text
stringlengths
1
2.05k
lock("compute"): nn = T.axis.spatial(1, 0) ff = T.axis.spatial(512, i0_0_i1_0_i2_0_i3_0_fused yy = T.axis.spatial(56, i0_0_i1_0_i2_0_i3_0_fused xx = T.axis.spatial(56, i0_0_i1_0_i2_0_i3_0_fused % 2 * 28 + i3_4) rc = T.axis.reduce(512, i4_1 * 16 + i4_2) ry, rx = T.axis.remap("RR", [i5_0, i6_2]) with T.init(): compute_local[nn, ff, yy, xx] = T.float32(0) compute_local[nn, ff, yy, xx] = compute_local[nn, ff, yy, xx] + pad_temp_shared[nn, rc, yy + ry, xx + rx] * W_shared[ff, rc, ry, rx] for ax0, ax1, ax2, ax3 in T.grid(1, 8, 2, 28): with T.block("compute_local"): v0 = T.axis.spatial(1, ax0) v1 = T.axis.spatial(512, i0_0_i1_0_i2_0_i3_0_fused v2 = T.axis.spatial(56, i0_0_i1_0_i2_0_i3_0_fused % 14 v3 = T.axis.spatial(56, i0_0_i1_0_i2_0_i3_0_fused % 2 * 28 + ax3) compute_1[v0, v1, v2, v3] = compute_local[v0, v1, v2, v3] for i0, i1, i2, i3 in T.grid(1, 512, 56, 56): with T.block("compute_1"): i0_2, i1_2, i2_2, i3_2 = T.axis.remap("SSSS", [i0, i1, i2, i3]) compute[i0_2, i1_2, i2_2, i3_2] = T.max((compute_1[i0_2, i1_2, i2_2, i3_2] + B[i1_2, 0, 0]) * bn_scale[i1_2, 0, 0] + bn_offset[i1_2, 0, 0], T.float32(0)) @tvm.script.ir_module class MultiLevelTiledConv2DAfterInline: @T.prim_func def main(X: T.Buffer[(1, 512, 56, 56), "float32"], W: T.Buffer[(512, 512, 3, 3), "float32"], B: T.Buffer[(512, 1, 1), "float32"], bn_scale: T.Buffer[(512, 1, 1), "float32"], bn_offset: T.Buffer[(512, 1, 1), "float32"], compute: T.Buffer[(1, 512, 56, 56), "float32"]) -> None: compute_local = T.alloc_buffer([
1, 512, 56, 56], dtype="float32", scope="local") for i0_0_i1_0_i2_0_i3_0_fused in T.thread_binding(224, thread="blockIdx.x"): for i0_1_i1_1_i2_1_i3_1_fused in T.thread_binding(2, thread="vthread.x"): for i0_2_i1_2_i2_2_i3_2_fused in T.thread_binding(8, thread="threadIdx.x"): for i4_0, i5_0, i6_0, i4_1, i5_1, i6_1, i0_3, i1_3, i2_3, i3_3, i4_2, i5_2, i6_2, i0_4, i1_4, i2_4, i3_4 in T.grid(1, 3, 1, 32, 1, 1, 1, 1, 1, 1, 16, 1, 3, 1, 8, 2, 28): with T.block("compute"): nn = T.axis.spatial(1, 0) ff = T.axis.spatial(512, i0_0_i1_0_i2_0_i3_0_fused yy = T.axis.spatial(56, i0_0_i1_0_i2_0_i3_0_fused xx = T.axis.spatial(56, i0_0_i1_0_i2_0_i3_0_fused % 2 * 28 + i3_4) rc = T.axis.reduce(512, i4_1 * 16 + i4_2) ry, rx = T.axis.remap("RR", [i5_0, i6_2]) with T.init(): compute_local[nn, ff, yy, xx] = T.float32(0) compute_local[nn, ff, yy, xx] = compute_local[nn, ff, yy, xx] + T.if_then_else(yy + ry >= 1 and yy + ry < 57 and xx + rx >= 1 and xx + rx < 57, X[nn, rc, yy + ry - 1, xx + rx - 1], T.float32(0), dtype="float32") * W[ff, rc, ry, rx] for ax0, ax1, ax2, ax3 in T.grid(1, 8, 2, 28): with T.block("compute_local"): v0 = T.axis.spatial(1, ax0) v1 = T.axis.spatial(512, i0_0_i1_0_i2_0_i3_0_fused v2 = T.axis.spatial(56, i0_0_i1_0_i2_0_i3_0_fused % 14 v3 = T.axis.spatial(56, i0_0_i1_0_i2_0_i3_0_fused % 2 * 28 + ax3) compute[v0, v1, v2, v3] = T.max((compute_local[v0, v1, v2, v3] + B[v1, 0, 0]) * bn_scale[v1, 0, 0] + bn_offset[v1, 0, 0], T.float32(0)) @tvm.script.ir_module class SoftmaxBeforeInline: @T.prim_func
def main(A: T.Buffer[(256, 256), "float32"], T_softmax_norm: T.Buffer[(256, 256), "float32"]) -> None: T_softmax_maxelem = T.alloc_buffer([256], dtype="float32") T_softmax_exp = T.alloc_buffer([256, 256], dtype="float32") T_softmax_expsum = T.alloc_buffer([256], dtype="float32") for i0, i1 in T.grid(256, 256): with T.block("T_softmax_maxelem"): i0_1, k = T.axis.remap("SR", [i0, i1]) with T.init(): T_softmax_maxelem[i0_1] = T.min_value("float32") T_softmax_maxelem[i0_1] = T.max(T_softmax_maxelem[i0_1], A[i0_1, k]) for i0, i1 in T.grid(256, 256): with T.block("T_softmax_exp"): i0_2, i1_1 = T.axis.remap("SS", [i0, i1]) T_softmax_exp[i0_2, i1_1] = T.exp(A[i0_2, i1_1] - T_softmax_maxelem[i0_2], dtype="float32") for i0_3, i1 in T.grid(256, 256): with T.block("T_softmax_expsum"): i0_4, k = T.axis.remap("SR", [i0_3, i1]) with T.init(): T_softmax_expsum[i0_4] = T.float32(0) T_softmax_expsum[i0_4] = T_softmax_expsum[i0_4] + T_softmax_exp[i0_4, k] for i0_5, i1 in T.grid(256, 256): with T.block("T_softmax_norm"): i0_6, i1_2 = T.axis.remap("SS", [i0_5, i1]) T_softmax_norm[i0_6, i1_2] = T_softmax_exp[i0_6, i1_2] / T_softmax_expsum[i0_6] @tvm.script.ir_module class SoftmaxAfterInline: @T.prim_func def main(A: T.Buffer[(256, 256), "float32"], T_softmax_norm: T.Buffer[(256, 256), "float32"]) -> None: T_softmax_maxelem = T.alloc_buffer([256], dtype="float32") T_softmax_expsum = T.alloc_buffer([256], dtype="float32") for i0, i1 in T.grid(256, 256): with T.block("T_softmax_maxelem"): i0_1, k = T.axis.remap("SR", [i0, i1]) with T.init(): T_softmax_maxelem[i0_1] = T.min_value("float32") T_softmax_maxelem[i0_1] = T.max(T_s
oftmax_maxelem[i0_1], A[i0_1, k]) for i0, i1 in T.grid(256, 256): with T.block("T_softmax_expsum"): i0_2, k = T.axis.remap("SR", [i0, i1]) with T.init(): T_softmax_expsum[i0_2] = T.float32(0) T_softmax_expsum[i0_2] = T_softmax_expsum[i0_2] + T.exp(A[i0_2, k] - T_softmax_maxelem[i0_2], dtype="float32") for i0_3, i1 in T.grid(256, 256): with T.block("T_softmax_norm"): i0_4, i1_1 = T.axis.remap("SS", [i0_3, i1]) T_softmax_norm[i0_4, i1_1] = T.exp(A[i0_4, i1_1] - T_softmax_maxelem[i0_4], dtype="float32") / T_softmax_expsum[i0_4] @tvm.script.ir_module class BeforePureSpatial: @T.prim_func def main( placeholder: T.Buffer[(1, 384), "int64"], placeholder_1: T.Buffer[(30522, 768), "float32"], placeholder_2: T.Buffer[(1, 384, 768), "float32"], T_add: T.Buffer[(1, 384, 768), "float32"], ) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) compile_engine_const = T.alloc_buffer([], dtype="int64") T_less = T.alloc_buffer([1, 384], dtype="bool") compile_engine_const_1 = T.alloc_buffer([], dtype="int64") T_add_1 = T.alloc_buffer([1, 384], dtype="int64") T_where = T.alloc_buffer([1, 384], dtype="int64") T_take = T.alloc_buffer([1, 384, 768], dtype="float32") with T.block("compile_engine_const"): vi = T.axis.spatial(1, 0) T.reads() T.writes(compile_engine_const[()]) compile_engine_const[()] = T.int64(0) for i0, i1 in T.grid(1, 384): with T.block("T_less"): ax0, ax1 = T.axis.remap("SS", [i0, i1]) T.reads(placeholder[ax0, ax1], compile_engine_const[()]) T.writes(T_less[ax0, ax1]) T_less[ax0, ax1] = placeholder[ax0, ax1] < compile_engine_const[()] with T.block("compile_engine_const_1"): vi = T.axis.spatial(1, 0)
T.reads() T.writes(compile_engine_const_1[()]) compile_engine_const_1[()] = T.int64(30522) for i0, i1 in T.grid(1, 384): with T.block("T_add"): ax0, ax1 = T.axis.remap("SS", [i0, i1]) T.reads(placeholder[ax0, ax1], compile_engine_const_1[()]) T.writes(T_add_1[ax0, ax1]) T_add_1[ax0, ax1] = placeholder[ax0, ax1] + compile_engine_const_1[()] for i0, i1 in T.grid(1, 384): with T.block("T_where"): ax0, ax1 = T.axis.remap("SS", [i0, i1]) T.reads(T_less[ax0, ax1], T_add_1[ax0, ax1], placeholder[ax0, ax1]) T.writes(T_where[ax0, ax1]) T_where[ax0, ax1] = T.Select( T.cast(T_less[ax0, ax1], "int32") != 0, T_add_1[ax0, ax1], placeholder[ax0, ax1] ) for i0, i1, i2 in T.grid(1, 384, 768): with T.block("T_take"): ax0, ax1, ax2 = T.axis.remap("SSS", [i0, i1, i2]) T.reads( placeholder_1[T.min(T.max(T.int64(0), T_where[ax0, ax1]), T.int64(30521)), ax2], T_where[ax0, ax1], ) T.writes(T_take[ax0, ax1, ax2]) T_take[ax0, ax1, ax2] = placeholder_1[ T.min(T.max(T.int64(0), T_where[ax0, ax1]), T.int64(30521)), ax2 ] for i0, i1, i2 in T.grid(1, 384, 768): with T.block("T_add_1"): ax0, ax1, ax2 = T.axis.remap("SSS", [i0, i1, i2]) T.reads(T_take[ax0, ax1, ax2], placeholder_2[ax0, ax1, ax2]) T.writes(T_add[ax0, ax1, ax2]) T_add[ax0, ax1, ax2] = T_take[ax0, ax1, ax2] + placeholder_2[ax0, ax1, ax2] @tvm.script.ir_module class AfterPureSpatial: @T.prim_func def main(placeholder: T.Buffer[(1, 384), "int64"], placeholder_1: T.Buffer[(30522, 768), "float32"], placeholder_2: T.Buffer[(1, 384, 768), "float32"], T_add: T.Buffer[(1, 384, 768), "float32"]) ->
None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) for i0, i1, i2 in T.grid(1, 384, 768): with T.block("T_add_1"): ax0, ax1, ax2 = T.axis.remap("SSS", [i0, i1, i2]) T.reads(placeholder[ax0, ax1], placeholder_1[T.min(T.max(T.int64(0), placeholder[ax0, ax1]), T.int64(30521)) : T.min(T.max(T.int64(0), placeholder[ax0, ax1] + T.int64(30522)), T.int64(30521)) + T.int64(1), ax2], placeholder_2[ax0, ax1, ax2]) T.writes(T_add[ax0, ax1, ax2]) T_add[ax0, ax1, ax2] = placeholder_1[T.min(T.max(T.int64(0), T.Select(T.cast(placeholder[ax0, ax1] < T.int64(0), "int32") != 0, placeholder[ax0, ax1] + T.int64(30522), placeholder[ax0, ax1])), T.int64(30521)), ax2] + placeholder_2[ax0, ax1, ax2] @tvm.script.ir_module class ConstConsumer: @T.prim_func def main(T_full: T.Buffer[(1, 12, 4096), "int64"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) for i0, i1, i2 in T.grid(1, 12, 4096): with T.block("T_full"): ax0, ax1, ax2 = T.axis.remap("SSS", [i0, i1, i2]) T.reads() T.writes(T_full[ax0, ax1, ax2]) T_full[ax0, ax1, ax2] = T.int64(0) @tvm.script.ir_module class Conv2dInt8: @T.prim_func def main(p0: T.Buffer[(16, 14, 14, 256), "int8"], p1: T.Buffer[(1024, 1, 1, 256), "int8"], p2: T.Buffer[(1, 1, 1, 1024), "int32"], p3: T.Buffer[(1, 1, 1, 1024), "int32"], p4: T.Buffer[1024, "int32"], p5: T.Buffer[1024, "int32"], p6: T.Buffer[1024, "int32"], p7: T.Buffer[1, "int32"], p8: T.Buffer[(16, 14, 14, 1024), "int32"], compute: T.Buffer[(16, 14, 14, 1024), "int32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) compile_engine_const = T.alloc_buffer([], dtype="int32") pad_temp = T.alloc_buffer([16, 14, 14, 256], dtype="int8") conv2d_nhwc = T.alloc_buffer([16, 14, 14, 1024], dtype
="int32") T_subtract = T.alloc_buffer([16, 14, 14, 1024], dtype="int32") T_add = T.alloc_buffer([16, 14, 14, 1024], dtype="int32") compute_1 = T.alloc_buffer([16, 14, 14, 1024], dtype="int32") T_add_1 = T.alloc_buffer([16, 14, 14, 1024], dtype="int32") compute_2 = T.alloc_buffer([16, 14, 14, 1024], dtype="int32") T_subtract_1 = T.alloc_buffer([16, 14, 14, 1024], dtype="int32") compute_3 = T.alloc_buffer([16, 14, 14, 1024], dtype="int32") T_add_2 = T.alloc_buffer([16, 14, 14, 1024], dtype="int32") with T.block("compile_engine_const"): vi = T.axis.spatial(1, 0) T.reads() T.writes(compile_engine_const[()]) compile_engine_const[()] = 59 for i0, i1, i2, i3 in T.grid(16, 14, 14, 256): with T.block("pad_temp"): i0_1, i1_1, i2_1, i3_1 = T.axis.remap("SSSS", [i0, i1, i2, i3]) T.reads(p0[i0_1, i1_1, i2_1, i3_1]) T.writes(pad_temp[i0_1, i1_1, i2_1, i3_1]) pad_temp[i0_1, i1_1, i2_1, i3_1] = p0[i0_1, i1_1, i2_1, i3_1] for i0, i1, i2, i3, i4, i5, i6 in T.grid(16, 14, 14, 1024, 1, 1, 256): with T.block("conv2d_nhwc"): nn, yy, xx, ff, ry, rx, rc = T.axis.remap("SSSSRRR", [i0, i1, i2, i3, i4, i5, i6]) T.reads(pad_temp[nn, yy + ry, xx + rx, rc], p1[ff, ry, rx, rc]) T.writes(conv2d_nhwc[nn, yy, xx, ff]) with T.init(): conv2d_nhwc[nn, yy, xx, ff] = 0 conv2d_nhwc[nn, yy, xx, ff] = conv2d_nhwc[nn, yy, xx, ff] + T.cast(pad_temp[nn, yy + ry, xx + rx, rc], "int32") * T.cast(p1[ff, ry, rx, rc], "int32") for i0, i1, i2, i3 in T.grid(16, 14, 14, 1024): with T.block("T_subtract"): ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0, i1, i2, i3]) T.reads(conv2d_nhwc[ax0, ax1, ax2, ax3], p2[0, 0, 0, ax3]) T.writes(T_subtract[ax0, ax1, ax2, ax3]) T_s
ubtract[ax0, ax1, ax2, ax3] = conv2d_nhwc[ax0, ax1, ax2, ax3] - p2[0, 0, 0, ax3] for i0, i1, i2, i3 in T.grid(16, 14, 14, 1024): with T.block("T_add"): ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0, i1, i2, i3]) T.reads(T_subtract[ax0, ax1, ax2, ax3], p3[0, 0, 0, ax3]) T.writes(T_add[ax0, ax1, ax2, ax3]) T_add[ax0, ax1, ax2, ax3] = T_subtract[ax0, ax1, ax2, ax3] + p3[0, 0, 0, ax3] for i0, i1, i2, i3 in T.grid(16, 14, 14, 1024): with T.block("compute"): i0_2, i1_2, i2_2, i3_2 = T.axis.remap("SSSS", [i0, i1, i2, i3]) T.reads(T_add[i0_2, i1_2, i2_2, i3_2], p4[i3_2], p5[i3_2], p6[i3_2]) T.writes(compute_1[i0_2, i1_2, i2_2, i3_2]) compute_1[i0_2, i1_2, i2_2, i3_2] = T.q_multiply_shift_per_axis(T_add[i0_2, i1_2, i2_2, i3_2], p4[i3_2], p5[i3_2], p6[i3_2], 31, False, True, dtype="int32") for i0_3, i1_3, i2_3, i3_3 in T.grid(16, 14, 14, 1024): with T.block("T_add_1"): ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0_3, i1_3, i2_3, i3_3]) T.reads(compile_engine_const[()], compute_1[ax0, ax1, ax2, ax3]) T.writes(T_add_1[ax0, ax1, ax2, ax3]) T_add_1[ax0, ax1, ax2, ax3] = compile_engine_const[()] + compute_1[ax0, ax1, ax2, ax3] for i0_4, i1_4, i2_4, i3_4 in T.grid(16, 14, 14, 1024): with T.block("compute_1"): i0_5, i1_5, i2_5, i3_5 = T.axis.remap("SSSS", [i0_4, i1_4, i2_4, i3_4]) T.reads(T_add_1[i0_5, i1_5, i2_5, i3_5]) T.writes(compute_2[i0_5, i1_5, i2_5, i3_5]) compute_2[i0_5, i1_5, i2_5, i3_5] = T.max(T.min(T_add_1[i0_5, i1_5, i2_5, i3_5], 255), 0) for i0_6, i1_6, i2_6, i3_6 in T.grid(16, 14, 14, 1024): with T.block("T_subtract_1"): ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0_6, i1_6, i2_6, i3_6]) T.reads(compute_2[ax0, ax1, ax2, ax3], p7[0])
T.writes(T_subtract_1[ax0, ax1, ax2, ax3]) T_subtract_1[ax0, ax1, ax2, ax3] = compute_2[ax0, ax1, ax2, ax3] - p7[0] for i0_7, i1_7, i2_7, i3_7 in T.grid(16, 14, 14, 1024): with T.block("compute_2"): i0_8, i1_8, i2_8, i3_8 = T.axis.remap("SSSS", [i0_7, i1_7, i2_7, i3_7]) T.reads(T_subtract_1[i0_8, i1_8, i2_8, i3_8]) T.writes(compute_3[i0_8, i1_8, i2_8, i3_8]) compute_3[i0_8, i1_8, i2_8, i3_8] = T.q_multiply_shift(T_subtract_1[i0_8, i1_8, i2_8, i3_8], 1408572815, 31, 1, dtype="int32") for i0_9, i1_9, i2_9, i3_9 in T.grid(16, 14, 14, 1024): with T.block("T_add_2"): ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0_9, i1_9, i2_9, i3_9]) T.reads(compute_3[ax0, ax1, ax2, ax3], p8[ax0, ax1, ax2, ax3]) T.writes(T_add_2[ax0, ax1, ax2, ax3]) T_add_2[ax0, ax1, ax2, ax3] = compute_3[ax0, ax1, ax2, ax3] + p8[ax0, ax1, ax2, ax3] for i0_10, i1_10, i2_10, i3_10 in T.grid(16, 14, 14, 1024): with T.block("compute_3"): i0_11, i1_11, i2_11, i3_11 = T.axis.remap("SSSS", [i0_10, i1_10, i2_10, i3_10]) T.reads(T_add_2[i0_11, i1_11, i2_11, i3_11]) T.writes(compute[i0_11, i1_11, i2_11, i3_11]) compute[i0_11, i1_11, i2_11, i3_11] = T.max(T.min(T_add_2[i0_11, i1_11, i2_11, i3_11], 255), 0) def test_inline_consumer_chain(): mod = Conv2DBiasBnReLU target = Target("llvm") (space,) = generate_design_space( kind="llvm", mod=mod, target=target, types=ms.schedule_rule.AutoInline, ) tvm.ir.assert_structural_equal(lhs=space.mod, rhs=Conv2DBiasBnReLUInlined) def test_inline_into_cache(): mod = MultiLevelTiledConv2D target = Target("cuda", host="llvm") (space,) = generate_design_space( kind="cuda", mod=mod, target=target, types=ms.schedule_rule.AutoInline, ) tvm.ir.a
ssert_structural_equal(lhs=space.mod, rhs=MultiLevelTiledConv2DAfterInline) def test_inline_into_multiple_consumers(): mod = SoftmaxBeforeInline target = Target("cuda", host="llvm") (space,) = generate_design_space( kind="cuda", mod=mod, target=target, types=ms.schedule_rule.AutoInline, ) tvm.ir.assert_structural_equal(lhs=space.mod, rhs=SoftmaxAfterInline) def test_inline_pure_spatial(): mod = BeforePureSpatial target = Target("llvm") (space,) = generate_design_space( kind="llvm", mod=mod, target=target, types=ms.schedule_rule.AutoInline, ) tvm.ir.assert_structural_equal(lhs=space.mod, rhs=AfterPureSpatial) def test_inline_constant_tensor(): mod = ConstConsumer target = Target("cuda", host="llvm") (space,) = generate_design_space( kind="cuda", mod=mod, target=target, types=ms.schedule_rule.AutoInline, ) tvm.ir.assert_structural_equal(lhs=space.mod, rhs=ConstConsumer) def test_conv2d_int8_inline_constant_scalars(): sch = Schedule(Conv2dInt8) conv2d = sch.get_block("conv2d_nhwc") sch.cache_write(conv2d, 0, "shared") with pytest.raises(tvm.tir.ScheduleError) as e: sch.reverse_compute_inline(sch.get_block("T_add_1")) err_msg = "The block is only allowed to read a single buffer region, but it reads 2 region(s)" assert err_msg in str(e) ms.schedule_rule.InlineConstantScalars().apply(sch, sch.get_block("compile_engine_const")) sch.reverse_compute_inline(sch.get_block("T_add_1")) if __name__ == "__main__": test_inline_consumer_chain() test_inline_into_cache() test_inline_into_multiple_consumers() test_inline_pure_spatial() test_inline_constant_tensor() test_conv2d_int8_inline_constant_scalars()
import tvm from tvm
import meta_schedule as ms from tvm.meta_schedule.testing
import te_workload from tvm.meta_schedule.testing.space_generation
import ( check_sketches, generate_design_space, ) from tvm.script
import tir as T from tvm.target
import Target from tvm.te
import create_prim_func @tvm.script.ir_module class Softmax_mn_after_inline: @T.prim_func def main( A: T.Buffer[(256, 256), "float32"], T_softmax_norm: T.Buffer[(256, 256), "float32"] ) -> None: T_softmax_maxelem = T.alloc_buffer([256], dtype="float32") T_softmax_expsum = T.alloc_buffer([256], dtype="float32") for i0, i1 in T.grid(256, 256): with T.block("T_softmax_maxelem"): i0_1, k = T.axis.remap("SR", [i0, i1]) with T.init(): T_softmax_maxelem[i0_1] = T.min_value("float32") T_softmax_maxelem[i0_1] = T.max(T_softmax_maxelem[i0_1], A[i0_1, k]) for i0, i1 in T.grid(256, 256): with T.block("T_softmax_expsum"): i0_2, k = T.axis.remap("SR", [i0, i1]) with T.init(): T_softmax_expsum[i0_2] = T.float32(0) T_softmax_expsum[i0_2] = T_softmax_expsum[i0_2] + T.exp( A[i0_2, k] - T_softmax_maxelem[i0_2], dtype="float32" ) for i0_3, i1 in T.grid(256, 256): with T.block("T_softmax_norm"): i0_4, i1_1 = T.axis.remap("SS", [i0_3, i1]) T.block_attr({"axis": 1}) T_softmax_norm[i0_4, i1_1] = ( T.exp(A[i0_4, i1_1] - T_softmax_maxelem[i0_4], dtype="float32") / T_softmax_expsum[i0_4] ) def test_gpu_softmax_mn(): @T.prim_func def softmax_mn_0( A: T.Buffer[(256, 256), "float32"], T_softmax_norm: T.Buffer[(256, 256), "float32"], ) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) T_softmax_maxelem = T.alloc_buffer([256], dtype="float32") T_softmax_exp = T.alloc_buffer([256, 256], dtype="float32") T_softmax_expsum = T.alloc_buffer([256], dtype="float32") for i0, i1 in T.grid(256, 256): with T.block("T_softmax_maxelem"): i0_1, k = T
.axis.remap("SR", [i0, i1]) T.reads(A[i0_1, k]) T.writes(T_softmax_maxelem[i0_1]) with T.init(): T_softmax_maxelem[i0_1] = T.float32(-3.4028234663852886e38) T_softmax_maxelem[i0_1] = T.max(T_softmax_maxelem[i0_1], A[i0_1, k]) for i0, i1 in T.grid(256, 256): with T.block("T_softmax_exp"): i0_2, i1_1 = T.axis.remap("SS", [i0, i1]) T.reads(A[i0_2, i1_1], T_softmax_maxelem[i0_2]) T.writes(T_softmax_exp[i0_2, i1_1]) T_softmax_exp[i0_2, i1_1] = T.exp( A[i0_2, i1_1] - T_softmax_maxelem[i0_2], dtype="float32" ) for i0_3, i1 in T.grid(256, 256): with T.block("T_softmax_expsum"): i0_4, k = T.axis.remap("SR", [i0_3, i1]) T.reads(T_softmax_exp[i0_4, k]) T.writes(T_softmax_expsum[i0_4]) with T.init(): T_softmax_expsum[i0_4] = T.float32(0) T_softmax_expsum[i0_4] = T_softmax_expsum[i0_4] + T_softmax_exp[i0_4, k] for i0_5, i1 in T.grid(256, 256): with T.block("T_softmax_norm"): i0_6, i1_2 = T.axis.remap("SS", [i0_5, i1]) T.reads(T_softmax_exp[i0_6, i1_2], T_softmax_expsum[i0_6]) T.writes(T_softmax_norm[i0_6, i1_2]) T.block_attr({"axis": 1}) T_softmax_norm[i0_6, i1_2] = T_softmax_exp[i0_6, i1_2] / T_softmax_expsum[i0_6] @T.prim_func def softmax_mn_1( A: T.Buffer[(256, 256), "float32"], T_softmax_norm: T.Buffer[(256, 256), "float32"] ) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) T_softmax_maxelem_shared = T.alloc_buffer([256], dtype="float32", scope="shared") T_softmax_exp = T.alloc_buffer([256, 256], dtype="float32") T_softmax_expsum = T.alloc_buffer([256], dtype="float32") for i0 in T.serial(256):
for ax0, ax1_0 in T.grid(1, 1): for ax1_1 in T.thread_binding(512, thread="threadIdx.x"): with T.block("T_softmax_maxelem"): T.where(ax1_0 * 512 + ax1_1 < 256) i0_1 = T.axis.spatial(256, ax0 + i0) k = T.axis.reduce(256, ax1_0 * 512 + ax1_1) T.reads(A[i0_1, k]) T.writes(T_softmax_maxelem_shared[i0_1]) with T.init(): T_softmax_maxelem_shared[i0_1] = T.float32(-3.4028234663852886e38) T_softmax_maxelem_shared[i0_1] = T.max( T_softmax_maxelem_shared[i0_1], A[i0_1, k] ) for i1_0 in T.serial(1): for i1_1 in T.thread_binding(512, thread="threadIdx.x"): with T.block("T_softmax_exp"): T.where(i1_0 * 512 + i1_1 < 256) i0_2 = T.axis.spatial(256, i0) i1 = T.axis.spatial(256, i1_0 * 512 + i1_1) T.reads(A[i0_2, i1], T_softmax_maxelem_shared[i0_2]) T.writes(T_softmax_exp[i0_2, i1]) T_softmax_exp[i0_2, i1] = T.exp( A[i0_2, i1] - T_softmax_maxelem_shared[i0_2], dtype="float32" ) for i0_3, i1 in T.grid(256, 256): with T.block("T_softmax_expsum"): i0_4, k = T.axis.remap("SR", [i0_3, i1]) T.reads(T_softmax_exp[i0_4, k]) T.writes(T_softmax_expsum[i0_4]) with T.init(): T_softmax_expsum[i0_4] = T.float32(0) T_softmax_expsum[i0_4] = T_softmax_expsum[i0_4] + T_softmax_exp[i0_4, k] for i0_5, i1 in T.grid(256, 256): with T.block("T_softmax_norm"): i0_6, i1_2 = T.axis.remap("SS", [i0_5, i1]) T.reads(T_softmax_exp[i0_6, i1_2], T_softmax_expsum[i0_6
]) T.writes(T_softmax_norm[i0_6, i1_2]) T.block_attr({"axis": 1}) T_softmax_norm[i0_6, i1_2] = T_softmax_exp[i0_6, i1_2] / T_softmax_expsum[i0_6] @T.prim_func def softmax_mn_2( A: T.Buffer[(256, 256), "float32"], T_softmax_norm: T.Buffer[(256, 256), "float32"] ) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) T_softmax_maxelem = T.alloc_buffer([256], dtype="float32") T_softmax_exp = T.alloc_buffer([256, 256], dtype="float32") T_softmax_expsum_shared = T.alloc_buffer([256], dtype="float32", scope="shared") for i0, i1 in T.grid(256, 256): with T.block("T_softmax_maxelem"): i0_1, k = T.axis.remap("SR", [i0, i1]) T.reads(A[i0_1, k]) T.writes(T_softmax_maxelem[i0_1]) with T.init(): T_softmax_maxelem[i0_1] = T.float32(-3.4028234663852886e38) T_softmax_maxelem[i0_1] = T.max(T_softmax_maxelem[i0_1], A[i0_1, k]) for i0, i1 in T.grid(256, 256): with T.block("T_softmax_exp"): i0_2, i1_1 = T.axis.remap("SS", [i0, i1]) T.reads(A[i0_2, i1_1], T_softmax_maxelem[i0_2]) T.writes(T_softmax_exp[i0_2, i1_1]) T_softmax_exp[i0_2, i1_1] = T.exp( A[i0_2, i1_1] - T_softmax_maxelem[i0_2], dtype="float32" ) for i0_3 in T.serial(256): for ax0, ax1_0 in T.grid(1, 32): for ax1_1 in T.thread_binding(8, thread="threadIdx.x"): with T.block("T_softmax_expsum"): i0_4 = T.axis.spatial(256, ax0 + i0_3) k = T.axis.reduce(256, ax1_0 * 8 + ax1_1) T.reads(T_softmax_exp[i0_4, k]) T.writes(T_softmax_expsum_shared[i0_4]) with T.init(): T_softmax_expsum_shared[i0_4] = T.float
32(0) T_softmax_expsum_shared[i0_4] = ( T_softmax_expsum_shared[i0_4] + T_softmax_exp[i0_4, k] ) for i1_0 in T.serial(32): for i1_1_1 in T.thread_binding(8, thread="threadIdx.x"): with T.block("T_softmax_norm"): i0_5 = T.axis.spatial(256, i0_3) i1 = T.axis.spatial(256, i1_0 * 8 + i1_1_1) T.reads(T_softmax_exp[i0_5, i1], T_softmax_expsum_shared[i0_5]) T.writes(T_softmax_norm[i0_5, i1]) T.block_attr({"axis": 1}) T_softmax_norm[i0_5, i1] = ( T_softmax_exp[i0_5, i1] / T_softmax_expsum_shared[i0_5] ) @T.prim_func def softmax_mn_3( A: T.Buffer[(256, 256), "float32"], T_softmax_norm: T.Buffer[(256, 256), "float32"] ) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) T_softmax_maxelem_shared = T.alloc_buffer([256], dtype="float32", scope="shared") T_softmax_exp = T.alloc_buffer([256, 256], dtype="float32") T_softmax_expsum_shared = T.alloc_buffer([256], dtype="float32", scope="shared") for i0 in T.serial(256): for ax0, ax1_0 in T.grid(1, 1): for ax1_1 in T.thread_binding(512, thread="threadIdx.x"): with T.block("T_softmax_maxelem"): T.where(ax1_0 * 512 + ax1_1 < 256) i0_1 = T.axis.spatial(256, ax0 + i0) k = T.axis.reduce(256, ax1_0 * 512 + ax1_1) T.reads(A[i0_1, k]) T.writes(T_softmax_maxelem_shared[i0_1]) with T.init(): T_softmax_maxelem_shared[i0_1] = T.float32(-3.4028234663852886e38) T_softmax_maxelem_shared[i0_1] = T.max( T_softmax
_maxelem_shared[i0_1], A[i0_1, k] ) for i1_0 in T.serial(1): for i1_1 in T.thread_binding(512, thread="threadIdx.x"): with T.block("T_softmax_exp"): T.where(i1_0 * 512 + i1_1 < 256) i0_2 = T.axis.spatial(256, i0) i1 = T.axis.spatial(256, i1_0 * 512 + i1_1) T.reads(A[i0_2, i1], T_softmax_maxelem_shared[i0_2]) T.writes(T_softmax_exp[i0_2, i1]) T_softmax_exp[i0_2, i1] = T.exp( A[i0_2, i1] - T_softmax_maxelem_shared[i0_2], dtype="float32" ) for i0_3 in T.serial(256): for ax0, ax1_0 in T.grid(1, 32): for ax1_1 in T.thread_binding(8, thread="threadIdx.x"): with T.block("T_softmax_expsum"): i0_4 = T.axis.spatial(256, ax0 + i0_3) k = T.axis.reduce(256, ax1_0 * 8 + ax1_1) T.reads(T_softmax_exp[i0_4, k]) T.writes(T_softmax_expsum_shared[i0_4]) with T.init(): T_softmax_expsum_shared[i0_4] = T.float32(0) T_softmax_expsum_shared[i0_4] = ( T_softmax_expsum_shared[i0_4] + T_softmax_exp[i0_4, k] ) for i1_0 in T.serial(32): for i1_1 in T.thread_binding(8, thread="threadIdx.x"): with T.block("T_softmax_norm"): i0_5 = T.axis.spatial(256, i0_3) i1 = T.axis.spatial(256, i1_0 * 8 + i1_1) T.reads(T_softmax_exp[i0_5, i1], T_softmax_expsum_shared[i0_5]) T.writes(T_softmax_norm[i0_5, i1]) T.block_attr({"axis": 1}) T_softmax_norm[i0_5, i1] = ( T_softmax_exp[i0_5, i1] / T_softmax_expsum_
shared[i0_5] ) decision_0 = [] decision_1 = [ ("SampleCategorical", 7), ] decision_2 = [ ("SampleCategorical", 1), ] decision_3 = [ ("SampleCategorical", 1), ("SampleCategorical", 7), ] mod = create_prim_func(te_workload.softmax_mn(n=256, m=256)) actual = generate_design_space( kind="cuda", mod=mod, target=Target("nvidia/geforce-rtx-3090", host="llvm"), types=ms.schedule_rule.CrossThreadReduction, ) check_sketches( mod, sketches=actual, expected_mods=[softmax_mn_0, softmax_mn_1, softmax_mn_2, softmax_mn_3], expected_decisions=[decision_0, decision_1, decision_2, decision_3], ) def test_gpu_softmax_mn_after_inline(): @T.prim_func def softmax_mn_after_inline_0( A: T.Buffer[(256, 256), "float32"], T_softmax_norm: T.Buffer[(256, 256), "float32"] ) -> None: T_softmax_maxelem = T.alloc_buffer([256], dtype="float32") T_softmax_expsum = T.alloc_buffer([256], dtype="float32") for i0, i1 in T.grid(256, 256): with T.block("T_softmax_maxelem"): i0_1, k = T.axis.remap("SR", [i0, i1]) T.reads(A[i0_1, k]) T.writes(T_softmax_maxelem[i0_1]) with T.init(): T_softmax_maxelem[i0_1] = T.float32(-3.4028234663852886e38) T_softmax_maxelem[i0_1] = T.max(T_softmax_maxelem[i0_1], A[i0_1, k]) for i0, i1 in T.grid(256, 256): with T.block("T_softmax_expsum"): i0_2, k = T.axis.remap("SR", [i0, i1]) T.reads(A[i0_2, k], T_softmax_maxelem[i0_2]) T.writes(T_softmax_expsum[i0_2]) with T.init(): T_softmax_expsum[i0_2] = T.float32(0) T_softmax_expsum[i0_2] = T_softmax_expsum[i0_2] + T.exp( A[i0_2, k] - T_softmax_maxelem[i0_2], dtype="float32" ) for i0_3, i1 in T.grid
(256, 256): with T.block("T_softmax_norm"): i0_4, i1_1 = T.axis.remap("SS", [i0_3, i1]) T.reads(A[i0_4, i1_1], T_softmax_maxelem[i0_4], T_softmax_expsum[i0_4]) T.writes(T_softmax_norm[i0_4, i1_1]) T.block_attr({"axis": 1}) T_softmax_norm[i0_4, i1_1] = ( T.exp(A[i0_4, i1_1] - T_softmax_maxelem[i0_4], dtype="float32") / T_softmax_expsum[i0_4] ) @T.prim_func def softmax_mn_after_inline_1( A: T.Buffer[(256, 256), "float32"], T_softmax_norm: T.Buffer[(256, 256), "float32"] ) -> None: T_softmax_maxelem = T.alloc_buffer([256], dtype="float32") T_softmax_expsum = T.alloc_buffer([256], dtype="float32") for i0, i1_0 in T.grid(256, 4): for i1_1 in T.thread_binding(64, thread="threadIdx.x"): with T.block("T_softmax_maxelem"): i0_1 = T.axis.spatial(256, i0) k = T.axis.reduce(256, i1_0 * 64 + i1_1) T.reads(A[i0_1, k]) T.writes(T_softmax_maxelem[i0_1]) with T.init(): T_softmax_maxelem[i0_1] = T.float32(-3.4028234663852886e38) T_softmax_maxelem[i0_1] = T.max(T_softmax_maxelem[i0_1], A[i0_1, k]) for i0, i1 in T.grid(256, 256): with T.block("T_softmax_expsum"): i0_2, k = T.axis.remap("SR", [i0, i1]) T.reads(A[i0_2, k], T_softmax_maxelem[i0_2]) T.writes(T_softmax_expsum[i0_2]) with T.init(): T_softmax_expsum[i0_2] = T.float32(0) T_softmax_expsum[i0_2] = T_softmax_expsum[i0_2] + T.exp( A[i0_2, k] - T_softmax_maxelem[i0_2], dtype="float32" ) for i0_3, i1 in T.grid(256, 256): with T.block("T_softmax_norm"): i0_4, i1_1 = T.axis.remap("SS", [i0_3, i1]) T.reads(A[i0_4, i1_1],
T_softmax_maxelem[i0_4], T_softmax_expsum[i0_4]) T.writes(T_softmax_norm[i0_4, i1_1]) T.block_attr({"axis": 1}) T_softmax_norm[i0_4, i1_1] = ( T.exp(A[i0_4, i1_1] - T_softmax_maxelem[i0_4], dtype="float32") / T_softmax_expsum[i0_4] ) @T.prim_func def softmax_mn_after_inline_2( A: T.Buffer[(256, 256), "float32"], T_softmax_norm: T.Buffer[(256, 256), "float32"] ) -> None: T_softmax_maxelem = T.alloc_buffer([256], dtype="float32") T_softmax_expsum_shared = T.alloc_buffer([256], dtype="float32", scope="shared") for i0, i1 in T.grid(256, 256): with T.block("T_softmax_maxelem"): i0_1, k = T.axis.remap("SR", [i0, i1]) T.reads(A[i0_1, k]) T.writes(T_softmax_maxelem[i0_1]) with T.init(): T_softmax_maxelem[i0_1] = T.float32(-3.4028234663852886e38) T_softmax_maxelem[i0_1] = T.max(T_softmax_maxelem[i0_1], A[i0_1, k]) for i0_3 in T.serial(256): for ax0, ax1_0 in T.grid(1, 1): for ax1_1 in T.thread_binding(512, thread="threadIdx.x"): with T.block("T_softmax_expsum"): T.where(ax1_0 * 512 + ax1_1 < 256) i0_2 = T.axis.spatial(256, ax0 + i0_3) k = T.axis.reduce(256, ax1_0 * 512 + ax1_1) T.reads(A[i0_2, k], T_softmax_maxelem[i0_2]) T.writes(T_softmax_expsum_shared[i0_2]) with T.init(): T_softmax_expsum_shared[i0_2] = T.float32(0) T_softmax_expsum_shared[i0_2] = T_softmax_expsum_shared[i0_2] + T.exp( A[i0_2, k] - T_softmax_maxelem[i0_2], dtype="float32" ) for i1_0 in T.serial(1): for i1_1 in T.thread_binding(512, thread="threadIdx.x"):
with T.block("T_softmax_norm"): T.where(i1_0 * 512 + i1_1 < 256) i0_4 = T.axis.spatial(256, i0_3) i1_1_1 = T.axis.spatial(256, i1_0 * 512 + i1_1) T.reads( A[i0_4, i1_1_1], T_softmax_maxelem[i0_4], T_softmax_expsum_shared[i0_4] ) T.writes(T_softmax_norm[i0_4, i1_1_1]) T.block_attr({"axis": 1}) T_softmax_norm[i0_4, i1_1_1] = ( T.exp(A[i0_4, i1_1_1] - T_softmax_maxelem[i0_4], dtype="float32") / T_softmax_expsum_shared[i0_4] ) @T.prim_func def softmax_mn_after_inline_3( A: T.Buffer[(256, 256), "float32"], T_softmax_norm: T.Buffer[(256, 256), "float32"] ) -> None: T_softmax_maxelem_shared = T.alloc_buffer([256], dtype="float32", scope="shared") T_softmax_expsum_shared = T.alloc_buffer([256], dtype="float32", scope="shared") for i0_3 in T.serial(256): for ax0, ax1_0 in T.grid(1, 1): for ax1_1 in T.thread_binding(512, thread="threadIdx.x"): with T.block("T_softmax_maxelem"): T.where(ax1_0 * 512 + ax1_1 < 256) i0_1 = T.axis.spatial(256, ax0 + i0_3) k = T.axis.reduce(256, ax1_0 * 512 + ax1_1) T.reads(A[i0_1, k]) T.writes(T_softmax_maxelem_shared[i0_1]) with T.init(): T_softmax_maxelem_shared[i0_1] = T.float32(-3.4028234663852886e38) T_softmax_maxelem_shared[i0_1] = T.max( T_softmax_maxelem_shared[i0_1], A[i0_1, k] ) for ax0, ax1_0 in T.grid(1, 1): for ax1_1 in T.thread_binding(512, thread="threadIdx.x"): with T.block("T_softmax_expsum"):
T.where(ax1_0 * 512 + ax1_1 < 256) i0_2 = T.axis.spatial(256, ax0 + i0_3) k = T.axis.reduce(256, ax1_0 * 512 + ax1_1) T.reads(A[i0_2, k], T_softmax_maxelem_shared[i0_2]) T.writes(T_softmax_expsum_shared[i0_2]) with T.init(): T_softmax_expsum_shared[i0_2] = T.float32(0) T_softmax_expsum_shared[i0_2] = T_softmax_expsum_shared[i0_2] + T.exp( A[i0_2, k] - T_softmax_maxelem_shared[i0_2], dtype="float32" ) for i1_0 in T.serial(1): for i1_1 in T.thread_binding(512, thread="threadIdx.x"): with T.block("T_softmax_norm"): T.where(i1_0 * 512 + i1_1 < 256) i0_4 = T.axis.spatial(256, i0_3) i1_1_1 = T.axis.spatial(256, i1_0 * 512 + i1_1) T.reads( A[i0_4, i1_1_1], T_softmax_maxelem_shared[i0_4], T_softmax_expsum_shared[i0_4], ) T.writes(T_softmax_norm[i0_4, i1_1_1]) T.block_attr({"axis": 1}) T_softmax_norm[i0_4, i1_1_1] = ( T.exp(A[i0_4, i1_1_1] - T_softmax_maxelem_shared[i0_4], dtype="float32") / T_softmax_expsum_shared[i0_4] ) decision_0 = [] decision_1 = [ ("SampleCategorical", 4), ] decision_2 = [ ("SampleCategorical", 7), ] decision_3 = [ ("SampleCategorical", 7), ("SampleCategorical", 0), ] mod = Softmax_mn_after_inline actual = generate_design_space( kind="cuda", mod=mod, target=Target("nvidia/geforce-rtx-3090", host="llvm"), types=ms.schedule_rule.CrossThreadReduction, ) c
heck_sketches( mod, sketches=actual, expected_mods=[ softmax_mn_after_inline_0, softmax_mn_after_inline_1, softmax_mn_after_inline_2, softmax_mn_after_inline_3, ], expected_decisions=[decision_0, decision_1, decision_2, decision_3], ) def test_gpu_batch_norm_bmn(): @T.prim_func def batch_norm_bmn_0(A: T.Buffer[(1, 512, 512), "float32"], D: T.Buffer[1, "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) C = T.alloc_buffer([1], dtype="float32") for i0, i1, i2 in T.grid(1, 512, 512): with T.block("C"): b, i, j = T.axis.remap("SRR", [i0, i1, i2]) T.reads(A[b, i, j]) T.writes(C[b]) with T.init(): C[b] = T.float32(0) C[b] = C[b] + A[b, i, j] * A[b, i, j] for i0 in T.serial(1): with T.block("D"): b = T.axis.spatial(1, i0) T.reads(C[b]) T.writes(D[b]) D[b] = T.sqrt(C[b], dtype="float32") @T.prim_func def batch_norm_bmn_1(A: T.Buffer[(1, 512, 512), "float32"], D: T.Buffer[1, "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) C_shared = T.alloc_buffer([1], dtype="float32", scope="shared") for i0_0 in T.serial(1): for ax0, ax1_ax2_fused_0 in T.grid(1, 1024): for ax1_ax2_fused_1 in T.thread_binding(256, thread="threadIdx.x"): with T.block("C"): b = T.axis.spatial(1, ax0) i = T.axis.reduce(512, (ax1_ax2_fused_0 * 256 + ax1_ax2_fused_1) j = T.axis.reduce(512, (ax1_ax2_fused_0 * 256 + ax1_ax2_fused_1) % 512) T.reads(A[b, i, j]) T.writes(C_shared[b]) with T.init():
C_shared[b] = T.float32(0) C_shared[b] = C_shared[b] + A[b, i, j] * A[b, i, j] for i0_1 in T.thread_binding(256, thread="threadIdx.x"): with T.block("D"): T.where(i0_0 * 256 + i0_1 < 1) b = T.axis.spatial(1, i0_0 * 256 + i0_1) T.reads(C_shared[b]) T.writes(D[b]) D[b] = T.sqrt(C_shared[b], dtype="float32") decision_0 = [] decision_1 = [ ("SampleCategorical", 6), ] mod = create_prim_func(te_workload.norm_bmn(B=1, M=512, N=512)) actual = generate_design_space( kind="cuda", mod=mod, target=Target("nvidia/geforce-rtx-3090", host="llvm"), types=ms.schedule_rule.CrossThreadReduction, ) check_sketches( mod, sketches=actual, expected_mods=[batch_norm_bmn_0, batch_norm_bmn_1], expected_decisions=[decision_0, decision_1], ) @T.prim_func def argmax( idx: T.Buffer[(128, 128), "int32"], val: T.Buffer[(128, 128), "float32"], argmax_v0: T.Buffer[(128,), "int32"], argmax_v1: T.Buffer[(128,), "float32"], ) -> None: for i0, i1 in T.grid(128, 128): with T.block("argmax"): i = T.axis.spatial(128, i0) k = T.axis.reduce(128, i1) T.reads(idx[i, k], val[i, k]) T.writes(argmax_v0[i], argmax_v1[i]) with T.init(): argmax_v0[i] = -1 argmax_v1[i] = T.min_value("float32") v_argmax_v0: T.int32 = T.Select(argmax_v1[i] >= val[i, k], argmax_v0[i], idx[i, k]) v_argmax_v1: T.float32 = T.Select(argmax_v1[i] >= val[i, k], argmax_v1[i], val[i, k]) argmax_v0[i] = v_argmax_v0 argmax_v1[i] = v_argmax_v1 @T.prim_func def argmax_32( idx: T.Buffer[(1, 32), "int32"], val: T.Buffer[(1, 32), "float32"], argmax_v0: T.Buffer[(1,), "int32"], argmax_v1: T.Buffer[(1,), "float32"], ) -> None: for i0, i1 in T.gr
id(1, 32): with T.block("argmax"): i = T.axis.spatial(1, i0) k = T.axis.reduce(32, i1) T.reads(idx[i, k], val[i, k]) T.writes(argmax_v0[i], argmax_v1[i]) with T.init(): argmax_v0[i] = -1 argmax_v1[i] = T.min_value("float32") v_argmax_v0: T.int32 = T.Select(argmax_v1[i] >= val[i, k], argmax_v0[i], idx[i, k]) v_argmax_v1: T.float32 = T.Select(argmax_v1[i] >= val[i, k], argmax_v1[i], val[i, k]) argmax_v0[i] = v_argmax_v0 argmax_v1[i] = v_argmax_v1 def test_gpu_argmax(): @T.prim_func def argmax_0( idx: T.Buffer[(128, 128), "int32"], val: T.Buffer[(128, 128), "float32"], argmax_v0: T.Buffer[128, "int32"], argmax_v1: T.Buffer[128, "float32"], ) -> None: for i0, i1 in T.grid(128, 128): with T.block("argmax"): i, k = T.axis.remap("SR", [i0, i1]) T.reads(idx[i, k], val[i, k]) T.writes(argmax_v0[i], argmax_v1[i]) with T.init(): argmax_v0[i] = -1 argmax_v1[i] = T.float32(-3.4028234663852886e38) v_argmax_v0: T.int32 = T.Select(argmax_v1[i] >= val[i, k], argmax_v0[i], idx[i, k]) v_argmax_v1: T.float32 = T.Select( argmax_v1[i] >= val[i, k], argmax_v1[i], val[i, k] ) argmax_v0[i] = v_argmax_v0 argmax_v1[i] = v_argmax_v1 @T.prim_func def argmax_1( idx: T.Buffer[(128, 128), "int32"], val: T.Buffer[(128, 128), "float32"], argmax_v0: T.Buffer[128, "int32"], argmax_v1: T.Buffer[128, "float32"], ) -> None: for i0, i1_0 in T.grid(128, 2): for i1_1 in T.thread_binding(64, thread="threadIdx.x"): with T.block("argmax"): i = T.axis.spatial(128, i0) k = T.axis.reduce(128, i1_
0 * 64 + i1_1) T.reads(idx[i, k], val[i, k]) T.writes(argmax_v0[i], argmax_v1[i]) with T.init(): argmax_v0[i] = -1 argmax_v1[i] = T.float32(-3.4028234663852886e38) v_argmax_v0: T.int32 = T.Select( argmax_v1[i] >= val[i, k], argmax_v0[i], idx[i, k] ) v_argmax_v1: T.float32 = T.Select( argmax_v1[i] >= val[i, k], argmax_v1[i], val[i, k] ) argmax_v0[i] = v_argmax_v0 argmax_v1[i] = v_argmax_v1 decision_0 = [] decision_1 = [ ("SampleCategorical", 4), ] mod = argmax actual = generate_design_space( kind="cuda", mod=mod, target=Target("nvidia/geforce-rtx-3090", host="llvm"), types=ms.schedule_rule.CrossThreadReduction, ) check_sketches( mod, sketches=actual, expected_mods=[argmax_0, argmax_1], expected_decisions=[decision_0, decision_1], ) def test_gpu_argmax_32(): @T.prim_func def argmax_0( idx: T.Buffer[(1, 32), "int32"], val: T.Buffer[(1, 32), "float32"], argmax_v0: T.Buffer[(1,), "int32"], argmax_v1: T.Buffer[(1,), "float32"], ) -> None: for i0, i1 in T.grid(1, 32): with T.block("argmax"): i, k = T.axis.remap("SR", [i0, i1]) T.reads(idx[i, k], val[i, k]) T.writes(argmax_v0[i], argmax_v1[i]) with T.init(): argmax_v0[i] = -1 argmax_v1[i] = T.float32(-3.4028234663852886e38) v_argmax_v0: T.int32 = T.Select(argmax_v1[i] >= val[i, k], argmax_v0[i], idx[i, k]) v_argmax_v1: T.float32 = T.Select( argmax_v1[i] >= val[i, k], argmax_v1[i], val[i, k] ) argmax_v0[i] = v_argmax_v0
argmax_v1[i] = v_argmax_v1 @T.prim_func def argmax_1( idx: T.Buffer[(1, 32), "int32"], val: T.Buffer[(1, 32), "float32"], argmax_v0: T.Buffer[(1,), "int32"], argmax_v1: T.Buffer[(1,), "float32"], ) -> None: for i0, i1_0 in T.grid(1, 1): for i1_1 in T.thread_binding(64, thread="threadIdx.x"): with T.block("argmax"): i = T.axis.spatial(1, i0) k = T.axis.reduce(32, i1_0 * 64 + i1_1) T.where(i1_0 * 64 + i1_1 < 32) T.reads(idx[i, k], val[i, k]) T.writes(argmax_v0[i], argmax_v1[i]) with T.init(): argmax_v0[i] = -1 argmax_v1[i] = T.float32(-3.4028234663852886e38) v_argmax_v0: T.int32 = T.Select( argmax_v1[i] >= val[i, k], argmax_v0[i], idx[i, k] ) v_argmax_v1: T.float32 = T.Select( argmax_v1[i] >= val[i, k], argmax_v1[i], val[i, k] ) argmax_v0[i] = v_argmax_v0 argmax_v1[i] = v_argmax_v1 decision_0 = [] decision_1 = [ ("SampleCategorical", 4), ] mod = argmax_32 actual = generate_design_space( kind="cuda", mod=mod, target=Target("nvidia/geforce-rtx-3090", host="llvm"), types=ms.schedule_rule.CrossThreadReduction, ) check_sketches( mod, sketches=actual, expected_mods=[argmax_0, argmax_1], expected_decisions=[decision_0, decision_1], ) if __name__ == "__main__": test_gpu_softmax_mn() test_gpu_softmax_mn_after_inline() test_gpu_batch_norm_bmn() test_gpu_argmax() test_gpu_argmax_32()
from tvm
import meta_schedule as ms from tvm
import target, te from tvm.meta_schedule.testing
import te_workload from tvm.meta_schedule.testing.space_generation
import ( check_sketches, generate_design_space, ) from tvm.script
import tir as T from tvm.target
import Target def test_cpu_matmul(): @T.prim_func def cpu_matmul_0( A: T.Buffer[(512, 512), "float32"], B: T.Buffer[(512, 512), "float32"], C: T.Buffer[(512, 512), "float32"], ) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) C_global = T.alloc_buffer([512, 512], dtype="float32") for i0_0, i1_0, i0_1, i1_1 in T.grid(1, 8, 8, 1): for i2_0, i0_2, i1_2, i2_1, i0_3, i1_3 in T.grid(16, 2, 8, 32, 32, 8): with T.block("C"): i = T.axis.spatial(512, i0_0 * 512 + i0_1 * 64 + i0_2 * 32 + i0_3) j = T.axis.spatial(512, i1_0 * 64 + i1_1 * 64 + i1_2 * 8 + i1_3) k = T.axis.reduce(512, i2_0 * 32 + i2_1) T.reads(A[i, k], B[k, j]) T.writes(C_global[i, j]) T.block_attr({"meta_schedule.tiling_structure": "SSRSRS"}) with T.init(): C_global[i, j] = T.float32(0) C_global[i, j] = C_global[i, j] + A[i, k] * B[k, j] for ax0, ax1 in T.grid(64, 64): with T.block("C_global"): v0 = T.axis.spatial(512, i0_1 * 64 + ax0) v1 = T.axis.spatial(512, i1_0 * 64 + ax1) T.reads(C_global[v0, v1]) T.writes(C[v0, v1]) C[v0, v1] = C_global[v0, v1] @T.prim_func def cpu_matmul_1( A: T.Buffer[(512, 512), "float32"], B: T.Buffer[(512, 512), "float32"], C: T.Buffer[(512, 512), "float32"], ) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) C_global = T.alloc_buffer([512, 512], dtype="float32") for i0_0, i1_0 in T.grid(1, 8): for i0_1, i1_1, i2_0, i0_2, i1_2, i2_1, i0_3, i1_3 in T.grid(8, 1, 16, 2, 8, 32, 32, 8): with T.block("C"): i = T.axis.spatial(512, i0_0 * 512 + i0
_1 * 64 + i0_2 * 32 + i0_3) j = T.axis.spatial(512, i1_0 * 64 + i1_1 * 64 + i1_2 * 8 + i1_3) k = T.axis.reduce(512, i2_0 * 32 + i2_1) T.reads(A[i, k], B[k, j]) T.writes(C_global[i, j]) T.block_attr({"meta_schedule.tiling_structure": "SSRSRS"}) with T.init(): C_global[i, j] = T.float32(0) C_global[i, j] = C_global[i, j] + A[i, k] * B[k, j] for ax0, ax1 in T.grid(512, 64): with T.block("C_global"): v0 = T.axis.spatial(512, ax0) v1 = T.axis.spatial(512, i1_0 * 64 + ax1) T.reads(C_global[v0, v1]) T.writes(C[v0, v1]) C[v0, v1] = C_global[v0, v1] @T.prim_func def cpu_matmul_2( A: T.Buffer[(512, 512), "float32"], B: T.Buffer[(512, 512), "float32"], C: T.Buffer[(512, 512), "float32"], ) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) for i0_0, i1_0, i0_1, i1_1, i2_0, i0_2, i1_2, i2_1, i0_3, i1_3 in T.grid( 1, 8, 8, 1, 16, 2, 8, 32, 32, 8 ): with T.block("C"): i = T.axis.spatial(512, i0_0 * 512 + i0_1 * 64 + i0_2 * 32 + i0_3) j = T.axis.spatial(512, i1_0 * 64 + i1_1 * 64 + i1_2 * 8 + i1_3) k = T.axis.reduce(512, i2_0 * 32 + i2_1) T.reads(A[i, k], B[k, j]) T.writes(C[i, j]) T.block_attr({"meta_schedule.tiling_structure": "SSRSRS"}) with T.init(): C[i, j] = T.float32(0) C[i, j] = C[i, j] + A[i, k] * B[k, j] decision_0 = [ ("SamplePerfectTile", [1, 8, 2, 32]), ("SamplePerfectTile", [8, 1, 8, 8]), ("SamplePerfectTile", [16, 32]), ] decision_1 = [ ("SamplePerfectTile", [1, 8, 2, 32]), ("SamplePerfectTile", [8, 1,
8, 8]), ("SamplePerfectTile", [16, 32]), ] decision_2 = [ ("SamplePerfectTile", [1, 8, 2, 32]), ("SamplePerfectTile", [8, 1, 8, 8]), ("SamplePerfectTile", [16, 32]), ] mod = te.create_prim_func(te_workload.matmul(512, 512, 512)) actual = generate_design_space( kind="llvm", mod=mod, target=Target("llvm"), types=ms.schedule_rule.MultiLevelTiling, ) check_sketches( mod, sketches=actual, expected_mods=[cpu_matmul_0, cpu_matmul_1, cpu_matmul_2], expected_decisions=[decision_0, decision_1, decision_2], ) def test_cpu_matmul_relu(): @T.prim_func def cpu_matmul_relu_0( A: T.Buffer[(512, 512), "float32"], B: T.Buffer[(512, 512), "float32"], compute: T.Buffer[(512, 512), "float32"], ) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) C = T.alloc_buffer([512, 512], dtype="float32") for i0_0, i1_0, i0_1, i1_1, i2_0, i0_2, i1_2, i2_1, i0_3, i1_3 in T.grid( 256, 4, 1, 4, 64, 1, 32, 8, 2, 1 ): with T.block("C"): i = T.axis.spatial(512, i0_0 * 2 + i0_1 * 2 + i0_2 * 2 + i0_3) j = T.axis.spatial(512, i1_0 * 128 + i1_1 * 32 + i1_2 + i1_3) k = T.axis.reduce(512, i2_0 * 8 + i2_1) T.reads(A[i, k], B[k, j]) T.writes(C[i, j]) T.block_attr({"meta_schedule.tiling_structure": "SSRSRS"}) with T.init(): C[i, j] = T.float32(0) C[i, j] = C[i, j] + A[i, k] * B[k, j] for i0, i1 in T.grid(512, 512): with T.block("compute"): i0_4, i1_4 = T.axis.remap("SS", [i0, i1]) T.reads(C[i0_4, i1_4]) T.writes(compute[i0_4, i1_4]) compute[i0_4, i1_4] = T.max(C[i0_4, i1_4], T.float32(0)) @T.prim_func def cpu_matmul_relu_1( A: T.Buffer[(512, 512), "floa
t32"], B: T.Buffer[(512, 512), "float32"], compute: T.Buffer[(512, 512), "float32"], ) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) C = T.alloc_buffer([512, 512], dtype="float32") for i0_0, i1_0, i0_1, i1_1 in T.grid(256, 4, 1, 4): for i2_0, i0_2, i1_2, i2_1, i0_3, i1_3 in T.grid(64, 1, 32, 8, 2, 1): with T.block("C"): i = T.axis.spatial(512, i0_0 * 2 + i0_1 * 2 + i0_2 * 2 + i0_3) j = T.axis.spatial(512, i1_0 * 128 + i1_1 * 32 + i1_2 + i1_3) k = T.axis.reduce(512, i2_0 * 8 + i2_1) T.reads(A[i, k], B[k, j]) T.writes(C[i, j]) T.block_attr({"meta_schedule.tiling_structure": "SSRSRS"}) with T.init(): C[i, j] = T.float32(0) C[i, j] = C[i, j] + A[i, k] * B[k, j] for ax0, ax1 in T.grid(2, 32): with T.block("compute"): i0 = T.axis.spatial(512, i0_0 * 2 + ax0) i1 = T.axis.spatial(512, i1_0 * 128 + i1_1 * 32 + ax1) T.reads(C[i0, i1]) T.writes(compute[i0, i1]) compute[i0, i1] = T.max(C[i0, i1], T.float32(0)) @T.prim_func def cpu_matmul_relu_2( A: T.Buffer[(512, 512), "float32"], B: T.Buffer[(512, 512), "float32"], compute: T.Buffer[(512, 512), "float32"], ) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) C = T.alloc_buffer([512, 512], dtype="float32") for i0_0, i1_0 in T.grid(256, 4): for i0_1, i1_1, i2_0, i0_2, i1_2, i2_1, i0_3, i1_3 in T.grid(1, 4, 64, 1, 32, 8, 2, 1): with T.block("C"): i = T.axis.spatial(512, i0_0 * 2 + i0_1 * 2 + i0_2 * 2 + i0_3) j = T.axis.spatial(512, i1_0 * 128 + i1_1 * 32 + i1_2 + i1_3)
k = T.axis.reduce(512, i2_0 * 8 + i2_1) T.reads(A[i, k], B[k, j]) T.writes(C[i, j]) T.block_attr({"meta_schedule.tiling_structure": "SSRSRS"}) with T.init(): C[i, j] = T.float32(0) C[i, j] = C[i, j] + A[i, k] * B[k, j] for ax0, ax1 in T.grid(2, 128): with T.block("compute"): i0 = T.axis.spatial(512, i0_0 * 2 + ax0) i1 = T.axis.spatial(512, i1_0 * 128 + ax1) T.reads(C[i0, i1]) T.writes(compute[i0, i1]) compute[i0, i1] = T.max(C[i0, i1], T.float32(0)) decision_0 = [ ("SamplePerfectTile", [256, 1, 1, 2]), ("SamplePerfectTile", [4, 4, 32, 1]), ("SamplePerfectTile", [64, 8]), ] decision_1 = [ ("SamplePerfectTile", [256, 1, 1, 2]), ("SamplePerfectTile", [4, 4, 32, 1]), ("SamplePerfectTile", [64, 8]), ] decision_2 = [ ("SamplePerfectTile", [256, 1, 1, 2]), ("SamplePerfectTile", [4, 4, 32, 1]), ("SamplePerfectTile", [64, 8]), ] mod = te.create_prim_func(te_workload.matmul_relu(512, 512, 512)) actual = generate_design_space( kind="llvm", mod=mod, target=Target("llvm"), types=ms.schedule_rule.MultiLevelTiling, ) check_sketches( mod, sketches=actual, expected_mods=[cpu_matmul_relu_0, cpu_matmul_relu_1, cpu_matmul_relu_2], expected_decisions=[decision_0, decision_1, decision_2], ) def test_cuda_matmul(): @T.prim_func def cuda_matmul_0( A: T.Buffer[(512, 512), "float32"], B: T.Buffer[(512, 512), "float32"], C: T.Buffer[(512, 512), "float32"], ) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) C_local = T.alloc_buffer([512, 512], dtype="float32", scope="local") A_shared = T.alloc_buffer
([512, 512], dtype="float32", scope="shared") B_shared = T.alloc_buffer([512, 512], dtype="float32", scope="shared") for i0_0_i1_0_fused in T.thread_binding(128, thread="blockIdx.x"): for i0_1_i1_1_fused in T.thread_binding(8, thread="vthread.x"): for i0_2_i1_2_fused in T.thread_binding(4, thread="threadIdx.x"): for i2_0 in T.serial(128): for ax0_ax1_fused in T.serial(256): with T.block("A_shared"): v0 = T.axis.spatial( 512, i0_0_i1_0_fused ) v1 = T.axis.spatial(512, i2_0 * 4 + ax0_ax1_fused % 4) T.reads(A[v0, v1]) T.writes(A_shared[v0, v1]) T.block_attr({"meta_schedule.cooperative_fetch": 2}) A_shared[v0, v1] = A[v0, v1] for ax0_ax1_fused in T.serial(128): with T.block("B_shared"): v0 = T.axis.spatial(512, i2_0 * 4 + ax0_ax1_fused v1 = T.axis.spatial( 512, i0_0_i1_0_fused % 16 * 32 + ax0_ax1_fused % 32 ) T.reads(B[v0, v1]) T.writes(B_shared[v0, v1]) T.block_attr({"meta_schedule.cooperative_fetch": 1}) B_shared[v0, v1] = B[v0, v1] for i2_1, i0_3, i1_3, i2_2, i0_4, i1_4 in T.grid(2, 1, 1, 2, 16, 4): with T.block("C"): i = T.axis.spatial( 512, i0_0_i1_0_fused + i0_1_i1_1_fused + i0_3 * 16
+ i0_4, ) j = T.axis.spatial( 512, i0_0_i1_0_fused % 16 * 32 + i0_1_i1_1_fused % 2 * 16 + i0_2_i1_2_fused * 4 + i1_3 * 4 + i1_4, ) k = T.axis.reduce(512, i2_0 * 4 + i2_1 * 2 + i2_2) T.reads(A_shared[i, k], B_shared[k, j]) T.writes(C_local[i, j]) T.block_attr( { "meta_schedule.thread_extent_high_inclusive": 1024, "meta_schedule.thread_extent_low_inclusive": 32, "meta_schedule.tiling_structure": "SSSRRSRS", } ) with T.init(): C_local[i, j] = T.float32(0) C_local[i, j] = C_local[i, j] + A_shared[i, k] * B_shared[k, j] for ax0, ax1 in T.grid(16, 4): with T.block("C_local"): v0 = T.axis.spatial( 512, i0_0_i1_0_fused ) v1 = T.axis.spatial( 512, i0_0_i1_0_fused % 16 * 32 + i0_1_i1_1_fused % 2 * 16 + i0_2_i1_2_fused * 4 + ax1, ) T.reads(C_local[v0, v1]) T.writes(C[v0, v1]) C[v0, v1] = C_local[v0, v1] decision_0 = [ ("Sampl
ePerfectTile", [8, 4, 1, 1, 16]), ("SamplePerfectTile", [16, 2, 4, 1, 4]), ("SamplePerfectTile", [128, 2, 2]), ("SampleCategorical", 1), ("SampleCategorical", 0), ] mod = te.create_prim_func(te_workload.matmul(512, 512, 512)) actual = generate_design_space( kind="cuda", mod=mod, target=Target("nvidia/geforce-rtx-3080"), types=ms.schedule_rule.MultiLevelTiling, ) check_sketches( mod, sketches=actual, expected_mods=[cuda_matmul_0], expected_decisions=[decision_0], ) def test_cuda_matmul_relu(): @T.prim_func def cuda_matmul_relu_0( A: T.Buffer[(512, 512), "float32"], B: T.Buffer[(512, 512), "float32"], compute: T.Buffer[(512, 512), "float32"], ) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) C = T.alloc_buffer([512, 512], dtype="float32") C_local = T.alloc_buffer([512, 512], dtype="float32", scope="local") A_shared = T.alloc_buffer([512, 512], dtype="float32", scope="shared") B_shared = T.alloc_buffer([512, 512], dtype="float32", scope="shared") for i0_0_i1_0_fused in T.thread_binding(64, thread="blockIdx.x"): for i0_1_i1_1_fused in T.thread_binding(64, thread="vthread.x"): for i0_2_i1_2_fused in T.thread_binding(8, thread="threadIdx.x"): for i2_0 in T.serial(8): for ax0_ax1_fused in T.serial(4096): with T.block("A_shared"): v0 = T.axis.spatial( 512, i0_0_i1_0_fused ) v1 = T.axis.spatial(512, i2_0 * 64 + ax0_ax1_fused % 64) T.reads(A[v0, v1]) T.writes(A_shared[v0, v1]) T.block_attr({"meta_schedule.cooperative_fetch": 2})
A_shared[v0, v1] = A[v0, v1] for ax0_ax1_fused in T.serial(4096): with T.block("B_shared"): v0 = T.axis.spatial(512, i2_0 * 64 + ax0_ax1_fused v1 = T.axis.spatial( 512, i0_0_i1_0_fused % 8 * 64 + ax0_ax1_fused % 64 ) T.reads(B[v0, v1]) T.writes(B_shared[v0, v1]) T.block_attr({"meta_schedule.cooperative_fetch": 4}) B_shared[v0, v1] = B[v0, v1] for i2_1, i0_3, i1_3, i2_2, i0_4, i1_4 in T.grid(8, 2, 1, 8, 2, 2): with T.block("C"): i = T.axis.spatial( 512, i0_0_i1_0_fused + i0_1_i1_1_fused + i0_2_i1_2_fused + i0_3 * 2 + i0_4, ) j = T.axis.spatial( 512, i0_0_i1_0_fused % 8 * 64 + i0_1_i1_1_fused % 8 * 8 + i0_2_i1_2_fused % 4 * 2 + i1_3 * 2 + i1_4, ) k = T.axis.reduce(512, i2_0 * 64 + i2_1 * 8 + i2_2) T.reads(A_shared[i, k], B_shared[k, j]) T.writes(C_local[i, j]) T.block_attr( { "meta_schedule.thread_extent_high_inclusive": 1024, "meta_schedule.thread_extent_
low_inclusive": 32, "meta_schedule.tiling_structure": "SSSRRSRS", } ) with T.init(): C_local[i, j] = T.float32(0) C_local[i, j] = C_local[i, j] + A_shared[i, k] * B_shared[k, j] for ax0, ax1 in T.grid(4, 2): with T.block("C_local"): v0 = T.axis.spatial( 512, i0_0_i1_0_fused + i0_1_i1_1_fused + i0_2_i1_2_fused + ax0, ) v1 = T.axis.spatial( 512, i0_0_i1_0_fused % 8 * 64 + i0_1_i1_1_fused % 8 * 8 + i0_2_i1_2_fused % 4 * 2 + ax1, ) T.reads(C_local[v0, v1]) T.writes(C[v0, v1]) C[v0, v1] = C_local[v0, v1] for i0, i1 in T.grid(512, 512): with T.block("compute"): i0_1, i1_1 = T.axis.remap("SS", [i0, i1]) T.reads(C[i0_1, i1_1]) T.writes(compute[i0_1, i1_1]) compute[i0_1, i1_1] = T.max(C[i0_1, i1_1], T.float32(0)) decision_0 = [ ("SamplePerfectTile", [8, 8, 2, 2, 2]), ("SamplePerfectTile", [8, 8, 4, 1, 2]), ("SamplePerfectTile", [8, 8, 8]), ("SampleCategorical", 1), ("SampleCategorical", 3), ] mod = te.create_prim_func(te_workload.matmul_relu(512, 512, 512)) actual = generate_design_space( kind="cuda", mod=mod, target=Target("nvidia/geforce-rtx-3080"), types=ms.schedule_rule.MultiLevelTiling,
) check_sketches( mod, sketches=actual, expected_mods=[cuda_matmul_relu_0], expected_decisions=[decision_0], ) def test_cuda_sum_with_trivial_block_iter(): @T.prim_func def sum_with_trivial_block_iter( A: T.Buffer[(1, 64, 768), "float32"], B: T.Buffer[(1, 64, 1), "float32"], ) -> None: for i0, i1, i2, i3 in T.grid(1, 64, 1, 768): with T.block("sum"): ax0, ax1, ax2, k2 = T.axis.remap("SSSR", [i0, i1, i2, i3]) T.reads(A[ax0, ax1, k2]) T.writes(B[ax0, ax1, ax2]) with T.init(): B[ax0, ax1, ax2] = T.float32(0) B[ax0, ax1, ax2] = B[ax0, ax1, ax2] + A[ax0, ax1, k2] mod = sum_with_trivial_block_iter (sch,) = generate_design_space( kind="cuda", mod=mod, target=Target("nvidia/geforce-rtx-3080"), types=ms.schedule_rule.MultiLevelTiling, ) assert not sch.trace.simplified(remove_postproc=True).insts def test_multi_level_tiling_hexagon(): @T.prim_func def cpu_conv2d_nhwc( inputs: T.Buffer[(1, 56, 56, 64), "float16"], weight: T.Buffer[(3, 3, 64, 64), "float16"], conv2d_nhwc: T.Buffer[(1, 56, 56, 64), "float16"], ) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) PadInput = T.alloc_buffer([1, 58, 58, 64], dtype="float16") for i0, i1, i2, i3 in T.grid(1, 58, 58, 64): with T.block("PadInput"): i0_1, i1_1, i2_1, i3_1 = T.axis.remap("SSSS", [i0, i1, i2, i3]) T.reads(inputs[i0_1, i1_1 - 1, i2_1 - 1, i3_1]) T.writes(PadInput[i0_1, i1_1, i2_1, i3_1]) PadInput[i0_1, i1_1, i2_1, i3_1] = T.if_then_else( 1 <= i1_1 and i1_1 < 57 and 1 <= i2_1 and i2_1 < 57, inputs[i0_1, i1_1 - 1, i2_1 - 1, i3_1], T.float16(0), dtype="float16",
) for ( i0_0, i1_0, i2_0, i3_0, i4_0, i5_0, i6_0, i0_1_1, i1_1_1, i2_1_1, i3_1_1, i4_1, i5_1, i6_1, i0_2, i1_2, i2_2, i3_2, ) in T.grid(1, 1, 2, 1, 3, 3, 16, 1, 14, 2, 1, 1, 1, 4, 1, 4, 14, 64): with T.block("conv2d_nhwc"): n = T.axis.spatial(1, i0_1_1 + i0_2 + i0_0) h = T.axis.spatial(56, i1_0 * 56 + i1_1_1 * 4 + i1_2) w = T.axis.spatial(56, i2_0 * 28 + i2_1_1 * 14 + i2_2) co = T.axis.spatial(64, i3_0 * 64 + i3_1_1 * 64 + i3_2) rh = T.axis.reduce(3, i4_1 + i4_0) rw = T.axis.reduce(3, i5_0 + i5_1) rc = T.axis.reduce(64, i6_0 * 4 + i6_1) T.reads(PadInput[n, h + rh, w + rw, co T.writes(conv2d_nhwc[n, h, w, co]) T.block_attr({"meta_schedule.tiling_structure": "SRSRS"}) with T.init(): conv2d_nhwc[n, h, w, co] = T.float16(0) conv2d_nhwc[n, h, w, co] = ( conv2d_nhwc[n, h, w, co] + PadInput[n, h + rh, w + rw, co ) target_hexagon = target.hexagon("v69", num_cores=4) I = 64 O = 64 H = 56 W = 56 mod = te.create_prim_func( te_workload.conv2d_nhwc(1, H, W, I, O, 3, 1, 1, 1, in_dtype="float16", out_dtype="float16") ) actual = generate_design_space( kind="cuda", mod=mod, target=Target(target_hexagon, host=target_hexagon), types=None, sch_rules=[ ms.schedule_rule.MultiLevelTilingWideVector( structure="SRSRS", vector_length_in_bits=1024, max_innermost_factor=64, reuse_read=None, reuse_write=None, ) ], ) decision_0 = [
("SamplePerfectTile", [1, 1, 1]), ("SamplePerfectTile", [1, 14, 4]), ("SamplePerfectTile", [2, 2, 14]), ("SamplePerfectTile", [3, 1]), ("SamplePerfectTile", [3, 1]), ("SamplePerfectTile", [16, 4]), ] check_sketches( mod, sketches=actual, expected_mods=[cpu_conv2d_nhwc], expected_decisions=[decision_0], ) def test_cache_read_specify_consumer(): A, B, C = te_workload.matmul(512, 512, 512) mod = te.create_prim_func([A, B, C + A]) space = generate_design_space( kind="cuda", mod=mod, target=Target("nvidia/geforce-rtx-3080"), types=ms.schedule_rule.MultiLevelTiling, ) residual_block = """ for i0, i1 in T.grid(512, 512): with T.block("T_add"): ax0, ax1 = T.axis.remap("SS", [i0, i1]) T.reads(C[ax0, ax1], A[ax0, ax1]) T.writes(T_add[ax0, ax1]) T_add[ax0, ax1] = C[ax0, ax1] + A[ax0, ax1] """ assert residual_block in space[0].mod.script() if __name__ == "__main__": test_cpu_matmul() test_cpu_matmul_relu() test_cuda_matmul() test_cuda_matmul_relu() test_cuda_sum_with_trivial_block_iter() test_multi_level_tiling_hexagon()
from tvm
import meta_schedule as ms from tvm
import te from tvm.ir
import assert_structural_equal from tvm.meta_schedule.testing.space_generation
import ( check_sketches, generate_design_space, ) from tvm.script
import tir as T from tvm.target
import Target from tvm.tir.tensor_intrin.arm_cpu
import DP4A_INTRIN from tvm.tir.tensor_intrin.x86
import VNNI_DOT_16x4_INTRIN as VNNI_INTRIN def test_vnni_conv2d_nchwc(): @T.prim_func def conv2d_nchwc( placeholder: T.Buffer[(1, 4, 56, 56, 16), "uint8"], placeholder_1: T.Buffer[(16, 4, 1, 1, 4, 16, 4), "int8"], conv2d_NCHWc_int8: T.Buffer[(1, 16, 56, 56, 16), "int32"], ) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) for i0, i1, i2, i3, i4, i5, i6, i7, i8, i9 in T.grid(1, 16, 56, 56, 16, 1, 1, 4, 4, 4): with T.block("conv2d_NCHWc_int8"): ( n, oc_chunk, oh, ow, oc_block, kh, kw, ic_outer, ic_f_inner, ic_s_inner, ) = T.axis.remap("SSSSSRRRRR", [i0, i1, i2, i3, i4, i5, i6, i7, i8, i9]) T.reads( placeholder[n, ic_outer, oh + kh, ow + kw, ic_f_inner * 4 + ic_s_inner], placeholder_1[oc_chunk, ic_outer, kh, kw, ic_f_inner, oc_block, ic_s_inner], ) T.writes(conv2d_NCHWc_int8[n, oc_chunk, oh, ow, oc_block]) with T.init(): conv2d_NCHWc_int8[n, oc_chunk, oh, ow, oc_block] = 0 conv2d_NCHWc_int8[n, oc_chunk, oh, ow, oc_block] = conv2d_NCHWc_int8[ n, oc_chunk, oh, ow, oc_block ] + T.cast( placeholder[n, ic_outer, oh + kh, ow + kw, ic_f_inner * 4 + ic_s_inner], "int32" ) * T.cast( placeholder_1[oc_chunk, ic_outer, kh, kw, ic_f_inner, oc_block, ic_s_inner], "int32", ) @T.prim_func def vnni_conv2d_nchwc_0(placeholder: T.Buffer[(1, 4, 56, 56, 16), "uint8"], placeholder_1: T.Buffer[(16, 4, 1, 1, 4, 16, 4), "int8"], conv2d_NCHWc_int8: T.Buffer[(1, 16, 56, 56, 16), "int32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalia
s": True}) conv2d_NCHWc_int8_global = T.alloc_buffer([1, 16, 56, 56, 16], dtype="int32") for i0_0, i1_0, i2_0, i3_0, i4_0_0, i0_1, i1_1, i2_1, i3_1, i4_0_1 in T.grid(1, 8, 28, 56, 1, 1, 2, 1, 1, 1): for i5_0, i6_0, i7_0, i8_0, i9_0_0, i0_2, i1_2, i2_2, i3_2, i4_0_2, i5_1, i6_1, i7_1, i8_1, i9_0_1, i0_3, i1_3, i2_3, i3_3, i4_0_3 in T.grid(1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1): with T.block("conv2d_NCHWc_int8_o"): n = T.axis.spatial(1, 0) oc_chunk = T.axis.spatial(16, i1_0 * 2 + i1_1 + i1_2 + i1_3) oh = T.axis.spatial(56, i2_0 * 2 + i2_1 * 2 + i2_2 + i2_3) ow = T.axis.spatial(56, i3_3 + i3_0 + i3_1 + i3_2) oc_block_o = T.axis.spatial(1, 0) kh = T.axis.reduce(1, 0) kw = T.axis.reduce(1, 0) ic_outer = T.axis.reduce(4, i7_0 * 4 + i7_1) ic_f_inner = T.axis.reduce(4, i8_0 + i8_1) ic_s_inner_o = T.axis.reduce(1, 0) T.reads(placeholder[n, ic_outer, oh + kh, ow + kw, ic_f_inner * 4 : ic_f_inner * 4 + 4], placeholder_1[oc_chunk, ic_outer, kh, kw, ic_f_inner, 0 : 16, 0 : 4]) T.writes(conv2d_NCHWc_int8_global[n, oc_chunk, oh, ow, 0 : 16]) T.block_attr({"meta_schedule.auto_tensorize":"dot_16x4_vnni"}) with T.init(): for i4_1 in T.serial(16): with T.block("conv2d_NCHWc_int8_init"): oc_block_i_init = T.axis.spatial(16, i4_1) T.reads() T.writes(conv2d_NCHWc_int8_global[n, oc_chunk, oh, ow, oc_block_i_init]) conv2d_NCHWc_int8_global[n, oc_chunk, oh, ow, oc_block_i_init] = 0 for i4_1, i9_1 in T.grid(16, 4): with T.block("conv2d_NCHWc_int8"): oc_
block_i, ic_s_inner_i = T.axis.remap("SR", [i4_1, i9_1]) T.reads(conv2d_NCHWc_int8_global[n, oc_chunk, oh, ow, oc_block_i], placeholder[n, ic_outer, oh + kh, ow + kw, ic_f_inner * 4 + ic_s_inner_i], placeholder_1[oc_chunk, ic_outer, kh, kw, ic_f_inner, oc_block_i, ic_s_inner_i]) T.writes(conv2d_NCHWc_int8_global[n, oc_chunk, oh, ow, oc_block_i]) T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) conv2d_NCHWc_int8_global[n, oc_chunk, oh, ow, oc_block_i] = conv2d_NCHWc_int8_global[n, oc_chunk, oh, ow, oc_block_i] + T.cast(placeholder[n, ic_outer, oh + kh, ow + kw, ic_f_inner * 4 + ic_s_inner_i], "int32") * T.cast(placeholder_1[oc_chunk, ic_outer, kh, kw, ic_f_inner, oc_block_i, ic_s_inner_i], "int32") for ax0, ax1, ax2, ax3, ax4 in T.grid(1, 1, 2, 1, 16): with T.block("conv2d_NCHWc_int8_global"): v0 = T.axis.spatial(1, ax0) v1 = T.axis.spatial(16, i1_0 * 2 + i1_1 + ax1) v2 = T.axis.spatial(56, i2_0 * 2 + ax2) v3 = T.axis.spatial(56, i3_0 + ax3) v4 = T.axis.spatial(16, ax4) T.reads(conv2d_NCHWc_int8_global[v0, v1, v2, v3, v4]) T.writes(conv2d_NCHWc_int8[v0, v1, v2, v3, v4]) conv2d_NCHWc_int8[v0, v1, v2, v3, v4] = conv2d_NCHWc_int8_global[v0, v1, v2, v3, v4] @T.prim_func def vnni_conv2d_nchwc_1(placeholder: T.Buffer[(1, 4, 56, 56, 16), "uint8"], placeholder_1: T.Buffer[(16, 4, 1, 1, 4, 16, 4), "int8"], conv2d_NCHWc_int8: T.Buffer[(1, 16, 56, 56, 16), "int32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) conv2d_NCHWc_int8_global = T.alloc_buffer([1, 16, 56, 56, 16], dtype="int32") for i0_0, i1_0, i2_0, i3_0, i4_0_0 in T.grid(1, 8, 28, 56, 1): for i0_1, i1_1, i2_1, i3_1, i4_0_1, i5_0, i6_0, i7_0, i8_0, i9_0_0, i0_2, i1_2, i2_2, i3_2, i4_0_2, i5_1, i
6_1, i7_1, i8_1, i9_0_1, i0_3, i1_3, i2_3, i3_3, i4_0_3 in T.grid(1, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1): with T.block("conv2d_NCHWc_int8_o"): n = T.axis.spatial(1, 0) oc_chunk = T.axis.spatial(16, i1_0 * 2 + i1_1 + i1_2 + i1_3) oh = T.axis.spatial(56, i2_0 * 2 + i2_1 * 2 + i2_2 + i2_3) ow = T.axis.spatial(56, i3_3 + i3_0 + i3_1 + i3_2) oc_block_o = T.axis.spatial(1, 0) kh = T.axis.reduce(1, 0) kw = T.axis.reduce(1, 0) ic_outer = T.axis.reduce(4, i7_0 * 4 + i7_1) ic_f_inner = T.axis.reduce(4, i8_0 + i8_1) ic_s_inner_o = T.axis.reduce(1, 0) T.reads(placeholder[n, ic_outer, oh + kh, ow + kw, ic_f_inner * 4 : ic_f_inner * 4 + 4], placeholder_1[oc_chunk, ic_outer, kh, kw, ic_f_inner, 0 : 16, 0 : 4]) T.writes(conv2d_NCHWc_int8_global[n, oc_chunk, oh, ow, 0 : 16]) T.block_attr({"meta_schedule.auto_tensorize":"dot_16x4_vnni"}) with T.init(): for i4_1 in T.serial(16): with T.block("conv2d_NCHWc_int8_init"): oc_block_i_init = T.axis.spatial(16, i4_1) T.reads() T.writes(conv2d_NCHWc_int8_global[n, oc_chunk, oh, ow, oc_block_i_init]) conv2d_NCHWc_int8_global[n, oc_chunk, oh, ow, oc_block_i_init] = 0 for i4_1, i9_1 in T.grid(16, 4): with T.block("conv2d_NCHWc_int8"): oc_block_i, ic_s_inner_i = T.axis.remap("SR", [i4_1, i9_1]) T.reads(conv2d_NCHWc_int8_global[n, oc_chunk, oh, ow, oc_block_i], placeholder[n, ic_outer, oh + kh, ow + kw, ic_f_inner * 4 + ic_s_inner_i], placeholder_1[oc_chunk, ic_outer, kh, kw, ic_f_inner, oc_blo
ck_i, ic_s_inner_i]) T.writes(conv2d_NCHWc_int8_global[n, oc_chunk, oh, ow, oc_block_i]) T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) conv2d_NCHWc_int8_global[n, oc_chunk, oh, ow, oc_block_i] = conv2d_NCHWc_int8_global[n, oc_chunk, oh, ow, oc_block_i] + T.cast(placeholder[n, ic_outer, oh + kh, ow + kw, ic_f_inner * 4 + ic_s_inner_i], "int32") * T.cast(placeholder_1[oc_chunk, ic_outer, kh, kw, ic_f_inner, oc_block_i, ic_s_inner_i], "int32") for ax0, ax1, ax2, ax3, ax4 in T.grid(1, 2, 2, 1, 16): with T.block("conv2d_NCHWc_int8_global"): v0 = T.axis.spatial(1, ax0) v1 = T.axis.spatial(16, i1_0 * 2 + ax1) v2 = T.axis.spatial(56, i2_0 * 2 + ax2) v3 = T.axis.spatial(56, i3_0 + ax3) v4 = T.axis.spatial(16, ax4) T.reads(conv2d_NCHWc_int8_global[v0, v1, v2, v3, v4]) T.writes(conv2d_NCHWc_int8[v0, v1, v2, v3, v4]) conv2d_NCHWc_int8[v0, v1, v2, v3, v4] = conv2d_NCHWc_int8_global[v0, v1, v2, v3, v4] @T.prim_func def vnni_conv2d_nchwc_2(placeholder: T.Buffer[(1, 4, 56, 56, 16), "uint8"], placeholder_1: T.Buffer[(16, 4, 1, 1, 4, 16, 4), "int8"], conv2d_NCHWc_int8: T.Buffer[(1, 16, 56, 56, 16), "int32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) for i0_0, i1_0, i2_0, i3_0, i4_0_0, i0_1, i1_1, i2_1, i3_1, i4_0_1, i5_0, i6_0, i7_0, i8_0, i9_0_0, i0_2, i1_2, i2_2, i3_2, i4_0_2, i5_1, i6_1, i7_1, i8_1, i9_0_1, i0_3, i1_3, i2_3, i3_3, i4_0_3 in T.grid(1, 8, 28, 56, 1, 1, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1): with T.block("conv2d_NCHWc_int8_o"): n = T.axis.spatial(1, 0) oc_chunk = T.axis.spatial(16, i1_0 * 2 + i1_1 + i1_2 + i1_3) oh = T.axis.spatial(56, i2_0 * 2 + i2_1 * 2 + i2_2 + i2_3) ow = T
.axis.spatial(56, i3_3 + i3_0 + i3_1 + i3_2) oc_block_o = T.axis.spatial(1, 0) kh = T.axis.reduce(1, 0) kw = T.axis.reduce(1, 0) ic_outer = T.axis.reduce(4, i7_0 * 4 + i7_1) ic_f_inner = T.axis.reduce(4, i8_0 + i8_1) ic_s_inner_o = T.axis.reduce(1, 0) T.reads(placeholder[n, ic_outer, oh + kh, ow + kw, ic_f_inner * 4 : ic_f_inner * 4 + 4], placeholder_1[oc_chunk, ic_outer, kh, kw, ic_f_inner, 0 : 16, 0 : 4]) T.writes(conv2d_NCHWc_int8[n, oc_chunk, oh, ow, 0 : 16]) T.block_attr({"meta_schedule.auto_tensorize":"dot_16x4_vnni"}) with T.init(): for i4_1 in T.serial(16): with T.block("conv2d_NCHWc_int8_init"): oc_block_i_init = T.axis.spatial(16, i4_1) T.reads() T.writes(conv2d_NCHWc_int8[n, oc_chunk, oh, ow, oc_block_i_init]) conv2d_NCHWc_int8[n, oc_chunk, oh, ow, oc_block_i_init] = 0 for i4_1, i9_1 in T.grid(16, 4): with T.block("conv2d_NCHWc_int8"): oc_block_i, ic_s_inner_i = T.axis.remap("SR", [i4_1, i9_1]) T.reads(conv2d_NCHWc_int8[n, oc_chunk, oh, ow, oc_block_i], placeholder[n, ic_outer, oh + kh, ow + kw, ic_f_inner * 4 + ic_s_inner_i], placeholder_1[oc_chunk, ic_outer, kh, kw, ic_f_inner, oc_block_i, ic_s_inner_i]) T.writes(conv2d_NCHWc_int8[n, oc_chunk, oh, ow, oc_block_i]) T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) conv2d_NCHWc_int8[n, oc_chunk, oh, ow, oc_block_i] = conv2d_NCHWc_int8[n, oc_chunk, oh, ow, oc_block_i] + T.cast(placeholder[n, ic_outer, oh + kh, ow + kw, ic_f_inner * 4 + ic_s_inner_i], "int32") * T.cast(placeholder_1[oc_chunk, ic_outer, kh, kw, ic_f_inner, oc_block_i, ic_s_inner_i], "int32") decision_0 = [
("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [8, 2, 1, 1]), ("SamplePerfectTile", [28, 1, 2, 1]), ("SamplePerfectTile", [56, 1, 1, 1]), ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [1, 1]), ("SamplePerfectTile", [1, 1]), ("SamplePerfectTile", [1, 4]), ("SamplePerfectTile", [4, 1]), ("SamplePerfectTile", [1, 1]), ] decision_1 = [ ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [8, 2, 1, 1]), ("SamplePerfectTile", [28, 1, 2, 1]), ("SamplePerfectTile", [56, 1, 1, 1]), ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [1, 1]), ("SamplePerfectTile", [1, 1]), ("SamplePerfectTile", [1, 4]), ("SamplePerfectTile", [4, 1]), ("SamplePerfectTile", [1, 1]), ] decision_2 = [ ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [8, 2, 1, 1]), ("SamplePerfectTile", [28, 1, 2, 1]), ("SamplePerfectTile", [56, 1, 1, 1]), ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [1, 1]), ("SamplePerfectTile", [1, 1]), ("SamplePerfectTile", [1, 4]), ("SamplePerfectTile", [4, 1]), ("SamplePerfectTile", [1, 1]), ] mod = conv2d_nchwc target = Target("llvm -mcpu=cascadelake -num-cores=4") actual = generate_design_space( kind="llvm", mod=mod, target=Target(target), types=None, sch_rules=[ ms.schedule_rule.MultiLevelTilingWithIntrin( VNNI_INTRIN, structure="SSRSRS", tile_binds=None, max_innermost_factor=64, vector_load_lens=None, reuse_read=None, reuse_write=ms.schedule_rule.ReuseType(req="may", levels=[1, 2], scope="global"), ), ], ) check_sketches( mod, sketches=actual, expected_mods=[vnni_conv2d_nchwc_0,
vnni_conv2d_nchwc_1, vnni_conv2d_nchwc_2], expected_decisions=[decision_0, decision_1, decision_2], ) def _check_dp4a_dense(m, n, k, in_dtype, out_dtype, expected_mods, expected_decisions): def _dense(m, n, k, in_dtype, out_dtype): X = te.placeholder((m, k), name="X", dtype=in_dtype) W = te.placeholder((n, k), name="W", dtype=in_dtype) ak = te.reduce_axis((0, k), name="k") matmul = te.compute( (m, n), lambda i, j: te.sum( X[i, ak].astype(out_dtype) * W[j, ak].astype(out_dtype), axis=ak, ), name="compute", ) return te.create_prim_func([X, W, matmul]) mod = _dense(m, n, k, in_dtype, out_dtype) actual = generate_design_space( kind="cuda", mod=mod, target=Target("cuda"), types=None, sch_rules=[ ms.schedule_rule.MultiLevelTilingWithIntrin( DP4A_INTRIN, structure="SSSRRSRS", tile_binds=["blockIdx.x", "vthread.x", "threadIdx.x"], max_innermost_factor=64, vector_load_lens=[1, 2, 3, 4], reuse_read=ms.schedule_rule.ReuseType(req="must", levels=[4], scope="shared"), reuse_write=ms.schedule_rule.ReuseType(req="must", levels=[3], scope="local"), ) ], ) if expected_mods is None: assert expected_decisions is None assert len(actual) == 1 assert_structural_equal(mod, actual[0].mod["main"]) else: check_sketches(mod, actual, expected_mods, expected_decisions) def test_dp4a_dense(): @T.prim_func def dp4a_dense_0( X: T.Buffer[(128, 128), "int8"], W: T.Buffer[(128, 128), "int8"], compute: T.Buffer[(128, 128), "int32"], ) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) compute_local = T.alloc_buffer([128, 128], dtype="int32", scope="local") X_shared =
T.alloc_buffer([128, 128], dtype="int8", scope="shared") W_shared = T.alloc_buffer([128, 128], dtype="int8", scope="shared") for i0_0_i1_0_fused in T.thread_binding(1, thread="blockIdx.x"): for i0_1_i1_1_fused in T.thread_binding(512, thread="vthread.x"): for i0_2_i1_2_fused in T.thread_binding(2, thread="threadIdx.x"): for i2_0_0 in T.serial(1): for ax0_ax1_fused in T.serial(16384): with T.block("X_shared"): v0 = T.axis.spatial(128, ax0_ax1_fused v1 = T.axis.spatial(128, ax0_ax1_fused % 128) T.reads(X[v0, v1]) T.writes(X_shared[v0, v1]) T.block_attr({"meta_schedule.cooperative_fetch": 1}) X_shared[v0, v1] = X[v0, v1] for ax0_ax1_fused in T.serial(16384): with T.block("W_shared"): v0 = T.axis.spatial(128, ax0_ax1_fused v1 = T.axis.spatial(128, ax0_ax1_fused % 128) T.reads(W[v0, v1]) T.writes(W_shared[v0, v1]) T.block_attr({"meta_schedule.cooperative_fetch": 1}) W_shared[v0, v1] = W[v0, v1] for i2_0_1, i0_3, i1_3, i2_0_2, i0_4, i1_4 in T.grid(1, 2, 4, 32, 2, 1): with T.block("compute_o"): i = T.axis.spatial( 128, i0_1_i1_1_fused + i0_2_i1_2_fused * 4 + i0_3 * 2 + i0_4, ) j = T.axis.spatial(128, i1_4 + i0_1_i1_1_fused % 32 * 4 + i1_3)
k_o = T.axis.reduce(32, i2_0_0 * 32 + i2_0_1 * 32 + i2_0_2) T.reads( X_shared[i, k_o * 4 : k_o * 4 + 4], W_shared[j, k_o * 4 : k_o * 4 + 4], ) T.writes(compute_local[i, j]) T.block_attr({"meta_schedule.auto_tensorize": "dp4a"}) with T.init(): with T.block("compute_init"): T.reads() T.writes(compute_local[i, j]) compute_local[i, j] = 0 for i2_1 in T.serial(4): with T.block("compute"): k_i = T.axis.reduce(4, i2_1) T.reads( compute_local[i, j], X_shared[i, k_o * 4 + k_i], W_shared[j, k_o * 4 + k_i], ) T.writes(compute_local[i, j]) T.block_attr({"meta_schedule.tiling_structure": "SSSRRSRS"}) compute_local[i, j] = compute_local[i, j] + T.cast( X_shared[i, k_o * 4 + k_i], "int32" ) * T.cast(W_shared[j, k_o * 4 + k_i], "int32") for ax0, ax1 in T.grid(4, 4): with T.block("compute_local"): v0 = T.axis.spatial( 128, i0_1_i1_1_fused ) v1 = T.axis.spatial(128, i0_1_i1_1_fused % 32 * 4 + ax1) T.reads(compute_local[v0, v1])
T.writes(compute[v0, v1]) compute[v0, v1] = compute_local[v0, v1] decision_0 = [ ("SamplePerfectTile", [1, 16, 2, 2, 2]), ("SamplePerfectTile", [1, 32, 1, 4, 1]), ("SamplePerfectTile", [1, 1, 32]), ("SampleCategorical", 0), ("SampleCategorical", 0), ] _check_dp4a_dense( m=128, n=128, k=128, in_dtype="int8", out_dtype="int32", expected_mods=[dp4a_dense_0], expected_decisions=[decision_0], ) def test_dp4a_dense_no_tensorize_1(): _check_dp4a_dense( m=128, n=128, k=128, in_dtype="float32", out_dtype="float32", expected_mods=None, expected_decisions=None, ) def test_dp4a_dense_no_tensorize_2(): _check_dp4a_dense( m=127, n=127, k=127, in_dtype="int8", out_dtype="int32", expected_mods=None, expected_decisions=None, ) if __name__ == "__main__": test_vnni_conv2d_nchwc() test_dp4a_dense() test_dp4a_dense_no_tensorize_1() test_dp4a_dense_no_tensorize_2()
import tvm
import tvm.testing from tvm
import meta_schedule as ms from tvm
import te from tvm.meta_schedule.testing
import te_workload from tvm.meta_schedule.testing.space_generation
import ( check_sketches, generate_design_space, get_rules, ) from tvm.script
import tir as T from tvm.tir.tensor_intrin.cuda
import get_wmma_intrin_group def multi_level_tiling_tensor_core( *, write_reuse_scope="shared", in_dtype="float16", out_dtype="float32", trans_b=False, use_software_pipeline=False, ) -> ms.schedule_rule.ScheduleRule: assert write_reuse_scope in ["shared", "global"] if not isinstance(in_dtype, list): in_dtype = [in_dtype] if not isinstance(out_dtype, list): out_dtype = [out_dtype] if not isinstance(trans_b, list): trans_b = [trans_b] return ms.schedule_rule.MultiLevelTilingTensorCore( intrin_groups=[ get_wmma_intrin_group(write_reuse_scope, _in_dtype, _out_dtype, _trans_b) for _in_dtype in in_dtype for _out_dtype in out_dtype for _trans_b in trans_b ], structure="SSSRRSRS", tile_binds=["blockIdx.y", "blockIdx.x", "threadIdx.y"], max_innermost_factor=4, vector_load_lens=[1, 2, 3, 4, 8, 16], reuse_read=ms.schedule_rule.ReuseType( req="must", levels=[4], scope="shared", ), reuse_write=ms.schedule_rule.ReuseType( req="must" if write_reuse_scope == "shared" else "no", levels=[2], scope=write_reuse_scope, ), use_software_pipeline=use_software_pipeline, ) def test_matmul_relu(): @T.prim_func def matmul_relu_0(A: T.Buffer[(128, 128), "float16"], B: T.Buffer[(128, 128), "float16"], compute: T.Buffer[(128, 128), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) C_reindex_shared = T.alloc_buffer([128, 128], dtype="float32", scope="shared") C_reindex_shared_wmma_accumulator = T.alloc_buffer([128, 128], dtype="float32", scope="wmma.accumulator") A_reindex_shared = T.alloc_buffer([128, 128], dtype="float16", scope="shared") B_reindex_shared = T.alloc_buffer([128, 128], dtype="float16", scope="shared") A_reindex_shared_wmma_matrix_a = T.alloc_buffer([128, 12
8], dtype="float16", scope="wmma.matrix_a") B_reindex_shared_wmma_matrix_b = T.alloc_buffer([128, 128], dtype="float16", scope="wmma.matrix_b") for ax0_0_0_ax1_0_0_fused in T.thread_binding(8, thread="blockIdx.y"): for ax0_0_1_ax1_0_1_fused in T.thread_binding(2, thread="blockIdx.x"): for ax0_0_2_ax1_0_2_fused in T.thread_binding(2, thread="threadIdx.y"): for ax2_0_0 in T.serial(1): for ax0_ax1_fused in T.serial(4096): with T.block("A_reindex_shared"): v0 = T.axis.spatial(128, ax0_0_0_ax1_0_0_fused v1 = T.axis.spatial(128, ax0_ax1_fused % 128) T.reads(A[v0, v1]) T.writes(A_reindex_shared[v0, v1]) T.block_attr({"buffer_dim_align":[[0, 0, 32, 8]], "meta_schedule.cooperative_fetch":8}) A_reindex_shared[v0, v1] = A[v0, v1] for ax0_ax1_fused in T.serial(4096): with T.block("B_reindex_shared"): v0 = T.axis.spatial(128, ax0_ax1_fused v1 = T.axis.spatial(128, ax0_0_0_ax1_0_0_fused % 2 * 64 + ax0_0_1_ax1_0_1_fused * 32 + ax0_ax1_fused % 32) T.reads(B[v0, v1]) T.writes(B_reindex_shared[v0, v1]) T.block_attr({"buffer_dim_align":[[0, 0, 32, 8]], "meta_schedule.cooperative_fetch":1}) B_reindex_shared[v0, v1] = B[v0, v1] for ax2_0_1 in T.serial(4): for ax0_0, ax1_0 in T.grid(2, 2): with T.block("A_reindex_shared_wmma.matrix_a_o"): v0_o = T.axis.spatial(8, ax0_0_0_ax1_0_0_fused v1_o = T.axis.spatial(8, ax2_0_1 * 2 + ax1_0)
T.reads(A_reindex_shared[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.writes(A_reindex_shared_wmma_matrix_a[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.block_attr({"meta_schedule.auto_tensorize":"wmma_load_16x16x16_f16_a"}) for ax0_1, ax1_1 in T.grid(16, 16): with T.block("A_reindex_shared_wmma.matrix_a"): v0_i, v1_i = T.axis.remap("SS", [ax0_1, ax1_1]) T.reads(A_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) T.writes(A_reindex_shared_wmma_matrix_a[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) A_reindex_shared_wmma_matrix_a[v0_o * 16 + v0_i, v1_o * 16 + v1_i] = A_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i] for ax0_0, ax1_0 in T.grid(2, 1): with T.block("B_reindex_shared_wmma.matrix_b_o"): v0_o = T.axis.spatial(8, ax2_0_1 * 2 + ax0_0) v1_o = T.axis.spatial(8, ax0_0_0_ax1_0_0_fused % 2 * 4 + ax0_0_1_ax1_0_1_fused * 2 + ax0_0_2_ax1_0_2_fused) T.reads(B_reindex_shared[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.writes(B_reindex_shared_wmma_matrix_b[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.block_attr({"meta_schedule.auto_tensorize":"wmma_load_16x16x16_f16_b"}) for ax0_1, ax1_1 in T.grid(16, 16): with T.block("B_reindex_shared_wmma.matrix_b"): v0_i, v1_i = T.axis.remap("SS", [ax0_1, ax1_1]) T.reads(B_reindex_shar
ed[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) T.writes(B_reindex_shared_wmma_matrix_b[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) B_reindex_shared_wmma_matrix_b[v0_o * 16 + v0_i, v1_o * 16 + v1_i] = B_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i] for ax0_0_3, ax1_0_3, ax2_0_2, ax0_0_4, ax1_0_4 in T.grid(1, 1, 2, 2, 1): with T.block("C_o"): v0_o = T.axis.spatial(8, ax0_0_0_ax1_0_0_fused v1_o = T.axis.spatial(8, ax1_0_4 + ax0_0_0_ax1_0_0_fused % 2 * 4 + ax0_0_1_ax1_0_1_fused * 2 + ax0_0_2_ax1_0_2_fused + ax1_0_3) v2_o = T.axis.reduce(8, ax2_0_0 * 8 + ax2_0_1 * 2 + ax2_0_2) T.reads(A_reindex_shared_wmma_matrix_a[v0_o * 16 : v0_o * 16 + 16, v2_o * 16 : v2_o * 16 + 16], B_reindex_shared_wmma_matrix_b[v2_o * 16 : v2_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.writes(C_reindex_shared_wmma_accumulator[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.block_attr({"meta_schedule.auto_tensorize":"wmma_sync_16x16x16_f16f16f32", "meta_schedule.auto_tensorize_init":"wmma_fill_16x16x16_f32", "warp_execution":1}) with T.init(): for ax0_1, ax1_1 in T.grid(16, 16): with T.block("C_init"): v0_i_init, v1_i_init = T.axis.remap("SS", [ax0_1, ax1_1]) T.reads() T.writes(C_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i_init, v1_o * 16 + v1_i_init]) C_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i_init, v1_o * 16 + v1_i_init] = T.float32(0)
for ax0_1, ax1_1, ax2_1 in T.grid(16, 16, 16): with T.block("C"): v0_i, v1_i, v2_i = T.axis.remap("SSR", [ax0_1, ax1_1, ax2_1]) T.reads(C_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i], A_reindex_shared_wmma_matrix_a[v0_o * 16 + v0_i, v2_o * 16 + v2_i], B_reindex_shared_wmma_matrix_b[v2_o * 16 + v2_i, v1_o * 16 + v1_i]) T.writes(C_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) T.block_attr({"meta_schedule.tiling_structure":"SSSRRSRS"}) C_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i] = C_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i] + T.cast(A_reindex_shared_wmma_matrix_a[v0_o * 16 + v0_i, v2_o * 16 + v2_i], "float32") * T.cast(B_reindex_shared_wmma_matrix_b[v2_o * 16 + v2_i, v1_o * 16 + v1_i], "float32") for ax0_0, ax1_0 in T.grid(2, 1): with T.block("C_reindex_shared_wmma.accumulator_o"): v0_o = T.axis.spatial(8, ax0_0_0_ax1_0_0_fused v1_o = T.axis.spatial(8, ax0_0_0_ax1_0_0_fused % 2 * 4 + ax0_0_1_ax1_0_1_fused * 2 + ax0_0_2_ax1_0_2_fused) T.reads(C_reindex_shared_wmma_accumulator[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.writes(C_reindex_shared[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.block_attr({"meta_schedule.auto_tensorize":"wmma_store_16x16x16_f32_shared"}) for ax0_1, ax1_1 in T.grid(16, 16): with T.block("C_reindex_shared_wmma.accumulator"): v0_i, v1_i = T.axis.remap("SS", [ax0_1, ax1_1]) T.reads(C_reindex_shared
_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) T.writes(C_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) C_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i] = C_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i] for ax0_ax1_fused in T.serial(1024): with T.block("C_reindex_shared"): v0 = T.axis.spatial(128, ax0_0_0_ax1_0_0_fused v1 = T.axis.spatial(128, ax0_0_0_ax1_0_0_fused % 2 * 64 + ax0_0_1_ax1_0_1_fused * 32 + ax0_ax1_fused % 32) T.reads(C_reindex_shared[v0, v1]) T.writes(compute[v0, v1]) T.block_attr({"meta_schedule.cooperative_fetch":4}) compute[v0, v1] = T.max(C_reindex_shared[v0, v1], T.float32(0)) decision_0 = [ ("SamplePerfectTile", [4, 1, 1, 1, 2]), ("SamplePerfectTile", [2, 2, 2, 1, 1]), ("SamplePerfectTile", [1, 4, 2]), ("SampleCategorical", 3), ("SampleCategorical", 3), ("SampleCategorical", 0), ] mod = te.create_prim_func( te_workload.matmul_relu( n=128, m=128, k=128, in_dtype="float16", out_dtype="float32", ) ) actual = generate_design_space( kind="cuda", mod=mod, target=tvm.target.Target("cuda"), types=None, sch_rules=[ multi_level_tiling_tensor_core(), ] + get_rules(kind="cuda", types=ms.schedule_rule.AutoInline), ) check_sketches( mod, sketches=actual, expected_mods=[matmul_relu_0], expected_decisions=[decision_0], ) def test_matmul_relu_with_fallback(): @T.prim_func def matmul_relu_fallback_0(A: T.Buffer[(128, 128), "float16"], B: T.Buffer[(128, 128), "float16"], compute: T.Buffer[(128, 128), "float32"]) -> None: T.func_attr({
"global_symbol": "main", "tir.noalias": True}) C_reindex_shared = T.alloc_buffer([128, 128], dtype="float32", scope="shared") C_reindex_shared_wmma_accumulator = T.alloc_buffer([128, 128], dtype="float32", scope="wmma.accumulator") A_reindex_shared = T.alloc_buffer([128, 128], dtype="float16", scope="shared") B_reindex_shared = T.alloc_buffer([128, 128], dtype="float16", scope="shared") A_reindex_shared_wmma_matrix_a = T.alloc_buffer([128, 128], dtype="float16", scope="wmma.matrix_a") B_reindex_shared_wmma_matrix_b = T.alloc_buffer([128, 128], dtype="float16", scope="wmma.matrix_b") for ax0_0_0_ax1_0_0_fused in T.thread_binding(2, thread="blockIdx.y"): for ax0_0_1_ax1_0_1_fused in T.thread_binding(2, thread="blockIdx.x"): for ax0_0_2_ax1_0_2_fused in T.thread_binding(2, thread="threadIdx.y"): for ax2_0_0 in T.serial(2): for ax0_ax1_fused in T.serial(2048): with T.block("A_reindex_shared"): v0 = T.axis.spatial(128, ax0_0_0_ax1_0_0_fused * 64 + ax0_0_1_ax1_0_1_fused * 32 + ax0_ax1_fused v1 = T.axis.spatial(128, ax2_0_0 * 64 + ax0_ax1_fused % 64) T.reads(A[v0, v1]) T.writes(A_reindex_shared[v0, v1]) T.block_attr({"buffer_dim_align":[[0, 0, 32, 8]], "meta_schedule.cooperative_fetch":4}) A_reindex_shared[v0, v1] = A[v0, v1] for ax0_ax1_fused in T.serial(8192): with T.block("B_reindex_shared"): v0 = T.axis.spatial(128, ax2_0_0 * 64 + ax0_ax1_fused v1 = T.axis.spatial(128, ax0_ax1_fused % 128) T.reads(B[v0, v1]) T.writes(B_reindex_shared[v0, v1]) T.bl
ock_attr({"buffer_dim_align":[[0, 0, 32, 8]], "meta_schedule.cooperative_fetch":2}) B_reindex_shared[v0, v1] = B[v0, v1] for ax2_0_1 in T.serial(1): for ax0_0, ax1_0 in T.grid(2, 4): with T.block("A_reindex_shared_wmma.matrix_a_o"): v0_o = T.axis.spatial(8, ax0_0_0_ax1_0_0_fused * 4 + ax0_0_1_ax1_0_1_fused * 2 + ax0_0) v1_o = T.axis.spatial(8, ax2_0_0 * 4 + ax1_0) T.reads(A_reindex_shared[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.writes(A_reindex_shared_wmma_matrix_a[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.block_attr({"meta_schedule.auto_tensorize":"wmma_load_16x16x16_f16_a"}) for ax0_1, ax1_1 in T.grid(16, 16): with T.block("A_reindex_shared_wmma.matrix_a"): v0_i, v1_i = T.axis.remap("SS", [ax0_1, ax1_1]) T.reads(A_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) T.writes(A_reindex_shared_wmma_matrix_a[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) A_reindex_shared_wmma_matrix_a[v0_o * 16 + v0_i, v1_o * 16 + v1_i] = A_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i] for ax0_0, ax1_0 in T.grid(4, 4): with T.block("B_reindex_shared_wmma.matrix_b_o"): v0_o = T.axis.spatial(8, ax2_0_0 * 4 + ax0_0) v1_o = T.axis.spatial(8, ax0_0_2_ax1_0_2_fused * 4 + ax1_0) T.reads(B_reindex_shared[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.writes(B_
reindex_shared_wmma_matrix_b[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.block_attr({"meta_schedule.auto_tensorize":"wmma_load_16x16x16_f16_b"}) for ax0_1, ax1_1 in T.grid(16, 16): with T.block("B_reindex_shared_wmma.matrix_b"): v0_i, v1_i = T.axis.remap("SS", [ax0_1, ax1_1]) T.reads(B_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) T.writes(B_reindex_shared_wmma_matrix_b[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) B_reindex_shared_wmma_matrix_b[v0_o * 16 + v0_i, v1_o * 16 + v1_i] = B_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i] for ax0_0_3, ax1_0_3, ax2_0_2, ax0_0_4, ax1_0_4 in T.grid(1, 1, 4, 2, 4): with T.block("C_o"): v0_o = T.axis.spatial(8, ax0_0_0_ax1_0_0_fused * 4 + ax0_0_1_ax1_0_1_fused * 2 + ax0_0_3 * 2 + ax0_0_4) v1_o = T.axis.spatial(8, ax0_0_2_ax1_0_2_fused * 4 + ax1_0_3 * 4 + ax1_0_4) v2_o = T.axis.reduce(8, ax2_0_0 * 4 + ax2_0_1 * 4 + ax2_0_2) T.reads(A_reindex_shared_wmma_matrix_a[v0_o * 16 : v0_o * 16 + 16, v2_o * 16 : v2_o * 16 + 16], B_reindex_shared_wmma_matrix_b[v2_o * 16 : v2_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.writes(C_reindex_shared_wmma_accumulator[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.block_attr({"meta_schedule.auto_tensorize":"wmma_sync_16x16x16_f16f16f32", "meta_schedule.auto_tensorize_init":"wmma_fill_16x16x16_f32", "warp_execution":1}) with T.init(): for ax0_1, ax1_1 in T.grid(16, 16):
with T.block("C_init"): v0_i_init, v1_i_init = T.axis.remap("SS", [ax0_1, ax1_1]) T.reads() T.writes(C_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i_init, v1_o * 16 + v1_i_init]) C_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i_init, v1_o * 16 + v1_i_init] = T.float32(0) for ax0_1, ax1_1, ax2_1 in T.grid(16, 16, 16): with T.block("C"): v0_i, v1_i, v2_i = T.axis.remap("SSR", [ax0_1, ax1_1, ax2_1]) T.reads(C_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i], A_reindex_shared_wmma_matrix_a[v0_o * 16 + v0_i, v2_o * 16 + v2_i], B_reindex_shared_wmma_matrix_b[v2_o * 16 + v2_i, v1_o * 16 + v1_i]) T.writes(C_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) T.block_attr({"meta_schedule.tiling_structure":"SSSRRSRS"}) C_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i] = C_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i] + T.cast(A_reindex_shared_wmma_matrix_a[v0_o * 16 + v0_i, v2_o * 16 + v2_i], "float32") * T.cast(B_reindex_shared_wmma_matrix_b[v2_o * 16 + v2_i, v1_o * 16 + v1_i], "float32") for ax0_0, ax1_0 in T.grid(2, 4): with T.block("C_reindex_shared_wmma.accumulator_o"): v0_o = T.axis.spatial(8, ax0_0_0_ax1_0_0_fused * 4 + ax0_0_1_ax1_0_1_fused * 2 + ax0_0) v1_o = T.axis.spatial(8, ax0_0_2_ax1_0_2_fused * 4 + ax1_0) T.reads(C_reindex_shared_wmma_accumulator[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16])
T.writes(C_reindex_shared[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.block_attr({"meta_schedule.auto_tensorize":"wmma_store_16x16x16_f32_shared"}) for ax0_1, ax1_1 in T.grid(16, 16): with T.block("C_reindex_shared_wmma.accumulator"): v0_i, v1_i = T.axis.remap("SS", [ax0_1, ax1_1]) T.reads(C_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) T.writes(C_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) C_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i] = C_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i] for ax0_ax1_fused in T.serial(4096): with T.block("C_reindex_shared"): v0 = T.axis.spatial(128, ax0_0_0_ax1_0_0_fused * 64 + ax0_0_1_ax1_0_1_fused * 32 + ax0_ax1_fused v1 = T.axis.spatial(128, ax0_ax1_fused % 128) T.reads(C_reindex_shared[v0, v1]) T.writes(compute[v0, v1]) T.block_attr({"meta_schedule.cooperative_fetch":4}) compute[v0, v1] = T.max(C_reindex_shared[v0, v1], T.float32(0)) decision_0 = [ ("SamplePerfectTile", [2, 2, 1, 1, 2]), ("SamplePerfectTile", [1, 1, 2, 1, 4]), ("SamplePerfectTile", [2, 1, 4]), ("SampleCategorical", 3), ("SampleCategorical", 2), ("SampleCategorical", 1), ] mod = te.create_prim_func( te_workload.matmul_relu( n=128, m=128, k=128, in_dtype="float16", out_dtype="float32", ) ) actual = generate_design_space( kind="cuda", mod=mod, target=tvm.target.Target("cuda"), types=None, sch_rules=[ multi_level
_tiling_tensor_core(), ] + get_rules( "cuda", ( ms.schedule_rule.MultiLevelTiling, ms.schedule_rule.AutoInline, ), ), ) check_sketches( mod, sketches=actual, expected_mods=[matmul_relu_fallback_0], expected_decisions=[decision_0], ) def test_conv2d(): @T.prim_func def conv2d_0(inputs: T.Buffer[(1, 16, 16, 32), "float16"], weight: T.Buffer[(3, 3, 32, 32), "float16"], conv2d_nhwc: T.Buffer[(1, 16, 16, 32), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) PadInput = T.alloc_buffer([1, 18, 18, 32], dtype="float16") conv2d_nhwc_reindex_shared = T.alloc_buffer([256, 32], dtype="float32", scope="shared") conv2d_nhwc_reindex_shared_wmma_accumulator = T.alloc_buffer([256, 32], dtype="float32", scope="wmma.accumulator") PadInput_reindex_shared = T.alloc_buffer([256, 288], dtype="float16", scope="shared") weight_reindex_shared = T.alloc_buffer([288, 32], dtype="float16", scope="shared") PadInput_reindex_shared_wmma_matrix_a = T.alloc_buffer([256, 288], dtype="float16", scope="wmma.matrix_a") weight_reindex_shared_wmma_matrix_b = T.alloc_buffer([288, 32], dtype="float16", scope="wmma.matrix_b") for i0, i1, i2, i3 in T.grid(1, 18, 18, 32): with T.block("PadInput"): i0_1, i1_1, i2_1, i3_1 = T.axis.remap("SSSS", [i0, i1, i2, i3]) T.reads(inputs[i0_1, i1_1 - 1, i2_1 - 1, i3_1]) T.writes(PadInput[i0_1, i1_1, i2_1, i3_1]) PadInput[i0_1, i1_1, i2_1, i3_1] = T.if_then_else(1 <= i1_1 and i1_1 < 17 and 1 <= i2_1 and i2_1 < 17, inputs[i0_1, i1_1 - 1, i2_1 - 1, i3_1], T.float16(0), dtype="float16") for ax0_0_0_ax1_0_0_fused in T.thread_binding(2, thread="blockIdx.y"): for ax0_0_1_ax1_0_1_fused in T.thread_binding(16, thread="blockIdx.x"): for ax0_0_2_ax1_0_2_fused in T.thread_
binding(1, thread="threadIdx.y"): for ax2_0_0 in T.serial(1): for ax0_ax1_fused in T.serial(4608): with T.block("PadInput_reindex_shared"): v0 = T.axis.spatial(256, ax0_0_1_ax1_0_1_fused * 16 + ax0_ax1_fused v1 = T.axis.spatial(288, ax0_ax1_fused % 288) T.reads(PadInput[v0 T.writes(PadInput_reindex_shared[v0, v1]) T.block_attr({"buffer_dim_align":[[0, 0, 32, 8]], "meta_schedule.cooperative_fetch":2}) PadInput_reindex_shared[v0, v1] = PadInput[v0 for ax0_ax1_fused in T.serial(4608): with T.block("weight_reindex_shared"): v0 = T.axis.spatial(288, ax0_ax1_fused v1 = T.axis.spatial(32, ax0_0_0_ax1_0_0_fused * 16 + ax0_ax1_fused % 16) T.reads(weight[v0 T.writes(weight_reindex_shared[v0, v1]) T.block_attr({"buffer_dim_align":[[0, 0, 32, 8]], "meta_schedule.cooperative_fetch":8}) weight_reindex_shared[v0, v1] = weight[v0 for ax2_0_1 in T.serial(18): for ax0_0, ax1_0 in T.grid(1, 1): with T.block("PadInput_reindex_shared_wmma.matrix_a_o"): v0_o, v1_o = T.axis.remap("SS", [ax0_0_1_ax1_0_1_fused, ax2_0_1]) T.reads(PadInput_reindex_shared[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.writes(PadInput_reindex_shared_wmma_matrix_a[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.block_attr({"meta_schedule.auto_tensorize":"wmma_load_16x16x16_f16_a"})
for ax0_1, ax1_1 in T.grid(16, 16): with T.block("PadInput_reindex_shared_wmma.matrix_a"): v0_i, v1_i = T.axis.remap("SS", [ax0_1, ax1_1]) T.reads(PadInput_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) T.writes(PadInput_reindex_shared_wmma_matrix_a[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) PadInput_reindex_shared_wmma_matrix_a[v0_o * 16 + v0_i, v1_o * 16 + v1_i] = PadInput_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i] for ax0_0, ax1_0 in T.grid(1, 1): with T.block("weight_reindex_shared_wmma.matrix_b_o"): v0_o, v1_o = T.axis.remap("SS", [ax2_0_1, ax0_0_0_ax1_0_0_fused]) T.reads(weight_reindex_shared[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.writes(weight_reindex_shared_wmma_matrix_b[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.block_attr({"meta_schedule.auto_tensorize":"wmma_load_16x16x16_f16_b"}) for ax0_1, ax1_1 in T.grid(16, 16): with T.block("weight_reindex_shared_wmma.matrix_b"): v0_i, v1_i = T.axis.remap("SS", [ax0_1, ax1_1]) T.reads(weight_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) T.writes(weight_reindex_shared_wmma_matrix_b[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) weight_reindex_shared_wmma_matrix_b[v0_o * 16 + v0_i, v1_o * 16 + v1_i] = weight_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i] for ax0_0_3, ax1_0_3, ax2_0_2, ax0_0_4, ax1_0_4 in T.grid(1, 1, 1, 1, 1):
with T.block("conv2d_nhwc_o"): v0_o = T.axis.spatial(16, ax0_0_4 + ax0_0_1_ax1_0_1_fused + ax0_0_3) v1_o = T.axis.spatial(2, ax0_0_0_ax1_0_0_fused + ax1_0_3 + ax1_0_4) v2_o = T.axis.reduce(18, ax2_0_0 * 18 + ax2_0_1 + ax2_0_2) T.reads(PadInput_reindex_shared_wmma_matrix_a[v0_o * 16 : v0_o * 16 + 16, v2_o * 16 : v2_o * 16 + 16], weight_reindex_shared_wmma_matrix_b[v2_o * 16 : v2_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.writes(conv2d_nhwc_reindex_shared_wmma_accumulator[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.block_attr({"meta_schedule.auto_tensorize":"wmma_sync_16x16x16_f16f16f32", "meta_schedule.auto_tensorize_init":"wmma_fill_16x16x16_f32", "warp_execution":1}) with T.init(): for ax0_1, ax1_1 in T.grid(16, 16): with T.block("conv2d_nhwc_init"): v0_i_init, v1_i_init = T.axis.remap("SS", [ax0_1, ax1_1]) T.reads() T.writes(conv2d_nhwc_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i_init, v1_o * 16 + v1_i_init]) conv2d_nhwc_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i_init, v1_o * 16 + v1_i_init] = T.float32(0) for ax0_1, ax1_1, ax2_1 in T.grid(16, 16, 16): with T.block("conv2d_nhwc"): v0_i, v1_i, v2_i = T.axis.remap("SSR", [ax0_1, ax1_1, ax2_1]) T.reads(conv2d_nhwc_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i], PadInput_reindex_shared_wmma_matrix_a[v0_o * 16
+ v0_i, v2_o * 16 + v2_i], weight_reindex_shared_wmma_matrix_b[v2_o * 16 + v2_i, v1_o * 16 + v1_i]) T.writes(conv2d_nhwc_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) T.block_attr({"meta_schedule.tiling_structure":"SSSRRSRS"}) conv2d_nhwc_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i] = conv2d_nhwc_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i] + T.cast(PadInput_reindex_shared_wmma_matrix_a[v0_o * 16 + v0_i, v2_o * 16 + v2_i], "float32") * T.cast(weight_reindex_shared_wmma_matrix_b[v2_o * 16 + v2_i, v1_o * 16 + v1_i], "float32") for ax0_0, ax1_0 in T.grid(1, 1): with T.block("conv2d_nhwc_reindex_shared_wmma.accumulator_o"): v0_o, v1_o = T.axis.remap("SS", [ax0_0_1_ax1_0_1_fused, ax0_0_0_ax1_0_0_fused]) T.reads(conv2d_nhwc_reindex_shared_wmma_accumulator[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.writes(conv2d_nhwc_reindex_shared[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.block_attr({"meta_schedule.auto_tensorize":"wmma_store_16x16x16_f32_shared"}) for ax0_1, ax1_1 in T.grid(16, 16): with T.block("conv2d_nhwc_reindex_shared_wmma.accumulator"): v0_i, v1_i = T.axis.remap("SS", [ax0_1, ax1_1]) T.reads(conv2d_nhwc_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) T.writes(conv2d_nhwc_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) conv2d_nhwc_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i] = conv2d_nhwc_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i] for ax0_ax1_fused in T.seria
l(256): with T.block("conv2d_nhwc_reindex_shared"): v0 = T.axis.spatial(256, ax0_0_1_ax1_0_1_fused * 16 + ax0_ax1_fused v1 = T.axis.spatial(32, ax0_0_0_ax1_0_0_fused * 16 + ax0_ax1_fused % 16) T.reads(conv2d_nhwc_reindex_shared[v0, v1]) T.writes(conv2d_nhwc[v0 T.block_attr({"meta_schedule.cooperative_fetch":3}) conv2d_nhwc[v0 decision_0 = [ ("SamplePerfectTile", [1, 16, 1, 1, 1]), ("SamplePerfectTile", [2, 1, 1, 1, 1]), ("SamplePerfectTile", [1, 18, 1]), ("SampleCategorical", 2), ("SampleCategorical", 1), ("SampleCategorical", 3), ] mod = te.create_prim_func( te_workload.conv2d_nhwc( N=1, H=16, W=16, CI=32, CO=32, kernel_size=3, stride=1, padding=1, in_dtype="float16", out_dtype="float32", ) ) actual = generate_design_space( kind="cuda", mod=mod, target=tvm.target.Target("cuda"), types=None, sch_rules=[ multi_level_tiling_tensor_core(), ], ) check_sketches( mod, sketches=actual, expected_mods=[conv2d_0], expected_decisions=[decision_0], ) actual = generate_design_space( kind="cuda", mod=mod, target=tvm.target.Target("cuda"), types=None, sch_rules=[ multi_level_tiling_tensor_core( in_dtype="float16", out_dtype=["float16", "float32"], ), ], ) check_sketches( mod, sketches=actual, expected_mods=[conv2d_0], expected_decisions=[decision_0], ) def test_matmul_relu_pipeline(): @T.prim_func def matmul_relu_pipeline_0(A: T.Buffer[(128, 128), "float16"], B: T.Buffer[(128, 128)
, "float16"], compute: T.Buffer[(128, 128), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) C = T.alloc_buffer([128, 128], dtype="float32") C_reindex_shared = T.alloc_buffer([128, 128], dtype="float32", scope="shared") C_reindex_shared_wmma_accumulator = T.alloc_buffer([128, 128], dtype="float32", scope="wmma.accumulator") A_reindex_shared = T.alloc_buffer([128, 128], dtype="float16", scope="shared") B_reindex_shared = T.alloc_buffer([128, 128], dtype="float16", scope="shared") A_reindex_shared_wmma_matrix_a = T.alloc_buffer([128, 128], dtype="float16", scope="wmma.matrix_a") B_reindex_shared_wmma_matrix_b = T.alloc_buffer([128, 128], dtype="float16", scope="wmma.matrix_b") for ax0_0_0_ax1_0_0_fused in T.thread_binding(1, thread="blockIdx.y"): for ax0_0_1_ax1_0_1_fused in T.thread_binding(16, thread="blockIdx.x"): for ax0_0_2_ax1_0_2_fused in T.thread_binding(1, thread="threadIdx.y"): for ax2_0_0 in T.serial(4, annotations={"software_pipeline_order":[0, 3, 1, 4, 5, 2, 6], "software_pipeline_stage":[0, 0, 0, 0, 0, 1, 1]}): for ax0_ax1_fused in T.serial(1024): with T.block("A_reindex_shared"): v0 = T.axis.spatial(128, ax0_0_1_ax1_0_1_fused v1 = T.axis.spatial(128, ax2_0_0 * 32 + ax0_ax1_fused % 32) T.reads(A[v0, v1]) T.writes(A_reindex_shared[v0, v1]) T.block_attr({"buffer_dim_align":[[0, 0, 32, 8]], "double_buffer_scope":0, "meta_schedule.cooperative_fetch":4, "tir.manifest_shared_memory_local_stage":1}) A_reindex_shared[v0, v1] = A[v0, v1] for ax0_ax1_fused in T.serial(1024): with T.block("B_reindex_shared"): v0 =
T.axis.spatial(128, ax2_0_0 * 32 + ax0_ax1_fused v1 = T.axis.spatial(128, ax0_0_1_ax1_0_1_fused % 4 * 32 + ax0_ax1_fused % 32) T.reads(B[v0, v1]) T.writes(B_reindex_shared[v0, v1]) T.block_attr({"buffer_dim_align":[[0, 0, 32, 8]], "double_buffer_scope":0, "meta_schedule.cooperative_fetch":2, "tir.manifest_shared_memory_local_stage":1}) B_reindex_shared[v0, v1] = B[v0, v1] for ax2_0_1 in T.serial(2, annotations={"software_pipeline_order":[0, 1, 2], "software_pipeline_stage":[0, 0, 1]}): for ax0_0, ax1_0 in T.grid(2, 1): with T.block("A_reindex_shared_wmma.matrix_a_o"): v0_o = T.axis.spatial(8, ax0_0_1_ax1_0_1_fused v1_o = T.axis.spatial(8, ax2_0_0 * 2 + ax2_0_1) T.reads(A_reindex_shared[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.writes(A_reindex_shared_wmma_matrix_a[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.block_attr({"meta_schedule.auto_tensorize":"wmma_load_16x16x16_f16_a"}) for ax0_1, ax1_1 in T.grid(16, 16): with T.block("A_reindex_shared_wmma.matrix_a"): v0_i, v1_i = T.axis.remap("SS", [ax0_1, ax1_1]) T.reads(A_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) T.writes(A_reindex_shared_wmma_matrix_a[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) A_reindex_shared_wmma_matrix_a[v0_o * 16 + v0_i, v1_o * 16 + v1_i] = A_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i] for ax0_0, ax1_0 in T.gri
d(1, 2): with T.block("B_reindex_shared_wmma.matrix_b_o"): v0_o = T.axis.spatial(8, ax2_0_0 * 2 + ax2_0_1) v1_o = T.axis.spatial(8, ax0_0_1_ax1_0_1_fused % 4 * 2 + ax1_0) T.reads(B_reindex_shared[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.writes(B_reindex_shared_wmma_matrix_b[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.block_attr({"meta_schedule.auto_tensorize":"wmma_load_16x16x16_f16_b"}) for ax0_1, ax1_1 in T.grid(16, 16): with T.block("B_reindex_shared_wmma.matrix_b"): v0_i, v1_i = T.axis.remap("SS", [ax0_1, ax1_1]) T.reads(B_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) T.writes(B_reindex_shared_wmma_matrix_b[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) B_reindex_shared_wmma_matrix_b[v0_o * 16 + v0_i, v1_o * 16 + v1_i] = B_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i] for ax0_0_3, ax1_0_3, ax2_0_2, ax0_0_4, ax1_0_4 in T.grid(1, 1, 1, 2, 2): with T.block("C_o"): v0_o = T.axis.spatial(8, ax0_0_1_ax1_0_1_fused v1_o = T.axis.spatial(8, ax0_0_1_ax1_0_1_fused % 4 * 2 + ax1_0_3 * 2 + ax1_0_4) v2_o = T.axis.reduce(8, ax2_0_0 * 2 + ax2_0_1 + ax2_0_2) T.reads(A_reindex_shared_wmma_matrix_a[v0_o * 16 : v0_o * 16 + 16, v2_o * 16 : v2_o * 16 + 16], B_reindex_shared_wmma_matrix_b[v2_o * 16 : v2_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.writes(C_reindex_shared_wmma_accumulator[v0_o * 16 : v0_o * 1
6 + 16, v1_o * 16 : v1_o * 16 + 16]) T.block_attr({"meta_schedule.auto_tensorize":"wmma_sync_16x16x16_f16f16f32", "meta_schedule.auto_tensorize_init":"wmma_fill_16x16x16_f32", "warp_execution":1}) with T.init(): for ax0_1, ax1_1 in T.grid(16, 16): with T.block("C_init"): v0_i_init, v1_i_init = T.axis.remap("SS", [ax0_1, ax1_1]) T.reads() T.writes(C_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i_init, v1_o * 16 + v1_i_init]) C_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i_init, v1_o * 16 + v1_i_init] = T.float32(0) for ax0_1, ax1_1, ax2_1 in T.grid(16, 16, 16): with T.block("C"): v0_i, v1_i, v2_i = T.axis.remap("SSR", [ax0_1, ax1_1, ax2_1]) T.reads(C_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i], A_reindex_shared_wmma_matrix_a[v0_o * 16 + v0_i, v2_o * 16 + v2_i], B_reindex_shared_wmma_matrix_b[v2_o * 16 + v2_i, v1_o * 16 + v1_i]) T.writes(C_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) T.block_attr({"meta_schedule.tiling_structure":"SSSRRSRS"}) C_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i] = C_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i] + T.cast(A_reindex_shared_wmma_matrix_a[v0_o * 16 + v0_i, v2_o * 16 + v2_i], "float32") * T.cast(B_reindex_shared_wmma_matrix_b[v2_o * 16 + v2_i, v1_o * 16 + v1_i], "float32") for ax0_0, ax1_0 in T.grid(2, 2):
with T.block("C_reindex_shared_wmma.accumulator_o"): v0_o = T.axis.spatial(8, ax0_0_1_ax1_0_1_fused v1_o = T.axis.spatial(8, ax0_0_1_ax1_0_1_fused % 4 * 2 + ax1_0) T.reads(C_reindex_shared_wmma_accumulator[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.writes(C_reindex_shared[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.block_attr({"meta_schedule.auto_tensorize":"wmma_store_16x16x16_f32_shared"}) for ax0_1, ax1_1 in T.grid(16, 16): with T.block("C_reindex_shared_wmma.accumulator"): v0_i, v1_i = T.axis.remap("SS", [ax0_1, ax1_1]) T.reads(C_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) T.writes(C_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) C_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i] = C_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i] for ax0_ax1_fused in T.grid(1024): with T.block("C_reindex_shared"): v0 = T.axis.spatial(128, ax0_0_1_ax1_0_1_fused v1 = T.axis.spatial(128, ax0_0_1_ax1_0_1_fused % 4 * 32 + ax0_ax1_fused % 32) T.reads(C_reindex_shared[v0, v1]) T.writes(C[v0, v1]) T.block_attr({"meta_schedule.cooperative_fetch":3}) C[v0, v1] = C_reindex_shared[v0, v1] for i0, i1 in T.grid(128, 128): with T.block("compute"): i0_1, i1_1 = T.axis.remap("SS", [i0, i1]) T.reads(C[i0_1, i1_1]) T.writes(compute[i0_1, i1_1]) compute[i0_1, i1_1] = T.max(C[i0_1, i1_1], T.float32(0)) decision_0 = [ ("SamplePerfectTile", [1, 4, 1,
1, 2]), ("SamplePerfectTile", [1, 4, 1, 1, 2]), ("SamplePerfectTile", [4, 2, 1]), ("SampleCategorical", 2), ("SampleCategorical", 2), ("SampleCategorical", 1), ] mod = te.create_prim_func( te_workload.matmul_relu( n=128, m=128, k=128, in_dtype="float16", out_dtype="float32", ) ) actual = generate_design_space( kind="cuda", mod=mod, target=tvm.target.Target("cuda"), types=None, sch_rules=[ multi_level_tiling_tensor_core( use_software_pipeline=True, ), ], ) check_sketches( mod, sketches=actual, expected_mods=[matmul_relu_pipeline_0], expected_decisions=[decision_0], ) def test_matmul_relu_global(): @T.prim_func def matmul_relu_global_0(A: T.Buffer[(128, 128), "float16"], B: T.Buffer[(128, 128), "float16"], compute: T.Buffer[(128, 128), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) C = T.alloc_buffer([128, 128], dtype="float32") C_reindex_wmma_accumulator = T.alloc_buffer([128, 128], dtype="float32", scope="wmma.accumulator") A_reindex_shared = T.alloc_buffer([128, 128], dtype="float16", scope="shared") B_reindex_shared = T.alloc_buffer([128, 128], dtype="float16", scope="shared") A_reindex_shared_wmma_matrix_a = T.alloc_buffer([128, 128], dtype="float16", scope="wmma.matrix_a") B_reindex_shared_wmma_matrix_b = T.alloc_buffer([128, 128], dtype="float16", scope="wmma.matrix_b") for ax0_0_0_ax1_0_0_fused in T.thread_binding(1, thread="blockIdx.y"): for ax0_0_1_ax1_0_1_fused in T.thread_binding(1, thread="blockIdx.x"): for ax0_0_2_ax1_0_2_fused in T.thread_binding(16, thread="threadIdx.y"): for ax2_0_0 in T.serial(2): for ax0_ax1_fused in T.serial(819