text
stringlengths 1
2.05k
|
---|
import _GENERATED_VERSION
@tvm.testing.requires_micro
def test_export_operator_model_library_format():
target = tvm.target.target.micro("host")
with tvm.transform.PassContext(opt_level=3, config={"tir.disable_vectorize": True}):
A = tvm.te.placeholder((2,), dtype="int8")
B = tvm.te.placeholder((1,), dtype="int8")
C = tvm.te.compute(A.shape, lambda i: A[i] + B[0], name="C")
sched = tvm.te.create_schedule(C.op)
mod = tvm.build(
sched,
[A, B, C],
tvm.target.Target(target, target),
runtime=Runtime("crt", {"system-lib": True}),
name="add",
)
temp_dir = utils.tempdir()
mlf_tar_path = temp_dir.relpath("lib.tar")
micro.export_model_library_format(mod, mlf_tar_path)
tf = tarfile.open(mlf_tar_path)
extract_dir = temp_dir.relpath("extract")
os.mkdir(extract_dir)
tf.extractall(extract_dir)
with open(os.path.join(extract_dir, "metadata.json")) as json_f:
metadata = json.load(json_f)
assert metadata["version"] == _GENERATED_VERSION
assert metadata["model_name"] == "add"
export_datetime = datetime.datetime.strptime(
metadata["export_datetime"], "%Y-%m-%d %H:%M:%SZ"
)
assert (datetime.datetime.now() - export_datetime) < datetime.timedelta(seconds=60 * 5)
assert metadata["target"] == [str(target)]
assert metadata["memory"]["add"][0]["dtype"] == "int8"
assert metadata["memory"]["add"][0]["shape"] == [2]
assert metadata["memory"]["add"][0]["size_bytes"] == 2
assert metadata["memory"]["add"][1]["dtype"] == "int8"
assert metadata["memory"]["add"][1]["shape"] == [1]
assert metadata["memory"]["add"][1]["size_bytes"] == 1
assert metadata["memory"]["add"][2]["dtype"] == "int8"
assert metadata["memory"]["add"][2]["shape"] == [2]
assert metadata["memory"]["add"][2]["size_bytes"] == 2
assert os.path.exists(os.path.join(extract_dir, "codegen", " |
host", "src", "lib0.c"))
assert os.path.exists(os.path.join(extract_dir, "codegen", "host", "src", "lib1.c"))
assert (
len(mod.ir_module_by_target) == 1
), f"expect 1 ir_model_by_target: {mod.ir_module_by_target!r}"
for target, ir_mod in mod.ir_module_by_target.items():
assert int(tvm.runtime.ndarray.device(str(target)).device_type) == 1
with open(os.path.join(extract_dir, "src", "tir-1.txt")) as tir_f:
assert tir_f.read() == str(ir_mod)
@tvm.testing.requires_micro
def test_export_multiple_operator_model_library_format():
target = tvm.target.target.micro("host")
with tvm.transform.PassContext(opt_level=3, config={"tir.disable_vectorize": True}):
A = tvm.te.placeholder((2,), dtype="int8")
B = tvm.te.placeholder((1,), dtype="int8")
C = tvm.te.compute(A.shape, lambda i: A[i] + B[0], name="C")
sched = tvm.te.create_schedule(C.op)
mod = tvm.build(
sched,
[A, B, C],
tvm.target.Target(target, target),
runtime=Runtime("crt", {"system-lib": True}),
name="add",
)
temp_dir = utils.tempdir()
mlf_tar_path = temp_dir.relpath("lib.tar")
with pytest.raises(RuntimeError) as exc:
micro.export_model_library_format([mod, mod], mlf_tar_path)
assert str(exc.exception) == ("Multiple operator is not supported.")
def validate_graph_json(extract_dir, factory):
with open(
os.path.join(extract_dir, "executor-config", "graph", f"{factory.libmod_name}.graph")
) as graph_f:
graph_json = graph_f.read()
assert graph_json == factory.graph_json
graph = json.loads(graph_json)
assert "nodes" in graph
assert len(graph["nodes"]) == 4
assert "attrs" in graph
@tvm.testing.requires_micro
@pytest.mark.parametrize(
"executor,runtime,should_generate_interface,json_constants_size_bytes",
[
(Executor("graph"), Runtime("crt", {"system-lib": True}), False, 8),
(E |
xecutor("aot", {"link-params": True}), Runtime("crt"), False, 0),
(
Executor("aot", {"unpacked-api": True, "interface-api": "c"}),
Runtime("crt"),
True,
0,
),
],
)
def test_export_model_library_format_c(
executor, runtime, should_generate_interface, json_constants_size_bytes
):
target = tvm.target.target.micro("host")
with utils.TempDirectory.set_keep_for_debug(True):
with tvm.transform.PassContext(opt_level=3, config={"tir.disable_vectorize": True}):
relay_mod = tvm.parser.fromtext(
"""
def @main(%a : Tensor[(1, 2), uint8], %b : Tensor[(1, 2), float32], %c : Tensor[(1, 2), float32]) {
%0 = cast(%a, dtype="float32") + %b * %c;
%0
}"""
)
factory = tvm.relay.build(
relay_mod,
target,
executor=executor,
runtime=runtime,
mod_name="add",
params={"c": np.array([[2.0, 4.0]], dtype="float32")},
)
temp_dir = utils.tempdir()
mlf_tar_path = temp_dir.relpath("lib.tar")
micro.export_model_library_format(factory, mlf_tar_path)
tf = tarfile.open(mlf_tar_path)
extract_dir = temp_dir.relpath("extract")
os.mkdir(extract_dir)
tf.extractall(extract_dir)
with open(os.path.join(extract_dir, "metadata.json")) as json_f:
metadata = json.load(json_f)
module_name = factory.libmod_name
assert metadata["version"] == _GENERATED_VERSION
assert metadata["modules"][module_name]["model_name"] == "add"
export_datetime = datetime.datetime.strptime(
metadata["modules"][module_name]["export_datetime"], "%Y-%m-%d %H:%M:%SZ"
)
assert (datetime.datetime.now() - export_datetime) < datetime.timedelta(seconds=60 * 5)
assert metadata["modules"][module_name]["target"] == [str(t |
arget)]
if executor.name == "graph":
assert metadata["modules"][module_name]["memory"]["sids"] == [
{"storage_id": 0, "size_bytes": 2, "input_binding": "a"},
{"storage_id": 1, "size_bytes": 8, "input_binding": "b"},
{"storage_id": 2, "size_bytes": 8, "input_binding": "p0"},
{"storage_id": 3, "size_bytes": 8},
]
assert metadata["modules"][module_name]["memory"]["functions"]["main"] == [
{
"constants_size_bytes": json_constants_size_bytes,
"device": 1,
"io_size_bytes": 18,
"workspace_size_bytes": 0,
}
]
assert metadata["modules"][module_name]["memory"]["functions"]["operator_functions"][0][
"workspace"
] == [{"device": 1, "workspace_size_bytes": 0}]
assert (
"fused_cast_multiply_add"
in metadata["modules"][module_name]["memory"]["functions"]["operator_functions"][0][
"function_name"
]
)
assert os.path.exists(os.path.join(extract_dir, "codegen", "host", "src", "add_lib0.c"))
assert os.path.exists(os.path.join(extract_dir, "codegen", "host", "src", "add_lib1.c"))
assert should_generate_interface == os.path.exists(
os.path.join(extract_dir, "codegen", "host", "include", "tvmgen_add.h")
)
if executor.name == "graph":
validate_graph_json(extract_dir, factory)
with open(os.path.join(extract_dir, "src", f"{module_name}.relay")) as relay_f:
assert relay_f.read() == str(relay_mod)
with open(os.path.join(extract_dir, "parameters", "add.params"), "rb") as params_f:
params = tvm.relay.load_param_dict(params_f.read())
if json_constants_size_bytes != 0:
assert "p0" in params
else:
as |
sert len(params) == 0
@tvm.testing.requires_micro
def test_export_model_library_format_llvm():
with utils.TempDirectory.set_keep_for_debug(True):
target = tvm.target.target.micro("host")
assert str(target)[:2] == "c "
target = tvm.target.Target("llvm " + str(target)[2:])
with tvm.transform.PassContext(opt_level=3):
relay_mod = tvm.parser.fromtext(
"""
def @main(%a : Tensor[(1, 2), uint8], %b : Tensor[(1, 2), float32], %c : Tensor[(1, 2), float32]) {
%0 = cast(%a, dtype="float32") + %b * %c;
%0
}"""
)
factory = tvm.relay.build(
relay_mod,
target,
runtime=Runtime("crt", {"system-lib": True}),
mod_name="add",
params={"c": np.array([[2.0, 4.0]], dtype="float32")},
)
temp_dir = utils.tempdir()
mlf_tar_path = temp_dir.relpath("lib.tar")
micro.export_model_library_format(factory, mlf_tar_path)
tf = tarfile.open(mlf_tar_path)
extract_dir = temp_dir.relpath("extract")
os.mkdir(extract_dir)
tf.extractall(extract_dir)
with open(os.path.join(extract_dir, "metadata.json")) as json_f:
metadata = json.load(json_f)
module_name = factory.libmod_name
assert metadata["version"] == _GENERATED_VERSION
assert metadata["modules"][module_name]["model_name"] == "add"
export_datetime = datetime.datetime.strptime(
metadata["modules"][module_name]["export_datetime"], "%Y-%m-%d %H:%M:%SZ"
)
assert (datetime.datetime.now() - export_datetime) < datetime.timedelta(seconds=60 * 5)
assert metadata["modules"][module_name]["target"] == [str(target)]
assert metadata["modules"][module_name]["memory"]["sids"] == [
{"storage_id": 0, "size_bytes": 2, "input_binding": "a"},
{"storage_id": 1, "siz |
e_bytes": 8, "input_binding": "b"},
{"storage_id": 2, "size_bytes": 8, "input_binding": "p0"},
{"storage_id": 3, "size_bytes": 8},
]
assert metadata["modules"][module_name]["memory"]["functions"]["main"] == [
{
"constants_size_bytes": 8,
"device": 1,
"io_size_bytes": 18,
"workspace_size_bytes": 0,
}
]
assert metadata["modules"][module_name]["memory"]["functions"]["operator_functions"][0][
"workspace"
] == [{"device": 1, "workspace_size_bytes": 0}]
assert (
"fused_cast_multiply_add"
in metadata["modules"][module_name]["memory"]["functions"]["operator_functions"][0][
"function_name"
]
)
assert os.path.exists(os.path.join(extract_dir, "codegen", "host", "lib", "add_lib0.o"))
validate_graph_json(extract_dir, factory)
with open(os.path.join(extract_dir, "src", f"{module_name}.relay")) as relay_f:
assert relay_f.read() == str(relay_mod)
with open(os.path.join(extract_dir, "parameters", "add.params"), "rb") as params_f:
params = tvm.relay.load_param_dict(params_f.read())
assert "p0" in params
@tvm.testing.requires_micro
@pytest.mark.parametrize(
"executor,runtime",
[(Executor("graph"), Runtime("crt", {"system-lib": True})), (Executor("aot"), Runtime("crt"))],
)
def test_export_model_library_format_workspace(executor, runtime):
target = tvm.target.target.micro("host")
with tvm.transform.PassContext(opt_level=3, config={"tir.disable_vectorize": True}):
relay_mod = tvm.parser.fromtext(
"""
def @main(%p0: Tensor[(1, 56, 56, 128), int16], %p1: Tensor[(3, 3, 128, 1), int16], %p2: Tensor[(1, 1, 1, 128), int32]){
%0 = nn.conv2d(%p0, %p1, padding=[1, 1, 1, 1], groups=128, chan |
nels=128, kernel_size=[3, 3], data_layout="NHWC", kernel_layout="HWOI", out_dtype="int32") /* ty=Tensor[(1, 56, 56, 128), int32] */;
%1 = add(%0, %p2) /* ty=Tensor[(1, 56, 56, 128), int32] */;
%2 = fixed_point_multiply(%1, multiplier=2080045879, shift=-4) /* ty=Tensor[(1, 56, 56, 128), int32] */;
%3 = clip(%2, a_min=0f, a_max=255f) /* ty=Tensor[(1, 56, 56, 128), int32] */;
cast(%3, dtype="uint8") /* ty=Tensor[(1, 56, 56, 128), uint8] */
}
"""
)
factory = tvm.relay.build(
relay_mod,
target,
executor=executor,
runtime=runtime,
mod_name="qnn_conv2d",
)
temp_dir = utils.tempdir()
mlf_tar_path = temp_dir.relpath("lib.tar")
micro.export_model_library_format(factory, mlf_tar_path)
tf = tarfile.open(mlf_tar_path)
extract_dir = temp_dir.relpath("extract")
os.mkdir(extract_dir)
tf.extractall(extract_dir)
with open(os.path.join(extract_dir, "metadata.json")) as json_f:
metadata = json.load(json_f)
module_name = factory.libmod_name
assert metadata["version"] == _GENERATED_VERSION
assert metadata["modules"][module_name]["model_name"] == "qnn_conv2d"
export_datetime = datetime.datetime.strptime(
metadata["modules"][module_name]["export_datetime"], "%Y-%m-%d %H:%M:%SZ"
)
assert (datetime.datetime.now() - export_datetime) < datetime.timedelta(seconds=60 * 5)
assert metadata["modules"][module_name]["target"] == [str(target)]
assert metadata["modules"][module_name]["memory"]["functions"]["main"] == [
{
"constants_size_bytes": 0,
"device": 1,
"io_size_bytes": 1207040,
"workspace_size_bytes": 2466816,
}
]
assert metadata["modules"][module_name]["memory"]["functions"]["operator_functions"][0][
"workspace"
] == [{"device": 1, "workspa |
ce_size_bytes": 2466816}]
assert (
"fused_nn_conv2d_add_fixed_point_multiply_clip_cast"
in metadata["modules"][module_name]["memory"]["functions"]["operator_functions"][0][
"function_name"
]
)
@tvm.testing.requires_micro
def test_export_non_dso_exportable():
module = tvm.support.FrontendTestModule()
temp_dir = utils.tempdir()
with pytest.raises(micro.UnsupportedInModelLibraryFormatError) as exc:
model_library_format._populate_codegen_dir([module], temp_dir.relpath("codegen"))
assert str(exc.exception) == (
"Don't know how to export non-c or non-llvm modules; found: ffi_testing"
)
@tvm.testing.requires_micro
def test_export_byoc_c_module():
"""Test BYOC flow when it produces DSO-exportable modules.
NOTE the general BYOC flow is not fully supported by Model Library Format right now.
"""
x = tvm.relay.var("x", shape=(10, 10))
w0 = tvm.relay.var("w0", shape=(10, 10))
w1 = tvm.relay.var("w1", shape=(10, 10))
w2 = tvm.relay.var("w2", shape=(10, 10))
w3 = tvm.relay.var("w3", shape=(10, 10))
w4 = tvm.relay.var("w4", shape=(10, 10))
w5 = tvm.relay.var("w5", shape=(10, 10))
w6 = tvm.relay.var("w6", shape=(10, 10))
w7 = tvm.relay.var("w7", shape=(10, 10))
z0 = tvm.relay.add(x, w0)
p0 = tvm.relay.subtract(z0, w1)
q0 = tvm.relay.multiply(p0, w2)
z1 = tvm.relay.add(x, w3)
p1 = tvm.relay.subtract(z1, w4)
q1 = tvm.relay.multiply(p1, w5)
z2 = tvm.relay.add(x, w6)
q2 = tvm.relay.subtract(z2, w7)
r = tvm.relay.concatenate((q0, q1, q2), axis=0)
f = tvm.relay.Function([x, w0, w1, w2, w3, w4, w5, w6, w7], r)
mod = tvm.IRModule()
ann = byoc.CcompilerAnnotator()
mod["main"] = ann.visit(f)
mod = tvm.relay.transform.PartitionGraph("mod_name")(mod)
mod = tvm.relay.transform.InferType()(mod)
with tvm.transform.PassContext(opt_level=3, config={"tir.disable_vectorize": True}):
factory = t |
vm.relay.build(mod, tvm.target.target.micro("host"), runtime=Runtime("crt"))
temp_dir = utils.tempdir()
mlf_tar_path = temp_dir.relpath("lib.tar")
micro.export_model_library_format(factory, mlf_tar_path)
with tarfile.open(mlf_tar_path, "r:*") as tf:
tar_members = [ti.name for ti in tf.getmembers()]
print("tar members", tar_members)
assert "./metadata.json" in tar_members
with tf.extractfile("./metadata.json") as f:
metadata = json.load(f)
main_md = metadata["modules"][factory.libmod_name]["memory"]["functions"]["main"]
if platform.architecture()[0] == "64bit":
assert main_md == [
{
"constants_size_bytes": 0,
"device": 1,
"io_size_bytes": 4800,
"workspace_size_bytes": 1200,
}
]
else:
assert main_md == [
{
"constants_size_bytes": 0,
"device": 1,
"io_size_bytes": 4800,
"workspace_size_bytes": 1200,
}
]
@tvm.testing.requires_micro
def test_multiple_relay_modules_same_module_name():
mod = get_conv2d_relay_module()
executor = Executor("graph")
runtime = Runtime("crt")
target = tvm.target.target.micro("host")
with tvm.transform.PassContext(opt_level=3, config={"tir.disable_vectorize": True}):
factory1 = tvm.relay.build(mod, target, runtime=runtime, executor=executor, mod_name="mod")
factory2 = tvm.relay.build(mod, target, runtime=runtime, executor=executor, mod_name="mod")
temp_dir = utils.tempdir()
mlf_tar_path = temp_dir.relpath("lib.tar")
with pytest.raises(AssertionError, match="Multiple modules should have unique names"):
micro.export_model_library_format([factory1, factory2], mlf_tar_path)
@tvm.testing.requires_micro
def test_multiple_relay_modules_graph():
mod = get_conv2d_relay_module()
e |
xecutor = Executor("graph")
runtime = Runtime("crt")
target = tvm.target.target.micro("host")
with tvm.transform.PassContext(opt_level=3, config={"tir.disable_vectorize": True}):
factory1 = tvm.relay.build(mod, target, runtime=runtime, executor=executor, mod_name="mod1")
factory2 = tvm.relay.build(mod, target, runtime=runtime, executor=executor, mod_name="mod2")
temp_dir = utils.tempdir()
mlf_tar_path = temp_dir.relpath("lib.tar")
micro.export_model_library_format([factory1, factory2], mlf_tar_path)
with tarfile.open(mlf_tar_path, "r:*") as tf:
tar_members = [ti.name for ti in tf.getmembers()]
print("tar members", tar_members)
assert "./metadata.json" in tar_members
assert "./codegen/host/src/mod1_lib0.c" in tar_members
assert "./codegen/host/src/mod2_lib0.c" in tar_members
with tf.extractfile("./metadata.json") as f:
metadata = json.load(f)
mod2_main_md = metadata["modules"]["mod2"]["memory"]["functions"]["main"]
assert mod2_main_md == [
{
"constants_size_bytes": 0,
"device": 1,
"io_size_bytes": 143960,
"workspace_size_bytes": 158088,
}
]
assert metadata["modules"]["mod1"]["model_name"] == "mod1"
assert metadata["modules"]["mod2"]["model_name"] == "mod2"
@tvm.testing.requires_micro
def test_multiple_relay_modules_c():
mod = get_conv2d_relay_module()
executor = Executor("aot", {"unpacked-api": True, "interface-api": "c"})
runtime = Runtime("crt")
target = tvm.target.target.micro("host")
with tvm.transform.PassContext(opt_level=3, config={"tir.disable_vectorize": True}):
factory1 = tvm.relay.build(mod, target, runtime=runtime, executor=executor, mod_name="mod1")
factory2 = tvm.relay.build(mod, target, runtime=runtime, executor=executor, mod_name="mod2")
temp_dir = utils.tempdir()
mlf_tar_path = temp_dir.relpath("lib.tar")
micro.e |
xport_model_library_format([factory1, factory2], mlf_tar_path)
tf = tarfile.open(mlf_tar_path)
extract_dir = temp_dir.relpath("extract")
os.mkdir(extract_dir)
tf.extractall(extract_dir)
assert os.path.exists(os.path.join(extract_dir, "codegen", "host", "src", "mod1_lib0.c"))
assert os.path.exists(os.path.join(extract_dir, "codegen", "host", "src", "mod1_lib1.c"))
assert os.path.exists(os.path.join(extract_dir, "codegen", "host", "src", "mod2_lib0.c"))
assert os.path.exists(os.path.join(extract_dir, "codegen", "host", "src", "mod2_lib1.c"))
assert os.path.exists(os.path.join(extract_dir, "codegen", "host", "include", "tvmgen_mod1.h"))
assert os.path.exists(os.path.join(extract_dir, "codegen", "host", "include", "tvmgen_mod2.h"))
assert os.path.exists(os.path.join(extract_dir, "runtime"))
@tvm.testing.requires_micro
def test_multiple_relay_modules_aot_graph():
mod = get_conv2d_relay_module()
executor1 = Executor("graph")
executor2 = Executor("aot", {"unpacked-api": True, "interface-api": "c"})
runtime = Runtime("crt")
target = tvm.target.target.micro("host")
with tvm.transform.PassContext(opt_level=3, config={"tir.disable_vectorize": True}):
factory1 = tvm.relay.build(
mod, target, runtime=runtime, executor=executor1, mod_name="mod1"
)
factory2 = tvm.relay.build(
mod, target, runtime=runtime, executor=executor2, mod_name="mod2"
)
temp_dir = utils.tempdir()
mlf_tar_path = temp_dir.relpath("lib.tar")
micro.export_model_library_format([factory1, factory2], mlf_tar_path)
tf = tarfile.open(mlf_tar_path)
extract_dir = temp_dir.relpath("extract")
os.mkdir(extract_dir)
tf.extractall(extract_dir)
assert os.path.exists(os.path.join(extract_dir, "codegen", "host", "src", "mod1_lib0.c"))
assert os.path.exists(os.path.join(extract_dir, "codegen", "host", "src", "mod1_lib1.c"))
assert os.path.exists(os.path.join(extract_dir, "codegen", "host", "src", |
"mod1_lib2.c"))
assert os.path.exists(os.path.join(extract_dir, "codegen", "host", "src", "mod2_lib0.c"))
assert os.path.exists(os.path.join(extract_dir, "codegen", "host", "src", "mod2_lib1.c"))
assert os.path.exists(os.path.join(extract_dir, "codegen", "host", "include", "tvmgen_mod2.h"))
with open(os.path.join(extract_dir, "metadata.json")) as f:
metadata = json.load(f)
assert metadata["modules"]["mod1"]["executors"] == ["graph"]
assert metadata["modules"]["mod2"]["executors"] == ["aot"]
assert metadata["version"] == _GENERATED_VERSION
if __name__ == "__main__":
sys.exit(pytest.main([__file__] + sys.argv[1:])) |
import collections |
import io |
import json |
import sys |
import unittest
from unittest |
import mock |
import pytest |
import tvm |
import tvm.testing
@tvm.testing.fixture
def BaseTestHandler():
from tvm.micro |
import project_api |
class BaseTestHandler_Impl(project_api.server.ProjectAPIHandler):
DEFAULT_TEST_SERVER_INFO = project_api.server.ServerInfo(
platform_name="platform_name",
is_template=True,
model_library_format_path="./model-library-format-path.sh",
project_options=[
project_api.server.ProjectOption(
name="foo", optional=["build"], type="bool", help="Option foo"
),
project_api.server.ProjectOption(
name="bar",
required=["generate_project"],
type="str",
choices=["qux"],
help="Option bar",
),
],
)
def server_info_query(self, tvm_version):
return self.DEFAULT_TEST_SERVER_INFO
def generate_project(self, model_library_format_path, crt_path, project_path, options):
assert False, "generate_project is not implemented for this test"
def build(self, options):
assert False, "build is not implemented for this test"
def flash(self, options):
assert False, "flash is not implemented for this test"
def open_transport(self, options):
assert False, "open_transport is not implemented for this test"
def close_transport(self, options):
assert False, "open_transport is not implemented for this test"
def read_transport(self, n, timeout_sec):
assert False, "read_transport is not implemented for this test"
def write_transport(self, data, timeout_sec):
assert False, "write_transport is not implemented for this test"
return BaseTestHandler_Impl
class Transport:
def readable(self):
return True
def writable(self):
return True
def seekable(self):
return False
closed = False
def __init__(self):
self.data = bytearray()
self.rpos = 0
self.items = []
def read |
(self, size=-1):
to_read = len(self.data) - self.rpos
if size != -1:
to_read = min(size, to_read)
rpos = self.rpos
self.rpos += to_read
return self.data[rpos : self.rpos]
def write(self, data):
self.data.extend(data)
class ClientServerFixture:
def __init__(self, handler):
from tvm.micro |
import project_api
self.handler = handler
self.client_to_server = Transport()
self.server_to_client = Transport()
self.server = project_api.server.ProjectAPIServer(
self.client_to_server, self.server_to_client, handler
)
self.client = project_api.client.ProjectAPIClient(
self.server_to_client,
self.client_to_server,
testonly_did_write_request=self._process_server_request,
)
self.expect_failure = False
def _process_server_request(self):
assert self.server.serve_one_request() == (
not self.expect_failure
), "Server failed to process request"
@tvm.testing.requires_micro
def test_server_info_query(BaseTestHandler):
fixture = ClientServerFixture(BaseTestHandler())
reply = fixture.client.server_info_query(tvm.__version__)
assert reply["protocol_version"] == 1
assert reply["platform_name"] == "platform_name"
assert reply["is_template"] == True
assert reply["model_library_format_path"] == "./model-library-format-path.sh"
assert reply["project_options"] == [
{
"name": "foo",
"choices": None,
"default": None,
"type": "bool",
"required": None,
"optional": ["build"],
"help": "Option foo",
},
{
"name": "bar",
"choices": ["qux"],
"default": None,
"type": "str",
"required": ["generate_project"],
"optional": None,
"help": "Option bar",
},
]
@tvm.testing.requires_micro
def test_server_info_query_wrong_tvm_version(BaseTestHandler):
from tvm.micro |
import project_api
def server_info_query(tvm_version):
raise project_api.server.UnsupportedTVMVersionError()
with mock.patch.object(BaseTestHandler, "server_info_query", side_effect=server_info_query):
fixture = ClientServerFixture(BaseTestHandler())
with pytest.raises(project_api.server.UnsupportedTVMVersionError) as exc_info:
fixture.client.server_info_query(tvm.__version__)
assert "UnsupportedTVMVersionError" in str(exc_info.value)
@tvm.testing.requires_micro
def test_server_info_query_wrong_protocol_version(BaseTestHandler):
from tvm.micro |
import project_api
ServerInfoProtocol = collections.namedtuple(
"ServerInfoProtocol", list(project_api.server.ServerInfo._fields) + ["protocol_version"]
)
def server_info_query(tvm_version):
return ServerInfoProtocol(
protocol_version=0, **BaseTestHandler.DEFAULT_TEST_SERVER_INFO._asdict()
)
with mock.patch.object(BaseTestHandler, "server_info_query", side_effect=server_info_query):
fixture = ClientServerFixture(BaseTestHandler())
with pytest.raises(project_api.client.UnsupportedProtocolVersionError) as exc_info:
fixture.client.server_info_query(tvm.__version__)
assert "microTVM API Server supports protocol version 0; want 1" in str(exc_info.value)
@tvm.testing.requires_micro
def test_base_test_handler(BaseTestHandler):
"""All methods should raise AssertionError on BaseTestHandler."""
fixture = ClientServerFixture(BaseTestHandler())
for method in dir(fixture.handler):
if method.startswith("_") or not callable(method) or method == "server_info_query":
continue
with self.assertThrows(AssertionError) as exc_info:
getattr(fixture.client, method)()
assert (exc_info.exception) == f"{method} is not implemented for this test"
@tvm.testing.requires_micro
def test_build(BaseTestHandler):
with mock.patch.object(BaseTestHandler, "build", return_value=None) as patch:
fixture = ClientServerFixture(BaseTestHandler())
fixture.client.build(options={"bar": "baz"})
fixture.handler.build.assert_called_once_with(options={"bar": "baz"})
@tvm.testing.requires_micro
def test_flash(BaseTestHandler):
with mock.patch.object(BaseTestHandler, "flash", return_value=None) as patch:
fixture = ClientServerFixture(BaseTestHandler())
fixture.client.flash(options={"bar": "baz"})
fixture.handler.flash.assert_called_once_with(options={"bar": "baz"})
@tvm.testing.requires_micro
def test_open_transport(BaseTestHandler):
from tvm |
.micro |
import project_api
timeouts = project_api.server.TransportTimeouts(
session_start_retry_timeout_sec=1.0,
session_start_timeout_sec=2.0,
session_established_timeout_sec=3.0,
)
with mock.patch.object(BaseTestHandler, "open_transport", return_value=timeouts) as patch:
fixture = ClientServerFixture(BaseTestHandler())
assert fixture.client.open_transport(options={"bar": "baz"}) == {
"timeouts": dict(timeouts._asdict())
}
fixture.handler.open_transport.assert_called_once_with({"bar": "baz"})
@tvm.testing.requires_micro
def test_close_transport(BaseTestHandler):
with mock.patch.object(BaseTestHandler, "close_transport", return_value=None) as patch:
fixture = ClientServerFixture(BaseTestHandler())
fixture.client.close_transport()
fixture.handler.close_transport.assert_called_once_with()
@tvm.testing.requires_micro
def test_read_transport(BaseTestHandler):
from tvm.micro |
import project_api
with mock.patch.object(BaseTestHandler, "read_transport", return_value=b"foo\x1b") as patch:
fixture = ClientServerFixture(BaseTestHandler())
assert fixture.client.read_transport(128, timeout_sec=5.0) == {"data": b"foo\x1b"}
fixture.handler.read_transport.assert_called_with(128, 5.0)
fixture.handler.read_transport.side_effect = project_api.server.IoTimeoutError
with pytest.raises(project_api.server.IoTimeoutError) as exc_info:
fixture.client.read_transport(256, timeout_sec=10.0)
fixture.handler.read_transport.assert_called_with(256, 10.0)
fixture.handler.read_transport.side_effect = project_api.server.TransportClosedError
with pytest.raises(project_api.server.TransportClosedError) as exc_info:
fixture.client.read_transport(512, timeout_sec=15.0)
fixture.handler.read_transport.assert_called_with(512, 15.0)
assert fixture.handler.read_transport.call_count == 3
@tvm.testing.requires_micro
def test_write_transport(BaseTestHandler):
from tvm.micro |
import project_api
with mock.patch.object(BaseTestHandler, "write_transport", return_value=None) as patch:
fixture = ClientServerFixture(BaseTestHandler())
assert fixture.client.write_transport(b"foo", timeout_sec=5.0) is None
fixture.handler.write_transport.assert_called_with(b"foo", 5.0)
fixture.handler.write_transport.side_effect = project_api.server.IoTimeoutError
with pytest.raises(project_api.server.IoTimeoutError) as exc_info:
fixture.client.write_transport(b"bar", timeout_sec=10.0)
fixture.handler.write_transport.assert_called_with(b"bar", 10.0)
fixture.handler.write_transport.side_effect = project_api.server.TransportClosedError
with pytest.raises(project_api.server.TransportClosedError) as exc_info:
fixture.client.write_transport(b"baz", timeout_sec=15.0)
fixture.handler.write_transport.assert_called_with(b"baz", 15.0)
assert fixture.handler.write_transport.call_count == 3 |
class ProjectAPITestError(Exception):
"""An error raised in test."""
@tvm.testing.requires_micro
def test_method_raises_error(BaseTestHandler):
from tvm.micro |
import project_api
with mock.patch.object(
BaseTestHandler, "close_transport", side_effect=ProjectAPITestError
) as patch:
fixture = ClientServerFixture(BaseTestHandler())
with pytest.raises(project_api.server.ServerError) as exc_info:
fixture.client.close_transport()
fixture.handler.close_transport.assert_called_once_with()
assert "ProjectAPITestError" in str(exc_info.value)
@tvm.testing.requires_micro
def test_method_not_found(BaseTestHandler):
from tvm.micro |
import project_api
fixture = ClientServerFixture(BaseTestHandler())
with pytest.raises(project_api.server.JSONRPCError) as exc_info:
fixture.client._request_reply("invalid_method", {"bar": None})
assert exc_info.value.code == project_api.server.ErrorCode.METHOD_NOT_FOUND
@tvm.testing.requires_micro
def test_extra_param(BaseTestHandler):
from tvm.micro |
import project_api
fixture = ClientServerFixture(BaseTestHandler())
assert hasattr(fixture.server, "_dispatch_build") == False
with pytest.raises(project_api.server.JSONRPCError) as exc_info:
fixture.client._request_reply("build", {"invalid_param_name": None, "options": {}})
assert exc_info.value.code == project_api.server.ErrorCode.INVALID_PARAMS
assert "build: extra parameters: invalid_param_name" in str(exc_info.value)
assert hasattr(fixture.server, "_dispatch_open_transport") == True
with pytest.raises(project_api.server.JSONRPCError) as exc_info:
fixture.client._request_reply("open_transport", {"invalid_param_name": None, "options": {}})
assert exc_info.value.code == project_api.server.ErrorCode.INVALID_PARAMS
assert "open_transport: extra parameters: invalid_param_name" in str(exc_info.value)
@tvm.testing.requires_micro
def test_missing_param(BaseTestHandler):
from tvm.micro |
import project_api
fixture = ClientServerFixture(BaseTestHandler())
assert hasattr(fixture.server, "_dispatch_build") == False
with pytest.raises(project_api.server.JSONRPCError) as exc_info:
fixture.client._request_reply("build", {})
assert exc_info.value.code == project_api.server.ErrorCode.INVALID_PARAMS
assert "build: parameter options not given" in str(exc_info.value)
assert hasattr(fixture.server, "_dispatch_open_transport") == True
with pytest.raises(project_api.server.JSONRPCError) as exc_info:
fixture.client._request_reply("open_transport", {})
assert exc_info.value.code == project_api.server.ErrorCode.INVALID_PARAMS
assert "open_transport: parameter options not given" in str(exc_info.value)
@tvm.testing.requires_micro
def test_incorrect_param_type(BaseTestHandler):
from tvm.micro |
import project_api
fixture = ClientServerFixture(BaseTestHandler())
assert hasattr(fixture.server, "_dispatch_build") == False
with pytest.raises(project_api.server.JSONRPCError) as exc_info:
fixture.client._request_reply("build", {"options": None})
assert exc_info.value.code == project_api.server.ErrorCode.INVALID_PARAMS
assert "build: parameter options: want <class 'dict'>, got <class 'NoneType'>" in str(
exc_info.value
)
@tvm.testing.requires_micro
def test_invalid_request(BaseTestHandler):
from tvm.micro |
import project_api
fixture = ClientServerFixture(BaseTestHandler())
fixture.client_to_server.write(b"foobar\n")
assert fixture.server.serve_one_request() == False
assert fixture.server_to_client.read() == b""
assert fixture.server.serve_one_request() == False
assert fixture.server_to_client.read() == b""
def _request_reply(request):
fixture.client_to_server.write(request + b"\n")
assert fixture.server.serve_one_request() == False
return json.loads(fixture.server_to_client.read())
assert _request_reply(b"1") == {
"error": {
"code": project_api.server.ErrorCode.INVALID_REQUEST,
"data": None,
"message": "request: want dict; got 1",
},
"id": None,
"jsonrpc": "2.0",
}
assert _request_reply(b'{"jsonrpc": 1.0}') == {
"error": {
"code": project_api.server.ErrorCode.INVALID_REQUEST,
"data": None,
"message": 'request["jsonrpc"]: want "2.0"; got 1.0',
},
"id": None,
"jsonrpc": "2.0",
}
assert _request_reply(b'{"jsonrpc": "2.0", "method": 123}') == {
"error": {
"code": project_api.server.ErrorCode.INVALID_REQUEST,
"data": None,
"message": 'request["method"]: want str; got 123',
},
"id": None,
"jsonrpc": "2.0",
}
assert _request_reply(b'{"jsonrpc": "2.0", "method": "bar!"}') == {
"error": {
"code": project_api.server.ErrorCode.INVALID_REQUEST,
"data": None,
"message": "request[\"method\"]: should match regex ^[a-zA-Z0-9_]+$; got 'bar!'",
},
"id": None,
"jsonrpc": "2.0",
}
assert _request_reply(b'{"jsonrpc": "2.0", "method": "bar", "params": 123}') == {
"error": {
"code": project_api.server.ErrorCode.INVALID_REQUEST,
"data": None,
"message": "request[\"params\"]: want dict; got <class 'i |
nt'>",
},
"id": None,
"jsonrpc": "2.0",
}
assert _request_reply(b'{"jsonrpc": "2.0", "method": "bar", "params": {}, "id": {}}') == {
"error": {
"code": project_api.server.ErrorCode.INVALID_REQUEST,
"data": None,
"message": 'request["id"]: want str, number, null; got {}',
},
"id": None,
"jsonrpc": "2.0",
}
@tvm.testing.requires_micro
def test_default_project_options():
from tvm.micro |
import project_api
default_options = project_api.server.default_project_options()
names = []
for option in default_options:
names.append(option.name)
if option.name == "verbose":
assert "generate_project" in option.optional
if option.name in ["project_type", "board"]:
assert "generate_project" in option.required
if option.name == "warning_as_error":
assert "generate_project" in option.optional
for name in ["verbose", "project_type", "board", "cmsis_path", "warning_as_error"]:
assert name in names
@tvm.testing.requires_micro
def test_modified_project_options():
from tvm.micro |
import project_api
modified_options = project_api.server.default_project_options(
verbose={"optional": ["flash"], "required": ["build"]},
board={"choices": ["board1", "board2"]},
)
for option in modified_options:
if option.name == "verbose":
assert option.optional == ["flash"]
assert option.required == ["build"]
if option.name == "board":
assert option.choices == ["board1", "board2"]
if __name__ == "__main__":
tvm.testing.main() |
"""Tests for common micro transports.""" |
import logging |
import sys |
import unittest |
import pytest |
import tvm.testing
@tvm.testing.fixture
def transport(): |
import tvm.micro |
class MockTransport_Impl(tvm.micro.transport.Transport):
def __init__(self):
self.exc = None
self.to_return = None
def _raise_or_return(self):
if self.exc is not None:
to_raise = self.exc
self.exc = None
raise to_raise
elif self.to_return is not None:
to_return = self.to_return
self.to_return = None
return to_return
else:
assert False, "should not get here"
def open(self):
pass
def close(self):
pass
def timeouts(self):
raise NotImplementedError()
def read(self, n, timeout_sec):
return self._raise_or_return()
def write(self, data, timeout_sec):
return self._raise_or_return()
return MockTransport_Impl()
@tvm.testing.fixture
def transport_logger(transport):
logger = logging.getLogger("transport_logger_test")
return tvm.micro.transport.TransportLogger("foo", transport, logger=logger)
@tvm.testing.fixture
def get_latest_log(caplog):
def inner():
return caplog.records[-1].getMessage()
with caplog.at_level(logging.INFO, "transport_logger_test"):
yield inner
@tvm.testing.requires_micro
def test_open(transport_logger, get_latest_log):
transport_logger.open()
assert get_latest_log() == "foo: opening transport"
@tvm.testing.requires_micro
def test_close(transport_logger, get_latest_log):
transport_logger.close()
assert get_latest_log() == "foo: closing transport"
@tvm.testing.requires_micro
def test_read_normal(transport, transport_logger, get_latest_log):
transport.to_return = b"data"
transport_logger.read(23, 3.0)
assert get_latest_log() == (
"foo: read { 3.00s} 23 B -> [ 4 B]: 64 61 74 61"
" data"
)
@tvm.testing.requires_micro
def test_read_multiline(transport, transport_logger, get_latest_log): |
transport.to_return = b"data" * 6
transport_logger.read(23, 3.0)
assert get_latest_log() == (
"foo: read { 3.00s} 23 B -> [ 24 B]:\n"
"0000 64 61 74 61 64 61 74 61 64 61 74 61 64 61 74 61 datadatadatadata\n"
"0010 64 61 74 61 64 61 74 61 datadata"
)
@tvm.testing.requires_micro
def test_read_no_timeout_prints(transport, transport_logger, get_latest_log):
transport.to_return = b"data"
transport_logger.read(15, None)
assert get_latest_log() == (
"foo: read { None } 15 B -> [ 4 B]: 64 61 74 61"
" data"
)
@tvm.testing.requires_micro
def test_read_io_timeout(transport, transport_logger, get_latest_log):
transport.exc = tvm.micro.transport.IoTimeoutError()
with pytest.raises(tvm.micro.transport.IoTimeoutError):
transport_logger.read(23, 0.0)
assert get_latest_log() == ("foo: read { 0.00s} 23 B -> [IoTimeoutError 0.00s]")
@tvm.testing.requires_micro
def test_read_other_exception(transport, transport_logger, get_latest_log):
transport.exc = tvm.micro.transport.TransportClosedError()
with pytest.raises(tvm.micro.transport.TransportClosedError):
transport_logger.read(8, 0.0)
assert get_latest_log() == ("foo: read { 0.00s} 8 B -> [err: TransportClosedError]")
@tvm.testing.requires_micro
def test_read_keyboard_interrupt(transport, transport_logger, get_latest_log):
transport.exc = KeyboardInterrupt()
with pytest.raises(KeyboardInterrupt):
transport_logger.read(8, 0.0)
with pytest.raises(IndexError):
get_latest_log()
@tvm.testing.requires_micro
def test_write_normal(transport, transport_logger, get_latest_log):
transport.to_return = 3
transport_logger.write(b"data", 3.0)
assert get_latest_log() == (
"foo: write { 3.00s} <- [ 4 B]: 64 61 74 61"
" data"
)
@tvm.testing.requires_micro
def test_write_multiline(trans |
port, transport_logger, get_latest_log):
transport.to_return = 20
transport_logger.write(b"data" * 6, 3.0)
assert get_latest_log() == (
"foo: write { 3.00s} <- [ 24 B]:\n"
"0000 64 61 74 61 64 61 74 61 64 61 74 61 64 61 74 61 datadatadatadata\n"
"0010 64 61 74 61 64 61 74 61 datadata"
)
@tvm.testing.requires_micro
def test_write_no_timeout_prints(transport, transport_logger, get_latest_log):
transport.to_return = 3
transport_logger.write(b"data", None)
assert get_latest_log() == (
"foo: write { None } <- [ 4 B]: 64 61 74 61"
" data"
)
@tvm.testing.requires_micro
def test_write_io_timeout(transport, transport_logger, get_latest_log):
transport.exc = tvm.micro.transport.IoTimeoutError()
with pytest.raises(tvm.micro.transport.IoTimeoutError):
transport_logger.write(b"data", 0.0)
assert get_latest_log() == ("foo: write { 0.00s} <- [ 4 B]: [IoTimeoutError 0.00s]")
@tvm.testing.requires_micro
def test_write_other_exception(transport, transport_logger, get_latest_log):
transport.exc = tvm.micro.transport.TransportClosedError()
with pytest.raises(tvm.micro.transport.TransportClosedError):
transport_logger.write(b"data", 0.0)
assert get_latest_log() == ("foo: write { 0.00s} <- [ 4 B]: [err: TransportClosedError]")
@tvm.testing.requires_micro
def test_write_keyboard_interrupt(transport, transport_logger, get_latest_log):
transport.exc = KeyboardInterrupt()
with pytest.raises(KeyboardInterrupt):
transport_logger.write(b"data", 0.0)
with pytest.raises(IndexError):
get_latest_log()
if __name__ == "__main__":
tvm.testing.main() |
import tvm |
import tvm.testing |
import sys |
import pytest
from tvm |
import te |
import numpy as np
def test_const_saveload_json():
x = tvm.tir.const(1, "int32")
y = tvm.tir.const(10, "int32")
z = x + y
z = z + z
json_str = tvm.ir.save_json(z)
zz = tvm.ir.load_json(json_str)
tvm.ir.assert_structural_equal(zz, z, map_free_vars=True)
def _test_infinity_value(value, dtype):
x = tvm.tir.const(value, dtype)
json_str = tvm.ir.save_json(x)
tvm.ir.assert_structural_equal(x, tvm.ir.load_json(json_str))
def test_infinity_value():
_test_infinity_value(float("inf"), "float64")
_test_infinity_value(float("-inf"), "float64")
_test_infinity_value(float("inf"), "float32")
_test_infinity_value(float("-inf"), "float32")
def _test_minmax_value(value):
json_str = tvm.ir.save_json(value)
tvm.ir.assert_structural_equal(value, tvm.ir.load_json(json_str))
def test_minmax_value():
_test_minmax_value(tvm.tir.min_value("float32"))
_test_minmax_value(tvm.tir.max_value("float32"))
def test_make_smap():
x = tvm.tir.const(1, "int32")
y = tvm.tir.const(10, "int32")
z = tvm.tir.Add(x, y)
smap = tvm.runtime.convert({"z": z, "x": x})
json_str = tvm.ir.save_json(tvm.runtime.convert([smap]))
arr = tvm.ir.load_json(json_str)
assert len(arr) == 1
assert arr[0]["z"].a == arr[0]["x"]
tvm.ir.assert_structural_equal(arr, [smap], map_free_vars=True)
def test_make_node():
x = tvm.ir.make_node("IntImm", dtype="int32", value=10, span=None)
assert isinstance(x, tvm.tir.IntImm)
assert x.value == 10
A = te.placeholder((10,), name="A")
AA = tvm.ir.make_node(
"Tensor", shape=A.shape, dtype=A.dtype, op=A.op, value_index=A.value_index
)
assert AA.op == A.op
assert AA.value_index == A.value_index
y = tvm.ir.make_node("IntImm", dtype=tvm.runtime.String("int32"), value=10, span=None)
def test_make_sum():
A = te.placeholder((2, 10), name="A")
k = te.reduce_axis((0, 10), "k")
B = te.compute((2,), lambda i: te.sum(A[i, k], axis=k), name="B")
json_str = tvm.ir. |
save_json(B)
BB = tvm.ir.load_json(json_str)
assert B.op.body[0].combiner is not None
assert BB.op.body[0].combiner is not None
def test_env_func():
@tvm.register_func("test.env_func")
def test(x):
return x + 1
f = tvm.get_global_func("test.env_func")
x = tvm.ir.EnvFunc.get("test.env_func")
assert x.name == "test.env_func"
json_str = tvm.ir.save_json([x])
y = tvm.ir.load_json(json_str)[0]
assert y.name == x.name
assert y(1) == 2
assert y.func(1) == 2
x = tvm.ir.make_node("attrs.TestAttrs", name="xx", padding=(3, 4), func=y)
assert x.name == "xx"
assert x.padding[0].value == 3
assert x.padding[1].value == 4
assert x.axis == 10
x = tvm.ir.load_json(tvm.ir.save_json(x))
assert isinstance(x.func, tvm.ir.EnvFunc)
assert x.func(10) == 11
def test_string():
s1 = tvm.runtime.String("xy\x01z")
s2 = tvm.ir.load_json(tvm.ir.save_json(s1))
tvm.ir.assert_structural_equal(s1, s2)
s1 = tvm.runtime.String("xyz")
s2 = tvm.ir.load_json(tvm.ir.save_json(s1))
tvm.ir.assert_structural_equal(s1, s2)
def test_pass_config():
cfg = tvm.transform.PassContext(
opt_level=1,
config={
"tir.UnrollLoop": {
"auto_max_step": 10,
}
},
)
cfg.opt_level == 1
assert cfg.config["tir.UnrollLoop"].auto_max_step == 10
assert cfg.config["tir.UnrollLoop"].explicit_unroll == True
with pytest.raises(AttributeError):
cfg = tvm.transform.PassContext(config={"tir.UnrollLoop": {"invalid": 1}})
with pytest.raises(AttributeError):
cfg = tvm.transform.PassContext(config={"inavlid-opt": True})
with pytest.raises(AttributeError):
cfg = tvm.transform.PassContext(config={"tir.UnrollLoop": 1})
def test_dict():
x = tvm.tir.const(1)
assert set(dir(x.__class__)) <= set(dir(x))
def test_ndarray():
dev = tvm.cpu(0)
tvm_arr = tvm.nd.array(np.random.rand(4), device=dev)
tvm |
_arr2 = tvm.ir.load_json(tvm.ir.save_json(tvm_arr))
tvm.ir.assert_structural_equal(tvm_arr, tvm_arr2)
np.testing.assert_array_equal(tvm_arr.numpy(), tvm_arr2.numpy())
def test_ndarray_dict():
dev = tvm.cpu(0)
m1 = {
"key1": tvm.nd.array(np.random.rand(4), device=dev),
"key2": tvm.nd.array(np.random.rand(4), device=dev),
}
m2 = tvm.ir.load_json(tvm.ir.save_json(m1))
tvm.ir.assert_structural_equal(m1, m2)
def test_alloc_const():
dev = tvm.cpu(0)
dtype = "float32"
shape = (16,)
buf = tvm.tir.decl_buffer(shape, dtype)
np_data = np.random.rand(*shape).astype(dtype)
data = tvm.nd.array(np_data, device=dev)
body = tvm.tir.Evaluate(0)
alloc_const = tvm.tir.AllocateConst(buf.data, dtype, shape, data, body)
alloc_const2 = tvm.ir.load_json(tvm.ir.save_json(alloc_const))
tvm.ir.assert_structural_equal(alloc_const, alloc_const2)
np.testing.assert_array_equal(np_data, alloc_const2.data.numpy())
if __name__ == "__main__":
tvm.testing.main() |
import pytest |
import tvm
from tvm.runtime |
import object_path
from tvm.runtime.object_path |
import ObjectPath
def test_root_path():
root = ObjectPath.root()
assert isinstance(root, object_path.RootPath)
assert str(root) == "<root>"
assert len(root) == 1
assert root == ObjectPath.root()
assert root.parent is None
def test_path_attr():
path = ObjectPath.root().attr("foo")
assert isinstance(path, object_path.AttributeAccessPath)
assert str(path) == "<root>.foo"
assert len(path) == 2
assert path.parent == ObjectPath.root()
def test_path_attr_unknown():
path = ObjectPath.root().attr(None)
assert isinstance(path, object_path.UnknownAttributeAccessPath)
assert str(path) == "<root>.<unknown attribute>"
assert len(path) == 2
assert path.parent == ObjectPath.root()
def test_path_array_index():
path = ObjectPath.root().array_index(2)
assert isinstance(path, object_path.ArrayIndexPath)
assert str(path) == "<root>[2]"
assert len(path) == 2
assert path.parent == ObjectPath.root()
def test_path_missing_array_element():
path = ObjectPath.root().missing_array_element(2)
assert isinstance(path, object_path.MissingArrayElementPath)
assert str(path) == "<root>[<missing element
assert len(path) == 2
assert path.parent == ObjectPath.root()
def test_path_map_value():
path = ObjectPath.root().map_value("foo")
assert isinstance(path, object_path.MapValuePath)
assert str(path) == '<root>["foo"]'
assert len(path) == 2
assert path.parent == ObjectPath.root()
def test_path_missing_map_entry():
path = ObjectPath.root().missing_map_entry()
assert isinstance(path, object_path.MissingMapEntryPath)
assert str(path) == "<root>[<missing entry>]"
assert len(path) == 2
assert path.parent == ObjectPath.root()
@pytest.mark.parametrize(
"a, b, expected",
[
(ObjectPath.root(), ObjectPath.root(), True),
(ObjectPath.root(), ObjectPath.root().attr("foo"), True),
(ObjectPath.root().attr("foo"), ObjectPath.root(), False),
(ObjectPath.root().attr("foo") |
, ObjectPath.root().attr("foo"), True),
(ObjectPath.root().attr("bar"), ObjectPath.root().attr("foo"), False),
(ObjectPath.root().attr("foo"), ObjectPath.root().attr("foo").array_index(2), True),
(ObjectPath.root().attr("foo").array_index(2), ObjectPath.root().attr("foo"), False),
(ObjectPath.root().attr("foo"), ObjectPath.root().attr("bar").array_index(2), False),
],
)
def test_path_is_prefix_of(a, b, expected):
assert a.is_prefix_of(b) == expected
paths_for_equality_test = [
ObjectPath.root(),
ObjectPath.root().attr("foo"),
ObjectPath.root().attr("bar"),
ObjectPath.root().array_index(3),
ObjectPath.root().array_index(4),
ObjectPath.root().missing_array_element(3),
ObjectPath.root().missing_array_element(4),
ObjectPath.root().map_value("foo"),
ObjectPath.root().map_value("bar"),
ObjectPath.root().missing_map_entry(),
ObjectPath.root().attr("foo").missing_map_entry(),
]
def make_test_params_for_eq_test():
return [
pytest.param(idx, path, id="path{}".format(idx))
for idx, path in enumerate(paths_for_equality_test)
]
@pytest.mark.parametrize("a_idx, a_path", make_test_params_for_eq_test())
@pytest.mark.parametrize("b_idx, b_path", make_test_params_for_eq_test())
def test_path_equal(a_idx, a_path, b_idx, b_path):
expected = a_idx == b_idx
result = a_path == b_path
assert result == expected
def test_path_get_prefix():
p1 = ObjectPath.root()
p2 = p1.attr("foo")
p3 = p2.array_index(5)
assert p3.parent == p2
assert p2.parent == p1
assert p1.parent is None
assert p2.get_prefix(1) == p1
assert p3.get_prefix(1) == p1
assert p3.get_prefix(2) == p2
assert p3.get_prefix(3) == p3
with pytest.raises(IndexError) as e:
p3.get_prefix(0)
assert "Prefix length must be at least 1" in str(e.value)
with pytest.raises(IndexError) as e:
p3.get_prefix(4)
assert "Attempted to get a prefix longer than the path itself" in str(e.value) |
import csv |
import json |
import os |
import platform
from io |
import StringIO |
import numpy as np |
import pytest |
import tvm.testing |
import tvm.utils
from tvm |
import relay, rpc
from tvm.contrib |
import utils
from tvm.contrib.debugger |
import debug_executor
from tvm.relay.testing |
import mlp
from tvm.runtime |
import profiler_vm
from tvm.runtime.profiling |
import Report
from tvm.script |
import tir as T
@tvm.testing.requires_llvm
@pytest.mark.parametrize("dtype", ["float32", "int8", "int32"])
def test_estimate_peak_flops_cpu(dtype):
server = rpc.Server(key="roofline_flops_cpu")
remote = rpc.connect("127.0.0.1", server.port, key="roofline_flops_cpu")
target = tvm.target.Target("llvm -mattr=+fma,+avx2")
dev = remote.device(str(target))
flops = tvm.utils.roofline.x86.estimate_peak_fma_vector_flops(target, dev, remote, "float32")
assert (
flops > 10**9 and flops < 10**14
), f"FLOP/s should be between 10^9 and 10^14, but it is {flops}"
@tvm.testing.requires_cuda
def test_estimate_peak_flops_gpu():
server = rpc.Server(key="roofline_flops_gpu")
remote = rpc.connect("127.0.0.1", server.port, key="roofline_flops_gpu")
target = tvm.target.Target("cuda")
dev = remote.device(str(target))
flops = tvm.utils.roofline.cuda.estimate_peak_flops_tensorcore(target, dev, remote)
assert (
flops > 10**12 and flops < 10**14
), f"FLOP/s should be between 10^12 and 10^14, but it is {flops}"
@tvm.testing.skip_if_32bit(reason="Cannot allocate enough memory on i386")
@tvm.testing.requires_llvm
def test_estimate_peak_bandwidth_cpu():
server = rpc.Server(key="roofline_bandwidth_cpu")
remote = rpc.connect("127.0.0.1", server.port, key="roofline_bandwidth_cpu")
target = tvm.target.Target("llvm -mattr=+fma,+avx2")
dev = remote.device(str(target))
bandwidth = tvm.utils.roofline.x86.estimate_peak_bandwidth_dram(target, dev, remote)
assert (
bandwidth > 10**9 and bandwidth < 10**12
), f"Bandwidth should be between 10^9 and 10^12, but it is {bandwidth}"
@tvm.testing.requires_cuda
def test_estimate_peak_bandwidth_gpu():
server = rpc.Server(key="roofline_bandwidth_gpu")
remote = rpc.connect("127.0.0.1", server.port, key="roofline_bandwidth_gpu")
target = tvm.target.Target("cuda")
dev = remote.device(str(target))
bandwidth = tvm.utils.roofline.cuda.estimate_peak_b |
andwidth_global_mem(target, dev, remote)
assert (
bandwidth > 10**11 and bandwidth < 10**13
), f"Bandwidth should be between 10^9 and 10^12, but it is {bandwidth}"
@tvm.testing.skip_if_32bit(reason="Cannot allocate enough memory on i386")
@tvm.testing.parametrize_targets("llvm -mattr=+fma,+avx2", "cuda")
def test_roofline_analysis(target, dev):
a = relay.var("a", relay.TensorType((512, 512), "float32"))
b = relay.var("b", relay.TensorType((512, 512), "float32"))
c = relay.nn.dense(a, b)
mod = tvm.IRModule.from_expr(relay.Function([a, b], c))
params = {}
server = rpc.Server(key="roofline")
remote = rpc.connect("127.0.0.1", server.port, key="roofline")
dev = remote.device(target)
report = tvm.utils.roofline_analysis(mod, params, target, dev, remote=remote)
print(report)
assert "Bound" in report.table()
assert "Percent of Theoretical Optimal" in report.table()
for call in report.calls:
if "Percent of Theoretical Optimal" in call:
if target.startswith("llvm"):
assert call["Percent of Theoretical Optimal"].ratio >= 5.0
elif target == "cuda":
assert 90 >= call["Percent of Theoretical Optimal"].ratio >= 0.01
if __name__ == "__main__":
tvm.testing.main() |
import numpy as np |
import random |
import tvm |
import tvm.testing |
import pickle
from tvm |
import te
from tvm |
import nd, relay
from tvm.runtime |
import container as _container
def test_adt_constructor():
arr = nd.array([1, 2, 3])
fields = [arr, arr]
y = _container.ADT(0, [arr, arr])
assert len(y) == 2
assert isinstance(y, _container.ADT)
y[0:1][-1] == arr
assert y.tag == 0
assert isinstance(arr, nd.NDArray)
def test_tuple_object():
x = relay.var(
"x",
type_annotation=relay.ty.TupleType(
[relay.ty.TensorType((), "int32"), relay.ty.TensorType((), "int32")]
),
)
fn = relay.Function([x], relay.expr.TupleGetItem(x, 0))
mod = tvm.IRModule.from_expr(fn)
f = relay.create_executor(kind="vm", mod=mod, device=nd.cpu(), target="llvm").evaluate()
value_tuple = _container.tuple_object([nd.array(np.array(11)), nd.array(np.array(12))])
out = f(value_tuple)
tvm.testing.assert_allclose(out.numpy(), np.array(11))
def test_string():
s = tvm.runtime.String("xyz")
assert isinstance(s, tvm.runtime.String)
assert isinstance(s, str)
assert s.startswith("xy")
assert s + "1" == "xyz1"
y = tvm.testing.echo(s)
assert isinstance(y, tvm.runtime.String)
assert s.__tvm_object__.same_as(y.__tvm_object__)
assert s == y
x = tvm.ir.load_json(tvm.ir.save_json(y))
assert isinstance(x, tvm.runtime.String)
assert x == y
z = pickle.loads(pickle.dumps(s))
assert isinstance(z, tvm.runtime.String)
assert s == z
def test_shape_tuple():
shape = [random.randint(-10, 10) for _ in range(5)]
stuple = _container.ShapeTuple(shape)
len(stuple) == len(shape)
for a, b in zip(stuple, shape):
assert a == b
assert stuple == list(shape)
assert stuple == tuple(shape)
assert stuple == _container.ShapeTuple(shape)
if __name__ == "__main__":
test_string()
test_adt_constructor()
test_tuple_object()
test_shape_tuple() |
"""Test runtime error handling""" |
import tvm
from tvm |
import te |
import tvm.testing
def test_op_translation():
ferror = tvm.testing.test_raise_error_callback("OpNotImplemented: myop")
try:
ferror()
assert False
except tvm.error.OpNotImplemented as e:
msg = str(e)
assert isinstance(e, NotImplementedError)
assert msg.find("ffi_testing.cc") != -1
fchk_eq = tvm.testing.test_check_eq_callback("InternalError: myop")
try:
fchk_eq(0, 1)
assert False
except tvm.error.InternalError as e:
msg = str(e)
assert msg.find("ffi_testing.cc") != -1
try:
tvm.testing.ErrorTest(0, 1)
assert False
except ValueError as e:
msg = str(e)
assert msg.find("ffi_testing.cc") != -1
def test_deep_callback():
def error_callback():
raise ValueError("callback error")
wrap1 = tvm.testing.test_wrap_callback(error_callback)
def flevel2():
wrap1()
wrap2 = tvm.testing.test_wrap_callback(flevel2)
def flevel3():
wrap2()
wrap3 = tvm.testing.test_wrap_callback(flevel3)
try:
wrap3()
assert False
except ValueError as e:
msg = str(e)
idx2 = msg.find("in flevel2")
idx3 = msg.find("in flevel3")
assert idx2 != -1 and idx3 != -1
assert idx2 > idx3
if __name__ == "__main__":
test_op_translation()
test_deep_callback() |
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import tvm
from tvm import te
import numpy as np
@tvm.register_extension
class MyTensorView(object):
_tvm_tcode = tvm._ffi.runtime_ctypes.ArgTypeCode.DLTENSOR_HANDLE
def __init__(self, arr):
self.arr = arr
@property
def _tvm_handle(self):
return self.arr._tvm_handle
def test_dltensor_compatible():
dtype = "int64"
n = te.var("n")
Ab = tvm.tir.decl_buffer((n,), dtype)
i = te.var("i")
ib = tvm.tir.ir_builder.create()
A = ib.buffer_ptr(Ab)
with ib.for_range(0, n - 1, "i") as i:
A[i + 1] = A[i] + 1
stmt = ib.get()
mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([Ab], stmt).with_attr("global_symbol", "arange"))
f = tvm.build(mod, target="stackvm")
a = tvm.nd.array(np.zeros(10, dtype=dtype))
aview = MyTensorView(a)
f(aview)
np.testing.assert_equal(a.numpy(), np.arange(a.shape[0]))
if __name__ == "__main__":
test_dltensor_compatible()
|
import tvm |
import tvm.testing
from tvm |
import te, runtime |
import numpy as np |
import json
from tvm |
import rpc
from tvm |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.