text
stringlengths 1
2.05k
|
---|
.Select(r_b % 6 == 3 and nu % 6 == 2, T.float32(2.5), T.Select(r_b % 6 == 3 and nu % 6 == 1, T.float32(0.5), T.Select(r_b % 6 == 3 and nu % 6 == 0, T.float32(1.5), T.Select(r_b % 6 == 2 and nu % 6 == 5, T.float32(-1.5), T.Select(r_b % 6 == 2 and nu % 6 == 4, T.float32(-1), T.Select(r_b % 6 == 2 and nu % 6 == 3, T.float32(-1), T.Select(r_b % 6 == 2 and nu % 6 == 2, T.float32(0.5), T.Select(r_b % 6 == 2 and nu % 6 == 1, T.float32(-2.5), T.Select(r_b % 6 == 2 and nu % 6 == 0, T.float32(-2), T.Select(r_b % 6 == 1 and nu % 6 == 5, T.float32(1), T.Select(r_b % 6 == 1 and nu % 6 == 4, T.float32(0.5), T.Select(r_b % 6 == 1 and nu % 6 == 3, T.float32(-2), T.Select(r_b % 6 == 1 and nu % 6 == 2, T.float32(-1), T.Select(r_b % 6 == 1 and nu % 6 == 1, T.float32(1), T.Select(r_b % 6 == 1 and nu % 6 == 0, T.float32(-1.5), T.Select(r_b % 6 == 0 and nu % 6 == 5, T.float32(0), T.Select(r_b % 6 == 0 and nu % 6 == 4, T.float32(0), T.Select(r_b % 6 == 0 and nu % 6 == 3, T.float32(0), T.Select(r_b % 6 == 0 and nu % 6 == 2, T.float32(0), T.Select(r_b % 6 == 0 and nu % 6 == 1, T.float32(0), T.Select(r_b % 6 == 0 and nu % 6 == 0, T.float32(1), T.float32(0)))))))))))))))))))))))))))))))))))))
for ax0, ax1, ax2, ax3 in T.grid(6, 6, 1, 1):
with T.block("data_pack_local"):
T.where(i2_i3_fused_0 * 512 + i2_i3_fused_1 < 12544)
v0, v1 = T.axis.remap("SS", [ax0, ax1])
v2 = T.axis.spatial(64, (i2_i3_fused_0 * 512 + i2_i3_fused_1)
v3 = T.axis.spatial(196, (i2_i3_fused_0 * 120 + i2_i3_fused_1) % 196 + ax3)
T.reads(data_pack_local[v0, v1, v2, v3])
T.writes(data_pack[v0, v1, v2, v3])
data_pack[v0, v1, v2, v3] = data_pack_local[v0, v1, v2, v3]
for i0_0_i1_0_i2_0_i3_0_fused in T.thread_binding(14, thread="blockIdx.x"):
for i0_1_i1_1_i2_1_i3_1_fused in T.thread_binding(224, thread="vthread. |
x"):
for i0_2_i1_2_i2_2_i3_2_fused in T.thread_binding(2, thread="threadIdx.x"):
for i4_0 in T.serial(2):
for ax0_ax1_ax2_ax3_fused in T.serial(32256):
with T.block("data_pack_shared"):
v0 = T.axis.spatial(6, ax0_ax1_ax2_ax3_fused
v1 = T.axis.spatial(6, ax0_ax1_ax2_ax3_fused % 5376
v2 = T.axis.spatial(64, i4_0 * 32 + ax0_ax1_ax2_ax3_fused % 896
v3 = T.axis.spatial(196, i0_0_i1_0_i2_0_i3_0_fused % 7 * 28 + ax0_ax1_ax2_ax3_fused % 28)
T.reads(data_pack[v0, v1, v2, v3])
T.writes(data_pack_shared[v0, v1, v2, v3])
T.block_attr({"meta_schedule.cooperative_fetch":4})
data_pack_shared[v0, v1, v2, v3] = data_pack[v0, v1, v2, v3]
for ax0_ax1_ax2_ax3_fused in T.serial(36864):
with T.block("weight_shared"):
v0 = T.axis.spatial(6, ax0_ax1_ax2_ax3_fused
v1 = T.axis.spatial(6, ax0_ax1_ax2_ax3_fused % 6144
v2 = T.axis.spatial(64, i4_0 * 32 + ax0_ax1_ax2_ax3_fused % 1024
v3 = T.axis.spatial(64, i0_0_i1_0_i2_0_i3_0_fused
T.reads(weight[v0, v1, v2, v3])
T.writes(weight_shared[v0, v1, v2, v3])
T.block_attr({"meta_schedule.cooperative_fetch":3})
weight_shared[v0, v1, v2, v3] = weight[v0, v1, v2, v3]
for i4_1, i0_3, i1_3, i2_3, i3_3, i4_2, i0_4, i1_4, i2_4, i3_4 in T.grid(16, 2, 3, 1, 4, 2, 3, 1, 1, 1):
with T.block("bgemm"): |
eps = T.axis.spatial(6, i0_3 * 3 + i0_4)
nu = T.axis.spatial(6, i1_4 + i0_1_i1_1_i2_1_i3_1_fused
co = T.axis.spatial(64, i0_0_i1_0_i2_0_i3_0_fused
p = T.axis.spatial(196, i3_4 + i0_0_i1_0_i2_0_i3_0_fused % 7 * 28 + i0_1_i1_1_i2_1_i3_1_fused % 7 * 4 + i3_3)
ci = T.axis.reduce(64, i4_0 * 32 + i4_1 * 2 + i4_2)
T.reads(data_pack_shared[eps, nu, ci, p], weight_shared[eps, nu, ci, co])
T.writes(bgemm_local[eps, nu, co, p])
T.block_attr({"meta_schedule.thread_extent_high_inclusive":1024, "meta_schedule.thread_extent_low_inclusive":32, "meta_schedule.tiling_structure":"SSSRRSRS"})
with T.init():
bgemm_local[eps, nu, co, p] = T.float32(0)
bgemm_local[eps, nu, co, p] = bgemm_local[eps, nu, co, p] + data_pack_shared[eps, nu, ci, p] * weight_shared[eps, nu, ci, co]
for ax0, ax1, ax2, ax3 in T.grid(6, 3, 1, 4):
with T.block("bgemm_local"):
v0 = T.axis.spatial(6, ax0)
v1 = T.axis.spatial(6, i0_1_i1_1_i2_1_i3_1_fused
v2 = T.axis.spatial(64, i0_0_i1_0_i2_0_i3_0_fused
v3 = T.axis.spatial(196, i0_0_i1_0_i2_0_i3_0_fused % 7 * 28 + i0_1_i1_1_i2_1_i3_1_fused % 7 * 4 + ax3)
T.reads(bgemm_local[v0, v1, v2, v3])
T.writes(bgemm[v0, v1, v2, v3])
bgemm[v0, v1, v2, v3] = bgemm_local[v0, v1, v2, v3]
for i0_i1_i2_0_i3_0_fused_0 in T.thread_binding(196, thread="blockIdx.x"):
for i0_i1_i2_0_i3_0_fused_1 in T.thread_binding(64, thread="threadIdx.x"): |
for ax0, ax1 in T.grid(1, 1):
for ax2 in T.unroll(4):
for ax3 in T.unroll(4):
for ax4 in T.unroll(6):
for ax5 in T.unroll(6):
with T.block("inverse"):
co = T.axis.spatial(64, (i0_i1_i2_0_i3_0_fused_0 * 64 + i0_i1_i2_0_i3_0_fused_1)
p = T.axis.spatial(196, (i0_i1_i2_0_i3_0_fused_0 * 64 + i0_i1_i2_0_i3_0_fused_1) % 196
vh, vw, r_a, r_b = T.axis.remap("SSRR", [ax2, ax3, ax4, ax5])
T.reads(bgemm[r_a, r_b, co, p])
T.writes(inverse_local[co, p, vh, vw])
T.block_attr({"schedule_rule":"conv2d_nchw_winograd_inverse"})
with T.init():
inverse_local[co, p, vh, vw] = T.float32(0)
inverse_local[co, p, vh, vw] = inverse_local[co, p, vh, vw] + bgemm[r_a, r_b, co, p] * T.Select(r_a % 6 == 5 and vh % 4 == 3, T.float32(1), T.Select(r_a % 6 == 5 and vh % 4 == 2, T.float32(0), T.Select(r_a % 6 == 5 and vh % 4 == 1, T.float32(0), T.Select(r_a % 6 == 5 and vh % 4 == 0, T.float32(0), T.Select(r_a % 6 == 4 and vh % 4 == 3, T.float32(-8), T.Select(r_a % 6 == 4 and vh % 4 == 2, T.float32(4), T.Select(r_a % 6 == 4 and vh % 4 == 1, T.float32(-2), T.Select(r_a % 6 == 4 and vh % 4 == 0, T.float32(1), T.Select(r_a % 6 == 3 and vh % 4 == 3, T.float32(0.125), T.Select(r_a % 6 == 3 and vh % 4 == 2, T.float32(0.25), T.Select(r_a % 6 == 3 and vh % 4 == 1, T.float32(0.5), T.Select(r_a % 6 == 3 and vh % 4 == 0, T.float32(1), T.Select(r_a % 6 == 2 and vh % 4 == 3, T.float32(1), T.Select(r_a % 6 == 2 and vh % 4 == 2, T.float32(1), T.Select(r_a % 6 == 2 and vh % 4 == 1, T.float32(1), T.Select(r_a % 6 |
== 2 and vh % 4 == 0, T.float32(1), T.Select(r_a % 6 == 1 and vh % 4 == 3, T.float32(-1), T.Select(r_a % 6 == 1 and vh % 4 == 2, T.float32(1), T.Select(r_a % 6 == 1 and vh % 4 == 1, T.float32(-1), T.Select(r_a % 6 == 1 and vh % 4 == 0, T.float32(1), T.Select(r_a % 6 == 0 and vh % 4 == 3, T.float32(0), T.Select(r_a % 6 == 0 and vh % 4 == 2, T.float32(0), T.Select(r_a % 6 == 0 and vh % 4 == 1, T.float32(0), T.Select(r_a % 6 == 0 and vh % 4 == 0, T.float32(1), T.float32(0))))))))))))))))))))))))) * T.Select(r_b % 6 == 5 and vw % 4 == 3, T.float32(1), T.Select(r_b % 6 == 5 and vw % 4 == 2, T.float32(0), T.Select(r_b % 6 == 5 and vw % 4 == 1, T.float32(0), T.Select(r_b % 6 == 5 and vw % 4 == 0, T.float32(0), T.Select(r_b % 6 == 4 and vw % 4 == 3, T.float32(-8), T.Select(r_b % 6 == 4 and vw % 4 == 2, T.float32(4), T.Select(r_b % 6 == 4 and vw % 4 == 1, T.float32(-2), T.Select(r_b % 6 == 4 and vw % 4 == 0, T.float32(1), T.Select(r_b % 6 == 3 and vw % 4 == 3, T.float32(0.125), T.Select(r_b % 6 == 3 and vw % 4 == 2, T.float32(0.25), T.Select(r_b % 6 == 3 and vw % 4 == 1, T.float32(0.5), T.Select(r_b % 6 == 3 and vw % 4 == 0, T.float32(1), T.Select(r_b % 6 == 2 and vw % 4 == 3, T.float32(1), T.Select(r_b % 6 == 2 and vw % 4 == 2, T.float32(1), T.Select(r_b % 6 == 2 and vw % 4 == 1, T.float32(1), T.Select(r_b % 6 == 2 and vw % 4 == 0, T.float32(1), T.Select(r_b % 6 == 1 and vw % 4 == 3, T.float32(-1), T.Select(r_b % 6 == 1 and vw % 4 == 2, T.float32(1), T.Select(r_b % 6 == 1 and vw % 4 == 1, T.float32(-1), T.Select(r_b % 6 == 1 and vw % 4 == 0, T.float32(1), T.Select(r_b % 6 == 0 and vw % 4 == 3, T.float32(0), T.Select(r_b % 6 == 0 and vw % 4 == 2, T.float32(0), T.Select(r_b % 6 == 0 and vw % 4 == 1, T.float32(0), T.Select(r_b % 6 == 0 and vw % 4 == 0, T.float32(1), T.float32(0)))))))))))))))))))))))))
for i2_1, i3_1 in T.grid(4, 4):
with T.block("conv2d_winograd"):
n = T.axis.spatial(1, 0)
co = T.axis.spatial(64, (i0_i1_i2_ |
0_i3_0_fused_0 * 64 + i0_i1_i2_0_i3_0_fused_1)
h = T.axis.spatial(56, (i0_i1_i2_0_i3_0_fused_0 * 64 + i0_i1_i2_0_i3_0_fused_1) % 196
w = T.axis.spatial(56, (i0_i1_i2_0_i3_0_fused_0 * 64 + i0_i1_i2_0_i3_0_fused_1) % 14 * 4 + i3_1)
T.reads(inverse_local[co, n * 196 + h
T.writes(conv2d_winograd[n, co, h, w])
conv2d_winograd[n, co, h, w] = inverse_local[co, n * 196 + h
decision_0 = [
("SampleCategorical", 4),
("SamplePerfectTile", [1, 1, 1, 2, 3]),
("SamplePerfectTile", [1, 2, 1, 3, 1]),
("SamplePerfectTile", [2, 16, 2, 1, 1]),
("SamplePerfectTile", [7, 7, 1, 4, 1]),
("SamplePerfectTile", [2, 16, 2]),
("SampleCategorical", 3),
("SampleCategorical", 2),
("SampleCategorical", 1),
("SampleCategorical", 1),
]
with _target():
mod = create_te_workload("C2D_WIN_NCHW", 0)
actual = _design_space(mod)
check_sketches(
mod,
sketches=actual,
expected_mods=[cuda_nchw_0],
expected_decisions=[decision_0],
debug_mask=0,
)
if __name__ == "__main__":
test_cuda_nhwc()
test_cuda_nchw() |
""" Test Meta Schedule SpaceGenerator """ |
import math |
import pytest |
import tvm |
import tvm.testing
from tvm._ffi.base |
import TVMError
from tvm.meta_schedule.space_generator |
import (
PySpaceGenerator,
ScheduleFn,
SpaceGeneratorUnion,
)
from tvm.meta_schedule.tune_context |
import TuneContext
from tvm.meta_schedule.utils |
import derived_object
from tvm.script |
import tir as T
from tvm.tir.schedule |
import Schedule
@tvm.script.ir_module
class Matmul:
@T.prim_func
def main(a: T.handle, b: T.handle, c: T.handle) -> None:
T.func_attr({"global_symbol": "main"})
A = T.match_buffer(a, (1024, 1024), "float32")
B = T.match_buffer(b, (1024, 1024), "float32")
C = T.match_buffer(c, (1024, 1024), "float32")
for i, j, k in T.grid(1024, 1024, 1024):
with T.block("matmul"):
vi, vj, vk = T.axis.remap("SSR", [i, j, k])
with T.init():
C[vi, vj] = 0.0
C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vk, vj]
def schedule_matmul(sch: Schedule):
block = sch.get_block("matmul")
i, j, k = sch.get_loops(block=block)
i_0, i_1, i_2, i_3 = sch.split(loop=i, factors=[2, 4, 64, 2])
j_0, j_1, j_2, j_3 = sch.split(loop=j, factors=[4, 64, 2, 2])
k_0, k_1 = sch.split(loop=k, factors=[32, 32])
sch.reorder(i_0, j_0, i_1, j_1, k_0, i_2, j_2, k_1, i_3, j_3)
def _check_correct(schedule: Schedule):
trace = schedule.trace
for inst in trace.decisions:
assert math.prod(trace.decisions[inst]) == 1024
def test_meta_schedule_space_generator_schedule_fn():
mod = Matmul
space_generator = ScheduleFn(sch_fn=schedule_matmul)
design_spaces = space_generator.generate_design_space(mod)
assert len(design_spaces) == 1
(schedule,) = design_spaces
_check_correct(schedule)
def test_meta_schedule_design_space_generator_union():
mod = Matmul
space_generator = ScheduleFn(sch_fn=schedule_matmul)
space_generator_union = SpaceGeneratorUnion([space_generator, space_generator])
design_spaces = space_generator_union.generate_design_space(mod)
assert len(design_spaces) == 2
for design_space in design_spaces:
_check_correct(design_space)
def test_meta_schedule_design_space_generator_NIE():
@derived_object |
class TestPySpaceGenerator(PySpaceGenerator):
def __init__(self):
super().__init__()
self.sch_rules = []
self.postprocs = []
self.mutator_probs = {}
with pytest.raises(
TVMError, match="PySpaceGenerator's InitializeWithTuneContext method not implemented!"
):
generator = TestPySpaceGenerator()
generator._initialize_with_tune_context(TuneContext())
if __name__ == "__main__":
tvm.testing.main() |
""" Test Meta Schedule Task Scheduler """ |
import random |
import weakref
from typing |
import Set |
import pytest |
import tvm |
import tvm.testing
from tvm |
import meta_schedule as ms
from tvm.meta_schedule.testing.dummy_object |
import DummyBuilder, DummyRunner
from tvm.script |
import tir as T
from tvm.tir |
import Schedule
@tvm.script.ir_module
class MatmulModule:
@T.prim_func
def main(
a: T.handle,
b: T.handle,
c: T.handle,
) -> None:
T.func_attr({"global_symbol": "main", "tir.noalias": True})
A = T.match_buffer(a, (1024, 1024), "float32")
B = T.match_buffer(b, (1024, 1024), "float32")
C = T.match_buffer(c, (1024, 1024), "float32")
for i, j, k in T.grid(1024, 1024, 1024):
with T.block("matmul"):
vi, vj, vk = T.axis.remap("SSR", [i, j, k])
with T.init():
C[vi, vj] = 0.0
C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vk, vj]
@tvm.script.ir_module
class MatmulReluModule:
@T.prim_func
def main(
a: T.handle,
b: T.handle,
d: T.handle,
) -> None:
T.func_attr({"global_symbol": "main", "tir.noalias": True})
A = T.match_buffer(a, (1024, 1024), "float32")
B = T.match_buffer(b, (1024, 1024), "float32")
D = T.match_buffer(d, (1024, 1024), "float32")
C = T.alloc_buffer((1024, 1024), "float32")
for i, j, k in T.grid(1024, 1024, 1024):
with T.block("matmul"):
vi, vj, vk = T.axis.remap("SSR", [i, j, k])
with T.init():
C[vi, vj] = 0.0
C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vk, vj]
for i, j in T.grid(1024, 1024):
with T.block("relu"):
vi, vj = T.axis.remap("SS", [i, j])
D[vi, vj] = T.max(C[vi, vj], 0.0)
@tvm.script.ir_module
class BatchMatmulModule:
@T.prim_func
def main(
a: T.handle,
b: T.handle,
c: T.handle,
) -> None:
T.func_attr({"global_symbol": "main", "tir.noalias": True})
A = T.match_buffer(a, [16, 128, 128])
B = T.match_buffer(b, [16, 128, 128])
C = T.match_buffer(c, [16, 128, 128])
for n, i, j, k in T.grid(16, 128, 128, 128):
with T.block("matmul"): |
vn, vi, vj, vk = T.axis.remap("SSSR", [n, i, j, k])
with T.init():
C[vn, vi, vj] = 0.0
C[vn, vi, vj] = C[vn, vi, vj] + A[vn, vi, vk] * B[vn, vj, vk]
def _schedule_matmul(sch: Schedule):
block = sch.get_block("matmul")
i, j, k = sch.get_loops(block=block)
i_0, i_1, i_2, i_3 = sch.split(loop=i, factors=[2, 4, 64, 2])
j_0, j_1, j_2, j_3 = sch.split(loop=j, factors=[4, 64, 2, 2])
k_0, k_1 = sch.split(loop=k, factors=[32, 32])
sch.reorder(i_0, j_0, i_1, j_1, k_0, i_2, j_2, k_1, i_3, j_3)
def _schedule_batch_matmul(sch: Schedule):
block = sch.get_block("matmul")
i, j, k, t = sch.get_loops(block=block)
i_0, i_1, i_2, i_3 = sch.split(loop=i, factors=[2, 2, 2, 2])
j_0, j_1, j_2, j_3 = sch.split(loop=j, factors=[2, 4, 64, 2])
k_0, k_1 = sch.split(loop=k, factors=[32, 32])
t_0, t_1 = sch.split(loop=t, factors=[2, 512])
sch.reorder(i_0, j_0, i_1, j_1, k_0, i_2, j_2, k_1, i_3, j_3, t_0, t_1)
@ms.derived_object |
class MyTaskScheduler(ms.task_scheduler.PyTaskScheduler):
done: Set = set()
def next_task_id(self) -> int:
tasks = self._outer().tasks_
while len(self.done) != len(tasks):
x = random.randint(0, len(tasks) - 1)
task = tasks[x]
if not task.is_terminated:
"""Calling base func via following route:
Python side:
PyTaskScheduler does not have `_touch_task`
Call TaskScheduler's `touch_task`, which calls ffi
C++ side:
The ffi calls TaskScheduler's `touch_task`
But it is overridden in PyTaskScheduler
PyTaskScheduler checks if the function is overridden in python
If not, it returns the TaskScheduler's vtable, calling
TaskScheduler::TouchTask
"""
if task.runner_futures is not None:
self.join_running_task(x)
return x
self.done.add(x)
return -1
def test_meta_schedule_task_scheduler_single():
num_trials_per_iter = 3
max_trials_per_task = 10
database = ms.database.MemoryDatabase()
round_robin = ms.task_scheduler.RoundRobin()
round_robin.tune(
[
ms.TuneContext(
MatmulModule,
target=tvm.target.Target("llvm"),
space_generator=_schedule_matmul,
search_strategy=ms.search_strategy.ReplayTrace(),
task_name="Test",
rand_state=42,
)
],
[1.0],
max_trials_global=num_trials_per_iter,
max_trials_per_task=max_trials_per_task,
num_trials_per_iter=64,
builder=DummyBuilder(),
runner=DummyRunner(),
database=database,
measure_callbacks=[ms.measure_callback.AddToDatabase()],
cost_model=None,
)
assert len(database) == max_trials_per_task
def test_meta_schedule_task_scheduler_mult |
iple():
num_trials_per_iter = 6
max_trials_per_task = 101
tasks = [
ms.TuneContext(
MatmulModule,
target=tvm.target.Target("llvm"),
space_generator=_schedule_matmul,
search_strategy=ms.search_strategy.ReplayTrace(),
task_name="Matmul",
rand_state=42,
),
ms.TuneContext(
MatmulReluModule,
target=tvm.target.Target("llvm"),
space_generator=_schedule_matmul,
search_strategy=ms.search_strategy.ReplayTrace(),
task_name="MatmulRelu",
rand_state=0xDEADBEEF,
),
ms.TuneContext(
BatchMatmulModule,
target=tvm.target.Target("llvm"),
space_generator=_schedule_batch_matmul,
search_strategy=ms.search_strategy.ReplayTrace(),
task_name="BatchMatmul",
rand_state=0x114514,
),
]
database = ms.database.MemoryDatabase()
round_robin = ms.task_scheduler.RoundRobin()
round_robin.tune(
tasks,
[1.0, 1.0, 1.0],
builder=DummyBuilder(),
runner=DummyRunner(),
database=database,
measure_callbacks=[ms.measure_callback.AddToDatabase()],
max_trials_global=max_trials_per_task * len(tasks),
max_trials_per_task=max_trials_per_task,
num_trials_per_iter=num_trials_per_iter,
cost_model=None,
)
assert len(database) == max_trials_per_task * len(tasks)
for task in tasks:
assert (
len(
database.get_top_k(
database.commit_workload(task.mod),
100000,
)
)
== max_trials_per_task
)
def test_meta_schedule_task_scheduler_NIE():
@ms.derived_object |
class NIETaskScheduler(ms.task_scheduler.PyTaskScheduler):
pass
with pytest.raises(ValueError, match="next_task_id is not defined"):
scheduler = NIETaskScheduler()
scheduler.next_task_id()
def test_meta_schedule_task_scheduler_avoid_cyclic():
scheduler = MyTaskScheduler()
test = weakref.ref(scheduler)
del scheduler
assert test() is None
def test_meta_schedule_task_scheduler_override_next_task_id_only():
max_trials_per_task = 101
tasks = [
ms.TuneContext(
MatmulModule,
target=tvm.target.Target("llvm"),
space_generator=_schedule_matmul,
search_strategy=ms.search_strategy.ReplayTrace(),
task_name="Matmul",
rand_state=42,
),
ms.TuneContext(
MatmulReluModule,
target=tvm.target.Target("llvm"),
space_generator=_schedule_matmul,
search_strategy=ms.search_strategy.ReplayTrace(),
task_name="MatmulRelu",
rand_state=0xDEADBEEF,
),
ms.TuneContext(
BatchMatmulModule,
target=tvm.target.Target("llvm"),
space_generator=_schedule_batch_matmul,
search_strategy=ms.search_strategy.ReplayTrace(),
task_name="BatchMatmul",
rand_state=0x114514,
),
]
database = ms.database.MemoryDatabase()
scheduler = MyTaskScheduler()
scheduler.tune(
tasks,
task_weights=[1.0] * len(tasks),
builder=DummyBuilder(),
runner=DummyRunner(),
database=database,
measure_callbacks=[ms.measure_callback.AddToDatabase()],
max_trials_global=max_trials_per_task * len(tasks),
max_trials_per_task=max_trials_per_task,
num_trials_per_iter=6,
cost_model=None,
)
assert len(database) == max_trials_per_task * len(tasks)
for task in tasks:
assert (
len(
database.get_top_k(
database.commit_workloa |
d(task.mod),
100000,
)
)
== max_trials_per_task
)
def test_meta_schedule_task_scheduler_multiple_gradient_based():
max_trials_per_task = 101
tasks = [
ms.TuneContext(
MatmulModule,
target=tvm.target.Target("llvm"),
space_generator=_schedule_matmul,
search_strategy=ms.search_strategy.ReplayTrace(),
task_name="Matmul",
rand_state=42,
),
ms.TuneContext(
MatmulReluModule,
target=tvm.target.Target("llvm"),
space_generator=_schedule_matmul,
search_strategy=ms.search_strategy.ReplayTrace(),
task_name="MatmulRelu",
rand_state=0xDEADBEEF,
),
ms.TuneContext(
BatchMatmulModule,
target=tvm.target.Target("llvm"),
space_generator=_schedule_batch_matmul,
search_strategy=ms.search_strategy.ReplayTrace(),
task_name="BatchMatmul",
rand_state=0x114514,
),
]
database = ms.database.MemoryDatabase()
gradient_based = ms.task_scheduler.GradientBased()
gradient_based.tune(
tasks,
task_weights=[1.0, 1.0, 1.0],
builder=DummyBuilder(),
runner=DummyRunner(),
database=database,
measure_callbacks=[ms.measure_callback.AddToDatabase()],
max_trials_global=max_trials_per_task * len(tasks),
max_trials_per_task=max_trials_per_task,
num_trials_per_iter=6,
cost_model=None,
)
assert len(database) == max_trials_per_task * len(tasks)
for task in tasks:
assert (
len(database.get_top_k(database.commit_workload(task.mod), 10000))
== max_trials_per_task
)
if __name__ == "__main__":
test_meta_schedule_task_scheduler_single()
test_meta_schedule_task_scheduler_multiple()
test_meta_schedule_task_scheduler_NIE()
test_meta_schedule_task_scheduler_avoid_cyclic() |
test_meta_schedule_task_scheduler_override_next_task_id_only()
test_meta_schedule_task_scheduler_multiple_gradient_based() |
import pytest |
import tvm |
import tvm.testing |
import tvm.meta_schedule as ms
from tvm.script |
import tir as T
from tvm.tir |
import Schedule, floormod, floordiv
from tvm.tir.tensor_intrin.cuda |
import *
from tvm.target |
import Target
from tvm.target.codegen |
import llvm_lookup_intrinsic_id
@tvm.script.ir_module
class Dense:
@T.prim_func
def main(
p0: T.Buffer[(128, 128), "float32"],
p1: T.Buffer[(128, 128), "float32"],
T_matmul_NT: T.Buffer[(128, 128), "float32"],
) -> None:
T.func_attr({"layout_free_buffers": [1], "tir.noalias": True, "global_symbol": "main"})
for i0, i1, i2 in T.grid(128, 128, 128):
with T.block("T_matmul_NT"):
i, j, k = T.axis.remap("SSR", [i0, i1, i2])
T.reads(p0[i, k], p1[j, k])
T.writes(T_matmul_NT[i, j])
T.block_attr({"layout_free_placeholders": []})
with T.init():
T_matmul_NT[i, j] = T.float32(0)
T_matmul_NT[i, j] = T_matmul_NT[i, j] + p0[i, k] * p1[j, k]
@tvm.script.ir_module
class DenseAdd:
@T.prim_func
def main(
p0: T.Buffer[(128, 128), "float32"],
p1: T.Buffer[(128, 128), "float32"],
T_add: T.Buffer[(128, 128), "float32"],
) -> None:
T.func_attr({"global_symbol": "main", "tir.noalias": True, "layout_free_buffers": [1]})
T_matmul_NT = T.alloc_buffer([128, 128], dtype="float32")
compile_engine_const = T.alloc_buffer([], dtype="float32")
for i0, i1, i2 in T.grid(128, 128, 128):
with T.block("T_matmul_NT"):
i, j, k = T.axis.remap("SSR", [i0, i1, i2])
T.reads(p0[i, k], p1[j, k])
T.writes(T_matmul_NT[i, j])
T.block_attr({"layout_free_placeholders": []})
with T.init():
T_matmul_NT[i, j] = T.float32(0)
T_matmul_NT[i, j] = T_matmul_NT[i, j] + p0[i, k] * p1[j, k]
with T.block("compile_engine_const"):
vi = T.axis.spatial(1, 0)
T.reads()
T.writes(compile_engine_const[()])
compile_engine_const[()] = T.float32(1)
for i0, i1 in T.grid(128, 128):
with T |
.block("T_add"):
ax0, ax1 = T.axis.remap("SS", [i0, i1])
T.reads(T_matmul_NT[ax0, ax1], compile_engine_const[()])
T.writes(T_add[ax0, ax1])
T_add[ax0, ax1] = T_matmul_NT[ax0, ax1] + compile_engine_const[()]
@tvm.script.ir_module
class DenseAdd_scheduled_cpu:
@T.prim_func
def main(
p0: T.Buffer[(128, 128), "float32"],
p1: T.Buffer[(128, 128), "float32"],
T_add: T.Buffer[(128, 128), "float32"],
) -> None:
T.func_attr({"global_symbol": "main", "tir.noalias": True, "layout_free_buffers": [1]})
T_matmul_NT_global = T.alloc_buffer([128, 128], dtype="float32")
p1_global = T.alloc_buffer([2, 128, 64], dtype="float32")
for ax0, ax1 in T.grid(128, 128):
with T.block("p1_global"):
v0, v1 = T.axis.remap("SS", [ax0, ax1])
T.reads(p1[v0, v1])
T.writes(p1_global[v0
T.block_attr({"meta_schedule.layout_rewrite_preproc": 1})
p1_global[v0
for i0_0_i1_0_fused_fused in T.parallel(4):
for i0_1, i1_1 in T.grid(8, 1):
for i0_2_init, i1_2_init, i0_3_init in T.grid(4, 1, 2):
for i1_3_fused_init in T.vectorized(64):
with T.block("T_matmul_NT_init"):
i = T.axis.spatial(
128,
i0_0_i1_0_fused_fused
+ i0_1 * 8
+ i0_2_init * 2
+ i0_3_init,
)
j = T.axis.spatial(
128,
i0_0_i1_0_fused_fused % 2 * 64
+ i1_1 * 64
+ i1_2_init * 64
+ i1_3_fused_init,
)
T.reads() |
T.writes(T_matmul_NT_global[i, j])
T.block_attr(
{
"layout_free_placeholders": [],
"meta_schedule.tiling_structure": "SSRSRS",
}
)
T_matmul_NT_global[i, j] = T.float32(0)
for i2_0, i0_2, i1_2, i2_1, i0_3 in T.grid(128, 4, 1, 1, 2):
for i1_3_fused in T.vectorized(64):
with T.block("T_matmul_NT_update"):
i = T.axis.spatial(
128, i0_0_i1_0_fused_fused
)
j = T.axis.spatial(
128,
i0_0_i1_0_fused_fused % 2 * 64 + i1_1 * 64 + i1_2 * 64 + i1_3_fused,
)
k = T.axis.reduce(128, i2_0 + i2_1)
T.reads(
T_matmul_NT_global[i, j], p0[i, k], p1_global[j
)
T.writes(T_matmul_NT_global[i, j])
T.block_attr(
{
"layout_free_placeholders": [],
"meta_schedule.tiling_structure": "SSRSRS",
}
)
T_matmul_NT_global[i, j] = (
T_matmul_NT_global[i, j] + p0[i, k] * p1_global[j
)
for ax0 in T.serial(64):
for ax1_fused in T.vectorized(64):
with T.block("T_matmul_NT_global"):
v0 = T.axis.spatial(128, i0_0_i1_0_fused_fused
v1 = T.axis.spatial(128, i0_0_i1_0_fused_fused % 2 * 64 + ax1_fused)
T.reads(T_matmul_NT_glob |
al[v0, v1])
T.writes(T_add[v0, v1])
T_add[v0, v1] = T_matmul_NT_global[v0, v1] + T.float32(1)
@tvm.script.ir_module
class DenseAdd_cpu_no_write_cache:
@T.prim_func
def main(p0: T.Buffer[(128, 128), "float32"], p1: T.Buffer[(128, 128), "float32"], T_add: T.Buffer[(128, 128), "float32"]) -> None:
T.func_attr({"global_symbol": "main", "tir.noalias": True, "layout_free_buffers": [1]})
T_matmul_NT = T.alloc_buffer([128, 128], dtype="float32")
p1_global = T.alloc_buffer([8, 4, 16, 32], dtype="float32")
for ax0, ax1 in T.grid(128, 128):
with T.block("p1_global"):
v0, v1 = T.axis.remap("SS", [ax0, ax1])
T.reads(p1[v0, v1])
T.writes(p1_global[v1
T.block_attr({"meta_schedule.layout_rewrite_preproc":1})
p1_global[v1
for i0_0_i1_0_i0_1_i1_1_fused in T.parallel(16, annotations={"pragma_auto_unroll_max_step":16, "pragma_unroll_explicit":1}):
for i0_2_init, i1_2_init, i0_3_init in T.grid(4, 4, 2):
for i1_3_fused_init in T.vectorized(32):
with T.block("T_matmul_NT_init"):
i = T.axis.spatial(128, i0_0_i1_0_i0_1_i1_1_fused
j = T.axis.spatial(128, i1_2_init * 32 + i1_3_fused_init)
T.reads()
T.writes(T_matmul_NT[i, j])
T.block_attr({"layout_free_placeholders":[], "meta_schedule.tiling_structure":"SSRSRS"})
T_matmul_NT[i, j] = T.float32(0)
for i2_0, i0_2, i1_2, i2_1, i0_3 in T.grid(8, 4, 4, 16, 2):
for i1_3_fused in T.vectorized(32):
with T.block("T_matmul_NT_update"):
i = T.axis.spatial(128, i0_0_i1_0_i0_1_i1_1_fused
j = T.axis.spatial(128, i1_2 * 32 + i1_3_fused)
k = T.axis.reduce(128, i2_0 * 16 + i2_1) |
T.reads(T_matmul_NT[i, j], p0[i, k], p1_global[k
T.writes(T_matmul_NT[i, j])
T.block_attr({"layout_free_placeholders":[], "meta_schedule.tiling_structure":"SSRSRS"})
T_matmul_NT[i, j] = T_matmul_NT[i, j] + p0[i, k] * p1_global[k
for i0_i1_fused in T.parallel(16384):
with T.block("T_add"):
ax0 = T.axis.spatial(128, i0_i1_fused
ax1 = T.axis.spatial(128, i0_i1_fused % 128)
T.reads(T_matmul_NT[ax0, ax1])
T.writes(T_add[ax0, ax1])
T_add[ax0, ax1] = T_matmul_NT[ax0, ax1] + T.float32(1)
@tvm.script.ir_module
class DenseAdd_scheduled_gpu:
@T.prim_func
def main(
p0: T.Buffer[(128, 128), "float32"],
p1: T.Buffer[(128, 128), "float32"],
T_add: T.Buffer[(128, 128), "float32"],
) -> None:
T.func_attr({"global_symbol": "main", "tir.noalias": True, "layout_free_buffers": [1]})
T_matmul_NT_local = T.alloc_buffer([128, 128], dtype="float32", scope="local")
p0_shared = T.alloc_buffer([128, 128], dtype="float32", scope="shared")
p1_shared = T.alloc_buffer([128, 128], dtype="float32", scope="shared")
for i0_0_i1_0_fused in T.thread_binding(
32,
thread="blockIdx.x",
annotations={"pragma_auto_unroll_max_step": 64, "pragma_unroll_explicit": 1},
):
for i0_1_i1_1_fused in T.thread_binding(1, thread="vthread.x"):
for i0_2_i1_2_fused in T.thread_binding(128, thread="threadIdx.x"):
for i0_3_init, i1_3_init, i0_4_init, i1_4_init in T.grid(1, 4, 1, 1):
with T.block("T_matmul_NT_init"):
i = T.axis.spatial(
128,
i0_0_i1_0_fused
+ i0_2_i1_2_fused
+ i0_3_init |
+ i0_4_init,
)
j = T.axis.spatial(
128,
i1_4_init
+ i0_0_i1_0_fused % 4 * 32
+ i0_2_i1_2_fused % 8 * 4
+ i1_3_init,
)
T.reads()
T.writes(T_matmul_NT_local[i, j])
T.block_attr(
{
"layout_free_placeholders": [],
"meta_schedule.thread_extent_high_inclusive": 256,
"meta_schedule.thread_extent_low_inclusive": 16,
"meta_schedule.tiling_structure": "SSSRRSRS",
}
)
T_matmul_NT_local[i, j] = T.float32(0)
for i2_0 in T.serial(32):
for ax0_ax1_fused_0 in T.serial(1):
for ax0_ax1_fused_1 in T.thread_binding(128, thread="threadIdx.x"):
for ax0_ax1_fused_2 in T.vectorized(2):
with T.block("p0_shared"):
T.where(
(ax0_ax1_fused_0 * 128 + ax0_ax1_fused_1) * 2
+ ax0_ax1_fused_2
< 64
)
v0 = T.axis.spatial(
128,
i0_0_i1_0_fused
+ (
ax0_ax1_fused_0 * 256
+ ax0_ax1_fused_1 * 2
+ ax0_ax1_fuse |
d_2
)
)
v1 = T.axis.spatial(
128,
i2_0 * 4
+ (
ax0_ax1_fused_0 * 256
+ ax0_ax1_fused_1 * 2
+ ax0_ax1_fused_2
)
% 4,
)
T.reads(p0[v0, v1])
T.writes(p0_shared[v0, v1])
p0_shared[v0, v1] = p0[v0, v1]
for ax0_ax1_fused_0 in T.serial(1):
for ax0_ax1_fused_1 in T.thread_binding(128, thread="threadIdx.x"):
for ax0_ax1_fused_2 in T.vectorized(4):
with T.block("p1_shared"):
T.where(
(ax0_ax1_fused_0 * 128 + ax0_ax1_fused_1) * 4
+ ax0_ax1_fused_2
< 128
)
v0 = T.axis.spatial(
128,
i0_0_i1_0_fused % 4 * 32
+ (
ax0_ax1_fused_0 * 512
+ ax0_ax1_fused_1 * 4
+ ax0_ax1_fused_2
)
) |
v1 = T.axis.spatial(
128,
i2_0 * 4
+ (
ax0_ax1_fused_0 * 512
+ ax0_ax1_fused_1 * 4
+ ax0_ax1_fused_2
)
% 4,
)
T.reads(p1[v0, v1])
T.writes(p1_shared[v0, v1])
p1_shared[v0, v1] = p1[v0, v1]
for i2_1, i0_3, i1_3, i2_2, i0_4, i1_4 in T.grid(1, 1, 4, 4, 1, 1):
with T.block("T_matmul_NT_update"):
i = T.axis.spatial(
128,
i0_0_i1_0_fused
)
j = T.axis.spatial(
128,
i1_4
+ i0_0_i1_0_fused % 4 * 32
+ i0_2_i1_2_fused % 8 * 4
+ i1_3,
)
k = T.axis.reduce(128, i2_0 * 4 + i2_1 * 4 + i2_2)
T.reads(T_matmul_NT_local[i, j], p0_shared[i, k], p1_shared[j, k])
T.writes(T_matmul_NT_local[i, j])
T.block_attr(
{
"layout_free_placeholders": [],
"meta_schedule.thread_extent_high_inclusive": 256,
"meta_schedule.thread_extent_low_inclusive": 16,
"meta_ |
schedule.tiling_structure": "SSSRRSRS",
}
)
T_matmul_NT_local[i, j] = (
T_matmul_NT_local[i, j] + p0_shared[i, k] * p1_shared[j, k]
)
for ax0, ax1 in T.grid(1, 4):
with T.block("T_matmul_NT_local"):
v0 = T.axis.spatial(
128, i0_0_i1_0_fused
)
v1 = T.axis.spatial(
128, i0_0_i1_0_fused % 4 * 32 + i0_2_i1_2_fused % 8 * 4 + ax1
)
T.reads(T_matmul_NT_local[v0, v1])
T.writes(T_add[v0, v1])
T_add[v0, v1] = T_matmul_NT_local[v0, v1] + T.float32(1)
@tvm.script.ir_module
class Conv2dInt8:
@T.prim_func
def main(p0: T.Buffer[(16, 56, 56, 64), "int8"], p1: T.Buffer[(256, 1, 1, 64), "int8"], p2: T.Buffer[(1, 1, 1, 256), "int32"], p3: T.Buffer[(1, 1, 1, 256), "int32"], p4: T.Buffer[(1, 1, 1, 256), "int64"], p5: T.Buffer[(1, 1, 1, 256), "int64"], p6: T.Buffer[(1, 1, 1, 256), "int64"], p7: T.Buffer[(), "int32"], p8: T.Buffer[1, "int32"], compute: T.Buffer[(16, 56, 56, 256), "int32"]) -> None:
T.func_attr({"tir.noalias": True, "global_symbol": "main"})
pad_temp = T.alloc_buffer([16, 56, 56, 64], dtype="int8")
conv2d_nhwc = T.alloc_buffer([16, 56, 56, 256], dtype="int32")
T_subtract = T.alloc_buffer([16, 56, 56, 256], dtype="int32")
T_add = T.alloc_buffer([16, 56, 56, 256], dtype="int32")
T_cast = T.alloc_buffer([16, 56, 56, 256], dtype="int64")
T_multiply = T.alloc_buffer([16, 56, 56, 256], dtype="int64")
T_add_1 = T.alloc_buffer([16, 56, 56, 256], dtype="int64")
T_right_shift = T.alloc_buffer([16, 56, 56, 256], dtype="int64")
T_cast_1 = T.alloc_buffer |
([16, 56, 56, 256], dtype="int32")
T_add_2 = T.alloc_buffer([16, 56, 56, 256], dtype="int32")
compute_1 = T.alloc_buffer([16, 56, 56, 256], dtype="int32")
T_cast_2 = T.alloc_buffer([16, 56, 56, 256], dtype="uint8")
T_cast_3 = T.alloc_buffer([16, 56, 56, 256], dtype="int32")
T_subtract_1 = T.alloc_buffer([16, 56, 56, 256], dtype="int32")
for i0, i1, i2, i3 in T.grid(16, 56, 56, 64):
with T.block("pad_temp"):
i0_1, i1_1, i2_1, i3_1 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(p0[i0_1, i1_1, i2_1, i3_1])
T.writes(pad_temp[i0_1, i1_1, i2_1, i3_1])
pad_temp[i0_1, i1_1, i2_1, i3_1] = p0[i0_1, i1_1, i2_1, i3_1]
for i0, i1, i2, i3, i4, i5, i6 in T.grid(16, 56, 56, 256, 1, 1, 64):
with T.block("conv2d_nhwc"):
nn, yy, xx, ff, ry, rx, rc = T.axis.remap("SSSSRRR", [i0, i1, i2, i3, i4, i5, i6])
T.reads(pad_temp[nn, yy + ry, xx + rx, rc], p1[ff, ry, rx, rc])
T.writes(conv2d_nhwc[nn, yy, xx, ff])
with T.init():
conv2d_nhwc[nn, yy, xx, ff] = 0
conv2d_nhwc[nn, yy, xx, ff] = conv2d_nhwc[nn, yy, xx, ff] + T.cast(pad_temp[nn, yy + ry, xx + rx, rc], "int32") * T.cast(p1[ff, ry, rx, rc], "int32")
for i0, i1, i2, i3 in T.grid(16, 56, 56, 256):
with T.block("T_subtract"):
ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(conv2d_nhwc[ax0, ax1, ax2, ax3], p2[0, 0, 0, ax3])
T.writes(T_subtract[ax0, ax1, ax2, ax3])
T_subtract[ax0, ax1, ax2, ax3] = conv2d_nhwc[ax0, ax1, ax2, ax3] - p2[0, 0, 0, ax3]
for i0, i1, i2, i3 in T.grid(16, 56, 56, 256):
with T.block("T_add"):
ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(T_subtract[ax0, ax1, ax2, ax3], p3[0, 0, 0, ax3])
T.writes(T_add[ax0, ax1, ax2, ax3]) |
T_add[ax0, ax1, ax2, ax3] = T_subtract[ax0, ax1, ax2, ax3] + p3[0, 0, 0, ax3]
for i0, i1, i2, i3 in T.grid(16, 56, 56, 256):
with T.block("T_cast"):
ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(T_add[ax0, ax1, ax2, ax3])
T.writes(T_cast[ax0, ax1, ax2, ax3])
T_cast[ax0, ax1, ax2, ax3] = T.cast(T_add[ax0, ax1, ax2, ax3], "int64")
for i0, i1, i2, i3 in T.grid(16, 56, 56, 256):
with T.block("T_multiply"):
ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(T_cast[ax0, ax1, ax2, ax3], p4[0, 0, 0, ax3])
T.writes(T_multiply[ax0, ax1, ax2, ax3])
T_multiply[ax0, ax1, ax2, ax3] = T_cast[ax0, ax1, ax2, ax3] * p4[0, 0, 0, ax3]
for i0, i1, i2, i3 in T.grid(16, 56, 56, 256):
with T.block("T_add_1"):
ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(T_multiply[ax0, ax1, ax2, ax3], p5[0, 0, 0, ax3])
T.writes(T_add_1[ax0, ax1, ax2, ax3])
T_add_1[ax0, ax1, ax2, ax3] = T_multiply[ax0, ax1, ax2, ax3] + p5[0, 0, 0, ax3]
for i0, i1, i2, i3 in T.grid(16, 56, 56, 256):
with T.block("T_right_shift"):
ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(T_add_1[ax0, ax1, ax2, ax3], p6[0, 0, 0, ax3])
T.writes(T_right_shift[ax0, ax1, ax2, ax3])
T_right_shift[ax0, ax1, ax2, ax3] = T.shift_right(T_add_1[ax0, ax1, ax2, ax3], p6[0, 0, 0, ax3], dtype="int64")
for i0, i1, i2, i3 in T.grid(16, 56, 56, 256):
with T.block("T_cast_1"):
ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(T_right_shift[ax0, ax1, ax2, ax3])
T.writes(T_cast_1[ax0, ax1, ax2, ax3])
T_cast_1[ax0, ax1, ax2, ax3] = T.cast(T_right_shift[ax0, ax1, ax2, ax3], "int32")
f |
or i0, i1, i2, i3 in T.grid(16, 56, 56, 256):
with T.block("T_add_2"):
ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(p7[()], T_cast_1[ax0, ax1, ax2, ax3])
T.writes(T_add_2[ax0, ax1, ax2, ax3])
T_add_2[ax0, ax1, ax2, ax3] = p7[()] + T_cast_1[ax0, ax1, ax2, ax3]
for i0, i1, i2, i3 in T.grid(16, 56, 56, 256):
with T.block("compute"):
i0_2, i1_2, i2_2, i3_2 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(T_add_2[i0_2, i1_2, i2_2, i3_2])
T.writes(compute_1[i0_2, i1_2, i2_2, i3_2])
compute_1[i0_2, i1_2, i2_2, i3_2] = T.max(T.min(T_add_2[i0_2, i1_2, i2_2, i3_2], 255), 0)
for i0_3, i1_3, i2_3, i3_3 in T.grid(16, 56, 56, 256):
with T.block("T_cast_2"):
ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0_3, i1_3, i2_3, i3_3])
T.reads(compute_1[ax0, ax1, ax2, ax3])
T.writes(T_cast_2[ax0, ax1, ax2, ax3])
T_cast_2[ax0, ax1, ax2, ax3] = T.cast(compute_1[ax0, ax1, ax2, ax3], "uint8")
for i0_4, i1_4, i2_4, i3_4 in T.grid(16, 56, 56, 256):
with T.block("T_cast_3"):
ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0_4, i1_4, i2_4, i3_4])
T.reads(T_cast_2[ax0, ax1, ax2, ax3])
T.writes(T_cast_3[ax0, ax1, ax2, ax3])
T_cast_3[ax0, ax1, ax2, ax3] = T.cast(T_cast_2[ax0, ax1, ax2, ax3], "int32")
for i0_5, i1_5, i2_5, i3_5 in T.grid(16, 56, 56, 256):
with T.block("T_subtract_1"):
ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0_5, i1_5, i2_5, i3_5])
T.reads(T_cast_3[ax0, ax1, ax2, ax3], p8[0])
T.writes(T_subtract_1[ax0, ax1, ax2, ax3])
T_subtract_1[ax0, ax1, ax2, ax3] = T_cast_3[ax0, ax1, ax2, ax3] - p8[0]
for i0_6, i1_6, i2_6, i3_6 in T.grid(16, 56, 56, 256):
with T.block("compute_1"):
i0_ |
7, i1_7, i2_7, i3_7 = T.axis.remap("SSSS", [i0_6, i1_6, i2_6, i3_6])
T.reads(T_subtract_1[i0_7, i1_7, i2_7, i3_7])
T.writes(compute[i0_7, i1_7, i2_7, i3_7])
compute[i0_7, i1_7, i2_7, i3_7] = T.q_multiply_shift(T_subtract_1[i0_7, i1_7, i2_7, i3_7], 1963325822, 31, 1, dtype="int32")
@tvm.script.ir_module
class Conv2dInt8_target:
@T.prim_func
def main(p0: T.Buffer[(16, 56, 56, 64), "int8"], p1: T.Buffer[(256, 1, 1, 64), "int8"], p2: T.Buffer[(1, 1, 1, 256), "int32"], p3: T.Buffer[(1, 1, 1, 256), "int32"], p4: T.Buffer[(1, 1, 1, 256), "int64"], p5: T.Buffer[(1, 1, 1, 256), "int64"], p6: T.Buffer[(1, 1, 1, 256), "int64"], p7: T.Buffer[(), "int32"], p8: T.Buffer[1, "int32"], p9: T.Buffer[(16, 56, 56, 256), "int32"], compute: T.Buffer[(16, 56, 56, 256), "uint8"]) -> None:
T.func_attr({"global_symbol": "main", "tir.noalias": True})
pad_temp = T.alloc_buffer([16, 56, 56, 64], dtype="int8")
conv2d_nhwc = T.alloc_buffer([16, 56, 56, 256], dtype="int32")
T_subtract = T.alloc_buffer([16, 56, 56, 256], dtype="int32")
T_add = T.alloc_buffer([16, 56, 56, 256], dtype="int32")
T_cast = T.alloc_buffer([16, 56, 56, 256], dtype="int64")
T_multiply = T.alloc_buffer([16, 56, 56, 256], dtype="int64")
T_add_1 = T.alloc_buffer([16, 56, 56, 256], dtype="int64")
T_right_shift = T.alloc_buffer([16, 56, 56, 256], dtype="int64")
T_cast_1 = T.alloc_buffer([16, 56, 56, 256], dtype="int32")
T_add_2 = T.alloc_buffer([16, 56, 56, 256], dtype="int32")
compute_1 = T.alloc_buffer([16, 56, 56, 256], dtype="int32")
T_cast_2 = T.alloc_buffer([16, 56, 56, 256], dtype="uint8")
T_cast_3 = T.alloc_buffer([16, 56, 56, 256], dtype="int32")
T_subtract_1 = T.alloc_buffer([16, 56, 56, 256], dtype="int32")
compute_2 = T.alloc_buffer([16, 56, 56, 256], dtype="int32")
T_add_3 = T.alloc_buffer([16, 56, 56, 256], dtype="int32")
compute_3 = T.a |
lloc_buffer([16, 56, 56, 256], dtype="int32")
T_cast_4 = T.alloc_buffer([16, 56, 56, 256], dtype="uint8")
for i0, i1, i2, i3 in T.grid(16, 56, 56, 64):
with T.block("pad_temp"):
i0_1, i1_1, i2_1, i3_1 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(p0[i0_1, i1_1, i2_1, i3_1])
T.writes(pad_temp[i0_1, i1_1, i2_1, i3_1])
pad_temp[i0_1, i1_1, i2_1, i3_1] = p0[i0_1, i1_1, i2_1, i3_1]
for i0, i1, i2, i3, i4, i5, i6 in T.grid(16, 56, 56, 256, 1, 1, 64):
with T.block("conv2d_nhwc"):
nn, yy, xx, ff, ry, rx, rc = T.axis.remap("SSSSRRR", [i0, i1, i2, i3, i4, i5, i6])
T.reads(pad_temp[nn, yy + ry, xx + rx, rc], p1[ff, ry, rx, rc])
T.writes(conv2d_nhwc[nn, yy, xx, ff])
with T.init():
conv2d_nhwc[nn, yy, xx, ff] = 0
conv2d_nhwc[nn, yy, xx, ff] = conv2d_nhwc[nn, yy, xx, ff] + T.cast(pad_temp[nn, yy + ry, xx + rx, rc], "int32") * T.cast(p1[ff, ry, rx, rc], "int32")
for i0, i1, i2, i3 in T.grid(16, 56, 56, 256):
with T.block("T_subtract"):
ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(conv2d_nhwc[ax0, ax1, ax2, ax3], p2[0, 0, 0, ax3])
T.writes(T_subtract[ax0, ax1, ax2, ax3])
T_subtract[ax0, ax1, ax2, ax3] = conv2d_nhwc[ax0, ax1, ax2, ax3] - p2[0, 0, 0, ax3]
for i0, i1, i2, i3 in T.grid(16, 56, 56, 256):
with T.block("T_add"):
ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(T_subtract[ax0, ax1, ax2, ax3], p3[0, 0, 0, ax3])
T.writes(T_add[ax0, ax1, ax2, ax3])
T_add[ax0, ax1, ax2, ax3] = T_subtract[ax0, ax1, ax2, ax3] + p3[0, 0, 0, ax3]
for i0, i1, i2, i3 in T.grid(16, 56, 56, 256):
with T.block("T_cast"):
ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T |
.reads(T_add[ax0, ax1, ax2, ax3])
T.writes(T_cast[ax0, ax1, ax2, ax3])
T_cast[ax0, ax1, ax2, ax3] = T.cast(T_add[ax0, ax1, ax2, ax3], "int64")
for i0, i1, i2, i3 in T.grid(16, 56, 56, 256):
with T.block("T_multiply"):
ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(T_cast[ax0, ax1, ax2, ax3], p4[0, 0, 0, ax3])
T.writes(T_multiply[ax0, ax1, ax2, ax3])
T_multiply[ax0, ax1, ax2, ax3] = T_cast[ax0, ax1, ax2, ax3] * p4[0, 0, 0, ax3]
for i0, i1, i2, i3 in T.grid(16, 56, 56, 256):
with T.block("T_add_1"):
ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(T_multiply[ax0, ax1, ax2, ax3], p5[0, 0, 0, ax3])
T.writes(T_add_1[ax0, ax1, ax2, ax3])
T_add_1[ax0, ax1, ax2, ax3] = T_multiply[ax0, ax1, ax2, ax3] + p5[0, 0, 0, ax3]
for i0, i1, i2, i3 in T.grid(16, 56, 56, 256):
with T.block("T_right_shift"):
ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(T_add_1[ax0, ax1, ax2, ax3], p6[0, 0, 0, ax3])
T.writes(T_right_shift[ax0, ax1, ax2, ax3])
T_right_shift[ax0, ax1, ax2, ax3] = T.shift_right(T_add_1[ax0, ax1, ax2, ax3], p6[0, 0, 0, ax3], dtype="int64")
for i0, i1, i2, i3 in T.grid(16, 56, 56, 256):
with T.block("T_cast_1"):
ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(T_right_shift[ax0, ax1, ax2, ax3])
T.writes(T_cast_1[ax0, ax1, ax2, ax3])
T_cast_1[ax0, ax1, ax2, ax3] = T.cast(T_right_shift[ax0, ax1, ax2, ax3], "int32")
for i0, i1, i2, i3 in T.grid(16, 56, 56, 256):
with T.block("T_add_2"):
ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(p7[()], T_cast_1[ax0, ax1, ax2, ax3])
T.writes(T_add_2[ax0, ax1, a |
x2, ax3])
T_add_2[ax0, ax1, ax2, ax3] = p7[()] + T_cast_1[ax0, ax1, ax2, ax3]
for i0, i1, i2, i3 in T.grid(16, 56, 56, 256):
with T.block("compute"):
i0_2, i1_2, i2_2, i3_2 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(T_add_2[i0_2, i1_2, i2_2, i3_2])
T.writes(compute_1[i0_2, i1_2, i2_2, i3_2])
compute_1[i0_2, i1_2, i2_2, i3_2] = T.max(T.min(T_add_2[i0_2, i1_2, i2_2, i3_2], 255), 0)
for i0_3, i1_3, i2_3, i3_3 in T.grid(16, 56, 56, 256):
with T.block("T_cast_2"):
ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0_3, i1_3, i2_3, i3_3])
T.reads(compute_1[ax0, ax1, ax2, ax3])
T.writes(T_cast_2[ax0, ax1, ax2, ax3])
T_cast_2[ax0, ax1, ax2, ax3] = T.cast(compute_1[ax0, ax1, ax2, ax3], "uint8")
for i0_4, i1_4, i2_4, i3_4 in T.grid(16, 56, 56, 256):
with T.block("T_cast_3"):
ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0_4, i1_4, i2_4, i3_4])
T.reads(T_cast_2[ax0, ax1, ax2, ax3])
T.writes(T_cast_3[ax0, ax1, ax2, ax3])
T_cast_3[ax0, ax1, ax2, ax3] = T.cast(T_cast_2[ax0, ax1, ax2, ax3], "int32")
for i0_5, i1_5, i2_5, i3_5 in T.grid(16, 56, 56, 256):
with T.block("T_subtract_1"):
ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0_5, i1_5, i2_5, i3_5])
T.reads(T_cast_3[ax0, ax1, ax2, ax3], p8[0])
T.writes(T_subtract_1[ax0, ax1, ax2, ax3])
T_subtract_1[ax0, ax1, ax2, ax3] = T_cast_3[ax0, ax1, ax2, ax3] - p8[0]
for i0_6, i1_6, i2_6, i3_6 in T.grid(16, 56, 56, 256):
with T.block("compute_1"):
i0_7, i1_7, i2_7, i3_7 = T.axis.remap("SSSS", [i0_6, i1_6, i2_6, i3_6])
T.reads(T_subtract_1[i0_7, i1_7, i2_7, i3_7])
T.writes(compute_2[i0_7, i1_7, i2_7, i3_7])
compute_2[i0_7, i1_7, i2_7, i3_7] = T.q_multiply_shift(T_s |
ubtract_1[i0_7, i1_7, i2_7, i3_7], 1098990753, 31, 1, dtype="int32")
for i0_8, i1_8, i2_8, i3_8 in T.grid(16, 56, 56, 256):
with T.block("T_add_3"):
ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0_8, i1_8, i2_8, i3_8])
T.reads(compute_2[ax0, ax1, ax2, ax3], p9[ax0, ax1, ax2, ax3])
T.writes(T_add_3[ax0, ax1, ax2, ax3])
T_add_3[ax0, ax1, ax2, ax3] = compute_2[ax0, ax1, ax2, ax3] + p9[ax0, ax1, ax2, ax3]
for i0_9, i1_9, i2_9, i3_9 in T.grid(16, 56, 56, 256):
with T.block("compute_2"):
i0_10, i1_10, i2_10, i3_10 = T.axis.remap("SSSS", [i0_9, i1_9, i2_9, i3_9])
T.reads(T_add_3[i0_10, i1_10, i2_10, i3_10])
T.writes(compute_3[i0_10, i1_10, i2_10, i3_10])
compute_3[i0_10, i1_10, i2_10, i3_10] = T.max(T.min(T_add_3[i0_10, i1_10, i2_10, i3_10], 255), 0)
for i0_11, i1_11, i2_11, i3_11 in T.grid(16, 56, 56, 256):
with T.block("T_cast_4"):
ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0_11, i1_11, i2_11, i3_11])
T.reads(compute_3[ax0, ax1, ax2, ax3])
T.writes(T_cast_4[ax0, ax1, ax2, ax3])
T_cast_4[ax0, ax1, ax2, ax3] = T.cast(compute_3[ax0, ax1, ax2, ax3], "uint8")
for i0_12, i1_12, i2_12, i3_12 in T.grid(16, 56, 56, 256):
with T.block("compute_3"):
i0_13, i1_13, i2_13, i3_13 = T.axis.remap("SSSS", [i0_12, i1_12, i2_12, i3_12])
T.reads(T_cast_4[i0_13, i1_13, i2_13, i3_13])
T.writes(compute[i0_13, i1_13, i2_13, i3_13])
compute[i0_13, i1_13, i2_13, i3_13] = T.max(T.min(T_cast_4[i0_13, i1_13, i2_13, i3_13], T.uint8(255)), T.uint8(0))
@tvm.script.ir_module
class Conv2dInt8_tensorcore_scheduled:
@T.prim_func
def main(p0: T.Buffer[(16, 56, 56, 64), "int8"], p1: T.Buffer[(256, 1, 1, 64), "int8"], p2: T.Buffer[(1, 1, 1, 256), "int32"], p3: T.Buffer[(1, 1, 1, 256), "int32"], p4: T.Buffer[(1, 1, 1, 2 |
56), "int64"], p5: T.Buffer[(1, 1, 1, 256), "int64"], p6: T.Buffer[(1, 1, 1, 256), "int64"], p7: T.Buffer[(), "int32"], p8: T.Buffer[1, "int32"], p9: T.Buffer[(16, 56, 56, 256), "int32"], compute: T.Buffer[(16, 56, 56, 256), "uint8"]) -> None:
T.func_attr({"global_symbol": "main", "tir.noalias": True})
a0 = T.var("int32")
a1 = T.var("int32")
b0 = T.var("int32")
b1 = T.var("int32")
c0 = T.var("int32")
c1 = T.var("int32")
d0 = T.var("int32")
d0_1 = T.var("int32")
d0_2 = T.var("int32")
d0_3 = T.var("int32")
d1 = T.var("int32")
d1_1 = T.var("int32")
d1_2 = T.var("int32")
d1_3 = T.var("int32")
s0 = T.var("int32")
s0_1 = T.var("int32")
s0_2 = T.var("int32")
s1 = T.var("int32")
s1_1 = T.var("int32")
s1_2 = T.var("int32")
conv2d_nhwc_reindex_shared = T.alloc_buffer([50176, 256], dtype="int32", scope="shared")
conv2d_nhwc_reindex_shared_wmma_accumulator = T.alloc_buffer([50176, 256], dtype="int32", scope="wmma.accumulator")
pad_temp_reindex_shared = T.alloc_buffer([50176, 64], dtype="int8", scope="shared")
p1_reindex_shared = T.alloc_buffer([1, 1, 256, 64], dtype="int8", scope="shared")
pad_temp_reindex_shared_wmma_matrix_a = T.alloc_buffer([50176, 64], dtype="int8", scope="wmma.matrix_a")
p1_reindex_shared_wmma_matrix_b = T.alloc_buffer([1, 1, 256, 64], dtype="int8", scope="wmma.matrix_b")
for ax2_0_0_ax3_0_0_fused in T.thread_binding(3136, thread="blockIdx.x", annotations={"pragma_auto_unroll_max_step":512, "pragma_unroll_explicit":1}):
for ax2_0_1_ax3_0_1_fused in T.thread_binding(1, thread="vthread.x"):
for ax2_0_2_ax3_0_2_fused in T.thread_binding(16, thread="threadIdx.x"):
for ax0_0, ax1_0 in T.grid(1, 1):
for ax2_0_3_init, ax3_0_3_init, ax2_0_4_init, ax3_0_4_init in T.grid(1, 1, 1, 1): |
with T.block("conv2d_nhwc_o_init"):
v2_o = T.axis.spatial(3136, ax2_0_0_ax3_0_0_fused
v3_o = T.axis.spatial(16, ax3_0_4_init + ax2_0_0_ax3_0_0_fused % 8 * 2 + ax2_0_2_ax3_0_2_fused % 2 + ax3_0_3_init)
T.reads()
T.writes(conv2d_nhwc_reindex_shared_wmma_accumulator[v2_o * 16 : v2_o * 16 + 16, v3_o * 16 : v3_o * 16 + 16])
T.block_attr({"meta_schedule.thread_extent_high_inclusive":1024, "meta_schedule.thread_extent_low_inclusive":32, "warp_execution":1})
C = T.match_buffer(conv2d_nhwc_reindex_shared_wmma_accumulator[v2_o * 16 : v2_o * 16 + 16, v3_o * 16 : v3_o * 16 + 16], [16, 16], dtype="int32", strides=[d1, d0], scope="wmma.accumulator", offset_factor=16)
T.evaluate(T.tvm_fill_fragment(C.data, 16, 16, 16, C.elem_offset
for ax4_0_0 in T.serial(2):
for ax0_ax1_fused_0 in T.serial(16):
for ax0_ax1_fused_1 in T.thread_binding(16, thread="threadIdx.x"):
for ax0_ax1_fused_2 in T.vectorized(16):
with T.block("pad_temp_reindex_shared"):
v0 = T.axis.spatial(50176, ax2_0_0_ax3_0_0_fused
v1 = T.axis.spatial(64, ax4_0_0 * 32 + (ax0_ax1_fused_0 * 256 + ax0_ax1_fused_1 * 16 + ax0_ax1_fused_2) % 32)
T.reads(p0[v0
T.writes(pad_temp_reindex_shared[v0, v1])
T.block_attr({"buffer_dim_align":[[0, 0, 32, 16]]})
pad_temp_reindex_shared[v0, v1] = p0[v0
for ax0_ax1_ax2_ax3_fused_0 in T.serial(8):
for ax0_ax1_ax2_ax3_fused_1 |
in T.thread_binding(16, thread="threadIdx.x"):
for ax0_ax1_ax2_ax3_fused_2 in T.vectorized(8):
with T.block("p1_reindex_shared"):
v0 = T.axis.spatial(1, 0)
v1 = T.axis.spatial(1, 0)
v2 = T.axis.spatial(256, ax2_0_0_ax3_0_0_fused % 8 * 32 + (ax0_ax1_ax2_ax3_fused_0 * 128 + ax0_ax1_ax2_ax3_fused_1 * 8 + ax0_ax1_ax2_ax3_fused_2)
v3 = T.axis.spatial(64, ax4_0_0 * 32 + (ax0_ax1_ax2_ax3_fused_0 * 128 + ax0_ax1_ax2_ax3_fused_1 * 8 + ax0_ax1_ax2_ax3_fused_2) % 32)
T.reads(p1[v2, v0, v1, v3])
T.writes(p1_reindex_shared[v0, v1, v2, v3])
T.block_attr({"buffer_dim_align":[[0, 2, 32, 16]]})
p1_reindex_shared[v0, v1, v2, v3] = p1[v2, v0, v1, v3]
for ax0_1, ax1_1, ax4_0_1 in T.grid(1, 1, 1):
for ax0_0_1, ax1_0_1 in T.grid(1, 2):
with T.block("pad_temp_reindex_shared_wmma.matrix_a_o"):
v0_o = T.axis.spatial(3136, ax2_0_0_ax3_0_0_fused
v1_o = T.axis.spatial(4, ax4_0_0 * 2 + ax1_0_1)
T.reads(pad_temp_reindex_shared[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16])
T.writes(pad_temp_reindex_shared_wmma_matrix_a[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16])
A = T.match_buffer(pad_temp_reindex_shared[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16], [16, 16], dtype="int8", strides=[s1, s0], scope="shared", offset_factor=16)
C_1 = T.match_buffer(pad_temp_rei |
ndex_shared_wmma_matrix_a[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16], [16, 16], dtype="int8", strides=[d1_1, d0_1], scope="wmma.matrix_a", offset_factor=16)
T.evaluate(T.tvm_load_matrix_sync(C_1.data, 16, 16, 16, C_1.elem_offset
for ax0, ax1, ax2_0, ax3_0 in T.grid(1, 1, 1, 2):
with T.block("p1_reindex_shared_wmma.matrix_b_o"):
v0 = T.axis.spatial(1, 0)
v1 = T.axis.spatial(1, 0)
v2_o = T.axis.spatial(16, ax2_0_0_ax3_0_0_fused % 8 * 2 + ax2_0_2_ax3_0_2_fused % 2)
v3_o = T.axis.spatial(4, ax4_0_0 * 2 + ax3_0)
T.reads(p1_reindex_shared[v0, v1, v2_o * 16 : v2_o * 16 + 16, v3_o * 16 : v3_o * 16 + 16])
T.writes(p1_reindex_shared_wmma_matrix_b[v0, v1, v2_o * 16 : v2_o * 16 + 16, v3_o * 16 : v3_o * 16 + 16])
A_1 = T.match_buffer(p1_reindex_shared[v0, v1, v2_o * 16 : v2_o * 16 + 16, v3_o * 16 : v3_o * 16 + 16], [16, 16], dtype="int8", strides=[s1_1, s0_1], scope="shared", offset_factor=16)
C_2 = T.match_buffer(p1_reindex_shared_wmma_matrix_b[v0, v1, v2_o * 16 : v2_o * 16 + 16, v3_o * 16 : v3_o * 16 + 16], [16, 16], dtype="int8", strides=[d1_2, d0_2], scope="wmma.matrix_b", offset_factor=16)
T.evaluate(T.tvm_load_matrix_sync(C_2.data, 16, 16, 16, C_2.elem_offset
for ax2_0_3, ax3_0_3, ax0_2, ax1_2, ax4_0_2, ax2_0_4, ax3_0_4 in T.grid(1, 1, 1, 1, 2, 1, 1):
with T.block("conv2d_nhwc_o_update"):
v0 = T.axis.reduce(1, 0)
v1 = T.axis.reduce(1, 0)
v2_o = T.axis.spatial(31 |
36, ax2_0_0_ax3_0_0_fused
v3_o = T.axis.spatial(16, ax3_0_4 + ax2_0_0_ax3_0_0_fused % 8 * 2 + ax2_0_2_ax3_0_2_fused % 2 + ax3_0_3)
v4_o = T.axis.reduce(4, ax4_0_0 * 2 + ax4_0_1 * 2 + ax4_0_2)
T.reads(conv2d_nhwc_reindex_shared_wmma_accumulator[v2_o * 16 : v2_o * 16 + 16, v3_o * 16 : v3_o * 16 + 16], pad_temp_reindex_shared_wmma_matrix_a[v2_o * 16 : v2_o * 16 + 16, v4_o * 16 : v4_o * 16 + 16], p1_reindex_shared_wmma_matrix_b[v0, v1, v3_o * 16 : v3_o * 16 + 16, v4_o * 16 : v4_o * 16 + 16])
T.writes(conv2d_nhwc_reindex_shared_wmma_accumulator[v2_o * 16 : v2_o * 16 + 16, v3_o * 16 : v3_o * 16 + 16])
T.block_attr({"meta_schedule.thread_extent_high_inclusive":1024, "meta_schedule.thread_extent_low_inclusive":32, "warp_execution":1})
A_2 = T.match_buffer(pad_temp_reindex_shared_wmma_matrix_a[v2_o * 16 : v2_o * 16 + 16, v4_o * 16 : v4_o * 16 + 16], [16, 16], dtype="int8", strides=[a1, a0], scope="wmma.matrix_a", offset_factor=16)
B = T.match_buffer(p1_reindex_shared_wmma_matrix_b[v0, v1, v3_o * 16 : v3_o * 16 + 16, v4_o * 16 : v4_o * 16 + 16], [16, 16], dtype="int8", strides=[b1, b0], scope="wmma.matrix_b", offset_factor=16)
C_3 = T.match_buffer(conv2d_nhwc_reindex_shared_wmma_accumulator[v2_o * 16 : v2_o * 16 + 16, v3_o * 16 : v3_o * 16 + 16], [16, 16], dtype="int32", strides=[c1, c0], scope="wmma.accumulator", offset_factor=16)
T.evaluate(T.tvm_mma_sync(C_3.data, C_3.elem_offset
for ax0_0, ax1_0 in T.grid(1, 1):
with T.block("conv2d_nhwc_reindex_shared_wmma.accumulator_o"):
v0_o = T.axis.spatial(3136, ax2_0_0_ax3_0_0_fused
v1_o = T.axis.spatial(16, ax2_0_0_ax3_0_0_ |
fused % 8 * 2 + ax2_0_2_ax3_0_2_fused % 2)
T.reads(conv2d_nhwc_reindex_shared_wmma_accumulator[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16])
T.writes(conv2d_nhwc_reindex_shared[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16])
A_3 = T.match_buffer(conv2d_nhwc_reindex_shared_wmma_accumulator[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16], [16, 16], dtype="int32", strides=[d1_3, d0_3], scope="wmma.accumulator", offset_factor=16)
C_4 = T.match_buffer(conv2d_nhwc_reindex_shared[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16], [16, 16], dtype="int32", strides=[s1_2, s0_2], scope="shared", offset_factor=16)
T.evaluate(T.tvm_store_matrix_sync(A_3.data, 16, 16, 16, A_3.elem_offset
for ax0, ax1_0 in T.grid(128, 2):
for ax1_1 in T.thread_binding(16, thread="threadIdx.x"):
with T.block("conv2d_nhwc_reindex_shared"):
v0 = T.axis.spatial(50176, ax2_0_0_ax3_0_0_fused
v1 = T.axis.spatial(256, ax2_0_0_ax3_0_0_fused % 8 * 32 + ax1_0 * 16 + ax1_1)
T.reads(p7[()], conv2d_nhwc_reindex_shared[v0, v1], p2[0, 0, 0, v1], p3[0, 0, 0, v1], p4[0, 0, 0, v1], p5[0, 0, 0, v1], p6[0, 0, 0, v1], p8[0], p9[v0
T.writes(compute[v0
compute[v0
@tvm.script.ir_module
class Conv2dInt8_NCHWc:
@T.prim_func
def main(p0: T.Buffer[(1, 32, 7, 7, 16), "uint8"], p1: T.Buffer[(128, 32, 1, 1, 4, 16, 4), "int8"], p2: T.Buffer[(1, 128, 1, 1, 16), "int32"], p3: T.Buffer[(1, 128, 1, 1, 16), "float32"], p4: T.Buffer[1, "float32"], p5: T.Buffer[(1, 128, 7, 7, 16), "int32"], compute: T.Buffer[(1, 128, 7, 7, 16), "uint8"]) -> None:
T.func_attr({"tir.noalias": True, "global_symbol": "main"})
compile_engine_const = T.alloc_buffer([], dtype="float3 |
2")
conv2d_NCHWc_int8 = T.alloc_buffer([1, 128, 7, 7, 16], dtype="int32")
T_add = T.alloc_buffer([1, 128, 7, 7, 16], dtype="int32")
T_cast = T.alloc_buffer([1, 128, 7, 7, 16], dtype="float32")
T_multiply = T.alloc_buffer([1, 128, 7, 7, 16], dtype="float32")
compile_engine_const_1 = T.alloc_buffer([], dtype="float32")
T_add_1 = T.alloc_buffer([1, 128, 7, 7, 16], dtype="float32")
T_floor = T.alloc_buffer([1, 128, 7, 7, 16], dtype="float32")
T_cast_1 = T.alloc_buffer([1, 128, 7, 7, 16], dtype="int32")
compute_1 = T.alloc_buffer([1, 128, 7, 7, 16], dtype="int32")
T_cast_2 = T.alloc_buffer([1, 128, 7, 7, 16], dtype="uint8")
T_cast_3 = T.alloc_buffer([1, 128, 7, 7, 16], dtype="float32")
T_subtract = T.alloc_buffer([1, 128, 7, 7, 16], dtype="float32")
T_multiply_1 = T.alloc_buffer([1, 128, 7, 7, 16], dtype="float32")
compile_engine_const_2 = T.alloc_buffer([], dtype="float32")
T_add_2 = T.alloc_buffer([1, 128, 7, 7, 16], dtype="float32")
T_floor_1 = T.alloc_buffer([1, 128, 7, 7, 16], dtype="float32")
T_cast_4 = T.alloc_buffer([1, 128, 7, 7, 16], dtype="int32")
T_add_3 = T.alloc_buffer([1, 128, 7, 7, 16], dtype="int32")
compute_2 = T.alloc_buffer([1, 128, 7, 7, 16], dtype="int32")
T_cast_5 = T.alloc_buffer([1, 128, 7, 7, 16], dtype="uint8")
with T.block("compile_engine_const"):
vi = T.axis.spatial(1, 0)
T.reads()
T.writes(compile_engine_const[()])
compile_engine_const[()] = T.float32(0.94537687301635742)
for i0, i1, i2, i3, i4, i5, i6, i7, i8, i9 in T.grid(1, 128, 7, 7, 16, 1, 1, 32, 4, 4):
with T.block("conv2d_NCHWc_int8"):
n, oc_chunk, oh, ow, oc_block, kh, kw, ic_outer, ic_f_inner, ic_s_inner = T.axis.remap("SSSSSRRRRR", [i0, i1, i2, i3, i4, i5, i6, i7, i8, i9])
T.reads(p0[n, ic_outer, oh + kh, ow + kw, ic_f_inner * 4 + ic_s_inner], p1[oc_chunk, ic_outer, |
kh, kw, ic_f_inner, oc_block, ic_s_inner])
T.writes(conv2d_NCHWc_int8[n, oc_chunk, oh, ow, oc_block])
T.block_attr({"schedule_rule":"meta_schedule.conv2d_NCHWc_int8", "workload":["conv2d_NCHWc_int8.x86", ["TENSOR", [1, 32, 7, 7, 16], "uint8"], ["TENSOR", [128, 32, 1, 1, 4, 16, 4], "int8"], [1, 1], [0, 0, 0, 0], [1, 1], "NCHW16c", "NCHW16c", "int32"]})
with T.init():
conv2d_NCHWc_int8[n, oc_chunk, oh, ow, oc_block] = 0
conv2d_NCHWc_int8[n, oc_chunk, oh, ow, oc_block] = conv2d_NCHWc_int8[n, oc_chunk, oh, ow, oc_block] + T.cast(p0[n, ic_outer, oh + kh, ow + kw, ic_f_inner * 4 + ic_s_inner], "int32") * T.cast(p1[oc_chunk, ic_outer, kh, kw, ic_f_inner, oc_block, ic_s_inner], "int32")
for i0, i1, i2, i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("T_add"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(conv2d_NCHWc_int8[ax0, ax1, ax2, ax3, ax4], p2[ax0, ax1, 0, 0, ax4])
T.writes(T_add[ax0, ax1, ax2, ax3, ax4])
T_add[ax0, ax1, ax2, ax3, ax4] = conv2d_NCHWc_int8[ax0, ax1, ax2, ax3, ax4] + p2[ax0, ax1, 0, 0, ax4]
for i0, i1, i2, i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("T_cast"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_add[ax0, ax1, ax2, ax3, ax4])
T.writes(T_cast[ax0, ax1, ax2, ax3, ax4])
T_cast[ax0, ax1, ax2, ax3, ax4] = T.cast(T_add[ax0, ax1, ax2, ax3, ax4], "float32")
for i0, i1, i2, i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("T_multiply"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_cast[ax0, ax1, ax2, ax3, ax4], p3[ax0, ax1, 0, 0, ax4])
T.writes(T_multiply[ax0, ax1, ax2, ax3, ax4])
T_multiply[ax0, ax1, ax2, ax3, ax4] = T_cast[ax0, ax1, ax2, ax3, ax4] * p3[ax0, ax1, |
0, 0, ax4]
with T.block("compile_engine_const_1"):
vi = T.axis.spatial(1, 0)
T.reads()
T.writes(compile_engine_const_1[()])
compile_engine_const_1[()] = T.float32(54.5)
for i0, i1, i2, i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("T_add_1"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_multiply[ax0, ax1, ax2, ax3, ax4], compile_engine_const_1[()])
T.writes(T_add_1[ax0, ax1, ax2, ax3, ax4])
T_add_1[ax0, ax1, ax2, ax3, ax4] = T_multiply[ax0, ax1, ax2, ax3, ax4] + compile_engine_const_1[()]
for i0, i1, i2, i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("T_floor"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_add_1[ax0, ax1, ax2, ax3, ax4])
T.writes(T_floor[ax0, ax1, ax2, ax3, ax4])
T_floor[ax0, ax1, ax2, ax3, ax4] = T.floor(T_add_1[ax0, ax1, ax2, ax3, ax4], dtype="float32")
for i0, i1, i2, i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("T_cast_1"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_floor[ax0, ax1, ax2, ax3, ax4])
T.writes(T_cast_1[ax0, ax1, ax2, ax3, ax4])
T_cast_1[ax0, ax1, ax2, ax3, ax4] = T.cast(T_floor[ax0, ax1, ax2, ax3, ax4], "int32")
for i0, i1, i2, i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("compute"):
i0_1, i1_1, i2_1, i3_1, i4_1 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_cast_1[i0_1, i1_1, i2_1, i3_1, i4_1])
T.writes(compute_1[i0_1, i1_1, i2_1, i3_1, i4_1])
compute_1[i0_1, i1_1, i2_1, i3_1, i4_1] = T.max(T.min(T_cast_1[i0_1, i1_1, i2_1, i3_1, i4_1], 255), 0)
for i0, i1, i2, i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("T_cast_2"):
ax0, ax1, |
ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(compute_1[ax0, ax1, ax2, ax3, ax4])
T.writes(T_cast_2[ax0, ax1, ax2, ax3, ax4])
T_cast_2[ax0, ax1, ax2, ax3, ax4] = T.cast(compute_1[ax0, ax1, ax2, ax3, ax4], "uint8")
for i0, i1, i2, i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("T_cast_3"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_cast_2[ax0, ax1, ax2, ax3, ax4])
T.writes(T_cast_3[ax0, ax1, ax2, ax3, ax4])
T_cast_3[ax0, ax1, ax2, ax3, ax4] = T.cast(T_cast_2[ax0, ax1, ax2, ax3, ax4], "float32")
for i0, i1, i2, i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("T_subtract"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_cast_3[ax0, ax1, ax2, ax3, ax4], p4[0])
T.writes(T_subtract[ax0, ax1, ax2, ax3, ax4])
T_subtract[ax0, ax1, ax2, ax3, ax4] = T_cast_3[ax0, ax1, ax2, ax3, ax4] - p4[0]
for i0, i1, i2, i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("T_multiply_1"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(compile_engine_const[()], T_subtract[ax0, ax1, ax2, ax3, ax4])
T.writes(T_multiply_1[ax0, ax1, ax2, ax3, ax4])
T_multiply_1[ax0, ax1, ax2, ax3, ax4] = compile_engine_const[()] * T_subtract[ax0, ax1, ax2, ax3, ax4]
with T.block("compile_engine_const_2"):
vi = T.axis.spatial(1, 0)
T.reads()
T.writes(compile_engine_const_2[()])
compile_engine_const_2[()] = T.float32(0.5)
for i0, i1, i2, i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("T_add_2"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_multiply_1[ax0, ax1, ax2, ax3, ax4], compile_engine_const_2[()]) |
T.writes(T_add_2[ax0, ax1, ax2, ax3, ax4])
T_add_2[ax0, ax1, ax2, ax3, ax4] = T_multiply_1[ax0, ax1, ax2, ax3, ax4] + compile_engine_const_2[()]
for i0, i1, i2, i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("T_floor_1"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_add_2[ax0, ax1, ax2, ax3, ax4])
T.writes(T_floor_1[ax0, ax1, ax2, ax3, ax4])
T_floor_1[ax0, ax1, ax2, ax3, ax4] = T.floor(T_add_2[ax0, ax1, ax2, ax3, ax4], dtype="float32")
for i0, i1, i2, i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("T_cast_4"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_floor_1[ax0, ax1, ax2, ax3, ax4])
T.writes(T_cast_4[ax0, ax1, ax2, ax3, ax4])
T_cast_4[ax0, ax1, ax2, ax3, ax4] = T.cast(T_floor_1[ax0, ax1, ax2, ax3, ax4], "int32")
for i0, i1, i2, i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("T_add_3"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_cast_4[ax0, ax1, ax2, ax3, ax4], p5[ax0, ax1, ax2, ax3, ax4])
T.writes(T_add_3[ax0, ax1, ax2, ax3, ax4])
T_add_3[ax0, ax1, ax2, ax3, ax4] = T_cast_4[ax0, ax1, ax2, ax3, ax4] + p5[ax0, ax1, ax2, ax3, ax4]
for i0, i1, i2, i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("compute_1"):
i0_2, i1_2, i2_2, i3_2, i4_2 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_add_3[i0_2, i1_2, i2_2, i3_2, i4_2])
T.writes(compute_2[i0_2, i1_2, i2_2, i3_2, i4_2])
compute_2[i0_2, i1_2, i2_2, i3_2, i4_2] = T.max(T.min(T_add_3[i0_2, i1_2, i2_2, i3_2, i4_2], 255), 0)
for i0_3, i1_3, i2_3, i3_3, i4_3 in T.grid(1, 128, 7, 7, 16):
with T.block("T_cast_5"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SS |
SSS", [i0_3, i1_3, i2_3, i3_3, i4_3])
T.reads(compute_2[ax0, ax1, ax2, ax3, ax4])
T.writes(T_cast_5[ax0, ax1, ax2, ax3, ax4])
T_cast_5[ax0, ax1, ax2, ax3, ax4] = T.cast(compute_2[ax0, ax1, ax2, ax3, ax4], "uint8")
for i0_4, i1_4, i2_4, i3_4, i4_4 in T.grid(1, 128, 7, 7, 16):
with T.block("compute_2"):
i0_5, i1_5, i2_5, i3_5, i4_5 = T.axis.remap("SSSSS", [i0_4, i1_4, i2_4, i3_4, i4_4])
T.reads(T_cast_5[i0_5, i1_5, i2_5, i3_5, i4_5])
T.writes(compute[i0_5, i1_5, i2_5, i3_5, i4_5])
compute[i0_5, i1_5, i2_5, i3_5, i4_5] = T.max(T.min(T_cast_5[i0_5, i1_5, i2_5, i3_5, i4_5], T.uint8(255)), T.uint8(0))
@tvm.script.ir_module
class Conv2dInt8_NCHWc_target:
@T.prim_func
def main(p0: T.Buffer[(1, 32, 7, 7, 16), "uint8"], p1: T.Buffer[(128, 32, 1, 1, 4, 16, 4), "int8"], p2: T.Buffer[(1, 128, 1, 1, 16), "int32"], p3: T.Buffer[(1, 128, 1, 1, 16), "float32"], p4: T.Buffer[1, "float32"], p5: T.Buffer[(1, 128, 7, 7, 16), "uint8"], T_cast: T.Buffer[(1, 128, 7, 7, 16), "int32"]) -> None:
T.func_attr({"global_symbol": "main", "tir.noalias": True})
compile_engine_const = T.alloc_buffer([], dtype="float32")
conv2d_NCHWc_int8 = T.alloc_buffer([1, 128, 7, 7, 16], dtype="int32")
T_add = T.alloc_buffer([1, 128, 7, 7, 16], dtype="int32")
T_cast_1 = T.alloc_buffer([1, 128, 7, 7, 16], dtype="float32")
T_multiply = T.alloc_buffer([1, 128, 7, 7, 16], dtype="float32")
compile_engine_const_1 = T.alloc_buffer([], dtype="float32")
T_add_1 = T.alloc_buffer([1, 128, 7, 7, 16], dtype="float32")
T_floor = T.alloc_buffer([1, 128, 7, 7, 16], dtype="float32")
T_cast_2 = T.alloc_buffer([1, 128, 7, 7, 16], dtype="int32")
compute = T.alloc_buffer([1, 128, 7, 7, 16], dtype="int32")
T_cast_3 = T.alloc_buffer([1, 128, 7, 7, 16], dtype="uint8")
T_cast_4 = T.alloc_buffer([1, 128, 7, 7, 16], dty |
pe="float32")
T_subtract = T.alloc_buffer([1, 128, 7, 7, 16], dtype="float32")
T_multiply_1 = T.alloc_buffer([1, 128, 7, 7, 16], dtype="float32")
compile_engine_const_2 = T.alloc_buffer([], dtype="float32")
T_add_2 = T.alloc_buffer([1, 128, 7, 7, 16], dtype="float32")
T_floor_1 = T.alloc_buffer([1, 128, 7, 7, 16], dtype="float32")
T_cast_5 = T.alloc_buffer([1, 128, 7, 7, 16], dtype="int32")
compile_engine_const_3 = T.alloc_buffer([], dtype="float32")
T_cast_6 = T.alloc_buffer([1, 128, 7, 7, 16], dtype="float32")
T_multiply_2 = T.alloc_buffer([1, 128, 7, 7, 16], dtype="float32")
compile_engine_const_4 = T.alloc_buffer([], dtype="float32")
T_add_3 = T.alloc_buffer([1, 128, 7, 7, 16], dtype="float32")
T_floor_2 = T.alloc_buffer([1, 128, 7, 7, 16], dtype="float32")
T_cast_7 = T.alloc_buffer([1, 128, 7, 7, 16], dtype="int32")
T_add_4 = T.alloc_buffer([1, 128, 7, 7, 16], dtype="int32")
compute_1 = T.alloc_buffer([1, 128, 7, 7, 16], dtype="int32")
T_cast_8 = T.alloc_buffer([1, 128, 7, 7, 16], dtype="uint8")
compute_2 = T.alloc_buffer([1, 128, 7, 7, 16], dtype="uint8")
with T.block("compile_engine_const"):
vi = T.axis.spatial(1, 0)
T.reads()
T.writes(compile_engine_const[()])
compile_engine_const[()] = T.float32(0.95489668846130371)
for i0, i1, i2, i3, i4, i5, i6, i7, i8, i9 in T.grid(1, 128, 7, 7, 16, 1, 1, 32, 4, 4):
with T.block("conv2d_NCHWc_int8"):
n, oc_chunk, oh, ow, oc_block, kh, kw, ic_outer, ic_f_inner, ic_s_inner = T.axis.remap("SSSSSRRRRR", [i0, i1, i2, i3, i4, i5, i6, i7, i8, i9])
T.reads(p0[n, ic_outer, oh + kh, ow + kw, ic_f_inner * 4 + ic_s_inner], p1[oc_chunk, ic_outer, kh, kw, ic_f_inner, oc_block, ic_s_inner])
T.writes(conv2d_NCHWc_int8[n, oc_chunk, oh, ow, oc_block])
T.block_attr({"schedule_rule":"meta_schedule.conv2d_NCHWc_int8", |
"workload":["conv2d_NCHWc_int8.x86", ["TENSOR", [1, 32, 7, 7, 16], "uint8"], ["TENSOR", [128, 32, 1, 1, 4, 16, 4], "int8"], [1, 1], [0, 0, 0, 0], [1, 1], "NCHW16c", "NCHW16c", "int32"]})
with T.init():
conv2d_NCHWc_int8[n, oc_chunk, oh, ow, oc_block] = 0
conv2d_NCHWc_int8[n, oc_chunk, oh, ow, oc_block] = conv2d_NCHWc_int8[n, oc_chunk, oh, ow, oc_block] + T.cast(p0[n, ic_outer, oh + kh, ow + kw, ic_f_inner * 4 + ic_s_inner], "int32") * T.cast(p1[oc_chunk, ic_outer, kh, kw, ic_f_inner, oc_block, ic_s_inner], "int32")
for i0, i1, i2, i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("T_add"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(conv2d_NCHWc_int8[ax0, ax1, ax2, ax3, ax4], p2[ax0, ax1, 0, 0, ax4])
T.writes(T_add[ax0, ax1, ax2, ax3, ax4])
T_add[ax0, ax1, ax2, ax3, ax4] = conv2d_NCHWc_int8[ax0, ax1, ax2, ax3, ax4] + p2[ax0, ax1, 0, 0, ax4]
for i0, i1, i2, i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("T_cast"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_add[ax0, ax1, ax2, ax3, ax4])
T.writes(T_cast_1[ax0, ax1, ax2, ax3, ax4])
T_cast_1[ax0, ax1, ax2, ax3, ax4] = T.cast(T_add[ax0, ax1, ax2, ax3, ax4], "float32")
for i0, i1, i2, i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("T_multiply"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_cast_1[ax0, ax1, ax2, ax3, ax4], p3[ax0, ax1, 0, 0, ax4])
T.writes(T_multiply[ax0, ax1, ax2, ax3, ax4])
T_multiply[ax0, ax1, ax2, ax3, ax4] = T_cast_1[ax0, ax1, ax2, ax3, ax4] * p3[ax0, ax1, 0, 0, ax4]
with T.block("compile_engine_const_1"):
vi = T.axis.spatial(1, 0)
T.reads()
T.writes(compile_engine_const_1[()])
compile_en |
gine_const_1[()] = T.float32(65.5)
for i0, i1, i2, i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("T_add_1"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_multiply[ax0, ax1, ax2, ax3, ax4], compile_engine_const_1[()])
T.writes(T_add_1[ax0, ax1, ax2, ax3, ax4])
T_add_1[ax0, ax1, ax2, ax3, ax4] = T_multiply[ax0, ax1, ax2, ax3, ax4] + compile_engine_const_1[()]
for i0, i1, i2, i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("T_floor"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_add_1[ax0, ax1, ax2, ax3, ax4])
T.writes(T_floor[ax0, ax1, ax2, ax3, ax4])
T_floor[ax0, ax1, ax2, ax3, ax4] = T.floor(T_add_1[ax0, ax1, ax2, ax3, ax4], dtype="float32")
for i0, i1, i2, i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("T_cast_1"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_floor[ax0, ax1, ax2, ax3, ax4])
T.writes(T_cast_2[ax0, ax1, ax2, ax3, ax4])
T_cast_2[ax0, ax1, ax2, ax3, ax4] = T.cast(T_floor[ax0, ax1, ax2, ax3, ax4], "int32")
for i0, i1, i2, i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("compute"):
i0_1, i1_1, i2_1, i3_1, i4_1 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_cast_2[i0_1, i1_1, i2_1, i3_1, i4_1])
T.writes(compute[i0_1, i1_1, i2_1, i3_1, i4_1])
compute[i0_1, i1_1, i2_1, i3_1, i4_1] = T.max(T.min(T_cast_2[i0_1, i1_1, i2_1, i3_1, i4_1], 255), 0)
for i0, i1, i2, i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("T_cast_2"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(compute[ax0, ax1, ax2, ax3, ax4])
T.writes(T_cast_3[ax0, ax1, ax2, ax3, ax4])
T |
_cast_3[ax0, ax1, ax2, ax3, ax4] = T.cast(compute[ax0, ax1, ax2, ax3, ax4], "uint8")
for i0, i1, i2, i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("T_cast_3"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_cast_3[ax0, ax1, ax2, ax3, ax4])
T.writes(T_cast_4[ax0, ax1, ax2, ax3, ax4])
T_cast_4[ax0, ax1, ax2, ax3, ax4] = T.cast(T_cast_3[ax0, ax1, ax2, ax3, ax4], "float32")
for i0, i1, i2, i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("T_subtract"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_cast_4[ax0, ax1, ax2, ax3, ax4], p4[0])
T.writes(T_subtract[ax0, ax1, ax2, ax3, ax4])
T_subtract[ax0, ax1, ax2, ax3, ax4] = T_cast_4[ax0, ax1, ax2, ax3, ax4] - p4[0]
for i0, i1, i2, i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("T_multiply_1"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(compile_engine_const[()], T_subtract[ax0, ax1, ax2, ax3, ax4])
T.writes(T_multiply_1[ax0, ax1, ax2, ax3, ax4])
T_multiply_1[ax0, ax1, ax2, ax3, ax4] = compile_engine_const[()] * T_subtract[ax0, ax1, ax2, ax3, ax4]
with T.block("compile_engine_const_2"):
vi = T.axis.spatial(1, 0)
T.reads()
T.writes(compile_engine_const_2[()])
compile_engine_const_2[()] = T.float32(0.5)
for i0, i1, i2, i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("T_add_2"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_multiply_1[ax0, ax1, ax2, ax3, ax4], compile_engine_const_2[()])
T.writes(T_add_2[ax0, ax1, ax2, ax3, ax4])
T_add_2[ax0, ax1, ax2, ax3, ax4] = T_multiply_1[ax0, ax1, ax2, ax3, ax4] + compile_engine_const_2[()]
for i0, i1, i2, |
i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("T_floor_1"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_add_2[ax0, ax1, ax2, ax3, ax4])
T.writes(T_floor_1[ax0, ax1, ax2, ax3, ax4])
T_floor_1[ax0, ax1, ax2, ax3, ax4] = T.floor(T_add_2[ax0, ax1, ax2, ax3, ax4], dtype="float32")
for i0, i1, i2, i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("T_cast_4"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_floor_1[ax0, ax1, ax2, ax3, ax4])
T.writes(T_cast_5[ax0, ax1, ax2, ax3, ax4])
T_cast_5[ax0, ax1, ax2, ax3, ax4] = T.cast(T_floor_1[ax0, ax1, ax2, ax3, ax4], "int32")
with T.block("compile_engine_const_3"):
vi = T.axis.spatial(1, 0)
T.reads()
T.writes(compile_engine_const_3[()])
compile_engine_const_3[()] = T.float32(0.71245479583740234)
for i0, i1, i2, i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("T_cast_5"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(p5[ax0, ax1, ax2, ax3, ax4])
T.writes(T_cast_6[ax0, ax1, ax2, ax3, ax4])
T_cast_6[ax0, ax1, ax2, ax3, ax4] = T.cast(p5[ax0, ax1, ax2, ax3, ax4], "float32")
for i0, i1, i2, i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("T_multiply_2"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(compile_engine_const_3[()], T_cast_6[ax0, ax1, ax2, ax3, ax4])
T.writes(T_multiply_2[ax0, ax1, ax2, ax3, ax4])
T_multiply_2[ax0, ax1, ax2, ax3, ax4] = compile_engine_const_3[()] * T_cast_6[ax0, ax1, ax2, ax3, ax4]
with T.block("compile_engine_const_4"):
vi = T.axis.spatial(1, 0)
T.reads()
T.writes(compile_engine_const_4[()]) |
compile_engine_const_4[()] = T.float32(0.5)
for i0, i1, i2, i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("T_add_3"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_multiply_2[ax0, ax1, ax2, ax3, ax4], compile_engine_const_4[()])
T.writes(T_add_3[ax0, ax1, ax2, ax3, ax4])
T_add_3[ax0, ax1, ax2, ax3, ax4] = T_multiply_2[ax0, ax1, ax2, ax3, ax4] + compile_engine_const_4[()]
for i0, i1, i2, i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("T_floor_2"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_add_3[ax0, ax1, ax2, ax3, ax4])
T.writes(T_floor_2[ax0, ax1, ax2, ax3, ax4])
T_floor_2[ax0, ax1, ax2, ax3, ax4] = T.floor(T_add_3[ax0, ax1, ax2, ax3, ax4], dtype="float32")
for i0, i1, i2, i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("T_cast_6"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_floor_2[ax0, ax1, ax2, ax3, ax4])
T.writes(T_cast_7[ax0, ax1, ax2, ax3, ax4])
T_cast_7[ax0, ax1, ax2, ax3, ax4] = T.cast(T_floor_2[ax0, ax1, ax2, ax3, ax4], "int32")
for i0, i1, i2, i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("T_add_4"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_cast_5[ax0, ax1, ax2, ax3, ax4], T_cast_7[ax0, ax1, ax2, ax3, ax4])
T.writes(T_add_4[ax0, ax1, ax2, ax3, ax4])
T_add_4[ax0, ax1, ax2, ax3, ax4] = T_cast_5[ax0, ax1, ax2, ax3, ax4] + T_cast_7[ax0, ax1, ax2, ax3, ax4]
for i0, i1, i2, i3, i4 in T.grid(1, 128, 7, 7, 16):
with T.block("compute_1"):
i0_2, i1_2, i2_2, i3_2, i4_2 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_add_4[i0_2, i1_2, i2_2, i3_2, i4_2]) |
T.writes(compute_1[i0_2, i1_2, i2_2, i3_2, i4_2])
compute_1[i0_2, i1_2, i2_2, i3_2, i4_2] = T.max(T.min(T_add_4[i0_2, i1_2, i2_2, i3_2, i4_2], 255), 0)
for i0_3, i1_3, i2_3, i3_3, i4_3 in T.grid(1, 128, 7, 7, 16):
with T.block("T_cast_7"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0_3, i1_3, i2_3, i3_3, i4_3])
T.reads(compute_1[ax0, ax1, ax2, ax3, ax4])
T.writes(T_cast_8[ax0, ax1, ax2, ax3, ax4])
T_cast_8[ax0, ax1, ax2, ax3, ax4] = T.cast(compute_1[ax0, ax1, ax2, ax3, ax4], "uint8")
for i0_4, i1_4, i2_4, i3_4, i4_4 in T.grid(1, 128, 7, 7, 16):
with T.block("compute_2"):
i0_5, i1_5, i2_5, i3_5, i4_5 = T.axis.remap("SSSSS", [i0_4, i1_4, i2_4, i3_4, i4_4])
T.reads(T_cast_8[i0_5, i1_5, i2_5, i3_5, i4_5])
T.writes(compute_2[i0_5, i1_5, i2_5, i3_5, i4_5])
compute_2[i0_5, i1_5, i2_5, i3_5, i4_5] = T.max(T.min(T_cast_8[i0_5, i1_5, i2_5, i3_5, i4_5], T.uint8(255)), T.uint8(0))
for i0_6, i1_6, i2_6, i3_6, i4_6 in T.grid(1, 128, 7, 7, 16):
with T.block("T_cast_8"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0_6, i1_6, i2_6, i3_6, i4_6])
T.reads(compute_2[ax0, ax1, ax2, ax3, ax4])
T.writes(T_cast[ax0, ax1, ax2, ax3, ax4])
T_cast[ax0, ax1, ax2, ax3, ax4] = T.cast(compute_2[ax0, ax1, ax2, ax3, ax4], "int32")
def get_conv2d_vnni_mod(intrin_id):
@tvm.script.ir_module
class Conv2dInt8_NCHWc_scheduled:
@T.prim_func
def main(p0: T.Buffer[(1, 32, 7, 7, 16), "uint8"], p1: T.Buffer[(128, 32, 1, 1, 4, 16, 4), "int8"], p2: T.Buffer[(1, 128, 1, 1, 16), "int32"], p3: T.Buffer[(1, 128, 1, 1, 16), "float32"], p4: T.Buffer[1, "float32"], p5: T.Buffer[(1, 128, 7, 7, 16), "uint8"], T_cast: T.Buffer[(1, 128, 7, 7, 16), "int32"]) -> None:
T.func_attr({"global_symbol": "main", "tir.noalias": True}) |
conv2d_NCHWc_int8 = T.alloc_buffer([1, 128, 7, 7, 16], dtype="int32")
for i0_0_i1_0_i2_0_i3_0_i4_0_0_i0_1_i1_1_fused in T.parallel(128, annotations={"pragma_auto_unroll_max_step":64, "pragma_unroll_explicit":1}):
for i2_1, i3_1, i4_0_1 in T.grid(7, 1, 1):
for i5_0, i6_0 in T.grid(1, 1):
for i1_2_init, i2_2_init, i3_2_init, i1_3_init, i2_3_init, i3_3_init in T.grid(1, 1, 1, 1, 1, 7):
with T.block("conv2d_NCHWc_int8_o_init"):
n = T.axis.spatial(1, 0)
oc_chunk = T.axis.spatial(128, i1_2_init + i1_3_init + i0_0_i1_0_i2_0_i3_0_i4_0_0_i0_1_i1_1_fused
oh = T.axis.spatial(7, i2_1 + i2_2_init + i2_3_init)
ow = T.axis.spatial(7, i3_1 * 7 + i3_2_init * 7 + i3_3_init)
oc_block_o = T.axis.spatial(1, 0)
T.reads()
T.writes(conv2d_NCHWc_int8[n, oc_chunk, oh, ow, 0 : 16])
for i4_1 in T.vectorized(16):
with T.block("conv2d_NCHWc_int8_init"):
oc_block_i_init = T.axis.spatial(16, i4_1)
T.reads()
T.writes(conv2d_NCHWc_int8[n, oc_chunk, oh, ow, oc_block_i_init])
conv2d_NCHWc_int8[n, oc_chunk, oh, ow, oc_block_i_init] = 0
for i7_0, i8_0, i9_0_0, i0_2, i1_2, i2_2, i3_2, i4_0_2, i5_1, i6_1, i7_1, i8_1, i9_0_1, i0_3, i1_3, i2_3, i3_3, i4_0_3 in T.grid(4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 7, 1):
with T.block("conv2d_NCHWc_int8_o_update"):
n = T.axis.spatial(1, 0)
oc_chunk = T.axis.spatial(128, i1_2 + i1_3 + i0_0_i1_0_i2_0_i3_0_i4_0_0_i0_1_i1_1_fused |
oh = T.axis.spatial(7, i2_1 + i2_2 + i2_3)
ow = T.axis.spatial(7, i3_1 * 7 + i3_2 * 7 + i3_3)
oc_block_o = T.axis.spatial(1, 0)
kh = T.axis.reduce(1, 0)
kw = T.axis.reduce(1, 0)
ic_outer = T.axis.reduce(32, i7_0 * 8 + i7_1)
ic_f_inner = T.axis.reduce(4, i8_1 + i8_0)
ic_s_inner_o = T.axis.reduce(1, 0)
T.reads(conv2d_NCHWc_int8[n, oc_chunk, oh, ow, 0 : 16], p0[n, ic_outer, oh + kh, ow + kw, ic_f_inner * 4 : ic_f_inner * 4 + 4], p1[oc_chunk, ic_outer, kh, kw, ic_f_inner, 0 : 16, 0 : 4])
T.writes(conv2d_NCHWc_int8[n, oc_chunk, oh, ow, 0 : 16])
A = T.match_buffer(p0[n, ic_outer, oh + kh, ow + kw, ic_f_inner * 4 : ic_f_inner * 4 + 4], [4], dtype="uint8", offset_factor=1)
B = T.match_buffer(p1[oc_chunk, ic_outer, kh, kw, ic_f_inner, 0 : 16, 0 : 4], [16, 4], dtype="int8", offset_factor=1)
C = T.match_buffer(conv2d_NCHWc_int8[n, oc_chunk, oh, ow, 0 : 16], [16], dtype="int32", offset_factor=1)
A_u8x4: T.uint8x4 = A[0:4]
A_i32: T.int32 = T.reinterpret(A_u8x4, dtype="int32")
B_i8x64: T.int8x64 = B[0, 0:64]
B_i32x16: T.int32x16 = T.reinterpret(B_i8x64, dtype="int32x16")
C_i32x16: T.int32x16 = C[0:16]
C[0:16] = T.call_llvm_pure_intrin(intrin_id, T.uint32(0), C_i32x16, T.broadcast(A_i32, 16), B_i32x16, dtype="int32x16")
for ax0, ax1, ax2, ax3 in T.grid(1, 1, 1, 7):
for ax4_fused in T.vectorized(16):
with T.block("T_cast_8"):
ax0_1 |
= T.axis.spatial(1, ax0)
ax1_1 = T.axis.spatial(128, i0_0_i1_0_i2_0_i3_0_i4_0_0_i0_1_i1_1_fused
ax2_1 = T.axis.spatial(7, i2_1 + ax2)
ax3_1, ax4 = T.axis.remap("SS", [ax3, ax4_fused])
T.reads(conv2d_NCHWc_int8[ax0_1, ax1_1, ax2_1, ax3_1, ax4], p2[ax0_1, ax1_1, 0, 0, ax4], p3[ax0_1, ax1_1, 0, 0, ax4], p4[0], p5[ax0_1, ax1_1, ax2_1, ax3_1, ax4])
T.writes(T_cast[ax0_1, ax1_1, ax2_1, ax3_1, ax4])
T_cast[ax0_1, ax1_1, ax2_1, ax3_1, ax4] = T.cast(T.max(T.min(T.cast(T.max(T.min(T.cast(T.floor(T.float32(0.95489668846130371) * (T.cast(T.cast(T.max(T.min(T.cast(T.floor(T.cast(conv2d_NCHWc_int8[ax0_1, ax1_1, ax2_1, ax3_1, ax4] + p2[ax0_1, ax1_1, 0, 0, ax4], "float32") * p3[ax0_1, ax1_1, 0, 0, ax4] + T.float32(65.5), dtype="float32"), "int32"), 255), 0), "uint8"), "float32") - p4[0]) + T.float32(0.5), dtype="float32"), "int32") + T.cast(T.floor(T.float32(0.71245479583740234) * T.cast(p5[ax0_1, ax1_1, ax2_1, ax3_1, ax4], "float32") + T.float32(0.5), dtype="float32"), "int32"), 255), 0), "uint8"), T.uint8(255)), T.uint8(0)), "int32")
return Conv2dInt8_NCHWc_scheduled
@tvm.script.ir_module
class Conv2dWinogradAddRelu:
@T.prim_func
def main(p0: T.Buffer[(1, 56, 56, 64), "float32"], p1: T.Buffer[(6, 6, 64, 64), "float32"], p2: T.Buffer[(1, 1, 1, 64), "float32"], T_relu: T.Buffer[(1, 56, 56, 64), "float32"]) -> None:
T.func_attr({"layout_free_buffers": [1], "tir.noalias": True, "global_symbol": "main"})
data_pad = T.alloc_buffer([1, 58, 58, 64], dtype="float32")
input_tile = T.alloc_buffer([6, 6, 196, 64], dtype="float32")
B = T.alloc_buffer([6, 6], dtype="float32")
data_pack = T.alloc_buffer([6, 6, 196, 64], dtype="float32")
bgemm = T.alloc_buffer([6, 6, 196, 64], dtype="float32")
A = T.alloc_buffer([6, 4], dtype="float32")
inverse = T. |
alloc_buffer([4, 4, 196, 64], dtype="float32")
conv2d_winograd = T.alloc_buffer([1, 56, 56, 64], dtype="float32")
T_add = T.alloc_buffer([1, 56, 56, 64], dtype="float32")
for i0, i1, i2, i3 in T.grid(1, 58, 58, 64):
with T.block("data_pad"):
i0_1, i1_1, i2_1, i3_1 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(p0[i0_1, i1_1 - 1, i2_1 - 1, i3_1])
T.writes(data_pad[i0_1, i1_1, i2_1, i3_1])
T.block_attr({"schedule_rule":"None"})
data_pad[i0_1, i1_1, i2_1, i3_1] = T.if_then_else(1 <= i1_1 and i1_1 < 57 and 1 <= i2_1 and i2_1 < 57, p0[i0_1, i1_1 - 1, i2_1 - 1, i3_1], T.float32(0), dtype="float32")
for i0, i1, i2, i3 in T.grid(6, 6, 196, 64):
with T.block("input_tile"):
eps, nu, p, ci = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(data_pad[p
T.writes(input_tile[eps, nu, p, ci])
T.block_attr({"schedule_rule":"None"})
input_tile[eps, nu, p, ci] = data_pad[p
for i0, i1 in T.grid(6, 6):
with T.block("B"):
i, j = T.axis.remap("SS", [i0, i1])
T.reads()
T.writes(B[i, j])
T.block_attr({"const_matrix":True, "schedule_rule":"meta_schedule.compute_inline"})
B[i, j] = T.Select(i % 6 == 5 and j % 6 == 5, T.float32(1), T.Select(i % 6 == 5 and j % 6 == 4, T.float32(0), T.Select(i % 6 == 5 and j % 6 == 3, T.float32(0), T.Select(i % 6 == 5 and j % 6 == 2, T.float32(0), T.Select(i % 6 == 5 and j % 6 == 1, T.float32(0), T.Select(i % 6 == 5 and j % 6 == 0, T.float32(0), T.Select(i % 6 == 4 and j % 6 == 5, T.float32(1.5), T.Select(i % 6 == 4 and j % 6 == 4, T.float32(1), T.Select(i % 6 == 4 and j % 6 == 3, T.float32(1), T.Select(i % 6 == 4 and j % 6 == 2, T.float32(1), T.Select(i % 6 == 4 and j % 6 == 1, T.float32(1), T.Select(i % 6 == 4 and j % 6 == 0, T.float32(1), T.Select(i % 6 == 3 and j % 6 == 5, T.float32(-2), T.Sele |
ct(i % 6 == 3 and j % 6 == 4, T.float32(-0.5), T.Select(i % 6 == 3 and j % 6 == 3, T.float32(2), T.Select(i % 6 == 3 and j % 6 == 2, T.float32(2.5), T.Select(i % 6 == 3 and j % 6 == 1, T.float32(0.5), T.Select(i % 6 == 3 and j % 6 == 0, T.float32(1.5), T.Select(i % 6 == 2 and j % 6 == 5, T.float32(-1.5), T.Select(i % 6 == 2 and j % 6 == 4, T.float32(-1), T.Select(i % 6 == 2 and j % 6 == 3, T.float32(-1), T.Select(i % 6 == 2 and j % 6 == 2, T.float32(0.5), T.Select(i % 6 == 2 and j % 6 == 1, T.float32(-2.5), T.Select(i % 6 == 2 and j % 6 == 0, T.float32(-2), T.Select(i % 6 == 1 and j % 6 == 5, T.float32(1), T.Select(i % 6 == 1 and j % 6 == 4, T.float32(0.5), T.Select(i % 6 == 1 and j % 6 == 3, T.float32(-2), T.Select(i % 6 == 1 and j % 6 == 2, T.float32(-1), T.Select(i % 6 == 1 and j % 6 == 1, T.float32(1), T.Select(i % 6 == 1 and j % 6 == 0, T.float32(-1.5), T.Select(i % 6 == 0 and j % 6 == 5, T.float32(0), T.Select(i % 6 == 0 and j % 6 == 4, T.float32(0), T.Select(i % 6 == 0 and j % 6 == 3, T.float32(0), T.Select(i % 6 == 0 and j % 6 == 2, T.float32(0), T.Select(i % 6 == 0 and j % 6 == 1, T.float32(0), T.Select(i % 6 == 0 and j % 6 == 0, T.float32(1), T.float32(0)))))))))))))))))))))))))))))))))))))
for i0, i1, i2, i3, i4, i5 in T.grid(6, 6, 196, 64, 6, 6):
with T.block("data_pack"):
eps, nu, p, ci, r_a, r_b = T.axis.remap("SSSSRR", [i0, i1, i2, i3, i4, i5])
T.reads(input_tile[r_a, r_b, p, ci], B[T.min(r_a, r_b) : T.max(r_a, r_b) + 1, T.min(eps, nu) : T.max(eps, nu) + 1])
T.writes(data_pack[eps, nu, p, ci])
T.block_attr({"auto_scheduler_simplify_const_tensor_indices":["eps", "nu", "r_a", "r_b"], "schedule_rule":"meta_schedule.winograd_data_pack.cuda"})
with T.init():
data_pack[eps, nu, p, ci] = T.float32(0)
data_pack[eps, nu, p, ci] = data_pack[eps, nu, p, ci] + input_tile[r_a, r_b, p, ci] * B[r_a, eps] * B[r_b, nu]
for i0, i1, i2, i3, i4 in T.grid(6, 6, 196, 64, 64): |
with T.block("bgemm"):
eps, nu, p, co, ci = T.axis.remap("SSSSR", [i0, i1, i2, i3, i4])
T.reads(data_pack[eps, nu, p, ci], p1[eps, nu, co, ci])
T.writes(bgemm[eps, nu, p, co])
T.block_attr({"layout_free_placeholders":[]})
with T.init():
bgemm[eps, nu, p, co] = T.float32(0)
bgemm[eps, nu, p, co] = bgemm[eps, nu, p, co] + data_pack[eps, nu, p, ci] * p1[eps, nu, co, ci]
for i0, i1 in T.grid(6, 4):
with T.block("A"):
i, j = T.axis.remap("SS", [i0, i1])
T.reads()
T.writes(A[i, j])
T.block_attr({"const_matrix":True, "schedule_rule":"meta_schedule.compute_inline"})
A[i, j] = T.Select(i % 6 == 5 and j % 4 == 3, T.float32(1), T.Select(i % 6 == 5 and j % 4 == 2, T.float32(0), T.Select(i % 6 == 5 and j % 4 == 1, T.float32(0), T.Select(i % 6 == 5 and j % 4 == 0, T.float32(0), T.Select(i % 6 == 4 and j % 4 == 3, T.float32(-8), T.Select(i % 6 == 4 and j % 4 == 2, T.float32(4), T.Select(i % 6 == 4 and j % 4 == 1, T.float32(-2), T.Select(i % 6 == 4 and j % 4 == 0, T.float32(1), T.Select(i % 6 == 3 and j % 4 == 3, T.float32(0.125), T.Select(i % 6 == 3 and j % 4 == 2, T.float32(0.25), T.Select(i % 6 == 3 and j % 4 == 1, T.float32(0.5), T.Select(i % 6 == 3 and j % 4 == 0, T.float32(1), T.Select(i % 6 == 2 and j % 4 == 3, T.float32(1), T.Select(i % 6 == 2 and j % 4 == 2, T.float32(1), T.Select(i % 6 == 2 and j % 4 == 1, T.float32(1), T.Select(i % 6 == 2 and j % 4 == 0, T.float32(1), T.Select(i % 6 == 1 and j % 4 == 3, T.float32(-1), T.Select(i % 6 == 1 and j % 4 == 2, T.float32(1), T.Select(i % 6 == 1 and j % 4 == 1, T.float32(-1), T.Select(i % 6 == 1 and j % 4 == 0, T.float32(1), T.Select(i % 6 == 0 and j % 4 == 3, T.float32(0), T.Select(i % 6 == 0 and j % 4 == 2, T.float32(0), T.Select(i % 6 == 0 and j % 4 == 1, T.float32(0), T.Select(i % 6 == 0 and j % 4 == 0, T.float32(1), T.float32(0))))))))))))))))))))))) |
))
for i0, i1, i2, i3, i4, i5 in T.grid(4, 4, 196, 64, 6, 6):
with T.block("inverse"):
vh, vw, p, co, r_a, r_b = T.axis.remap("SSSSRR", [i0, i1, i2, i3, i4, i5])
T.reads(bgemm[r_a, r_b, p, co], A[T.min(r_a, r_b) : T.max(r_a, r_b) + 1, T.min(vh, vw) : T.max(vh, vw) + 1])
T.writes(inverse[vh, vw, p, co])
T.block_attr({"auto_scheduler_simplify_const_tensor_indices":["vh", "vw", "r_a", "r_b"], "schedule_rule":"meta_schedule.winograd_inverse.cuda"})
with T.init():
inverse[vh, vw, p, co] = T.float32(0)
inverse[vh, vw, p, co] = inverse[vh, vw, p, co] + bgemm[r_a, r_b, p, co] * A[r_a, vh] * A[r_b, vw]
for i0, i1, i2, i3 in T.grid(1, 56, 56, 64):
with T.block("conv2d_winograd"):
n, h, w, co = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(inverse[h % 4, w % 4, n * 196 + h
T.writes(conv2d_winograd[n, h, w, co])
conv2d_winograd[n, h, w, co] = inverse[h % 4, w % 4, n * 196 + h
for i0, i1, i2, i3 in T.grid(1, 56, 56, 64):
with T.block("T_add"):
ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(conv2d_winograd[ax0, ax1, ax2, ax3], p2[ax0, 0, 0, ax3])
T.writes(T_add[ax0, ax1, ax2, ax3])
T_add[ax0, ax1, ax2, ax3] = conv2d_winograd[ax0, ax1, ax2, ax3] + p2[ax0, 0, 0, ax3]
for i0, i1, i2, i3 in T.grid(1, 56, 56, 64):
with T.block("T_relu"):
ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(T_add[ax0, ax1, ax2, ax3])
T.writes(T_relu[ax0, ax1, ax2, ax3])
T_relu[ax0, ax1, ax2, ax3] = T.max(T_add[ax0, ax1, ax2, ax3], T.float32(0))
@tvm.script.ir_module
class Conv2dWinogradAddResidualRelu:
@T.prim_func
def main(p0: T.Buffer[(1, 56, 56, 64), "float32"], p1: T.Buffer[(6, 6, 64, 64), "float32"], p2: T.Buffer[(1 |
, 1, 1, 64), "float32"], p3: T.Buffer[(1, 56, 56, 64), "float32"], T_relu: T.Buffer[(1, 56, 56, 64), "float32"]) -> None:
T.func_attr({"global_symbol": "main", "tir.noalias": True, "layout_free_buffers": [1]})
data_pad = T.alloc_buffer([1, 58, 58, 64], dtype="float32")
input_tile = T.alloc_buffer([6, 6, 196, 64], dtype="float32")
B = T.alloc_buffer([6, 6], dtype="float32")
data_pack = T.alloc_buffer([6, 6, 196, 64], dtype="float32")
bgemm = T.alloc_buffer([6, 6, 196, 64], dtype="float32")
A = T.alloc_buffer([6, 4], dtype="float32")
inverse = T.alloc_buffer([4, 4, 196, 64], dtype="float32")
conv2d_winograd = T.alloc_buffer([1, 56, 56, 64], dtype="float32")
T_add = T.alloc_buffer([1, 56, 56, 64], dtype="float32")
T_add_1 = T.alloc_buffer([1, 56, 56, 64], dtype="float32")
for i0, i1, i2, i3 in T.grid(1, 58, 58, 64):
with T.block("data_pad"):
i0_1, i1_1, i2_1, i3_1 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(p0[i0_1, i1_1 - 1, i2_1 - 1, i3_1])
T.writes(data_pad[i0_1, i1_1, i2_1, i3_1])
T.block_attr({"schedule_rule":"None"})
data_pad[i0_1, i1_1, i2_1, i3_1] = T.if_then_else(1 <= i1_1 and i1_1 < 57 and 1 <= i2_1 and i2_1 < 57, p0[i0_1, i1_1 - 1, i2_1 - 1, i3_1], T.float32(0), dtype="float32")
for i0, i1, i2, i3 in T.grid(6, 6, 196, 64):
with T.block("input_tile"):
eps, nu, p, ci = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(data_pad[p
T.writes(input_tile[eps, nu, p, ci])
T.block_attr({"schedule_rule":"None"})
input_tile[eps, nu, p, ci] = data_pad[p
for i0, i1 in T.grid(6, 6):
with T.block("B"):
i, j = T.axis.remap("SS", [i0, i1])
T.reads()
T.writes(B[i, j])
T.block_attr({"const_matrix":True, "schedule_rule":"meta_sche |
dule.compute_inline"})
B[i, j] = T.Select(i % 6 == 5 and j % 6 == 5, T.float32(1), T.Select(i % 6 == 5 and j % 6 == 4, T.float32(0), T.Select(i % 6 == 5 and j % 6 == 3, T.float32(0), T.Select(i % 6 == 5 and j % 6 == 2, T.float32(0), T.Select(i % 6 == 5 and j % 6 == 1, T.float32(0), T.Select(i % 6 == 5 and j % 6 == 0, T.float32(0), T.Select(i % 6 == 4 and j % 6 == 5, T.float32(1.5), T.Select(i % 6 == 4 and j % 6 == 4, T.float32(1), T.Select(i % 6 == 4 and j % 6 == 3, T.float32(1), T.Select(i % 6 == 4 and j % 6 == 2, T.float32(1), T.Select(i % 6 == 4 and j % 6 == 1, T.float32(1), T.Select(i % 6 == 4 and j % 6 == 0, T.float32(1), T.Select(i % 6 == 3 and j % 6 == 5, T.float32(-2), T.Select(i % 6 == 3 and j % 6 == 4, T.float32(-0.5), T.Select(i % 6 == 3 and j % 6 == 3, T.float32(2), T.Select(i % 6 == 3 and j % 6 == 2, T.float32(2.5), T.Select(i % 6 == 3 and j % 6 == 1, T.float32(0.5), T.Select(i % 6 == 3 and j % 6 == 0, T.float32(1.5), T.Select(i % 6 == 2 and j % 6 == 5, T.float32(-1.5), T.Select(i % 6 == 2 and j % 6 == 4, T.float32(-1), T.Select(i % 6 == 2 and j % 6 == 3, T.float32(-1), T.Select(i % 6 == 2 and j % 6 == 2, T.float32(0.5), T.Select(i % 6 == 2 and j % 6 == 1, T.float32(-2.5), T.Select(i % 6 == 2 and j % 6 == 0, T.float32(-2), T.Select(i % 6 == 1 and j % 6 == 5, T.float32(1), T.Select(i % 6 == 1 and j % 6 == 4, T.float32(0.5), T.Select(i % 6 == 1 and j % 6 == 3, T.float32(-2), T.Select(i % 6 == 1 and j % 6 == 2, T.float32(-1), T.Select(i % 6 == 1 and j % 6 == 1, T.float32(1), T.Select(i % 6 == 1 and j % 6 == 0, T.float32(-1.5), T.Select(i % 6 == 0 and j % 6 == 5, T.float32(0), T.Select(i % 6 == 0 and j % 6 == 4, T.float32(0), T.Select(i % 6 == 0 and j % 6 == 3, T.float32(0), T.Select(i % 6 == 0 and j % 6 == 2, T.float32(0), T.Select(i % 6 == 0 and j % 6 == 1, T.float32(0), T.Select(i % 6 == 0 and j % 6 == 0, T.float32(1), T.float32(0)))))))))))))))))))))))))))))))))))))
for i0, i1, i2, i3, i4, i5 in T.grid(6, 6, 196, 64, 6, 6):
with T.block("data_pack"): |
eps, nu, p, ci, r_a, r_b = T.axis.remap("SSSSRR", [i0, i1, i2, i3, i4, i5])
T.reads(input_tile[r_a, r_b, p, ci], B[T.min(r_a, r_b) : T.max(r_a, r_b) + 1, T.min(eps, nu) : T.max(eps, nu) + 1])
T.writes(data_pack[eps, nu, p, ci])
T.block_attr({"auto_scheduler_simplify_const_tensor_indices":["eps", "nu", "r_a", "r_b"], "schedule_rule":"meta_schedule.winograd_data_pack.cuda"})
with T.init():
data_pack[eps, nu, p, ci] = T.float32(0)
data_pack[eps, nu, p, ci] = data_pack[eps, nu, p, ci] + input_tile[r_a, r_b, p, ci] * B[r_a, eps] * B[r_b, nu]
for i0, i1, i2, i3, i4 in T.grid(6, 6, 196, 64, 64):
with T.block("bgemm"):
eps, nu, p, co, ci = T.axis.remap("SSSSR", [i0, i1, i2, i3, i4])
T.reads(data_pack[eps, nu, p, ci], p1[eps, nu, co, ci])
T.writes(bgemm[eps, nu, p, co])
T.block_attr({"layout_free_placeholders":[]})
with T.init():
bgemm[eps, nu, p, co] = T.float32(0)
bgemm[eps, nu, p, co] = bgemm[eps, nu, p, co] + data_pack[eps, nu, p, ci] * p1[eps, nu, co, ci]
for i0, i1 in T.grid(6, 4):
with T.block("A"):
i, j = T.axis.remap("SS", [i0, i1])
T.reads()
T.writes(A[i, j])
T.block_attr({"const_matrix":True, "schedule_rule":"meta_schedule.compute_inline"})
A[i, j] = T.Select(i % 6 == 5 and j % 4 == 3, T.float32(1), T.Select(i % 6 == 5 and j % 4 == 2, T.float32(0), T.Select(i % 6 == 5 and j % 4 == 1, T.float32(0), T.Select(i % 6 == 5 and j % 4 == 0, T.float32(0), T.Select(i % 6 == 4 and j % 4 == 3, T.float32(-8), T.Select(i % 6 == 4 and j % 4 == 2, T.float32(4), T.Select(i % 6 == 4 and j % 4 == 1, T.float32(-2), T.Select(i % 6 == 4 and j % 4 == 0, T.float32(1), T.Select(i % 6 == 3 and j % 4 == 3, T.float32(0.125), T.Select(i % 6 == 3 and j % 4 == 2, T.float32(0.25), T.Select(i % 6 == 3 and j % 4 |
== 1, T.float32(0.5), T.Select(i % 6 == 3 and j % 4 == 0, T.float32(1), T.Select(i % 6 == 2 and j % 4 == 3, T.float32(1), T.Select(i % 6 == 2 and j % 4 == 2, T.float32(1), T.Select(i % 6 == 2 and j % 4 == 1, T.float32(1), T.Select(i % 6 == 2 and j % 4 == 0, T.float32(1), T.Select(i % 6 == 1 and j % 4 == 3, T.float32(-1), T.Select(i % 6 == 1 and j % 4 == 2, T.float32(1), T.Select(i % 6 == 1 and j % 4 == 1, T.float32(-1), T.Select(i % 6 == 1 and j % 4 == 0, T.float32(1), T.Select(i % 6 == 0 and j % 4 == 3, T.float32(0), T.Select(i % 6 == 0 and j % 4 == 2, T.float32(0), T.Select(i % 6 == 0 and j % 4 == 1, T.float32(0), T.Select(i % 6 == 0 and j % 4 == 0, T.float32(1), T.float32(0)))))))))))))))))))))))))
for i0, i1, i2, i3, i4, i5 in T.grid(4, 4, 196, 64, 6, 6):
with T.block("inverse"):
vh, vw, p, co, r_a, r_b = T.axis.remap("SSSSRR", [i0, i1, i2, i3, i4, i5])
T.reads(bgemm[r_a, r_b, p, co], A[T.min(r_a, r_b) : T.max(r_a, r_b) + 1, T.min(vh, vw) : T.max(vh, vw) + 1])
T.writes(inverse[vh, vw, p, co])
T.block_attr({"auto_scheduler_simplify_const_tensor_indices":["vh", "vw", "r_a", "r_b"], "schedule_rule":"meta_schedule.winograd_inverse.cuda"})
with T.init():
inverse[vh, vw, p, co] = T.float32(0)
inverse[vh, vw, p, co] = inverse[vh, vw, p, co] + bgemm[r_a, r_b, p, co] * A[r_a, vh] * A[r_b, vw]
for i0, i1, i2, i3 in T.grid(1, 56, 56, 64):
with T.block("conv2d_winograd"):
n, h, w, co = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(inverse[h % 4, w % 4, n * 196 + h
T.writes(conv2d_winograd[n, h, w, co])
conv2d_winograd[n, h, w, co] = inverse[h % 4, w % 4, n * 196 + h
for i0, i1, i2, i3 in T.grid(1, 56, 56, 64):
with T.block("T_add"):
ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(conv2d_winograd[ax0, ax1, ax2, ax3], p2[ax0, 0, 0, a |
x3])
T.writes(T_add[ax0, ax1, ax2, ax3])
T_add[ax0, ax1, ax2, ax3] = conv2d_winograd[ax0, ax1, ax2, ax3] + p2[ax0, 0, 0, ax3]
for i0, i1, i2, i3 in T.grid(1, 56, 56, 64):
with T.block("T_add_1"):
ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(T_add[ax0, ax1, ax2, ax3], p3[ax0, ax1, ax2, ax3])
T.writes(T_add_1[ax0, ax1, ax2, ax3])
T_add_1[ax0, ax1, ax2, ax3] = T_add[ax0, ax1, ax2, ax3] + p3[ax0, ax1, ax2, ax3]
for i0, i1, i2, i3 in T.grid(1, 56, 56, 64):
with T.block("T_relu"):
ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(T_add_1[ax0, ax1, ax2, ax3])
T.writes(T_relu[ax0, ax1, ax2, ax3])
T_relu[ax0, ax1, ax2, ax3] = T.max(T_add_1[ax0, ax1, ax2, ax3], T.float32(0))
@tvm.script.ir_module
class Conv2dWinogradAddResidualRelu_scheduled:
@T.prim_func
def main(p0: T.Buffer[(1, 56, 56, 64), "float32"], p1: T.Buffer[(6, 6, 64, 64), "float32"], p2: T.Buffer[(1, 1, 1, 64), "float32"], p3: T.Buffer[(1, 56, 56, 64), "float32"], T_relu: T.Buffer[(1, 56, 56, 64), "float32"]) -> None:
T.func_attr({"global_symbol": "main", "tir.noalias": True, "layout_free_buffers": [1]})
input_tile_local = T.alloc_buffer([6, 6, 196, 64], dtype="float32", scope="local")
data_pack = T.alloc_buffer([6, 6, 196, 64], dtype="float32")
bgemm = T.alloc_buffer([6, 6, 196, 64], dtype="float32")
inverse = T.alloc_buffer([4, 4, 196, 64], dtype="float32")
bgemm_local = T.alloc_buffer([6, 6, 196, 64], dtype="float32", scope="local")
data_pack_shared = T.alloc_buffer([6, 6, 196, 64], dtype="float32", scope="shared")
p1_shared = T.alloc_buffer([6, 6, 64, 64], dtype="float32", scope="shared")
for i2_0_i3_0_i2_1_i3_1_fused_0 in T.thread_binding(98, thread="blockIdx.x", annotations={"pragma_auto_unroll_max_step":1024, " |
pragma_unroll_explicit":1}):
for i2_0_i3_0_i2_1_i3_1_fused_1 in T.thread_binding(128, thread="threadIdx.x"):
for ax0, ax1, ax2, ax3 in T.grid(6, 6, 1, 1):
with T.block("input_tile"):
eps, nu = T.axis.remap("SS", [ax0, ax1])
p = T.axis.spatial(196, (i2_0_i3_0_i2_1_i3_1_fused_0 * 128 + i2_0_i3_0_i2_1_i3_1_fused_1)
ci = T.axis.spatial(64, (i2_0_i3_0_i2_1_i3_1_fused_0 * 128 + i2_0_i3_0_i2_1_i3_1_fused_1) % 896
T.reads(p0[p
T.writes(input_tile_local[eps, nu, p, ci])
T.block_attr({"schedule_rule":"None"})
input_tile_local[eps, nu, p, ci] = T.if_then_else(1 <= p % 196
for i0 in T.unroll(6):
for i1 in T.unroll(6):
with T.block("data_pack_init"):
eps, nu = T.axis.remap("SS", [i0, i1])
p = T.axis.spatial(196, (i2_0_i3_0_i2_1_i3_1_fused_0 * 128 + i2_0_i3_0_i2_1_i3_1_fused_1)
ci = T.axis.spatial(64, (i2_0_i3_0_i2_1_i3_1_fused_0 * 128 + i2_0_i3_0_i2_1_i3_1_fused_1) % 896
T.reads()
T.writes(data_pack[eps, nu, p, ci])
T.block_attr({"auto_scheduler_simplify_const_tensor_indices":["eps", "nu", "r_a", "r_b"], "schedule_rule":"meta_schedule.winograd_data_pack.cuda"})
data_pack[eps, nu, p, ci] = T.float32(0)
for i4 in T.unroll(6):
for i5 in T.unroll(6):
with T.block("data_pack_update"):
eps, nu = T.axis.remap("SS", [i0, i1])
p = T.axis.spatial(196, (i2_0_i3_0_i2_1_i3_1_fused_0 * 128 + i2_0_i3_0_i2_1_i3_1_fused_1)
ci = T.axis.spatial(64, (i2_0_i3_0_i2_1_i3_1_fused_0 * 128 + i |
2_0_i3_0_i2_1_i3_1_fused_1) % 896
r_a, r_b = T.axis.remap("RR", [i4, i5])
T.reads(data_pack[eps, nu, p, ci], input_tile_local[r_a, r_b, p, ci])
T.writes(data_pack[eps, nu, p, ci])
T.block_attr({"auto_scheduler_simplify_const_tensor_indices":["eps", "nu", "r_a", "r_b"], "schedule_rule":"meta_schedule.winograd_data_pack.cuda"})
data_pack[eps, nu, p, ci] = data_pack[eps, nu, p, ci] + input_tile_local[r_a, r_b, p, ci] * T.Select(r_a % 6 == 5 and eps % 6 == 5, T.float32(1), T.Select(r_a % 6 == 5 and eps % 6 == 4, T.float32(0), T.Select(r_a % 6 == 5 and eps % 6 == 3, T.float32(0), T.Select(r_a % 6 == 5 and eps % 6 == 2, T.float32(0), T.Select(r_a % 6 == 5 and eps % 6 == 1, T.float32(0), T.Select(r_a % 6 == 5 and eps % 6 == 0, T.float32(0), T.Select(r_a % 6 == 4 and eps % 6 == 5, T.float32(1.5), T.Select(r_a % 6 == 4 and eps % 6 == 4, T.float32(1), T.Select(r_a % 6 == 4 and eps % 6 == 3, T.float32(1), T.Select(r_a % 6 == 4 and eps % 6 == 2, T.float32(1), T.Select(r_a % 6 == 4 and eps % 6 == 1, T.float32(1), T.Select(r_a % 6 == 4 and eps % 6 == 0, T.float32(1), T.Select(r_a % 6 == 3 and eps % 6 == 5, T.float32(-2), T.Select(r_a % 6 == 3 and eps % 6 == 4, T.float32(-0.5), T.Select(r_a % 6 == 3 and eps % 6 == 3, T.float32(2), T.Select(r_a % 6 == 3 and eps % 6 == 2, T.float32(2.5), T.Select(r_a % 6 == 3 and eps % 6 == 1, T.float32(0.5), T.Select(r_a % 6 == 3 and eps % 6 == 0, T.float32(1.5), T.Select(r_a % 6 == 2 and eps % 6 == 5, T.float32(-1.5), T.Select(r_a % 6 == 2 and eps % 6 == 4, T.float32(-1), T.Select(r_a % 6 == 2 and eps % 6 == 3, T.float32(-1), T.Select(r_a % 6 == 2 and eps % 6 == 2, T.float32(0.5), T.Select(r_a % 6 == 2 and eps % 6 == 1, T.float32(-2.5), T.Select(r_a % 6 == 2 and eps % 6 == 0, T.float32(-2), T.Select(r_a % 6 == 1 and eps % 6 == 5, T.float32(1), T.Select(r_a % 6 == 1 and eps % 6 == 4, T.float32(0.5), T.Select(r_a % 6 = |
= 1 and eps % 6 == 3, T.float32(-2), T.Select(r_a % 6 == 1 and eps % 6 == 2, T.float32(-1), T.Select(r_a % 6 == 1 and eps % 6 == 1, T.float32(1), T.Select(r_a % 6 == 1 and eps % 6 == 0, T.float32(-1.5), T.Select(r_a % 6 == 0 and eps % 6 == 5, T.float32(0), T.Select(r_a % 6 == 0 and eps % 6 == 4, T.float32(0), T.Select(r_a % 6 == 0 and eps % 6 == 3, T.float32(0), T.Select(r_a % 6 == 0 and eps % 6 == 2, T.float32(0), T.Select(r_a % 6 == 0 and eps % 6 == 1, T.float32(0), T.Select(r_a % 6 == 0 and eps % 6 == 0, T.float32(1), T.float32(0))))))))))))))))))))))))))))))))))))) * T.Select(r_b % 6 == 5 and nu % 6 == 5, T.float32(1), T.Select(r_b % 6 == 5 and nu % 6 == 4, T.float32(0), T.Select(r_b % 6 == 5 and nu % 6 == 3, T.float32(0), T.Select(r_b % 6 == 5 and nu % 6 == 2, T.float32(0), T.Select(r_b % 6 == 5 and nu % 6 == 1, T.float32(0), T.Select(r_b % 6 == 5 and nu % 6 == 0, T.float32(0), T.Select(r_b % 6 == 4 and nu % 6 == 5, T.float32(1.5), T.Select(r_b % 6 == 4 and nu % 6 == 4, T.float32(1), T.Select(r_b % 6 == 4 and nu % 6 == 3, T.float32(1), T.Select(r_b % 6 == 4 and nu % 6 == 2, T.float32(1), T.Select(r_b % 6 == 4 and nu % 6 == 1, T.float32(1), T.Select(r_b % 6 == 4 and nu % 6 == 0, T.float32(1), T.Select(r_b % 6 == 3 and nu % 6 == 5, T.float32(-2), T.Select(r_b % 6 == 3 and nu % 6 == 4, T.float32(-0.5), T.Select(r_b % 6 == 3 and nu % 6 == 3, T.float32(2), T.Select(r_b % 6 == 3 and nu % 6 == 2, T.float32(2.5), T.Select(r_b % 6 == 3 and nu % 6 == 1, T.float32(0.5), T.Select(r_b % 6 == 3 and nu % 6 == 0, T.float32(1.5), T.Select(r_b % 6 == 2 and nu % 6 == 5, T.float32(-1.5), T.Select(r_b % 6 == 2 and nu % 6 == 4, T.float32(-1), T.Select(r_b % 6 == 2 and nu % 6 == 3, T.float32(-1), T.Select(r_b % 6 == 2 and nu % 6 == 2, T.float32(0.5), T.Select(r_b % 6 == 2 and nu % 6 == 1, T.float32(-2.5), T.Select(r_b % 6 == 2 and nu % 6 == 0, T.float32(-2), T.Select(r_b % 6 == 1 and nu % 6 == 5, T.float32(1), T.Select(r_b % 6 == 1 and nu % 6 == 4, T.float32(0.5), T.Select(r_b % 6 == 1 and nu % 6 == 3, T.float32(-2), T.Select(r_b |
% 6 == 1 and nu % 6 == 2, T.float32(-1), T.Select(r_b % 6 == 1 and nu % 6 == 1, T.float32(1), T.Select(r_b % 6 == 1 and nu % 6 == 0, T.float32(-1.5), T.Select(r_b % 6 == 0 and nu % 6 == 5, T.float32(0), T.Select(r_b % 6 == 0 and nu % 6 == 4, T.float32(0), T.Select(r_b % 6 == 0 and nu % 6 == 3, T.float32(0), T.Select(r_b % 6 == 0 and nu % 6 == 2, T.float32(0), T.Select(r_b % 6 == 0 and nu % 6 == 1, T.float32(0), T.Select(r_b % 6 == 0 and nu % 6 == 0, T.float32(1), T.float32(0)))))))))))))))))))))))))))))))))))))
for i0_0_i1_0_i2_0_i3_0_fused in T.thread_binding(168, thread="blockIdx.x", annotations={"pragma_auto_unroll_max_step":1024, "pragma_unroll_explicit":1}):
for i0_1_i1_1_i2_1_i3_1_fused in T.thread_binding(4, thread="vthread.x"):
for i0_2_i1_2_i2_2_i3_2_fused in T.thread_binding(48, thread="threadIdx.x"):
for i0_3_init, i1_3_init, i2_3_init, i3_3_init, i0_4_init, i1_4_init, i2_4_init, i3_4_init in T.grid(1, 1, 14, 1, 1, 1, 1, 1):
with T.block("bgemm_init"):
eps = T.axis.spatial(6, i0_4_init + i0_1_i1_1_i2_1_i3_1_fused
nu = T.axis.spatial(6, i1_4_init + i0_0_i1_0_i2_0_i3_0_fused
p = T.axis.spatial(196, i0_0_i1_0_i2_0_i3_0_fused % 28
co = T.axis.spatial(64, i3_4_init + i0_0_i1_0_i2_0_i3_0_fused % 4 * 16 + i0_2_i1_2_i2_2_i3_2_fused % 16 + i3_3_init)
T.reads()
T.writes(bgemm_local[eps, nu, p, co])
T.block_attr({"layout_free_placeholders":[], "meta_schedule.thread_extent_high_inclusive":1024, "meta_schedule.thread_extent_low_inclusive":32, "meta_schedule.tiling_structure":"SSSRRSRS"})
bgemm_local[eps, nu, p, co] = T.float32(0)
for i4_0 in T.serial(2):
for ax0_ax1_ax2_ax3_fused_0 in T.serial(28):
for ax0_ax1_ax2_ax3_fused_1 in T.thread_bindi |
ng(48, thread="threadIdx.x"):
for ax0_ax1_ax2_ax3_fused_2 in T.vectorized(4):
with T.block("data_pack_shared"):
v0 = T.axis.spatial(6, (ax0_ax1_ax2_ax3_fused_0 * 192 + ax0_ax1_ax2_ax3_fused_1 * 4 + ax0_ax1_ax2_ax3_fused_2)
v1 = T.axis.spatial(6, i0_0_i1_0_i2_0_i3_0_fused
v2 = T.axis.spatial(196, i0_0_i1_0_i2_0_i3_0_fused % 28
v3 = T.axis.spatial(64, i4_0 * 32 + (ax0_ax1_ax2_ax3_fused_0 * 192 + ax0_ax1_ax2_ax3_fused_1 * 4 + ax0_ax1_ax2_ax3_fused_2) % 32)
T.reads(data_pack[v0, v1, v2, v3])
T.writes(data_pack_shared[v0, v1, v2, v3])
data_pack_shared[v0, v1, v2, v3] = data_pack[v0, v1, v2, v3]
for ax0_ax1_ax2_ax3_fused_0 in T.serial(16):
for ax0_ax1_ax2_ax3_fused_1 in T.thread_binding(48, thread="threadIdx.x"):
for ax0_ax1_ax2_ax3_fused_2 in T.vectorized(4):
with T.block("p1_shared"):
v0 = T.axis.spatial(6, (ax0_ax1_ax2_ax3_fused_0 * 192 + ax0_ax1_ax2_ax3_fused_1 * 4 + ax0_ax1_ax2_ax3_fused_2)
v1 = T.axis.spatial(6, i0_0_i1_0_i2_0_i3_0_fused
v2 = T.axis.spatial(64, i0_0_i1_0_i2_0_i3_0_fused % 4 * 16 + (ax0_ax1_ax2_ax3_fused_0 * 192 + ax0_ax1_ax2_ax3_fused_1 * 4 + ax0_ax1_ax2_ax3_fused_2) % 512
v3 = T.axis.spatial(64, i4_0 * 32 + (ax0_ax1_ax2_ax3_fused_0 * 192 + ax0_ax1_ax2_ax3_fused_1 * 4 + ax0_ax1_ax2_ax3_fused_2) % 32)
T.reads(p1[v0, v1, v2, v3])
T.writes(p1_shared[v0, v1, v2, v3]) |
p1_shared[v0, v1, v2, v3] = p1[v0, v1, v2, v3]
for i4_1, i0_3, i1_3, i2_3, i3_3, i4_2, i0_4, i1_4, i2_4, i3_4 in T.grid(2, 1, 1, 14, 1, 16, 1, 1, 1, 1):
with T.block("bgemm_update"):
eps = T.axis.spatial(6, i0_4 + i0_1_i1_1_i2_1_i3_1_fused
nu = T.axis.spatial(6, i1_4 + i0_0_i1_0_i2_0_i3_0_fused
p = T.axis.spatial(196, i0_0_i1_0_i2_0_i3_0_fused % 28
co = T.axis.spatial(64, i3_4 + i0_0_i1_0_i2_0_i3_0_fused % 4 * 16 + i0_2_i1_2_i2_2_i3_2_fused % 16 + i3_3)
ci = T.axis.reduce(64, i4_0 * 32 + i4_1 * 16 + i4_2)
T.reads(bgemm_local[eps, nu, p, co], data_pack_shared[eps, nu, p, ci], p1_shared[eps, nu, co, ci])
T.writes(bgemm_local[eps, nu, p, co])
T.block_attr({"layout_free_placeholders":[], "meta_schedule.thread_extent_high_inclusive":1024, "meta_schedule.thread_extent_low_inclusive":32, "meta_schedule.tiling_structure":"SSSRRSRS"})
bgemm_local[eps, nu, p, co] = bgemm_local[eps, nu, p, co] + data_pack_shared[eps, nu, p, ci] * p1_shared[eps, nu, co, ci]
for ax0, ax1, ax2, ax3 in T.grid(1, 1, 14, 1):
with T.block("bgemm_local"):
v0 = T.axis.spatial(6, i0_1_i1_1_i2_1_i3_1_fused
v1 = T.axis.spatial(6, i0_0_i1_0_i2_0_i3_0_fused
v2 = T.axis.spatial(196, i0_0_i1_0_i2_0_i3_0_fused % 28
v3 = T.axis.spatial(64, i0_0_i1_0_i2_0_i3_0_fused % 4 * 16 + i0_2_i1_2_i2_2_i3_2_fused % 16 + ax3)
T.reads(bgemm_local[v0, v1, v2, v3])
T.writes(bgemm[v0, v1, v2, v3])
bgemm[v0, v1, v2, v3] = bgemm_local[v0, v1, v2, v3]
for i2_0_i3_0_i2_1_i3_1_fused_0 in T. |
thread_binding(25, thread="blockIdx.x", annotations={"pragma_auto_unroll_max_step":1024, "pragma_unroll_explicit":1}):
for i2_0_i3_0_i2_1_i3_1_fused_1 in T.thread_binding(512, thread="threadIdx.x"):
for i0 in T.unroll(4):
for i1 in T.unroll(4):
with T.block("inverse_init"):
T.where(i2_0_i3_0_i2_1_i3_1_fused_0 * 512 + i2_0_i3_0_i2_1_i3_1_fused_1 < 12544)
vh, vw = T.axis.remap("SS", [i0, i1])
p = T.axis.spatial(196, (i2_0_i3_0_i2_1_i3_1_fused_0 * 512 + i2_0_i3_0_i2_1_i3_1_fused_1)
co = T.axis.spatial(64, (i2_0_i3_0_i2_1_i3_1_fused_0 * 512 + i2_0_i3_0_i2_1_i3_1_fused_1) % 448
T.reads()
T.writes(inverse[vh, vw, p, co])
T.block_attr({"auto_scheduler_simplify_const_tensor_indices":["vh", "vw", "r_a", "r_b"], "schedule_rule":"meta_schedule.winograd_inverse.cuda"})
inverse[vh, vw, p, co] = T.float32(0)
for i4 in T.unroll(6):
for i5 in T.unroll(6):
with T.block("inverse_update"):
T.where(i2_0_i3_0_i2_1_i3_1_fused_0 * 512 + i2_0_i3_0_i2_1_i3_1_fused_1 < 12544)
vh, vw = T.axis.remap("SS", [i0, i1])
p = T.axis.spatial(196, (i2_0_i3_0_i2_1_i3_1_fused_0 * 512 + i2_0_i3_0_i2_1_i3_1_fused_1)
co = T.axis.spatial(64, (i2_0_i3_0_i2_1_i3_1_fused_0 * 512 + i2_0_i3_0_i2_1_i3_1_fused_1) % 448
r_a, r_b = T.axis.remap("RR", [i4, i5])
T.reads(inverse[vh, vw, p, co], bgemm[r_a, r_b, p, co])
T.writes(inverse[vh, vw, p, co])
T.block_attr({"auto_scheduler_simplify_const_tensor_indice |
s":["vh", "vw", "r_a", "r_b"], "schedule_rule":"meta_schedule.winograd_inverse.cuda"})
inverse[vh, vw, p, co] = inverse[vh, vw, p, co] + bgemm[r_a, r_b, p, co] * T.Select(r_a % 6 == 5 and vh % 4 == 3, T.float32(1), T.Select(r_a % 6 == 5 and vh % 4 == 2, T.float32(0), T.Select(r_a % 6 == 5 and vh % 4 == 1, T.float32(0), T.Select(r_a % 6 == 5 and vh % 4 == 0, T.float32(0), T.Select(r_a % 6 == 4 and vh % 4 == 3, T.float32(-8), T.Select(r_a % 6 == 4 and vh % 4 == 2, T.float32(4), T.Select(r_a % 6 == 4 and vh % 4 == 1, T.float32(-2), T.Select(r_a % 6 == 4 and vh % 4 == 0, T.float32(1), T.Select(r_a % 6 == 3 and vh % 4 == 3, T.float32(0.125), T.Select(r_a % 6 == 3 and vh % 4 == 2, T.float32(0.25), T.Select(r_a % 6 == 3 and vh % 4 == 1, T.float32(0.5), T.Select(r_a % 6 == 3 and vh % 4 == 0, T.float32(1), T.Select(r_a % 6 == 2 and vh % 4 == 3, T.float32(1), T.Select(r_a % 6 == 2 and vh % 4 == 2, T.float32(1), T.Select(r_a % 6 == 2 and vh % 4 == 1, T.float32(1), T.Select(r_a % 6 == 2 and vh % 4 == 0, T.float32(1), T.Select(r_a % 6 == 1 and vh % 4 == 3, T.float32(-1), T.Select(r_a % 6 == 1 and vh % 4 == 2, T.float32(1), T.Select(r_a % 6 == 1 and vh % 4 == 1, T.float32(-1), T.Select(r_a % 6 == 1 and vh % 4 == 0, T.float32(1), T.Select(r_a % 6 == 0 and vh % 4 == 3, T.float32(0), T.Select(r_a % 6 == 0 and vh % 4 == 2, T.float32(0), T.Select(r_a % 6 == 0 and vh % 4 == 1, T.float32(0), T.Select(r_a % 6 == 0 and vh % 4 == 0, T.float32(1), T.float32(0))))))))))))))))))))))))) * T.Select(r_b % 6 == 5 and vw % 4 == 3, T.float32(1), T.Select(r_b % 6 == 5 and vw % 4 == 2, T.float32(0), T.Select(r_b % 6 == 5 and vw % 4 == 1, T.float32(0), T.Select(r_b % 6 == 5 and vw % 4 == 0, T.float32(0), T.Select(r_b % 6 == 4 and vw % 4 == 3, T.float32(-8), T.Select(r_b % 6 == 4 and vw % 4 == 2, T.float32(4), T.Select(r_b % 6 == 4 and vw % 4 == 1, T.float32(-2), T.Select(r_b % 6 == 4 and vw % 4 == 0, T.float32(1), T.Select(r_b % 6 == 3 and vw % 4 == 3, T.float32(0.125), T.Select(r_b % 6 == 3 and vw % 4 == 2, T.fl |
oat32(0.25), T.Select(r_b % 6 == 3 and vw % 4 == 1, T.float32(0.5), T.Select(r_b % 6 == 3 and vw % 4 == 0, T.float32(1), T.Select(r_b % 6 == 2 and vw % 4 == 3, T.float32(1), T.Select(r_b % 6 == 2 and vw % 4 == 2, T.float32(1), T.Select(r_b % 6 == 2 and vw % 4 == 1, T.float32(1), T.Select(r_b % 6 == 2 and vw % 4 == 0, T.float32(1), T.Select(r_b % 6 == 1 and vw % 4 == 3, T.float32(-1), T.Select(r_b % 6 == 1 and vw % 4 == 2, T.float32(1), T.Select(r_b % 6 == 1 and vw % 4 == 1, T.float32(-1), T.Select(r_b % 6 == 1 and vw % 4 == 0, T.float32(1), T.Select(r_b % 6 == 0 and vw % 4 == 3, T.float32(0), T.Select(r_b % 6 == 0 and vw % 4 == 2, T.float32(0), T.Select(r_b % 6 == 0 and vw % 4 == 1, T.float32(0), T.Select(r_b % 6 == 0 and vw % 4 == 0, T.float32(1), T.float32(0)))))))))))))))))))))))))
for i0_i1_i2_i3_fused_0 in T.thread_binding(1568, thread="blockIdx.x", annotations={"pragma_auto_unroll_max_step":1024, "pragma_unroll_explicit":1}):
for i0_i1_i2_i3_fused_1 in T.thread_binding(128, thread="threadIdx.x"):
with T.block("conv2d_winograd"):
n = T.axis.spatial(1, 0)
h = T.axis.spatial(56, (i0_i1_i2_i3_fused_0 * 128 + i0_i1_i2_i3_fused_1)
w = T.axis.spatial(56, (i0_i1_i2_i3_fused_0 * 128 + i0_i1_i2_i3_fused_1) % 3584
co = T.axis.spatial(64, (i0_i1_i2_i3_fused_0 * 128 + i0_i1_i2_i3_fused_1) % 64)
T.reads(inverse[h % 4, w % 4, n * 196 + h
T.writes(T_relu[n, h, w, co])
T_relu[n, h, w, co] = T.max(inverse[h % 4, w % 4, n * 196 + h
@tvm.script.ir_module
class Conv2dInt8_with_predicate:
@T.prim_func
def main(p0: T.Buffer[(16, 56, 56, 64), "int8"], p1: T.Buffer[(256, 1, 1, 64), "int8"], p2: T.Buffer[(1, 1, 1, 256), "int32"], p3: T.Buffer[(1, 1, 1, 256), "int32"], p4: T.Buffer[256, "int32"], p5: T.Buffer[256, "int32"], p6: T.Buffer[256, "int32"], p7: T.Buffer[(), "int32"], p8: T.Buffer[1, "int32"], compute: T.Buffer[(16, 56, 56, 256), "int32" |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.