text
stringlengths
1
2.05k
map("SSR", [i1_0, i0_3, i1_1]) T.reads(A[i0_4, vi1_0 * 16 + vi1_1], T_softmax_maxelem[i0_4]) T.writes(T_softmax_expsum_rf[i0_4, vi1_0]) with T.init(): T_softmax_expsum_rf[i0_4, vi1_0] = T.float32(0) T_softmax_expsum_rf[i0_4, vi1_0] = T_softmax_expsum_rf[i0_4, vi1_0] + T.exp(A[i0_4, vi1_0 * 16 + vi1_1] - T_softmax_maxelem[i0_4], dtype="float32") for i0_5, i1 in T.grid(256, 256): for ax0, ax1 in T.grid(16, 1): with T.block("T_softmax_expsum"): vi1_0 = T.axis.reduce(16, ax0) i0_6 = T.axis.spatial(256, i0_5 + ax1) T.reads(T_softmax_expsum_rf[i0_6, vi1_0]) T.writes(T_softmax_expsum[i0_6]) with T.init(): T_softmax_expsum[i0_6] = T.float32(0) T_softmax_expsum[i0_6] = T_softmax_expsum[i0_6] + T_softmax_expsum_rf[i0_6, vi1_0] with T.block("T_softmax_norm"): i0_7, i1_2 = T.axis.remap("SS", [i0_5, i1]) T.reads(A[i0_7, i1_2], T_softmax_maxelem[i0_7], T_softmax_expsum[i0_7]) T.writes(T_softmax_norm[i0_7, i1_2]) T.block_attr({"axis":1}) T_softmax_norm[i0_7, i1_2] = T.exp(A[i0_7, i1_2] - T_softmax_maxelem[i0_7], dtype="float32") / T_softmax_expsum[i0_7] @T.prim_func def sfm_1(A: T.Buffer[(256, 256), "float32"], T_softmax_norm: T.Buffer[(256, 256), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":16, "meta_schedule.vectorize":64}) T_softmax_maxelem = T.alloc_buffer([256], dtype="float32") T_softmax_exp = T.alloc_buffer([256, 256], dtype="float32")
T_softmax_expsum = T.alloc_buffer([256], dtype="float32") T_softmax_expsum_rf = T.alloc_buffer([256, 16], dtype="float32") T_softmax_maxelem_rf = T.alloc_buffer([256, 64], dtype="float32") for i0 in T.serial(256): for ax0, ax1, ax2 in T.grid(64, 1, 4): with T.block("T_softmax_maxelem_rf"): vi1_1 = T.axis.spatial(64, ax0) i0_1 = T.axis.spatial(256, i0 + ax1) vi1_0 = T.axis.reduce(4, ax2) T.reads(A[i0_1, vi1_0 * 64 + vi1_1]) T.writes(T_softmax_maxelem_rf[i0_1, vi1_1]) with T.init(): T_softmax_maxelem_rf[i0_1, vi1_1] = T.float32(-3.4028234663852886e+38) T_softmax_maxelem_rf[i0_1, vi1_1] = T.max(T_softmax_maxelem_rf[i0_1, vi1_1], A[i0_1, vi1_0 * 64 + vi1_1]) for i1 in T.serial(256): for ax0, ax1 in T.grid(64, 1): with T.block("T_softmax_maxelem"): vi1_1 = T.axis.reduce(64, ax0) i0_2 = T.axis.spatial(256, i0 + ax1) T.reads(T_softmax_maxelem_rf[i0_2, vi1_1]) T.writes(T_softmax_maxelem[i0_2]) with T.init(): T_softmax_maxelem[i0_2] = T.float32(-3.4028234663852886e+38) T_softmax_maxelem[i0_2] = T.max(T_softmax_maxelem[i0_2], T_softmax_maxelem_rf[i0_2, vi1_1]) with T.block("T_softmax_exp"): i0_3, i1_1 = T.axis.remap("SS", [i0, i1]) T.reads(A[i0_3, i1_1], T_softmax_maxelem[i0_3]) T.writes(T_softmax_exp[i0_3, i1_1]) T_softmax_exp[i0_3, i1_1] = T.exp(A[i0_3, i1_1] - T_softmax_maxelem[i0_3], dtype="float32") for i0_4, i1_0, i1_1_1 in T.grid(256, 16, 16): wi
th T.block("T_softmax_expsum_rf"): vi1_0, i0_5, vi1_1 = T.axis.remap("SSR", [i1_0, i0_4, i1_1_1]) T.reads(T_softmax_exp[i0_5, vi1_0 * 16 + vi1_1]) T.writes(T_softmax_expsum_rf[i0_5, vi1_0]) with T.init(): T_softmax_expsum_rf[i0_5, vi1_0] = T.float32(0) T_softmax_expsum_rf[i0_5, vi1_0] = T_softmax_expsum_rf[i0_5, vi1_0] + T_softmax_exp[i0_5, vi1_0 * 16 + vi1_1] for i0_6, i1_0 in T.grid(256, 16): with T.block("T_softmax_expsum"): vi1_0, i0_7 = T.axis.remap("RS", [i1_0, i0_6]) T.reads(T_softmax_expsum_rf[i0_7, vi1_0]) T.writes(T_softmax_expsum[i0_7]) with T.init(): T_softmax_expsum[i0_7] = T.float32(0) T_softmax_expsum[i0_7] = T_softmax_expsum[i0_7] + T_softmax_expsum_rf[i0_7, vi1_0] for i0_8, i1 in T.grid(256, 256): with T.block("T_softmax_norm"): i0_9, i1_2 = T.axis.remap("SS", [i0_8, i1]) T.reads(T_softmax_exp[i0_9, i1_2], T_softmax_expsum[i0_9]) T.writes(T_softmax_norm[i0_9, i1_2]) T.block_attr({"axis":1}) T_softmax_norm[i0_9, i1_2] = T_softmax_exp[i0_9, i1_2] / T_softmax_expsum[i0_9] @T.prim_func def sfm_2(A: T.Buffer[(256, 256), "float32"], T_softmax_norm: T.Buffer[(256, 256), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":512, "meta_schedule.vectorize":64}) T_softmax_maxelem = T.alloc_buffer([256], dtype="float32") T_softmax_expsum = T.alloc_buffer([256], dtype="float32") T_softmax_expsum_rf = T.alloc_buffer([256, 16], dtype="float32") for
i0, i1 in T.grid(256, 256): with T.block("T_softmax_maxelem"): i0_1, k = T.axis.remap("SR", [i0, i1]) T.reads(A[i0_1, k]) T.writes(T_softmax_maxelem[i0_1]) with T.init(): T_softmax_maxelem[i0_1] = T.float32(-3.4028234663852886e+38) T_softmax_maxelem[i0_1] = T.max(T_softmax_maxelem[i0_1], A[i0_1, k]) for i0, i1_0, i1_1 in T.grid(256, 16, 16): with T.block("T_softmax_expsum_rf"): vi1_0, i0_2, vi1_1 = T.axis.remap("SSR", [i1_0, i0, i1_1]) T.reads(A[i0_2, vi1_0 * 16 + vi1_1], T_softmax_maxelem[i0_2]) T.writes(T_softmax_expsum_rf[i0_2, vi1_0]) with T.init(): T_softmax_expsum_rf[i0_2, vi1_0] = T.float32(0) T_softmax_expsum_rf[i0_2, vi1_0] = T_softmax_expsum_rf[i0_2, vi1_0] + T.exp(A[i0_2, vi1_0 * 16 + vi1_1] - T_softmax_maxelem[i0_2], dtype="float32") for i0_3, i1_0 in T.grid(256, 16): with T.block("T_softmax_expsum"): vi1_0, i0_4 = T.axis.remap("RS", [i1_0, i0_3]) T.reads(T_softmax_expsum_rf[i0_4, vi1_0]) T.writes(T_softmax_expsum[i0_4]) with T.init(): T_softmax_expsum[i0_4] = T.float32(0) T_softmax_expsum[i0_4] = T_softmax_expsum[i0_4] + T_softmax_expsum_rf[i0_4, vi1_0] for i0_5, i1 in T.grid(256, 256): with T.block("T_softmax_norm"): i0_6, i1_2 = T.axis.remap("SS", [i0_5, i1]) T.reads(A[i0_6, i1_2], T_softmax_maxelem[i0_6], T_softmax_expsum[i0_6]) T.writes(T_softmax_norm[i0_6, i1_2]) T.block_attr({"axis":1}) T_softmax_norm[i0_6, i1_2] = T.exp(A[i0_6, i1_2] - T_softmax_maxelem[i0_6], dtype="float32") / T_softmax_expsum[i0_6] @T.prim_func def sfm_3
(A: T.Buffer[(256, 256), "float32"], T_softmax_norm: T.Buffer[(256, 256), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":512, "meta_schedule.vectorize":64}) T_softmax_maxelem = T.alloc_buffer([256], dtype="float32") T_softmax_exp = T.alloc_buffer([256, 256], dtype="float32") T_softmax_expsum = T.alloc_buffer([256], dtype="float32") T_softmax_expsum_rf = T.alloc_buffer([256, 16], dtype="float32") T_softmax_maxelem_rf = T.alloc_buffer([256, 256], dtype="float32") for i0, i1 in T.grid(256, 256): for ax0, ax1, ax2 in T.grid(256, 1, 1): with T.block("T_softmax_maxelem_rf"): vi1_0 = T.axis.spatial(256, ax0) i0_1 = T.axis.spatial(256, i0 + ax1) vi1_1 = T.axis.reduce(1, ax2) T.reads(A[i0_1, vi1_1 + vi1_0]) T.writes(T_softmax_maxelem_rf[i0_1, vi1_0]) with T.init(): T_softmax_maxelem_rf[i0_1, vi1_0] = T.float32(-3.4028234663852886e+38) T_softmax_maxelem_rf[i0_1, vi1_0] = T.max(T_softmax_maxelem_rf[i0_1, vi1_0], A[i0_1, vi1_1 + vi1_0]) for ax0, ax1 in T.grid(256, 1): with T.block("T_softmax_maxelem"): vi1_0 = T.axis.reduce(256, ax0) i0_2 = T.axis.spatial(256, i0 + ax1) T.reads(T_softmax_maxelem_rf[i0_2, vi1_0]) T.writes(T_softmax_maxelem[i0_2]) with T.init(): T_softmax_maxelem[i0_2] = T.float32(-3.4028234663852886e+38) T_softmax_maxelem[i0_2] = T.max(T_softmax_maxelem[i0_2], T_softmax_maxelem_rf[i0_2, v
i1_0]) for ax0, ax1 in T.grid(1, 256): with T.block("T_softmax_exp"): i0_3 = T.axis.spatial(256, i0 + ax0) i1_1 = T.axis.spatial(256, ax1) T.reads(A[i0_3, i1_1], T_softmax_maxelem[i0_3]) T.writes(T_softmax_exp[i0_3, i1_1]) T_softmax_exp[i0_3, i1_1] = T.exp(A[i0_3, i1_1] - T_softmax_maxelem[i0_3], dtype="float32") for ax0 in T.serial(16): for ax0_1, ax1, ax2 in T.grid(1, 1, 16): with T.block("T_softmax_expsum_rf"): vi1_1 = T.axis.spatial(16, ax0 + ax0_1) i0_4 = T.axis.spatial(256, i0 + ax1) vi1_0 = T.axis.reduce(16, ax2) T.reads(T_softmax_exp[i0_4, vi1_0 * 16 + vi1_1]) T.writes(T_softmax_expsum_rf[i0_4, vi1_1]) with T.init(): T_softmax_expsum_rf[i0_4, vi1_1] = T.float32(0) T_softmax_expsum_rf[i0_4, vi1_1] = T_softmax_expsum_rf[i0_4, vi1_1] + T_softmax_exp[i0_4, vi1_0 * 16 + vi1_1] for ax1 in T.serial(1): with T.block("T_softmax_expsum"): vi1_1 = T.axis.reduce(16, ax0) i0_5 = T.axis.spatial(256, i0 + ax1) T.reads(T_softmax_expsum_rf[i0_5, vi1_1]) T.writes(T_softmax_expsum[i0_5]) with T.init(): T_softmax_expsum[i0_5] = T.float32(0) T_softmax_expsum[i0_5] = T_softmax_expsum[i0_5] + T_softmax_expsum_rf[i0_5, vi1_1] with T.block("T_softmax_norm"): i0_6, i1_2 = T.axis.remap("SS", [i0, i1]) T.reads(T_softmax_exp[i0_6, i1_2], T_softmax_expsum[i0_6]) T.writes(T_softmax_norm
[i0_6, i1_2]) T.block_attr({"axis":1}) T_softmax_norm[i0_6, i1_2] = T_softmax_exp[i0_6, i1_2] / T_softmax_expsum[i0_6] @T.prim_func def sfm_4(A: T.Buffer[(256, 256), "float32"], T_softmax_norm: T.Buffer[(256, 256), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":0, "meta_schedule.vectorize":64}) T_softmax_maxelem = T.alloc_buffer([256], dtype="float32") T_softmax_exp = T.alloc_buffer([256, 256], dtype="float32") T_softmax_expsum = T.alloc_buffer([256], dtype="float32") T_softmax_expsum_rf = T.alloc_buffer([256, 16], dtype="float32") T_softmax_maxelem_rf = T.alloc_buffer([256, 1], dtype="float32") for i0 in T.serial(256): for ax0, ax1, ax2 in T.grid(1, 1, 256): with T.block("T_softmax_maxelem_rf"): vi1_1 = T.axis.spatial(1, ax0) i0_1 = T.axis.spatial(256, i0 + ax1) vi1_0 = T.axis.reduce(256, ax2) T.reads(A[i0_1, vi1_1 + vi1_0]) T.writes(T_softmax_maxelem_rf[i0_1, vi1_1]) with T.init(): T_softmax_maxelem_rf[i0_1, vi1_1] = T.float32(-3.4028234663852886e+38) T_softmax_maxelem_rf[i0_1, vi1_1] = T.max(T_softmax_maxelem_rf[i0_1, vi1_1], A[i0_1, vi1_1 + vi1_0]) for i1_1 in T.serial(1): with T.block("T_softmax_maxelem"): vi1_1, i0_2 = T.axis.remap("RS", [i1_1, i0]) T.reads(T_softmax_maxelem_rf[i0_2, vi1_1]) T.writes(T_softmax_maxelem[i0_2]) with T.init(): T_softmax_maxelem[i0_2] = T.float32(-3.40282346
63852886e+38) T_softmax_maxelem[i0_2] = T.max(T_softmax_maxelem[i0_2], T_softmax_maxelem_rf[i0_2, vi1_1]) for i0_3, i1 in T.grid(256, 256): with T.block("T_softmax_exp"): i0_4, i1_2 = T.axis.remap("SS", [i0_3, i1]) T.reads(A[i0_4, i1_2], T_softmax_maxelem[i0_4]) T.writes(T_softmax_exp[i0_4, i1_2]) T_softmax_exp[i0_4, i1_2] = T.exp(A[i0_4, i1_2] - T_softmax_maxelem[i0_4], dtype="float32") for i0_5, i1_0, i1_1 in T.grid(256, 16, 16): with T.block("T_softmax_expsum_rf"): vi1_1, i0_6, vi1_0 = T.axis.remap("SSR", [i1_1, i0_5, i1_0]) T.reads(T_softmax_exp[i0_6, vi1_0 * 16 + vi1_1]) T.writes(T_softmax_expsum_rf[i0_6, vi1_1]) with T.init(): T_softmax_expsum_rf[i0_6, vi1_1] = T.float32(0) T_softmax_expsum_rf[i0_6, vi1_1] = T_softmax_expsum_rf[i0_6, vi1_1] + T_softmax_exp[i0_6, vi1_0 * 16 + vi1_1] for i0_7, i1_1 in T.grid(256, 16): with T.block("T_softmax_expsum"): vi1_1, i0_8 = T.axis.remap("RS", [i1_1, i0_7]) T.reads(T_softmax_expsum_rf[i0_8, vi1_1]) T.writes(T_softmax_expsum[i0_8]) with T.init(): T_softmax_expsum[i0_8] = T.float32(0) T_softmax_expsum[i0_8] = T_softmax_expsum[i0_8] + T_softmax_expsum_rf[i0_8, vi1_1] for i0_9, i1_3 in T.grid(256, 256): with T.block("T_softmax_norm"): i0_10, i1_4 = T.axis.remap("SS", [i0_9, i1_3]) T.reads(T_softmax_exp[i0_10, i1_4], T_softmax_expsum[i0_10]) T.writes(T_softmax_norm[i0_10, i1_4]) T.block_attr({"axis":1}) T_softmax_norm[i0_10, i1_4] = T_softmax_exp[i0_10, i1_4] / T_softmax_expsum[i0_10] @T.prim_func def sfm_5(A: T.
Buffer[(256, 256), "float32"], T_softmax_norm: T.Buffer[(256, 256), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":512, "meta_schedule.vectorize":64}) T_softmax_maxelem = T.alloc_buffer([256], dtype="float32") T_softmax_exp = T.alloc_buffer([256, 256], dtype="float32") T_softmax_expsum = T.alloc_buffer([256], dtype="float32") T_softmax_expsum_rf = T.alloc_buffer([256, 16], dtype="float32") for i0 in T.serial(256): for ax0, ax1 in T.grid(1, 256): with T.block("T_softmax_maxelem"): i0_1 = T.axis.spatial(256, i0 + ax0) k = T.axis.reduce(256, ax1) T.reads(A[i0_1, k]) T.writes(T_softmax_maxelem[i0_1]) with T.init(): T_softmax_maxelem[i0_1] = T.float32(-3.4028234663852886e+38) T_softmax_maxelem[i0_1] = T.max(T_softmax_maxelem[i0_1], A[i0_1, k]) for ax0, ax1 in T.grid(1, 256): with T.block("T_softmax_exp"): i0_2 = T.axis.spatial(256, i0 + ax0) i1 = T.axis.spatial(256, ax1) T.reads(A[i0_2, i1], T_softmax_maxelem[i0_2]) T.writes(T_softmax_exp[i0_2, i1]) T_softmax_exp[i0_2, i1] = T.exp(A[i0_2, i1] - T_softmax_maxelem[i0_2], dtype="float32") for ax0 in T.serial(16): for ax0_1, ax1, ax2 in T.grid(1, 1, 16): with T.block("T_softmax_expsum_rf"): vi1_1 = T.axis.spatial(16, ax0 + ax0_1) i0_3 = T.axis.spatial(256, i0 + ax1) vi1_0 = T.axis.reduce(16, ax2)
T.reads(T_softmax_exp[i0_3, vi1_0 * 16 + vi1_1]) T.writes(T_softmax_expsum_rf[i0_3, vi1_1]) with T.init(): T_softmax_expsum_rf[i0_3, vi1_1] = T.float32(0) T_softmax_expsum_rf[i0_3, vi1_1] = T_softmax_expsum_rf[i0_3, vi1_1] + T_softmax_exp[i0_3, vi1_0 * 16 + vi1_1] for ax1 in T.serial(1): with T.block("T_softmax_expsum"): vi1_1 = T.axis.reduce(16, ax0) i0_4 = T.axis.spatial(256, i0 + ax1) T.reads(T_softmax_expsum_rf[i0_4, vi1_1]) T.writes(T_softmax_expsum[i0_4]) with T.init(): T_softmax_expsum[i0_4] = T.float32(0) T_softmax_expsum[i0_4] = T_softmax_expsum[i0_4] + T_softmax_expsum_rf[i0_4, vi1_1] for i1 in T.serial(256): with T.block("T_softmax_norm"): i0_5, i1_1 = T.axis.remap("SS", [i0, i1]) T.reads(T_softmax_exp[i0_5, i1_1], T_softmax_expsum[i0_5]) T.writes(T_softmax_norm[i0_5, i1_1]) T.block_attr({"axis":1}) T_softmax_norm[i0_5, i1_1] = T_softmax_exp[i0_5, i1_1] / T_softmax_expsum[i0_5] @T.prim_func def sfm_6(A: T.Buffer[(256, 256), "float32"], T_softmax_norm: T.Buffer[(256, 256), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":64, "meta_schedule.vectorize":64}) T_softmax_maxelem = T.alloc_buffer([256], dtype="float32") T_softmax_expsum = T.alloc_buffer([256], dtype="float32") T_softmax_maxelem_rf = T.alloc_buffer([
256, 64], dtype="float32") for i0 in T.serial(256): for ax0, ax1, ax2 in T.grid(64, 1, 4): with T.block("T_softmax_maxelem_rf"): vi1_0 = T.axis.spatial(64, ax0) i0_1 = T.axis.spatial(256, i0 + ax1) vi1_1 = T.axis.reduce(4, ax2) T.reads(A[i0_1, vi1_0 * 4 + vi1_1]) T.writes(T_softmax_maxelem_rf[i0_1, vi1_0]) with T.init(): T_softmax_maxelem_rf[i0_1, vi1_0] = T.float32(-3.4028234663852886e+38) T_softmax_maxelem_rf[i0_1, vi1_0] = T.max(T_softmax_maxelem_rf[i0_1, vi1_0], A[i0_1, vi1_0 * 4 + vi1_1]) for i1_0 in T.serial(64): with T.block("T_softmax_maxelem"): vi1_0, i0_2 = T.axis.remap("RS", [i1_0, i0]) T.reads(T_softmax_maxelem_rf[i0_2, vi1_0]) T.writes(T_softmax_maxelem[i0_2]) with T.init(): T_softmax_maxelem[i0_2] = T.float32(-3.4028234663852886e+38) T_softmax_maxelem[i0_2] = T.max(T_softmax_maxelem[i0_2], T_softmax_maxelem_rf[i0_2, vi1_0]) for i0_3, i1 in T.grid(256, 256): with T.block("T_softmax_expsum"): i0_4, k = T.axis.remap("SR", [i0_3, i1]) T.reads(A[i0_4, k], T_softmax_maxelem[i0_4]) T.writes(T_softmax_expsum[i0_4]) with T.init(): T_softmax_expsum[i0_4] = T.float32(0) T_softmax_expsum[i0_4] = T_softmax_expsum[i0_4] + T.exp(A[i0_4, k] - T_softmax_maxelem[i0_4], dtype="float32") for i0_5, i1 in T.grid(256, 256): with T.block("T_softmax_norm"): i0_6, i1_1 = T.axis.remap("SS", [i0_5, i1]) T.reads(A[i0_6, i1_1], T_softmax_maxelem[i0_6], T_softmax_expsum[i0_6])
T.writes(T_softmax_norm[i0_6, i1_1]) T.block_attr({"axis":1}) T_softmax_norm[i0_6, i1_1] = T.exp(A[i0_6, i1_1] - T_softmax_maxelem[i0_6], dtype="float32") / T_softmax_expsum[i0_6] @T.prim_func def sfm_7(A: T.Buffer[(256, 256), "float32"], T_softmax_norm: T.Buffer[(256, 256), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":64, "meta_schedule.vectorize":64}) T_softmax_maxelem = T.alloc_buffer([256], dtype="float32") T_softmax_expsum = T.alloc_buffer([256], dtype="float32") T_softmax_maxelem_rf = T.alloc_buffer([256, 4], dtype="float32") for i0, i1_0, i1_1 in T.grid(256, 64, 4): with T.block("T_softmax_maxelem_rf"): vi1_1, i0_1, vi1_0 = T.axis.remap("SSR", [i1_1, i0, i1_0]) T.reads(A[i0_1, vi1_0 * 4 + vi1_1]) T.writes(T_softmax_maxelem_rf[i0_1, vi1_1]) with T.init(): T_softmax_maxelem_rf[i0_1, vi1_1] = T.float32(-3.4028234663852886e+38) T_softmax_maxelem_rf[i0_1, vi1_1] = T.max(T_softmax_maxelem_rf[i0_1, vi1_1], A[i0_1, vi1_0 * 4 + vi1_1]) for i0, i1_1 in T.grid(256, 4): with T.block("T_softmax_maxelem"): vi1_1, i0_2 = T.axis.remap("RS", [i1_1, i0]) T.reads(T_softmax_maxelem_rf[i0_2, vi1_1]) T.writes(T_softmax_maxelem[i0_2]) with T.init(): T_softmax_maxelem[i0_2] = T.float32(-3.4028234663852886e+38) T_softmax_maxelem[i0_2] = T.max(T_softmax_maxelem[i0_2], T_softmax_maxelem_rf[i0_2, vi1_1]) for i0_3, i1 in T.grid(256, 256): for ax0, ax1 in T.grid(1, 256): with T.block(
"T_softmax_expsum"): i0_4 = T.axis.spatial(256, i0_3 + ax0) k = T.axis.reduce(256, ax1) T.reads(A[i0_4, k], T_softmax_maxelem[i0_4]) T.writes(T_softmax_expsum[i0_4]) with T.init(): T_softmax_expsum[i0_4] = T.float32(0) T_softmax_expsum[i0_4] = T_softmax_expsum[i0_4] + T.exp(A[i0_4, k] - T_softmax_maxelem[i0_4], dtype="float32") with T.block("T_softmax_norm"): i0_5, i1_2 = T.axis.remap("SS", [i0_3, i1]) T.reads(A[i0_5, i1_2], T_softmax_maxelem[i0_5], T_softmax_expsum[i0_5]) T.writes(T_softmax_norm[i0_5, i1_2]) T.block_attr({"axis":1}) T_softmax_norm[i0_5, i1_2] = T.exp(A[i0_5, i1_2] - T_softmax_maxelem[i0_5], dtype="float32") / T_softmax_expsum[i0_5] @T.prim_func def sfm_8(A: T.Buffer[(256, 256), "float32"], T_softmax_norm: T.Buffer[(256, 256), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":512, "meta_schedule.vectorize":64}) T_softmax_maxelem = T.alloc_buffer([256], dtype="float32") T_softmax_exp = T.alloc_buffer([256, 256], dtype="float32") T_softmax_expsum = T.alloc_buffer([256], dtype="float32") for i0 in T.serial(256): for ax0, ax1 in T.grid(1, 256): with T.block("T_softmax_maxelem"): i0_1 = T.axis.spatial(256, i0 + ax0) k = T.axis.reduce(256, ax1) T.reads(A[i0_1, k]) T.writes(T_softmax_maxelem[i0_1]) with T.init(): T_softmax_maxelem[i0_1] = T.float32(-3.4028234663852886e+
38) T_softmax_maxelem[i0_1] = T.max(T_softmax_maxelem[i0_1], A[i0_1, k]) for i1 in T.serial(256): with T.block("T_softmax_exp"): i0_2, i1_1 = T.axis.remap("SS", [i0, i1]) T.reads(A[i0_2, i1_1], T_softmax_maxelem[i0_2]) T.writes(T_softmax_exp[i0_2, i1_1]) T_softmax_exp[i0_2, i1_1] = T.exp(A[i0_2, i1_1] - T_softmax_maxelem[i0_2], dtype="float32") for i0_3, i1 in T.grid(256, 256): with T.block("T_softmax_expsum"): i0_4, k = T.axis.remap("SR", [i0_3, i1]) T.reads(T_softmax_exp[i0_4, k]) T.writes(T_softmax_expsum[i0_4]) with T.init(): T_softmax_expsum[i0_4] = T.float32(0) T_softmax_expsum[i0_4] = T_softmax_expsum[i0_4] + T_softmax_exp[i0_4, k] for i0_5, i1 in T.grid(256, 256): with T.block("T_softmax_norm"): i0_6, i1_2 = T.axis.remap("SS", [i0_5, i1]) T.reads(T_softmax_exp[i0_6, i1_2], T_softmax_expsum[i0_6]) T.writes(T_softmax_norm[i0_6, i1_2]) T.block_attr({"axis":1}) T_softmax_norm[i0_6, i1_2] = T_softmax_exp[i0_6, i1_2] / T_softmax_expsum[i0_6] decision_0 = [ ("SamplePerfectTile", [16, 16]), ("SamplePerfectTile", [4, 64]), ("SampleCategorical", 0), ("SampleComputeLocation", 1), ("SampleComputeLocation", -1), ("SampleComputeLocation", -2), ("SampleComputeLocation", -1), ("SampleComputeLocation", -1), ] decision_1 = [ ("SamplePerfectTile", [16, 16]), ("SamplePerfectTile", [4, 64]), ("SampleCategorical", 1), ("SampleComputeLocation", -1), ("SampleComputeLocation", -1), ("SampleComputeLocation", -1), ("SampleComputeLocation", 1), ("SampleComputeLoc
ation", 0), ] decision_2 = [ ("SamplePerfectTile", [16, 16]), ("SampleCategorical", 3), ("SampleComputeLocation", -1), ("SampleComputeLocation", -1), ("SampleComputeLocation", -2), ("SampleComputeLocation", -1), ] decision_3 = [ ("SamplePerfectTile", [16, 16]), ("SamplePerfectTile", [256, 1]), ("SampleCategorical", 3), ("SampleComputeLocation", 1), ("SampleComputeLocation", 2), ("SampleComputeLocation", 1), ("SampleComputeLocation", 1), ("SampleComputeLocation", 1), ] decision_4 = [ ("SamplePerfectTile", [16, 16]), ("SamplePerfectTile", [256, 1]), ("SampleCategorical", 0), ("SampleComputeLocation", -1), ("SampleComputeLocation", -1), ("SampleComputeLocation", -1), ("SampleComputeLocation", -1), ("SampleComputeLocation", 0), ] decision_5 = [ ("SamplePerfectTile", [16, 16]), ("SampleCategorical", 3), ("SampleComputeLocation", 0), ("SampleComputeLocation", 1), ("SampleComputeLocation", 0), ("SampleComputeLocation", 0), ] decision_6 = [ ("SamplePerfectTile", [64, 4]), ("SampleCategorical", 2), ("SampleComputeLocation", -1), ("SampleComputeLocation", -2), ("SampleComputeLocation", -1), ("SampleComputeLocation", 0), ] decision_7 = [ ("SamplePerfectTile", [64, 4]), ("SampleCategorical", 2), ("SampleComputeLocation", 1), ("SampleComputeLocation", -2), ("SampleComputeLocation", -1), ("SampleComputeLocation", -1), ] decision_8 = [ ("SampleCategorical", 3), ("SampleComputeLocation", -1), ("SampleComputeLocation", -1), ("SampleComputeLocation", 0), ] mod = create_te_workload("SFM", 0) actual = _design_space(mod) check_sketches( mod, sketches=actual, expected_mods=[sfm_0, sfm_1, sfm_2,
sfm_3, sfm_4, sfm_5, sfm_6, sfm_7, sfm_8], expected_decisions=[ decision_0, decision_1, decision_2, decision_3, decision_4, decision_5, decision_6, decision_7, decision_8, ], ) def test_cpu_cbr(): @T.prim_func def cbr_0(data: T.Buffer[(1, 224, 224, 3), "float32"], kernel: T.Buffer[(7, 7, 3, 64), "float32"], bias: T.Buffer[64, "float32"], bn_offset: T.Buffer[64, "float32"], bn_scale: T.Buffer[64, "float32"], compute: T.Buffer[(1, 112, 112, 64), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":64, "meta_schedule.vectorize":64}) Conv2dOutput = T.alloc_buffer([1, 112, 112, 64], dtype="float32") for i0_0, i1_0, i2_0, i3_0, i0_1, i1_1, i2_1, i3_1, i4_0, i5_0, i6_0, i0_2, i1_2, i2_2, i3_2, i4_1, i5_1, i6_1, i0_3, i1_3, i2_3, i3_3 in T.grid(1, 2, 7, 1, 1, 2, 2, 32, 7, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 28, 2, 2): with T.block("Conv2dOutput"): nn = T.axis.spatial(1, i0_3 + i0_0 + i0_1 + i0_2) yy = T.axis.spatial(112, i1_0 * 56 + i1_1 * 28 + i1_2 * 28 + i1_3) xx = T.axis.spatial(112, i2_0 * 16 + i2_1 * 8 + i2_2 * 2 + i2_3) ff = T.axis.spatial(64, i3_0 * 64 + i3_1 * 2 + i3_2 * 2 + i3_3) ry = T.axis.reduce(7, i4_1 + i4_0) rx = T.axis.reduce(7, i5_0 + i5_1) rc = T.axis.reduce(3, i6_0 * 3 + i6_1) T.reads(data[nn, yy * 2 + ry - 3, xx * 2 + rx - 3, rc], kernel[ry, rx, rc, ff]) T.writes(Conv2dOutput[nn, yy, xx, ff]) T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) with T.init(): Conv2dOutpu
t[nn, yy, xx, ff] = T.float32(0) Conv2dOutput[nn, yy, xx, ff] = Conv2dOutput[nn, yy, xx, ff] + T.if_then_else(3 <= yy * 2 + ry and yy * 2 + ry < 227 and 3 <= xx * 2 + rx and xx * 2 + rx < 227, data[nn, yy * 2 + ry - 3, xx * 2 + rx - 3, rc], T.float32(0), dtype="float32") * kernel[ry, rx, rc, ff] for i0, i1, i2, i3 in T.grid(1, 112, 112, 64): with T.block("compute"): i0_4, i1_4, i2_4, i3_4 = T.axis.remap("SSSS", [i0, i1, i2, i3]) T.reads(Conv2dOutput[i0_4, i1_4, i2_4, i3_4], bias[i3_4], bn_scale[i3_4], bn_offset[i3_4]) T.writes(compute[i0_4, i1_4, i2_4, i3_4]) compute[i0_4, i1_4, i2_4, i3_4] = T.max((Conv2dOutput[i0_4, i1_4, i2_4, i3_4] + bias[i3_4]) * bn_scale[i3_4] + bn_offset[i3_4], T.float32(0)) @T.prim_func def cbr_1(data: T.Buffer[(1, 224, 224, 3), "float32"], kernel: T.Buffer[(7, 7, 3, 64), "float32"], bias: T.Buffer[64, "float32"], bn_offset: T.Buffer[64, "float32"], bn_scale: T.Buffer[64, "float32"], compute: T.Buffer[(1, 112, 112, 64), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":512, "meta_schedule.vectorize":64}) PaddedInput = T.alloc_buffer([1, 230, 230, 3], dtype="float32") Conv2dOutput = T.alloc_buffer([1, 112, 112, 64], dtype="float32") for i0_0, i1_0 in T.grid(1, 2): for ax0, ax1, ax2, ax3 in T.grid(1, 117, 229, 3): with T.block("PaddedInput"): i0 = T.axis.spatial(1, ax0) i1 = T.axis.spatial(230, i1_0 * 112 + ax1) i2 = T.axis.spatial(230, ax2) i3 = T.axis.spatial(3, ax3) T.reads(data[i0, i1 - 3, i2 - 3, i3]) T.writes(PaddedInput[i0
, i1, i2, i3]) PaddedInput[i0, i1, i2, i3] = T.if_then_else(3 <= i1 and i1 < 227 and 3 <= i2 and i2 < 227, data[i0, i1 - 3, i2 - 3, i3], T.float32(0), dtype="float32") for i2_0, i3_0, i0_1, i1_1, i2_1, i3_1 in T.grid(7, 1, 1, 2, 2, 32): for i4_0, i5_0, i6_0, i0_2, i1_2, i2_2, i3_2, i4_1, i5_1, i6_1, i0_3, i1_3, i2_3, i3_3 in T.grid(7, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 28, 2, 2): with T.block("Conv2dOutput"): nn = T.axis.spatial(1, i0_3 + i0_0 + i0_1 + i0_2) yy = T.axis.spatial(112, i1_0 * 56 + i1_1 * 28 + i1_2 * 28 + i1_3) xx = T.axis.spatial(112, i2_0 * 16 + i2_1 * 8 + i2_2 * 2 + i2_3) ff = T.axis.spatial(64, i3_0 * 64 + i3_1 * 2 + i3_2 * 2 + i3_3) ry = T.axis.reduce(7, i4_1 + i4_0) rx = T.axis.reduce(7, i5_0 + i5_1) rc = T.axis.reduce(3, i6_0 * 3 + i6_1) T.reads(PaddedInput[nn, yy * 2 + ry, xx * 2 + rx, rc], kernel[ry, rx, rc, ff]) T.writes(Conv2dOutput[nn, yy, xx, ff]) T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) with T.init(): Conv2dOutput[nn, yy, xx, ff] = T.float32(0) Conv2dOutput[nn, yy, xx, ff] = Conv2dOutput[nn, yy, xx, ff] + PaddedInput[nn, yy * 2 + ry, xx * 2 + rx, rc] * kernel[ry, rx, rc, ff] for ax0, ax1, ax2, ax3 in T.grid(1, 28, 8, 2): with T.block("compute"): i0 = T.axis.spatial(1, ax0) i1 = T.axis.spatial(112, i1_0 * 56 + i1_1 * 28 + ax1) i2 = T.axis.spatial(112, i2_0 * 16 + i2_1 * 8 + ax2) i3 = T.axis.spatial(64, i3_1 * 2 + ax3) T.reads(Conv2dOutput[i0, i1, i2, i
3], bias[i3], bn_scale[i3], bn_offset[i3]) T.writes(compute[i0, i1, i2, i3]) compute[i0, i1, i2, i3] = T.max((Conv2dOutput[i0, i1, i2, i3] + bias[i3]) * bn_scale[i3] + bn_offset[i3], T.float32(0)) @T.prim_func def cbr_2(data: T.Buffer[(1, 224, 224, 3), "float32"], kernel: T.Buffer[(7, 7, 3, 64), "float32"], bias: T.Buffer[64, "float32"], bn_offset: T.Buffer[64, "float32"], bn_scale: T.Buffer[64, "float32"], compute: T.Buffer[(1, 112, 112, 64), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":64, "meta_schedule.vectorize":64}) PaddedInput = T.alloc_buffer([1, 230, 230, 3], dtype="float32") Conv2dOutput = T.alloc_buffer([1, 112, 112, 64], dtype="float32") for i0_0, i1_0 in T.grid(1, 2): for ax0, ax1, ax2, ax3 in T.grid(1, 117, 229, 3): with T.block("PaddedInput"): i0 = T.axis.spatial(1, ax0) i1 = T.axis.spatial(230, i1_0 * 112 + ax1) i2 = T.axis.spatial(230, ax2) i3 = T.axis.spatial(3, ax3) T.reads(data[i0, i1 - 3, i2 - 3, i3]) T.writes(PaddedInput[i0, i1, i2, i3]) PaddedInput[i0, i1, i2, i3] = T.if_then_else(3 <= i1 and i1 < 227 and 3 <= i2 and i2 < 227, data[i0, i1 - 3, i2 - 3, i3], T.float32(0), dtype="float32") for i2_0, i3_0 in T.grid(7, 1): for i0_1, i1_1, i2_1, i3_1, i4_0, i5_0, i6_0, i0_2, i1_2, i2_2, i3_2, i4_1, i5_1, i6_1, i0_3, i1_3, i2_3, i3_3 in T.grid(1, 2, 2, 32, 7, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 28, 2, 2): with T.block("Conv2dOutput"): nn = T.axis.spatial(1, i0_3 + i0_0 + i0_1 + i0_2)
yy = T.axis.spatial(112, i1_0 * 56 + i1_1 * 28 + i1_2 * 28 + i1_3) xx = T.axis.spatial(112, i2_0 * 16 + i2_1 * 8 + i2_2 * 2 + i2_3) ff = T.axis.spatial(64, i3_0 * 64 + i3_1 * 2 + i3_2 * 2 + i3_3) ry = T.axis.reduce(7, i4_1 + i4_0) rx = T.axis.reduce(7, i5_0 + i5_1) rc = T.axis.reduce(3, i6_0 * 3 + i6_1) T.reads(PaddedInput[nn, yy * 2 + ry, xx * 2 + rx, rc], kernel[ry, rx, rc, ff]) T.writes(Conv2dOutput[nn, yy, xx, ff]) T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) with T.init(): Conv2dOutput[nn, yy, xx, ff] = T.float32(0) Conv2dOutput[nn, yy, xx, ff] = Conv2dOutput[nn, yy, xx, ff] + PaddedInput[nn, yy * 2 + ry, xx * 2 + rx, rc] * kernel[ry, rx, rc, ff] for ax0, ax1, ax2, ax3 in T.grid(1, 56, 16, 64): with T.block("compute"): i0 = T.axis.spatial(1, ax0) i1 = T.axis.spatial(112, i1_0 * 56 + ax1) i2 = T.axis.spatial(112, i2_0 * 16 + ax2) i3 = T.axis.spatial(64, ax3) T.reads(Conv2dOutput[i0, i1, i2, i3], bias[i3], bn_scale[i3], bn_offset[i3]) T.writes(compute[i0, i1, i2, i3]) compute[i0, i1, i2, i3] = T.max((Conv2dOutput[i0, i1, i2, i3] + bias[i3]) * bn_scale[i3] + bn_offset[i3], T.float32(0)) decision_0 = [ ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [2, 2, 1, 28]), ("SamplePerfectTile", [7, 2, 4, 2]), ("SamplePerfectTile", [1, 32, 1, 2]), ("SamplePerfectTile", [7, 1]), ("SamplePerfectTile", [7, 1]), ("SamplePerfectTile", [1, 3]), ("SampleCategorical", 2),
("SampleComputeLocation", -2), ] decision_1 = [ ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [2, 2, 1, 28]), ("SamplePerfectTile", [7, 2, 4, 2]), ("SamplePerfectTile", [1, 32, 1, 2]), ("SamplePerfectTile", [7, 1]), ("SamplePerfectTile", [7, 1]), ("SamplePerfectTile", [1, 3]), ("SampleCategorical", 3), ("SampleComputeLocation", 1), ] decision_2 = [ ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [2, 2, 1, 28]), ("SamplePerfectTile", [7, 2, 4, 2]), ("SamplePerfectTile", [1, 32, 1, 2]), ("SamplePerfectTile", [7, 1]), ("SamplePerfectTile", [7, 1]), ("SamplePerfectTile", [1, 3]), ("SampleCategorical", 2), ("SampleComputeLocation", 1), ] mod = create_te_workload("CBR", 0) actual = _design_space(mod) check_sketches( mod, sketches=actual, expected_mods=[cbr_0, cbr_1, cbr_2], expected_decisions=[decision_0, decision_1, decision_2], ) def test_cpu_tbg(): @T.prim_func def tbg_0(query: T.Buffer[(1, 128, 12, 64), "float32"], value: T.Buffer[(1, 128, 12, 64), "float32"], C: T.Buffer[(1, 12, 128, 128), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":64, "meta_schedule.vectorize":64}) query_T = T.alloc_buffer([1, 12, 128, 64], dtype="float32") value_T = T.alloc_buffer([1, 12, 64, 128], dtype="float32") C_global = T.alloc_buffer([1, 12, 128, 128], dtype="float32") for i0_0, i1_0, i2_0, i3_0, i0_1, i1_1, i2_1 in T.grid(1, 1, 1, 2, 1, 6, 2): for ax0, ax1, ax2, ax3 in T.grid(1, 2, 64, 64): with T.block("value_T"): b = T.axis.spatial(1, ax0)
h = T.axis.spatial(12, i1_1 * 2 + ax1) d = T.axis.spatial(64, ax2) l = T.axis.spatial(128, i3_0 * 64 + ax3) T.reads(value[b, l, h, d]) T.writes(value_T[b, h, d, l]) value_T[b, h, d, l] = value[b, l, h, d] for ax0, ax1, ax2, ax3 in T.grid(1, 2, 64, 64): with T.block("query_T"): b = T.axis.spatial(1, ax0) h = T.axis.spatial(12, i1_1 * 2 + ax1) l = T.axis.spatial(128, i2_1 * 64 + ax2) d = T.axis.spatial(64, ax3) T.reads(query[b, l, h, d]) T.writes(query_T[b, h, l, d]) query_T[b, h, l, d] = query[b, l, h, d] for i3_1 in T.serial(8): for i4_0, i0_2, i1_2, i2_2, i3_2, i4_1, i0_3, i1_3, i2_3, i3_3 in T.grid(1, 1, 2, 2, 4, 64, 1, 1, 32, 2): with T.block("C"): b = T.axis.spatial(1, i0_1 + i0_2 + i0_3 + i0_0) h = T.axis.spatial(12, i1_0 * 12 + i1_1 * 2 + i1_2 + i1_3) i = T.axis.spatial(128, i2_0 * 128 + i2_1 * 64 + i2_2 * 32 + i2_3) j = T.axis.spatial(128, i3_0 * 64 + i3_1 * 8 + i3_2 * 2 + i3_3) k = T.axis.reduce(64, i4_0 * 64 + i4_1) T.reads(query_T[b, h, i, k], value_T[b, h, k, j]) T.writes(C_global[b, h, i, j]) T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) with T.init(): C_global[b, h, i, j] = T.float32(0) C_global[b, h, i, j] = C_global[b, h, i, j] + query_T[b, h, i, k] * value_T[b, h, k, j] for ax0, ax1, ax2, ax3 in T.grid(1, 2, 64, 8): with T.block("C_global"):
v0 = T.axis.spatial(1, ax0) v1 = T.axis.spatial(12, i1_1 * 2 + ax1) v2 = T.axis.spatial(128, i2_1 * 64 + ax2) v3 = T.axis.spatial(128, i3_0 * 64 + i3_1 * 8 + ax3) T.reads(C_global[v0, v1, v2, v3]) T.writes(C[v0, v1, v2, v3]) C[v0, v1, v2, v3] = C_global[v0, v1, v2, v3] @T.prim_func def tbg_1(query: T.Buffer[(1, 128, 12, 64), "float32"], value: T.Buffer[(1, 128, 12, 64), "float32"], C: T.Buffer[(1, 12, 128, 128), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":64, "meta_schedule.vectorize":64}) query_T = T.alloc_buffer([1, 12, 128, 64], dtype="float32") value_T = T.alloc_buffer([1, 12, 64, 128], dtype="float32") C_global = T.alloc_buffer([1, 12, 128, 128], dtype="float32") for i0, i1, i2, i3 in T.grid(1, 12, 128, 64): with T.block("query_T"): b, h, l, d = T.axis.remap("SSSS", [i0, i1, i2, i3]) T.reads(query[b, l, h, d]) T.writes(query_T[b, h, l, d]) query_T[b, h, l, d] = query[b, l, h, d] for i0_0, i1_0, i2_0, i3_0 in T.grid(1, 1, 1, 2): for i0_1, i1_1, i2_1, i3_1, i4_0, i0_2, i1_2, i2_2, i3_2, i4_1 in T.grid(1, 6, 2, 8, 1, 1, 2, 2, 4, 64): for ax0, ax1, ax2, ax3 in T.grid(1, 1, 1, 2): with T.block("value_T"): b = T.axis.spatial(1, ax0) h = T.axis.spatial(12, i1_1 * 2 + i1_2 + ax1) d = T.axis.spatial(64, i4_1 + ax2) l = T.axis.spatial(128, i3_0 * 64 + i3_1 * 8 + i3_2 * 2 + ax3)
T.reads(value[b, l, h, d]) T.writes(value_T[b, h, d, l]) value_T[b, h, d, l] = value[b, l, h, d] for i0_3, i1_3, i2_3, i3_3 in T.grid(1, 1, 32, 2): with T.block("C"): b = T.axis.spatial(1, i0_1 + i0_2 + i0_3 + i0_0) h = T.axis.spatial(12, i1_0 * 12 + i1_1 * 2 + i1_2 + i1_3) i = T.axis.spatial(128, i2_0 * 128 + i2_1 * 64 + i2_2 * 32 + i2_3) j = T.axis.spatial(128, i3_0 * 64 + i3_1 * 8 + i3_2 * 2 + i3_3) k = T.axis.reduce(64, i4_0 * 64 + i4_1) T.reads(query_T[b, h, i, k], value_T[b, h, k, j]) T.writes(C_global[b, h, i, j]) T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) with T.init(): C_global[b, h, i, j] = T.float32(0) C_global[b, h, i, j] = C_global[b, h, i, j] + query_T[b, h, i, k] * value_T[b, h, k, j] for ax0, ax1, ax2, ax3 in T.grid(1, 12, 128, 64): with T.block("C_global"): v0, v1, v2 = T.axis.remap("SSS", [ax0, ax1, ax2]) v3 = T.axis.spatial(128, i3_0 * 64 + ax3) T.reads(C_global[v0, v1, v2, v3]) T.writes(C[v0, v1, v2, v3]) C[v0, v1, v2, v3] = C_global[v0, v1, v2, v3] @T.prim_func def tbg_2(query: T.Buffer[(1, 128, 12, 64), "float32"], value: T.Buffer[(1, 128, 12, 64), "float32"], C: T.Buffer[(1, 12, 128, 128), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":512, "meta_schedule.vectorize":64})
value_T = T.alloc_buffer([1, 12, 64, 128], dtype="float32") for i0_0, i1_0, i2_0, i3_0, i0_1, i1_1, i2_1, i3_1 in T.grid(1, 1, 1, 2, 1, 6, 2, 8): for ax0, ax1, ax2, ax3 in T.grid(1, 2, 64, 8): with T.block("value_T"): b = T.axis.spatial(1, ax0) h = T.axis.spatial(12, i1_1 * 2 + ax1) d = T.axis.spatial(64, ax2) l = T.axis.spatial(128, i3_0 * 64 + i3_1 * 8 + ax3) T.reads(value[b, l, h, d]) T.writes(value_T[b, h, d, l]) value_T[b, h, d, l] = value[b, l, h, d] for i4_0, i0_2, i1_2, i2_2, i3_2, i4_1, i0_3, i1_3, i2_3, i3_3 in T.grid(1, 1, 2, 2, 4, 64, 1, 1, 32, 2): with T.block("C"): b = T.axis.spatial(1, i0_1 + i0_2 + i0_3 + i0_0) h = T.axis.spatial(12, i1_0 * 12 + i1_1 * 2 + i1_2 + i1_3) i = T.axis.spatial(128, i2_0 * 128 + i2_1 * 64 + i2_2 * 32 + i2_3) j = T.axis.spatial(128, i3_0 * 64 + i3_1 * 8 + i3_2 * 2 + i3_3) k = T.axis.reduce(64, i4_0 * 64 + i4_1) T.reads(query[b, i, h, k], value_T[b, h, k, j]) T.writes(C[b, h, i, j]) T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) with T.init(): C[b, h, i, j] = T.float32(0) C[b, h, i, j] = C[b, h, i, j] + query[b, i, h, k] * value_T[b, h, k, j] decision_0 = [ ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [1, 6, 2, 1]), ("SamplePerfectTile", [1, 2, 2, 32]), ("SamplePerfectTile", [2, 8, 4, 2]), ("SamplePerfectTile", [1, 64]), ("SampleCategorical", 2), ("SampleComputeLocation", 6), ("SampleComputeLocation", 6), ] decision_1 = [ ("SamplePerfectTile
", [1, 1, 1, 1]), ("SamplePerfectTile", [1, 6, 2, 1]), ("SamplePerfectTile", [1, 2, 2, 32]), ("SamplePerfectTile", [2, 8, 4, 2]), ("SamplePerfectTile", [1, 64]), ("SampleCategorical", 2), ("SampleComputeLocation", 13), ("SampleComputeLocation", -1), ] decision_2 = [ ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [1, 6, 2, 1]), ("SamplePerfectTile", [1, 2, 2, 32]), ("SamplePerfectTile", [2, 8, 4, 2]), ("SamplePerfectTile", [1, 64]), ("SampleCategorical", 3), ("SampleComputeLocation", 7), ("SampleComputeLocation", -2), ] mod = create_te_workload("TBG", 0) actual = _design_space(mod) check_sketches( mod, sketches=actual, expected_mods=[tbg_0, tbg_1, tbg_2], expected_decisions=[decision_0, decision_1, decision_2], ) if __name__ == "__main__": test_cpu_c1d() test_cpu_c2d() test_cpu_c3d() test_cpu_cap() test_cpu_dep() test_cpu_dil() test_cpu_gmm() test_cpu_grp() test_cpu_t2d() test_cpu_nrm() test_cpu_sfm() test_cpu_cbr() test_cpu_tbg()
"""Tests for MetaSchedule search space on CPU""" from tvm
import meta_schedule as ms from tvm.meta_schedule.testing.space_generation
import ( check_sketches, generate_design_space, print_sketches, ) from tvm.meta_schedule.testing.te_workload
import create_te_workload from tvm.script
import tir as T from tvm.target
import Target def _target(): return Target("aws/cpu/c5.9xlarge") def _design_space(mod): return generate_design_space( kind="llvm", mod=mod, target=_target(), types=ms.ScheduleRule, ) def test_cpu_nhwc(): @T.prim_func def cpu_nhwc_0(X: T.Buffer[(1, 14, 14, 128), "float32"], W: T.Buffer[(6, 6, 128, 128), "float32"], conv2d_winograd: T.Buffer[(1, 12, 12, 128), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True, "layout_free_buffers": [1]}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":64, "meta_schedule.vectorize":64}) data_pad = T.alloc_buffer([1, 16, 16, 128], dtype="float32") input_tile = T.alloc_buffer([6, 6, 9, 128], dtype="float32") data_pack = T.alloc_buffer([6, 6, 9, 128], dtype="float32") bgemm = T.alloc_buffer([6, 6, 9, 128], dtype="float32") inverse = T.alloc_buffer([4, 4, 9, 128], dtype="float32") bgemm_global = T.alloc_buffer([6, 6, 9, 128], dtype="float32") for i2_0 in T.serial(9): for ax0, ax1, ax2, ax3 in T.grid(1, 6, 6, 128): with T.block("data_pad"): i0 = T.axis.spatial(1, ax0) i1 = T.axis.spatial(16, i2_0 i2 = T.axis.spatial(16, i2_0 % 3 * 4 + ax2) i3 = T.axis.spatial(128, ax3) T.reads(X[i0, i1, i2, i3]) T.writes(data_pad[i0, i1, i2, i3]) T.block_attr({"schedule_rule":"None"}) data_pad[i0, i1, i2, i3] = T.if_then_else(0 <= i1 and i1 < 14 and 0 <= i2 and i2 < 14, X[i0, i1, i2, i3], T.float32(0), dtype="float32") for i3_0 in T.serial(2): for ax0, ax1, ax2, ax3 in T.grid(6, 6, 1, 64): with T.block("input
_tile"): eps, nu = T.axis.remap("SS", [ax0, ax1]) p = T.axis.spatial(9, i2_0 + ax2) ci = T.axis.spatial(128, i3_0 * 64 + ax3) T.reads(data_pad[p T.writes(input_tile[eps, nu, p, ci]) T.block_attr({"schedule_rule":"None"}) input_tile[eps, nu, p, ci] = data_pad[p for i2_1, i3_1 in T.grid(1, 64): for i0 in T.unroll(6): for i1 in T.unroll(6): for i4 in T.unroll(6): for i5 in T.unroll(6): with T.block("data_pack"): eps, nu = T.axis.remap("SS", [i0, i1]) p = T.axis.spatial(9, i2_0 + i2_1) ci = T.axis.spatial(128, i3_0 * 64 + i3_1) r_a, r_b = T.axis.remap("RR", [i4, i5]) T.reads(input_tile[r_a, r_b, p, ci]) T.writes(data_pack[eps, nu, p, ci]) T.block_attr({"schedule_rule":"conv2d_nhwc_winograd_data_pack"}) with T.init(): data_pack[eps, nu, p, ci] = T.float32(0) data_pack[eps, nu, p, ci] = data_pack[eps, nu, p, ci] + input_tile[r_a, r_b, p, ci] * T.Select(r_a % 6 == 5 and eps % 6 == 5, T.float32(1), T.Select(r_a % 6 == 5 and eps % 6 == 4, T.float32(0), T.Select(r_a % 6 == 5 and eps % 6 == 3, T.float32(0), T.Select(r_a % 6 == 5 and eps % 6 == 2, T.float32(0), T.Select(r_a % 6 == 5 and eps % 6 == 1, T.float32(0), T.Select(r_a % 6 == 5 and eps % 6 == 0, T.float32(0), T.Select(r_a % 6 == 4 and eps % 6 == 5, T.float32(1.
5), T.Select(r_a % 6 == 4 and eps % 6 == 4, T.float32(1), T.Select(r_a % 6 == 4 and eps % 6 == 3, T.float32(1), T.Select(r_a % 6 == 4 and eps % 6 == 2, T.float32(1), T.Select(r_a % 6 == 4 and eps % 6 == 1, T.float32(1), T.Select(r_a % 6 == 4 and eps % 6 == 0, T.float32(1), T.Select(r_a % 6 == 3 and eps % 6 == 5, T.float32(-2), T.Select(r_a % 6 == 3 and eps % 6 == 4, T.float32(-0.5), T.Select(r_a % 6 == 3 and eps % 6 == 3, T.float32(2), T.Select(r_a % 6 == 3 and eps % 6 == 2, T.float32(2.5), T.Select(r_a % 6 == 3 and eps % 6 == 1, T.float32(0.5), T.Select(r_a % 6 == 3 and eps % 6 == 0, T.float32(1.5), T.Select(r_a % 6 == 2 and eps % 6 == 5, T.float32(-1.5), T.Select(r_a % 6 == 2 and eps % 6 == 4, T.float32(-1), T.Select(r_a % 6 == 2 and eps % 6 == 3, T.float32(-1), T.Select(r_a % 6 == 2 and eps % 6 == 2, T.float32(0.5), T.Select(r_a % 6 == 2 and eps % 6 == 1, T.float32(-2.5), T.Select(r_a % 6 == 2 and eps % 6 == 0, T.float32(-2), T.Select(r_a % 6 == 1 and eps % 6 == 5, T.float32(1), T.Select(r_a % 6 == 1 and eps % 6 == 4, T.float32(0.5), T.Select(r_a % 6 == 1 and eps % 6 == 3, T.float32(-2), T.Select(r_a % 6 == 1 and eps % 6 == 2, T.float32(-1), T.Select(r_a % 6 == 1 and eps % 6 == 1, T.float32(1), T.Select(r_a % 6 == 1 and eps % 6 == 0, T.float32(-1.5), T.Select(r_a % 6 == 0 and eps % 6 == 5, T.float32(0), T.Select(r_a % 6 == 0 and eps % 6 == 4, T.float32(0), T.Select(r_a % 6 == 0 and eps % 6 == 3, T.float32(0), T.Select(r_a % 6 == 0 and eps % 6 == 2, T.float32(0), T.Select(r_a % 6 == 0 and eps % 6 == 1, T.float32(0), T.Select(r_a % 6 == 0 and eps % 6 == 0, T.float32(1), T.float32(0))))))))))))))))))))))))))))))))))))) * T.Select(r_b % 6 == 5 and nu % 6 == 5, T.float32(1), T.Select(r_b % 6 == 5 and nu % 6 == 4, T.float32(0), T.Select(r_b % 6 == 5 and nu % 6 == 3, T.float32(0), T.Select(r_b % 6 == 5 and nu % 6 == 2, T.float32(0), T.Select(r_b % 6 == 5 and nu % 6 == 1, T.float32(0), T.Select(r_b % 6 == 5 and nu % 6 == 0, T.float32(0), T.Select(r_b % 6 == 4 and nu % 6 == 5, T.float32(1.5), T.Select(r_b % 6 == 4 and
nu % 6 == 4, T.float32(1), T.Select(r_b % 6 == 4 and nu % 6 == 3, T.float32(1), T.Select(r_b % 6 == 4 and nu % 6 == 2, T.float32(1), T.Select(r_b % 6 == 4 and nu % 6 == 1, T.float32(1), T.Select(r_b % 6 == 4 and nu % 6 == 0, T.float32(1), T.Select(r_b % 6 == 3 and nu % 6 == 5, T.float32(-2), T.Select(r_b % 6 == 3 and nu % 6 == 4, T.float32(-0.5), T.Select(r_b % 6 == 3 and nu % 6 == 3, T.float32(2), T.Select(r_b % 6 == 3 and nu % 6 == 2, T.float32(2.5), T.Select(r_b % 6 == 3 and nu % 6 == 1, T.float32(0.5), T.Select(r_b % 6 == 3 and nu % 6 == 0, T.float32(1.5), T.Select(r_b % 6 == 2 and nu % 6 == 5, T.float32(-1.5), T.Select(r_b % 6 == 2 and nu % 6 == 4, T.float32(-1), T.Select(r_b % 6 == 2 and nu % 6 == 3, T.float32(-1), T.Select(r_b % 6 == 2 and nu % 6 == 2, T.float32(0.5), T.Select(r_b % 6 == 2 and nu % 6 == 1, T.float32(-2.5), T.Select(r_b % 6 == 2 and nu % 6 == 0, T.float32(-2), T.Select(r_b % 6 == 1 and nu % 6 == 5, T.float32(1), T.Select(r_b % 6 == 1 and nu % 6 == 4, T.float32(0.5), T.Select(r_b % 6 == 1 and nu % 6 == 3, T.float32(-2), T.Select(r_b % 6 == 1 and nu % 6 == 2, T.float32(-1), T.Select(r_b % 6 == 1 and nu % 6 == 1, T.float32(1), T.Select(r_b % 6 == 1 and nu % 6 == 0, T.float32(-1.5), T.Select(r_b % 6 == 0 and nu % 6 == 5, T.float32(0), T.Select(r_b % 6 == 0 and nu % 6 == 4, T.float32(0), T.Select(r_b % 6 == 0 and nu % 6 == 3, T.float32(0), T.Select(r_b % 6 == 0 and nu % 6 == 2, T.float32(0), T.Select(r_b % 6 == 0 and nu % 6 == 1, T.float32(0), T.Select(r_b % 6 == 0 and nu % 6 == 0, T.float32(1), T.float32(0))))))))))))))))))))))))))))))))))))) for i0_0, i1_0, i2_0, i3_0, i0_1, i1_1, i2_1, i3_1 in T.grid(3, 2, 3, 1, 1, 1, 1, 1): for i4_0, i0_2, i1_2, i2_2, i3_2, i4_1, i0_3, i1_3, i2_3, i3_3 in T.grid(32, 1, 1, 1, 2, 4, 2, 3, 3, 64): with T.block("bgemm"): eps = T.axis.spatial(6, i0_0 * 2 + i0_1 * 2 + i0_2 * 2 + i0_3) nu = T.axis.spatial(6, i1_0 * 3 + i1_1 * 3 + i1_2 * 3 + i1_3)
p = T.axis.spatial(9, i2_0 * 3 + i2_1 * 3 + i2_2 * 3 + i2_3) co = T.axis.spatial(128, i3_0 * 128 + i3_1 * 128 + i3_2 * 64 + i3_3) ci = T.axis.reduce(128, i4_0 * 4 + i4_1) T.reads(data_pack[eps, nu, p, ci], W[eps, nu, co, ci]) T.writes(bgemm_global[eps, nu, p, co]) T.block_attr({"meta_schedule.tiling_structure":"SSRSRS", "meta_schedule.write_cache_level":[2]}) with T.init(): bgemm_global[eps, nu, p, co] = T.float32(0) bgemm_global[eps, nu, p, co] = bgemm_global[eps, nu, p, co] + data_pack[eps, nu, p, ci] * W[eps, nu, co, ci] for ax0, ax1, ax2, ax3 in T.grid(2, 3, 3, 128): with T.block("bgemm_global"): v0 = T.axis.spatial(6, i0_0 * 2 + ax0) v1 = T.axis.spatial(6, i1_0 * 3 + ax1) v2 = T.axis.spatial(9, i2_0 * 3 + ax2) v3 = T.axis.spatial(128, ax3) T.reads(bgemm_global[v0, v1, v2, v3]) T.writes(bgemm[v0, v1, v2, v3]) bgemm[v0, v1, v2, v3] = bgemm_global[v0, v1, v2, v3] for i2_0, i3_0, i2_1, i3_1 in T.grid(3, 8, 3, 16): for i0 in T.unroll(4): for i1 in T.unroll(4): for i4 in T.unroll(6): for i5 in T.unroll(6): with T.block("inverse"): vh, vw = T.axis.remap("SS", [i0, i1]) p = T.axis.spatial(9, i2_0 * 3 + i2_1) co = T.axis.spatial(128, i3_0 * 16 + i3_1) r_a, r_b = T.axis.remap("RR", [i4, i5]) T.reads(bgemm[r_a, r_b, p, co]) T.writes(inverse[vh, vw, p, co])
T.block_attr({"schedule_rule":"conv2d_nhwc_winograd_inverse"}) with T.init(): inverse[vh, vw, p, co] = T.float32(0) inverse[vh, vw, p, co] = inverse[vh, vw, p, co] + bgemm[r_a, r_b, p, co] * T.Select(r_a % 6 == 5 and vh % 4 == 3, T.float32(1), T.Select(r_a % 6 == 5 and vh % 4 == 2, T.float32(0), T.Select(r_a % 6 == 5 and vh % 4 == 1, T.float32(0), T.Select(r_a % 6 == 5 and vh % 4 == 0, T.float32(0), T.Select(r_a % 6 == 4 and vh % 4 == 3, T.float32(-8), T.Select(r_a % 6 == 4 and vh % 4 == 2, T.float32(4), T.Select(r_a % 6 == 4 and vh % 4 == 1, T.float32(-2), T.Select(r_a % 6 == 4 and vh % 4 == 0, T.float32(1), T.Select(r_a % 6 == 3 and vh % 4 == 3, T.float32(0.125), T.Select(r_a % 6 == 3 and vh % 4 == 2, T.float32(0.25), T.Select(r_a % 6 == 3 and vh % 4 == 1, T.float32(0.5), T.Select(r_a % 6 == 3 and vh % 4 == 0, T.float32(1), T.Select(r_a % 6 == 2 and vh % 4 == 3, T.float32(1), T.Select(r_a % 6 == 2 and vh % 4 == 2, T.float32(1), T.Select(r_a % 6 == 2 and vh % 4 == 1, T.float32(1), T.Select(r_a % 6 == 2 and vh % 4 == 0, T.float32(1), T.Select(r_a % 6 == 1 and vh % 4 == 3, T.float32(-1), T.Select(r_a % 6 == 1 and vh % 4 == 2, T.float32(1), T.Select(r_a % 6 == 1 and vh % 4 == 1, T.float32(-1), T.Select(r_a % 6 == 1 and vh % 4 == 0, T.float32(1), T.Select(r_a % 6 == 0 and vh % 4 == 3, T.float32(0), T.Select(r_a % 6 == 0 and vh % 4 == 2, T.float32(0), T.Select(r_a % 6 == 0 and vh % 4 == 1, T.float32(0), T.Select(r_a % 6 == 0 and vh % 4 == 0, T.float32(1), T.float32(0))))))))))))))))))))))))) * T.Select(r_b % 6 == 5 and vw % 4 == 3, T.float32(1), T.Select(r_b % 6 == 5 and vw % 4 == 2, T.float32(0), T.Select(r_b % 6 == 5 and vw % 4 == 1, T.float32(0), T.Select(r_b % 6 == 5 and vw % 4 == 0, T.float32(0), T.Select(r_b % 6 == 4 and vw % 4 == 3, T.float32(-8), T.Select(r_b % 6 == 4 and vw % 4 == 2, T.float32(4), T.Select(r_b % 6 == 4 and vw % 4 == 1, T.float32(-2), T.Select(r_b % 6 == 4 and vw % 4 == 0, T.
float32(1), T.Select(r_b % 6 == 3 and vw % 4 == 3, T.float32(0.125), T.Select(r_b % 6 == 3 and vw % 4 == 2, T.float32(0.25), T.Select(r_b % 6 == 3 and vw % 4 == 1, T.float32(0.5), T.Select(r_b % 6 == 3 and vw % 4 == 0, T.float32(1), T.Select(r_b % 6 == 2 and vw % 4 == 3, T.float32(1), T.Select(r_b % 6 == 2 and vw % 4 == 2, T.float32(1), T.Select(r_b % 6 == 2 and vw % 4 == 1, T.float32(1), T.Select(r_b % 6 == 2 and vw % 4 == 0, T.float32(1), T.Select(r_b % 6 == 1 and vw % 4 == 3, T.float32(-1), T.Select(r_b % 6 == 1 and vw % 4 == 2, T.float32(1), T.Select(r_b % 6 == 1 and vw % 4 == 1, T.float32(-1), T.Select(r_b % 6 == 1 and vw % 4 == 0, T.float32(1), T.Select(r_b % 6 == 0 and vw % 4 == 3, T.float32(0), T.Select(r_b % 6 == 0 and vw % 4 == 2, T.float32(0), T.Select(r_b % 6 == 0 and vw % 4 == 1, T.float32(0), T.Select(r_b % 6 == 0 and vw % 4 == 0, T.float32(1), T.float32(0))))))))))))))))))))))))) for i0, i1, i2, i3 in T.grid(1, 12, 12, 128): with T.block("conv2d_winograd"): n, h, w, co = T.axis.remap("SSSS", [i0, i1, i2, i3]) T.reads(inverse[h % 4, w % 4, n * 9 + h T.writes(conv2d_winograd[n, h, w, co]) conv2d_winograd[n, h, w, co] = inverse[h % 4, w % 4, n * 9 + h decision_0 = [ ("SamplePerfectTile", [3, 3]), ("SamplePerfectTile", [8, 16]), ("SamplePerfectTile", [9, 1]), ("SamplePerfectTile", [2, 64]), ("SampleComputeLocation", 1), ("SampleComputeLocation", 0), ("SamplePerfectTile", [3, 1, 1, 2]), ("SamplePerfectTile", [2, 1, 1, 3]), ("SamplePerfectTile", [3, 1, 1, 3]), ("SamplePerfectTile", [1, 1, 2, 64]), ("SamplePerfectTile", [32, 4]), ("SampleCategorical", 2), ] with _target(): mod = create_te_workload("C2D_WIN_NHWC", 0) actual = _design_space(mod) check_sketches( mod, sketches=actual, expected_mods=[cpu_nhwc_0], expected_decisions=[decision_0]
, ) if __name__ == "__main__": test_cpu_nhwc()
"""Tests for MetaSchedule search space on CUDA""" from tvm
import meta_schedule as ms from tvm.meta_schedule.testing.space_generation
import ( check_sketches, generate_design_space, print_sketches, ) from tvm.meta_schedule.testing.te_workload
import create_te_workload from tvm.script
import tir as T from tvm.target
import Target def _target(): return Target("nvidia/geforce-rtx-3070") def _design_space(mod): return generate_design_space( kind="cuda", mod=mod, target=_target(), types=ms.ScheduleRule, ) def test_cuda_c1d(): @T.prim_func def c1d_0(inputs: T.Buffer[(1, 256, 64), "float32"], weight: T.Buffer[(3, 64, 128), "float32"], conv1d_nlc: T.Buffer[(1, 128, 128), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.unroll_explicit":16}) conv1d_nlc_local = T.alloc_buffer([1, 128, 128], dtype="float32", scope="local") PadInput_shared = T.alloc_buffer([1, 258, 64], dtype="float32", scope="shared") weight_shared = T.alloc_buffer([3, 64, 128], dtype="float32", scope="shared") for i0_0_i1_0_i2_0_fused in T.thread_binding(4, thread="blockIdx.x"): for i0_1_i1_1_i2_1_fused in T.thread_binding(16, thread="vthread.x"): for i0_2_i1_2_i2_2_fused in T.thread_binding(4, thread="threadIdx.x"): for i3_0, i4_0 in T.grid(1, 16): for ax0_ax1_ax2_fused in T.serial(260): with T.block("PadInput_shared"): v0 = T.axis.spatial(1, 0) v1 = T.axis.spatial(258, i0_0_i1_0_i2_0_fused * 64 + ax0_ax1_ax2_fused v2 = T.axis.spatial(64, i4_0 * 4 + ax0_ax1_ax2_fused % 4) T.reads(inputs[v0, v1 - 1, v2]) T.writes(PadInput_shared[v0, v1, v2]) T.block_attr({"meta_schedule.cooperative_fetch":4}) PadInput_shared[v0, v1, v2] = T.if_then_else(1 <= v1 and v1 < 257, inputs[v0, v1 - 1, v2], T.float32(0), dtype="float32")
for ax0_ax1_ax2_fused in T.serial(1536): with T.block("weight_shared"): v0 = T.axis.spatial(3, ax0_ax1_ax2_fused v1 = T.axis.spatial(64, i4_0 * 4 + ax0_ax1_ax2_fused % 512 v2 = T.axis.spatial(128, ax0_ax1_ax2_fused % 128) T.reads(weight[v0, v1, v2]) T.writes(weight_shared[v0, v1, v2]) T.block_attr({"meta_schedule.cooperative_fetch":3}) weight_shared[v0, v1, v2] = weight[v0, v1, v2] for i3_1, i4_1, i0_3, i1_3, i2_3, i3_2, i4_2, i0_4, i1_4, i2_4 in T.grid(1, 2, 1, 1, 2, 3, 2, 1, 4, 8): with T.block("conv1d_nlc"): n = T.axis.spatial(1, i0_4 + i0_3) l = T.axis.spatial(128, i0_0_i1_0_i2_0_fused * 32 + i0_1_i1_1_i2_1_fused co = T.axis.spatial(128, i0_1_i1_1_i2_1_fused % 2 * 64 + i0_2_i1_2_i2_2_fused * 16 + i2_3 * 8 + i2_4) rl = T.axis.reduce(3, i3_0 * 3 + i3_1 * 3 + i3_2) rc = T.axis.reduce(64, i4_0 * 4 + i4_1 * 2 + i4_2) T.reads(PadInput_shared[n, l * 2 + rl, co T.writes(conv1d_nlc_local[n, l, co]) T.block_attr({"meta_schedule.thread_extent_high_inclusive":1024, "meta_schedule.thread_extent_low_inclusive":32, "meta_schedule.tiling_structure":"SSSRRSRS"}) with T.init(): conv1d_nlc_local[n, l, co] = T.float32(0) conv1d_nlc_local[n, l, co] = conv1d_nlc_local[n, l, co] + PadInput_shared[n, l * 2 + rl, co for ax0, ax1, ax2 in T.grid(1, 4, 16):
with T.block("conv1d_nlc_local"): v0 = T.axis.spatial(1, ax0) v1 = T.axis.spatial(128, i0_0_i1_0_i2_0_fused * 32 + i0_1_i1_1_i2_1_fused v2 = T.axis.spatial(128, i0_1_i1_1_i2_1_fused % 2 * 64 + i0_2_i1_2_i2_2_fused * 16 + ax2) T.reads(conv1d_nlc_local[v0, v1, v2]) T.writes(conv1d_nlc[v0, v1, v2]) conv1d_nlc[v0, v1, v2] = conv1d_nlc_local[v0, v1, v2] decision_0 = [ ("SamplePerfectTile", [1, 1, 1, 1, 1]), ("SamplePerfectTile", [4, 8, 1, 1, 4]), ("SamplePerfectTile", [1, 2, 4, 2, 8]), ("SamplePerfectTile", [1, 1, 3]), ("SamplePerfectTile", [16, 2, 2]), ("SampleCategorical", 3), ("SampleCategorical", 2), ("SampleCategorical", 1), ] mod = create_te_workload("C1D", 0) actual = _design_space(mod) check_sketches( mod, sketches=actual, expected_mods=[c1d_0], expected_decisions=[decision_0], ) def test_cuda_c2d(): @T.prim_func def c2d_0(inputs: T.Buffer[(1, 224, 224, 3), "float32"], weight: T.Buffer[(7, 7, 3, 64), "float32"], conv2d_nhwc: T.Buffer[(1, 112, 112, 64), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.unroll_explicit":16}) conv2d_nhwc_local = T.alloc_buffer([1, 112, 112, 64], dtype="float32", scope="local") PadInput_shared = T.alloc_buffer([1, 230, 230, 3], dtype="float32", scope="shared") weight_shared = T.alloc_buffer([7, 7, 3, 64], dtype="float32", scope="shared") for i0_0_i1_0_i2_0_i3_0_fused in T.thread_binding(16, thread="blockIdx.x"): for i0_1_i1_1_i2_1_i3_1_fused in T.thread_binding(56, thread="vthread.x"): for i0
_2_i1_2_i2_2_i3_2_fused in T.thread_binding(14, thread="threadIdx.x"): for i4_0, i5_0, i6_0 in T.grid(1, 1, 1): for ax0_ax1_ax2_ax3_fused in T.serial(80379): with T.block("PadInput_shared"): v0 = T.axis.spatial(1, 0) v1 = T.axis.spatial(230, ax0_ax1_ax2_ax3_fused v2 = T.axis.spatial(230, i0_0_i1_0_i2_0_i3_0_fused v3 = T.axis.spatial(3, ax0_ax1_ax2_ax3_fused % 3) T.reads(inputs[v0, v1 - 3, v2 - 3, v3]) T.writes(PadInput_shared[v0, v1, v2, v3]) T.block_attr({"meta_schedule.cooperative_fetch":2}) PadInput_shared[v0, v1, v2, v3] = T.if_then_else(3 <= v1 and v1 < 227 and 3 <= v2 and v2 < 227, inputs[v0, v1 - 3, v2 - 3, v3], T.float32(0), dtype="float32") for ax0_ax1_ax2_ax3_fused in T.serial(1176): with T.block("weight_shared"): v0 = T.axis.spatial(7, ax0_ax1_ax2_ax3_fused v1 = T.axis.spatial(7, ax0_ax1_ax2_ax3_fused % 168 v2 = T.axis.spatial(3, ax0_ax1_ax2_ax3_fused % 24 v3 = T.axis.spatial(64, i0_0_i1_0_i2_0_i3_0_fused % 8 * 8 + ax0_ax1_ax2_ax3_fused % 8) T.reads(weight[v0, v1, v2, v3]) T.writes(weight_shared[v0, v1, v2, v3]) T.block_attr({"meta_schedule.cooperative_fetch":4}) weight_shared[v0, v1, v2, v3] = weight[v0, v1, v2, v3] for i4_1, i5_1, i6_1, i0_3, i1_3, i2_3, i3_3, i4_2, i5_2, i6_2, i0_4, i1_4, i2_4, i3_4 in T.grid(1, 7, 1, 1, 8, 4, 1, 7, 1, 3, 1, 1, 1, 2):
with T.block("conv2d_nhwc"): n = T.axis.spatial(1, i0_3 + i0_4) h = T.axis.spatial(112, i1_4 + i0_2_i1_2_i2_2_i3_2_fused * 8 + i1_3) w = T.axis.spatial(112, i0_0_i1_0_i2_0_i3_0_fused co = T.axis.spatial(64, i0_0_i1_0_i2_0_i3_0_fused % 8 * 8 + i0_1_i1_1_i2_1_i3_1_fused % 4 * 2 + i3_3 * 2 + i3_4) rh = T.axis.reduce(7, i4_0 * 7 + i4_1 * 7 + i4_2) rw = T.axis.reduce(7, i5_2 + i5_0 * 7 + i5_1) rc = T.axis.reduce(3, i6_0 * 3 + i6_1 * 3 + i6_2) T.reads(PadInput_shared[n, h * 2 + rh, w * 2 + rw, co T.writes(conv2d_nhwc_local[n, h, w, co]) T.block_attr({"meta_schedule.thread_extent_high_inclusive":1024, "meta_schedule.thread_extent_low_inclusive":32, "meta_schedule.tiling_structure":"SSSRRSRS"}) with T.init(): conv2d_nhwc_local[n, h, w, co] = T.float32(0) conv2d_nhwc_local[n, h, w, co] = conv2d_nhwc_local[n, h, w, co] + PadInput_shared[n, h * 2 + rh, w * 2 + rw, co for ax0, ax1, ax2, ax3 in T.grid(1, 8, 4, 2): with T.block("conv2d_nhwc_local"): v0 = T.axis.spatial(1, ax0) v1 = T.axis.spatial(112, i0_2_i1_2_i2_2_i3_2_fused * 8 + ax1) v2 = T.axis.spatial(112, i0_0_i1_0_i2_0_i3_0_fused v3 = T.axis.spatial(64, i0_0_i1_0_i2_0_i3_0_fused % 8 * 8 + i0_1_i1_1_i2_1_i3_1_fused % 4 * 2 + ax3) T.reads(conv2d_nhwc_local[v0, v1, v2, v3]) T.writes(conv2d_nhwc[v0, v1, v2, v3])
conv2d_nhwc[v0, v1, v2, v3] = conv2d_nhwc_local[v0, v1, v2, v3] decision_0 = [ ("SamplePerfectTile", [1, 1, 1, 1, 1]), ("SamplePerfectTile", [1, 1, 14, 8, 1]), ("SamplePerfectTile", [2, 14, 1, 4, 1]), ("SamplePerfectTile", [8, 4, 1, 1, 2]), ("SamplePerfectTile", [1, 1, 7]), ("SamplePerfectTile", [1, 7, 1]), ("SamplePerfectTile", [1, 1, 3]), ("SampleCategorical", 1), ("SampleCategorical", 3), ("SampleCategorical", 1), ] mod = create_te_workload("C2D", 0) actual = _design_space(mod) check_sketches( mod, sketches=actual, expected_mods=[c2d_0], expected_decisions=[decision_0], ) def test_cuda_c3d(): @T.prim_func def c3d_0(inputs: T.Buffer[(1, 16, 224, 224, 3), "float32"], weight: T.Buffer[(7, 7, 7, 3, 64), "float32"], conv3d_ndhwc: T.Buffer[(1, 8, 112, 112, 64), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.unroll_explicit":16}) conv3d_ndhwc_local = T.alloc_buffer([1, 8, 112, 112, 64], dtype="float32", scope="local") PadInput_shared = T.alloc_buffer([1, 22, 230, 230, 3], dtype="float32", scope="shared") weight_shared = T.alloc_buffer([7, 7, 7, 3, 64], dtype="float32", scope="shared") for i0_0_i1_0_i2_0_i3_0_i4_0_fused in T.thread_binding(2, thread="blockIdx.x"): for i0_1_i1_1_i2_1_i3_1_i4_1_fused in T.thread_binding(8, thread="vthread.x"): for i0_2_i1_2_i2_2_i3_2_i4_2_fused in T.thread_binding(392, thread="threadIdx.x"): for i5_0, i6_0, i7_0, i8_0 in T.grid(1, 1, 1, 1): for ax0_ax1_ax2_ax3_ax4_fused in T.serial(1687959): with T.block("PadInput_shared"): v0 = T.axis.spatial(1, 0)
v1 = T.axis.spatial(22, ax0_ax1_ax2_ax3_ax4_fused v2 = T.axis.spatial(230, ax0_ax1_ax2_ax3_ax4_fused % 80379 v3 = T.axis.spatial(230, i0_0_i1_0_i2_0_i3_0_i4_0_fused * 112 + ax0_ax1_ax2_ax3_ax4_fused % 351 v4 = T.axis.spatial(3, ax0_ax1_ax2_ax3_ax4_fused % 3) T.reads(inputs[v0, v1 - 3, v2 - 3, v3 - 3, v4]) T.writes(PadInput_shared[v0, v1, v2, v3, v4]) T.block_attr({"meta_schedule.cooperative_fetch":4}) PadInput_shared[v0, v1, v2, v3, v4] = T.if_then_else(3 <= v1 and v1 < 19 and 3 <= v2 and v2 < 227 and 3 <= v3 and v3 < 227, inputs[v0, v1 - 3, v2 - 3, v3 - 3, v4], T.float32(0), dtype="float32") for ax0_ax1_ax2_ax3_ax4_fused in T.serial(65856): with T.block("weight_shared"): v0 = T.axis.spatial(7, ax0_ax1_ax2_ax3_ax4_fused v1 = T.axis.spatial(7, ax0_ax1_ax2_ax3_ax4_fused % 9408 v2 = T.axis.spatial(7, ax0_ax1_ax2_ax3_ax4_fused % 1344 v3 = T.axis.spatial(3, ax0_ax1_ax2_ax3_ax4_fused % 192 v4 = T.axis.spatial(64, ax0_ax1_ax2_ax3_ax4_fused % 64) T.reads(weight[v0, v1, v2, v3, v4]) T.writes(weight_shared[v0, v1, v2, v3, v4]) T.block_attr({"meta_schedule.cooperative_fetch":3}) weight_shared[v0, v1, v2, v3, v4] = weight[v0, v1, v2, v3, v4] for i5_1, i6_1, i7_1, i8_1, i0_3, i1_3, i2_3, i3_3, i4_3, i5_2, i6_2, i7_2, i8_2, i0_4, i1_4, i2_4, i3_4, i4_4 in T.grid(7, 7, 1, 3, 1, 2, 2, 1, 32, 1, 1, 7, 1, 1, 1, 2, 4, 1): with T.block
("conv3d_ndhwc"): n = T.axis.spatial(1, i0_4 + i0_3) d = T.axis.spatial(8, i1_4 + i0_2_i1_2_i2_2_i3_2_i4_2_fused h = T.axis.spatial(112, i0_1_i1_1_i2_1_i3_1_i4_1_fused w = T.axis.spatial(112, i0_0_i1_0_i2_0_i3_0_i4_0_fused * 56 + i0_1_i1_1_i2_1_i3_1_i4_1_fused % 2 * 28 + i0_2_i1_2_i2_2_i3_2_i4_2_fused % 14 co = T.axis.spatial(64, i0_2_i1_2_i2_2_i3_2_i4_2_fused % 2 * 32 + i4_3 + i4_4) rd = T.axis.reduce(7, i5_2 + i5_0 * 7 + i5_1) rh = T.axis.reduce(7, i6_0 * 7 + i6_1 + i6_2) rw = T.axis.reduce(7, i7_0 * 7 + i7_1 * 7 + i7_2) rc = T.axis.reduce(3, i8_0 * 3 + i8_1 + i8_2) T.reads(PadInput_shared[n, d * 2 + rd, h * 2 + rh, w * 2 + rw, co T.writes(conv3d_ndhwc_local[n, d, h, w, co]) T.block_attr({"meta_schedule.thread_extent_high_inclusive":1024, "meta_schedule.thread_extent_low_inclusive":32, "meta_schedule.tiling_structure":"SSSRRSRS"}) with T.init(): conv3d_ndhwc_local[n, d, h, w, co] = T.float32(0) conv3d_ndhwc_local[n, d, h, w, co] = conv3d_ndhwc_local[n, d, h, w, co] + PadInput_shared[n, d * 2 + rd, h * 2 + rh, w * 2 + rw, co for ax0, ax1, ax2, ax3, ax4 in T.grid(1, 2, 4, 4, 32): with T.block("conv3d_ndhwc_local"): v0 = T.axis.spatial(1, ax0) v1 = T.axis.spatial(8, i0_2_i1_2_i2_2_i3_2_i4_2_fused v2 = T.axis.spatial(112, i0_1_i1_1_i2_1_i3_1_i4_1_fused v3 = T.axis.spatial(112, i0_0_i1_0_i2_0_i3_0_i
4_0_fused * 56 + i0_1_i1_1_i2_1_i3_1_i4_1_fused % 2 * 28 + i0_2_i1_2_i2_2_i3_2_i4_2_fused % 14 v4 = T.axis.spatial(64, i0_2_i1_2_i2_2_i3_2_i4_2_fused % 2 * 32 + ax4) T.reads(conv3d_ndhwc_local[v0, v1, v2, v3, v4]) T.writes(conv3d_ndhwc[v0, v1, v2, v3, v4]) conv3d_ndhwc[v0, v1, v2, v3, v4] = conv3d_ndhwc_local[v0, v1, v2, v3, v4] decision_0 = [ ("SamplePerfectTile", [1, 1, 1, 1, 1]), ("SamplePerfectTile", [1, 1, 4, 2, 1]), ("SamplePerfectTile", [1, 4, 7, 2, 2]), ("SamplePerfectTile", [2, 2, 7, 1, 4]), ("SamplePerfectTile", [1, 1, 2, 32, 1]), ("SamplePerfectTile", [1, 7, 1]), ("SamplePerfectTile", [1, 7, 1]), ("SamplePerfectTile", [1, 1, 7]), ("SamplePerfectTile", [1, 3, 1]), ("SampleCategorical", 3), ("SampleCategorical", 2), ("SampleCategorical", 1), ] mod = create_te_workload("C3D", 0) actual = _design_space(mod) check_sketches( mod, sketches=actual, expected_mods=[c3d_0], expected_decisions=[decision_0], ) def test_cuda_cap(): @T.prim_func def cap_0(inputs: T.Buffer[(1, 16, 16, 4, 4, 32), "float32"], weight: T.Buffer[(3, 3, 4, 4, 32, 32), "float32"], conv2d_capsule_nhwijc: T.Buffer[(1, 8, 8, 4, 4, 32), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.unroll_explicit":64}) conv2d_capsule_nhwijc_local = T.alloc_buffer([1, 8, 8, 4, 4, 32], dtype="float32", scope="local") PadInput_shared = T.alloc_buffer([1, 18, 18, 4, 4, 32], dtype="float32", scope="shared") weight_shared = T.alloc_buffer([3, 3, 4, 4, 32, 32], dtype="float32", scope="shared") for i0_0_i1_0_i2_0_i3_0_i4_0_i5_0_fused in T.thread_binding
(256, thread="blockIdx.x"): for i0_1_i1_1_i2_1_i3_1_i4_1_i5_1_fused in T.thread_binding(1, thread="vthread.x"): for i0_2_i1_2_i2_2_i3_2_i4_2_i5_2_fused in T.thread_binding(4, thread="threadIdx.x"): for i6_0, i7_0, i8_0, i9_0 in T.grid(3, 3, 2, 8): for ax0_ax1_ax2_ax3_ax4_ax5_fused in T.serial(48): with T.block("PadInput_shared"): v0 = T.axis.spatial(1, 0) v1 = T.axis.spatial(18, i0_0_i1_0_i2_0_i3_0_i4_0_i5_0_fused v2 = T.axis.spatial(18, i0_0_i1_0_i2_0_i3_0_i4_0_i5_0_fused % 64 v3 = T.axis.spatial(4, i0_0_i1_0_i2_0_i3_0_i4_0_i5_0_fused % 8 v4 = T.axis.spatial(4, i8_0 * 2 + ax0_ax1_ax2_ax3_ax4_ax5_fused % 8 v5 = T.axis.spatial(32, i9_0 * 4 + ax0_ax1_ax2_ax3_ax4_ax5_fused % 4) T.reads(inputs[v0, v1 - 1, v2 - 1, v3, v4, v5]) T.writes(PadInput_shared[v0, v1, v2, v3, v4, v5]) T.block_attr({"meta_schedule.cooperative_fetch":2}) PadInput_shared[v0, v1, v2, v3, v4, v5] = T.if_then_else(1 <= v1 and v1 < 17 and 1 <= v2 and v2 < 17, inputs[v0, v1 - 1, v2 - 1, v3, v4, v5], T.float32(0), dtype="float32") for ax0_ax1_ax2_ax3_ax4_ax5_fused in T.serial(256): with T.block("weight_shared"): v0, v1 = T.axis.remap("SS", [i6_0, i7_0]) v2 = T.axis.spatial(4, i8_0 * 2 + ax0_ax1_ax2_ax3_ax4_ax5_fused v3 = T.axis.spatial(4, ax0_ax1_ax2_ax3_ax4_ax5_fused % 128 v4 = T.axis.spatial(32, i9_0 * 4 + ax0_ax1_ax2_ax3_ax4_ax5_fused % 32
v5 = T.axis.spatial(32, i0_0_i1_0_i2_0_i3_0_i4_0_i5_0_fused % 4 * 8 + ax0_ax1_ax2_ax3_ax4_ax5_fused % 8) T.reads(weight[v0, v1, v2, v3, v4, v5]) T.writes(weight_shared[v0, v1, v2, v3, v4, v5]) T.block_attr({"meta_schedule.cooperative_fetch":4}) weight_shared[v0, v1, v2, v3, v4, v5] = weight[v0, v1, v2, v3, v4, v5] for i6_1, i7_1, i8_1, i9_1, i0_3, i1_3, i2_3, i3_3, i4_3, i5_3, i6_2, i7_2, i8_2, i9_2, i0_4, i1_4, i2_4, i3_4, i4_4, i5_4 in T.grid(1, 1, 1, 4, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 8): with T.block("conv2d_capsule_nhwijc"): n = T.axis.spatial(1, i0_4 + i0_3) h = T.axis.spatial(8, i0_0_i1_0_i2_0_i3_0_i4_0_i5_0_fused w = T.axis.spatial(8, i2_3 + i2_4 + i0_0_i1_0_i2_0_i3_0_i4_0_i5_0_fused % 64 cap_i = T.axis.spatial(4, i3_3 + i3_4 + i0_0_i1_0_i2_0_i3_0_i4_0_i5_0_fused % 8 cap_j = T.axis.spatial(4, i0_2_i1_2_i2_2_i3_2_i4_2_i5_2_fused % 2 * 2 + i4_3 * 2 + i4_4) co = T.axis.spatial(32, i0_0_i1_0_i2_0_i3_0_i4_0_i5_0_fused % 4 * 8 + i5_3 * 8 + i5_4) rh = T.axis.reduce(3, i6_1 + i6_2 + i6_0) rw = T.axis.reduce(3, i7_0 + i7_1 + i7_2) cap_k = T.axis.reduce(4, i8_0 * 2 + i8_1 * 2 + i8_2) rc = T.axis.reduce(32, i9_0 * 4 + i9_1 + i9_2) T.reads(PadInput_shared[n, h * 2 + rh, w * 2 + rw, cap_i, cap_k, rc], weight_shared[rh, rw, cap_k, cap_j, rc, co]) T.writes(conv2d_capsule_nhwijc_local[n, h, w, cap_i, cap_j, co]) T.block_attr({"meta_schedule.t
hread_extent_high_inclusive":1024, "meta_schedule.thread_extent_low_inclusive":32, "meta_schedule.tiling_structure":"SSSRRSRS"}) with T.init(): conv2d_capsule_nhwijc_local[n, h, w, cap_i, cap_j, co] = T.float32(0) conv2d_capsule_nhwijc_local[n, h, w, cap_i, cap_j, co] = conv2d_capsule_nhwijc_local[n, h, w, cap_i, cap_j, co] + PadInput_shared[n, h * 2 + rh, w * 2 + rw, cap_i, cap_k, rc] * weight_shared[rh, rw, cap_k, cap_j, rc, co] for ax0, ax1, ax2, ax3, ax4, ax5 in T.grid(1, 2, 1, 1, 2, 8): with T.block("conv2d_capsule_nhwijc_local"): v0 = T.axis.spatial(1, ax0) v1 = T.axis.spatial(8, i0_0_i1_0_i2_0_i3_0_i4_0_i5_0_fused v2 = T.axis.spatial(8, i0_0_i1_0_i2_0_i3_0_i4_0_i5_0_fused % 64 v3 = T.axis.spatial(4, i0_0_i1_0_i2_0_i3_0_i4_0_i5_0_fused % 8 v4 = T.axis.spatial(4, i0_2_i1_2_i2_2_i3_2_i4_2_i5_2_fused % 2 * 2 + ax4) v5 = T.axis.spatial(32, i0_0_i1_0_i2_0_i3_0_i4_0_i5_0_fused % 4 * 8 + ax5) T.reads(conv2d_capsule_nhwijc_local[v0, v1, v2, v3, v4, v5]) T.writes(conv2d_capsule_nhwijc[v0, v1, v2, v3, v4, v5]) conv2d_capsule_nhwijc[v0, v1, v2, v3, v4, v5] = conv2d_capsule_nhwijc_local[v0, v1, v2, v3, v4, v5] decision_0 = [ ("SamplePerfectTile", [1, 1, 1, 1, 1]), ("SamplePerfectTile", [4, 1, 1, 2, 1]), ("SamplePerfectTile", [8, 1, 1, 1, 1]), ("SamplePerfectTile", [2, 1, 2, 1, 1]), ("SamplePerfectTile", [1, 1, 2, 1, 2]), ("SamplePerfectTile", [4, 1, 1, 1, 8]), ("SamplePerfectTile", [3, 1, 1]), ("SamplePerfectTile", [3, 1, 1]), ("SamplePerfectTile", [2, 1, 2]), ("SamplePerfectTile", [8,
4, 1]), ("SampleCategorical", 1), ("SampleCategorical", 3), ("SampleCategorical", 2), ] mod = create_te_workload("CAP", 0) actual = _design_space(mod) check_sketches( mod, sketches=actual, expected_mods=[cap_0], expected_decisions=[decision_0], ) def test_cuda_dep(): @T.prim_func def dep_0(placeholder: T.Buffer[(1, 112, 112, 32), "float32"], placeholder_1: T.Buffer[(1, 3, 3, 32), "float32"], depth_conv2d_nhwc: T.Buffer[(1, 112, 112, 32), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.unroll_explicit":16}) depth_conv2d_nhwc_local = T.alloc_buffer([1, 112, 112, 32], dtype="float32", scope="local") PadInput_shared = T.alloc_buffer([1, 114, 114, 32], dtype="float32", scope="shared") placeholder_shared = T.alloc_buffer([1, 3, 3, 32], dtype="float32", scope="shared") for i0_0_i1_0_i2_0_i3_0_fused in T.thread_binding(1, thread="blockIdx.x"): for i0_1_i1_1_i2_1_i3_1_fused in T.thread_binding(8, thread="vthread.x"): for i0_2_i1_2_i2_2_i3_2_fused in T.thread_binding(14, thread="threadIdx.x"): for i4_0, i5_0 in T.grid(1, 1): for ax0_ax1_ax2_ax3_fused in T.serial(415872): with T.block("PadInput_shared"): v0 = T.axis.spatial(1, 0) v1 = T.axis.spatial(114, ax0_ax1_ax2_ax3_fused v2 = T.axis.spatial(114, ax0_ax1_ax2_ax3_fused % 3648 v3 = T.axis.spatial(32, ax0_ax1_ax2_ax3_fused % 32) T.reads(placeholder[v0, v1 - 1, v2 - 1, v3]) T.writes(PadInput_shared[v0, v1, v2, v3])
T.block_attr({"meta_schedule.cooperative_fetch":3}) PadInput_shared[v0, v1, v2, v3] = T.if_then_else(1 <= v1 and v1 < 113 and 1 <= v2 and v2 < 113, placeholder[v0, v1 - 1, v2 - 1, v3], T.float32(0), dtype="float32") for ax0_ax1_ax2_ax3_fused in T.serial(288): with T.block("placeholder_shared"): v0 = T.axis.spatial(1, 0) v1 = T.axis.spatial(3, ax0_ax1_ax2_ax3_fused v2 = T.axis.spatial(3, ax0_ax1_ax2_ax3_fused % 96 v3 = T.axis.spatial(32, ax0_ax1_ax2_ax3_fused % 32) T.reads(placeholder_1[v0, v1, v2, v3]) T.writes(placeholder_shared[v0, v1, v2, v3]) T.block_attr({"meta_schedule.cooperative_fetch":3}) placeholder_shared[v0, v1, v2, v3] = placeholder_1[v0, v1, v2, v3] for i4_1, i5_1, i0_3, i1_3, i2_3, i3_3, i4_2, i5_2, i0_4, i1_4, i2_4, i3_4 in T.grid(3, 1, 1, 4, 16, 8, 1, 3, 1, 7, 1, 1): with T.block("depth_conv2d_nhwc"): n = T.axis.spatial(1, i0_4 + i0_3) h = T.axis.spatial(112, i0_1_i1_1_i2_1_i3_1_fused w = T.axis.spatial(112, i2_4 + i0_2_i1_2_i2_2_i3_2_fused c = T.axis.spatial(32, i0_1_i1_1_i2_1_i3_1_fused % 2 * 16 + i0_2_i1_2_i2_2_i3_2_fused % 2 * 8 + i3_3 + i3_4) rh = T.axis.reduce(3, i4_2 + i4_0 * 3 + i4_1) rw = T.axis.reduce(3, i5_0 * 3 + i5_1 * 3 + i5_2) T.reads(PadInput_shared[n, h + rh, w + rw, c], placeholder_shared[0, rh, rw, c]) T.writes(depth_conv2d_nhwc_local[n,
h, w, c]) T.block_attr({"meta_schedule.thread_extent_high_inclusive":1024, "meta_schedule.thread_extent_low_inclusive":32, "meta_schedule.tiling_structure":"SSSRRSRS"}) with T.init(): depth_conv2d_nhwc_local[n, h, w, c] = T.float32(0) depth_conv2d_nhwc_local[n, h, w, c] = depth_conv2d_nhwc_local[n, h, w, c] + PadInput_shared[n, h + rh, w + rw, c] * placeholder_shared[0, rh, rw, c] for ax0, ax1, ax2, ax3 in T.grid(1, 28, 16, 8): with T.block("depth_conv2d_nhwc_local"): v0 = T.axis.spatial(1, ax0) v1 = T.axis.spatial(112, i0_1_i1_1_i2_1_i3_1_fused v2 = T.axis.spatial(112, i0_2_i1_2_i2_2_i3_2_fused v3 = T.axis.spatial(32, i0_1_i1_1_i2_1_i3_1_fused % 2 * 16 + i0_2_i1_2_i2_2_i3_2_fused % 2 * 8 + ax3) T.reads(depth_conv2d_nhwc_local[v0, v1, v2, v3]) T.writes(depth_conv2d_nhwc[v0, v1, v2, v3]) depth_conv2d_nhwc[v0, v1, v2, v3] = depth_conv2d_nhwc_local[v0, v1, v2, v3] decision_0 = [ ("SamplePerfectTile", [1, 1, 1, 1, 1]), ("SamplePerfectTile", [1, 4, 1, 4, 7]), ("SamplePerfectTile", [1, 1, 7, 16, 1]), ("SamplePerfectTile", [1, 2, 2, 8, 1]), ("SamplePerfectTile", [1, 3, 1]), ("SamplePerfectTile", [1, 1, 3]), ("SampleCategorical", 2), ("SampleCategorical", 2), ("SampleCategorical", 1), ] mod = create_te_workload("DEP", 0) actual = _design_space(mod) check_sketches( mod, sketches=actual, expected_mods=[dep_0], expected_decisions=[decision_0], ) def test_cuda_dil(): @T.prim_func def dil_0(inputs: T.Buffer[(1, 224, 224, 3), "float32"], weight: T.Buffer[(7, 7, 3,
64), "float32"], conv2d_nhwc: T.Buffer[(1, 109, 109, 64), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.unroll_explicit":512}) conv2d_nhwc_local = T.alloc_buffer([1, 109, 109, 64], dtype="float32", scope="local") PadInput_shared = T.alloc_buffer([1, 230, 230, 3], dtype="float32", scope="shared") weight_shared = T.alloc_buffer([7, 7, 3, 64], dtype="float32", scope="shared") for i0_0_i1_0_i2_0_i3_0_fused in T.thread_binding(218, thread="blockIdx.x"): for i0_1_i1_1_i2_1_i3_1_fused in T.thread_binding(109, thread="vthread.x"): for i0_2_i1_2_i2_2_i3_2_fused in T.thread_binding(1, thread="threadIdx.x"): for i4_0, i5_0, i6_0 in T.grid(7, 7, 3): for ax0_ax1_ax2_ax3_fused in T.serial(217): with T.block("PadInput_shared"): v0 = T.axis.spatial(1, 0) v1 = T.axis.spatial(230, i0_0_i1_0_i2_0_i3_0_fused v2 = T.axis.spatial(230, i5_0 * 2 + ax0_ax1_ax2_ax3_fused % 217) v3 = T.axis.spatial(3, i6_0 + 0) T.reads(inputs[v0, v1 - 3, v2 - 3, v3]) T.writes(PadInput_shared[v0, v1, v2, v3]) T.block_attr({"meta_schedule.cooperative_fetch":2}) PadInput_shared[v0, v1, v2, v3] = T.if_then_else(3 <= v1 and v1 < 227 and 3 <= v2 and v2 < 227, inputs[v0, v1 - 3, v2 - 3, v3], T.float32(0), dtype="float32") for ax0_ax1_ax2_ax3_fused in T.serial(32): with T.block("weight_shared"): v0, v1, v2 = T.axis.remap("SSS", [i4_0, i5_0, i6_0])
v3 = T.axis.spatial(64, i0_0_i1_0_i2_0_i3_0_fused % 2 * 32 + ax0_ax1_ax2_ax3_fused) T.reads(weight[v0, v1, v2, v3]) T.writes(weight_shared[v0, v1, v2, v3]) T.block_attr({"meta_schedule.cooperative_fetch":4}) weight_shared[v0, v1, v2, v3] = weight[v0, v1, v2, v3] for i4_1, i5_1, i6_1, i0_3, i1_3, i2_3, i3_3, i4_2, i5_2, i6_2, i0_4, i1_4, i2_4, i3_4 in T.grid(1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 4): with T.block("conv2d_nhwc"): n = T.axis.spatial(1, i0_3 + i0_4) h = T.axis.spatial(109, i1_4 + i0_0_i1_0_i2_0_i3_0_fused w = T.axis.spatial(109, i0_1_i1_1_i2_1_i3_1_fused + i2_3 + i2_4) co = T.axis.spatial(64, i0_0_i1_0_i2_0_i3_0_fused % 2 * 32 + i3_3 * 4 + i3_4) rh = T.axis.reduce(7, i4_0 + i4_1 + i4_2) rw = T.axis.reduce(7, i5_2 + i5_0 + i5_1) rc = T.axis.reduce(3, i6_1 + i6_2 + i6_0) T.reads(PadInput_shared[n, h * 2 + rh * 2, w * 2 + rw * 2, co T.writes(conv2d_nhwc_local[n, h, w, co]) T.block_attr({"meta_schedule.thread_extent_high_inclusive":1024, "meta_schedule.thread_extent_low_inclusive":32, "meta_schedule.tiling_structure":"SSSRRSRS"}) with T.init(): conv2d_nhwc_local[n, h, w, co] = T.float32(0) conv2d_nhwc_local[n, h, w, co] = conv2d_nhwc_local[n, h, w, co] + PadInput_shared[n, h * 2 + rh * 2, w * 2 + rw * 2, co for ax0, ax1, ax2, ax3 in T.grid(1, 1, 1, 32):
with T.block("conv2d_nhwc_local"): v0 = T.axis.spatial(1, ax0) v1 = T.axis.spatial(109, i0_0_i1_0_i2_0_i3_0_fused v2 = T.axis.spatial(109, i0_1_i1_1_i2_1_i3_1_fused + ax2) v3 = T.axis.spatial(64, i0_0_i1_0_i2_0_i3_0_fused % 2 * 32 + ax3) T.reads(conv2d_nhwc_local[v0, v1, v2, v3]) T.writes(conv2d_nhwc[v0, v1, v2, v3]) conv2d_nhwc[v0, v1, v2, v3] = conv2d_nhwc_local[v0, v1, v2, v3] decision_0 = [ ("SamplePerfectTile", [1, 1, 1, 1, 1]), ("SamplePerfectTile", [109, 1, 1, 1, 1]), ("SamplePerfectTile", [1, 109, 1, 1, 1]), ("SamplePerfectTile", [2, 1, 1, 8, 4]), ("SamplePerfectTile", [7, 1, 1]), ("SamplePerfectTile", [7, 1, 1]), ("SamplePerfectTile", [3, 1, 1]), ("SampleCategorical", 1), ("SampleCategorical", 3), ("SampleCategorical", 3), ] mod = create_te_workload("DIL", 0) actual = _design_space(mod) check_sketches( mod, sketches=actual, expected_mods=[dil_0], expected_decisions=[decision_0], ) def test_cuda_gmm(): @T.prim_func def gmm_0(X: T.Buffer[(1, 128, 128), "float32"], Y: T.Buffer[(1, 128, 128), "float32"], Z: T.Buffer[(1, 128, 128), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.unroll_explicit":1024}) Z_local = T.alloc_buffer([1, 128, 128], dtype="float32", scope="local") X_shared = T.alloc_buffer([1, 128, 128], dtype="float32", scope="shared") Y_shared = T.alloc_buffer([1, 128, 128], dtype="float32", scope="shared") for i0_0_i1_0_i2_0_fused in T.thread_binding(1, thread="blockIdx.x"): for i0_1_i1
_1_i2_1_fused in T.thread_binding(32, thread="vthread.x"): for i0_2_i1_2_i2_2_fused in T.thread_binding(2, thread="threadIdx.x"): for i3_0 in T.serial(1): for ax0_ax1_ax2_fused in T.serial(16384): with T.block("X_shared"): v0 = T.axis.spatial(1, 0) v1 = T.axis.spatial(128, ax0_ax1_ax2_fused v2 = T.axis.spatial(128, ax0_ax1_ax2_fused % 128) T.reads(X[v0, v1, v2]) T.writes(X_shared[v0, v1, v2]) T.block_attr({"meta_schedule.cooperative_fetch":2}) X_shared[v0, v1, v2] = X[v0, v1, v2] for ax0_ax1_ax2_fused in T.serial(16384): with T.block("Y_shared"): v0 = T.axis.spatial(1, 0) v1 = T.axis.spatial(128, ax0_ax1_ax2_fused v2 = T.axis.spatial(128, ax0_ax1_ax2_fused % 128) T.reads(Y[v0, v1, v2]) T.writes(Y_shared[v0, v1, v2]) T.block_attr({"meta_schedule.cooperative_fetch":1}) Y_shared[v0, v1, v2] = Y[v0, v1, v2] for i3_1, i0_3, i1_3, i2_3, i3_2, i0_4, i1_4, i2_4 in T.grid(32, 1, 2, 64, 4, 1, 2, 1): with T.block("Z"): b = T.axis.spatial(1, i0_4 + i0_3) i = T.axis.spatial(128, i0_1_i1_1_i2_1_fused * 4 + i1_3 * 2 + i1_4) j = T.axis.spatial(128, i2_4 + i0_2_i1_2_i2_2_fused * 64 + i2_3) k = T.axis.reduce(128, i3_0 * 128 + i3_1 * 4 + i3_2)
T.reads(X_shared[b, i, k], Y_shared[b, k, j]) T.writes(Z_local[b, i, j]) T.block_attr({"meta_schedule.thread_extent_high_inclusive":1024, "meta_schedule.thread_extent_low_inclusive":32, "meta_schedule.tiling_structure":"SSSRRSRS"}) with T.init(): Z_local[b, i, j] = T.float32(0) Z_local[b, i, j] = Z_local[b, i, j] + X_shared[b, i, k] * Y_shared[b, k, j] for ax0, ax1, ax2 in T.grid(1, 4, 64): with T.block("Z_local"): v0 = T.axis.spatial(1, ax0) v1 = T.axis.spatial(128, i0_1_i1_1_i2_1_fused * 4 + ax1) v2 = T.axis.spatial(128, i0_2_i1_2_i2_2_fused * 64 + ax2) T.reads(Z_local[v0, v1, v2]) T.writes(Z[v0, v1, v2]) Z[v0, v1, v2] = Z_local[v0, v1, v2] decision_0 = [ ("SamplePerfectTile", [1, 1, 1, 1, 1]), ("SamplePerfectTile", [1, 32, 1, 2, 2]), ("SamplePerfectTile", [1, 1, 2, 64, 1]), ("SamplePerfectTile", [1, 32, 4]), ("SampleCategorical", 1), ("SampleCategorical", 0), ("SampleCategorical", 4), ] mod = create_te_workload("GMM", 0) actual = _design_space(mod) check_sketches( mod, sketches=actual, expected_mods=[gmm_0], expected_decisions=[decision_0], ) def test_cuda_grp(): @T.prim_func def grp_0(inputs: T.Buffer[(1, 56, 56, 64), "float32"], weight: T.Buffer[(3, 3, 16, 128), "float32"], conv2d_nhwc: T.Buffer[(1, 28, 28, 128), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.unroll_explicit":16})
conv2d_nhwc_local = T.alloc_buffer([1, 28, 28, 128], dtype="float32", scope="local") PadInput_shared = T.alloc_buffer([1, 58, 58, 64], dtype="float32", scope="shared") weight_shared = T.alloc_buffer([3, 3, 16, 128], dtype="float32", scope="shared") for i0_0_i1_0_i2_0_i3_0_fused in T.thread_binding(2, thread="blockIdx.x"): for i0_1_i1_1_i2_1_i3_1_fused in T.thread_binding(1, thread="vthread.x"): for i0_2_i1_2_i2_2_i3_2_fused in T.thread_binding(112, thread="threadIdx.x"): for i4_0, i5_0, i6_0 in T.grid(3, 3, 1): for ax0_ax1_ax2_ax3_fused in T.serial(95040): with T.block("PadInput_shared"): v0 = T.axis.spatial(1, 0) v1 = T.axis.spatial(58, i0_0_i1_0_i2_0_i3_0_fused * 28 + i4_0 + ax0_ax1_ax2_ax3_fused % 95040 v2 = T.axis.spatial(58, i5_0 + ax0_ax1_ax2_ax3_fused % 3520 v3 = T.axis.spatial(64, ax0_ax1_ax2_ax3_fused % 64) T.reads(inputs[v0, v1 - 1, v2 - 1, v3]) T.writes(PadInput_shared[v0, v1, v2, v3]) T.block_attr({"meta_schedule.cooperative_fetch":2}) PadInput_shared[v0, v1, v2, v3] = T.if_then_else(1 <= v1 and v1 < 57 and 1 <= v2 and v2 < 57, inputs[v0, v1 - 1, v2 - 1, v3], T.float32(0), dtype="float32") for ax0_ax1_ax2_ax3_fused in T.serial(2048): with T.block("weight_shared"): v0, v1 = T.axis.remap("SS", [i4_0, i5_0]) v2 = T.axis.spatial(16, ax0_ax1_ax2_ax3_fused v3 = T.axis.spatial(128, ax0_ax1_ax2_ax3_fused % 128) T.reads(weight[v0, v1, v2, v3])
T.writes(weight_shared[v0, v1, v2, v3]) T.block_attr({"meta_schedule.cooperative_fetch":1}) weight_shared[v0, v1, v2, v3] = weight[v0, v1, v2, v3] for i4_1, i5_1, i6_1, i0_3, i1_3, i2_3, i3_3, i4_2, i5_2, i6_2, i0_4, i1_4, i2_4, i3_4 in T.grid(1, 1, 2, 1, 2, 1, 2, 1, 1, 8, 1, 7, 4, 4): with T.block("conv2d_nhwc"): n = T.axis.spatial(1, i0_3 + i0_4) h = T.axis.spatial(28, i0_0_i1_0_i2_0_i3_0_fused * 14 + i1_3 * 7 + i1_4) w = T.axis.spatial(28, i0_2_i1_2_i2_2_i3_2_fused co = T.axis.spatial(128, i0_2_i1_2_i2_2_i3_2_fused % 16 * 8 + i3_3 * 4 + i3_4) rh = T.axis.reduce(3, i4_0 + i4_1 + i4_2) rw = T.axis.reduce(3, i5_2 + i5_0 + i5_1) rc = T.axis.reduce(16, i6_0 * 16 + i6_1 * 8 + i6_2) T.reads(PadInput_shared[n, h * 2 + rh, w * 2 + rw, co T.writes(conv2d_nhwc_local[n, h, w, co]) T.block_attr({"meta_schedule.thread_extent_high_inclusive":1024, "meta_schedule.thread_extent_low_inclusive":32, "meta_schedule.tiling_structure":"SSSRRSRS"}) with T.init(): conv2d_nhwc_local[n, h, w, co] = T.float32(0) conv2d_nhwc_local[n, h, w, co] = conv2d_nhwc_local[n, h, w, co] + PadInput_shared[n, h * 2 + rh, w * 2 + rw, co for ax0, ax1, ax2, ax3 in T.grid(1, 14, 4, 8): with T.block("conv2d_nhwc_local"): v0 = T.axis.spatial(1, ax0) v1 = T.axis.spatial(28, i0_0_i1_0_i2_0_i3_0_fused * 14 + ax1)
v2 = T.axis.spatial(28, i0_2_i1_2_i2_2_i3_2_fused v3 = T.axis.spatial(128, i0_2_i1_2_i2_2_i3_2_fused % 16 * 8 + ax3) T.reads(conv2d_nhwc_local[v0, v1, v2, v3]) T.writes(conv2d_nhwc[v0, v1, v2, v3]) conv2d_nhwc[v0, v1, v2, v3] = conv2d_nhwc_local[v0, v1, v2, v3] decision_0 = [ ("SamplePerfectTile", [1, 1, 1, 1, 1]), ("SamplePerfectTile", [2, 1, 1, 2, 7]), ("SamplePerfectTile", [1, 1, 7, 1, 4]), ("SamplePerfectTile", [1, 1, 16, 2, 4]), ("SamplePerfectTile", [3, 1, 1]), ("SamplePerfectTile", [3, 1, 1]), ("SamplePerfectTile", [1, 2, 8]), ("SampleCategorical", 1), ("SampleCategorical", 0), ("SampleCategorical", 1), ] mod = create_te_workload("GRP", 0) actual = _design_space(mod) check_sketches( mod, sketches=actual, expected_mods=[grp_0], expected_decisions=[decision_0], ) def test_cuda_t2d(): @T.prim_func def t2d_0(inputs: T.Buffer[(1, 4, 4, 512), "float32"], weight: T.Buffer[(4, 4, 512, 256), "float32"], conv2d_transpose_nhwc: T.Buffer[(1, 8, 8, 256), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.unroll_explicit":64}) conv2d_transpose_nhwc_local = T.alloc_buffer([1, 8, 8, 256], dtype="float32", scope="local") PadInput_shared = T.alloc_buffer([1, 6, 6, 512], dtype="float32", scope="shared") weight_shared = T.alloc_buffer([4, 4, 512, 256], dtype="float32", scope="shared") for i0_0_i1_0_i2_0_i3_0_fused in T.thread_binding(256, thread="blockIdx.x"): for i0_1_i1_1_i2_1_i3_1_fused in T.thread_binding(2, thread="vthread.x"): for i0_2_i1_2_i2_2_i3_2_fused in T.thread_binding
(1, thread="threadIdx.x"): for i4_0, i5_0, i6_0 in T.grid(4, 1, 16): for ax0_ax1_ax2_ax3_fused in T.serial((i4_0 % 2 + 1) with T.block("PadInput_shared"): v0 = T.axis.spatial(1, 0) v1 = T.axis.spatial(6, i0_0_i1_0_i2_0_i3_0_fused v2 = T.axis.spatial(6, i0_0_i1_0_i2_0_i3_0_fused % 64 v3 = T.axis.spatial(512, i6_0 * 32 + ax0_ax1_ax2_ax3_fused % 32) T.reads(inputs[v0, v1 - 1, v2 - 1, v3]) T.writes(PadInput_shared[v0, v1, v2, v3]) T.block_attr({"meta_schedule.cooperative_fetch":2}) PadInput_shared[v0, v1, v2, v3] = T.if_then_else(1 <= v1 and v1 < 5 and 1 <= v2 and v2 < 5, inputs[v0, v1 - 1, v2 - 1, v3], T.float32(0), dtype="float32") for ax0_ax1_ax2_ax3_fused in T.serial(2048): with T.block("weight_shared"): v0 = T.axis.spatial(4, i4_0 * -1 + 3) v1 = T.axis.spatial(4, ax0_ax1_ax2_ax3_fused v2 = T.axis.spatial(512, i6_0 * 32 + ax0_ax1_ax2_ax3_fused % 512 v3 = T.axis.spatial(256, i0_0_i1_0_i2_0_i3_0_fused % 16 * 16 + ax0_ax1_ax2_ax3_fused % 16) T.reads(weight[v0, v1, v2, v3]) T.writes(weight_shared[v0, v1, v2, v3]) T.block_attr({"meta_schedule.cooperative_fetch":4}) weight_shared[v0, v1, v2, v3] = weight[v0, v1, v2, v3] for i4_1, i5_1, i6_1, i0_3, i1_3, i2_3, i3_3, i4_2, i5_2, i6_2, i0_4, i1_4, i2_4, i3_4 in T.grid(1, 1, 4, 1, 2, 1, 8, 1, 4, 8, 1, 1, 2, 1):
with T.block("conv2d_transpose_nhwc"): n = T.axis.spatial(1, i0_3 + i0_4) h = T.axis.spatial(8, i1_4 + i0_0_i1_0_i2_0_i3_0_fused w = T.axis.spatial(8, i0_0_i1_0_i2_0_i3_0_fused % 64 co = T.axis.spatial(256, i3_4 + i0_0_i1_0_i2_0_i3_0_fused % 16 * 16 + i0_1_i1_1_i2_1_i3_1_fused * 8 + i3_3) rh = T.axis.reduce(4, i4_0 + i4_1 + i4_2) rw = T.axis.reduce(4, i5_0 * 4 + i5_1 * 4 + i5_2) rc = T.axis.reduce(512, i6_0 * 32 + i6_1 * 8 + i6_2) T.reads(PadInput_shared[n, (h + rh) T.writes(conv2d_transpose_nhwc_local[n, h, w, co]) T.block_attr({"meta_schedule.thread_extent_high_inclusive":1024, "meta_schedule.thread_extent_low_inclusive":32, "meta_schedule.tiling_structure":"SSSRRSRS"}) with T.init(): conv2d_transpose_nhwc_local[n, h, w, co] = T.float32(0) conv2d_transpose_nhwc_local[n, h, w, co] = conv2d_transpose_nhwc_local[n, h, w, co] + T.if_then_else((h + rh) % 2 == 0 and (w + rw) % 2 == 0, PadInput_shared[n, (h + rh) for ax0, ax1, ax2, ax3 in T.grid(1, 2, 2, 8): with T.block("conv2d_transpose_nhwc_local"): v0 = T.axis.spatial(1, ax0) v1 = T.axis.spatial(8, i0_0_i1_0_i2_0_i3_0_fused v2 = T.axis.spatial(8, i0_0_i1_0_i2_0_i3_0_fused % 64 v3 = T.axis.spatial(256, i0_0_i1_0_i2_0_i3_0_fused % 16 * 16 + i0_1_i1_1_i2_1_i3_1_fused * 8 + ax3) T.reads(conv2d_transpose_nhwc_local[v0, v1, v2, v3]) T.writes(conv2d_tran
spose_nhwc[v0, v1, v2, v3]) conv2d_transpose_nhwc[v0, v1, v2, v3] = conv2d_transpose_nhwc_local[v0, v1, v2, v3] decision_0 = [ ("SamplePerfectTile", [1, 1, 1, 1, 1]), ("SamplePerfectTile", [4, 1, 1, 2, 1]), ("SamplePerfectTile", [4, 1, 1, 1, 2]), ("SamplePerfectTile", [16, 2, 1, 8, 1]), ("SamplePerfectTile", [4, 1, 1]), ("SamplePerfectTile", [1, 1, 4]), ("SamplePerfectTile", [16, 4, 8]), ("SampleCategorical", 1), ("SampleCategorical", 3), ("SampleCategorical", 2), ] mod = create_te_workload("T2D", 0) actual = _design_space(mod) check_sketches( mod, sketches=actual, expected_mods=[t2d_0], expected_decisions=[decision_0], debug_mask=0, ) def test_cuda_nrm(): @T.prim_func def nrm_0(A: T.Buffer[(1, 256, 256), "float32"], D: T.Buffer[1, "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.unroll_explicit":512}) C = T.alloc_buffer([1], dtype="float32") for i0_fused_0 in T.thread_binding(1, thread="blockIdx.x"): for i0_fused_1 in T.thread_binding(1, thread="threadIdx.x"): for i1, i2 in T.grid(256, 256): with T.block("C"): b = T.axis.spatial(1, 0) i, j = T.axis.remap("RR", [i1, i2]) T.reads(A[b, i, j]) T.writes(C[b]) with T.init(): C[b] = T.float32(0) C[b] = C[b] + A[b, i, j] * A[b, i, j] for i0_fused_0 in T.thread_binding(1, thread="blockIdx.x"): for i0_fused_1 in T.thread_binding(1, thread="threadIdx.x"): with T.block("D"):
b = T.axis.spatial(1, 0) T.reads(C[b]) T.writes(D[b]) D[b] = T.sqrt(C[b], dtype="float32") @T.prim_func def nrm_1(A: T.Buffer[(1, 256, 256), "float32"], D: T.Buffer[1, "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.unroll_explicit":1024}) C_shared = T.alloc_buffer([1], dtype="float32", scope="shared") for i0_0_fused in T.thread_binding(1, thread="blockIdx.x"): for ax0, ax1_ax2_fused_0 in T.grid(1, 512): for ax1_ax2_fused_1 in T.thread_binding(128, thread="threadIdx.x"): with T.block("C"): b = T.axis.spatial(1, ax0) i = T.axis.reduce(256, (ax1_ax2_fused_0 * 128 + ax1_ax2_fused_1) j = T.axis.reduce(256, (ax1_ax2_fused_0 * 128 + ax1_ax2_fused_1) % 256) T.reads(A[b, i, j]) T.writes(C_shared[b]) with T.init(): C_shared[b] = T.float32(0) C_shared[b] = C_shared[b] + A[b, i, j] * A[b, i, j] for i0_1 in T.thread_binding(128, thread="threadIdx.x"): with T.block("D"): b = T.axis.spatial(1, i0_1) T.where(T.Mul(0, 128) + i0_1 < 1) T.reads(C_shared[b]) T.writes(D[b]) D[b] = T.sqrt(C_shared[b], dtype="float32") decision_0 = [ ("SampleCategorical", 3), ] decision_1 = [ ("SampleCategorical", 5), ("SampleCategorical", 4), ] mod = create_te_workload("NRM", 0) actual = _design_space(mod) check_sketches( mod, sketches=actual, exp
ected_mods=[nrm_0, nrm_1], expected_decisions=[decision_0, decision_1], ) def test_cuda_sfm(): @T.prim_func def sfm_0(A: T.Buffer[(256, 256), "float32"], T_softmax_norm: T.Buffer[(256, 256), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.unroll_explicit":0}) T_softmax_maxelem = T.alloc_buffer([256], dtype="float32") T_softmax_expsum = T.alloc_buffer([256], dtype="float32") for i0_fused_0 in T.thread_binding(2, thread="blockIdx.x"): for i0_fused_1 in T.thread_binding(128, thread="threadIdx.x"): for i1 in T.serial(256): with T.block("T_softmax_maxelem"): i0 = T.axis.spatial(256, i0_fused_0 * 128 + i0_fused_1) k = T.axis.reduce(256, i1) T.reads(A[i0, k]) T.writes(T_softmax_maxelem[i0]) with T.init(): T_softmax_maxelem[i0] = T.float32(-3.4028234663852886e+38) T_softmax_maxelem[i0] = T.max(T_softmax_maxelem[i0], A[i0, k]) for i0_fused_0 in T.thread_binding(1, thread="blockIdx.x"): for i0_fused_1 in T.thread_binding(256, thread="threadIdx.x"): for i1 in T.serial(256): with T.block("T_softmax_expsum"): i0 = T.axis.spatial(256, i0_fused_0 * 256 + i0_fused_1) k = T.axis.reduce(256, i1) T.reads(A[i0, k], T_softmax_maxelem[i0]) T.writes(T_softmax_expsum[i0]) with T.init(): T_softmax_expsum[i0] = T.float32(0) T_softmax_expsum[i0] = T_softmax_expsum[i0] + T.exp(A[i0, k]
- T_softmax_maxelem[i0], dtype="float32") for i0_i1_fused_0 in T.thread_binding(1024, thread="blockIdx.x"): for i0_i1_fused_1 in T.thread_binding(64, thread="threadIdx.x"): with T.block("T_softmax_norm"): i0 = T.axis.spatial(256, (i0_i1_fused_0 * 64 + i0_i1_fused_1) i1 = T.axis.spatial(256, (i0_i1_fused_0 * 64 + i0_i1_fused_1) % 256) T.reads(A[i0, i1], T_softmax_maxelem[i0], T_softmax_expsum[i0]) T.writes(T_softmax_norm[i0, i1]) T.block_attr({"axis":1}) T_softmax_norm[i0, i1] = T.exp(A[i0, i1] - T_softmax_maxelem[i0], dtype="float32") / T_softmax_expsum[i0] @T.prim_func def sfm_1(A: T.Buffer[(256, 256), "float32"], T_softmax_norm: T.Buffer[(256, 256), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.unroll_explicit":16}) T_softmax_maxelem = T.alloc_buffer([256], dtype="float32") T_softmax_expsum = T.alloc_buffer([256], dtype="float32") for i0_fused in T.thread_binding(256, thread="blockIdx.x"): for i1_0 in T.serial(64): for i1_1 in T.thread_binding(4, thread="threadIdx.x"): with T.block("T_softmax_maxelem"): i0 = T.axis.spatial(256, i0_fused) k = T.axis.reduce(256, i1_0 * 4 + i1_1) T.reads(A[i0, k]) T.writes(T_softmax_maxelem[i0]) with T.init(): T_softmax_maxelem[i0] = T.float32(-3.4028234663852886e+38) T_softmax_maxelem[i0] = T.max(T_softmax_maxelem[i0], A[i0, k]) for i0_fused_0 in T.thread_binding(4, thread="blockIdx.x"): fo
r i0_fused_1 in T.thread_binding(64, thread="threadIdx.x"): for i1 in T.serial(256): with T.block("T_softmax_expsum"): i0 = T.axis.spatial(256, i0_fused_0 * 64 + i0_fused_1) k = T.axis.reduce(256, i1) T.reads(A[i0, k], T_softmax_maxelem[i0]) T.writes(T_softmax_expsum[i0]) with T.init(): T_softmax_expsum[i0] = T.float32(0) T_softmax_expsum[i0] = T_softmax_expsum[i0] + T.exp(A[i0, k] - T_softmax_maxelem[i0], dtype="float32") for i0_i1_fused_0 in T.thread_binding(256, thread="blockIdx.x"): for i0_i1_fused_1 in T.thread_binding(256, thread="threadIdx.x"): with T.block("T_softmax_norm"): i0 = T.axis.spatial(256, (i0_i1_fused_0 * 256 + i0_i1_fused_1) i1 = T.axis.spatial(256, (i0_i1_fused_0 * 256 + i0_i1_fused_1) % 256) T.reads(A[i0, i1], T_softmax_maxelem[i0], T_softmax_expsum[i0]) T.writes(T_softmax_norm[i0, i1]) T.block_attr({"axis":1}) T_softmax_norm[i0, i1] = T.exp(A[i0, i1] - T_softmax_maxelem[i0], dtype="float32") / T_softmax_expsum[i0] @T.prim_func def sfm_2(A: T.Buffer[(256, 256), "float32"], T_softmax_norm: T.Buffer[(256, 256), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.unroll_explicit":512}) T_softmax_maxelem = T.alloc_buffer([256], dtype="float32") T_softmax_expsum_shared = T.alloc_buffer([256], dtype="float32", scope="shared") for i0_fused_0 in T.thread_binding(8, thread="blockIdx.x"): for i0_fused_1 in T.thread_binding(32, thread="threadIdx.x
"): for i1 in T.serial(256): with T.block("T_softmax_maxelem"): i0 = T.axis.spatial(256, i0_fused_0 * 32 + i0_fused_1) k = T.axis.reduce(256, i1) T.reads(A[i0, k]) T.writes(T_softmax_maxelem[i0]) with T.init(): T_softmax_maxelem[i0] = T.float32(-3.4028234663852886e+38) T_softmax_maxelem[i0] = T.max(T_softmax_maxelem[i0], A[i0, k]) for i0_fused in T.thread_binding(256, thread="blockIdx.x"): for ax0, ax1_0 in T.grid(1, 1): for ax1_1 in T.thread_binding(512, thread="threadIdx.x"): with T.block("T_softmax_expsum"): i0 = T.axis.spatial(256, i0_fused + ax0) k = T.axis.reduce(256, ax1_0 * 512 + ax1_1) T.where(ax1_0 * 512 + ax1_1 < 256) T.reads(A[i0, k], T_softmax_maxelem[i0]) T.writes(T_softmax_expsum_shared[i0]) with T.init(): T_softmax_expsum_shared[i0] = T.float32(0) T_softmax_expsum_shared[i0] = T_softmax_expsum_shared[i0] + T.exp(A[i0, k] - T_softmax_maxelem[i0], dtype="float32") for i1_0 in T.serial(1): for i1_1 in T.thread_binding(512, thread="threadIdx.x"): with T.block("T_softmax_norm"): i0 = T.axis.spatial(256, i0_fused) i1 = T.axis.spatial(256, i1_0 * 512 + i1_1) T.where(i1_0 * 512 + i1_1 < 256) T.reads(A[i0, i1], T_softmax_maxelem[i0], T_softmax_expsum_shared[i0]) T.writes(T_softmax_norm[i0, i1]) T.block_attr({"axis":1}) T_
softmax_norm[i0, i1] = T.exp(A[i0, i1] - T_softmax_maxelem[i0], dtype="float32") / T_softmax_expsum_shared[i0] @T.prim_func def sfm_3(A: T.Buffer[(256, 256), "float32"], T_softmax_norm: T.Buffer[(256, 256), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.unroll_explicit":0}) T_softmax_maxelem_shared = T.alloc_buffer([256], dtype="float32", scope="shared") T_softmax_expsum_shared = T.alloc_buffer([256], dtype="float32", scope="shared") for i0_fused in T.thread_binding(256, thread="blockIdx.x"): for ax0, ax1_0 in T.grid(1, 1): for ax1_1 in T.thread_binding(512, thread="threadIdx.x"): with T.block("T_softmax_maxelem"): i0 = T.axis.spatial(256, i0_fused + ax0) k = T.axis.reduce(256, ax1_0 * 512 + ax1_1) T.where(ax1_0 * 512 + ax1_1 < 256) T.reads(A[i0, k]) T.writes(T_softmax_maxelem_shared[i0]) with T.init(): T_softmax_maxelem_shared[i0] = T.float32(-3.4028234663852886e+38) T_softmax_maxelem_shared[i0] = T.max(T_softmax_maxelem_shared[i0], A[i0, k]) for ax0, ax1_0 in T.grid(1, 1): for ax1_1 in T.thread_binding(512, thread="threadIdx.x"): with T.block("T_softmax_expsum"): i0 = T.axis.spatial(256, i0_fused + ax0) k = T.axis.reduce(256, ax1_0 * 512 + ax1_1) T.where(ax1_0 * 512 + ax1_1 < 256) T.reads(A[i0, k], T_softmax_maxelem_shared[i0]) T.writes(T_softmax_expsum_shared[i0]) with T.init():
T_softmax_expsum_shared[i0] = T.float32(0) T_softmax_expsum_shared[i0] = T_softmax_expsum_shared[i0] + T.exp(A[i0, k] - T_softmax_maxelem_shared[i0], dtype="float32") for i1_0 in T.serial(1): for i1_1 in T.thread_binding(512, thread="threadIdx.x"): with T.block("T_softmax_norm"): i0 = T.axis.spatial(256, i0_fused) i1 = T.axis.spatial(256, i1_0 * 512 + i1_1) T.where(i1_0 * 512 + i1_1 < 256) T.reads(A[i0, i1], T_softmax_maxelem_shared[i0], T_softmax_expsum_shared[i0]) T.writes(T_softmax_norm[i0, i1]) T.block_attr({"axis":1}) T_softmax_norm[i0, i1] = T.exp(A[i0, i1] - T_softmax_maxelem_shared[i0], dtype="float32") / T_softmax_expsum_shared[i0] decision_0 = [ ("SampleCategorical", 0), ("SampleCategorical", 1), ("SampleCategorical", 3), ("SampleCategorical", 2), ] decision_1 = [ ("SampleCategorical", 0), ("SampleCategorical", 1), ("SampleCategorical", 3), ("SampleCategorical", 1), ] decision_2 = [ ("SampleCategorical", 7), ("SampleCategorical", 3), ("SampleCategorical", 0), ] decision_3 = [ ("SampleCategorical", 7), ("SampleCategorical", 0), ("SampleCategorical", 0), ] mod = create_te_workload("SFM", 0) actual = _design_space(mod) check_sketches( mod, sketches=actual, expected_mods=[sfm_0, sfm_1, sfm_2, sfm_3], expected_decisions=[decision_0, decision_1, decision_2, decision_3], ) def test_cuda_cbr(): @T.prim_func def cbr_0(data: T.Buffer[(1, 224, 224, 3), "float32"], kernel: T.Buffer[(7, 7, 3, 64), "float32"], bias: T.Buffer[64, "float32"], bn_offset: T.Buffer[64, "float32"], bn_scale: T.Buffer[64, "float32"
], compute: T.Buffer[(1, 112, 112, 64), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.unroll_explicit":512}) Conv2dOutput_local = T.alloc_buffer([1, 112, 112, 64], dtype="float32", scope="local") PaddedInput_shared = T.alloc_buffer([1, 230, 230, 3], dtype="float32", scope="shared") kernel_shared = T.alloc_buffer([7, 7, 3, 64], dtype="float32", scope="shared") for i0_0_i1_0_i2_0_i3_0_fused in T.thread_binding(14, thread="blockIdx.x"): for i0_1_i1_1_i2_1_i3_1_fused in T.thread_binding(4, thread="vthread.x"): for i0_2_i1_2_i2_2_i3_2_fused in T.thread_binding(128, thread="threadIdx.x"): for i4_0, i5_0, i6_0 in T.grid(7, 1, 3): for ax0_ax1_ax2_ax3_fused in T.serial(8251): with T.block("PaddedInput_shared"): v0 = T.axis.spatial(1, 0) v1 = T.axis.spatial(230, ax0_ax1_ax2_ax3_fused v2 = T.axis.spatial(230, i0_0_i1_0_i2_0_i3_0_fused v3 = T.axis.spatial(3, i6_0) T.reads(data[v0, v1 - 3, v2 - 3, v3]) T.writes(PaddedInput_shared[v0, v1, v2, v3]) T.block_attr({"meta_schedule.cooperative_fetch":1}) PaddedInput_shared[v0, v1, v2, v3] = T.if_then_else(3 <= v1 and v1 < 227 and 3 <= v2 and v2 < 227, data[v0, v1 - 3, v2 - 3, v3], T.float32(0), dtype="float32") for ax0_ax1_ax2_ax3_fused in T.serial(224): with T.block("kernel_shared"): v0 = T.axis.spatial(7, i4_0) v1 = T.axis.spati
al(7, ax0_ax1_ax2_ax3_fused v2 = T.axis.spatial(3, i6_0) v3 = T.axis.spatial(64, i0_0_i1_0_i2_0_i3_0_fused % 2 * 32 + ax0_ax1_ax2_ax3_fused % 32) T.reads(kernel[v0, v1, v2, v3]) T.writes(kernel_shared[v0, v1, v2, v3]) T.block_attr({"meta_schedule.cooperative_fetch":1}) kernel_shared[v0, v1, v2, v3] = kernel[v0, v1, v2, v3] for i4_1, i5_1, i6_1, i0_3, i1_3, i2_3, i3_3, i4_2, i5_2, i6_2, i0_4, i1_4, i2_4, i3_4 in T.grid(1, 1, 1, 1, 1, 1, 2, 1, 7, 1, 1, 7, 1, 8): with T.block("Conv2dOutput"): nn = T.axis.spatial(1, i0_3 + i0_4) yy = T.axis.spatial(112, i0_1_i1_1_i2_1_i3_1_fused xx = T.axis.spatial(112, i2_4 + i0_0_i1_0_i2_0_i3_0_fused ff = T.axis.spatial(64, i0_0_i1_0_i2_0_i3_0_fused % 2 * 32 + i0_1_i1_1_i2_1_i3_1_fused % 2 * 16 + i3_3 * 8 + i3_4) ry = T.axis.reduce(7, i4_0 + i4_1 + i4_2) rx = T.axis.reduce(7, i5_0 * 7 + i5_1 * 7 + i5_2) rc = T.axis.reduce(3, i6_1 + i6_2 + i6_0) T.reads(PaddedInput_shared[nn, yy * 2 + ry, xx * 2 + rx, rc], kernel_shared[ry, rx, rc, ff]) T.writes(Conv2dOutput_local[nn, yy, xx, ff]) T.block_attr({"meta_schedule.thread_extent_high_inclusive":1024, "meta_schedule.thread_extent_low_inclusive":32, "meta_schedule.tiling_structure":"SSSRRSRS"}) with T.init(): Conv2dOutput_local[nn, yy, xx, ff] = T.float32(0) Conv2dOutput_local[nn, yy, xx, ff] = Conv2dOut
put_local[nn, yy, xx, ff] + PaddedInput_shared[nn, yy * 2 + ry, xx * 2 + rx, rc] * kernel_shared[ry, rx, rc, ff] for ax0, ax1, ax2, ax3 in T.grid(1, 7, 1, 16): with T.block("Conv2dOutput_local"): v0 = T.axis.spatial(1, ax0) v1 = T.axis.spatial(112, i0_1_i1_1_i2_1_i3_1_fused v2 = T.axis.spatial(112, i0_0_i1_0_i2_0_i3_0_fused v3 = T.axis.spatial(64, i0_0_i1_0_i2_0_i3_0_fused % 2 * 32 + i0_1_i1_1_i2_1_i3_1_fused % 2 * 16 + ax3) T.reads(Conv2dOutput_local[v0, v1, v2, v3], bias[v3], bn_scale[v3], bn_offset[v3]) T.writes(compute[v0, v1, v2, v3]) compute[v0, v1, v2, v3] = T.max((Conv2dOutput_local[v0, v1, v2, v3] + bias[v3]) * bn_scale[v3] + bn_offset[v3], T.float32(0)) decision_0 = [ ("SamplePerfectTile", [1, 1, 1, 1, 1]), ("SamplePerfectTile", [1, 2, 8, 1, 7]), ("SamplePerfectTile", [7, 1, 16, 1, 1]), ("SamplePerfectTile", [2, 2, 1, 2, 8]), ("SamplePerfectTile", [7, 1, 1]), ("SamplePerfectTile", [1, 1, 7]), ("SamplePerfectTile", [3, 1, 1]), ("SampleCategorical", 0), ("SampleCategorical", 0), ("SampleCategorical", 3), ] mod = create_te_workload("CBR", 0) actual = _design_space(mod) check_sketches( mod, sketches=actual, expected_mods=[cbr_0], expected_decisions=[decision_0], ) def test_cuda_tbg(): @T.prim_func def tbg_0(query: T.Buffer[(1, 128, 12, 64), "float32"], value: T.Buffer[(1, 128, 12, 64), "float32"], C: T.Buffer[(1, 12, 128, 128), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.unroll_explicit":1024}) C_local = T.alloc
_buffer([1, 12, 128, 128], dtype="float32", scope="local") query_T_shared = T.alloc_buffer([1, 12, 128, 64], dtype="float32", scope="shared") value_T_shared = T.alloc_buffer([1, 12, 64, 128], dtype="float32", scope="shared") for i0_0_i1_0_i2_0_i3_0_fused in T.thread_binding(4, thread="blockIdx.x"): for i0_1_i1_1_i2_1_i3_1_fused in T.thread_binding(192, thread="vthread.x"): for i0_2_i1_2_i2_2_i3_2_fused in T.thread_binding(32, thread="threadIdx.x"): for i4_0 in T.serial(8): for ax0_ax1_ax2_ax3_fused in T.serial(12288): with T.block("query_T_shared"): v0 = T.axis.spatial(1, 0) v1 = T.axis.spatial(12, ax0_ax1_ax2_ax3_fused v2 = T.axis.spatial(128, ax0_ax1_ax2_ax3_fused % 1024 v3 = T.axis.spatial(64, i4_0 * 8 + ax0_ax1_ax2_ax3_fused % 8) T.reads(query[v0, v2, v1, v3]) T.writes(query_T_shared[v0, v1, v2, v3]) T.block_attr({"meta_schedule.cooperative_fetch":3}) query_T_shared[v0, v1, v2, v3] = query[v0, v2, v1, v3] for ax0_ax1_ax2_ax3_fused in T.serial(3072): with T.block("value_T_shared"): v0 = T.axis.spatial(1, 0) v1 = T.axis.spatial(12, ax0_ax1_ax2_ax3_fused v2 = T.axis.spatial(64, i4_0 * 8 + ax0_ax1_ax2_ax3_fused % 256 v3 = T.axis.spatial(128, i0_0_i1_0_i2_0_i3_0_fused * 32 + ax0_ax1_ax2_ax3_fused % 32) T.reads(value[v0, v3, v1, v2]) T.writes(value_T_shared[v0, v1, v2, v3])
T.block_attr({"meta_schedule.cooperative_fetch":4}) value_T_shared[v0, v1, v2, v3] = value[v0, v3, v1, v2] for i4_1, i0_3, i1_3, i2_3, i3_3, i4_2, i0_4, i1_4, i2_4, i3_4 in T.grid(4, 1, 2, 1, 1, 2, 1, 1, 4, 1): with T.block("C"): b = T.axis.spatial(1, i0_4 + i0_3) h = T.axis.spatial(12, i1_4 + i0_1_i1_1_i2_1_i3_1_fused i = T.axis.spatial(128, i0_1_i1_1_i2_1_i3_1_fused % 32 j = T.axis.spatial(128, i3_4 + i0_0_i1_0_i2_0_i3_0_fused * 32 + i0_1_i1_1_i2_1_i3_1_fused % 8 * 4 + i0_2_i1_2_i2_2_i3_2_fused % 4 + i3_3) k = T.axis.reduce(64, i4_0 * 8 + i4_1 * 2 + i4_2) T.reads(query_T_shared[b, h, i, k], value_T_shared[b, h, k, j]) T.writes(C_local[b, h, i, j]) T.block_attr({"meta_schedule.thread_extent_high_inclusive":1024, "meta_schedule.thread_extent_low_inclusive":32, "meta_schedule.tiling_structure":"SSSRRSRS"}) with T.init(): C_local[b, h, i, j] = T.float32(0) C_local[b, h, i, j] = C_local[b, h, i, j] + query_T_shared[b, h, i, k] * value_T_shared[b, h, k, j] for ax0, ax1, ax2, ax3 in T.grid(1, 2, 4, 1): with T.block("C_local"): v0 = T.axis.spatial(1, ax0) v1 = T.axis.spatial(12, i0_1_i1_1_i2_1_i3_1_fused v2 = T.axis.spatial(128, i0_1_i1_1_i2_1_i3_1_fused % 32 v3 = T.axis.spatial(128, i0_0_i1_0_i2_0_i3_0_fused * 32 + i0_1_i1_1_i2_1_i3_1_fused % 8 * 4 + i0_2_i1_2_i2_2_i3_2_fused % 4 + ax3) T.reads(C_local[v0, v1, v2,
v3]) T.writes(C[v0, v1, v2, v3]) C[v0, v1, v2, v3] = C_local[v0, v1, v2, v3] decision_0 = [ ("SamplePerfectTile", [1, 1, 1, 1, 1]), ("SamplePerfectTile", [1, 6, 1, 2, 1]), ("SamplePerfectTile", [1, 4, 8, 1, 4]), ("SamplePerfectTile", [4, 8, 4, 1, 1]), ("SamplePerfectTile", [8, 4, 2]), ("SampleCategorical", 2), ("SampleCategorical", 3), ("SampleCategorical", 4), ] mod = create_te_workload("TBG", 0) actual = _design_space(mod) check_sketches( mod, sketches=actual, expected_mods=[tbg_0], expected_decisions=[decision_0], ) if __name__ == "__main__": test_cuda_c1d() test_cuda_c2d() test_cuda_c3d() test_cuda_cap() test_cuda_dep() test_cuda_dil() test_cuda_gmm() test_cuda_grp() test_cuda_t2d() test_cuda_nrm() test_cuda_sfm() test_cuda_cbr() test_cuda_tbg()
"""Tests for MetaSchedule search space on CUDA""" from tvm
import meta_schedule as ms from tvm.meta_schedule.testing.space_generation
import ( check_sketches, generate_design_space, print_sketches, ) from tvm.meta_schedule.testing.te_workload
import create_te_workload from tvm.script
import tir as T from tvm.target
import Target def _target(): return Target("nvidia/geforce-rtx-3070") def _design_space(mod): return generate_design_space( kind="cuda", mod=mod, target=_target(), types=ms.ScheduleRule, ) def test_cuda_nhwc(): @T.prim_func def cuda_nhwc_0(data: T.Buffer[(1, 14, 14, 128), "float32"], weight: T.Buffer[(6, 6, 128, 128), "float32"], conv2d_winograd: T.Buffer[(1, 12, 12, 128), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True, "layout_free_buffers": [1]}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.unroll_explicit":16}) input_tile_local = T.alloc_buffer([6, 6, 9, 128], dtype="float32", scope="local") data_pack = T.alloc_buffer([6, 6, 9, 128], dtype="float32") bgemm = T.alloc_buffer([6, 6, 9, 128], dtype="float32") inverse = T.alloc_buffer([4, 4, 9, 128], dtype="float32") data_pack_local = T.alloc_buffer([6, 6, 9, 128], dtype="float32", scope="local") bgemm_local = T.alloc_buffer([6, 6, 9, 128], dtype="float32", scope="local") data_pack_shared = T.alloc_buffer([6, 6, 9, 128], dtype="float32", scope="shared") weight_shared = T.alloc_buffer([6, 6, 128, 128], dtype="float32", scope="shared") for i2_0_i3_0_i2_1_i3_1_fused_0 in T.thread_binding(2, thread="blockIdx.x"): for i2_0_i3_0_i2_1_i3_1_fused_1 in T.thread_binding(1024, thread="threadIdx.x"): for ax0, ax1, ax2, ax3 in T.grid(6, 6, 1, 1): with T.block("input_tile"): T.where(i2_0_i3_0_i2_1_i3_1_fused_0 * 1024 + i2_0_i3_0_i2_1_i3_1_fused_1 < 1152) eps, nu = T.axis.remap("SS", [ax0, ax1]) p = T.axis.spatial(9, (i2_0_i3_0_i2_1_i3_1_fused_0 * 1024 + i2_0_i3_0_i2_1_i3_1_fused_1) ci = T.axis.spatial(128, (i2_0_i3
_0_i2_1_i3_1_fused_0 * 1024 + i2_0_i3_0_i2_1_i3_1_fused_1) % 384 T.reads(data[p T.writes(input_tile_local[eps, nu, p, ci]) T.block_attr({"schedule_rule":"None"}) input_tile_local[eps, nu, p, ci] = T.if_then_else(0 <= p % 9 for i0 in T.unroll(6): for i1 in T.unroll(6): for i4 in T.unroll(6): for i5 in T.unroll(6): with T.block("data_pack"): T.where(i2_0_i3_0_i2_1_i3_1_fused_0 * 1024 + i2_0_i3_0_i2_1_i3_1_fused_1 < 1152) eps, nu = T.axis.remap("SS", [i0, i1]) p = T.axis.spatial(9, (i2_0_i3_0_i2_1_i3_1_fused_0 * 1024 + i2_0_i3_0_i2_1_i3_1_fused_1) ci = T.axis.spatial(128, (i2_0_i3_0_i2_1_i3_1_fused_0 * 1024 + i2_0_i3_0_i2_1_i3_1_fused_1) % 384 r_a, r_b = T.axis.remap("RR", [i4, i5]) T.reads(input_tile_local[r_a, r_b, p, ci]) T.writes(data_pack_local[eps, nu, p, ci]) T.block_attr({"schedule_rule":"conv2d_nhwc_winograd_data_pack"}) with T.init(): data_pack_local[eps, nu, p, ci] = T.float32(0) data_pack_local[eps, nu, p, ci] = data_pack_local[eps, nu, p, ci] + input_tile_local[r_a, r_b, p, ci] * T.Select(r_a % 6 == 5 and eps % 6 == 5, T.float32(1), T.Select(r_a % 6 == 5 and eps % 6 == 4, T.float32(0), T.Select(r_a % 6 == 5 and eps % 6 == 3, T.float32(0), T.Select(r_a % 6 == 5 and eps % 6 == 2, T.float32(0), T.Select(r_a % 6 == 5 and eps % 6 == 1, T.float32(0), T.Select(r_a % 6 == 5 and eps % 6 == 0, T.float32(0), T.Select(r_a % 6 =
= 4 and eps % 6 == 5, T.float32(1.5), T.Select(r_a % 6 == 4 and eps % 6 == 4, T.float32(1), T.Select(r_a % 6 == 4 and eps % 6 == 3, T.float32(1), T.Select(r_a % 6 == 4 and eps % 6 == 2, T.float32(1), T.Select(r_a % 6 == 4 and eps % 6 == 1, T.float32(1), T.Select(r_a % 6 == 4 and eps % 6 == 0, T.float32(1), T.Select(r_a % 6 == 3 and eps % 6 == 5, T.float32(-2), T.Select(r_a % 6 == 3 and eps % 6 == 4, T.float32(-0.5), T.Select(r_a % 6 == 3 and eps % 6 == 3, T.float32(2), T.Select(r_a % 6 == 3 and eps % 6 == 2, T.float32(2.5), T.Select(r_a % 6 == 3 and eps % 6 == 1, T.float32(0.5), T.Select(r_a % 6 == 3 and eps % 6 == 0, T.float32(1.5), T.Select(r_a % 6 == 2 and eps % 6 == 5, T.float32(-1.5), T.Select(r_a % 6 == 2 and eps % 6 == 4, T.float32(-1), T.Select(r_a % 6 == 2 and eps % 6 == 3, T.float32(-1), T.Select(r_a % 6 == 2 and eps % 6 == 2, T.float32(0.5), T.Select(r_a % 6 == 2 and eps % 6 == 1, T.float32(-2.5), T.Select(r_a % 6 == 2 and eps % 6 == 0, T.float32(-2), T.Select(r_a % 6 == 1 and eps % 6 == 5, T.float32(1), T.Select(r_a % 6 == 1 and eps % 6 == 4, T.float32(0.5), T.Select(r_a % 6 == 1 and eps % 6 == 3, T.float32(-2), T.Select(r_a % 6 == 1 and eps % 6 == 2, T.float32(-1), T.Select(r_a % 6 == 1 and eps % 6 == 1, T.float32(1), T.Select(r_a % 6 == 1 and eps % 6 == 0, T.float32(-1.5), T.Select(r_a % 6 == 0 and eps % 6 == 5, T.float32(0), T.Select(r_a % 6 == 0 and eps % 6 == 4, T.float32(0), T.Select(r_a % 6 == 0 and eps % 6 == 3, T.float32(0), T.Select(r_a % 6 == 0 and eps % 6 == 2, T.float32(0), T.Select(r_a % 6 == 0 and eps % 6 == 1, T.float32(0), T.Select(r_a % 6 == 0 and eps % 6 == 0, T.float32(1), T.float32(0))))))))))))))))))))))))))))))))))))) * T.Select(r_b % 6 == 5 and nu % 6 == 5, T.float32(1), T.Select(r_b % 6 == 5 and nu % 6 == 4, T.float32(0), T.Select(r_b % 6 == 5 and nu % 6 == 3, T.float32(0), T.Select(r_b % 6 == 5 and nu % 6 == 2, T.float32(0), T.Select(r_b % 6 == 5 and nu % 6 == 1, T.float32(0), T.Select(r_b % 6 == 5 and nu % 6 == 0, T.float32(0), T.Select(r_b % 6 == 4 and nu % 6 == 5, T.float3
2(1.5), T.Select(r_b % 6 == 4 and nu % 6 == 4, T.float32(1), T.Select(r_b % 6 == 4 and nu % 6 == 3, T.float32(1), T.Select(r_b % 6 == 4 and nu % 6 == 2, T.float32(1), T.Select(r_b % 6 == 4 and nu % 6 == 1, T.float32(1), T.Select(r_b % 6 == 4 and nu % 6 == 0, T.float32(1), T.Select(r_b % 6 == 3 and nu % 6 == 5, T.float32(-2), T.Select(r_b % 6 == 3 and nu % 6 == 4, T.float32(-0.5), T.Select(r_b % 6 == 3 and nu % 6 == 3, T.float32(2), T.Select(r_b % 6 == 3 and nu % 6 == 2, T.float32(2.5), T.Select(r_b % 6 == 3 and nu % 6 == 1, T.float32(0.5), T.Select(r_b % 6 == 3 and nu % 6 == 0, T.float32(1.5), T.Select(r_b % 6 == 2 and nu % 6 == 5, T.float32(-1.5), T.Select(r_b % 6 == 2 and nu % 6 == 4, T.float32(-1), T.Select(r_b % 6 == 2 and nu % 6 == 3, T.float32(-1), T.Select(r_b % 6 == 2 and nu % 6 == 2, T.float32(0.5), T.Select(r_b % 6 == 2 and nu % 6 == 1, T.float32(-2.5), T.Select(r_b % 6 == 2 and nu % 6 == 0, T.float32(-2), T.Select(r_b % 6 == 1 and nu % 6 == 5, T.float32(1), T.Select(r_b % 6 == 1 and nu % 6 == 4, T.float32(0.5), T.Select(r_b % 6 == 1 and nu % 6 == 3, T.float32(-2), T.Select(r_b % 6 == 1 and nu % 6 == 2, T.float32(-1), T.Select(r_b % 6 == 1 and nu % 6 == 1, T.float32(1), T.Select(r_b % 6 == 1 and nu % 6 == 0, T.float32(-1.5), T.Select(r_b % 6 == 0 and nu % 6 == 5, T.float32(0), T.Select(r_b % 6 == 0 and nu % 6 == 4, T.float32(0), T.Select(r_b % 6 == 0 and nu % 6 == 3, T.float32(0), T.Select(r_b % 6 == 0 and nu % 6 == 2, T.float32(0), T.Select(r_b % 6 == 0 and nu % 6 == 1, T.float32(0), T.Select(r_b % 6 == 0 and nu % 6 == 0, T.float32(1), T.float32(0))))))))))))))))))))))))))))))))))))) for ax0, ax1, ax2, ax3 in T.grid(6, 6, 1, 1): with T.block("data_pack_local"): T.where(i2_0_i3_0_i2_1_i3_1_fused_0 * 1024 + i2_0_i3_0_i2_1_i3_1_fused_1 < 1152) v0, v1 = T.axis.remap("SS", [ax0, ax1]) v2 = T.axis.spatial(9, (i2_0_i3_0_i2_1_i3_1_fused_0 * 1024 + i2_0_i3_0_i2_1_i3_1_fused_1)
v3 = T.axis.spatial(128, (i2_0_i3_0_i2_1_i3_1_fused_0 * 1024 + i2_0_i3_0_i2_1_i3_1_fused_1) % 384 T.reads(data_pack_local[v0, v1, v2, v3]) T.writes(data_pack[v0, v1, v2, v3]) data_pack[v0, v1, v2, v3] = data_pack_local[v0, v1, v2, v3] for i0_0_i1_0_i2_0_i3_0_fused in T.thread_binding(96, thread="blockIdx.x"): for i0_1_i1_1_i2_1_i3_1_fused in T.thread_binding(4, thread="vthread.x"): for i0_2_i1_2_i2_2_i3_2_fused in T.thread_binding(27, thread="threadIdx.x"): for i4_0 in T.serial(8): for ax0_ax1_ax2_ax3_fused in T.serial(1728): with T.block("data_pack_shared"): v0 = T.axis.spatial(6, i0_0_i1_0_i2_0_i3_0_fused v1 = T.axis.spatial(6, ax0_ax1_ax2_ax3_fused % 864 v2 = T.axis.spatial(9, ax0_ax1_ax2_ax3_fused % 144 v3 = T.axis.spatial(128, i4_0 * 16 + ax0_ax1_ax2_ax3_fused % 16) T.reads(data_pack[v0, v1, v2, v3]) T.writes(data_pack_shared[v0, v1, v2, v3]) T.block_attr({"meta_schedule.cooperative_fetch":1}) data_pack_shared[v0, v1, v2, v3] = data_pack[v0, v1, v2, v3] for ax0_ax1_ax2_ax3_fused in T.serial(768): with T.block("weight_shared"): v0 = T.axis.spatial(6, i0_0_i1_0_i2_0_i3_0_fused v1 = T.axis.spatial(6, ax0_ax1_ax2_ax3_fused % 384 v2 = T.axis.spatial(128, i0_0_i1_0_i2_0_i3_0_fused % 32 * 4 + ax0_ax1_ax2_ax3_fused % 64 v3 = T.axis.spatial(128, i4_0 * 16 + ax0_ax1_ax2_ax3_fused % 16)
T.reads(weight[v0, v1, v2, v3]) T.writes(weight_shared[v0, v1, v2, v3]) T.block_attr({"meta_schedule.cooperative_fetch":3}) weight_shared[v0, v1, v2, v3] = weight[v0, v1, v2, v3] for i4_1, i0_3, i1_3, i2_3, i3_3, i4_2, i0_4, i1_4, i2_4, i3_4 in T.grid(1, 2, 1, 1, 2, 16, 1, 1, 1, 1): with T.block("bgemm"): eps = T.axis.spatial(6, i0_0_i1_0_i2_0_i3_0_fused nu = T.axis.spatial(6, i1_3 + i1_4 + i0_1_i1_1_i2_1_i3_1_fused p = T.axis.spatial(9, i0_2_i1_2_i2_2_i3_2_fused % 9 + i2_3 + i2_4) co = T.axis.spatial(128, i3_4 + i0_0_i1_0_i2_0_i3_0_fused % 32 * 4 + i0_1_i1_1_i2_1_i3_1_fused % 2 * 2 + i3_3) ci = T.axis.reduce(128, i4_0 * 16 + i4_1 * 16 + i4_2) T.reads(data_pack_shared[eps, nu, p, ci], weight_shared[eps, nu, co, ci]) T.writes(bgemm_local[eps, nu, p, co]) T.block_attr({"meta_schedule.thread_extent_high_inclusive":1024, "meta_schedule.thread_extent_low_inclusive":32, "meta_schedule.tiling_structure":"SSSRRSRS", "meta_schedule.write_cache_level":[3]}) with T.init(): bgemm_local[eps, nu, p, co] = T.float32(0) bgemm_local[eps, nu, p, co] = bgemm_local[eps, nu, p, co] + data_pack_shared[eps, nu, p, ci] * weight_shared[eps, nu, co, ci] for ax0, ax1, ax2, ax3 in T.grid(2, 1, 1, 2): with T.block("bgemm_local"): v0 = T.axis.spatial(6, i0_0_i1_0_i2_0_i3_0_fused v1 = T.axis.spatial(6, i0_1_i1_1_i2_1_i3_1_fused
v2 = T.axis.spatial(9, i0_2_i1_2_i2_2_i3_2_fused % 9 + ax2) v3 = T.axis.spatial(128, i0_0_i1_0_i2_0_i3_0_fused % 32 * 4 + i0_1_i1_1_i2_1_i3_1_fused % 2 * 2 + ax3) T.reads(bgemm_local[v0, v1, v2, v3]) T.writes(bgemm[v0, v1, v2, v3]) bgemm[v0, v1, v2, v3] = bgemm_local[v0, v1, v2, v3] for i2_0_i3_0_i2_1_i3_1_fused_0 in T.thread_binding(18, thread="blockIdx.x"): for i2_0_i3_0_i2_1_i3_1_fused_1 in T.thread_binding(64, thread="threadIdx.x"): for i0 in T.unroll(4): for i1 in T.unroll(4): for i4 in T.unroll(6): for i5 in T.unroll(6): with T.block("inverse"): vh, vw = T.axis.remap("SS", [i0, i1]) p = T.axis.spatial(9, (i2_0_i3_0_i2_1_i3_1_fused_0 * 64 + i2_0_i3_0_i2_1_i3_1_fused_1) co = T.axis.spatial(128, (i2_0_i3_0_i2_1_i3_1_fused_0 * 64 + i2_0_i3_0_i2_1_i3_1_fused_1) % 384 r_a, r_b = T.axis.remap("RR", [i4, i5]) T.reads(bgemm[r_a, r_b, p, co]) T.writes(inverse[vh, vw, p, co]) T.block_attr({"schedule_rule":"conv2d_nhwc_winograd_inverse"}) with T.init(): inverse[vh, vw, p, co] = T.float32(0) inverse[vh, vw, p, co] = inverse[vh, vw, p, co] + bgemm[r_a, r_b, p, co] * T.Select(r_a % 6 == 5 and vh % 4 == 3, T.float32(1), T.Select(r_a % 6 == 5 and vh % 4 == 2, T.float32(0), T.Select(r_a % 6 == 5 and vh % 4 == 1, T.float32(0), T.Select(r_a % 6 == 5 and vh % 4 == 0, T.float32(0), T.Select(r_a % 6 == 4 and vh % 4 == 3, T.f
loat32(-8), T.Select(r_a % 6 == 4 and vh % 4 == 2, T.float32(4), T.Select(r_a % 6 == 4 and vh % 4 == 1, T.float32(-2), T.Select(r_a % 6 == 4 and vh % 4 == 0, T.float32(1), T.Select(r_a % 6 == 3 and vh % 4 == 3, T.float32(0.125), T.Select(r_a % 6 == 3 and vh % 4 == 2, T.float32(0.25), T.Select(r_a % 6 == 3 and vh % 4 == 1, T.float32(0.5), T.Select(r_a % 6 == 3 and vh % 4 == 0, T.float32(1), T.Select(r_a % 6 == 2 and vh % 4 == 3, T.float32(1), T.Select(r_a % 6 == 2 and vh % 4 == 2, T.float32(1), T.Select(r_a % 6 == 2 and vh % 4 == 1, T.float32(1), T.Select(r_a % 6 == 2 and vh % 4 == 0, T.float32(1), T.Select(r_a % 6 == 1 and vh % 4 == 3, T.float32(-1), T.Select(r_a % 6 == 1 and vh % 4 == 2, T.float32(1), T.Select(r_a % 6 == 1 and vh % 4 == 1, T.float32(-1), T.Select(r_a % 6 == 1 and vh % 4 == 0, T.float32(1), T.Select(r_a % 6 == 0 and vh % 4 == 3, T.float32(0), T.Select(r_a % 6 == 0 and vh % 4 == 2, T.float32(0), T.Select(r_a % 6 == 0 and vh % 4 == 1, T.float32(0), T.Select(r_a % 6 == 0 and vh % 4 == 0, T.float32(1), T.float32(0))))))))))))))))))))))))) * T.Select(r_b % 6 == 5 and vw % 4 == 3, T.float32(1), T.Select(r_b % 6 == 5 and vw % 4 == 2, T.float32(0), T.Select(r_b % 6 == 5 and vw % 4 == 1, T.float32(0), T.Select(r_b % 6 == 5 and vw % 4 == 0, T.float32(0), T.Select(r_b % 6 == 4 and vw % 4 == 3, T.float32(-8), T.Select(r_b % 6 == 4 and vw % 4 == 2, T.float32(4), T.Select(r_b % 6 == 4 and vw % 4 == 1, T.float32(-2), T.Select(r_b % 6 == 4 and vw % 4 == 0, T.float32(1), T.Select(r_b % 6 == 3 and vw % 4 == 3, T.float32(0.125), T.Select(r_b % 6 == 3 and vw % 4 == 2, T.float32(0.25), T.Select(r_b % 6 == 3 and vw % 4 == 1, T.float32(0.5), T.Select(r_b % 6 == 3 and vw % 4 == 0, T.float32(1), T.Select(r_b % 6 == 2 and vw % 4 == 3, T.float32(1), T.Select(r_b % 6 == 2 and vw % 4 == 2, T.float32(1), T.Select(r_b % 6 == 2 and vw % 4 == 1, T.float32(1), T.Select(r_b % 6 == 2 and vw % 4 == 0, T.float32(1), T.Select(r_b % 6 == 1 and vw % 4 == 3, T.float32(-1), T.Select(r_b % 6 == 1 and vw % 4 == 2, T.float32(1), T.Select(r_b
% 6 == 1 and vw % 4 == 1, T.float32(-1), T.Select(r_b % 6 == 1 and vw % 4 == 0, T.float32(1), T.Select(r_b % 6 == 0 and vw % 4 == 3, T.float32(0), T.Select(r_b % 6 == 0 and vw % 4 == 2, T.float32(0), T.Select(r_b % 6 == 0 and vw % 4 == 1, T.float32(0), T.Select(r_b % 6 == 0 and vw % 4 == 0, T.float32(1), T.float32(0))))))))))))))))))))))))) for i0_i1_i2_i3_fused_0 in T.thread_binding(144, thread="blockIdx.x"): for i0_i1_i2_i3_fused_1 in T.thread_binding(128, thread="threadIdx.x"): with T.block("conv2d_winograd"): n = T.axis.spatial(1, 0) h = T.axis.spatial(12, (i0_i1_i2_i3_fused_0 * 128 + i0_i1_i2_i3_fused_1) w = T.axis.spatial(12, (i0_i1_i2_i3_fused_0 * 128 + i0_i1_i2_i3_fused_1) % 1536 co = T.axis.spatial(128, (i0_i1_i2_i3_fused_0 * 128 + i0_i1_i2_i3_fused_1) % 128) T.reads(inverse[h % 4, w % 4, n * 9 + h T.writes(conv2d_winograd[n, h, w, co]) conv2d_winograd[n, h, w, co] = inverse[h % 4, w % 4, n * 9 + h decision_0 = [ ("SamplePerfectTile", [3, 3]), ("SamplePerfectTile", [16, 8]), ("SampleCategorical", 1), ("SamplePerfectTile", [3, 3]), ("SamplePerfectTile", [16, 8]), ("SampleCategorical", 5), ("SamplePerfectTile", [3, 1, 1, 2, 1]), ("SamplePerfectTile", [1, 2, 3, 1, 1]), ("SamplePerfectTile", [1, 1, 9, 1, 1]), ("SamplePerfectTile", [32, 2, 1, 2, 1]), ("SamplePerfectTile", [8, 1, 16]), ("SampleCategorical", 0), ("SampleCategorical", 2), ("SampleCategorical", 1), ("SampleCategorical", 2), ] with _target(): mod = create_te_workload("C2D_WIN_NHWC", 0) actual = _design_space(mod) check_sketches( mod, sketches=actual, expected_mods=[cuda_nhwc_0], expected_decisions=[decision_0], ) def test_cuda_nchw():
@T.prim_func def cuda_nchw_0(data: T.Buffer[(1, 64, 56, 56), "float32"], weight: T.Buffer[(6, 6, 64, 64), "float32"], conv2d_winograd: T.Buffer[(1, 64, 56, 56), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True, "layout_free_buffers": [1]}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.unroll_explicit":16}) input_tile_local = T.alloc_buffer([64, 196, 6, 6], dtype="float32", scope="local") data_pack = T.alloc_buffer([6, 6, 64, 196], dtype="float32") bgemm = T.alloc_buffer([6, 6, 64, 196], dtype="float32") inverse_local = T.alloc_buffer([64, 196, 4, 4], dtype="float32", scope="local") data_pack_local = T.alloc_buffer([6, 6, 64, 196], dtype="float32", scope="local") bgemm_local = T.alloc_buffer([6, 6, 64, 196], dtype="float32", scope="local") data_pack_shared = T.alloc_buffer([6, 6, 64, 196], dtype="float32", scope="shared") weight_shared = T.alloc_buffer([6, 6, 64, 64], dtype="float32", scope="shared") for i2_i3_fused_0 in T.thread_binding(25, thread="blockIdx.x"): for i2_i3_fused_1 in T.thread_binding(512, thread="threadIdx.x"): for ax0, ax1, ax2, ax3 in T.grid(1, 1, 6, 6): with T.block("input_tile"): T.where(i2_i3_fused_0 * 512 + i2_i3_fused_1 < 12544) ci = T.axis.spatial(64, (i2_i3_fused_0 * 512 + i2_i3_fused_1) p = T.axis.spatial(196, (i2_i3_fused_0 * 120 + i2_i3_fused_1) % 196 + ax1) eps, nu = T.axis.remap("SS", [ax2, ax3]) T.reads(data[p T.writes(input_tile_local[ci, p, eps, nu]) T.block_attr({"schedule_rule":"None"}) input_tile_local[ci, p, eps, nu] = T.if_then_else(1 <= p % 196
for i0 in T.unroll(6): for i1 in T.unroll(6): for i4 in T.unroll(6): for i5 in T.unroll(6): with T.block("data_pack"): T.where(i2_i3_fused_0 * 512 + i2_i3_fused_1 < 12544) eps, nu = T.axis.remap("SS", [i0, i1]) ci = T.axis.spatial(64, (i2_i3_fused_0 * 512 + i2_i3_fused_1) p = T.axis.spatial(196, (i2_i3_fused_0 * 512 + i2_i3_fused_1) % 196) r_a, r_b = T.axis.remap("RR", [i4, i5]) T.reads(input_tile_local[ci, p, r_a, r_b]) T.writes(data_pack_local[eps, nu, ci, p]) T.block_attr({"schedule_rule":"conv2d_nchw_winograd_data_pack"}) with T.init(): data_pack_local[eps, nu, ci, p] = T.float32(0) data_pack_local[eps, nu, ci, p] = data_pack_local[eps, nu, ci, p] + input_tile_local[ci, p, r_a, r_b] * T.Select(r_a % 6 == 5 and eps % 6 == 5, T.float32(1), T.Select(r_a % 6 == 5 and eps % 6 == 4, T.float32(0), T.Select(r_a % 6 == 5 and eps % 6 == 3, T.float32(0), T.Select(r_a % 6 == 5 and eps % 6 == 2, T.float32(0), T.Select(r_a % 6 == 5 and eps % 6 == 1, T.float32(0), T.Select(r_a % 6 == 5 and eps % 6 == 0, T.float32(0), T.Select(r_a % 6 == 4 and eps % 6 == 5, T.float32(1.5), T.Select(r_a % 6 == 4 and eps % 6 == 4, T.float32(1), T.Select(r_a % 6 == 4 and eps % 6 == 3, T.float32(1), T.Select(r_a % 6 == 4 and eps % 6 == 2, T.float32(1), T.Select(r_a % 6 == 4 and eps % 6 == 1, T.float32(1), T.Select(r_a % 6 == 4 and eps % 6 == 0, T.float32(1), T.Select(r_a % 6 == 3 and eps % 6 == 5, T.float32(-2), T.Select(r_a % 6 == 3 and eps % 6 == 4, T.float32(-0.5), T.Select(r_a % 6
== 3 and eps % 6 == 3, T.float32(2), T.Select(r_a % 6 == 3 and eps % 6 == 2, T.float32(2.5), T.Select(r_a % 6 == 3 and eps % 6 == 1, T.float32(0.5), T.Select(r_a % 6 == 3 and eps % 6 == 0, T.float32(1.5), T.Select(r_a % 6 == 2 and eps % 6 == 5, T.float32(-1.5), T.Select(r_a % 6 == 2 and eps % 6 == 4, T.float32(-1), T.Select(r_a % 6 == 2 and eps % 6 == 3, T.float32(-1), T.Select(r_a % 6 == 2 and eps % 6 == 2, T.float32(0.5), T.Select(r_a % 6 == 2 and eps % 6 == 1, T.float32(-2.5), T.Select(r_a % 6 == 2 and eps % 6 == 0, T.float32(-2), T.Select(r_a % 6 == 1 and eps % 6 == 5, T.float32(1), T.Select(r_a % 6 == 1 and eps % 6 == 4, T.float32(0.5), T.Select(r_a % 6 == 1 and eps % 6 == 3, T.float32(-2), T.Select(r_a % 6 == 1 and eps % 6 == 2, T.float32(-1), T.Select(r_a % 6 == 1 and eps % 6 == 1, T.float32(1), T.Select(r_a % 6 == 1 and eps % 6 == 0, T.float32(-1.5), T.Select(r_a % 6 == 0 and eps % 6 == 5, T.float32(0), T.Select(r_a % 6 == 0 and eps % 6 == 4, T.float32(0), T.Select(r_a % 6 == 0 and eps % 6 == 3, T.float32(0), T.Select(r_a % 6 == 0 and eps % 6 == 2, T.float32(0), T.Select(r_a % 6 == 0 and eps % 6 == 1, T.float32(0), T.Select(r_a % 6 == 0 and eps % 6 == 0, T.float32(1), T.float32(0))))))))))))))))))))))))))))))))))))) * T.Select(r_b % 6 == 5 and nu % 6 == 5, T.float32(1), T.Select(r_b % 6 == 5 and nu % 6 == 4, T.float32(0), T.Select(r_b % 6 == 5 and nu % 6 == 3, T.float32(0), T.Select(r_b % 6 == 5 and nu % 6 == 2, T.float32(0), T.Select(r_b % 6 == 5 and nu % 6 == 1, T.float32(0), T.Select(r_b % 6 == 5 and nu % 6 == 0, T.float32(0), T.Select(r_b % 6 == 4 and nu % 6 == 5, T.float32(1.5), T.Select(r_b % 6 == 4 and nu % 6 == 4, T.float32(1), T.Select(r_b % 6 == 4 and nu % 6 == 3, T.float32(1), T.Select(r_b % 6 == 4 and nu % 6 == 2, T.float32(1), T.Select(r_b % 6 == 4 and nu % 6 == 1, T.float32(1), T.Select(r_b % 6 == 4 and nu % 6 == 0, T.float32(1), T.Select(r_b % 6 == 3 and nu % 6 == 5, T.float32(-2), T.Select(r_b % 6 == 3 and nu % 6 == 4, T.float32(-0.5), T.Select(r_b % 6 == 3 and nu % 6 == 3, T.float32(2), T