text
stringlengths 1
2.05k
|
---|
in(x + (z * 2), y))
ck.verify(y * x + x, x * (y + 1))
ck.verify(x * y + x, x * (y + 1))
ck.verify((x + 10) + 13, x + 23)
ck.verify((x + 10) + (13 + z), x + z + 23)
ck.verify(x * y + 10 * x, x * (y + 10))
ck.verify(y * x + x * 3, x * (y + 3))
ck.verify(x + 3 + y, x + y + 3)
ck.verify((3 - y) + x, x - y + 3)
ck.verify(x + 2 + 3 + 4 + x, x * 2 + 9)
ck.verify(x + 2 + 3 + 4 + x * 3, x * 4 + 9)
tdiv = tvm.tir.truncdiv
tmod = tvm.tir.truncmod
ck.verify(y * tmod(x, 8) + 10 * tmod(x, 8), tmod(x, 8) * (y + 10))
ck.analyzer.update(x, tvm.arith.ConstIntBound(-1, 1000), override=True)
ck.verify(tdiv(x, 8) * 8 + tmod(x, 8), x)
fld = tvm.te.floordiv
flm = tvm.te.floormod
ck.verify(y * flm(x, 8) + 10 * flm(x, 8), flm(x, 8) * (y + 10))
ck.verify(fld(x, 8) * 8 + flm(x, 8), x)
ck.verify(fld(flm(x, 2) + 7, 2) + fld(x, 2), fld(x + 7, 2))
def test_sub_index_simplify():
ck = RewriteChecker()
x, y, z = te.var("x"), te.var("y"), te.var("z")
a, b = tvm.tir.Any(), tvm.tir.Any()
ck.verify(x + y - y, x)
ck.verify(x + y - x, y)
ck.verify(x - (y + x), 0 - y)
ck.verify(x - (x + y), 0 - y)
ck.verify(tvm.te.min(x, y) - x, tvm.te.min(0, y - x))
ck.verify(tvm.te.min(x, y) - y, tvm.te.min(x - y, 0))
ck.verify(tvm.te.max(x, y) - x, tvm.te.max(0, y - x))
ck.verify(tvm.te.max(x, y) - y, tvm.te.max(x - y, 0))
ck.verify(x - tvm.te.min(x, y), tvm.te.max(0, x - y))
ck.verify(y - tvm.te.min(x, y), tvm.te.max(y - x, 0))
ck.verify(x - tvm.te.max(x, y), tvm.te.min(0, x - y))
ck.verify(y - tvm.te.max(x, y), tvm.te.min(y - x, 0))
ck.verify(x - x, 0)
ck.verify(a - a, 0)
ck.verify(a - b, a - b)
ck.verify(x * y - x, x * (y + (-1)))
ck.verify(x * y - 10 * x, x * (y + (-10)))
ck.verify(y * x - x * z, x * (y - z))
ck.verify(y * x - z * x, x * (y - z))
ck.verify(x + 10 - 20, x + (-10))
ck.verify((x + y) - (x + z), y - z)
ck.verify((y + x) - (x + z), y |
- z)
ck.verify((x + y) - (z + x), y - z)
ck.verify((y + x) - (z + x), y - z)
ck.verify(tvm.te.min(x + y, z) - x, tvm.te.min(y, z - x))
ck.verify(tvm.te.min(y + x, z) - x, tvm.te.min(y, z - x))
ck.verify(tvm.te.min(z, x + y) - x, tvm.te.min(z - x, y))
ck.verify(tvm.te.min(z, y + x) - x, tvm.te.min(z - x, y))
ck.verify(tvm.te.max(x + y, z) - x, tvm.te.max(y, z - x))
ck.verify(tvm.te.max(y + x, z) - x, tvm.te.max(y, z - x))
ck.verify(tvm.te.max(z, x + y) - x, tvm.te.max(z - x, y))
ck.verify(tvm.te.max(z, y + x) - x, tvm.te.max(z - x, y))
ck.verify(x - tvm.te.min(x + y, z), tvm.te.max(0 - y, x - z))
ck.verify(x - tvm.te.min(y + x, z), tvm.te.max(0 - y, x - z))
ck.verify(x - tvm.te.min(z, x + y), tvm.te.max(x - z, 0 - y))
ck.verify(x - tvm.te.min(z, y + x), tvm.te.max(x - z, 0 - y))
ck.verify(tvm.te.min(x, y) - tvm.te.min(y, x), 0)
ck.verify(tvm.te.max(x, y) - tvm.te.max(y, x), 0)
ck.verify(tvm.te.min(x, y) - tvm.te.min(x + 10, y + 10), -10)
ck.verify(tvm.te.min(x + 10, y + 1) - tvm.te.min(x, y - 9), 10)
tdiv = tvm.tir.truncdiv
tmod = tvm.tir.truncmod
ck.analyzer.update(x, tvm.arith.ConstIntBound(0, 1000), override=True)
ck.verify(x - tdiv(x, 3) * 3, tmod(x, 3))
ck.verify(tdiv(x + 5, 3) - tdiv(x, 3), tdiv(tmod(x, 3) + 5, 3))
ck.verify(tdiv(x + 5, 3) - tdiv(x + 1, 3), tdiv(tmod(x + 1, 3) + 4, 3))
ck.verify(y - tdiv(y, (-5)) * (-5), tmod(y, 5))
ck.verify(tdiv(y, 3) * 3 - y, 0 - tmod(y, 3))
ck.verify(y - tdiv(y - 6, 5) * 5, tmod(y + (-6), 5) + 6)
ck.verify(tdiv(y - 6, 5) * 5 - y, (-6) - tmod(y + (-6), 5))
ck.verify(y - tdiv(y + z, 5) * 5, tmod(y + z, 5) - z)
ck.verify(tdiv(y + z, 5) * 5 - y, z - tmod(y + z, 5))
ck.verify(y - tdiv(y - z, 5) * 5, tmod(y - z, 5) + z)
ck.verify(tdiv(y - z, 5) * 5 - y, 0 - tmod(y - z, 5) - z)
ck.verify(y * 3 - tdiv(y, 2) * 6, tmod(y, 2) * 3)
ck.verify(tdiv(y, 3) * 6 - y * 2, tmod(y, 3) * (-2))
ck.verify(y * 5 - tdiv(y + z, 2) * 10, (tmod |
(y + z, 2) - z) * 5)
ck.verify(y * 5 - tdiv(y - z, 2) * 10, (tmod(y - z, 2) + z) * 5)
ck.verify(tdiv(y + z, 3) * 6 - y * 2, (z - tmod(y + z, 3)) * 2)
ck.verify(tdiv(y - z, 3) * 6 - y * 2, (0 - tmod(y - z, 3) - z) * 2)
ck.verify(5 * y - tdiv(y + z, 2) * 10, (tmod(y + z, 2) - z) * 5)
ck.verify(5 * y - 10 * tdiv(y - z, 2), (tmod(y - z, 2) + z) * 5)
ck.verify(6 * tdiv(y + z, 3) - y * 2, (z - tmod(y + z, 3)) * 2)
ck.verify(tdiv(y - z, 3) * 6 - 2 * y, (0 - tmod(y - z, 3) - z) * 2)
fld = tvm.te.floordiv
flm = tvm.te.floormod
ck.analyzer.update(x, tvm.arith.ConstIntBound(-1000, 1000), override=True)
ck.analyzer.update(y, tvm.arith.ConstIntBound(-1000, 1000), override=True)
ck.verify(x - fld(x, 3) * 3, flm(x, 3))
ck.verify(fld(x + 5, 3) - fld(x, 3), fld(flm(x, 3) + 5, 3))
ck.verify(fld(x + 5, 3) - fld(x + 2, 3), fld(flm(x + 2, 3), 3) + 1)
ck.verify(fld(y, 3) * 3 - y, 0 - flm(y, 3))
ck.verify(y - fld(y - 6, 5) * 5, flm(y + (-6), 5) + 6)
ck.verify(fld(y - 6, 5) * 5 - y, (-6) - flm(y + (-6), 5))
ck.verify(y - fld(y + z, 5) * 5, flm(y + z, 5) - z)
ck.verify(fld(y + z, 5) * 5 - y, z - flm(y + z, 5))
ck.verify(y - fld(y - z, 5) * 5, flm(y - z, 5) + z)
ck.verify(fld(y - z, 5) * 5 - y, 0 - flm(y - z, 5) - z)
ck.verify(y * 3 - fld(y, 2) * 6, flm(y, 2) * 3)
ck.verify(fld(y, 3) * 6 - y * 2, flm(y, 3) * (-2))
ck.verify(y * 5 - fld(y + z, 2) * 10, (flm(y + z, 2) - z) * 5)
ck.verify(y * 5 - fld(y - z, 2) * 10, (flm(y - z, 2) + z) * 5)
ck.verify(fld(y + z, 3) * 6 - y * 2, (z - flm(y + z, 3)) * 2)
ck.verify(fld(y - z, 3) * 6 - y * 2, (0 - flm(y - z, 3) - z) * 2)
ck.verify(5 * y - fld(y + z, 2) * 10, (flm(y + z, 2) - z) * 5)
ck.verify(5 * y - 10 * fld(y - z, 2), (flm(y - z, 2) + z) * 5)
ck.verify(6 * fld(y + z, 3) - y * 2, (z - flm(y + z, 3)) * 2)
ck.verify(fld(y - z, 3) * 6 - 2 * y, (0 - flm(y - z, 3) - z) * 2)
def test_mul_index_simplify():
ck = RewriteChecker()
x, y, z = te.var("x"), te.var("y"), |
te.var("z")
ck.verify((x + 2) * 3, x * 3 + 6)
ck.verify((x * 2) * 3, x * 6)
ck.verify(tvm.te.min(x, y) * tvm.te.max(x, y), x * y)
ck.verify(tvm.te.max(x, y) * tvm.te.min(x, y), x * y)
ck.verify((x - y) * (-2), (y - x) * 2)
def test_div_index_simplify():
ck = RewriteChecker()
x, y, z = te.var("x"), te.var("y"), te.var("z")
tdiv = tvm.tir.truncdiv
tmod = tvm.tir.truncmod
ck.verify(tdiv(x, x), 1)
ck.analyzer.update(x, tvm.arith.ConstIntBound(0, 1000), override=True)
ck.analyzer.update(y, tvm.arith.ConstIntBound(0, 1000), override=True)
ck.analyzer.update(z, tvm.arith.ConstIntBound(0, 1000), override=True)
ck.verify(tdiv(tdiv(x, 2), 3), tdiv(x, 6))
ck.verify(tdiv(tdiv(x, 2) + 1, 3), tdiv(x + 2, 6))
ck.verify(tdiv(x * 2, 4), tdiv(x, 2))
ck.verify(tdiv(x * 4, 2), x * 2)
ck.verify(tdiv(x * 4 + y, 2), x * 2 + tdiv(y, 2))
ck.verify(tdiv(tvm.te.min(x * 6, y), 2), tvm.te.min(x * 3, tdiv(y, 2)))
ck.verify(tdiv(tvm.te.max(x * 6, y), 2), tvm.te.max(x * 3, tdiv(y, 2)))
ck.verify(tdiv(y + x * 4, 2), tdiv(y, 2) + x * 2)
ck.verify(tdiv(tvm.te.min(y, x * 6), 2), tvm.te.min(tdiv(y, 2), x * 3))
ck.verify(tdiv(tvm.te.max(y, x * 6), 2), tvm.te.max(tdiv(y, 2), x * 3))
ck.verify(tdiv(x * 6 + y + z, 2), x * 3 + tdiv(y + z, 2))
ck.verify(tdiv(x * 6 - y + (y + 3), 2), x * 3 + 1)
ck.verify(tdiv(x * 6 + (y + 3) - y, 2), x * 3 + 1)
ck.verify(tdiv(y + x * 6 + z, 2), x * 3 + tdiv(y + z, 2))
ck.verify(tdiv(x + 4, 2), tdiv(x, 2) + 2)
ck.verify(tdiv(x + y, x), tdiv(y, x) + 1)
ck.verify(tdiv(y + x, x), tdiv(y, x) + 1)
ck.verify(tdiv((x + y) + z, x), tdiv(y + z, x) + 1)
ck.verify(tdiv((y + x) + z, x), tdiv(y + z, x) + 1)
ck.verify(tdiv(y + (x + z), x), tdiv(y + z, x) + 1)
ck.verify(tdiv(y + (z + x), x), tdiv(y + z, x) + 1)
ck.verify(tdiv(x * y, y), x)
ck.verify(tdiv(y * x, y), x)
ck.verify(tdiv(x * z + y, z), x + tdiv(y, z))
ck.verify(tdiv(z * x + y, z), x + tdiv(y, z))
ck.verify(td |
iv(y + x * z, z), tdiv(y, z) + x)
ck.verify(tdiv(y + z * x, z), tdiv(y, z) + x)
def test_floordiv_index_simplify():
fld = tvm.te.floordiv
flm = tvm.te.floormod
ck = RewriteChecker()
x, y, z = te.var("x"), te.var("y"), te.var("z")
ck.verify(fld(fld(x, 2), 3), fld(x, 6))
ck.verify(fld(fld(x, 2) + 1, 3), fld(x + 2, 6))
ck.verify(fld(x - flm(x, 21), 21), fld(x, 21))
ck.verify(fld(x * 2, 4), fld(x, 2))
ck.verify(fld(x * 4, 2), x * 2)
ck.verify(fld(x * 8 + 7, 16), fld(x, 2))
ck.verify(fld(x * 8 + 39, 16), fld(x, 2) + 2)
ck.verify(fld(x * 8 - 1, 16), fld(x * 8 + -1, 16))
ck.verify(fld(x * 8 - 9, 16), fld(x, 2) + -1)
ck.analyzer.update(x, tvm.arith.ConstIntBound(0, 1), override=True)
ck.analyzer.update(y, tvm.arith.ConstIntBound(0, 7), override=True)
ck.verify(fld(x * 360 + y, 16), x * 22)
ck.verify(fld(x * 360 + y, 25), x * 14)
ck.verify(fld(x * 360 - 8, 25), fld(x * 360 + -8, 25))
ck.verify(fld(x * 4 + y, 2), x * 2 + fld(y, 2))
ck.verify(fld(tvm.te.min(x * 6, y), 2), tvm.te.min(x * 3, fld(y, 2)))
ck.verify(fld(tvm.te.max(x * 6, y), 2), tvm.te.max(x * 3, fld(y, 2)))
ck.verify(fld(y + x * 4, 2), x * 2 + fld(y, 2))
ck.verify(fld(tvm.te.min(y, x * 6), 2), tvm.te.min(fld(y, 2), x * 3))
ck.verify(fld(tvm.te.max(y, x * 6), 2), tvm.te.max(fld(y, 2), x * 3))
ck.verify(fld(x * 6 + y + z, 2), x * 3 + fld(y + z, 2))
ck.verify(fld(x * 6 - y + (y + 3), 2), x * 3 + 1)
ck.verify(fld(x * 6 + (y + 3) - y, 2), x * 3 + 1)
ck.verify(fld(y + x * 6 + z, 2), x * 3 + fld(y + z, 2))
ck.verify(fld(x + 4, 2), fld(x, 2) + 2)
ck.analyzer.update(x, tvm.arith.ConstIntBound(0, 1000), override=True)
ck.verify(fld(x + y, x), fld(y, x) + 1)
ck.verify(fld(y + x, x), fld(y, x) + 1)
ck.verify(fld((x + y) + z, x), fld(y + z, x) + 1)
ck.verify(fld((y + x) + z, x), fld(y + z, x) + 1)
ck.verify(fld(y + (x + z), x), fld(y + z, x) + 1)
ck.verify(fld(y + (z + x), x), fld(y + z, x) + 1)
ck.analyz |
er.update(y, tvm.arith.ConstIntBound(0, 1000), override=True)
ck.analyzer.update(z, tvm.arith.ConstIntBound(0, 1000), override=True)
ck.verify(fld(x * y, y), x)
ck.verify(fld(y * x, y), x)
ck.verify(fld(x * z + y, z), x + fld(y, z))
ck.verify(fld(z * x + y, z), x + fld(y, z))
ck.verify(fld(y + x * z, z), fld(y, z) + x)
ck.verify(fld(y + z * x, z), fld(y, z) + x)
ck.analyzer.update(y, tvm.arith.ConstIntBound(0, 31), override=True)
ck.analyzer.update(z, tvm.arith.ConstIntBound(0, 3), override=True)
ck.verify(fld(x * 32 + y, 64), fld(x, 2))
ck.verify(fld(x * 128 + y * 4 + z, 512), fld(x, 4))
def test_mod_index_simplify():
ck = RewriteChecker()
x, y, nx, ny, z = te.var("x"), te.var("y"), te.var("nx"), te.var("ny"), te.var("z")
ck.analyzer.update(x, tvm.arith.ConstIntBound(0, 1000), override=True)
ck.analyzer.update(y, tvm.arith.ConstIntBound(0, 1000), override=True)
ck.analyzer.update(nx, tvm.arith.ConstIntBound(-1000, 0), override=True)
ck.analyzer.update(ny, tvm.arith.ConstIntBound(-1000, 0), override=True)
tdiv = tvm.tir.truncdiv
tmod = tvm.tir.truncmod
ck.verify(tmod(x * 10, 2), 0)
ck.verify(tmod(x * 10 + y, 2), tmod(y, 2))
ck.verify(tmod(x + 10, 2), tmod(x, 2))
ck.verify(tmod(x + y * 10, 2), tmod(x, 2))
ck.verify(tmod(x * 10 + 1 + y * 2 + 2, 2), 1)
ck.verify(tmod(x * 10, -2), 0)
ck.verify(tmod(x * 10 + y, -2), tmod(y, 2))
ck.verify(tmod(x + 10, -2), tmod(x, 2))
ck.verify(tmod(x + y * 10, -2), tmod(x, 2))
ck.verify(tmod(x * 10 + 1 + y * 2 + 2, -2), 1)
ck.verify(tmod(x * (-10), 2), 0)
ck.verify(tmod(x * (-10) + y, 2), tmod(x * (-10) + y, 2))
ck.verify(tmod(x + (-10), 2), tmod(x + (-10), 2))
ck.verify(tmod(x + y * (-10), 2), tmod(x + y * (-10), 2))
ck.verify(tmod(x * (-10), -2), 0)
ck.verify(tmod(nx * 10, 2), 0)
ck.verify(tmod(nx * (-10) + y, 2), tmod(y, 2))
ck.verify(tmod(x + ny * (-10), 2), tmod(x, 2))
ck.verify(tmod(nx * (-10) + 1 + ny * (-2) + 2, 2), 1) |
ck.verify(tmod(nx * 10, -2), 0)
ck.verify(tmod(nx * (-10) + y, -2), tmod(y, 2))
ck.verify(tmod(x + ny * (-10), -2), tmod(x, 2))
def test_floormod_index_simplify():
flm = tvm.te.floormod
x, y, z = te.var("x"), te.var("y"), te.var("z")
ck = RewriteChecker()
x, y, nx, ny, z = te.var("x"), te.var("y"), te.var("nx"), te.var("ny"), te.var("z")
ck.verify(flm(x * 10, 2), 0)
ck.verify(flm(x * 9600, 6400), flm(x * 3200, 6400))
ck.verify(flm(x * 10 + y, 2), flm(y, 2))
ck.verify(flm(x * 360 + y, 16), flm(x * 8 + y, 16))
ck.verify(flm(x + 10, 2), flm(x, 2))
ck.verify(flm(x + y * 10, 2), flm(x, 2))
ck.verify(flm(x + y * 360, 16), flm(x + y * 8, 16))
ck.verify(flm(x * 10 + 1 + y * 2 + 2, 2), 1)
ck.verify(flm(x * (-10), 2), 0)
ck.verify(flm(x * (-10) + y, 2), flm(y, 2))
ck.verify(flm(x + (-10), 2), flm(x, 2))
ck.verify(flm(x + y * (-10), 2), flm(x, 2))
ck.analyzer.update(y, tvm.arith.ConstIntBound(0, 31), override=True)
ck.verify(flm(x * 32 + y, 64), flm(x, 2) * 32 + y)
ck.verify(flm(x * 32 - y, 64), flm(x * 32 - y, 64))
def test_min_index_simplify():
ck = RewriteChecker()
x, y, z = te.var("x"), te.var("y"), te.var("z")
fld = tvm.te.floordiv
flm = tvm.te.floormod
tdiv = tvm.tir.truncdiv
tmod = tvm.tir.truncmod
ck.verify(tvm.te.min(tmod(x, 2), tmod(y, 2) + 10), tmod(x, 2))
ck.verify(tvm.te.min(flm(x, 2), flm(y, 2) + 10), flm(x, 2))
ck.verify(tvm.te.min(x + 1, x + 10), x + 1)
ck.verify(tvm.te.min(x + 111, x + 10), x + 10)
ck.verify(tvm.te.min(x + 1, x), x)
ck.verify(tvm.te.min(x, x + 2), x)
ck.verify(tvm.te.min(1 - x, 2 - x), 1 - x)
ck.verify(tvm.te.min(3 - x, 2 - x), 2 - x)
ck.verify(tvm.te.min(tvm.te.max(x, y), tvm.te.min(x, y)), tvm.te.min(x, y))
ck.verify(tvm.te.min(tvm.te.max(x, y), tvm.te.min(y, x)), tvm.te.min(x, y))
ck.verify(tvm.te.min(tvm.te.max(x, y), x), x)
ck.verify(tvm.te.min(tvm.te.max(y, x), x), x)
ck.verify(tvm.te.min(tvm.te.min(x, y), |
x), tvm.te.min(x, y))
ck.verify(tvm.te.min(tvm.te.min(x, y), y), tvm.te.min(x, y))
ck.verify(tvm.te.min(x, tvm.te.max(x, y)), x)
ck.verify(tvm.te.min(x, tvm.te.max(y, x)), x)
ck.verify(tvm.te.min(x, tvm.te.min(x, y)), tvm.te.min(x, y))
ck.verify(tvm.te.min(y, tvm.te.min(x, y)), tvm.te.min(x, y))
ck.verify(tvm.te.min(tvm.te.min(tvm.te.min(x, y), z), y), tvm.te.min(tvm.te.min(x, y), z))
ck.verify(
tvm.te.min(tvm.te.min(tvm.te.min(tvm.te.min(x, y), z), x * 2), y),
tvm.te.min(tvm.te.min(tvm.te.min(x, y), z), x * 2),
)
ck.verify(
tvm.te.min(tvm.te.min(tvm.te.min(tvm.te.min(tvm.te.min(x, y), z), x * 2), z * 2), y),
tvm.te.min(tvm.te.min(tvm.te.min(tvm.te.min(x, y), z), x * 2), z * 2),
)
ck.verify(tvm.te.min(tvm.te.max(x, y), tvm.te.max(x, z)), tvm.te.max(tvm.te.min(y, z), x))
ck.verify(tvm.te.min(tvm.te.max(x, y), tvm.te.max(z, x)), tvm.te.max(tvm.te.min(y, z), x))
ck.verify(tvm.te.min(tvm.te.max(y, x), tvm.te.max(x, z)), tvm.te.max(tvm.te.min(y, z), x))
ck.verify(tvm.te.min(tvm.te.max(y, x), tvm.te.max(z, x)), tvm.te.max(tvm.te.min(y, z), x))
ck.verify(tvm.te.min(y + x, z + x), tvm.te.min(y, z) + x)
ck.verify(tvm.te.min(y + x, x + z), tvm.te.min(y, z) + x)
ck.verify(tvm.te.min(x + y, z + x), tvm.te.min(y, z) + x)
ck.verify(tvm.te.min(x + y, x + z), tvm.te.min(y, z) + x)
ck.verify(tvm.te.min(x - y, x - z), x - tvm.te.max(y, z))
ck.verify(tvm.te.min(y - x, z - x), tvm.te.min(y, z) - x)
ck.verify(tvm.te.min(tvm.te.min(x, 1), 10), tvm.te.min(x, 1))
ck.verify(tvm.te.min(tvm.te.min(x, 11), 10), tvm.te.min(x, 10))
ck.verify(tvm.te.min(x * 3, 9), tvm.te.min(x, 3) * 3)
ck.verify(tvm.te.min(x * 2, 0), tvm.te.min(x, 0) * 2)
ck.verify(tvm.te.min(0 - x * 2, 0), tvm.te.max(x, 0) * -2)
ck.verify(tvm.te.min(3 - x, 2), 3 - tvm.te.max(x, 1))
ck.verify(tvm.te.min(x * (-2), -4), tvm.te.max(x, 2) * -2)
ck.verify(tvm.te.min(x * (-2), 4), tvm.te.max(x, -2) * -2)
ck.verify(tvm.te.min(x * ( |
0), 4), 0)
ck.verify(tvm.te.min(x * (0), -4), -4)
ck.analyzer.update(x, tvm.arith.ConstIntBound(0, 1000))
ck.verify(tvm.te.min(tdiv(x + 3, 4) * 4, x), x)
ck.verify(tvm.te.min(tdiv(x + 3, 4) * 4, tvm.te.max(x, 4)), tvm.te.max(x, 4))
ck.verify(tvm.te.min(x, tdiv(x + 3, 4) * 4), x)
ck.verify(tvm.te.min(tvm.te.max(x, 4), tdiv(x + 3, 4) * 4), tvm.te.max(x, 4))
ck.analyzer.update(x, tvm.arith.ConstIntBound(-1000, 1000), True)
ck.verify(tvm.te.min(tdiv(x, 10), tdiv(y, 10)), tdiv(tvm.te.min(x, y), 10))
ck.verify(tvm.te.min(tdiv(x, (-10)), tdiv(y, (-10))), tdiv(tvm.te.max(x, y), (-10)))
ck.analyzer.update(x, tvm.arith.ConstIntBound(-1000, 1000), True)
ck.verify(tvm.te.min(fld(x + 3, 4) * 4, x), x)
ck.verify(tvm.te.min(fld(x + 3, 4) * 4, tvm.te.max(x, 4)), tvm.te.max(x, 4))
ck.verify(tvm.te.min(x, fld(x + 3, 4) * 4), x)
ck.verify(tvm.te.min(x, fld(x, 4) * 4), fld(x, 4) * 4)
ck.verify(tvm.te.min(tvm.te.max(x, 4), fld(x + 3, 4) * 4), tvm.te.max(x, 4))
ck.verify(tvm.te.min(fld(x, 10), fld(y, 10)), fld(tvm.te.min(x, y), 10))
ck.verify(tvm.te.min(fld(x, (-10)), fld(y, (-10))), fld(tvm.te.max(x, y), (-10)))
def test_max_index_simplify():
ck = RewriteChecker()
x, y, z = te.var("x"), te.var("y"), te.var("z")
flm = tvm.te.floormod
fld = tvm.te.floordiv
tdiv = tvm.tir.truncdiv
tmod = tvm.tir.truncmod
ck.verify(tvm.te.max(tmod(x, 2), tmod(y, 2) + 10), tmod(y, 2) + 10)
ck.verify(tvm.te.max(flm(x, 2), flm(y, 2) + 10), flm(y, 2) + 10)
ck.verify(tvm.te.max(x + 1, x + 10), x + 10)
ck.verify(tvm.te.max(x + 111, x + 10), x + 111)
ck.verify(tvm.te.max(x + 1, x), x + 1)
ck.verify(tvm.te.max(x, x + 2), x + 2)
ck.verify(tvm.te.max(1 - x, 2 - x), 2 - x)
ck.verify(tvm.te.max(3 - x, 2 - x), 3 - x)
ck.verify(tvm.te.max(tvm.te.min(x, y), tvm.te.max(x, y)), tvm.te.max(x, y))
ck.verify(tvm.te.max(tvm.te.min(x, y), tvm.te.max(y, x)), tvm.te.max(x, y))
ck.verify(tvm.te.max(tvm.te.min(x, y), x) |
, x)
ck.verify(tvm.te.max(tvm.te.min(y, x), x), x)
ck.verify(tvm.te.max(tvm.te.max(x, y), x), tvm.te.max(x, y))
ck.verify(tvm.te.max(tvm.te.max(x, y), y), tvm.te.max(x, y))
ck.verify(tvm.te.max(x, tvm.te.min(x, y)), x)
ck.verify(tvm.te.max(x, tvm.te.min(y, x)), x)
ck.verify(tvm.te.max(x, tvm.te.max(x, y)), tvm.te.max(x, y))
ck.verify(tvm.te.max(y, tvm.te.max(x, y)), tvm.te.max(x, y))
ck.verify(tvm.te.max(tvm.te.max(tvm.te.max(x, y), z), y), tvm.te.max(tvm.te.max(x, y), z))
ck.verify(
tvm.te.max(tvm.te.max(tvm.te.max(tvm.te.max(x, y), z), x * 2), y),
tvm.te.max(tvm.te.max(tvm.te.max(x, y), z), x * 2),
)
ck.verify(
tvm.te.max(tvm.te.max(tvm.te.max(tvm.te.max(tvm.te.max(x, y), z), x * 2), z * 2), y),
tvm.te.max(tvm.te.max(tvm.te.max(tvm.te.max(x, y), z), x * 2), z * 2),
)
ck.verify(tvm.te.max(tvm.te.min(x, y), tvm.te.min(x, z)), tvm.te.min(tvm.te.max(y, z), x))
ck.verify(tvm.te.max(tvm.te.min(x, y), tvm.te.min(z, x)), tvm.te.min(tvm.te.max(y, z), x))
ck.verify(tvm.te.max(tvm.te.min(y, x), tvm.te.min(x, z)), tvm.te.min(tvm.te.max(y, z), x))
ck.verify(tvm.te.max(tvm.te.min(y, x), tvm.te.min(z, x)), tvm.te.min(tvm.te.max(y, z), x))
ck.verify(tvm.te.max(y + x, z + x), tvm.te.max(y, z) + x)
ck.verify(tvm.te.max(y + x, x + z), tvm.te.max(y, z) + x)
ck.verify(tvm.te.max(x + y, z + x), tvm.te.max(y, z) + x)
ck.verify(tvm.te.max(x + y, x + z), tvm.te.max(y, z) + x)
ck.verify(tvm.te.max(x - y, x - z), x - tvm.te.min(y, z))
ck.verify(tvm.te.max(y - x, z - x), tvm.te.max(y, z) - x)
ck.verify(tvm.te.max(tvm.te.max(x, 1), 10), tvm.te.max(x, 10))
ck.verify(tvm.te.max(tvm.te.max(x, 11), 10), tvm.te.max(x, 11))
ck.verify(tvm.te.max(x * 3, 9), tvm.te.max(x, 3) * 3)
ck.verify(tvm.te.max(3 - x, 1), 3 - tvm.te.min(x, 2))
ck.verify(tvm.te.max(x * 2, 0), tvm.te.max(x, 0) * 2)
ck.verify(tvm.te.max(0 - x * 2, 0), tvm.te.min(x, 0) * -2)
ck.verify(tvm.te.max(x * (-2), -4), tvm.te.min(x, 2) |
* -2)
ck.verify(tvm.te.max(x * (-2), 4), tvm.te.min(x, -2) * -2)
ck.verify(tvm.te.max(x * (0), 4), 4)
ck.verify(tvm.te.max(x * (0), -4), 0)
ck.verify(tvm.te.max(tdiv(x, 10), tdiv(y, 10)), tdiv(tvm.te.max(x, y), 10))
ck.verify(tvm.te.max(tdiv(x, (-10)), tdiv(y, (-10))), tdiv(tvm.te.min(x, y), (-10)))
ck.verify(tvm.te.max(tdiv(x + 3, 4) * 4, x), tdiv(x + 3, 4) * 4)
ck.verify(tvm.te.max(fld(x, 10), fld(y, 10)), fld(tvm.te.max(x, y), 10))
ck.verify(tvm.te.max(fld(x, (-10)), fld(y, (-10))), fld(tvm.te.min(x, y), (-10)))
ck.verify(tvm.te.max(fld(x + 3, 4) * 4, x), fld(x + 3, 4) * 4)
ck.verify(tvm.te.max(fld(x, 4) * 4, x), x)
ck.verify(tvm.te.max(x, fld(x, 4) * 4), x)
def test_cmp_simplify():
ck = RewriteChecker()
x, y, z = te.var("x"), te.var("y"), te.var("z")
flm = tvm.te.floormod
fld = tvm.te.floordiv
tdiv = tvm.tir.truncdiv
tmod = tvm.tir.truncmod
ck.verify((tmod(x, 2) + 10).equal(0), tvm.tir.const(0, "bool"))
ck.verify(tvm.tir.NE(tmod(x, 2) + 10, 0), tvm.tir.const(1, "bool"))
ck.verify(tmod(x, 2) + 10 > 1, tvm.tir.const(1, "bool"))
ck.verify(tmod(x, 2) + 10 <= 1, tvm.tir.const(0, "bool"))
ck.verify(flm(x, 2) + 2 > 1, tvm.tir.const(1, "bool"))
ck.verify(flm(x, 2) + 10 <= 1, tvm.tir.const(0, "bool"))
ck.verify(x * 3 + 10 == 0, tvm.tir.const(0, "bool"))
ck.verify(x * 3 + 10 != 0, tvm.tir.const(1, "bool"))
ck.verify((x - 10).equal(0), x.equal(10))
ck.verify((10 - x).equal(0), x.equal(10))
ck.verify((x * y).equal(0), tvm.tir.Or(x.equal(0), y.equal(0)))
ck.verify(x + y < x + z, y < z)
ck.verify(x + y < z + x, y < z)
ck.verify(y + x < x + z, y < z)
ck.verify(y + x < z + x, y < z)
ck.verify(y - x < z - x, y < z)
ck.verify(x - y < x - z, z < y)
ck.verify(x < z + x, tvm.tir.LT(0, z))
ck.verify(x < x + z, tvm.tir.LT(0, z))
ck.verify(100 < x + 1, tvm.tir.LT(99, x))
ck.verify(1 < 100 - x, tvm.tir.LT(x, 99))
ck.verify(x * 3 < y * 3, x < |
y)
ck.verify(x * (-3) < y * (-3), y < x)
ck.verify(x * 3 >= y * 3, y <= x)
ck.verify(x * 4 >= 2, tvm.tir.LE(1, x))
ck.verify(x * 2 >= 50, tvm.tir.LE(25, x))
ck.verify(x * 4 <= 2, x <= 0)
ck.verify((0 - x * 3) <= 0, tvm.tir.LE(0, x))
ck.verify((0 - x * 3) >= 0, tvm.tir.LE(x, 0))
ck.verify(2 * x <= 0, x <= 0)
ck.verify(x * 2 >= 3, tvm.tir.LE(2, x))
ck.verify(x * 2 >= 2, tvm.tir.LE(1, x))
ck.verify(x * 2 >= 1, tvm.tir.LE(1, x))
ck.verify(x * 2 >= 0, tvm.tir.LE(0, x))
ck.verify(x * 2 >= -1, tvm.tir.LE(0, x))
ck.verify(x * 2 >= -2, tvm.tir.LE(-1, x))
ck.verify(x * 2 >= -3, tvm.tir.LE(-1, x))
ck.verify(x * 2 <= 3, tvm.tir.LE(x, 1))
ck.verify(x * 2 <= 2, tvm.tir.LE(x, 1))
ck.verify(x * 2 <= 1, tvm.tir.LE(x, 0))
ck.verify(x * 2 <= 0, tvm.tir.LE(x, 0))
ck.verify(x * 2 <= -1, tvm.tir.LE(x, -1))
ck.verify(x * 2 <= -2, tvm.tir.LE(x, -1))
ck.verify(x * 2 <= -3, tvm.tir.LE(x, -2))
ck.verify(x * (-2) >= 3, tvm.tir.LE(x, -2))
ck.verify(x * (-2) >= 2, tvm.tir.LE(x, -1))
ck.verify(x * (-2) >= 1, tvm.tir.LE(x, -1))
ck.verify(x * (-2) >= 0, tvm.tir.LE(x, 0))
ck.verify(x * (-2) >= -1, tvm.tir.LE(x, 0))
ck.verify(x * (-2) >= -2, tvm.tir.LE(x, 1))
ck.verify(x * (-2) >= -3, tvm.tir.LE(x, 1))
ck.verify(x * (-2) <= 3, tvm.tir.LE(-1, x))
ck.verify(x * (-2) <= 2, tvm.tir.LE(-1, x))
ck.verify(x * (-2) <= 1, tvm.tir.LE(0, x))
ck.verify(x * (-2) <= 0, tvm.tir.LE(0, x))
ck.verify(x * (-2) <= -1, tvm.tir.LE(1, x))
ck.verify(x * (-2) <= -2, tvm.tir.LE(1, x))
ck.verify(x * (-2) <= -3, tvm.tir.LE(2, x))
ck.verify(tdiv(x, 2) < 3, x < 6)
ck.verify(3 < tdiv(x, 2), tvm.tir.LT(7, x))
ck.verify(tdiv(x, 3) >= 0, tvm.tir.LE(-2, x))
ck.verify(tdiv(x, 2) >= 1, tvm.tir.LE(2, x))
ck.verify(tdiv(x, 2) >= 0, tvm.tir.LE(-1, x))
ck.verify(tdiv(x, 2) >= -1, tvm.tir.LE(-3, x))
ck.verify(tdiv(x, 2) <= 1, tvm.tir.LE(x, 3))
ck.verify(tdiv(x, 2) <= 0, tvm.tir.LE(x, 1))
ck.veri |
fy(tdiv(x, 2) <= -1, tvm.tir.LE(x, -2))
ck.verify(tdiv(x, 4) * 4 < x, tvm.tir.LT(0, tmod(x, 4)))
ck.verify(tdiv(x, 4) * 4 >= x, tvm.tir.LE(tmod(x, 4), 0))
ck.verify(tdiv(x, 4) * 4 < x + y, tvm.tir.LT(0, tmod(x, 4) + y))
ck.verify(tdiv(x, 4) * 4 < x - y, tvm.tir.LT(y, tmod(x, 4)))
ck.verify(tdiv(x + 2, 4) * 4 >= x, tvm.tir.LE(tmod(x + 2, 4), 2))
ck.verify(tdiv(x + 2, 4) * 4 >= x + y, tvm.tir.LE(tmod(x + 2, 4) + y, 2))
ck.verify(tdiv(x + 2, 4) * 4 >= x - y, tvm.tir.LE(tmod(x + 2, 4) + (-2), y))
ck.verify(fld(x, 2) < 3, x < 6)
ck.verify(3 < fld(x, 2), tvm.tir.LT(7, x))
ck.verify(-3 < fld(x, 2), tvm.tir.LT(-5, x))
ck.verify(fld(x, 3) >= 0, tvm.tir.LE(0, x))
ck.verify(fld(x, 2) >= 1, tvm.tir.LE(2, x))
ck.verify(fld(x, 2) >= 0, tvm.tir.LE(0, x))
ck.verify(fld(x, 2) >= -1, tvm.tir.LE(-2, x))
ck.verify(fld(x, 2) <= 1, tvm.tir.LE(x, 3))
ck.verify(fld(x, 2) <= 0, tvm.tir.LE(x, 1))
ck.verify(fld(x, 2) <= -1, tvm.tir.LE(x, -1))
ck.verify(fld(x, 4) * 4 < x, tvm.tir.LT(0, flm(x, 4)))
ck.verify(fld(x, 4) * 4 >= x, tvm.tir.EQ(flm(x, 4), 0))
ck.verify(fld(x, 4) * 4 < x + y, tvm.tir.LT(0, flm(x, 4) + y))
ck.verify(fld(x, 4) * 4 < x - y, tvm.tir.LT(y, flm(x, 4)))
ck.verify(fld(x + 2, 4) * 4 >= x, tvm.tir.LE(flm(x + 2, 4), 2))
ck.verify(fld(x + 2, 4) * 4 >= x + y, tvm.tir.LE(flm(x + 2, 4) + y, 2))
ck.verify(fld(x + 2, 4) * 4 >= x - y, tvm.tir.LE(flm(x + 2, 4) + (-2), y))
ck.verify(tvm.te.min(x, 11) < 10, x < 10)
ck.verify(tvm.te.min(x, 8) < 10, tvm.tir.const(1, "bool"))
ck.verify(tvm.te.max(8, x) > 10, tvm.tir.LT(10, x))
ck.verify(x + 1 < tvm.te.max(8, x), x < 7)
ck.analyzer.update(x, tvm.arith.ConstIntBound(0, 10), override=True)
ck.analyzer.update(y, tvm.arith.ConstIntBound(-10, 0), override=True)
ck.analyzer.update(z, tvm.arith.ConstIntBound(-5, 5), override=True)
ck.verify(x < 11, tvm.tir.const(1, "bool"))
ck.verify(x <= 10, tvm.tir.const(1, "bool"))
ck.verify(z <= 5, tvm.ti |
r.const(1, "bool"))
ck.verify(x + y <= 10, tvm.tir.const(1, "bool"))
ck.verify(x + y >= -10, tvm.tir.const(1, "bool"))
ck.verify(z - 5 <= y + 10, tvm.tir.const(1, "bool"))
ck.verify(tvm.tir.all(x > -1, z <= x + 5), tvm.tir.const(1, "bool"))
ck.verify(x * y <= 0, tvm.tir.const(1, "bool"))
ck.verify((x + 1) * (y - 1) < 0, tvm.tir.const(1, "bool"))
ck.verify(y * y >= 0, tvm.tir.const(1, "bool"))
ck.verify(x * 6 <= -3, tvm.tir.const(0, "bool"))
ck.verify(tmod(y - 1, 3) == 0, tmod(y + (-1), 3) == 0)
def test_logical_simplify():
ck = RewriteChecker()
x, y, z = te.var("x"), te.var("y"), te.var("z")
ck.verify(tvm.tir.And(tvm.tir.EQ(x, y), tvm.tir.NE(x, y)), tvm.tir.const(False, "bool"))
ck.verify(tvm.tir.And(tvm.tir.NE(x, y), tvm.tir.EQ(x, y)), tvm.tir.const(False, "bool"))
ck.verify(tvm.tir.And(x > 1, tvm.tir.Not(x > 1)), tvm.tir.const(False, "bool"))
ck.verify(tvm.tir.And(x <= y, y < x), tvm.tir.const(False, "bool"))
ck.verify(tvm.tir.And(y < x, x <= y), tvm.tir.const(False, "bool"))
ck.verify(tvm.tir.And(x < 1, 0 < x), tvm.tir.const(False, "bool"))
ck.verify(tvm.tir.And(x < 0, 1 < x), tvm.tir.const(False, "bool"))
ck.verify(tvm.tir.And(x < 1, 1 <= x), tvm.tir.const(False, "bool"))
ck.verify(tvm.tir.And(x <= 1, 1 < x), tvm.tir.const(False, "bool"))
ck.verify(tvm.tir.And(1 <= x, x < 1), tvm.tir.const(False, "bool"))
ck.verify(tvm.tir.And(1 < x, x <= 1), tvm.tir.const(False, "bool"))
ck.verify(tvm.tir.And(x <= 1, 2 <= x), tvm.tir.const(False, "bool"))
ck.verify(tvm.tir.And(2 <= x, x <= 1), tvm.tir.const(False, "bool"))
ck.verify(tvm.tir.And(x == 1, x != 2), x == 1)
ck.verify(tvm.tir.Or(tvm.tir.EQ(x, y), tvm.tir.NE(x, y)), tvm.tir.const(True, "bool"))
ck.verify(tvm.tir.Or(tvm.tir.NE(x, y), tvm.tir.EQ(x, y)), tvm.tir.const(True, "bool"))
ck.verify(tvm.tir.Or(x > y, tvm.tir.Not(x > y)), tvm.tir.const(True, "bool"))
ck.verify(tvm.tir.Or(x <= y, y < x), tvm.tir.const(True, "bool"))
ck.verify(tvm.tir.Or( |
y < x, y >= x), tvm.tir.const(True, "bool"))
ck.verify(tvm.tir.Or(x < 1, 0 < x), tvm.tir.const(True, "bool"))
ck.verify(tvm.tir.Or(0 < x, x < 1), tvm.tir.const(True, "bool"))
ck.verify(tvm.tir.Or(x < 1, 1 <= x), tvm.tir.const(True, "bool"))
ck.verify(tvm.tir.Or(x <= 1, 1 < x), tvm.tir.const(True, "bool"))
ck.verify(tvm.tir.Or(1 <= x, x < 1), tvm.tir.const(True, "bool"))
ck.verify(tvm.tir.Or(1 < x, x <= 1), tvm.tir.const(True, "bool"))
ck.verify(tvm.tir.Or(x <= 1, 2 <= x), tvm.tir.const(True, "bool"))
ck.verify(tvm.tir.Or(2 <= x, x <= 1), tvm.tir.const(True, "bool"))
ck.verify(tvm.tir.Or(x != 1, x == 2), x != 1)
def test_let_simplify():
ck = RewriteChecker()
x, y = te.var("x"), te.var("y")
z = tvm.tir.Let(x, 1, x + 1)
ck.verify(z + z, 4)
def test_cast_simplify():
ck = RewriteChecker()
x = te.var("x")
dtypes = ["float32", "float16", "int32", "int8", "bool"]
for dtype1 in dtypes:
ck.verify(tvm.tir.Cast(dtype1, x - x), tvm.tir.const(0, dtype1))
ck.verify(tvm.tir.Cast(dtype1, x == x), tvm.tir.const(1, dtype1))
for dtype2 in dtypes:
for i in [0, 1, 2, 3]:
if i > 1 and (dtype1 == "bool" or dtype2 == "bool"):
continue
ck.verify(tvm.tir.Cast(dtype1, tvm.tir.const(i, dtype2)), tvm.tir.const(i, dtype1))
def test_shift_left_simplify():
ck = RewriteChecker()
z = tvm.tir.op.call_intrin("int32", "tir.shift_left", 1, 10)
ck.verify(z, tvm.tir.const(1 << 10, "int32"))
def test_div_zero_simplify():
ck = RewriteChecker()
ramp = tvm.tir.Ramp(1, 1, 2)
broadcast = tvm.tir.Broadcast(0, 2)
with pytest.raises(tvm.error.TVMError) as cm:
ck.analyzer.rewrite_simplify(tvm.tir.Div(ramp, broadcast))
assert "division by zero" in str(cm.execption)
with pytest.raises(tvm.error.TVMError) as cm:
ck.analyzer.rewrite_simplify(tvm.tir.Mod(ramp, broadcast))
assert "division by zero" in str(cm.execption)
with pytest.rais |
es(tvm.error.TVMError) as cm:
ck.analyzer.rewrite_simplify(tvm.tir.FloorDiv(ramp, broadcast))
assert "division by zero" in str(cm.execption)
with pytest.raises(tvm.error.TVMError) as cm:
ck.analyzer.rewrite_simplify(tvm.tir.FloorMod(ramp, broadcast))
assert "division by zero" in str(cm.execption)
def test_sub_bufferload():
ck = RewriteChecker()
buf = tvm.tir.decl_buffer([1], dtype="float32")
load = tvm.tir.BufferLoad(buf, [0])
expr = load - load
ck.verify(expr, 0.0)
def test_if_then_else_simplify():
ck = RewriteChecker()
x = te.var("x", "int32")
z = tvm.tir.if_then_else(x < 5, tvm.tir.if_then_else(x > 1, 1, 0), 0)
ck.verify(z, tvm.tir.if_then_else(tvm.tir.And(tvm.tir.LT(x, 5), tvm.tir.LT(1, x)), 1, 0))
z = tvm.tir.if_then_else(x > 2, tvm.tir.if_then_else(x > 1, 1, 0), 0)
ck.verify(z, tvm.tir.if_then_else(tvm.tir.LT(2, x), 1, 0))
if __name__ == "__main__":
pytest.main([__file__]) |
import random |
import sys |
import pytest |
import tvm
from tvm |
import te, arith, ir, tir, testing
def test_solution_consistency():
seed = random.randrange(sys.maxsize)
print(
"\nThis test is intentionally non-deterministic, "
"if it fails please report it in github issue together with this seed {}\n".format(seed)
)
random.seed(seed)
def _check(num_vars, num_formulas, coef=(-5, 5), bounds=(-20, 20)):
variables = [te.var("x" + str(i)) for i in range(num_vars)]
relations = []
for i in range(num_formulas):
s1 = sum([v * random.randint(coef[0], coef[1]) for v in variables])
s1 += random.randint(coef[0], coef[1])
s2 = sum([v * random.randint(coef[0], coef[1]) for v in variables])
s2 += random.randint(coef[0], coef[1])
if random.random() < 0.7:
op = tvm.tir.EQ
else:
op = random.choice([tvm.tir.LE, tvm.tir.LT, tvm.tir.GE, tvm.tir.GT])
relations.append(op(s1, s2))
vranges = {v: tvm.ir.expr.Range(bounds[0], bounds[1] + 1) for v in variables}
solution = arith.solve_linear_equations(relations, variables, vranges)
testing.check_int_constraints_trans_consistency(solution)
for k in [1, 2]:
if len(variables) > k:
solution = arith.solve_linear_equations(relations, variables[:-k], vranges)
param_ranges = {v: vranges[v] for v in variables[-k:]}
testing.check_int_constraints_trans_consistency(solution, param_ranges)
for i in range(2):
_check(num_vars=1, num_formulas=1)
for i in range(2):
_check(num_vars=1, num_formulas=2)
for i in range(2):
_check(num_vars=2, num_formulas=1)
for i in range(2):
_check(num_vars=2, num_formulas=2)
for i in range(2):
_check(num_vars=2, num_formulas=3)
for i in range(3):
_check(num_vars=3, num_formulas=3, coef=(-2, 2))
for i in range(3):
_check(num_vars=3, num_formulas=4, coef=(-2, 2)) |
for i in range(3):
_check(num_vars=4, num_formulas=3, coef=(-1, 1))
for i in range(3):
_check(num_vars=10, num_formulas=2, coef=(-1, 1), bounds=(0, 4))
for i in range(3):
_check(num_vars=10, num_formulas=3, coef=(0, 1), bounds=(0, 4))
def test_empty_var_to_solve():
x, y = te.var("x"), te.var("y")
equations = [
tvm.tir.EQ(x + y, 20),
tvm.tir.EQ(x - y, 10),
]
solution = arith.solve_linear_equations(equations)
assert len(solution.src_to_dst) == 0
assert len(solution.dst_to_src) == 0
assert len(solution.src.variables) == 0
assert len(solution.src.ranges) == 0
assert ir.structural_equal(solution.src.relations, equations)
assert ir.structural_equal(solution.src, solution.dst)
def test_unique_solution():
x, y = te.var("x"), te.var("y")
solution = arith.solve_linear_equations(
[
tvm.tir.EQ(x + y, 20),
tvm.tir.EQ(x - y, 10),
],
[x, y],
)
assert list(solution.dst.variables) == []
assert ir.structural_equal(solution.src_to_dst[x], 15)
assert ir.structural_equal(solution.src_to_dst[y], 5)
def test_low_rank():
x, y, z = te.var("x"), te.var("y"), te.var("z")
ranges = {}
solution = arith.solve_linear_equations(
[
tvm.tir.EQ(x + y + z, 15),
tvm.tir.EQ(x + y, 10),
],
[x, y, z],
ranges,
)
[n0] = solution.dst.variables
assert ir.structural_equal(solution.src_to_dst[x], n0 + 10)
assert ir.structural_equal(solution.src_to_dst[y], -n0)
assert ir.structural_equal(solution.src_to_dst[z], 5)
def test_infer_range():
x, y = te.var("x"), te.var("y")
ranges = {
x: tvm.ir.Range.from_min_extent(-5, 10),
y: tvm.ir.Range.from_min_extent(0, 10),
}
solution = arith.solve_linear_equations(
[
tvm.tir.EQ(x + y, 0),
],
[x, y],
ranges,
)
[n0] = solution.dst.variables
assert ir.structural_equal(solution.sr |
c_to_dst[x], n0)
assert ir.structural_equal(solution.src_to_dst[y], -n0)
assert ir.structural_equal(solution.dst.ranges[n0].min, -9)
assert ir.structural_equal(solution.dst.ranges[n0].extent, 10)
[ineq] = solution.dst.relations
assert isinstance(ineq, tvm.tir.LE)
assert ir.structural_equal(ineq.a, -5)
assert ir.structural_equal(ineq.b, n0)
def test_ill_formed():
x, y = te.var("x"), te.var("y")
solution = arith.solve_linear_equations(
[
tvm.tir.EQ(x + y, 0),
tvm.tir.EQ(x - y, 0),
tvm.tir.EQ(x, 5),
],
[x, y],
{},
)
assert list(solution.dst.variables) == []
[rel] = solution.dst.relations
assert ir.structural_equal(rel, False)
assert len(solution.src_to_dst) == 0
assert len(solution.dst_to_src) == 0
if __name__ == "__main__":
pytest.main([__file__]) |
import random |
import sys |
import pytest |
import tvm
from tvm |
import te, arith, ir, tir, testing
@pytest.mark.skip(reason="See https:
def test_solution_consistency():
seed = random.randrange(sys.maxsize)
print(
"\nThis test is intentionally non-deterministic, "
"if it fails please report it in github issue together with this seed {}\n".format(seed)
)
random.seed(seed)
def _check(variables, formulas, coef=(-5, 5), bounds=(-20, 20)):
vs = [te.var("x" + str(i)) for i in range(variables)]
fs = []
for i in range(formulas):
s1 = sum([v * random.randint(coef[0], coef[1]) for v in vs])
s1 += random.randint(coef[0], coef[1])
s2 = sum([v * random.randint(coef[0], coef[1]) for v in vs])
s2 += random.randint(coef[0], coef[1])
op = random.choice([tir.expr.EQ, tir.expr.LE, tir.expr.LT, tir.expr.GE, tir.expr.GT])
fs.append(op(s1, s2))
vranges = {v: tvm.ir.expr.Range(bounds[0], bounds[1] + 1) for v in vs}
before = te.all(tir.const(1, "bool"), *fs)
after = arith._ffi_api.SolveInequalitiesAsCondition(vs, vranges, fs)
after = te.all(tir.const(1, "bool"), *after)
testing.check_bool_expr_is_true(before == after, vranges)
solution = arith.solve_linear_inequalities(fs, vs, vranges, deskew_range=True)
testing.check_int_constraints_trans_consistency(solution)
for i in range(3):
_check(1, 1)
for i in range(3):
_check(1, 2)
for i in range(3):
_check(2, 1)
for i in range(3):
_check(2, 2)
for i in range(3):
_check(2, 3)
for i in range(5):
_check(3, 3, coef=(-2, 2))
for i in range(5):
_check(3, 4, coef=(-2, 2))
for i in range(5):
_check(4, 3, coef=(-1, 1))
for i in range(5):
_check(10, 2, coef=(-1, 1), bounds=(0, 4))
for i in range(5):
_check(10, 3, coef=(0, 1), bounds=(0, 4))
def test_dual_variable():
x, y = te.var("x"), te.var("y")
variables = [x, y]
ranges = { |
x: tvm.ir.Range(-100, 100),
y: tvm.ir.Range(0, 10),
}
problem = [
tvm.tir.LE(x + y, 20),
tvm.tir.GE(x - y, 10),
]
solution = arith._ffi_api.SolveInequalitiesAsCondition(variables, ranges, problem)
assert ir.structural_equal(solution[0], x >= (y + 10))
assert ir.structural_equal(solution[1], x <= (20 - y))
assert ir.structural_equal(solution[2], y >= 0)
assert ir.structural_equal(solution[3], y <= 5)
solution = arith.solve_linear_inequalities(problem, variables, ranges)
assert solution.ranges[y].min == 0
assert solution.ranges[y].extent == 6
assert ir.structural_equal(solution.ranges[x].min, y + 10)
assert solution.ranges[x].extent == 11
solution = arith.solve_linear_inequalities(problem, variables, ranges, deskew_range=True)
[x_new, y_new] = solution.dst.variables
[rel] = solution.dst.relations
assert ir.structural_equal(rel, (y_new * 2) + x_new <= 10)
assert ir.structural_equal(solution.dst.ranges[x_new].min, 0)
assert ir.structural_equal(solution.dst.ranges[x_new].extent, 11)
assert ir.structural_equal(solution.dst.ranges[y_new].min, 0)
assert ir.structural_equal(solution.dst.ranges[y_new].extent, 6)
assert ir.structural_equal(solution.src_to_dst[x], x_new + (y_new + 10))
assert ir.structural_equal(solution.src_to_dst[y], y_new)
assert ir.structural_equal(solution.dst_to_src[x_new], x - y - 10)
assert ir.structural_equal(solution.dst_to_src[y_new], y)
def test_equal():
x, y = te.var("x"), te.var("y")
problem = [
tvm.tir.GE(x + y, 10),
tvm.tir.GE(x - y, 2),
tvm.tir.LE(x, 6),
]
solution = arith.solve_linear_inequalities(problem, [x, y])
assert solution.ranges[x].min == 6
assert solution.ranges[x].extent == 1
assert solution.ranges[y].min == 4
assert solution.ranges[y].extent == 1
solution = arith.solve_linear_inequalities(problem, [x, y], deskew_range=True)
assert len(solution.dst.variable |
s) == 0
assert len(solution.dst.ranges) == 0
assert len(solution.dst.relations) == 0
assert solution.src_to_dst[x] == 6
assert solution.src_to_dst[y] == 4
def test_multi_equal():
x, y, z = te.var("x"), te.var("y"), te.var("z")
problem = [
tvm.tir.LE(x, 6),
tvm.tir.GE(x, 6),
tvm.tir.GE(x - z * y, 0),
tvm.tir.LE(x - z * y, 0),
]
solution = arith.solve_linear_inequalities(problem, [x, y, z])
assert solution.ranges[x].min == 6
assert solution.ranges[x].extent == 1
assert len(solution.relations) == 3
assert ir.structural_equal(solution.relations[0], x == z * y)
assert isinstance(solution.relations[1], tvm.tir.LE)
assert solution.relations[1].b == 0
assert isinstance(solution.relations[2], tvm.tir.LE)
assert solution.relations[2].b == 0
ana = tvm.arith.Analyzer()
assert ana.simplify(solution.relations[1].a + solution.relations[2].a) == 0
assert ir.structural_equal(solution.relations[1].a, (z * y - 6)) or ir.structural_equal(
solution.relations[2].a, (z * y - 6)
)
solution = arith.solve_linear_inequalities(problem, [x, y, z], deskew_range=True)
assert solution.src_to_dst[y] == y
assert solution.src_to_dst[z] == z
assert solution.src_to_dst[x] == 6
def test_no_solution():
x = te.var("x0")
vranges = {x: tvm.ir.Range.from_min_extent(-20, 41)}
problem = [-x - 4 <= -5 * x + 2, x * 4 + 5 <= x * 5]
solution = arith.solve_linear_inequalities(problem, [x], vranges, deskew_range=True)
assert list(solution.dst.variables) == []
[rel] = solution.dst.relations
assert ir.structural_equal(rel, False)
assert len(solution.src_to_dst) == 0
assert len(solution.dst_to_src) == 0
solution = arith.solve_linear_inequalities(problem, [x], vranges)
assert len(solution.variables) == 0
assert len(solution.ranges) == 0
[rel] = solution.relations
assert not rel
if __name__ == "__main__":
pytest.main([__file__]) |
"""Test ComputeDAG (replay, infer bound)""" |
import json |
import pickle |
import tvm
from tvm |
import topi
from tvm |
import auto_scheduler, te
from tvm.testing.auto_scheduler |
import (
get_tiled_matmul,
invalid_compute_definition,
matmul_auto_scheduler_test,
parallel_matmul_auto_scheduler_test,
)
def test_apply_steps():
dag, s = get_tiled_matmul()
dag.print_python_code_from_state(s)
sch, tensors = dag.apply_steps_from_state(s)
tvm.lower(sch, tensors, simple_mode=True)
def test_infer_bound():
dag, s = get_tiled_matmul()
s = dag.infer_bound_from_state(s)
def test_estimate_flop():
N = 512
A, B, C = matmul_auto_scheduler_test(N, N, N)
dag = auto_scheduler.ComputeDAG([A, B, C])
assert abs(dag.flop_ct - 2 * N**3) < 0.5
D = topi.nn.relu(C)
dag = auto_scheduler.ComputeDAG([A, B, D])
assert abs(dag.flop_ct - (2 * N**3 + N * N)) < 0.5
E = topi.nn.pad(C, [1, 1])
dag = auto_scheduler.ComputeDAG([A, B, E])
assert abs(dag.flop_ct - 2 * N**3) < 0.5
F = te.compute((N, N), lambda i, j: E[i, j], name="F", attrs={"FLOP": 1234})
dag = auto_scheduler.ComputeDAG([A, B, F])
assert abs(dag.flop_ct - (2 * N**3 + 1234)) < 0.5
A = te.placeholder((N, N), dtype="float32", name="A")
F = te.compute((N, N), lambda i, j: te.if_then_else(A[i, j] > 0, A[i, j], 0))
dag = auto_scheduler.ComputeDAG([A, F])
assert abs(dag.flop_ct - N**2) < 0.5
def test_stage_order():
"""Test if the stage order is preserved when recovering a DAG."""
N = 512
A, B, C, D, E = parallel_matmul_auto_scheduler_test(N)
sch = te.create_schedule([D.op, E.op])
(D_local,) = sch.cache_write([D], "local")
(E_local,) = sch.cache_write([E], "local")
sch.cache_read(A, "shared", [D_local])
sch.cache_read(B, "shared", [D_local])
sch.cache_read(A, "shared", [E_local])
sch.cache_read(C, "shared", [E_local])
dag = auto_scheduler.ComputeDAG(sch)
stage_ops_1 = dag.get_init_state().stage_ops
assert len(stage_ops_1) == 11
for idx, op in enumerate(stage_ops_1):
if op.name == "A":
assert (
stage_ops_1[idx + 1].name == "A.d.shared" |
and stage_ops_1[idx + 2].name == "A.shared"
)
elif op.name in ["B", "C"]:
assert stage_ops_1[idx + 1].name == "%s.shared" % op.name
dag = auto_scheduler.ComputeDAG([A, B, C, D, E])
state = dag.get_init_state()
D_local = state.cache_write(D, "local")
E_local = state.cache_write(E, "local")
state.cache_read(A, "shared", [D_local])
state.cache_read(B, "shared", [D_local])
state.cache_read(A, "shared", [E_local])
state.cache_read(C, "shared", [E_local])
stage_ops_2 = state.stage_ops
assert len(stage_ops_1) == len(stage_ops_2)
for op1, op2 in zip(stage_ops_1, stage_ops_2):
assert op1.name == op2.name
loaded_dag = pickle.loads(pickle.dumps(dag))
assert str(loaded_dag.get_init_state()) == str(dag.get_init_state())
assert len(loaded_dag.get_init_state().stage_ops) == len(dag.get_init_state().stage_ops)
task = auto_scheduler.SearchTask(
compute_dag=dag, workload_key=json.dumps(("test-key",)), target=tvm.target.Target("llvm")
)
task2 = pickle.loads(pickle.dumps(task))
assert '["test-key"]' in auto_scheduler.workload_registry.WORKLOAD_FUNC_REGISTRY
assert str(task.compute_dag.get_init_state()) == str(task2.compute_dag.get_init_state())
assert len(task.compute_dag.get_init_state().stage_ops) == len(
task2.compute_dag.get_init_state().stage_ops
)
assert task.workload_key == task2.workload_key
assert str(task.target) == str(task2.target)
assert task.hardware_params.num_cores == task2.hardware_params.num_cores
assert task.hardware_params.vector_unit_bytes == task2.hardware_params.vector_unit_bytes
assert task.hardware_params.cache_line_bytes == task2.hardware_params.cache_line_bytes
def test_invalid_compute_dag():
failed = False
try:
A, B = invalid_compute_definition()
auto_scheduler.ComputeDAG([A, B])
except tvm.TVMError:
failed = True
assert failed
if __name__ == "__main__":
test_apply |
_steps()
test_infer_bound()
test_estimate_flop()
test_stage_order()
test_invalid_compute_dag() |
"""Test cost models""" |
import tempfile |
import numpy as np |
import tvm
from tvm |
import auto_scheduler
from tvm.testing.auto_scheduler |
import matmul_auto_scheduler_test
def get_sample_records(number):
"""Generate a list of random MeasureInput and MeasureResult pairs"""
N = 128
task = auto_scheduler.SearchTask(func=matmul_auto_scheduler_test, args=(N, N, N), target="llvm")
policy = auto_scheduler.SketchPolicy(task, verbose=0)
states = policy.sample_initial_population()[:number]
inputs = [auto_scheduler.MeasureInput(task, s) for s in states]
results = [
auto_scheduler.MeasureResult([np.random.uniform(0.5, 1.0)], 0, "", 0.1, 0)
for _ in range(len(inputs))
]
return task, inputs, results
def test_random_model():
task, inputs, results = get_sample_records(50)
model = auto_scheduler.RandomModel()
model.update(inputs, results)
scores = model.predict(task, [x.state for x in inputs])
assert len(scores) == len(inputs)
def test_xgb_model():
task, inputs, results = get_sample_records(50)
model = auto_scheduler.XGBModel(num_warmup_sample=-1)
model.update(inputs, results)
preds = model.predict(task, [x.state for x in inputs])
assert len(preds) == len(inputs)
costs = [np.mean([x.value for x in res.costs]) for res in results]
throughputs = np.min(costs) / costs
rmse = np.sqrt(np.mean([np.square(pred - label) for pred, label in zip(preds, throughputs)]))
assert rmse <= 0.3
tmpdir = tvm.contrib.utils.tempdir()
tmpfile = tmpdir.relpath("test1")
auto_scheduler.save_records(tmpfile, inputs, results)
model.update_from_file(tmpfile)
tmpfile = tmpdir.relpath("test2")
model.save(tmpfile)
model.load(tmpfile)
if __name__ == "__main__":
test_random_model()
test_xgb_model() |
""" Test evolutionary search. """ |
import tvm |
import pytest
from tvm.testing.auto_scheduler |
import matmul_auto_scheduler_test
from tvm |
import auto_scheduler, te
from tvm.auto_scheduler.cost_model.cost_model |
import PythonBasedModel
def test_mutate_tile_size():
"""
The test case initializes evo search with a batch of "bad" states and check whether
the search algorithm can find "good" states by mutating the "bad" states.
This unit test has been tested with 1,000 runs with no failures, meaning that
the failure rate is less than 0.1%.
""" |
class MockCostModel(PythonBasedModel):
"""A mock cost model that rates 1 only for the states with tile_k=2."""
@staticmethod
def is_good_state(state):
for line in str(state).split("\n"):
if line.find("k.1") != -1 and line.find("(0,2)") != -1:
return True
return False
def predict(self, task, states):
scores = []
for state in states:
scores.append(1 if self.is_good_state(state) else 0)
return scores
task = auto_scheduler.SearchTask(
func=matmul_auto_scheduler_test, args=(10, 10, 4), target=tvm.target.Target("llvm")
)
policy = auto_scheduler.SketchPolicy(task, program_cost_model=MockCostModel(), verbose=0)
states = policy.sample_initial_population()[:50]
bad_states = []
for state in states:
if not MockCostModel.is_good_state(state):
bad_states.append(state)
new_states = policy.evolutionary_search(bad_states, 50)
found = False
for state in new_states:
if MockCostModel.is_good_state(state):
found = True
break
assert found
@pytest.mark.skip(reason="See https:
def test_mutate_parallel():
"""
The test case initializes evo search with a batch of "bad" states and check whether
the search algorithm can find "good" states by mutating the "bad" states.
""" |
class MockCostModel(PythonBasedModel):
@staticmethod
def is_good_state(state):
for line in str(state).split("\n"):
if (
line.find("parallel i.0@ (0") != -1
or line.find("parallel [email protected]@ (0") != -1
or line.find("parallel [email protected]@i.1@ (0") != -1
):
return True
return False
def predict(self, task, states):
scores = []
for state in states:
scores.append(1 if self.is_good_state(state) else 0)
return scores
task = auto_scheduler.SearchTask(
func=matmul_auto_scheduler_test, args=(1024, 1024, 1024), target="llvm"
)
policy = auto_scheduler.SketchPolicy(task, program_cost_model=MockCostModel(), verbose=0)
found = False
retry_ct = 0
while retry_ct < 10 and not found:
states = policy.sample_initial_population()[:100]
bad_states = []
for state in states:
if not MockCostModel.is_good_state(state):
bad_states.append(state)
new_states = policy.evolutionary_search(bad_states, 50)
for state in new_states:
if MockCostModel.is_good_state(state):
found = True
break
retry_ct += 1
assert found
if __name__ == "__main__":
test_mutate_tile_size()
test_mutate_parallel() |
"""Test feature extraction""" |
import math |
import tempfile |
import tvm
from tvm |
import te, auto_scheduler, relay
from tvm.script |
import tir as T
from tvm.testing.auto_scheduler |
import matmul_auto_scheduler_test
def fequal(a, b):
return math.fabs(a - b) < 1e-6
def test_cpu_matmul():
dag = auto_scheduler.ComputeDAG(matmul_auto_scheduler_test(512, 512, 512))
s = dag.get_init_state()
C = s.stage_ops[2]
i, j, k = s[C].iters
io, ii = s.split(C, i, [16])
jo, ji = s.split(C, j, [8])
s.reorder(C, [io, jo, k, ji, ii])
s.vectorize(C, ji)
s.parallel(C, io)
s.parallel(C, jo)
s.unroll(C, k)
target = tvm.target.Target("llvm")
task = auto_scheduler.SearchTask(compute_dag=dag, workload_key="test", target=target)
names = auto_scheduler.feature.get_per_store_feature_names()
fea = auto_scheduler.feature.get_per_store_features_from_states([s], task)[0]
stage_0 = fea[0]
assert len(stage_0) == len(names), "%d vs %d" % (len(stage_0), len(names))
fea_dict = {}
for name, value in zip(names, stage_0):
fea_dict[name] = value
for name in ["B0", "B1", "B2"]:
if fequal(fea_dict[name + ".acc_type.kReadWrite"], 1.0):
c_name = name
if fequal(fea_dict[name + ".acc_type.kRead"], 1.0):
if fequal(fea_dict[name + ".stride"], 0.0):
b_name = name
else:
a_name = name
"""
lowered IR:
Placeholder: A, B
parallel i.0 (0,32)
parallel j.0 (0,64)
unroll k (0,512)
vectorize j.1 (0,8)
for i.1 (0,16)
C...] = A[...] * B[...]
"""
assert fequal(fea_dict[c_name + ".bytes"], math.log2(512**3 * 4 + 1))
assert fequal(fea_dict[b_name + ".unique_bytes"], math.log2(512**2 * 4 + 1))
assert fequal(fea_dict[c_name + ".reuse_dis_iter"], math.log2(8 * 16 + 1))
assert fequal(fea_dict[c_name + ".reuse_dis_bytes"], math.log2((8 * 16 + 8 + 16) * 4 + 1))
assert fequal(fea_dict[c_name + ".reuse_ct"], math.log2(512 + 1))
assert fequal(fea_dict["unroll_num"], math.log2(1 + 1))
assert fequal(fea_dict["vec_num"], math.log2(1 + 1))
assert fequal(fea_dict["parallel |
_num"], math.log2(2 + 1))
assert fequal(fea_dict["parallel_prod"], math.log2((512 * 512 / 16 / 8) + 1))
def test_cpu_fusion():
def fusion_test(N, M):
A = te.placeholder((N, M), name="A")
B = te.compute((N, M), lambda i, j: A[i][j], name="B")
C = te.compute((N, M), lambda i, j: B[i][j], name="C")
return [A, B, C]
dag = auto_scheduler.ComputeDAG(fusion_test(64, 32))
s = dag.get_init_state()
s.compute_at(1, 2, s.stages[2].iters[1])
target = tvm.target.Target("llvm")
task = auto_scheduler.SearchTask(compute_dag=dag, workload_key="test", target=target)
names = auto_scheduler.feature.get_per_store_feature_names()
fea = auto_scheduler.feature.get_per_store_features_from_states([s], task)[0]
"""
lowered IR:
Placeholder: A
for i (0,64)
for j (0,32)
for ii (1)
for jj (1)
B[...] = A[...]
C[...] = B[...]
"""
found = False
for stage_fea in fea:
for i, (name, value) in enumerate(zip(names, stage_fea)):
if "reuse_type.kSerialMultipleReadWrite" in name and value > 0.5:
assert fequal(stage_fea[i + 2], 1.0)
assert fequal(stage_fea[i + 3], math.log2(16 + 1))
found = True
assert found
def test_gpu_feature():
json_records = "\n".join(
(
"""{"i": [["[\\"matmul_auto_scheduler_test\\", 512, 512, 512]", "cuda"], [[], [["CHW", 2, "local"], ["SP", 2, 0, 512, [1, 16, 32, 1], 1], ["SP", 2, 5, 512, [4, 1, 1, 16], 1], ["SP", 2, 10, 512, [1, 2], 1], ["RE", 2, [0, 5, 1, 6, 2, 7, 10, 11, 3, 8, 12, 4, 9]], ["FSP", 3, 0, 1, 3], ["FSP", 3, 4, 2, 3], ["RE", 3, [0, 4, 1, 5, 2, 6, 3, 7]], ["FU", 2, [0, 1]], ["FU", 3, [0, 1]], ["FU", 2, [1, 2]], ["FU", 3, [1, 2]], ["FU", 2, [2, 3]], ["FU", 3, [2, 3]], ["CA", 2, 3, 2], ["CHR", 1, "shared", [2]], ["CA", 2, 3, 3], ["FU", 2, [0, 1]], ["FFSP", 2, 0, [1, 2], 1, 1], ["AN", 2, 1, 6], ["CHR", 0, "shared", |
[3]], ["CA", 1, 4, 3], ["FU", 1, [0, 1]], ["FFSP", 1, 0, [1, 2], 1, 1], ["AN", 1, 1, 6], ["AN", 5, 0, 5], ["AN", 5, 1, 4], ["AN", 5, 2, 6], ["PR", 4, 0, "auto_unroll_max_step$1024"]]]], "r": [[0.00536798], 0, 2.49277, 1585564852], "v": "v0.1"}""",
)
)
with tempfile.NamedTemporaryFile(mode="w") as f:
f.write(json_records)
f.flush()
inputs, _ = auto_scheduler.RecordReader(f.name).read_lines()
inp = inputs[0]
task = auto_scheduler.SearchTask(
workload_key=inp.task.workload_key,
target=inp.task.target,
hardware_params=auto_scheduler.HardwareParams(
100000, 16, 64, 1 << 30, 1 << 30, 1 << 30, 1 << 30, 1 << 30
),
)
state = task.compute_dag.infer_bound_from_state(inputs[0].state)
fea = auto_scheduler.feature.get_per_store_features_from_states([state], task)[0]
names = auto_scheduler.feature.get_per_store_feature_names()
fea_dicts = []
for i in range(len(fea)):
tmp_dict = {}
for j in range(len(names)):
tmp_dict[names[j]] = fea[i][j]
fea_dicts.append(tmp_dict)
"""
lowered IR:
Placeholder: A, B
blockIdx.x [email protected]@ (0,8)
vthread [email protected]@ (0,4)
threadIdx.x [email protected]@ (0,16)
C.local auto_unroll: 1024
for k.0 (0,256)
for ax0@[email protected] (0,8)
threadIdx.x ax0@[email protected] (0,16)
B.shared = ...
for ax0@[email protected] (0,64)
threadIdx.x ax0@[email protected] (0,16)
A.shared = ...
for i_c.3 (0,32)
for k.2 (0,2)
for j_c.4 (0,16)
C.local = ...
for i.3 (0,32)
for j.3 (0,16)
C = ...
"""
assert fequal(fea_dicts[0]["blockIdx_x_len"], math.log2(8 + 1))
assert fequal(fea_dicts[0]["vthread_len" |
], math.log2(4 + 1))
assert fequal(fea_dicts[1]["threadIdx_x_len"], math.log2(16 + 1))
assert fequal(fea_dicts[0]["threadIdx_y_len"], math.log2(1 + 1))
assert fequal(fea_dicts[2]["blockIdx_z_len"], math.log2(1 + 1))
assert fequal(fea_dicts[0]["is_gpu"], 1.0)
@T.prim_func
def tir_matmul(
A: T.Buffer[(16384,), "float32"],
B: T.Buffer[(16384,), "float32"],
C: T.Buffer[(16384,), "float32"],
) -> None:
T.func_attr({"from_legacy_te_schedule": True, "global_symbol": "main", "tir.noalias": True})
T.preflattened_buffer(A, [128, 128], dtype="float32", data=A.data)
T.preflattened_buffer(B, [128, 128], dtype="float32", data=B.data)
T.preflattened_buffer(C, [128, 128], dtype="float32", data=C.data)
for x, y in T.grid(128, 128):
C[x * 128 + y] = T.float32(0)
for k in T.serial(128):
C[x * 128 + y] = C[x * 128 + y] + A[x * 128 + k] * B[y * 128 + k]
def test_primfunc_without_lowering():
features = auto_scheduler.feature.named_features_from_primfunc(tir_matmul)
assert features["float_mad"].shape == (1,)
assert abs(features["float_addsub"][0] - 128 * 128 * 128) < 10
assert abs(features["float_mul"][0] - 128 * 128 * 128) < 10
for i in range(0, 3):
assert abs(features[f"B{i}.unique_bytes"][0] - 128 * 128 * 4) < 10
def test_primfunc_lowered():
f = tvm.lower(tir_matmul)
features = auto_scheduler.feature.named_features_from_primfunc(f["main"])
assert features["float_mad"].shape == (1,)
assert abs(features["float_addsub"][0] - 128 * 128 * 128) < 10
assert abs(features["float_mul"][0] - 128 * 128 * 128) < 10
for i in range(0, 3):
assert abs(features[f"B{i}.unique_bytes"][0] - 128 * 128 * 4) < 10
def test_dense_lowered():
a = relay.var("a", relay.TensorType((128, 128), "float32"))
b = relay.var("b", relay.TensorType((128, 128), "float32"))
c = relay.nn.dense(a, b)
mod = tvm.IRModule.from_expr(relay.Function([a, b], c))
target = "llvm" |
comp = relay.vm.VMCompiler()
mod, params = comp.optimize(mod, params={}, target=target)
for name, func in mod.functions.items():
if name.name_hint != "main":
break
features = auto_scheduler.feature.named_features_from_primfunc(func)
assert features["float_addsub"].sum() >= 128 * 128 * 128
assert features["float_mul"].sum() >= 128 * 128 * 128
total_bytes_loaded = 0
for i in range(0, 4):
total_bytes_loaded += features[f"B{i}.unique_bytes"].sum()
assert total_bytes_loaded > 2 * 128 * 128 * 4
@T.prim_func
def negative_extent(A: T.Buffer[(1,), "float32"]):
for j in range(0, -1):
A[j] = A[j] + 1.0
def test_negative_extent():
features = auto_scheduler.feature.named_features_from_primfunc(negative_extent)
assert features["B0.unique_bytes"] == 0
if __name__ == "__main__":
test_cpu_matmul()
test_cpu_fusion()
test_gpu_feature() |
"""Test AutoScheduler Layout Rewrite""" |
import tempfile |
import numpy as np |
import pytest |
import tvm |
import tvm.testing
from tvm |
import topi
from tvm |
import auto_scheduler, te
from tvm.testing.auto_scheduler |
import get_tiled_matmul, matmul_auto_scheduler_test
def test_apply_steps_with_layout_rewrite():
dag, s = get_tiled_matmul()
_, bufs = dag.apply_steps_from_state(s)
assert bufs[1].shape[0] == 512
assert bufs[1].shape[1] == 512
_, bufs = dag.apply_steps_from_state(
s, layout_rewrite=auto_scheduler.LayoutRewriteOption.REWRITE_FOR_PRE_TRANSFORMED
)
assert bufs[1].shape[0] == 4
assert bufs[1].shape[1] == 8
assert bufs[1].shape[2] == 4
assert bufs[1].shape[3] == 4
assert bufs[1].shape[4] == 512
_, bufs = dag.apply_steps_from_state(
s, layout_rewrite=auto_scheduler.LayoutRewriteOption.INSERT_TRANSFORM_STAGE
)
assert bufs[1].shape[0] == 512
assert bufs[1].shape[1] == 512
def test_apply_steps_with_layout_rewrite_corner_case():
A, B, C = matmul_auto_scheduler_test(1, 1, 1)
dag = auto_scheduler.ComputeDAG([A, B, C])
s = dag.get_init_state()
s.compute_root(C)
i_j_fused = s.fuse(C, [s[C].iters[0], s[C].iters[1]])
s.parallel(C, i_j_fused)
_, bufs = dag.apply_steps_from_state(
s, layout_rewrite=auto_scheduler.LayoutRewriteOption.REWRITE_FOR_PRE_TRANSFORMED
)
@tvm.testing.requires_llvm
def test_correctness_layout_rewrite_rewrite_for_preTransformed():
N = 16
target = tvm.target.Target("llvm")
task = auto_scheduler.SearchTask(func=matmul_auto_scheduler_test, args=(N, N, N), target=target)
dag = task.compute_dag
with tempfile.NamedTemporaryFile() as fp:
log_file = fp.name
search_policy = auto_scheduler.SketchPolicy(task)
measure_ctx = auto_scheduler.LocalRPCMeasureContext()
tuning_options = auto_scheduler.TuningOptions(
num_measure_trials=100,
runner=measure_ctx.runner,
verbose=2,
early_stopping=1,
measure_callbacks=[auto_scheduler.RecordToFile(log_file)],
)
task.tune(tuning_options, search_policy=search_policy)
inp, _ = auto_scheduler.load_best_record(log_file, task.workl |
oad_key, target)
s, bufs = dag.apply_steps_from_state(
inp.state, layout_rewrite=auto_scheduler.LayoutRewriteOption.REWRITE_FOR_PRE_TRANSFORMED
)
s_ref, bufs_ref = dag.apply_steps_from_state(inp.state)
np_args = [np.random.randn(*topi.get_const_tuple(x.shape)).astype(x.dtype) for x in bufs]
np_args_ref = [np.array(x) for x in np_args]
weight = np_args_ref[1]
if len(weight.shape) >= 6:
base = len(weight.shape) - 6
red_dim = weight.shape[2 + base] * weight.shape[4 + base]
out_dim = weight.shape[3 + base] * weight.shape[5 + base]
for i in range(base + 2):
out_dim *= weight.shape[i]
new_order = (
[
2 + base,
4 + base,
]
+ list(range(base + 2))
+ [
3 + base,
5 + base,
]
)
np_args_ref[1] = np_args_ref[1].transpose(new_order)
np_args_ref[1] = np_args_ref[1].reshape((red_dim, out_dim))
func = tvm.build(s, bufs, target=target)
func_ref = tvm.build(s_ref, bufs_ref, target=target)
dev = tvm.device(str(target))
dev_ref = tvm.cpu()
args = [tvm.nd.array(x, device=dev) for x in np_args]
args_ref = [tvm.nd.array(x, device=dev_ref) for x in np_args_ref]
dev.sync()
func(*args)
func_ref(*args_ref)
dev.sync()
tvm.testing.assert_allclose(args[0].numpy(), args_ref[0].numpy(), atol=1e-3, rtol=1e-3)
tvm.testing.assert_allclose(args[2].numpy(), args_ref[2].numpy(), atol=1e-3, rtol=1e-3)
del measure_ctx
@tvm.testing.requires_llvm
def test_correctness_layout_rewrite_insert_transform_stage():
N = 128
target = tvm.target.Target("llvm")
task = auto_scheduler.SearchTask(func=matmul_auto_scheduler_test, args=(N, N, N), target=target)
dag = task.compute_dag
wi |
th tempfile.NamedTemporaryFile() as fp:
log_file = fp.name
search_policy = auto_scheduler.SketchPolicy(task)
measure_ctx = auto_scheduler.LocalRPCMeasureContext()
tuning_options = auto_scheduler.TuningOptions(
num_measure_trials=2,
runner=measure_ctx.runner,
verbose=1,
measure_callbacks=[auto_scheduler.RecordToFile(log_file)],
)
task.tune(tuning_options, search_policy=search_policy)
inp, _ = auto_scheduler.load_best_record(log_file, task.workload_key, target)
s, bufs = dag.apply_steps_from_state(
inp.state, layout_rewrite=auto_scheduler.LayoutRewriteOption.INSERT_TRANSFORM_STAGE
)
s_ref, bufs_ref = dag.apply_steps_from_state(inp.state)
np_args = [np.random.randn(*topi.get_const_tuple(x.shape)).astype(x.dtype) for x in bufs]
func = tvm.build(s, bufs, target=target)
func_ref = tvm.build(s_ref, bufs_ref, target=target)
dev = tvm.device(str(target))
dev_ref = tvm.cpu()
args = [tvm.nd.array(x, device=dev) for x in np_args]
args_ref = [tvm.nd.array(x, device=dev_ref) for x in np_args]
dev.sync()
func(*args)
func_ref(*args_ref)
dev.sync()
tvm.testing.assert_allclose(args[0].numpy(), args_ref[0].numpy(), atol=1e-3, rtol=1e-3)
tvm.testing.assert_allclose(args[1].numpy(), args_ref[1].numpy(), atol=1e-3, rtol=1e-3)
tvm.testing.assert_allclose(args[2].numpy(), args_ref[2].numpy(), atol=1e-3, rtol=1e-3)
del measure_ctx
if __name__ == "__main__":
test_apply_steps_with_layout_rewrite()
test_apply_steps_with_layout_rewrite_corner_case()
test_correctness_layout_rewrite_rewrite_for_preTransformed()
test_correctness_layout_rewrite_insert_transform_stage() |
"""Test loop state and schedule primitives""" |
import numpy as np |
import tvm
from tvm |
import auto_scheduler, te
from tvm |
import topi
from tvm.testing.auto_scheduler |
import (
matmul_auto_scheduler_test,
conv2d_nchw_bn_relu_auto_scheduler_test,
)
def test_split_fuse_reorder_annotation():
A, B, C = matmul_auto_scheduler_test(N=512, M=512, K=512)
dag = auto_scheduler.ComputeDAG([A, B, C])
s0 = dag.get_init_state()
i, j, k = s0[C].iters
assert i.range.extent == 512
io, ii = s0.split(C, i, [16])
assert s0[C].iters[0] == io
assert s0[C].iters[1] == ii
assert io.range.extent == 32
assert ii.range.extent == 16
jo, ji = s0.split(C, j, [8])
assert jo.range.extent == 64
assert ji.range.extent == 8
s0.reorder(C, [io, jo, k, ji, ii])
assert s0[C].iters[2].range.extent == 512
fused_it = s0.fuse(C, [io, jo])
assert fused_it.range.extent == 2048
s1 = dag.get_init_state()
i, j, _ = s1[C].iters
i1, i2, i3 = s1.split(C, i, [8, 2])
j1, j2, j3 = s1.split(C, j, [32, 8], False)
assert s1[C].iters[0].range.extent == 32
assert s1[C].iters[1].range.extent == 8
assert s1[C].iters[2].range.extent == 2
assert s1[C].iters[3].range.extent == 32
assert s1[C].iters[4].range.extent == 8
assert s1[C].iters[5].range.extent == 2
res = s1.bind(C, i1, "blockIdx.x")
assert res == s1[C].iters[0]
assert res.annotation == auto_scheduler.loop_state.State.ANNOTATION_TRANS_TABLE["blockIdx.x"]
res = s1.bind(C, i2, "vthread")
assert res == s1[C].iters[1]
assert res.annotation == auto_scheduler.loop_state.State.ANNOTATION_TRANS_TABLE["vthread"]
res = s1.bind(C, i3, "threadIdx.y")
assert res == s1[C].iters[2]
assert res.annotation == auto_scheduler.loop_state.State.ANNOTATION_TRANS_TABLE["threadIdx.y"]
res = s1.parallel(C, j1)
assert res == s1[C].iters[3]
assert res.annotation == auto_scheduler.loop_state.State.ANNOTATION_TRANS_TABLE["parallel"]
res = s1.unroll(C, j2)
assert res == s1[C].iters[4]
assert res.annotation == auto_scheduler.loop_state.State.ANNOTATION_TRANS_TABLE["unroll"]
res = s1.vectorize(C, j3)
assert res == s1[C]. |
iters[5]
assert res.annotation == auto_scheduler.loop_state.State.ANNOTATION_TRANS_TABLE["vectorize"]
def test_compute_at_root_inline():
dag = auto_scheduler.ComputeDAG(
conv2d_nchw_bn_relu_auto_scheduler_test(
N=1, H=224, W=224, CI=3, CO=64, kernel_size=7, strides=2, padding=3
)
)
s0 = dag.get_init_state()
conv = s0.stage_ops[3]
bias_add = s0.stage_ops[5]
bn_mul = s0.stage_ops[7]
bn_add = s0.stage_ops[9]
relu = s0.stage_ops[10]
s0.compute_inline(bn_add)
assert s0[bn_add].compute_at == 1
s0.compute_inline(bn_mul)
assert s0[bn_mul].compute_at == 1
s0.compute_inline(bias_add)
assert s0[bias_add].compute_at == 1
assert s0[conv].iters[0].range.extent == 1
assert s0[conv].iters[1].range.extent == 64
assert s0[conv].iters[2].range.extent == 112
assert s0[conv].iters[3].range.extent == 112
assert s0[conv].iters[4].range.extent == 3
assert s0[conv].iters[5].range.extent == 7
assert s0[conv].iters[6].range.extent == 7
s0.compute_at(conv, relu, s0[relu].iters[2])
assert s0[conv].compute_at == 2
s0 = dag.infer_bound_from_state(s0)
assert s0[conv].iters[0].range.extent == 1
assert s0[conv].iters[1].range.extent == 1
assert s0[conv].iters[2].range.extent == 1
assert s0[conv].iters[3].range.extent == 112
assert s0[conv].iters[4].range.extent == 3
assert s0[conv].iters[5].range.extent == 7
assert s0[conv].iters[6].range.extent == 7
s0.compute_root(bn_mul)
assert s0[bn_mul].compute_at == 0
s0.compute_root(conv)
assert s0[conv].compute_at == 0
s0 = dag.infer_bound_from_state(s0)
assert s0[conv].iters[0].range.extent == 1
assert s0[conv].iters[1].range.extent == 64
assert s0[conv].iters[2].range.extent == 112
assert s0[conv].iters[3].range.extent == 112
assert s0[conv].iters[4].range.extent == 3
assert s0[conv].iters[5].range.extent == 7
assert s0[conv].iters[6].range.extent == 7
def test_cache_read_ |
write():
N, H, W, CO, CI, KH, KW, strides, padding = 4, 7, 7, 512, 512, 3, 3, (1, 1), (1, 1)
data = te.placeholder((N, CI, H, W), name="Data")
kernel_data = te.placeholder((CO, CI, KH, KW), name="Kernel_data")
k0, k1 = te.compute(
kernel_data.shape,
lambda *i: (kernel_data(*i) + 1, kernel_data(*i) / 2),
name="Kernel_split",
)
kernel = te.compute(kernel_data.shape, lambda *i: k0(*i) + k1(*i), name="Kernel")
conv = topi.nn.conv2d_nchw(data, kernel, strides, padding, dilation=1)
relu = topi.nn.relu(conv)
add = topi.add(data, relu)
dag = auto_scheduler.ComputeDAG([data, kernel_data, add])
s0 = dag.get_init_state()
pad_temp = s0.stage_ops[1]
kernel_split = s0.stage_ops[3]
ori_its = s0[add].iters
its = s0.split(add, s0[add].iters[0], [2])
s0.reorder(add, [its[0], ori_its[1], its[1], ori_its[2], ori_its[3]])
s0.compute_inline(relu)
conv_global = s0.cache_write(conv, "global")
s0.compute_at(conv_global, conv, s0[conv].iters[3])
kernel_global = s0.cache_read(kernel, "global", [conv_global])
s0.compute_at(kernel_global, conv_global, s0[conv_global].iters[4])
"""
Placeholder: Data, Kernel_data
for i0 (0,4)
for i1 (0,512)
for i2 (0,9)
for i3 (0,9)
pad_temp = ...
for i0 (0,512)
for i1 (0,512)
for i2 (0,3)
for i3 (0,3)
Kernel_split = ...
for i0 (0,512)
for i1 (0,512)
for i2 (0,3)
for i3 (0,3)
Kernel = ...
for nn (0,4)
for ff (0,512)
for yy (0,7)
for xx (0,7)
for nn_c (None)
for ff_c (None)
for yy_c (None)
for xx_c (None)
for rc (None)
for ax0 (None)
for ax1 (None)
for ax2 (None) |
for ax3 (None)
Kernel.global = ...
for ry (None)
for rx (None)
compute.global = ...
compute = ...
for ax0.0 (0,2)
for ax1 (0,512)
for ax0.1 (0,2)
for ax2 (0,7)
for ax3 (0,7)
T_add = ...
"""
s1 = dag.infer_bound_from_state(s0)
assert s1[conv].iters[0].range.extent == 4
assert s1[conv].iters[1].range.extent == 512
assert s1[conv].iters[2].range.extent == 7
assert s1[conv].iters[3].range.extent == 7
assert s1[kernel_global].iters[0].range.extent == 1
assert s1[kernel_global].iters[1].range.extent == 1
assert s1[kernel_global].iters[2].range.extent == 3
assert s1[kernel_global].iters[3].range.extent == 3
assert s1[conv_global].iters[0].range.extent == 1
assert s1[conv_global].iters[1].range.extent == 1
assert s1[conv_global].iters[2].range.extent == 1
assert s1[conv_global].iters[3].range.extent == 1
assert s1[conv_global].iters[4].range.extent == 512
assert s1[conv_global].iters[5].range.extent == 3
assert s1[conv_global].iters[6].range.extent == 3
pad_temp_global = s0.cache_read(pad_temp, "global", [conv_global])
pad_temp_shared = s0.cache_read(pad_temp_global, "shared", [conv_global])
s0.compute_at(pad_temp_global, conv_global, s0[conv_global].iters[2])
s0.compute_at(pad_temp_shared, conv_global, s0[conv_global].iters[4])
s0.cache_read(data, "global", [pad_temp, add])
"""
Placeholder: Data, Kernel_data
for ax0 (0,4)
for ax1 (0,512)
for ax2 (0,7)
for ax3 (0,7)
Data.global = ...
for i0 (0,4)
for i1 (0,512)
for i2 (0,9)
for i3 (0,9)
pad_temp = ...
for i0 (0,512)
for i1 (0,512)
for i2 (0,3)
for i3 (0,3) |
Kernel_split = ...
for i0 (0,512)
for i1 (0,512)
for i2 (0,3)
for i3 (0,3)
Kernel = ...
for nn (0,4)
for ff (0,512)
for yy (0,7)
for xx (0,7)
for nn_c (None)
for ff_c (None)
for yy_c (None)
for ax0 (None)
for ax1 (None)
for ax2 (None)
for ax3 (None)
pad_temp.global = ...
for xx_c (None)
for rc (None)
for ax0 (None)
for ax1 (None)
for ax2 (None)
for ax3 (None)
Kernel.global = ...
for ax0 (None)
for ax1 (None)
for ax2 (None)
for ax3 (None)
pad_temp.global.shared = ...
for ry (None)
for rx (None)
compute.global = ...
compute = ...
for ax0.0 (0,2)
for ax1 (0,512)
for ax0.1 (0,2)
for ax2 (0,7)
for ax3 (0,7)
T_add = ...
"""
s1 = dag.infer_bound_from_state(s0)
assert s1[conv].iters[0].range.extent == 4
assert s1[conv].iters[1].range.extent == 512
assert s1[conv].iters[2].range.extent == 7
assert s1[conv].iters[3].range.extent == 7
assert s1[kernel_global].iters[0].range.extent == 1
assert s1[kernel_global].iters[1].range.extent == 1
assert s1[kernel_global].iters[2].range.extent == 3
assert s1[kernel_global].iters[3].range.extent == 3
assert s1[conv_global].iters[0].range.extent == 1
assert s1[conv_global].iters[1].range.extent == 1
assert s1[conv_global].iter |
s[2].range.extent == 1
assert s1[conv_global].iters[3].range.extent == 1
assert s1[conv_global].iters[4].range.extent == 512
assert s1[conv_global].iters[5].range.extent == 3
assert s1[conv_global].iters[6].range.extent == 3
assert s1[pad_temp_global].iters[0].range.extent == 1
assert s1[pad_temp_global].iters[1].range.extent == 512
assert s1[pad_temp_global].iters[2].range.extent == 3
assert s1[pad_temp_global].iters[3].range.extent == 3
assert s1[pad_temp_shared].iters[0].range.extent == 1
assert s1[pad_temp_shared].iters[1].range.extent == 1
assert s1[pad_temp_shared].iters[2].range.extent == 3
assert s1[pad_temp_shared].iters[3].range.extent == 3
kernel_split_global = s0.cache_write(kernel_split, "global")
"""
Placeholder: Data, Kernel_data
for ax0 (0,4)
for ax1 (0,512)
for ax2 (0,7)
for ax3 (0,7)
Data.global = ...
for i0 (0,4)
for i1 (0,512)
for i2 (0,9)
for i3 (0,9)
pad_temp = ...
for i0_c (0,512)
for i1_c (0,512)
for i2_c (0,3)
for i3_c (0,3)
Kernel_split.global = ...
for i0 (0,512)
for i1 (0,512)
for i2 (0,3)
for i3 (0,3)
Kernel_split = ...
(******* Bug here, there should not be two kernel_split stage *******)
for i0 (0,512)
for i1 (0,512)
for i2 (0,3)
for i3 (0,3)
Kernel_split = ...
(******* Bug here, there should not be two kernel_split stage *******)
for i0 (0,512)
for i1 (0,512)
for i2 (0,3)
for i3 (0,3)
Kernel = ...
for nn (0,4)
for ff (0,512)
for yy (0,7)
for xx (0,7)
for nn_c (None)
for ff_c (None)
fo |
r yy_c (None)
for ax0 (None)
for ax1 (None)
for ax2 (None)
for ax3 (None)
pad_temp.global = ...
for xx_c (None)
for rc (None)
for ax0 (None)
for ax1 (None)
for ax2 (None)
for ax3 (None)
Kernel.global = ...
for ax0 (None)
for ax1 (None)
for ax2 (None)
for ax3 (None)
pad_temp.global.shared = ...
for ry (None)
for rx (None)
compute.global = ...
compute = ...
for ax0.0 (0,2)
for ax1 (0,512)
for ax0.1 (0,2)
for ax2 (0,7)
for ax3 (0,7)
T_add = ...
"""
assert len(s0[kernel_split].iters) == len(s0[kernel_split_global].iters)
for it0, it1 in zip(s0[kernel_split].iters, s0[kernel_split_global].iters):
assert it0.range == it1.range
def test_follow_split_follow_fused_split():
A, B, C = matmul_auto_scheduler_test(512, 512, 512)
dag = auto_scheduler.ComputeDAG([A, B, C])
s0 = dag.get_init_state()
C_global = s0.cache_write(C, "global")
its0 = s0.split(C, s0[C].iters[0], [4, 2, 8, 4], True)
split_step0 = len(s0.transform_steps) - 1
for level in range(1, 6):
tmp = s0.copy()
tmp.follow_split(C_global, tmp[C_global].iters[0], split_step0, level)
for i in range(0, level):
assert tmp[C].iters[i].range.extent == tmp[C_global].iters[i].range.extent
its1 = s0.split(C, s0[C].iters[5], [2, 2, 4, 8])
split_step1 = len(s0.transform_steps) - 1
its = []
for i0, i1 in zip(its0, its1):
its.app |
end(i0)
its.append(i1)
s0.reorder(C, its)
for i in range(0, 5):
s0.fuse(C, [s0[C].iters[i], s0[C].iters[i + 1]])
for level in range(0, 4):
tmp = s0.copy()
tmp.follow_fused_split(
C_global, tmp[C_global].iters[0], [split_step0, split_step1], level, False
)
assert tmp[C].iters[level + 1].range.extent == tmp[C_global].iters[0].range.extent
for level in range(0, 4):
tmp = s0.copy()
tmp.follow_fused_split(
C_global, tmp[C_global].iters[0], [split_step0, split_step1], level, True
)
assert tmp[C].iters[level + 1].range.extent == tmp[C_global].iters[1].range.extent
def test_rfactor():
A, B, C = matmul_auto_scheduler_test(8, 8, 512)
dag = auto_scheduler.ComputeDAG([A, B, C])
s0 = dag.get_init_state()
ko, ki = s0.split(C, s0[C].iters[2], [16])
s1 = s0.copy()
C_r = s1.rfactor(C, ko, 2)
"""
Placeholder: A, B
for i (0,8)
for j (0,8)
for k_o (0,32)
for k_i (0,16)
C.rf = ...
for ax0 (0,8)
for ax1 (0,8)
for k_o_v (0,32)
C.repl = ...
"""
assert s1[C_r].iters[0].range.extent == 8
assert s1[C_r].iters[1].range.extent == 8
assert s1[C_r].iters[2].range.extent == 32
assert s1[C_r].iters[3].range.extent == 16
assert s1[C].iters[0].range.extent == 8
assert s1[C].iters[1].range.extent == 8
assert s1[C].iters[2].range.extent == 32
s2 = s0.copy()
C_r = s2.rfactor(C, ki, 2)
"""
Placeholder: A, B
for i (0,8)
for j (0,8)
for k_i (0,16)
for k_o (0,32)
C.rf = ...
for ax0 (0,8)
for ax1 (0,8)
for k_i_v (0,16)
C.repl = ...
"""
assert s2[C_r].iters[0].range.extent == 8
assert s2[C_r].iters[1].range.extent == 8
assert s2[C_r].iters[2].range.extent == 16
assert s2[C_r].iters[3].range.extent == 32
assert s2[C].i |
ters[0].range.extent == 8
assert s2[C].iters[1].range.extent == 8
assert s2[C].iters[2].range.extent == 16
if __name__ == "__main__":
test_split_fuse_reorder_annotation()
test_compute_at_root_inline()
test_cache_read_write()
test_follow_split_follow_fused_split()
test_rfactor() |
""" Test measurement and log serialization. """ |
import json |
import multiprocessing |
import numpy as np |
import tvm
from tvm |
import topi
from tvm |
import te, auto_scheduler |
import tempfile |
import tvm.testing |
import pickle
from tvm.testing.auto_scheduler |
import matmul_auto_scheduler_test
from tvm.auto_scheduler |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.