text
stringlengths
1
2.05k
import Runtime runtime_py = """
import os
import sys os.environ["TVM_USE_RUNTIME_LIB"] = "1" os.environ["TVM_FFI"] = "ctypes"
import tvm from tvm
import te
import numpy as np path_dso = sys.argv[1] dtype = sys.argv[2] ff = tvm.runtime.load_module(path_dso) a = tvm.nd.array(np.zeros(10, dtype=dtype)) ff(a) np.testing.assert_equal(a.numpy(), np.arange(a.shape[0])) print("Finish runtime checking...") """ def test_dso_module_load(): if not tvm.testing.device_enabled("llvm"): return dtype = "int64" temp = utils.tempdir() def save_object(names): n = te.size_var("n") Ab = tvm.tir.decl_buffer((n,), dtype) i = te.var("i") stmt = tvm.tir.For( i, 0, n - 1, tvm.tir.ForKind.SERIAL, tvm.tir.BufferStore(Ab, tvm.tir.BufferLoad(Ab, [i]) + 1, [i + 1]), ) mod = tvm.IRModule.from_expr( tvm.tir.PrimFunc([Ab], stmt).with_attr("global_symbol", "main") ) m = tvm.driver.build(mod, target="llvm") for name in names: m.save(name) path_obj = temp.relpath("test.o") path_ll = temp.relpath("test.ll") path_bc = temp.relpath("test.bc") path_dso = temp.relpath("test.so") save_object([path_obj, path_ll, path_bc]) cc.create_shared(path_dso, [path_obj]) f1 = tvm.runtime.load_module(path_dso) f2 = tvm.runtime.load_module(path_ll) a = tvm.nd.array(np.zeros(10, dtype=dtype)) f1(a) np.testing.assert_equal(a.numpy(), np.arange(a.shape[0])) a = tvm.nd.array(np.zeros(10, dtype=dtype)) f2(a) np.testing.assert_equal(a.numpy(), np.arange(a.shape[0])) path_runtime_py = temp.relpath("runtime.py") with open(path_runtime_py, "w") as fo: fo.write(runtime_py) proc = subprocess.run( [sys.executable, path_runtime_py, path_dso, dtype], stdout=subprocess.PIPE, stderr=subprocess.STDOUT, ) assert proc.returncode == 0, f"{proc.args} exited with {proc.returncode}: {proc.stdout}" @tvm.testing.requires_gpu def test_device_module_dump(): n = tvm.runtime.convert(1024) A = te.placeholder((n,), name="A") B = te.comp
ute(A.shape, lambda *i: A(*i) + 1.0, name="B") s = te.create_schedule(B.op) num_thread = 8 bx, tx = s[B].split(B.op.axis[0], factor=num_thread) s[B].bind(bx, te.thread_axis("blockIdx.x")) s[B].bind(tx, te.thread_axis("threadIdx.x")) def check_device(device): dev = tvm.device(device, 0) if not tvm.testing.device_enabled(device): print("Skip because %s is not enabled" % device) return temp = utils.tempdir() name = "myadd_%s" % device if sys.platform == "darwin" or sys.platform.startswith("linux"): runtime = Runtime("cpp", {"system-lib": True}) f = tvm.build(s, [A, B], device, "llvm", runtime=runtime, name=name) elif sys.platform == "win32": f = tvm.build(s, [A, B], device, "llvm", name=name) else: raise ValueError("Unsupported platform") path_dso = temp.relpath("dev_lib.so") f.export_library(path_dso, cc.cross_compiler("g++")) f1 = tvm.runtime.load_module(path_dso) a = tvm.nd.array(np.random.uniform(size=1024).astype(A.dtype), dev) b = tvm.nd.array(np.zeros(1024, dtype=A.dtype), dev) f1(a, b) np.testing.assert_equal(b.numpy(), a.numpy() + 1) if sys.platform != "win32": f2 = tvm.runtime.system_lib() f2[name](a, b) np.testing.assert_equal(b.numpy(), a.numpy() + 1) def check_stackvm(device): dev = tvm.device(device, 0) if not tvm.testing.device_enabled(device): print("Skip because %s is not enabled" % device) return temp = utils.tempdir() name = "myadd_%s" % device f = tvm.build(s, [A, B], device, "stackvm", name=name) path_dso = temp.relpath("dev_lib.stackvm") f.export_library(path_dso) f1 = tvm.runtime.load_module(path_dso) a = tvm.nd.array(np.random.uniform(size=1024).astype(A.dtype), dev) b = tvm.nd.array(np.zeros(1024, dtype=A.dtype), dev)
f(a, b) np.testing.assert_equal(b.numpy(), a.numpy() + 1) for device in ["cuda", "vulkan", "opencl", "metal"]: check_device(device) check_stackvm(device) def test_combine_module_llvm(): """Test combine multiple module into one shared lib.""" nn = 12 n = tvm.runtime.convert(nn) A = te.placeholder((n,), name="A") B = te.compute(A.shape, lambda *i: A(*i) + 1.0, name="B") s = te.create_schedule(B.op) def check_llvm(): dev = tvm.cpu(0) if not tvm.testing.device_enabled("llvm"): print("Skip because llvm is not enabled") return temp = utils.tempdir() fadd1 = tvm.build(s, [A, B], "llvm", name="myadd1") fadd2 = tvm.build(s, [A, B], "llvm", name="myadd2") path1 = temp.relpath("myadd1.o") path2 = temp.relpath("myadd2.o") path_dso = temp.relpath("mylib.so") fadd1.save(path1) fadd2.save(path2) cc.create_shared(path_dso, [path1, path2]) m = tvm.runtime.load_module(path_dso) fadd1 = m["myadd1"] fadd2 = m["myadd2"] a = tvm.nd.array(np.random.uniform(size=nn).astype(A.dtype), dev) b = tvm.nd.array(np.zeros(nn, dtype=A.dtype), dev) fadd1(a, b) np.testing.assert_equal(b.numpy(), a.numpy() + 1) fadd2(a, b) np.testing.assert_equal(b.numpy(), a.numpy() + 1) def check_system_lib(): dev = tvm.cpu(0) if not tvm.testing.device_enabled("llvm"): print("Skip because llvm is not enabled") return temp = utils.tempdir() runtime = Runtime("cpp", {"system-lib": True}) fadd1 = tvm.build(s, [A, B], "llvm", runtime=runtime, name="myadd1") fadd2 = tvm.build(s, [A, B], "llvm", runtime=runtime, name="myadd2") path1 = temp.relpath("myadd1.o") path2 = temp.relpath("myadd2.o") path_dso = temp.relpath("mylib.so") fadd1.save(path1) fadd2.save(path2) cc.create_shared(path_dso,
[path1, path2]) ctypes.CDLL(path_dso) mm = tvm.runtime.system_lib() a = tvm.nd.array(np.random.uniform(size=nn).astype(A.dtype), dev) b = tvm.nd.array(np.zeros(nn, dtype=A.dtype), dev) mm["myadd1"](a, b) np.testing.assert_equal(b.numpy(), a.numpy() + 1) mm["myadd2"](a, b) np.testing.assert_equal(b.numpy(), a.numpy() + 1) if sys.platform != "win32": check_system_lib() check_llvm() if __name__ == "__main__": test_combine_module_llvm() test_device_module_dump() test_dso_module_load()
import numpy as np
import pytest from io
import StringIO
import csv
import os
import json
import platform
import tvm.testing
import tvm.utils from tvm.runtime
import profiler_vm from tvm
import relay from tvm.relay.testing
import mlp from tvm.contrib.debugger
import debug_executor from tvm
import rpc from tvm.contrib
import utils from tvm.runtime.profiling
import Report from tvm.script
import tir as T def read_csv(report): f = StringIO(report.csv()) headers = [] rows = [] reader = csv.reader(f, delimiter=",") in_header = True for row in reader: if in_header: headers = row in_header = False rows = [[] for x in headers] else: for i in range(len(row)): rows[i].append(row[i]) return dict(zip(headers, rows)) @pytest.mark.skipif(not profiler_vm.enabled(), reason="VM Profiler not enabled") @tvm.testing.skip_if_wheel_test @tvm.testing.parametrize_targets def test_vm(target, dev): dtype = "float32" x = relay.var("x", shape=(relay.Any(), relay.Any()), dtype=dtype) y = relay.var("y", shape=(relay.Any(), relay.Any()), dtype=dtype) mod = tvm.IRModule() mod["main"] = relay.Function([x, y], relay.add(x, y)) exe = relay.vm.compile(mod, target) vm = profiler_vm.VirtualMachineProfiler(exe, dev) data = np.random.rand(28, 28).astype("float32") report = vm.profile(data, data, func_name="main") assert "fused_add" in str(report) assert "Total" in str(report) assert "AllocTensorReg" in str(report) assert "AllocStorage" in str(report) assert report.configuration["Executor"] == "VM" csv = read_csv(report) assert "Hash" in csv.keys() assert all( [ float(dur) > 0 for dur, name in zip(csv["Duration (us)"], csv["Name"]) if name[:5] == "fused" ] ) assert all( [ float(dur) >= 0 for dur, name in zip(csv["Duration (us)"], csv["Name"]) if name[:5] != "fused" ] ) @tvm.testing.parametrize_targets def test_graph_executor(target, dev): mod, params = mlp.get_workload(1) exe = relay.build(mod, target, params=params) gr = debug_executor.create(exe.get_graph_json(), exe.lib, dev) data = np.random.rand(1, 1, 28, 28).astype("float32") report = gr.profile(data=data) assert "fused_nn_softmax" in str(report
) assert "Total" in str(report) assert "Hash" in str(report) assert "Graph" in str(report) @tvm.testing.parametrize_targets("cuda", "llvm") @pytest.mark.skipif( tvm.get_global_func("runtime.profiling.PAPIMetricCollector", allow_missing=True) is None, reason="PAPI profiling not enabled", ) def test_papi(target, dev): target = tvm.target.Target(target) if str(target.kind) == "llvm": metric = "PAPI_FP_OPS" elif str(target.kind) == "cuda": metric = "cuda:::event:shared_load:device=0" else: pytest.skip(f"Target {target.kind} not supported by this test") mod, params = mlp.get_workload(1) exe = relay.vm.compile(mod, target, params=params) vm = profiler_vm.VirtualMachineProfiler(exe, dev) data = tvm.nd.array(np.random.rand(1, 1, 28, 28).astype("float32"), device=dev) report = vm.profile( data, func_name="main", collectors=[tvm.runtime.profiling.PAPIMetricCollector({dev: [metric]})], ) assert metric in str(report) csv = read_csv(report) assert metric in csv.keys() assert any([float(x) > 0 for x in csv[metric]]) @tvm.testing.requires_llvm def test_json(): mod, params = mlp.get_workload(1) exe = relay.vm.compile(mod, "llvm", params=params) vm = profiler_vm.VirtualMachineProfiler(exe, tvm.cpu()) data = np.random.rand(1, 1, 28, 28).astype("float32") report = vm.profile(data, func_name="main") parsed = json.loads(report.json()) assert "device_metrics" in parsed assert "calls" in parsed assert "configuration" in parsed assert "Duration (us)" in parsed["calls"][0] assert "microseconds" in parsed["calls"][0]["Duration (us)"] assert len(parsed["calls"]) > 0 for call in parsed["calls"]: assert isinstance(call["Name"]["string"], str) assert isinstance(call["Count"]["count"], int) assert isinstance(call["Duration (us)"]["microseconds"], float) @tvm.testing.requires_llvm def test_rpc_vm(): server = rpc.Server(key="profiling
") remote = rpc.connect("127.0.0.1", server.port, key="profiling") mod, params = mlp.get_workload(1) exe = relay.vm.compile(mod, "llvm", params=params) temp = utils.tempdir() path = temp.relpath("lib.tar") exe.mod.export_library(path) remote.upload(path) rexec = remote.load_module("lib.tar") vm = profiler_vm.VirtualMachineProfiler(rexec, remote.cpu()) report = vm.profile(tvm.nd.array(np.ones((1, 1, 28, 28), dtype="float32"), device=remote.cpu())) assert len(report.calls) > 0 def test_rpc_graph(): server = rpc.Server(key="profiling") remote = rpc.connect("127.0.0.1", server.port, key="profiling") mod, params = mlp.get_workload(1) exe = relay.build(mod, "llvm", params=params) temp = utils.tempdir() path = temp.relpath("lib.tar") exe.export_library(path) remote.upload(path) rexec = remote.load_module("lib.tar") gr = debug_executor.create(exe.get_graph_json(), rexec, remote.cpu()) data = np.random.rand(1, 1, 28, 28).astype("float32") report = gr.profile(data=data) assert len(report.calls) > 0 def test_report_serialization(): mod, params = mlp.get_workload(1) exe = relay.vm.compile(mod, "llvm", params=params) vm = profiler_vm.VirtualMachineProfiler(exe, tvm.cpu()) data = np.random.rand(1, 1, 28, 28).astype("float32") report = vm.profile(data, func_name="main") report2 = Report.from_json(report.json()) assert report.table(aggregate=False, col_sums=False) == report2.table( aggregate=False, col_sums=False ) @T.prim_func def axpy_cpu(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [10], "float64") B = T.match_buffer(b, [10], "float64") C = T.match_buffer(c, [10], "float64") for i in range(10): C[i] = A[i] + B[i] @T.prim_func def axpy_gpu(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [10], "float64") B = T.match_buffer(b, [10], "float64") C = T.match_buffer(c, [10], "f
loat64") for i in T.thread_binding(0, 10, "threadIdx.x"): C[i] = A[i] + B[i] @tvm.testing.parametrize_targets("cuda", "llvm") @pytest.mark.skipif( tvm.get_global_func("runtime.profiling.PAPIMetricCollector", allow_missing=True) is None, reason="PAPI profiling not enabled", ) def test_profile_function(target, dev): target = tvm.target.Target(target) if str(target.kind) == "llvm": metric = "PAPI_FP_OPS" func = axpy_cpu elif str(target.kind) == "cuda": metric = ( "cuda:::gpu__compute_memory_access_throughput.max.pct_of_peak_sustained_region:device=0" ) func = axpy_gpu else: pytest.skip(f"Target {target.kind} not supported by this test") f = tvm.build(func, target=target) a = tvm.nd.array(np.ones(10), device=dev) b = tvm.nd.array(np.ones(10), device=dev) c = tvm.nd.array(np.zeros(10), device=dev) report = tvm.runtime.profiling.profile_function( f, dev, [tvm.runtime.profiling.PAPIMetricCollector({dev: [metric]})] )(a, b, c) assert metric in report.keys() assert report[metric].value > 0 if __name__ == "__main__": tvm.testing.main()
import tvm from tvm
import te
import tvm.testing
import multiprocessing
import os
import stat
import sys
import time
import pytest
import numpy as np from tvm
import rpc from tvm.relay.backend
import Runtime from tvm.contrib
import utils, cc from tvm.rpc.tracker
import Tracker from tvm.rpc.proxy
import Proxy if __name__ == "__main__": tvm.testing.main() pytestmark = pytest.mark.skipif( sys.platform.startswith("win") == False and multiprocessing.get_start_method() != "fork", reason=( "pytest + multiprocessing spawn method causes tvm.register_func to " "not work on the rpc.Server." ), ) @tvm.testing.requires_rpc def test_bigendian_rpc(): """Test big endian rpc when there is a PowerPC RPC server available""" host = os.environ.get("TVM_POWERPC_TEST_HOST", None) port = os.environ.get("TVM_POWERPC_TEST_PORT", 9090) if host is None: return def verify_rpc(remote, target, shape, dtype): A = te.placeholder(shape, dtype=dtype) B = te.compute(A.shape, lambda i: A[i] + tvm.tir.const(1, A.dtype)) s = te.create_schedule(B.op) f = tvm.build(s, [A, B], target, name="myadd") dev = remote.cpu(0) a = tvm.nd.array(np.random.randint(0, 256, size=shape).astype(A.dtype), device=dev) b = tvm.nd.array(np.zeros(shape).astype(A.dtype), device=dev) temp = utils.tempdir() path_dso = temp.relpath("dev_lib.o") f.save(path_dso) remote.upload(path_dso) f = remote.load_module("dev_lib.o") f(a, b) tvm.testing.assert_allclose(a.numpy() + 1, b.numpy()) print("Test RPC connection to PowerPC...") remote = rpc.connect(host, port) target = "llvm -mtriple=powerpc-linux-gnu" for dtype in ["float32", "float64", "int32", "int8"]: verify_rpc(remote, target, (10,), dtype) @tvm.testing.requires_rpc def test_rpc_simple(): server = rpc.Server(key="x1") client = rpc.connect("127.0.0.1", server.port, key="x1") def check_remote(): f1 = client.get_function("rpc.test.addone") assert f1(10) == 11 f3 = client.get_function("rpc.test.except") with pytest.raises(tvm._ffi.base.TVMError): f3("abc") f2 = client.get_function("rpc.test.strcat") assert f2("abc", 11) == "ab
c:11" check_remote() @tvm.testing.requires_rpc def test_rpc_simple_wlog(): server = rpc.Server(key="x1") client = rpc.connect("127.0.0.1", server.port, key="x1", enable_logging=True) def check_remote(): f1 = client.get_function("rpc.test.addone") assert f1(10) == 11 f3 = client.get_function("rpc.test.except") with pytest.raises(tvm._ffi.base.TVMError): f3("abc") f2 = client.get_function("rpc.test.strcat") assert f2("abc", 11) == "abc:11" check_remote() @tvm.testing.requires_rpc def test_rpc_runtime_string(): server = rpc.Server(key="x1") client = rpc.connect("127.0.0.1", server.port, key="x1") def check_remote(): func = client.get_function("rpc.test.runtime_str_concat") x = tvm.runtime.container.String("abc") y = tvm.runtime.container.String("def") assert str(func(x, y)) == "abcdef" check_remote() @tvm.testing.requires_rpc def test_rpc_array(): server = rpc.Server() remote = rpc.connect("127.0.0.1", server.port) def check_remote(): x = np.ones((3, 4)) r_cpu = tvm.nd.array(x, remote.cpu(0)) assert str(r_cpu.device).startswith("remote") np.testing.assert_equal(r_cpu.numpy(), x) fremote = remote.get_function("rpc.test.remote_array_func") fremote(r_cpu) check_remote() @tvm.testing.requires_rpc def test_rpc_large_array(): server = rpc.Server() remote = rpc.connect("127.0.0.1", server.port) def check_remote(): dev = remote.cpu(0) a_np = np.ones((5041, 720)).astype("float32") b_np = np.ones((720, 192)).astype("float32") a = tvm.nd.array(a_np, dev) b = tvm.nd.array(b_np, dev) np.testing.assert_equal(a.numpy(), a_np) np.testing.assert_equal(b.numpy(), b_np) check_remote() @tvm.testing.requires_rpc def test_rpc_echo(): def check(remote): fecho = remote.get_function("testing.echo") assert fecho(1, 2, 3) == 1 ass
ert fecho(100, 2, 3) == 100 assert fecho("xyz") == "xyz" assert bytes(fecho(bytearray(b"123"))) == b"123" with pytest.raises(RuntimeError): raise_err = remote.get_function("testing.test_raise_error_callback")("RuntimeError") raise_err() remote.cpu().sync() with pytest.raises(AttributeError): f3 = remote.system_lib()["notexist"] temp = rpc.server._server_env([]) server = rpc.Server() client = rpc.connect("127.0.0.1", server.port) check(rpc.LocalSession()) check(client) def check_minrpc(): if tvm.get_global_func("rpc.CreatePipeClient", allow_missing=True) is None: return temp = utils.tempdir() minrpc_exec = temp.relpath("minrpc") tvm.rpc.with_minrpc(cc.create_executable)(minrpc_exec, []) check(rpc.PopenSession(minrpc_exec)) server = rpc.Server() client = rpc.connect( "127.0.0.1", server.port, session_constructor_args=["rpc.PopenSession", open(minrpc_exec, "rb").read()], ) check(client) check_minrpc() @tvm.testing.requires_rpc def test_rpc_file_exchange(): server = rpc.Server() remote = rpc.connect("127.0.0.1", server.port) def check_remote(): blob = bytearray(np.random.randint(0, 10, size=(10))) remote.upload(blob, "dat.bin") rev = remote.download("dat.bin") assert rev == blob check_remote() @tvm.testing.requires_rpc @tvm.testing.requires_llvm def test_rpc_remote_module(): n = tvm.runtime.convert(102) A = te.placeholder((n,), name="A") B = te.compute(A.shape, lambda *i: A(*i) + 1.0, name="B") s = te.create_schedule(B.op) server0 = rpc.Server(key="x0") server1 = rpc.Server(key="x1") client = rpc.connect( "127.0.0.1", server0.port, key="x0", session_constructor_args=["rpc.Connect", "127.0.0.1", server1.port, "x1", False], ) def check_remote(remot
e): temp = utils.tempdir() dev = remote.cpu(0) f = tvm.build(s, [A, B], "llvm", name="myadd") path_dso = temp.relpath("dev_lib.so") f.export_library(path_dso) remote.upload(path_dso) f1 = remote.load_module("dev_lib.so") a = tvm.nd.array(np.random.uniform(size=102).astype(A.dtype), dev) b = tvm.nd.array(np.zeros(102, dtype=A.dtype), dev) time_f = f1.time_evaluator(f1.entry_name, remote.cpu(0), number=10) cost = time_f(a, b).mean print("%g secs/op" % cost) np.testing.assert_equal(b.numpy(), a.numpy() + 1) path_tar = temp.relpath("dev_lib.tar") f.export_library(path_tar) remote.upload(path_tar) local_download_path = temp.relpath("dev_lib.download.so") with open(local_download_path, "wb") as fo: fo.write(remote.download_linked_module("dev_lib.tar")) fupdated = tvm.runtime.load_module(local_download_path) a = tvm.nd.array(np.random.uniform(size=102).astype(A.dtype), tvm.cpu(0)) b = tvm.nd.array(np.zeros(102, dtype=A.dtype), tvm.cpu(0)) fupdated(a, b) np.testing.assert_equal(b.numpy(), a.numpy() + 1) def check_minrpc(): if tvm.get_global_func("rpc.CreatePipeClient", allow_missing=True) is None: return temp = utils.tempdir() runtime = Runtime("cpp", {"system-lib": True}) f = tvm.build(s, [A, B], "llvm", name="myadd", runtime=runtime) path_minrpc = temp.relpath("dev_lib.minrpc") f.export_library(path_minrpc, rpc.with_minrpc(cc.create_executable)) with pytest.raises(RuntimeError): rpc.PopenSession("filenotexist") remote = tvm.rpc.PopenSession(path_minrpc) dev = remote.cpu(0) f1 = remote.system_lib() a = tvm.nd.array(np.random.uniform(size=102).astype(A.dtype), dev) b = tvm.nd.array(np.zeros(102, dtype=A.dtype), dev) time_f = f1.time_evaluator("myadd", remote.cpu(0), n
umber=1) cost = time_f(a, b).mean np.testing.assert_equal(b.numpy(), a.numpy() + 1) os.chmod(path_minrpc, stat.S_IRUSR) with pytest.raises(RuntimeError): rpc.PopenSession(path_minrpc) def check_remote_link_cl(remote): """Test function to run remote code such as cl This is not enabled because there is forking issue of TVM runtime when server launches after OpenCL runtime initializes. We leave it as an example on how to do rpc when we want to do linking on remote. """ if not tvm.testing.device_enabled("opencl"): print("Skip because opencl is not enabled") return temp = utils.tempdir() dev = remote.cl(0) s = te.create_schedule(B.op) xo, xi = s[B].split(B.op.axis[0], factor=32) s[B].bind(xo, te.thread_axis("blockIdx.x")) s[B].bind(xi, te.thread_axis("threadIdx.x")) f = tvm.build(s, [A, B], "opencl --host=llvm", name="myadd") path_o = temp.relpath("myadd.o") path_cl = temp.relpath("myadd.cl") path_json = temp.relpath("myadd.tvm_meta.json") f.save(path_o) f.imported_modules[0].save(path_cl) remote.upload(path_o) remote.upload(path_cl) remote.upload(path_json) fhost = remote.load_module("myadd.o") fdev = remote.load_module("myadd.cl") fhost.import_module(fdev) a = tvm.nd.array(np.random.uniform(size=102).astype(A.dtype), dev) b = tvm.nd.array(np.zeros(102, dtype=A.dtype), dev) fhost(a, b) np.testing.assert_equal(b.numpy(), a.numpy() + 1) path_tar = temp.relpath("myadd.tar") f.export_library(path_tar) remote.upload(path_tar) fhost = remote.load_module("myadd.tar") a = tvm.nd.array(np.random.uniform(size=102).astype(A.dtype), dev) b = tvm.nd.array(np.zeros(102, dtype=A.dtype), dev) fhost(a, b) np.testing.assert_equal(b.num
py(), a.numpy() + 1) check_remote(rpc.LocalSession()) check_remote(client) check_minrpc() @tvm.testing.requires_rpc def test_rpc_return_func(): server = rpc.Server(key="x1") client = rpc.connect("127.0.0.1", server.port, key="x1") def check_remote(): f1 = client.get_function("rpc.test.add_to_lhs") fadd = f1(10) assert fadd(12) == 22 check_remote() @tvm.testing.requires_rpc def test_rpc_session_constructor_args(): server0 = rpc.Server(key="x0") server1 = rpc.Server(key="x1") def check_multi_hop(): client = rpc.connect( "127.0.0.1", server0.port, key="x0", session_constructor_args=["rpc.Connect", "127.0.0.1", server1.port, "x1", False], ) fecho = client.get_function("testing.echo") assert fecho(1, 2, 3) == 1 assert fecho(100, 2, 3) == 100 assert fecho("xyz") == "xyz" assert bytes(fecho(bytearray(b"123"))) == b"123" nd = tvm.nd.array([1, 2, 3], device=client.cpu(0)) assert nd.numpy()[1] == 2 def check_error_handling(): with pytest.raises(tvm.error.RPCError): client = rpc.connect( "127.0.0.1", server0.port, key="x0", session_constructor_args=["rpc.NonExistingConstructor"], ) check_multi_hop() check_error_handling() @tvm.testing.requires_rpc def test_rpc_return_ndarray(): server = rpc.Server(key="x1") client = rpc.connect("127.0.0.1", server.port, key="x1") m = client.get_function("rpc.test.remote_return_nd") get_arr = m("get_arr") ref_count = m("ref_count") get_elem = m("get_elem") get_arr_elem = m("get_arr_elem") def run_arr_test(): arr = get_arr() assert get_elem(0) == 0.0 assert get_arr_elem(arr, 0) == 0.0 run_arr_test() @tvm.testing.requires_rpc def test_local_func(): client = rpc.LocalSession() def check_remote():
f1 = client.get_function("rpc.test.add_to_lhs") fadd = f1(10) assert fadd(12) == 22 blob = bytearray(np.random.randint(0, 10, size=(10))) client.upload(blob, "dat.bin") rev = client.download("dat.bin") assert rev == blob check_remote() @tvm.testing.requires_rpc def test_rpc_tracker_register(): tracker = Tracker(port=9000, port_end=10000) device_key = "test_device" server1 = rpc.Server( host="127.0.0.1", port=9000, port_end=10000, key=device_key, tracker_addr=("127.0.0.1", tracker.port), ) server2 = rpc.Server( host="127.0.0.1", port=9000, port_end=10000, key=device_key, tracker_addr=("127.0.0.1", tracker.port), custom_addr="test_addr", ) time.sleep(1) client = rpc.connect_tracker("127.0.0.1", tracker.port) def exist_address(summary, key, host, port): server_info = summary["server_info"] for device in server_info: if device["key"] == "server:%s" % key: addr = device["addr"] if (host is None or host == addr[0]) and port == addr[1]: return True return False summary = client.summary() assert summary["queue_info"][device_key]["free"] == 2 assert exist_address(summary, device_key, "127.0.0.1", server1.port) assert exist_address(summary, device_key, "test_addr", server2.port) remote = client.request(device_key) summary = client.summary() assert summary["queue_info"][device_key]["free"] == 1 del remote time.sleep(1) summary = client.summary() assert summary["queue_info"][device_key]["free"] == 2 server1.terminate() time.sleep(1) summary = client.summary() assert summary["queue_info"][device_key]["free"] == 1 assert not exist_address(summary, device_key, "127.0.0.1", server1.port) assert exist_address(summary, device_key, "test_addr", server2.port) server2.terminate()
time.sleep(1) summary = client.summary() assert summary["queue_info"][device_key]["free"] == 0 assert not exist_address(summary, device_key, "test_addr", server2.port) tracker.terminate() def _target(host, port, device_key, timeout): client = rpc.connect_tracker(host, port) remote = client.request(device_key, session_timeout=timeout) while True: pass remote.cpu() @tvm.testing.requires_rpc def test_rpc_tracker_request(): tracker = Tracker(port=9000, port_end=10000) device_key = "test_device" server = rpc.Server( port=9000, port_end=10000, key=device_key, tracker_addr=("127.0.0.1", tracker.port), ) client = rpc.connect_tracker("127.0.0.1", tracker.port) proc1 = multiprocessing.Process(target=_target, args=("127.0.0.1", tracker.port, device_key, 4)) proc2 = multiprocessing.Process( target=_target, args=("127.0.0.1", tracker.port, device_key, 200) ) proc1.start() time.sleep(0.5) proc2.start() time.sleep(0.5) summary = client.summary() assert summary["queue_info"][device_key]["free"] == 0 assert summary["queue_info"][device_key]["pending"] == 1 proc1.terminate() proc1.join() time.sleep(0.5) summary = client.summary() assert summary["queue_info"][device_key]["free"] == 0 assert summary["queue_info"][device_key]["pending"] == 0 proc2.terminate() proc2.join() server.terminate() tracker.terminate() @tvm.testing.requires_rpc def test_rpc_tracker_via_proxy(): """ tracker / \ Host -- Proxy -- RPC server """ device_key = "test_device" tracker_server = Tracker(port=9000, port_end=9100) proxy_server = Proxy( host=tracker_server.host, port=8888, port_end=8988, tracker_addr=(tracker_server.host, tracker_server.port), ) server1 = rpc.Server( host=proxy_server.host, port=proxy_server.port, key=device_key, tra
cker_addr=(tracker_server.host, tracker_server.port), is_proxy=True, ) server2 = rpc.Server( host=proxy_server.host, port=proxy_server.port, key=device_key, tracker_addr=(tracker_server.host, tracker_server.port), is_proxy=True, ) client = rpc.connect_tracker(tracker_server.host, tracker_server.port) remote1 = client.request(device_key, session_timeout=30) remote2 = client.request(device_key, session_timeout=30) server2.terminate() server1.terminate() proxy_server.terminate() tracker_server.terminate()
import tvm from tvm
import te
import numpy as np def test_trace_default_action(): n = 2 x = te.placeholder((n, n, n), name="X", dtype="float32") y = te.compute(x.shape, lambda i, j, k: tvm.tir.trace([i, j, k, x[i][j][k]])) s = te.create_schedule(y.op) f = tvm.build(s, [x, y], target="llvm") xnd = tvm.nd.array(np.ones((n, n, n), dtype=x.dtype)) ynd = tvm.nd.array(np.zeros((n, n, n), dtype=y.dtype)) f(xnd, ynd) def test_trace_expr_assign(): @tvm.register_func("tvm.tir.trace_callback2") def trace_buffer(x): return def check_assign(dtype): n = 4 x = te.placeholder((n, n, n), name="X", dtype=dtype) y = te.compute( x.shape, lambda i, j, k: tvm.tir.trace([x[i][j][k]], "tvm.tir.trace_callback2") ) z = te.compute( x.shape, lambda i, j, k: tvm.tir.trace([y[i][j][k]], "tvm.tir.trace_callback2") ) s = te.create_schedule(z.op) f = tvm.build(s, [x, y, z], "llvm") xnd = tvm.nd.array(np.ones((n, n, n), dtype=x.dtype)) ynd = tvm.nd.array(np.zeros((n, n, n), dtype=y.dtype)) znd = tvm.nd.array(np.zeros((n, n, n), dtype=z.dtype)) f(xnd, ynd, znd) assert np.array_equal(xnd.numpy(), np.ones((n, n, n))) assert np.array_equal(ynd.numpy(), np.ones((n, n, n))) assert np.array_equal(znd.numpy(), np.ones((n, n, n))) for t in ["float64", "float32", "int64", "int32"]: check_assign(t) def test_trace_expr_sum_generated(): @tvm.register_func("tvm.tir.trace_callback3") def trace_buffer(x): return def check_expr_sum(dtype): n = 4 a = te.placeholder((n, n, n), name="a", dtype=dtype) b = te.placeholder((n, n, n), name="b", dtype=dtype) c = te.compute( a.shape, lambda i, j, k: tvm.tir.trace([a[i][j][k]], "tvm.tir.trace_callback3") + tvm.tir.trace([b[i][j][k]], "tvm.tir.trace_callback3"), ) s = te.create_schedule(c.op) f = tvm.build(s, [a, b, c]) x
nd = tvm.nd.array(np.array(np.ones((n, n, n), dtype=a.dtype))) ynd = tvm.nd.array(np.array(np.ones((n, n, n), dtype=b.dtype))) znd = tvm.nd.array(np.zeros((n, n, n), dtype=c.dtype)) f(xnd, ynd, znd) assert np.array_equal(znd.numpy(), xnd.numpy() + ynd.numpy()) for t in ["float64", "float32", "int64", "int32"]: check_expr_sum(t) def test_trace_expr_sum_args(): @tvm.register_func("tvm.tir.trace_silent") def silent(*args): return def check_expr_sum(dtype): n = 4 a = te.placeholder((n, n, n), name="a", dtype=dtype) b = te.placeholder((n, n, n), name="b", dtype=dtype) e = te.placeholder((n, n, n), name="e", dtype=dtype) d = te.placeholder((n, n, n), name="d", dtype=dtype) c = te.compute( a.shape, lambda i, j, k: tvm.tir.trace([i, j, k, a[i][j][k]], "tvm.tir.trace_silent") + tvm.tir.trace([i, j, k, b[i][j][k]], "tvm.tir.trace_silent") + tvm.tir.trace([i, j, k, d[i][j][k]], "tvm.tir.trace_silent") + tvm.tir.trace([i, j, k, e[i][j][k]], "tvm.tir.trace_silent"), ) s = te.create_schedule(c.op) f = tvm.build(s, [a, b, d, e, c]) a_nd = tvm.nd.array(np.array(np.ones((n, n, n), dtype=a.dtype))) b_nd = tvm.nd.array(np.array(np.ones((n, n, n), dtype=b.dtype))) d_nd = tvm.nd.array(np.array(np.ones((n, n, n), dtype=d.dtype))) e_nd = tvm.nd.array(np.array(np.ones((n, n, n), dtype=e.dtype))) c_nd = tvm.nd.array(np.zeros((n, n, n), dtype=c.dtype)) f(a_nd, b_nd, d_nd, e_nd, c_nd) assert np.array_equal( c_nd.numpy(), a_nd.numpy() + b_nd.numpy() + d_nd.numpy() + e_nd.numpy() ) for t in ["float64", "float32", "int64", "int32"]: check_expr_sum(t) def test_trace_expr_sum_custom(): @tvm.register_func("tvm.tir.trace_callback4") def trace_buffer(x): return def check_expr_sum_custom(dtype): n = 4 a = te.placeholder((n, n
), name="a", dtype=dtype) b = te.placeholder((n, n), name="b", dtype=dtype) c = te.compute( a.shape, lambda i, j: tvm.tir.trace([a[i][j]], "tvm.tir.trace_callback4") + tvm.tir.trace([b[i][j]], "tvm.tir.trace_callback4"), ) s = te.create_schedule(c.op) f = tvm.build(s, [a, b, c]) npa = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], dtype=a.dtype) npb = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], dtype=a.dtype) xnd = tvm.nd.array(npa) ynd = tvm.nd.array(npb) znd = tvm.nd.array(np.zeros((n, n), dtype=c.dtype)) f(xnd, ynd, znd) assert np.array_equal(znd.numpy(), npa + npb) for t in ["float64", "float32", "int64", "int32"]: check_expr_sum_custom(t) def test_trace_can_change_traced_value_int(): @tvm.register_func("tvm.tir.trace_change_int_first") def trace_buffer(x): return 13 @tvm.register_func("tvm.tir.trace_change_int_second") def trace_buffer(x): return 14 def check_assign(dtype): n = 4 x = te.placeholder((n,), name="X", dtype=dtype) y = te.compute(x.shape, lambda i: tvm.tir.trace([x[i]], "tvm.tir.trace_change_int_first")) z = te.compute(x.shape, lambda i: tvm.tir.trace([y[i]], "tvm.tir.trace_change_int_second")) s = te.create_schedule(z.op) f = tvm.build(s, [x, y, z], "llvm") xnd = tvm.nd.array(np.ones((n,), dtype=x.dtype)) ynd = tvm.nd.array(np.zeros((n,), dtype=y.dtype)) znd = tvm.nd.array(np.zeros((n,), dtype=z.dtype)) f(xnd, ynd, znd) check_array_first = np.array([13, 13, 13, 13]) check_array_second = np.array([14, 14, 14, 14]) assert np.array_equal(ynd.numpy(), check_array_first) assert np.array_equal(znd.numpy(), check_array_second) for t in ["int64", "int32"]: check_assign(t) def test_trace_can_change_traced_value_float(): @tvm.register_func("tvm.tir.tra
ce_change_float_first") def trace_buffer(x): return 13.0 @tvm.register_func("tvm.tir.trace_change_float_second") def trace_buffer(x): return 14.0 def check_assign(dtype): n = 4 x = te.placeholder((n,), name="X", dtype=dtype) y = te.compute(x.shape, lambda i: tvm.tir.trace([x[i]], "tvm.tir.trace_change_float_first")) z = te.compute( x.shape, lambda i: tvm.tir.trace([y[i]], "tvm.tir.trace_change_float_second") ) s = te.create_schedule(z.op) f = tvm.build(s, [x, y, z], "llvm") xnd = tvm.nd.array(np.ones((n,), dtype=x.dtype)) ynd = tvm.nd.array(np.zeros((n,), dtype=y.dtype)) znd = tvm.nd.array(np.zeros((n,), dtype=z.dtype)) f(xnd, ynd, znd) check_array_first = np.array([13.0, 13.0, 13.0, 13.0]) check_array_second = np.array([14.0, 14.0, 14.0, 14.0]) assert np.array_equal(ynd.numpy(), check_array_first) assert np.array_equal(znd.numpy(), check_array_second) for t in ["float64", "float32"]: check_assign(t) if __name__ == "__main__": test_trace_expr_assign() test_trace_expr_sum_generated() test_trace_expr_sum_custom() test_trace_expr_sum_args() test_trace_default_action() test_trace_can_change_traced_value_int() test_trace_can_change_traced_value_float()
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import numpy as np import tvm import tvm.testing from tvm.runtime import profiler_vm from tvm import relay from tvm.relay.testing import mlp @tvm.testing.parametrize_targets def test_basic(dev, target): mod, params = mlp.get_workload(batch_size=1) if not profiler_vm.enabled(): return exe = relay.vm.compile(mod, target, params=params) code, lib = exe.save() des_exe = tvm.runtime.vm.Executable.load_exec(code, lib) vm = profiler_vm.VirtualMachineProfiler(des_exe, dev) data = np.random.rand(1, 1, 28, 28).astype("float32") res = vm.profile(tvm.nd.array(data), func_name="main") assert "softmax" in str(res) def test_vm_reshape_and_copy(): target = "llvm" dev = tvm.gpu() x_np = np.random.uniform(size=(8, 16)).astype("float32") x = relay.var("x", shape=(8, 16), dtype="float32") y = relay.reshape(x, [-1, 4, 8]) mod = tvm.IRModule() mod["main"] = relay.Function([x], y) with tvm.transform.PassContext(opt_level=3): exec = relay.vm.compile(mod, "llvm") assert "reshape_tensor" in exec.bytecode vm = profiler_vm.VirtualMachineProfiler(exec, dev) vm.profile(tvm.nd.array(x_np)) if __name__ == "__main__": tvm.testing.main()
import tvm
import tvm.testing from tvm.script
import tir as T
import pytest @pytest.mark.xfail(reason="Awaiting TVMScript support for 'call_tir' token.", strict=True)
class TestParseCallTIR(tvm.testing.CompareBeforeAfter): """ Simply confirm that the TIR node `call_tir` doesn't interfere with the successful parsing of the TVMScript. """ def before(): T.call_tir(add_one) T.evalute(0) def expected(): T.evaluate(0) transform = tvm.tir.transform.prim_func_pass(lambda func, _mod, _ctx: func, 0) @pytest.mark.xfail( reason="Awaiting TVMScript support for 'call_tir' and T.annotation(\"extract_as_subroutine\").", strict=True, )
class TestAnnotateAndSliceTIR(tvm.testing.CompareBeforeAfter): pass @pytest.mark.xfail( reason="Awaiting TVMScript support for lowering of 'T.call_tir' to 'T.call_packed'.", strict=True, )
class TestLowerCallTir(tvm.testing.CompareBeforeAfter): pass @pytest.mark.xfail(reason="Awaiting end-to-end support for Primfunc slicing.", strict=True)
class TestPrimfuncSlicingEndToEnd(tvm.testing.CompareBeforeAfter): pass
import tvm
import tvm.testing
import numpy as np from tvm.script
import tir as T @T.prim_func def reduce(a: T.handle, b: T.handle, d1: T.int32, d2: T.int32, d3: T.int32) -> None: A = T.match_buffer(a, [1, d1, d2, d3]) B = T.match_buffer(b, [1, d1, d2]) for i, j, k, l in T.grid(1, d1, d2, d3): with T.block("reduce"): vi, vj, vk, vl = T.axis.remap("SSSR", [i, j, k, l]) with T.init(): B[vi, vj, vk] = 0.0 B[vi, vj, vk] = B[vi, vj, vk] + A[vi, vj, vk, vl] @T.prim_func def reduce_max(a: T.handle, b: T.handle, d1: T.int32, d2: T.int32, d3: T.int32) -> None: A = T.match_buffer(a, [1, d1, d2, d3]) B = T.match_buffer(b, [1, d1, d2]) for i, j, k, l in T.grid(1, d1, d2, d3): with T.block("reduce"): vi, vj, vk, vl = T.axis.remap("SSSR", [i, j, k, l]) with T.init(): B[vi, vj, vk] = T.float32(-3.4028234663852886e38) B[vi, vj, vk] = T.max(B[vi, vj, vk], A[vi, vj, vk, vl]) @tvm.testing.requires_gpu @tvm.testing.requires_cuda def test_cuda_subwarp_reduction(): def check_sum(d1: int, d2: int, d3: int): _, _, _d1, _d2, _d3 = reduce.params mod = reduce.specialize({_d1: d1, _d2: d2, _d3: d3}) sch = tvm.tir.Schedule(mod) blk = sch.get_block("reduce") i, j, k, l = sch.get_loops(blk) sch.bind(i, "blockIdx.x") sch.bind(j, "threadIdx.z") sch.bind(k, "threadIdx.y") sch.bind(l, "threadIdx.x") f = tvm.build(sch.mod["main"], target="cuda") a_np = np.random.rand(1, d1, d2, d3).astype("float32") b_np = a_np.sum(axis=-1).astype("float32") a = tvm.nd.array(a_np, tvm.cuda(0)) b = tvm.nd.array(np.zeros_like(b_np), tvm.cuda(0)) f(a, b) tvm.testing.assert_allclose(b.numpy(), b_np, rtol=1e-6, atol=1e-6) def check_max(d1: int, d2: int, d3: int): _, _, _d1, _d2, _d3 = reduce_max.params mod = reduce_max.specialize({_d1: d1, _d2: d2, _d3: d3}) sch = tvm.tir.Schedule(mod) blk = sch.get_
block("reduce") i, j, k, l = sch.get_loops(blk) sch.bind(i, "blockIdx.x") sch.bind(j, "threadIdx.z") sch.bind(k, "threadIdx.y") sch.bind(l, "threadIdx.x") f = tvm.build(sch.mod["main"], target="cuda") a_np = -np.random.rand(1, d1, d2, d3).astype("float32") b_np = a_np.max(axis=-1).astype("float32") a = tvm.nd.array(a_np, tvm.cuda(0)) b = tvm.nd.array(np.zeros_like(b_np), tvm.cuda(0)) f(a, b) tvm.testing.assert_allclose(b.numpy(), b_np, rtol=1e-6, atol=1e-6) for d1 in range(1, 5): for d2 in range(1, 5): for d3 in range(2, 33): check_sum(d1, d2, d3) check_max(d1, d2, d3) if __name__ == "__main__": test_cuda_subwarp_reduction()
import tvm from tvm
import te
import re
import os
import ctypes def test_popcount(): target = "llvm -mtriple=armv7l-none-linux-gnueabihf -mcpu=cortex-a53 -mattr=+neon" def check_correct_assembly(type, elements, counts): n = tvm.runtime.convert(elements) A = te.placeholder(n, dtype=type, name="A") B = te.compute(A.shape, lambda i: tvm.tir.popcount(A[i]), name="B") s = te.create_schedule(B.op) s[B].vectorize(s[B].op.axis[0]) f = tvm.build(s, [A, B], target) assembly = f.get_source("asm") matches = re.findall("vpaddl", assembly) assert len(matches) == counts matches = re.findall("vcnt", assembly) assert len(matches) == 1 check_correct_assembly("uint16", 8, 1) check_correct_assembly("uint16", 4, 1) check_correct_assembly("uint32", 4, 2) check_correct_assembly("uint32", 2, 2) check_correct_assembly("uint64", 2, 3) def test_vmlal_s16(): target = "llvm -mtriple=armv7l-none-linux-gnueabihf -mcpu=cortex-a53 -mattr=+neon" def check_correct_assembly(N): K = te.size_var("K") A = te.placeholder((K, N), dtype="int8", name="A") B = te.placeholder((K, N), dtype="int8", name="B") k = te.reduce_axis((0, K)) C = te.compute( (N,), lambda n: te.sum(A[k, n].astype("int32") * B[k, n].astype("int32"), axis=[k]), name="C", ) s = te.create_schedule(C.op) s[C].vectorize(s[C].op.axis[0]) f = tvm.build(s, [A, B, C], target) assembly = f.get_source("asm") matches = re.findall("vmlal.s16", assembly) assert len(matches) == N check_correct_assembly(8) check_correct_assembly(16) check_correct_assembly(32) check_correct_assembly(64) def check_broadcast_correct_assembly(N): K = te.size_var("K") A = te.placeholder((K, N), dtype="int8", name="A") B = te.placeholder((K,), dtype="int8", name="B") k = te.reduce_axis((0, K)) C = te.compute( (N,),
lambda n: te.sum(A[k, n].astype("int32") * B[k].astype("int32"), axis=[k]), name="C", ) s = te.create_schedule(C.op) s[C].vectorize(s[C].op.axis[0]) f = tvm.build(s, [A, B, C], target) assembly = f.get_source("asm") matches = re.findall("vmlal.s16", assembly) assert len(matches) == N check_broadcast_correct_assembly(8) check_broadcast_correct_assembly(16) check_broadcast_correct_assembly(32) check_broadcast_correct_assembly(64) if __name__ == "__main__": test_popcount() test_vmlal_s16()
import numpy as np from tvm
import relay from tvm.relay
import testing from tvm.contrib
import graph_executor
import tvm from tvm
import te
import ctypes
import tvm.testing @tvm.testing.uses_gpu def test_synthetic(): for device in ["llvm", "cuda"]: if not tvm.testing.device_enabled(device): print("skip because %s is not enabled..." % device) return input_shape = (1, 5, 23, 61) def verify(data): mod, params = relay.testing.synthetic.get_workload(input_shape=input_shape) with tvm.transform.PassContext(opt_level=3): lib = relay.build_module.build(mod, "llvm", params=params) dev = tvm.cpu() module = graph_executor.GraphModule(lib["default"](dev)) module.set_input("data", data) module.run() out = module.get_output(0).numpy() return out synthetic_mod, synthetic_params = relay.testing.synthetic.get_workload(input_shape=input_shape) with tvm.transform.PassContext(opt_level=3): synthetic_gpu_lib = relay.build_module.build(synthetic_mod, "cuda", params=synthetic_params) from tvm.contrib
import utils temp = utils.tempdir() path_lib = temp.relpath("deploy_lib.so") synthetic_gpu_lib.export_library(path_lib) loaded_lib = tvm.runtime.load_module(path_lib) data = np.random.uniform(-1, 1, size=input_shape).astype("float32") dev = tvm.cuda() module = graph_executor.GraphModule(loaded_lib["default"](dev)) module.set_input("data", data) module.run() out = module.get_output(0).numpy() tvm.testing.assert_allclose(out, verify(data), atol=1e-5) @tvm.testing.uses_gpu def test_cuda_lib(): dev = tvm.cuda(0) for device in ["llvm", "cuda"]: if not tvm.testing.device_enabled(device): print("skip because %s is not enabled..." % device) return nn = 12 n = tvm.runtime.convert(nn) A = te.placeholder((n,), name="A") B = te.compute(A.shape, lambda *i: A(*i) + 1.0, name="B") s = te.create_schedule(B.op) bx, tx = s[B].split(B.op.axis[0], factor=4) s[B].bind(bx, te.thread_axis("blockIdx.x")) s[B].bind(tx, te.thread_axis("threadIdx.x")) from tvm.contrib
import utils temp = utils.tempdir() fn_add = tvm.build(s, [A, B], target="cuda --host=llvm", name="add") path_lib = temp.relpath("deploy_lib.so") fn_add.export_library(path_lib) m = tvm.runtime.load_module(path_lib) a = tvm.nd.array(np.random.uniform(size=nn).astype(A.dtype), dev) b = tvm.nd.array(np.zeros(nn, dtype=A.dtype), dev) m["add"](a, b) np.testing.assert_equal(b.numpy(), a.numpy() + 1) if __name__ == "__main__": test_synthetic() test_cuda_lib()
"""codegen related to bool types"""
import tvm
import tvm.testing from tvm
import te
import numpy as np
import tvm.testing arr_size = tvm.testing.parameter(32) @tvm.testing.fixture def compute(arr_size): A = te.placeholder((arr_size,), name="A") B = te.placeholder((arr_size,), name="B") C = te.compute(A.shape, lambda *i: A(*i) > B(*i), name="C") D = te.compute(C.shape, lambda *i: tvm.tir.all(C(*i), A(*i) > 1).astype("float32"), name="D") return [A, B, C, D] @tvm.testing.fixture def schedule(target, compute): target = tvm.target.Target(target) A, B, C, D = compute if target.kind.name == "llvm": s = te.create_schedule(D.op) xo, xi = s[C].split(C.op.axis[0], factor=4) xo1, xo2 = s[C].split(xo, factor=13) s[C].parallel(xo2) else: s = te.create_schedule(D.op) for stage in [C, D]: xo, xi = s[stage].split(stage.op.axis[0], factor=4) s[stage].bind(xo, te.thread_axis("blockIdx.x")) s[stage].bind(xi, te.thread_axis("threadIdx.x")) return s @tvm.testing.uses_gpu def test_cmp_load_store(target, dev, arr_size, compute, schedule): A, B, _, D = compute f = tvm.build(schedule, [A, B, D], target) a_np = np.random.uniform(size=arr_size).astype(A.dtype) b_np = np.random.uniform(size=arr_size).astype(B.dtype) a = tvm.nd.array(a_np, dev) b = tvm.nd.array(b_np, dev) d = tvm.nd.array(np.zeros(arr_size, dtype=D.dtype), dev) f(a, b, d) np.testing.assert_equal( d.numpy(), np.logical_and(a_np > b_np, a_np > 1).astype("float32"), ) if __name__ == "__main__": tvm.testing.main()
import tvm
import tvm.testing from tvm
import te
import numpy as np from tvm.contrib
import utils def test_add(): nn = 1024 n = tvm.runtime.convert(nn) A = te.placeholder((n,), name="A") B = te.placeholder((n,), name="B") C = te.compute(A.shape, lambda *i: A(*i) + B(*i), name="C") s = te.create_schedule(C.op) def check_c(): mhost = tvm.build(s, [A, B, C], "c", name="test_fadd") temp = utils.tempdir() path_dso = temp.relpath("temp.so") mhost.export_library(path_dso) m = tvm.runtime.load_module(path_dso) fadd = m["test_fadd"] dev = tvm.cpu(0) n = nn a = tvm.nd.array(np.random.uniform(size=n).astype(A.dtype), dev) b = tvm.nd.array(np.random.uniform(size=n).astype(B.dtype), dev) c = tvm.nd.array(np.zeros(n, dtype=C.dtype), dev) fadd(a, b, c) tvm.testing.assert_allclose(c.numpy(), a.numpy() + b.numpy()) check_c() def test_add_pipeline(): nn = 1024 n = tvm.runtime.convert(nn) A = te.placeholder((n,), name="A") B = te.placeholder((n,), name="B") AA = te.compute((n,), lambda *i: A(*i), name="A") BB = te.compute((n,), lambda *i: B(*i), name="B") T = te.compute(A.shape, lambda *i: AA(*i) + BB(*i), name="T") C = te.compute(A.shape, lambda *i: T(*i), name="C") s = te.create_schedule(C.op) xo, xi = s[C].split(C.op.axis[0], factor=4) xo1, xo2 = s[C].split(xo, factor=13) s[C].parallel(xo2) s[C].pragma(xo1, "parallel_launch_point") s[C].pragma(xo2, "parallel_stride_pattern") s[C].pragma(xo2, "parallel_barrier_when_finish") s[C].vectorize(xi) def check_c(): Ab = tvm.tir.decl_buffer( A.shape, A.dtype, elem_offset=te.size_var("Aoffset"), offset_factor=8, name="A" ) binds = {A: Ab} f1 = tvm.lower(s, [A, B, C], name="test_fadd_pipeline") mhost = tvm.build(f1, target="c") temp = utils.tempdir() path_dso = temp.relpath("temp.so") mhost.export_library(path_dso) m = tvm.runtime.load_module(path_dso)
fadd = m["test_fadd_pipeline"] dev = tvm.cpu(0) n = nn a = tvm.nd.array(np.random.uniform(size=n).astype(A.dtype), dev) b = tvm.nd.array(np.random.uniform(size=n).astype(B.dtype), dev) c = tvm.nd.array(np.zeros(n, dtype=C.dtype), dev) fadd(a, b, c) tvm.testing.assert_allclose(c.numpy(), a.numpy() + b.numpy()) check_c() def test_reinterpret(): nn = 1024 n = tvm.runtime.convert(nn) A = te.placeholder((n,), name="A", dtype="int32") B = te.compute( A.shape, lambda *i: tvm.tir.call_intrin("float32", "tir.reinterpret", 2 + A(*i)), name="B" ) s = te.create_schedule(B.op) def check_c(): mhost = tvm.build(s, [A, B], "c", name="test_reinterpret") temp = utils.tempdir() path_dso = temp.relpath("temp.so") mhost.export_library(path_dso) m = tvm.runtime.load_module(path_dso) fadd = m["test_reinterpret"] dev = tvm.cpu(0) n = nn a = tvm.nd.array(np.random.randint(-(2**30), 2**30, size=n).astype(A.dtype), dev) b = tvm.nd.array(np.zeros(n, dtype=B.dtype), dev) fadd(a, b) tvm.testing.assert_allclose(b.numpy(), (2 + a.numpy()).view("float32")) check_c() def test_ceil(): nn = 1024 n = tvm.runtime.convert(nn) A = te.placeholder((n,), name="A", dtype="float32") B = te.compute(A.shape, lambda *i: tvm.tir.call_intrin("float32", "tir.ceil", A(*i)), name="B") s = te.create_schedule(B.op) def check_c(): mhost = tvm.build(s, [A, B], "c", name="test_ceil") temp = utils.tempdir() path_dso = temp.relpath("temp.so") mhost.export_library(path_dso) m = tvm.runtime.load_module(path_dso) fceil = m["test_ceil"] dev = tvm.cpu(0) n = nn a = tvm.nd.array(np.random.rand(n).astype(A.dtype), dev) b = tvm.nd.array(np.zeros(n, dtype=B.dtype), dev) fceil(a, b) tvm.testing.assert_allclose(b.numpy(), (np.ceil(a.numpy()).view("floa