text
stringlengths
1
2.05k
in(x + (z * 2), y)) ck.verify(y * x + x, x * (y + 1)) ck.verify(x * y + x, x * (y + 1)) ck.verify((x + 10) + 13, x + 23) ck.verify((x + 10) + (13 + z), x + z + 23) ck.verify(x * y + 10 * x, x * (y + 10)) ck.verify(y * x + x * 3, x * (y + 3)) ck.verify(x + 3 + y, x + y + 3) ck.verify((3 - y) + x, x - y + 3) ck.verify(x + 2 + 3 + 4 + x, x * 2 + 9) ck.verify(x + 2 + 3 + 4 + x * 3, x * 4 + 9) tdiv = tvm.tir.truncdiv tmod = tvm.tir.truncmod ck.verify(y * tmod(x, 8) + 10 * tmod(x, 8), tmod(x, 8) * (y + 10)) ck.analyzer.update(x, tvm.arith.ConstIntBound(-1, 1000), override=True) ck.verify(tdiv(x, 8) * 8 + tmod(x, 8), x) fld = tvm.te.floordiv flm = tvm.te.floormod ck.verify(y * flm(x, 8) + 10 * flm(x, 8), flm(x, 8) * (y + 10)) ck.verify(fld(x, 8) * 8 + flm(x, 8), x) ck.verify(fld(flm(x, 2) + 7, 2) + fld(x, 2), fld(x + 7, 2)) def test_sub_index_simplify(): ck = RewriteChecker() x, y, z = te.var("x"), te.var("y"), te.var("z") a, b = tvm.tir.Any(), tvm.tir.Any() ck.verify(x + y - y, x) ck.verify(x + y - x, y) ck.verify(x - (y + x), 0 - y) ck.verify(x - (x + y), 0 - y) ck.verify(tvm.te.min(x, y) - x, tvm.te.min(0, y - x)) ck.verify(tvm.te.min(x, y) - y, tvm.te.min(x - y, 0)) ck.verify(tvm.te.max(x, y) - x, tvm.te.max(0, y - x)) ck.verify(tvm.te.max(x, y) - y, tvm.te.max(x - y, 0)) ck.verify(x - tvm.te.min(x, y), tvm.te.max(0, x - y)) ck.verify(y - tvm.te.min(x, y), tvm.te.max(y - x, 0)) ck.verify(x - tvm.te.max(x, y), tvm.te.min(0, x - y)) ck.verify(y - tvm.te.max(x, y), tvm.te.min(y - x, 0)) ck.verify(x - x, 0) ck.verify(a - a, 0) ck.verify(a - b, a - b) ck.verify(x * y - x, x * (y + (-1))) ck.verify(x * y - 10 * x, x * (y + (-10))) ck.verify(y * x - x * z, x * (y - z)) ck.verify(y * x - z * x, x * (y - z)) ck.verify(x + 10 - 20, x + (-10)) ck.verify((x + y) - (x + z), y - z) ck.verify((y + x) - (x + z), y
- z) ck.verify((x + y) - (z + x), y - z) ck.verify((y + x) - (z + x), y - z) ck.verify(tvm.te.min(x + y, z) - x, tvm.te.min(y, z - x)) ck.verify(tvm.te.min(y + x, z) - x, tvm.te.min(y, z - x)) ck.verify(tvm.te.min(z, x + y) - x, tvm.te.min(z - x, y)) ck.verify(tvm.te.min(z, y + x) - x, tvm.te.min(z - x, y)) ck.verify(tvm.te.max(x + y, z) - x, tvm.te.max(y, z - x)) ck.verify(tvm.te.max(y + x, z) - x, tvm.te.max(y, z - x)) ck.verify(tvm.te.max(z, x + y) - x, tvm.te.max(z - x, y)) ck.verify(tvm.te.max(z, y + x) - x, tvm.te.max(z - x, y)) ck.verify(x - tvm.te.min(x + y, z), tvm.te.max(0 - y, x - z)) ck.verify(x - tvm.te.min(y + x, z), tvm.te.max(0 - y, x - z)) ck.verify(x - tvm.te.min(z, x + y), tvm.te.max(x - z, 0 - y)) ck.verify(x - tvm.te.min(z, y + x), tvm.te.max(x - z, 0 - y)) ck.verify(tvm.te.min(x, y) - tvm.te.min(y, x), 0) ck.verify(tvm.te.max(x, y) - tvm.te.max(y, x), 0) ck.verify(tvm.te.min(x, y) - tvm.te.min(x + 10, y + 10), -10) ck.verify(tvm.te.min(x + 10, y + 1) - tvm.te.min(x, y - 9), 10) tdiv = tvm.tir.truncdiv tmod = tvm.tir.truncmod ck.analyzer.update(x, tvm.arith.ConstIntBound(0, 1000), override=True) ck.verify(x - tdiv(x, 3) * 3, tmod(x, 3)) ck.verify(tdiv(x + 5, 3) - tdiv(x, 3), tdiv(tmod(x, 3) + 5, 3)) ck.verify(tdiv(x + 5, 3) - tdiv(x + 1, 3), tdiv(tmod(x + 1, 3) + 4, 3)) ck.verify(y - tdiv(y, (-5)) * (-5), tmod(y, 5)) ck.verify(tdiv(y, 3) * 3 - y, 0 - tmod(y, 3)) ck.verify(y - tdiv(y - 6, 5) * 5, tmod(y + (-6), 5) + 6) ck.verify(tdiv(y - 6, 5) * 5 - y, (-6) - tmod(y + (-6), 5)) ck.verify(y - tdiv(y + z, 5) * 5, tmod(y + z, 5) - z) ck.verify(tdiv(y + z, 5) * 5 - y, z - tmod(y + z, 5)) ck.verify(y - tdiv(y - z, 5) * 5, tmod(y - z, 5) + z) ck.verify(tdiv(y - z, 5) * 5 - y, 0 - tmod(y - z, 5) - z) ck.verify(y * 3 - tdiv(y, 2) * 6, tmod(y, 2) * 3) ck.verify(tdiv(y, 3) * 6 - y * 2, tmod(y, 3) * (-2)) ck.verify(y * 5 - tdiv(y + z, 2) * 10, (tmod
(y + z, 2) - z) * 5) ck.verify(y * 5 - tdiv(y - z, 2) * 10, (tmod(y - z, 2) + z) * 5) ck.verify(tdiv(y + z, 3) * 6 - y * 2, (z - tmod(y + z, 3)) * 2) ck.verify(tdiv(y - z, 3) * 6 - y * 2, (0 - tmod(y - z, 3) - z) * 2) ck.verify(5 * y - tdiv(y + z, 2) * 10, (tmod(y + z, 2) - z) * 5) ck.verify(5 * y - 10 * tdiv(y - z, 2), (tmod(y - z, 2) + z) * 5) ck.verify(6 * tdiv(y + z, 3) - y * 2, (z - tmod(y + z, 3)) * 2) ck.verify(tdiv(y - z, 3) * 6 - 2 * y, (0 - tmod(y - z, 3) - z) * 2) fld = tvm.te.floordiv flm = tvm.te.floormod ck.analyzer.update(x, tvm.arith.ConstIntBound(-1000, 1000), override=True) ck.analyzer.update(y, tvm.arith.ConstIntBound(-1000, 1000), override=True) ck.verify(x - fld(x, 3) * 3, flm(x, 3)) ck.verify(fld(x + 5, 3) - fld(x, 3), fld(flm(x, 3) + 5, 3)) ck.verify(fld(x + 5, 3) - fld(x + 2, 3), fld(flm(x + 2, 3), 3) + 1) ck.verify(fld(y, 3) * 3 - y, 0 - flm(y, 3)) ck.verify(y - fld(y - 6, 5) * 5, flm(y + (-6), 5) + 6) ck.verify(fld(y - 6, 5) * 5 - y, (-6) - flm(y + (-6), 5)) ck.verify(y - fld(y + z, 5) * 5, flm(y + z, 5) - z) ck.verify(fld(y + z, 5) * 5 - y, z - flm(y + z, 5)) ck.verify(y - fld(y - z, 5) * 5, flm(y - z, 5) + z) ck.verify(fld(y - z, 5) * 5 - y, 0 - flm(y - z, 5) - z) ck.verify(y * 3 - fld(y, 2) * 6, flm(y, 2) * 3) ck.verify(fld(y, 3) * 6 - y * 2, flm(y, 3) * (-2)) ck.verify(y * 5 - fld(y + z, 2) * 10, (flm(y + z, 2) - z) * 5) ck.verify(y * 5 - fld(y - z, 2) * 10, (flm(y - z, 2) + z) * 5) ck.verify(fld(y + z, 3) * 6 - y * 2, (z - flm(y + z, 3)) * 2) ck.verify(fld(y - z, 3) * 6 - y * 2, (0 - flm(y - z, 3) - z) * 2) ck.verify(5 * y - fld(y + z, 2) * 10, (flm(y + z, 2) - z) * 5) ck.verify(5 * y - 10 * fld(y - z, 2), (flm(y - z, 2) + z) * 5) ck.verify(6 * fld(y + z, 3) - y * 2, (z - flm(y + z, 3)) * 2) ck.verify(fld(y - z, 3) * 6 - 2 * y, (0 - flm(y - z, 3) - z) * 2) def test_mul_index_simplify(): ck = RewriteChecker() x, y, z = te.var("x"), te.var("y"),
te.var("z") ck.verify((x + 2) * 3, x * 3 + 6) ck.verify((x * 2) * 3, x * 6) ck.verify(tvm.te.min(x, y) * tvm.te.max(x, y), x * y) ck.verify(tvm.te.max(x, y) * tvm.te.min(x, y), x * y) ck.verify((x - y) * (-2), (y - x) * 2) def test_div_index_simplify(): ck = RewriteChecker() x, y, z = te.var("x"), te.var("y"), te.var("z") tdiv = tvm.tir.truncdiv tmod = tvm.tir.truncmod ck.verify(tdiv(x, x), 1) ck.analyzer.update(x, tvm.arith.ConstIntBound(0, 1000), override=True) ck.analyzer.update(y, tvm.arith.ConstIntBound(0, 1000), override=True) ck.analyzer.update(z, tvm.arith.ConstIntBound(0, 1000), override=True) ck.verify(tdiv(tdiv(x, 2), 3), tdiv(x, 6)) ck.verify(tdiv(tdiv(x, 2) + 1, 3), tdiv(x + 2, 6)) ck.verify(tdiv(x * 2, 4), tdiv(x, 2)) ck.verify(tdiv(x * 4, 2), x * 2) ck.verify(tdiv(x * 4 + y, 2), x * 2 + tdiv(y, 2)) ck.verify(tdiv(tvm.te.min(x * 6, y), 2), tvm.te.min(x * 3, tdiv(y, 2))) ck.verify(tdiv(tvm.te.max(x * 6, y), 2), tvm.te.max(x * 3, tdiv(y, 2))) ck.verify(tdiv(y + x * 4, 2), tdiv(y, 2) + x * 2) ck.verify(tdiv(tvm.te.min(y, x * 6), 2), tvm.te.min(tdiv(y, 2), x * 3)) ck.verify(tdiv(tvm.te.max(y, x * 6), 2), tvm.te.max(tdiv(y, 2), x * 3)) ck.verify(tdiv(x * 6 + y + z, 2), x * 3 + tdiv(y + z, 2)) ck.verify(tdiv(x * 6 - y + (y + 3), 2), x * 3 + 1) ck.verify(tdiv(x * 6 + (y + 3) - y, 2), x * 3 + 1) ck.verify(tdiv(y + x * 6 + z, 2), x * 3 + tdiv(y + z, 2)) ck.verify(tdiv(x + 4, 2), tdiv(x, 2) + 2) ck.verify(tdiv(x + y, x), tdiv(y, x) + 1) ck.verify(tdiv(y + x, x), tdiv(y, x) + 1) ck.verify(tdiv((x + y) + z, x), tdiv(y + z, x) + 1) ck.verify(tdiv((y + x) + z, x), tdiv(y + z, x) + 1) ck.verify(tdiv(y + (x + z), x), tdiv(y + z, x) + 1) ck.verify(tdiv(y + (z + x), x), tdiv(y + z, x) + 1) ck.verify(tdiv(x * y, y), x) ck.verify(tdiv(y * x, y), x) ck.verify(tdiv(x * z + y, z), x + tdiv(y, z)) ck.verify(tdiv(z * x + y, z), x + tdiv(y, z)) ck.verify(td
iv(y + x * z, z), tdiv(y, z) + x) ck.verify(tdiv(y + z * x, z), tdiv(y, z) + x) def test_floordiv_index_simplify(): fld = tvm.te.floordiv flm = tvm.te.floormod ck = RewriteChecker() x, y, z = te.var("x"), te.var("y"), te.var("z") ck.verify(fld(fld(x, 2), 3), fld(x, 6)) ck.verify(fld(fld(x, 2) + 1, 3), fld(x + 2, 6)) ck.verify(fld(x - flm(x, 21), 21), fld(x, 21)) ck.verify(fld(x * 2, 4), fld(x, 2)) ck.verify(fld(x * 4, 2), x * 2) ck.verify(fld(x * 8 + 7, 16), fld(x, 2)) ck.verify(fld(x * 8 + 39, 16), fld(x, 2) + 2) ck.verify(fld(x * 8 - 1, 16), fld(x * 8 + -1, 16)) ck.verify(fld(x * 8 - 9, 16), fld(x, 2) + -1) ck.analyzer.update(x, tvm.arith.ConstIntBound(0, 1), override=True) ck.analyzer.update(y, tvm.arith.ConstIntBound(0, 7), override=True) ck.verify(fld(x * 360 + y, 16), x * 22) ck.verify(fld(x * 360 + y, 25), x * 14) ck.verify(fld(x * 360 - 8, 25), fld(x * 360 + -8, 25)) ck.verify(fld(x * 4 + y, 2), x * 2 + fld(y, 2)) ck.verify(fld(tvm.te.min(x * 6, y), 2), tvm.te.min(x * 3, fld(y, 2))) ck.verify(fld(tvm.te.max(x * 6, y), 2), tvm.te.max(x * 3, fld(y, 2))) ck.verify(fld(y + x * 4, 2), x * 2 + fld(y, 2)) ck.verify(fld(tvm.te.min(y, x * 6), 2), tvm.te.min(fld(y, 2), x * 3)) ck.verify(fld(tvm.te.max(y, x * 6), 2), tvm.te.max(fld(y, 2), x * 3)) ck.verify(fld(x * 6 + y + z, 2), x * 3 + fld(y + z, 2)) ck.verify(fld(x * 6 - y + (y + 3), 2), x * 3 + 1) ck.verify(fld(x * 6 + (y + 3) - y, 2), x * 3 + 1) ck.verify(fld(y + x * 6 + z, 2), x * 3 + fld(y + z, 2)) ck.verify(fld(x + 4, 2), fld(x, 2) + 2) ck.analyzer.update(x, tvm.arith.ConstIntBound(0, 1000), override=True) ck.verify(fld(x + y, x), fld(y, x) + 1) ck.verify(fld(y + x, x), fld(y, x) + 1) ck.verify(fld((x + y) + z, x), fld(y + z, x) + 1) ck.verify(fld((y + x) + z, x), fld(y + z, x) + 1) ck.verify(fld(y + (x + z), x), fld(y + z, x) + 1) ck.verify(fld(y + (z + x), x), fld(y + z, x) + 1) ck.analyz
er.update(y, tvm.arith.ConstIntBound(0, 1000), override=True) ck.analyzer.update(z, tvm.arith.ConstIntBound(0, 1000), override=True) ck.verify(fld(x * y, y), x) ck.verify(fld(y * x, y), x) ck.verify(fld(x * z + y, z), x + fld(y, z)) ck.verify(fld(z * x + y, z), x + fld(y, z)) ck.verify(fld(y + x * z, z), fld(y, z) + x) ck.verify(fld(y + z * x, z), fld(y, z) + x) ck.analyzer.update(y, tvm.arith.ConstIntBound(0, 31), override=True) ck.analyzer.update(z, tvm.arith.ConstIntBound(0, 3), override=True) ck.verify(fld(x * 32 + y, 64), fld(x, 2)) ck.verify(fld(x * 128 + y * 4 + z, 512), fld(x, 4)) def test_mod_index_simplify(): ck = RewriteChecker() x, y, nx, ny, z = te.var("x"), te.var("y"), te.var("nx"), te.var("ny"), te.var("z") ck.analyzer.update(x, tvm.arith.ConstIntBound(0, 1000), override=True) ck.analyzer.update(y, tvm.arith.ConstIntBound(0, 1000), override=True) ck.analyzer.update(nx, tvm.arith.ConstIntBound(-1000, 0), override=True) ck.analyzer.update(ny, tvm.arith.ConstIntBound(-1000, 0), override=True) tdiv = tvm.tir.truncdiv tmod = tvm.tir.truncmod ck.verify(tmod(x * 10, 2), 0) ck.verify(tmod(x * 10 + y, 2), tmod(y, 2)) ck.verify(tmod(x + 10, 2), tmod(x, 2)) ck.verify(tmod(x + y * 10, 2), tmod(x, 2)) ck.verify(tmod(x * 10 + 1 + y * 2 + 2, 2), 1) ck.verify(tmod(x * 10, -2), 0) ck.verify(tmod(x * 10 + y, -2), tmod(y, 2)) ck.verify(tmod(x + 10, -2), tmod(x, 2)) ck.verify(tmod(x + y * 10, -2), tmod(x, 2)) ck.verify(tmod(x * 10 + 1 + y * 2 + 2, -2), 1) ck.verify(tmod(x * (-10), 2), 0) ck.verify(tmod(x * (-10) + y, 2), tmod(x * (-10) + y, 2)) ck.verify(tmod(x + (-10), 2), tmod(x + (-10), 2)) ck.verify(tmod(x + y * (-10), 2), tmod(x + y * (-10), 2)) ck.verify(tmod(x * (-10), -2), 0) ck.verify(tmod(nx * 10, 2), 0) ck.verify(tmod(nx * (-10) + y, 2), tmod(y, 2)) ck.verify(tmod(x + ny * (-10), 2), tmod(x, 2)) ck.verify(tmod(nx * (-10) + 1 + ny * (-2) + 2, 2), 1)
ck.verify(tmod(nx * 10, -2), 0) ck.verify(tmod(nx * (-10) + y, -2), tmod(y, 2)) ck.verify(tmod(x + ny * (-10), -2), tmod(x, 2)) def test_floormod_index_simplify(): flm = tvm.te.floormod x, y, z = te.var("x"), te.var("y"), te.var("z") ck = RewriteChecker() x, y, nx, ny, z = te.var("x"), te.var("y"), te.var("nx"), te.var("ny"), te.var("z") ck.verify(flm(x * 10, 2), 0) ck.verify(flm(x * 9600, 6400), flm(x * 3200, 6400)) ck.verify(flm(x * 10 + y, 2), flm(y, 2)) ck.verify(flm(x * 360 + y, 16), flm(x * 8 + y, 16)) ck.verify(flm(x + 10, 2), flm(x, 2)) ck.verify(flm(x + y * 10, 2), flm(x, 2)) ck.verify(flm(x + y * 360, 16), flm(x + y * 8, 16)) ck.verify(flm(x * 10 + 1 + y * 2 + 2, 2), 1) ck.verify(flm(x * (-10), 2), 0) ck.verify(flm(x * (-10) + y, 2), flm(y, 2)) ck.verify(flm(x + (-10), 2), flm(x, 2)) ck.verify(flm(x + y * (-10), 2), flm(x, 2)) ck.analyzer.update(y, tvm.arith.ConstIntBound(0, 31), override=True) ck.verify(flm(x * 32 + y, 64), flm(x, 2) * 32 + y) ck.verify(flm(x * 32 - y, 64), flm(x * 32 - y, 64)) def test_min_index_simplify(): ck = RewriteChecker() x, y, z = te.var("x"), te.var("y"), te.var("z") fld = tvm.te.floordiv flm = tvm.te.floormod tdiv = tvm.tir.truncdiv tmod = tvm.tir.truncmod ck.verify(tvm.te.min(tmod(x, 2), tmod(y, 2) + 10), tmod(x, 2)) ck.verify(tvm.te.min(flm(x, 2), flm(y, 2) + 10), flm(x, 2)) ck.verify(tvm.te.min(x + 1, x + 10), x + 1) ck.verify(tvm.te.min(x + 111, x + 10), x + 10) ck.verify(tvm.te.min(x + 1, x), x) ck.verify(tvm.te.min(x, x + 2), x) ck.verify(tvm.te.min(1 - x, 2 - x), 1 - x) ck.verify(tvm.te.min(3 - x, 2 - x), 2 - x) ck.verify(tvm.te.min(tvm.te.max(x, y), tvm.te.min(x, y)), tvm.te.min(x, y)) ck.verify(tvm.te.min(tvm.te.max(x, y), tvm.te.min(y, x)), tvm.te.min(x, y)) ck.verify(tvm.te.min(tvm.te.max(x, y), x), x) ck.verify(tvm.te.min(tvm.te.max(y, x), x), x) ck.verify(tvm.te.min(tvm.te.min(x, y),
x), tvm.te.min(x, y)) ck.verify(tvm.te.min(tvm.te.min(x, y), y), tvm.te.min(x, y)) ck.verify(tvm.te.min(x, tvm.te.max(x, y)), x) ck.verify(tvm.te.min(x, tvm.te.max(y, x)), x) ck.verify(tvm.te.min(x, tvm.te.min(x, y)), tvm.te.min(x, y)) ck.verify(tvm.te.min(y, tvm.te.min(x, y)), tvm.te.min(x, y)) ck.verify(tvm.te.min(tvm.te.min(tvm.te.min(x, y), z), y), tvm.te.min(tvm.te.min(x, y), z)) ck.verify( tvm.te.min(tvm.te.min(tvm.te.min(tvm.te.min(x, y), z), x * 2), y), tvm.te.min(tvm.te.min(tvm.te.min(x, y), z), x * 2), ) ck.verify( tvm.te.min(tvm.te.min(tvm.te.min(tvm.te.min(tvm.te.min(x, y), z), x * 2), z * 2), y), tvm.te.min(tvm.te.min(tvm.te.min(tvm.te.min(x, y), z), x * 2), z * 2), ) ck.verify(tvm.te.min(tvm.te.max(x, y), tvm.te.max(x, z)), tvm.te.max(tvm.te.min(y, z), x)) ck.verify(tvm.te.min(tvm.te.max(x, y), tvm.te.max(z, x)), tvm.te.max(tvm.te.min(y, z), x)) ck.verify(tvm.te.min(tvm.te.max(y, x), tvm.te.max(x, z)), tvm.te.max(tvm.te.min(y, z), x)) ck.verify(tvm.te.min(tvm.te.max(y, x), tvm.te.max(z, x)), tvm.te.max(tvm.te.min(y, z), x)) ck.verify(tvm.te.min(y + x, z + x), tvm.te.min(y, z) + x) ck.verify(tvm.te.min(y + x, x + z), tvm.te.min(y, z) + x) ck.verify(tvm.te.min(x + y, z + x), tvm.te.min(y, z) + x) ck.verify(tvm.te.min(x + y, x + z), tvm.te.min(y, z) + x) ck.verify(tvm.te.min(x - y, x - z), x - tvm.te.max(y, z)) ck.verify(tvm.te.min(y - x, z - x), tvm.te.min(y, z) - x) ck.verify(tvm.te.min(tvm.te.min(x, 1), 10), tvm.te.min(x, 1)) ck.verify(tvm.te.min(tvm.te.min(x, 11), 10), tvm.te.min(x, 10)) ck.verify(tvm.te.min(x * 3, 9), tvm.te.min(x, 3) * 3) ck.verify(tvm.te.min(x * 2, 0), tvm.te.min(x, 0) * 2) ck.verify(tvm.te.min(0 - x * 2, 0), tvm.te.max(x, 0) * -2) ck.verify(tvm.te.min(3 - x, 2), 3 - tvm.te.max(x, 1)) ck.verify(tvm.te.min(x * (-2), -4), tvm.te.max(x, 2) * -2) ck.verify(tvm.te.min(x * (-2), 4), tvm.te.max(x, -2) * -2) ck.verify(tvm.te.min(x * (
0), 4), 0) ck.verify(tvm.te.min(x * (0), -4), -4) ck.analyzer.update(x, tvm.arith.ConstIntBound(0, 1000)) ck.verify(tvm.te.min(tdiv(x + 3, 4) * 4, x), x) ck.verify(tvm.te.min(tdiv(x + 3, 4) * 4, tvm.te.max(x, 4)), tvm.te.max(x, 4)) ck.verify(tvm.te.min(x, tdiv(x + 3, 4) * 4), x) ck.verify(tvm.te.min(tvm.te.max(x, 4), tdiv(x + 3, 4) * 4), tvm.te.max(x, 4)) ck.analyzer.update(x, tvm.arith.ConstIntBound(-1000, 1000), True) ck.verify(tvm.te.min(tdiv(x, 10), tdiv(y, 10)), tdiv(tvm.te.min(x, y), 10)) ck.verify(tvm.te.min(tdiv(x, (-10)), tdiv(y, (-10))), tdiv(tvm.te.max(x, y), (-10))) ck.analyzer.update(x, tvm.arith.ConstIntBound(-1000, 1000), True) ck.verify(tvm.te.min(fld(x + 3, 4) * 4, x), x) ck.verify(tvm.te.min(fld(x + 3, 4) * 4, tvm.te.max(x, 4)), tvm.te.max(x, 4)) ck.verify(tvm.te.min(x, fld(x + 3, 4) * 4), x) ck.verify(tvm.te.min(x, fld(x, 4) * 4), fld(x, 4) * 4) ck.verify(tvm.te.min(tvm.te.max(x, 4), fld(x + 3, 4) * 4), tvm.te.max(x, 4)) ck.verify(tvm.te.min(fld(x, 10), fld(y, 10)), fld(tvm.te.min(x, y), 10)) ck.verify(tvm.te.min(fld(x, (-10)), fld(y, (-10))), fld(tvm.te.max(x, y), (-10))) def test_max_index_simplify(): ck = RewriteChecker() x, y, z = te.var("x"), te.var("y"), te.var("z") flm = tvm.te.floormod fld = tvm.te.floordiv tdiv = tvm.tir.truncdiv tmod = tvm.tir.truncmod ck.verify(tvm.te.max(tmod(x, 2), tmod(y, 2) + 10), tmod(y, 2) + 10) ck.verify(tvm.te.max(flm(x, 2), flm(y, 2) + 10), flm(y, 2) + 10) ck.verify(tvm.te.max(x + 1, x + 10), x + 10) ck.verify(tvm.te.max(x + 111, x + 10), x + 111) ck.verify(tvm.te.max(x + 1, x), x + 1) ck.verify(tvm.te.max(x, x + 2), x + 2) ck.verify(tvm.te.max(1 - x, 2 - x), 2 - x) ck.verify(tvm.te.max(3 - x, 2 - x), 3 - x) ck.verify(tvm.te.max(tvm.te.min(x, y), tvm.te.max(x, y)), tvm.te.max(x, y)) ck.verify(tvm.te.max(tvm.te.min(x, y), tvm.te.max(y, x)), tvm.te.max(x, y)) ck.verify(tvm.te.max(tvm.te.min(x, y), x)
, x) ck.verify(tvm.te.max(tvm.te.min(y, x), x), x) ck.verify(tvm.te.max(tvm.te.max(x, y), x), tvm.te.max(x, y)) ck.verify(tvm.te.max(tvm.te.max(x, y), y), tvm.te.max(x, y)) ck.verify(tvm.te.max(x, tvm.te.min(x, y)), x) ck.verify(tvm.te.max(x, tvm.te.min(y, x)), x) ck.verify(tvm.te.max(x, tvm.te.max(x, y)), tvm.te.max(x, y)) ck.verify(tvm.te.max(y, tvm.te.max(x, y)), tvm.te.max(x, y)) ck.verify(tvm.te.max(tvm.te.max(tvm.te.max(x, y), z), y), tvm.te.max(tvm.te.max(x, y), z)) ck.verify( tvm.te.max(tvm.te.max(tvm.te.max(tvm.te.max(x, y), z), x * 2), y), tvm.te.max(tvm.te.max(tvm.te.max(x, y), z), x * 2), ) ck.verify( tvm.te.max(tvm.te.max(tvm.te.max(tvm.te.max(tvm.te.max(x, y), z), x * 2), z * 2), y), tvm.te.max(tvm.te.max(tvm.te.max(tvm.te.max(x, y), z), x * 2), z * 2), ) ck.verify(tvm.te.max(tvm.te.min(x, y), tvm.te.min(x, z)), tvm.te.min(tvm.te.max(y, z), x)) ck.verify(tvm.te.max(tvm.te.min(x, y), tvm.te.min(z, x)), tvm.te.min(tvm.te.max(y, z), x)) ck.verify(tvm.te.max(tvm.te.min(y, x), tvm.te.min(x, z)), tvm.te.min(tvm.te.max(y, z), x)) ck.verify(tvm.te.max(tvm.te.min(y, x), tvm.te.min(z, x)), tvm.te.min(tvm.te.max(y, z), x)) ck.verify(tvm.te.max(y + x, z + x), tvm.te.max(y, z) + x) ck.verify(tvm.te.max(y + x, x + z), tvm.te.max(y, z) + x) ck.verify(tvm.te.max(x + y, z + x), tvm.te.max(y, z) + x) ck.verify(tvm.te.max(x + y, x + z), tvm.te.max(y, z) + x) ck.verify(tvm.te.max(x - y, x - z), x - tvm.te.min(y, z)) ck.verify(tvm.te.max(y - x, z - x), tvm.te.max(y, z) - x) ck.verify(tvm.te.max(tvm.te.max(x, 1), 10), tvm.te.max(x, 10)) ck.verify(tvm.te.max(tvm.te.max(x, 11), 10), tvm.te.max(x, 11)) ck.verify(tvm.te.max(x * 3, 9), tvm.te.max(x, 3) * 3) ck.verify(tvm.te.max(3 - x, 1), 3 - tvm.te.min(x, 2)) ck.verify(tvm.te.max(x * 2, 0), tvm.te.max(x, 0) * 2) ck.verify(tvm.te.max(0 - x * 2, 0), tvm.te.min(x, 0) * -2) ck.verify(tvm.te.max(x * (-2), -4), tvm.te.min(x, 2)
* -2) ck.verify(tvm.te.max(x * (-2), 4), tvm.te.min(x, -2) * -2) ck.verify(tvm.te.max(x * (0), 4), 4) ck.verify(tvm.te.max(x * (0), -4), 0) ck.verify(tvm.te.max(tdiv(x, 10), tdiv(y, 10)), tdiv(tvm.te.max(x, y), 10)) ck.verify(tvm.te.max(tdiv(x, (-10)), tdiv(y, (-10))), tdiv(tvm.te.min(x, y), (-10))) ck.verify(tvm.te.max(tdiv(x + 3, 4) * 4, x), tdiv(x + 3, 4) * 4) ck.verify(tvm.te.max(fld(x, 10), fld(y, 10)), fld(tvm.te.max(x, y), 10)) ck.verify(tvm.te.max(fld(x, (-10)), fld(y, (-10))), fld(tvm.te.min(x, y), (-10))) ck.verify(tvm.te.max(fld(x + 3, 4) * 4, x), fld(x + 3, 4) * 4) ck.verify(tvm.te.max(fld(x, 4) * 4, x), x) ck.verify(tvm.te.max(x, fld(x, 4) * 4), x) def test_cmp_simplify(): ck = RewriteChecker() x, y, z = te.var("x"), te.var("y"), te.var("z") flm = tvm.te.floormod fld = tvm.te.floordiv tdiv = tvm.tir.truncdiv tmod = tvm.tir.truncmod ck.verify((tmod(x, 2) + 10).equal(0), tvm.tir.const(0, "bool")) ck.verify(tvm.tir.NE(tmod(x, 2) + 10, 0), tvm.tir.const(1, "bool")) ck.verify(tmod(x, 2) + 10 > 1, tvm.tir.const(1, "bool")) ck.verify(tmod(x, 2) + 10 <= 1, tvm.tir.const(0, "bool")) ck.verify(flm(x, 2) + 2 > 1, tvm.tir.const(1, "bool")) ck.verify(flm(x, 2) + 10 <= 1, tvm.tir.const(0, "bool")) ck.verify(x * 3 + 10 == 0, tvm.tir.const(0, "bool")) ck.verify(x * 3 + 10 != 0, tvm.tir.const(1, "bool")) ck.verify((x - 10).equal(0), x.equal(10)) ck.verify((10 - x).equal(0), x.equal(10)) ck.verify((x * y).equal(0), tvm.tir.Or(x.equal(0), y.equal(0))) ck.verify(x + y < x + z, y < z) ck.verify(x + y < z + x, y < z) ck.verify(y + x < x + z, y < z) ck.verify(y + x < z + x, y < z) ck.verify(y - x < z - x, y < z) ck.verify(x - y < x - z, z < y) ck.verify(x < z + x, tvm.tir.LT(0, z)) ck.verify(x < x + z, tvm.tir.LT(0, z)) ck.verify(100 < x + 1, tvm.tir.LT(99, x)) ck.verify(1 < 100 - x, tvm.tir.LT(x, 99)) ck.verify(x * 3 < y * 3, x <
y) ck.verify(x * (-3) < y * (-3), y < x) ck.verify(x * 3 >= y * 3, y <= x) ck.verify(x * 4 >= 2, tvm.tir.LE(1, x)) ck.verify(x * 2 >= 50, tvm.tir.LE(25, x)) ck.verify(x * 4 <= 2, x <= 0) ck.verify((0 - x * 3) <= 0, tvm.tir.LE(0, x)) ck.verify((0 - x * 3) >= 0, tvm.tir.LE(x, 0)) ck.verify(2 * x <= 0, x <= 0) ck.verify(x * 2 >= 3, tvm.tir.LE(2, x)) ck.verify(x * 2 >= 2, tvm.tir.LE(1, x)) ck.verify(x * 2 >= 1, tvm.tir.LE(1, x)) ck.verify(x * 2 >= 0, tvm.tir.LE(0, x)) ck.verify(x * 2 >= -1, tvm.tir.LE(0, x)) ck.verify(x * 2 >= -2, tvm.tir.LE(-1, x)) ck.verify(x * 2 >= -3, tvm.tir.LE(-1, x)) ck.verify(x * 2 <= 3, tvm.tir.LE(x, 1)) ck.verify(x * 2 <= 2, tvm.tir.LE(x, 1)) ck.verify(x * 2 <= 1, tvm.tir.LE(x, 0)) ck.verify(x * 2 <= 0, tvm.tir.LE(x, 0)) ck.verify(x * 2 <= -1, tvm.tir.LE(x, -1)) ck.verify(x * 2 <= -2, tvm.tir.LE(x, -1)) ck.verify(x * 2 <= -3, tvm.tir.LE(x, -2)) ck.verify(x * (-2) >= 3, tvm.tir.LE(x, -2)) ck.verify(x * (-2) >= 2, tvm.tir.LE(x, -1)) ck.verify(x * (-2) >= 1, tvm.tir.LE(x, -1)) ck.verify(x * (-2) >= 0, tvm.tir.LE(x, 0)) ck.verify(x * (-2) >= -1, tvm.tir.LE(x, 0)) ck.verify(x * (-2) >= -2, tvm.tir.LE(x, 1)) ck.verify(x * (-2) >= -3, tvm.tir.LE(x, 1)) ck.verify(x * (-2) <= 3, tvm.tir.LE(-1, x)) ck.verify(x * (-2) <= 2, tvm.tir.LE(-1, x)) ck.verify(x * (-2) <= 1, tvm.tir.LE(0, x)) ck.verify(x * (-2) <= 0, tvm.tir.LE(0, x)) ck.verify(x * (-2) <= -1, tvm.tir.LE(1, x)) ck.verify(x * (-2) <= -2, tvm.tir.LE(1, x)) ck.verify(x * (-2) <= -3, tvm.tir.LE(2, x)) ck.verify(tdiv(x, 2) < 3, x < 6) ck.verify(3 < tdiv(x, 2), tvm.tir.LT(7, x)) ck.verify(tdiv(x, 3) >= 0, tvm.tir.LE(-2, x)) ck.verify(tdiv(x, 2) >= 1, tvm.tir.LE(2, x)) ck.verify(tdiv(x, 2) >= 0, tvm.tir.LE(-1, x)) ck.verify(tdiv(x, 2) >= -1, tvm.tir.LE(-3, x)) ck.verify(tdiv(x, 2) <= 1, tvm.tir.LE(x, 3)) ck.verify(tdiv(x, 2) <= 0, tvm.tir.LE(x, 1)) ck.veri
fy(tdiv(x, 2) <= -1, tvm.tir.LE(x, -2)) ck.verify(tdiv(x, 4) * 4 < x, tvm.tir.LT(0, tmod(x, 4))) ck.verify(tdiv(x, 4) * 4 >= x, tvm.tir.LE(tmod(x, 4), 0)) ck.verify(tdiv(x, 4) * 4 < x + y, tvm.tir.LT(0, tmod(x, 4) + y)) ck.verify(tdiv(x, 4) * 4 < x - y, tvm.tir.LT(y, tmod(x, 4))) ck.verify(tdiv(x + 2, 4) * 4 >= x, tvm.tir.LE(tmod(x + 2, 4), 2)) ck.verify(tdiv(x + 2, 4) * 4 >= x + y, tvm.tir.LE(tmod(x + 2, 4) + y, 2)) ck.verify(tdiv(x + 2, 4) * 4 >= x - y, tvm.tir.LE(tmod(x + 2, 4) + (-2), y)) ck.verify(fld(x, 2) < 3, x < 6) ck.verify(3 < fld(x, 2), tvm.tir.LT(7, x)) ck.verify(-3 < fld(x, 2), tvm.tir.LT(-5, x)) ck.verify(fld(x, 3) >= 0, tvm.tir.LE(0, x)) ck.verify(fld(x, 2) >= 1, tvm.tir.LE(2, x)) ck.verify(fld(x, 2) >= 0, tvm.tir.LE(0, x)) ck.verify(fld(x, 2) >= -1, tvm.tir.LE(-2, x)) ck.verify(fld(x, 2) <= 1, tvm.tir.LE(x, 3)) ck.verify(fld(x, 2) <= 0, tvm.tir.LE(x, 1)) ck.verify(fld(x, 2) <= -1, tvm.tir.LE(x, -1)) ck.verify(fld(x, 4) * 4 < x, tvm.tir.LT(0, flm(x, 4))) ck.verify(fld(x, 4) * 4 >= x, tvm.tir.EQ(flm(x, 4), 0)) ck.verify(fld(x, 4) * 4 < x + y, tvm.tir.LT(0, flm(x, 4) + y)) ck.verify(fld(x, 4) * 4 < x - y, tvm.tir.LT(y, flm(x, 4))) ck.verify(fld(x + 2, 4) * 4 >= x, tvm.tir.LE(flm(x + 2, 4), 2)) ck.verify(fld(x + 2, 4) * 4 >= x + y, tvm.tir.LE(flm(x + 2, 4) + y, 2)) ck.verify(fld(x + 2, 4) * 4 >= x - y, tvm.tir.LE(flm(x + 2, 4) + (-2), y)) ck.verify(tvm.te.min(x, 11) < 10, x < 10) ck.verify(tvm.te.min(x, 8) < 10, tvm.tir.const(1, "bool")) ck.verify(tvm.te.max(8, x) > 10, tvm.tir.LT(10, x)) ck.verify(x + 1 < tvm.te.max(8, x), x < 7) ck.analyzer.update(x, tvm.arith.ConstIntBound(0, 10), override=True) ck.analyzer.update(y, tvm.arith.ConstIntBound(-10, 0), override=True) ck.analyzer.update(z, tvm.arith.ConstIntBound(-5, 5), override=True) ck.verify(x < 11, tvm.tir.const(1, "bool")) ck.verify(x <= 10, tvm.tir.const(1, "bool")) ck.verify(z <= 5, tvm.ti
r.const(1, "bool")) ck.verify(x + y <= 10, tvm.tir.const(1, "bool")) ck.verify(x + y >= -10, tvm.tir.const(1, "bool")) ck.verify(z - 5 <= y + 10, tvm.tir.const(1, "bool")) ck.verify(tvm.tir.all(x > -1, z <= x + 5), tvm.tir.const(1, "bool")) ck.verify(x * y <= 0, tvm.tir.const(1, "bool")) ck.verify((x + 1) * (y - 1) < 0, tvm.tir.const(1, "bool")) ck.verify(y * y >= 0, tvm.tir.const(1, "bool")) ck.verify(x * 6 <= -3, tvm.tir.const(0, "bool")) ck.verify(tmod(y - 1, 3) == 0, tmod(y + (-1), 3) == 0) def test_logical_simplify(): ck = RewriteChecker() x, y, z = te.var("x"), te.var("y"), te.var("z") ck.verify(tvm.tir.And(tvm.tir.EQ(x, y), tvm.tir.NE(x, y)), tvm.tir.const(False, "bool")) ck.verify(tvm.tir.And(tvm.tir.NE(x, y), tvm.tir.EQ(x, y)), tvm.tir.const(False, "bool")) ck.verify(tvm.tir.And(x > 1, tvm.tir.Not(x > 1)), tvm.tir.const(False, "bool")) ck.verify(tvm.tir.And(x <= y, y < x), tvm.tir.const(False, "bool")) ck.verify(tvm.tir.And(y < x, x <= y), tvm.tir.const(False, "bool")) ck.verify(tvm.tir.And(x < 1, 0 < x), tvm.tir.const(False, "bool")) ck.verify(tvm.tir.And(x < 0, 1 < x), tvm.tir.const(False, "bool")) ck.verify(tvm.tir.And(x < 1, 1 <= x), tvm.tir.const(False, "bool")) ck.verify(tvm.tir.And(x <= 1, 1 < x), tvm.tir.const(False, "bool")) ck.verify(tvm.tir.And(1 <= x, x < 1), tvm.tir.const(False, "bool")) ck.verify(tvm.tir.And(1 < x, x <= 1), tvm.tir.const(False, "bool")) ck.verify(tvm.tir.And(x <= 1, 2 <= x), tvm.tir.const(False, "bool")) ck.verify(tvm.tir.And(2 <= x, x <= 1), tvm.tir.const(False, "bool")) ck.verify(tvm.tir.And(x == 1, x != 2), x == 1) ck.verify(tvm.tir.Or(tvm.tir.EQ(x, y), tvm.tir.NE(x, y)), tvm.tir.const(True, "bool")) ck.verify(tvm.tir.Or(tvm.tir.NE(x, y), tvm.tir.EQ(x, y)), tvm.tir.const(True, "bool")) ck.verify(tvm.tir.Or(x > y, tvm.tir.Not(x > y)), tvm.tir.const(True, "bool")) ck.verify(tvm.tir.Or(x <= y, y < x), tvm.tir.const(True, "bool")) ck.verify(tvm.tir.Or(
y < x, y >= x), tvm.tir.const(True, "bool")) ck.verify(tvm.tir.Or(x < 1, 0 < x), tvm.tir.const(True, "bool")) ck.verify(tvm.tir.Or(0 < x, x < 1), tvm.tir.const(True, "bool")) ck.verify(tvm.tir.Or(x < 1, 1 <= x), tvm.tir.const(True, "bool")) ck.verify(tvm.tir.Or(x <= 1, 1 < x), tvm.tir.const(True, "bool")) ck.verify(tvm.tir.Or(1 <= x, x < 1), tvm.tir.const(True, "bool")) ck.verify(tvm.tir.Or(1 < x, x <= 1), tvm.tir.const(True, "bool")) ck.verify(tvm.tir.Or(x <= 1, 2 <= x), tvm.tir.const(True, "bool")) ck.verify(tvm.tir.Or(2 <= x, x <= 1), tvm.tir.const(True, "bool")) ck.verify(tvm.tir.Or(x != 1, x == 2), x != 1) def test_let_simplify(): ck = RewriteChecker() x, y = te.var("x"), te.var("y") z = tvm.tir.Let(x, 1, x + 1) ck.verify(z + z, 4) def test_cast_simplify(): ck = RewriteChecker() x = te.var("x") dtypes = ["float32", "float16", "int32", "int8", "bool"] for dtype1 in dtypes: ck.verify(tvm.tir.Cast(dtype1, x - x), tvm.tir.const(0, dtype1)) ck.verify(tvm.tir.Cast(dtype1, x == x), tvm.tir.const(1, dtype1)) for dtype2 in dtypes: for i in [0, 1, 2, 3]: if i > 1 and (dtype1 == "bool" or dtype2 == "bool"): continue ck.verify(tvm.tir.Cast(dtype1, tvm.tir.const(i, dtype2)), tvm.tir.const(i, dtype1)) def test_shift_left_simplify(): ck = RewriteChecker() z = tvm.tir.op.call_intrin("int32", "tir.shift_left", 1, 10) ck.verify(z, tvm.tir.const(1 << 10, "int32")) def test_div_zero_simplify(): ck = RewriteChecker() ramp = tvm.tir.Ramp(1, 1, 2) broadcast = tvm.tir.Broadcast(0, 2) with pytest.raises(tvm.error.TVMError) as cm: ck.analyzer.rewrite_simplify(tvm.tir.Div(ramp, broadcast)) assert "division by zero" in str(cm.execption) with pytest.raises(tvm.error.TVMError) as cm: ck.analyzer.rewrite_simplify(tvm.tir.Mod(ramp, broadcast)) assert "division by zero" in str(cm.execption) with pytest.rais
es(tvm.error.TVMError) as cm: ck.analyzer.rewrite_simplify(tvm.tir.FloorDiv(ramp, broadcast)) assert "division by zero" in str(cm.execption) with pytest.raises(tvm.error.TVMError) as cm: ck.analyzer.rewrite_simplify(tvm.tir.FloorMod(ramp, broadcast)) assert "division by zero" in str(cm.execption) def test_sub_bufferload(): ck = RewriteChecker() buf = tvm.tir.decl_buffer([1], dtype="float32") load = tvm.tir.BufferLoad(buf, [0]) expr = load - load ck.verify(expr, 0.0) def test_if_then_else_simplify(): ck = RewriteChecker() x = te.var("x", "int32") z = tvm.tir.if_then_else(x < 5, tvm.tir.if_then_else(x > 1, 1, 0), 0) ck.verify(z, tvm.tir.if_then_else(tvm.tir.And(tvm.tir.LT(x, 5), tvm.tir.LT(1, x)), 1, 0)) z = tvm.tir.if_then_else(x > 2, tvm.tir.if_then_else(x > 1, 1, 0), 0) ck.verify(z, tvm.tir.if_then_else(tvm.tir.LT(2, x), 1, 0)) if __name__ == "__main__": pytest.main([__file__])
import random
import sys
import pytest
import tvm from tvm
import te, arith, ir, tir, testing def test_solution_consistency(): seed = random.randrange(sys.maxsize) print( "\nThis test is intentionally non-deterministic, " "if it fails please report it in github issue together with this seed {}\n".format(seed) ) random.seed(seed) def _check(num_vars, num_formulas, coef=(-5, 5), bounds=(-20, 20)): variables = [te.var("x" + str(i)) for i in range(num_vars)] relations = [] for i in range(num_formulas): s1 = sum([v * random.randint(coef[0], coef[1]) for v in variables]) s1 += random.randint(coef[0], coef[1]) s2 = sum([v * random.randint(coef[0], coef[1]) for v in variables]) s2 += random.randint(coef[0], coef[1]) if random.random() < 0.7: op = tvm.tir.EQ else: op = random.choice([tvm.tir.LE, tvm.tir.LT, tvm.tir.GE, tvm.tir.GT]) relations.append(op(s1, s2)) vranges = {v: tvm.ir.expr.Range(bounds[0], bounds[1] + 1) for v in variables} solution = arith.solve_linear_equations(relations, variables, vranges) testing.check_int_constraints_trans_consistency(solution) for k in [1, 2]: if len(variables) > k: solution = arith.solve_linear_equations(relations, variables[:-k], vranges) param_ranges = {v: vranges[v] for v in variables[-k:]} testing.check_int_constraints_trans_consistency(solution, param_ranges) for i in range(2): _check(num_vars=1, num_formulas=1) for i in range(2): _check(num_vars=1, num_formulas=2) for i in range(2): _check(num_vars=2, num_formulas=1) for i in range(2): _check(num_vars=2, num_formulas=2) for i in range(2): _check(num_vars=2, num_formulas=3) for i in range(3): _check(num_vars=3, num_formulas=3, coef=(-2, 2)) for i in range(3): _check(num_vars=3, num_formulas=4, coef=(-2, 2))
for i in range(3): _check(num_vars=4, num_formulas=3, coef=(-1, 1)) for i in range(3): _check(num_vars=10, num_formulas=2, coef=(-1, 1), bounds=(0, 4)) for i in range(3): _check(num_vars=10, num_formulas=3, coef=(0, 1), bounds=(0, 4)) def test_empty_var_to_solve(): x, y = te.var("x"), te.var("y") equations = [ tvm.tir.EQ(x + y, 20), tvm.tir.EQ(x - y, 10), ] solution = arith.solve_linear_equations(equations) assert len(solution.src_to_dst) == 0 assert len(solution.dst_to_src) == 0 assert len(solution.src.variables) == 0 assert len(solution.src.ranges) == 0 assert ir.structural_equal(solution.src.relations, equations) assert ir.structural_equal(solution.src, solution.dst) def test_unique_solution(): x, y = te.var("x"), te.var("y") solution = arith.solve_linear_equations( [ tvm.tir.EQ(x + y, 20), tvm.tir.EQ(x - y, 10), ], [x, y], ) assert list(solution.dst.variables) == [] assert ir.structural_equal(solution.src_to_dst[x], 15) assert ir.structural_equal(solution.src_to_dst[y], 5) def test_low_rank(): x, y, z = te.var("x"), te.var("y"), te.var("z") ranges = {} solution = arith.solve_linear_equations( [ tvm.tir.EQ(x + y + z, 15), tvm.tir.EQ(x + y, 10), ], [x, y, z], ranges, ) [n0] = solution.dst.variables assert ir.structural_equal(solution.src_to_dst[x], n0 + 10) assert ir.structural_equal(solution.src_to_dst[y], -n0) assert ir.structural_equal(solution.src_to_dst[z], 5) def test_infer_range(): x, y = te.var("x"), te.var("y") ranges = { x: tvm.ir.Range.from_min_extent(-5, 10), y: tvm.ir.Range.from_min_extent(0, 10), } solution = arith.solve_linear_equations( [ tvm.tir.EQ(x + y, 0), ], [x, y], ranges, ) [n0] = solution.dst.variables assert ir.structural_equal(solution.sr
c_to_dst[x], n0) assert ir.structural_equal(solution.src_to_dst[y], -n0) assert ir.structural_equal(solution.dst.ranges[n0].min, -9) assert ir.structural_equal(solution.dst.ranges[n0].extent, 10) [ineq] = solution.dst.relations assert isinstance(ineq, tvm.tir.LE) assert ir.structural_equal(ineq.a, -5) assert ir.structural_equal(ineq.b, n0) def test_ill_formed(): x, y = te.var("x"), te.var("y") solution = arith.solve_linear_equations( [ tvm.tir.EQ(x + y, 0), tvm.tir.EQ(x - y, 0), tvm.tir.EQ(x, 5), ], [x, y], {}, ) assert list(solution.dst.variables) == [] [rel] = solution.dst.relations assert ir.structural_equal(rel, False) assert len(solution.src_to_dst) == 0 assert len(solution.dst_to_src) == 0 if __name__ == "__main__": pytest.main([__file__])
import random
import sys
import pytest
import tvm from tvm
import te, arith, ir, tir, testing @pytest.mark.skip(reason="See https: def test_solution_consistency(): seed = random.randrange(sys.maxsize) print( "\nThis test is intentionally non-deterministic, " "if it fails please report it in github issue together with this seed {}\n".format(seed) ) random.seed(seed) def _check(variables, formulas, coef=(-5, 5), bounds=(-20, 20)): vs = [te.var("x" + str(i)) for i in range(variables)] fs = [] for i in range(formulas): s1 = sum([v * random.randint(coef[0], coef[1]) for v in vs]) s1 += random.randint(coef[0], coef[1]) s2 = sum([v * random.randint(coef[0], coef[1]) for v in vs]) s2 += random.randint(coef[0], coef[1]) op = random.choice([tir.expr.EQ, tir.expr.LE, tir.expr.LT, tir.expr.GE, tir.expr.GT]) fs.append(op(s1, s2)) vranges = {v: tvm.ir.expr.Range(bounds[0], bounds[1] + 1) for v in vs} before = te.all(tir.const(1, "bool"), *fs) after = arith._ffi_api.SolveInequalitiesAsCondition(vs, vranges, fs) after = te.all(tir.const(1, "bool"), *after) testing.check_bool_expr_is_true(before == after, vranges) solution = arith.solve_linear_inequalities(fs, vs, vranges, deskew_range=True) testing.check_int_constraints_trans_consistency(solution) for i in range(3): _check(1, 1) for i in range(3): _check(1, 2) for i in range(3): _check(2, 1) for i in range(3): _check(2, 2) for i in range(3): _check(2, 3) for i in range(5): _check(3, 3, coef=(-2, 2)) for i in range(5): _check(3, 4, coef=(-2, 2)) for i in range(5): _check(4, 3, coef=(-1, 1)) for i in range(5): _check(10, 2, coef=(-1, 1), bounds=(0, 4)) for i in range(5): _check(10, 3, coef=(0, 1), bounds=(0, 4)) def test_dual_variable(): x, y = te.var("x"), te.var("y") variables = [x, y] ranges = {
x: tvm.ir.Range(-100, 100), y: tvm.ir.Range(0, 10), } problem = [ tvm.tir.LE(x + y, 20), tvm.tir.GE(x - y, 10), ] solution = arith._ffi_api.SolveInequalitiesAsCondition(variables, ranges, problem) assert ir.structural_equal(solution[0], x >= (y + 10)) assert ir.structural_equal(solution[1], x <= (20 - y)) assert ir.structural_equal(solution[2], y >= 0) assert ir.structural_equal(solution[3], y <= 5) solution = arith.solve_linear_inequalities(problem, variables, ranges) assert solution.ranges[y].min == 0 assert solution.ranges[y].extent == 6 assert ir.structural_equal(solution.ranges[x].min, y + 10) assert solution.ranges[x].extent == 11 solution = arith.solve_linear_inequalities(problem, variables, ranges, deskew_range=True) [x_new, y_new] = solution.dst.variables [rel] = solution.dst.relations assert ir.structural_equal(rel, (y_new * 2) + x_new <= 10) assert ir.structural_equal(solution.dst.ranges[x_new].min, 0) assert ir.structural_equal(solution.dst.ranges[x_new].extent, 11) assert ir.structural_equal(solution.dst.ranges[y_new].min, 0) assert ir.structural_equal(solution.dst.ranges[y_new].extent, 6) assert ir.structural_equal(solution.src_to_dst[x], x_new + (y_new + 10)) assert ir.structural_equal(solution.src_to_dst[y], y_new) assert ir.structural_equal(solution.dst_to_src[x_new], x - y - 10) assert ir.structural_equal(solution.dst_to_src[y_new], y) def test_equal(): x, y = te.var("x"), te.var("y") problem = [ tvm.tir.GE(x + y, 10), tvm.tir.GE(x - y, 2), tvm.tir.LE(x, 6), ] solution = arith.solve_linear_inequalities(problem, [x, y]) assert solution.ranges[x].min == 6 assert solution.ranges[x].extent == 1 assert solution.ranges[y].min == 4 assert solution.ranges[y].extent == 1 solution = arith.solve_linear_inequalities(problem, [x, y], deskew_range=True) assert len(solution.dst.variable
s) == 0 assert len(solution.dst.ranges) == 0 assert len(solution.dst.relations) == 0 assert solution.src_to_dst[x] == 6 assert solution.src_to_dst[y] == 4 def test_multi_equal(): x, y, z = te.var("x"), te.var("y"), te.var("z") problem = [ tvm.tir.LE(x, 6), tvm.tir.GE(x, 6), tvm.tir.GE(x - z * y, 0), tvm.tir.LE(x - z * y, 0), ] solution = arith.solve_linear_inequalities(problem, [x, y, z]) assert solution.ranges[x].min == 6 assert solution.ranges[x].extent == 1 assert len(solution.relations) == 3 assert ir.structural_equal(solution.relations[0], x == z * y) assert isinstance(solution.relations[1], tvm.tir.LE) assert solution.relations[1].b == 0 assert isinstance(solution.relations[2], tvm.tir.LE) assert solution.relations[2].b == 0 ana = tvm.arith.Analyzer() assert ana.simplify(solution.relations[1].a + solution.relations[2].a) == 0 assert ir.structural_equal(solution.relations[1].a, (z * y - 6)) or ir.structural_equal( solution.relations[2].a, (z * y - 6) ) solution = arith.solve_linear_inequalities(problem, [x, y, z], deskew_range=True) assert solution.src_to_dst[y] == y assert solution.src_to_dst[z] == z assert solution.src_to_dst[x] == 6 def test_no_solution(): x = te.var("x0") vranges = {x: tvm.ir.Range.from_min_extent(-20, 41)} problem = [-x - 4 <= -5 * x + 2, x * 4 + 5 <= x * 5] solution = arith.solve_linear_inequalities(problem, [x], vranges, deskew_range=True) assert list(solution.dst.variables) == [] [rel] = solution.dst.relations assert ir.structural_equal(rel, False) assert len(solution.src_to_dst) == 0 assert len(solution.dst_to_src) == 0 solution = arith.solve_linear_inequalities(problem, [x], vranges) assert len(solution.variables) == 0 assert len(solution.ranges) == 0 [rel] = solution.relations assert not rel if __name__ == "__main__": pytest.main([__file__])
"""Test ComputeDAG (replay, infer bound)"""
import json
import pickle
import tvm from tvm
import topi from tvm
import auto_scheduler, te from tvm.testing.auto_scheduler
import ( get_tiled_matmul, invalid_compute_definition, matmul_auto_scheduler_test, parallel_matmul_auto_scheduler_test, ) def test_apply_steps(): dag, s = get_tiled_matmul() dag.print_python_code_from_state(s) sch, tensors = dag.apply_steps_from_state(s) tvm.lower(sch, tensors, simple_mode=True) def test_infer_bound(): dag, s = get_tiled_matmul() s = dag.infer_bound_from_state(s) def test_estimate_flop(): N = 512 A, B, C = matmul_auto_scheduler_test(N, N, N) dag = auto_scheduler.ComputeDAG([A, B, C]) assert abs(dag.flop_ct - 2 * N**3) < 0.5 D = topi.nn.relu(C) dag = auto_scheduler.ComputeDAG([A, B, D]) assert abs(dag.flop_ct - (2 * N**3 + N * N)) < 0.5 E = topi.nn.pad(C, [1, 1]) dag = auto_scheduler.ComputeDAG([A, B, E]) assert abs(dag.flop_ct - 2 * N**3) < 0.5 F = te.compute((N, N), lambda i, j: E[i, j], name="F", attrs={"FLOP": 1234}) dag = auto_scheduler.ComputeDAG([A, B, F]) assert abs(dag.flop_ct - (2 * N**3 + 1234)) < 0.5 A = te.placeholder((N, N), dtype="float32", name="A") F = te.compute((N, N), lambda i, j: te.if_then_else(A[i, j] > 0, A[i, j], 0)) dag = auto_scheduler.ComputeDAG([A, F]) assert abs(dag.flop_ct - N**2) < 0.5 def test_stage_order(): """Test if the stage order is preserved when recovering a DAG.""" N = 512 A, B, C, D, E = parallel_matmul_auto_scheduler_test(N) sch = te.create_schedule([D.op, E.op]) (D_local,) = sch.cache_write([D], "local") (E_local,) = sch.cache_write([E], "local") sch.cache_read(A, "shared", [D_local]) sch.cache_read(B, "shared", [D_local]) sch.cache_read(A, "shared", [E_local]) sch.cache_read(C, "shared", [E_local]) dag = auto_scheduler.ComputeDAG(sch) stage_ops_1 = dag.get_init_state().stage_ops assert len(stage_ops_1) == 11 for idx, op in enumerate(stage_ops_1): if op.name == "A": assert ( stage_ops_1[idx + 1].name == "A.d.shared"
and stage_ops_1[idx + 2].name == "A.shared" ) elif op.name in ["B", "C"]: assert stage_ops_1[idx + 1].name == "%s.shared" % op.name dag = auto_scheduler.ComputeDAG([A, B, C, D, E]) state = dag.get_init_state() D_local = state.cache_write(D, "local") E_local = state.cache_write(E, "local") state.cache_read(A, "shared", [D_local]) state.cache_read(B, "shared", [D_local]) state.cache_read(A, "shared", [E_local]) state.cache_read(C, "shared", [E_local]) stage_ops_2 = state.stage_ops assert len(stage_ops_1) == len(stage_ops_2) for op1, op2 in zip(stage_ops_1, stage_ops_2): assert op1.name == op2.name loaded_dag = pickle.loads(pickle.dumps(dag)) assert str(loaded_dag.get_init_state()) == str(dag.get_init_state()) assert len(loaded_dag.get_init_state().stage_ops) == len(dag.get_init_state().stage_ops) task = auto_scheduler.SearchTask( compute_dag=dag, workload_key=json.dumps(("test-key",)), target=tvm.target.Target("llvm") ) task2 = pickle.loads(pickle.dumps(task)) assert '["test-key"]' in auto_scheduler.workload_registry.WORKLOAD_FUNC_REGISTRY assert str(task.compute_dag.get_init_state()) == str(task2.compute_dag.get_init_state()) assert len(task.compute_dag.get_init_state().stage_ops) == len( task2.compute_dag.get_init_state().stage_ops ) assert task.workload_key == task2.workload_key assert str(task.target) == str(task2.target) assert task.hardware_params.num_cores == task2.hardware_params.num_cores assert task.hardware_params.vector_unit_bytes == task2.hardware_params.vector_unit_bytes assert task.hardware_params.cache_line_bytes == task2.hardware_params.cache_line_bytes def test_invalid_compute_dag(): failed = False try: A, B = invalid_compute_definition() auto_scheduler.ComputeDAG([A, B]) except tvm.TVMError: failed = True assert failed if __name__ == "__main__": test_apply
_steps() test_infer_bound() test_estimate_flop() test_stage_order() test_invalid_compute_dag()
"""Test cost models"""
import tempfile
import numpy as np
import tvm from tvm
import auto_scheduler from tvm.testing.auto_scheduler
import matmul_auto_scheduler_test def get_sample_records(number): """Generate a list of random MeasureInput and MeasureResult pairs""" N = 128 task = auto_scheduler.SearchTask(func=matmul_auto_scheduler_test, args=(N, N, N), target="llvm") policy = auto_scheduler.SketchPolicy(task, verbose=0) states = policy.sample_initial_population()[:number] inputs = [auto_scheduler.MeasureInput(task, s) for s in states] results = [ auto_scheduler.MeasureResult([np.random.uniform(0.5, 1.0)], 0, "", 0.1, 0) for _ in range(len(inputs)) ] return task, inputs, results def test_random_model(): task, inputs, results = get_sample_records(50) model = auto_scheduler.RandomModel() model.update(inputs, results) scores = model.predict(task, [x.state for x in inputs]) assert len(scores) == len(inputs) def test_xgb_model(): task, inputs, results = get_sample_records(50) model = auto_scheduler.XGBModel(num_warmup_sample=-1) model.update(inputs, results) preds = model.predict(task, [x.state for x in inputs]) assert len(preds) == len(inputs) costs = [np.mean([x.value for x in res.costs]) for res in results] throughputs = np.min(costs) / costs rmse = np.sqrt(np.mean([np.square(pred - label) for pred, label in zip(preds, throughputs)])) assert rmse <= 0.3 tmpdir = tvm.contrib.utils.tempdir() tmpfile = tmpdir.relpath("test1") auto_scheduler.save_records(tmpfile, inputs, results) model.update_from_file(tmpfile) tmpfile = tmpdir.relpath("test2") model.save(tmpfile) model.load(tmpfile) if __name__ == "__main__": test_random_model() test_xgb_model()
""" Test evolutionary search. """
import tvm
import pytest from tvm.testing.auto_scheduler
import matmul_auto_scheduler_test from tvm
import auto_scheduler, te from tvm.auto_scheduler.cost_model.cost_model
import PythonBasedModel def test_mutate_tile_size(): """ The test case initializes evo search with a batch of "bad" states and check whether the search algorithm can find "good" states by mutating the "bad" states. This unit test has been tested with 1,000 runs with no failures, meaning that the failure rate is less than 0.1%. """
class MockCostModel(PythonBasedModel): """A mock cost model that rates 1 only for the states with tile_k=2.""" @staticmethod def is_good_state(state): for line in str(state).split("\n"): if line.find("k.1") != -1 and line.find("(0,2)") != -1: return True return False def predict(self, task, states): scores = [] for state in states: scores.append(1 if self.is_good_state(state) else 0) return scores task = auto_scheduler.SearchTask( func=matmul_auto_scheduler_test, args=(10, 10, 4), target=tvm.target.Target("llvm") ) policy = auto_scheduler.SketchPolicy(task, program_cost_model=MockCostModel(), verbose=0) states = policy.sample_initial_population()[:50] bad_states = [] for state in states: if not MockCostModel.is_good_state(state): bad_states.append(state) new_states = policy.evolutionary_search(bad_states, 50) found = False for state in new_states: if MockCostModel.is_good_state(state): found = True break assert found @pytest.mark.skip(reason="See https: def test_mutate_parallel(): """ The test case initializes evo search with a batch of "bad" states and check whether the search algorithm can find "good" states by mutating the "bad" states. """
class MockCostModel(PythonBasedModel): @staticmethod def is_good_state(state): for line in str(state).split("\n"): if ( line.find("parallel i.0@ (0") != -1 or line.find("parallel [email protected]@ (0") != -1 or line.find("parallel [email protected]@i.1@ (0") != -1 ): return True return False def predict(self, task, states): scores = [] for state in states: scores.append(1 if self.is_good_state(state) else 0) return scores task = auto_scheduler.SearchTask( func=matmul_auto_scheduler_test, args=(1024, 1024, 1024), target="llvm" ) policy = auto_scheduler.SketchPolicy(task, program_cost_model=MockCostModel(), verbose=0) found = False retry_ct = 0 while retry_ct < 10 and not found: states = policy.sample_initial_population()[:100] bad_states = [] for state in states: if not MockCostModel.is_good_state(state): bad_states.append(state) new_states = policy.evolutionary_search(bad_states, 50) for state in new_states: if MockCostModel.is_good_state(state): found = True break retry_ct += 1 assert found if __name__ == "__main__": test_mutate_tile_size() test_mutate_parallel()
"""Test feature extraction"""
import math
import tempfile
import tvm from tvm
import te, auto_scheduler, relay from tvm.script
import tir as T from tvm.testing.auto_scheduler
import matmul_auto_scheduler_test def fequal(a, b): return math.fabs(a - b) < 1e-6 def test_cpu_matmul(): dag = auto_scheduler.ComputeDAG(matmul_auto_scheduler_test(512, 512, 512)) s = dag.get_init_state() C = s.stage_ops[2] i, j, k = s[C].iters io, ii = s.split(C, i, [16]) jo, ji = s.split(C, j, [8]) s.reorder(C, [io, jo, k, ji, ii]) s.vectorize(C, ji) s.parallel(C, io) s.parallel(C, jo) s.unroll(C, k) target = tvm.target.Target("llvm") task = auto_scheduler.SearchTask(compute_dag=dag, workload_key="test", target=target) names = auto_scheduler.feature.get_per_store_feature_names() fea = auto_scheduler.feature.get_per_store_features_from_states([s], task)[0] stage_0 = fea[0] assert len(stage_0) == len(names), "%d vs %d" % (len(stage_0), len(names)) fea_dict = {} for name, value in zip(names, stage_0): fea_dict[name] = value for name in ["B0", "B1", "B2"]: if fequal(fea_dict[name + ".acc_type.kReadWrite"], 1.0): c_name = name if fequal(fea_dict[name + ".acc_type.kRead"], 1.0): if fequal(fea_dict[name + ".stride"], 0.0): b_name = name else: a_name = name """ lowered IR: Placeholder: A, B parallel i.0 (0,32) parallel j.0 (0,64) unroll k (0,512) vectorize j.1 (0,8) for i.1 (0,16) C...] = A[...] * B[...] """ assert fequal(fea_dict[c_name + ".bytes"], math.log2(512**3 * 4 + 1)) assert fequal(fea_dict[b_name + ".unique_bytes"], math.log2(512**2 * 4 + 1)) assert fequal(fea_dict[c_name + ".reuse_dis_iter"], math.log2(8 * 16 + 1)) assert fequal(fea_dict[c_name + ".reuse_dis_bytes"], math.log2((8 * 16 + 8 + 16) * 4 + 1)) assert fequal(fea_dict[c_name + ".reuse_ct"], math.log2(512 + 1)) assert fequal(fea_dict["unroll_num"], math.log2(1 + 1)) assert fequal(fea_dict["vec_num"], math.log2(1 + 1)) assert fequal(fea_dict["parallel
_num"], math.log2(2 + 1)) assert fequal(fea_dict["parallel_prod"], math.log2((512 * 512 / 16 / 8) + 1)) def test_cpu_fusion(): def fusion_test(N, M): A = te.placeholder((N, M), name="A") B = te.compute((N, M), lambda i, j: A[i][j], name="B") C = te.compute((N, M), lambda i, j: B[i][j], name="C") return [A, B, C] dag = auto_scheduler.ComputeDAG(fusion_test(64, 32)) s = dag.get_init_state() s.compute_at(1, 2, s.stages[2].iters[1]) target = tvm.target.Target("llvm") task = auto_scheduler.SearchTask(compute_dag=dag, workload_key="test", target=target) names = auto_scheduler.feature.get_per_store_feature_names() fea = auto_scheduler.feature.get_per_store_features_from_states([s], task)[0] """ lowered IR: Placeholder: A for i (0,64) for j (0,32) for ii (1) for jj (1) B[...] = A[...] C[...] = B[...] """ found = False for stage_fea in fea: for i, (name, value) in enumerate(zip(names, stage_fea)): if "reuse_type.kSerialMultipleReadWrite" in name and value > 0.5: assert fequal(stage_fea[i + 2], 1.0) assert fequal(stage_fea[i + 3], math.log2(16 + 1)) found = True assert found def test_gpu_feature(): json_records = "\n".join( ( """{"i": [["[\\"matmul_auto_scheduler_test\\", 512, 512, 512]", "cuda"], [[], [["CHW", 2, "local"], ["SP", 2, 0, 512, [1, 16, 32, 1], 1], ["SP", 2, 5, 512, [4, 1, 1, 16], 1], ["SP", 2, 10, 512, [1, 2], 1], ["RE", 2, [0, 5, 1, 6, 2, 7, 10, 11, 3, 8, 12, 4, 9]], ["FSP", 3, 0, 1, 3], ["FSP", 3, 4, 2, 3], ["RE", 3, [0, 4, 1, 5, 2, 6, 3, 7]], ["FU", 2, [0, 1]], ["FU", 3, [0, 1]], ["FU", 2, [1, 2]], ["FU", 3, [1, 2]], ["FU", 2, [2, 3]], ["FU", 3, [2, 3]], ["CA", 2, 3, 2], ["CHR", 1, "shared", [2]], ["CA", 2, 3, 3], ["FU", 2, [0, 1]], ["FFSP", 2, 0, [1, 2], 1, 1], ["AN", 2, 1, 6], ["CHR", 0, "shared",
[3]], ["CA", 1, 4, 3], ["FU", 1, [0, 1]], ["FFSP", 1, 0, [1, 2], 1, 1], ["AN", 1, 1, 6], ["AN", 5, 0, 5], ["AN", 5, 1, 4], ["AN", 5, 2, 6], ["PR", 4, 0, "auto_unroll_max_step$1024"]]]], "r": [[0.00536798], 0, 2.49277, 1585564852], "v": "v0.1"}""", ) ) with tempfile.NamedTemporaryFile(mode="w") as f: f.write(json_records) f.flush() inputs, _ = auto_scheduler.RecordReader(f.name).read_lines() inp = inputs[0] task = auto_scheduler.SearchTask( workload_key=inp.task.workload_key, target=inp.task.target, hardware_params=auto_scheduler.HardwareParams( 100000, 16, 64, 1 << 30, 1 << 30, 1 << 30, 1 << 30, 1 << 30 ), ) state = task.compute_dag.infer_bound_from_state(inputs[0].state) fea = auto_scheduler.feature.get_per_store_features_from_states([state], task)[0] names = auto_scheduler.feature.get_per_store_feature_names() fea_dicts = [] for i in range(len(fea)): tmp_dict = {} for j in range(len(names)): tmp_dict[names[j]] = fea[i][j] fea_dicts.append(tmp_dict) """ lowered IR: Placeholder: A, B blockIdx.x [email protected]@ (0,8) vthread [email protected]@ (0,4) threadIdx.x [email protected]@ (0,16) C.local auto_unroll: 1024 for k.0 (0,256) for ax0@[email protected] (0,8) threadIdx.x ax0@[email protected] (0,16) B.shared = ... for ax0@[email protected] (0,64) threadIdx.x ax0@[email protected] (0,16) A.shared = ... for i_c.3 (0,32) for k.2 (0,2) for j_c.4 (0,16) C.local = ... for i.3 (0,32) for j.3 (0,16) C = ... """ assert fequal(fea_dicts[0]["blockIdx_x_len"], math.log2(8 + 1)) assert fequal(fea_dicts[0]["vthread_len"
], math.log2(4 + 1)) assert fequal(fea_dicts[1]["threadIdx_x_len"], math.log2(16 + 1)) assert fequal(fea_dicts[0]["threadIdx_y_len"], math.log2(1 + 1)) assert fequal(fea_dicts[2]["blockIdx_z_len"], math.log2(1 + 1)) assert fequal(fea_dicts[0]["is_gpu"], 1.0) @T.prim_func def tir_matmul( A: T.Buffer[(16384,), "float32"], B: T.Buffer[(16384,), "float32"], C: T.Buffer[(16384,), "float32"], ) -> None: T.func_attr({"from_legacy_te_schedule": True, "global_symbol": "main", "tir.noalias": True}) T.preflattened_buffer(A, [128, 128], dtype="float32", data=A.data) T.preflattened_buffer(B, [128, 128], dtype="float32", data=B.data) T.preflattened_buffer(C, [128, 128], dtype="float32", data=C.data) for x, y in T.grid(128, 128): C[x * 128 + y] = T.float32(0) for k in T.serial(128): C[x * 128 + y] = C[x * 128 + y] + A[x * 128 + k] * B[y * 128 + k] def test_primfunc_without_lowering(): features = auto_scheduler.feature.named_features_from_primfunc(tir_matmul) assert features["float_mad"].shape == (1,) assert abs(features["float_addsub"][0] - 128 * 128 * 128) < 10 assert abs(features["float_mul"][0] - 128 * 128 * 128) < 10 for i in range(0, 3): assert abs(features[f"B{i}.unique_bytes"][0] - 128 * 128 * 4) < 10 def test_primfunc_lowered(): f = tvm.lower(tir_matmul) features = auto_scheduler.feature.named_features_from_primfunc(f["main"]) assert features["float_mad"].shape == (1,) assert abs(features["float_addsub"][0] - 128 * 128 * 128) < 10 assert abs(features["float_mul"][0] - 128 * 128 * 128) < 10 for i in range(0, 3): assert abs(features[f"B{i}.unique_bytes"][0] - 128 * 128 * 4) < 10 def test_dense_lowered(): a = relay.var("a", relay.TensorType((128, 128), "float32")) b = relay.var("b", relay.TensorType((128, 128), "float32")) c = relay.nn.dense(a, b) mod = tvm.IRModule.from_expr(relay.Function([a, b], c)) target = "llvm"
comp = relay.vm.VMCompiler() mod, params = comp.optimize(mod, params={}, target=target) for name, func in mod.functions.items(): if name.name_hint != "main": break features = auto_scheduler.feature.named_features_from_primfunc(func) assert features["float_addsub"].sum() >= 128 * 128 * 128 assert features["float_mul"].sum() >= 128 * 128 * 128 total_bytes_loaded = 0 for i in range(0, 4): total_bytes_loaded += features[f"B{i}.unique_bytes"].sum() assert total_bytes_loaded > 2 * 128 * 128 * 4 @T.prim_func def negative_extent(A: T.Buffer[(1,), "float32"]): for j in range(0, -1): A[j] = A[j] + 1.0 def test_negative_extent(): features = auto_scheduler.feature.named_features_from_primfunc(negative_extent) assert features["B0.unique_bytes"] == 0 if __name__ == "__main__": test_cpu_matmul() test_cpu_fusion() test_gpu_feature()
"""Test AutoScheduler Layout Rewrite"""
import tempfile
import numpy as np
import pytest
import tvm
import tvm.testing from tvm
import topi from tvm
import auto_scheduler, te from tvm.testing.auto_scheduler
import get_tiled_matmul, matmul_auto_scheduler_test def test_apply_steps_with_layout_rewrite(): dag, s = get_tiled_matmul() _, bufs = dag.apply_steps_from_state(s) assert bufs[1].shape[0] == 512 assert bufs[1].shape[1] == 512 _, bufs = dag.apply_steps_from_state( s, layout_rewrite=auto_scheduler.LayoutRewriteOption.REWRITE_FOR_PRE_TRANSFORMED ) assert bufs[1].shape[0] == 4 assert bufs[1].shape[1] == 8 assert bufs[1].shape[2] == 4 assert bufs[1].shape[3] == 4 assert bufs[1].shape[4] == 512 _, bufs = dag.apply_steps_from_state( s, layout_rewrite=auto_scheduler.LayoutRewriteOption.INSERT_TRANSFORM_STAGE ) assert bufs[1].shape[0] == 512 assert bufs[1].shape[1] == 512 def test_apply_steps_with_layout_rewrite_corner_case(): A, B, C = matmul_auto_scheduler_test(1, 1, 1) dag = auto_scheduler.ComputeDAG([A, B, C]) s = dag.get_init_state() s.compute_root(C) i_j_fused = s.fuse(C, [s[C].iters[0], s[C].iters[1]]) s.parallel(C, i_j_fused) _, bufs = dag.apply_steps_from_state( s, layout_rewrite=auto_scheduler.LayoutRewriteOption.REWRITE_FOR_PRE_TRANSFORMED ) @tvm.testing.requires_llvm def test_correctness_layout_rewrite_rewrite_for_preTransformed(): N = 16 target = tvm.target.Target("llvm") task = auto_scheduler.SearchTask(func=matmul_auto_scheduler_test, args=(N, N, N), target=target) dag = task.compute_dag with tempfile.NamedTemporaryFile() as fp: log_file = fp.name search_policy = auto_scheduler.SketchPolicy(task) measure_ctx = auto_scheduler.LocalRPCMeasureContext() tuning_options = auto_scheduler.TuningOptions( num_measure_trials=100, runner=measure_ctx.runner, verbose=2, early_stopping=1, measure_callbacks=[auto_scheduler.RecordToFile(log_file)], ) task.tune(tuning_options, search_policy=search_policy) inp, _ = auto_scheduler.load_best_record(log_file, task.workl
oad_key, target) s, bufs = dag.apply_steps_from_state( inp.state, layout_rewrite=auto_scheduler.LayoutRewriteOption.REWRITE_FOR_PRE_TRANSFORMED ) s_ref, bufs_ref = dag.apply_steps_from_state(inp.state) np_args = [np.random.randn(*topi.get_const_tuple(x.shape)).astype(x.dtype) for x in bufs] np_args_ref = [np.array(x) for x in np_args] weight = np_args_ref[1] if len(weight.shape) >= 6: base = len(weight.shape) - 6 red_dim = weight.shape[2 + base] * weight.shape[4 + base] out_dim = weight.shape[3 + base] * weight.shape[5 + base] for i in range(base + 2): out_dim *= weight.shape[i] new_order = ( [ 2 + base, 4 + base, ] + list(range(base + 2)) + [ 3 + base, 5 + base, ] ) np_args_ref[1] = np_args_ref[1].transpose(new_order) np_args_ref[1] = np_args_ref[1].reshape((red_dim, out_dim)) func = tvm.build(s, bufs, target=target) func_ref = tvm.build(s_ref, bufs_ref, target=target) dev = tvm.device(str(target)) dev_ref = tvm.cpu() args = [tvm.nd.array(x, device=dev) for x in np_args] args_ref = [tvm.nd.array(x, device=dev_ref) for x in np_args_ref] dev.sync() func(*args) func_ref(*args_ref) dev.sync() tvm.testing.assert_allclose(args[0].numpy(), args_ref[0].numpy(), atol=1e-3, rtol=1e-3) tvm.testing.assert_allclose(args[2].numpy(), args_ref[2].numpy(), atol=1e-3, rtol=1e-3) del measure_ctx @tvm.testing.requires_llvm def test_correctness_layout_rewrite_insert_transform_stage(): N = 128 target = tvm.target.Target("llvm") task = auto_scheduler.SearchTask(func=matmul_auto_scheduler_test, args=(N, N, N), target=target) dag = task.compute_dag wi
th tempfile.NamedTemporaryFile() as fp: log_file = fp.name search_policy = auto_scheduler.SketchPolicy(task) measure_ctx = auto_scheduler.LocalRPCMeasureContext() tuning_options = auto_scheduler.TuningOptions( num_measure_trials=2, runner=measure_ctx.runner, verbose=1, measure_callbacks=[auto_scheduler.RecordToFile(log_file)], ) task.tune(tuning_options, search_policy=search_policy) inp, _ = auto_scheduler.load_best_record(log_file, task.workload_key, target) s, bufs = dag.apply_steps_from_state( inp.state, layout_rewrite=auto_scheduler.LayoutRewriteOption.INSERT_TRANSFORM_STAGE ) s_ref, bufs_ref = dag.apply_steps_from_state(inp.state) np_args = [np.random.randn(*topi.get_const_tuple(x.shape)).astype(x.dtype) for x in bufs] func = tvm.build(s, bufs, target=target) func_ref = tvm.build(s_ref, bufs_ref, target=target) dev = tvm.device(str(target)) dev_ref = tvm.cpu() args = [tvm.nd.array(x, device=dev) for x in np_args] args_ref = [tvm.nd.array(x, device=dev_ref) for x in np_args] dev.sync() func(*args) func_ref(*args_ref) dev.sync() tvm.testing.assert_allclose(args[0].numpy(), args_ref[0].numpy(), atol=1e-3, rtol=1e-3) tvm.testing.assert_allclose(args[1].numpy(), args_ref[1].numpy(), atol=1e-3, rtol=1e-3) tvm.testing.assert_allclose(args[2].numpy(), args_ref[2].numpy(), atol=1e-3, rtol=1e-3) del measure_ctx if __name__ == "__main__": test_apply_steps_with_layout_rewrite() test_apply_steps_with_layout_rewrite_corner_case() test_correctness_layout_rewrite_rewrite_for_preTransformed() test_correctness_layout_rewrite_insert_transform_stage()
"""Test loop state and schedule primitives"""
import numpy as np
import tvm from tvm
import auto_scheduler, te from tvm
import topi from tvm.testing.auto_scheduler
import ( matmul_auto_scheduler_test, conv2d_nchw_bn_relu_auto_scheduler_test, ) def test_split_fuse_reorder_annotation(): A, B, C = matmul_auto_scheduler_test(N=512, M=512, K=512) dag = auto_scheduler.ComputeDAG([A, B, C]) s0 = dag.get_init_state() i, j, k = s0[C].iters assert i.range.extent == 512 io, ii = s0.split(C, i, [16]) assert s0[C].iters[0] == io assert s0[C].iters[1] == ii assert io.range.extent == 32 assert ii.range.extent == 16 jo, ji = s0.split(C, j, [8]) assert jo.range.extent == 64 assert ji.range.extent == 8 s0.reorder(C, [io, jo, k, ji, ii]) assert s0[C].iters[2].range.extent == 512 fused_it = s0.fuse(C, [io, jo]) assert fused_it.range.extent == 2048 s1 = dag.get_init_state() i, j, _ = s1[C].iters i1, i2, i3 = s1.split(C, i, [8, 2]) j1, j2, j3 = s1.split(C, j, [32, 8], False) assert s1[C].iters[0].range.extent == 32 assert s1[C].iters[1].range.extent == 8 assert s1[C].iters[2].range.extent == 2 assert s1[C].iters[3].range.extent == 32 assert s1[C].iters[4].range.extent == 8 assert s1[C].iters[5].range.extent == 2 res = s1.bind(C, i1, "blockIdx.x") assert res == s1[C].iters[0] assert res.annotation == auto_scheduler.loop_state.State.ANNOTATION_TRANS_TABLE["blockIdx.x"] res = s1.bind(C, i2, "vthread") assert res == s1[C].iters[1] assert res.annotation == auto_scheduler.loop_state.State.ANNOTATION_TRANS_TABLE["vthread"] res = s1.bind(C, i3, "threadIdx.y") assert res == s1[C].iters[2] assert res.annotation == auto_scheduler.loop_state.State.ANNOTATION_TRANS_TABLE["threadIdx.y"] res = s1.parallel(C, j1) assert res == s1[C].iters[3] assert res.annotation == auto_scheduler.loop_state.State.ANNOTATION_TRANS_TABLE["parallel"] res = s1.unroll(C, j2) assert res == s1[C].iters[4] assert res.annotation == auto_scheduler.loop_state.State.ANNOTATION_TRANS_TABLE["unroll"] res = s1.vectorize(C, j3) assert res == s1[C].
iters[5] assert res.annotation == auto_scheduler.loop_state.State.ANNOTATION_TRANS_TABLE["vectorize"] def test_compute_at_root_inline(): dag = auto_scheduler.ComputeDAG( conv2d_nchw_bn_relu_auto_scheduler_test( N=1, H=224, W=224, CI=3, CO=64, kernel_size=7, strides=2, padding=3 ) ) s0 = dag.get_init_state() conv = s0.stage_ops[3] bias_add = s0.stage_ops[5] bn_mul = s0.stage_ops[7] bn_add = s0.stage_ops[9] relu = s0.stage_ops[10] s0.compute_inline(bn_add) assert s0[bn_add].compute_at == 1 s0.compute_inline(bn_mul) assert s0[bn_mul].compute_at == 1 s0.compute_inline(bias_add) assert s0[bias_add].compute_at == 1 assert s0[conv].iters[0].range.extent == 1 assert s0[conv].iters[1].range.extent == 64 assert s0[conv].iters[2].range.extent == 112 assert s0[conv].iters[3].range.extent == 112 assert s0[conv].iters[4].range.extent == 3 assert s0[conv].iters[5].range.extent == 7 assert s0[conv].iters[6].range.extent == 7 s0.compute_at(conv, relu, s0[relu].iters[2]) assert s0[conv].compute_at == 2 s0 = dag.infer_bound_from_state(s0) assert s0[conv].iters[0].range.extent == 1 assert s0[conv].iters[1].range.extent == 1 assert s0[conv].iters[2].range.extent == 1 assert s0[conv].iters[3].range.extent == 112 assert s0[conv].iters[4].range.extent == 3 assert s0[conv].iters[5].range.extent == 7 assert s0[conv].iters[6].range.extent == 7 s0.compute_root(bn_mul) assert s0[bn_mul].compute_at == 0 s0.compute_root(conv) assert s0[conv].compute_at == 0 s0 = dag.infer_bound_from_state(s0) assert s0[conv].iters[0].range.extent == 1 assert s0[conv].iters[1].range.extent == 64 assert s0[conv].iters[2].range.extent == 112 assert s0[conv].iters[3].range.extent == 112 assert s0[conv].iters[4].range.extent == 3 assert s0[conv].iters[5].range.extent == 7 assert s0[conv].iters[6].range.extent == 7 def test_cache_read_
write(): N, H, W, CO, CI, KH, KW, strides, padding = 4, 7, 7, 512, 512, 3, 3, (1, 1), (1, 1) data = te.placeholder((N, CI, H, W), name="Data") kernel_data = te.placeholder((CO, CI, KH, KW), name="Kernel_data") k0, k1 = te.compute( kernel_data.shape, lambda *i: (kernel_data(*i) + 1, kernel_data(*i) / 2), name="Kernel_split", ) kernel = te.compute(kernel_data.shape, lambda *i: k0(*i) + k1(*i), name="Kernel") conv = topi.nn.conv2d_nchw(data, kernel, strides, padding, dilation=1) relu = topi.nn.relu(conv) add = topi.add(data, relu) dag = auto_scheduler.ComputeDAG([data, kernel_data, add]) s0 = dag.get_init_state() pad_temp = s0.stage_ops[1] kernel_split = s0.stage_ops[3] ori_its = s0[add].iters its = s0.split(add, s0[add].iters[0], [2]) s0.reorder(add, [its[0], ori_its[1], its[1], ori_its[2], ori_its[3]]) s0.compute_inline(relu) conv_global = s0.cache_write(conv, "global") s0.compute_at(conv_global, conv, s0[conv].iters[3]) kernel_global = s0.cache_read(kernel, "global", [conv_global]) s0.compute_at(kernel_global, conv_global, s0[conv_global].iters[4]) """ Placeholder: Data, Kernel_data for i0 (0,4) for i1 (0,512) for i2 (0,9) for i3 (0,9) pad_temp = ... for i0 (0,512) for i1 (0,512) for i2 (0,3) for i3 (0,3) Kernel_split = ... for i0 (0,512) for i1 (0,512) for i2 (0,3) for i3 (0,3) Kernel = ... for nn (0,4) for ff (0,512) for yy (0,7) for xx (0,7) for nn_c (None) for ff_c (None) for yy_c (None) for xx_c (None) for rc (None) for ax0 (None) for ax1 (None) for ax2 (None)
for ax3 (None) Kernel.global = ... for ry (None) for rx (None) compute.global = ... compute = ... for ax0.0 (0,2) for ax1 (0,512) for ax0.1 (0,2) for ax2 (0,7) for ax3 (0,7) T_add = ... """ s1 = dag.infer_bound_from_state(s0) assert s1[conv].iters[0].range.extent == 4 assert s1[conv].iters[1].range.extent == 512 assert s1[conv].iters[2].range.extent == 7 assert s1[conv].iters[3].range.extent == 7 assert s1[kernel_global].iters[0].range.extent == 1 assert s1[kernel_global].iters[1].range.extent == 1 assert s1[kernel_global].iters[2].range.extent == 3 assert s1[kernel_global].iters[3].range.extent == 3 assert s1[conv_global].iters[0].range.extent == 1 assert s1[conv_global].iters[1].range.extent == 1 assert s1[conv_global].iters[2].range.extent == 1 assert s1[conv_global].iters[3].range.extent == 1 assert s1[conv_global].iters[4].range.extent == 512 assert s1[conv_global].iters[5].range.extent == 3 assert s1[conv_global].iters[6].range.extent == 3 pad_temp_global = s0.cache_read(pad_temp, "global", [conv_global]) pad_temp_shared = s0.cache_read(pad_temp_global, "shared", [conv_global]) s0.compute_at(pad_temp_global, conv_global, s0[conv_global].iters[2]) s0.compute_at(pad_temp_shared, conv_global, s0[conv_global].iters[4]) s0.cache_read(data, "global", [pad_temp, add]) """ Placeholder: Data, Kernel_data for ax0 (0,4) for ax1 (0,512) for ax2 (0,7) for ax3 (0,7) Data.global = ... for i0 (0,4) for i1 (0,512) for i2 (0,9) for i3 (0,9) pad_temp = ... for i0 (0,512) for i1 (0,512) for i2 (0,3) for i3 (0,3)
Kernel_split = ... for i0 (0,512) for i1 (0,512) for i2 (0,3) for i3 (0,3) Kernel = ... for nn (0,4) for ff (0,512) for yy (0,7) for xx (0,7) for nn_c (None) for ff_c (None) for yy_c (None) for ax0 (None) for ax1 (None) for ax2 (None) for ax3 (None) pad_temp.global = ... for xx_c (None) for rc (None) for ax0 (None) for ax1 (None) for ax2 (None) for ax3 (None) Kernel.global = ... for ax0 (None) for ax1 (None) for ax2 (None) for ax3 (None) pad_temp.global.shared = ... for ry (None) for rx (None) compute.global = ... compute = ... for ax0.0 (0,2) for ax1 (0,512) for ax0.1 (0,2) for ax2 (0,7) for ax3 (0,7) T_add = ... """ s1 = dag.infer_bound_from_state(s0) assert s1[conv].iters[0].range.extent == 4 assert s1[conv].iters[1].range.extent == 512 assert s1[conv].iters[2].range.extent == 7 assert s1[conv].iters[3].range.extent == 7 assert s1[kernel_global].iters[0].range.extent == 1 assert s1[kernel_global].iters[1].range.extent == 1 assert s1[kernel_global].iters[2].range.extent == 3 assert s1[kernel_global].iters[3].range.extent == 3 assert s1[conv_global].iters[0].range.extent == 1 assert s1[conv_global].iters[1].range.extent == 1 assert s1[conv_global].iter
s[2].range.extent == 1 assert s1[conv_global].iters[3].range.extent == 1 assert s1[conv_global].iters[4].range.extent == 512 assert s1[conv_global].iters[5].range.extent == 3 assert s1[conv_global].iters[6].range.extent == 3 assert s1[pad_temp_global].iters[0].range.extent == 1 assert s1[pad_temp_global].iters[1].range.extent == 512 assert s1[pad_temp_global].iters[2].range.extent == 3 assert s1[pad_temp_global].iters[3].range.extent == 3 assert s1[pad_temp_shared].iters[0].range.extent == 1 assert s1[pad_temp_shared].iters[1].range.extent == 1 assert s1[pad_temp_shared].iters[2].range.extent == 3 assert s1[pad_temp_shared].iters[3].range.extent == 3 kernel_split_global = s0.cache_write(kernel_split, "global") """ Placeholder: Data, Kernel_data for ax0 (0,4) for ax1 (0,512) for ax2 (0,7) for ax3 (0,7) Data.global = ... for i0 (0,4) for i1 (0,512) for i2 (0,9) for i3 (0,9) pad_temp = ... for i0_c (0,512) for i1_c (0,512) for i2_c (0,3) for i3_c (0,3) Kernel_split.global = ... for i0 (0,512) for i1 (0,512) for i2 (0,3) for i3 (0,3) Kernel_split = ... (******* Bug here, there should not be two kernel_split stage *******) for i0 (0,512) for i1 (0,512) for i2 (0,3) for i3 (0,3) Kernel_split = ... (******* Bug here, there should not be two kernel_split stage *******) for i0 (0,512) for i1 (0,512) for i2 (0,3) for i3 (0,3) Kernel = ... for nn (0,4) for ff (0,512) for yy (0,7) for xx (0,7) for nn_c (None) for ff_c (None) fo
r yy_c (None) for ax0 (None) for ax1 (None) for ax2 (None) for ax3 (None) pad_temp.global = ... for xx_c (None) for rc (None) for ax0 (None) for ax1 (None) for ax2 (None) for ax3 (None) Kernel.global = ... for ax0 (None) for ax1 (None) for ax2 (None) for ax3 (None) pad_temp.global.shared = ... for ry (None) for rx (None) compute.global = ... compute = ... for ax0.0 (0,2) for ax1 (0,512) for ax0.1 (0,2) for ax2 (0,7) for ax3 (0,7) T_add = ... """ assert len(s0[kernel_split].iters) == len(s0[kernel_split_global].iters) for it0, it1 in zip(s0[kernel_split].iters, s0[kernel_split_global].iters): assert it0.range == it1.range def test_follow_split_follow_fused_split(): A, B, C = matmul_auto_scheduler_test(512, 512, 512) dag = auto_scheduler.ComputeDAG([A, B, C]) s0 = dag.get_init_state() C_global = s0.cache_write(C, "global") its0 = s0.split(C, s0[C].iters[0], [4, 2, 8, 4], True) split_step0 = len(s0.transform_steps) - 1 for level in range(1, 6): tmp = s0.copy() tmp.follow_split(C_global, tmp[C_global].iters[0], split_step0, level) for i in range(0, level): assert tmp[C].iters[i].range.extent == tmp[C_global].iters[i].range.extent its1 = s0.split(C, s0[C].iters[5], [2, 2, 4, 8]) split_step1 = len(s0.transform_steps) - 1 its = [] for i0, i1 in zip(its0, its1): its.app
end(i0) its.append(i1) s0.reorder(C, its) for i in range(0, 5): s0.fuse(C, [s0[C].iters[i], s0[C].iters[i + 1]]) for level in range(0, 4): tmp = s0.copy() tmp.follow_fused_split( C_global, tmp[C_global].iters[0], [split_step0, split_step1], level, False ) assert tmp[C].iters[level + 1].range.extent == tmp[C_global].iters[0].range.extent for level in range(0, 4): tmp = s0.copy() tmp.follow_fused_split( C_global, tmp[C_global].iters[0], [split_step0, split_step1], level, True ) assert tmp[C].iters[level + 1].range.extent == tmp[C_global].iters[1].range.extent def test_rfactor(): A, B, C = matmul_auto_scheduler_test(8, 8, 512) dag = auto_scheduler.ComputeDAG([A, B, C]) s0 = dag.get_init_state() ko, ki = s0.split(C, s0[C].iters[2], [16]) s1 = s0.copy() C_r = s1.rfactor(C, ko, 2) """ Placeholder: A, B for i (0,8) for j (0,8) for k_o (0,32) for k_i (0,16) C.rf = ... for ax0 (0,8) for ax1 (0,8) for k_o_v (0,32) C.repl = ... """ assert s1[C_r].iters[0].range.extent == 8 assert s1[C_r].iters[1].range.extent == 8 assert s1[C_r].iters[2].range.extent == 32 assert s1[C_r].iters[3].range.extent == 16 assert s1[C].iters[0].range.extent == 8 assert s1[C].iters[1].range.extent == 8 assert s1[C].iters[2].range.extent == 32 s2 = s0.copy() C_r = s2.rfactor(C, ki, 2) """ Placeholder: A, B for i (0,8) for j (0,8) for k_i (0,16) for k_o (0,32) C.rf = ... for ax0 (0,8) for ax1 (0,8) for k_i_v (0,16) C.repl = ... """ assert s2[C_r].iters[0].range.extent == 8 assert s2[C_r].iters[1].range.extent == 8 assert s2[C_r].iters[2].range.extent == 16 assert s2[C_r].iters[3].range.extent == 32 assert s2[C].i
ters[0].range.extent == 8 assert s2[C].iters[1].range.extent == 8 assert s2[C].iters[2].range.extent == 16 if __name__ == "__main__": test_split_fuse_reorder_annotation() test_compute_at_root_inline() test_cache_read_write() test_follow_split_follow_fused_split() test_rfactor()
""" Test measurement and log serialization. """
import json
import multiprocessing
import numpy as np
import tvm from tvm
import topi from tvm
import te, auto_scheduler
import tempfile
import tvm.testing
import pickle from tvm.testing.auto_scheduler
import matmul_auto_scheduler_test from tvm.auto_scheduler