text
stringlengths
1
2.05k
import tvm from tvm
import te
import tvm.testing
import re target = "opencl" @tvm.testing.requires_gpu @tvm.testing.requires_opencl def test_opencl_ternary_expression(): def check_if_then_else(dev, n, dtype): A = te.placeholder((n,), name="A", dtype=dtype) true_value = tvm.tir.const(1, dtype=dtype) false_value = tvm.tir.const(3, dtype=dtype) max_lhs = tvm.tir.const(2, dtype=dtype) max_rhs = tvm.tir.if_then_else(A[0] > 0, true_value, false_value) C = te.compute((n,), lambda i: tvm.te.max(max_lhs, max_rhs), name="C") s = te.create_schedule(C.op) s[C].bind(s[C].op.axis[0], te.thread_axis("threadIdx.x")) fun = tvm.build(s, [A, C], target) a = tvm.nd.empty((n,), A.dtype, dev) c = tvm.nd.empty((n,), A.dtype, dev) fun(a, c) def check_select(dev, n, dtype): A = te.placeholder((n,), name="A", dtype=dtype) true_value = tvm.tir.const(1, dtype=dtype) false_value = tvm.tir.const(3, dtype=dtype) max_lhs = tvm.tir.const(2, dtype=dtype) max_rhs = tvm.tir.Select(A[0] > 0, true_value, false_value) C = te.compute((n,), lambda i: tvm.te.max(max_lhs, max_rhs), name="C") s = te.create_schedule(C.op) s[C].bind(s[C].op.axis[0], te.thread_axis("threadIdx.x")) fun = tvm.build(s, [A, C], target) a = tvm.nd.empty((n,), A.dtype, dev) c = tvm.nd.empty((n,), A.dtype, dev) fun(a, c) dev = tvm.device(target, 0) check_if_then_else(dev, 1, "int8") check_if_then_else(dev, 1, "uint8") check_if_then_else(dev, 1, "int16") check_if_then_else(dev, 1, "uint16") check_select(dev, 1, "int8") check_select(dev, 1, "uint8") check_select(dev, 1, "int16") check_select(dev, 1, "uint16") @tvm.testing.requires_gpu @tvm.testing.requires_opencl def test_opencl_inf_nan(): def check_inf_nan(dev, n, value, dtype): A = te.placeholder((n,), name="A", dtype=dtype) inf_value = tvm.tir.const(value, dtype=dtype) C = te.compute((n,), lam
bda i: inf_value, name="C") s = te.create_schedule(C.op) s[C].bind(s[C].op.axis[0], te.thread_axis("threadIdx.x")) fun = tvm.build(s, [A, C], target) a = tvm.nd.empty((n,), A.dtype, dev) c = tvm.nd.empty((n,), A.dtype, dev) fun(a, c) dev = tvm.device(target, 0) check_inf_nan(dev, 1, -float("inf"), "float32") check_inf_nan(dev, 1, -float("inf"), "float64") check_inf_nan(dev, 1, float("inf"), "float32") check_inf_nan(dev, 1, float("inf"), "float64") check_inf_nan(dev, 1, float("nan"), "float32") check_inf_nan(dev, 1, float("nan"), "float64") @tvm.testing.requires_gpu @tvm.testing.requires_opencl def test_opencl_max(): def check_max(dev, n, dtype): A = te.placeholder((n,), name="A", dtype=dtype) max_lhs = A[0] + tvm.tir.const(1, dtype=dtype) max_rhs = tvm.tir.const(0, dtype=dtype) C = te.compute((n,), lambda i: tvm.te.max(max_lhs, max_rhs), name="C") s = te.create_schedule(C.op) s[C].bind(s[C].op.axis[0], te.thread_axis("threadIdx.x")) fun = tvm.build(s, [A, C], target) a = tvm.nd.empty((n,), A.dtype, dev) c = tvm.nd.empty((n,), A.dtype, dev) fun(a, c) dev = tvm.device(target, 0) check_max(dev, 1, "int8") check_max(dev, 1, "uint8") check_max(dev, 1, "int16") check_max(dev, 1, "uint16") check_max(dev, 1, "float32") check_max(dev, 1, "float64") def test_opencl_erf(): def check_erf(dev, n, dtype): A = te.placeholder((n,), name="A", dtype=dtype) C = te.compute(A.shape, lambda *i: te.erf(A(*i)), name="C") s = te.create_schedule(C.op) s[C].bind(s[C].op.axis[0], te.thread_axis("threadIdx.x")) fun = tvm.build(s, [A, C], target) source_str = fun.imported_modules[0].get_source() matches = re.findall("erf", source_str) error_matches = re.findall("erff", source_str) assert len(matches) == 1 and len(error_matches) == 0 dev = tvm.device(ta
rget, 0) check_erf(dev, 1, "float32") check_erf(dev, 1, "float64") @tvm.testing.requires_gpu @tvm.testing.requires_opencl def test_opencl_type_casting(): def check_type_casting(ctx, n, dtype): block_size = 4 C = te.compute( (n,), lambda i: tvm.tir.Select( tvm.tir.all( *[ i i % block_size == tvm.tir.const(3, "int32"), ] ), tvm.tir.const(1, dtype), tvm.tir.const(0, dtype), ), name="C", ) s = te.create_schedule(C.op) (tx, vx) = s[C].split(s[C].op.axis[0], factor=block_size) s[C].vectorize(vx) thrx = te.thread_axis("threadIdx.x") s[C].bind(tx, thrx) fun = tvm.build(s, [C], target) c = tvm.nd.empty((n,), dtype, ctx) assembly = fun.imported_modules[0].get_source() false_branch = "((float4)(0.000000e+00f, 0.000000e+00f, 0.000000e+00f, 0.000000e+00f))" true_branch = "((float4)(1.000000e+00f, 1.000000e+00f, 1.000000e+00f, 1.000000e+00f))" lcond = "(convert_uint4(((uint4)((((int)get_local_id(0)) == 3), (((int)get_local_id(0)) == 3), (((int)get_local_id(0)) == 3), (((int)get_local_id(0)) == 3)))))" rcond = "(convert_uint4((((int4)((0)+(1*0), (0)+(1*1), (0)+(1*2), (0)+(1*3))) == ((int4)(3, 3, 3, 3)))))" cond = "({} && {})".format(lcond, rcond) select = "select({}, {}, {})".format(false_branch, true_branch, cond) count = assembly.count(select) assert count == 1 fun(c) dev = tvm.device(target, 0) check_type_casting(dev, 16, "float32") if __name__ == "__main__": test_opencl_ternary_expression() test_opencl_inf_nan() test_opencl_max() test_opencl_erf() test_opencl_type_casting()
import tvm
import tvm.testing from tvm
import te
import numpy as np
import unittest tx = te.thread_axis("threadIdx.x") ty = te.thread_axis("threadIdx.y") bx = te.thread_axis("blockIdx.x") by = te.thread_axis("blockIdx.y") @tvm.testing.requires_rocm def test_rocm_cross_thread_reduction(): n = te.size_var("n") m = te.size_var("m") A = te.placeholder((n, m), name="A") k = te.reduce_axis((0, m), "k") B = te.compute((n,), lambda i: te.sum(A[i, k], axis=k), name="B") s = te.create_schedule(B.op) ko, ki = s[B].split(B.op.reduce_axis[0], factor=16) BF = s.rfactor(B, ki) xo, xi = s[B].split(s[B].op.axis[0], factor=32) s[B].bind(xo, bx) s[B].bind(xi, ty) s[B].bind(s[B].op.reduce_axis[0], tx) s[BF].compute_at(s[B], s[B].op.reduce_axis[0]) s[B].set_store_predicate(tx.var.equal(0)) frocm = tvm.build(s, [A, B], "rocm") nn = 128 dev = tvm.rocm(0) a = tvm.nd.array(np.random.uniform(size=(nn, nn)).astype(A.dtype), dev) b = tvm.nd.array(np.zeros(nn, dtype=B.dtype), dev) frocm(a, b) tvm.testing.assert_allclose(b.numpy(), np.sum(a.numpy(), axis=1), rtol=1e-4) @tvm.testing.requires_rocm def test_rocm_inf_nan(): def check_inf_nan(dev, n, value, dtype): A = te.placeholder((n,), name="A", dtype=dtype) inf_value = tvm.tir.const(value, dtype=dtype) C = te.compute((n,), lambda i: inf_value, name="C") s = te.create_schedule(C.op) s[C].bind(s[C].op.axis[0], tx) fun = tvm.build(s, [A, C], "rocm") a = tvm.nd.empty((n,), A.dtype, dev) c = tvm.nd.empty((n,), A.dtype, dev) fun(a, c) dev = tvm.rocm(0) check_inf_nan(dev, 1, -float("inf"), "float32") check_inf_nan(dev, 1, -float("inf"), "float64") check_inf_nan(dev, 1, float("inf"), "float32") check_inf_nan(dev, 1, float("inf"), "float64") check_inf_nan(dev, 1, float("nan"), "float32") check_inf_nan(dev, 1, float("nan"), "float64") @tvm.testing.requires_rocm def test_rocm_reduction_binding(): k = te.reduce_axis((0, 32), "k") A = te.placeholder((96, 3
2), name="A") B = te.compute((96,), lambda m: te.sum(A[m, k], axis=k), name="B") s = te.create_schedule(B.op) s[B].reorder(B.op.reduce_axis[0], B.op.axis[0]) mo, _ = s[B].split(B.op.axis[0], 32) s[B].bind(mo, bx) @tvm.testing.requires_rocm def test_rocm_copy(): def check_rocm(dtype, n): A = te.placeholder((n,), name="A", dtype=dtype) dev = tvm.rocm(0) a_np = np.random.uniform(size=(n,)).astype(A.dtype) a = tvm.nd.empty((n,), A.dtype, dev).copyfrom(a_np) b_np = a.numpy() tvm.testing.assert_allclose(a_np, b_np) tvm.testing.assert_allclose(a_np, a.numpy()) for _ in range(100): dtype = np.random.choice(["float32", "float16", "int8", "int32"]) logN = np.random.randint(1, 15) peturb = np.random.uniform(low=0.5, high=1.5) check_rocm(dtype, int(peturb * (2**logN))) @tvm.testing.requires_rocm def test_rocm_vectorize_add(): num_thread = 8 def check_rocm(dtype, n, lanes): A = te.placeholder((n,), name="A", dtype="%sx%d" % (dtype, lanes)) B = te.compute((n,), lambda i: A[i] + tvm.tir.const(1, A.dtype), name="B") s = te.create_schedule(B.op) xo, xi = s[B].split(B.op.axis[0], factor=num_thread) s[B].bind(xo, bx) s[B].bind(xi, tx) fun = tvm.build(s, [A, B], "rocm") dev = tvm.rocm(0) a = tvm.nd.empty((n,), A.dtype, dev).copyfrom(np.random.uniform(size=(n, lanes))) c = tvm.nd.empty((n,), B.dtype, dev) fun(a, c) tvm.testing.assert_allclose(c.numpy(), a.numpy() + 1) check_rocm("float32", 64, 2) check_rocm("float16", 64, 2) if __name__ == "__main__": test_rocm_cross_thread_reduction() test_rocm_inf_nan() test_rocm_reduction_binding() test_rocm_copy() test_rocm_vectorize_add()
import tvm from tvm
import te
import ctypes
import numpy as np def test_static_callback(): dtype = "int64" n = te.size_var("n") Ab = tvm.tir.decl_buffer((n,), dtype) i = te.size_var("i") ib = tvm.tir.ir_builder.create() A = ib.buffer_ptr(Ab) cp = te.thread_axis((0, 1), "cop") finit = tvm.tir.StringImm("TVMBackendRunOnce") ib.scope_attr(cp, "coproc_uop_scope", finit) with ib.for_range(0, n, "i", kind="parallel") as i: A[i] = A[i] + 1 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([Ab], stmt).with_attr("global_symbol", "ramp")) f = tvm.driver.build(mod, target="llvm") a = tvm.nd.array(np.zeros(10, dtype=dtype)) f(a) f(a) np.testing.assert_equal(a.numpy(), np.ones(a.shape[0])) def test_static_init(): dtype = "int64" n = te.size_var("n") Ab = tvm.tir.decl_buffer((n,), dtype) i = te.size_var("i") ib = tvm.tir.ir_builder.create() handle = tvm.tir.call_intrin("handle", "tir.tvm_static_handle") ib.emit(tvm.tir.call_packed("test_static_callback", handle, Ab)) @tvm.register_func("test_static_callback") def test_cb(sh, A): assert isinstance(sh, ctypes.c_void_p) return sh stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([Ab], stmt).with_attr("global_symbol", "ramp")) f = tvm.driver.build(mod, target="llvm") a = tvm.nd.array(np.zeros(10, dtype=dtype)) f(a) if __name__ == "__main__": test_static_callback() test_static_init()
import tvm
import tvm.testing from tvm
import te
import numpy as np def run_jit(fapi, check): for target in ["llvm", "stackvm"]: if not tvm.testing.device_enabled(target): continue f = tvm.driver.build(fapi, target=target) s = f.get_source() check(f) def test_stack_vm_basic(): a = tvm.nd.array(np.zeros(10, dtype="float32")) @tvm.register_func def tvm_call_back_get_shape(shape0): print(shape0) assert shape0 == a.shape[0] n = te.size_var("n") Ab = tvm.tir.decl_buffer((n,), "float32") stmt = tvm.tir.Evaluate(tvm.tir.call_packed("tvm_call_back_get_shape", Ab.shape[0])) mod = tvm.IRModule.from_expr( tvm.tir.PrimFunc([Ab], stmt).with_attr("global_symbol", "print_shape") ) run_jit(mod, lambda f: f(a)) @tvm.register_func def tvm_stack_vm_print(*x): print(x) def test_stack_vm_loop(): dtype = "int64" n = te.size_var("n") Ab = tvm.tir.decl_buffer((n,), dtype) i = te.size_var("i") ib = tvm.tir.ir_builder.create() A = ib.buffer_ptr(Ab) with ib.for_range(0, n - 1, "i") as i: A[i + 1] = A[i] + 1 ib.emit(tvm.tir.call_packed("tvm_stack_vm_print", i)) stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([Ab], stmt).with_attr("global_symbol", "ramp")) a = tvm.nd.array(np.zeros(10, dtype=dtype)) def check(f): f(a) np.testing.assert_equal(a.numpy(), np.arange(a.shape[0])) run_jit(mod, check) def test_stack_vm_cond(): dtype = "int64" n = te.size_var("n") Ab = tvm.tir.decl_buffer((n,), dtype) ib = tvm.tir.ir_builder.create() A = ib.buffer_ptr(Ab) with ib.for_range(0, n - 1, "i") as i: with ib.if_scope(tvm.tir.EQ(i, 4)): A[i + 1] = A[i] + 1 with ib.else_scope(): A[i + 1] = A[i] + 2 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([Ab], stmt).with_attr("global_symbol", "test")) def check(f): a = tvm.nd.array(np.zeros(10, dtype=dtype)) f(a) y = np.arange(a.s
hape[0]) * 2 y[5:] -= 1 np.testing.assert_equal(a.numpy(), y) run_jit(mod, check) def test_vm_parallel(): dtype = "int64" n = te.size_var("n") Ab = tvm.tir.decl_buffer((n,), dtype) i = te.size_var("i") ib = tvm.tir.ir_builder.create() A = ib.buffer_ptr(Ab) with ib.for_range(0, n, "i", kind="parallel") as i: A[i] = A[i] + 1 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([Ab], stmt).with_attr("global_symbol", "test")) def check(f): a = tvm.nd.array(np.zeros(10, dtype=dtype)) f(a) np.testing.assert_equal(a.numpy(), np.ones(a.shape[0])) run_jit(mod, check) if __name__ == "__main__": test_vm_parallel() test_stack_vm_loop() test_stack_vm_basic() test_stack_vm_cond()
import os from posixpath
import split
import random
import re
import threading
import numpy as np
import pytest
import tvm
import tvm.testing from tvm
import relay, te from tvm.topi.math
import cast dtype = tvm.testing.parameter("float32", "int32", "float16", "int8") fuzz_seed = tvm.testing.parameter(range(25)) @tvm.testing.parametrize_targets( " ".join( [ "vulkan", "-supports_int8=1", "-supports_8bit_buffer=1", "-supports_storage_buffer_storage_class=1", "-supports_float16=1", "-supports_16bit_buffer=1", ] ) ) def test_vector_comparison(target, dtype): n = (1024,) A = te.placeholder(n, dtype=dtype, name="A") B = te.compute( A.shape, lambda i: tvm.tir.Select( A[i] >= 0, A[i] + tvm.tir.const(1, dtype), tvm.tir.const(0, dtype) ), name="B", ) s = te.create_schedule(B.op) (bx, tx) = s[B].split(s[B].op.axis[0], factor=128) (tx, vx) = s[B].split(tx, factor=4) s[B].bind(bx, te.thread_axis("blockIdx.x")) s[B].bind(tx, te.thread_axis("threadIdx.x")) s[B].vectorize(vx) f = tvm.build(s, [A, B], target) assembly = f.imported_modules[0].get_source() matches = re.findall("%v4bool = OpTypeVector %bool 4", assembly) assert len(matches) == 1 matches = re.findall("OpSelect %v4.*", assembly) assert len(matches) == 1 def test_array_copy(dev, dtype, fuzz_seed): np.random.seed(fuzz_seed) log_arr_size = np.random.uniform(low=np.log(1), high=np.log(32768)) arr_size = np.exp(log_arr_size).astype(int) a_np = np.random.uniform(size=(arr_size,)).astype(dtype) a = tvm.nd.empty((arr_size,), dtype, dev).copyfrom(a_np) b_np = a.numpy() tvm.testing.assert_allclose(a_np, b_np) tvm.testing.assert_allclose(a_np, a.numpy()) @tvm.testing.exclude_targets("llvm") def test_array_vectorize_add(target, dev, dtype): arr_size = 64 lanes = 2 if "opencl" in target and dtype == "float16": pytest.xfail("Opencl target does not support float16") num_thread = 8 A = te.placeholder((arr_size,), name="A", dtype="%sx%d" % (dtype, lanes)) B = te.compute((arr_size,)
, lambda i: A[i] + tvm.tir.const(1, A.dtype), name="B") s = te.create_schedule(B.op) xo, xi = s[B].split(B.op.axis[0], factor=num_thread) s[B].bind(xo, te.thread_axis("blockIdx.x")) s[B].bind(xi, te.thread_axis("threadIdx.x")) fun = tvm.build(s, [A, B], target) a = tvm.nd.empty((arr_size,), A.dtype, dev).copyfrom(np.random.uniform(size=(arr_size, lanes))) c = tvm.nd.empty((arr_size,), B.dtype, dev) fun(a, c) tvm.testing.assert_allclose(c.numpy(), a.numpy() + 1) @tvm.testing.parametrize_targets("vulkan") @pytest.mark.skip("Flaky, https: def test_vulkan_stress(target, dev): """ Launch a randomized test with multiple kernels per stream, multiple uses of kernels per stream, over multiple threads. """ n = 1024 num_thread = 64 def run_stress(): def worker(): A = te.placeholder((n,), name="A", dtype="float32") B = te.placeholder((n,), name="B", dtype="float32") functions = [ ( lambda: te.compute((n,), lambda i: 2 * A[i] + 3 * B[i]), lambda a, b: 2 * a + 3 * b, ), (lambda: te.compute((n,), lambda i: A[i] + B[i]), lambda a, b: a + b), (lambda: te.compute((n,), lambda i: A[i] + 2 * B[i]), lambda a, b: a + 2 * b), ] def build_f(f_ref): (C_f, ref) = f_ref C = C_f() s = te.create_schedule(C.op) xo, xi = s[C].split(C.op.axis[0], factor=num_thread) s[C].bind(xo, te.thread_axis("blockIdx.x")) s[C].bind(xi, te.thread_axis("threadIdx.x")) fun = tvm.build(s, [A, B, C], target) return (fun, ref) fs = [ build_f(random.choice(functions)) for _ in range(np.random.randint(low=1, high=10)) ] a = tvm.nd.empty((n,), A.dtype, dev).copyfrom(np.random.uniform(size=(n,))) b = tvm.nd.empty((n,), B.dtype, dev).copyfrom(
np.random.uniform(size=(n,))) cs = [tvm.nd.empty((n,), A.dtype, dev) for _ in fs] for ((f, _), c) in zip(fs, cs): f(a, b, c) for ((_, ref), c) in zip(fs, cs): tvm.testing.assert_allclose(c.numpy(), ref(a.numpy(), b.numpy())) ts = [threading.Thread(target=worker) for _ in range(np.random.randint(1, 10))] for t in ts: t.start() for t in ts: t.join() run_stress() @tvm.testing.exclude_targets("llvm") def test_vulkan_bool_load(target, dev): arr_size = 1024 target = tvm.target.Target(target) if target.kind.name == "vulkan": supports_int8_buffer = target.attrs.get("supports_int8", False) and target.attrs.get( "supports_8bit_buffer", False ) if not supports_int8_buffer: pytest.xfail( "Vulkan target does not support int8 buffer access, used to transfer booleans" ) def do_copy(A, B, n): ib = tvm.tir.ir_builder.create() A = ib.buffer_ptr(A) B = ib.buffer_ptr(B) tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") max_threads = 32 ib.scope_attr(bx, "thread_extent", tvm.tir.indexdiv(n + max_threads - 1, max_threads)) ib.scope_attr(tx, "thread_extent", max_threads) tid = bx * max_threads + tx with ib.if_scope(tid < n): B[tid] = cast(A[tid], "int32") return ib.get() A = te.placeholder((arr_size,), name="A", dtype="bool") B = te.placeholder((arr_size,), name="B", dtype="int32") B = te.extern( A.shape, [A], lambda ins, outs: do_copy(ins[0], outs[0], arr_size), name="bool_copy_ir", dtype="int32", ) s = te.create_schedule(B.op) with tvm.transform.PassContext(opt_level=3): func = tvm.build(s, [A, B], target) a_np = np.random.uniform(size=arr_size) > 0.5 b_np = np.zeros((arr_size,), dtype="int32") a = tvm.nd.array(
a_np, dev) b = tvm.nd.array(b_np, dev) func(a, b) ref = a_np.astype(np.int32) tvm.testing.assert_allclose(b.numpy(), ref) def check_mod(target, dev, mod, x_np, res_np): res = relay.create_executor("vm", mod=mod, device=dev, target=target).evaluate()(x_np).numpy() tvm.testing.assert_allclose(res, res_np, atol=1e-5) def test_sqrt(target, dev): dtype = "float32" x = relay.var("x", shape=(relay.Any(),), dtype=dtype) mod = tvm.IRModule() mod["main"] = relay.Function([x], relay.sqrt(x)) x_np = np.random.uniform(size=(10,)).astype(dtype) res_np = np.sqrt(x_np) check_mod(target, dev, mod, x_np, res_np) def test_argsort(target, dev): dtype = "int32" x = relay.var("x", shape=(relay.Any(),), dtype=dtype) mod = tvm.IRModule() mod["main"] = relay.Function([x], relay.argsort(x)) x_np = np.random.randint(0, high=10, size=(10,)).astype(dtype) res_np = np.argsort(x_np) check_mod(target, dev, mod, x_np, res_np) def test_cumsum(target, dev): dtype = "int32" x = relay.var("x", shape=(relay.Any(),), dtype=dtype) mod = tvm.IRModule() mod["main"] = relay.Function([x], relay.cumsum(x)) x_np = np.random.randint(0, high=10, size=(10,)).astype(dtype) res_np = np.cumsum(x_np) check_mod(target, dev, mod, x_np, res_np) @tvm.testing.skip_if_wheel_test def test_unique(target, dev): dtype = "int32" x = relay.var("x", shape=(relay.Any(),), dtype=dtype) mod = tvm.IRModule() [unique, _, _, num_unique] = relay.unique(x, is_sorted=True) mod["main"] = relay.Function([x], relay.op.strided_slice(unique, begin=[0], end=num_unique)) x_np = np.random.randint(0, high=10, size=(10,)).astype(dtype) res_np = np.unique(x_np) check_mod(target, dev, mod, x_np, res_np) vulkan_parameter_impl = tvm.testing.parameter("push_constants", "ubo") vulkan_parameter_dtype = tvm.testing.parameter("int32", "float32", "int64") @tvm.testing.parametrize_targets("vulkan -from_device=0") def test_vulkan_constant
_passing(target, dev, vulkan_parameter_impl, vulkan_parameter_dtype): target = tvm.target.Target(target) dtype = vulkan_parameter_dtype if not target.attrs.get("supports_int64", False): pytest.xfail("Vulkan target does not support Int64 variables") if vulkan_parameter_impl == "push_constants": num_int_params = 1 else: max_push_constants_size = int(target.attrs.get("max_push_constants_size", 128)) max_int_params_in_push = max_push_constants_size num_int_params = max_int_params_in_push + 1 n = te.var("n") scalars = [te.var("scale{}".format(i), dtype=dtype) for i in range(num_int_params)] scalar_sum = scalars[0] for s in scalars[1:]: scalar_sum += s A = te.placeholder((n,), name="A", dtype=dtype) B = te.compute(A.shape, lambda i: scalar_sum + A[i], name="B") s = te.create_schedule(B.op) xo, xi = s[B].split(B.op.axis[0], factor=64) s[B].bind(xo, te.thread_axis("blockIdx.x")) s[B].bind(xi, te.thread_axis("threadIdx.x")) f_add = tvm.build(s, scalars + [A, B], target) n = 1024 scalars = np.array([1 for _ in scalars]).astype(dtype) a = tvm.nd.array(np.random.uniform(size=n).astype(A.dtype), dev) b = tvm.nd.array(np.zeros(n, dtype=B.dtype), dev) f_add(*scalars, a, b) tvm.testing.assert_allclose(a.numpy() + sum(scalars), b.numpy()) def test_vulkan_while_if(target, dev): target = tvm.target.Target(target) def do_compute(A, B, n): ib = tvm.tir.ir_builder.create() A = ib.buffer_ptr(A) B = ib.buffer_ptr(B) if "gpu" in target.keys: ib.scope_attr(te.thread_axis("blockIdx.x"), "thread_extent", 0) iterations = ib.allocate("int32", (1,), name="iterations", scope="local") iterations[0] = 0 B[0] = 0 loop_condition = iterations[0] < tvm.tir.if_then_else(A[0] > 0, 10, 20) with ib.while_loop(loop_condition):
iterations[0] += 1 B[0] += iterations[0] return ib.get() n = 1 dtype = "int32" A = te.placeholder((n,), name="A", dtype=dtype) B = te.extern( A.shape, [A], lambda ins, outs: do_compute(ins[0], outs[0], n), dtype=dtype, ) s = te.create_schedule(B.op) with tvm.transform.PassContext(opt_level=3): func = tvm.build(s, [A, B], target) a = tvm.nd.array(np.array([5], dtype=A.dtype), dev) b = tvm.nd.array(np.zeros(n, dtype=A.dtype), dev) func(a, b) tvm.testing.assert_allclose(b.numpy(), [55]) a = tvm.nd.array(np.array([-5], dtype=A.dtype), dev) b = tvm.nd.array(np.zeros(n, dtype=A.dtype), dev) func(a, b) tvm.testing.assert_allclose(b.numpy(), [210]) @tvm.testing.exclude_targets("llvm") def test_vulkan_local_threadidx(target, dev): def do_compute(A, B, n): ib = tvm.tir.ir_builder.create() A = ib.buffer_ptr(A) B = ib.buffer_ptr(B) tx = te.thread_axis("threadIdx.x") with ib.for_range(0, 1): ib.scope_attr(tx, "thread_extent", 16) B[tx + 0] = A[tx + 0] with ib.for_range(0, 1): ib.scope_attr(tx, "thread_extent", 16) B[tx + 16] = A[tx + 16] return ib.get() n = te.var("n") A = te.placeholder((n,), name="A", dtype="int32") B = te.placeholder((n,), name="B", dtype="int32") B = te.extern( A.shape, [A], lambda ins, outs: do_compute(ins[0], outs[0], n), dtype="int32", ) s = te.create_schedule(B.op) func = tvm.build(s, [A, B], target) n = 32 a_np = np.arange(n).astype(dtype=A.dtype) b_np = np.zeros((n,), dtype="int32") a = tvm.nd.array(a_np, dev) b = tvm.nd.array(b_np, dev) func(a, b) tvm.testing.assert_allclose(b.numpy(), a_np) class TestVectorizedIndices: load_type, store_type
= tvm.testing.parameters( ("ramp", "ramp"), ("broadcast", "ramp"), ("broadcast", "broadcast"), ) indirect_indices = tvm.testing.parameter(True, False, ids=["reorder", "no_reorder"]) @tvm.testing.fixture def ref_data(self, load_type, store_type, indirect_indices): n = 4 index_map = { "ramp": np.arange(n), "broadcast": np.zeros(n, dtype="int32"), } a_np = np.random.randint(np.iinfo("int32").max, size=n).astype("int32") b_np = np.zeros(shape=n, dtype=a_np.dtype) reorder_np = np.arange(n, dtype="int32")[::-1] load_index = index_map[load_type] store_index = index_map[store_type] if indirect_indices: load_index = reorder_np[load_index] b_np[store_index] = a_np[load_index] return a_np, reorder_np, b_np @tvm.testing.fixture def mod(self, target, load_type, store_type, indirect_indices): target = tvm.target.Target(target) n = 4 dtype = "int32" A = te.placeholder((n,), dtype=dtype, name="A") R = te.placeholder((n,), dtype=dtype, name="R") def do_compute(ins, outs): ib = tvm.tir.ir_builder.create() A, R = map(ib.buffer_ptr, ins) B = ib.buffer_ptr(outs[0]) if "gpu" in target.keys: ib.scope_attr(te.thread_axis("blockIdx.x"), "thread_extent", 0) index_map = { "ramp": tvm.tir.Ramp(0, 1, 4), "broadcast": tvm.tir.Broadcast(0, 4), } load_index = index_map[load_type] store_index = index_map[store_type] if indirect_indices: load_index = R[load_index] B[store_index] = A[load_index] return ib.get() B = te.extern(A.shape, [A, R], do_compute, dtype="int32") s = te.create_s
chedule(B.op) return tvm.lower(s, [A, R, B]) def test_ramp_broadcast_index(self, target, dev, mod, ref_data): f = tvm.build(mod, target=target) a_np, reorder_np, b_np = ref_data a = tvm.nd.array(a_np, dev) r = tvm.nd.array(reorder_np, dev) b = tvm.nd.array(np.zeros(shape=b_np.shape, dtype="int32"), dev) f(a, r, b) tvm.testing.assert_allclose(b.numpy(), b_np) @tvm.testing.parametrize_targets("vulkan -max_shared_memory_per_block=16384") def test_shared_mem_alloc(target, dev): alloc_nbytes = 16384 * 2 def do_compute(ins, outs): ib = tvm.tir.ir_builder.create() out = ib.buffer_ptr(outs[0]) ib.scope_attr(te.thread_axis("blockIdx.x"), "thread_extent", 0) array = ib.allocate("int32", (alloc_nbytes,), name="array", scope="shared") array[0] = 0 out[0] = array[0] return ib.get() Out = te.extern( shape=(1,), inputs=[], fcompute=do_compute, dtype="int32", ) s = te.create_schedule(Out.op) with pytest.raises(tvm.TVMError): tvm.build(s, [Out], target) if __name__ == "__main__": tvm.testing.main()
import numpy as np
import platform
import pytest
import re
import textwrap
import tvm from tvm
import te llvm_version = tvm.target.codegen.llvm_version_major() machine = platform.machine() if machine not in ["i386", "x86_64", "AMD64", "amd64"]: pytest.skip(f"Requires x86_64/i386, but machine is {machine}", allow_module_level=True) @tvm.testing.requires_llvm @pytest.mark.skipif(llvm_version < 6, reason=f"Requires LLVM 6+, got {llvm_version}") def test_fp16_to_fp32(): def fp16_to_fp32(target, width, match=None, not_match=None): elements = 64 n = tvm.runtime.convert(elements) A = te.placeholder((n, width), dtype="float16", name="A") B = te.compute(A.shape, lambda *i: A(*i).astype("float32"), name="B") s = te.create_schedule(B.op) s[B].vectorize(s[B].op.axis[1]) f = tvm.build(s, [A, B], target) assembly = f.get_source("asm").splitlines() if match: matches = [l for l in assembly if re.search(match, l)] assert matches if not_match: not_matches = [l for l in assembly if re.search(not_match, l)] assert not not_matches fp16_to_fp32("llvm -mcpu=skylake-avx512", 15, match="vcvtph2ps.*mm") fp16_to_fp32("llvm -mcpu=skylake-avx512", 16, match="vcvtph2ps.*mm") fp16_to_fp32("llvm -mcpu=skylake-avx512", 17, match="vcvtph2ps.*mm") fp16_to_fp32("llvm -mcpu=skylake-avx512", 49, match="vcvtph2ps.*mm") fp16_to_fp32("llvm -mcpu=skylake-avx512 -mattr=-avx512f", 49, match="vcvtph2ps.*mm") fp16_to_fp32("llvm -mcpu=skylake-avx512 -mattr=-f16c,-avx512f", 49, not_match="vcvtph2ps") fp16_to_fp32("llvm -mcpu=core-avx2", 8, match="vcvtph2ps.*mm") fp16_to_fp32("llvm -mcpu=core-avx2", 9, match="vcvtph2ps.*mm") fp16_to_fp32("llvm", 9, not_match="vcvtph2ps") is_32bit = platform.architecture()[0] == "32bit" @tvm.testing.requires_llvm @pytest.mark.skipif(is_32bit, reason=f"Fails in CI due to architecture mismatch in JIT") @pytest.mark.parametrize("feature_string", ["-sse2", "+sse2"]) def test_fp16_fp32_conversions(feature_string): relay_model = textwrap.dedent(
""" def @main(%inp : Tensor[(3), float32], %cst : Tensor[(3), float32]) { %1 = cast(%inp, dtype="float16"); %2 = cast(%cst, dtype="float16"); %3 = add(%1, %2); %4 = cast(%3, dtype="float32"); %4 } """ ) ir_mod = tvm.parser.fromtext(relay_model) arch = "i386" if machine == "i386" else "x86_64" aot_factory = tvm.relay.build( ir_mod, params={"cst": np.array([1.0, 2.0, 3.0], dtype="float32")}, target=f"llvm --mtriple={arch} --mattr={feature_string}", executor=tvm.relay.backend.Executor( "aot", {"interface-api": "packed", "unpacked-api": False} ), ) mod_name = aot_factory["list_module_names"]()[0] executor = aot_factory[mod_name] mod = executor(tvm.cpu(0)) inp = tvm.nd.array(np.array([1.1, 2.1, 3.1], dtype="float32"), device=tvm.cpu(0)) mod.get_function("set_input")(0, inp) mod.get_function("run")() out = mod.get_function("get_output")(0) expected = np.array([2.1, 4.1, 6.1], dtype="float32") np.testing.assert_allclose(out.asnumpy(), expected, rtol=1e-3) if __name__ == "__main__": test_fp16_to_fp32()
""" Tests to verify Python interactions with Target Parsing """
import pytest from tvm.target
import Target @pytest.mark.parametrize(["cpu_target"], [["c"], ["llvm"]]) def test_target_parser_mprofile(cpu_target): parsed_target = Target(f"{cpu_target} -mcpu=cortex-m55") assert len(parsed_target.keys) == 2 assert parsed_target.keys[0] == "arm_cpu" assert parsed_target.keys[1] == "cpu" assert parsed_target.features assert parsed_target.features.has_dsp assert parsed_target.features.has_mve @pytest.mark.parametrize(["cpu_target"], [["c"], ["llvm"]]) def test_target_parser_mprofile_no_mve(cpu_target): parsed_target = Target(f"{cpu_target} -mcpu=cortex-m7") assert len(parsed_target.keys) == 2 assert parsed_target.keys[0] == "arm_cpu" assert parsed_target.keys[1] == "cpu" assert parsed_target.features assert parsed_target.features.has_dsp assert not parsed_target.features.has_mve @pytest.mark.parametrize(["cpu_target"], [["c"], ["llvm"]]) def test_target_parser_mprofile_no_dsp(cpu_target): parsed_target = Target(f"{cpu_target} -mcpu=cortex-m3") assert len(parsed_target.keys) == 2 assert parsed_target.keys[0] == "arm_cpu" assert parsed_target.keys[1] == "cpu" assert parsed_target.features assert not parsed_target.features.has_dsp assert not parsed_target.features.has_mve @pytest.mark.parametrize(["cpu_target"], [["llvm"]]) def test_target_parser_mprofile_mattr(cpu_target): parsed_target = Target(f"{cpu_target} -mcpu=cortex-m55 -mattr=+nomve,+woof") assert len(parsed_target.keys) == 2 assert parsed_target.keys[0] == "arm_cpu" assert parsed_target.keys[1] == "cpu" assert parsed_target.features assert parsed_target.features.has_dsp assert not parsed_target.features.has_mve if __name__ == "__main__": tvm.testing.main()
import json
import pytest
import tvm
import tvm.testing from tvm.target
import Target, arm_cpu, bifrost, cuda, intel_graphics, mali, rocm, vta @tvm.target.generic_func def mygeneric(data): return data + 1 @mygeneric.register(["cuda", "gpu"]) def cuda_func(data): return data + 2 @mygeneric.register("rocm") def rocm_func(data): return data + 3 @mygeneric.register("cpu") def rocm_func(data): return data + 10 def test_all_targets_device_type_verify(): """Consistency verification for all targets' device type""" all_targets = [tvm.target.Target(t) for t in tvm.target.Target.list_kinds()] for tgt in all_targets: relay_to_tir = tgt.get_kind_attr("RelayToTIR") tir_to_runtime = tgt.get_kind_attr("TIRToRuntime") is_external_codegen = tgt.get_kind_attr("is_external_codegen") if relay_to_tir is not None or tir_to_runtime is not None or is_external_codegen: continue if tgt.kind.name not in tvm._ffi.runtime_ctypes.Device.STR2MASK: raise KeyError("Cannot find target kind: %s in Device.STR2MASK" % tgt.kind.name) assert ( tgt.get_target_device_type() == tvm._ffi.runtime_ctypes.Device.STR2MASK[tgt.kind.name] ) def test_target_dispatch(): with tvm.target.cuda(): assert mygeneric(1) == 3 assert mygeneric.get_packed_func()(1) == 3 with tvm.target.rocm(): assert mygeneric(1) == 4 assert mygeneric.get_packed_func()(1) == 4 with tvm.target.Target("cuda"): assert mygeneric(1) == 3 assert mygeneric.get_packed_func()(1) == 3 with tvm.target.arm_cpu(): assert mygeneric(1) == 11 assert mygeneric.get_packed_func()(1) == 11 with tvm.target.Target("metal"): assert mygeneric(1) == 3 assert mygeneric.get_packed_func()(1) == 3 assert tvm.target.Target.current() is None @tvm.target.override_native_generic_func("test_target_temp_strategy") def target_generic(data): return data + 1 @target_generic.register(["cuda", "gpu"]) def target_cuda_func(data): r
eturn data + 2 def temp_target_cuda_func(data): return data + 3 def test_target_temp_strategy():
class TempStrategy(object): def __init__(self, name, target, fstrategy): generic_fstrategy = tvm.target.get_native_generic_func(name) self.target = target self.name = name self.origin_func = {} with tvm.target.Target(target) as target_obj: for tgt_key in target_obj.keys: self.origin_func[tgt_key] = generic_fstrategy.get_packed_func() generic_fstrategy.register(fstrategy, tgt_key, allow_override=True) def __enter__(self): return self def __exit__(self, typ, value, traceback): generic_fstrategy = tvm.target.get_native_generic_func(self.name) with tvm.target.Target(self.target) as target_obj: for tgt_key in target_obj.keys: generic_fstrategy.register( self.origin_func[tgt_key], tgt_key, allow_override=True ) with tvm.target.Target("cuda"): assert target_generic(1) == 3 with TempStrategy("test_target_temp_strategy", "cuda", temp_target_cuda_func): with tvm.target.Target("cuda"): assert target_generic(1) == 4 with tvm.target.Target("cuda"): assert target_generic(1) == 3 def test_target_string_parse(): target = tvm.target.Target("cuda -model=unknown -libs=cublas,cudnn") assert target.kind.name == "cuda" assert target.model == "unknown" assert set(target.keys) == set(["cuda", "gpu"]) assert set(target.libs) == set(["cublas", "cudnn"]) assert str(target) == str(tvm.target.cuda(options="-libs=cublas,cudnn")) assert tvm.target.intel_graphics().device_name == "intel_graphics" assert tvm.target.mali().device_name == "mali" assert tvm.target.arm_cpu().device_name == "arm_cpu" def test_target_string_with_spaces(): target = tvm.target.Target( "vulkan -device_name='Name of GPU with spaces' -device_type=discrete" ) assert target.attrs["device_name"] == "Name of
GPU with spaces" assert target.attrs["device_type"] == "discrete" target = tvm.target.Target(str(target)) assert target.attrs["device_name"] == "Name of GPU with spaces" assert target.attrs["device_type"] == "discrete" def test_target_llvm_options(): target = tvm.target.Target("llvm -cl-opt='-unroll-threshold:uint=100,-unroll-count:uint=3'") assert sorted(target.attrs["cl-opt"]) == sorted( ["-unroll-threshold:uint=100", "-unroll-count:uint=3"] ) def test_target_create(): targets = [cuda(), rocm(), mali(), intel_graphics(), arm_cpu("rk3399"), vta(), bifrost()] for tgt in targets: assert tgt is not None def test_target_config(): """ Test that constructing a target from a dictionary works. """ target_config = { "kind": "llvm", "keys": ["arm_cpu", "cpu"], "device": "arm_cpu", "libs": ["cblas"], "mfloat-abi": "hard", "mattr": ["+neon", "-avx512f"], } target_config_str = json.dumps(target_config) for config in [target_config, target_config_str]: target = tvm.target.Target(config) assert target.kind.name == "llvm" assert all([key in target.keys for key in ["arm_cpu", "cpu"]]) assert target.device_name == "arm_cpu" assert target.libs == ["cblas"] assert target.attrs["mfloat-abi"] == "hard" assert all([attr in target.attrs["mattr"] for attr in ["+neon", "-avx512f"]]) def test_config_map(): """ Confirm that constructing a target with invalid attributes fails as expected. """ target_config = {"kind": "llvm", "libs": {"a": "b", "c": "d"}} with pytest.raises(ValueError): tvm.target.Target(target_config) def test_composite_target(): tgt = tvm.target.Target("composite --host=llvm --devices=cuda,opencl") assert tgt.kind.name == "composite" assert tgt.host.kind.name == "llvm" assert len(tgt.attrs["devices"]) == 2 cuda_device, opencl_device = tgt.attrs["devices"] assert cu
da_device.kind.name == "cuda" assert opencl_device.kind.name == "opencl" def test_target_tag_0(): tgt = tvm.target.Target("nvidia/geforce-rtx-2080-ti") assert tgt.kind.name == "cuda" assert tgt.attrs["arch"] == "sm_75" assert tgt.attrs["max_shared_memory_per_block"] == 49152 assert tgt.attrs["max_threads_per_block"] == 1024 assert tgt.attrs["thread_warp_size"] == 32 assert tgt.attrs["registers_per_block"] == 65536 def test_target_tag_1(): tgt = tvm.target.Target("nvidia/jetson-nano") assert tgt.kind.name == "cuda" assert tgt.attrs["arch"] == "sm_53" assert tgt.attrs["max_shared_memory_per_block"] == 49152 assert tgt.attrs["max_threads_per_block"] == 1024 assert tgt.attrs["thread_warp_size"] == 32 assert tgt.attrs["registers_per_block"] == 32768 def test_list_kinds(): targets = tvm.target.Target.list_kinds() assert len(targets) != 0 assert "llvm" in targets assert all(isinstance(target_name, str) for target_name in targets) def test_target_host_tags(): tgt = tvm.target.Target("nvidia/jetson-nano", "nvidia/geforce-rtx-2080-ti") assert tgt.kind.name == "cuda" assert tgt.attrs["arch"] == "sm_53" assert tgt.attrs["max_shared_memory_per_block"] == 49152 assert tgt.attrs["max_threads_per_block"] == 1024 assert tgt.attrs["thread_warp_size"] == 32 assert tgt.attrs["registers_per_block"] == 32768 assert tgt.host.kind.name == "cuda" assert tgt.host.attrs["arch"] == "sm_75" assert tgt.host.attrs["max_shared_memory_per_block"] == 49152 assert tgt.host.attrs["max_threads_per_block"] == 1024 assert tgt.host.attrs["thread_warp_size"] == 32 assert tgt.host.attrs["registers_per_block"] == 65536 def test_target_host_tag_dict(): tgt = tvm.target.Target("nvidia/jetson-nano", {"kind": "llvm"}) assert tgt.kind.name == "cuda" assert tgt.attrs["arch"] == "sm_53" assert tgt.attrs["max_shared_memory_per_block"] == 49152 assert tgt.attrs["max_threads_per_block"] == 1024 assert tgt.
attrs["thread_warp_size"] == 32 assert tgt.attrs["registers_per_block"] == 32768 assert tgt.host.kind.name == "llvm" def test_target_host_single_dict(): tgt = tvm.target.Target({"kind": "llvm", "host": "nvidia/jetson-nano"}) assert tgt.kind.name == "llvm" assert tgt.host.kind.name == "cuda" assert tgt.host.attrs["arch"] == "sm_53" assert tgt.host.attrs["max_shared_memory_per_block"] == 49152 assert tgt.host.attrs["max_threads_per_block"] == 1024 assert tgt.host.attrs["thread_warp_size"] == 32 assert tgt.host.attrs["registers_per_block"] == 32768 def test_target_host_single_string(): tgt = tvm.target.Target("cuda --host llvm") assert tgt.kind.name == "cuda" assert tgt.host.kind.name == "llvm" def test_target_host_single_string_with_tag(): tgt = tvm.target.Target("cuda --host nvidia/jetson-nano") assert tgt.kind.name == "cuda" assert tgt.host.kind.name == "cuda" assert tgt.host.attrs["arch"] == "sm_53" assert tgt.host.attrs["max_shared_memory_per_block"] == 49152 assert tgt.host.attrs["max_threads_per_block"] == 1024 assert tgt.host.attrs["thread_warp_size"] == 32 assert tgt.host.attrs["registers_per_block"] == 32768 def test_target_host_merge_0(): tgt = tvm.target.Target(tvm.target.Target("cuda --host nvidia/jetson-nano"), None) assert tgt.kind.name == "cuda" assert tgt.host.kind.name == "cuda" assert tgt.host.attrs["arch"] == "sm_53" assert tgt.host.attrs["max_shared_memory_per_block"] == 49152 assert tgt.host.attrs["max_threads_per_block"] == 1024 assert tgt.host.attrs["thread_warp_size"] == 32 assert tgt.host.attrs["registers_per_block"] == 32768 def test_target_host_merge_1(): tgt = tvm.target.Target("cuda --host llvm") tgt = tvm.target.Target(tgt, tgt.host) assert tgt.kind.name == "cuda" assert tgt.host.kind.name == "llvm" def test_target_host_merge_2(): """Test picking the same host is ok.""" tgt = tvm.target.Target(tvm.target.Target("cuda --host llvm"), tvm.
target.Target("llvm")) assert tgt.kind.name == "cuda" assert tgt.host.kind.name == "llvm" def test_target_tvm_object(): """Test creating Target by using TVM Objects""" String = tvm.runtime.container.String tgt = tvm.target.Target(target=String("cuda --host llvm")) assert tgt.kind.name == "cuda" assert tgt.host.kind.name == "llvm" tgt = tvm.target.Target(target=String("cuda"), host=String("llvm")) assert tgt.kind.name == "cuda" assert tgt.host.kind.name == "llvm" @pytest.mark.skip(reason="Causing infinite loop because of pytest and handle issue") def test_target_host_merge_3(): with pytest.raises(ValueError, match=r"target host has to be a string or dictionary."): tvm.target.Target(tvm.target.Target("cuda --host llvm"), 12.34) def test_target_with_host(): tgt = tvm.target.Target("cuda") llvm = tvm.target.Target("llvm") tgt = tgt.with_host(llvm) assert tgt.kind.name == "cuda" assert tgt.host.kind.name == "llvm" cuda_host = tvm.target.Target("nvidia/jetson-nano") tgt = tgt.with_host(cuda_host) assert tgt.host.kind.name == "cuda" assert tgt.host.attrs["arch"] == "sm_53" assert tgt.host.attrs["max_shared_memory_per_block"] == 49152 assert tgt.host.attrs["max_threads_per_block"] == 1024 assert tgt.host.attrs["thread_warp_size"] == 32 assert tgt.host.attrs["registers_per_block"] == 32768 def test_canon_target_and_host_0(): target = None host = None target, host = Target.canon_target_and_host(target, host) assert target is None assert host is None def test_canon_target_and_host_1(): target = None host = "llvm" with pytest.raises(AssertionError, match=r"Target host is not empty when target is empty."): target, host = Target.canon_target_and_host(target, host) def test_canon_target_and_host_2(): target = Target("cuda") host = Target("llvm") target, host = Target.canon_target_and_host(target, host) assert target.kind.name == "cuda" assert target.host.
kind.name == "llvm" def test_canon_target_and_host_3(): target = Target(target="cuda", host="llvm") host = None target, host = Target.canon_target_and_host(target, host) assert target.kind.name == "cuda" assert target.host.kind.name == "llvm" assert host.kind.name == "llvm" assert target.host == host def test_canon_multi_target_and_host_0(): with pytest.raises(AssertionError): Target.canon_multi_target_and_host(None) def test_canon_multi_target_and_host_1(): raw_targets = Target.canon_multi_target_and_host({"kind": "llvm"}) assert len(raw_targets) == 1 assert raw_targets[0].kind.name == "llvm" def test_canon_multi_target_and_host_2(): raw_targets = Target.canon_multi_target_and_host({1: "llvm", 2: "cuda"}) assert len(raw_targets) == 2 assert raw_targets[0].kind.name == "llvm" assert raw_targets[1].kind.name == "cuda" def test_canon_multi_target_and_host_3(): raw_targets = Target.canon_multi_target_and_host(["llvm", "cuda"]) assert len(raw_targets) == 2 assert raw_targets[0].kind.name == "llvm" assert raw_targets[1].kind.name == "cuda" def test_canon_multi_target_and_host_4(): raw_targets = Target.canon_multi_target_and_host("llvm") assert len(raw_targets) == 1 assert raw_targets[0].kind.name == "llvm" def test_canon_multi_target_and_host_5(): raw_targets = Target.canon_multi_target_and_host("cuda", "llvm") assert len(raw_targets) == 1 assert raw_targets[0].kind.name == "cuda" assert raw_targets[0].host.kind.name == "llvm" def test_canon_multi_target_and_host_6(): """Test `canon_target_and_host` by using TVM Objects""" cuda_device_type = tvm.device("cuda").device_type target = {cuda_device_type: Target(target="cuda", host="llvm")} host = None raw_targets_1 = Target.canon_multi_target_and_host(target, host) assert len(raw_targets_1) == 1 assert raw_targets_1[0].kind.name == "cuda" assert raw_targets_1[0].host.kind.name == "llvm" target = {cuda_device_ty
pe: Target(tvm.runtime.container.String("cuda"))} host = Target(tvm.runtime.container.String("llvm")) target = tvm.runtime.convert(target) assert isinstance(target, tvm.ir.container.Map) raw_targets_2 = Target.canon_multi_target_and_host(target, host) assert len(raw_targets_2) == 1 assert raw_targets_2[0].kind.name == "cuda" assert raw_targets_2[0].host.kind.name == "llvm" def test_canon_target_map_and_host(): target_map = {"cuda": "cuda_module", "llvm": "cpu_module"} target_map, host = Target.canon_target_map_and_host(target_map, "llvm") assert host.kind.name == "llvm" for t, v in target_map.items(): assert t.host.kind.name == "llvm" if t.kind.name == "cuda": assert v == "cuda_module" elif t.kind.name == "llvm": assert v == "cpu_module" else: assert False def test_target_attr_bool_value(): target0 = Target("vulkan --supports_float16=True") assert target0.attrs["supports_float16"] == 1 target1 = Target("vulkan --supports_float16=true") assert target1.attrs["supports_float16"] == 1 target2 = Target("vulkan --supports_float16=False") assert target2.attrs["supports_float16"] == 0 target3 = Target("vulkan --supports_float16=false") assert target3.attrs["supports_float16"] == 0 def test_target_features(): target_no_features = Target("cuda") assert target_no_features.features assert not target_no_features.features.is_test target_with_features = Target("test") assert target_with_features.features.is_test assert not target_with_features.features.is_missing if __name__ == "__main__": tvm.testing.main()
import sys
import numpy as np
import pytest
import tvm
import tvm.testing from tvm
import autotvm from tvm
import te from tvm.topi
import testing from tvm.topi.utils
import get_const_tuple, simplify from tvm.topi
import nn def compute_plus_one_rank3(shape): X = te.placeholder(shape, name="X", dtype="float32") Y = te.compute(shape, lambda i, j, k: X[i, j, k] + 1, name="Compute_Y") return X, Y def schedule_plus_one_rank3(X, Y): s = te.create_schedule(Y.op) Xt = s.cache_read(X, "global.texture", [Y]) x, y, c = s[Xt].op.axis s[Xt].bind(x, te.thread_axis("blockIdx.x")) s[Xt].bind(y, te.thread_axis("threadIdx.x")) s[Xt].vectorize(c) x, y, c = s[Y].op.axis xo, yo, xi, yi = s[Y].tile(x, y, 4, 4) s[Y].bind(xo, te.thread_axis("blockIdx.x")) s[Y].bind(yo, te.thread_axis("threadIdx.x")) s[Y].vectorize(c) return s def compute_plus_one_rank5(shape): X = te.placeholder(shape, name="X", dtype="float32") Y = te.compute(shape, lambda i, j, k, l, m: X[i, j, k, l, m] + 1, name="Compute_Y") return X, Y def schedule_plus_one_rank5(X, Y): s = te.create_schedule(Y.op) Xt = s.cache_read(X, "global.texture", [Y]) a, b, c, d, e = s[Xt].op.axis abc = s[Xt].fuse(a, b, c) s[Xt].bind(abc, te.thread_axis("blockIdx.x")) s[Xt].bind(d, te.thread_axis("threadIdx.x")) s[Xt].vectorize(e) a, b, c, d, e = s[Y].op.axis abc = s[Y].fuse(a, b, c) xo, yo, xi, yi = s[Y].tile(abc, d, 4, 4) s[Y].bind(xo, te.thread_axis("blockIdx.x")) s[Y].bind(yo, te.thread_axis("threadIdx.x")) s[Y].vectorize(e) return s def compute_matmul(shape): A = te.placeholder(shape, name="A", dtype="float32") B = te.placeholder(shape, name="B", dtype="float32") k = te.reduce_axis((0, shape[1]), name="k") C = te.compute( (shape[0] * shape[2], shape[0] * shape[2]), lambda i, j: te.sum( A[i * B[j axis=[k], ), name="Compute_MatMul", ) return A, B, C def schedule_matmul(A, B, C, local=False): s = te.create_schedule(C.op) At = s.cache_read(A, "global.texture", [C]) Bt = s.cache_read(B, "global.texture", [C]) if local:
Al = s.cache_read(At, "local", [C]) Bl = s.cache_read(Bt, "local", [C]) Cl = s.cache_write(C, "local") bx = te.thread_axis("blockIdx.x") tx = te.thread_axis("threadIdx.x") def copy_to_texture(stage): _io, _k, _ii = s[stage].op.axis s[stage].vectorize(_ii) s[stage].bind(_io, bx) s[stage].bind(_k, tx) copy_to_texture(At) copy_to_texture(Bt) _i, _j = s[C].op.axis xo, yo, xi, yi = s[C].tile(_i, _j, 4, 4) s[C].unroll(xi) s[C].vectorize(yi) s[C].bind(xo, te.thread_axis("blockIdx.x")) s[C].bind(yo, te.thread_axis("threadIdx.x")) s[Cl].compute_at(s[C], yo) (_k,) = Cl.op.reduce_axis _x, _y = s[Cl].op.axis s[Cl].reorder(_k, _x, _y) s[Cl].unroll(_x) s[Cl].vectorize(_y) if local: s[Al].compute_at(s[Cl], _k) s[Al].vectorize(s[Al].op.axis[-1]) s[Bl].compute_at(s[Cl], _k) s[Bl].vectorize(s[Bl].op.axis[-1]) return s def compute_matmul_inner(shape): A = te.placeholder(shape, name="A", dtype="float32") B = te.placeholder(shape, name="B", dtype="float32") k = te.reduce_axis((0, shape[1] * shape[2]), name="k") C = te.compute( (shape[0], shape[0]), lambda i, j: te.sum( A[i, k * B[j, k axis=[k], ), name="Compute_MatMul", ) return A, B, C def schedule_matmul_inner(A, B, C, local=False): s = te.create_schedule(C.op) At = s.cache_read(A, "global.texture", [C]) Bt = s.cache_read(B, "global.texture", [C]) if local: Al = s.cache_read(At, "local", [C]) Bl = s.cache_read(Bt, "local", [C]) Cl = s.cache_write(C, "local") bx = te.thread_axis("blockIdx.x") tx = te.thread_axis("threadIdx.x") def copy_to_texture(stage): _i, _ko, _ki = s[stage].op.axis s[stage].vectorize(_ki) s[stage].bind(_i, bx) s[stage].bind(_ko, tx) copy_to_texture(At) copy_to_texture(Bt) _i, _j = s
[C].op.axis xo, yo, xi, yi = s[C].tile(_i, _j, 4, 4) s[C].unroll(xi) s[C].vectorize(yi) s[C].bind(xo, te.thread_axis("blockIdx.x")) s[C].bind(yo, te.thread_axis("threadIdx.x")) s[Cl].compute_at(s[C], yo) (_k,) = Cl.op.reduce_axis _x, _y = s[Cl].op.axis s[Cl].reorder(_x, _y, _k) s[Cl].unroll(_x) if local: s[Al].compute_at(s[Cl], _x) s[Al].vectorize(s[Al].op.axis[-1]) s[Bl].compute_at(s[Cl], _x) s[Bl].vectorize(s[Bl].op.axis[-1]) return s def compute_matmul_vector_accumulator(shapeA, shapeB): A = te.placeholder(shapeA, name="A", dtype="float32") B = te.placeholder(shapeB, name="B", dtype="float32") k = te.reduce_axis((0, shapeB[0]), name="k") C = te.compute( (shapeA[1], shapeB[1] * shapeB[2]), lambda i, j: te.sum( A[k * B[k, j axis=[k], ), name="Compute_MatMul", ) return A, B, C def schedule_matmul_vector_accumulator(A, B, C, local=False): s = te.create_schedule(C.op) At = s.cache_read(A, "global.texture", [C]) Bt = s.cache_read(B, "global.texture", [C]) if local: Al = s.cache_read(At, "local", [C]) Bl = s.cache_read(Bt, "local", [C]) Cl = s.cache_write(C, "local") def copy_to_texture(stage): _y, _x, _v = s[stage].op.axis s[stage].vectorize(_v) s[stage].bind(_y, te.thread_axis("blockIdx.x")) s[stage].bind(_x, te.thread_axis("threadIdx.x")) copy_to_texture(At) copy_to_texture(Bt) _i, _j = s[C].op.axis xo, yo, xi, yi = s[C].tile(_i, _j, 4, 4) s[C].unroll(xi) s[C].vectorize(yi) s[C].bind(xo, te.thread_axis("blockIdx.x")) s[C].bind(yo, te.thread_axis("threadIdx.x")) s[Cl].compute_at(s[C], yo) (_k,) = Cl.op.reduce_axis _a, _b = s[Cl].op.axis _ko, _ki = s[Cl].split(_k, factor=4) s[Cl].reorder(_ko, _a, _ki, _b) s[Cl].unroll(_ki) s[Cl].unroll(_a) s[Cl].vectori
ze(_b) if local: s[Al].compute_at(s[Cl], _a) _aa, _ka, _ba = s[Al].op.axis s[Al].vectorize(_ba) s[Bl].compute_at(s[Cl], _ko) _ab, _kb, _bb = s[Bl].op.axis s[Bl].vectorize(_bb) s[Bl].unroll(_ab) return s def compute_conv2d_1x1_NCHWc_RSCKk(input_shape, filter_shape): data = te.placeholder(input_shape, name="data", dtype="float32") filt = te.placeholder(filter_shape, name="filter", dtype="float32") c = te.reduce_axis((0, input_shape[1]), name="C") c4 = te.reduce_axis((0, input_shape[-1]), name="c4") kh = te.reduce_axis((0, filter_shape[0]), name="kh") kw = te.reduce_axis((0, filter_shape[1]), name="kw") conv = te.compute( (input_shape[0], filter_shape[-2], input_shape[2], input_shape[3], filter_shape[-1]), lambda n, ko, i, j, ki: te.sum( data[n, c, i, j, c4].astype("float32") * filt[kh, kw, c * input_shape[-1] + c4, ko, ki].astype("float32"), axis=[kh, kw, c, c4], ), name="conv2d_1x1", ) return data, filt, conv def schedule_conv2d_1x1_NCHWc_RSCKk(data, filt, conv): s = te.create_schedule(conv.op) A, B, C = data, filt, conv At = s.cache_read(A, "global.texture", [C]) Bt = s.cache_read(B, "global.texture", [C]) Al = s.cache_read(At, "local", [C]) Bl = s.cache_read(Bt, "local", [C]) Cl = s.cache_write(C, "local") def copy_to_texture(stage): axes = s[stage].op.axis fused = s[stage].fuse(*axes[:-1]) block, thread = s[stage].split(fused, factor=32) s[stage].vectorize(axes[-1]) s[stage].bind(block, te.thread_axis("blockIdx.x")) s[stage].bind(thread, te.thread_axis("threadIdx.x")) copy_to_texture(At) copy_to_texture(Bt) _n, _ko, _h, _w, _ki = s[C].op.axis s[C].vectorize(_ki) s[C].bind(_n, te.thread_axis("blockIdx.x")) s[C].bind(_ko, te.thread_axis("threadIdx.x")) s[Cl].compute_at(s[C], _w) _nl, _kol, _hl, _
wl, _kil = s[Cl].op.axis _khl, _kwl, _cl, _cl4 = s[Cl].op.reduce_axis _clo, _cli = s[Cl].split(_cl, factor=4) s[Cl].reorder(_clo, _cli, _cl4, _kil) s[Cl].unroll(_cli) s[Cl].unroll(_cl4) s[Cl].vectorize(_kil) s[Al].compute_at(s[Cl], _cli) s[Al].vectorize(s[Al].op.axis[-1]) s[Bl].compute_at(s[Cl], _kwl) s[Bl].vectorize(s[Bl].op.axis[-1]) return s def compute_conv2d_1x1_WCHNc_CRSKk(input_shape, filter_shape): data = te.placeholder(input_shape, name="data", dtype="float32") filt = te.placeholder(filter_shape, name="filter", dtype="float32") packed_data = te.compute( (input_shape[0], input_shape[1], input_shape[2] * input_shape[3], input_shape[4]), lambda i, j, k, l: data[i, j, k name="packed_data", ) packed_filter = te.compute( (filter_shape[0], filter_shape[1] * filter_shape[2] * filter_shape[3], filter_shape[4]), lambda i, j, k: filt[ i, j (j j % filter_shape[3], k, ], name="packed_filter", ) c = te.reduce_axis((0, input_shape[1]), name="C") c4 = te.reduce_axis((0, input_shape[-1]), name="c4") r = te.reduce_axis((0, filter_shape[1]), name="r") s = te.reduce_axis((0, filter_shape[2]), name="s") conv = te.compute( (input_shape[0], filter_shape[3], input_shape[2], input_shape[3], filter_shape[4]), lambda w, ko, h, n, ki: te.sum( packed_data[w, c, h * input_shape[3] + n, c4].astype("float32") * packed_filter[ c * input_shape[-1] + c4, ((r * filter_shape[2]) + s) * filter_shape[3] + ko, ki ].astype("float32"), axis=[r, s, c, c4], ), name="conv2d_1x1", ) return data, filt, packed_data, packed_filter, conv def schedule_conv2d_1x1_WCHNc_CRSKk(data, filt, packed_data, packed_filter, conv): s = te.create_schedule(conv.o
p) cfg = autotvm.get_config() s[packed_data].compute_inline() s[packed_filter].compute_inline() A, B, C = packed_data, packed_filter, conv At = s.cache_read(A, "global.texture", [C]) Bt = s.cache_read(B, "global.texture", [C]) Al = s.cache_read(At, "local", [C]) Bl = s.cache_read(Bt, "local", [C]) Cl = s.cache_write(C, "local") def copy_to_texture(stage): axes = s[stage].op.axis fused = s[stage].fuse(*axes[:-1]) block, thread = s[stage].split(fused, factor=32) s[stage].vectorize(axes[-1]) s[stage].bind(block, te.thread_axis("blockIdx.x")) s[stage].bind(thread, te.thread_axis("threadIdx.x")) copy_to_texture(At) copy_to_texture(Bt) _w, _ko, _h, _n, _ki = s[C].op.axis kernel_scope, _n = s[C].split(_n, nparts=1) cfg.define_split("tile_f", _ko, num_outputs=4) cfg.define_split("tile_w", _w, num_outputs=4) cfg.define_split("tile_h", _h, num_outputs=4) cfg.define_knob("auto_unroll_max_step", [0, 512, 1500]) bk, vk, tk, ki = cfg["tile_f"].apply(s, C, _ko) bw, vw, tw, wi = cfg["tile_w"].apply(s, C, _w) bh, vh, th, hi = cfg["tile_h"].apply(s, C, _h) s[C].reorder(bh, _n, vh, th, hi) bhn = s[C].fuse(bh, _n) s[C].bind(bk, te.thread_axis("blockIdx.z")) s[C].bind(bhn, te.thread_axis("blockIdx.y")) s[C].bind(bw, te.thread_axis("blockIdx.x")) s[C].bind(vk, te.thread_axis("vthread")) s[C].bind(vh, te.thread_axis("vthread")) s[C].bind(vw, te.thread_axis("vthread")) s[C].bind(tk, te.thread_axis("threadIdx.z")) s[C].bind(th, te.thread_axis("threadIdx.y")) s[C].bind(tw, te.thread_axis("threadIdx.x")) s[C].reorder(bw, bk, bhn, vw, vk, vh, tw, tk, th, ki, hi, wi, _ki) s[C].vectorize(_ki) s[Cl].compute_at(s[C], th) _wl, _kol, _hl, _nl, _kil = s[Cl].op.axis _khl, _kwl, _cl, _cl4 = s[Cl].op.reduce_axis cfg.define_split("tile_c", _cl, num_outputs=2)
cfg.define_split("tile_kh", _khl, num_outputs=2) cfg.define_split("tile_kw", _kwl, num_outputs=2) _clo, _cli = cfg["tile_c"].apply(s, Cl, _cl) _khlo, _khli = cfg["tile_kh"].apply(s, Cl, _khl) _kwlo, _kwli = cfg["tile_kw"].apply(s, Cl, _kwl) s[Cl].reorder(_clo, _khlo, _kwlo, _cli, _cl4, _khli, _kwli, _kol, _hl, _nl, _kil, _wl) s[Cl].unroll(_cl4) s[Cl].unroll(_wl) s[Cl].vectorize(_kil) _wla, _cla, _hnla, _cl4a = s[Al].op.axis s[Al].compute_at(s[Cl], _cli) s[Al].vectorize(_cl4a) s[Al].unroll(_wla) _clb, _rskolb, _kilb = s[Bl].op.axis s[Bl].compute_at(s[Cl], _cli) s[Bl].vectorize(_kilb) s[Bl].unroll(_clb) s[C].pragma(kernel_scope, "auto_unroll_max_step", cfg["auto_unroll_max_step"].val) WO, K, HO, N, K4 = get_const_tuple(C.shape) RSC, _, _ = get_const_tuple(B.shape) cfg.add_flop(2 * N * K * K4 * HO * WO * RSC) return s def compute_conv2d_NCHWc_KCRSk(Input, Filter, stride, padding, dilation, out_dtype=None): """Convolution operator in NCHWc layout.""" if out_dtype is None: out_dtype = Input.dtype assert isinstance(stride, int) or len(stride) == 2 assert isinstance(dilation, int) or len(dilation) == 2 if isinstance(stride, int): stride_h = stride_w = stride else: stride_h, stride_w = stride if isinstance(dilation, int): dilation_h = dilation_w = dilation else: dilation_h, dilation_w = dilation batch, in_channel_chunk, in_height, in_width, in_channel_block = Input.shape num_filter_chunk, channel, kernel_h, kernel_w, num_filter_block = Filter.shape dilated_kernel_h = (kernel_h - 1) * dilation_h + 1 dilated_kernel_w = (kernel_w - 1) * dilation_w + 1 pad_top, pad_left, pad_down, pad_right = nn.get_pad_tuple( padding, (dilated_kernel_h, dilated_kernel_w) ) out_height = simplify((in_height - dilated_kernel_h + pad_top + pad_down) out_width = simplify((in_width - dilated_kernel_w + pad_left + pad
_right) pad_before = [0, 0, pad_top, pad_left, 0] pad_after = [0, 0, pad_down, pad_right, 0] temp = nn.pad(Input, pad_before, pad_after, name="pad_temp") rcc = te.reduce_axis((0, in_channel_chunk), name="rc") rcb = te.reduce_axis((0, in_channel_block), name="rc") ry = te.reduce_axis((0, kernel_h), name="ry") rx = te.reduce_axis((0, kernel_w), name="rx") Filter = te.compute( (num_filter_chunk, channel * kernel_h * kernel_w, num_filter_block), lambda ffc, crs, ffb: Filter[ ffc, crs ], name="packed_filter", ) return te.compute( (batch, num_filter_chunk, out_height, out_width, num_filter_block), lambda nn, ffc, yy, xx, ffb: te.sum( temp[ nn, rcc, yy * stride_h + ry * dilation_h, xx * stride_w + rx * dilation_w, rcb ].astype(out_dtype) * Filter[ ffc, ((rcc * in_channel_block + rcb) * kernel_h + ry) * kernel_w + rx, ffb ].astype(out_dtype), axis=[rcc, rcb, ry, rx], ), tag="conv2d_nchwc_kcrsk_texture", ) def schedule_conv2d_NCHWc_KCRSk(cfg, s, conv): """schedule optimized for batch size = 1""" n, fc, y, x, fb = s[conv].op.axis rcc, rcb, ry, rx = s[conv].op.reduce_axis cfg.define_split("tile_fc", fc, num_outputs=4) cfg.define_split("tile_y", y, num_outputs=4) cfg.define_split("tile_x", x, num_outputs=4) cfg.define_split("tile_rcc", rcc, num_outputs=2) cfg.define_split("tile_ry", ry, num_outputs=2) cfg.define_split("tile_rx", rx, num_outputs=2) cfg.define_knob("auto_unroll_max_step", [0, 512, 1500]) pad_data, flattened_kernel = s[conv].op.input_tensors kernel = s[flattened_kernel].op.input_tensors[0] s[flattened_kernel].compute_inline() s[pad_data].compute_inline() if isinstance(kernel.op, tvm.te.ComputeOp) and "dilate" in kernel.op.tag: s[kernel].compute_inline() kernel = flattened_kernel
if conv.op in s.outputs: output = conv OL = s.cache_write(conv, "local") else: output = s.outputs[0].output(0) s[conv].set_scope("local") OL = conv AT = s.cache_read(pad_data, "global.texture", [OL]) WT = s.cache_read(kernel, "global.texture", [OL]) def copy_to_texture(stage): axes = s[stage].op.axis fused = s[stage].fuse(*axes[:-1]) block, thread = s[stage].split(fused, factor=32) s[stage].vectorize(axes[-1]) s[stage].bind(block, te.thread_axis("blockIdx.x")) s[stage].bind(thread, te.thread_axis("threadIdx.x")) copy_to_texture(AT) copy_to_texture(WT) AA = s.cache_read(AT, "shared", [OL]) WW = s.cache_read(WT, "shared", [OL]) n, fc, y, x, fb = s[output].op.axis kernel_scope, n = s[output].split(n, nparts=1) bf, vf, tf, fi = cfg["tile_fc"].apply(s, output, fc) by, vy, ty, yi = cfg["tile_y"].apply(s, output, y) bx, vx, tx, xi = cfg["tile_x"].apply(s, output, x) bf = s[output].fuse(n, bf) s[output].bind(bf, te.thread_axis("blockIdx.z")) s[output].bind(by, te.thread_axis("blockIdx.y")) s[output].bind(bx, te.thread_axis("blockIdx.x")) s[output].bind(vf, te.thread_axis("vthread")) s[output].bind(vy, te.thread_axis("vthread")) s[output].bind(vx, te.thread_axis("vthread")) s[output].bind(tf, te.thread_axis("threadIdx.z")) s[output].bind(ty, te.thread_axis("threadIdx.y")) s[output].bind(tx, te.thread_axis("threadIdx.x")) s[output].reorder(bf, by, bx, vf, vy, vx, tf, ty, tx, fi, yi, xi, fb) s[output].vectorize(fb) s[OL].compute_at(s[output], tx) n, fc, y, x, fb = s[OL].op.axis rcc, rcb, ry, rx = s[OL].op.reduce_axis rco, rci = cfg["tile_rcc"].apply(s, OL, rcc) ryo, ryi = cfg["tile_ry"].apply(s, OL, ry) rxo, rxi = cfg["tile_rx"].apply(s, OL, rx) s[OL].reorder(rco, ryo, rxo, rci, ryi, rxi, rcb, n, fc, y, x, fb) s[OL].vectorize(fb) s[OL].unroll(rcb) s[AA].compute_at
(s[OL], rxo) s[WW].compute_at(s[OL], rxo) for load in [AA, WW]: if load == WW: n, fyx, v = s[load].op.axis fused = s[load].fuse(n, fyx) else: n, f, y, x, v = s[load].op.axis fused = s[load].fuse(n, f, y, x) tz, fused = s[load].split(fused, nparts=cfg["tile_fc"].size[2]) ty, fused = s[load].split(fused, nparts=cfg["tile_y"].size[2]) tx, fused = s[load].split(fused, nparts=cfg["tile_x"].size[2]) s[load].bind(tz, te.thread_axis("threadIdx.z")) s[load].bind(ty, te.thread_axis("threadIdx.y")) s[load].bind(tx, te.thread_axis("threadIdx.x")) s[load].vectorize(v) s[output].pragma(kernel_scope, "auto_unroll_max_step", cfg["auto_unroll_max_step"].val) N, OCC, OH, OW, OCB = get_const_tuple(output.shape) _, ICKHKW, _ = get_const_tuple(kernel.shape) if isinstance(N, int): cfg.add_flop(2 * N * OH * OW * OCC * OCB * ICKHKW) def compute_conv2d_NCHWc_KCRSk_acc32(Input, Filter, stride, padding, dilation, out_dtype=None): """Convolution operator in NCHWc layout.""" if out_dtype is None: out_dtype = Input.dtype assert isinstance(stride, int) or len(stride) == 2 assert isinstance(dilation, int) or len(dilation) == 2 if isinstance(stride, int): stride_h = stride_w = stride else: stride_h, stride_w = stride if isinstance(dilation, int): dilation_h = dilation_w = dilation else: dilation_h, dilation_w = dilation batch, in_channel_chunk, in_height, in_width, in_channel_block = Input.shape num_filter_chunk, channel, kernel_h, kernel_w, num_filter_block = Filter.shape dilated_kernel_h = (kernel_h - 1) * dilation_h + 1 dilated_kernel_w = (kernel_w - 1) * dilation_w + 1 pad_top, pad_left, pad_down, pad_right = nn.get_pad_tuple( padding, (dilated_kernel_h, dilated_kernel_w) ) out_height = simplify((in_height - dilated_kernel_h + pad_top + pad_down) out_width =
simplify((in_width - dilated_kernel_w + pad_left + pad_right) pad_before = [0, 0, pad_top, pad_left, 0] pad_after = [0, 0, pad_down, pad_right, 0] temp = nn.pad(Input, pad_before, pad_after, name="pad_temp") rcc = te.reduce_axis((0, in_channel_chunk), name="rc") rcb = te.reduce_axis((0, in_channel_block), name="rc") ry = te.reduce_axis((0, kernel_h), name="ry") rx = te.reduce_axis((0, kernel_w), name="rx") Filter = te.compute( (num_filter_chunk, channel * kernel_h * kernel_w, num_filter_block), lambda ffc, crs, ffb: Filter[ ffc, crs ], name="packed_filter", ) conv = te.compute( (batch, num_filter_chunk, out_height, out_width, num_filter_block), lambda nn, ffc, yy, xx, ffb: te.sum( ( temp[nn, rcc, yy * stride_h + ry * dilation_h, xx * stride_w + rx * dilation_w, rcb] * Filter[ffc, ((rcc * in_channel_block + rcb) * kernel_h + ry) * kernel_w + rx, ffb] ).astype(out_dtype), axis=[rcc, rcb, ry, rx], ), tag="conv2d_nchwc_kcrsk_texture", ) output = te.compute(conv.shape, lambda n, fc, y, x, fb: conv[n, fc, y, x, fb].astype("float32")) return output def schedule_conv2d_NCHWc_KCRSk_acc32(cfg, s, output): """schedule optimized for batch size = 1""" conv = output.op.input_tensors[0] n, fc, y, x, fb = s[conv].op.axis rcc, rcb, ry, rx = s[conv].op.reduce_axis cfg.define_split("tile_fc", fc, num_outputs=4) cfg.define_split("tile_y", y, num_outputs=4) cfg.define_split("tile_x", x, num_outputs=4) cfg.define_split("tile_rcc", rcc, num_outputs=2) cfg.define_split("tile_ry", ry, num_outputs=2) cfg.define_split("tile_rx", rx, num_outputs=2) cfg.define_knob("auto_unroll_max_step", [0, 512, 1500]) pad_data, flattened_kernel = s[conv].op.input_tensors kernel = s[flattened_kernel].op.input_tensors[0] s[flattened_kernel].compute_inline(
) s[pad_data].compute_inline() if isinstance(kernel.op, tvm.te.ComputeOp) and "dilate" in kernel.op.tag: s[kernel].compute_inline() kernel = flattened_kernel if conv.op in s.outputs: output = conv OL = s.cache_write(conv, "local") else: output = s.outputs[0].output(0) s[conv].set_scope("local") OL = conv AT = s.cache_read(pad_data, "global.texture", [OL]) WT = s.cache_read(kernel, "global.texture", [OL]) def copy_to_texture(stage): axes = s[stage].op.axis fused = s[stage].fuse(*axes[:-1]) block, thread = s[stage].split(fused, factor=32) s[stage].vectorize(axes[-1]) s[stage].bind(block, te.thread_axis("blockIdx.x")) s[stage].bind(thread, te.thread_axis("threadIdx.x")) copy_to_texture(AT) copy_to_texture(WT) AA = s.cache_read(AT, "shared", [OL]) WW = s.cache_read(WT, "shared", [OL]) n, fc, y, x, fb = s[output].op.axis kernel_scope, n = s[output].split(n, nparts=1) bf, vf, tf, fi = cfg["tile_fc"].apply(s, output, fc) by, vy, ty, yi = cfg["tile_y"].apply(s, output, y) bx, vx, tx, xi = cfg["tile_x"].apply(s, output, x) bf = s[output].fuse(n, bf) s[output].bind(bf, te.thread_axis("blockIdx.z")) s[output].bind(by, te.thread_axis("blockIdx.y")) s[output].bind(bx, te.thread_axis("blockIdx.x")) s[output].bind(vf, te.thread_axis("vthread")) s[output].bind(vy, te.thread_axis("vthread")) s[output].bind(vx, te.thread_axis("vthread")) s[output].bind(tf, te.thread_axis("threadIdx.z")) s[output].bind(ty, te.thread_axis("threadIdx.y")) s[output].bind(tx, te.thread_axis("threadIdx.x")) s[output].reorder(bf, by, bx, vf, vy, vx, tf, ty, tx, fi, yi, xi, fb) s[output].vectorize(fb) s[OL].compute_at(s[output], tx) n, fc, y, x, fb = s[OL].op.axis rcc, rcb, ry, rx = s[OL].op.reduce_axis rco, rci = cfg["tile_rcc"].apply(s, OL, rcc) ryo, ryi = cfg["tile_ry"].apply(s, OL, ry) rxo, r
xi = cfg["tile_rx"].apply(s, OL, rx) s[OL].reorder(rco, ryo, rxo, rci, ryi, rxi, rcb, n, fc, y, x, fb) s[OL].vectorize(fb) s[OL].unroll(rcb) s[AA].compute_at(s[OL], rxo) s[WW].compute_at(s[OL], rxo) for load in [AA, WW]: if load == WW: n, fyx, v = s[load].op.axis fused = s[load].fuse(n, fyx) else: n, f, y, x, v = s[load].op.axis fused = s[load].fuse(n, f, y, x) tz, fused = s[load].split(fused, nparts=cfg["tile_fc"].size[2]) ty, fused = s[load].split(fused, nparts=cfg["tile_y"].size[2]) tx, fused = s[load].split(fused, nparts=cfg["tile_x"].size[2]) s[load].bind(tz, te.thread_axis("threadIdx.z")) s[load].bind(ty, te.thread_axis("threadIdx.y")) s[load].bind(tx, te.thread_axis("threadIdx.x")) s[load].vectorize(v) s[output].pragma(kernel_scope, "auto_unroll_max_step", cfg["auto_unroll_max_step"].val) N, OCC, OH, OW, OCB = get_const_tuple(output.shape) _, ICKHKW, _ = get_const_tuple(kernel.shape) if isinstance(N, int): cfg.add_flop(2 * N * OH * OW * OCC * OCB * ICKHKW) def compute_depthwise_conv2d_NCHWc_KCRSk_acc32( Input, Filter, stride, padding, dilation, out_dtype=None ): """Depthwise convolution operator in NCHWc layout.""" if out_dtype is None: out_dtype = Input.dtype assert isinstance(stride, int) or len(stride) == 2 assert isinstance(dilation, int) or len(dilation) == 2 if isinstance(stride, int): stride_h = stride_w = stride else: stride_h, stride_w = stride if isinstance(dilation, int): dilation_h = dilation_w = dilation else: dilation_h, dilation_w = dilation batch, channel_chunk, in_height, in_width, channel_block = Input.shape _, channel_multiplier, kernel_h, kernel_w, _ = Filter.shape dilated_kernel_h = (kernel_h - 1) * dilation_h + 1 dilated_kernel_w = (kernel_w - 1) * dilation_w + 1 pad_top, pad_left, pad_down, pad
_right = nn.get_pad_tuple( padding, (dilated_kernel_h, dilated_kernel_w) ) out_channel_chunk = simplify(channel_chunk * channel_multiplier) out_height = simplify((in_height - dilated_kernel_h + pad_top + pad_down) out_width = simplify((in_width - dilated_kernel_w + pad_left + pad_right) pad_before = [0, 0, pad_top, pad_left, 0] pad_after = [0, 0, pad_down, pad_right, 0] temp = nn.pad(Input, pad_before, pad_after, name="pad_temp") ry = te.reduce_axis((0, kernel_h), name="ry") rx = te.reduce_axis((0, kernel_w), name="rx") Filter = te.compute( (channel_chunk, channel_multiplier * kernel_h * kernel_w, channel_block), lambda ffc, mrs, ffb: Filter[ ffc, mrs ], name="packed_filter", ) conv = te.compute( (batch, out_channel_chunk, out_height, out_width, channel_block), lambda nn, ffc, yy, xx, ffb: te.sum( ( temp[ nn, ffc yy * stride_h + ry * dilation_h, xx * stride_w + rx * dilation_w, ffb, ] * Filter[ ffc ((ffc % channel_multiplier) * kernel_h + ry) * kernel_w + rx, ffb, ] ).astype(out_dtype), axis=[ry, rx], ), tag="depthwise_conv2d_nchwc_kcrsk_texture", ) return te.compute( conv.shape, lambda n, ffc, y, x, ffb: conv[n, ffc, y, x, ffb].astype("float32") ) def schedule_depthwise_conv2d_NCHWc_KCRSk_acc32(cfg, s, output): """schedule optimized for batch size = 1""" conv = output.op.input_tensors[0] n, fc, y, x, fb = s[conv].op.axis ry, rx = s[conv].op.reduce_axis cfg.define_split("tile_fc", fc, num_outputs=4) cfg.define_split("tile_y", y, num_outputs=4) cfg.define_split("tile_x", x, num_outputs=4) cfg.define_split("tile_r
y", ry, num_outputs=2) cfg.define_split("tile_rx", rx, num_outputs=2) cfg.define_knob("auto_unroll_max_step", [0, 512, 1500]) pad_data, flattened_kernel = s[conv].op.input_tensors kernel = s[flattened_kernel].op.input_tensors[0] s[flattened_kernel].compute_inline() s[pad_data].compute_inline() if isinstance(kernel.op, tvm.te.ComputeOp) and "dilate" in kernel.op.tag: s[kernel].compute_inline() kernel = flattened_kernel if conv.op in s.outputs: output = conv OL = s.cache_write(conv, "local") else: output = s.outputs[0].output(0) s[conv].set_scope("local") OL = conv AT = s.cache_read(pad_data, "global.texture", [OL]) WT = s.cache_read(kernel, "global.texture", [OL]) def copy_to_texture(stage): axes = s[stage].op.axis fused = s[stage].fuse(*axes[:-1]) block, thread = s[stage].split(fused, factor=32) s[stage].vectorize(axes[-1]) s[stage].bind(block, te.thread_axis("blockIdx.x")) s[stage].bind(thread, te.thread_axis("threadIdx.x")) copy_to_texture(AT) copy_to_texture(WT) AA = s.cache_read(AT, "shared", [OL]) WW = s.cache_read(WT, "shared", [OL]) n, fc, y, x, fb = s[output].op.axis kernel_scope, n = s[output].split(n, nparts=1) bf, vf, tf, fi = cfg["tile_fc"].apply(s, output, fc) by, vy, ty, yi = cfg["tile_y"].apply(s, output, y) bx, vx, tx, xi = cfg["tile_x"].apply(s, output, x) bf = s[output].fuse(n, bf) s[output].bind(bf, te.thread_axis("blockIdx.z")) s[output].bind(by, te.thread_axis("blockIdx.y")) s[output].bind(bx, te.thread_axis("blockIdx.x")) s[output].bind(vf, te.thread_axis("vthread")) s[output].bind(vy, te.thread_axis("vthread")) s[output].bind(vx, te.thread_axis("vthread")) s[output].bind(tf, te.thread_axis("threadIdx.z")) s[output].bind(ty, te.thread_axis("threadIdx.y")) s[output].bind(tx, te.thread_axis("threadIdx.x")) s[output].reorder(bf, by, bx, vf, vy, vx, t
f, ty, tx, fi, yi, xi, fb) s[output].vectorize(fb) s[OL].compute_at(s[output], tx) n, fc, y, x, fb = s[OL].op.axis ry, rx = s[OL].op.reduce_axis ryo, ryi = cfg["tile_ry"].apply(s, OL, ry) rxo, rxi = cfg["tile_rx"].apply(s, OL, rx) s[OL].reorder(ryo, rxo, ryi, rxi, n, fc, y, x, fb) s[OL].vectorize(fb) s[AA].compute_at(s[OL], rxo) s[WW].compute_at(s[OL], rxo) for load in [AA, WW]: if load == WW: n, fyx, v = s[load].op.axis fused = s[load].fuse(n, fyx) else: n, f, y, x, v = s[load].op.axis fused = s[load].fuse(n, f, y, x) tz, fused = s[load].split(fused, nparts=cfg["tile_fc"].size[2]) ty, fused = s[load].split(fused, nparts=cfg["tile_y"].size[2]) tx, fused = s[load].split(fused, nparts=cfg["tile_x"].size[2]) s[load].bind(tz, te.thread_axis("threadIdx.z")) s[load].bind(ty, te.thread_axis("threadIdx.y")) s[load].bind(tx, te.thread_axis("threadIdx.x")) s[load].vectorize(v) s[output].pragma(kernel_scope, "auto_unroll_max_step", cfg["auto_unroll_max_step"].val) N, OCC, OH, OW, OCB = get_const_tuple(output.shape) ICC, MKHKW, ICB = get_const_tuple(kernel.shape) M = (OCC * OCB) KHKW = MKHKW if isinstance(N, int): cfg.add_flop(2 * N * OH * OW * OCC * OCB * KHKW) def scheduler(compute, schedule, *args, **kwargs): placeholders = compute(*args) s = schedule(*placeholders, **kwargs) return s, placeholders def conv2d_1x1_NCHWc_RSCKk(input_shape, filter_shape): placeholders = compute_conv2d_1x1_NCHWc_RSCKk(input_shape, filter_shape) s = schedule_conv2d_1x1_NCHWc_RSCKk(*placeholders) return s, placeholders def conv2d_1x1_WCHNc_CRSKk(input_shape, filter_shape): placeholders = compute_conv2d_1x1_WCHNc_CRSKk(input_shape, filter_shape) s = schedule_conv2d_1x1_WCHNc_CRSKk(*placeholders) return s, (placeholders[0], placeholders[1], placeholders[-1]) def conv2d_NCHWc_KCRSk(
input_shape, filter_shape): data = te.placeholder(input_shape, name="data", dtype="float32") filt = te.placeholder(filter_shape, name="filter", dtype="float32") conv = compute_conv2d_NCHWc_KCRSk(data, filt, [1, 1], [0, 0], [1, 1], "float32") cfg = autotvm.get_config() s = te.create_schedule([x.op for x in [conv]]) schedule_conv2d_NCHWc_KCRSk(cfg, s, conv) return s, (data, filt, conv) def conv2d_NCHWc_KCRSk_fp32_acc(input_shape, filter_shape): data = te.placeholder(input_shape, name="data", dtype="float32") filt = te.placeholder(filter_shape, name="filter", dtype="float32") output = compute_conv2d_NCHWc_KCRSk_acc32(data, filt, [1, 1], [0, 0], [1, 1], "float32") cfg = autotvm.get_config() s = te.create_schedule([x.op for x in [output]]) schedule_conv2d_NCHWc_KCRSk_acc32(cfg, s, output) return s, (data, filt, output) def depthwise_conv2d_NCHWc_KCRSk_acc32(input_shape, filter_shape): data = te.placeholder(input_shape, name="data", dtype="float32") filt = te.placeholder(filter_shape, name="filter", dtype="float32") output = compute_depthwise_conv2d_NCHWc_KCRSk_acc32( data, filt, [1, 1], [0, 0], [1, 1], "float32" ) cfg = autotvm.get_config() s = te.create_schedule([x.op for x in [output]]) schedule_depthwise_conv2d_NCHWc_KCRSk_acc32(cfg, s, output) return s, (data, filt, output) def ref_convolution(data, kernel, stride, pad):
import mxnet as mx groups = 1 kernel_size = (kernel.shape[2], kernel.shape[3]) num_filter = kernel.shape[0] ref_res = mx.nd.Convolution( data=mx.nd.array(data), weight=mx.nd.array(kernel), bias=None, no_bias=True, kernel=kernel_size, stride=stride, pad=pad, num_filter=num_filter, num_group=groups, ) return ref_res.asnumpy() def ref_depthwise_convolution(data, kernel, stride, pad):
import mxnet as mx groups = kernel.shape[0] kernel_size = (kernel.shape[2], kernel.shape[3]) num_filter = kernel.shape[0] multiplier = kernel.shape[1] ref_res = mx.nd.Convolution( data=mx.nd.array(data), weight=mx.nd.array(kernel), bias=None, no_bias=True, kernel=kernel_size, stride=stride, pad=pad, num_filter=num_filter, num_group=groups, ) return ref_res.asnumpy() def validate(workload, target, dev, input_shapes, *args, **kwargs): s, placeholders = workload(*input_shapes, *args, **kwargs) func = tvm.driver.build(s, [*placeholders], target=target, name="TestFunction") args_tvm = [] args_np = [] for var in placeholders[:-1]: var_np = np.random.uniform(size=[i.value for i in var.shape]).astype(var.dtype) args_np.append(var_np) args_tvm.append(tvm.nd.array(var_np, dev)) args_tvm.append( tvm.nd.array( np.zeros([i.value for i in placeholders[-1].shape], dtype=placeholders[-1].dtype), dev ) ) func(*args_tvm) if "plus_one" in workload.__name__: np_result = args_np[0] + 1.0 elif "matmul" in workload.__name__: if "inner" in workload.__name__: np_result = np.matmul( args_np[0].reshape(32, 256), args_np[1].reshape(32, 256).transpose(1, 0) ) elif "accum" in workload.__name__: np_result = np.matmul( args_np[0].transpose((1, 0, 2)).reshape(64, 128), args_np[1].reshape(128, 64) ) else: np_result = np.matmul( args_np[0].transpose((0, 2, 1)).reshape(128, 64), args_np[1].transpose(1, 0, 2).reshape(64, 128), ) elif "conv2d_1x1_NCHWc_RSCKk" in workload.__name__: vec_length = args_np[1].shape[-1] args_np[0] = ( args_np[0] .transpose((0, 1, 4, 2, 3)) .reshape( args_np[0].shape[0],
args_np[0].shape[1] * args_np[0].shape[-1], args_np[0].shape[2], args_np[0].shape[3], ) ) args_np[1] = ( args_np[1] .reshape( args_np[1].shape[0], args_np[1].shape[1], args_np[1].shape[2], args_np[1].shape[3] * args_np[1].shape[4], ) .transpose((3, 2, 0, 1)) ) np_result = testing.conv2d_nchw_python(args_np[0], args_np[1], 1, 0) np_result = np_result.reshape( np_result.shape[0], np_result.shape[1] vec_length, np_result.shape[2], np_result.shape[3], ).transpose(0, 1, 3, 4, 2) elif "conv2d_1x1_WCHNc_CRSKk" in workload.__name__: vec_length = args_np[1].shape[-1] args_np[0] = ( args_np[0] .transpose((3, 1, 4, 2, 0)) .reshape( args_np[0].shape[3], args_np[0].shape[1] * args_np[0].shape[-1], args_np[0].shape[2], args_np[0].shape[0], ) ) args_np[1] = ( args_np[1] .reshape( args_np[1].shape[0], args_np[1].shape[1], args_np[1].shape[2], args_np[1].shape[3] * args_np[1].shape[4], ) .transpose((3, 0, 1, 2)) ) np_result = testing.conv2d_nchw_python(args_np[0], args_np[1], 1, 0) np_result = np_result.reshape( np_result.shape[0], np_result.shape[1] vec_length, np_result.shape[2], np_result.shape[3], ).transpose(4, 1, 3, 0, 2) elif "NCHW_KCRS" in workload.__name__: np_result = testing.conv2d_nchw_python(args_np[0], args_np[1], 1, 0) elif "NCHWc_KCRSk" in workload.__name__: vec_length = args_np[1].shape[-1] args_np[0] = ( args
_np[0] .transpose((0, 1, 4, 2, 3)) .reshape( args_np[0].shape[0], args_np[0].shape[1] * args_np[0].shape[-1], args_np[0].shape[2], args_np[0].shape[3], ) ) args_np[1] = ( args_np[1] .transpose((0, 4, 1, 2, 3)) .reshape( args_np[1].shape[0] * args_np[1].shape[4], args_np[1].shape[1], args_np[1].shape[2], args_np[1].shape[3], ) ) if "depthwise" in workload.__name__: np_result = ref_depthwise_convolution(args_np[0], args_np[1], [], []) else: np_result = ref_convolution(args_np[0], args_np[1], [], []) np_result = np_result.reshape( np_result.shape[0], np_result.shape[1] vec_length, np_result.shape[2], np_result.shape[3], ).transpose(0, 1, 3, 4, 2) np.testing.assert_allclose(args_tvm[-1].asnumpy(), np_result, rtol=1e-2, atol=1e-2) class BaseSingleShapeValidator: @tvm.testing.parametrize_targets("opencl") def test_unary(self, test_func, input_shape, target, dev): validate(test_func, target, dev, [input_shape])
class TestPlusOneRank3(BaseSingleShapeValidator): input_shape = tvm.testing.parameter((32, 32, 4)) def plus_one(input_shape): return scheduler(compute_plus_one_rank3, schedule_plus_one_rank3, input_shape) test_func = tvm.testing.parameter(plus_one)
class TestPlusOneRank5(BaseSingleShapeValidator): input_shape = tvm.testing.parameter((32, 2, 4, 4, 4)) def plus_one(input_shape): return scheduler(compute_plus_one_rank5, schedule_plus_one_rank5, input_shape) test_func = tvm.testing.parameter(plus_one) class TestMatmul: input_shape = tvm.testing.parameter((32, 64, 4)) local = tvm.testing.parameter(False, True) def matmul(input_shape, local): return scheduler(compute_matmul, schedule_matmul, input_shape, local=local) def matmul_inner(input_shape, local): return scheduler(compute_matmul_inner, schedule_matmul_inner, input_shape, local=local) test_func = tvm.testing.parameter(matmul, matmul_inner) @tvm.testing.parametrize_targets("opencl") def test_matmul(self, test_func, input_shape, local, target, dev): validate(test_func, target, dev, [input_shape], local=local) class TestMatmulVectorAccumulator: shapeA = tvm.testing.parameter((32, 64, 4)) shapeB = tvm.testing.parameter((128, 16, 4)) local = tvm.testing.parameter(False, True) def matmul_vector_accumulator(shapeA, shapeB, local): return scheduler( compute_matmul_vector_accumulator, schedule_matmul_vector_accumulator, shapeA, shapeB, local=local, ) test_func = tvm.testing.parameter(matmul_vector_accumulator) @tvm.testing.parametrize_targets("opencl") def test_matmul_vec_acc(self, test_func, shapeA, shapeB, local, target, dev): validate(test_func, target, dev, [shapeA, shapeB], local=local) class BaseConv2DValidator: @tvm.testing.parametrize_targets("opencl") def test_conv2d(self, test_func, input_shapes, target, dev): validate(test_func, target, dev, input_shapes)
class TestConv2dNCHWcRSCKk(BaseConv2DValidator): input_shapes = tvm.testing.parameter([(1, 32, 56, 56, 4), (1, 1, 128, 32, 4)]) test_func = tvm.testing.parameter(conv2d_1x1_NCHWc_RSCKk)
class TestConv2dWCHNcCRSKk(BaseConv2DValidator): input_shapes = tvm.testing.parameter([(56, 32, 56, 1, 4), (128, 1, 1, 32, 4)]) test_func = tvm.testing.parameter(conv2d_1x1_WCHNc_CRSKk)
class TestConv2dNCHWcKCRSk(BaseConv2DValidator): input_shapes = tvm.testing.parameter( [(1, 32, 56, 56, 4), (32, 128, 1, 1, 4)], [(1, 32, 112, 112, 4), (32, 128, 3, 3, 4)] ) test_func = tvm.testing.parameter(conv2d_NCHWc_KCRSk, conv2d_NCHWc_KCRSk_fp32_acc)
class TestDepthwiseConv2dNCHWcKCRSk(BaseConv2DValidator): input_shapes = tvm.testing.parameter([(1, 24, 257, 257, 4), (24, 1, 3, 3, 4)]) test_func = tvm.testing.parameter(depthwise_conv2d_NCHWc_KCRSk_acc32) if __name__ == "__main__": tvm.testing.main()
import numpy as np