ): dtype = "float32" data = te.placeholder(data_shape, dtype=dtype) grid = te.placeholder(grid_shape, dtype=dtype) out = topi.image.grid_sample(data, grid, method, layout, padding_mode, align_corners) @memoize("topi.tests.test_grid_sample.verify_grid_sample") def get_ref_data(): data_np = np.random.uniform(size=data_shape).astype(dtype) grid_np = np.random.uniform(size=grid_shape, low=-1.5, high=1.5).astype(dtype) out_np = tvm.topi.testing.grid_sample_python( data_np, grid_np, method, layout, padding_mode, align_c
orners ) return data_np, grid_np, out_np data_np, grid_np, out_np = get_ref_data() def check_target(target, dev): print("Running on target: %s" % target) with tvm.target.Target(target): s = tvm.topi.testing.get_injective_schedule(target)(out) tvm_data = tvm.nd.array(data_np, dev) tvm_grid = tvm.nd.array(grid_np, dev) tvm_out = tvm.nd.empty(out_np.shape, dtype, dev) f = tvm.build(s, [data, grid, out], target) f(tvm_data, tvm_grid, tvm_out) tvm.testing.assert_allclose(tvm_out.numpy(), out_np, rtol=1e-5, atol=1e-5) for target, dev in tvm.testing.enabled_targets(): check_target(target, dev) methods = ["nearest", "bilinear", "bicubic"] padding_modes = ["zeros", "border", "reflection"] align_corners = [True, False] data_2D_shape = (4, 4, 8, 8) grid_2D_shape = (4, 2, 16, 16) layout_2D = "NCHW" data_3D_shape = (4, 4, 4, 4, 4) grid_3D_shape = (4, 3, 8, 8, 8) layout_3D = "NCDHW" for _method in methods: for _padding in padding_modes: for _align in align_corners: verify_grid_sample( data_2D_shape, grid_2D_shape, _method, layout_2D, _padding, _align ) if _method != "bicubic": verify_grid_sample( data_3D_shape, grid_3D_shape, _method, layout_3D, _padding, _align ) if __name__ == "__main__": test_resize2d() test_resize3d() test_crop_and_resize() test_affine_grid() test_grid_sample()
"""Test code for layer_norm."""
import numpy as np
import pytest
import tvm from tvm
import te from tvm
import topi from tvm.topi.utils
import get_const_tuple
import tvm.topi.testing
import tvm.testing _layer_norm_schedule = { "generic": topi.generic.schedule_injective, } @tvm.testing.parametrize_targets("llvm") @pytest.mark.parametrize("shape,axis", [([4, 16], (1,)), ([4, 16, 16], (1, 2))]) def test_layer_norm(target, dev, shape, axis, episilon=1e-5, dtype="float32", rtol=1e-5, atol=1e-5): data = te.placeholder(shape, dtype=dtype, name="data") scale_shape = [shape[dim] for dim in axis] gamma = te.placeholder(scale_shape, dtype=dtype, name="gamma") beta = te.placeholder(scale_shape, dtype=dtype, name="beta") B = topi.nn.layer_norm(data, gamma, beta, axis, episilon) data_np = np.random.uniform(size=shape).astype(dtype) gamma_np = np.random.uniform(size=scale_shape).astype(dtype) beta_np = np.random.uniform(size=scale_shape).astype(dtype) b_np = tvm.topi.testing.layer_norm_python(data_np, gamma_np, beta_np, axis, episilon) with tvm.target.Target(target): s_func = tvm.topi.testing.dispatch(target, _layer_norm_schedule) s = s_func([B]) data_tvm = tvm.nd.array(data_np, dev) gamma_tvm = tvm.nd.array(gamma_np, dev) beta_tvm = tvm.nd.array(beta_np, dev) b_tvm = tvm.nd.array(np.zeros(get_const_tuple(B.shape), dtype=dtype), dev) f = tvm.build(s, [data, gamma, beta, B], target) f(data_tvm, gamma_tvm, beta_tvm, b_tvm) tvm.testing.assert_allclose(b_tvm.asnumpy(), b_np, rtol=rtol, atol=atol) if __name__ == "__main__": tvm.testing.main()
"""Test code for loss operators."""
import numpy as np
import pytest
import tvm from tvm
import te from tvm
import topi
import tvm.topi.testing
import tvm.testing prediction_shape, reduction, ignore_index, dtype = tvm.testing.parameters( ((10, 5), "mean", -100, "float32"), ((10, 5, 2, 2), "mean", -100, "float32"), ((10, 5), "sum", -100, "float32"), ((10, 5), "none", -100, "float32"), ((10, 5), "mean", 3, "float32"), ((10, 5), "mean", -100, "float64"), ) def test_nll_loss(target, dev, prediction_shape, reduction, ignore_index, dtype): C = prediction_shape[1] target_shape = prediction_shape[:1] + prediction_shape[2:] predictions = te.placeholder(shape=prediction_shape, name="predictions", dtype=dtype) targets = te.placeholder(shape=target_shape, name="targets", dtype="int32") weights = te.placeholder(shape=(C,), name="weights", dtype=dtype) nll_loss_result = topi.nn.nll_loss(predictions, targets, weights, reduction, ignore_index) with tvm.target.Target(target): fschedule = tvm.topi.testing.get_reduce_schedule(target) s = fschedule([nll_loss_result]) fn = tvm.build(s, [predictions, targets, weights, nll_loss_result], target, name="nll_loss") predictions_npy = np.random.uniform(size=prediction_shape).astype(dtype) targets_npy = np.random.randint(0, C, target_shape).astype("int32") weights_npy = np.random.uniform(size=(C,)).astype(dtype) out_npy = tvm.topi.testing.nll_loss( predictions_npy, targets_npy, weights_npy, reduction, ignore_index ) predictions_nd = tvm.nd.array(predictions_npy, dev) targets_nd = tvm.nd.array(targets_npy, dev) weights_nd = tvm.nd.array(weights_npy, dev) out_nd = tvm.nd.array(np.empty(out_npy.shape).astype(nll_loss_result.dtype), dev) fn(predictions_nd, targets_nd, weights_nd, out_nd) out_topi = out_nd.numpy() tvm.testing.assert_allclose(out_topi, out_npy, rtol=1e-4, atol=1e-5) if __name__ == "__main__": tvm.testing.main()
"""Test code for local response normalization"""
import numpy as np
import tvm from tvm
import te from tvm
import topi from tvm.topi.utils
import get_const_tuple
import tvm.topi.testing
import tvm.testing _lrn_schedule = { "generic": topi.generic.schedule_lrn, "gpu": topi.cuda.schedule_lrn, "opencl": topi.cuda.schedule_lrn, "metal": topi.cuda.schedule_lrn, "rocm": topi.cuda.schedule_lrn, "vulkan": topi.cuda.schedule_lrn, "nvptx": topi.cuda.schedule_lrn, } def verify_lrn(shape, size, axis, bias, alpha, beta, dtype="float32", rtol=1e-5, atol=1e-5): A = te.placeholder(shape, dtype=dtype, name="A") B = topi.nn.lrn(A, size, axis, alpha, beta, bias) a_np = np.random.uniform(size=shape).astype(dtype) b_np = tvm.topi.testing.lrn_python(a_np, size, axis, bias, alpha, beta) def check_device(device): if not tvm.testing.device_enabled(device): print("Skip because %s is not enabled" % device) return print("Running on target: %s" % device) with tvm.target.Target(device): s_func = tvm.topi.testing.dispatch(device, _lrn_schedule) s = s_func([B]) dev = tvm.device(device, 0) a = tvm.nd.array(a_np, dev) b = tvm.nd.array(np.zeros(get_const_tuple(B.shape), dtype=dtype), dev) f = tvm.build(s, [A, B], device) f(a, b) tvm.testing.assert_allclose(b.numpy(), b_np, rtol=rtol, atol=atol) for device in ["llvm", "cuda", "opencl", "metal", "rocm", "vulkan", "nvptx"]: check_device(device) @tvm.testing.uses_gpu def test_lrn(): verify_lrn((1, 3, 5, 5), 3, 1, 1.0, 1.0, 0.5) verify_lrn((1, 3, 5, 5), 3, 3, 1.0, 1.0, 0.5) verify_lrn((1, 3, 20, 20), 3, 1, 2.0, 1.0, 0.75) verify_lrn((1, 3, 5, 5), 3, 3, 1.0, 1.0, 0.5, dtype="float16", rtol=1e-3, atol=1e-3) if __name__ == "__main__": test_lrn()
"""Test code for LSTM."""
import numpy as np from rsa
import verify
import tvm from tvm
import te, topi
import tvm.testing
import tvm.topi.testing def verify_lstm( target, dev, seq_len, batch_size, in_dim, hidden_dim, proj_dim=0, bias=True, zero_init=True, peephole=False, reverse=False, weight_layout="IFGO", ): out_dim = proj_dim if proj_dim > 0 else hidden_dim def rand(*shape): sqrt_k = np.sqrt(1 / hidden_dim) return np.random.uniform(-sqrt_k, sqrt_k, size=shape).astype("float32") def get_ref_data(): Xs = np.random.normal(size=(seq_len, batch_size, in_dim)).astype("float32") Wi = rand(4 * hidden_dim, in_dim) Wh = rand(4 * hidden_dim, out_dim) Bi = None Bh = None h0 = None c0 = None proj = None p_i = None p_f = None p_o = None if bias: Bi = rand(4 * hidden_dim) Bh = rand(4 * hidden_dim) if not zero_init: h0 = np.random.normal(size=(batch_size, out_dim)).astype("float32") c0 = np.random.normal(size=(batch_size, hidden_dim)).astype("float32") if proj_dim > 0: proj = rand(proj_dim, hidden_dim) if peephole: p_i, p_f, p_o = [rand(batch_size, hidden_dim) for _ in range(3)] hs, cs = tvm.topi.testing.lstm_python( Xs, Wi, Wh, Bi=Bi, Bh=Bh, h_init=h0, c_init=c0, proj=proj, p_i=p_i, p_f=p_f, p_o=p_o, reverse=reverse, weight_layout=weight_layout, ) return [Xs, Wi, Wh, Bi, Bh, h0, c0, proj, p_i, p_f, p_o], [hs, cs] args_np, (hs_np, cs_np) = get_ref_data() args = [te.placeholder(a.shape, "float32") if a is not None else a for a in args_np] real_args = [a for a in args if a is not None] hs, cs = topi.nn.lstm(*args, reverse=reverse, weight_layout=weight_layout) with tvm.target.Target(target): sch = topi.generic.schedule_lstm([hs, cs]) func = tvm.build(sch, real_args
+ [hs, cs], target=target) args_nd = [tvm.nd.array(a, dev) for a in args_np if a is not None] hs_nd = tvm.nd.array(np.zeros((seq_len, batch_size, out_dim), "float32"), dev) cs_nd = tvm.nd.array(np.zeros((seq_len, batch_size, hidden_dim), "float32"), dev) func(*args_nd, hs_nd, cs_nd) tvm.testing.assert_allclose(hs_nd.numpy(), hs_np, rtol=1e-4) tvm.testing.assert_allclose(cs_nd.numpy(), cs_np, rtol=1e-4) def test_lstm(): verify_lstm( "llvm", tvm.cpu(0), 1, 1, 1, 1, 0, True, True, False, False, "IFGO", ) verify_lstm( "llvm", tvm.cpu(0), 8, 4, 8, 16, 0, True, False, False, False, "IFGO", ) def test_lstm_proj(): verify_lstm("llvm", tvm.cpu(0), 8, 4, 16, 32, 8, True, True, False, False, "IFGO") def test_lstm_peephole(): verify_lstm("llvm", tvm.cpu(0), 8, 4, 16, 32, 0, True, True, True, False, "IFGO") def test_lstm_reverse(): verify_lstm("llvm", tvm.cpu(0), 8, 4, 16, 32, 0, True, True, False, True, "IFGO") def test_lstm_weight_layout_iofg(): verify_lstm("llvm", tvm.cpu(0), 8, 4, 16, 32, 0, True, True, False, False, "IOFG") def test_lstm_assorted(): verify_lstm("llvm", tvm.cpu(0), 8, 4, 16, 32, 16, True, False, True, True, "OIGF")
import sys
import numpy as np
import pytest
import scipy from scipy
import special
import tvm
import tvm.testing
import tvm.topi.testing from tvm
import te, topi from tvm.topi
import utils def test_util(): x = tvm.tir.const(100, "int32") assert utils.get_const_int(x) == 100 assert utils.get_const_tuple((x, x)) == (100, 100) ewise_operations = { "floor": {"topi": topi.floor, "ref": np.floor, "input_range": (-100, 100)}, "ceil": {"topi": topi.ceil, "ref": np.ceil, "input_range": (-100, 100)}, "sign": { "topi": topi.sign, "ref": np.sign, "input_range": (-100, 100), "skip_name_check": True, }, "trunc": {"topi": topi.trunc, "ref": np.trunc, "input_range": (-100, 100)}, "fabs": {"topi": topi.abs, "ref": np.fabs, "input_range": (-100, 100)}, "round": {"topi": topi.round, "ref": np.round, "input_range": (-100, 100), "check_round": True}, "exp": {"topi": topi.exp, "ref": np.exp, "input_range": (-1, 1)}, "tanh": { "topi": topi.tanh, "ref": np.tanh, "input_range": (-10, 10), "shape": (128, 128), "dtype": ["float32", "float64"], }, "sigmoid": { "topi": topi.sigmoid, "ref": lambda x: 1 / (1 + np.exp(-x)), "input_range": (-1, 1), }, "log": {"topi": topi.log, "ref": np.log, "input_range": (0, 100)}, "sqrt": {"topi": topi.sqrt, "ref": np.sqrt, "input_range": (0, 100)}, "rsqrt": { "topi": topi.rsqrt, "ref": lambda x: np.ones_like(x) / np.sqrt(x), "input_range": (0, 100), "skip_name_check": True, }, "cos": {"topi": topi.cos, "ref": np.cos, "input_range": (-2.0 * np.pi, 2.0 * np.pi)}, "tan": { "topi": topi.tan, "ref": np.tan, "input_range": (-2.0 * np.pi, 2.0 * np.pi), "dtypes": ["float32", "float64"], }, "sin": {"topi": topi.sin, "ref": np.sin, "input_range": (-2.0 * np.pi, 2.0 * np.pi)}, "erf": {"topi": topi.erf, "ref": scipy.special.erf, "input_range": (-0.1, 0.1)}, "isnan": { "topi": topi.isnan, "ref": np.isnan, "input_range": (-1, 1), "replace_with_nan": True, }, "isfinite": { "topi": topi.isf
inite, "ref": np.isfinite, "input_range": (0, 1), "shape": (8, 8), "skip_name_check": True, "replace_with_nan": True, "replace_with_inf": True, "dtypes": ["float32", "float64", "int32", "int16"], }, "isinf": { "topi": topi.isinf, "ref": np.isinf, "input_range": (0, 1), "shape": (8, 8), "skip_name_check": True, "replace_with_nan": True, "replace_with_inf": True, "dtypes": ["float32", "float64", "int32", "int16"], }, "fast_exp": { "topi": topi.fast_exp, "ref": np.exp, "skip_name_check": True, "input_range": (-88, 88), "step": 0.01, }, "fast_erf": { "topi": topi.fast_erf, "ref": scipy.special.erf, "skip_name_check": True, "input_range": (-10, 10), "step": 0.01, "dtypes": ["float32", "float16"], "cast_output": True, "tolerance": [1e-5, 1e-1], }, "fast_tanh": { "topi": topi.fast_tanh, "ref": np.tanh, "skip_name_check": True, "input_range": (-10, 10), "step": 0.01, }, } topi_name, dtype, tolerance = tvm.testing.parameters( *[ (name, dtype, config.get("tolerance", [1e-5] * len(dtype))[i]) for name, config in ewise_operations.items() for i, dtype in enumerate(config.get("dtypes", ["float32"])) ] ) @tvm.testing.fixture(cache_return_value=True) def ewise_ref_data(topi_name, dtype): config = ewise_operations[topi_name] input_range = config["input_range"] shape = config.get("shape", (20, 3)) a_np = np.random.uniform(*input_range, size=shape).astype(dtype) if dtype.startswith("float"): if config.get("replace_with_nan", False): a_np.ravel()[np.random.choice(a_np.size, int(a_np.size * 0.5), replace=False)] = np.nan if config.get("replace_with_inf", False): a_np.ravel()[ np.random.choice(a_np.size, int(a_np.size * 0.5), re
place=False) ] = np.infty if topi_name == "round": a_np += ((np.abs(np.fmod(a_np, 1)) - 0.5) < 1e-6) * 1e-4 b_np = config["ref"](a_np) if config.get("cast_output", False): b_np = b_np.astype(dtype) return a_np, b_np def test_ewise(target, dev, topi_name, dtype, tolerance, ewise_ref_data): target = tvm.target.Target(target) if target.kind.name == "vulkan" and topi_name in ["tan", "erf", "isnan", "isfinite", "isinf"]: pytest.xfail(f"Vulkan runtime doesn't support {topi_name} yet") topi_op = ewise_operations[topi_name]["topi"] skip_name_check = ewise_operations[topi_name].get("skip_name_check", False) m = te.var("m") l = te.var("l") A = te.placeholder((m, l), dtype=dtype, name="A") B = topi_op(A) assert tuple(B.shape) == tuple(A.shape) if not skip_name_check: assert B.op.body[0].op.name == "tir." + topi_name a_np, b_np = ewise_ref_data with tvm.target.Target(target): s = tvm.topi.testing.get_injective_schedule(target)(B) foo = tvm.build(s, [A, B], target, name=topi_name) a = tvm.nd.array(a_np, dev) b = tvm.nd.array(np.zeros_like(b_np), dev) foo(a, b) tvm.testing.assert_allclose(b.numpy(), b_np, rtol=tolerance, atol=tolerance) from_dtype, to_dtype = tvm.testing.parameters( ("int32", "float32"), ("int32", "float64"), ("int32", "bool"), ("float32", "int32"), ("float32", "float64"), ("float32", "bool"), ("bool", "float32"), ("bool", "int32"), ) @tvm.testing.fixture(cache_return_value=True) def cast_ref_data(from_dtype, to_dtype): shape = (5, 4) input_range = (-100, 100) if from_dtype == "bool": a_np = np.random.choice([True, False], size=shape) else: a_np = np.random.uniform(*input_range, size=shape).astype(from_dtype) if to_dtype == "bool": a_np = a_np - a_np[2, 3] b_np = a_np.astype(to_dtype) return a_np, b_np def test_cast(target, dev, cast_ref_data, from_dtype, to_dtype):
m = te.var("m") l = te.var("l") A = te.placeholder((m, l), dtype=from_dtype, name="A") B = topi.cast(A, to_dtype) a_np, b_np = cast_ref_data with tvm.target.Target(target): s = tvm.topi.testing.get_injective_schedule(target)(B) foo = tvm.build(s, [A, B], target) a = tvm.nd.array(a_np, dev) b = tvm.nd.empty(b_np.shape, dtype=to_dtype, device=dev) foo(a, b) tvm.testing.assert_allclose(b.numpy(), b_np) if __name__ == "__main__": tvm.testing.main()
import numpy as np
import tvm
import tvm.testing from tvm
import te from tvm
import topi from tvm.topi.utils
import get_const_tuple def with_tvm(lam, *args): """Take numpy arrays as args, convert them to TVM tensors and call `lam`. Result of lambda is converted back to numpy array and returned. """ dev = tvm.cpu(0) pls = [] vals_nd = [] for i, arg in enumerate(args): pls.append(te.placeholder(arg.shape, name="pl" + str(i))) vals_nd.append(tvm.nd.array(arg, dev)) out = lam(*pls) out_nd = tvm.nd.array(np.zeros(get_const_tuple(out.shape), dtype=out.dtype), dev) s = te.create_schedule([out.op]) m = tvm.build(s, pls + [out], "llvm") m(*(vals_nd + [out_nd])) return out_nd.numpy() def verify_nn_matmul(sa, sb, transp_a, transp_b): a = np.random.uniform(low=-1.0, high=1.0, size=sa).astype(np.float32) b = np.random.uniform(low=-1.0, high=1.0, size=sb).astype(np.float32) c1 = np.matmul(np.transpose(a) if transp_a else a, np.transpose(b) if transp_b else b) c2 = with_tvm( lambda A, B: topi.nn.matmul(A, B, transpose_a=transp_a, transpose_b=transp_b), a, b, ) tvm.testing.assert_allclose(c1, c2, rtol=1e-5, atol=1e-5) def test_nn_matmul(): verify_nn_matmul((1, 1), (1, 1), False, False) verify_nn_matmul((1, 1), (1, 1), True, True) verify_nn_matmul((2, 2), (2, 2), False, False) verify_nn_matmul((2, 2), (2, 2), True, True) verify_nn_matmul((2, 3), (3, 5), False, False) verify_nn_matmul((5, 3), (3, 2), False, False) verify_nn_matmul((3, 5), (3, 2), True, False) verify_nn_matmul((3, 5), (2, 3), True, True) verify_nn_matmul((3, 5), (3, 2), True, False) verify_nn_matmul((5, 3), (2, 3), False, True) def verify_matmul(sa, sb, transp_a, transp_b): a = np.random.uniform(low=-1.0, high=1.0, size=sa).astype(np.float32) b = np.random.uniform(low=-1.0, high=1.0, size=sb).astype(np.float32) c1 = np.matmul(np.transpose(a) if transp_a else a, np.transpose(b) if transp_b else b) c2 = with_tvm(lambda A, B: topi.matmul(A, B, transp_a, transp_b), a, b) tvm.testing.assert_
allclose(c1, c2, rtol=1e-5, atol=1e-5) def test_matmul(): verify_matmul((1, 1), (1, 1), False, False) verify_matmul((1, 1), (1, 1), True, True) verify_matmul((2, 2), (2, 2), False, False) verify_matmul((2, 2), (2, 2), True, True) verify_matmul((2, 3), (3, 5), False, False) verify_matmul((5, 3), (3, 2), False, False) verify_matmul((3, 5), (3, 2), True, False) verify_matmul((3, 5), (2, 3), True, True) def verify_tensordot(sa, sb, axes): a = np.random.uniform(low=-1.0, high=1.0, size=sa).astype(np.float32) b = np.random.uniform(low=-1.0, high=1.0, size=sb).astype(np.float32) c1 = np.tensordot(a, b, axes) c2 = with_tvm(lambda A, B: topi.tensordot(A, B, axes), a, b) tvm.testing.assert_allclose(c1, c2, rtol=1e-5, atol=1e-5) def test_tensordot(): verify_tensordot((3), (3), 0) verify_tensordot((2, 3), (3, 5), 1) verify_tensordot((2, 2, 3), (2, 3, 5), 2) verify_tensordot((2, 2, 3, 4), (2, 3, 4, 5), 3) verify_tensordot((3, 2, 2), (2, 3, 5), (1, 0)) verify_tensordot((3, 2, 2), (2, 3, 5), ((1, 0), (0, 1))) verify_tensordot((4, 3, 2, 2), (2, 4, 3, 5), ((1, 2, 0), (2, 0, 1))) if __name__ == "__main__": test_nn_matmul() test_matmul() test_tensordot()
"""Test code for pooling"""
import math
import numpy as np
import tvm
import tvm.testing
import tvm.topi.testing from tvm
import te, topi from tvm.topi.utils
import get_const_tuple _pool_schedule = { "generic": topi.generic.schedule_pool, "cpu": topi.x86.schedule_pool, "gpu": topi.cuda.schedule_pool, "hls": topi.hls.schedule_pool, } _adaptive_pool_schedule = { "generic": topi.generic.schedule_adaptive_pool, "cpu": topi.x86.schedule_adaptive_pool, "gpu": topi.cuda.schedule_adaptive_pool, "hls": topi.hls.schedule_adaptive_pool, } _pool_grad_schedule = { "generic": topi.generic.schedule_pool_grad, "gpu": topi.cuda.schedule_pool_grad, } def verify_pool_grad( n, ic, ih, kh, sh, padding, pool_type, ceil_mode, count_include_pad=True, add_relu=False ): """verify function of pool_grad""" iw = ih kw = kh sw = sh pt, pl, pb, pr = padding A = te.placeholder((n, ic, ih, iw), name="A") B = topi.nn.pool2d( A, kernel=[kh, kw], stride=[sh, sw], dilation=[1, 1], padding=padding, pool_type=pool_type, ceil_mode=ceil_mode, layout="NCHW", count_include_pad=count_include_pad, ) dtype = A.dtype bshape = get_const_tuple(B.shape) ashape = get_const_tuple(A.shape) if ceil_mode: assert bshape[2] == int(math.ceil(float(ashape[2] - kh + pt + pb) / sh) + 1) assert bshape[3] == int(math.ceil(float(ashape[3] - kw + pl + pr) / sw) + 1) else: assert bshape[2] == int(math.floor(float(ashape[2] - kh + pt + pb) / sh) + 1) assert bshape[3] == int(math.floor(float(ashape[3] - kw + pl + pr) / sw) + 1) OutGrad = te.placeholder(bshape, name="OutGrad") PoolGrad = topi.nn.pool_grad( OutGrad, A, kernel=[kh, kw], stride=[sh, sw], padding=padding, pool_type=pool_type, ceil_mode=ceil_mode, layout="NCHW", count_include_pad=count_include_pad, ) if add_relu: PoolGrad = topi.nn.relu(PoolGrad) a_np = np.random.uniform(low=0.001, size=(n, ic, ih, iw)).astype(dtype) out_grad_np = np.random.uniform(low=0.001, size=bsha
pe).astype(dtype) pool_grad_np = tvm.topi.testing.pool_grad_nchw( a_np, out_grad_np, pool_size=(kh, kw), strides=(sh, sw), padding=padding, pool_type=pool_type, ceil_mode=ceil_mode, count_include_pad=count_include_pad, ) if add_relu: pool_grad_np = np.maximum(pool_grad_np, 0.0) def check_target(target, dev): print("Running on target: %s" % target) with tvm.target.Target(target): s_func = tvm.topi.testing.dispatch(target, _pool_grad_schedule) s = s_func(PoolGrad) a = tvm.nd.array(a_np, dev) out_grad = tvm.nd.array(out_grad_np, dev) pool_grad = tvm.nd.array(np.zeros(get_const_tuple(PoolGrad.shape), dtype=dtype), dev) f = tvm.build(s, [A, OutGrad, PoolGrad], target) f(a, out_grad, pool_grad) tvm.testing.assert_allclose(pool_grad.numpy(), pool_grad_np, rtol=1e-5) for target, dev in tvm.testing.enabled_targets(): check_target(target, dev) @tvm.testing.uses_gpu def test_pool_grad(): """test cases of pool_grad""" verify_pool_grad(1, 256, 32, 3, 2, [1, 1, 1, 1], "avg", False, False) verify_pool_grad(1, 256, 32, 2, 2, [0, 0, 0, 0], "avg", False, True) verify_pool_grad(1, 256, 31, 3, 3, [1, 2, 1, 2], "avg", False, True) verify_pool_grad(1, 256, 32, 2, 2, [1, 2, 1, 2], "avg", False, False) verify_pool_grad(1, 256, 31, 4, 4, [2, 2, 2, 2], "avg", False, False) verify_pool_grad(1, 256, 31, 4, 4, [0, 0, 0, 0], "avg", False, False) verify_pool_grad(1, 256, 32, 2, 2, [0, 0, 0, 0], "max", False) verify_pool_grad(1, 256, 31, 3, 3, [2, 1, 2, 1], "max", False) verify_pool_grad(1, 256, 31, 3, 3, [2, 1, 2, 1], "max", True) verify_pool_grad(1, 256, 31, 3, 3, [2, 1, 0, 3], "avg", False, True) verify_pool_grad(1, 256, 32, 2, 2, [0, 3, 2, 1], "avg", False, False) verify_pool_grad(1, 256, 31, 3, 3, [1, 0, 3, 2], "max", False) verify_pool_grad(1, 256, 31, 3, 3, [3, 2, 1, 0], "max", True) veri
fy_pool_grad(1, 256, 32, 3, 2, [1, 1, 1, 1], "max", False) verify_pool_grad(1, 256, 32, 1, 2, [1, 1, 1, 1], "avg", False, False) verify_pool_grad(1, 256, 31, 4, 4, [0, 0, 0, 0], "avg", False, False, add_relu=True) verify_pool_grad(1, 256, 32, 2, 2, [0, 0, 0, 0], "max", False, add_relu=True) def verify_global_pool(dshape, pool_type, layout="NCHW"): """verify function of global_pool""" assert layout in ["NCHW", "NHWC"] A = te.placeholder(shape=dshape, name="A") B = topi.nn.global_pool(A, pool_type=pool_type, layout=layout) B = topi.nn.relu(B) a_np = np.random.uniform(size=get_const_tuple(A.shape)).astype(A.dtype) axis = (layout.find("H"), layout.find("W")) if pool_type == "avg": b_np = np.mean(a_np, axis=axis, keepdims=True) elif pool_type == "max": b_np = np.max(a_np, axis=axis, keepdims=True) b_np = np.maximum(b_np, 0.0) def check_target(target, dev): print("Running on target: %s" % target) with tvm.target.Target(target): s_func = tvm.topi.testing.dispatch(target, _adaptive_pool_schedule) if target == "cuda": s = s_func(B, layout) else: s = s_func(B) a = tvm.nd.array(a_np, dev) b = tvm.nd.array(np.zeros(get_const_tuple(B.shape), dtype=B.dtype), dev) f = tvm.build(s, [A, B], target) f(a, b) tvm.testing.assert_allclose(b.numpy(), b_np, rtol=1e-5) for target, dev in tvm.testing.enabled_targets(): check_target(target, dev) @tvm.testing.uses_gpu def test_global_pool(): """test cases of global_pool""" verify_global_pool((1, 1024, 7, 7), "avg") verify_global_pool((4, 1024, 7, 7), "avg") verify_global_pool((1, 1024, 7, 7), "max") verify_global_pool((4, 1024, 7, 7), "max") verify_global_pool((1, 7, 7, 1024), "avg", "NHWC") verify_global_pool((4, 7, 7, 1024), "avg", "NHWC") verify_global_pool((1, 7, 7, 1024), "max", "NHWC") verify_global_pool((4, 7, 7, 1024), "max", "NHWC")
def verify_adaptive_pool(dshape, out_size, pool_type, layout="NCHW", dtype="float32"): """verify function of adaptive_pool""" np_data = np.random.uniform(low=0, high=255, size=dshape).astype(dtype) np_out = tvm.topi.testing.adaptive_pool(np_data, out_size, pool_type, layout) oshape = np_out.shape data = te.placeholder(dshape, name="data", dtype=dtype) if len(out_size) == 2: out = topi.nn.adaptive_pool(data, out_size, pool_type, layout) else: assert len(out_size) == 3 out = topi.nn.adaptive_pool3d(data, out_size, pool_type, layout) def check_target(target, dev): print("Running on target: %s" % target) with tvm.target.Target(target): s_func = tvm.topi.testing.dispatch(target, _adaptive_pool_schedule) if target == "cuda": s = s_func(out, layout) else: s = s_func(out) a = tvm.nd.array(np_data, dev) b = tvm.nd.array(np.zeros(get_const_tuple(oshape), dtype=out.dtype), dev) f = tvm.build(s, [data, out], target) f(a, b) tvm.testing.assert_allclose(b.numpy(), np_out, rtol=4e-5, atol=1e-6) for target, dev in tvm.testing.enabled_targets(): check_target(target, dev) @tvm.testing.uses_gpu def test_adaptive_pool(): """test cases of adaptive_pool""" verify_adaptive_pool((1, 3, 224, 224), (1, 1), "max") verify_adaptive_pool((1, 3, 224, 224), (1, 1), "avg") verify_adaptive_pool((1, 14, 56, 78), (34, 13), "max") verify_adaptive_pool((1, 5, 46, 97), (4, 96), "avg") verify_adaptive_pool((1, 224, 224, 3), (1, 1), "max", layout="NHWC") verify_adaptive_pool((1, 5, 46, 97), (4, 96), "avg", layout="NHWC") verify_adaptive_pool((1, 16, 32, 32, 32), (1, 1, 1), "max", layout="NCDHW") verify_adaptive_pool((1, 16, 32, 32, 32), (1, 1, 1), "avg", layout="NCDHW") verify_adaptive_pool((1, 16, 32, 32, 32), (2, 2, 2), "avg", layout="NCDHW") verify_adaptive_pool((1, 16, 64, 32, 32), (7, 8, 9), "avg", layout="NCD
HW") verify_adaptive_pool((1, 16, 64, 32, 32), (8, 16, 16), "avg", layout="NCDHW") verify_adaptive_pool((1, 16, 32, 32, 32), (1, 1, 1), "avg", layout="NDHWC") verify_adaptive_pool((1, 16, 32, 32, 32), (2, 2, 2), "max", layout="NDHWC") verify_adaptive_pool((1, 16, 32, 32, 32), (2, 4, 4), "max", layout="NDHWC") def verify_poolnd( n, input_shape, kernel, stride, dilation, padding, pool_type, ceil_mode, layout, count_include_pad=True, ): """verify function of pool1d""" A = te.placeholder(input_shape, name="A") if n == 1: B = topi.nn.pool1d( A, kernel=kernel, stride=stride, dilation=dilation, padding=padding, pool_type=pool_type, ceil_mode=ceil_mode, layout=layout, count_include_pad=count_include_pad, ) elif n == 2: B = topi.nn.pool2d( A, kernel=kernel, stride=stride, dilation=dilation, padding=padding, pool_type=pool_type, ceil_mode=ceil_mode, layout=layout, count_include_pad=count_include_pad, ) elif n == 3: B = topi.nn.pool3d( A, kernel=kernel, stride=stride, dilation=dilation, padding=padding, pool_type=pool_type, ceil_mode=ceil_mode, layout=layout, count_include_pad=count_include_pad, ) else: raise ValueError(f"PoolND only supports n=1, 2, 3 got n={n}") B = topi.nn.relu(B) dtype = A.dtype output_shape = [int(i) for i in B.shape] input_np = np.random.uniform(low=0.001, size=input_shape).astype(dtype) padding_before = padding[:n] padding_after = padding[n:] ref_np = tvm.topi.testing.poolnd_python( input_np, kernel, stride, dilation, padding_before, padding_after, pool_type,
count_include_pad, ceil_mode, layout=layout, ) np.testing.assert_equal(tuple(output_shape), tuple(ref_np.shape)) def check_target(target, dev): print("Running on target: %s" % target) with tvm.target.Target(target): s_func = tvm.topi.testing.dispatch(target, _pool_schedule) s = s_func(B, layout) a = tvm.nd.array(input_np, dev) b = tvm.nd.array(np.zeros(get_const_tuple(B.shape), dtype=dtype), dev) f = tvm.build(s, [A, B], target) f(a, b) tvm.testing.assert_allclose(b.numpy(), ref_np, rtol=1e-5) for target, dev in tvm.testing.enabled_targets(): check_target(target, dev) def verify_pool3d( input_shape, kernel, stride, dilation, padding, pool_type, ceil_mode, count_include_pad=True, layout="NCDHW", ): verify_poolnd( 3, input_shape, kernel, stride, dilation, padding, pool_type, ceil_mode, layout=layout, count_include_pad=count_include_pad, ) @tvm.testing.uses_gpu def test_pool3d(): """test cases of pool3d""" verify_pool3d( [1, 16, 32, 32, 32], [2, 2, 2], [2, 2, 2], [1, 1, 1], [0, 0, 0, 0, 0, 0], "avg", False, True ) verify_pool3d( [1, 16, 31, 31, 31], [3, 3, 3], [3, 3, 3], [1, 1, 1], [1, 1, 2, 2, 2, 1], "avg", False, True ) verify_pool3d( [1, 16, 32, 32, 32], [2, 2, 2], [2, 2, 2], [1, 1, 1], [1, 1, 2, 2, 2, 1], "avg", False, False, ) verify_pool3d( [1, 16, 31, 31, 31], [4, 4, 4], [4, 4, 4], [1, 1, 1], [3, 3, 3, 3, 3, 3], "avg", False, False, ) verify_pool3d( [1, 16, 31, 31, 31], [4, 4, 4], [4, 4, 4], [1, 1, 1], [0, 0, 0, 0, 0, 0], "avg", False, False, ) verify_pool3d( [1, 16, 32, 32, 32], [2, 2, 2], [2, 2
, 2], [1, 1, 1], [0, 0, 0, 0, 0, 0], "max", False ) verify_pool3d( [1, 16, 31, 31, 31], [3, 3, 3], [3, 3, 3], [1, 1, 1], [2, 2, 1, 1, 1, 2], "max", False ) verify_pool3d( [1, 16, 31, 31, 31], [3, 3, 3], [3, 3, 3], [1, 1, 1], [2, 2, 1, 1, 1, 2], "max", True ) verify_pool3d( [1, 16, 31, 31, 31], [3, 3, 3], [3, 3, 3], [1, 1, 1], [2, 1, 0, 5, 4, 3], "avg", False, True ) verify_pool3d( [1, 16, 32, 32, 32], [2, 2, 2], [2, 2, 2], [1, 1, 1], [0, 5, 4, 3, 2, 1], "avg", False, False, ) verify_pool3d( [1, 16, 31, 31, 31], [3, 3, 3], [3, 3, 3], [1, 1, 1], [1, 0, 5, 4, 3, 2], "max", False ) verify_pool3d( [1, 16, 31, 31, 31], [3, 3, 3], [3, 3, 3], [1, 1, 1], [3, 2, 1, 0, 5, 4], "max", True ) verify_pool3d( [1, 16, 31, 31, 31], [3, 3, 3], [3, 3, 3], [3, 3, 3], [2, 1, 0, 5, 4, 3], "avg", False, True ) verify_pool3d( [1, 16, 32, 32, 32], [2, 2, 2], [2, 2, 2], [2, 2, 2], [0, 5, 4, 3, 2, 1], "avg", False, False, ) verify_pool3d( [1, 16, 31, 31, 31], [3, 3, 3], [3, 3, 3], [2, 1, 3], [1, 0, 5, 4, 3, 2], "max", False ) verify_pool3d( [1, 16, 31, 31, 31], [3, 3, 3], [3, 3, 3], [2, 2, 3], [3, 2, 1, 0, 5, 4], "max", True ) verify_pool3d( [1, 32, 32, 32, 16], [2, 2, 2], [2, 2, 2], [1, 1, 1], [0, 0, 0, 0, 0, 0], "avg", False, True, layout="NDHWC", ) verify_pool3d( [1, 31, 31, 31, 16], [3, 3, 3], [3, 3, 3], [1, 1, 1], [1, 1, 2, 2, 2, 1], "avg", False, True, layout="NDHWC", ) verify_pool3d( [1, 32, 32, 32, 16], [2, 2, 2], [2, 2, 2], [1, 1, 1], [1, 1, 2, 2, 2, 1], "avg", False, False, layout="NDHWC", ) verify_pool3d(
[1, 31, 31, 31, 16], [4, 4, 4], [4, 4, 4], [1, 1, 1], [3, 3, 3, 3, 3, 3], "avg", False, False, layout="NDHWC", ) verify_pool3d( [1, 31, 31, 31, 16], [4, 4, 4], [4, 4, 4], [1, 1, 1], [0, 0, 0, 0, 0, 0], "avg", False, False, layout="NDHWC", ) verify_pool3d( [1, 32, 32, 32, 16], [2, 2, 2], [2, 2, 2], [1, 1, 1], [0, 0, 0, 0, 0, 0], "max", False, layout="NDHWC", ) verify_pool3d( [1, 31, 31, 31, 16], [3, 3, 3], [3, 3, 3], [1, 1, 1], [2, 2, 1, 1, 1, 2], "max", False, layout="NDHWC", ) verify_pool3d( [1, 31, 31, 31, 16], [3, 3, 3], [3, 3, 3], [1, 1, 1], [2, 2, 1, 1, 1, 2], "max", True, layout="NDHWC", ) verify_pool3d( [1, 31, 31, 31, 16], [3, 3, 3], [3, 3, 3], [1, 1, 1], [2, 1, 0, 5, 4, 3], "avg", False, True, layout="NDHWC", ) verify_pool3d( [1, 32, 32, 32, 16], [2, 2, 2], [2, 2, 2], [1, 1, 1], [0, 5, 4, 3, 2, 1], "avg", False, False, layout="NDHWC", ) verify_pool3d( [1, 31, 31, 31, 16], [3, 3, 3], [3, 3, 3], [1, 1, 1], [1, 0, 5, 4, 3, 2], "max", False, layout="NDHWC", ) verify_pool3d( [1, 31, 31, 31, 16], [3, 3, 3], [3, 3, 3], [1, 1, 1], [3, 2, 1, 0, 5, 4], "max", True, layout="NDHWC", ) verify_pool3d( [1, 16, 31, 31, 31], [3, 3, 3], [3, 3, 3], [3, 3, 3], [2, 1, 0, 5, 4, 3], "avg", False, True ) verify_pool3d( [1, 16, 32, 32, 32], [2, 2, 2], [2, 2, 2], [2, 2, 2], [0, 5, 4, 3, 2, 1], "
avg", False, False, ) verify_pool3d( [1, 16, 31, 31, 31], [3, 3, 3], [3, 3, 3], [2, 1, 3], [1, 0, 5, 4, 3, 2], "max", False ) verify_pool3d( [1, 16, 31, 31, 31], [3, 3, 3], [3, 3, 3], [2, 2, 3], [3, 2, 1, 0, 5, 4], "max", True ) def verify_pool2d( input_shape, kernel, stride, dilation, padding, pool_type, ceil_mode, count_include_pad=True, layout="NCHW", ): verify_poolnd( 2, input_shape, kernel, stride, dilation, padding, pool_type, ceil_mode, layout=layout, count_include_pad=count_include_pad, ) @tvm.testing.uses_gpu def test_pool2d(): """test cases of pool""" verify_pool2d([1, 16, 32, 32], [2, 2], [2, 2], [1, 1], [0, 0, 0, 0], "avg", False, True) verify_pool2d([1, 16, 31, 31], [3, 3], [3, 3], [1, 1], [1, 2, 1, 2], "avg", False, True) verify_pool2d([1, 16, 32, 32], [2, 2], [2, 2], [1, 1], [1, 2, 1, 2], "avg", False, False) verify_pool2d([1, 16, 31, 31], [4, 4], [4, 4], [1, 1], [3, 3, 3, 3], "avg", False, False) verify_pool2d([1, 16, 31, 31], [4, 4], [4, 4], [1, 1], [0, 0, 0, 0], "avg", False, False) verify_pool2d([1, 16, 32, 32], [2, 3], [2, 2], [1, 1], [0, 0, 0, 0], "max", False) verify_pool2d([1, 16, 31, 31], [3, 3], [3, 3], [1, 1], [2, 1, 2, 1], "max", False) verify_pool2d([1, 16, 31, 31], [3, 3], [3, 3], [1, 1], [2, 1, 2, 1], "max", True) verify_pool2d([1, 16, 31, 31], [3, 3], [3, 3], [1, 1], [2, 1, 0, 3], "avg", False, True) verify_pool2d([1, 16, 32, 32], [2, 3], [2, 2], [1, 1], [0, 3, 2, 1], "avg", False, False) verify_pool2d([1, 16, 31, 31], [3, 3], [3, 3], [1, 1], [1, 0, 3, 2], "max", False) verify_pool2d([1, 16, 31, 31], [3, 3], [3, 3], [1, 1], [3, 2, 1, 0], "max", True) verify_pool2d([1, 16, 31, 31], [3, 3], [3, 3], [2, 1], [2, 1, 0, 3], "avg", False, True) verify_pool2d([1, 16, 32, 32], [2, 3], [2, 2], [2, 3], [0, 3, 2, 1], "avg", False, False) verify_poo
l2d([1, 16, 31, 31], [3, 3], [3, 3], [3, 3], [1, 0, 3, 2], "max", False) verify_pool2d([1, 16, 31, 31], [3, 3], [3, 3], [2, 2], [3, 2, 1, 0], "max", True) verify_pool2d( [1, 32, 32, 16], [2, 2], [2, 2], [1, 1], [0, 0, 0, 0], "avg", False, True, layout="NHWC" ) verify_pool2d( [1, 31, 31, 16], [3, 3], [3, 3], [1, 1], [1, 2, 1, 2], "avg", False, True, layout="NHWC" ) verify_pool2d( [1, 32, 32, 16], [2, 2], [2, 2], [1, 1], [1, 2, 1, 2], "avg", False, False, layout="NHWC" ) verify_pool2d( [1, 31, 31, 16], [4, 4], [4, 4], [1, 1], [3, 3, 3, 3], "avg", False, False, layout="NHWC" ) verify_pool2d( [1, 31, 31, 16], [4, 4], [4, 4], [1, 1], [0, 0, 0, 0], "avg", False, False, layout="NHWC" ) verify_pool2d( [1, 32, 32, 16], [2, 3], [2, 2], [1, 1], [0, 0, 0, 0], "max", False, layout="NHWC" ) verify_pool2d( [1, 31, 31, 16], [3, 3], [3, 3], [1, 1], [2, 1, 2, 1], "max", False, layout="NHWC" ) verify_pool2d([1, 31, 31, 16], [3, 3], [3, 3], [1, 1], [2, 1, 2, 1], "max", True, layout="NHWC") verify_pool2d( [1, 31, 31, 16], [3, 3], [3, 3], [1, 1], [2, 1, 0, 3], "avg", False, True, layout="NHWC" ) verify_pool2d( [1, 32, 32, 16], [2, 3], [2, 2], [1, 1], [0, 3, 2, 1], "avg", False, False, layout="NHWC" ) verify_pool2d( [1, 31, 31, 16], [3, 3], [3, 3], [1, 1], [1, 0, 3, 2], "max", False, layout="NHWC" ) verify_pool2d([1, 31, 31, 16], [3, 3], [3, 3], [1, 1], [3, 2, 1, 0], "max", True, layout="NHWC") verify_pool2d( [1, 31, 31, 16], [3, 3], [3, 3], [2, 1], [2, 1, 0, 3], "avg", False, True, layout="NHWC" ) verify_pool2d( [1, 32, 32, 16], [2, 3], [2, 2], [2, 3], [0, 3, 2, 1], "avg", False, False, layout="NHWC" ) verify_pool2d( [1, 31, 31, 16], [3, 3], [3, 3], [3, 3], [1, 0, 3, 2], "max", False, layout="NHWC" ) verify_pool2d([1, 31, 31, 16], [3, 3], [3, 3], [2, 2], [3, 2, 1, 0], "max", True, layout="NHWC") def verify_
pool1d( input_shape, kernel, stride, dilation, padding, pool_type, ceil_mode, count_include_pad=True, layout="NCW", ): verify_poolnd( 1, input_shape, kernel, stride, dilation, padding, pool_type, ceil_mode, layout=layout, count_include_pad=count_include_pad, ) @tvm.testing.uses_gpu def test_pool1d(): """test cases of pool1d""" verify_pool1d([1, 16, 32], [2], [2], [1], [0, 0], "avg", False, True) verify_pool1d([1, 16, 31], [3], [3], [1], [1, 2], "avg", False, True) verify_pool1d([1, 16, 32], [2], [2], [1], [1, 2], "avg", False, False) verify_pool1d([1, 16, 31], [4], [4], [1], [3, 3], "avg", False, False) verify_pool1d([1, 16, 31], [4], [4], [1], [0, 0], "avg", False, False) verify_pool1d([1, 16, 32], [2], [2], [1], [0, 0], "max", False) verify_pool1d([1, 16, 31], [3], [3], [1], [2, 1], "max", False) verify_pool1d([1, 16, 31], [3], [3], [1], [2, 1], "max", True) verify_pool1d([1, 16, 31], [3], [3], [1], [2, 5], "avg", False, True) verify_pool1d([1, 16, 32], [2], [2], [1], [0, 3], "avg", False, False) verify_pool1d([1, 16, 31], [3], [3], [1], [1, 4], "max", False) verify_pool1d([1, 16, 31], [3], [3], [1], [3, 0], "max", True) verify_pool1d([1, 16, 31], [3], [3], [2], [2, 5], "avg", False, True) verify_pool1d([1, 16, 32], [2], [2], [3], [0, 3], "avg", False, False) verify_pool1d([1, 16, 31], [3], [3], [2], [1, 4], "max", False) verify_pool1d([1, 16, 31], [3], [3], [3], [3, 0], "max", True) verify_pool1d([1, 32, 16], [2], [2], [1], [0, 0], "avg", False, True, layout="NWC") verify_pool1d([1, 31, 16], [3], [3], [1], [1, 2], "avg", False, True, layout="NWC") verify_pool1d([1, 32, 16], [2], [2], [1], [1, 2], "avg", False, False, layout="NWC") verify_pool1d([1, 31, 16], [4], [4], [1], [3, 3], "avg", False, False, layout="NWC") verify_pool1d([1, 31, 16], [4], [4], [1], [0, 0], "avg", False, False, layo
ut="NWC") verify_pool1d([1, 32, 16], [2], [2], [1], [0, 0], "max", False, layout="NWC") verify_pool1d([1, 31, 16], [3], [3], [1], [2, 1], "max", False, layout="NWC") verify_pool1d([1, 31, 16], [3], [3], [1], [2, 1], "max", True, layout="NWC") verify_pool1d([1, 31, 16], [3], [3], [1], [2, 5], "avg", False, True, layout="NWC") verify_pool1d([1, 31, 16], [2], [2], [1], [0, 3], "avg", False, False, layout="NWC") verify_pool1d([1, 31, 16], [3], [3], [1], [1, 4], "max", False, layout="NWC") verify_pool1d([1, 31, 16], [3], [3], [1], [3, 0], "max", True, layout="NWC") verify_pool1d([1, 31, 16], [3], [3], [2], [2, 5], "avg", False, True, layout="NWC") verify_pool1d([1, 32, 16], [2], [2], [3], [0, 3], "avg", False, False, layout="NWC") verify_pool1d([1, 31, 16], [3], [3], [2], [1, 4], "max", False, layout="NWC") verify_pool1d([1, 31, 16], [3], [3], [3], [3, 0], "max", True, layout="NWC") if __name__ == "__main__": test_pool1d() test_pool2d() test_pool3d() test_pool_grad() test_global_pool() test_adaptive_pool()
import tvm
import tvm.relay
import tvm.testing
import tvm.topi