text
stringlengths
1
2.05k
t32"))) check_c() def test_floor(): nn = 1024 n = tvm.runtime.convert(nn) A = te.placeholder((n,), name="A", dtype="float32") B = te.compute(A.shape, lambda *i: tvm.tir.call_intrin("float32", "tir.floor", A(*i)), name="B") s = te.create_schedule(B.op) def check_c(): mhost = tvm.build(s, [A, B], "c", name="test_floor") temp = utils.tempdir() path_dso = temp.relpath("temp.so") mhost.export_library(path_dso) m = tvm.runtime.load_module(path_dso) ffloor = m["test_floor"] dev = tvm.cpu(0) n = nn a = tvm.nd.array(np.random.rand(n).astype(A.dtype), dev) b = tvm.nd.array(np.zeros(n, dtype=B.dtype), dev) ffloor(a, b) tvm.testing.assert_allclose(b.numpy(), (np.floor(a.numpy()).view("float32"))) check_c() def test_round(): nn = 1024 n = tvm.runtime.convert(nn) A = te.placeholder((n,), name="A", dtype="float32") B = te.compute(A.shape, lambda *i: tvm.tir.call_intrin("float32", "tir.round", A(*i)), name="B") s = te.create_schedule(B.op) def check_c(): mhost = tvm.build(s, [A, B], "c", name="test_round") temp = utils.tempdir() path_dso = temp.relpath("temp.so") mhost.export_library(path_dso) m = tvm.runtime.load_module(path_dso) fround = m["test_round"] dev = tvm.cpu(0) n = nn a = tvm.nd.array(np.random.rand(n).astype(A.dtype), dev) b = tvm.nd.array(np.zeros(n, dtype=B.dtype), dev) fround(a, b) tvm.testing.assert_allclose(b.numpy(), (np.round(a.numpy()).view("float32"))) check_c() def test_call_packed(): def fake_func(fname="fake.func"): ib = tvm.tir.ir_builder.create() A = ib.pointer("float32", name="A") fake_func1 = tvm.tir.call_packed(fname, A[0]) ib.emit(fake_func1) body = ib.get() return A, body def check_global_packed_func(): fname = "fake.func" A, body = fake_func(fname) func1 = tv
m.tir.PrimFunc([A], body).with_attr("global_symbol", "func1") B, body = fake_func() func2 = tvm.tir.PrimFunc([B], body).with_attr("global_symbol", "func2") mod = tvm.IRModule({"fake_func1": func1, "fake_func2": func2}) fcode = tvm.build(mod, None, "c") src = fcode.get_source() assert src.count(fname) == 2 suffix = "_packed" packed_func_name = fname + suffix assert src.find(packed_func_name) == -1 packed_func_real_name = "_".join(fname.split(".")) + suffix func_declaration = "static void* %s = NULL;" % packed_func_real_name assert src.count(func_declaration) == 1 check_global_packed_func() if __name__ == "__main__": test_add() test_add_pipeline() test_reinterpret() test_ceil() test_floor() test_round() test_call_packed()
"""Test cross compilation"""
import tvm
import tvm.testing from tvm
import te
import os
import struct from tvm
import rpc from tvm.contrib
import utils, cc
import numpy as np @tvm.testing.requires_llvm def test_llvm_add_pipeline(): nn = 1024 n = tvm.runtime.convert(nn) A = te.placeholder((n,), name="A") B = te.placeholder((n,), name="B") C = te.compute(A.shape, lambda *i: A(*i) + B(*i), name="C") s = te.create_schedule(C.op) xo, xi = s[C].split(C.op.axis[0], factor=4) s[C].parallel(xo) s[C].vectorize(xi) def verify_elf(path, e_machine): with open(path, "rb") as fi: arr = fi.read(20) assert struct.unpack("ccc", arr[1:4]) == (b"E", b"L", b"F") endian = struct.unpack("b", arr[0x5:0x6])[0] endian = "<" if endian == 1 else ">" assert struct.unpack(endian + "h", arr[0x12:0x14])[0] == e_machine def build_i386(): temp = utils.tempdir() target = "llvm -mtriple=i386-pc-linux-gnu" f = tvm.build(s, [A, B, C], target) path = temp.relpath("myadd.o") f.save(path) verify_elf(path, 0x03) def build_arm(): target = "llvm -mtriple=armv7-none-linux-gnueabihf" if not tvm.runtime.enabled(target): print("Skip because %s is not enabled.." % target) return temp = utils.tempdir() f = tvm.build(s, [A, B, C], target) path = temp.relpath("myadd.o") f.save(path) verify_elf(path, 0x28) asm_path = temp.relpath("myadd.asm") f.save(asm_path) host = os.environ.get("TVM_RPC_ARM_HOST", None) remote = None if host: port = int(os.environ["TVM_RPC_ARM_PORT"]) try: remote = rpc.connect(host, port) except tvm.error.TVMError as e: pass if remote: remote.upload(path) farm = remote.load_module("myadd.o") dev = remote.cpu(0) n = nn a = tvm.nd.array(np.random.uniform(size=n).astype(A.dtype), dev) b = tvm.nd.array(np.random.uniform(size=n).astype(A.dtype), dev) c
= tvm.nd.array(np.zeros(n, dtype=C.dtype), dev) farm(a, b, c) tvm.testing.assert_allclose(c.numpy(), a.numpy() + b.numpy()) print("Verification finish on remote..") build_i386() build_arm() if __name__ == "__main__": test_llvm_add_pipeline()
import re
import tvm from tvm
import te
import numpy as np from tvm
import topi from tvm.contrib.nvcc
import have_fp16, have_int8, have_bf16
import tvm.testing
import pytest tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") @tvm.testing.requires_gpu @tvm.testing.requires_cuda def test_cuda_vectorize_add(): num_thread = 8 def check_cuda(dtype, n, lanes): if dtype == "float16" and not have_fp16(tvm.cuda(0).compute_version): print("Skip because gpu does not have fp16 support") return if dtype == "int8" and not have_int8(tvm.cuda(0).compute_version): print("skip because gpu does not support int8") return A = te.placeholder((n,), name="A", dtype="%sx%d" % (dtype, lanes)) B = te.compute((n,), lambda i: A[i] + tvm.tir.const(1, A.dtype), name="B") s = te.create_schedule(B.op) xo, xi = s[B].split(B.op.axis[0], factor=num_thread) s[B].bind(xo, bx) s[B].bind(xi, tx) fun = tvm.build(s, [A, B], "cuda") dev = tvm.cuda(0) a = tvm.nd.empty((n,), A.dtype, dev).copyfrom(np.random.uniform(size=(n, lanes))) c = tvm.nd.empty((n,), B.dtype, dev) fun(a, c) tvm.testing.assert_allclose(c.numpy(), a.numpy() + 1) check_cuda("float32", 64, 2) check_cuda("float32", 64, 3) check_cuda("float32", 64, 4) check_cuda("int8", 64, 2) check_cuda("int8", 64, 3) check_cuda("int8", 64, 4) check_cuda("uint8", 64, 2) check_cuda("uint8", 64, 3) check_cuda("uint8", 64, 4) check_cuda("float16", 64, 2) check_cuda("float16", 64, 4) check_cuda("float16", 64, 6) check_cuda("float16", 64, 8) @tvm.testing.requires_gpu @tvm.testing.requires_cuda def test_cuda_bf16_vectorize_add(): if not have_bf16(tvm.cuda(0).compute_version): print("skip because gpu does not support bf16") return num_thread = 8 def np_float2np_bf16(arr): """Convert a numpy array of float to a numpy array of bf16 in uint16""" orig = arr.view("<u4") bias = np.bitwise_and(np.right_shift(orig, 16), 1) + 0x7FFF return np.right_shift(orig + bias, 16).
astype("uint16") def np_bf162np_float(arr): """Convert a numpy array of bf16 (uint16) to a numpy array of float""" u32 = np.left_shift(arr.astype("uint32"), 16) return u32.view("<f4") def check_cuda(n, lanes): A = te.placeholder((n,), name="A", dtype="bfloat16x%d" % lanes) B = te.compute((n,), lambda i: A[i] + tvm.tir.const(1, A.dtype), name="B") s = te.create_schedule(B.op) xo, xi = s[B].split(B.op.axis[0], factor=num_thread) s[B].bind(xo, bx) s[B].bind(xi, tx) with tvm.transform.PassContext( disabled_pass=["tir.BF16Promote", "tir.BF16CastElimination", "tir.BF16TypeLowering"] ): fun = tvm.build(s, [A, B], "cuda") dev = tvm.cuda(0) np_a = np.random.uniform(size=(n, lanes)).astype("float32") np_a = np_bf162np_float(np_float2np_bf16(np_a)) a = tvm.nd.empty((n,), A.dtype, dev).copyfrom(np_float2np_bf16(np_a)) c = tvm.nd.empty((n,), B.dtype, dev) fun(a, c) c = tvm.nd.empty((n, lanes), "uint16", dev).copyfrom(c) tvm.testing.assert_allclose(c.numpy(), np_float2np_bf16(np_a + 1)) check_cuda(64, 2) check_cuda(64, 4) check_cuda(64, 6) check_cuda(64, 8) @tvm.testing.requires_gpu @tvm.testing.requires_cuda def test_cuda_multiply_add(): num_thread = 8 def check_cuda(dtype, n, lanes): if dtype == "int8" and not have_int8(tvm.cuda(0).compute_version): print("skip because gpu does not support int8") return A = te.placeholder((n,), name="A", dtype="%sx%d" % (dtype, lanes)) B = te.placeholder((n,), name="B", dtype="%sx%d" % (dtype, lanes)) C = te.placeholder((n,), name="C", dtype="int32") D = te.compute( (n,), lambda i: tvm.tir.call_pure_extern("int32", "__dp4a", A[i], B[i], C[i]), name="D" ) s = te.create_schedule(D.op) xo, xi = s[D].split(D.op.axis[0], factor=num_thread) s[D].bind(xo, bx) s[D].bi
nd(xi, tx) fun = tvm.build(s, [A, B, C, D], "cuda") np_a = np.random.randint(low=-128, high=127, size=(n, lanes)) np_b = np.random.randint(low=-128, high=127, size=(n, lanes)) np_c = np.random.randint(low=0, high=127, size=(n,)) np_d = [sum(x * y) + z for x, y, z in zip(np_a, np_b, np_c)] dev = tvm.cuda(0) a = tvm.nd.empty((n,), A.dtype, dev).copyfrom(np_a) b = tvm.nd.empty((n,), B.dtype, dev).copyfrom(np_b) c = tvm.nd.empty((n,), C.dtype, dev).copyfrom(np_c) d = tvm.nd.empty((n,), D.dtype, dev) fun(a, b, c, d) tvm.testing.assert_allclose(d.numpy(), np_d) check_cuda("int8", 64, 4) @tvm.testing.requires_gpu @tvm.testing.requires_cuda def test_cuda_vectorize_load(): num_thread = 8 def check_cuda(dtype, n, lanes): dev = tvm.cuda(0) A = te.placeholder((n,), name="A", dtype="%sx%d" % (dtype, lanes)) B = te.compute((n,), lambda i: A[i], name="B") s = te.create_schedule(B.op) block, thread = s[B].split(B.op.axis[0], factor=num_thread) s[B].bind(block, bx) s[B].bind(thread, tx) fun = tvm.build(s, [A, B], "cuda", name="vector_load") np_a = np.random.randint(low=-128, high=127, size=(n, lanes)) a = tvm.nd.empty((n,), A.dtype, dev).copyfrom(np_a) b = tvm.nd.empty((n,), B.dtype, dev) fun(a, b) tvm.testing.assert_allclose(a.numpy(), b.numpy()) check_cuda("int8", 64, 2) check_cuda("int8", 64, 3) check_cuda("int8", 64, 4) check_cuda("int8", 64, 8) check_cuda("int8", 64, 16) @tvm.testing.requires_gpu @tvm.testing.requires_cuda def test_cuda_make_int8(): def check_cuda(n, value, lanes): dtype = "int8" dev = tvm.cuda(0) A = te.compute((n, lanes), lambda i, j: tvm.tir.const(value, dtype=dtype)) s = te.create_schedule(A.op) y, x = s[A].op.axis s[A].vectorize(x) s[A].bind(y, bx) fun = tvm.build(s, [A], "cuda", name="make_int8x4")
np_a = np.full((n, lanes), value, dtype=dtype) a = tvm.nd.empty(np_a.shape, dtype, dev) fun(a) np.testing.assert_equal(a.numpy(), np_a) check_cuda(64, np.int8(0xAB), 4) check_cuda(64, 0, 4) check_cuda(64, -3, 4) check_cuda(64, np.int8(0xAB), 3) check_cuda(64, 0, 3) check_cuda(64, -3, 3) check_cuda(64, np.int8(0xAB), 2) check_cuda(64, 0, 2) check_cuda(64, -3, 2) @tvm.testing.requires_gpu @tvm.testing.requires_cuda def test_cuda_make_int4(): def check_cuda(n, value, lanes): dtype = "int4" dev = tvm.cuda(0) A = te.compute((n, lanes), lambda i, j: tvm.tir.const(value, dtype=dtype)) s = te.create_schedule(A.op) y, x = s[A].op.axis s[A].vectorize(x) s[A].bind(y, bx) kernel_name = "make_int4x" + str(lanes) fun = tvm.build(s, [A], "cuda", name=kernel_name) np_a = np.full((n, lanes), value, dtype="int8") a = tvm.nd.empty((n, lanes), dtype, dev) fun(a) np.testing.assert_equal(a.numpy(), np_a) check_cuda(64, 1, 4) check_cuda(64, 7, 4) check_cuda(64, 1, 8) check_cuda(64, 7, 8) check_cuda(64, 1, 16) check_cuda(64, 7, 16) check_cuda(64, 1, 32) check_cuda(64, 7, 32) @tvm.testing.requires_gpu @tvm.testing.requires_cuda def test_cuda_inf_nan(): target = "cuda" def check_inf_nan(dev, n, value, dtype): A = te.placeholder((n,), name="A", dtype=dtype) inf_value = tvm.tir.const(value, dtype=dtype) C = te.compute((n,), lambda i: inf_value, name="C") s = te.create_schedule(C.op) s[C].bind(s[C].op.axis[0], tx) fun = tvm.build(s, [A, C], target) a = tvm.nd.empty((n,), A.dtype, dev) c = tvm.nd.empty((n,), A.dtype, dev) fun(a, c) dev = tvm.device(target, 0) check_inf_nan(dev, 1, -float("inf"), "float32") check_inf_nan(dev, 1, -float("inf"), "float64") check_inf_nan(dev, 1, float("inf"), "float32") check_inf_nan(dev, 1, flo
at("inf"), "float64") check_inf_nan(dev, 1, float("nan"), "float32") check_inf_nan(dev, 1, float("nan"), "float64") @tvm.testing.requires_gpu @tvm.testing.requires_cuda def test_cuda_shuffle(): idxm = tvm.tir.indexmod a = te.placeholder((64,), "int32") b = te.placeholder((64,), "int32") c = te.compute((64,), lambda x: a[x] + b[x - idxm(x, 4) + (3 - idxm(x, 4))]) sch = te.create_schedule(c.op) x = c.op.axis[0] xo, xi = sch[c].split(x, 4) thrx = te.thread_axis("threadIdx.x") sch[c].bind(xo, thrx) sch[c].vectorize(xi) def MyVectorize(): def vectorizer(op): if op.kind == tvm.tir.ForKind.VECTORIZED: idx = tvm.tir.Ramp(4 * thrx.var, 1, 4) store = op.body value = store.value new_a = tvm.tir.BufferLoad(value.a.buffer, [idx]) bs, ids = [], [] for i in range(4): bs.append(tvm.tir.BufferLoad(value.b.buffer, [4 * thrx.var + i])) ids.append(3 - i) new_b = tvm.tir.Shuffle(bs, ids) return tvm.tir.BufferStore(store.buffer, new_a + new_b, [idx]) return None def _transform(f, *_): return f.with_body( tvm.tir.stmt_functor.ir_transform(f.body, None, vectorizer, ["tir.For"]) ) return tvm.tir.transform.prim_func_pass(_transform, opt_level=0, name="MyVectorize") with tvm.transform.PassContext(config={"tir.add_lower_pass": [(1, MyVectorize())]}): module = tvm.build(sch, [a, b, c], target="cuda") a_ = np.array(list(range(64)), dtype="int32") b_ = np.array((list(range(4))[::-1]) * 16, dtype="int32") c_ = np.zeros((64,), dtype="int32") ref = a_ + np.array((list(range(4))) * 16, dtype="int32") nda, ndb, ndc = [tvm.nd.array(i, tvm.cuda(0)) for i in [a_, b_, c_]] module(nda, ndb, ndc) tvm.testing.assert_allclose(ndc.numpy(), ref) @tvm.testing.parametrize_targets("cu
da", "rocm") def test_crossthread_reduction1(target, dev): n = te.var("n") m = te.var("m") A = te.placeholder((n, m), name="A") k = te.reduce_axis((0, m), "m") B = te.compute((n,), lambda i: te.sum(A[i, k], axis=k), name="B") def sched(nthd): s = te.create_schedule(B.op) ko, _ = s[B].split(B.op.reduce_axis[0], nparts=nthd) s[B].bind(ko, te.thread_axis("threadIdx.x")) s[B].bind(B.op.axis[0], te.thread_axis("blockIdx.x")) func = tvm.build(s, [A, B], target) return func def verify(nthd): func = sched(nthd) nn = 3 vals = [nthd - 1, nthd, nthd + 1] for kk in [x for x in vals]: size = (nn, kk) a = tvm.nd.array(np.random.uniform(size=size).astype(A.dtype), dev) b = tvm.nd.array(np.zeros(nn, dtype=B.dtype), dev) func(a, b) tvm.testing.assert_allclose(b.numpy(), np.sum(a.numpy(), axis=1), rtol=1e-3) verify(16) verify(32) verify(64) @tvm.testing.parametrize_targets("cuda", "rocm") def test_crossthread_reduction2(target, dev): n = te.var("n") k0 = te.var("k0") k1 = te.var("k1") A = te.placeholder((n, k0, k1), name="A") k0 = te.reduce_axis((0, k0), "k0") k1 = te.reduce_axis((0, k1), "k1") B = te.compute((n,), lambda i: te.sum(A[i, k0, k1], axis=(k0, k1)), name="B") def sched(nthdx, nthdy): s = te.create_schedule(B.op) k0o, _ = s[B].split(B.op.reduce_axis[0], nparts=nthdx) k1o, _ = s[B].split(B.op.reduce_axis[1], nparts=nthdy) s[B].bind(k0o, te.thread_axis("threadIdx.x")) s[B].bind(k1o, te.thread_axis("threadIdx.y")) s[B].bind(B.op.axis[0], te.thread_axis("blockIdx.x")) func = tvm.build(s, [A, B], target) return func def verify(nthdx, nthdy): func = sched(nthdx, nthdy) nn = 3 vx = [nthdx - 1, nthdx, nthdx + 1] vy = [nthdy - 1, nthdy, nthdy + 1] for kk0, kk1 in [(x, y) for x in vx for y i
n vy]: size = (nn, kk0, kk1) a = tvm.nd.array(np.random.uniform(size=size).astype(A.dtype), dev) b = tvm.nd.array(np.zeros(nn, dtype=B.dtype), dev) func(a, b) tvm.testing.assert_allclose(b.numpy(), np.sum(a.numpy(), axis=(1, 2)), rtol=1e-3) verify(16, 16) verify(32, 32) verify(16, 32) verify(32, 16) @tvm.testing.requires_gpu @tvm.testing.requires_cuda def test_cuda_reduction_binding(): k = te.reduce_axis((0, 32), "k") A = te.placeholder((96, 32), name="A") B = te.compute((96,), lambda m: te.sum(A[m, k], axis=k), name="B") s = te.create_schedule(B.op) s[B].reorder(B.op.reduce_axis[0], B.op.axis[0]) mo, _ = s[B].split(B.op.axis[0], 32) s[B].bind(mo, te.thread_axis("blockIdx.x")) fcuda = tvm.build(s, [A, B], "cuda") @tvm.testing.parametrize_targets("cuda", "rocm") def test_rfactor_predicates(target, dev): n = te.reduce_axis((0, 129), "n") A = te.placeholder((129,), name="A") B = te.compute((1,), lambda b: te.sum(A[n], axis=n), name="B") s = te.create_schedule(B.op) _, ni = s[B].split(s[B].op.reduce_axis[0], factor=8) BF = s.rfactor(B, ni, 0) s[B].set_store_predicate(tx.var.equal(0)) s[B].bind(s[B].op.reduce_axis[0], tx) s[B].bind(s[B].op.axis[0], bx) s[BF].compute_at(s[B], s[B].op.axis[0]) _, noi = s[BF].split(s[BF].op.reduce_axis[0], factor=2) BF2 = s.rfactor(BF, noi, 0) s[BF].bind(s[BF].op.axis[0], tx) s[BF2].compute_at(s[BF], s[BF].op.axis[1]) fcuda = tvm.build(s, [A, B], target) @tvm.testing.requires_gpu @tvm.testing.requires_cuda def test_cuda_const_float_to_half(): from tvm
import autotvm shape = (2, 3, 4) a = te.placeholder(shape, dtype="float16", name="a") b = tvm.tir.const(0.5, dtype="float16") c = te.compute(shape, lambda i, j, k: a[i, j, k] > b, name="c") s = te.create_schedule(c.op) axes = [axis for axis in c.op.axis] fused = s[c].fuse(*axes) bx, tx = s[c].split(fused, factor=64) s[c].bind(bx, te.thread_axis("blockIdx.x")) s[c].bind(tx, te.thread_axis("threadIdx.x")) func = tvm.build(s, [a, c], "cuda") dev = tvm.cuda(0) a_np = np.random.uniform(size=shape).astype(a.dtype) c_np = np.zeros(shape=shape, dtype=c.dtype) a = tvm.nd.array(a_np, dev) c = tvm.nd.array(c_np, dev) func(a, c) np.testing.assert_equal(c.numpy(), a_np > b.value) @tvm.testing.requires_gpu @tvm.testing.requires_cuda def test_cuda_reduction(): def check(device, dtype, m=32, n=32): if not tvm.testing.device_enabled(device): print("Skipping", device) return dev = tvm.device(device, 0) a = te.placeholder((m, n), name="a", dtype=dtype) b = te.placeholder((m, n), name="b", dtype=dtype) c = a + b d = a * b e = topi.elemwise_sum([c, d]) g = topi.sum(e) with tvm.target.Target(device): sg = topi.cuda.schedule_reduce(g) func = tvm.build(sg, [a, b, g], device) a_np = np.random.uniform(size=(m, n)).astype(a.dtype) b_np = np.random.uniform(size=(m, n)).astype(b.dtype) g_np = np.sum(np.add(a_np * b_np, a_np + b_np)) a_nd = tvm.nd.array(a_np, dev) b_nd = tvm.nd.array(b_np, dev) g_nd = tvm.nd.array(np.zeros(g_np.shape, dtype=g_np.dtype), dev) func(a_nd, b_nd, g_nd) tvm.testing.assert_allclose(g_nd.numpy(), g_np, rtol=1e-3) check("cuda", "float32") check("rocm", "float32") check("cuda", "float16") @tvm.testing.requires_gpu @tvm.testing.requires_cuda def test_cuda_mix_threaded_and_normal_reduction(): def check(device, d
type, m=32, n=32): if not tvm.testing.device_enabled(device): print("Skipping", device) return dev = tvm.device(device, 0) if dtype == "float16" and not have_fp16(dev.compute_version): print("Skip because gpu does not have fp16 support") return a = tvm.te.placeholder((m, n), name="a", dtype=dtype) b = topi.sum(a) with tvm.target.Target(device): sb = tvm.te.create_schedule(b.op) i, _ = b.op.reduce_axis sb[b].bind(i, tvm.te.thread_axis("threadIdx.x")) func = tvm.build(sb, [a, b], device) a_np = np.random.uniform(size=(m, n)).astype(a.dtype) b_np = np.sum(a_np) a_nd = tvm.nd.array(a_np, dev) b_nd = tvm.nd.array(np.zeros(b_np.shape, dtype=b_np.dtype), dev) func(a_nd, b_nd) tvm.testing.assert_allclose(b_nd.numpy(), b_np, rtol=1e-3) check("cuda", "float32") check("rocm", "float32") check("cuda", "float16") @tvm.testing.requires_gpu @tvm.testing.requires_cuda def test_cuda_floordiv_with_vectorization(): with tvm.target.cuda(): n = 256 k = 37 A = te.placeholder((n,), name="A") B = te.compute((n,), lambda i: A[tvm.tir.floordiv(i, k)], name="B") s = te.create_schedule(B.op) xo, xi = s[B].split(B.op.axis[0], nparts=1) xio, xii = s[B].split(xi, factor=4) s[B].vectorize(xii) s[B].bind(xo, bx) s[B].bind(xio, tx) func = tvm.build(s, [A, B], "cuda") dev = tvm.cuda(0) a_np = np.random.uniform(size=(n,)).astype(A.dtype) b_np = np.array([a_np[i a_nd = tvm.nd.array(a_np, dev) b_nd = tvm.nd.array(np.zeros(b_np.shape, dtype=b_np.dtype), dev) func(a_nd, b_nd) tvm.testing.assert_allclose(b_nd.numpy(), b_np, rtol=1e-3) @tvm.testing.requires_gpu @tvm.testing.requires_cuda def test_cuda_floormod_with_vectorization(): with tvm.target.cuda():
n = 256 k = 37 A = te.placeholder((n,), name="A") B = te.compute((n,), lambda i: A[tvm.tir.floormod(i, k)], name="B") s = te.create_schedule(B.op) xo, xi = s[B].split(B.op.axis[0], nparts=1) xio, xii = s[B].split(xi, factor=4) s[B].vectorize(xii) s[B].bind(xo, bx) s[B].bind(xio, tx) func = tvm.build(s, [A, B], "cuda") dev = tvm.cuda(0) a_np = np.random.uniform(size=(n,)).astype(A.dtype) b_np = np.array([a_np[i % k] for i in range(0, n)]) a_nd = tvm.nd.array(a_np, dev) b_nd = tvm.nd.array(np.zeros(b_np.shape, dtype=b_np.dtype), dev) func(a_nd, b_nd) tvm.testing.assert_allclose(b_nd.numpy(), b_np, rtol=1e-3) @tvm.testing.requires_gpu @tvm.testing.requires_cuda def test_vectorized_casts(): def check(t0, t1, factor): if (t0 == "float16" or t1 == "float16") and not have_fp16(tvm.cuda(0).compute_version): print("Skip because gpu does not have fp16 support") return n = 128 A = te.placeholder((n,), dtype=t0, name="A") B = te.placeholder((n,), dtype=t1, name="B") C = te.compute((n,), lambda i: A[i] + topi.cast(B[i], A.dtype), name="C") s = tvm.te.create_schedule(C.op) ob, ib = s[C].split(s[C].op.axis[0], factor=factor) s[C].vectorize(ib) s[C].bind(ob, tx) func = tvm.build(s, [A, B, C], "cuda") dev = tvm.cuda(0) low, high = (0, 20) if t0.startswith("u") or t1.startswith("u") else (-10, 10) a_np = np.random.randint(low, high, size=n).astype(A.dtype) b_np = np.random.randint(low, high, size=n).astype(B.dtype) c_np = (a_np + b_np).astype(A.dtype) a_nd = tvm.nd.array(a_np, dev) b_nd = tvm.nd.array(b_np, dev) c_nd = tvm.nd.array(np.zeros(c_np.shape, dtype=c_np.dtype), dev) func(a_nd, b_nd, c_nd) tvm.testing.assert_allclose(c_nd.numpy(), c_np, rtol=1e-3) def skip(t0
, t1): if t0 == t1: return True skip_set = {"float16", "uint8", "int8"} if t0 in skip_set and t1 in skip_set: return True return False types_4 = [ "float16", "float32", "int8", "uint8", "int16", "uint16", "int32", "uint32", "float64", "int64", "uint64", ] types_8 = ["float16", "float32", "int8", "uint8", "int16", "uint16", "int32", "uint32"] for t0, t1 in [(x, y) for x in types_4 for y in types_4 if not skip(x, y)]: check(t0, t1, 4) for t0, t1 in [(x, y) for x in types_8 for y in types_8 if not skip(x, y)]: check(t0, t1, 8) check("int8", "uint8", 16) check("uint8", "int8", 16) def sched(B): s = te.create_schedule(B.op) io, ii = s[B].split(s[B].op.axis[0], nparts=1) iio, iii = s[B].split(ii, nparts=32) _, iiii = s[B].split(iii, factor=4) s[B].vectorize(iiii) s[B].bind(io, bx) s[B].bind(iio, tx) return s @tvm.testing.requires_gpu @tvm.testing.requires_cuda def test_vectorized_intrin1(): test_funcs = [ (tvm.tir.floor, lambda x: np.floor(x)), (tvm.tir.ceil, lambda x: np.ceil(x)), (tvm.tir.trunc, lambda x: np.trunc(x)), (tvm.tir.abs, lambda x: np.fabs(x)), (tvm.tir.round, lambda x: np.round(x)), (tvm.tir.exp, lambda x: np.exp(x)), (tvm.tir.exp2, lambda x: np.exp2(x)), (tvm.tir.exp10, lambda x: np.power(10, x)), (tvm.tir.log, lambda x: np.log(x)), (tvm.tir.log2, lambda x: np.log2(x)), (tvm.tir.log10, lambda x: np.log10(x)), (tvm.tir.tan, lambda x: np.tan(x)), (tvm.tir.cos, lambda x: np.cos(x)), (tvm.tir.cosh, lambda x: np.cosh(x)), (tvm.tir.sin, lambda x: np.sin(x)), (tvm.tir.sinh, lambda x: np.sinh(x)), (tvm.tir.atan, lambda x: np.arctan(x)), (tvm.tir.tanh, lambda x: np.tanh(x)), (tvm.tir.sqrt, lambda x: np.sqrt(x)), ] def run
_test(tvm_intrin, np_func, dtype): if dtype == "float16" and not have_fp16(tvm.cuda(0).compute_version): print("Skip because gpu does not have fp16 support") return skip_set = { tvm.tir.abs, tvm.tir.round, tvm.tir.tan, tvm.tir.atan, tvm.tir.tanh, tvm.tir.cosh, tvm.tir.sinh, } if dtype == "float16" and tvm_intrin in skip_set: print("Skip because '{0}' does not support fp16 yet".format(tvm_intrin.__name__)) return n = 128 A = te.placeholder((n,), dtype=dtype, name="A") B = te.compute((n,), lambda *i: tvm_intrin(A(*i)), name="B") s = sched(B) f = tvm.build(s, [A, B], "cuda") dev = tvm.cuda(0) a = tvm.nd.array(np.random.uniform(0, 1, size=n).astype(A.dtype), dev) b = tvm.nd.array(np.zeros(shape=(n,)).astype(A.dtype), dev) f(a, b) tvm.testing.assert_allclose(b.numpy(), np_func(a.numpy()), atol=1e-3, rtol=1e-3) for func in test_funcs: run_test(*func, "float32") run_test(*func, "float16") @tvm.testing.requires_gpu @tvm.testing.requires_cuda def test_vectorized_intrin2(dtype="float32"): c2 = tvm.tir.const(2, dtype=dtype) test_funcs = [ (tvm.tir.power, lambda x: np.power(x, 2.0)), (tvm.tir.fmod, lambda x: np.fmod(x, 2.0)), ] def run_test(tvm_intrin, np_func): n = 128 A = te.placeholder((n,), dtype=dtype, name="A") B = te.compute((n,), lambda i: tvm_intrin(A[i], c2), name="B") s = sched(B) f = tvm.build(s, [A, B], "cuda") dev = tvm.cuda(0) a = tvm.nd.array(np.random.uniform(0, 1, size=n).astype(A.dtype), dev) b = tvm.nd.array(np.zeros(shape=(n,)).astype(A.dtype), dev) f(a, b) tvm.testing.assert_allclose(b.numpy(), np_func(a.numpy()), atol=1e-3, rtol=1e-3) for func in test_funcs: run_test(*func) @tvm.testing.requires_gpu @tvm.
testing.requires_cuda def test_vectorized_popcount(): def ref_popcount(x): cnt = 0 while x: x -= x & -x cnt += 1 return cnt def run_test(dtype): n = 128 A = te.placeholder((n,), dtype=dtype, name="A") B = te.compute((n,), lambda i: tvm.tir.popcount(A[i]), name="B") s = sched(B) f = tvm.build(s, [A, B], "cuda") dev = tvm.cuda(0) a = tvm.nd.array(np.random.randint(0, 100000, size=n).astype(A.dtype), dev) b = tvm.nd.array(np.zeros(shape=(n,)).astype(B.dtype), dev) f(a, b) ref = np.vectorize(ref_popcount)(a.numpy()) tvm.testing.assert_allclose(b.numpy(), ref) run_test("uint32") run_test("uint64") @tvm.testing.requires_gpu @tvm.testing.requires_cuda def test_cuda_vectorize_load_permute_pad(): def check_cuda(dtype, n, l, padding, lanes): if dtype == "float16" and not have_fp16(tvm.cuda(0).compute_version): print("Skip because gpu does not have fp16 support") return dev = tvm.cuda(0) A = tvm.te.placeholder((n, l), name="A", dtype=dtype) B = tvm.te.compute( (n lambda i, j, k: tvm.te.if_then_else( tvm.te.any(j < padding, j >= l + padding), tvm.runtime.convert(0).astype(dtype), A[i * lanes + k, j - padding], ), name="B", ) s = te.create_schedule(B.op) block, thread, vectorize = s[B].op.axis s[B].bind(block, bx) s[B].bind(thread, tx) s[B].vectorize(vectorize) fun = tvm.build(s, [A, B], "cuda", name="vector_load_permute_pad") np_a = np.random.randint(low=-128, high=127, size=(n, l)).astype(A.dtype) a = tvm.nd.empty((n, l), A.dtype, dev).copyfrom(np_a) b = tvm.nd.empty((n fun(a, b) np_a_reshape = np_a.reshape(n ref = np.pad( np_a_reshape, ((0, 0), (padding, padding), (0, 0)), mode="constant", constant_
values=0 ) tvm.testing.assert_allclose(b.numpy(), ref) check_cuda("int8", 64, 16, 3, 2) check_cuda("uint8", 64, 16, 3, 2) check_cuda("int8", 64, 16, 3, 4) check_cuda("uint8", 64, 16, 3, 4) check_cuda("int32", 64, 16, 3, 4) check_cuda("float16", 64, 16, 3, 4) check_cuda("float32", 64, 16, 3, 4) def vcf_check_common(s, args): N = 512 stmt = tvm.lower(s, args) inside_broadcast = [False] def pre_visit(stmt): if isinstance(stmt, tvm.tir.Broadcast): inside_broadcast[0] = True assert isinstance(stmt.value, (tvm.tir.IntImm, tvm.tir.FloatImm, tvm.tir.BufferLoad)) if isinstance(stmt, (tvm.tir.BufferStore, tvm.tir.BufferLoad)): is_ramp_index = isinstance(stmt.indices[-1], tvm.tir.Ramp) is_vectorized_buffer = re.match(r"^.*x\d+$", stmt.buffer.dtype) if isinstance(stmt, tvm.tir.BufferLoad): assert inside_broadcast[0] or is_ramp_index or is_vectorized_buffer return stmt else: assert is_ramp_index or is_vectorized_buffer return None def post_visit(stmt): if isinstance(stmt, tvm.tir.Broadcast): inside_broadcast[0] = False return None tvm.tir.stmt_functor.ir_transform(stmt["main"].body, pre_visit, post_visit) tgt = tvm.target.cuda() mod = tvm.build(s, args, tgt) dev = tvm.device("cuda", 0) a = tvm.nd.array(np.random.uniform(size=(512, 512)).astype("float32"), dev) b = tvm.nd.array(np.random.uniform(size=(512, 512)).astype("float32"), dev) c = tvm.nd.array(np.zeros((512, 512), dtype="float32"), dev) mod(a, b, c) tvm.testing.assert_allclose(c.numpy(), np.dot(a.numpy(), b.numpy()), rtol=1e-5) @tvm.testing.requires_gpu @tvm.testing.requires_cuda def test_vectorized_cooperative_fetching_x(): N = 512 A = te.placeholder((N, N), name="A", dtype="float32") B =
te.placeholder((N, N), name="B", dtype="float32") k = te.reduce_axis((0, N), name="k") C = te.compute((N, N), lambda i, j: te.sum(A[i, k] * B[k, j], axis=k)) s = te.create_schedule(C.op) i, j = s[C].op.axis k = s[C].op.reduce_axis[0] AA = s.cache_read(A, "shared", [C]) BB = s.cache_read(B, "shared", [C]) i3, i4 = s[C].split(i, factor=4) i2, i3 = s[C].split(i3, factor=2) i1, i2 = s[C].split(i2, factor=8) i0, i1 = s[C].split(i1, factor=1) j3, j4 = s[C].split(j, factor=4) j2, j3 = s[C].split(j3, factor=2) j1, j2 = s[C].split(j2, factor=8) j0, j1 = s[C].split(j1, factor=2) k1, k2 = s[C].split(k, factor=8) k0, k1 = s[C].split(k1, factor=8) s[C].reorder(i0, j0, i1, j1, i2, j2, k0, k1, i3, j3, k2, i4, j4) block_it = s[C].fuse(i0, j0) s[C].bind(block_it, tvm.te.thread_axis("blockIdx.x")) vthread_it = s[C].fuse(i1, j1) s[C].bind(vthread_it, tvm.te.thread_axis("vthread")) thread_it = s[C].fuse(i2, j2) s[C].bind(thread_it, tvm.te.thread_axis("threadIdx.x")) s[C].vectorize(j4) s[AA].compute_at(s[C], k0) iaa, jaa = s[AA].op.axis s[BB].compute_at(s[C], k0) ibb, jbb = s[BB].op.axis aa_fused = s[AA].fuse(iaa, jaa) bb_fused = s[BB].fuse(ibb, jbb) aa1, aa2 = s[AA].split(aa_fused, factor=4) aa0, aa1 = s[AA].split(aa1, factor=64) bb1, bb2 = s[BB].split(bb_fused, factor=4) bb0, bb1 = s[BB].split(bb1, factor=64) s[AA].bind(aa1, tvm.te.thread_axis("threadIdx.x")) s[AA].vectorize(aa2) s[BB].bind(bb1, tvm.te.thread_axis("threadIdx.x")) s[BB].vectorize(bb2) vcf_check_common(s, [A, B, C]) @tvm.testing.requires_gpu @tvm.testing.requires_cuda def test_vectorized_cooperative_fetching_xy(): N = 512 A = te.placeholder((N, N), name="A") B = te.placeholder((N, N), name="B") k = te.reduce_axis((0, N), name="k") C = te.compute((N, N), lambda i, j: te.sum(A[i, k] * B[k, j], axis=k)) s = te.create_schedule(C.op) i, j = s[C].op.axis k = s[C].op.reduce_axis[
0] AA = s.cache_read(A, "shared", [C]) BB = s.cache_read(B, "shared", [C]) i3, i4 = s[C].split(i, factor=4) i2, i3 = s[C].split(i3, factor=2) i1, i2 = s[C].split(i2, factor=8) i0, i1 = s[C].split(i1, factor=1) j3, j4 = s[C].split(j, factor=4) j2, j3 = s[C].split(j3, factor=2) j1, j2 = s[C].split(j2, factor=8) j0, j1 = s[C].split(j1, factor=2) k1, k2 = s[C].split(k, factor=8) k0, k1 = s[C].split(k1, factor=8) s[C].reorder(i0, j0, i1, j1, i2, j2, k0, k1, i3, j3, k2, i4, j4) block_it = s[C].fuse(i0, j0) s[C].bind(block_it, tvm.te.thread_axis("blockIdx.x")) vthread_it = s[C].fuse(i1, j1) s[C].bind(vthread_it, tvm.te.thread_axis("vthread")) s[C].bind(i2, tvm.te.thread_axis("threadIdx.y")) s[C].bind(j2, tvm.te.thread_axis("threadIdx.x")) s[C].vectorize(j4) s[AA].compute_at(s[C], k0) iaa, jaa = s[AA].op.axis s[BB].compute_at(s[C], k0) ibb, jbb = s[BB].op.axis aa_fused = s[AA].fuse(iaa, jaa) bb_fused = s[BB].fuse(ibb, jbb) aa2, aa3 = s[AA].split(aa_fused, factor=4) aa1, aa2 = s[AA].split(aa2, factor=8) aa0, aa1 = s[AA].split(aa1, factor=8) bb2, bb3 = s[BB].split(bb_fused, factor=4) bb1, bb2 = s[BB].split(bb2, factor=8) bb0, bb1 = s[BB].split(bb1, factor=8) s[AA].bind(aa1, tvm.te.thread_axis("threadIdx.y")) s[AA].bind(aa2, tvm.te.thread_axis("threadIdx.x")) s[AA].vectorize(aa3) s[BB].bind(bb1, tvm.te.thread_axis("threadIdx.y")) s[BB].bind(bb2, tvm.te.thread_axis("threadIdx.x")) s[BB].vectorize(bb3) vcf_check_common(s, [A, B, C]) @tvm.testing.requires_gpu @tvm.testing.requires_cuda def test_unrolled_vectorization(): dtype = "float32" target = "cuda" N = 128 A = te.placeholder((N, N), name="A") B = te.placeholder((N, N), name="B") k = te.reduce_axis((0, N), name="k") C = te.compute((N, N), lambda i, j: te.sum(A[i][k] * B[k][j], axis=[k]), name="C") s = te.create_schedule([C.op]) CC = s.cache_write(C, "local") i, j
= s[C].op.axis bx, tx, ii, ji = s[C].tile(i, j, 1, 2) s[C].bind(bx, te.thread_axis("blockIdx.x")) s[C].bind(tx, te.thread_axis("threadIdx.x")) s[C].vectorize(ji) s[CC].compute_at(s[C], tx) i, j = s[CC].op.axis k = s[CC].op.reduce_axis[0] ko, ki = s[CC].split(k, 2) s[CC].unroll(ki) s[CC].vectorize(j) dev = tvm.device(target) a_tvm = tvm.nd.array(np.ones((N, N)).astype(dtype), device=dev) b_tvm = tvm.nd.array(np.ones((N, N)).astype(dtype), device=dev) c_tvm = tvm.nd.empty((N, N), device=dev) func_tvm = tvm.build(s, [A, B, C], target=target) func_tvm(a_tvm, b_tvm, c_tvm) c_np = c_tvm.numpy() tvm.testing.assert_allclose(c_np, N * np.ones((N, N))) @tvm.testing.requires_gpu @tvm.testing.requires_cuda def test_try_unaligned_vector_load(): def get_compute(N, C_N, offset): A = te.placeholder((N,), name="A", dtype="float16") C = te.compute((C_N,), lambda i: A[i + offset], name="C") return N, C_N, A, C def get_compute_unaligned(): return get_compute(3, 2, 1) def get_compute_aligned(): return get_compute(4, 2, 2) def build(A, C, N, C_N): s = te.create_schedule(C.op) oi, ii = s[C].split(C.op.axis[0], factor=2) s[C].bind(oi, te.thread_axis("threadIdx.x")) s[C].vectorize(ii) tgt = tvm.target.Target(target="cuda", host="llvm") dev = tvm.device(tgt.kind.name, 0) f = tvm.build(s, [A, C], tgt, name="foo") kernel_source = f.imported_modules[0].get_source() a_data = np.arange(0, N).astype(A.dtype) a = tvm.nd.array(a_data, dev) c = tvm.nd.array(np.zeros(C_N, dtype=C.dtype), dev) f(a, c) return a_data, c.numpy(), kernel_source N, C_N, A, C = get_compute_unaligned() a_data, c, kernel_source = build(A, C, N, C_N) assert "A + (1)" not in kernel_source expected = a_data[1 : C_N + 1] assert np.allclose(c, expected), f"expected={expected}\nactual={c}" N, C_N, A, C =
get_compute_aligned() a_data, c, kernel_source = build(A, C, N, C_N) assert "A + 2" in kernel_source expected = a_data[2 : C_N + 2] assert np.allclose(c, expected), f"expected={expected}\nactual={c}" if __name__ == "__main__": pytest.main([__file__])
import tvm from tvm
import te from tvm.contrib
import utils
import numpy as np
import tvm.testing @tvm.testing.requires_gpu def test_large_uint_imm(): value = (1 << 63) + 123 other = tvm.tir.const(3, "uint64") n = 12 num_thread = 2 A = te.compute((n,), lambda *i: tvm.tir.const(value, "uint64") + other, name="A") s = te.create_schedule(A.op) xo, xi = s[A].split(A.op.axis[0], factor=num_thread) s[A].bind(xi, te.thread_axis("threadIdx.x")) s[A].bind(xo, te.thread_axis("blockIdx.x")) def check_target(device): if not tvm.testing.device_enabled(device): return dev = tvm.device(device, 0) f = tvm.build(s, [A], device) a = tvm.nd.empty((n,), dtype=A.dtype, device=dev) f(a) assert a.numpy()[0] == value + 3 check_target("cuda") check_target("vulkan -from_device=0") @tvm.testing.requires_gpu def test_add_pipeline(): n = te.size_var("n") A = te.placeholder((n,), name="A") B = te.placeholder((), name="B") C = te.compute(A.shape, lambda *i: A(*i) + B(), name="C") D = te.compute(A.shape, lambda *i: C(*i) + 1, name="D") s = te.create_schedule(D.op) num_thread = 256 xo, xi = s[C].split(C.op.axis[0], factor=num_thread) s[C].bind(xi, te.thread_axis("threadIdx.x")) s[C].bind(xo, te.thread_axis("blockIdx.x")) xo, xi = s[D].split(D.op.axis[0], factor=num_thread) s[D].bind(xi, te.thread_axis("threadIdx.x")) s[D].bind(xo, te.thread_axis("blockIdx.x")) def check_target(device, host="stackvm"): if not tvm.testing.device_enabled(device) or not tvm.testing.device_enabled(host): return dev = tvm.device(device, 0) mhost = tvm.driver.build(s, [A, B, D], target=tvm.target.Target(device, host)) f = mhost.entry_func n = 1027 a = tvm.nd.array(np.random.uniform(size=n).astype(A.dtype), dev) b = tvm.nd.array(np.random.uniform(size=()).astype(B.dtype), dev) d = tvm.nd.array(np.zeros(n, dtype=D.dtype), dev) f(a, b, d) tvm.testing.assert_allclose
(d.numpy(), a.numpy() + b.numpy() + 1) check_target("cuda", host="llvm") check_target("nvptx", host="llvm") check_target("vulkan", host="llvm") check_target("rocm", host="llvm") if __name__ == "__main__": test_large_uint_imm() test_add_pipeline()
import tvm from tvm
import te
import numpy as np
import tvm.testing @tvm.testing.uses_gpu def test_add_pipeline(): nn = 64 max_threads = 4 n = tvm.runtime.convert(nn) A = te.placeholder((n,), name="A") def extern_generator(ins, outs): """Manually write the IR for the extern function, add pipeline""" ib = tvm.tir.ir_builder.create() with ib.for_range(0, (n + 1) ib.emit( outs[0].vstore( i * 2, ins[0].vload(i * 2, "float32x2") + tvm.tir.const(1, "float32x2") ) ) return ib.get() def extern_generator_gpu(ins, outs): """Manually write the IR for the extern function, add pipeline""" ib = tvm.tir.ir_builder.create() bx = te.thread_axis("blockIdx.x") tx = te.thread_axis("threadIdx.x") ib.scope_attr(bx, "thread_extent", (nn + max_threads - 1) ib.scope_attr(tx, "thread_extent", max_threads) idx = bx.var * max_threads + tx.var with ib.if_scope(ib.likely(idx < n)): ib.emit( outs[0].vstore( idx * 2, ins[0].vload(idx * 2, "float32x2") + tvm.tir.const(1, "float32x2") ) ) return ib.get() C_cpu = te.extern(A.shape, [A], extern_generator, name="C") C_gpu = te.extern(A.shape, [A], extern_generator_gpu, name="C") s_cpu = te.create_schedule(C_cpu.op) s_gpu = te.create_schedule(C_gpu.op) print(tvm.lower(s_cpu, [A, C_cpu], simple_mode=True)) print(tvm.lower(s_gpu, [A, C_gpu], simple_mode=True)) def check_target(target): if not tvm.testing.device_enabled(target): return s = s_gpu if target in ["opencl", "cuda"] else s_cpu C = C_gpu if target in ["opencl", "cuda"] else C_cpu f = tvm.build(s, [A, C], target) dev = tvm.device(target, 0) n = nn a = tvm.nd.array(np.random.uniform(size=n).astype(A.dtype), dev) c = tvm.nd.array(np.zeros(n, dtype=C.dtype), dev) f(a, c) tvm.te
sting.assert_allclose(c.numpy(), a.numpy() + 1) check_target("llvm") check_target("opencl") check_target("cuda") def test_pack_buffer_simple(): nn = 1024 n = tvm.runtime.convert(nn) A = te.placeholder((n,), name="A") def extern_generator(ins, outs): """Manually write the IR for the extern function, add pipeline.""" return tvm.tir.call_packed("my_extern_array_func1", ins[0], outs[0]) C = te.extern(A.shape, [A], extern_generator, name="C") s = te.create_schedule(C.op) @tvm.register_func def my_extern_array_func1(aa, bb): aa.copyto(bb) def check_target(target): if not tvm.testing.device_enabled(target): return f = tvm.build(s, [A, C], target) dev = tvm.cpu(0) n = nn a = tvm.nd.array(np.random.uniform(size=n).astype(A.dtype), dev) c = tvm.nd.array(np.zeros(n, dtype=C.dtype), dev) f(a, c) tvm.testing.assert_allclose(c.numpy(), a.numpy()) check_target("stackvm") check_target("llvm") def test_pack_buffer_intermediate(): nn = 1024 n = tvm.runtime.convert(nn) A = te.placeholder((n,), name="A") B = te.compute((n,), lambda i: A[i] + 1, name="B") def extern_generator(ins, outs): """Manually write the IR for the extern function, add pipeline.""" return tvm.tir.call_packed("my_extern_array_func2", ins[0], outs[0]) C = te.extern(B.shape, [B], extern_generator, name="C") s = te.create_schedule(C.op) def check_target(target): if not tvm.testing.device_enabled(target): return f = tvm.build(s, [A, C], target) dev = tvm.cpu(0) n = nn a = tvm.nd.array(np.random.uniform(size=n).astype(A.dtype), dev) c = tvm.nd.array(np.zeros(n, dtype=C.dtype), dev) @tvm.register_func def my_extern_array_func2(aa, bb): assert aa.shape == a.shape tvm.testing.assert_allclose(aa.numpy(), a.numpy() + 1)
aa.copyto(bb) f(a, c) tvm.testing.assert_allclose(c.numpy(), a.numpy() + 1) check_target("llvm") if __name__ == "__main__": test_pack_buffer_simple() test_pack_buffer_intermediate() test_add_pipeline()
import numpy as np
import os
import pytest
import re
import sys
import tvm
import tvm.relay
import tvm.testing
import tvm.contrib.hexagon as hexagon @pytest.fixture(autouse=True) def register_linker(): original_linker = hexagon.hexagon_link() hexagon.register_linker(lambda: "/bin/true") yield None hexagon.register_linker(original_linker) @tvm.testing.requires_hexagon def test_basic(): target = tvm.target.hexagon("v66", hvx=128) def check_add(offload): A = tvm.te.placeholder((128,), dtype="uint8", name="A") B = tvm.te.placeholder((128,), dtype="uint8", name="A") C = tvm.te.compute((128,), lambda i: A[i] + B[i], name="C") s = tvm.te.create_schedule(C.op) if offload: xo, xi = s[C].split(s[C].op.axis[0], nparts=1) s[C].bind(xo, tvm.te.thread_axis("pipeline")) m = tvm.build(s, [C, A, B], target=target, name="offload_add") hexm = m.imported_modules[0] else: hexm = tvm.build( s, [C, A, B], target=tvm.target.Target(target, target), name="native_add" ) asm = hexm.get_source("s") vadds = re.findall(r"v[0-9]+.b = vadd\(v[0-9]+.b,v[0-9]+.b\)", asm) assert vadds check_add(True) check_add(False) @tvm.testing.requires_hexagon def test_llvm_target_features(): target = tvm.target.hexagon("v66", hvx=128) A = tvm.te.placeholder((128,), dtype="uint8", name="A") C = tvm.te.compute((128,), lambda i: A[i] + 1, name="C") s = tvm.te.create_schedule(C.op) m = tvm.build(s, [C, A], target=tvm.target.Target(target, target), name="add_one") llvm_ir = m.get_source("ll") fs = re.findall(r"attributes.*\+hvx-length128b", llvm_ir) assert fs @tvm.testing.requires_hexagon def test_alloc_vtcm(): target = tvm.target.hexagon("v66") buf_len = 2048 A = tvm.te.placeholder((buf_len,), name="A", dtype="int8") B = tvm.te.placeholder((buf_len,), name="B", dtype="int8") A_buf = tvm.te.compute((buf_len,), lambda *i: A(*i), "A_buf") B_buf = tvm.te.compute((buf_len,), lambda *i: B(*i), "B_bu
f") C = tvm.te.compute((buf_len,), lambda *i: A_buf(*i) + B_buf(*i), name="C") s = tvm.te.create_schedule(C.op) s[A_buf].set_scope("local.vtcm") s[B_buf].set_scope("local.vtcm") config = {"tir.add_lower_pass": hexagon.ir_lower_vtcm_pass()} with tvm.transform.PassContext(config=config): irmod = tvm.lower(s, [A, B, C], name="alloc_vtcm") calls = re.findall("HexagonBackend[A-Za-z]*VTCM", str(irmod["alloc_vtcm"])) assert "HexagonBackendAllocateVTCM" in calls assert "HexagonBackendFreeVTCM" in calls @tvm.testing.requires_hexagon def test_llvm_options(): target = tvm.target.hexagon("v66", llvm_options="-hexagon-noopt") Zero = tvm.te.compute((10,), lambda _: tvm.tir.const(0, "int32")) s = tvm.te.create_schedule(Zero.op) tvm.build(s, [Zero], target=target, name="zero") assert re.search("-hexagon-noopt", str(target)) if __name__ == "__main__": tvm.testing.main()
import collections
import ctypes
import json
import math
import numpy as np
import pytest
import re
import sys
import tvm
import tvm.testing from tvm
import te from tvm.contrib
import clang, utils from tvm.relay.backend
import Runtime from tvm.script
import tir as T from tvm.target.codegen
import llvm_get_intrinsic_name, llvm_lookup_intrinsic_id @tvm.testing.requires_llvm def test_llvm_intrin(): ib = tvm.tir.ir_builder.create() n = tvm.runtime.convert(4) A = ib.pointer("float32", name="A") args = [tvm.tir.call_intrin("handle", "tir.address_of", A[0]), 0, 3, 1] ib.emit(tvm.tir.Evaluate(tvm.tir.Call("int32", "tir.prefetch", args))) body = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([A], body).with_attr("global_symbol", "prefetch")) fcode = tvm.build(mod, None, "llvm") @tvm.testing.requires_llvm def test_llvm_void_intrin(): ib = tvm.tir.ir_builder.create() A = ib.pointer("uint8", name="A") x = tvm.tir.call_llvm_intrin("", "llvm.va_start", tvm.tir.const(1, "uint32"), A.asobject().data) ib.emit(x) body = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([A], body).with_attr("global_symbol", "main")) fcode = tvm.build(mod, None, "llvm") @tvm.testing.requires_llvm def test_llvm_intrinsic_id(): orig_name = "llvm.x86.sse2.pmadd.wd" intrin_id = llvm_lookup_intrinsic_id(orig_name) name = llvm_get_intrinsic_name(intrin_id) assert orig_name == name @tvm.testing.requires_llvm def test_llvm_overloaded_intrin(): if tvm.target.codegen.llvm_version_major() < 5: return def use_llvm_intrinsic(A, C): ib = tvm.tir.ir_builder.create() L = A.vload((0, 0)) I = tvm.tir.call_llvm_pure_intrin( "int32", "llvm.ctlz", tvm.tir.const(2, "uint32"), L, tvm.tir.const(0, "int1") ) S = C.vstore((0, 0), I) ib.emit(S) return ib.get() A = tvm.te.placeholder((1, 1), dtype="int32", name="A") C = tvm.te.extern( (1, 1), [A], lambda ins, outs: use_llvm_intrinsic(ins[0], outs[0]), name="C", dtype="int32" ) s = tvm.te.create_schedule(C.op) f = tvm.build(s, [A, C], target="llvm") @tvm.testing.requires_llvm def test_llvm_lookup_intrin(): ib = tvm.tir.ir_builder.create() A = ib.pointer("uint8x8", name="A") z
= tvm.tir.const(0, "int32") x = tvm.tir.call_llvm_pure_intrin( "uint8x8", "llvm.ctpop.v8i8", tvm.tir.const(1, "uint32"), A[z] ) ib.emit(x) body = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([A], body).with_attr("global_symbol", "main")) fcode = tvm.build(mod, None, "llvm") @tvm.testing.requires_llvm def test_llvm_large_uintimm(): value = (1 << 63) + 123 other = tvm.tir.const(3, "uint64") A = te.compute((), lambda: tvm.tir.const(value, "uint64") + other, name="A") s = te.create_schedule(A.op) def check_llvm(): f = tvm.build(s, [A], "llvm") dev = tvm.cpu(0) a = tvm.nd.empty((), dtype=A.dtype, device=dev) f(a) assert a.numpy() == value + 3 check_llvm() @tvm.testing.requires_llvm def test_llvm_persist_parallel(): n = 128 A = te.placeholder((n,), name="A") B = te.compute(A.shape, lambda *i: A(*i) + 1, name="B") C = te.compute(A.shape, lambda *i: te.sqrt(B(*i)) * 2 + 2, name="C") s = te.create_schedule(C.op) xo, xi = s[C].split(C.op.axis[0], factor=8) xo1, xo2 = s[C].split(xo, nparts=1) s[B].compute_at(s[C], xo1) s[B].parallel(s[B].op.axis[0]) s[B].pragma(s[B].op.axis[0], "parallel_barrier_when_finish") s[C].parallel(xi) s[C].pragma(xo1, "parallel_launch_point") s[C].pragma(xi, "parallel_stride_pattern") def check_llvm(): f = tvm.build(s, [A, C], "llvm") dev = tvm.cpu(0) a = tvm.nd.array(np.random.uniform(size=n).astype(A.dtype), dev) c = tvm.nd.array(np.zeros(n, dtype=C.dtype), dev) f(a, c) tvm.testing.assert_allclose(c.numpy(), np.sqrt(a.numpy() + 1) * 2 + 2, rtol=1e-5) check_llvm() @tvm.testing.requires_llvm def test_llvm_flip_pipeline(): def check_llvm(nn, base): n = tvm.runtime.convert(nn) A = te.placeholder((n + base), name="A") C = te.compute((n,), lambda i: A(nn + base - i - 1), name="C") s = te.create_schedule(C.op) xo,
xi = s[C].split(C.op.axis[0], factor=4) s[C].parallel(xo) s[C].vectorize(xi) f = tvm.build(s, [A, C], "llvm") dev = tvm.cpu(0) n = nn a = tvm.nd.array(np.random.uniform(size=(n + base)).astype(A.dtype), dev) c = tvm.nd.array(np.zeros(n, dtype=C.dtype), dev) f(a, c) tvm.testing.assert_allclose(c.numpy(), a.numpy()[::-1][:n]) check_llvm(4, 0) check_llvm(128, 8) check_llvm(3, 0) check_llvm(128, 1) @tvm.testing.requires_llvm def test_llvm_vadd_pipeline(): def check_llvm(n, lanes): A = te.placeholder((n,), name="A", dtype="float32x%d" % lanes) B = te.compute((n,), lambda i: A[i], name="B") C = te.compute((n,), lambda i: B[i] + tvm.tir.const(1, A.dtype), name="C") s = te.create_schedule(C.op) xo, xi = s[C].split(C.op.axis[0], nparts=2) _, xi = s[C].split(xi, factor=2) s[C].parallel(xo) s[C].vectorize(xi) s[B].compute_at(s[C], xo) xo, xi = s[B].split(B.op.axis[0], factor=2) s[B].vectorize(xi) f = tvm.build(s, [A, C], "llvm") dev = tvm.cpu(0) a = tvm.nd.empty((n,), A.dtype).copyfrom(np.random.uniform(size=(n, lanes))) c = tvm.nd.empty((n,), C.dtype, dev) f(a, c) tvm.testing.assert_allclose(c.numpy(), a.numpy() + 1) check_llvm(64, 2) check_llvm(512, 2) @tvm.testing.requires_llvm def test_llvm_madd_pipeline(): def check_llvm(nn, base, stride): n = tvm.runtime.convert(nn) A = te.placeholder((n + base, stride), name="A") C = te.compute((n, stride), lambda i, j: A(base + i, j) + 1, name="C") s = te.create_schedule(C.op) xo, xi = s[C].split(C.op.axis[0], factor=4) s[C].parallel(xo) s[C].vectorize(xi) f = tvm.build(s, [A, C], "llvm") dev = tvm.cpu(0) n = nn a = tvm.nd.array(np.random.uniform(size=(n + base, stride)).astype(A.dtype), dev)
c = tvm.nd.array(np.zeros((n, stride), dtype=C.dtype), dev) f(a, c) tvm.testing.assert_allclose(c.numpy(), a.numpy()[base:] + 1) check_llvm(64, 0, 2) check_llvm(4, 0, 1) with tvm.transform.PassContext(config={"tir.noalias": False}): check_llvm(4, 0, 3) @tvm.testing.requires_llvm def test_llvm_temp_space(): nn = 1024 n = tvm.runtime.convert(nn) A = te.placeholder((n,), name="A") B = te.compute(A.shape, lambda i: A(i) + 1, name="B") C = te.compute(A.shape, lambda i: B(i) + 1, name="C") s = te.create_schedule(C.op) def check_llvm(): f = tvm.build(s, [A, C], "llvm") dev = tvm.cpu(0) n = nn a = tvm.nd.array(np.random.uniform(size=n).astype(A.dtype), dev) c = tvm.nd.array(np.zeros(n, dtype=C.dtype), dev) f(a, c) tvm.testing.assert_allclose(c.numpy(), a.numpy() + 1 + 1) check_llvm() @tvm.testing.requires_llvm def test_multiple_func(): nn = 1024 n = tvm.runtime.convert(nn) A = te.placeholder((n,), name="A") B = te.placeholder((n,), name="B") C = te.compute(A.shape, lambda *i: A(*i) + B(*i), name="C") s = te.create_schedule(C.op) xo, xi = s[C].split(C.op.axis[0], factor=4) s[C].parallel(xo) s[C].vectorize(xi) def check_llvm(): f2 = tvm.lower(s, [A, B, C], name="fadd1") f1 = tvm.lower(s, [A, B, C], name="fadd2") m = tvm.build([f1, f2], "llvm") fadd2 = m["fadd2"] fadd1 = m["fadd1"] dev = tvm.cpu(0) n = nn a = tvm.nd.array(np.random.uniform(size=n).astype(A.dtype), dev) b = tvm.nd.array(np.random.uniform(size=n).astype(B.dtype), dev) c = tvm.nd.array(np.zeros(n, dtype=C.dtype), dev) fadd1(a, b, c) tvm.testing.assert_allclose(c.numpy(), a.numpy() + b.numpy()) fadd2(a, b, c) tvm.testing.assert_allclose(c.numpy(), a.numpy() + b.numpy()) check_llvm() @tvm.testing.requires_llvm def test_llvm_condition():
def check_llvm(n, offset): A = te.placeholder((n,), name="A") C = te.compute((n,), lambda i: tvm.tir.if_then_else(i >= offset, A[i], 0.0), name="C") s = te.create_schedule(C.op) f = tvm.build(s, [A, C], "llvm") dev = tvm.cpu(0) a = tvm.nd.array(np.random.uniform(size=(n,)).astype(A.dtype), dev) c = tvm.nd.empty((n,), A.dtype, dev) f(a, c) c_np = a.numpy() c_np[:offset] = 0 tvm.testing.assert_allclose(c.numpy(), c_np) check_llvm(64, 8) @tvm.testing.requires_llvm def test_llvm_bool(): def check_llvm(n): A = te.placeholder((n,), name="A", dtype="int32") C = te.compute((n,), lambda i: A[i].equal(1).astype("float"), name="C") s = te.create_schedule(C.op) f = tvm.build(s, [A, C], "llvm") dev = tvm.cpu(0) a = tvm.nd.array(np.random.randint(0, 2, size=(n,)).astype(A.dtype), dev) c = tvm.nd.empty((n,), C.dtype, dev) f(a, c) c_np = a.numpy() == 1 tvm.testing.assert_allclose(c.numpy(), c_np) check_llvm(64) @tvm.testing.requires_llvm def test_rank_zero(): def check_llvm(n): A = te.placeholder((n,), name="A") scale = te.placeholder((), name="scale") k = te.reduce_axis((0, n), name="k") C = te.compute((), lambda: te.sum(A[k] * scale(), axis=k), name="C") D = te.compute((), lambda: C() + 1) s = te.create_schedule(D.op) f = tvm.build(s, [A, scale, D], "llvm") dev = tvm.cpu(0) a = tvm.nd.array(np.random.randint(0, 2, size=(n,)).astype(A.dtype), dev) sc = tvm.nd.array(np.random.randint(0, 2, size=()).astype(scale.dtype), dev) d = tvm.nd.empty((), D.dtype, dev) f(a, sc, d) d_np = np.sum(a.numpy()) * sc.numpy() + 1 tvm.testing.assert_allclose(d.numpy(), d_np) check_llvm(64) @tvm.testing.requires_llvm def test_rank_zero_bound_checkers(): def check_llvm(n): with tv
m.transform.PassContext(config={"tir.instrument_bound_checkers": True}): A = te.placeholder((n,), name="A") scale = te.placeholder((), name="scale") k = te.reduce_axis((0, n), name="k") C = te.compute((), lambda: te.sum(A[k] * scale(), axis=k), name="C") D = te.compute((), lambda: C() + 1) s = te.create_schedule(D.op) f = tvm.build(s, [A, scale, D], "llvm") dev = tvm.cpu(0) a = tvm.nd.array(np.random.randint(0, 2, size=(n,)).astype(A.dtype), dev) sc = tvm.nd.array(np.random.randint(0, 2, size=()).astype(scale.dtype), dev) d = tvm.nd.empty((), D.dtype, dev) f(a, sc, d) d_np = np.sum(a.numpy()) * sc.numpy() + 1 tvm.testing.assert_allclose(d.numpy(), d_np) check_llvm(64) @tvm.testing.requires_llvm def test_alignment(): n = tvm.runtime.convert(1024) A = te.placeholder((n,), name="A") B = te.compute(A.shape, lambda i: A[i] * 3, name="B") s = te.create_schedule(B.op) bx, tx = s[B].split(B.op.axis[0], factor=8) s[B].vectorize(tx) f = tvm.build(s, [A, B], "llvm", name="test_alignment") lines = f.get_source().split("\n") for l in lines: if "align" in l and "4 x float" in l: assert "align 32" in l def has_param_alignment(): for l in lines: if re.search(r"test_alignment_compute_\([^(]*align [0-9]", l): return True return False if tvm.target.codegen.llvm_version_major() >= 5: assert has_param_alignment() def has_call_to_assume(): for l in lines: if re.search(r"call.*llvm.assume", l): return True return False assert has_call_to_assume() @tvm.testing.requires_llvm def test_llvm_div(): """Check that the semantics of div and mod is correct""" def check(start, end, dstart, dend, dtype, floor_div=False): div =
tvm.te.floordiv if floor_div else tvm.tir.truncdiv mod = tvm.te.floormod if floor_div else tvm.tir.truncmod A = te.placeholder((end - start + 1,), name="A", dtype=dtype) B = te.placeholder((dend - dstart + 1,), name="B", dtype=dtype) def clipa(x): return tvm.te.min(tvm.tir.const(end, dtype), tvm.te.max(tvm.tir.const(start, dtype), x)) def clipb(x): return tvm.te.min( tvm.tir.const(dend, dtype), tvm.te.max(tvm.tir.const(dstart, dtype), x) ) if start == end: def clipa(x): return tvm.tir.const(start, dtype) if dstart == dend: def clipb(x): return tvm.tir.const(dstart, dtype) [D, M] = te.compute( (end - start + 1, dend - dstart + 1), lambda i, j: (div(clipa(A[i]), clipb(B[j])), mod(clipa(A[i]), clipb(B[j]))), ) s = te.create_schedule([D.op, M.op]) f = tvm.build(s, [A, B, D, M], "llvm") A_arr = tvm.nd.empty((end - start + 1,), dtype) B_arr = tvm.nd.empty((dend - dstart + 1,), dtype) A_arr.copyfrom(np.arange(start, end + 1, dtype=dtype)) B_np = np.arange(dstart, dend + 1, dtype=dtype) if dend >= 0 and dstart <= 0: B_np[-dstart] = 1 B_arr.copyfrom(B_np) D_arr = tvm.nd.empty((end - start + 1, dend - dstart + 1), dtype) M_arr = tvm.nd.empty((end - start + 1, dend - dstart + 1), dtype) f(A_arr, B_arr, D_arr, M_arr) D_arr = D_arr.numpy() M_arr = M_arr.numpy() def _show_info(): print("dtype: {}".format(dtype)) print("dividend range: [{}, {}]".format(start, end)) print("divisor range: [{}, {}]".format(dstart, dend)) lowered = tvm.lower(s, [A, B, D, M], simple_mode=True) print("Lowered code:") print(lowered) for i in range(start, end
+ 1): for j in range(dstart, dend + 1): if j == 0: continue if floor_div: dref = i mref = i % j else: dref = int(float(i) / j) mref = int(math.fmod(i, j)) if D_arr[i - start, j - dstart] != dref: _show_info() raise AssertionError( "Incorrect division result: {}({}, {}) is {} " "but should be {}".format( div.__name__, i, j, D_arr[i - start, j - dstart], dref ) ) if M_arr[i - start, j - dstart] != mref: _show_info() raise AssertionError( "Incorrect modulo result: {}({}, {}) is {} " "but should be {}".format( mod.__name__, i, j, M_arr[i - start, j - dstart], mref ) ) for start, end in [ (-12, -12), (-11, -1), (-11, 0), (0, 0), (12, 12), (1, 11), (0, 11), (-11, 11), ]: for dstart, dend in [ (-11, -1), (-11, 0), (-4, -4), (-2, -2), (1, 11), (0, 11), (4, 4), (2, 2), (-11, 11), ]: if end < start or dend < dstart or (dend == 0 and dstart == 0): continue check(start, end, dstart, dend, "int32", floor_div=False) check(start, end, dstart, dend, "int32", floor_div=True) check(start, end, dstart, dend, "int8", floor_div=False) check(start, end, dstart, dend, "int8", floor_div=True) if start >= 0 and dstart >= 0: check(start, end, dstart, dend, "uint32", floor_div=False) check(start, end, dstart, dend, "u
int32", floor_div=True) for dstart, dend in [(0, 11), (1, 11), (2, 2), (4, 4)]: check(123, 133, dstart, dend, "uint8", floor_div=False) check(123, 133, dstart, dend, "uint8", floor_div=True) check(0, 255, dstart, dend, "uint8", floor_div=False) check(0, 255, dstart, dend, "uint8", floor_div=True) @tvm.testing.requires_llvm def test_llvm_fp_math(): def check_llvm_reciprocal(n): A = te.placeholder((n,), name="A") B = te.compute((n,), lambda i: te.div(1.0, (1e37 * A[i])), name="B") s = te.create_schedule(B.op) f = tvm.build(s, [A, B], "llvm") a = tvm.nd.array(np.full((n,), 100, "float32")) b = tvm.nd.empty((n,), "float32") f(a, b) tvm.testing.assert_allclose(b.numpy(), np.zeros((n,), "float32")) check_llvm_reciprocal(4) check_llvm_reciprocal(8) check_llvm_reciprocal(16) def check_llvm_sigmoid(n): A = te.placeholder((n,), name="A") B = te.compute((n,), lambda i: te.sigmoid(A[i]), name="B") s = te.create_schedule(B.op) f = tvm.build(s, [A, B], "llvm") a = tvm.nd.array(np.full((n,), -1000, "float32")) b = tvm.nd.empty((n,), "float32") f(a, b) tvm.testing.assert_allclose(b.numpy(), np.zeros((n,), "float32")) check_llvm_sigmoid(4) check_llvm_sigmoid(8) check_llvm_sigmoid(16) @tvm.testing.requires_llvm def test_dwarf_debug_information(): nn = 1024 n = tvm.runtime.convert(nn) A = te.placeholder((n,), name="A") B = te.placeholder((n,), name="B") C = te.compute(A.shape, lambda *i: A(*i) + B(*i), name="C") s = te.create_schedule(C.op) xo, xi = s[C].split(C.op.axis[0], factor=4) s[C].parallel(xo) s[C].vectorize(xi) def check_llvm_object(): if tvm.target.codegen.llvm_version_major() < 5: return if tvm.target.codegen.llvm_version_major() > 6: return f2 = tvm.lower(s, [A, B, C], name="fadd1") f1 = tvm.lower(s, [A, B,
C], name="fadd2") m = tvm.build([f1, f2], "llvm") temp = utils.tempdir() o_path = temp.relpath("temp.o") m.save(o_path)
import shutil
import subprocess
import sys if shutil.which("dwarfdump"): output = subprocess.check_output(["dwarfdump", o_path]) assert re.search(r"""DW_AT_name\\t\("fadd1"\)""", str(output)) assert re.search(r"""DW_AT_name\\t\("fadd2"\)""", str(output)) if shutil.which("gobjdump"): output = subprocess.check_output(["gobjdump", "--dwarf", o_path]) assert re.search(r"""DW_AT_name.*fadd1""", str(output)) assert re.search(r"""DW_AT_name.*fadd2""", str(output)) if shutil.which("objdump") and sys.platform != "darwin": output = subprocess.check_output(["objdump", "--dwarf", o_path]) assert re.search(r"""DW_AT_name.*fadd1""", str(output)) assert re.search(r"""DW_AT_name.*fadd2""", str(output)) def check_llvm_ir(): if tvm.target.codegen.llvm_version_major() < 5: return if tvm.target.codegen.llvm_version_major() > 6: return f2 = tvm.lower(s, [A, B, C], name="fadd1") f1 = tvm.lower(s, [A, B, C], name="fadd2") m = tvm.build([f1, f2], target="llvm -mtriple=aarch64-linux-gnu") ll = m.get_source("ll")
import re assert not re.search(r""""Dwarf Version""" "", ll) assert re.search(r"""llvm.dbg.value""", ll) m = tvm.build([f1, f2], target="llvm -mtriple=x86_64-apple-darwin-macho") ll = m.get_source("ll") assert re.search(r"""i32 4, !"Dwarf Version", i32 2""", ll) assert re.search(r"""llvm.dbg.value""", ll) check_llvm_object() check_llvm_ir() @tvm.testing.requires_llvm def test_llvm_shuffle(): a = te.placeholder((8,), "int32") b = te.placeholder((8,), "int32") c = te.compute((8,), lambda x: a[x] + b[7 - x]) sch = te.create_schedule(c.op) def my_vectorize(): def vectorizer(op): store = op.body idx = tvm.tir.Ramp(tvm.tir.const(0, "int32"), tvm.tir.const(1, "int32"), 8) value = store.value b_idx = tvm.tir.Shuffle([idx], [tvm.tir.const(i, "int32") for i in range(7, -1, -1)]) new_a = tvm.tir.BufferLoad(value.a.buffer, [idx]) new_b = tvm.tir.BufferLoad(value.b.buffer, [b_idx]) value = new_a + new_b return tvm.tir.BufferStore(store.buffer, new_a + new_b, [idx]) def _transform(f, *_): return f.with_body( tvm.tir.stmt_functor.ir_transform(f.body, None, vectorizer, ["tir.For"]) ) return tvm.tir.transform.prim_func_pass(_transform, opt_level=0, name="my_vectorize") with tvm.transform.PassContext(config={"tir.add_lower_pass": [(1, my_vectorize())]}): ir = tvm.lower(sch, [a, b, c], simple_mode=True) module = tvm.build(sch, [a, b, c]) a_ = tvm.nd.array(np.arange(1, 9, dtype="int32")) b_ = tvm.nd.array(np.arange(8, 0, -1, dtype="int32")) c_ = tvm.nd.array(np.zeros((8,), dtype="int32")) module(a_, b_, c_) tvm.testing.assert_allclose(c_.numpy(), (a_.numpy() * 2).astype("int32")) def np_float2np_bf16(arr): """Convert a numpy array of float to a numpy array of bf16 in uint16""" orig = arr.view("<u4") bias =
np.bitwise_and(np.right_shift(orig, 16), 1) + 0x7FFF return np.right_shift(orig + bias, 16).astype("uint16") def np_float2tvm_bf16(arr): """Convert a numpy array of float to a TVM array of bf16""" nparr = np_float2np_bf16(arr) return tvm.nd.empty(nparr.shape, "uint16").copyfrom(nparr) def np_bf162np_float(arr): """Convert a numpy array of bf16 (uint16) to a numpy array of float""" u32 = np.left_shift(arr.astype("uint32"), 16) return u32.view("<f4") def np_bf16_cast_and_cast_back(arr): """Convert a numpy array of float to bf16 and cast back""" return np_bf162np_float(np_float2np_bf16(arr)) @tvm.testing.requires_llvm def test_llvm_bf16(): def dotest(do_vectorize): np.random.seed(122) A = te.placeholder((32,), dtype="bfloat16") B = te.placeholder((32,), dtype="bfloat16") d = te.compute((32,), lambda x: A[x] + B[x]) sch = te.create_schedule(d.op) print(tvm.lower(sch, [A, B, d])) if do_vectorize: sch[d].vectorize(d.op.axis[0]) module = tvm.build(sch, [A, B, d]) npa = np.random.rand(32).astype("float32") npb = np.random.rand(32).astype("float32") va = np_bf16_cast_and_cast_back(npa) vb = np_bf16_cast_and_cast_back(npb) res = np_bf16_cast_and_cast_back(va + vb) a_ = np_float2tvm_bf16(npa) b_ = np_float2tvm_bf16(npb) c_ = tvm.nd.empty((32,), "uint16") module(a_, b_, c_) tvm.testing.assert_allclose(np_bf162np_float(c_.numpy()), res) dotest(True) dotest(False) @tvm.testing.requires_llvm def test_llvm_crt_static_lib(): A = te.placeholder((32,), dtype="bfloat16") B = te.placeholder((32,), dtype="bfloat16") d = te.compute((32,), lambda x: A[x] + B[x]) sch = te.create_schedule(d.op) module = tvm.build( sch, [A, B, d], target=tvm.target.Target("llvm"), runtime=Runtime("crt", {"system-lib": True}), ) print(module.get_source()) module.save("test.o"
) def atomic_add(x, y): return tvm.tir.call_intrin(y.dtype, "tir.atomic_add", x, y) @tvm.testing.requires_llvm def test_llvm_lower_atomic(): def do_atomic_add(A): ib = tvm.tir.ir_builder.create() n = A.shape[0] atomic_add_return = ib.allocate(A.dtype, (1,), name="atomic_add_return", scope="local") one = tvm.tir.const(1, A.dtype) A_ptr = ib.buffer_ptr(A) with ib.for_range(0, n, name="i", kind="parallel") as i: atomic_add_return[0] = atomic_add( tvm.tir.call_intrin("handle", "tir.address_of", A_ptr[0]), one ) return ib.get() A = tvm.te.placeholder((100,), dtype="int32", name="A") C = tvm.te.extern((100,), [A], lambda ins, _: do_atomic_add(ins[0]), name="C", dtype="int32") s = tvm.te.create_schedule(C.op) @tvm.testing.requires_llvm @tvm.testing.requires_gpu def test_llvm_gpu_lower_atomic(): def do_atomic_add(A): ib = tvm.tir.ir_builder.create() n = A.shape[0] atomic_add_return = ib.allocate(A.dtype, (1,), name="atomic_add_return", scope="local") one = tvm.tir.const(1, A.dtype) A_ptr = ib.buffer_ptr(A) nthread_tx = 64 with ib.new_scope(): nthread_bx = (n + nthread_tx - 1) tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", nthread_tx) ib.scope_attr(bx, "thread_extent", nthread_bx) atomic_add_return[0] = atomic_add( tvm.tir.call_intrin("handle", "tir.address_of", A_ptr[0]), one ) return ib.get() size = 1024 for dtype in ["int32"]: A = tvm.te.placeholder((size,), dtype=dtype, name="A") C = tvm.te.extern((size,), [A], lambda ins, _: do_atomic_add(ins[0]), dtype=dtype) s = tvm.te.create_schedule(C.op) f = tvm.build(s, [A], target="nvptx") dev = tvm.cuda() a = tvm.nd.array(np.zeros((size,)).as
type(A.dtype), dev) f(a) ref = np.zeros((size,)).astype(A.dtype) ref[0] = size tvm.testing.assert_allclose(a.numpy(), ref, rtol=1e-5) @tvm.testing.requires_llvm def test_llvm_order_functions(): """Check that functions in the LLVM module are ordered alphabetically.""" def make_call_extern(caller, callee): ib = tvm.tir.ir_builder.create() v = tvm.te.var("v", dtype="float32") t = tvm.tir.call_extern("float32", callee, v) ib.emit(t) return tvm.tir.PrimFunc([v], ib.get()).with_attr("global_symbol", caller) functions = { "Danny": make_call_extern("Danny", "Dave"), "Sammy": make_call_extern("Sammy", "Eve"), "Kirby": make_call_extern("Kirby", "Fred"), } mod = tvm.IRModule(functions=functions) ir_text = tvm.build(mod, None, target="llvm").get_source("ll") matches = re.findall(r"^define[^@]*@([a-zA-Z][a-zA-Z0-9_]*)", ir_text, re.MULTILINE) assert matches == sorted(matches) @tvm.testing.requires_llvm @tvm.testing.skip_if_32bit def test_llvm_import(): """all-platform-minimal-test: check shell dependent clang behavior.""" cc_code = """ extern "C" float my_add(float x, float y) { return x + y; } """ n = 10 A = te.placeholder((n,), name="A") B = te.compute( (n,), lambda *i: tvm.tir.call_pure_extern("float32", "my_add", A(*i), 1.0), name="B" ) def check_llvm(use_file): if not clang.find_clang(required=False): print("skip because clang is not available") return temp = utils.tempdir() ll_path = temp.relpath("temp.ll") ll_code = clang.create_llvm(cc_code, output=ll_path) s = te.create_schedule(B.op) if use_file: s[B].pragma(s[B].op.axis[0], "import_llvm", ll_path) else: s[B].pragma(s[B].op.axis[0], "import_llvm", ll_code) f = tvm.build(s, [A, B], "llvm") dev = tvm.cpu(0)
a = tvm.nd.array(np.random.uniform(size=n).astype(A.dtype), dev) b = tvm.nd.array(np.random.uniform(size=n).astype(B.dtype), dev) f(a, b) tvm.testing.assert_allclose(b.numpy(), a.numpy() + 1.0) check_llvm(use_file=True) check_llvm(use_file=False) @tvm.testing.requires_llvm def test_llvm_scalar_concat(): x = tvm.tir.Var("x", "int32") y = tvm.tir.Var("y", "int32") z = tvm.tir.decl_buffer((1,), "int32x2") s = tvm.tir.Shuffle([x, y], [0, 1]) f = tvm.tir.PrimFunc([x, y, z], z.vstore(0, s)) mod = tvm.ir.IRModule.from_expr(f.with_attr("global_symbol", "codegen_scalar_concat")) with tvm.transform.PassContext(config={"tir.disable_assert": True}): m = tvm.build(mod, [x, y, z], target="llvm") @tvm.testing.requires_llvm def test_raise_exception_during_codegen(): @T.prim_func def threadpool_nested_parallel_loop( A: T.Buffer[(4, 4), "float32"], B: T.Buffer[(4, 4), "float32"] ) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) for i in T.parallel(4): for j in T.parallel(4): B[i, j] = A[i, j] * 2.0 with pytest.raises(tvm.TVMError) as e: tvm.build({"llvm": tvm.IRModule.from_expr(threadpool_nested_parallel_loop)}) msg = str(e) assert msg.find("Nested parallel loop is not supported") != -1 @tvm.testing.requires_llvm def test_llvm_target_attributes(): """Check that when LLVM codegen creates new functions, they get the same target attributes as the original function. """ n = te.var() A = te.placeholder((n,), name="A", dtype="float32") B = te.compute((n,), lambda i: A[i], name="B") C = te.compute((n,), lambda i: B[i] + tvm.tir.const(1, A.dtype), name="C") s = te.create_schedule(C.op) xo, xi = s[C].split(C.op.axis[0], nparts=2) s[C].parallel(xo) target_llvm = "llvm -mcpu=skylake -mattr=+avx512f" target = tvm.target.Target(target_llvm, host=target_llvm) module = tvm.build(s, [A, B, C, n
], target=target, name="test_func") llvm_ir = module.get_source() llvm_ir_lines = llvm_ir.split("\n") attribute_definitions = dict() attributes_with_target = dict() functions_with_target = [] for line in llvm_ir_lines: func_def = re.match( "define.* @(?P<func_name>[^(]*)[(].* ) if func_def: functions_with_target.append(func_def.group("func_name")) attributes_with_target[func_def.group("attr_num")] = True continue attr_def = re.match("attributes if attr_def: attribute_definitions[attr_def.group("attr_num")] = attr_def.group("attr_list") for k in list(attributes_with_target.keys()): assert re.match('.*"target-cpu"="skylake".*', attribute_definitions[k]) assert re.match('.*"target-features"=".*[+]avx512f.*".*', attribute_definitions[k]) expected_functions = ["test_func", "test_func_compute_", "__tvm_parallel_lambda"] for n in expected_functions: assert n in functions_with_target if __name__ == "__main__": tvm.testing.main()
import tvm from tvm
import te
import numpy as np from tvm
import topi
import unittest from tvm.contrib.nvcc
import have_fp16, have_int8, have_bf16 from tvm.contrib
import nvcc
import tvm.testing tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") @tvm.testing.requires_gpu @tvm.testing.requires_metal def test_metal_inf_nan(): target = "metal" def check_inf_nan(dev, n, value, dtype): A = te.placeholder((n,), name="A", dtype=dtype) inf_value = tvm.tir.const(value, dtype=dtype) C = te.compute((n,), lambda i: inf_value, name="C") s = te.create_schedule(C.op) s[C].bind(s[C].op.axis[0], tx) fun = tvm.build(s, [A, C], target) a = tvm.nd.empty((n,), A.dtype, dev) c = tvm.nd.empty((n,), A.dtype, dev) fun(a, c) dev = tvm.device(target, 0) check_inf_nan(dev, 1, -float("inf"), "float32") check_inf_nan(dev, 1, -float("inf"), "float16") check_inf_nan(dev, 1, float("inf"), "float32") check_inf_nan(dev, 1, float("inf"), "float16") check_inf_nan(dev, 1, float("nan"), "float32") check_inf_nan(dev, 1, float("nan"), "float16") @tvm.testing.requires_gpu @tvm.testing.requires_metal def test_metal_erf(): target = "metal" def check_erf(dev, n, dtype): A = te.placeholder((n,), name="A", dtype=dtype) C = te.compute(A.shape, lambda *i: te.erf(A(*i)), name="C") s = te.create_schedule(C.op) s[C].bind(s[C].op.axis[0], tx) fun = tvm.build(s, [A, C], target) a = tvm.nd.empty((n,), A.dtype, dev) c = tvm.nd.empty((n,), A.dtype, dev) fun(a, c) dev = tvm.device(target, 0) check_erf(dev, 1, "float32") check_erf(dev, 1, "float16") if __name__ == "__main__": test_metal_inf_nan() test_metal_erf()