text
stringlengths
1
2.05k
import tvm.testing VERIFY = True def intrin_wmma_load_matrix(shape, scope): n, m, l = shape if scope == "wmma.matrix_a": row, col = n, l elif scope == "wmma.matrix_b": row, col = l, m A = te.placeholder((row, col), name="A", dtype="float16") BA = tvm.tir.decl_buffer( A.shape, A.dtype, scope="shared", data_alignment=32, offset_factor=row * col ) C = te.compute((row, col), lambda i, j: A[i, j], name="C") BC = tvm.tir.decl_buffer( C.shape, C.dtype, scope=scope, data_alignment=32, offset_factor=row * col ) def intrin_func(ins, outs): ib = tvm.tir.ir_builder.create() BA = ins[0] BC = outs[0] ib.emit( tvm.tir.call_intrin( "handle", "tir.tvm_load_matrix_sync", BC.data, n, m, l, BC.elem_offset BA.access_ptr("r"), col, "row_major", ) ) return ib.get() return te.decl_tensor_intrin(C.op, intrin_func, binds={A: BA, C: BC}) def intrin_wmma_gemm(shape): n, m, l = shape A = te.placeholder((n, l), name="A", dtype="float16") B = te.placeholder((l, m), name="B", dtype="float16") k = te.reduce_axis((0, l), name="k") C = te.compute( (n, m), lambda ii, jj: te.sum(A[ii, k].astype("float") * B[k, jj].astype("float"), axis=k), name="C", ) BA = tvm.tir.decl_buffer( A.shape, A.dtype, name="BA", scope="wmma.matrix_a", data_alignment=32, offset_factor=n * l ) BB = tvm.tir.decl_buffer( B.shape, B.dtype, name="BB", scope="wmma.matrix_b", data_alignment=32, offset_factor=l * m ) BC = tvm.tir.decl_buffer( C.shape, C.dtype, name="BC", scope="wmma.accumulator", data_alignment=32, offset_factor=n * m, ) def intrin_func(ins, outs): BA, BB = ins (BC,) = outs def init():
ib = tvm.tir.ir_builder.create() ib.emit( tvm.tir.call_intrin( "handle", "tir.tvm_fill_fragment", BC.data, n, m, l, BC.elem_offset 0.0, ) ) return ib.get() def update(): ib = tvm.tir.ir_builder.create() ib.emit( tvm.tir.call_intrin( "handle", "tir.tvm_mma_sync", BC.data, BC.elem_offset BA.data, BA.elem_offset BB.data, BB.elem_offset BC.data, BC.elem_offset ) ) return ib.get() return update(), init(), update() return te.decl_tensor_intrin(C.op, intrin_func, binds={A: BA, B: BB, C: BC}) def intrin_wmma_store_matrix(shape): n, m, l = shape A = te.placeholder((n, m), name="A", dtype="float32") BA = tvm.tir.decl_buffer( A.shape, A.dtype, scope="wmma.accumulator", data_alignment=32, offset_factor=n * m ) C = te.compute((n, m), lambda i, j: A[i, j], name="C") BC = tvm.tir.decl_buffer( C.shape, C.dtype, scope="global", data_alignment=32, offset_factor=n * m ) def intrin_func(ins, outs): ib = tvm.tir.ir_builder.create() BA = ins[0] BC = outs[0] ib.emit( tvm.tir.call_intrin( "handle", "tir.tvm_store_matrix_sync", BA.data, n, m, l, BA.elem_offset BC.access_ptr("w"), m, "row_major", ) ) return ib.get() return te.decl_tensor_intrin(C.op, intrin_func, binds={A: BA, C: BC}) @tvm.testing.requires_tensorcore de
f test_tensor_core_batch_matmal(): batch_size = 4 n = 512 m, l = n, n assert n % 32 == 0 assert m % 8 == 0 assert l % 16 == 0 nn, mm, ll = n A = te.placeholder((batch_size, nn, ll, 32, 16), name="A", dtype="float16") B = te.placeholder((batch_size, ll, mm, 16, 8), name="B", dtype="float16") k1 = te.reduce_axis((0, ll), name="k1") k2 = te.reduce_axis((0, 16), name="k2") C = te.compute( (batch_size, nn, mm, 32, 8), lambda b, i, j, ii, jj: te.sum( A[b, i, k1, ii, k2].astype("float") * B[b, k1, j, k2, jj].astype("float"), axis=[k1, k2] ), name="Fragment_C", ) s = te.create_schedule(C.op) warp_size = 32 kernel_size = 16 block_row_warps = 2 block_col_warps = 4 warp_row_tiles = 4 warp_col_tiles = 2 chunk = 4 block_x = te.thread_axis("blockIdx.x") block_y = te.thread_axis("blockIdx.y") block_z = te.thread_axis("blockIdx.z") thread_x = te.thread_axis("threadIdx.x") thread_y = te.thread_axis("threadIdx.y") thread_z = te.thread_axis("threadIdx.z") AS = s.cache_read(A, "shared", [C]) BS = s.cache_read(B, "shared", [C]) AF = s.cache_read(AS, "wmma.matrix_a", [C]) BF = s.cache_read(BS, "wmma.matrix_b", [C]) CF = s.cache_write(C, "wmma.accumulator") b, i, j, kernel_i, kernel_j = s[C].op.axis i, ii = s[C].split(i, factor=warp_row_tiles) block_i, i = s[C].split(i, factor=block_row_warps) j, jj = s[C].split(j, factor=warp_col_tiles) block_j, j = s[C].split(j, factor=block_col_warps) s[C].reorder(block_i, block_j, i, j, ii, jj, kernel_i, kernel_j) s[C].bind(b, block_z) s[C].bind(block_i, block_x) s[C].bind(block_j, block_y) s[C].bind(i, thread_y) s[C].bind(j, thread_z) s[CF].compute_at(s[C], j) b, warp_i, warp_j, _i, _j = s[CF].op.axis k, _k = CF.op.reduce_axis ko, ki = s[CF].split(k, factor=chunk) s[CF].reorder(ko, ki, warp_i, warp_j, _i, _j, _k) s[AF].compute_at(s[CF], ki) s[BF].comp
ute_at(s[CF], ki) s[AS].compute_at(s[CF], ko) b, xo, yo, xi, yi = AS.op.axis tx, xo = s[AS].split(xo, nparts=block_row_warps) ty, yo = s[AS].split(yo, nparts=block_col_warps) t = s[AS].fuse(xi, yi) to, ti = s[AS].split(t, nparts=warp_size) s[AS].bind(tx, thread_y) s[AS].bind(ty, thread_z) s[AS].bind(to, thread_x) s[BS].compute_at(s[CF], ko) b, xo, yo, xi, yi = BS.op.axis tx, xo = s[BS].split(xo, nparts=block_row_warps) ty, yo = s[BS].split(yo, nparts=block_col_warps) t = s[BS].fuse(xi, yi) to, ti = s[BS].split(t, nparts=warp_size) s[BS].bind(tx, thread_y) s[BS].bind(ty, thread_z) s[BS].bind(to, thread_x) s[AF].tensorize(AF.op.axis[-2], intrin_wmma_load_matrix((32, 8, 16), "wmma.matrix_a")) s[BF].tensorize(BF.op.axis[-2], intrin_wmma_load_matrix((32, 8, 16), "wmma.matrix_b")) s[C].tensorize(kernel_i, intrin_wmma_store_matrix((32, 8, 16))) s[CF].tensorize(_i, intrin_wmma_gemm((32, 8, 16))) func = tvm.build(s, [A, B, C], "cuda") dev = tvm.cuda(0) a_np = np.random.uniform(size=(batch_size, nn, ll, 32, 16)).astype(A.dtype) b_np = np.random.uniform(size=(batch_size, ll, mm, 16, 8)).astype(B.dtype) a = tvm.nd.array(a_np, dev) b = tvm.nd.array(b_np, dev) c = tvm.nd.array(np.zeros((batch_size, nn, mm, 32, 8), dtype=C.dtype), dev) func(a, b, c) evaluator = func.time_evaluator(func.entry_name, dev, number=3) print("gemm with tensor core: %f ms" % (evaluator(a, b, c).mean * 1e3)) if VERIFY: func(a, b, c) a_np = a_np.transpose((0, 1, 3, 2, 4)).reshape(batch_size, n, n) b_np = b_np.transpose((0, 1, 3, 2, 4)).reshape(batch_size, n, n) c_np = c.numpy().transpose((0, 1, 3, 2, 4)).reshape(batch_size, n, n) np.testing.assert_allclose( c_np, np.matmul(a_np.astype(C.dtype), b_np.astype(C.dtype)), rtol=1e-4, atol=1e-4 ) @tvm.testing.requires_tensorcore def test_tensor_core_batch_conv(): batch_size = 32 height = 14 width =
14 in_channels = 32 out_channels = 64 kernel_h = 3 kernel_w = 3 pad_h = 1 pad_w = 1 stride_h = 1 stride_w = 1 block_size = 16 block_row_warps = 2 block_col_warps = 4 warp_row_tiles = 4 warp_col_tiles = 2 warp_size = 32 chunk = 2 data_shape = ( batch_size height, width, in_channels block_size, block_size, ) kernel_shape = ( kernel_h, kernel_w, in_channels out_channels block_size, block_size, ) output_shape = ( batch_size height, width, out_channels block_size, block_size, ) assert batch_size % block_size == 0 assert in_channels % block_size == 0 assert out_channels % block_size == 0 kh = te.reduce_axis((0, kernel_h), name="kh") kw = te.reduce_axis((0, kernel_w), name="kw") ic = te.reduce_axis((0, in_channels ii = te.reduce_axis((0, block_size), name="ii") A = te.placeholder(data_shape, name="A", dtype="float16") W = te.placeholder(kernel_shape, name="W", dtype="float16") Apad = te.compute( ( batch_size height + 2 * pad_h, width + 2 * pad_w, in_channels block_size, block_size, ), lambda n, h, w, i, nn, ii: tvm.tir.if_then_else( tvm.tir.all(h >= pad_h, h - pad_h < height, w >= pad_w, w - pad_w < width), A[n, h - pad_h, w - pad_w, i, nn, ii], tvm.tir.const(0.0, "float16"), ), name="Apad", ) Conv = te.compute( output_shape, lambda n, h, w, o, nn, oo: te.sum( Apad[n, h * stride_h + kh, w * stride_w + kw, ic, nn, ii].astype("float32") * W[kh, kw, ic, o, ii, oo].astype("float32"), axis=[ic, kh, kw, ii], ), name="Conv", ) s = te.create_schedule(Conv.op) s[Apad].compute_inline() AS = s.c
ache_read(Apad, "shared", [Conv]) WS = s.cache_read(W, "shared", [Conv]) AF = s.cache_read(AS, "wmma.matrix_a", [Conv]) WF = s.cache_read(WS, "wmma.matrix_b", [Conv]) ConvF = s.cache_write(Conv, "wmma.accumulator") block_x = te.thread_axis("blockIdx.x") block_y = te.thread_axis("blockIdx.y") block_z = te.thread_axis("blockIdx.z") thread_x = te.thread_axis("threadIdx.x") thread_y = te.thread_axis("threadIdx.y") thread_z = te.thread_axis("threadIdx.z") nc, hc, wc, oc, nnc, ooc = Conv.op.axis block_k = s[Conv].fuse(hc, wc) s[Conv].bind(block_k, block_z) nc, nci = s[Conv].split(nc, factor=warp_row_tiles) block_i, nc = s[Conv].split(nc, factor=block_row_warps) oc, oci = s[Conv].split(oc, factor=warp_col_tiles) block_j, oc = s[Conv].split(oc, factor=block_col_warps) s[Conv].reorder(block_k, block_i, block_j, nc, oc, nci, oci, nnc, ooc) s[Conv].bind(block_i, block_x) s[Conv].bind(block_j, block_y) s[Conv].bind(nc, thread_y) s[Conv].bind(oc, thread_z) s[ConvF].compute_at(s[Conv], oc) n, h, w, o, nnf, oof = ConvF.op.axis ko, ki = s[ConvF].split(ic, factor=chunk) s[ConvF].reorder(ko, kh, ki, kw, n, o, nnf, oof, ii) s[AF].compute_at(s[ConvF], kw) s[WF].compute_at(s[ConvF], kw) s[WS].compute_at(s[ConvF], kh) s[AS].compute_at(s[ConvF], kh) n, h, w, i, nn, ii = AS.op.axis tx, xo = s[AS].split(n, nparts=block_row_warps) ty, yo = s[AS].split(xo, nparts=block_col_warps) t = s[AS].fuse(nn, ii) to, ti = s[AS].split(t, factor=warp_size) s[AS].bind(tx, thread_y) s[AS].bind(ty, thread_z) s[AS].bind(ti, thread_x) kh, kw, ic, o, ii, oo = WS.op.axis tx, xo = s[WS].split(o, nparts=block_row_warps) ty, yo = s[WS].split(xo, nparts=block_col_warps) t = s[WS].fuse(ii, oo) to, ti = s[WS].split(t, nparts=warp_size) s[WS].bind(tx, thread_y) s[WS].bind(ty, thread_z) s[WS].bind(to, thread_x) s[WS].vectorize(ti) s[AF].tensorize(AF.op.axis[-2], intrin_w
mma_load_matrix((16, 16, 16), "wmma.matrix_a")) s[WF].tensorize(WF.op.axis[-2], intrin_wmma_load_matrix((16, 16, 16), "wmma.matrix_b")) s[Conv].tensorize(nnc, intrin_wmma_store_matrix((16, 16, 16))) s[ConvF].tensorize(nnf, intrin_wmma_gemm((16, 16, 16))) func = tvm.build(s, [A, W, Conv], "cuda") dev = tvm.cuda(0) a_np = np.random.uniform(size=data_shape).astype(A.dtype) w_np = np.random.uniform(size=kernel_shape).astype(W.dtype) a = tvm.nd.array(a_np, dev) w = tvm.nd.array(w_np, dev) c = tvm.nd.array(np.zeros(output_shape, dtype=Conv.dtype), dev) evaluator = func.time_evaluator(func.entry_name, dev, number=3) print("conv2d with tensor core: %f ms" % (evaluator(a, w, c).mean * 1e3)) if VERIFY: func(a, w, c) a_np = a_np.transpose(0, 4, 1, 2, 3, 5).reshape(batch_size, height, width, in_channels) w_np = w_np.transpose(0, 1, 2, 4, 3, 5).reshape( kernel_h, kernel_w, in_channels, out_channels ) c_np = ( c.numpy().transpose((0, 4, 1, 2, 3, 5)).reshape(batch_size, height, width, out_channels) ) c_std = conv2d_nhwc_python( a_np.astype(Conv.dtype), w_np.astype(Conv.dtype), (stride_h, stride_w), (pad_h, pad_w) ).astype(Conv.dtype) np.testing.assert_allclose(c_np, c_std, rtol=1e-4, atol=1e-4) if __name__ == "__main__": test_tensor_core_batch_matmal() test_tensor_core_batch_conv()
import tvm from tvm
import te def intrin_vadd(xo, m, n): x = te.placeholder((n,), name="vx") y = te.placeholder((n,), name="vy") if m % n == 0: body = lambda i: x[i] + y[i] else: body = lambda i: tvm.tir.Select( xo * n + i < m, x[i] + y[i], tvm.tir.const(0, dtype=x.dtype) ) z = te.compute(x.shape, body, name="z") def intrin_func(ins, outs): xx, yy = ins zz = outs[0] return tvm.tir.call_packed("vadd", xx, yy, zz) buffer_params = {"offset_factor": 16} return te.decl_tensor_intrin(z.op, intrin_func, default_buffer_params=buffer_params) def intrin_gemv(m, n): w = te.placeholder((m, n), name="w") x = te.placeholder((n,), name="x") k = te.reduce_axis((0, n), name="k") z = te.compute((m,), lambda i: te.sum(w[i, k] * x[k], axis=k), name="z") Wb = tvm.tir.decl_buffer( w.shape, w.dtype, name="W", offset_factor=16, strides=[te.var("ldw"), 1] ) def intrin_func(ins, outs): ww, xx = ins zz = outs[0] ww_ptr = ww.access_ptr("r") xx_ptr = xx.access_ptr("r") zz_ptr = zz.access_ptr("w") body = tvm.tir.call_packed("gemv", ww_ptr, xx_ptr, zz_ptr, n, ww.strides[0]) reset = tvm.tir.call_packed("fill_zero", zz_ptr, n) update = tvm.tir.call_packed("gemv_add", ww_ptr, xx_ptr, zz_ptr, n, ww.strides[0]) return body, reset, update buffer_params = {"offset_factor": 16, "data_alignment": 16} return te.decl_tensor_intrin( z.op, intrin_func, binds={w: Wb}, default_buffer_params=buffer_params ) def intrin_gemv_no_reset(m, n): w = te.placeholder((m, n), name="w") x = te.placeholder((n,), name="x") k = te.reduce_axis((0, n), name="k") z = te.compute((m,), lambda i: te.sum(w[i, k] * x[k], axis=k), name="z") Wb = tvm.tir.decl_buffer( w.shape, w.dtype, name="W", offset_factor=16, strides=[te.var("ldw"), 1] ) def intrin_func(ins, outs): ww, xx = ins zz = outs[0] ww_ptr
= ww.access_ptr("r") xx_ptr = xx.access_ptr("r") zz_ptr = zz.access_ptr("w") body = tvm.tir.call_packed("gemv", ww_ptr, xx_ptr, zz_ptr, n, ww.strides[0]) update = tvm.tir.call_packed("gemv_add", ww_ptr, xx_ptr, zz_ptr, n, ww.strides[0]) return body, None, update buffer_params = {"offset_factor": 16, "data_alignment": 16} return te.decl_tensor_intrin( z.op, intrin_func, binds={w: Wb}, default_buffer_params=buffer_params ) def test_tensorize_vadd(): def add(m): x = te.placeholder((m,), name="x") y = te.placeholder((m,), name="y") z = te.compute(x.shape, lambda i: x[i] + y[i], name="z") return x, y, z def check(m, factor): x, y, z = add(m) s = te.create_schedule(z.op) xo, xi = s[z].split(z.op.axis[0], factor=factor) vadd = intrin_vadd(xo, m, factor) s[z].tensorize(xi, vadd) s = s.normalize() dom_map = tvm.te.schedule.InferBound(s) finfer = tvm.get_global_func("test.op.InferTensorizeRegion") out_dom, in_dom = finfer(s[z], dom_map) assert tvm.ir.structural_equal(out_dom[z.op.axis[0]].extent, factor) assert tvm.ir.structural_equal(out_dom[z.op.axis[0]].min, xo * factor) assert tvm.ir.structural_equal(in_dom.items()[0][1][0].extent, factor) fmatch = tvm.get_global_func("test.op.MatchTensorizeBody") body = fmatch(s[z], out_dom, in_dom, vadd) ana = tvm.arith.Analyzer() assert tvm.ir.structural_equal(ana.simplify(body[0]), ana.simplify(vadd.op.body[0])) stmt = tvm.te.schedule.ScheduleOps(s, dom_map) tvm.lower(s, [x, y, z]) def check_cache_write(m, factor): x, y, z = add(m) s = te.create_schedule(z.op) _, _ = s[z].split(z.op.axis[0], factor=factor) z_global = s.cache_write(z, "global") xo, xi = z_global.op.axis vadd = intrin_vadd(xo, m, factor) s[z_global].tensorize(xi, vadd) s = s.normalize() dom_map
= tvm.te.schedule.InferBound(s) finfer = tvm.get_global_func("test.op.InferTensorizeRegion") out_dom, in_dom = finfer(s[z_global], dom_map) assert tvm.ir.structural_equal(out_dom[xo].extent, 1) assert isinstance(out_dom[xo].min, tvm.tir.Var) assert xo.var.name == out_dom[xo].min.name fmatch = tvm.get_global_func("test.op.MatchTensorizeBody") body = fmatch(s[z_global], out_dom, in_dom, vadd)[0] ana = tvm.arith.Analyzer() vars = tvm.runtime.convert({xo.var: out_dom[xo].min}) vadd_body = tvm.tir.stmt_functor.substitute(vadd.op.body[0], vars) assert tvm.ir.structural_equal(ana.simplify(body), ana.simplify(vadd_body)) stmt = tvm.te.schedule.ScheduleOps(s, dom_map) tvm.lower(s, [x, y, z]) def check_compute_reuse(): x, y, z = add(32) def _intrin_vadd(): def _intrin_func(ins, outs): return tvm.tir.call_packed("vadd", ins[0], ins[1], outs[0]) return tvm.te.decl_tensor_intrin(z.op, _intrin_func) s = tvm.te.create_schedule(z.op) s[z].tensorize(z.op.axis[0], _intrin_vadd()) tvm.lower(s, [x, y, z]) check(128, 16) check_cache_write(129, 16) check_compute_reuse() def test_tensorize_matmul(): n = 1024 m = n l = n A = te.placeholder((n, l), name="A") B = te.placeholder((m, l), name="B") k = te.reduce_axis((0, l), name="k") C = te.compute((n, m), lambda i, j: te.sum(B[j, k] * A[i, k], axis=k), name="C") def check(factor): s = te.create_schedule(C.op) x, y = C.op.axis yo, yi = s[C].split(y, factor=factor) gemv = intrin_gemv(factor, l) s[C].tensorize(yi, gemv) s = s.normalize() dom_map = tvm.te.schedule.InferBound(s) finfer = tvm.get_global_func("test.op.InferTensorizeRegion") out_dom, in_dom = finfer(s[C], dom_map) assert tvm.ir.structural_equal(out_dom[x].extent, 1) assert tvm.ir.structural_equal(ou
t_dom[y].extent, factor) assert tvm.ir.structural_equal(out_dom[y].min, yo * factor) fmatch = tvm.get_global_func("test.op.MatchTensorizeBody") body = fmatch(s[C], out_dom, in_dom, gemv) ana = tvm.arith.Analyzer() assert tvm.ir.structural_equal(ana.simplify(body[0]), ana.simplify(gemv.op.body[0])) stmt = tvm.te.schedule.ScheduleOps(s, dom_map) tvm.lower(s, [A, B, C]) def check_rfactor(factor, rfactor): s = te.create_schedule(C.op) x, y = C.op.axis rk = C.op.reduce_axis[0] yo, yi = s[C].split(y, factor=factor) ro, ri = s[C].split(rk, factor=rfactor) s[C].reorder(yo, ro, yi, ri) gemv = intrin_gemv(factor, rfactor) s[C].tensorize(yi, gemv) s = s.normalize() dom_map = tvm.te.schedule.InferBound(s) finfer = tvm.get_global_func("test.op.InferTensorizeRegion") out_dom, in_dom = finfer(s[C], dom_map) assert tvm.ir.structural_equal(out_dom[x].extent, 1) assert tvm.ir.structural_equal(out_dom[y].extent, factor) assert tvm.ir.structural_equal(out_dom[y].min, yo * factor) fmatch = tvm.get_global_func("test.op.MatchTensorizeBody") body = fmatch(s[C], out_dom, in_dom, gemv) ana = tvm.arith.Analyzer() assert tvm.ir.structural_equal(ana.simplify(body[0]), ana.simplify(gemv.op.body[0])) stmt = tvm.te.schedule.ScheduleOps(s, dom_map) tvm.lower(s, [A, B, C]) def check_rfactor_no_reset(factor, rfactor): s = te.create_schedule(C.op) x, y = C.op.axis rk = C.op.reduce_axis[0] yo, yi = s[C].split(y, factor=factor) ro, ri = s[C].split(rk, factor=rfactor) s[C].reorder(yo, ro, yi, ri) gemv = intrin_gemv_no_reset(factor, rfactor) s[C].tensorize(yi, gemv) s = s.normalize() dom_map = tvm.te.schedule.InferBound(s) finfer = tvm.get_global_func("test.op.InferTensorizeRegion") out_dom, in_dom = finfer(s[C], dom_map)
assert tvm.ir.structural_equal(out_dom[x].extent, 1) assert tvm.ir.structural_equal(out_dom[y].extent, factor) assert tvm.ir.structural_equal(out_dom[y].min, yo * factor) fmatch = tvm.get_global_func("test.op.MatchTensorizeBody") body = fmatch(s[C], out_dom, in_dom, gemv) ana = tvm.arith.Analyzer() assert tvm.ir.structural_equal(ana.simplify(body[0]), ana.simplify(gemv.op.body[0])) stmt = tvm.te.schedule.ScheduleOps(s, dom_map) tvm.lower(s, [A, B, C]) def check_rfactor_no_reset_multi_reduction(factor, rfactor): s = te.create_schedule(C.op) x, y = C.op.axis rk = C.op.reduce_axis[0] yo, yi = s[C].split(y, factor=factor) ro, ri = s[C].split(rk, factor=rfactor) roo, roi = s[C].split(ro, factor=2) s[C].reorder(yo, roo, roi, yi, ri) gemv = intrin_gemv_no_reset(factor, rfactor) s[C].tensorize(yi, gemv) s = s.normalize() dom_map = tvm.te.schedule.InferBound(s) finfer = tvm.get_global_func("test.op.InferTensorizeRegion") out_dom, in_dom = finfer(s[C], dom_map) assert tvm.ir.structural_equal(out_dom[x].extent, 1) assert tvm.ir.structural_equal(out_dom[y].extent, factor) assert tvm.ir.structural_equal(out_dom[y].min, yo * factor) fmatch = tvm.get_global_func("test.op.MatchTensorizeBody") body = fmatch(s[C], out_dom, in_dom, gemv) ana = tvm.arith.Analyzer() assert tvm.ir.structural_equal(ana.simplify(body[0]), ana.simplify(gemv.op.body[0])) stmt = tvm.te.schedule.ScheduleOps(s, dom_map) tvm.lower(s, [A, B, C]) check(16) check_rfactor(16, 16) check_rfactor_no_reset(16, 16) check_rfactor_no_reset_multi_reduction(16, 16) def test_tensorize_op(): idxd = tvm.tir.indexdiv idxm = tvm.tir.indexmod def op_intrin(): bh = 9 bw = 9 x = te.placeholder((5, 5), name="A") y = te.compute((bh, bw), lambda i, j: x[idxd(j, 3) + idxm(i,
3), idxm(j, 3) + idxd(i, 3)]) def intrin_func(ins, outs): (xx,) = ins zz = outs[0] return tvm.tir.call_packed("op", xx, zz) return te.decl_tensor_intrin(y.op, intrin_func, default_buffer_params={"offset_factor": 2}) A = te.placeholder((5, 5), name="A") B = te.compute((9, 9), lambda i, j: A[idxd(j, 3) + idxm(i, 3), idxm(j, 3) + idxd(i, 3)]) bt = op_intrin() s = te.create_schedule(B.op) x, y = B.op.axis s[B].tensorize(x, bt) s = s.normalize() tvm.lower(s, [A, B]) def test_tensorize_tensor_compute_op(): def intrin_multivadd(n): n_a = te.var("n_a") Ab = tvm.tir.decl_buffer((n,), "float32", strides=[n_a]) n_b = te.var("n_b") Bb = tvm.tir.decl_buffer((n,), "float32", strides=[n_b]) n_c = te.var("n_c") Cb = tvm.tir.decl_buffer((n,), "float32", strides=[n_c]) z = te.compute( (n,), lambda i: tvm.tir.call_extern( "float32", "vadd", Ab.access_ptr("w", offset=n_a * i), Bb.access_ptr("r", offset=n_b * i), Cb.access_ptr("r", offset=n_c * i), ), ) def intrin_func(ins, outs): return tvm.tir.call_packed("multivadd") return te.decl_tensor_intrin(z.op, intrin_func, name="multivadd") def intrin_vadd(n): dtype = "float32" x = te.placeholder((n,), dtype=dtype, name="vx") y = te.placeholder((n,), dtype=dtype, name="vy") z = te.compute(x.shape, lambda i: x[i] + y[i], name="z") s = te.create_schedule(z.op) def create_buffer(t): return tvm.tir.decl_buffer(t.shape, t.dtype, name="W" + t.name, offset_factor=16) def intrin_func(ins, outs): ib = tvm.tir.ir_builder.create() ib.emit( tvm.tir.call_extern( "float32", "vadd", ins[0].access_ptr("
r"), ins[1].access_ptr("r"), outs[0].access_ptr("wr"), ) ) return ib.get() return te.decl_tensor_intrin( z.op, intrin_func, binds={x: create_buffer(x), y: create_buffer(y), z: create_buffer(z)} ) M = 1024 factor = 16 dtype = "float32" A = te.placeholder((M B = te.placeholder((M vadd = intrin_vadd(factor) C = te.compute((M s = te.create_schedule(C.op) multivadd = intrin_multivadd(64) s[C].tensorize(C.op.axis[0], multivadd) s = s.normalize() dom_map = tvm.te.schedule.InferBound(s) stmt = tvm.te.schedule.ScheduleOps(s, dom_map) assert isinstance(stmt.body, tvm.tir.For) assert stmt.body.loop_var.name == C.op.axis[0].var.name if __name__ == "__main__": test_tensorize_vadd() test_tensorize_matmul() test_tensorize_op() test_tensorize_tensor_compute_op()
import json
import tvm from tvm
import te from tvm
import te @tvm.te.tag_scope(tag="conv") def compute_conv(data, weight): N, IC, H, W = data.shape OC, IC, KH, KW = weight.shape OH = H - KH + 1 OW = W - KW + 1 ic = te.reduce_axis((0, IC), name="ic") dh = te.reduce_axis((0, KH), name="dh") dw = te.reduce_axis((0, KW), name="dw") return te.compute( (N, OC, OH, OW), lambda i, oc, h, w: te.sum( data[i, ic, h + dh, w + dw] * weight[oc, ic, dh, dw], axis=[ic, dh, dw] ), ) def test_with(): n = te.size_var("n") m = te.size_var("m") l = te.size_var("l") A = te.placeholder((n, l), name="A") B = te.placeholder((m, l), name="B") with tvm.te.tag_scope(tag="gemm"): k = te.reduce_axis((0, l), name="k") C = te.compute( (n, m), lambda i, j: te.sum(A[i, k] * B[j, k], axis=k), attrs={"hello": 1, "arr": [10, 12]}, ) assert C.op.tag == "gemm" assert "hello" in C.op.attrs assert "xx" not in C.op.attrs assert C.op.attrs["hello"].value == 1 CC = tvm.ir.load_json(tvm.ir.save_json(C)) assert CC.op.attrs["hello"].value == 1 assert CC.op.attrs["arr"][0].value == 10 assert json.loads(str(CC.op.attrs))["arr"][1] == 12 def test_decorator(): n = te.size_var("n") c = te.size_var("c") h = te.size_var("h") w = te.size_var("w") kh = te.size_var("kh") kw = te.size_var("kw") A = te.placeholder((n, c, h, w), name="A") B = te.placeholder((c, c, kh, kw), name="B") C = compute_conv(A, B) assert C.op.tag == "conv" assert len(C.op.attrs) == 0 def test_nested(): n = te.size_var("n") c = te.size_var("c") h = te.size_var("h") w = te.size_var("w") kh = te.size_var("kh") kw = te.size_var("kw") A = te.placeholder((n, c, h, w), name="A") B = te.placeholder((c, c, kh, kw), name="B") try: with te.tag_scope(tag="conv"): C = compute_conv(A, B) assert False except ValueError: pass if __name__ ==
"__main__": test_with() test_decorator() test_nested()
import numpy as np
import tvm
import tvm.testing from tvm
import te from tvm.topi.nn.pooling
import pool2d def test_tensor(): m = te.size_var("m") n = te.size_var("n") l = te.size_var("l") A = te.placeholder((m, l), name="A") B = te.placeholder((n, l), name="B") T = te.compute((m, n, l), lambda i, j, k: A[i, k] * B[j, k]) print(T) print(T.op.body) assert tuple(T.shape) == (m, n, l) assert isinstance(A.op, tvm.te.PlaceholderOp) assert A == A assert T.op.output(0) == T assert T.op.output(0).__hash__() == T.__hash__() d = {T.op.output(0): 1} assert d[T] == 1 assert T[0][0][0].astype("float16").dtype == "float16" def test_rank_zero(): m = te.size_var("m") A = te.placeholder((m,), name="A") scale = te.placeholder((), name="s") k = te.reduce_axis((0, m), name="k") T = te.compute((), lambda: te.sum(A[k] * scale(), axis=k)) print(T) print(T.op.body) assert tuple(T.shape) == () def test_conv1d(): n = te.size_var("n") A = te.placeholder((n + 2), name="A") def computeB(ii): i = ii + 1 return A[i - 1] + A[i] + A[i + 1] B = te.compute(n, computeB) def test_tensor_slice(): n = te.size_var("n") A = te.compute((n, n), lambda i, j: 1) B = te.compute((n,), lambda i: A[0][i] + A[0][i]) def test_tensor_reduce_multi_axis(): m = te.size_var("m") n = te.size_var("n") A = te.placeholder((m, n), name="A") k1 = te.reduce_axis((0, n), "k") k2 = te.reduce_axis((0, m), "k") C = te.compute((1,), lambda _: te.sum(A[k1, k2], axis=(k1, k2))) C = te.compute((1,), lambda _: te.sum(A[k1, k2], axis=[k1, k2])) def test_tensor_comm_reducer(): m = te.size_var("m") n = te.size_var("n") A = te.placeholder((m, n), name="A") k = te.reduce_axis((0, n), "k") mysum = te.comm_reducer(lambda x, y: x + y, lambda t: tvm.tir.const(0, dtype=t)) C = te.compute((m,), lambda i: mysum(A[i, k], axis=k)) def test_tensor_comm_reducer_overload(): m = te.size_var("m") n = te.size_var("n") mysum = te.comm_reducer(lambda x, y: x + y, lambda t: tvm.tir
.const(0, dtype=t)) sum_res = mysum(m, n) def test_tensor_reduce(): m = te.size_var("m") n = te.size_var("n") l = te.size_var("l") A = te.placeholder((m, l), name="A") B = te.placeholder((n, l), name="B") T = te.compute((m, n, l), lambda i, j, k: A[i, k] * B[j, k]) rv = te.reduce_axis((0, A.shape[1]), "k") C = te.compute((m, n), lambda i, j: te.sum(T(i, j, rv + 1), axis=rv)) C_json = tvm.ir.save_json(C) C_loaded = tvm.ir.load_json(C_json) assert isinstance(C_loaded, te.tensor.Tensor) assert str(C_loaded) == str(C) def test_tensor_reduce_multiout_with_cond(): def fcombine(x, y): return x[0] + y[0], x[1] + y[1] def fidentity(t0, t1): return tvm.tir.const(0, t0), tvm.tir.const(1, t1) mysum = te.comm_reducer(fcombine, fidentity, name="mysum") m = te.var("m") n = te.var("n") idx = te.placeholder((m, n), name="idx", dtype="int32") val = te.placeholder((m, n), name="val", dtype="int32") k = te.reduce_axis((0, n), "k") cond = te.floormod(k, 2) == 0 T0, T1 = te.compute((m,), lambda i: mysum((idx[i, k], val[i, k]), axis=k, where=cond), name="T") def test_tensor_compute1(): m = 1024 factor = 16 dtype = "float32" def intrin_vadd(n): x = te.placeholder((n,)) y = te.placeholder((n,)) z = te.compute(x.shape, lambda i: x[i] + y[i]) def intrin_func(ins, outs): ib = tvm.tir.ir_builder.create() ib.emit( tvm.tir.call_extern( outs[0].dtype, "vadd", ins[0].access_ptr("r"), ins[1].access_ptr("r"), outs[0].access_ptr("wr"), ) ) return ib.get() return te.decl_tensor_intrin(z.op, intrin_func, default_buffer_params={"offset_factor": n}) vadd = intrin_vadd(factor) A = te.placeholder((m B = te.placeholder((m C = te.compute((m s = te.create_schedule(C.op)
with tvm.transform.PassContext(opt_level=3, disabled_pass=["tir.CommonSubexprElimTIR"]): stmt = tvm.lower(s, [A, B, C])["main"].body assert isinstance(stmt.body, tvm.tir.Evaluate) def test_tensor_compute2(): M = 2048 N = 1024 L = 1024 factor = 16 factor1 = 32 factor2 = 32 dtype = "float32" def intrin_gemm(m, n, l): k = te.reduce_axis((0, l)) x = te.placeholder((m, l)) y = te.placeholder((n, l)) z = te.compute((m, n), lambda i, j: te.sum(x[i][k] * y[j][k], axis=k)) def intrin_func(ins, outs): x_ptr = ins[0].access_ptr("r") y_ptr = ins[1].access_ptr("r") z_ptr = outs[0].access_ptr("w") body = tvm.tir.call_packed("gemv", x_ptr, y_ptr, z_ptr, m, n, l) reset = tvm.tir.call_packed("fill_zero", z_ptr, m, n) update = tvm.tir.call_packed("gemv_add", x_ptr, y_ptr, z_ptr, m, n, l) return body, reset, update return te.decl_tensor_intrin(z.op, intrin_func, default_buffer_params={"offset_factor": n}) vgemm = intrin_gemm(factor1, factor2, factor) A = te.placeholder((M B = te.placeholder((N k = te.reduce_axis((0, L C = te.compute( (M lambda i, j: vgemm( A[i, k, 0:factor1, 0:factor], B[j, k, 0:factor2, 0:factor], reduce_axis=k ), ) s = te.create_schedule(C.op) with tvm.transform.PassContext(opt_level=3, disabled_pass=["tir.CommonSubexprElimTIR"]): stmt = tvm.lower(s, [A, B, C])["main"].body assert isinstance(stmt.body.body[0], tvm.tir.Evaluate) assert isinstance(stmt.body.body[1].body, tvm.tir.Evaluate) def test_tensor_scan(): m = te.size_var("m") n = te.size_var("n") x = te.placeholder((m, n)) s = te.placeholder((m, n)) res = tvm.te.scan( te.compute((1, n), lambda _, i: x[0, i]), te.compute((m, n), lambda t, i: s[t - 1, i] + x[t, i]), s, ) assert tuple(res.shape) == (m, n) def test_scan_mult
i_out(): m = te.size_var("m") n = te.size_var("n") x1 = te.placeholder((m, n)) s1 = te.placeholder((m, n)) x2 = te.placeholder((m, n)) s2 = te.placeholder((m, n)) s1_init = te.compute((1, n), lambda _, i: x1[0, i]) s2_init = te.compute((1, n), lambda _, i: x2[0, i]) s1_update = te.compute((m, n), lambda t, i: s1[t - 1, i] + s2[t - 1, i] + x1[t, i]) s2_update = te.compute((m, n), lambda t, i: x2[t, i] + s2[t - 1, i]) r0, r1 = tvm.te.scan([s1_init, s2_init], [s1_update, s2_update], [s1, s2]) assert r0.value_index == 0 assert r1.value_index == 1 json_str = tvm.ir.save_json(r0.op) zz = tvm.ir.load_json(json_str) assert isinstance(zz, tvm.te.ScanOp) def test_extern(): m = te.size_var("m") A = te.placeholder((m,), name="A") def extern_func(ins, outs): assert isinstance(ins[0], tvm.te.schedule.Buffer) return tvm.tir.call_packed("myadd", ins[0].data, outs[0].data, m) B = te.extern((m,), [A], extern_func) assert tuple(B.shape) == (m,) def test_extern_multi_out(): m = te.size_var("m") A = te.placeholder((m,), name="A") B = te.compute((m,), lambda i: A[i] * 10) def extern_func(ins, outs): assert isinstance(ins[0], tvm.te.schedule.Buffer) return tvm.tir.call_packed("myadd", ins[0].data, outs[0].data, outs[1].data, m) res = te.extern([A.shape, A.shape], [A, B], extern_func) assert len(res) == 2 assert res[1].value_index == 1 def test_tuple_inputs(): m = te.size_var("m") n = te.size_var("n") A0 = te.placeholder((m, n), name="A0") A1 = te.placeholder((m, n), name="A1") T0, T1 = te.compute((m, n), lambda i, j: (A0[i, j] * 2, A1[i, j] * 3), name="T") s = te.create_schedule(T0.op) for i in range(len(T0.shape)): assert T0.shape[i] == T1.shape[i] assert T0.op == T1.op assert T0.value_index == 0 assert T1.value_index == 1 def test_tuple_with_different_deps(): m = te.size_var("m") n = te.size_var("n") A0 = te.placeholder
((m, n), name="A1") A1 = te.placeholder((m, n), name="A2") B0, B1 = te.compute((m, n), lambda i, j: (A0[i, j] * 2, A1[i, j] * 3), name="B") C = te.compute((m, n), lambda i, j: B0[i, j] + 4, name="C") s = te.create_schedule(C.op) xo, xi = s[C].split(C.op.axis[0], factor=10) s[B0.op].compute_at(s[C], xo) sch = s.normalize() bounds = tvm.te.schedule.InferBound(sch) stmt = tvm.te.schedule.ScheduleOps(sch, bounds) def get_B1_realize(x): if ( isinstance(x, tvm.tir.ProducerRealize) and x.producer.op == B1.op and x.producer.value_index == 1 ): ret.append(x) ret = [] tvm.tir.stmt_functor.post_order_visit(stmt, get_B1_realize) assert stmt.producer == C and len(ret) == 1 def test_tensor_inputs(): x = te.placeholder((1,), name="x") y = te.compute(x.shape, lambda i: x[i] + x[i]) assert tuple(y.op.input_tensors) == (x,) def test_tensor_pool(): def intrin_pool(): A = te.placeholder((64, 16, 16), name="A") kh = te.reduce_axis((0, 3), name="kh") kw = te.reduce_axis((0, 3), name="kw") P = te.compute( (64, 14, 14), lambda c, oh, ow: tvm.te.max(A[c, oh + kh, ow + kw], axis=[kh, kw]), name="p", ) def intrin_func(ins, outs): dinp = ins[0] dout = outs[0] return tvm.tir.call_packed("op", dinp, dout) return te.decl_tensor_intrin(P.op, intrin_func, default_buffer_params={"offset_factor": 1}) A = te.placeholder((1, 64, 16, 16), name="A") P = pool2d( data=A, kernel=(3, 3), stride=(1, 1), dilation=(1, 1), padding=(0, 0, 0, 0), pool_type="max" ) s = te.create_schedule(P.op) _, oh, _, _ = P.op.axis intrin = intrin_pool() s[P].tensorize(oh, intrin) tvm.lower(s, [A, P]) def test_tensor_scalar_mixed(): a = np.array(np.random.uniform(size=(10,)), "float32") b = np.array(np.random.uniform(size=(1))[0], "float32") c = np.arra
y(np.random.uniform(size=(10,)), "float32") @tvm.register_func("tvm.test_tensor_scalar_scale") def my_scale(tensor, scalar, out): out_np = tensor.numpy() * scalar.numpy() tvm.nd.array(out_np).copyto(out) A = te.placeholder(a.shape, name="A") B = te.placeholder(b.shape, name="B") C = te.extern( a.shape, [A, B], lambda ins, outs: tvm.tir.call_packed( "tvm.test_tensor_scalar_scale", ins[0], ins[1], outs[0] ), name="C", ) s = te.create_schedule(C.op) f = tvm.build(s, [A, B, C], "llvm") ta = tvm.nd.array(a) tb = tvm.nd.array(b) tc = tvm.nd.array(c) f(ta, tb, tc) tvm.testing.assert_allclose(a * b, tc.numpy()) def test_tensor_scalar(): a = np.array(np.random.uniform(size=(1))[0], "float32") b = np.array(0.0, "float32") @tvm.register_func("tvm.test_tensor_scalar_copy") def mycopy(x, y): x.copyto(y) A = te.placeholder(a.shape, name="A") B = te.extern( a.shape, [A], lambda ins, outs: tvm.tir.call_packed("tvm.test_tensor_scalar_copy", ins[0], outs[0]), name="B", ) s = te.create_schedule(B.op) f = tvm.build(s, [A, B], "llvm") ta = tvm.nd.array(a) tb = tvm.nd.array(b) f(ta, tb) tvm.testing.assert_allclose(ta.numpy(), tb.numpy()) if __name__ == "__main__": test_tensor() test_rank_zero() test_conv1d() test_tensor_slice() test_tensor_reduce_multi_axis() test_tensor_comm_reducer() test_tensor_comm_reducer_overload() test_tensor_reduce() test_tensor_reduce_multiout_with_cond() test_tensor_compute1() test_tensor_compute2() test_tensor_scan() test_scan_multi_out() test_extern() test_extern_multi_out() test_tuple_inputs() test_tuple_with_different_deps() test_tensor_inputs() test_tensor_pool() test_tensor_scalar_mixed() test_tensor_scalar()
import numpy as np
import tvm from tvm
import te from tvm
import topi
import tvm.topi.testing from tvm.topi.utils
import get_const_tuple
import tvm.testing def test_operator_type_and_tags(): k = 1 n = te.var("n") A = te.placeholder((), name="A") B = te.placeholder((10, 5), name="B") B1 = B[0] B2 = B[0, 0] assert isinstance(k + n, tvm.tir.PrimExpr) assert isinstance(n + n, tvm.tir.PrimExpr) assert isinstance(k + A, te.tensor.Tensor) assert isinstance(A + k, te.tensor.Tensor) assert isinstance(n + A, te.tensor.Tensor) assert isinstance(A + n, te.tensor.Tensor) assert isinstance(A + A, te.tensor.Tensor) assert isinstance(k + B, te.tensor.Tensor) assert isinstance(B + k, te.tensor.Tensor) assert isinstance(n + B, te.tensor.Tensor) assert isinstance(B + n, te.tensor.Tensor) assert isinstance(A + B, te.tensor.Tensor) assert isinstance(B + A, te.tensor.Tensor) assert isinstance(B + B, te.tensor.Tensor) assert (k + B).op.tag == topi.tag.ELEMWISE assert (B + k).op.tag == topi.tag.ELEMWISE assert (n + B).op.tag == topi.tag.ELEMWISE assert (B + n).op.tag == topi.tag.ELEMWISE assert (A + B).op.tag == topi.tag.BROADCAST assert (B + A).op.tag == topi.tag.BROADCAST assert (B + B).op.tag == topi.tag.BROADCAST assert isinstance(k + B2, tvm.tir.PrimExpr) assert isinstance(B2 + k, tvm.tir.PrimExpr) assert isinstance(n + B2, tvm.tir.PrimExpr) assert isinstance(B2 + n, tvm.tir.PrimExpr) assert isinstance(B2 + B2, tvm.tir.PrimExpr) assert isinstance(B2 + A, te.tensor.Tensor) assert isinstance(A + B2, te.tensor.Tensor) assert isinstance(B2 + B, te.tensor.Tensor) assert isinstance(B + B2, te.tensor.Tensor) def test_combination(): k = 3 n = 5 m = 10 x = te.var("x") A = te.placeholder((n, m), name="A") B = te.placeholder((n, m), name="B") C = te.placeholder((n, m), name="C") D = k + A - B * C + x s = te.create_schedule(D.op) foo = tvm.build(s, [x, A, B, C, D], "llvm") dev = tvm.cpu(0) x = 2 a = tvm.nd.array(np.random.uniform(size=(n, m)).astype(A.dtype), dev) b = tvm.n
d.array(np.random.uniform(size=(n, m)).astype(B.dtype), dev) c = tvm.nd.array(np.random.uniform(size=(n, m)).astype(C.dtype), dev) d = tvm.nd.array(np.zeros((n, m), dtype=D.dtype), dev) foo(x, a, b, c, d) tvm.testing.assert_allclose(d.numpy(), k + a.numpy() - b.numpy() * c.numpy() + x) def verify_tensor_scalar_bop(shape, typ="add"): """Verify non-constant Tensor and scalar binary operations.""" sh = [te.size_var("n%d" % i) for i in range(0, len(shape))] k = te.var("k") A = te.placeholder(sh, name="A") if typ == "add": B = A + k elif typ == "sub": B = A - k elif typ == "mul": B = A * k elif typ == "div": B = A / k else: raise NotImplementedError() def check_device(device): if not tvm.testing.device_enabled(device): print("Skip because %s is not enabled" % device) return dev = tvm.device(device, 0) print("Running on target: %s" % device) with tvm.target.Target(device): s = tvm.topi.testing.get_elemwise_schedule(device)(B) k_ = 2 foo = tvm.build(s, [A, B, k] + sh, device, name="tensor_scalar_" + typ) a_npy = np.random.uniform(size=shape).astype(A.dtype) if typ == "add": b_npy = a_npy + k_ elif typ == "sub": b_npy = a_npy - k_ elif typ == "mul": b_npy = a_npy * k_ elif typ == "div": b_npy = a_npy / k_ else: raise NotImplementedError() a_nd = tvm.nd.array(a_npy, dev) b_nd = tvm.nd.array(np.empty(b_npy.shape).astype(B.dtype), dev) foo(a_nd, b_nd, k_, *shape) tvm.testing.assert_allclose(b_nd.numpy(), b_npy, rtol=1e-5) for device in ["llvm", "cuda", "opencl", "metal", "rocm", "vulkan"]: check_device(device) def verify_broadcast_bop(lhs_shape, rhs_shape, typ="add"): A = te.placeholder(shape=lhs_shape, name="A") B = te.placeholder(shape=rhs_shape, name="B") if typ == "add":
C = A + B elif typ == "sub": C = A - B elif typ == "mul": C = A * B elif typ == "div": C = A / B else: raise NotImplementedError() def check_device(device): dev = tvm.device(device, 0) if not tvm.testing.device_enabled(device): print("Skip because %s is not enabled" % device) return print("Running on target: %s" % device) with tvm.target.Target(device): s = tvm.topi.testing.get_broadcast_schedule(device)(C) foo = tvm.build(s, [A, B, C], device, name="broadcast_binary" + "_" + typ) lhs_npy = np.random.uniform(size=lhs_shape).astype(A.dtype) rhs_npy = np.random.uniform(size=rhs_shape).astype(A.dtype) if typ == "add": out_npy = lhs_npy + rhs_npy elif typ == "sub": out_npy = lhs_npy - rhs_npy elif typ == "mul": out_npy = lhs_npy * rhs_npy elif typ == "div": rhs_npy = np.abs(rhs_npy) + 0.001 out_npy = lhs_npy / rhs_npy else: raise NotImplementedError() lhs_nd = tvm.nd.array(lhs_npy, dev) rhs_nd = tvm.nd.array(rhs_npy, dev) out_nd = tvm.nd.array(np.empty(out_npy.shape).astype(B.dtype), dev) for _ in range(1): foo(lhs_nd, rhs_nd, out_nd) tvm.testing.assert_allclose(out_nd.numpy(), out_npy, rtol=1e-4, atol=1e-4) for device in ["llvm", "cuda", "opencl", "metal", "rocm", "vulkan"]: check_device(device) @tvm.testing.uses_gpu def verify_conv2d_scalar_bop( batch, in_size, in_channel, num_filter, kernel, stride, padding, typ="add" ): def check_device(device): dev = tvm.device(device, 0) if not tvm.testing.device_enabled(device): print("Skip because %s is not enabled" % device) return print("Running on target: %s" % device) conv2d_nchw, schedule_conv2d_nchw = tvm.topi.testing.get_conv2d_nchw_implement(device) k = 10.0 dila
tion = (1, 1) with tvm.target.Target(device): A = te.placeholder((batch, in_channel, in_size, in_size), name="A") W = te.placeholder((num_filter, in_channel, kernel, kernel), name="W") B = conv2d_nchw(A, W, stride, padding, dilation, A.dtype) if typ == "add": C = B + k elif typ == "sub": C = B - k elif typ == "mul": C = B * k elif typ == "div": C = B / k else: raise NotImplementedError() s = schedule_conv2d_nchw([C]) foo = tvm.build(s, [A, W, B, C], device, name="conv2d_scalar_" + typ) a_npy = np.random.uniform(size=get_const_tuple(A.shape)).astype(A.dtype) w_npy = np.random.uniform(size=get_const_tuple(W.shape)).astype(W.dtype) b_npy = tvm.topi.testing.conv2d_nchw_python(a_npy, w_npy, stride, padding) c_npy = np.random.uniform(size=get_const_tuple(B.shape)).astype(B.dtype) if typ == "add": c_npy = b_npy + k elif typ == "sub": c_npy = b_npy - k elif typ == "mul": c_npy = b_npy * k elif typ == "div": c_npy = b_npy / k else: raise NotImplementedError() a_nd = tvm.nd.array(a_npy, dev) w_nd = tvm.nd.array(w_npy, dev) b_nd = tvm.nd.array(np.empty(b_npy.shape).astype(B.dtype), dev) c_nd = tvm.nd.array(np.empty(c_npy.shape).astype(C.dtype), dev) foo(a_nd, w_nd, b_nd, c_nd) tvm.testing.assert_allclose(c_nd.numpy(), c_npy, rtol=1e-4, atol=1e-4) for device in ["llvm", "cuda", "opencl", "metal", "rocm", "vulkan"]: check_device(device) @tvm.testing.uses_gpu def test_tensor_scalar_bop(): verify_tensor_scalar_bop((1,), typ="add") verify_tensor_scalar_bop((3, 5), typ="sub") verify_tensor_scalar_bop((1, 3, 5), typ="mul") verify_tensor_scalar_bop((2, 3, 1, 32), typ="div") @tvm.testing.uses_gpu def test_broadcast_bop()
: verify_broadcast_bop((2, 3), (), typ="add") verify_broadcast_bop((5, 2, 3), (1,), typ="add") verify_broadcast_bop((1, 32), (64, 32), typ="sub") verify_broadcast_bop((5, 64, 128), (2, 5, 64, 1), typ="mul") verify_broadcast_bop((2, 3, 1, 32), (64, 32), typ="div") @tvm.testing.uses_gpu def test_conv2d_scalar_bop(): verify_conv2d_scalar_bop(1, 16, 4, 4, 3, 1, 1, typ="add") verify_conv2d_scalar_bop(1, 32, 2, 1, 3, 1, 1, typ="sub") verify_conv2d_scalar_bop(1, 32, 1, 1, 3, 1, 1, typ="mul") verify_conv2d_scalar_bop(1, 16, 2, 1, 3, 1, 1, typ="div") if __name__ == "__main__": test_operator_type_and_tags() test_combination() test_tensor_scalar_bop() test_broadcast_bop() test_conv2d_scalar_bop()
import tvm from tvm
import te def test_verify_compute(): n = te.size_var("n") m = te.size_var("m") A = te.placeholder((n, m), name="A") k = te.reduce_axis((0, m), "k") k_ = te.reduce_axis((0, m - 1), "k_") f1 = lambda i: te.sum(A[i, k], axis=k) f2 = lambda i: A[i, 0] + 1 f3 = lambda i: te.sum(A[i, k], axis=k) + 1 f4 = lambda i: A[i, 0] * (te.sum(A[i, k], axis=k) + 1) f5 = lambda i: (te.sum(A[i, k], axis=k), A[i, 0] + 1) f6 = lambda i: (te.sum(A[i, k], axis=k), te.sum(A[i, k_], axis=k_)) try: B = te.compute((n,), f1, name="B") except tvm._ffi.base.TVMError as ex: assert False try: B = te.compute((n,), f2, name="B") except tvm._ffi.base.TVMError as ex: assert False try: B = te.compute((n,), f3, name="B") assert False except tvm._ffi.base.TVMError as ex: pass try: B = te.compute((n,), f4, name="B") assert False except tvm._ffi.base.TVMError as ex: pass try: B0, B1 = te.compute((n,), f5, name="B") assert False except tvm._ffi.base.TVMError as ex: pass try: B0, B1 = te.compute((n,), f6, name="B") assert False except tvm._ffi.base.TVMError as ex: pass if __name__ == "__main__": test_verify_compute()
import numpy as np
import tvm from tvm
import te
import tvm.testing def test_check_numerical_grads(): functions = [ lambda x: (x * x * x, 3 * x * x), lambda x: (x * x, 2 * x), lambda x: (np.abs(x), np.sign(x)), lambda x: (np.log(np.abs(x)), 1 / x), lambda x: (np.sqrt(np.abs(x)), np.sign(x) / (2 * np.sqrt(np.abs(x)))), lambda x: (1 / x, -1 / (x * x)), lambda x: (np.sign(np.sin(1 / x)), np.zeros_like(x)), lambda x: (x * np.sin(1 / x), np.sin(1 / x) - np.cos(1 / x) / x), lambda x: (np.sin(1 / x), -np.cos(1 / x) / (x * x)), lambda x: (np.tan(x), 1.0 / (np.cos(x) * np.cos(x))), ] np.random.seed(0) min_x = 0.5 for func in functions: x_input = np.random.uniform(min_x, 10, size=(3, 4)) func_forw = lambda x: np.sum(func(x)[0]) grads = [func(x_input)[1]] tvm.testing.check_numerical_grads(func_forw, [x_input], grads) for f1 in functions: for f2 in functions: x_input = np.random.uniform(min_x, 10, size=(3, 4)) y_input = np.random.uniform(min_x, 10, size=(3, 4)) func_forw = lambda x, y: np.sum(f1(x)[0] + f2(y)[0]) grads = [f1(x_input)[1], f2(y_input)[1]] tvm.testing.check_numerical_grads(func_forw, [x_input, y_input], grads) func_forw = lambda x, y: np.sum(f1(x)[0] + f2(y)[0]) grads = {"x": f1(x_input)[1], "y": f2(y_input)[1]} tvm.testing.check_numerical_grads(func_forw, {"x": x_input, "y": y_input}, grads) def _noise1(x, atol=1e-2, rtol=0.1): sqrt_n = np.sqrt(float(np.prod(x.shape))) tol = 2 * (np.linalg.norm(x) * rtol + atol * sqrt_n) noise = np.random.normal(size=x.shape) noise = tol * noise / np.linalg.norm(noise) return x + noise def _noise2(x, atol=1e-2, rtol=0.1): sqrt_n = np.sqrt(float(np.prod(x.shape))) tol = 2 * (np.linalg.norm(x) * rtol + atol * sqrt_n) n = np.random.randint(np.pr
od(x.shape)) noise = np.zeros_like(x) noise.reshape(-1)[n] = tol return x + noise for f1 in functions: for f2 in functions: x_input = np.random.uniform(min_x, 10, size=(3, 4)) y_input = np.random.uniform(min_x, 10, size=(3, 4)) func_forw = lambda x, y: np.sum(f1(x)[0] + f2(y)[0]) grads = [_noise1(f1(x_input)[1]), _noise1(f2(y_input)[1])] try: tvm.testing.check_numerical_grads(func_forw, [x_input, y_input], grads) except AssertionError as e: pass else: raise AssertionError("tvm.testing.check_numerical_grads didn't raise an exception") func_forw = lambda x, y: np.sum(f1(x)[0] + f2(y)[0]) grads = {"x": _noise2(f1(x_input)[1]), "y": _noise2(f2(y_input)[1])} try: tvm.testing.check_numerical_grads(func_forw, {"x": x_input, "y": y_input}, grads) except AssertionError as e: pass else: raise AssertionError("tvm.testing.check_numerical_grads didn't raise an exception") if __name__ == "__main__": test_tvm.testing.check_numerical_grads()
import pytest
import tvm from tvm
import tir from tvm.script
import tir as T @T.prim_func def primfunc_global_allocates(placeholder_144: T.handle, placeholder_145: T.handle, placeholder_146: T.handle, T_cast_48: T.handle) -> None: T.func_attr({"global_symbol": "fused_nn_conv2d_add_cast_fixed_point_multiply_clip_cast_cast_13", "tir.noalias": True}) placeholder_147 = T.match_buffer(placeholder_144, [100352], dtype="int16", elem_offset=0, align=64, offset_factor=1) placeholder_148 = T.match_buffer(placeholder_145, [4608], dtype="int16", elem_offset=0, align=64, offset_factor=1) placeholder_149 = T.match_buffer(placeholder_146, [512], dtype="int32", elem_offset=0, align=64, offset_factor=1) T_cast_49 = T.match_buffer(T_cast_48, [100352], dtype="int16", elem_offset=0, align=64, offset_factor=1) PaddedInput_22 = T.decl_buffer([131072], "int16") DepthwiseConv2d_9 = T.decl_buffer([100352], "int32") for i1_29, i2_39, i3_40 in T.grid(16, 16, 512): PaddedInput_22[(((i1_29*8192) + (i2_39*512)) + i3_40)] = T.if_then_else(((((1 <= i1_29) and (i1_29 < 15)) and (1 <= i2_39)) and (i2_39 < 15)), placeholder_147[((((i1_29*7168) + (i2_39*512)) + i3_40) - 7680)], T.int16(0), dtype="int16") for i_9, j_9, c_9 in T.grid(14, 14, 512): DepthwiseConv2d_9[(((i_9*7168) + (j_9*512)) + c_9)] = 0 for di_9, dj_9 in T.grid(3, 3): DepthwiseConv2d_9[(((i_9*7168) + (j_9*512)) + c_9)] = (DepthwiseConv2d_9[(((i_9*7168) + (j_9*512)) + c_9)] + (PaddedInput_22[(((((i_9*8192) + (di_9*8192)) + (j_9*512)) + (dj_9*512)) + c_9)].astype("int32")*placeholder_148[(((di_9*1536) + (dj_9*512)) + c_9)].astype("int32"))) for ax1_27, ax2_28, ax3_30 in T.grid(14, 14, 512): DepthwiseConv2d_9[(((ax1_27*7168) + (ax2_28*512)) + ax3_30)] = (DepthwiseConv2d_9[(((ax1_27*7168) + (ax2_28*512)) + ax3_30)] + placeholder_149[ax3_30]) for i1_30, i2_40, i3_41 in T.grid(14, 14, 512): DepthwiseConv2d_9[(((i1_30*7168) + (i2_40*512)) + i3_41)] = T.q_multiply_shift(DepthwiseConv2d_9[(((i1_30*7168) + (i2_40*512)) + i3_41)], 1269068532, 31, -
4, dtype="int32") for i1_31, i2_41, i3_42 in T.grid(14, 14, 512): DepthwiseConv2d_9[(((i1_31*7168) + (i2_41*512)) + i3_42)] = T.max(T.max(DepthwiseConv2d_9[(((i1_31*7168) + (i2_41*512)) + i3_42)], 255), 0) for ax1_28, ax2_29, ax3_31 in T.grid(14, 14, 512): PaddedInput_22[(((ax1_28*7168) + (ax2_29*512)) + ax3_31)] = DepthwiseConv2d_9[(((ax1_28*7168) + (ax2_29*512)) + ax3_31)].astype("uint8") for ax1_29, ax2_30, ax3_32 in T.grid(14, 14, 512): T_cast_49[(((ax1_29*7168) + (ax2_30*512)) + ax3_32)] = PaddedInput_22[(((ax1_29*7168) + (ax2_30*512)) + ax3_32)].astype("int16") @T.prim_func def primfunc_local_allocates(placeholder_162: T.handle, placeholder_163: T.handle, placeholder_164: T.handle, T_cast_76: T.handle) -> None: T.func_attr({"global_symbol": "fused_nn_conv2d_add_cast_fixed_point_multiply_clip_cast_cast_9", "tir.noalias": True}) placeholder_165 = T.match_buffer(placeholder_162, [100352], dtype="int16", elem_offset=0, align=64, offset_factor=1) placeholder_166 = T.match_buffer(placeholder_163, [4608], dtype="int16", elem_offset=0, align=64, offset_factor=1) placeholder_167 = T.match_buffer(placeholder_164, [512], dtype="int32", elem_offset=0, align=64, offset_factor=1) T_cast_77 = T.match_buffer(T_cast_76, [100352], dtype="int16", elem_offset=0, align=64, offset_factor=1) sid_21 = T.allocate_const([0,1,2,3,4,5,6,7], "int8", [8]) PaddedInput_25 = T.decl_buffer([131072], "int16") for i1_35, i2_46, i3_47 in T.grid(16, 16, 512): PaddedInput_25[(((i1_35*8192) + (i2_46*512)) + i3_47)] = T.if_then_else(((((1 <= i1_35) and (i1_35 < 15)) and (1 <= i2_46)) and (i2_46 < 15)), placeholder_165[((((i1_35*7168) + (i2_46*512)) + i3_47) - 7680)], T.int16(0), dtype="int16") T_add_11 = T.decl_buffer([100352], "int32") with T.decl_buffer([100352], "int32") as DepthwiseConv2d_11: for i_11, j_11, c_11 in T.grid(14, 14, 512): DepthwiseConv2d_11[(((i_11*7168) + (j_11*512)) + c_11)] = 0 for di_11, dj_11 in
T.grid(3, 3): DepthwiseConv2d_11[(((i_11*7168) + (j_11*512)) + c_11)] = (DepthwiseConv2d_11[(((i_11*7168) + (j_11*512)) + c_11)] + (PaddedInput_25[(((((i_11*8192) + (di_11*8192)) + (j_11*512)) + (dj_11*512)) + c_11)].astype("int32")*placeholder_166[(((di_11*1536) + (dj_11*512)) + c_11)].astype("int32"))) for ax1_44, ax2_45, ax3_47 in T.grid(14, 14, 512): T_add_11[(((ax1_44*7168) + (ax2_45*512)) + ax3_47)] = (DepthwiseConv2d_11[(((ax1_44*7168) + (ax2_45*512)) + ax3_47)] + placeholder_167[ax3_47]) compute_22 = T.decl_buffer([100352], "int32") with T.decl_buffer([100352], "int32") as T_cast_78: for ax1_45, ax2_46, ax3_48 in T.grid(14, 14, 512): T_cast_78[(((ax1_45*7168) + (ax2_46*512)) + ax3_48)] = T_add_11[(((ax1_45*7168) + (ax2_46*512)) + ax3_48)] for i1_36, i2_47, i3_48 in T.grid(14, 14, 512): compute_22[(((i1_36*7168) + (i2_47*512)) + i3_48)] = T.q_multiply_shift(T_cast_78[(((i1_36*7168) + (i2_47*512)) + i3_48)], 1948805937, 31, -5, dtype="int32") T_cast_79 = T.decl_buffer([100352], "uint8") with T.decl_buffer([100352], "int32") as compute_23: for i1_37, i2_48, i3_49 in T.grid(14, 14, 512): compute_23[(((i1_37*7168) + (i2_48*512)) + i3_49)] = T.max(T.max(compute_22[(((i1_37*7168) + (i2_48*512)) + i3_49)], 255), 0) for ax1_46, ax2_47, ax3_49 in T.grid(14, 14, 512): T_cast_79[(((ax1_46*7168) + (ax2_47*512)) + ax3_49)] = compute_23[(((ax1_46*7168) + (ax2_47*512)) + ax3_49)].astype("uint8") for ax1_47, ax2_48, ax3_50 in T.grid(14, 14, 512): T_cast_77[(((ax1_47*7168) + (ax2_48*512)) + ax3_50)] = T_cast_79[(((ax1_47*7168) + (ax2_48*512)) + ax3_50)].astype("int16") @pytest.mark.parametrize("alignment,size,consts", [(1, 663552, 0), (10, 663560, 0)]) def test_global_allocates(alignment, size, consts): primfunc = primfunc_global_allocates assert tvm.tir.analysis.calculate_constant_bytes(primfunc, alignment) == consts assert tvm.tir.analysis.calculate_workspace_bytes
(primfunc, alignment) == size @pytest.mark.parametrize("alignment,size,consts", [(1, 1566720, 8), (100, 1567100, 100)]) def test_local_allocates(alignment, size, consts): primfunc = primfunc_local_allocates assert tvm.tir.analysis.calculate_constant_bytes(primfunc, alignment) == consts assert tvm.tir.analysis.calculate_workspace_bytes(primfunc, alignment) == size if __name__ == "__main__": test_global_allocates() test_local_allocates()
import tvm from tvm
import tir from tvm.script
import tir as T @T.prim_func def buffer_load_store_func(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128), "float32") B = T.match_buffer(b, (128, 128), "float32") C = T.alloc_buffer((128, 128), "float32") D = T.alloc_buffer((128, 128), "float32") for ii, jj in T.grid(128, 128): with T.block(): i, j = T.axis.remap("SS", [ii, jj]) A[i, j] = T.float32(0) for i0, j0, k0 in T.grid(32, 32, 32): with T.block(): i, j, k = T.axis.remap("SSR", [i0, j0, k0]) with T.init(): for ii, jj in T.grid(4, 4): B[i * 4 + ii, j * 4 + jj] = A[i * 4 + ii, j * 4 + jj] for ii, jj in T.grid(4, 4): for kk in range(0, 4): B[i * 4 + ii, j * 4 + jj] += C[i * 4 + ii, k * 4 + kk] for kk in range(0, 4): B[i * 4 + ii, j * 4 + jj] += ( D[j * 4 + jj, k * 4 + kk] * C[i * 4 + ii, k * 4 + kk] ) @T.prim_func def buffer_opaque_access(b: T.handle, c: T.handle) -> None: B = T.match_buffer(b, [16, 16], "float32") C = T.match_buffer(c, [16, 16], "float32") with T.block(): T.reads([]) T.writes(B[0:16, 0:16]) A = T.decl_buffer([256], "float32") for i, j in T.grid(16, 16): A[i * 16 + j] = 1 for i in range(0, 16): for j in range(0, 16): T.evaluate(A[i * 16 + j]) for j in range(0, 16): T.evaluate(T.tvm_fill_fragment(B.data, 16, 16, 16, 0, T.float32(0), dtype="handle")) for i, j in T.grid(16, 16): with T.block(): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] @T.prim_func def lca_is_func_root(a: T.handle) -> None: A = T.match_buffer(a, [0, 0], "float32") A[0, 0] = 1.0 @T.prim_func def match_buffer_func(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128), "float32") B = T.match_buffer(b, (128, 12
8), "float32") for i, j in T.grid(8, 8): with T.block("block"): vi, vj = T.axis.remap("SS", [i, j]) T.reads(B[vi * 16 + 2 : vi * 16 + 12, vj * 16 + 2 : vj * 16 + 16]) T.writes(A[vi * 16 : vi * 16 + 16, vj * 16 : vj * 16 + 16]) B0 = T.match_buffer(B[vi * 16 + 2 : vi * 16 + 6, vj * 16 + 2 : vj * 16 + 6], (4, 4)) B1 = T.match_buffer(B[vi * 16 + 8 : vi * 16 + 12, vj * 16 + 8 : vj * 16 + 16], (4, 8)) for ii, jj in T.grid(16, 16): with T.block("AAA"): vii, vjj = T.axis.remap("SS", [ii, jj]) AA = T.match_buffer(A[vii, vjj], ()) AA[()] = 1.0 T.evaluate(B0.data) T.evaluate(B1.data) @T.prim_func def global_buffer_with_blockidx( a: T.Buffer[(1, 32), "int32"], b: T.Buffer[(1, 32), "int32"] ) -> None: for i0 in T.thread_binding(0, 1, thread="blockIdx.x"): for i1 in T.thread_binding(0, 32, thread="threadIdx.x"): with T.block("copy"): i, j = T.axis.remap("SS", [i0, i1]) T.reads(a[i, j]) T.writes(b[i, j]) b[i, j] = a[i, j] def test_buffer_load_store(): func = buffer_load_store_func A, B = [func.buffer_map[x] for x in func.params] C, D = func.body.block.alloc_buffers lca = tir.analysis.detect_buffer_access_lca(func) root_block = func.body.block assert lca[A] == func.body.block reduce_block = root_block.body[1].body.body.body.block assert lca[B] == reduce_block loop_jj = reduce_block.body.body assert lca[C] == loop_jj loop_kk = loop_jj.body[1] assert lca[D] == loop_kk def test_opaque_access(): func = buffer_opaque_access B, C = [func.buffer_map[x] for x in func.params] lca = tir.analysis.detect_buffer_access_lca(func) root_block = func.body.block assert lca[B] == func.body.block assert lca[C] == root_block.body[1].body.body.block def test_l
ca_func_root(): func = lca_is_func_root (A,) = [func.buffer_map[x] for x in func.params] lca = tir.analysis.detect_buffer_access_lca(func) assert lca[A] is None def test_match_buffer(): func = match_buffer_func A, B = [func.buffer_map[x] for x in func.params] lca = tir.analysis.detect_buffer_access_lca(func) root_block = func.body.block block = root_block.body.body.body.block block_inner = block.body[0].body.body.block assert lca[A] == block_inner assert lca[B] == block def test_global_buffer_with_blockidx(): func = global_buffer_with_blockidx A, B = [func.buffer_map[x] for x in func.params] lca = tir.analysis.detect_buffer_access_lca(func) root_block = func.body.block blockidx_loop = root_block.body assert lca[A] == blockidx_loop assert lca[B] == blockidx_loop if __name__ == "__main__": test_buffer_load_store() test_opaque_access() test_lca_func_root() test_match_buffer() test_global_buffer_with_blockidx()
import sys
import pytest
import tvm.testing from tvm.ir
import IRModule from tvm.meta_schedule.testing.te_workload
import create_te_workload from tvm.script
import tir as T from tvm.tir.analysis
import estimate_tir_flops @pytest.mark.parametrize( "workload, flops", [ ("C1D", 6291456), ("C2D", 236027904), ("C3D", 13217562624), ("CAP", 75497472), ("DEP", 7225344), ("DIL", 223552896), ("GMM", 4194304), ("GRP", 28901376), ("T2D", 268435456), ("CBR", 239239168), ("TBG", 25165824), ("NRM", 131072), ("SFM", 262144), ], ) def test_te_workload(workload, flops): te_workload = create_te_workload(workload, 0) mod = IRModule({"main": te_workload}) assert float(flops) == estimate_tir_flops(mod) @T.prim_func def flops_with_let(a: T.Buffer[16, "float32"]): for i in range(8): j = i + 8 a[j] = a[i] def test_flops_with_let(): flops = estimate_tir_flops(IRModule({"main": flops_with_let})) assert flops == 8 @T.prim_func def flops_with_if(a: T.Buffer[16, "float32"], b: T.Buffer[16, "float32"]): for i in range(16): if i % 2 == 0: a[i] = b[i] else: if i % 3 == 0: a[i] = b[i - 1] + b[i - 2] def test_flops_with_if(): flops = estimate_tir_flops(IRModule({"main": flops_with_if})) assert flops == 16 if __name__ == "__main__": tvm.testing.main()
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm import te def test_equal_expr(): x = te.var("x") y = te.var("y") def func1(): return x + y + 1 def func2(): return te.exp(tvm.tir.truncdiv((x + y + 1) * y, 4)) assert tvm.tir.analysis.expr_deep_equal(func1(), func1()) assert tvm.tir.analysis.expr_deep_equal(func2(), func2()) assert not tvm.tir.analysis.expr_deep_equal(func2(), func1()) if __name__ == "__main__": test_equal_expr()
import pytest
import tvm from tvm
import tir from tvm.script
import tir as T from tvm.ir
import Range @T.prim_func def func() -> None: A = T.alloc_buffer((128, 128), "float32") B = T.alloc_buffer((128, 128), "float32") C = T.alloc_buffer((128, 128), "float32") D = T.alloc_buffer((128, 128), "float32") with T.block(): T.reads([B[0, 0], C[0:16, 0:16], A[4:12, 4:12]]) T.writes([A[0:12, 0:12]]) for i, j in T.grid(8, 8): A[i, j] = B[0, 0] + C[0, 0] for i, j in T.grid(2, 2): with T.block(): vi, vj = T.axis.remap("SS", [i, j]) T.reads([A[vi * 4 + 4 : vi * 4 + 8, vj * 4 + 4 : vj * 4 + 8], C[12:16, 12:16]]) T.writes([A[vi * 4 + 4 : vi * 4 + 8, vj * 4 + 4 : vj * 4 + 8]]) for i, j in T.grid(4, 4): A[vi * 4 + 4 + i, vj * 4 + 4 + j] += C[i + 12, j + 12] T.evaluate(D.data) @T.prim_func def match_buffer_func() -> None: with T.block("root"): A = T.alloc_buffer((128, 128), "float32") B = T.alloc_buffer((128, 128), "float32") T.reads([]) T.writes([]) for i, j in T.grid(8, 8): with T.block("block"): vi, vj = T.axis.remap("SS", [i, j]) T.reads(B[vi * 16 + 2 : vi * 16 + 12, vj * 16 + 2 : vj * 16 + 16]) T.writes(A[vi * 16 : vi * 16 + 16, vj * 16 : vj * 16 + 16]) AA = T.match_buffer(A[vi * 16 : vi * 16 + 16, vj * 16 : vj * 16 + 16], (16, 16)) B0 = T.match_buffer(B[vi * 16 + 2 : vi * 16 + 6, vj * 16 + 2 : vj * 16 + 6], (4, 4)) B1 = T.match_buffer( B[vi * 16 + 8 : vi * 16 + 12, vj * 16 + 8 : vj * 16 + 16], (4, 8) ) for ii, jj in T.grid(16, 16): with T.block("AAA"): vii, vjj = T.axis.remap("SS", [ii, jj]) T.reads([]) T.writes(AA[vii, vjj]) AAA = T.match_buffer(AA[vii, vjj], ()) AAA[()] = 1.0
T.evaluate(B0.data) T.evaluate(B1.data) @T.prim_func def opaque_block_func() -> None: with T.block("root"): A = T.alloc_buffer((16, 16), "float32") B = T.alloc_buffer((16, 16), "float32") T.reads([]) T.writes([]) for i in range(0, 16): with T.block(): T.reads(A[i, 0:16]) T.writes([B[i, 0:16]]) for j in range(0, 16): with T.block(): T.reads(A[i, j]) T.writes(B[i, j]) B[i, j] = A[i, j] + 1.0 @T.prim_func def opaque_access_func() -> None: A = T.alloc_buffer([1024]) B = T.alloc_buffer([1024]) for i in T.serial(0, 8): with T.block(): v = T.axis.S(8, i) T.reads([A[v * 128 : v * 128 + 128]]) T.writes([B[v * 128 : v * 128 + 128]]) T.evaluate( T.call_extern("test", B.data, v * 128, 128, A.data, v * 128, 128, dtype="float32") ) @T.prim_func def opaque_access_with_tvm_access_ptr_func() -> None: A = T.alloc_buffer([1024]) B = T.alloc_buffer([1024]) C = T.alloc_buffer([1024]) with T.block("opaque"): T.reads(A[0:1024], C[0:1024]) T.writes(B[0:1024], C[0:1024]) T.evaluate(A.access_ptr("r")) T.evaluate(B.access_ptr("w")) T.evaluate(C.access_ptr("rw")) @T.prim_func def access_in_if_then_else_func() -> None: A = T.alloc_buffer([8]) B = T.alloc_buffer([8]) with T.block(): T.reads([A[0:5]]) T.writes([B[0:8]]) for i in T.serial(0, 8): B[i] = T.if_then_else(i < 5, A[i], 0.0, dtype="float32") @T.prim_func def access_in_branch_func() -> None: A = T.alloc_buffer([8]) B = T.alloc_buffer([8]) with T.block(): T.reads([A[0:7]]) T.writes([B[0:8]]) for i in T.serial(0, 8): if i < 5: B[i] = A[i] + 1.0 else: B[i] = A[i - 1]
@T.prim_func def gemm() -> None: A = T.alloc_buffer([16, 16], "float32") B = T.alloc_buffer([16, 16], "float32") C = T.alloc_buffer([16, 16], "float32") for i, j, k, ii, jj in T.grid(4, 4, 16, 4, 4): with T.block("update"): vi = T.axis.S(16, i * 4 + ii) vj = T.axis.S(16, j * 4 + jj) vk = T.axis.R(16, k) T.reads(A[vi, vk], B[vj, vk]) T.writes(C[vi, vj]) with T.init(): C[vi, vj] = 0 C[vi, vj] += A[vi, vk] * B[vj, vk] @T.prim_func def decomposed_gemm() -> None: A = T.alloc_buffer([16, 16], "float32") B = T.alloc_buffer([16, 16], "float32") C = T.alloc_buffer([16, 16], "float32") for i, j in T.grid(4, 4): for ii, jj in T.grid(4, 4): with T.block("init"): vi = T.axis.S(16, i * 4 + ii) vj = T.axis.S(16, j * 4 + jj) T.reads([]) T.writes(C[vi, vj]) C[vi, vj] = 0 for k, ii, jj in T.grid(16, 4, 4): with T.block("update"): vi = T.axis.S(16, i * 4 + ii) vj = T.axis.S(16, j * 4 + jj) vk = T.axis.R(16, k) T.reads(C[vi, vj], A[vi, vk], B[vj, vk]) T.writes(C[vi, vj]) C[vi, vj] += A[vi, vk] * B[vj, vk] @T.prim_func def access_of_padding_pattern() -> None: X = T.alloc_buffer([28, 28]) X_pad = T.alloc_buffer([32, 32]) Y = T.alloc_buffer([28, 28]) for i, j in T.grid(32, 32): with T.block("padding"): vi, vj = T.axis.remap("SS", [i, j]) T.reads([X[vi - 2, vj - 2]]) T.writes([X_pad[vi, vj]]) X_pad[vi, vj] = T.if_then_else( 2 <= vi and vi < 30 and 2 <= vj and vj < 30, X[vi - 2, vj - 2], 0.0, dtype="float32" ) with T.block("padding_reverse"): vi, vj = T.axis.remap("SS", [i, j]) T.reads([X_pad[vi, vj]]) T.writes([Y[vi - 2, vj - 2]])
if 2 <= vi and vi < 30 and 2 <= vj and vj < 30: Y[vi - 2, vj - 2] = X_pad[vi, vj] def test_block_access_region_detector(): block = func.body.block.body.block alloc_buffers = func.body.block.alloc_buffers buffer_var_map = {buf.data: buf for buf in alloc_buffers} ret = tir.analysis.get_block_access_region(block, buffer_var_map) tvm.ir.assert_structural_equal(block.reads, ret[0]) tvm.ir.assert_structural_equal(block.writes, ret[1]) D = alloc_buffers[-1] tvm.ir.assert_structural_equal( [tvm.tir.BufferRegion(D, [Range(0, 128), Range(0, 128)])], ret[2] ) def test_opaque_block(): alloc_buffers = opaque_block_func.body.block.alloc_buffers buffer_var_map = {buf.data: buf for buf in alloc_buffers} block0 = opaque_block_func.body.block.body.body.block ret = tir.analysis.get_block_access_region(block0, buffer_var_map) tvm.ir.assert_structural_equal(block0.reads, ret[0]) tvm.ir.assert_structural_equal(block0.writes, ret[1]) block1 = block0.body.body.block ret = tir.analysis.get_block_access_region(block1, buffer_var_map) tvm.ir.assert_structural_equal(block1.reads, ret[0]) tvm.ir.assert_structural_equal(block1.writes, ret[1]) def test_opaque_access(): block = opaque_access_func.body.block.body.body.block alloc_buffers = opaque_access_func.body.block.alloc_buffers buffer_var_map = {buf.data: buf for buf in alloc_buffers} ret0 = tir.analysis.get_block_read_write_region(block, buffer_var_map) ret1 = tir.analysis.get_block_access_region(block, buffer_var_map) with pytest.raises(ValueError): tvm.ir.assert_structural_equal(ret0[0], ret1[0]) with pytest.raises(ValueError): tvm.ir.assert_structural_equal(ret0[1], ret1[1]) def test_opaque_access_with_tvm_access_ptr(): block = opaque_access_with_tvm_access_ptr_func.body.block.body.block alloc_buffers = opaque_access_with_tvm_access_ptr_func.body.block.alloc_buffers buffer_var_map = {buf.data: buf for buf in alloc_buffer
s} ret0 = tir.analysis.get_block_read_write_region(block, buffer_var_map) ret1 = tir.analysis.get_block_access_region(block, buffer_var_map) tvm.ir.assert_structural_equal(block.reads, ret0[0]) tvm.ir.assert_structural_equal(block.writes, ret0[1]) with pytest.raises(ValueError): tvm.ir.assert_structural_equal(ret0[0], ret1[0]) with pytest.raises(ValueError): tvm.ir.assert_structural_equal(ret0[1], ret1[1]) def test_match_buffer(): root_block = match_buffer_func.body.block block = root_block.body.body.body.block block_inner = block.body[0].body.body.block alloc_buffers = match_buffer_func.body.block.alloc_buffers buffer_var_map = {buf.data: buf for buf in alloc_buffers} ret = tir.analysis.get_block_access_region(block, buffer_var_map) tvm.ir.assert_structural_equal(block.writes, ret[1]) tvm.ir.assert_structural_equal(block.reads, ret[2]) ret = tir.analysis.get_block_access_region(block_inner, buffer_var_map) tvm.ir.assert_structural_equal([], ret[1]) for match_buffer in block.match_buffers: target_buffer = match_buffer.buffer buffer_var_map[target_buffer.data] = target_buffer ret = tir.analysis.get_block_access_region(block_inner, buffer_var_map) tvm.ir.assert_structural_equal(block_inner.reads, ret[0]) tvm.ir.assert_structural_equal(block_inner.writes, ret[1]) def test_access_in_if_then_else_func(): block = access_in_if_then_else_func.body.block.body.block alloc_buffers = access_in_if_then_else_func.body.block.alloc_buffers buffer_var_map = {buf.data: buf for buf in alloc_buffers} ret0 = tir.analysis.get_block_read_write_region(block, buffer_var_map) ret1 = tir.analysis.get_block_access_region(block, buffer_var_map) tvm.ir.assert_structural_equal(ret0[0], ret1[0]) tvm.ir.assert_structural_equal(ret0[1], ret1[1]) def test_access_in_branch_func(): block = access_in_branch_func.body.block.body.block alloc_buffers = access_in_branch_fun
c.body.block.alloc_buffers buffer_var_map = {buf.data: buf for buf in alloc_buffers} ret0 = tir.analysis.get_block_read_write_region(block, buffer_var_map) ret1 = tir.analysis.get_block_access_region(block, buffer_var_map) tvm.ir.assert_structural_equal(ret0[0], ret1[0]) tvm.ir.assert_structural_equal(ret0[1], ret1[1]) def test_access_of_padding_pattern(): s = tvm.tir.schedule.Schedule(access_of_padding_pattern) alloc_buffers = s.get_sref(s.get_block("root")).stmt.alloc_buffers buffer_var_map = {buf.data: buf for buf in alloc_buffers} def do_compare_buffer_region(region, expect): assert region.buffer == expect.buffer analyzer = tvm.arith.Analyzer() for observed_range, expected_range in zip(region.region, expect.region): analyzer.can_prove_equal(observed_range.min, expected_range.min) analyzer.can_prove_equal(observed_range.extent, expected_range.extent) def do_check_block(block_name): block = s.get_sref(s.get_block(block_name)).stmt expect_reads = block.reads expect_writes = block.writes ret = tir.analysis.get_block_access_region(block, buffer_var_map) for i, read in enumerate(ret[0]): do_compare_buffer_region(read, expect_reads[i]) for i, write in enumerate(ret[1]): do_compare_buffer_region(write, expect_writes[i]) do_check_block("padding") do_check_block("padding_reverse") def test_access_of_reduction(): block = gemm.body.block.body.body.body.body.body.body.block alloc_buffers = gemm.body.block.alloc_buffers buffer_var_map = {buf.data: buf for buf in alloc_buffers} ret = tir.analysis.get_block_access_region(block, buffer_var_map) tvm.ir.assert_structural_equal(block.reads, ret[0]) tvm.ir.assert_structural_equal(block.writes, ret[1]) def test_access_of_decompose_reduction(): init = decomposed_gemm.body.block.body.body.body[0].body.body.block update = decomposed_gemm.body.block.body.body.body[1].body.body.bo
dy.block alloc_buffers = decomposed_gemm.body.block.alloc_buffers buffer_var_map = {buf.data: buf for buf in alloc_buffers} for block in [init, update]: ret = tir.analysis.get_block_access_region(block, buffer_var_map) tvm.ir.assert_structural_equal(block.reads, ret[0]) tvm.ir.assert_structural_equal(block.writes, ret[1]) if __name__ == "__main__": test_block_access_region_detector() test_opaque_block() test_opaque_access() test_opaque_access_with_tvm_access_ptr() test_match_buffer() test_access_in_if_then_else_func() test_access_in_branch_func() test_access_of_padding_pattern() test_access_of_reduction() test_access_of_decompose_reduction()
import pytest
import tvm from tvm.script
import tir as T @T.prim_func def bad_load(A: T.Buffer[(2, 3), "float32"], B: T.Buffer[(3, 2), "float32"]): B[0, 0] = A[2, 2] @T.prim_func def bad_load_loop(A: T.Buffer[(2, 3), "float32"], B: T.Buffer[(3, 2), "float32"]): for i in range(3): B[i, 0] = A[i, 2] @T.prim_func def bad_store(A: T.Buffer[(2, 3), "float32"], B: T.Buffer[(3, 2), "float32"]): B[0, 3] = A[1, 2] @T.prim_func def bad_store_loop(A: T.Buffer[(2, 3), "float32"], B: T.Buffer[(3, 2), "float32"]): for i in range(3): B[0, i] = A[1, i] @T.prim_func def unknown_bounds(A: T.Buffer[(2, 3), "float32"], B: T.Buffer[(3, 2), "float32"]): N = T.var("int32") for i in range(3): B[0, N] = A[1, i] def test_oob_load(): with pytest.raises(tvm.tir.ScheduleError) as err: tvm.tir.analysis.OOBChecker()(tvm.IRModule.from_expr(bad_load)) assert "buffer A" in err.value.args[0] with pytest.raises(tvm.tir.ScheduleError) as err: tvm.tir.analysis.OOBChecker()(tvm.IRModule.from_expr(bad_load_loop)) assert "buffer A" in err.value.args[0] def test_oob_store(): with pytest.raises(tvm.tir.ScheduleError) as err: tvm.tir.analysis.OOBChecker()(tvm.IRModule.from_expr(bad_store)) assert "buffer B" in err.value.args[0] with pytest.raises(tvm.tir.ScheduleError) as err: tvm.tir.analysis.OOBChecker()(tvm.IRModule.from_expr(bad_store_loop)) assert "buffer B" in err.value.args[0] def test_unknown_bounds(): tvm.tir.analysis.OOBChecker()(tvm.IRModule.from_expr(unknown_bounds)) if __name__ == "__main__": tvm.testing.main()
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest import tvm from tvm import te, topi from tvm.meta_schedule.testing.te_workload import conv2d_winograd_nhwc, matmul from tvm.tir.analysis import find_anchor_block def test_matmul_add(): n = m = k = 128 A, B, C = matmul(n, m, k) mod = tvm.IRModule() mod["main"] = te.create_prim_func([A, B, C + A]) block = find_anchor_block(mod) assert block.name_hint == "C" def test_winograd(): mod = tvm.IRModule() mod["main"] = te.create_prim_func(conv2d_winograd_nhwc(1, 14, 14, 128, 128, 6)) block = find_anchor_block(mod) assert block.name_hint == "bgemm" def test_no_anchor_block(): inp = te.placeholder((10,), name="input") out = topi.nn.relu(inp + 1.0) mod = tvm.IRModule() mod["main"] = te.create_prim_func([inp, out]) assert find_anchor_block(mod) is None if __name__ == "__main__": pytest.main([__file__])
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest import tvm from tvm import te @pytest.mark.xfail def test_loop_dependent_allocate(): N = te.size_var("N") A = te.placeholder((2 * N,), "float32", "A") C = te.compute((N,), lambda i: A[2 * i] + A[i + 1], name="C") s = te.create_schedule(C.op) AA = s.cache_read(A, "local", [C]) s[AA].compute_at(s[C], s[C].op.axis[0]) # this line should fail due to IRUseDefAnalysis sees an allocate statement # referencing undefined variable tvm.lower(s, [A, C]) if __name__ == "__main__": test_loop_dependent_allocate()
"""Test gpu code verifier"""
import tvm from tvm
import te from tvm
import topi
import tvm.testing
import tvm.topi.testing def get_verify_pass(valid, **kwargs): def _fverify(f, *_): valid[0] = tvm.tir.analysis.verify_gpu_code(f, kwargs) return f return tvm.tir.transform.prim_func_pass(_fverify, opt_level=0) @tvm.testing.requires_gpu def test_shared_memory(): def check_shared_memory(storage_scope, dtype): N = 1024 M = 128 tvm_type = tvm.runtime.DataType(dtype) type_size = tvm_type.bits A = te.placeholder((N,), name="A", dtype=dtype) B = te.compute((N,), lambda i: A[i], name="B") s = te.create_schedule([B.op]) AA = s.cache_read(A, storage_scope, [B]) o, i = s[B].split(s[B].op.axis[0], M) s[AA].compute_at(s[B], o) s[B].bind(o, te.thread_axis("blockIdx.x")) s[B].bind(i, te.thread_axis("threadIdx.x")) for target in ["opencl", "cuda"]: if not tvm.testing.device_enabled(target): continue valid = [None] with tvm.transform.PassContext( config={ "tir.add_lower_pass": [ ( 2, get_verify_pass( valid, max_shared_memory_per_block=type_size * M - 1, max_threads_per_block=M, ), ) ] } ): tvm.build(s, [A, B], target) assert not valid[0] with tvm.transform.PassContext( config={ "tir.add_lower_pass": [ ( 2, get_verify_pass( valid, max_shared_memory_per_block=type_size * M, max_threads_per_block=M, ), )
] } ): tvm.build(s, [A, B], target) assert valid[0] check_shared_memory("shared", "float32") check_shared_memory("shared", "int8x4") check_shared_memory("shared.dyn", "float32") @tvm.testing.requires_gpu def test_local_memory(): N = 1024 M = 128 A = te.placeholder((N,), name="A", dtype="float32") B = te.compute((N,), lambda i: A[i], name="B") s = te.create_schedule([B.op]) AA = s.cache_read(A, "local", [B]) o, i = s[B].split(s[B].op.axis[0], M) s[AA].compute_at(s[B], o) s[B].bind(o, te.thread_axis("blockIdx.x")) for target in ["opencl", "cuda"]: if not tvm.testing.device_enabled(target): continue valid = [None] with tvm.transform.PassContext( config={ "tir.add_lower_pass": [ ( 2, get_verify_pass( valid, max_local_memory_per_block=4 * M - 1, max_threads_per_block=1 ), ) ] } ): tvm.build(s, [A, B], target) assert not valid[0] with tvm.transform.PassContext( config={ "tir.add_lower_pass": [ ( 2, get_verify_pass( valid, max_local_memory_per_block=4 * M, max_threads_per_block=1 ), ) ] } ): tvm.build(s, [A, B], target) assert valid[0] @tvm.testing.requires_gpu def test_num_thread(): N = 1024 M = 128 A = te.placeholder((N,), name="A", dtype="float32") B = te.compute((N,), lambda i: A[i], name="B") s = te.create_schedule([B.op]) o, i = s[B].split(s[B].op.axis[0], M) s[B].bind(o, te.thread_axis("threadIdx.x")) s[B].bind(i, te.thread_axis("threadIdx.y")) for
target in ["opencl", "cuda"]: if not tvm.testing.device_enabled(target): continue valid = [None] with tvm.transform.PassContext( config={ "tir.add_lower_pass": [ ( 2, get_verify_pass( valid, max_shared_memory_per_block=0, max_threads_per_block=N - 1 ), ) ] } ): tvm.build(s, [A, B], target) assert not valid[0] with tvm.transform.PassContext( config={ "tir.add_lower_pass": [ ( 2, get_verify_pass( valid, max_shared_memory_per_block=0, max_threads_per_block=N ), ) ] } ): tvm.build(s, [A, B], target) assert valid[0] with tvm.transform.PassContext( config={ "tir.add_lower_pass": [ ( 2, get_verify_pass( valid, max_shared_memory_per_block=0, max_threads_per_block=N, max_thread_y=M - 1, ), ) ] } ): tvm.build(s, [A, B], target) assert not valid[0] with tvm.transform.PassContext( config={ "tir.add_lower_pass": [ ( 2, get_verify_pass( valid, max_shared_memory_per_block=0, max_threads_per_block=N, max_thread_y=M, ), ) ] } ): t
vm.build(s, [A, B], target) assert valid[0] @tvm.testing.requires_gpu def test_multiple_kernels(): N = 1024 A = te.placeholder((N, N), name="A") B = te.compute((N, N), lambda i, j: A[i, j]) C = te.compute((N, N), lambda i, j: B[i, j]) s = te.create_schedule([C.op]) s[C].bind(s[C].op.axis[1], te.thread_axis("threadIdx.x")) s[B].bind(s[B].op.axis[1], te.thread_axis("threadIdx.x")) for target in ["opencl", "cuda"]: if not tvm.testing.device_enabled(target): continue valid = [None] with tvm.transform.PassContext( config={ "tir.add_lower_pass": [ ( 2, get_verify_pass( valid, max_shared_memory_per_block=0, max_threads_per_block=N - 1 ), ) ] } ): tvm.build(s, [A, C], target) assert not valid[0] with tvm.transform.PassContext( config={ "tir.add_lower_pass": [ ( 2, get_verify_pass( valid, max_shared_memory_per_block=0, max_threads_per_block=N ), ) ] } ): tvm.build(s, [A, C], target) assert valid[0] @tvm.testing.requires_gpu def test_wrong_bind(): N = 1024 A = te.placeholder((N, N - 1), name="A") B = te.compute((N, N - 1), lambda i, j: A[i, j]) s = te.create_schedule([B.op]) s[B].bind(s[B].op.axis[0], te.thread_axis("threadIdx.x")) s[B].bind(s[B].op.axis[1], te.thread_axis("threadIdx.x")) for target in ["opencl", "cuda"]: if not tvm.testing.device_enabled(target): continue valid = [None] with tvm.transform.PassContext( config={ "tir.add_lower_pass": [(2, get_verify_pass(valid, max
_threads_per_block=N * N))] } ): tvm.build(s, [A, B], target) assert not valid[0] @tvm.testing.requires_gpu def test_vectorize(): N = 1024 A = te.placeholder((N, N), name="A") B = te.compute((N, N), lambda i, j: A[i, j]) s = te.create_schedule([B.op]) i, j = s[B].op.axis s[B].bind(i, te.thread_axis("blockIdx.x")) jo, ji = s[B].split(j, factor=64) s[B].bind(jo, te.thread_axis("threadIdx.x")) s[B].vectorize(ji) for target in ["opencl", "cuda"]: if not tvm.testing.device_enabled(target): continue valid = [None] with tvm.transform.PassContext( config={"tir.add_lower_pass": [(2, get_verify_pass(valid, max_vector_bytes=16))]} ): tvm.lower(s, [A, B]) assert not valid[0] @tvm.testing.requires_gpu def test_vectorize_half(): N = 1024 A = te.placeholder((N, N), name="A", dtype="float16") B = te.compute((N, N), lambda i, j: A[i, j]) s = te.create_schedule([B.op]) i, j = s[B].op.axis s[B].bind(i, te.thread_axis("blockIdx.x")) jo, ji = s[B].split(j, factor=8) s[B].bind(jo, te.thread_axis("threadIdx.x")) s[B].vectorize(ji) for target in ["opencl", "cuda"]: if not tvm.testing.device_enabled(target): continue valid = [None] with tvm.transform.PassContext( config={"tir.add_lower_pass": [(2, get_verify_pass(valid, max_vector_bytes=16))]} ): tvm.lower(s, [A, B]) assert valid[0] @tvm.testing.requires_gpu def test_vectorize_strided(): N = 1024 A = te.placeholder((N, N), name="A", dtype="float16") B = te.compute((N, N), lambda i, j: A[j, i]) s = te.create_schedule([B.op]) i, j = s[B].op.axis s[B].bind(i, te.thread_axis("blockIdx.x")) jo, ji = s[B].split(j, factor=8) s[B].vectorize(ji) for target in ["opencl", "cuda"]: if not tvm.testing.device_enabled(target): continue valid = [None
] with tvm.transform.PassContext( config={"tir.add_lower_pass": [(2, get_verify_pass(valid, max_vector_bytes=16))]} ): tvm.lower(s, [A, B]) assert not valid[0] @tvm.testing.requires_gpu def test_vthread(): N = 1024 A = te.placeholder((N, 16), name="A") B = te.compute((N, 16), lambda i, j: A[i, j]) s = te.create_schedule([B.op]) s[B].bind(s[B].op.axis[0], te.thread_axis("blockIdx.x")) s[B].bind(s[B].op.axis[1], te.thread_axis("vthread")) for target in ["opencl", "cuda"]: if not tvm.testing.device_enabled(target): continue valid = [None] for phase in [1, 2]: with tvm.transform.PassContext( config={"tir.add_lower_pass": [(phase, get_verify_pass(valid, max_vthread=16))]} ): tvm.build(s, [A, B], target) assert valid[0] with tvm.transform.PassContext( config={"tir.add_lower_pass": [(phase, get_verify_pass(valid, max_vthread=15))]} ): tvm.build(s, [A, B], target) assert not valid[0] @tvm.testing.requires_gpu def test_redundant_kernels(): dtype = "float32" A = te.placeholder(shape=(1,), name="A", dtype=dtype) B = te.placeholder(shape=(1,), name="B", dtype=dtype) C = te.placeholder(shape=(1,), name="C", dtype=dtype) D = topi.less(A, C) E = topi.less(B, C) F = topi.logical_or(D, E) G = topi.identity(F) for target in ["opencl", "cuda"]: if not tvm.testing.device_enabled(target): continue print("Running on target: %s" % target) valid = [None] with tvm.target.Target(target): s = tvm.topi.testing.get_reduce_schedule(target)(G) with tvm.transform.PassContext( config={"tir.add_lower_pass": [(2, get_verify_pass(valid, max_kernels=1))]} ): tvm.build(s, [A, B, C, G], target) assert valid[0] if __name__ == "__main__": tvm.testing.ma
in()
import tvm
import pytest from tvm
import te
import tvm.testing gpu_devices = ["cuda", "opencl", "metal", "vulkan"] other_devices = ["llvm", "ext_dev"] @tvm.testing.uses_gpu def test_verify_memory_all_bind(): n = te.var("n") A = te.placeholder((n,), name="A") B = te.compute(A.shape, lambda i: A[i] + 1.0, name="B") s = te.create_schedule(B.op) bx, tx = s[B].split(B.op.axis[0], factor=64) s[B].bind(bx, te.thread_axis("blockIdx.x")) s[B].bind(tx, te.thread_axis("threadIdx.x")) mod = tvm.lower(s, [A, B]) for dev_type in gpu_devices + other_devices: if tvm.testing.device_enabled(dev_type): binded_mod = tvm.tir.transform.Apply( lambda f: f.with_attr("target", tvm.target.Target(dev_type)) )(mod) tvm.tir.transform.VerifyMemory()(binded_mod) @tvm.testing.uses_gpu def test_verify_memory_not_bind(): n = te.var("n") A = te.placeholder((n,), name="A") B = te.compute(A.shape, lambda i: A[i] + 1.0, name="B") s = te.create_schedule(B.op) mod = tvm.lower(s, [A, B]) for dev_type in gpu_devices: if tvm.testing.device_enabled(dev_type): binded_mod = tvm.tir.transform.Apply( lambda f: f.with_attr("target", tvm.target.Target(dev_type)) )(mod) with pytest.raises(RuntimeError): tvm.tir.transform.VerifyMemory()(binded_mod) for dev_type in other_devices: if tvm.testing.device_enabled(dev_type): binded_mod = tvm.tir.transform.Apply( lambda f: f.with_attr("target", tvm.target.Target(dev_type)) )(mod) tvm.tir.transform.VerifyMemory()(binded_mod) @tvm.testing.uses_gpu def test_verify_memory_partially_bind(): n = te.var("n") A = te.placeholder((n,), name="A") B = te.compute(A.shape, lambda i: A[i] + 1.0, name="B") C = te.compute(B.shape, lambda i: B[i] + 2.0, name="C") D = te.compute(C.shape, lambda i: C[i] + 2.0, name="D") s = te.create_schedule([B.op, C.op, D.op])