text
stringlengths
1
2.05k
import relay from tvm.contrib
import utils, graph_executor @tvm.testing.requires_llvm def test_graph_simple(): n = 4 A = te.placeholder((n,), name="A") B = te.compute(A.shape, lambda *i: A(*i) + 1.0, name="B") s = te.create_schedule(B.op) node0 = {"op": "null", "name": "x", "inputs": []} node1 = { "op": "tvm_op", "name": "add", "inputs": [[0, 0, 0]], "attrs": {"func_name": "myadd", "flatten_data": "1", "num_inputs": "1", "num_outputs": "1"}, } nodes = [node0, node1] arg_nodes = [0] node_row_ptr = [0, 1, 2] outputs = [[1, 0, 0]] shape = (4,) attrs = { "shape": ["list_shape", [shape, shape]], "dltype": ["list_str", ["float32", "float32"]], "storage_id": ["list_int", [0, 1]], } graph = { "nodes": nodes, "arg_nodes": arg_nodes, "node_row_ptr": node_row_ptr, "heads": outputs, "attrs": attrs, } graph = json.dumps(graph) def check_verify(): mlib = tvm.build(s, [A, B], "llvm", name="myadd") mod = graph_executor.create(graph, mlib, tvm.cpu(0)) a = np.random.uniform(size=(n,)).astype(A.dtype) mod.run(x=a) out = mod.get_output(0, tvm.nd.empty((n,))) np.testing.assert_equal(out.numpy(), a + 1) def check_remote(server): mlib = tvm.build(s, [A, B], "llvm", name="myadd") remote = rpc.connect(server.host, server.port) temp = utils.tempdir() dev = remote.cpu(0) path_dso = temp.relpath("dev_lib.so") mlib.export_library(path_dso) remote.upload(path_dso) mlib = remote.load_module("dev_lib.so") mod = graph_executor.create(graph, mlib, remote.cpu(0)) a = np.random.uniform(size=(n,)).astype(A.dtype) mod.run(x=tvm.nd.array(a, dev)) out = tvm.nd.empty((n,), device=dev) out = mod.get_output(0, out) np.testing.assert_equal(out.numpy(), a + 1) def check_sharing(): x = relay.var("x", shape=(1, 10)) y = relay.var("y", sh
ape=(1, 10)) z = relay.add(x, y) func = relay.Function([x, y], z) x_in = np.ones((1, 10)).astype("float32") params = {"x": x_in} graph, lib, params = relay.build(func, target="llvm", params=params) mod_shared = graph_executor.create(graph, lib, tvm.cpu(0)) mod_shared.load_params(runtime.save_param_dict(params)) num_mods = 10 mods = [graph_executor.create(graph, lib, tvm.cpu(0)) for _ in range(num_mods)] for mod in mods: mod.share_params(mod_shared, runtime.save_param_dict(params)) a = np.random.uniform(size=(1, 10)).astype("float32") for mod in mods: mod.run(y=a) out = mod.get_output(0, tvm.nd.empty((1, 10))) np.testing.assert_equal(out.numpy(), x_in + a) del mod_shared for mod in mods: mod.run(y=a) out = mod.get_output(0, tvm.nd.empty((1, 10))) np.testing.assert_equal(out.numpy(), x_in + a) del mod check_verify() check_remote(rpc.Server("127.0.0.1")) check_sharing() def test_load_unexpected_params(): mod = tvm.IRModule() params = {} x = relay.var("x", shape=(1, 10)) y = relay.var("y", shape=(1, 10)) z = relay.add(x, y) mod["main"] = relay.Function([x, y], z) graph_module = relay.build(mod, target="llvm", params=params) rt_mod = tvm.contrib.graph_executor.create( graph_module.get_graph_json(), graph_module.get_lib(), tvm.cpu(0) ) new_params = graph_module.get_params() new_params.update({"y_unknown": np.ones((1,)).astype("float32")}) rt_mod.load_params(runtime.save_param_dict(new_params)) if __name__ == "__main__": test_graph_simple() test_load_unexpected_params()
import json
import os
import re
import sys
import time
import pytest
import tvm
import tvm.testing from tvm
import te
import numpy as np from tvm.contrib
import utils, graph_executor from tvm.contrib.cuda_graph
import cuda_graph_executor bx = te.thread_axis("blockIdx.x") tx = te.thread_axis("threadIdx.x") @tvm.testing.requires_cudagraph def test_graph_simple(): n = 32 A = te.placeholder((n,), name="A") B = te.compute(A.shape, lambda *i: A(*i) + 1.0, name="B") s = te.create_schedule(B.op) xo, xi = s[B].split(B.op.axis[0], factor=8) s[B].bind(xo, bx) s[B].bind(xi, tx) node0 = {"op": "null", "name": "x", "inputs": []} node1 = { "op": "tvm_op", "name": "add", "inputs": [[0, 0, 0]], "attrs": {"func_name": "myadd", "flatten_data": "1", "num_inputs": "1", "num_outputs": "1"}, } nodes = [node0, node1] arg_nodes = [0] node_row_ptr = [0, 1, 2] outputs = [[1, 0, 0]] shape = (n,) attrs = { "shape": ["list_shape", [shape, shape]], "dltype": ["list_str", ["float32", "float32"]], "storage_id": ["list_int", [0, 1]], } graph = { "nodes": nodes, "arg_nodes": arg_nodes, "node_row_ptr": node_row_ptr, "heads": outputs, "attrs": attrs, } graph = json.dumps(graph) def check_verify(): mlib = tvm.build(s, [A, B], "cuda", name="myadd") dev = tvm.cuda(0) try: mod = cuda_graph_executor.create(graph, mlib, dev) except ValueError: return for i in range(3): a = np.random.uniform(size=(n,)).astype(A.dtype) mod.run(x=a) out = mod.get_output(0, tvm.nd.empty((n,))) np.testing.assert_equal(out.numpy(), a + 1) mod.capture_cuda_graph() a = np.random.uniform(size=(n,)).astype(A.dtype) mod.set_input(x=a) mod.run_cuda_graph() out = mod.get_output(0, tvm.nd.empty((n,))) np.testing.assert_equal(out.numpy(), a + 1) check_verify() if __name__ == "__main__": test_graph_simple()
import json
import os
import re
import sys
import time from distutils.log
import debug
import numpy as np
import pytest
import tvm
import tvm.testing from tvm
import rpc, te from tvm._ffi.base
import TVMError from tvm.contrib
import utils from tvm.contrib.debugger
import debug_executor @pytest.fixture def n(): return 4 @pytest.fixture def A(n): return te.placeholder((n,), name="A") @pytest.fixture def B(A): return te.compute(A.shape, lambda *i: A(*i) + 1.0, name="B") @pytest.fixture def s(B): return te.create_schedule(B.op) @pytest.fixture def mlib(s, A, B): return tvm.build(s, [A, B], "llvm", name="myadd") @pytest.fixture def myadd(mlib): def _myadd(*args): to_return = mlib["myadd"](*args) time.sleep(0.25) return to_return return _myadd @pytest.fixture def graph(): node0 = {"op": "null", "name": "x", "inputs": []} node1 = { "op": "tvm_op", "name": "add", "inputs": [[0, 0, 0]], "attrs": {"func_name": "myadd", "flatten_data": "1", "num_inputs": "1", "num_outputs": "1"}, } nodes = [node0, node1] arg_nodes = [0] node_row_ptr = [0, 1, 2] outputs = [[1, 0, 0]] shape = (4,) attrs = { "shape": ["list_shape", [shape, shape]], "dltype": ["list_str", ["float32", "float32"]], "storage_id": ["list_int", [0, 1]], } graph = { "nodes": nodes, "arg_nodes": arg_nodes, "node_row_ptr": node_row_ptr, "heads": outputs, "attrs": attrs, } graph = json.dumps(graph) return graph @tvm.testing.requires_llvm @tvm.testing.requires_rpc @pytest.mark.skipif( tvm.support.libinfo()["USE_PROFILER"] != "ON", reason="TVM was not built with profiler support" ) def test_end_to_end_graph_simple(graph, n, A, B, s, myadd): def check_verify(): mlib_proxy = tvm.support.FrontendTestModule() mlib_proxy["myadd"] = myadd mod = debug_executor.create(graph, mlib_proxy, tvm.cpu(0)) a = np.random.uniform(size=(n,)).astype(A.dtype) mod.set_input(x=a) directory = mod._dump_path assert os.path.exists(directory) GRAPH_DUMP_FILE_NAME = "_tvmdbg_graph_dump.json" assert len(os.listdir(directory)) == 1
graph_dump_path = os.path.join(directory, GRAPH_DUMP_FILE_NAME) assert os.path.exists(graph_dump_path) with open(graph_dump_path) as graph_f: dumped_graph = json.load(graph_f) assert isinstance(dumped_graph, dict) for k in ("nodes", "arg_nodes", "node_row_ptr", "heads", "attrs"): assert k in dumped_graph, f"key {k} not in dumped graph {graph!r}" mod.run() assert len(os.listdir(directory)) > 1 debug_lines = mod.debug_datum.get_debug_result().split("\n") def split_debug_line(i): to_return = re.split(r" [ ]*", debug_lines[i]) assert to_return[-1] == "" to_return = to_return[:-1] return to_return assert split_debug_line(0) == [ "Node Name", "Ops", "Time(us)", "Time(%)", "Shape", "Inputs", "Outputs", "Measurements(us)", ] myadd_lines = split_debug_line(2) assert myadd_lines[0] == "add" assert myadd_lines[1] == "myadd" runtime_sec = float(myadd_lines[2]) / 1e6 assert runtime_sec > 0.25 and runtime_sec < 0.25 * 1000 total_lines = split_debug_line(3) assert total_lines[0] == "Total_time" assert total_lines[2] == myadd_lines[2] CHROME_TRACE_FILE_NAME = "_tvmdbg_execution_trace.json" assert os.path.exists(os.path.join(directory, CHROME_TRACE_FILE_NAME)) with open(os.path.join(directory, CHROME_TRACE_FILE_NAME)) as f: trace = json.load(f) assert trace["displayTimeUnit"] == "ns" events = trace["traceEvents"] assert len(events) == 4 assert all(event["ph"] in ("B", "E") for event in events) assert all(event["pid"] == 1 for event in events) assert all(event["tid"] == 1 for event in events) assert all(event["name"] == "x" for event in events[:2]) assert all(event["name
"] == "add" for event in events[2:]) assert events[0]["ts"] == 0 assert events[0]["ph"] == "B" out = mod.get_output(0, tvm.nd.empty((n,))) np.testing.assert_equal(out.numpy(), a + 1) mod.exit() assert not os.path.exists(directory) def check_remote(server): mlib = tvm.build(s, [A, B], "llvm", name="myadd") remote = rpc.connect(server.host, server.port) temp = utils.tempdir() dev = remote.cpu(0) path_dso = temp.relpath("dev_lib.so") mlib.export_library(path_dso) remote.upload(path_dso) mlib = remote.load_module("dev_lib.so") try: mod = debug_executor.create(graph, mlib, remote.cpu(0)) except ValueError: print("Skip because debug runtime not enabled") return a = np.random.uniform(size=(n,)).astype(A.dtype) mod.run(x=tvm.nd.array(a, dev)) out = tvm.nd.empty((n,), device=dev) out = mod.get_output(0, out) np.testing.assert_equal(out.numpy(), a + 1) check_verify() check_remote(rpc.Server("127.0.0.1")) @tvm.testing.requires_llvm @pytest.mark.skipif( tvm.support.libinfo()["USE_PROFILER"] != "ON", reason="TVM was not built with profiler support" ) def test_run_single_node(graph, n, A, myadd): mlib_proxy = tvm.support.FrontendTestModule() mlib_proxy["myadd"] = myadd mod: debug_executor.GraphModuleDebug = debug_executor.create(graph, mlib_proxy, tvm.cpu(0)) a = np.random.uniform(size=(n,)).astype(A.dtype) mod.set_input(x=a) assert len(mod.debug_datum.get_graph_nodes()) == 2 assert mod.debug_datum.get_graph_nodes()[0]["op"] == "param" assert mod.debug_datum.get_graph_nodes()[1]["op"] == "myadd" assert mod.run_individual_node(0, number=1).mean == 0 repeat_1_result = mod.run_individual_node(1, repeat=1) assert repeat_1_result.mean > 0 repeat_3_results = mod.run_individual_node(1, repeat=3) assert sum(repeat_3_results.
results) > sum(repeat_1_result.results) assert len(mod.run_individual_node(1, repeat=10).results) == 10 start = time.time() mod.run_individual_node(1, min_repeat_ms=500) end = time.time() elapsed_time_in_seconds = end - start assert elapsed_time_in_seconds >= 0.5 start = time.time() mod.run_individual_node(1, repeat=2, min_repeat_ms=500, cooldown_interval_ms=1000) end = time.time() elapsed_time_in_seconds_with_def_rep = end - start assert elapsed_time_in_seconds_with_def_rep >= 3 start = time.time() mod.run_individual_node( 1, repeat=2, min_repeat_ms=500, cooldown_interval_ms=1000, repeats_to_cooldown=2 ) end = time.time() elapsed_time_in_seconds_with_rep_2 = end - start assert elapsed_time_in_seconds_with_rep_2 >= 2 and ( elapsed_time_in_seconds_with_rep_2 < elapsed_time_in_seconds_with_def_rep ) with pytest.raises(TVMError): mod.run_individual_node(2) if __name__ == "__main__": tvm.testing.main()
"""Unit tests for heterogeneous runtime"""
import json
import numpy as np
import tvm from tvm
import te from tvm.contrib
import graph_executor, utils from tvm
import topi def get_simplex_graph(host_dev_type, device_dev_type): r""" Return the hand-crafted json object where only one copy node is inserted. This node copies data from the target device to cpu. The network is constructed as following: A B \ / elemwise_add (gpu) \ copy C \ / elemwise_sub (cpu) Parameters ---------- host_dev_type : int The device type of the host processor, e.g. cpu. device_dev_type : int The device type of the device processor, e.g. gpu, opencl, etc. Returns ------- json : json A json encoded object. """ var_a = {"op": "null", "name": "A", "inputs": []} var_b = {"op": "null", "name": "B", "inputs": []} elemwise_add = { "op": "tvm_op", "name": "elemwise_add", "attrs": { "flatten_data": "1", "func_name": "elemwise_add", "num_inputs": "2", "num_outputs": "1", }, "inputs": [[0, 0, 0], [1, 0, 0]], } copy = { "op": "tvm_op", "name": "__copy_add_to_sub", "attrs": { "flatten_data": "0", "func_name": "__copy", "num_inputs": "1", "num_outputs": "1", }, "inputs": [[2, 0, 0]], } var_c = {"op": "null", "name": "C", "inputs": []} elemwise_sub = { "op": "tvm_op", "name": "elemwise_sub", "attrs": { "flatten_data": "0", "func_name": "elemwise_sub", "num_inputs": "2", "num_outputs": "1", }, "inputs": [[3, 0, 0], [4, 0, 0]], } nodes = [var_a, var_b, elemwise_add, copy, var_c, elemwise_sub] arg_nodes = [0, 1, 4] node_row_ptr = [0, 1, 2, 3, 4, 5, 6] heads = [[5, 0, 0]] shape = (4,) attrs = { "storage_id": ["list_int", [3, 4, 0, 1, 5, 2]], "shape": ["l
ist_shape", [shape, shape, shape, shape, shape, shape]], "device_index": [ "list_int", [ device_dev_type, device_dev_type, device_dev_type, host_dev_type, host_dev_type, host_dev_type, ], ], "dtype": ["list_int", [0, 0, 0, 0, 0, 0]], "dltype": ["list_str", ["float32", "float32", "float32", "float32", "float32", "float32"]], } graph = { "nodes": nodes, "arg_nodes": arg_nodes, "node_row_ptr": node_row_ptr, "heads": heads, "attrs": attrs, } return json.dumps(graph) def test_simplex_data_transferring(): r""" Test the heterogeneous execution of a simple network where data transferring is from the target device to the host processor at runtime. The host processor is always assumed to be cpu, and the device varies. """ host = "cpu" target_host = "llvm" host_dev = tvm.device(host) if not tvm.runtime.enabled(target_host): print("Skip test because llvm is not enabled.") return def check_device(device, target_device): if not tvm.runtime.enabled(target_device): print("Skip test because {} is not enabled.".format(target_device)) return device_dev = tvm.device(device) graph = get_simplex_graph(host_dev.device_type, device_dev.device_type) shape = (4,) tensor_a = te.placeholder(shape, name="A") tensor_b = te.placeholder(shape, name="B") elemwise_add = te.compute( shape, lambda *i: tensor_a(*i) + tensor_b(*i), name="elemwise_add" ) target = topi.cpp.TEST_create_target(device) schedule_add = topi.cpp.cuda.schedule_injective(target, [elemwise_add]) lower_add = tvm.lower(schedule_add, [tensor_a, tensor_b, elemwise_add], name="elemwise_add") tensor_copy = te.placeholder(shape, name="__
copy") tensor_c = te.placeholder(shape, name="C") elemwise_sub = te.compute( shape, lambda *i: tensor_copy(*i) - tensor_c(*i), name="elemwise_sub" ) schedule_sub = te.create_schedule(elemwise_sub.op) lower_sub = tvm.lower( schedule_sub, [tensor_copy, tensor_c, elemwise_sub], name="elemwise_sub" ) target_flist = {target_device: lower_add, target_host: lower_sub} target = tvm.target.Target(target, target_host) mhost = tvm.build(target_flist, target=target) dev = [host_dev, device_dev] mod = graph_executor.create(graph, mhost, dev) params = {} params["A"] = tensor_a = np.random.uniform(size=shape).astype(tensor_a.dtype) params["B"] = tensor_b = np.random.uniform(size=shape).astype(tensor_b.dtype) params["C"] = tensor_c = np.random.uniform(size=shape).astype(tensor_c.dtype) mod.set_input(**params) mod.run() out = mod.get_output(0, tvm.nd.empty(shape)) np.testing.assert_equal(out.numpy(), (tensor_a + tensor_b) - tensor_c) dev_tar = {"cuda": "cuda", "opencl": "opencl"} for device, target in dev_tar.items(): with tvm.target.Target(device): check_device(device, target) def get_duplex_graph(host_dev_type, device_dev_type): r""" Return the hand-crafted json object where two copy nodes are inserted. Data transferring happens back-and-forth between the target device and CPU. The network is constructed as following: A B \ / elemwise_add (gpu) \ copy C \ / elemwise_sub (cpu) \ copy D \ / elemwise_add (gpu) Parameters ---------- host_dev_type : int The device type of the host processor, e.g. cpu. device_d
ev_type : int The device type of the device processor, e.g. gpu, opencl, etc. Returns ------- json : json A json encoded object. """ var_a = {"op": "null", "name": "A", "inputs": []} var_b = {"op": "null", "name": "B", "inputs": []} elemwise_add0 = { "op": "tvm_op", "name": "elemwise_add0", "attrs": { "flatten_data": "1", "func_name": "elemwise_add0", "num_inputs": "2", "num_outputs": "1", }, "inputs": [[0, 0, 0], [1, 0, 0]], } copy_add_sub = { "op": "tvm_op", "name": "__copy_add_to_sub", "attrs": { "flatten_data": "0", "func_name": "__copy", "num_inputs": "1", "num_outputs": "1", }, "inputs": [[2, 0, 0]], } var_c = {"op": "null", "name": "C", "inputs": []} elemwise_sub = { "op": "tvm_op", "name": "elemwise_sub", "attrs": { "flatten_data": "0", "func_name": "elemwise_sub", "num_inputs": "2", "num_outputs": "1", }, "inputs": [[3, 0, 0], [4, 0, 0]], } copy_sub_add = { "op": "tvm_op", "name": "__copy_sub_to_add", "attrs": { "flatten_data": "0", "func_name": "__copy", "num_inputs": "1", "num_outputs": "1", }, "inputs": [[5, 0, 0]], } var_d = {"op": "null", "name": "D", "inputs": []} elemwise_add1 = { "op": "tvm_op", "name": "elemwise_add1", "attrs": { "flatten_data": "0", "func_name": "elemwise_add1", "num_inputs": "2", "num_outputs": "1", }, "inputs": [[6, 0, 0], [7, 0, 0]], } nodes = [ var_a, var_b, elemwise_add0, copy_add_sub, var_c, elemwise_sub, copy_sub_add, var_d, elemwise_add1, ] arg_nodes = [0, 1
, 4, 7] node_row_ptr = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] heads = [[8, 0, 0]] shape = (4,) attrs = { "storage_id": ["list_int", [4, 5, 0, 1, 6, 2, 0, 7, 3]], "shape": ["list_shape", [shape, shape, shape, shape, shape, shape, shape, shape, shape]], "device_index": [ "list_int", [ device_dev_type, device_dev_type, device_dev_type, host_dev_type, host_dev_type, host_dev_type, device_dev_type, device_dev_type, device_dev_type, ], ], "dtype": ["list_int", [0, 0, 0, 0, 0, 0, 0, 0, 0]], "dltype": [ "list_str", [ "float32", "float32", "float32", "float32", "float32", "float32", "float32", "float32", "float32", ], ], } graph = { "nodes": nodes, "arg_nodes": arg_nodes, "node_row_ptr": node_row_ptr, "heads": heads, "attrs": attrs, } return json.dumps(graph) def test_duplex_data_transferring(): r""" Test the heterogeneous execution of a simple network where data transferring occurs back-and-forth between the target device and host processor. The host processor is always assumed to be cpu, and the target device varies. """ host = "cpu" target_host = "llvm" host_dev = tvm.device(host) if not tvm.runtime.enabled(target_host): print("Skip test because llvm is not enabled.") return def check_device(device, target_device): if not tvm.runtime.enabled(target_device): print("Skip test because {} is not enabled.".format(target_device)) return device_dev = tvm.device(device) graph = get_duplex_graph(host_dev.device_type, device_dev.device_ty
pe) shape = (4,) copy_add_sub = te.placeholder(shape, name="__copy0") copy_sub_add = te.placeholder(shape, name="__copy1") tensor_a = te.placeholder(shape, name="A") tensor_b = te.placeholder(shape, name="B") tensor_d = te.placeholder(shape, name="D") elemwise_add0 = te.compute( shape, lambda *i: tensor_a(*i) + tensor_b(*i), name="elemwise_add0" ) elemwise_add1 = te.compute( shape, lambda *i: copy_sub_add(*i) + tensor_d(*i), name="elemwise_add1" ) target = topi.cpp.TEST_create_target(device) add_schedule0 = topi.cpp.cuda.schedule_injective(target, [elemwise_add0]) lower_add0 = tvm.lower( add_schedule0, [tensor_a, tensor_b, elemwise_add0], name="elemwise_add0" ) add_schedule1 = topi.cpp.cuda.schedule_injective(target, [elemwise_add1]) lower_add1 = tvm.lower( add_schedule1, [tensor_d, copy_sub_add, elemwise_add1], name="elemwise_add1" ) tensor_c = te.placeholder(shape, name="C") elemwise_sub = te.compute( shape, lambda *i: copy_add_sub(*i) - tensor_c(*i), name="elemwise_sub" ) sub_schedule = te.create_schedule(elemwise_sub.op) lower_sub = tvm.lower( sub_schedule, [copy_add_sub, tensor_c, elemwise_sub], name="elemwise_sub" ) lower_add0.update(lower_add1) target_flist = {target_device: lower_add0, target_host: lower_sub} target = tvm.target.Target(target, target_host) mhost = tvm.build(target_flist, target=target) dev = [host_dev, device_dev] params = {} params["A"] = tensor_a = np.random.uniform(size=shape).astype(tensor_a.dtype) params["B"] = tensor_b = np.random.uniform(size=shape).astype(tensor_b.dtype) params["C"] = tensor_c = np.random.uniform(size=shape).astype(tensor_c.dtype) params["D"] = tensor_d = np.random.uniform(size=shape).as
type(tensor_d.dtype) def check_verify(): mod = graph_executor.create(graph, mhost, dev) mod.set_input(**params) mod.run() out = mod.get_output(0, tvm.nd.empty(shape)) np.testing.assert_equal(out.numpy(), tensor_a + tensor_b - tensor_c + tensor_d) def check_load_module(): temp = utils.tempdir() path_lib = temp.relpath("deploy.so") mhost.export_library(path_lib) with open(temp.relpath("deploy.json"), "w") as out_file: out_file.write(graph) loaded_lib = tvm.runtime.load_module(path_lib) loaded_graph = open(temp.relpath("deploy.json")).read() mod = graph_executor.create(loaded_graph, loaded_lib, dev) mod.set_input(**params) mod.run() out = mod.get_output(0, tvm.nd.empty(shape)) np.testing.assert_equal(out.numpy(), tensor_a + tensor_b - tensor_c + tensor_d) check_verify() check_load_module() dev_tar = {"cuda": "cuda", "opencl": "opencl"} for device, target in dev_tar.items(): with tvm.target.Target(device): check_device(device, target) if __name__ == "__main__": test_simplex_data_transferring() test_duplex_data_transferring()
import time
import ctypes
import tvm from tvm
import te from tvm.contrib.utils
import tempdir from tvm.runtime.module
import BenchmarkResult def test_min_repeat_ms(): tmp = tempdir() filename = tmp.relpath("log") @tvm.register_func def my_debug(filename): """one call lasts for 100 ms and writes one character to a file""" time.sleep(0.1) with open(filename, "a") as fout: fout.write("c") X = te.compute((), lambda: tvm.tir.call_packed("my_debug", filename)) s = te.create_schedule(X.op) func = tvm.build(s, [X]) x = tvm.nd.empty((), dtype="int32") ftimer = func.time_evaluator(func.entry_name, tvm.cpu(), number=1, repeat=1) ftimer(x) with open(filename, "r") as fin: ct = len(fin.readline()) assert ct == 2 ftimer = func.time_evaluator(func.entry_name, tvm.cpu(), number=1, repeat=1, min_repeat_ms=1000) ftimer(x) with open(filename, "r") as fin: ct = len(fin.readline()) assert ct > 10 + 2 def test_benchmark_result(): r = BenchmarkResult([1, 2, 2, 5]) assert r.mean == 2.5 assert r.median == 2.0 assert r.min == 1 assert r.max == 5 assert r.std == 1.5 if __name__ == "__main__": test_min_repeat_ms() test_benchmark_result()
import numpy as np
import os from tvm
import relay, runtime from tvm.relay
import testing
import tvm from tvm.contrib
import graph_executor from tvm.contrib.debugger
import debug_executor from tvm.contrib.cuda_graph
import cuda_graph_executor
import tvm.testing def input_shape(mod): return [int(x) for x in mod["main"].checked_type.arg_types[0].shape] def verify(data): if not tvm.runtime.enabled("llvm"): print("Skip because llvm is not enabled") return mod, params = relay.testing.synthetic.get_workload() with relay.build_config(opt_level=3): graph, lib, graph_params = relay.build_module.build(mod, "llvm", params=params) dev = tvm.cpu() module = graph_executor.create(graph, lib, dev) module.set_input("data", data) module.set_input(**graph_params) module.run() out = module.get_output(0).numpy() return out @tvm.testing.requires_llvm def test_legacy_compatibility(): mod, params = relay.testing.synthetic.get_workload() with relay.build_config(opt_level=3): graph, lib, graph_params = relay.build_module.build(mod, "llvm", params=params) data = np.random.uniform(-1, 1, size=input_shape(mod)).astype("float32") dev = tvm.cpu() module = graph_executor.create(graph, lib, dev) module.set_input("data", data) module.set_input(**graph_params) module.run() out = module.get_output(0).numpy() tvm.testing.assert_allclose(out, verify(data), atol=1e-5) @tvm.testing.requires_llvm def test_cpu(): mod, params = relay.testing.synthetic.get_workload() with relay.build_config(opt_level=3): complied_graph_lib = relay.build_module.build(mod, "llvm", params=params) data = np.random.uniform(-1, 1, size=input_shape(mod)).astype("float32") dev = tvm.cpu() gmod = complied_graph_lib["default"](dev) set_input = gmod["set_input"] run = gmod["run"] get_output = gmod["get_output"] set_input("data", tvm.nd.array(data)) run() out = get_output(0).numpy() tvm.testing.assert_allclose(out, verify(data), atol=1e-5) gmod = graph_executor.GraphModule(complied_graph_lib["default"](dev)) gmod.set_input("data", data) gmod.run() out = gmod.get_output(0).numpy() tvm.testing.assert_allclose(out, v
erify(data), atol=1e-5) @tvm.testing.requires_llvm def test_cpu_get_graph_json(): mod, params = relay.testing.synthetic.get_workload() with relay.build_config(opt_level=3): complied_graph_lib = relay.build_module.build(mod, "llvm", params=params) from tvm.contrib
import utils temp = utils.tempdir() file_name = "deploy_lib.so" path_lib = temp.relpath(file_name) complied_graph_lib.export_library(path_lib) loaded_lib = tvm.runtime.load_module(path_lib) json = loaded_lib["get_graph_json"]() assert isinstance(json, str) == True assert json.find("tvmgen_default_fused_nn_softmax_add") > -1 @tvm.testing.requires_llvm def test_cpu_get_graph_params_run(): mod, params = relay.testing.synthetic.get_workload() with tvm.transform.PassContext(opt_level=3): complied_graph_lib = relay.build_module.build(mod, "llvm", params=params) data = np.random.uniform(-1, 1, size=input_shape(mod)).astype("float32") dev = tvm.cpu() from tvm.contrib
import utils temp = utils.tempdir() file_name = "deploy_lib.so" path_lib = temp.relpath(file_name) complied_graph_lib.export_library(path_lib) loaded_lib = tvm.runtime.load_module(path_lib) loaded_params = loaded_lib["get_graph_params"]() gmod = graph_executor.GraphModule(loaded_lib["default"](dev)) gmod.set_input(key="data", value=data, **loaded_params) gmod.run() out = gmod.get_output(0).numpy() tvm.testing.assert_allclose(out, verify(data), atol=1e-5) @tvm.testing.requires_llvm def test_cpu_get_graph_params_compare(): from tvm.relay.testing.init
import create_workload, Constant inp_shape = (1, 3, 24, 12) dtype = "float32" data = relay.var("data", shape=inp_shape, dtype=dtype) conv_shape = [inp_shape[1], inp_shape[1], 3, 3] conv = relay.nn.conv2d( data, relay.var("conv_weight", shape=conv_shape, dtype=dtype), padding=1, kernel_size=3, ) args = relay.analysis.free_vars(conv) func = relay.Function(args, conv) mod, params = create_workload(func, initializer=Constant()) with tvm.transform.PassContext(opt_level=3): complied_graph_lib = relay.build_module.build(mod, "llvm", params=params) from tvm.contrib
import utils temp = utils.tempdir() file_name = "deploy_lib.so" path_lib = temp.relpath(file_name) complied_graph_lib.export_library(path_lib) loaded_lib = tvm.runtime.load_module(path_lib) loaded_params = loaded_lib["get_graph_params"]() tvm.testing.assert_allclose( params["conv_weight"].numpy(), loaded_params["p0"].numpy()[0][0], atol=1e-5 ) @tvm.testing.requires_cuda @tvm.testing.requires_gpu def test_gpu(): mod, params = relay.testing.synthetic.get_workload() with relay.build_config(opt_level=3): complied_graph_lib = relay.build_module.build(mod, "cuda", params=params) data = np.random.uniform(-1, 1, size=input_shape(mod)).astype("float32") dev = tvm.cuda() gmod = complied_graph_lib["default"](dev) set_input = gmod["set_input"] run = gmod["run"] get_output = gmod["get_output"] set_input("data", tvm.nd.array(data)) run() out = get_output(0).numpy() tvm.testing.assert_allclose(out, verify(data), atol=1e-5) gmod = graph_executor.GraphModule(complied_graph_lib["default"](dev)) gmod.set_input("data", data) gmod.run() out = gmod.get_output(0).numpy() tvm.testing.assert_allclose(out, verify(data), atol=1e-5) @tvm.testing.uses_gpu def test_mod_export(): def verify_cpu_export(obj_format): mod, params = relay.testing.synthetic.get_workload() with relay.build_config(opt_level=3): complied_graph_lib = relay.build_module.build(mod, "llvm", params=params) from tvm.contrib
import utils temp = utils.tempdir() if obj_format == ".so": file_name = "deploy_lib.so" else: assert obj_format == ".tar" file_name = "deploy_lib.tar" path_lib = temp.relpath(file_name) complied_graph_lib.export_library(path_lib) def setup_gmod(): loaded_lib = tvm.runtime.load_module(path_lib) dev = tvm.cpu(0) return loaded_lib["default"](dev) gmod = setup_gmod() set_input = gmod["set_input"] run = gmod["run"] get_output = gmod["get_output"] data = np.random.uniform(-1, 1, size=input_shape(mod)).astype("float32") set_input("data", tvm.nd.array(data)) run() out = get_output(0).numpy() tvm.testing.assert_allclose(out, verify(data), atol=1e-5) gmod = graph_executor.GraphModule(setup_gmod()) gmod.set_input("data", data) gmod.run() out = gmod.get_output(0).numpy() tvm.testing.assert_allclose(out, verify(data), atol=1e-5) def verify_gpu_export(obj_format): if not tvm.testing.device_enabled("cuda"): print("Skip because cuda is not enabled") return mod, params = relay.testing.synthetic.get_workload() with relay.build_config(opt_level=3): complied_graph_lib = relay.build_module.build(mod, "cuda", params=params) from tvm.contrib
import utils temp = utils.tempdir() if obj_format == ".so": file_name = "deploy_lib.so" else: assert obj_format == ".tar" file_name = "deploy_lib.tar" path_lib = temp.relpath(file_name) complied_graph_lib.export_library(path_lib) data = np.random.uniform(-1, 1, size=input_shape(mod)).astype("float32") def setup_gmod(): loaded_lib = tvm.runtime.load_module(path_lib) dev = tvm.cuda() return loaded_lib["default"](dev) gmod = setup_gmod() set_input = gmod["set_input"] run = gmod["run"] get_output = gmod["get_output"] set_input("data", tvm.nd.array(data)) run() out = get_output(0).numpy() tvm.testing.assert_allclose(out, verify(data), atol=1e-5) gmod = graph_executor.GraphModule(setup_gmod()) gmod.set_input("data", data) gmod.run() out = gmod.get_output(0).numpy() tvm.testing.assert_allclose(out, verify(data), atol=1e-5) @tvm.testing.requires_llvm def verify_rpc_cpu_export(obj_format): mod, params = relay.testing.synthetic.get_workload() with relay.build_config(opt_level=3): complied_graph_lib = relay.build_module.build(mod, "llvm", params=params) from tvm.contrib
import utils temp = utils.tempdir() if obj_format == ".so": file_name = "deploy_lib.so" else: assert obj_format == ".tar" file_name = "deploy_lib.tar" path_lib = temp.relpath(file_name) complied_graph_lib.export_library(path_lib) from tvm
import rpc remote = rpc.LocalSession() remote.upload(path_lib) loaded_lib = remote.load_module(path_lib) data = np.random.uniform(-1, 1, size=input_shape(mod)).astype("float32") dev = remote.cpu() gmod = loaded_lib["default"](dev) set_input = gmod["set_input"] run = gmod["run"] get_output = gmod["get_output"] set_input("data", tvm.nd.array(data, device=dev)) run() out = get_output(0).numpy() tvm.testing.assert_allclose(out, verify(data), atol=1e-5) gmod = graph_executor.GraphModule(loaded_lib["default"](dev)) gmod.set_input("data", data) gmod.run() out = gmod.get_output(0).numpy() tvm.testing.assert_allclose(out, verify(data), atol=1e-5) def verify_rpc_gpu_export(obj_format): if not tvm.testing.device_enabled("cuda"): print("Skip because cuda is not enabled") return mod, params = relay.testing.synthetic.get_workload() with relay.build_config(opt_level=3): complied_graph_lib = relay.build_module.build(mod, "cuda", params=params) from tvm.contrib
import utils temp = utils.tempdir() if obj_format == ".so": file_name = "deploy_lib.so" else: assert obj_format == ".tar" file_name = "deploy_lib.tar" path_lib = temp.relpath(file_name) complied_graph_lib.export_library(path_lib) from tvm
import rpc def check_remote(server): remote = rpc.connect(server.host, server.port) remote.upload(path_lib) loaded_lib = remote.load_module(path_lib) data = np.random.uniform(-1, 1, size=input_shape(mod)).astype("float32") dev = remote.cuda() gmod = loaded_lib["default"](dev) set_input = gmod["set_input"] run = gmod["run"] get_output = gmod["get_output"] set_input("data", tvm.nd.array(data, device=dev)) run() out = get_output(0).numpy() tvm.testing.assert_allclose(out, verify(data), atol=1e-5) gmod = graph_executor.GraphModule(loaded_lib["default"](dev)) gmod.set_input("data", data) gmod.run() out = gmod.get_output(0).numpy() tvm.testing.assert_allclose(out, verify(data), atol=1e-5) check_remote(rpc.Server("127.0.0.1")) for obj_format in [".so", ".tar"]: verify_cpu_export(obj_format) verify_gpu_export(obj_format) verify_rpc_cpu_export(obj_format) verify_rpc_gpu_export(obj_format) @tvm.testing.requires_llvm @tvm.testing.uses_gpu def test_remove_package_params(): def verify_cpu_remove_package_params(obj_format): mod, params = relay.testing.synthetic.get_workload() with relay.build_config(opt_level=3): complied_graph_lib = relay.build_module.build(mod, "llvm", params=params) from tvm.contrib
import utils temp = utils.tempdir() if obj_format == ".so": file_name = "deploy_lib.so" else: assert obj_format == ".tar" file_name = "deploy_lib.tar" path_lib = temp.relpath(file_name) complied_graph_lib_no_params = complied_graph_lib["remove_params"]() complied_graph_lib_no_params.export_library(path_lib) with open(temp.relpath("deploy_param.params"), "wb") as fo: fo.write(runtime.save_param_dict(complied_graph_lib.get_params())) loaded_lib = tvm.runtime.load_module(path_lib) data = np.random.uniform(-1, 1, size=input_shape(mod)).astype("float32") dev = tvm.cpu(0) gmod = loaded_lib["default"](dev) set_input = gmod["set_input"] run = gmod["run"] get_output = gmod["get_output"] load_params = gmod["load_params"] loaded_params = bytearray(open(temp.relpath("deploy_param.params"), "rb").read()) set_input("data", tvm.nd.array(data)) load_params(loaded_params) run() out = get_output(0).numpy() tvm.testing.assert_allclose(out, verify(data), atol=1e-5) gmod = graph_executor.GraphModule(loaded_lib["default"](dev)) loaded_params = bytearray(open(temp.relpath("deploy_param.params"), "rb").read()) gmod.set_input("data", data) gmod.load_params(loaded_params) gmod.run() out = gmod.get_output(0).numpy() tvm.testing.assert_allclose(out, verify(data), atol=1e-5) def verify_gpu_remove_package_params(obj_format): if not tvm.testing.device_enabled("cuda"): print("Skip because cuda is not enabled") return mod, params = relay.testing.synthetic.get_workload() with relay.build_config(opt_level=3): complied_graph_lib = relay.build_module.build(mod, "cuda", params=params) from tvm.contrib
import utils temp = utils.tempdir() if obj_format == ".so": file_name = "deploy_lib.so" else: assert obj_format == ".tar" file_name = "deploy_lib.tar" path_lib = temp.relpath(file_name) complied_graph_lib_no_params = complied_graph_lib["remove_params"]() complied_graph_lib_no_params.export_library(path_lib) with open(temp.relpath("deploy_param.params"), "wb") as fo: fo.write(runtime.save_param_dict(complied_graph_lib.get_params())) loaded_lib = tvm.runtime.load_module(path_lib) data = np.random.uniform(-1, 1, size=input_shape(mod)).astype("float32") dev = tvm.cuda(0) gmod = loaded_lib["default"](dev) set_input = gmod["set_input"] run = gmod["run"] get_output = gmod["get_output"] load_params = gmod["load_params"] loaded_params = bytearray(open(temp.relpath("deploy_param.params"), "rb").read()) set_input("data", tvm.nd.array(data)) load_params(loaded_params) run() out = get_output(0).numpy() tvm.testing.assert_allclose(out, verify(data), atol=1e-5) gmod = graph_executor.GraphModule(loaded_lib["default"](dev)) loaded_params = bytearray(open(temp.relpath("deploy_param.params"), "rb").read()) gmod.set_input("data", data) gmod.load_params(loaded_params) gmod.run() out = gmod.get_output(0).numpy() tvm.testing.assert_allclose(out, verify(data), atol=1e-5) @tvm.testing.requires_llvm def verify_rpc_cpu_remove_package_params(obj_format): mod, params = relay.testing.synthetic.get_workload() with relay.build_config(opt_level=3): complied_graph_lib = relay.build_module.build(mod, "llvm", params=params) from tvm.contrib
import utils temp = utils.tempdir() if obj_format == ".so": file_name = "deploy_lib.so" else: assert obj_format == ".tar" file_name = "deploy_lib.tar" path_lib = temp.relpath(file_name) complied_graph_lib_no_params = complied_graph_lib["remove_params"]() complied_graph_lib_no_params.export_library(path_lib) path_params = temp.relpath("deploy_param.params") with open(path_params, "wb") as fo: fo.write(runtime.save_param_dict(complied_graph_lib.get_params())) from tvm
import rpc remote = rpc.LocalSession() remote.upload(path_lib) loaded_lib = remote.load_module(path_lib) data = np.random.uniform(-1, 1, size=input_shape(mod)).astype("float32") dev = remote.cpu() gmod = loaded_lib["default"](dev) set_input = gmod["set_input"] run = gmod["run"] get_output = gmod["get_output"] load_params = gmod["load_params"] loaded_params = bytearray(open(path_params, "rb").read()) set_input("data", tvm.nd.array(data, device=dev)) load_params(loaded_params) run() out = get_output(0).numpy() tvm.testing.assert_allclose(out, verify(data), atol=1e-5) gmod = graph_executor.GraphModule(loaded_lib["default"](dev)) loaded_params = bytearray(open(path_params, "rb").read()) gmod.set_input("data", data) gmod.load_params(loaded_params) gmod.run() out = gmod.get_output(0).numpy() tvm.testing.assert_allclose(out, verify(data), atol=1e-5) def verify_rpc_gpu_remove_package_params(obj_format): if not tvm.testing.device_enabled("cuda"): print("Skip because cuda is not enabled") return mod, params = relay.testing.synthetic.get_workload() with relay.build_config(opt_level=3): complied_graph_lib = relay.build_module.build(mod, "cuda", params=params) from tvm.contrib
import utils temp = utils.tempdir() if obj_format == ".so": file_name = "deploy_lib.so" else: assert obj_format == ".tar" file_name = "deploy_lib.tar" path_lib = temp.relpath(file_name) complied_graph_lib_no_params = complied_graph_lib["remove_params"]() complied_graph_lib_no_params.export_library(path_lib) path_params = temp.relpath("deploy_param.params") with open(path_params, "wb") as fo: fo.write(runtime.save_param_dict(complied_graph_lib.get_params())) from tvm
import rpc remote = rpc.LocalSession() remote.upload(path_lib) loaded_lib = remote.load_module(path_lib) data = np.random.uniform(-1, 1, size=input_shape(mod)).astype("float32") dev = remote.cuda() gmod = loaded_lib["default"](dev) set_input = gmod["set_input"] run = gmod["run"] get_output = gmod["get_output"] load_params = gmod["load_params"] loaded_params = bytearray(open(path_params, "rb").read()) set_input("data", tvm.nd.array(data, device=dev)) load_params(loaded_params) run() out = get_output(0).numpy() tvm.testing.assert_allclose(out, verify(data), atol=1e-5) gmod = graph_executor.GraphModule(loaded_lib["default"](dev)) loaded_params = bytearray(open(path_params, "rb").read()) gmod.set_input("data", data) gmod.load_params(loaded_params) gmod.run() out = gmod.get_output(0).numpy() tvm.testing.assert_allclose(out, verify(data), atol=1e-5) for obj_format in [".so", ".tar"]: verify_cpu_remove_package_params(obj_format) verify_gpu_remove_package_params(obj_format) verify_rpc_cpu_remove_package_params(obj_format) verify_rpc_gpu_remove_package_params(obj_format) @tvm.testing.requires_llvm def test_debug_graph_executor(): mod, params = relay.testing.synthetic.get_workload() with relay.build_config(opt_level=3): complied_graph_lib = relay.build_module.build(mod, "llvm", params=params) data = np.random.uniform(-1, 1, size=input_shape(mod)).astype("float32") dev = tvm.cpu() try: gmod = complied_graph_lib["debug_create"]("default", dev) except: print("Skip because debug graph_executor not enabled") return set_input = gmod["set_input"] run = gmod["run"] get_output = gmod["get_output"] set_input("data", tvm.nd.array(data)) run() out = get_output(0).numpy() tvm.testing.assert_allclose(out, ver
ify(data), atol=1e-5) debug_g_mod = debug_executor.GraphModuleDebug( complied_graph_lib["debug_create"]("default", dev), [dev], complied_graph_lib.get_graph_json(), None, ) debug_g_mod.set_input("data", data) debug_g_mod.run() out = debug_g_mod.get_output(0).numpy() tvm.testing.assert_allclose(out, verify(data), atol=1e-5) @tvm.testing.requires_cudagraph def test_cuda_graph_executor(): mod, params = relay.testing.synthetic.get_workload() with tvm.transform.PassContext(opt_level=3): complied_graph_lib = relay.build_module.build(mod, "cuda", params=params) data = np.random.uniform(-1, 1, size=input_shape(mod)).astype("float32") dev = tvm.cuda() try: gmod = complied_graph_lib["cuda_graph_create"](dev) except: print("Skip because cuda_graph not enabled") return set_input = gmod["set_input"] run = gmod["run"] get_output = gmod["get_output"] set_input("data", tvm.nd.array(data)) run() out = get_output(0).numpy() tvm.testing.assert_allclose(out, verify(data), atol=1e-5) cu_gmod = cuda_graph_executor.GraphModuleCudaGraph(gmod) cu_gmod.set_input("data", data) cu_gmod.run() out = cu_gmod.get_output(0).numpy() tvm.testing.assert_allclose(out, verify(data), atol=1e-5) def test_multiple_imported_modules(): def make_func(symbol): n = tvm.te.size_var("n") Ab = tvm.tir.decl_buffer((n,), dtype="float32") i = tvm.te.var("i") stmt = tvm.tir.For( i, 0, n - 1, tvm.tir.ForKind.SERIAL, tvm.tir.BufferStore(Ab, tvm.tir.BufferLoad(Ab, [i]) + 1, [i + 1]), ) return tvm.tir.PrimFunc([Ab], stmt).with_attr("global_symbol", symbol) def make_module(mod): mod = tvm.IRModule(mod) mod = tvm.driver.build(mod, target="llvm") return mod module_main = make_module({"main": make_func("main")}) module_a = make_module({"func_a": make_f
unc("func_a")}) module_b = make_module({"func_b": make_func("func_b")}) module_main.import_module(module_a) module_main.import_module(module_b) module_main.get_function("func_a", query_imports=True) module_main.get_function("func_b", query_imports=True) def test_num_threads(): reported = tvm.runtime.num_threads() env_threads = os.getenv("TVM_NUM_THREADS") omp_env_threads = os.getenv("OMP_NUM_THREADS") if env_threads is not None: assert reported == env_threads elif omp_env_threads is not None: assert reported == omp_env_threads else: hardware_threads = os.cpu_count() assert reported == hardware_threads or reported == hardware_threads if __name__ == "__main__": test_legacy_compatibility() test_cpu() test_gpu() test_mod_export() test_remove_package_params() test_debug_graph_executor() test_multiple_imported_modules() test_cpu_get_graph_json() test_cpu_get_graph_params_run() test_cpu_get_graph_params_compare()
from tvm
import relay from tvm.relay
import testing
import tvm from tvm
import te
import tvm.testing from tvm.contrib
import utils header_file_dir_path = utils.tempdir() def gen_engine_header(): code = r"""
class Engine { }; """ header_file = header_file_dir_path.relpath("gcc_engine.h") with open(header_file, "w") as f: f.write(code) def generate_engine_module(): code = r""" extern "C" void gcc_1_(float* gcc_input4, float* gcc_input5, float* gcc_input6, float* gcc_input7, float* out) { Engine engine; } """
import tvm.runtime._ffi_api gen_engine_header() csource_module = tvm.runtime._ffi_api.CSourceModuleCreate(code, "cc", [], None) return csource_module @tvm.testing.uses_gpu def test_mod_export(): def verify_gpu_mod_export(obj_format): for device in ["llvm", "cuda"]: if not tvm.testing.device_enabled(device): print("skip because %s is not enabled..." % device) return synthetic_mod, synthetic_params = relay.testing.synthetic.get_workload() synthetic_llvm_mod, synthetic_llvm_params = relay.testing.synthetic.get_workload() with tvm.transform.PassContext(opt_level=3): _, synthetic_gpu_lib, _ = relay.build_module.build( synthetic_mod, "cuda", params=synthetic_params, mod_name="cudalib" ) _, synthetic_llvm_cpu_lib, _ = relay.build_module.build( synthetic_llvm_mod, "llvm", params=synthetic_llvm_params, mod_name="llvmlib" ) temp = utils.tempdir() if obj_format == ".so": file_name = "deploy_lib.so" else: assert obj_format == ".tar" file_name = "deploy_lib.tar" path_lib = temp.relpath(file_name) synthetic_gpu_lib.import_module(synthetic_llvm_cpu_lib) synthetic_gpu_lib.export_library(path_lib) loaded_lib = tvm.runtime.load_module(path_lib) assert loaded_lib.type_key == "library" assert loaded_lib.imported_modules[0].type_key == "cuda" assert len(loaded_lib.imported_modules) == 1 def verify_multi_dso_mod_export(obj_format): for device in ["llvm"]: if not tvm.testing.device_enabled(device): print("skip because %s is not enabled..." % device) return A = te.placeholder((1024,), name="A") B = te.compute(A.shape, lambda *i: A(*i) + 1.0, name="B") s = te.create_schedule(B.op) mod0 = tvm.build(s, [A, B], "llvm", name="myadd0") mod1 = tvm.bui
ld(s, [A, B], "llvm", name="myadd1") temp = utils.tempdir() if obj_format == ".so": file_name = "deploy_lib.so" else: assert obj_format == ".tar" file_name = "deploy_lib.tar" path_lib = temp.relpath(file_name) mod0.import_module(mod1) mod0.export_library(path_lib) loaded_lib = tvm.runtime.load_module(path_lib) assert loaded_lib.type_key == "library" assert len(loaded_lib.imported_modules) == 0 def verify_json_import_dso(obj_format): for device in ["llvm"]: if not tvm.testing.device_enabled(device): print("skip because %s is not enabled..." % device) return subgraph_json = ( "json_rt_0\n" + "input 0 10 10\n" + "input 1 10 10\n" + "input 2 10 10\n" + "input 3 10 10\n" + "add 4 inputs: 0 1 shape: 10 10\n" + "sub 5 inputs: 4 2 shape: 10 10\n" + "mul 6 inputs: 5 3 shape: 10 10\n" + "json_rt_1\n" + "input 0 10 10\n" + "input 1 10 10\n" + "input 2 10 10\n" + "input 3 10 10\n" + "add 4 inputs: 0 1 shape: 10 10\n" + "sub 5 inputs: 4 2 shape: 10 10\n" + "mul 6 inputs: 5 3 shape: 10 10" ) temp = utils.tempdir() subgraph_path = temp.relpath("subgraph.examplejson") with open(subgraph_path, "w") as f: f.write(subgraph_json) A = te.placeholder((1024,), name="A") B = te.compute(A.shape, lambda *i: A(*i) + 1.0, name="B") s = te.create_schedule(B.op) f = tvm.build(s, [A, B], "llvm", name="myadd") try: ext_lib = tvm.runtime.load_module(subgraph_path, "examplejson") except: print("skip because Loader of examplejson is not presented") return ext_lib.import_module(f) if obj_format == ".so": f
ile_name = "deploy_lib.so" else: assert obj_format == ".tar" file_name = "deploy_lib.tar" path_lib = temp.relpath(file_name) ext_lib.export_library(path_lib) lib = tvm.runtime.load_module(path_lib) assert lib.type_key == "examplejson" assert lib.imported_modules[0].type_key == "library" def verify_multi_c_mod_export(): from shutil
import which if which("gcc") is None: print("Skip test because gcc is not available.") for device in ["llvm"]: if not tvm.testing.device_enabled(device): print("skip because %s is not enabled..." % device) return synthetic_mod, synthetic_params = relay.testing.synthetic.get_workload() with tvm.transform.PassContext(opt_level=3): _, synthetic_cpu_lib, _ = relay.build_module.build( synthetic_mod, "llvm", params=synthetic_params ) A = te.placeholder((1024,), name="A") B = te.compute(A.shape, lambda *i: A(*i) + 1.0, name="B") s = te.create_schedule(B.op) f = tvm.build(s, [A, B], "c", name="myadd") engine_module = generate_engine_module() temp = utils.tempdir() file_name = "deploy_lib.so" path_lib = temp.relpath(file_name) synthetic_cpu_lib.import_module(f) synthetic_cpu_lib.import_module(engine_module) kwargs = {"options": ["-O2", "-std=c++17", "-I" + header_file_dir_path.relpath("")]} synthetic_cpu_lib.export_library(path_lib, fcompile=False, **kwargs) loaded_lib = tvm.runtime.load_module(path_lib) assert loaded_lib.type_key == "library" assert len(loaded_lib.imported_modules) == 0 for obj_format in [".so", ".tar"]: verify_gpu_mod_export(obj_format) verify_multi_dso_mod_export(obj_format) verify_json_import_dso(obj_format) verify_multi_c_mod_export() @tvm.testing.requires_llvm def test_import_static_library(): A = te.placeholder((1024,), name="A") B = te.compute(A.shape, lambda *i: A(*i) + 1.0, name="B") s = te.create_schedule(B.op) mod0 = tvm.build(s, [A, B], "llvm", name="myadd0") mod1 = tvm.build(s, [A, B], "llvm", name="myadd1") assert mod0.implements_function("myadd0") assert mod1.implements_function("myadd1") assert mod1.is_dso_exportable temp = utils.tempdir()
mod1_o_path = temp.relpath("mod1.o") mod1.save(mod1_o_path) mod1_o = tvm.runtime.load_static_library(mod1_o_path, ["myadd1"]) assert mod1_o.implements_function("myadd1") assert mod1_o.is_dso_exportable mod0.import_module(mod1_o) mod0_dso_path = temp.relpath("mod0.so") mod0.export_library(mod0_dso_path) loaded_lib = tvm.runtime.load_module(mod0_dso_path) assert loaded_lib.type_key == "library" assert len(loaded_lib.imported_modules) == 0 assert loaded_lib.implements_function("myadd0") assert loaded_lib.get_function("myadd0") assert loaded_lib.implements_function("myadd1") assert loaded_lib.get_function("myadd1") assert not loaded_lib.is_dso_exportable if __name__ == "__main__": tvm.testing.main()
import tvm from tvm
import te from tvm.contrib
import cc, utils
import ctypes
import sys
import numpy as np
import subprocess
import tvm.testing from tvm.relay.backend