text
stringlengths
1
2.05k
import numpy as np
import scipy.stats def threefry_split(target, dev, gen): gen_placeholder = tvm.te.placeholder(gen.shape, name="gen", dtype="uint64") left_placeholder, right_placeholder = tvm.topi.random.threefry_split(gen_placeholder) s = tvm.topi.generic.schedule_extern([left_placeholder, right_placeholder]) f = tvm.build(s, [gen_placeholder, left_placeholder, right_placeholder]) left = tvm.nd.array(np.zeros(gen.shape, dtype="uint64")) right = tvm.nd.array(np.zeros(gen.shape, dtype="uint64")) f(tvm.nd.array(gen), left, right) return left.numpy(), right.numpy() def threefry_generate(target, dev, gen, size): gen_placeholder = tvm.te.placeholder(gen.shape, name="gen", dtype="uint64") left_placeholder, right_placeholder = tvm.topi.random.threefry_generate(gen_placeholder, size) s = tvm.topi.generic.schedule_extern([left_placeholder, right_placeholder]) f = tvm.build(s, [gen_placeholder, left_placeholder, right_placeholder]) out_gen = tvm.nd.array(np.zeros(gen.shape, dtype="uint64")) rands = tvm.nd.array(np.zeros(size, dtype="uint64")) f(tvm.nd.array(gen), out_gen, rands) return out_gen.numpy(), rands.numpy() def uniform(target, dev, gen, low, high, size, dtype): gen_placeholder = tvm.te.placeholder(gen.shape, name="gen", dtype="uint64") low_placeholder = tvm.te.placeholder(low.shape, name="low", dtype=dtype) high_placeholder = tvm.te.placeholder(high.shape, name="high", dtype=dtype) left_placeholder, right_placeholder = tvm.topi.random.uniform( gen_placeholder, low_placeholder, high_placeholder, size, dtype ) s = tvm.topi.generic.schedule_extern([left_placeholder, right_placeholder]) f = tvm.build( s, [gen_placeholder, low_placeholder, high_placeholder, left_placeholder, right_placeholder], target=target, ) out_gen = tvm.nd.array(np.zeros(gen.shape, dtype="uint64"), device=dev) rands = tvm.nd.array(np.zeros(size, dtype=dtype), device=dev) f( tvm.nd.array(gen, device=dev),
tvm.nd.array(low, device=dev), tvm.nd.array(high, device=dev), out_gen, rands, ) return out_gen.numpy(), rands.asnumpy() def multinomial(target, dev, gen, probs, num_samples): gen_placeholder = tvm.te.placeholder(gen.shape, name="gen", dtype="uint64") probs_placeholder = tvm.te.placeholder(probs.shape, name="probs", dtype="float32") new_gen_placeholder, indices_placeholder = tvm.topi.random.multinomial( gen_placeholder, probs_placeholder, num_samples ) s = tvm.topi.generic.schedule_extern([new_gen_placeholder, indices_placeholder]) f = tvm.build( s, [gen_placeholder, probs_placeholder, new_gen_placeholder, indices_placeholder], target=target, ) out_gen = tvm.nd.array(np.zeros(gen.shape, dtype="uint64"), device=dev) indices = tvm.nd.array(np.zeros((*probs.shape[:-1], num_samples), dtype="int32"), device=dev) f(tvm.nd.array(gen), tvm.nd.array(probs), out_gen, indices) return out_gen.numpy(), indices.asnumpy() @tvm.testing.parametrize_targets("llvm") def test_threefry_split(target, dev): gen = tvm.relay.random.threefry_key(0).data.numpy() a, b = threefry_split(target, dev, gen) assert (a != b).any() and ( a != gen ).any(), "Splitting a gen should result in different output gens" assert (a == np.array([0, 0, 0, 0, 0, 0, 0, 0, 1 << 62, 0], dtype="uint64")).all() assert (b == np.array([0, 0, 0, 0, 1 << 63, 0, 0, 0, 1 << 62, 0], dtype="uint64")).all() for i in range(129): a, b = threefry_split(target, dev, b) assert (a[0:4] == b[0:4]).all(), "State part of split should be the same" assert (b[0:4] != np.zeros(4, dtype="uint64")).any() a, a_rands = threefry_generate(target, dev, a, (100,)) b, b_rands = threefry_generate(target, dev, b, (100,)) assert ( a_rands != b_rands ).all(), "Numbers generated from different initial states should be different" _, rands1 = threefry_generate(target, dev, a, (100,))
_, rands2 = threefry_generate(target, dev, a, (100,)) assert ( rands1 == rands2 ).all(), "Numbers generated from the same initial state should be the same" a1, b1 = threefry_split(target, dev, a) a2, b2 = threefry_split(target, dev, a) assert (a1 == a2).all() and ( b1 == b2 ).all(), "Split called on the same input should return the same result" @tvm.testing.parametrize_targets("llvm") def test_threefry_generate(target, dev): gen = tvm.relay.random.threefry_key(0).data.numpy() a, rands = threefry_generate(target, dev, gen, (2048,)) assert ( rands.shape[0] == 2048 and len(rands.shape) == 1 ), "Output shape should match requested shape" assert (a != gen).any(), "Output generator should be different from input generator" a, rands = threefry_generate(target, dev, gen, (7,)) assert ( rands.shape[0] == 7 and len(rands.shape) == 1 ), "Output shape should match requested shape" gen = np.array( [0, 0, 0, 0, 0, 0, 0, 2**64 - 2, 1 << 63, 0], dtype="uint64" ) a, rands = threefry_generate(target, dev, gen, (2048,)) assert gen[4] != a[4], "Overflow of counter should trigger path change" assert a[7] == 2048, "Overflow of counter should still update counter" gen = np.array([0, 0, 0, 0, 0, 0, 0, 2**64 - 2, 0, 0], dtype="uint64") a, rands = threefry_generate(target, dev, gen, (2048,)) assert ( gen[0:4] != a[0:4] ).any(), "Overflowing counter with no space left in path should change state" @tvm.testing.parametrize_targets("llvm") def test_threefry_wrapping(target, dev): assert tvm.topi.random.threefry_test_wrapping( target, dev ), f"{target} does not suppport wrapping unsigned integer arithmetic" @tvm.testing.parametrize_targets("llvm") def test_uniform(target, dev): gen = tvm.relay.random.threefry_key(0).data.numpy() m = 1024 n = 1024 dtypes = ["float32", "float64"] for dtype in dtypes: low = np.array(5.0, dtyp
e=dtype) high = np.array(10.0, dtype=dtype) new_gen, rands = uniform(target, dev, gen, low, high, (m, n), dtype) assert (gen != new_gen).any() assert abs(np.mean(rands) - 7.5) < 1e-1 assert np.min(rands) >= 5.0 assert np.max(rands) <= 10.0 @tvm.testing.parametrize_targets("llvm") def test_multinomial(target, dev): def _verify_multinomial(size, num_samples, test_statistics=False): gen = tvm.relay.random.threefry_key(np.random.randint(0, 1e5)).data.numpy() probs = np.random.randint(low=-50, high=1000, size=size).astype("float32") new_gen, indices = multinomial(target, dev, gen, probs, num_samples) assert (gen != new_gen).any() assert np.min(indices) >= 0 assert np.max(indices) < probs.shape[-1] if test_statistics: probs = probs.astype("float64") probs = np.reshape(probs, [-1, probs.shape[-1]]) probs = np.maximum(probs, 0) probs = probs / np.expand_dims(np.sum(probs, axis=-1), axis=-1) expected_frequency = probs * num_samples + np.finfo(float).eps expected_frequency = ( np.expand_dims((num_samples / np.sum(expected_frequency, axis=-1)), axis=-1) * expected_frequency ) indices = np.reshape(indices, [-1, indices.shape[-1]]) index_list = [np.squeeze(x, 0) for x in np.split(indices, indices.shape[0], axis=0)] observed_freqs = [np.bincount(samples, minlength=size[-1]) for samples in index_list] observed_freqs = np.stack(observed_freqs, axis=0) _, p_value = scipy.stats.chisquare(observed_freqs, expected_frequency, axis=-1) assert np.all(p_value > 1e-6) _verify_multinomial([3], 2) _verify_multinomial([2, 10], 1) _verify_multinomial([2, 3, 10], 4)
_verify_multinomial([3, 10], 10000, test_statistics=True) if __name__ == "__main__": test_threefry_split(tvm.target.Target("llvm"), tvm.device("cpu")) test_threefry_generate(tvm.target.Target("llvm"), tvm.device("cpu")) test_threefry_wrapping(tvm.target.Target("llvm"), tvm.device("cpu")) test_uniform(tvm.target.Target("llvm"), tvm.device("cpu")) test_multinomial(tvm.target.Target("llvm"), tvm.device("cpu"))
"""Test code for QNN operators."""
import numpy as np
import tvm from tvm
import topi, relay, te from tvm.contrib
import graph_executor
import tvm.topi.testing def verify_simulated_quantize(data_shape, out_dtype, channels, axis): A = te.placeholder(data_shape, name="value", dtype="float32") D = te.placeholder([], name="dtype", dtype="int32") S = te.placeholder([te.size_var("scale_dim")], name="scale", dtype="float32") Z = te.placeholder([te.size_var("zp_dim")], name="zp", dtype="int32") SIM_Q = topi.nn.simulated_quantize(A, D, output_scale=S, output_zero_point=Z, axis=axis) a_np = np.random.uniform(size=data_shape).astype("float32") d_np = np.int32(topi.nn.SQNN_DTYPE_TO_CODE[out_dtype]) s_np = np.random.uniform(low=1e-4, high=0.1, size=channels).astype("float32") z_np = np.random.uniform(low=-10, high=10, size=channels).astype("int32") q_np = np.zeros(shape=data_shape, dtype="float32") def check_target(target, dev): a = tvm.nd.array(a_np, dev) d = tvm.nd.array(d_np, dev) s = tvm.nd.array(s_np, dev) z = tvm.nd.array(z_np, dev) q = tvm.nd.array(q_np, dev) per_channel = channels[0] != 1 a_var = relay.var("a", shape=data_shape, dtype="float32") if per_channel: s_var = relay.const(s_np) z_var = relay.const(z_np) else: s_var = relay.const(s_np[0]) z_var = relay.const(z_np[0]) real_q_op = relay.qnn.op.quantize(a_var, s_var, z_var, axis=axis, out_dtype=out_dtype) with tvm.transform.PassContext(opt_level=3): lib = relay.build(tvm.IRModule.from_expr(real_q_op), target=target) m = graph_executor.GraphModule(lib["default"](dev)) m.set_input("a", a_np) m.run() real_q_out = m.get_output(0) with tvm.target.Target(target): sched = tvm.topi.testing.get_injective_schedule(target)(SIM_Q) func = tvm.build(sched, [A, D, S, Z, SIM_Q], target, name="sim_quantize") func(a, d, s, z, q) mismatch = q.numpy() != real_q_out.numpy().astype("float32")
assert np.sum(mismatch) <= 3 for target, dev in tvm.testing.enabled_targets(): check_target(target, dev) def test_simulated_quantize(): verify_simulated_quantize([1], "int8", [1], -1) verify_simulated_quantize([2, 5], "int8", [5], 1) verify_simulated_quantize([1, 32, 32, 32], "int8", [32], -1) verify_simulated_quantize([1, 32, 32, 32], "uint8", [32], -2) verify_simulated_quantize([2, 5], "int32", [5], 1) def verify_simulated_dequantize(data_shape, in_dtype, channels, axis): A = te.placeholder(data_shape, name="value", dtype="float32") D = te.placeholder([], name="dtype", dtype="int32") S = te.placeholder([te.size_var("scale_dim")], name="scale", dtype="float32") Z = te.placeholder([te.size_var("zp_dim")], name="zp", dtype="int32") SIM_DQ = topi.nn.simulated_dequantize(A, D, input_scale=S, input_zero_point=Z, axis=axis) a_np = np.random.uniform(low=-128, high=127, size=data_shape).astype(in_dtype) a_np_f = a_np.astype("float32") d_np = np.int32(topi.nn.SQNN_DTYPE_TO_CODE[in_dtype]) s_np = np.random.uniform(low=1e-4, high=0.1, size=channels).astype("float32") z_np = np.random.uniform(low=-10, high=10, size=channels).astype("int32") dq_np = np.zeros(shape=data_shape, dtype="float32") def check_target(target, dev): a = tvm.nd.array(a_np_f, dev) d = tvm.nd.array(d_np, dev) s = tvm.nd.array(s_np, dev) z = tvm.nd.array(z_np, dev) dq = tvm.nd.array(dq_np, dev) per_channel = channels[0] != 1 a_var = relay.var("a", shape=data_shape, dtype=in_dtype) if per_channel: s_var = relay.const(s_np) z_var = relay.const(z_np) else: s_var = relay.const(s_np[0]) z_var = relay.const(z_np[0]) real_dq_op = relay.qnn.op.dequantize(a_var, s_var, z_var, axis=axis) with tvm.transform.PassContext(opt_level=3): lib = relay.build(tvm.IRModule.from_expr(real_dq_op), tar
get=target) m = graph_executor.GraphModule(lib["default"](dev)) m.set_input("a", a_np) m.run() real_dq_out = m.get_output(0) with tvm.target.Target(target): sched = tvm.topi.testing.get_injective_schedule(target)(SIM_DQ) func = tvm.build(sched, [A, D, S, Z, SIM_DQ], target, name="sim_quantize") func(a, d, s, z, dq) tvm.testing.assert_allclose(dq.numpy(), real_dq_out.numpy().astype("float32"), rtol=1e-5) for target, dev in tvm.testing.enabled_targets(): check_target(target, dev) def test_simulated_dequantize(): verify_simulated_dequantize([1], "int8", [1], -1) verify_simulated_dequantize([2, 5], "int8", [5], 1) verify_simulated_dequantize([2, 5], "int8", [2], 0) verify_simulated_dequantize([1, 32, 32, 32], "int8", [32], -1) verify_simulated_dequantize([1, 32, 32, 32], "uint8", [32], -2) verify_simulated_dequantize([2, 5], "int32", [5], 1) if __name__ == "__main__": test_simulated_quantize() test_simulated_dequantize()
"""Test code for reduce."""
import os
import sys
import numpy as np
import pytest
import tvm
import tvm.testing
import tvm.topi.testing from tvm
import te, topi in_shape, axis, keepdims, reduce_type, dtype = tvm.testing.parameters( ((32,), 0, False, "argmax", "float32"), ((128, 24, 128, 24), (1, 2, 3), True, "sum", "float32"), ((2, 3), None, True, "all", "bool"), ((128, 24 * 128 * 24), (1,), False, "max", "float32"), ((32, 128, 24), None, True, "sum", "float32"), ((32, 128, 24), None, True, "all", "bool"), ((128, 24, 128, 24), (0, 2), False, "min", "float32"), ((32, 128), 1, True, "argmax", "float32"), ((32, 24, 32, 24), 2, False, "argmin", "float32"), ((31, 21, 15), None, True, "argmax", "float32"), ((31, 21, 15), None, False, "sum", "float32"), ((128, 24, 128, 24), (1, 2, 3), True, "sum", "float64"), ((2, 3), None, True, "any", "bool"), ((32, 128, 24), None, True, "any", "bool"), ((1, 4, 7), 1, True, "any", "bool"), ((128, 24, 128, 24), 2, False, "any", "bool"), ) @tvm.testing.fixture(cache_return_value=True) def ref_data(in_shape, axis, keepdims, reduce_type, dtype): if dtype == "bool": in_npy_map = in_npy = np.random.choice([True, False], size=in_shape) else: in_npy = np.random.uniform(-1, 1, size=in_shape).astype(dtype) in_npy_map = np.sqrt(np.exp(in_npy)).astype(dtype) if reduce_type == "sum": out_npy = in_npy_map.sum(axis=axis, keepdims=keepdims) elif reduce_type == "all" and dtype == "bool": out_npy = in_npy_map.all(axis=axis, keepdims=keepdims) elif reduce_type == "any" and dtype == "bool": out_npy = in_npy_map.any(axis=axis, keepdims=keepdims) elif reduce_type == "max": out_npy = in_npy_map.max(axis=axis, keepdims=keepdims) elif reduce_type == "min": out_npy = in_npy_map.min(axis=axis, keepdims=keepdims) elif reduce_type == "argmax": out_npy = _my_npy_argmax(in_npy_map, axis=axis, keepdims=keepdims) elif reduce_type == "argmin": out_npy = _my_npy_argmin(in_npy_map, axis=axis, keepdims=keepdims) else: raise NotImplementedError return in_npy, in
_npy_map, out_npy def _my_npy_argmax(arr, axis, keepdims): if not keepdims: return arr.argmax(axis=axis) else: if axis is None: out_shape = [1 for _ in arr.shape] else: out_shape = list(arr.shape) out_shape[axis] = 1 return arr.argmax(axis=axis).reshape(out_shape) def _my_npy_argmin(arr, axis, keepdims): if not keepdims: return arr.argmin(axis=axis) else: if axis is None: out_shape = [1 for _ in arr.shape] else: out_shape = list(arr.shape) out_shape[axis] = 1 return arr.argmin(axis=axis).reshape(out_shape) def test_reduce_map(target, dev, ref_data, in_shape, axis, keepdims, reduce_type, dtype): target = tvm.target.Target(target) if target.kind.name == "vulkan" and reduce_type in ["sum", "any", "all"]: pytest.xfail(f"Vulkan backend has known errors on {reduce_type}") in_npy, in_npy_map, out_npy = ref_data A = te.placeholder(shape=in_shape, name="A", dtype=dtype) A1 = topi.sqrt(topi.exp(A)) out_dtype = dtype if reduce_type == "sum": B = topi.sum(A1, axis=axis, keepdims=keepdims) elif reduce_type == "all": B = topi.all(A, axis=axis, keepdims=keepdims) elif reduce_type == "any": B = topi.any(A, axis=axis, keepdims=keepdims) elif reduce_type == "max": B = topi.max(A1, axis=axis, keepdims=keepdims) elif reduce_type == "min": B = topi.min(A1, axis=axis, keepdims=keepdims) elif reduce_type == "argmax": B = topi.argmax(A1, axis=axis, keepdims=keepdims) out_dtype = "int32" elif reduce_type == "argmin": B = topi.argmin(A1, axis=axis, keepdims=keepdims) out_dtype = "int32" else: raise NotImplementedError with tvm.target.Target(target): s = tvm.topi.testing.get_reduce_schedule(target)(B) foo = tvm.build(s, [A, B], target, name=reduce_type) data_tvm = tvm.nd.array(in_npy, device=dev) out_tvm = tv
m.nd.empty(shape=out_npy.shape, device=dev, dtype=out_dtype) foo(data_tvm, out_tvm) if reduce_type == "argmax" or reduce_type == "argmin": out_tvm_indices = out_tvm.numpy() if keepdims: out_tvm_indices = np.take(out_tvm_indices, indices=0, axis=axis) if axis is None: out_tvm_val = in_npy_map.ravel()[out_tvm_indices] else: other_indices = tuple(np.indices(in_shape[0:axis] + in_shape[(axis + 1) :])) sel_indices = other_indices[0:axis] + (out_tvm_indices,) + other_indices[axis:] out_tvm_val = in_npy_map[sel_indices] if reduce_type == "argmax": tvm.testing.assert_allclose(out_tvm_val, in_npy_map.max(axis=axis), 1e-3, 1e-3) elif reduce_type == "argmin": tvm.testing.assert_allclose(out_tvm_val, in_npy_map.min(axis=axis), 1e-3, 1e-3) else: tvm.testing.assert_allclose(out_tvm.numpy(), out_npy, 1e-3, 1e-3) def test_complex_reduce(target, dev): in_shape = (2, 3) dtype = "float32" axis = 0 keepdims = False A = te.placeholder(shape=in_shape, name="A", dtype=dtype) B = topi.sum(A, axis=axis, keepdims=keepdims) C = topi.add(B, B) D = topi.multiply(B, B) E = topi.add(C, D) with tvm.target.Target(target): s = tvm.topi.testing.get_reduce_schedule(target)(E) foo = tvm.build(s, [A, E], target, name="sum") in_npy = np.random.uniform(-1, 1, size=in_shape).astype(dtype) sum_npy = in_npy.sum(axis=axis, keepdims=keepdims) out_npy = sum_npy * 2 + sum_npy * sum_npy data_tvm = tvm.nd.array(in_npy, device=dev) out_tvm = tvm.nd.empty(shape=out_npy.shape, device=dev, dtype=dtype) foo(data_tvm, out_tvm) tvm.testing.assert_allclose(out_tvm.numpy(), out_npy, 1e-3, 1e-3) if __name__ == "__main__": tvm.testing.main()
"""Test code for relu activation"""
import sys
import os
import numpy as np
import tvm from tvm
import te from tvm
import topi
import tvm.topi.testing from tvm.topi.utils
import get_const_tuple from tvm.contrib.nvcc
import have_fp16
import pytest
import tvm.testing m, n, dtype = tvm.testing.parameters( (10, 128, "float32"), (128, 64, "float16"), ) def test_relu(target, dev, m, n, dtype): A = te.placeholder((m, n), name="A", dtype=dtype) B = topi.nn.relu(A) a_np = np.random.uniform(low=-1.0, high=1.0, size=get_const_tuple(A.shape)).astype(A.dtype) b_np = a_np * (a_np > 0) if dtype == "float16" and target == "cuda" and not have_fp16(tvm.cuda(0).compute_version): pytest.skip("Skip because %s does not have fp16 support" % target) print("Running on target: %s" % target) with tvm.target.Target(target): s = tvm.topi.testing.get_elemwise_schedule(target)(B) a = tvm.nd.array(a_np, dev) b = tvm.nd.array(np.zeros(get_const_tuple(B.shape), dtype=B.dtype), dev) with tvm.transform.PassContext(opt_level=3, disabled_pass=["tir.CommonSubexprElimTIR"]): foo = tvm.build(s, [A, B], target, name="relu") foo(a, b) tvm.testing.assert_allclose(b.numpy(), b_np, rtol=1e-5) size, alpha = tvm.testing.parameters((100, 0.1)) def test_leaky_relu(size, alpha): A = te.placeholder((size,), name="A") B = topi.nn.leaky_relu(A, alpha) s = te.create_schedule([B.op]) a_np = np.random.uniform(size=get_const_tuple(A.shape)).astype(A.dtype) b_np = a_np * (a_np > 0) + a_np * (a_np < 0) * alpha dev = tvm.cpu(0) a = tvm.nd.array(a_np, dev) b = tvm.nd.array(np.zeros(get_const_tuple(B.shape), dtype=B.dtype), dev) with tvm.transform.PassContext(opt_level=3, disabled_pass=["tir.CommonSubexprElimTIR"]): foo = tvm.build(s, [A, B], "llvm", name="leaky_relu") foo(a, b) tvm.testing.assert_allclose(b.numpy(), b_np, rtol=1e-5) x, w, axis, weight_reshape = tvm.testing.parameters( ((1, 3, 2, 2), (3,), 1, (3, 1, 1)), ((1, 3, 2, 2), (2,), 2, (2, 1)), ((1, 3), (3,), 1, (3,)), ) def test_prelu(x, w, axis, weight_reshape): X = te.placeholder((x), name="X") W = te.placeholder((w), name="W") x_np = np.random.uniform(low=-1.0, hig
h=1.0, size=get_const_tuple(X.shape)).astype(X.dtype) w_np = np.random.uniform(low=-1.0, high=1.0, size=get_const_tuple(W.shape)).astype(W.dtype) def _prelu_numpy(x, W): return (x < 0) * (x * W.reshape(weight_reshape)) + (x >= 0) * x B = topi.nn.prelu(X, W, axis) s = te.create_schedule([B.op]) dev = tvm.cpu(0) x_tvm = tvm.nd.array(x_np, dev) w_tvm = tvm.nd.array(w_np, dev) b = tvm.nd.array(np.zeros(get_const_tuple(X.shape), dtype=B.dtype), dev) with tvm.transform.PassContext(opt_level=3, disabled_pass=["tir.CommonSubexprElimTIR"]): foo = tvm.build(s, [X, W, B], "llvm", name="prelu") foo(x_tvm, w_tvm, b) out_np = _prelu_numpy(x_np, w_np) tvm.testing.assert_allclose(b.numpy(), out_np, rtol=1e-5) if __name__ == "__main__": tvm.testing.main()
"""Example code to do reorg."""
import numpy as np from tvm
import topi from tvm.topi.utils
import get_const_tuple
import tvm from tvm
import te
import tvm.topi.testing
import tvm.testing _reorg_schedule = { "generic": topi.generic.schedule_reorg, "gpu": topi.cuda.schedule_reorg, } def verify_reorg(batch, in_size, in_channel, stride): """Verify reorg operator by comparing outputs from tvm and numpy implementation""" in_height = in_width = in_size A = te.placeholder((batch, in_channel, in_height, in_width), name="A") B = topi.vision.reorg(A, stride) a_shape = get_const_tuple(A.shape) dtype = A.dtype def get_ref_data_reorg(): a_np = np.random.uniform(size=a_shape).astype(dtype) b_np = tvm.topi.testing.reorg_python(a_np, stride) return a_np, b_np a_np, b_np = get_ref_data_reorg() def check_device(device): """Cheching devices is enabled or not""" dev = tvm.device(device, 0) if not tvm.testing.device_enabled(device): print("Skip because %s is not enabled" % device) return print("Running on target: %s" % device) with tvm.target.Target(device): s_func = tvm.topi.testing.dispatch(device, _reorg_schedule) s = s_func([B]) a = tvm.nd.array(a_np, dev) b = tvm.nd.array(np.zeros(get_const_tuple(B.shape), dtype=B.dtype), dev) func = tvm.build(s, [A, B], device) func(a, b) tvm.testing.assert_allclose(b.numpy(), b_np, rtol=1e-5) for device in ["llvm", "cuda"]: check_device(device) @tvm.testing.uses_gpu def test_reorg(): verify_reorg(1, 20, 8, 2) if __name__ == "__main__": test_reorg()
from typing
import Callable
import numpy as np
import tvm
import tvm.testing
import tvm.topi.testing from tvm
import topi topi_funcs = { "cumsum": {"generic": topi.cumsum, "cuda": topi.cuda.cumsum}, "cumprod": {"generic": topi.cumprod, "cuda": topi.cuda.cumprod}, } identity_value = {"cumsum": 0, "cumprod": 1} def get_implementations(name, axis, dtype, exclusive): topi_func_generic = topi_funcs[name]["generic"] topi_func_cuda = topi_funcs[name]["cuda"] return { "generic": ( lambda x: topi_func_generic(x, axis, dtype, exclusive=exclusive), topi.generic.schedule_extern, ), "cuda": ( lambda x: topi_func_cuda(x, axis, dtype, exclusive=exclusive), topi.cuda.schedule_scan, ), "nvptx": ( lambda x: topi_func_cuda(x, axis, dtype, exclusive=exclusive), topi.cuda.schedule_scan, ), "vulkan": ( lambda x: topi_func_cuda(x, axis, dtype, exclusive=exclusive), topi.cuda.schedule_scan, ), "metal": ( lambda x: topi_func_cuda(x, axis, dtype, exclusive=exclusive), topi.cuda.schedule_scan, ), } def _run_tests( dev, target, op_name: str = "cumsum", gt_func: Callable[..., np.array] = np.cumsum, ): def check_scan(np_ref, data, axis=None, dtype=None, exclusive=False): implementations = get_implementations(op_name, axis, dtype, exclusive) fcompute, fschedule = tvm.topi.testing.dispatch(target, implementations) tvm.topi.testing.compare_numpy_tvm([data], np_ref, target, dev, fcompute, fschedule) data = np.array([2, 3, 0]) check_scan(gt_func(data), data) data = np.random.rand(10) > 0.5 data = data.astype(np.int32) check_scan(gt_func(data, dtype=np.int32), data) check_scan(gt_func(data), data, dtype="int64") data = np.random.rand(10) > 0.5 check_scan(gt_func(data, dtype=np.int32), data, dtype="int32") for in_dtype in ["float32", "float64"]: if target == "metal" and in_dtype == "float64": continue data =
np.random.randn(10, 10).astype(in_dtype) check_scan(gt_func(data), data) check_scan(gt_func(data, axis=0), data, axis=0) check_scan(gt_func(data, axis=1), data, axis=1) data = np.random.randn(10, 5, 10).astype(in_dtype) check_scan(gt_func(data), data) check_scan(gt_func(data, axis=0), data, axis=0) check_scan(gt_func(data, axis=1), data, axis=1) check_scan(gt_func(data, axis=-1), data, axis=-1) for in_dtype in ["int32", "int64"]: data = np.random.randint(-100, 100, size=(100, 100)).astype(in_dtype) check_scan(gt_func(data, dtype=in_dtype), data) check_scan(gt_func(data), data, dtype="int64") check_scan(gt_func(data, axis=0, dtype=in_dtype), data, axis=0) check_scan(gt_func(data, axis=1, dtype=in_dtype), data, axis=1) data = np.random.randint(1 << 30, (1 << 31) - 1, size=(100)).astype(in_dtype) check_scan(gt_func(data), data, dtype="int64") data = np.random.randint(-100, 100, size=(100, 100)).astype("int64") expected_result = np.roll(gt_func(data), 1) expected_result[0] = identity_value[op_name] check_scan(expected_result, data, dtype="int64", exclusive=True) expected_result = np.roll(gt_func(data, axis=0, dtype=in_dtype), 1, axis=0) expected_result[0, :] = identity_value[op_name] check_scan(expected_result, data, axis=0, exclusive=True) expected_result = np.roll(gt_func(data, axis=1, dtype=in_dtype), 1, axis=1) expected_result[:, 0] = identity_value[op_name] check_scan(gt_func(data, axis=1, dtype=in_dtype), data, axis=1) @tvm.testing.parametrize_targets def test_cumsum(dev, target): _run_tests(dev, target, op_name="cumsum", gt_func=np.cumsum) @tvm.testing.parametrize_targets def test_cumprod(dev, target): _run_tests(dev, target, op_name="cumprod", gt_func=np.cumprod) if __name__ == "__main__": test_cumsum(tvm.device("cpu"), tvm.target.Target("llvm")) test_cumsum(tvm.device("cuda"), tvm.target.Target("cuda")) test_cumsu
m(tvm.device("nvptx"), tvm.target.Target("nvptx")) test_cumsum(tvm.device("vulkan"), tvm.target.Target("vulkan")) test_cumsum(tvm.device("metal"), tvm.target.Target("metal")) test_cumprod(tvm.device("cpu"), tvm.target.Target("llvm")) test_cumprod(tvm.device("cuda"), tvm.target.Target("cuda")) test_cumprod(tvm.device("nvptx"), tvm.target.Target("nvptx")) test_cumprod(tvm.device("vulkan"), tvm.target.Target("vulkan")) test_cumprod(tvm.device("metal"), tvm.target.Target("metal"))
import numpy as np
import tvm
import tvm.testing from tvm
import topi
import tvm.topi.testing @tvm.testing.parametrize_targets def test_scatter_nd(dev, target): def check_scatter_nd(data, indices, updates, out, mode="add"): implementations = { "generic": ( lambda x, y, z: topi.scatter_nd(x, y, z, mode), topi.generic.schedule_extern, ), "gpu": ( lambda x, y, z: topi.cuda.scatter_nd(x, y, z, mode), topi.generic.schedule_extern, ), "cpu": ( lambda x, y, z: topi.x86.scatter_nd(x, y, z, mode), topi.generic.schedule_extern, ), } fcompute, fschedule = tvm.topi.testing.dispatch(target, implementations) tvm.topi.testing.compare_numpy_tvm( [data, indices, updates], out, target, dev, fcompute, fschedule ) data = np.zeros((2, 2)).astype("int64") indices = np.array([[1, 1, 0], [0, 1, 0]]) updates = np.array([2, 3, 0]) out = np.array([[0, 0], [2, 3]]) check_scatter_nd(data, indices, updates, out) data = np.zeros((2, 2, 2, 2)).astype("int64") indices = np.array([[0, 1], [1, 1]]) updates = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) out = np.array([[[[0, 0], [0, 0]], [[1, 2], [3, 4]]], [[[0, 0], [0, 0]], [[5, 6], [7, 8]]]]) check_scatter_nd(data, indices, updates, out) indices = np.array([[1, 0, 0]]) updates = np.reshape(np.arange(1560 * 3), (3, 1560)).astype("float32") shape = (2, 1560) data = np.zeros(shape).astype("float32") out = data.copy() out[1, :] += updates[0, :] out[0, :] += updates[1, :] out[0, :] += updates[2, :] check_scatter_nd(data, indices, updates, out) for mode in ["add", "update"]: updates = np.ones((5, 3)).astype("float64") indices = np.stack((np.random.randint(2, size=5), np.random.randint(7, size=5))).astype( "int64" ) shape = (2, 7, 3) data = np.random.random(shape).astype("float64") out = data.copy()
for i in range(indices.shape[1]): for j in range(updates.shape[1]): if mode == "add": out[indices[0, i], indices[1, i], j] += updates[i, j] elif mode == "update": out[indices[0, i], indices[1, i], j] = updates[i, j] check_scatter_nd(data, indices, updates, out, mode) if __name__ == "__main__": test_scatter_nd(tvm.device("cpu"), tvm.target.Target("llvm"))
import numpy as np
import tvm
import tvm.testing
import tvm.topi.testing from tvm.topi.testing
import searchsorted_ref from tvm
import te, topi topi_funcs = {"generic": topi.searchsorted, "cuda": topi.cuda.searchsorted} def get_implementations(): topi_func_generic = topi_funcs["generic"] topi_func_cuda = topi_funcs["cuda"] return { "generic": ( lambda x, y, side, out_dtype: topi_func_generic(x, y, side, out_dtype), topi.generic.schedule_extern, ), "cuda": ( lambda x, y, side, out_dtype: topi_func_cuda(x, y, side, out_dtype), topi.cuda.schedule_extern, ), "vulkan": ( lambda x, y, side, out_dtype: topi_func_cuda(x, y, side, out_dtype), topi.cuda.schedule_extern, ), } @tvm.testing.parametrize_targets def test_searchsorted(dev, target): def verify_with_input(sorted_sequence_np, values_np, right): sorted_sequence = te.placeholder(sorted_sequence_np.shape, dtype="float32") values = te.placeholder(values_np.shape, dtype="float32") out_dtype = "int32" implementations = get_implementations() fcompute, fschedule = tvm.topi.testing.dispatch(target, implementations) with tvm.target.Target(target): indices = fcompute(sorted_sequence, values, right, out_dtype) s = fschedule([indices]) func = tvm.build(s, [sorted_sequence, values, indices], target=target) dev = tvm.device(target, 0) a = tvm.nd.array(sorted_sequence_np, dev) b = tvm.nd.array(values_np, dev) c = tvm.nd.array(np.zeros(values_np.shape, dtype=indices.dtype), dev) func(a, b, c) ref = searchsorted_ref(sorted_sequence_np, values_np, right, out_dtype) np.testing.assert_equal(c.numpy(), ref) def verify(sequence_len, num_search, outer_axes, right, sorted_sequence_1d=False): if sorted_sequence_1d: sorted_sequence_shape = (sequence_len,) else: sorted_sequence_shape = outer_axes + (sequence_len,) values_shape = outer_axes + (num_search,) verify_with_input(
np.sort(np.random.randn(*sorted_sequence_shape).astype("float32"), axis=-1), np.random.randn(*values_shape).astype("float32"), right, ) verify(1024, 1000, (10, 5, 3), False) verify(999, 2000, (10, 5, 3), True) verify(1000, 1000, (), False) verify(2001, 100, (500,), True) verify(2001, 100, (500,), False, sorted_sequence_1d=True) for right in [True, False]: sorted_sequence = np.array([1, 2, 3, 4, 5], dtype="float32") verify_with_input(sorted_sequence, np.array([6], dtype="float32"), right) verify_with_input(sorted_sequence, np.array([0], dtype="float32"), right)
"""Test code for softmax"""
import logging
import os
import sys
import numpy as np
import pytest
import tvm
import tvm.testing
import tvm.topi.testing from tvm
import te, topi from tvm.topi.utils
import get_const_tuple _softmax_schedule = { "generic": topi.generic.schedule_softmax, "cpu": topi.x86.schedule_softmax, "gpu": topi.cuda.schedule_softmax, "hls": topi.hls.schedule_softmax, } dtype = tvm.testing.parameter("float32", "float64") configs = { "softmax": { "topi": topi.nn.softmax, "ref": tvm.topi.testing.softmax_python, "dimensions": [1, 2, 4], "axis": [0, 1, 2, 3], }, "log_softmax": { "topi": topi.nn.log_softmax, "ref": tvm.topi.testing.log_softmax_python, "dimensions": [2, 3], "axis": [1], }, } shapes = [(32, 10), (3, 4), (1, 16, 256, 256), (32,)] softmax_operation, shape, axis = tvm.testing.parameters( *[ (name, shape, axis) for name, config in configs.items() for shape in shapes if len(shape) in config["dimensions"] for axis in range(len(shape)) if axis in config["axis"] ] ) @tvm.testing.fixture(cache_return_value=True) def ref_data(shape, dtype, softmax_operation, axis): ref_func = configs[softmax_operation]["ref"] a_np = np.random.uniform(size=shape).astype(dtype) perm = list(range(a_np.ndim)) perm[-1], perm[axis] = perm[axis], perm[-1] trans_shape = [a_np.shape[i] for i in perm] a_np_2d = a_np.transpose(perm).reshape(-1, trans_shape[-1]) b_np_2d = ref_func(a_np_2d) b_np = b_np_2d.reshape(*trans_shape).transpose(perm) return a_np, b_np def test_softmax(target, dev, shape, dtype, ref_data, softmax_operation, axis): target = tvm.target.Target(target) if target.kind.name == "vulkan" and dtype == "float64": pytest.xfail("Vulkan GLSL.std.450 does not support 64-bit floats") A = te.placeholder(shape, dtype=dtype, name="A") topi_op = configs[softmax_operation]["topi"] B = topi_op(A, axis=axis) with tvm.target.Target(target): fschedule = tvm.topi.testing.dispatch(target, _softmax_schedule) s = fschedule(B) a_np, b_np = ref_data a = tvm.nd
.array(a_np, dev) b = tvm.nd.array(np.zeros(get_const_tuple(B.shape), dtype=B.dtype), dev) f = tvm.build(s, [A, B], target) f(a, b) tvm.testing.assert_allclose(b.numpy(), b_np, rtol=1e-5) if __name__ == "__main__": tvm.testing.main()
"""Test code for vision package"""
import sys
import numpy as np
import pytest
import tvm
import tvm.testing
import tvm.topi.testing from tvm
import te, topi _sort_implement = { "generic": (topi.sort, topi.generic.schedule_sort), "gpu": (topi.cuda.sort, topi.cuda.schedule_sort), } _argsort_implement = { "generic": (topi.argsort, topi.generic.schedule_argsort), "gpu": (topi.cuda.argsort, topi.cuda.schedule_argsort), } _topk_implement = { "generic": (topi.topk, topi.generic.schedule_topk), "gpu": (topi.cuda.topk, topi.cuda.schedule_topk), } axis = tvm.testing.parameter(0, -1, 1) is_ascend = tvm.testing.parameter(True, False, ids=["is_ascend", "not_ascend"]) dtype = tvm.testing.parameter("int64", "float32") topk = tvm.testing.parameter(0, 1, 5) topk_ret_type = tvm.testing.parameter("values", "indices", "both") def test_sort(target, dev, axis, is_ascend): np.random.seed(0) dshape = (20, 100) data_dtype = "float32" data = te.placeholder(dshape, name="data", dtype=data_dtype) perm = np.arange(dshape[0] * dshape[1], dtype=data_dtype) np.random.shuffle(perm) np_data = perm.reshape(dshape) if is_ascend: np_sort = np.sort(np_data, axis=axis) else: np_sort = -np.sort(-np_data, axis=axis) if axis == 0: np_sort = np_sort[: dshape[axis], :] else: np_sort = np_sort[:, : dshape[axis]] with tvm.target.Target(target): fcompute, fschedule = tvm.topi.testing.dispatch(target, _sort_implement) out = fcompute(data, axis=axis, is_ascend=is_ascend) s = fschedule(out) tvm_data = tvm.nd.array(np_data, dev) tvm_out = tvm.nd.array(np.zeros(dshape, dtype=data_dtype), dev) f = tvm.build(s, [data, out], target) f(tvm_data, tvm_out) tvm.testing.assert_allclose(tvm_out.numpy(), np_sort, rtol=1e0) def test_argsort(target, dev, axis, is_ascend): dshape = (20, 100) data_dtype = "float32" data = te.placeholder(dshape, name="data", dtype=data_dtype) perm = np.arange(dshape[0] * dshape[1], dtype=data_dtype) np.random.shuffle(perm) np_data = perm.reshape(dshape) if is_ascend: np_indices = np.arg
sort(np_data, axis=axis) else: np_indices = np.argsort(-np_data, axis=axis) if axis == 0: np_indices = np_indices[: dshape[axis], :] else: np_indices = np_indices[:, : dshape[axis]] with tvm.target.Target(target): fcompute, fschedule = tvm.topi.testing.dispatch(target, _argsort_implement) out = fcompute(data, axis=axis, is_ascend=is_ascend) s = fschedule(out) tvm_data = tvm.nd.array(np_data, dev) tvm_out = tvm.nd.array(np.zeros(dshape, dtype=data_dtype), dev) f = tvm.build(s, [data, out], target) f(tvm_data, tvm_out) tvm.testing.assert_allclose(tvm_out.numpy(), np_indices.astype(data_dtype), rtol=1e0) def test_topk(target, dev, topk, axis, topk_ret_type, is_ascend, dtype): np.random.seed(0) shape = (20, 100) data_dtype = "float32" data = te.placeholder(shape, name="data", dtype=data_dtype) np_data = np.random.uniform(size=shape).astype(data_dtype) if is_ascend: np_indices = np.argsort(np_data, axis=axis) else: np_indices = np.argsort(-np_data, axis=axis) kk = topk if topk >= 1 else shape[axis] if axis == 0: np_indices = np_indices[:kk, :] np_values = np.zeros(np_indices.shape).astype(data_dtype) for i in range(shape[1]): np_values[:, i] = np_data[np_indices[:, i], i] else: np_indices = np_indices[:, :kk] np_values = np.zeros(np_indices.shape).astype(data_dtype) for i in range(shape[0]): np_values[i, :] = np_data[i, np_indices[i, :]] np_indices = np_indices.astype(dtype) with tvm.target.Target(target): fcompute, fschedule = tvm.topi.testing.dispatch(target, _topk_implement) outs = fcompute(data, topk, axis, topk_ret_type, is_ascend, dtype) outs = outs if isinstance(outs, list) else [outs] s = fschedule(outs) tvm_data = tvm.nd.array(np_data, dev) tvm_res = [] for t in outs: tvm_res.append(tvm.nd.empty(t.shape, dtype=t.dtype, device=dev))
f = tvm.build(s, [data] + outs, target) f(tvm_data, *tvm_res) if topk_ret_type == "both": tvm.testing.assert_allclose(tvm_res[0].numpy(), np_values) tvm.testing.assert_allclose(tvm_res[1].numpy(), np_indices) elif topk_ret_type == "values": tvm.testing.assert_allclose(tvm_res[0].numpy(), np_values) else: tvm.testing.assert_allclose(tvm_res[0].numpy(), np_indices) if __name__ == "__main__": tvm.testing.main()
"""Test code for space to batch"""
import numpy as np
import tvm from tvm
import te from tvm
import topi
import tvm.testing
import tvm.topi.testing def verify_space_to_batch_nd(input_shape, block_shape, pad_before, pad_after, pad_value=0): out_shape = [] out_shape.append(int((input_shape[0] * np.prod(block_shape)))) for i in range(1, len(block_shape) + 1): pad = pad_before[i - 1] + pad_after[i - 1] out_shape.append(int((input_shape[i] + pad) for i in range(len(block_shape) + 1, len(input_shape)): out_shape.append(input_shape[i]) A = te.placeholder(input_shape, name="A", dtype="float32") dtype = A.dtype a_np = np.random.uniform(size=input_shape).astype(dtype) B = topi.nn.space_to_batch_nd(A, block_shape, pad_before, pad_after, pad_value) b_np = tvm.topi.testing.space_to_batch_nd_python( a_np, block_shape, pad_before, pad_after, pad_value ) def check_target(target, dev): print("Running on target: %s" % target) with tvm.target.create(target): s = tvm.topi.testing.get_injective_schedule(target)(B) a = tvm.nd.array(a_np, dev) b = tvm.nd.array(np.zeros(out_shape, dtype=dtype), dev) f = tvm.build(s, [A, B], target) f(a, b) tvm.testing.assert_allclose(b.numpy(), b_np, rtol=1e-3, atol=1e-3) for target, dev in tvm.testing.enabled_targets(): check_target(target, dev) @tvm.testing.uses_gpu def test_space_to_batch(): verify_space_to_batch_nd([3, 3, 2, 1], [3], [0], [0]) verify_space_to_batch_nd([3, 3, 2, 1], [3], [1], [2]) verify_space_to_batch_nd([3, 3, 4, 5, 2], [3, 4, 2], [1, 0, 3], [2, 0, 0]) verify_space_to_batch_nd([3, 3, 4, 5, 2], [3, 4, 2, 2], [1, 4, 0, 0], [2, 0, 1, 0]) if __name__ == "__main__": test_space_to_batch()
"""Test code for space to depth"""
import numpy as np
import tvm from tvm