text
stringlengths
1
2.05k
import workload_registry def record_common(dag, s): target = tvm.target.Target("llvm") task = auto_scheduler.SearchTask(compute_dag=dag, workload_key="test", target=target) inp = auto_scheduler.measure.MeasureInput(task, s) res = auto_scheduler.measure.MeasureResult([0.1], 0, "", 0.2, 1) record_str = auto_scheduler.measure_record.dump_record_to_string(inp, res) r_inp, r_res = auto_scheduler.measure_record.load_record_from_string(record_str) assert inp.task.workload_key == r_inp.task.workload_key assert str(res) == str(r_res) with tempfile.NamedTemporaryFile() as fp: auto_scheduler.save_records(fp.name, [inp], [res]) log_reader = auto_scheduler.RecordReader(fp.name) inputs, _ = log_reader.read_lines() assert len(inputs) == 1 s1 = dag.infer_bound_from_state(s) s2 = dag.infer_bound_from_state(inputs[0].state) assert s1 == s2 assert not (s1 == dag.get_init_state()) def test_record_split_reorder_fuse_annotation(): if not tvm.testing.device_enabled("llvm"): return A = te.placeholder((512, 512), name="A") B = te.placeholder((512, 512), name="B") k = te.reduce_axis((0, 512), name="k") C = te.compute((512, 512), lambda i, j: te.sum(A[i][k] * B[k][j], axis=[k]), name="C") dag = auto_scheduler.ComputeDAG([A, B, C]) s = dag.get_init_state() its0 = s.split(C, s[C].iters[0], [4, 8, 8]) its1 = s.split(C, s[C].iters[4], [8, 4, 4]) s.reorder( C, [its0[0], its1[0], its0[1], its1[1], its0[2], its1[2], its0[3], s[C].iters[8], its1[3]] ) s.fuse(C, [s[C].iters[0], s[C].iters[1], s[C].iters[2]]) s.parallel(C, s[C].iters[0]) s.bind(C, s[C].iters[1], "blockIdx.x") s.bind(C, s[C].iters[2], "threadIdx.z") s.bind(C, s[C].iters[3], "vthread") s.unroll(C, s[C].iters[4]) s.vectorize(C, s[C].iters[6]) record_common(dag, s) def test_record_compute_at_root_inline_cache_read_write(): if not
tvm.testing.device_enabled("llvm"): return A = te.placeholder((512, 512), name="A") AA = topi.nn.relu(A) B = te.placeholder((512, 512), name="B") k = te.reduce_axis((0, 512), name="k") C = te.compute((512, 512), lambda i, j: te.sum(AA[i][k] * B[k][j], axis=[k]), name="C") dag = auto_scheduler.ComputeDAG([A, B, C]) s = dag.get_init_state() C_shared = s.cache_write(C, "shared") s.compute_at(C_shared, C, s[C].iters[0]) B_global = s.cache_read(B, "global", [C_shared]) s.compute_at(B_global, C_shared, s[C_shared].iters[2]) s.compute_inline(AA) s.compute_root(C_shared) record_common(dag, s) def test_record_follow_split_follow_fused_split(): if not tvm.testing.device_enabled("llvm"): return A = te.placeholder((512, 512), name="A") B = te.placeholder((512, 512), name="B") k = te.reduce_axis((0, 512), name="k") C = te.compute((512, 512), lambda i, j: te.sum(A[i][k] * B[k][j], axis=[k]), name="C") D = topi.nn.relu(C) E = topi.nn.relu(D) dag = auto_scheduler.ComputeDAG([A, B, E]) s = dag.get_init_state() s.split(C, s[C].iters[0], [4, 2, 8, 4], True) split_step0 = len(s.transform_steps) - 1 s.follow_split(C, s[C].iters[5], split_step0, 4) its0 = s.split(E, s[E].iters[0], [4, 2, 8, 4], True) split_step1 = len(s.transform_steps) - 1 its1 = s.split(E, s[E].iters[5], [2, 4, 2, 4], True) split_step2 = len(s.transform_steps) - 1 its = [] for i0, i1 in zip(its0, its1): its.append(i0) its.append(i1) for i in range(0, 5): s.fuse(E, [s[E].iters[i], s[E].iters[i + 1]]) s.follow_fused_split(D, s[D].iters[0], [split_step1, split_step2], 2, True) record_common(dag, s) def test_record_pragma_storage_align_rfactor(): if not tvm.testing.device_enabled("llvm"): return A = te.placeholder((512, 512), name="A") B = te.placeholder((512, 512), name="B") k = te.reduce_axis((0, 512), name="k") C =
te.compute((512, 512), lambda i, j: te.sum(A[i][k] * B[k][j], axis=[k]), name="C") dag = auto_scheduler.ComputeDAG([A, B, C]) s = dag.get_init_state() ko, _ = s.split(C, s[C].iters[2], [16]) s.rfactor(C, ko, 2) s.pragma(C, s[C].iters[0], "auto_unroll_max_step$64") s.storage_align(C, s[C].iters[-1], 8, 4) record_common(dag, s) def test_recover_measure_input(): task = auto_scheduler.SearchTask( func=matmul_auto_scheduler_test, args=(512, 512, 512), target="llvm" ) inp = auto_scheduler.measure.MeasureInput(task, task.compute_dag.init_state) res = auto_scheduler.measure.MeasureResult([0.1], 0, "", 0.2, 1) with tempfile.NamedTemporaryFile() as fp: auto_scheduler.save_records(fp.name, [inp], [res]) log_reader = auto_scheduler.RecordReader(fp.name) inputs, _ = log_reader.read_lines() assert len(inputs) == 1 raw_inp = inputs[0] correct_inp = auto_scheduler.measure.recover_measure_input(raw_inp) assert str(correct_inp.task.compute_dag) == str(inp.task.compute_dag) correct_inp = auto_scheduler.measure.recover_measure_input(raw_inp, rebuild_state=True) assert str(correct_inp.state) == str(inp.state) def test_workload_dis_factor(): calc = auto_scheduler.utils.calc_workload_dis_factor decode = auto_scheduler.utils.decode_workload_key target_wkl_key = json.dumps( ["func1", [8, 3, 224, 224], [32, 3, 3, 3], [0, 0], [1, 1], "float32"] ) assert calc(decode(target_wkl_key), decode(target_wkl_key)) == 1 wkl_key = json.dumps(["func1", [1, 3, 112, 112], [32, 3, 3, 3], [0, 0], [1, 1], "float32"]) assert calc(decode(target_wkl_key), decode(wkl_key)) == 8 * 2 * 2 wkl_key = json.dumps(["func1", [8, 3, 224, 224], [32, 3, 3, 3], [1, 1], [1, 1], "float32"]) assert calc(decode(target_wkl_key), decode(wkl_key)) == float("inf") wkl_key = json.dumps(["func1", [8, 3, 224, 224], [32, 3, 3, 3], [0, 0], [0, 0], "float32"]) ass
ert calc(decode(target_wkl_key), decode(wkl_key)) == float("inf") wkl_key = json.dumps(["func1", [8, 3, 224, 224], [32, 3, 3, 3], [0, 0], [1, 1], "int8"]) assert calc(decode(target_wkl_key), decode(wkl_key)) == float("inf") wkl_key = json.dumps(["func2", [8, 3, 224, 224], [32, 3, 3, 3], [0, 0], [1, 1], "float32"]) assert calc(decode(target_wkl_key), decode(wkl_key)) == float("inf") wkl_key = json.dumps(["func1", [8, 3, 223, 223], [32, 3, 3, 3], [0, 0], [1, 1], "float32"]) assert calc(decode(target_wkl_key), decode(wkl_key)) == float("inf") def test_measure_local_builder_runner(): if not tvm.testing.device_enabled("llvm"): return task = auto_scheduler.SearchTask( func=matmul_auto_scheduler_test, args=(512, 512, 512), target="llvm" ) for enable_cpu_cache_flush in [True, False]: minp = auto_scheduler.MeasureInput(task, task.compute_dag.init_state) local_builder = auto_scheduler.LocalBuilder() local_runner = auto_scheduler.LocalRunner( timeout=60, enable_cpu_cache_flush=enable_cpu_cache_flush ) bress = local_builder.build([minp]) assert bress[0].error_no == 0 mress = local_runner.run([minp], bress) assert mress[0].error_no == 0 def test_dag_measure_local_builder_runner(): if not tvm.testing.device_enabled("llvm"): return A = te.placeholder((512, 512), name="A") B = te.placeholder((512, 512), name="B") k = te.reduce_axis((0, 512), name="k") C = te.compute((512, 512), lambda i, j: te.sum(A[i][k] * B[k][j], axis=[k]), name="C") D = topi.nn.relu(C) E = topi.nn.relu(D) tensors = [A, B, E] dag = auto_scheduler.ComputeDAG(tensors) key = workload_registry.register_workload_tensors(dag.workload_key(), tensors) transfer_data = workload_registry.serialize_workload_registry_entry(key) f_data = pickle.dumps(transfer_data) f_new = pickle.loads(f_data) del workload_registry.WORKLOAD_FUNC_REGISTRY[key] workloa
d_registry.deserialize_workload_registry_entry(f_new) target = tvm.target.Target("llvm") task = auto_scheduler.SearchTask(compute_dag=dag, workload_key=key, target=target) for enable_cpu_cache_flush in [True, False]: minp = auto_scheduler.MeasureInput(task, task.compute_dag.init_state) local_builder = auto_scheduler.LocalBuilder() local_runner = auto_scheduler.LocalRunner( timeout=60, enable_cpu_cache_flush=enable_cpu_cache_flush ) bress = local_builder.build([minp]) assert bress[0].error_no == 0 mress = local_runner.run([minp], bress) assert mress[0].error_no == 0 def test_workload_serialization(): key = tvm.auto_scheduler.utils.get_func_name(matmul_auto_scheduler_test) transfer_data = workload_registry.serialize_workload_registry_entry(key) f_data = pickle.dumps(transfer_data) f_new = pickle.loads(f_data) del workload_registry.WORKLOAD_FUNC_REGISTRY[key] workload_registry.deserialize_workload_registry_entry(f_new) def test_measure_local_builder_rpc_runner(): if not tvm.testing.device_enabled("llvm"): return task = auto_scheduler.SearchTask( func=matmul_auto_scheduler_test, args=(512, 512, 512), target="llvm" ) for enable_cpu_cache_flush in [True, False]: minp = auto_scheduler.MeasureInput(task, task.compute_dag.init_state) local_builder = auto_scheduler.LocalBuilder() measure_ctx = auto_scheduler.LocalRPCMeasureContext( timeout=60, enable_cpu_cache_flush=enable_cpu_cache_flush ) rpc_runner = measure_ctx.runner bress = local_builder.build([minp]) assert bress[0].error_no == 0 mress = rpc_runner.run([minp], bress) assert mress[0].error_no == 0 del measure_ctx def measure_local_builder_rpc_runner_spawn(): assert multiprocessing.get_start_method(False) == "spawn" test_measure_local_builder_rpc_runner() @tvm.testing.requires_llvm def test_measure_local_builder_r
pc_runner_spawn(): ctx = multiprocessing.get_context("spawn") p = ctx.Process(target=measure_local_builder_rpc_runner_spawn) p.start() p.join() @tvm.testing.requires_llvm def test_measure_target_host(): task = auto_scheduler.SearchTask( func=matmul_auto_scheduler_test, args=(512, 512, 512), target=tvm.target.Target("llvm", "llvm -mtriple=aarch64-linux-gnu"), ) inp = auto_scheduler.measure.MeasureInput(task, task.compute_dag.init_state) res = auto_scheduler.measure.MeasureResult([0.1], 0, "", 0.2, 1) with tempfile.NamedTemporaryFile() as fp: auto_scheduler.save_records(fp.name, [inp], [res]) log_reader = auto_scheduler.RecordReader(fp.name) inputs, _ = log_reader.read_lines() assert len(inputs) == 1 raw_inp = inputs[0] recovered_inp = auto_scheduler.measure.recover_measure_input(raw_inp) assert str(recovered_inp.task.target.host) == str(inp.task.target.host) @tvm.testing.requires_llvm def test_measure_special_inputs_map_by_name_local_runner(): @auto_scheduler.register_workload def foo(): X = te.placeholder(shape=[10], dtype="int32") Index = te.placeholder(shape=[1], dtype="int32", name="Index") Y = te.compute((1,), lambda i: X[Index[i]]) return [X, Index, Y] task = auto_scheduler.SearchTask( func=foo, target="llvm", task_inputs={ "Index": tvm.nd.array(np.array([5], dtype="int32")), }, ) minp = auto_scheduler.MeasureInput(task, task.compute_dag.init_state) local_builder = auto_scheduler.LocalBuilder() local_runner = auto_scheduler.LocalRunner(timeout=10) bress = local_builder.build([minp]) assert bress[0].error_no == 0 mress = local_runner.run([minp], bress) assert mress[0].error_no == 0 @tvm.testing.requires_llvm def test_measure_special_inputs_map_by_name_rpc_runner(): @auto_scheduler.register_workload def foo(): X = te.placeholder(shape=[10], dty
pe="int32") Index = te.placeholder(shape=[1], dtype="int32", name="Index") Y = te.compute((1,), lambda i: X[Index[i]]) return [X, Index, Y] task = auto_scheduler.SearchTask( func=foo, target="llvm", task_inputs={ "Index": tvm.nd.array(np.array([5], dtype="int32")), }, ) for enable_cpu_cache_flush in [True, False]: minp = auto_scheduler.MeasureInput(task, task.compute_dag.init_state) local_builder = auto_scheduler.LocalBuilder() measure_ctx = auto_scheduler.LocalRPCMeasureContext( timeout=60, enable_cpu_cache_flush=enable_cpu_cache_flush ) rpc_runner = measure_ctx.runner bress = local_builder.build([minp]) assert bress[0].error_no == 0 mress = rpc_runner.run([minp], bress) assert mress[0].error_no == 0 if __name__ == "__main__": tvm.testing.main()
"""Test search policy"""
import random
import multiprocessing
import numpy as np
import tempfile
import tvm
import tvm.testing from tvm
import auto_scheduler from tvm.auto_scheduler.utils
import get_const_tuple from tvm.testing.auto_scheduler
import ( matmul_auto_scheduler_test, zero_rank_compute_auto_scheduler_test, zero_rank_reduce_auto_scheduler_test, )
import multiprocessing
class CustomMeasureCallback(auto_scheduler.measure.PythonBasedMeasureCallback): """A simple Python-based callback for testing.""" def callback(self, policy, inputs, results): assert isinstance(policy, auto_scheduler.search_policy.SearchPolicy) for inp, res in zip(inputs, results): assert isinstance(inp, auto_scheduler.MeasureInput) assert isinstance(res, auto_scheduler.MeasureResult) def search_common( task=None, target="llvm", search_policy="sketch", runner="local", num_measure_trials=100, cost_model=auto_scheduler.RandomModel(), init_search_callbacks=None, ): if task is None: task = auto_scheduler.SearchTask( func=matmul_auto_scheduler_test, args=(64, 64, 64), target=target ) target = task.target print("Test search policy '%s' for '%s'" % (search_policy, target)) with tempfile.NamedTemporaryFile() as fp: log_file = fp.name init_search_callbacks = init_search_callbacks or [] init_search_callbacks.append(auto_scheduler.PreloadMeasuredStates(log_file)) if search_policy == "empty": search_policy = auto_scheduler.EmptyPolicy(task) elif search_policy == "sketch": search_policy = auto_scheduler.SketchPolicy( task, program_cost_model=cost_model, init_search_callbacks=init_search_callbacks ) else: raise ValueError("Invalid policy: " + search_policy) tuning_options = auto_scheduler.TuningOptions( num_measure_trials=num_measure_trials, num_measures_per_round=2, early_stopping=1, runner=runner, measure_callbacks=[auto_scheduler.RecordToFile(log_file), CustomMeasureCallback()], ) task.tune(tuning_options=tuning_options, search_policy=search_policy) sch, args = task.apply_best(log_file) mod = tvm.build(sch, args, target) sch, args = task.compute_dag.apply
_steps_from_state(task.compute_dag.init_state) mod_ref = tvm.build(sch, args, "llvm") ctx = tvm.device(str(target), 0) np_arrays = [np.random.uniform(size=get_const_tuple(x.shape)).astype(x.dtype) for x in args] tvm_arrays = [tvm.nd.array(x, ctx) for x in np_arrays] mod(*tvm_arrays) actual = [x.numpy() for x in tvm_arrays] tvm_arrays = [tvm.nd.array(x) for x in np_arrays] mod_ref(*tvm_arrays) expected = [x.numpy() for x in tvm_arrays] for x, y in zip(actual, expected): tvm.testing.assert_allclose(x, y, rtol=1e-5) @tvm.testing.requires_llvm def test_workload_registry_empty_policy(): search_common(search_policy="empty", num_measure_trials=2) N = 64 target = "llvm" search_common( task=auto_scheduler.SearchTask( func="matmul_auto_scheduler_test", args=(N, N, N), target=target ), num_measure_trials=2, search_policy="empty", ) search_common( task=auto_scheduler.SearchTask( func="matmul_auto_scheduler_test_rename_1", args=(N, N, N), target=target ), num_measure_trials=2, search_policy="empty", ) @tvm.testing.requires_llvm def test_sketch_search_policy_basic(): search_common() def sketch_search_policy_basic_spawn(): assert multiprocessing.get_start_method(False) == "spawn" test_sketch_search_policy_basic() @tvm.testing.requires_llvm def test_sketch_search_policy_basic_spawn(): ctx = multiprocessing.get_context("spawn") p = ctx.Process(target=sketch_search_policy_basic_spawn) p.start() p.join() @tvm.testing.requires_llvm def test_sketch_search_policy_xgbmodel(): search_common(cost_model=auto_scheduler.XGBModel()) @tvm.testing.requires_cuda def test_sketch_search_policy_cuda_rpc_runner(): measure_ctx = auto_scheduler.LocalRPCMeasureContext() search_common(target="cuda", runner=measure_ctx.runner) @tvm.testing.requires_cuda def test_sketch_search_policy_cuda_xgb
model_rpc_runner(): measure_ctx = auto_scheduler.LocalRPCMeasureContext() search_common(target="cuda", runner=measure_ctx.runner, cost_model=auto_scheduler.XGBModel()) @tvm.testing.requires_llvm @tvm.testing.requires_cuda def test_sketch_search_policy_zero_rank(): measure_ctx = auto_scheduler.LocalRPCMeasureContext() for target in ["llvm", "cuda"]: task = auto_scheduler.SearchTask( func=zero_rank_compute_auto_scheduler_test, args=(10,), target=target ) search_common(task, runner=measure_ctx.runner) task = auto_scheduler.SearchTask( func=zero_rank_reduce_auto_scheduler_test, args=(10,), target=target ) search_common(task, runner=measure_ctx.runner) @tvm.testing.requires_llvm def test_sketch_search_policy_custom_sketch(): def meet_condition_func(search_policy, state, stage_id): return auto_scheduler.PreloadCustomSketchRule.APPLY_AND_SKIP_REST def apply_func(search_policy, state, stage_id): ret = [] state = auto_scheduler.loop_state.State(state, search_policy.search_task.compute_dag) C = state.stage_ops[2] ret.append([state.state_object, -1]) s1 = state.copy() i, _, _ = s1[C].iters s1.split(C, i, [8]) ret.append([s1.state_object, -1]) return ret search_common( cost_model=auto_scheduler.XGBModel(), init_search_callbacks=[ auto_scheduler.PreloadCustomSketchRule(meet_condition_func, apply_func) ], ) if __name__ == "__main__": test_workload_registry_empty_policy() test_sketch_search_policy_basic() test_sketch_search_policy_basic_spawn() test_sketch_search_policy_xgbmodel() test_sketch_search_policy_cuda_rpc_runner() test_sketch_search_policy_cuda_xgbmodel_rpc_runner() test_sketch_search_policy_zero_rank() test_sketch_search_policy_custom_sketch()
"""Test search policy"""
import numpy as np
import tempfile
import tvm
import tvm.testing from tvm
import auto_scheduler from tvm.auto_scheduler.utils
import get_const_tuple from tvm.testing.auto_scheduler
import ( matmul_auto_scheduler_test, zero_rank_compute_auto_scheduler_test, zero_rank_reduce_auto_scheduler_test, ) def test_search_task_add_task_input(): auto_scheduler.search_task.TASK_INPUT_BUFFER_TABLE.clear() N = 64 target = "llvm" test_input_0 = tvm.runtime.ndarray.empty((64, 64)) test_input_1 = tvm.runtime.ndarray.empty((10, 20)) test_input_2 = tvm.runtime.ndarray.empty((30, 40, 50)) task = auto_scheduler.SearchTask( func="matmul_auto_scheduler_test", args=(N, N, N), target=target, task_inputs={ "test_input_0": test_input_0, "test_input_1": test_input_1, "test_input_2": test_input_2, }, task_inputs_overwrite=True, ) assert len(task.task_input_names) == 3 assert task.task_input_names[0] == "test_input_0" assert task.task_input_names[1] == "test_input_1" assert task.task_input_names[2] == "test_input_2" def test_search_task_record(): auto_scheduler.search_task.TASK_INPUT_BUFFER_TABLE.clear() N = 64 target = "llvm" task = auto_scheduler.SearchTask( func="matmul_auto_scheduler_test", args=(N, N, N), target=target ) task_record = auto_scheduler._ffi_api.SerializeSearchTask(task) new_task = auto_scheduler._ffi_api.DeserializeSearchTask(task_record) assert task.workload_key == new_task.workload_key assert str(task.target) == str(new_task.target) assert str(task.target.host) == str(new_task.target.host) assert task.layout_rewrite_option == new_task.layout_rewrite_option test_input_0 = tvm.runtime.ndarray.empty((64, 64)) task = auto_scheduler.SearchTask( func="matmul_auto_scheduler_test", args=(N, N, N), target=target, task_inputs={"test_input_0": test_input_0}, task_inputs_overwrite=True, ) task_record = auto_scheduler._ffi_api.SerializeSearchTask(task) new_task = auto_scheduler._ffi_api.DeserializeSearchTask(task_record) assert task.wor
kload_key == new_task.workload_key assert str(task.target) == str(new_task.target) assert str(task.target.host) == str(new_task.target.host) assert task.layout_rewrite_option == new_task.layout_rewrite_option assert len(new_task.task_input_names) == 1 assert new_task.task_input_names[0] == "test_input_0" test_input_1 = tvm.runtime.ndarray.empty((64, 64)) task = auto_scheduler.SearchTask( func="matmul_auto_scheduler_test", args=(N, N, N), target=target, task_inputs={ "test_input_0": test_input_0, "test_input_1": test_input_1, }, task_inputs_overwrite=True, ) task_record = auto_scheduler._ffi_api.SerializeSearchTask(task) new_task = auto_scheduler._ffi_api.DeserializeSearchTask(task_record) assert task.workload_key == new_task.workload_key assert str(task.target) == str(new_task.target) assert str(task.target.host) == str(new_task.target.host) assert task.layout_rewrite_option == new_task.layout_rewrite_option assert len(new_task.task_input_names) == 2 assert new_task.task_input_names[0] == "test_input_0" assert new_task.task_input_names[1] == "test_input_1" v5_log = """["[\\\"matmul_auto_scheduler_test\\\", 64, 64, 64]", "llvm -keys=cpu", [6, 64, 64, 0, 0, 0, 0, 0], "", 1]""" new_task = auto_scheduler._ffi_api.DeserializeSearchTask(v5_log) assert task.workload_key == new_task.workload_key assert str(task.target) == str(new_task.target) assert str(task.target.host) == str(new_task.target.host) assert task.layout_rewrite_option == new_task.layout_rewrite_option assert len(new_task.task_input_names) == 0 def test_recover_measure_input_with_task_input(): auto_scheduler.search_task.TASK_INPUT_BUFFER_TABLE.clear() task = auto_scheduler.SearchTask( func=matmul_auto_scheduler_test, args=(512, 512, 512), target="llvm" ) inp = auto_scheduler.measure.MeasureInput(task, task.compute_dag.init_state) res = aut
o_scheduler.measure.MeasureResult([0.1], 0, "", 0.2, 1) measure_record = auto_scheduler.measure_record.dump_record_to_string(inp, res) measure_log = auto_scheduler.measure_record.load_record_from_string(measure_record) new_task = measure_log[0].task assert task.workload_key == new_task.workload_key assert str(task.target) == str(new_task.target) assert str(task.target.host) == str(new_task.target.host) assert task.layout_rewrite_option == new_task.layout_rewrite_option test_input_0 = tvm.runtime.ndarray.empty((64, 64)) task = auto_scheduler.SearchTask( func=matmul_auto_scheduler_test, args=(512, 512, 512), target="llvm", task_inputs={ "test_input_0": test_input_0, }, task_inputs_overwrite=True, ) inp = auto_scheduler.measure.MeasureInput(task, task.compute_dag.init_state) res = auto_scheduler.measure.MeasureResult([0.1], 0, "", 0.2, 1) measure_record = auto_scheduler.measure_record.dump_record_to_string(inp, res) measure_log = auto_scheduler.measure_record.load_record_from_string(measure_record) new_task = measure_log[0].task assert task.workload_key == new_task.workload_key assert str(task.target) == str(new_task.target) assert str(task.target.host) == str(new_task.target.host) assert task.layout_rewrite_option == new_task.layout_rewrite_option assert len(new_task.task_input_names) == 1 assert new_task.task_input_names[0] == "test_input_0" test_input_1 = tvm.runtime.ndarray.empty((64, 64)) task = auto_scheduler.SearchTask( func=matmul_auto_scheduler_test, args=(512, 512, 512), target="llvm", task_inputs={ "test_input_0": test_input_0, "test_input_1": test_input_1, }, task_inputs_overwrite=True, ) inp = auto_scheduler.measure.MeasureInput(task, task.compute_dag.init_state) res = auto_scheduler.measure.MeasureResult([0.1], 0, "", 0.2, 1) measure_record = auto_schedul
er.measure_record.dump_record_to_string(inp, res) measure_log = auto_scheduler.measure_record.load_record_from_string(measure_record) new_task = measure_log[0].task assert task.workload_key == new_task.workload_key assert str(task.target) == str(new_task.target) assert str(task.target.host) == str(new_task.target.host) assert task.layout_rewrite_option == new_task.layout_rewrite_option assert len(new_task.task_input_names) == 2 assert new_task.task_input_names[0] == "test_input_0" assert new_task.task_input_names[1] == "test_input_1" v5_log = """{"i": [["[\\\"matmul_auto_scheduler_test\\\", 512, 512, 512]", "llvm -keys=cpu", [6, 64, 64, 0, 0, 0, 0, 0], "", 1], [[], []]], "r": [[0.1], 0, 0.2, 1], "v": "v0.6"}""" measure_log = auto_scheduler.measure_record.load_record_from_string(v5_log) new_task = measure_log[0].task assert task.workload_key == new_task.workload_key assert str(task.target) == str(new_task.target) assert str(task.target.host) == str(new_task.target.host) assert task.layout_rewrite_option == new_task.layout_rewrite_option assert len(new_task.task_input_names) == 0 if __name__ == "__main__": test_search_task_add_task_input() test_search_task_record() test_recover_measure_input_with_task_input()
""" Test sketch generation. """
import sys
import tvm
import tvm.testing
import pytest from tvm
import te, auto_scheduler from tvm.auto_scheduler
import _ffi_api from tvm.auto_scheduler.loop_state
import Stage from tvm.testing.auto_scheduler
import ( matmul_auto_scheduler_test, double_matmul_auto_scheduler_test, conv2d_nchw_bn_relu_auto_scheduler_test, max_pool2d_auto_scheduler_test, min_nm_auto_scheduler_test, softmax_nm_auto_scheduler_test, softmax_abcd_auto_scheduler_test, conv2d_winograd_nhwc_auto_scheduler_test, zero_rank_reduce_auto_scheduler_test, ) def generate_sketches( workload_func, args, target, print_for_debug=False, init_search_callbacks=None ): task = auto_scheduler.SearchTask( func=workload_func, args=args, target=target, hardware_params=auto_scheduler.HardwareParams(num_cores=4, target=target), ) policy = auto_scheduler.SketchPolicy( task, verbose=0, init_search_callbacks=init_search_callbacks ) return policy.generate_sketches(print_for_debug) def assert_compute_at_condition(stage, condition): assert stage.compute_at == Stage.COMPUTE_AT_TRANS_TABLE[condition] def assert_is_tiled(stage): assert _ffi_api.SearchPolicyUtilsIsTiled(stage) def assert_is_not_tiled(stage): assert not _ffi_api.SearchPolicyUtilsIsTiled(stage) def assert_has_cache_write(state, stage_id): assert _ffi_api.SearchPolicyUtilsHasCacheWriteStage(state, stage_id) def assert_has_cache_read(state, stage_id): assert _ffi_api.SearchPolicyUtilsHasCacheReadStage(state, stage_id) def assert_has_rfactor(state, stage_id): assert _ffi_api.SearchPolicyUtilsHasRfactorStage(state, stage_id) def assert_has_cross_thread_reduction(state, stage_id): assert _ffi_api.SearchPolicyUtilsHasCrossThreadReduction(state, stage_id) def test_cpu_matmul_sketch(): sketches = generate_sketches(matmul_auto_scheduler_test, (512, 512, 512), "llvm") """ 3 multi-level tiling sketches No.0 : Multi-level tiling No.1 : Multi-level tiling with cache write on position 0 No.2 : Multi-level tiling with cache write on position 1 """ assert len(sketches) == 3 assert_is_tiled(sketches[0].stages[2]) asser
t_is_tiled(sketches[1].stages[2]) assert_has_cache_write(sketches[1], 2) assert_compute_at_condition(sketches[1].stages[2], "iter") assert_is_tiled(sketches[2].stages[2]) assert_has_cache_write(sketches[2], 2) assert_compute_at_condition(sketches[2].stages[2], "iter") assert sketches[1] != sketches[2] sketches = generate_sketches(matmul_auto_scheduler_test, (8, 8, 512), "llvm") """ 2 rfactor sketches + 3 multi-level tiling sketches No.0 : Rfactor with factor position 0 No.1 : Rfactor with factor position 1 No.2 : Multi-level tiling No.3 : Multi-level tiling with cache write on position 0 No.4 : Multi-level tiling with cache write on position 1 """ assert len(sketches) == 5 assert_has_rfactor(sketches[0], 2) assert_has_rfactor(sketches[1], 2) assert sketches[0] != sketches[1] assert_is_tiled(sketches[2].stages[2]) assert_is_tiled(sketches[3].stages[2]) assert_has_cache_write(sketches[3], 2) assert_compute_at_condition(sketches[3].stages[2], "iter") assert_is_tiled(sketches[4].stages[2]) assert_has_cache_write(sketches[4], 2) assert_compute_at_condition(sketches[4].stages[2], "iter") assert sketches[3] != sketches[4] sketches = generate_sketches(double_matmul_auto_scheduler_test, (512,), "llvm") """ 3 multi-level tiling sketches for one matmul, so 3 * 3 = 9 sketches in total """ assert len(sketches) == 9 assert_is_tiled(sketches[8].stages[5]) def test_cpu_conv2d_bn_relu_sketch(): sketches = generate_sketches( conv2d_nchw_bn_relu_auto_scheduler_test, (1, 56, 56, 512, 512, 3, 1, 1), "llvm" ) """ 3 multi-level tiling sketches No.0 : Conv2d multi-level tiling with fusion on position 0 No.1 : Conv2d multi-level tiling with fusion on position 1 No.2 : Conv2d multi-level tiling without fusion """ assert len(sketches) == 3 assert_is_not_tiled(sketches[0].stages[1]) assert_is_tiled(sketche
s[0].stages[3]) assert_compute_at_condition(sketches[0].stages[3], "iter") assert_compute_at_condition(sketches[0].stages[5], "inlined") assert_compute_at_condition(sketches[0].stages[7], "inlined") assert_compute_at_condition(sketches[0].stages[9], "inlined") assert_is_tiled(sketches[0].stages[10]) assert_is_not_tiled(sketches[1].stages[1]) assert_is_tiled(sketches[1].stages[3]) assert_compute_at_condition(sketches[1].stages[3], "iter") assert_compute_at_condition(sketches[1].stages[5], "inlined") assert_compute_at_condition(sketches[1].stages[7], "inlined") assert_compute_at_condition(sketches[1].stages[9], "inlined") assert_is_tiled(sketches[1].stages[10]) assert_is_not_tiled(sketches[2].stages[1]) assert_is_tiled(sketches[2].stages[3]) assert_compute_at_condition(sketches[2].stages[3], "root") assert_compute_at_condition(sketches[2].stages[5], "inlined") assert_compute_at_condition(sketches[2].stages[7], "inlined") assert_compute_at_condition(sketches[2].stages[9], "inlined") assert_is_not_tiled(sketches[2].stages[10]) def test_cpu_max_pool2d_sketch(): sketches = generate_sketches(max_pool2d_auto_scheduler_test, (1, 56, 56, 512, 1), "llvm") """ 1 default sketch """ assert len(sketches) == 1 assert len(sketches[0].transform_steps) == 0 def test_cpu_min_sketch(): sketches = generate_sketches(min_nm_auto_scheduler_test, (10, 1024), "llvm") """ 2 rfactor sketches + 1 default sketch No.0 : Rfactor with factor position 0 No.1 : Rfactor with factor position 1 No.2 : Default sketch """ assert len(sketches) == 3 assert_has_rfactor(sketches[0], 1) assert_has_rfactor(sketches[1], 1) assert sketches[0] != sketches[1] assert len(sketches[2].transform_steps) == 0 def test_cpu_softmax_sketch(): sketches = generate_sketches(softmax_nm_auto_scheduler_test, (1, 1024), "llvm") """ (2 rfactor sketches + 1 default sketch) * (2 rfactor sketch
es + 1 default sketch) """ assert len(sketches) == (3 * 3) for i in range(0, 3): for j in range(0, 3): sketch = sketches[i * 3 + j] if j in [0, 1]: assert_has_rfactor(sketch, 1) if i in [0, 1]: assert_has_rfactor(sketch, 4 if j in [0, 1] else 3) assert len(sketches[8].transform_steps) == 0 sketches = generate_sketches(softmax_abcd_auto_scheduler_test, (1, 12, 128, 128), "llvm") """ (2 rfactor sketches + 1 default sketch) * (2 rfactor sketches + 1 default sketch) """ assert len(sketches) == (3 * 3) for i in range(0, 3): for j in range(0, 3): sketch = sketches[i * 3 + j] if j in [0, 1]: assert_has_rfactor(sketch, 1) if i in [0, 1]: assert_has_rfactor(sketch, 4 if j in [0, 1] else 3) assert len(sketches[8].transform_steps) == 0 def test_cpu_conv2d_winograd_sketch(): sketches = generate_sketches( conv2d_winograd_nhwc_auto_scheduler_test, (1, 28, 28, 128, 128, 3, 1, 1), "llvm" ) """ 3 multi-level tiling sketches No.0 : Bgemm multi-level tiling No.1 : Bgemm multi-level tiling with cache write on position 0 No.2 : Bgemm multi-level tiling with cache write on position 1 """ assert len(sketches) == 3 assert_is_not_tiled(sketches[0].stages[1]) assert_is_not_tiled(sketches[0].stages[2]) assert_compute_at_condition(sketches[0].stages[3], "inlined") assert_is_tiled(sketches[0].stages[4]) assert_is_tiled(sketches[0].stages[6]) assert_compute_at_condition(sketches[0].stages[7], "inlined") assert_is_tiled(sketches[0].stages[8]) assert_is_not_tiled(sketches[0].stages[9]) assert_is_not_tiled(sketches[1].stages[1]) assert_is_not_tiled(sketches[1].stages[2]) assert_compute_at_condition(sketches[1].stages[3], "inlined") assert_is_tiled(sketches[1].stages[4]) assert_is_tiled(sketches[1].stages[6]) assert_has_cache_write(sketches[1], 6)
assert_compute_at_condition(sketches[1].stages[6], "iter") assert_compute_at_condition(sketches[1].stages[8], "inlined") assert_is_tiled(sketches[1].stages[9]) assert_is_not_tiled(sketches[1].stages[10]) assert_is_not_tiled(sketches[2].stages[1]) assert_is_not_tiled(sketches[2].stages[2]) assert_compute_at_condition(sketches[2].stages[3], "inlined") assert_is_tiled(sketches[2].stages[4]) assert_is_tiled(sketches[2].stages[6]) assert_has_cache_write(sketches[2], 6) assert_compute_at_condition(sketches[2].stages[6], "iter") assert_compute_at_condition(sketches[2].stages[8], "inlined") assert_is_tiled(sketches[2].stages[9]) assert_is_not_tiled(sketches[2].stages[10]) assert sketches[1] != sketches[2] def test_cpu_zero_rank_sketch(): sketches = generate_sketches(zero_rank_reduce_auto_scheduler_test, (128,), "llvm") """ 2 rfactor sketches + 1 multi-level tiling sketches """ assert len(sketches) == 3 def test_cpu_custom_sketch(): def meet_condition_func(search_policy, state, stage_id): return auto_scheduler.PreloadCustomSketchRule.APPLY_AND_SKIP_REST def apply_func(search_policy, state, stage_id): ret = [] state = auto_scheduler.loop_state.State(state, search_policy.search_task.compute_dag) C = state.stage_ops[2] ret.append([state.state_object, -1]) s1 = state.copy() i, _, _ = s1[C].iters s1.split(C, i, [8, 2]) ret.append([s1.state_object, -1]) return ret sketches = generate_sketches( matmul_auto_scheduler_test, (512, 512, 512), "llvm", init_search_callbacks=[ auto_scheduler.PreloadCustomSketchRule(meet_condition_func, apply_func) ], ) assert len(sketches) == 2 assert sketches[0].stages[2].iters[0].range.extent == 512 assert sketches[0].stages[2].iters[1].range.extent == 512 assert sketches[0].stages[2].iters[2].range.extent == 512 assert sketches[1].stages[2].iters[0].
range.extent == 32 assert sketches[1].stages[2].iters[1].range.extent == 8 assert sketches[1].stages[2].iters[2].range.extent == 2 assert sketches[1].stages[2].iters[3].range.extent == 512 assert sketches[1].stages[2].iters[4].range.extent == 512 @tvm.testing.requires_cuda def test_cuda_matmul_sketch(): sketches = generate_sketches(matmul_auto_scheduler_test, (512, 512, 512), "cuda") """ 1 multi-level tiling sketch """ assert len(sketches) == 1 assert_has_cache_read(sketches[0], 0) assert_compute_at_condition(sketches[0].stages[1], "iter") assert_has_cache_read(sketches[0], 2) assert_compute_at_condition(sketches[0].stages[3], "iter") assert_has_cache_write(sketches[0], 4) assert_is_tiled(sketches[0].stages[4]) assert_compute_at_condition(sketches[0].stages[4], "iter") assert_is_tiled(sketches[0].stages[5]) sketches = generate_sketches(matmul_auto_scheduler_test, (8, 8, 1024), "cuda") """ 1 cross thread reuction sketch + 1 multi-level tiling sketch """ assert len(sketches) == 2 assert_has_cross_thread_reduction(sketches[0], 2) assert_has_cache_read(sketches[1], 0) assert_compute_at_condition(sketches[1].stages[1], "iter") assert_has_cache_read(sketches[1], 2) assert_compute_at_condition(sketches[1].stages[3], "iter") assert_has_cache_write(sketches[1], 4) assert_is_tiled(sketches[1].stages[4]) assert_compute_at_condition(sketches[1].stages[4], "iter") assert_is_tiled(sketches[1].stages[5]) sketches = generate_sketches(double_matmul_auto_scheduler_test, (512,), "cuda") """ 1 multi-level tiling sketch for one matmul, so 1 x 1 = 1 sketch in total """ assert len(sketches) == 1 assert_compute_at_condition(sketches[0].stages[5], "root") assert_compute_at_condition(sketches[0].stages[6], "iter") @tvm.testing.requires_cuda def test_cuda_conv2d_bn_relu_sketch(): sketches = generate_sketches( conv2d_nchw_bn_relu_auto_scheduler_test, (1, 56, 56, 512, 512, 3, 1, 1), "cuda
" ) """ 1 multi-level tiling sketch """ assert len(sketches) == 1 assert_has_cache_read(sketches[0], 1) assert_compute_at_condition(sketches[0].stages[1], "inlined") assert_compute_at_condition(sketches[0].stages[2], "iter") assert_has_cache_read(sketches[0], 3) assert_compute_at_condition(sketches[0].stages[4], "iter") assert_is_tiled(sketches[0].stages[5]) assert_compute_at_condition(sketches[0].stages[5], "iter") assert_compute_at_condition(sketches[0].stages[7], "inlined") assert_compute_at_condition(sketches[0].stages[9], "inlined") assert_compute_at_condition(sketches[0].stages[11], "inlined") assert_is_tiled(sketches[0].stages[12]) @tvm.testing.requires_cuda def test_cuda_max_pool2d_sketch(): sketches = generate_sketches(max_pool2d_auto_scheduler_test, (1, 56, 56, 512, 0), "cuda") """ 1 default sketch """ assert len(sketches) == 1 assert len(sketches[0].transform_steps) == 0 @tvm.testing.requires_cuda def test_cuda_min_sketch(): sketches = generate_sketches(min_nm_auto_scheduler_test, (10, 1024), "cuda") """ 1 cross thread reuction sketch + 1 default sketch """ assert len(sketches) == 2 assert_has_cross_thread_reduction(sketches[0], 1) assert len(sketches[1].transform_steps) == 0 @tvm.testing.requires_cuda def test_cuda_softmax_sketch(): sketches = generate_sketches(softmax_nm_auto_scheduler_test, (2, 1024), "cuda") """ (1 cross thread reuction sketch + 1 default sketch) * (1 cross thread reuction sketch + 1 default sketch) """ assert len(sketches) == (2 * 2) assert_has_cross_thread_reduction(sketches[0], 1) assert_compute_at_condition(sketches[3].stages[2], "inlined") assert_has_cross_thread_reduction(sketches[0], 3) assert_compute_at_condition(sketches[3].stages[2], "inlined") assert_has_cross_thread_reduction(sketches[1], 3) assert_has_cross_thread_reduction(sketches[2], 1) assert_compute_at_condition(sketches[3].stages[2], "inlined")
assert_compute_at_condition(sketches[3].stages[2], "inlined") sketches = generate_sketches(softmax_abcd_auto_scheduler_test, (1, 12, 128, 128), "cuda") """ (1 cross thread reuction sketch + 1 default sketch) * (1 cross thread reuction sketch + 1 default sketch) """ assert len(sketches) == (2 * 2) assert_has_cross_thread_reduction(sketches[0], 1) assert_compute_at_condition(sketches[3].stages[2], "inlined") assert_has_cross_thread_reduction(sketches[0], 3) assert_compute_at_condition(sketches[3].stages[2], "inlined") assert_has_cross_thread_reduction(sketches[1], 3) assert_has_cross_thread_reduction(sketches[2], 1) assert_compute_at_condition(sketches[3].stages[2], "inlined") assert_compute_at_condition(sketches[3].stages[2], "inlined") @tvm.testing.requires_cuda def test_cuda_conv2d_winograd_sketch(): sketches = generate_sketches( conv2d_winograd_nhwc_auto_scheduler_test, (1, 28, 28, 128, 128, 3, 1, 1), "cuda" ) """ 1 multi-level tiling sketch """ assert len(sketches) == 1 assert_compute_at_condition(sketches[0].stages[1], "inlined") assert_compute_at_condition(sketches[0].stages[2], "iter") assert_compute_at_condition(sketches[0].stages[3], "inlined") assert_is_tiled(sketches[0].stages[4]) assert_has_cache_read(sketches[0], 4) assert_compute_at_condition(sketches[0].stages[5], "iter") assert_has_cache_read(sketches[0], 6) assert_compute_at_condition(sketches[0].stages[7], "iter") assert_is_tiled(sketches[0].stages[8]) assert_compute_at_condition(sketches[0].stages[8], "iter") assert_has_cache_write(sketches[0], 8) assert_compute_at_condition(sketches[0].stages[9], "root") assert_is_tiled(sketches[0].stages[11]) assert_is_not_tiled(sketches[0].stages[12]) @tvm.testing.requires_cuda def test_cuda_zero_rank_sketch(): sketches = generate_sketches(zero_rank_reduce_auto_scheduler_test, (128,), "cuda") """ 1 cross thread reuction sketch + 1 multi-level tiling sket
ch """ assert len(sketches) == 2 if __name__ == "__main__": tvm.testing.main()
""" Test task scheduler """
import tempfile
import multiprocessing
import numpy as np
import tvm
import tvm.testing from tvm
import auto_scheduler from tvm.testing.auto_scheduler
import matmul_auto_scheduler_test @tvm.testing.requires_llvm def test_task_scheduler_round_robin(): tasks = [] for n in [2, 4, 8]: tasks.append( auto_scheduler.SearchTask( func=matmul_auto_scheduler_test, args=(n, n, n), target="llvm" ) ) with tempfile.NamedTemporaryFile() as fp: log_file = fp.name num_trials_per_task = 2 measure_ctx = auto_scheduler.LocalRPCMeasureContext() tune_option = auto_scheduler.TuningOptions( num_measure_trials=num_trials_per_task * len(tasks), runner=measure_ctx.runner, num_measures_per_round=1, measure_callbacks=[auto_scheduler.RecordToFile(log_file)], ) task_scheduler = auto_scheduler.TaskScheduler(tasks, strategy="round-robin", callbacks=[]) task_scheduler.tune(tune_option, search_policy="sketch.random") counters = {} for task in tasks: counters[task.workload_key] = 0 for inp, _ in auto_scheduler.load_records(log_file): counters[inp.task.workload_key] += 1 for task in tasks: assert counters[task.workload_key] == num_trials_per_task task_scheduler = auto_scheduler.TaskScheduler( tasks, strategy="round-robin", load_log_file=log_file, callbacks=[] ) tune_option = auto_scheduler.TuningOptions( num_measure_trials=len(tasks), num_measures_per_round=1, ) task_scheduler.tune(tune_option, search_policy="sketch.random") del measure_ctx @tvm.testing.requires_llvm def task_scheduler_round_robin_spawn(): assert multiprocessing.get_start_method(False) == "spawn" test_task_scheduler_round_robin() @tvm.testing.requires_llvm def test_task_scheduler_round_robin_spawn(): ctx = multiprocessing.get_context("spawn") p = ctx.Process(target=task_scheduler_round_robin_spawn) p.start() p.join() @tvm.testing.requires_llvm def te
st_task_scheduler_gradient(): tasks = [] for n in [2, 4]: tasks.append( auto_scheduler.SearchTask( func=matmul_auto_scheduler_test, args=(n, n, n), target="llvm" ) ) def objective_func(costs): return 1e5 * costs[0] with tempfile.NamedTemporaryFile() as fp: log_file = fp.name n_trials = 5 measure_ctx = auto_scheduler.LocalRPCMeasureContext() tune_option = auto_scheduler.TuningOptions( num_measure_trials=n_trials, runner=measure_ctx.runner, num_measures_per_round=1, measure_callbacks=[auto_scheduler.RecordToFile(log_file)], ) task_scheduler = auto_scheduler.TaskScheduler( tasks, objective_func=objective_func, callbacks=[] ) task_scheduler.best_costs = np.array([1e2, 1e-8]) task_scheduler.tune(tune_option, search_policy="sketch.random") counters = {} for task in tasks: counters[task.workload_key] = 0 for inp, _ in auto_scheduler.load_records(log_file): counters[inp.task.workload_key] += 1 assert counters[tasks[0].workload_key] == n_trials - 1 assert counters[tasks[1].workload_key] == 1 del measure_ctx if __name__ == "__main__": test_task_scheduler_round_robin() test_task_scheduler_round_robin_spawn() test_task_scheduler_gradient()
"""Test database"""
import copy
import logging from tvm.autotvm
import database from tvm.autotvm.record
import encode, MeasureResult from tvm.testing.autotvm
import get_sample_records def test_save_load(): logging.info("test basic db load/save ...") records = get_sample_records(3) inp1, res1 = records[0] inp2, res2 = records[1] inp3, _ = records[2] _db = database.DummyDatabase() _db.flush() _db.save(inp1, res1) _db.save(inp2, res2) load1 = _db.load(inp1) load2 = _db.load(inp2) load3 = _db.load(inp3) assert load1 == res1 assert load2 == res2 assert load3 is None assert load1 != load2 TRIAL_LIMIT = 2 def test_db_hash(): logging.info("test db hash check ...") inp1, res1 = get_sample_records(1)[0] inp2 = copy.deepcopy(inp1) inp1.config.code_hash = "cafecafe" inp2.config.code_hash = "dbffdbff" res2l = list(tuple(res1)) res2l[-1] = -1 res2 = MeasureResult(*res2l) _db = database.DummyDatabase() _db.flush() _db.save(inp1, res1, extend=True) _db.save(inp2, res2, extend=True) load1 = _db.load(inp1) load2 = _db.load(inp2) assert load1 != load2 assert load1.timestamp != -1 assert load2.timestamp == -1 def test_db_latest_all(): logging.info("test db load w/ multiple results ...") inp1, res1 = get_sample_records(1)[0] lis1 = list(tuple(res1)) lis2 = list(tuple(res1)) lis3 = list(tuple(res1)) lis1[-1] = 0.0 lis2[-1] = 1.1 lis3[-1] = 9999.9999 res1 = MeasureResult(*lis1) res2 = MeasureResult(*lis2) res3 = MeasureResult(*lis3) _db = database.DummyDatabase() _db.flush() _db.save(inp1, res1, extend=True) load1 = _db.load(inp1) assert load1.timestamp == 0.0 _db.save(inp1, res2, extend=True) load2 = _db.load(inp1) assert load2.timestamp == 1.1 _db.save(inp1, res3, extend=True) load3 = _db.load(inp1) assert load3.timestamp == 9999.9999 load4 = _db.load(inp1, get_all=True) assert encode(inp1, load4[0]) == encode(inp1, res1) assert encode(inp1, load4[1]) == encode(inp1, res2) assert encode(inp1, load4[2]) == encode(inp1, res3) def te
st_db_filter(): logging.info("test db filter ...") records = get_sample_records(5) _db = database.DummyDatabase() _db.flush() for inp, result in records: _db.save(inp, result) records = _db.filter(lambda inp, ress: any(r.costs[0] <= 2 for r in ress)) assert len(records) == 2 if __name__ == "__main__": logging.basicConfig(level=logging.INFO) test_save_load() test_db_hash() test_db_latest_all() test_db_filter()
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Test dispatcher. The dispatcher can choose which template to use according to the parameters of workload""" from tvm import autotvm @autotvm.template("testing/dispatch_fallback") def simple_template(a, b): cfg = autotvm.get_config() assert cfg.is_fallback def test_fallback(): simple_template(2, 3) if __name__ == "__main__": test_fallback()
"""Test feature extraction"""
import numpy as np
import tvm from tvm
import te from tvm.autotvm
import feature def test_iter_feature_gemm(): N = 128 k = te.reduce_axis((0, N), "k") A = te.placeholder((N, N), name="A") B = te.placeholder((N, N), name="B") C = te.compute(A.shape, lambda y, x: te.sum(A[y, k] * B[k, x], axis=k), name="C") s = te.create_schedule(C.op) feas = feature.get_itervar_feature(s, [A, B, C], take_log=False) expected = [ { "_attr_": [128, 1, 128, 2097152, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], "A_0": [128, -1, 16384, 128, 0, 0], "B_0": [0, -1, 16384, 128, 0, 0], "C_0": [128, -1, 16384, 128, 0, 0], "C_1": [128, -1, 16384, 128, 0, 0], }, { "_attr_": [128, 2, 16384, 16384, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], "A_0": [0, -1, 128, 128, 0, 0], "B_0": [1, -1, 16384, 1, 0, 0], "C_0": [1, -1, 128, 128, 0, 0], "C_1": [1, -1, 128, 128, 0, 0], }, { "_attr_": [128, 3, 2097152, 128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], "A_0": [1, -1, 128, 1, 0, 0], "B_0": [128, -1, 128, 1, 0, 0], "C_1": [0, -1, 1, 128, 0, 0], "C_2": [0, -1, 1, 128, 0, 0], }, ] for ans, row in zip(expected, feas): for pair in row: if pair[0] not in ans: continue assert ans[pair[0]] == pair[1:], "%s: %s vs %s" % (pair[0], ans[pair[0]], pair[1:]) def test_curve_feature_gemm(): N = 128 k = te.reduce_axis((0, N), "k") A = te.placeholder((N, N), name="A") B = te.placeholder((N, N), name="B") C = te.compute(A.shape, lambda y, x: te.sum(A[y, k] * B[k, x], axis=k), name="C") s = te.create_schedule(C.op) feas = feature.get_buffer_curve_sample_flatten(s, [A, B, C], sample_n=30) assert len(feas) == 30 * 3 * 4 * 2 def test_feature_shape(): """test the dimensions of flatten feature are the same""" N = 1024 n_sample = 100 def get_gemm_feature(target): k = te.reduce_axis((0, N
), "k") A = te.placeholder((N, N), name="A") B = te.placeholder((N, N), name="B") C = te.compute(A.shape, lambda y, x: te.sum(A[y, k] * B[k, x], axis=k), name="C") s = te.create_schedule(C.op) y, x = s[C].op.axis axes = list(s[C].tile(y, x, 8, 8)) + [k] perm = np.random.permutation(5) axes = [axes[x] for x in perm] s[C].reorder(*axes) if "gpu" in target.keys: pick = [] for i in range(len(perm)): if perm[i] != 4: pick.append(axes[i]) s[C].bind(pick[0], te.thread_axis("blockIdx.x")) s[C].bind(pick[1], te.thread_axis("vthread")) s[C].bind(pick[2], te.thread_axis("threadIdx.y")) with target: feas = feature.get_itervar_feature(s, [A, B, C]) feas = feature.flatten_itervar_feature(feas) return feas targets = [ tvm.target.cuda(), tvm.target.mali(), tvm.target.arm_cpu(), ] for target in targets: dim = len(get_gemm_feature(target)) for i in range(n_sample): assert dim == len(get_gemm_feature(target)), ( "dimensions of feature do not match" " for different configurations" ) if __name__ == "__main__": test_iter_feature_gemm() test_curve_feature_gemm() test_feature_shape()
"""Test flop calculation"""
import tvm from tvm
import te
import numpy as np from tvm.autotvm.task.task
import compute_flop def random_dtypes(): """Return pair of (input, accumulator) dtypes""" candidates = [("float32", "float32"), ("float16", "float32"), ("int8", "int32")] return candidates[np.random.choice(len(candidates))] def test_conv(): for i in range(5): N, H, W, CO, CI, KH, KW = [np.random.randint(10, 32) for _ in range(7)] (input_dtype, acc_dtype) = random_dtypes() D = te.placeholder((N, CI, H, W), dtype=input_dtype) K = te.placeholder((CO, CI, KH, KW), dtype=input_dtype) KH = min(H, KH) KW = min(W, KW) ci = te.reduce_axis((0, CI)) kh = te.reduce_axis((0, KH)) kw = te.reduce_axis((0, KW)) OH = (H - KH) + 1 OW = (W - KW) + 1 C = te.compute( (N, CO, OH, OW), lambda n, co, h, w: te.sum( D[n][ci][h][w].astype(acc_dtype) * K[co][ci][h][w].astype(acc_dtype), axis=[ci, kh, kw], ), ) s = te.create_schedule([C.op]) assert compute_flop(s) == 2 * N * CO * OH * OW * CI * KH * KW def test_pack_gemm(): for i in range(5): N, L, M = [np.random.randint(10, 128) * 4 for _ in range(3)] (input_dtype, acc_dtype) = random_dtypes() A = te.placeholder((N, L), dtype=input_dtype) B = te.placeholder((M, L), dtype=input_dtype) k = te.reduce_axis((0, L)) bn = 4 idxd = tvm.tir.indexdiv idxm = tvm.tir.indexmod A_pack = te.compute((N B_pack = te.compute((M C_pack = te.compute( (N lambda i, j, ii, jj: te.sum( A_pack[i, k, ii].astype(acc_dtype) * B_pack[j, k, jj].astype(acc_dtype), axis=[k] ), ) C = te.compute( (N, M), lambda i, j: C_pack[idxd(i, bn)][idxd(j, bn)][idxm(i, bn)][idxm(j, bn)] ) s = te.create_schedule([C.op]) assert compute_flop(s) == 2 * N * L * M def test_outer_dot(): for i in range(5): N, M = [np.ran
dom.randint(10, 128) * 4 for _ in range(2)] (input_dtype, acc_dtype) = random_dtypes() A = te.placeholder((N,), dtype=input_dtype) B = te.placeholder((M,), dtype=input_dtype) C = te.compute((N, M), lambda i, j: A[i].astype(acc_dtype) * B[j].astype(acc_dtype)) s = te.create_schedule([C.op]) assert compute_flop(s) == N * M def test_max_pool(): for i in range(5): N, H, W, CO, CI, KH, KW = [np.random.randint(10, 32) for _ in range(7)] (input_dtype, _) = random_dtypes() D = te.placeholder((N, CI, H, W), dtype=input_dtype) KH = min(H, KH) KW = min(W, KW) kh = te.reduce_axis((0, KH)) kw = te.reduce_axis((0, KW)) OH = (H - KH) + 1 OW = (W - KW) + 1 C = te.compute( (N, CO, OH, OW), lambda n, co, h, w: tvm.te.max(D[n][co][h + kh][w + kw], axis=[kh, kw]) ) s = te.create_schedule([C.op]) assert compute_flop(s) == N * CO * OH * OW * KH * KW def test_average_pool(): for i in range(5): N, H, W, CO, CI, KH, KW = [np.random.randint(10, 32) for _ in range(7)] (input_dtype, acc_dtype) = random_dtypes() D = te.placeholder((N, CI, H, W), dtype=input_dtype) KH = min(H, KH) KW = min(W, KW) kh = te.reduce_axis((0, KH)) kw = te.reduce_axis((0, KW)) OH = (H - KH) + 1 OW = (W - KW) + 1 C = te.compute( (N, CO, OH, OW), lambda n, co, h, w: te.sum( te.div(D[n][co][h + kh][w + kw].astype(acc_dtype), (KW * KH)), axis=[kh, kw] ), ) s = te.create_schedule([C.op]) assert compute_flop(s) == 2 * N * CO * OH * OW * KH * KW def test_move(): """No float number operation in simple move. So the estimator should raise an error""" N = 1024 A = te.placeholder((N,)) C = te.compute((N,), lambda i: A[i]) s = te.create_schedule([C.op]) try: compute_flop(s) assert False excep
t RuntimeError: pass if __name__ == "__main__": test_conv() test_pack_gemm() test_outer_dot() test_move()
"""Test genetic algorithm tuner""" from tvm.testing.autotvm
import DummyRunner, get_sample_task from tvm
import autotvm def test_ga_tuner(): """Test GATuner""" task, _ = get_sample_task() tuner = autotvm.tuner.GATuner(task, pop_size=32) valid_indexes = list( filter(lambda idx: tuner.space.is_index_valid(idx), range(tuner.space.range_length)) ) assert tuner.visited.issubset(valid_indexes) assert tuner.pop_size == len(tuner.visited) == len(tuner.genes) assert len(tuner.space) == 64 measure_option = autotvm.measure_option(builder=autotvm.LocalBuilder(), runner=DummyRunner()) tuner.tune(n_trial=len(tuner.space), measure_option=measure_option) assert tuner.visited.issubset(valid_indexes) task, _ = get_sample_task() tuner = autotvm.tuner.GATuner(task, pop_size=100) valid_indexes = list( filter(lambda idx: tuner.space.is_index_valid(idx), range(tuner.space.range_length)) ) assert tuner.visited.issubset(valid_indexes) assert tuner.pop_size == len(tuner.visited) == len(tuner.genes) assert len(tuner.space) == 64 measure_option = autotvm.measure_option(builder=autotvm.LocalBuilder(), runner=DummyRunner()) tuner.tune(n_trial=len(tuner.space), measure_option=measure_option) assert tuner.visited.issubset(valid_indexes) task, _ = get_sample_task() task.config_space.multi_filter( filter=lambda entity: 8 <= (entity["tile_x"].size[1] * entity["tile_y"].size[1]) < 1024 ) tuner = autotvm.tuner.GATuner(task, pop_size=32) valid_indexes = list( filter(lambda idx: tuner.space.is_index_valid(idx), range(tuner.space.range_length)) ) assert tuner.visited.issubset(valid_indexes) assert tuner.pop_size == len(tuner.visited) == len(tuner.genes) assert len(tuner.space) == 43 measure_option = autotvm.measure_option(builder=autotvm.LocalBuilder(), runner=DummyRunner()) tuner.tune(n_trial=len(tuner.space), measure_option=measure_option) assert tuner.visited.issubset(valid_indexes) task, _ = get_sample_task() task.config_space.multi_filter( filter
=lambda entity: 8 <= (entity["tile_x"].size[1] * entity["tile_y"].size[1]) < 1024 ) tuner = autotvm.tuner.GATuner(task, pop_size=100) valid_indexes = list( filter(lambda idx: tuner.space.is_index_valid(idx), range(tuner.space.range_length)) ) assert tuner.visited.issubset(valid_indexes) assert tuner.pop_size == len(tuner.visited) == len(tuner.genes) assert len(tuner.space) == 43 measure_option = autotvm.measure_option(builder=autotvm.LocalBuilder(), runner=DummyRunner()) tuner.tune(n_trial=len(tuner.space), measure_option=measure_option) assert tuner.visited.issubset(valid_indexes) if __name__ == "__main__": test_ga_tuner()
import os
import copy
import numpy as np
import tvm from tvm
import te
import tvm.relay.testing from tvm
import autotvm from tvm
import relay from tvm.autotvm.task
import ConfigEntity from tvm.autotvm.measure
import MeasureResult, MeasureInput from tvm.autotvm.graph_tuner
import DPTuner, PBQPTuner def _create_args(dshape, kshape, strides, padding, dilation, layout, out_layout, dtype, out_dtype): data = tvm.te.placeholder(dshape, dtype=dtype) kernel = tvm.te.placeholder(kshape, dtype=dtype) return autotvm.task.serialize_args( [data, kernel, strides, padding, dilation, layout, layout, out_dtype] ) def _create_data(target, dshape, dtype, layout): data = relay.var("data", shape=dshape, dtype=dtype) w0 = relay.var("w0_weight") conv0 = relay.nn.conv2d(data, w0, channels=16, kernel_size=(3, 3), padding=(1, 1)) w1 = relay.var("w1_weight") conv1 = relay.nn.conv2d(conv0, w1, channels=32, kernel_size=(1, 1)) w2 = relay.var("w2_weight") conv2 = relay.nn.conv2d(conv1, w2, channels=32, kernel_size=(3, 3), padding=(1, 1)) out = relay.add(conv1, conv2) net = relay.Function(relay.analysis.free_vars(out), out) mod, params = relay.testing.create_workload(net) tasks = autotvm.task.extract_from_program( mod["main"], target=target, params=params, ops=(relay.op.get("nn.conv2d"),) ) new_args = [ _create_args( (1, 3, 8, 8), (16, 3, 3, 3), (1, 1), (1, 1, 1, 1), (1, 1), layout, layout, dtype, dtype ), _create_args( (1, 16, 8, 8), (32, 16, 1, 1), (1, 1), (0, 0, 0, 0), (1, 1), layout, layout, dtype, dtype, ), _create_args( (1, 32, 8, 8), (32, 32, 3, 3), (1, 1), (1, 1, 1, 1), (1, 1), layout, layout, dtype, dtype, ), ] costs = [0.04, 0.012, 0.03] config_list = [] cfg_dict = { "index": -1, "code_hash": None, "entity": [ ["tile_ic", "sp", [3, 1]], ["tile_oc", "sp", [4, 4]], ["tile_ow", "sp", [4, 2]], ["unroll_kw", "ot", True], ], } config_list.append(Co
nfigEntity.from_json_dict(cfg_dict)) cfg_dict = { "index": -1, "code_hash": None, "entity": [ ["tile_ic", "sp", [2, 8]], ["tile_oc", "sp", [1, 32]], ["tile_oh", "ot", 1], ["tile_ow", "sp", [4, 2]], ], } config_list.append(ConfigEntity.from_json_dict(cfg_dict)) cfg_dict = { "index": -1, "code_hash": None, "entity": [ ["tile_ic", "sp", [8, 4]], ["tile_oc", "sp", [4, 8]], ["tile_ow", "sp", [2, 4]], ["unroll_kw", "ot", False], ], } config_list.append(ConfigEntity.from_json_dict(cfg_dict)) records = [] for args, cost, config, task in zip(new_args, costs, config_list, tasks): task.args = args ms_input = MeasureInput(target=target, task=task, config=config) ms_output = MeasureResult(costs=(cost,), error_no=0, all_cost=-1, timestamp=-1) records.append((ms_input, ms_output)) ltf_records = [] ltf_arg = [te.placeholder((1, 64, 16, 16, 8), dtype=dtype), "NCHW8c", "NCHW512c"] ltf_task = autotvm.task.create("layout_transform", ltf_arg, target) ms_input = MeasureInput(target=target, task=ltf_task, config=None) ms_output = MeasureResult(costs=(1.91224744e-05,), error_no=0, all_cost=-1, timestamp=-1) ltf_records.append((ms_input, ms_output)) ltf_keys = [] ltf_arg = [te.placeholder((1, 4, 8, 8, 4), dtype=dtype), "NCHW4c", "NCHW8c"] ltf_wkl = autotvm.task.args_to_workload(ltf_arg, "layout_transform") ltf_keys.append(ltf_wkl) ltf_arg = [te.placeholder((1, 1, 8, 8, 32), dtype=dtype), "NCHW32c", "NCHW4c"] ltf_wkl = autotvm.task.args_to_workload(ltf_arg, "layout_transform") ltf_keys.append(ltf_wkl) ltf_arg = [te.placeholder((1, 4, 8, 8, 8), dtype=dtype), "NCHW8c", "NCHW32c"] ltf_wkl = autotvm.task.args_to_workload(ltf_arg, "layout_transform") ltf_keys.append(ltf_wkl) return net, records, ltf_records, ltf_keys, tasks def test_graph_tuner_layout
_transform(): log_file = "%s/test_tuner.log" % (os.getcwd()) target = "llvm" dshape = (1, 3, 8, 8) dtype = "float32" layout = "NCHW" conv2d = relay.op.get("nn.conv2d") target_ops = [conv2d] g, records, ltf_records, ltf_keys, _ = _create_data(target, dshape, dtype, layout) executor = DPTuner(g, {"data": dshape}, records, target_ops, target=target, log_file=log_file) executor.benchmark_layout_transform(layout_records=ltf_records, infer_layout=True) out = executor._layout_transform_perf_records num_flops = 0 total_time = 0 for record in ltf_records: ltf_wkl = record[0].task.workload input_shape = ltf_wkl[1][1] flops = np.prod(input_shape) num_flops += flops total_time += record[1].costs[0] avg_time = total_time / num_flops for ltf_workload in out: input_shape = ltf_workload[1][1] flops = 1 for i in input_shape: flops *= i expected_time = flops * avg_time out_time = out[ltf_workload][1].costs[0] assert ( expected_time == out_time ), "Inferred layout transformation time mismatch for %s: " "expecting %f but got %f" % ( str(ltf_workload), expected_time, out_time, ) def test_graph_tuner_layout_transform_runner(): log_file = "%s/test_tuner.log" % (os.getcwd()) target = "llvm" dshape = (1, 3, 8, 8) dtype = "float32" layout = "NCHW" conv2d = relay.op.get("nn.conv2d") target_ops = [conv2d] g, records, ltf_records, ltf_keys, _ = _create_data(target, dshape, dtype, layout) executor = DPTuner(g, {"data": dshape}, records, target_ops, target=target, log_file=log_file) runner = autotvm.LocalRunner(number=100, repeat=1, timeout=10) executor.benchmark_layout_transform( layout_records=ltf_records, infer_layout=True, runner=runner ) out = executor._layout_transform_perf_records num_flops = 0 total_time = 0 for record in ltf_records:
ltf_wkl = record[0].task.workload input_shape = ltf_wkl[1][1] flops = np.prod(input_shape) num_flops += flops total_time += record[1].costs[0] avg_time = total_time / num_flops for ltf_workload in out: input_shape = ltf_workload[1][1] flops = 1 for i in input_shape: flops *= i expected_time = flops * avg_time out_time = out[ltf_workload][1].costs[0] assert ( expected_time == out_time ), "Inferred layout transformation time mismatch for %s: " "expecting %f but got %f" % ( str(ltf_workload), expected_time, out_time, ) def test_DPTuner_run(): log_file = "%s/test_tuner.log" % (os.getcwd()) target = "llvm" dtype = "float32" layout = "NCHW" dshape = (1, 3, 8, 8) conv2d = relay.op.get("nn.conv2d") target_ops = [conv2d] g, records, ltf_records, ltf_keys, tasks = _create_data(target, dshape, dtype, layout) mod = tvm.IRModule() mod["main"] = g costs = [0.02, 0.02, 0.045] config_list = [] cfg_dict = { "index": -1, "code_hash": None, "entity": [ ["tile_ic", "sp", [1, 3]], ["tile_oc", "sp", [2, 8]], ["tile_ow", "sp", [4, 2]], ["unroll_kw", "ot", True], ], } config_list.append(ConfigEntity.from_json_dict(cfg_dict)) cfg_dict = { "index": -1, "code_hash": None, "entity": [ ["tile_ic", "sp", [4, 4]], ["tile_oc", "sp", [2, 16]], ["tile_oh", "ot", 1], ["tile_ow", "sp", [4, 2]], ], } config_list.append(ConfigEntity.from_json_dict(cfg_dict)) cfg_dict = { "index": -1, "code_hash": None, "entity": [ ["tile_ic", "sp", [16, 2]], ["tile_oc", "sp", [8, 4]], ["tile_ow", "sp", [2, 4]], ["unroll_kw", "ot", False], ], } config_list.append(ConfigEntity.
from_json_dict(cfg_dict)) for cost, config, task in zip(costs, config_list, tasks): ms_input = MeasureInput(target=target, task=task, config=config) ms_output = MeasureResult(costs=(cost,), error_no=0, all_cost=-1, timestamp=-1) records.append((ms_input, ms_output)) executor = DPTuner(mod, {"data": dshape}, records, target_ops, target, log_file=log_file) executor.benchmark_layout_transform(layout_records=ltf_records, infer_layout=True) executor.run() out = [record[0].config for record in executor.get_optimal_records()] expected_out = [records[3][0].config, records[1][0].config, records[2][0].config] assert expected_out == out, "Output mismatch: expecting %s but got %s" % ( str(expected_out), str(out), ) assert os.path.isfile(log_file), "No log file with name %s exists." % log_file def test_PBQPTuner_run(): target = "llvm" dtype = "float32" layout = "NCHW" dshape = (1, 3, 8, 8) conv2d = relay.op.get("nn.conv2d") target_ops = [conv2d] g, records, ltf_records, ltf_keys, tasks = _create_data(target, dshape, dtype, layout) costs = [0.02, 0.02, 0.045] config_list = [] cfg_dict = { "index": -1, "code_hash": None, "entity": [ ["tile_ic", "sp", [1, 3]], ["tile_oc", "sp", [2, 8]], ["tile_ow", "sp", [4, 2]], ["unroll_kw", "ot", True], ], } config_list.append(ConfigEntity.from_json_dict(cfg_dict)) cfg_dict = { "index": -1, "code_hash": None, "entity": [ ["tile_ic", "sp", [4, 4]], ["tile_oc", "sp", [2, 16]], ["tile_oh", "ot", 1], ["tile_ow", "sp", [4, 2]], ], } config_list.append(ConfigEntity.from_json_dict(cfg_dict)) cfg_dict = { "index": -1, "code_hash": None, "entity": [ ["tile_ic", "sp", [16, 2]], ["tile_oc", "sp", [8, 4]], ["tile_ow", "sp", [2, 4]], ["
unroll_kw", "ot", False], ], } config_list.append(ConfigEntity.from_json_dict(cfg_dict)) for cost, config, task in zip(costs, config_list, tasks): ms_input = MeasureInput(target=target, task=task, config=config) ms_output = MeasureResult(costs=(cost,), error_no=0, all_cost=-1, timestamp=-1) records.append((ms_input, ms_output)) executor = PBQPTuner(g, {"data": dshape}, records, target_ops, target) executor.benchmark_layout_transform(layout_records=ltf_records, infer_layout=True) executor.run() out = [record[0].config for record in executor.get_optimal_records()] expected_out = [records[3][0].config, records[1][0].config, records[2][0].config] assert expected_out == out, "Output mismatch: expecting %s but got %s" % ( str(expected_out), str(out), ) def test_many_sub_graphs(): target = "llvm" dtype = "float32" dshape = (1, 8, 8, 3) layout = "NCHW" conv2d = relay.op.get("nn.conv2d") target_ops = [conv2d] data = relay.var("data", shape=dshape, dtype=dtype) t0 = relay.transpose(data, (0, 3, 1, 2)) w0 = relay.var("w0_weight") conv0 = relay.nn.conv2d(t0, w0, channels=16, kernel_size=(3, 3), padding=(1, 1)) t1 = relay.transpose(conv0, (0, 2, 3, 1)) w1 = relay.var("w1_weight") t2 = relay.transpose(t1, (0, 3, 1, 2)) conv1 = relay.nn.conv2d(t2, w1, channels=32, kernel_size=(1, 1)) t3 = relay.transpose(conv1, (0, 2, 3, 1)) w2 = relay.var("w2_weight") t4 = relay.transpose(t3, (0, 3, 1, 2)) conv2 = relay.nn.conv2d(t4, w2, channels=32, kernel_size=(3, 3), padding=(1, 1)) t5 = relay.transpose(conv2, (0, 2, 3, 1)) out = relay.add(t3, t5) net = relay.Function(relay.analysis.free_vars(out), out) net, params = relay.testing.create_workload(net) tasks = autotvm.task.extract_from_program( net["main"], target=target, params=params, ops=(conv2d,) ) new_args = [ _create_args( (1, 3, 8, 8), (16, 3, 3, 3), (1, 1), (1, 1, 1,
1), (1, 1), layout, layout, dtype, dtype ), _create_args( (1, 16, 8, 8), (32, 16, 1, 1), (1, 1), (0, 0, 0, 0), (1, 1), layout, layout, dtype, dtype, ), _create_args( (1, 32, 8, 8), (32, 32, 3, 3), (1, 1), (1, 1, 1, 1), (1, 1), layout, layout, dtype, dtype, ), ] costs = [0.04, 0.012, 0.03, 0.02, 0.02, 0.045] config_list = [] cfg_dict = { "index": -1, "code_hash": None, "entity": [ ["tile_ic", "sp", [3, 1]], ["tile_oc", "sp", [4, 4]], ["tile_ow", "sp", [4, 2]], ["unroll_kw", "ot", True], ], } config_list.append(ConfigEntity.from_json_dict(cfg_dict)) cfg_dict = { "index": -1, "code_hash": None, "entity": [ ["tile_ic", "sp", [2, 8]], ["tile_oc", "sp", [1, 32]], ["tile_oh", "ot", 1], ["tile_ow", "sp", [4, 2]], ], } config_list.append(ConfigEntity.from_json_dict(cfg_dict)) cfg_dict = { "index": -1, "code_hash": None, "entity": [ ["tile_ic", "sp", [8, 4]], ["tile_oc", "sp", [4, 8]], ["tile_ow", "sp", [2, 4]], ["unroll_kw", "ot", False], ], } config_list.append(ConfigEntity.from_json_dict(cfg_dict)) cfg_dict = { "index": -1, "code_hash": None, "entity": [ ["tile_ic", "sp", [1, 3]], ["tile_oc", "sp", [2, 8]], ["tile_ow", "sp", [4, 2]], ["unroll_kw", "ot", True], ], } config_list.append(ConfigEntity.from_json_dict(cfg_dict)) cfg_dict = { "index": -1, "code_hash": None, "entity": [ ["tile_ic", "sp", [4, 4]], ["tile_oc", "sp", [2, 16]],