text
stringlengths
1
2.05k
2): with T.block("A_reindex_shared"): v0 = T.axis.spatial(128, ax0_ax1_fused v1 = T.axis.spatial(128, ax2_0_0 * 64 + ax0_ax1_fused % 64) T.reads(A[v0, v1]) T.writes(A_reindex_shared[v0, v1]) T.block_attr({"buffer_dim_align":[[0, 0, 32, 8]], "meta_schedule.cooperative_fetch":1}) A_reindex_shared[v0, v1] = A[v0, v1] for ax0_ax1_fused in T.serial(8192): with T.block("B_reindex_shared"): v0 = T.axis.spatial(128, ax2_0_0 * 64 + ax0_ax1_fused v1 = T.axis.spatial(128, ax0_ax1_fused % 128) T.reads(B[v0, v1]) T.writes(B_reindex_shared[v0, v1]) T.block_attr({"buffer_dim_align":[[0, 0, 32, 8]], "meta_schedule.cooperative_fetch":1}) B_reindex_shared[v0, v1] = B[v0, v1] for ax2_0_1 in T.serial(2): for ax0_0, ax1_0 in T.grid(1, 2): with T.block("A_reindex_shared_wmma.matrix_a_o"): v0_o = T.axis.spatial(8, ax0_0_2_ax1_0_2_fused v1_o = T.axis.spatial(8, ax2_0_0 * 4 + ax2_0_1 * 2 + ax1_0) T.reads(A_reindex_shared[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.writes(A_reindex_shared_wmma_matrix_a[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.block_attr({"meta_schedule.auto_tensorize":"wmma_load_16x16x16_f16_a"}) for ax0_1, ax1_1 in T.grid(16, 16): with T.block("A_reindex_shared_wmma.matrix_a"):
v0_i, v1_i = T.axis.remap("SS", [ax0_1, ax1_1]) T.reads(A_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) T.writes(A_reindex_shared_wmma_matrix_a[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) A_reindex_shared_wmma_matrix_a[v0_o * 16 + v0_i, v1_o * 16 + v1_i] = A_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i] for ax0_0, ax1_0 in T.grid(2, 4): with T.block("B_reindex_shared_wmma.matrix_b_o"): v0_o = T.axis.spatial(8, ax2_0_0 * 4 + ax2_0_1 * 2 + ax0_0) v1_o = T.axis.spatial(8, ax0_0_2_ax1_0_2_fused % 2 * 4 + ax1_0) T.reads(B_reindex_shared[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.writes(B_reindex_shared_wmma_matrix_b[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.block_attr({"meta_schedule.auto_tensorize":"wmma_load_16x16x16_f16_b"}) for ax0_1, ax1_1 in T.grid(16, 16): with T.block("B_reindex_shared_wmma.matrix_b"): v0_i, v1_i = T.axis.remap("SS", [ax0_1, ax1_1]) T.reads(B_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) T.writes(B_reindex_shared_wmma_matrix_b[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) B_reindex_shared_wmma_matrix_b[v0_o * 16 + v0_i, v1_o * 16 + v1_i] = B_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i] for ax0_0_3, ax1_0_3, ax2_0_2, ax0_0_4, ax1_0_4 in T.grid(1, 4, 2, 1, 1): with T.block("C_o"): v0_o = T.axis.spatial(8, ax0_0_2_ax1_0_2_fuse
d v1_o = T.axis.spatial(8, ax1_0_4 + ax0_0_2_ax1_0_2_fused % 2 * 4 + ax1_0_3) v2_o = T.axis.reduce(8, ax2_0_0 * 4 + ax2_0_1 * 2 + ax2_0_2) T.reads(A_reindex_shared_wmma_matrix_a[v0_o * 16 : v0_o * 16 + 16, v2_o * 16 : v2_o * 16 + 16], B_reindex_shared_wmma_matrix_b[v2_o * 16 : v2_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.writes(C_reindex_wmma_accumulator[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.block_attr({"meta_schedule.auto_tensorize":"wmma_sync_16x16x16_f16f16f32", "meta_schedule.auto_tensorize_init":"wmma_fill_16x16x16_f32", "warp_execution":1}) with T.init(): for ax0_1, ax1_1 in T.grid(16, 16): with T.block("C_init"): v0_i_init, v1_i_init = T.axis.remap("SS", [ax0_1, ax1_1]) T.reads() T.writes(C_reindex_wmma_accumulator[v0_o * 16 + v0_i_init, v1_o * 16 + v1_i_init]) C_reindex_wmma_accumulator[v0_o * 16 + v0_i_init, v1_o * 16 + v1_i_init] = T.float32(0) for ax0_1, ax1_1, ax2_1 in T.grid(16, 16, 16): with T.block("C"): v0_i, v1_i, v2_i = T.axis.remap("SSR", [ax0_1, ax1_1, ax2_1]) T.reads(C_reindex_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i], A_reindex_shared_wmma_matrix_a[v0_o * 16 + v0_i, v2_o * 16 + v2_i], B_reindex_shared_wmma_matrix_b[v2_o * 16 + v2_i, v1_o * 16 + v1_i]) T.writes(C_reindex_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) T.bl
ock_attr({"meta_schedule.tiling_structure":"SSSRRSRS"}) C_reindex_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i] = C_reindex_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i] + T.cast(A_reindex_shared_wmma_matrix_a[v0_o * 16 + v0_i, v2_o * 16 + v2_i], "float32") * T.cast(B_reindex_shared_wmma_matrix_b[v2_o * 16 + v2_i, v1_o * 16 + v1_i], "float32") for ax0_0, ax1_0 in T.grid(1, 4): with T.block("C_reindex_wmma.accumulator_o"): v0_o = T.axis.spatial(8, ax0_0_2_ax1_0_2_fused v1_o = T.axis.spatial(8, ax0_0_2_ax1_0_2_fused % 2 * 4 + ax1_0) T.reads(C_reindex_wmma_accumulator[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.writes(C[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.block_attr({"meta_schedule.auto_tensorize":"wmma_store_16x16x16_f32_global"}) for ax0_1, ax1_1 in T.grid(16, 16): with T.block("C_reindex_wmma.accumulator"): v0_i, v1_i = T.axis.remap("SS", [ax0_1, ax1_1]) T.reads(C_reindex_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) T.writes(C[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) C[v0_o * 16 + v0_i, v1_o * 16 + v1_i] = C_reindex_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i] for i0, i1 in T.grid(128, 128): with T.block("compute"): i0_1, i1_1 = T.axis.remap("SS", [i0, i1]) T.reads(C[i0_1, i1_1]) T.writes(compute[i0_1, i1_1]) compute[i0_1, i1_1] = T.max(C[i0_1, i1_1], T.float32(0)) decision_0 = [ ("SamplePerfectTile", [1, 1, 8, 1, 1]), ("SamplePerfectTile", [1, 1, 2, 4, 1]), ("SamplePerfectTile", [2, 2, 2]), ("SampleCa
tegorical", 0), ("SampleCategorical", 0), ] mod = te.create_prim_func( te_workload.matmul_relu( n=128, m=128, k=128, in_dtype="float16", out_dtype="float32", ) ) actual = generate_design_space( kind="cuda", mod=mod, target=tvm.target.Target("cuda"), types=None, sch_rules=[multi_level_tiling_tensor_core(write_reuse_scope="global")] + get_rules("cuda", ms.schedule_rule.AutoInline), ) check_sketches( mod, sketches=actual, expected_mods=[matmul_relu_global_0], expected_decisions=[decision_0], ) def test_matmul_relu_non_tensorizable(): mod = te.create_prim_func( te_workload.matmul_relu( n=128, m=128, k=128, ) ) (sch,) = generate_design_space( kind="cuda", mod=mod, target=tvm.target.Target("cuda"), types=None, sch_rules=[multi_level_tiling_tensor_core(write_reuse_scope="global")] + get_rules("cuda", ms.schedule_rule.AutoInline), ) tvm.ir.assert_structural_equal(mod, sch.mod["main"]) def test_padded_matmul_relu(): @T.prim_func def padded_matmul_relu_0(A: T.Buffer[(127, 127), "float16"], B: T.Buffer[(127, 127), "float16"], compute: T.Buffer[(127, 127), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) C_reindex_shared = T.alloc_buffer([128, 128], dtype="float32", scope="shared") C_reindex_shared_wmma_accumulator = T.alloc_buffer([128, 128], dtype="float32", scope="wmma.accumulator") A_reindex_shared = T.alloc_buffer([128, 128], dtype="float16", scope="shared") B_reindex_shared = T.alloc_buffer([128, 128], dtype="float16", scope="shared") A_reindex_shared_wmma_matrix_a = T.alloc_buffer([128, 128], dtype="float16", scope="wmma.matrix_a") B_reindex_shared_wmma_matrix_b = T.alloc_buf
fer([128, 128], dtype="float16", scope="wmma.matrix_b") for ax0_0_0_ax1_0_0_fused in T.thread_binding(8, thread="blockIdx.y"): for ax0_0_1_ax1_0_1_fused in T.thread_binding(2, thread="blockIdx.x"): for ax0_0_2_ax1_0_2_fused in T.thread_binding(2, thread="threadIdx.y"): for ax2_0_0 in T.serial(1): for ax0_ax1_fused in T.serial(4096): with T.block("A_reindex_shared"): v0 = T.axis.spatial(128, ax0_0_0_ax1_0_0_fused v1 = T.axis.spatial(128, ax0_ax1_fused % 128) T.reads(A[v0, v1]) T.writes(A_reindex_shared[v0, v1]) T.block_attr({"buffer_dim_align":[[0, 0, 32, 8]], "meta_schedule.cooperative_fetch":8}) A_reindex_shared[v0, v1] = T.if_then_else(v0 < 127 and v1 < 127, A[v0, v1], T.float16(0), dtype="float16") for ax0_ax1_fused in T.serial(4096): with T.block("B_reindex_shared"): v0 = T.axis.spatial(128, ax0_ax1_fused v1 = T.axis.spatial(128, ax0_0_0_ax1_0_0_fused % 2 * 64 + ax0_0_1_ax1_0_1_fused * 32 + ax0_ax1_fused % 32) T.reads(B[v0, v1]) T.writes(B_reindex_shared[v0, v1]) T.block_attr({"buffer_dim_align":[[0, 0, 32, 8]], "meta_schedule.cooperative_fetch":1}) B_reindex_shared[v0, v1] = T.if_then_else(v0 < 127 and v1 < 127, B[v0, v1], T.float16(0), dtype="float16") for ax2_0_1 in T.serial(4): for ax0_0, ax1_0 in T.grid(2, 2): with T.block("A_reindex_shared_wmma.matrix_a_o"): v0_o = T.axis.spatial(8, ax0_0_0_ax1_0_0_fused v1_o = T.
axis.spatial(8, ax2_0_1 * 2 + ax1_0) T.reads(A_reindex_shared[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.writes(A_reindex_shared_wmma_matrix_a[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.block_attr({"meta_schedule.auto_tensorize":"wmma_load_16x16x16_f16_a"}) for ax0_1, ax1_1 in T.grid(16, 16): with T.block("A_reindex_shared_wmma.matrix_a"): v0_i, v1_i = T.axis.remap("SS", [ax0_1, ax1_1]) T.reads(A_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) T.writes(A_reindex_shared_wmma_matrix_a[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) A_reindex_shared_wmma_matrix_a[v0_o * 16 + v0_i, v1_o * 16 + v1_i] = A_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i] for ax0_0, ax1_0 in T.grid(2, 1): with T.block("B_reindex_shared_wmma.matrix_b_o"): v0_o = T.axis.spatial(8, ax2_0_1 * 2 + ax0_0) v1_o = T.axis.spatial(8, ax0_0_0_ax1_0_0_fused % 2 * 4 + ax0_0_1_ax1_0_1_fused * 2 + ax0_0_2_ax1_0_2_fused) T.reads(B_reindex_shared[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.writes(B_reindex_shared_wmma_matrix_b[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.block_attr({"meta_schedule.auto_tensorize":"wmma_load_16x16x16_f16_b"}) for ax0_1, ax1_1 in T.grid(16, 16): with T.block("B_reindex_shared_wmma.matrix_b"): v0_i, v1_i = T.axis.remap("SS", [ax0_1, ax1_1])
T.reads(B_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) T.writes(B_reindex_shared_wmma_matrix_b[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) B_reindex_shared_wmma_matrix_b[v0_o * 16 + v0_i, v1_o * 16 + v1_i] = B_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i] for ax0_0_3, ax1_0_3, ax2_0_2, ax0_0_4, ax1_0_4 in T.grid(1, 1, 2, 2, 1): with T.block("C_o"): v0_o = T.axis.spatial(8, ax0_0_0_ax1_0_0_fused v1_o = T.axis.spatial(8, ax1_0_4 + ax0_0_0_ax1_0_0_fused % 2 * 4 + ax0_0_1_ax1_0_1_fused * 2 + ax0_0_2_ax1_0_2_fused + ax1_0_3) v2_o = T.axis.reduce(8, ax2_0_0 * 8 + ax2_0_1 * 2 + ax2_0_2) T.reads(A_reindex_shared_wmma_matrix_a[v0_o * 16 : v0_o * 16 + 16, v2_o * 16 : v2_o * 16 + 16], B_reindex_shared_wmma_matrix_b[v2_o * 16 : v2_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.writes(C_reindex_shared_wmma_accumulator[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.block_attr({"meta_schedule.auto_tensorize":"wmma_sync_16x16x16_f16f16f32", "meta_schedule.auto_tensorize_init":"wmma_fill_16x16x16_f32", "warp_execution":1}) with T.init(): for ax0_1, ax1_1 in T.grid(16, 16): with T.block("C_init"): v0_i_init, v1_i_init = T.axis.remap("SS", [ax0_1, ax1_1]) T.reads() T.writes(C_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i_init, v1_o * 16 + v1_i_init]) C_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i_init, v1_o * 16 + v1_i_init]
= T.float32(0) for ax0_1, ax1_1, ax2_1 in T.grid(16, 16, 16): with T.block("C"): v0_i, v1_i, v2_i = T.axis.remap("SSR", [ax0_1, ax1_1, ax2_1]) T.reads(C_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i], A_reindex_shared_wmma_matrix_a[v0_o * 16 + v0_i, v2_o * 16 + v2_i], B_reindex_shared_wmma_matrix_b[v2_o * 16 + v2_i, v1_o * 16 + v1_i]) T.writes(C_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) T.block_attr({"meta_schedule.tiling_structure":"SSSRRSRS"}) C_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i] = C_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i] + T.cast(A_reindex_shared_wmma_matrix_a[v0_o * 16 + v0_i, v2_o * 16 + v2_i], "float32") * T.cast(B_reindex_shared_wmma_matrix_b[v2_o * 16 + v2_i, v1_o * 16 + v1_i], "float32") for ax0_0, ax1_0 in T.grid(2, 1): with T.block("C_reindex_shared_wmma.accumulator_o"): v0_o = T.axis.spatial(8, ax0_0_0_ax1_0_0_fused v1_o = T.axis.spatial(8, ax0_0_0_ax1_0_0_fused % 2 * 4 + ax0_0_1_ax1_0_1_fused * 2 + ax0_0_2_ax1_0_2_fused) T.reads(C_reindex_shared_wmma_accumulator[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.writes(C_reindex_shared[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.block_attr({"meta_schedule.auto_tensorize":"wmma_store_16x16x16_f32_shared"}) for ax0_1, ax1_1 in T.grid(16, 16): with T.block("C_reindex_shared_wmma.accumulator"): v0_i, v1_i = T.axis.remap("SS", [ax0_1, ax1_1])
T.reads(C_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) T.writes(C_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) C_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i] = C_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i] for ax0_ax1_fused in T.serial(1024): with T.block("C_reindex_shared"): T.where(ax0_0_0_ax1_0_0_fused v0 = T.axis.spatial(128, ax0_0_0_ax1_0_0_fused v1 = T.axis.spatial(128, ax0_0_0_ax1_0_0_fused % 2 * 64 + ax0_0_1_ax1_0_1_fused * 32 + ax0_ax1_fused % 32) T.reads(C_reindex_shared[v0, v1]) T.writes(compute[v0, v1]) T.block_attr({"meta_schedule.cooperative_fetch":4}) compute[v0, v1] = T.max(C_reindex_shared[v0, v1], T.float32(0)) decision_0 = [ ("SamplePerfectTile", [4, 1, 1, 1, 2]), ("SamplePerfectTile", [2, 2, 2, 1, 1]), ("SamplePerfectTile", [1, 4, 2]), ("SampleCategorical", 3), ("SampleCategorical", 3), ("SampleCategorical", 0), ] mod = te.create_prim_func( te_workload.matmul_relu( n=127, m=127, k=127, in_dtype="float16", out_dtype="float32", ) ) actual = generate_design_space( kind="cuda", mod=mod, target=tvm.target.Target("cuda"), types=None, sch_rules=[multi_level_tiling_tensor_core(write_reuse_scope="shared")] + get_rules("cuda", ms.schedule_rule.AutoInline), ) check_sketches( mod, sketches=actual, expected_mods=[padded_matmul_relu_0], expected_decisions=[decision_0], ) def test_conv_1x1(): @T.prim_func def conv2d_1x1_0(inputs: T.Buffer[(1, 16, 16, 64), "float16"], weight: T.Buffer[(1, 1, 64, 64), "fl
oat16"], conv2d_nhwc: T.Buffer[(1, 16, 16, 64), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) conv2d_nhwc_reindex_shared = T.alloc_buffer([256, 64], dtype="float32", scope="shared") conv2d_nhwc_reindex_shared_wmma_accumulator = T.alloc_buffer([256, 64], dtype="float32", scope="wmma.accumulator") PadInput_reindex_shared = T.alloc_buffer([256, 64], dtype="float16", scope="shared") weight_reindex_shared = T.alloc_buffer([1, 1, 64, 64], dtype="float16", scope="shared") PadInput_reindex_shared_wmma_matrix_a = T.alloc_buffer([256, 64], dtype="float16", scope="wmma.matrix_a") weight_reindex_shared_wmma_matrix_b = T.alloc_buffer([1, 1, 64, 64], dtype="float16", scope="wmma.matrix_b") for ax2_0_0_ax3_0_0_fused in T.thread_binding(16, thread="blockIdx.y"): for ax2_0_1_ax3_0_1_fused in T.thread_binding(2, thread="blockIdx.x"): for ax2_0_2_ax3_0_2_fused in T.thread_binding(2, thread="threadIdx.y"): for ax0_0, ax1_0, ax4_0_0 in T.grid(1, 1, 1): for ax0_ax1_fused in T.serial(1024): with T.block("PadInput_reindex_shared"): v0 = T.axis.spatial(256, ax2_0_0_ax3_0_0_fused v1 = T.axis.spatial(64, ax0_ax1_fused % 64) T.reads(inputs[v0 T.writes(PadInput_reindex_shared[v0, v1]) T.block_attr({"buffer_dim_align":[[0, 0, 32, 8]], "meta_schedule.cooperative_fetch":1}) PadInput_reindex_shared[v0, v1] = inputs[v0 for ax0_ax1_ax2_ax3_fused in T.serial(2048): with T.block("weight_reindex_shared"): v0 = T.axis.spatial(1, 0) v1 = T.axis.spatial(1, 0) v2 = T.axis.spatial(64, ax0_ax1_ax2_ax3_fused
v3 = T.axis.spatial(64, ax2_0_0_ax3_0_0_fused % 2 * 32 + ax0_ax1_ax2_ax3_fused % 32) T.reads(weight[v0, v1, v2, v3]) T.writes(weight_reindex_shared[v0, v1, v2, v3]) T.block_attr({"buffer_dim_align":[[0, 2, 32, 8]], "meta_schedule.cooperative_fetch":4}) weight_reindex_shared[v0, v1, v2, v3] = weight[v0, v1, v2, v3] for ax0_1, ax1_1, ax4_0_1 in T.grid(1, 1, 1): for ax0_0_1, ax1_0_1 in T.grid(1, 4): with T.block("PadInput_reindex_shared_wmma.matrix_a_o"): v0_o = T.axis.spatial(16, ax2_0_0_ax3_0_0_fused v1_o = T.axis.spatial(4, ax1_0_1) T.reads(PadInput_reindex_shared[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.writes(PadInput_reindex_shared_wmma_matrix_a[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.block_attr({"meta_schedule.auto_tensorize":"wmma_load_16x16x16_f16_a"}) for ax0_1_1, ax1_1_1 in T.grid(16, 16): with T.block("PadInput_reindex_shared_wmma.matrix_a"): v0_i, v1_i = T.axis.remap("SS", [ax0_1_1, ax1_1_1]) T.reads(PadInput_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) T.writes(PadInput_reindex_shared_wmma_matrix_a[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) PadInput_reindex_shared_wmma_matrix_a[v0_o * 16 + v0_i, v1_o * 16 + v1_i] = PadInput_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i] for ax0, ax1, ax2_0, ax3_0 in T.grid(1, 1, 4, 1): with T.block("weight_reindex_shared
_wmma.matrix_b_o"): v0 = T.axis.spatial(1, 0) v1 = T.axis.spatial(1, 0) v2_o = T.axis.spatial(4, ax2_0) v3_o = T.axis.spatial(4, ax2_0_0_ax3_0_0_fused % 2 * 2 + ax2_0_2_ax3_0_2_fused) T.reads(weight_reindex_shared[v0, v1, v2_o * 16 : v2_o * 16 + 16, v3_o * 16 : v3_o * 16 + 16]) T.writes(weight_reindex_shared_wmma_matrix_b[v0, v1, v2_o * 16 : v2_o * 16 + 16, v3_o * 16 : v3_o * 16 + 16]) T.block_attr({"meta_schedule.auto_tensorize":"wmma_load_16x16x16_f16_b"}) for ax2_1, ax3_1 in T.grid(16, 16): with T.block("weight_reindex_shared_wmma.matrix_b"): v2_i, v3_i = T.axis.remap("SS", [ax2_1, ax3_1]) T.reads(weight_reindex_shared[v0, v1, v2_o * 16 + v2_i, v3_o * 16 + v3_i]) T.writes(weight_reindex_shared_wmma_matrix_b[v0, v1, v2_o * 16 + v2_i, v3_o * 16 + v3_i]) weight_reindex_shared_wmma_matrix_b[v0, v1, v2_o * 16 + v2_i, v3_o * 16 + v3_i] = weight_reindex_shared[v0, v1, v2_o * 16 + v2_i, v3_o * 16 + v3_i] for ax2_0_3, ax3_0_3, ax0_2, ax1_2, ax4_0_2, ax2_0_4, ax3_0_4 in T.grid(1, 1, 1, 1, 4, 1, 1): with T.block("conv2d_nhwc_o"): v0 = T.axis.reduce(1, 0) v1 = T.axis.reduce(1, 0) v2_o = T.axis.spatial(16, ax2_0_4 + ax2_0_0_ax3_0_0_fused v3_o = T.axis.spatial(4, ax3_0_4 + ax2_0_0_ax3_0_0_fused % 2 * 2 + ax2_0_2_ax3_0_2_fused + ax3_0_3) v4_o = T.axis.reduce(4, ax4_0_0 * 4 + ax4_0_1 * 4 + ax4_0
_2) T.reads(PadInput_reindex_shared_wmma_matrix_a[v2_o * 16 : v2_o * 16 + 16, v4_o * 16 : v4_o * 16 + 16], weight_reindex_shared_wmma_matrix_b[v0, v1, v4_o * 16 : v4_o * 16 + 16, v3_o * 16 : v3_o * 16 + 16]) T.writes(conv2d_nhwc_reindex_shared_wmma_accumulator[v2_o * 16 : v2_o * 16 + 16, v3_o * 16 : v3_o * 16 + 16]) T.block_attr({"meta_schedule.auto_tensorize":"wmma_sync_16x16x16_f16f16f32", "meta_schedule.auto_tensorize_init":"wmma_fill_16x16x16_f32", "warp_execution":1}) with T.init(): for ax2_1, ax3_1 in T.grid(16, 16): with T.block("conv2d_nhwc_init"): v2_i_init, v3_i_init = T.axis.remap("SS", [ax2_1, ax3_1]) T.reads() T.writes(conv2d_nhwc_reindex_shared_wmma_accumulator[v2_o * 16 + v2_i_init, v3_o * 16 + v3_i_init]) conv2d_nhwc_reindex_shared_wmma_accumulator[v2_o * 16 + v2_i_init, v3_o * 16 + v3_i_init] = T.float32(0) for ax2_1, ax3_1, ax4_1 in T.grid(16, 16, 16): with T.block("conv2d_nhwc"): v2_i, v3_i, v4_i = T.axis.remap("SSR", [ax2_1, ax3_1, ax4_1]) T.reads(conv2d_nhwc_reindex_shared_wmma_accumulator[v2_o * 16 + v2_i, v3_o * 16 + v3_i], PadInput_reindex_shared_wmma_matrix_a[v2_o * 16 + v2_i, v4_o * 16 + v4_i], weight_reindex_shared_wmma_matrix_b[v0, v1, v4_o * 16 + v4_i, v3_o * 16 + v3_i]) T.writes(conv2d_nhwc_reindex_shared_wmma_accumulator[v2_o * 16 + v2_i, v3_o * 16 + v3_i]) T.block_attr({"meta_schedule.tiling_structure":"SSSRRSRS"})
conv2d_nhwc_reindex_shared_wmma_accumulator[v2_o * 16 + v2_i, v3_o * 16 + v3_i] = conv2d_nhwc_reindex_shared_wmma_accumulator[v2_o * 16 + v2_i, v3_o * 16 + v3_i] + T.cast(PadInput_reindex_shared_wmma_matrix_a[v2_o * 16 + v2_i, v4_o * 16 + v4_i], "float32") * T.cast(weight_reindex_shared_wmma_matrix_b[v0, v1, v4_o * 16 + v4_i, v3_o * 16 + v3_i], "float32") for ax0_0, ax1_0 in T.grid(1, 1): with T.block("conv2d_nhwc_reindex_shared_wmma.accumulator_o"): v0_o = T.axis.spatial(16, ax2_0_0_ax3_0_0_fused v1_o = T.axis.spatial(4, ax2_0_0_ax3_0_0_fused % 2 * 2 + ax2_0_2_ax3_0_2_fused) T.reads(conv2d_nhwc_reindex_shared_wmma_accumulator[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.writes(conv2d_nhwc_reindex_shared[v0_o * 16 : v0_o * 16 + 16, v1_o * 16 : v1_o * 16 + 16]) T.block_attr({"meta_schedule.auto_tensorize":"wmma_store_16x16x16_f32_shared"}) for ax0_1, ax1_1 in T.grid(16, 16): with T.block("conv2d_nhwc_reindex_shared_wmma.accumulator"): v0_i, v1_i = T.axis.remap("SS", [ax0_1, ax1_1]) T.reads(conv2d_nhwc_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) T.writes(conv2d_nhwc_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i]) conv2d_nhwc_reindex_shared[v0_o * 16 + v0_i, v1_o * 16 + v1_i] = conv2d_nhwc_reindex_shared_wmma_accumulator[v0_o * 16 + v0_i, v1_o * 16 + v1_i] for ax0_ax1_fused in T.serial(512): with T.block("conv2d_nhwc_reindex_shared"): v0 = T.axis.spatial(256, ax2_0_0_ax3_0_0_fused v1 = T.axis.spatial(64, ax2_0_0_ax3_0_0_fused % 2 * 32 + ax0_ax1_fused % 32)
T.reads(conv2d_nhwc_reindex_shared[v0, v1]) T.writes(conv2d_nhwc[v0 T.block_attr({"meta_schedule.cooperative_fetch":2}) conv2d_nhwc[v0 decision_0 = [ ("SamplePerfectTile", [1, 1, 1]), ("SamplePerfectTile", [1, 1, 1]), ("SamplePerfectTile", [8, 2, 1, 1, 1]), ("SamplePerfectTile", [2, 1, 2, 1, 1]), ("SamplePerfectTile", [1, 1, 4]), ("SampleCategorical", 1), ("SampleCategorical", 0), ("SampleCategorical", 2), ] mod = te.create_prim_func( te_workload.conv2d_nhwc( 1, 16, 16, 64, 64, 1, 1, 0, in_dtype="float16", out_dtype="float32", ) ) actual = generate_design_space( kind="cuda", mod=mod, target=tvm.target.Target("cuda"), types=None, sch_rules=[multi_level_tiling_tensor_core(write_reuse_scope="shared")] + get_rules("cuda", ms.schedule_rule.AutoInline), ) check_sketches( mod, sketches=actual, expected_mods=[conv2d_1x1_0], expected_decisions=[decision_0], ) if __name__ == "__main__": tvm.testing.main()
import tvm from tvm
import meta_schedule as ms from tvm.meta_schedule.testing.space_generation
import ( check_sketches, generate_design_space, ) from tvm.script
import tir as T from tvm.target
import Target @tvm.script.ir_module class Matmul: @T.prim_func def main(a: T.handle, b: T.handle, c: T.handle) -> None: T.func_attr({"global_symbol": "main"}) A = T.match_buffer(a, (1024, 1024), "float32") B = T.match_buffer(b, (1024, 1024), "float32") C = T.match_buffer(c, (1024, 1024), "float32") for i, j, k in T.grid(1024, 1024, 1024): with T.block("matmul"): vi, vj, vk = T.axis.remap("SSR", [i, j, k]) with T.init(): C[vi, vj] = 0.0 C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vk, vj] @tvm.script.ir_module class ParallelizeVectorizeUnroll: @T.prim_func def main(a: T.handle, b: T.handle, c: T.handle) -> None: T.func_attr({"global_symbol": "main"}) A = T.match_buffer(a, (1024, 1024), "float32") B = T.match_buffer(b, (1024, 1024), "float32") C = T.match_buffer(c, (1024, 1024), "float32") with T.block("root"): T.reads([]) T.writes([]) T.block_attr({"meta_schedule.parallel": 128, "meta_schedule.vectorize": 16, "meta_schedule.unroll_explicit": 2}) for i, j, k in T.grid(1024, 1024, 1024): with T.block("matmul"): vi, vj, vk = T.axis.remap("SSR", [i, j, k]) with T.init(): C[vi, vj] = 0.0 C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vk, vj] @tvm.script.ir_module class PureSpatial: @T.prim_func def main(placeholder: T.Buffer[(1, 13, 13, 3, 85), "float32"], placeholder_1: T.Buffer[(1, 26, 26, 3, 85), "float32"], placeholder_2: T.Buffer[(1, 52, 52, 3, 85), "float32"], T_expand_dims: T.Buffer[(1, 80, 10647), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) T_strided_slice_with_axes = T.alloc_buffer([1, 52, 52, 3, 1], dtype="float32") T_sigmoid = T.alloc_buffer([1, 52, 52, 3, 1], dtype="float32") T_strided_slice_with_axes_1 = T.alloc_buffer(
[1, 52, 52, 3, 80], dtype="float32") T_sigmoid_1 = T.alloc_buffer([1, 52, 52, 3, 80], dtype="float32") T_multiply = T.alloc_buffer([1, 52, 52, 3, 80], dtype="float32") T_reshape = T.alloc_buffer([8112, 80], dtype="float32") T_strided_slice_with_axes_2 = T.alloc_buffer([1, 26, 26, 3, 1], dtype="float32") T_sigmoid_2 = T.alloc_buffer([1, 26, 26, 3, 1], dtype="float32") T_strided_slice_with_axes_3 = T.alloc_buffer([1, 26, 26, 3, 80], dtype="float32") T_sigmoid_3 = T.alloc_buffer([1, 26, 26, 3, 80], dtype="float32") T_multiply_1 = T.alloc_buffer([1, 26, 26, 3, 80], dtype="float32") T_reshape_1 = T.alloc_buffer([2028, 80], dtype="float32") T_strided_slice_with_axes_4 = T.alloc_buffer([1, 13, 13, 3, 1], dtype="float32") T_sigmoid_4 = T.alloc_buffer([1, 13, 13, 3, 1], dtype="float32") T_strided_slice_with_axes_5 = T.alloc_buffer([1, 13, 13, 3, 80], dtype="float32") T_sigmoid_5 = T.alloc_buffer([1, 13, 13, 3, 80], dtype="float32") T_multiply_2 = T.alloc_buffer([1, 13, 13, 3, 80], dtype="float32") T_reshape_2 = T.alloc_buffer([507, 80], dtype="float32") T_concat = T.alloc_buffer([10647, 80], dtype="float32") T_transpose = T.alloc_buffer([80, 10647], dtype="float32") for i0, i1, i2, i3, i4 in T.grid(1, 52, 52, 3, 1): with T.block("T_strided_slice_with_axes"): ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4]) T.reads(placeholder_2[ax0, ax1, ax2, ax3, T.cast(ax4, "int64") + T.int64(4)]) T.writes(T_strided_slice_with_axes[ax0, ax1, ax2, ax3, ax4]) T_strided_slice_with_axes[ax0, ax1, ax2, ax3, ax4] = placeholder_2[ax0, ax1, ax2, ax3, T.cast(ax4, "int64") + T.int64(4)] for i0, i1, i2, i3, i4 in T.grid(1, 52, 52, 3, 1): with T.block("T_sigmoid"): ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4]) T.reads(T_strided_slice_wit
h_axes[ax0, ax1, ax2, ax3, ax4]) T.writes(T_sigmoid[ax0, ax1, ax2, ax3, ax4]) T_sigmoid[ax0, ax1, ax2, ax3, ax4] = T.sigmoid(T_strided_slice_with_axes[ax0, ax1, ax2, ax3, ax4], dtype="float32") for i0, i1, i2, i3, i4 in T.grid(1, 52, 52, 3, 80): with T.block("T_strided_slice_with_axes_1"): ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4]) T.reads(placeholder_2[ax0, ax1, ax2, ax3, T.cast(ax4, "int64") + T.int64(5)]) T.writes(T_strided_slice_with_axes_1[ax0, ax1, ax2, ax3, ax4]) T_strided_slice_with_axes_1[ax0, ax1, ax2, ax3, ax4] = placeholder_2[ax0, ax1, ax2, ax3, T.cast(ax4, "int64") + T.int64(5)] for i0, i1, i2, i3, i4 in T.grid(1, 52, 52, 3, 80): with T.block("T_sigmoid_1"): ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4]) T.reads(T_strided_slice_with_axes_1[ax0, ax1, ax2, ax3, ax4]) T.writes(T_sigmoid_1[ax0, ax1, ax2, ax3, ax4]) T_sigmoid_1[ax0, ax1, ax2, ax3, ax4] = T.sigmoid(T_strided_slice_with_axes_1[ax0, ax1, ax2, ax3, ax4], dtype="float32") for i0, i1, i2, i3, i4 in T.grid(1, 52, 52, 3, 80): with T.block("T_multiply"): ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4]) T.reads(T_sigmoid[ax0, ax1, ax2, ax3, 0], T_sigmoid_1[ax0, ax1, ax2, ax3, ax4]) T.writes(T_multiply[ax0, ax1, ax2, ax3, ax4]) T_multiply[ax0, ax1, ax2, ax3, ax4] = T_sigmoid[ax0, ax1, ax2, ax3, 0] * T_sigmoid_1[ax0, ax1, ax2, ax3, ax4] for i0, i1 in T.grid(8112, 80): with T.block("T_reshape"): ax0, ax1 = T.axis.remap("SS", [i0, i1]) T.reads(T_multiply[0, (ax1 T.writes(T_reshape[ax0, ax1]) T_reshape[ax0, ax1] = T_multiply[0, (ax1 for i0, i1, i2, i3, i4 in T.grid(1, 26, 26, 3, 1): with T.block("T_st
rided_slice_with_axes_2"): ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4]) T.reads(placeholder_1[ax0, ax1, ax2, ax3, T.cast(ax4, "int64") + T.int64(4)]) T.writes(T_strided_slice_with_axes_2[ax0, ax1, ax2, ax3, ax4]) T_strided_slice_with_axes_2[ax0, ax1, ax2, ax3, ax4] = placeholder_1[ax0, ax1, ax2, ax3, T.cast(ax4, "int64") + T.int64(4)] for i0, i1, i2, i3, i4 in T.grid(1, 26, 26, 3, 1): with T.block("T_sigmoid_2"): ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4]) T.reads(T_strided_slice_with_axes_2[ax0, ax1, ax2, ax3, ax4]) T.writes(T_sigmoid_2[ax0, ax1, ax2, ax3, ax4]) T_sigmoid_2[ax0, ax1, ax2, ax3, ax4] = T.sigmoid(T_strided_slice_with_axes_2[ax0, ax1, ax2, ax3, ax4], dtype="float32") for i0, i1, i2, i3, i4 in T.grid(1, 26, 26, 3, 80): with T.block("T_strided_slice_with_axes_3"): ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4]) T.reads(placeholder_1[ax0, ax1, ax2, ax3, T.cast(ax4, "int64") + T.int64(5)]) T.writes(T_strided_slice_with_axes_3[ax0, ax1, ax2, ax3, ax4]) T_strided_slice_with_axes_3[ax0, ax1, ax2, ax3, ax4] = placeholder_1[ax0, ax1, ax2, ax3, T.cast(ax4, "int64") + T.int64(5)] for i0, i1, i2, i3, i4 in T.grid(1, 26, 26, 3, 80): with T.block("T_sigmoid_3"): ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4]) T.reads(T_strided_slice_with_axes_3[ax0, ax1, ax2, ax3, ax4]) T.writes(T_sigmoid_3[ax0, ax1, ax2, ax3, ax4]) T_sigmoid_3[ax0, ax1, ax2, ax3, ax4] = T.sigmoid(T_strided_slice_with_axes_3[ax0, ax1, ax2, ax3, ax4], dtype="float32") for i0, i1, i2, i3, i4 in T.grid(1, 26, 26, 3, 80): with T.block("T_multiply_1"): ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2,
i3, i4]) T.reads(T_sigmoid_2[ax0, ax1, ax2, ax3, 0], T_sigmoid_3[ax0, ax1, ax2, ax3, ax4]) T.writes(T_multiply_1[ax0, ax1, ax2, ax3, ax4]) T_multiply_1[ax0, ax1, ax2, ax3, ax4] = T_sigmoid_2[ax0, ax1, ax2, ax3, 0] * T_sigmoid_3[ax0, ax1, ax2, ax3, ax4] for i0, i1 in T.grid(2028, 80): with T.block("T_reshape_1"): ax0, ax1 = T.axis.remap("SS", [i0, i1]) T.reads(T_multiply_1[0, (ax1 T.writes(T_reshape_1[ax0, ax1]) T_reshape_1[ax0, ax1] = T_multiply_1[0, (ax1 for i0, i1, i2, i3, i4 in T.grid(1, 13, 13, 3, 1): with T.block("T_strided_slice_with_axes_4"): ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4]) T.reads(placeholder[ax0, ax1, ax2, ax3, T.cast(ax4, "int64") + T.int64(4)]) T.writes(T_strided_slice_with_axes_4[ax0, ax1, ax2, ax3, ax4]) T_strided_slice_with_axes_4[ax0, ax1, ax2, ax3, ax4] = placeholder[ax0, ax1, ax2, ax3, T.cast(ax4, "int64") + T.int64(4)] for i0, i1, i2, i3, i4 in T.grid(1, 13, 13, 3, 1): with T.block("T_sigmoid_4"): ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4]) T.reads(T_strided_slice_with_axes_4[ax0, ax1, ax2, ax3, ax4]) T.writes(T_sigmoid_4[ax0, ax1, ax2, ax3, ax4]) T_sigmoid_4[ax0, ax1, ax2, ax3, ax4] = T.sigmoid(T_strided_slice_with_axes_4[ax0, ax1, ax2, ax3, ax4], dtype="float32") for i0, i1, i2, i3, i4 in T.grid(1, 13, 13, 3, 80): with T.block("T_strided_slice_with_axes_5"): ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4]) T.reads(placeholder[ax0, ax1, ax2, ax3, T.cast(ax4, "int64") + T.int64(5)]) T.writes(T_strided_slice_with_axes_5[ax0, ax1, ax2, ax3, ax4]) T_strided_slice_with_axes_5[ax0, ax1, ax2, ax3, ax4] = placeholder[ax0, ax1, ax2, ax3, T.c
ast(ax4, "int64") + T.int64(5)] for i0, i1, i2, i3, i4 in T.grid(1, 13, 13, 3, 80): with T.block("T_sigmoid_5"): ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4]) T.reads(T_strided_slice_with_axes_5[ax0, ax1, ax2, ax3, ax4]) T.writes(T_sigmoid_5[ax0, ax1, ax2, ax3, ax4]) T_sigmoid_5[ax0, ax1, ax2, ax3, ax4] = T.sigmoid(T_strided_slice_with_axes_5[ax0, ax1, ax2, ax3, ax4], dtype="float32") for i0, i1, i2, i3, i4 in T.grid(1, 13, 13, 3, 80): with T.block("T_multiply_2"): ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4]) T.reads(T_sigmoid_4[ax0, ax1, ax2, ax3, 0], T_sigmoid_5[ax0, ax1, ax2, ax3, ax4]) T.writes(T_multiply_2[ax0, ax1, ax2, ax3, ax4]) T_multiply_2[ax0, ax1, ax2, ax3, ax4] = T_sigmoid_4[ax0, ax1, ax2, ax3, 0] * T_sigmoid_5[ax0, ax1, ax2, ax3, ax4] for i0, i1 in T.grid(507, 80): with T.block("T_reshape_2"): ax0, ax1 = T.axis.remap("SS", [i0, i1]) T.reads(T_multiply_2[0, (ax1 T.writes(T_reshape_2[ax0, ax1]) T_reshape_2[ax0, ax1] = T_multiply_2[0, (ax1 for i0, i1 in T.grid(10647, 80): with T.block("T_concat"): ax0, ax1 = T.axis.remap("SS", [i0, i1]) T.reads(T_reshape[ax0 - 2535, ax1], T_reshape_1[ax0 - 507, ax1], T_reshape_2[ax0, ax1]) T.writes(T_concat[ax0, ax1]) T_concat[ax0, ax1] = T.if_then_else(2535 <= ax0, T_reshape[ax0 - 2535, ax1], T.if_then_else(507 <= ax0, T_reshape_1[ax0 - 507, ax1], T_reshape_2[ax0, ax1], dtype="float32"), dtype="float32") for i0, i1 in T.grid(80, 10647): with T.block("T_transpose"): ax0, ax1 = T.axis.remap("SS", [i0, i1]) T.reads(T_concat[ax1, ax0]) T.writes(T_transpose[ax0, ax1]) T_transpose[ax0, ax1] = T_concat[ax1, ax0]
for i0, i1, i2 in T.grid(1, 80, 10647): with T.block("T_expand_dims"): ax0, ax1, ax2 = T.axis.remap("SSS", [i0, i1, i2]) T.reads(T_transpose[ax1, ax2]) T.writes(T_expand_dims[ax0, ax1, ax2]) T_expand_dims[ax0, ax1, ax2] = T_transpose[ax1, ax2] def test_parallel_vectorize_unroll(): @T.prim_func def Matmul_0( A: T.Buffer[(1024, 1024), "float32"], B: T.Buffer[(1024, 1024), "float32"], C: T.Buffer[(1024, 1024), "float32"], ) -> None: T.func_attr({"global_symbol": "main"}) with T.block("root"): T.reads() T.writes() T.block_attr( { "meta_schedule.parallel": 512, "meta_schedule.unroll_explicit": 16, "meta_schedule.vectorize": 32, } ) for i, j, k in T.grid(1024, 1024, 1024): with T.block("matmul"): vi, vj, vk = T.axis.remap("SSR", [i, j, k]) T.reads(A[vi, vk], B[vk, vj]) T.writes(C[vi, vj]) with T.init(): C[vi, vj] = T.float32(0) C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vk, vj] decision_0 = [ ("SampleCategorical", 1), ] mod = Matmul actual = generate_design_space( kind="llvm", mod=mod, target=Target("llvm --num-cores=32"), types=None, sch_rules=[ ms.schedule_rule.ParallelizeVectorizeUnroll( max_jobs_per_core=16, max_vectorize_extent=32, unroll_max_steps=[0, 16, 64, 512], unroll_explicit=True, ), ], ) check_sketches( mod, sketches=actual, expected_mods=[Matmul_0], expected_decisions=[decision_0], ) def test_parallel_vectorize_unroll_spatial(): mod = PureSpatial actual =
generate_design_space( kind="llvm", mod=mod, target=Target("llvm --num-cores=32"), types=None, sch_rules=[ ms.schedule_rule.ParallelizeVectorizeUnroll( max_jobs_per_core=-1, max_vectorize_extent=-1, unroll_max_steps=[0, 16, 64, 512], unroll_explicit=True, ), ], ) assert len(actual) == 1 trace = actual[0].trace.simplified(remove_postproc=True) assert not trace.insts if __name__ == "__main__": test_parallel_vectorize_unroll() test_parallel_vectorize_unroll_spatial()
import tvm from tvm
import meta_schedule as ms from tvm.meta_schedule.testing.space_generation
import ( check_sketches, generate_design_space, ) from tvm.script
import tir as T from tvm.target
import Target @tvm.script.ir_module class Add: @T.prim_func def main(a: T.handle, b: T.handle) -> None: T.func_attr({"global_symbol": "main"}) A = T.match_buffer(a, [2048, 2048, 2048], dtype="float32") B = T.match_buffer(b, [2048, 2048, 2048], dtype="float32") A_cached = T.alloc_buffer([2048, 2048, 2048], dtype="float32") for i, j, k in T.grid(2048, 2048, 2048): with T.block("move"): vi, vj, vk = T.axis.remap("SSS", [i, j, k]) T.reads([A[vi, vj, vk]]) T.writes([A_cached[vi, vj, vk]]) A_cached[vi, vj, vk] = A[vi, vj, vk] for i0, j0, i1, j1, k0, i2, j2, k1 in T.grid(128, 64, 4, 4, 64, 4, 8, 32): with T.block("add"): vi = T.axis.spatial(2048, i0 * 16 + i1 * 4 + i2) vj = T.axis.spatial(2048, j0 * 32 + j1 * 8 + j2) vk = T.axis.spatial(2048, k0 * 32 + k1) T.reads([A_cached[vi, vj, vk]]) T.writes([B[vi, vj, vk]]) B[vi, vj, vk] = A_cached[vi, vj, vk] + T.float32(1) def test_random_compute_location(): @T.prim_func def add_0( A: T.Buffer[(2048, 2048, 2048), "float32"], B: T.Buffer[(2048, 2048, 2048), "float32"], ) -> None: T.func_attr({"global_symbol": "main"}) A_cached = T.alloc_buffer([2048, 2048, 2048], dtype="float32") for i0, j0, i1, j1, k0, i2 in T.grid(128, 64, 4, 4, 64, 4): for ax0, ax1, ax2 in T.grid(1, 8, 32): with T.block("move"): vi = T.axis.spatial(2048, i0 * 16 + i1 * 4 + i2 + ax0) vj = T.axis.spatial(2048, j0 * 32 + j1 * 8 + ax1) vk = T.axis.spatial(2048, k0 * 32 + ax2) T.reads(A[vi, vj, vk]) T.writes(A_cached[vi, vj, vk]) A_cached[vi, vj, vk] = A[vi, vj, vk] for j2, k1 in T.grid(8, 32): with T.b
lock("add"): vi = T.axis.spatial(2048, i0 * 16 + i1 * 4 + i2) vj = T.axis.spatial(2048, j0 * 32 + j1 * 8 + j2) vk = T.axis.spatial(2048, k0 * 32 + k1) T.reads(A_cached[vi, vj, vk]) T.writes(B[vi, vj, vk]) B[vi, vj, vk] = A_cached[vi, vj, vk] + T.float32(1) decision_0 = [ ("SampleComputeLocation", 5), ] mod = Add actual = generate_design_space( kind="llvm", mod=mod, target=Target("llvm"), types=None, sch_rules=[ms.schedule_rule.RandomComputeLocation()], ) check_sketches( mod, sketches=actual, expected_mods=[add_0], expected_decisions=[decision_0], ) if __name__ == "__main__": test_random_compute_location()
""" Test Meta Schedule SearchStrategy """ from typing
import List
import pytest
import tvm
import tvm.testing from tvm
import meta_schedule as ms from tvm.meta_schedule.utils
import derived_object from tvm.meta_schedule.testing.dummy_object
import DummyMutator from tvm.script
import tir as T from tvm.tir.schedule
import Schedule, Trace MATMUL_M = 32 @tvm.script.ir_module class Matmul: @T.prim_func def main(a: T.handle, b: T.handle, c: T.handle) -> None: T.func_attr({"global_symbol": "main"}) A = T.match_buffer(a, (32, 32), "float32") B = T.match_buffer(b, (32, 32), "float32") C = T.match_buffer(c, (32, 32), "float32") for i, j, k in T.grid(32, 32, 32): with T.block("matmul"): vi, vj, vk = T.axis.remap("SSR", [i, j, k]) with T.init(): C[vi, vj] = 0.0 C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vk, vj] def _is_trace_equal(sch_1: Schedule, sch_2: Schedule, remove_decisions=True) -> bool: if remove_decisions: trace_1 = Trace(sch_1.trace.insts, {}) trace_2 = Trace(sch_2.trace.insts, {}) else: trace_1 = sch_1.trace trace_2 = sch_2.trace return str(trace_1) == str(trace_2) def _schedule_matmul(sch: Schedule): block = sch.get_block("matmul") i, j, k = sch.get_loops(block=block) i_0, i_1, i_2, i_3 = sch.split(i, sch.sample_perfect_tile(i, n=4)) j_0, j_1, j_2, j_3 = sch.split(j, sch.sample_perfect_tile(j, n=4)) k_0, k_1 = sch.split(k, sch.sample_perfect_tile(k, n=2)) sch.reorder(i_0, j_0, i_1, j_1, k_0, i_2, j_2, k_1, i_3, j_3) @pytest.mark.parametrize( "TestClass", [ ms.search_strategy.ReplayFunc, ms.search_strategy.ReplayTrace, ], ) def test_meta_schedule_replay_func( TestClass: ms.search_strategy.SearchStrategy, ): num_trials_per_iter = 7 max_trials_per_task = 20 context = ms.TuneContext( mod=Matmul, space_generator=ms.space_generator.ScheduleFn(sch_fn=_schedule_matmul, postprocs=[]), search_strategy=TestClass(), ) strategy = context.search_strategy spaces = context.space_generator.generate_design_space(context.mod) strategy.pre_tuning( max_trials=max_trials_per_task, num_trials_per_iter=num_trials_per_iter, design_sp
aces=spaces, ) (correct_sch,) = ms.space_generator.ScheduleFn(sch_fn=_schedule_matmul).generate_design_space( Matmul ) num_trials_each_iter: List[int] = [] candidates = strategy.generate_measure_candidates() while candidates is not None: num_trials_each_iter.append(len(candidates)) runner_results: List[ms.runner.RunnerResult] = [] for candidate in candidates: _is_trace_equal( candidate.sch, correct_sch, remove_decisions=(isinstance(strategy, ms.search_strategy.ReplayTrace)), ) runner_results.append( ms.runner.RunnerResult( run_secs=[0.11, 0.41, 0.54], error_msg=None, ) ) strategy.notify_runner_results(candidates, runner_results) candidates = strategy.generate_measure_candidates() strategy.post_tuning() assert num_trials_each_iter == [7, 7, 6] def test_meta_schedule_evolutionary_search(): def _schedule_matmul_small(sch: Schedule): block = sch.get_block("matmul") _, j, k = sch.get_loops(block=block) _, _ = sch.split(j, sch.sample_perfect_tile(j, n=2)) _, _ = sch.split(k, sch.sample_perfect_tile(k, n=2)) num_trials_per_iter = 10 max_trials_per_task = 2000 (correct_sch,) = ms.space_generator.ScheduleFn(sch_fn=_schedule_matmul).generate_design_space( Matmul ) context = ms.TuneContext( mod=Matmul, space_generator=ms.space_generator.ScheduleFn( sch_fn=_schedule_matmul_small, sch_rules=[], postprocs=[], mutator_probs={ DummyMutator(): 1.0, }, ), search_strategy=ms.search_strategy.EvolutionarySearch( population_size=5, init_measured_ratio=0.1, init_min_unmeasured=50, genetic_num_iters=3, genetic_mutate_prob=0.5, genetic_max_fail_coun
t=10, eps_greedy=0.9, ), target=tvm.target.Target("llvm"), num_threads=1, ) strategy = context.search_strategy strategy.pre_tuning( max_trials=max_trials_per_task, num_trials_per_iter=num_trials_per_iter, design_spaces=context.space_generator.generate_design_space(context.mod), database=ms.database.MemoryDatabase(), cost_model=ms.cost_model.RandomModel(), ) num_trials_each_iter: List[int] = [] candidates = strategy.generate_measure_candidates() while candidates is not None: num_trials_each_iter.append(len(candidates)) runner_results: List[ms.runner.RunnerResult] = [] for candidate in candidates: _is_trace_equal( candidate.sch, correct_sch, remove_decisions=(isinstance(strategy, ms.search_strategy.ReplayTrace)), ) runner_results.append( ms.runner.RunnerResult( run_secs=[0.11, 0.41, 0.54], error_msg=None, ) ) strategy.notify_runner_results(candidates, runner_results) candidates = strategy.generate_measure_candidates() strategy.post_tuning() assert sum(num_trials_each_iter) == 25 assert num_trials_each_iter.count(0) < 5 def test_meta_schedule_evolutionary_search_early_stop(): def _schedule_matmul_empty(sch: Schedule): return sch (correct_sch,) = ms.space_generator.ScheduleFn(sch_fn=_schedule_matmul).generate_design_space( Matmul ) num_trials_per_iter = 10 max_trials_per_task = 100 context = ms.TuneContext( mod=Matmul, search_strategy=ms.search_strategy.EvolutionarySearch( population_size=5, init_measured_ratio=0.1, init_min_unmeasured=50, genetic_num_iters=3, genetic_mutate_prob=0.5, genetic_max_fail_count=10, eps_greedy=0.9, ), space_g
enerator=ms.space_generator.ScheduleFn( sch_fn=_schedule_matmul_empty, sch_rules=[], postprocs=[], mutator_probs={ DummyMutator(): 1.0, }, ), target=tvm.target.Target("llvm"), num_threads=1, ) strategy = context.search_strategy strategy.pre_tuning( max_trials=max_trials_per_task, num_trials_per_iter=num_trials_per_iter, design_spaces=context.space_generator.generate_design_space(context.mod), database=ms.database.MemoryDatabase(), cost_model=ms.cost_model.RandomModel(), ) num_trials_each_iter: List[int] = [] candidates = strategy.generate_measure_candidates() while candidates is not None: num_trials_each_iter.append(len(candidates)) runner_results: List[ms.runner.RunnerResult] = [] for candidate in candidates: _is_trace_equal( candidate.sch, correct_sch, remove_decisions=(isinstance(strategy, ms.search_strategy.ReplayTrace)), ) runner_results.append( ms.runner.RunnerResult( run_secs=[0.11, 0.41, 0.54], error_msg=None, ), ) strategy.notify_runner_results(candidates, runner_results) candidates = strategy.generate_measure_candidates() strategy.post_tuning() assert num_trials_each_iter == [1, 0, 0, 0, 0] def test_meta_schedule_evolutionary_search_fail_init_population(): @derived_object
class AlwaysFailPostproc(ms.postproc.PyPostproc): """A postproc that always fails.""" def _initialize_with_tune_context(self, context: ms.TuneContext) -> None: pass def apply(self, sch: Schedule) -> bool: return False def clone(self) -> "AlwaysFailPostproc": return AlwaysFailPostproc() def __str__(self) -> str: return "AlwaysFailPostproc" num_trials_per_iter = 10 max_trials_per_task = 2000 context = ms.TuneContext( mod=Matmul, space_generator=ms.space_generator.ScheduleFn( sch_fn=_schedule_matmul, sch_rules=[], postprocs=[AlwaysFailPostproc()], mutator_probs={ DummyMutator(): 1.0, }, ), search_strategy=ms.search_strategy.EvolutionarySearch( population_size=5, init_measured_ratio=0.1, init_min_unmeasured=50, genetic_num_iters=3, genetic_mutate_prob=0.5, genetic_max_fail_count=10, eps_greedy=0.9, ), target=tvm.target.Target("llvm"), num_threads=1, ) strategy = context.search_strategy strategy.pre_tuning( max_trials=max_trials_per_task, num_trials_per_iter=num_trials_per_iter, design_spaces=context.space_generator.generate_design_space(context.mod), database=ms.database.MemoryDatabase(), cost_model=ms.cost_model.RandomModel(), ) candidates = strategy.generate_measure_candidates() assert candidates is None if __name__ == "__main__": test_meta_schedule_replay_func(ms.search_strategy.ReplayFunc) test_meta_schedule_replay_func(ms.search_strategy.ReplayTrace) test_meta_schedule_evolutionary_search() test_meta_schedule_evolutionary_search_early_stop() test_meta_schedule_evolutionary_search_fail_init_population()
"""Tests for MetaSchedule search space on CPU""" from tvm
import meta_schedule as ms from tvm.meta_schedule.testing.space_generation
import ( check_sketches, print_sketches, generate_design_space, ) from tvm.meta_schedule.testing.te_workload
import create_te_workload from tvm.script
import tir as T from tvm.target
import Target def _target(): return Target("aws/cpu/c5.9xlarge") def _design_space(mod): return generate_design_space( kind="llvm", mod=mod, target=_target(), types=ms.ScheduleRule, ) def test_cpu_c1d(): @T.prim_func def c1d_0(inputs: T.Buffer[(1, 256, 64), "float32"], weight: T.Buffer[(3, 64, 128), "float32"], conv1d_nlc: T.Buffer[(1, 128, 128), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":512, "meta_schedule.vectorize":64}) PadInput = T.alloc_buffer([1, 258, 64], dtype="float32") conv1d_nlc_global = T.alloc_buffer([1, 128, 128], dtype="float32") for i0, i1, i2 in T.grid(1, 258, 64): with T.block("PadInput"): i0_1, i1_1, i2_1 = T.axis.remap("SSS", [i0, i1, i2]) T.reads(inputs[i0_1, i1_1 - 1, i2_1]) T.writes(PadInput[i0_1, i1_1, i2_1]) PadInput[i0_1, i1_1, i2_1] = T.if_then_else(1 <= i1_1 and i1_1 < 257, inputs[i0_1, i1_1 - 1, i2_1], T.float32(0), dtype="float32") for i0_0, i1_0, i2_0, i0_1_1, i1_1_1, i2_1_1 in T.grid(1, 1, 2, 1, 1, 8): for i3_0, i4_0, i0_2, i1_2, i2_2, i3_1, i4_1, i0_3, i1_3, i2_3 in T.grid(1, 64, 1, 64, 8, 3, 1, 1, 2, 1): with T.block("conv1d_nlc"): n = T.axis.spatial(1, i0_1_1 + i0_2 + i0_3 + i0_0) l = T.axis.spatial(128, i1_0 * 128 + i1_1_1 * 128 + i1_2 * 2 + i1_3) co = T.axis.spatial(128, i2_3 + i2_0 * 64 + i2_1_1 * 8 + i2_2) rl = T.axis.reduce(3, i3_0 * 3 + i3_1) rc = T.axis.reduce(64, i4_1 + i4_0) T.reads(PadInput[n, l * 2 + rl, co T.writes(conv1d_nlc_global[n, l,
co]) T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) with T.init(): conv1d_nlc_global[n, l, co] = T.float32(0) conv1d_nlc_global[n, l, co] = conv1d_nlc_global[n, l, co] + PadInput[n, l * 2 + rl, co for ax0, ax1, ax2 in T.grid(1, 128, 8): with T.block("conv1d_nlc_global"): v0, v1 = T.axis.remap("SS", [ax0, ax1]) v2 = T.axis.spatial(128, i2_0 * 64 + i2_1_1 * 8 + ax2) T.reads(conv1d_nlc_global[v0, v1, v2]) T.writes(conv1d_nlc[v0, v1, v2]) conv1d_nlc[v0, v1, v2] = conv1d_nlc_global[v0, v1, v2] @T.prim_func def c1d_1(inputs: T.Buffer[(1, 256, 64), "float32"], weight: T.Buffer[(3, 64, 128), "float32"], conv1d_nlc: T.Buffer[(1, 128, 128), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":512, "meta_schedule.vectorize":64}) PadInput = T.alloc_buffer([1, 258, 64], dtype="float32") conv1d_nlc_global = T.alloc_buffer([1, 128, 128], dtype="float32") for i0_0, i1_0, i2_0 in T.grid(1, 1, 2): for i0_1, i1_1, i2_1 in T.grid(1, 1, 8): for ax0, ax1, ax2 in T.grid(1, 257, 64): with T.block("PadInput"): i0 = T.axis.spatial(1, ax0) i1 = T.axis.spatial(258, ax1) i2 = T.axis.spatial(64, ax2) T.reads(inputs[i0, i1 - 1, i2]) T.writes(PadInput[i0, i1, i2]) PadInput[i0, i1, i2] = T.if_then_else(1 <= i1 and i1 < 257, inputs[i0, i1 - 1, i2], T.float32(0), dtype="float32") for i
3_0, i4_0, i0_2, i1_2, i2_2, i3_1, i4_1, i0_3, i1_3, i2_3 in T.grid(1, 64, 1, 64, 8, 3, 1, 1, 2, 1): with T.block("conv1d_nlc"): n = T.axis.spatial(1, i0_1 + i0_2 + i0_3 + i0_0) l = T.axis.spatial(128, i1_0 * 128 + i1_1 * 128 + i1_2 * 2 + i1_3) co = T.axis.spatial(128, i2_3 + i2_0 * 64 + i2_1 * 8 + i2_2) rl = T.axis.reduce(3, i3_0 * 3 + i3_1) rc = T.axis.reduce(64, i4_1 + i4_0) T.reads(PadInput[n, l * 2 + rl, co T.writes(conv1d_nlc_global[n, l, co]) T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) with T.init(): conv1d_nlc_global[n, l, co] = T.float32(0) conv1d_nlc_global[n, l, co] = conv1d_nlc_global[n, l, co] + PadInput[n, l * 2 + rl, co for ax0, ax1, ax2 in T.grid(1, 128, 64): with T.block("conv1d_nlc_global"): v0, v1 = T.axis.remap("SS", [ax0, ax1]) v2 = T.axis.spatial(128, i2_0 * 64 + ax2) T.reads(conv1d_nlc_global[v0, v1, v2]) T.writes(conv1d_nlc[v0, v1, v2]) conv1d_nlc[v0, v1, v2] = conv1d_nlc_global[v0, v1, v2] @T.prim_func def c1d_2(inputs: T.Buffer[(1, 256, 64), "float32"], weight: T.Buffer[(3, 64, 128), "float32"], conv1d_nlc: T.Buffer[(1, 128, 128), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":16, "meta_schedule.vectorize":64}) for i0_0, i1_0, i2_0, i0_1, i1_1, i2_1, i3_0, i4_0, i0_2, i1_2, i2_2, i3_1, i4_1, i0_3, i1_3, i2_3 in T.grid(1, 1, 2, 1, 1, 8, 1, 64, 1, 64,
8, 3, 1, 1, 2, 1): with T.block("conv1d_nlc"): n = T.axis.spatial(1, i0_1 + i0_2 + i0_3 + i0_0) l = T.axis.spatial(128, i1_0 * 128 + i1_1 * 128 + i1_2 * 2 + i1_3) co = T.axis.spatial(128, i2_3 + i2_0 * 64 + i2_1 * 8 + i2_2) rl = T.axis.reduce(3, i3_0 * 3 + i3_1) rc = T.axis.reduce(64, i4_1 + i4_0) T.reads(inputs[n, l * 2 + rl - 1, co T.writes(conv1d_nlc[n, l, co]) T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) with T.init(): conv1d_nlc[n, l, co] = T.float32(0) conv1d_nlc[n, l, co] = conv1d_nlc[n, l, co] + T.if_then_else(1 <= l * 2 + rl and l * 2 + rl < 257, inputs[n, l * 2 + rl - 1, co decision_0 = [ ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [1, 1, 64, 2]), ("SamplePerfectTile", [2, 8, 8, 1]), ("SamplePerfectTile", [1, 3]), ("SamplePerfectTile", [64, 1]), ("SampleCategorical", 3), ("SampleComputeLocation", -1), ] decision_1 = [ ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [1, 1, 64, 2]), ("SamplePerfectTile", [2, 8, 8, 1]), ("SamplePerfectTile", [1, 3]), ("SamplePerfectTile", [64, 1]), ("SampleCategorical", 3), ("SampleComputeLocation", 5), ] decision_2 = [ ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [1, 1, 64, 2]), ("SamplePerfectTile", [2, 8, 8, 1]), ("SamplePerfectTile", [1, 3]), ("SamplePerfectTile", [64, 1]), ("SampleCategorical", 1), ("SampleComputeLocation", -2), ] mod = create_te_workload("C1D", 0) actual = _design_space(mod) check_sketches( mod, sketches=actual, expected_mods=[c1d_0, c1d_1, c1d_2], expected_decisions=[decision_0, decision_1, decision_2], ) def test_c
pu_c2d(): @T.prim_func def c2d_0(inputs: T.Buffer[(1, 224, 224, 3), "float32"], weight: T.Buffer[(7, 7, 3, 64), "float32"], conv2d_nhwc: T.Buffer[(1, 112, 112, 64), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":16, "meta_schedule.vectorize":64}) PadInput = T.alloc_buffer([1, 230, 230, 3], dtype="float32") conv2d_nhwc_global = T.alloc_buffer([1, 112, 112, 64], dtype="float32") for i0_0, i1_0, i2_0, i3_0, i0_1, i1_1, i2_1 in T.grid(1, 7, 4, 2, 1, 1, 28): for ax0, ax1, ax2, ax3 in T.grid(1, 37, 7, 3): with T.block("PadInput"): i0 = T.axis.spatial(1, ax0) i1 = T.axis.spatial(230, i1_0 * 32 + ax1) i2 = T.axis.spatial(230, i2_0 * 56 + i2_1 * 2 + ax2) i3 = T.axis.spatial(3, ax3) T.reads(inputs[i0, i1 - 3, i2 - 3, i3]) T.writes(PadInput[i0, i1, i2, i3]) PadInput[i0, i1, i2, i3] = T.if_then_else(3 <= i1 and i1 < 227 and 3 <= i2 and i2 < 227, inputs[i0, i1 - 3, i2 - 3, i3], T.float32(0), dtype="float32") for i3_1 in T.serial(8): for i4_0, i5_0, i6_0, i0_2, i1_2, i2_2, i3_2, i4_1, i5_1, i6_1, i0_3, i1_3, i2_3, i3_3 in T.grid(7, 7, 1, 1, 2, 1, 1, 1, 1, 3, 1, 8, 1, 4): with T.block("conv2d_nhwc"): n = T.axis.spatial(1, i0_3 + i0_0 + i0_1 + i0_2) h = T.axis.spatial(112, i1_0 * 16 + i1_1 * 16 + i1_2 * 8 + i1_3) w = T.axis.spatial(112, i2_3 + i2_0 * 28 + i2_1 + i2_2) co = T.axis.spatial(64, i3_0 * 32 + i3_1 * 4 + i3_2 * 4 + i3_3) rh = T.axis.reduce(7, i4_1 + i4_0)
rw = T.axis.reduce(7, i5_0 + i5_1) rc = T.axis.reduce(3, i6_0 * 3 + i6_1) T.reads(PadInput[n, h * 2 + rh, w * 2 + rw, co T.writes(conv2d_nhwc_global[n, h, w, co]) T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) with T.init(): conv2d_nhwc_global[n, h, w, co] = T.float32(0) conv2d_nhwc_global[n, h, w, co] = conv2d_nhwc_global[n, h, w, co] + PadInput[n, h * 2 + rh, w * 2 + rw, co for ax0, ax1, ax2, ax3 in T.grid(1, 16, 1, 4): with T.block("conv2d_nhwc_global"): v0 = T.axis.spatial(1, ax0) v1 = T.axis.spatial(112, i1_0 * 16 + ax1) v2 = T.axis.spatial(112, i2_0 * 28 + i2_1 + ax2) v3 = T.axis.spatial(64, i3_0 * 32 + i3_1 * 4 + ax3) T.reads(conv2d_nhwc_global[v0, v1, v2, v3]) T.writes(conv2d_nhwc[v0, v1, v2, v3]) conv2d_nhwc[v0, v1, v2, v3] = conv2d_nhwc_global[v0, v1, v2, v3] @T.prim_func def c2d_1(inputs: T.Buffer[(1, 224, 224, 3), "float32"], weight: T.Buffer[(7, 7, 3, 64), "float32"], conv2d_nhwc: T.Buffer[(1, 112, 112, 64), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":512, "meta_schedule.vectorize":64}) PadInput = T.alloc_buffer([1, 230, 230, 3], dtype="float32") conv2d_nhwc_global = T.alloc_buffer([1, 112, 112, 64], dtype="float32") for i0, i1, i2, i3 in T.grid(1, 230, 230, 3): with T.block("PadInput"): i0_1, i1_1, i2_1, i3_1 = T.axis.remap("SS
SS", [i0, i1, i2, i3]) T.reads(inputs[i0_1, i1_1 - 3, i2_1 - 3, i3_1]) T.writes(PadInput[i0_1, i1_1, i2_1, i3_1]) PadInput[i0_1, i1_1, i2_1, i3_1] = T.if_then_else(3 <= i1_1 and i1_1 < 227 and 3 <= i2_1 and i2_1 < 227, inputs[i0_1, i1_1 - 3, i2_1 - 3, i3_1], T.float32(0), dtype="float32") for i0_0, i1_0, i2_0, i3_0 in T.grid(1, 7, 4, 2): for i0_1_1, i1_1_1, i2_1_1, i3_1_1, i4_0, i5_0, i6_0, i0_2, i1_2, i2_2, i3_2, i4_1, i5_1, i6_1, i0_3, i1_3, i2_3, i3_3 in T.grid(1, 1, 28, 8, 7, 7, 1, 1, 2, 1, 1, 1, 1, 3, 1, 8, 1, 4): with T.block("conv2d_nhwc"): n = T.axis.spatial(1, i0_3 + i0_0 + i0_1_1 + i0_2) h = T.axis.spatial(112, i1_0 * 16 + i1_1_1 * 16 + i1_2 * 8 + i1_3) w = T.axis.spatial(112, i2_3 + i2_0 * 28 + i2_1_1 + i2_2) co = T.axis.spatial(64, i3_0 * 32 + i3_1_1 * 4 + i3_2 * 4 + i3_3) rh = T.axis.reduce(7, i4_1 + i4_0) rw = T.axis.reduce(7, i5_0 + i5_1) rc = T.axis.reduce(3, i6_0 * 3 + i6_1) T.reads(PadInput[n, h * 2 + rh, w * 2 + rw, co T.writes(conv2d_nhwc_global[n, h, w, co]) T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) with T.init(): conv2d_nhwc_global[n, h, w, co] = T.float32(0) conv2d_nhwc_global[n, h, w, co] = conv2d_nhwc_global[n, h, w, co] + PadInput[n, h * 2 + rh, w * 2 + rw, co for ax0, ax1, ax2, ax3 in T.grid(1, 16, 28, 32): with T.block("conv2d_nhwc_global"): v0 = T.axis.spatial(1, ax0) v1 = T.axis.spatial(112, i1_0 * 16 + ax1) v2 = T.axis.spatial(112, i2_0 * 28 + ax2) v3 = T.axis.spatial(64, i3_0 * 32 + ax3) T.reads
(conv2d_nhwc_global[v0, v1, v2, v3]) T.writes(conv2d_nhwc[v0, v1, v2, v3]) conv2d_nhwc[v0, v1, v2, v3] = conv2d_nhwc_global[v0, v1, v2, v3] @T.prim_func def c2d_2(inputs: T.Buffer[(1, 224, 224, 3), "float32"], weight: T.Buffer[(7, 7, 3, 64), "float32"], conv2d_nhwc: T.Buffer[(1, 112, 112, 64), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":0, "meta_schedule.vectorize":64}) PadInput = T.alloc_buffer([1, 230, 230, 3], dtype="float32") for i0_0, i1_0 in T.grid(1, 7): for ax0, ax1, ax2, ax3 in T.grid(1, 37, 229, 3): with T.block("PadInput"): i0 = T.axis.spatial(1, ax0) i1 = T.axis.spatial(230, i1_0 * 32 + ax1) i2 = T.axis.spatial(230, ax2) i3 = T.axis.spatial(3, ax3) T.reads(inputs[i0, i1 - 3, i2 - 3, i3]) T.writes(PadInput[i0, i1, i2, i3]) PadInput[i0, i1, i2, i3] = T.if_then_else(3 <= i1 and i1 < 227 and 3 <= i2 and i2 < 227, inputs[i0, i1 - 3, i2 - 3, i3], T.float32(0), dtype="float32") for i2_0, i3_0, i0_1, i1_1, i2_1, i3_1, i4_0, i5_0, i6_0, i0_2, i1_2, i2_2, i3_2, i4_1, i5_1, i6_1, i0_3, i1_3, i2_3, i3_3 in T.grid(4, 2, 1, 1, 28, 8, 7, 7, 1, 1, 2, 1, 1, 1, 1, 3, 1, 8, 1, 4): with T.block("conv2d_nhwc"): n = T.axis.spatial(1, i0_3 + i0_0 + i0_1 + i0_2) h = T.axis.spatial(112, i1_0 * 16 + i1_1 * 16 + i1_2 * 8 + i1_3) w = T.axis.spatial(112, i2_3 + i2_0 * 28 + i2_1 + i2_2) co = T.axis.spatial(64, i3_0 * 32 + i3_1 * 4 + i3_2 * 4 + i3_3) rh = T.axis.reduce(7, i4_1 +
i4_0) rw = T.axis.reduce(7, i5_0 + i5_1) rc = T.axis.reduce(3, i6_0 * 3 + i6_1) T.reads(PadInput[n, h * 2 + rh, w * 2 + rw, co T.writes(conv2d_nhwc[n, h, w, co]) T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) with T.init(): conv2d_nhwc[n, h, w, co] = T.float32(0) conv2d_nhwc[n, h, w, co] = conv2d_nhwc[n, h, w, co] + PadInput[n, h * 2 + rh, w * 2 + rw, co decision_0 = [ ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [7, 1, 2, 8]), ("SamplePerfectTile", [4, 28, 1, 1]), ("SamplePerfectTile", [2, 8, 1, 4]), ("SamplePerfectTile", [7, 1]), ("SamplePerfectTile", [7, 1]), ("SamplePerfectTile", [1, 3]), ("SampleCategorical", 1), ("SampleComputeLocation", 6), ] decision_1 = [ ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [7, 1, 2, 8]), ("SamplePerfectTile", [4, 28, 1, 1]), ("SamplePerfectTile", [2, 8, 1, 4]), ("SamplePerfectTile", [7, 1]), ("SamplePerfectTile", [7, 1]), ("SamplePerfectTile", [1, 3]), ("SampleCategorical", 3), ("SampleComputeLocation", -1), ] decision_2 = [ ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [7, 1, 2, 8]), ("SamplePerfectTile", [4, 28, 1, 1]), ("SamplePerfectTile", [2, 8, 1, 4]), ("SamplePerfectTile", [7, 1]), ("SamplePerfectTile", [7, 1]), ("SamplePerfectTile", [1, 3]), ("SampleCategorical", 0), ("SampleComputeLocation", 1), ] mod = create_te_workload("C2D", 0) actual = _design_space(mod) check_sketches( mod, sketches=actual, expected_mods=[c2d_0, c2d_1, c2d_2], expected_decisions=[decision_0, decision_1, decision_2], ) def test_cpu_c3d(): @T.prim_func
def c3d_0(inputs: T.Buffer[(1, 16, 224, 224, 3), "float32"], weight: T.Buffer[(7, 7, 7, 3, 64), "float32"], conv3d_ndhwc: T.Buffer[(1, 8, 112, 112, 64), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":512, "meta_schedule.vectorize":64}) PadInput = T.alloc_buffer([1, 22, 230, 230, 3], dtype="float32") conv3d_ndhwc_global = T.alloc_buffer([1, 8, 112, 112, 64], dtype="float32") for i0_0, i1_0, i2_0, i3_0, i4_0 in T.grid(1, 2, 4, 1, 2): for ax0, ax1, ax2, ax3, ax4 in T.grid(1, 13, 61, 229, 3): with T.block("PadInput"): i0 = T.axis.spatial(1, ax0) i1 = T.axis.spatial(22, i1_0 * 8 + ax1) i2 = T.axis.spatial(230, i2_0 * 56 + ax2) i3 = T.axis.spatial(230, ax3) i4 = T.axis.spatial(3, ax4) T.reads(inputs[i0, i1 - 3, i2 - 3, i3 - 3, i4]) T.writes(PadInput[i0, i1, i2, i3, i4]) PadInput[i0, i1, i2, i3, i4] = T.if_then_else(3 <= i1 and i1 < 19 and 3 <= i2 and i2 < 227 and 3 <= i3 and i3 < 227, inputs[i0, i1 - 3, i2 - 3, i3 - 3, i4], T.float32(0), dtype="float32") for i0_1, i1_1, i2_1, i3_1, i4_1 in T.grid(1, 4, 4, 14, 1): for i5_0, i6_0, i7_0, i8_0, i0_2, i1_2, i2_2, i3_2, i4_2, i5_1, i6_1, i7_1, i8_1, i0_3, i1_3, i2_3, i3_3, i4_3 in T.grid(1, 7, 7, 3, 1, 1, 1, 1, 32, 7, 1, 1, 1, 1, 1, 7, 8, 1): with T.block("conv3d_ndhwc"): n = T.axis.spatial(1, i0_1 + i0_2 + i0_3 + i0_0) d = T.axis.spatial(8, i1_3 + i1_0 * 4 + i1_1 + i1_2) h = T.axis.spatial(112, i2_0 * 28 + i2_1 * 7 + i2_2 * 7 + i2_3)
w = T.axis.spatial(112, i3_0 * 112 + i3_1 * 8 + i3_2 * 8 + i3_3) co = T.axis.spatial(64, i4_3 + i4_0 * 32 + i4_1 * 32 + i4_2) rd = T.axis.reduce(7, i5_0 * 7 + i5_1) rh = T.axis.reduce(7, i6_1 + i6_0) rw = T.axis.reduce(7, i7_0 + i7_1) rc = T.axis.reduce(3, i8_1 + i8_0) T.reads(PadInput[n, d * 2 + rd, h * 2 + rh, w * 2 + rw, co T.writes(conv3d_ndhwc_global[n, d, h, w, co]) T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) with T.init(): conv3d_ndhwc_global[n, d, h, w, co] = T.float32(0) conv3d_ndhwc_global[n, d, h, w, co] = conv3d_ndhwc_global[n, d, h, w, co] + PadInput[n, d * 2 + rd, h * 2 + rh, w * 2 + rw, co for ax0, ax1, ax2, ax3, ax4 in T.grid(1, 1, 7, 8, 32): with T.block("conv3d_ndhwc_global"): v0 = T.axis.spatial(1, ax0) v1 = T.axis.spatial(8, i1_0 * 4 + i1_1 + ax1) v2 = T.axis.spatial(112, i2_0 * 28 + i2_1 * 7 + ax2) v3 = T.axis.spatial(112, i3_1 * 8 + ax3) v4 = T.axis.spatial(64, i4_0 * 32 + ax4) T.reads(conv3d_ndhwc_global[v0, v1, v2, v3, v4]) T.writes(conv3d_ndhwc[v0, v1, v2, v3, v4]) conv3d_ndhwc[v0, v1, v2, v3, v4] = conv3d_ndhwc_global[v0, v1, v2, v3, v4] @T.prim_func def c3d_1(inputs: T.Buffer[(1, 16, 224, 224, 3), "float32"], weight: T.Buffer[(7, 7, 7, 3, 64), "float32"], conv3d_ndhwc: T.Buffer[(1, 8, 112, 112, 64), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes()
T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":64, "meta_schedule.vectorize":64}) PadInput = T.alloc_buffer([1, 22, 230, 230, 3], dtype="float32") conv3d_ndhwc_global = T.alloc_buffer([1, 8, 112, 112, 64], dtype="float32") for i0_0, i1_0, i2_0, i3_0, i4_0 in T.grid(1, 2, 4, 1, 2): for i0_1, i1_1, i2_1, i3_1 in T.grid(1, 4, 4, 14): for ax0, ax1, ax2, ax3, ax4 in T.grid(1, 7, 19, 21, 3): with T.block("PadInput"): i0 = T.axis.spatial(1, ax0) i1 = T.axis.spatial(22, i1_0 * 8 + i1_1 * 2 + ax1) i2 = T.axis.spatial(230, i2_0 * 56 + i2_1 * 14 + ax2) i3 = T.axis.spatial(230, i3_1 * 16 + ax3) i4 = T.axis.spatial(3, ax4) T.reads(inputs[i0, i1 - 3, i2 - 3, i3 - 3, i4]) T.writes(PadInput[i0, i1, i2, i3, i4]) PadInput[i0, i1, i2, i3, i4] = T.if_then_else(3 <= i1 and i1 < 19 and 3 <= i2 and i2 < 227 and 3 <= i3 and i3 < 227, inputs[i0, i1 - 3, i2 - 3, i3 - 3, i4], T.float32(0), dtype="float32") for i4_1, i5_0, i6_0, i7_0, i8_0, i0_2, i1_2, i2_2, i3_2, i4_2, i5_1, i6_1, i7_1, i8_1, i0_3, i1_3, i2_3, i3_3, i4_3 in T.grid(1, 1, 7, 7, 3, 1, 1, 1, 1, 32, 7, 1, 1, 1, 1, 1, 7, 8, 1): with T.block("conv3d_ndhwc"): n = T.axis.spatial(1, i0_1 + i0_2 + i0_3 + i0_0) d = T.axis.spatial(8, i1_3 + i1_0 * 4 + i1_1 + i1_2) h = T.axis.spatial(112, i2_0 * 28 + i2_1 * 7 + i2_2 * 7 + i2_3) w = T.axis.spatial(112, i3_0 * 112 + i3_1 * 8 + i3_2 * 8 + i3_3) co = T.axis.spatial(64, i4_3 + i4_0 * 32 + i4_1 * 32 + i4_2) rd = T.axis.reduce(7, i5_0 * 7 + i5_1) rh = T.axis
.reduce(7, i6_1 + i6_0) rw = T.axis.reduce(7, i7_0 + i7_1) rc = T.axis.reduce(3, i8_1 + i8_0) T.reads(PadInput[n, d * 2 + rd, h * 2 + rh, w * 2 + rw, co T.writes(conv3d_ndhwc_global[n, d, h, w, co]) T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) with T.init(): conv3d_ndhwc_global[n, d, h, w, co] = T.float32(0) conv3d_ndhwc_global[n, d, h, w, co] = conv3d_ndhwc_global[n, d, h, w, co] + PadInput[n, d * 2 + rd, h * 2 + rh, w * 2 + rw, co for ax0, ax1, ax2, ax3, ax4 in T.grid(1, 4, 28, 112, 32): with T.block("conv3d_ndhwc_global"): v0 = T.axis.spatial(1, ax0) v1 = T.axis.spatial(8, i1_0 * 4 + ax1) v2 = T.axis.spatial(112, i2_0 * 28 + ax2) v3 = T.axis.spatial(112, ax3) v4 = T.axis.spatial(64, i4_0 * 32 + ax4) T.reads(conv3d_ndhwc_global[v0, v1, v2, v3, v4]) T.writes(conv3d_ndhwc[v0, v1, v2, v3, v4]) conv3d_ndhwc[v0, v1, v2, v3, v4] = conv3d_ndhwc_global[v0, v1, v2, v3, v4] @T.prim_func def c3d_2(inputs: T.Buffer[(1, 16, 224, 224, 3), "float32"], weight: T.Buffer[(7, 7, 7, 3, 64), "float32"], conv3d_ndhwc: T.Buffer[(1, 8, 112, 112, 64), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":16, "meta_schedule.vectorize":64}) PadInput = T.alloc_buffer([1, 22, 230, 230, 3], dtype="float32") for i0_0, i1_0, i2_0, i3_0, i4_0, i0_1, i1_1, i2_1, i3_1 in T.grid(1, 2, 4, 1, 2, 1, 4, 4, 14): for ax0, ax1, ax2,
ax3, ax4 in T.grid(1, 7, 19, 21, 3): with T.block("PadInput"): i0 = T.axis.spatial(1, ax0) i1 = T.axis.spatial(22, i1_0 * 8 + i1_1 * 2 + ax1) i2 = T.axis.spatial(230, i2_0 * 56 + i2_1 * 14 + ax2) i3 = T.axis.spatial(230, i3_1 * 16 + ax3) i4 = T.axis.spatial(3, ax4) T.reads(inputs[i0, i1 - 3, i2 - 3, i3 - 3, i4]) T.writes(PadInput[i0, i1, i2, i3, i4]) PadInput[i0, i1, i2, i3, i4] = T.if_then_else(3 <= i1 and i1 < 19 and 3 <= i2 and i2 < 227 and 3 <= i3 and i3 < 227, inputs[i0, i1 - 3, i2 - 3, i3 - 3, i4], T.float32(0), dtype="float32") for i4_1, i5_0, i6_0, i7_0, i8_0, i0_2, i1_2, i2_2, i3_2, i4_2, i5_1, i6_1, i7_1, i8_1, i0_3, i1_3, i2_3, i3_3, i4_3 in T.grid(1, 1, 7, 7, 3, 1, 1, 1, 1, 32, 7, 1, 1, 1, 1, 1, 7, 8, 1): with T.block("conv3d_ndhwc"): n = T.axis.spatial(1, i0_1 + i0_2 + i0_3 + i0_0) d = T.axis.spatial(8, i1_3 + i1_0 * 4 + i1_1 + i1_2) h = T.axis.spatial(112, i2_0 * 28 + i2_1 * 7 + i2_2 * 7 + i2_3) w = T.axis.spatial(112, i3_0 * 112 + i3_1 * 8 + i3_2 * 8 + i3_3) co = T.axis.spatial(64, i4_3 + i4_0 * 32 + i4_1 * 32 + i4_2) rd = T.axis.reduce(7, i5_0 * 7 + i5_1) rh = T.axis.reduce(7, i6_1 + i6_0) rw = T.axis.reduce(7, i7_0 + i7_1) rc = T.axis.reduce(3, i8_1 + i8_0) T.reads(PadInput[n, d * 2 + rd, h * 2 + rh, w * 2 + rw, co T.writes(conv3d_ndhwc[n, d, h, w, co]) T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) with T.init(): conv3d_ndhwc[n, d, h, w, co] = T.float32(0) conv3d_ndhwc[n, d, h, w, c
o] = conv3d_ndhwc[n, d, h, w, co] + PadInput[n, d * 2 + rd, h * 2 + rh, w * 2 + rw, co decision_0 = [ ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [2, 4, 1, 1]), ("SamplePerfectTile", [4, 4, 1, 7]), ("SamplePerfectTile", [1, 14, 1, 8]), ("SamplePerfectTile", [2, 1, 32, 1]), ("SamplePerfectTile", [1, 7]), ("SamplePerfectTile", [7, 1]), ("SamplePerfectTile", [7, 1]), ("SamplePerfectTile", [3, 1]), ("SampleCategorical", 3), ("SampleComputeLocation", 4), ] decision_1 = [ ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [2, 4, 1, 1]), ("SamplePerfectTile", [4, 4, 1, 7]), ("SamplePerfectTile", [1, 14, 1, 8]), ("SamplePerfectTile", [2, 1, 32, 1]), ("SamplePerfectTile", [1, 7]), ("SamplePerfectTile", [7, 1]), ("SamplePerfectTile", [7, 1]), ("SamplePerfectTile", [3, 1]), ("SampleCategorical", 2), ("SampleComputeLocation", 8), ] decision_2 = [ ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [2, 4, 1, 1]), ("SamplePerfectTile", [4, 4, 1, 7]), ("SamplePerfectTile", [1, 14, 1, 8]), ("SamplePerfectTile", [2, 1, 32, 1]), ("SamplePerfectTile", [1, 7]), ("SamplePerfectTile", [7, 1]), ("SamplePerfectTile", [7, 1]), ("SamplePerfectTile", [3, 1]), ("SampleCategorical", 1), ("SampleComputeLocation", 8), ] mod = create_te_workload("C3D", 0) actual = _design_space(mod) check_sketches( mod, sketches=actual, expected_mods=[c3d_0, c3d_1, c3d_2], expected_decisions=[decision_0, decision_1, decision_2], ) def test_cpu_cap(): @T.prim_func def cap_0(inputs: T.Buffer[(1, 16, 16, 4, 4, 32), "float32"], weight: T.Buffer[(3, 3, 4, 4, 32, 32), "float32"], conv2d_capsule_nhwijc: T.Buffer[(1, 8, 8, 4, 4, 32), "float32"]) -> None: T.func_attr({"gl
obal_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":0, "meta_schedule.vectorize":64}) PadInput = T.alloc_buffer([1, 18, 18, 4, 4, 32], dtype="float32") conv2d_capsule_nhwijc_global = T.alloc_buffer([1, 8, 8, 4, 4, 32], dtype="float32") for i0_0, i1_0, i2_0, i3_0, i4_0, i5_0, i0_1, i1_1 in T.grid(1, 2, 1, 1, 1, 1, 1, 4): for ax0, ax1, ax2, ax3, ax4, ax5 in T.grid(1, 3, 17, 4, 4, 32): with T.block("PadInput"): i0 = T.axis.spatial(1, ax0) i1 = T.axis.spatial(18, i1_0 * 8 + i1_1 * 2 + ax1) i2 = T.axis.spatial(18, ax2) i3, i4, i5 = T.axis.remap("SSS", [ax3, ax4, ax5]) T.reads(inputs[i0, i1 - 1, i2 - 1, i3, i4, i5]) T.writes(PadInput[i0, i1, i2, i3, i4, i5]) PadInput[i0, i1, i2, i3, i4, i5] = T.if_then_else(1 <= i1 and i1 < 17 and 1 <= i2 and i2 < 17, inputs[i0, i1 - 1, i2 - 1, i3, i4, i5], T.float32(0), dtype="float32") for i2_1, i3_1, i4_1, i5_1 in T.grid(4, 1, 4, 2): for i6_0, i7_0, i8_0, i9_0, i0_2, i1_2, i2_2, i3_2, i4_2, i5_2, i6_1, i7_1, i8_1, i9_1, i0_3, i1_3, i2_3, i3_3, i4_3, i5_3 in T.grid(1, 3, 4, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 32, 1, 1, 1, 4, 1, 16): with T.block("conv2d_capsule_nhwijc"): n = T.axis.spatial(1, i0_2 + i0_3 + i0_0 + i0_1) h = T.axis.spatial(8, i1_0 * 4 + i1_1 + i1_2 + i1_3) w = T.axis.spatial(8, i2_0 * 8 + i2_1 * 2 + i2_2 + i2_3) cap_i = T.axis.spatial(4, i3_0 * 4 + i3_1 * 4 + i3_2 * 4 + i3_3) cap_j = T.axis.spatial(4, i4_0 * 4 + i4_1 + i4_2 + i4_3) co = T.axis.spatial(32,
i5_0 * 32 + i5_1 * 16 + i5_2 * 16 + i5_3) rh = T.axis.reduce(3, i6_0 * 3 + i6_1) rw = T.axis.reduce(3, i7_1 + i7_0) cap_k = T.axis.reduce(4, i8_0 + i8_1) rc = T.axis.reduce(32, i9_0 * 32 + i9_1) T.reads(PadInput[n, h * 2 + rh, w * 2 + rw, cap_i, cap_k, rc], weight[rh, rw, cap_k, cap_j, rc, co]) T.writes(conv2d_capsule_nhwijc_global[n, h, w, cap_i, cap_j, co]) T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) with T.init(): conv2d_capsule_nhwijc_global[n, h, w, cap_i, cap_j, co] = T.float32(0) conv2d_capsule_nhwijc_global[n, h, w, cap_i, cap_j, co] = conv2d_capsule_nhwijc_global[n, h, w, cap_i, cap_j, co] + PadInput[n, h * 2 + rh, w * 2 + rw, cap_i, cap_k, rc] * weight[rh, rw, cap_k, cap_j, rc, co] for ax0, ax1, ax2, ax3, ax4, ax5 in T.grid(1, 1, 2, 4, 1, 16): with T.block("conv2d_capsule_nhwijc_global"): v0 = T.axis.spatial(1, ax0) v1 = T.axis.spatial(8, i1_0 * 4 + i1_1 + ax1) v2 = T.axis.spatial(8, i2_1 * 2 + ax2) v3 = T.axis.spatial(4, ax3) v4 = T.axis.spatial(4, i4_1 + ax4) v5 = T.axis.spatial(32, i5_1 * 16 + ax5) T.reads(conv2d_capsule_nhwijc_global[v0, v1, v2, v3, v4, v5]) T.writes(conv2d_capsule_nhwijc[v0, v1, v2, v3, v4, v5]) conv2d_capsule_nhwijc[v0, v1, v2, v3, v4, v5] = conv2d_capsule_nhwijc_global[v0, v1, v2, v3, v4, v5] @T.prim_func def cap_1(inputs: T.Buffer[(1, 16, 16, 4, 4, 32), "float32"], weight: T.Buffer[(3, 3, 4, 4, 32, 32), "float32"], conv2d_capsule_nhwijc: T.Buffer[(1, 8, 8, 4, 4, 32), "float32"]) -> None:
T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":0, "meta_schedule.vectorize":64}) PadInput = T.alloc_buffer([1, 18, 18, 4, 4, 32], dtype="float32") conv2d_capsule_nhwijc_global = T.alloc_buffer([1, 8, 8, 4, 4, 32], dtype="float32") for i0_0, i1_0, i2_0, i3_0, i4_0, i5_0 in T.grid(1, 2, 1, 1, 1, 1): for i0_1, i1_1, i2_1, i3_1, i4_1, i5_1 in T.grid(1, 4, 4, 1, 4, 2): for ax0, ax1, ax2, ax3, ax4, ax5 in T.grid(1, 3, 5, 4, 4, 32): with T.block("PadInput"): i0 = T.axis.spatial(1, ax0) i1 = T.axis.spatial(18, i1_0 * 8 + i1_1 * 2 + ax1) i2 = T.axis.spatial(18, i2_1 * 4 + ax2) i3, i4, i5 = T.axis.remap("SSS", [ax3, ax4, ax5]) T.reads(inputs[i0, i1 - 1, i2 - 1, i3, i4, i5]) T.writes(PadInput[i0, i1, i2, i3, i4, i5]) PadInput[i0, i1, i2, i3, i4, i5] = T.if_then_else(1 <= i1 and i1 < 17 and 1 <= i2 and i2 < 17, inputs[i0, i1 - 1, i2 - 1, i3, i4, i5], T.float32(0), dtype="float32") for i6_0, i7_0, i8_0, i9_0, i0_2, i1_2, i2_2, i3_2, i4_2, i5_2, i6_1, i7_1, i8_1, i9_1, i0_3, i1_3, i2_3, i3_3, i4_3, i5_3 in T.grid(1, 3, 4, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 32, 1, 1, 1, 4, 1, 16): with T.block("conv2d_capsule_nhwijc"): n = T.axis.spatial(1, i0_2 + i0_3 + i0_0 + i0_1) h = T.axis.spatial(8, i1_0 * 4 + i1_1 + i1_2 + i1_3) w = T.axis.spatial(8, i2_0 * 8 + i2_1 * 2 + i2_2 + i2_3) cap_i = T.axis.spatial(4, i3_0 * 4 + i3_1 * 4 + i3_2 * 4 + i3_3) cap_j = T.axis.spatial(4, i4
_0 * 4 + i4_1 + i4_2 + i4_3) co = T.axis.spatial(32, i5_0 * 32 + i5_1 * 16 + i5_2 * 16 + i5_3) rh = T.axis.reduce(3, i6_0 * 3 + i6_1) rw = T.axis.reduce(3, i7_1 + i7_0) cap_k = T.axis.reduce(4, i8_0 + i8_1) rc = T.axis.reduce(32, i9_0 * 32 + i9_1) T.reads(PadInput[n, h * 2 + rh, w * 2 + rw, cap_i, cap_k, rc], weight[rh, rw, cap_k, cap_j, rc, co]) T.writes(conv2d_capsule_nhwijc_global[n, h, w, cap_i, cap_j, co]) T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) with T.init(): conv2d_capsule_nhwijc_global[n, h, w, cap_i, cap_j, co] = T.float32(0) conv2d_capsule_nhwijc_global[n, h, w, cap_i, cap_j, co] = conv2d_capsule_nhwijc_global[n, h, w, cap_i, cap_j, co] + PadInput[n, h * 2 + rh, w * 2 + rw, cap_i, cap_k, rc] * weight[rh, rw, cap_k, cap_j, rc, co] for ax0, ax1, ax2, ax3, ax4, ax5 in T.grid(1, 4, 8, 4, 4, 32): with T.block("conv2d_capsule_nhwijc_global"): v0 = T.axis.spatial(1, ax0) v1 = T.axis.spatial(8, i1_0 * 4 + ax1) v2, v3, v4, v5 = T.axis.remap("SSSS", [ax2, ax3, ax4, ax5]) T.reads(conv2d_capsule_nhwijc_global[v0, v1, v2, v3, v4, v5]) T.writes(conv2d_capsule_nhwijc[v0, v1, v2, v3, v4, v5]) conv2d_capsule_nhwijc[v0, v1, v2, v3, v4, v5] = conv2d_capsule_nhwijc_global[v0, v1, v2, v3, v4, v5] @T.prim_func def cap_2(inputs: T.Buffer[(1, 16, 16, 4, 4, 32), "float32"], weight: T.Buffer[(3, 3, 4, 4, 32, 32), "float32"], conv2d_capsule_nhwijc: T.Buffer[(1, 8, 8, 4, 4, 32), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"):
T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":16, "meta_schedule.vectorize":64}) PadInput = T.alloc_buffer([1, 18, 18, 4, 4, 32], dtype="float32") for i0, i1, i2, i3, i4, i5 in T.grid(1, 18, 18, 4, 4, 32): with T.block("PadInput"): i0_1, i1_1, i2_1, i3_1, i4_1, i5_1 = T.axis.remap("SSSSSS", [i0, i1, i2, i3, i4, i5]) T.reads(inputs[i0_1, i1_1 - 1, i2_1 - 1, i3_1, i4_1, i5_1]) T.writes(PadInput[i0_1, i1_1, i2_1, i3_1, i4_1, i5_1]) PadInput[i0_1, i1_1, i2_1, i3_1, i4_1, i5_1] = T.if_then_else(1 <= i1_1 and i1_1 < 17 and 1 <= i2_1 and i2_1 < 17, inputs[i0_1, i1_1 - 1, i2_1 - 1, i3_1, i4_1, i5_1], T.float32(0), dtype="float32") for i0_0, i1_0, i2_0, i3_0, i4_0, i5_0, i0_1_1, i1_1_1, i2_1_1, i3_1_1, i4_1_1, i5_1_1, i6_0, i7_0, i8_0, i9_0, i0_2, i1_2, i2_2, i3_2, i4_2, i5_2, i6_1, i7_1, i8_1, i9_1, i0_3, i1_3, i2_3, i3_3, i4_3, i5_3 in T.grid(1, 2, 1, 1, 1, 1, 1, 4, 4, 1, 4, 2, 1, 3, 4, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 32, 1, 1, 1, 4, 1, 16): with T.block("conv2d_capsule_nhwijc"): n = T.axis.spatial(1, i0_2 + i0_3 + i0_0 + i0_1_1) h = T.axis.spatial(8, i1_0 * 4 + i1_1_1 + i1_2 + i1_3) w = T.axis.spatial(8, i2_0 * 8 + i2_1_1 * 2 + i2_2 + i2_3) cap_i = T.axis.spatial(4, i3_0 * 4 + i3_1_1 * 4 + i3_2 * 4 + i3_3) cap_j = T.axis.spatial(4, i4_0 * 4 + i4_1_1 + i4_2 + i4_3) co = T.axis.spatial(32, i5_0 * 32 + i5_1_1 * 16 + i5_2 * 16 + i5_3) rh = T.axis.reduce(3, i6_0 * 3 + i6_1) rw = T.axis.reduce(3, i7_1 + i7_0) cap_k = T.axis.reduce(4, i8_0 + i8_1) rc = T.axis.reduce(32, i9_0 * 32 + i9_1) T.reads(PadInput[n, h * 2 + rh, w * 2 + rw, cap_i, cap_k, rc], weight[rh, rw, cap_k, cap_j, rc, co])
T.writes(conv2d_capsule_nhwijc[n, h, w, cap_i, cap_j, co]) T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) with T.init(): conv2d_capsule_nhwijc[n, h, w, cap_i, cap_j, co] = T.float32(0) conv2d_capsule_nhwijc[n, h, w, cap_i, cap_j, co] = conv2d_capsule_nhwijc[n, h, w, cap_i, cap_j, co] + PadInput[n, h * 2 + rh, w * 2 + rw, cap_i, cap_k, rc] * weight[rh, rw, cap_k, cap_j, rc, co] decision_0 = [ ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [2, 4, 1, 1]), ("SamplePerfectTile", [1, 4, 2, 1]), ("SamplePerfectTile", [1, 1, 1, 4]), ("SamplePerfectTile", [1, 4, 1, 1]), ("SamplePerfectTile", [1, 2, 1, 16]), ("SamplePerfectTile", [1, 3]), ("SamplePerfectTile", [3, 1]), ("SamplePerfectTile", [4, 1]), ("SamplePerfectTile", [1, 32]), ("SampleCategorical", 0), ("SampleComputeLocation", 7), ] decision_1 = [ ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [2, 4, 1, 1]), ("SamplePerfectTile", [1, 4, 2, 1]), ("SamplePerfectTile", [1, 1, 1, 4]), ("SamplePerfectTile", [1, 4, 1, 1]), ("SamplePerfectTile", [1, 2, 1, 16]), ("SamplePerfectTile", [1, 3]), ("SamplePerfectTile", [3, 1]), ("SamplePerfectTile", [4, 1]), ("SamplePerfectTile", [1, 32]), ("SampleCategorical", 0), ("SampleComputeLocation", 11), ] decision_2 = [ ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [2, 4, 1, 1]), ("SamplePerfectTile", [1, 4, 2, 1]), ("SamplePerfectTile", [1, 1, 1, 4]), ("SamplePerfectTile", [1, 4, 1, 1]), ("SamplePerfectTile", [1, 2, 1, 16]), ("SamplePerfectTile", [1, 3]), ("SamplePerfectTile", [3, 1]), ("SamplePerfectTile", [4, 1]), ("SamplePerfectTile", [1, 32]), ("SampleCategorical", 1), ("SampleCom
puteLocation", -1), ] mod = create_te_workload("CAP", 0) actual = _design_space(mod) check_sketches( mod, sketches=actual, expected_mods=[cap_0, cap_1, cap_2], expected_decisions=[decision_0, decision_1, decision_2], ) def test_cpu_dep(): @T.prim_func def dep_0(placeholder: T.Buffer[(1, 112, 112, 32), "float32"], placeholder_1: T.Buffer[(1, 3, 3, 32), "float32"], depth_conv2d_nhwc: T.Buffer[(1, 112, 112, 32), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":64, "meta_schedule.vectorize":64}) PadInput = T.alloc_buffer([1, 114, 114, 32], dtype="float32") depth_conv2d_nhwc_global = T.alloc_buffer([1, 112, 112, 32], dtype="float32") for i0, i1, i2, i3 in T.grid(1, 114, 114, 32): with T.block("PadInput"): i0_1, i1_1, i2_1, i3_1 = T.axis.remap("SSSS", [i0, i1, i2, i3]) T.reads(placeholder[i0_1, i1_1 - 1, i2_1 - 1, i3_1]) T.writes(PadInput[i0_1, i1_1, i2_1, i3_1]) PadInput[i0_1, i1_1, i2_1, i3_1] = T.if_then_else(1 <= i1_1 and i1_1 < 113 and 1 <= i2_1 and i2_1 < 113, placeholder[i0_1, i1_1 - 1, i2_1 - 1, i3_1], T.float32(0), dtype="float32") for i0_0, i1_0, i2_0, i3_0, i0_1_1, i1_1_1, i2_1_1, i3_1_1 in T.grid(1, 1, 1, 1, 1, 4, 4, 8): for i4_0, i5_0, i0_2, i1_2, i2_2, i3_2, i4_1, i5_1, i0_3, i1_3, i2_3, i3_3 in T.grid(1, 1, 1, 2, 7, 2, 3, 3, 1, 14, 4, 2): with T.block("depth_conv2d_nhwc"): n = T.axis.spatial(1, i0_2 + i0_3 + i0_0 + i0_1_1) h = T.axis.spatial(112, i1_0 * 112 + i1_1_1 * 28 + i1_2 * 14 + i1_3) w = T.axis.spatial(112, i2_0 * 112 + i2_1_1 * 28 + i2_2 * 4 + i2_3)
c = T.axis.spatial(32, i3_0 * 32 + i3_1_1 * 4 + i3_2 * 2 + i3_3) rh = T.axis.reduce(3, i4_0 * 3 + i4_1) rw = T.axis.reduce(3, i5_0 * 3 + i5_1) T.reads(PadInput[n, h + rh, w + rw, c], placeholder_1[0, rh, rw, c]) T.writes(depth_conv2d_nhwc_global[n, h, w, c]) T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) with T.init(): depth_conv2d_nhwc_global[n, h, w, c] = T.float32(0) depth_conv2d_nhwc_global[n, h, w, c] = depth_conv2d_nhwc_global[n, h, w, c] + PadInput[n, h + rh, w + rw, c] * placeholder_1[0, rh, rw, c] for ax0, ax1, ax2, ax3 in T.grid(1, 28, 28, 4): with T.block("depth_conv2d_nhwc_global"): v0 = T.axis.spatial(1, ax0) v1 = T.axis.spatial(112, i1_1_1 * 28 + ax1) v2 = T.axis.spatial(112, i2_1_1 * 28 + ax2) v3 = T.axis.spatial(32, i3_1_1 * 4 + ax3) T.reads(depth_conv2d_nhwc_global[v0, v1, v2, v3]) T.writes(depth_conv2d_nhwc[v0, v1, v2, v3]) depth_conv2d_nhwc[v0, v1, v2, v3] = depth_conv2d_nhwc_global[v0, v1, v2, v3] @T.prim_func def dep_1(placeholder: T.Buffer[(1, 112, 112, 32), "float32"], placeholder_1: T.Buffer[(1, 3, 3, 32), "float32"], depth_conv2d_nhwc: T.Buffer[(1, 112, 112, 32), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":16, "meta_schedule.vectorize":64}) PadInput = T.alloc_buffer([1, 114, 114, 32], dtype="float32") depth_conv2d_nhwc_global = T.alloc_buffer([1, 112, 112, 32], dtype="float32") for i0, i1, i2, i3 in T.grid(1, 114,
114, 32): with T.block("PadInput"): i0_1, i1_1, i2_1, i3_1 = T.axis.remap("SSSS", [i0, i1, i2, i3]) T.reads(placeholder[i0_1, i1_1 - 1, i2_1 - 1, i3_1]) T.writes(PadInput[i0_1, i1_1, i2_1, i3_1]) PadInput[i0_1, i1_1, i2_1, i3_1] = T.if_then_else(1 <= i1_1 and i1_1 < 113 and 1 <= i2_1 and i2_1 < 113, placeholder[i0_1, i1_1 - 1, i2_1 - 1, i3_1], T.float32(0), dtype="float32") for i0_0, i1_0, i2_0, i3_0 in T.grid(1, 1, 1, 1): for i0_1_1, i1_1_1, i2_1_1, i3_1_1, i4_0, i5_0, i0_2, i1_2, i2_2, i3_2, i4_1, i5_1, i0_3, i1_3, i2_3, i3_3 in T.grid(1, 4, 4, 8, 1, 1, 1, 2, 7, 2, 3, 3, 1, 14, 4, 2): with T.block("depth_conv2d_nhwc"): n = T.axis.spatial(1, i0_2 + i0_3 + i0_0 + i0_1_1) h = T.axis.spatial(112, i1_0 * 112 + i1_1_1 * 28 + i1_2 * 14 + i1_3) w = T.axis.spatial(112, i2_0 * 112 + i2_1_1 * 28 + i2_2 * 4 + i2_3) c = T.axis.spatial(32, i3_0 * 32 + i3_1_1 * 4 + i3_2 * 2 + i3_3) rh = T.axis.reduce(3, i4_0 * 3 + i4_1) rw = T.axis.reduce(3, i5_0 * 3 + i5_1) T.reads(PadInput[n, h + rh, w + rw, c], placeholder_1[0, rh, rw, c]) T.writes(depth_conv2d_nhwc_global[n, h, w, c]) T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) with T.init(): depth_conv2d_nhwc_global[n, h, w, c] = T.float32(0) depth_conv2d_nhwc_global[n, h, w, c] = depth_conv2d_nhwc_global[n, h, w, c] + PadInput[n, h + rh, w + rw, c] * placeholder_1[0, rh, rw, c] for ax0, ax1, ax2, ax3 in T.grid(1, 112, 112, 32): with T.block("depth_conv2d_nhwc_global"): v0, v1, v2, v3 = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3]) T.reads(depth_conv2d_nhwc_global[v
0, v1, v2, v3]) T.writes(depth_conv2d_nhwc[v0, v1, v2, v3]) depth_conv2d_nhwc[v0, v1, v2, v3] = depth_conv2d_nhwc_global[v0, v1, v2, v3] @T.prim_func def dep_2(placeholder: T.Buffer[(1, 112, 112, 32), "float32"], placeholder_1: T.Buffer[(1, 3, 3, 32), "float32"], depth_conv2d_nhwc: T.Buffer[(1, 112, 112, 32), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":0, "meta_schedule.vectorize":64}) PadInput = T.alloc_buffer([1, 114, 114, 32], dtype="float32") for i0_0, i1_0, i2_0, i3_0, i0_1, i1_1 in T.grid(1, 1, 1, 1, 1, 4): for ax0, ax1, ax2, ax3 in T.grid(1, 30, 114, 32): with T.block("PadInput"): i0 = T.axis.spatial(1, ax0) i1 = T.axis.spatial(114, i1_1 * 28 + ax1) i2, i3 = T.axis.remap("SS", [ax2, ax3]) T.reads(placeholder[i0, i1 - 1, i2 - 1, i3]) T.writes(PadInput[i0, i1, i2, i3]) PadInput[i0, i1, i2, i3] = T.if_then_else(1 <= i1 and i1 < 113 and 1 <= i2 and i2 < 113, placeholder[i0, i1 - 1, i2 - 1, i3], T.float32(0), dtype="float32") for i2_1, i3_1, i4_0, i5_0, i0_2, i1_2, i2_2, i3_2, i4_1, i5_1, i0_3, i1_3, i2_3, i3_3 in T.grid(4, 8, 1, 1, 1, 2, 7, 2, 3, 3, 1, 14, 4, 2): with T.block("depth_conv2d_nhwc"): n = T.axis.spatial(1, i0_2 + i0_3 + i0_0 + i0_1) h = T.axis.spatial(112, i1_0 * 112 + i1_1 * 28 + i1_2 * 14 + i1_3) w = T.axis.spatial(112, i2_0 * 112 + i2_1 * 28 + i2_2 * 4 + i2_3) c = T.axis.spatial(32, i3_0 * 32 + i3_1 * 4 + i3_2 * 2 + i3_3) rh = T.axis.reduce(3, i4_0 * 3 + i4_1)
rw = T.axis.reduce(3, i5_0 * 3 + i5_1) T.reads(PadInput[n, h + rh, w + rw, c], placeholder_1[0, rh, rw, c]) T.writes(depth_conv2d_nhwc[n, h, w, c]) T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) with T.init(): depth_conv2d_nhwc[n, h, w, c] = T.float32(0) depth_conv2d_nhwc[n, h, w, c] = depth_conv2d_nhwc[n, h, w, c] + PadInput[n, h + rh, w + rw, c] * placeholder_1[0, rh, rw, c] decision_0 = [ ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [1, 4, 2, 14]), ("SamplePerfectTile", [1, 4, 7, 4]), ("SamplePerfectTile", [1, 8, 2, 2]), ("SamplePerfectTile", [1, 3]), ("SamplePerfectTile", [1, 3]), ("SampleCategorical", 2), ("SampleComputeLocation", -1), ] decision_1 = [ ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [1, 4, 2, 14]), ("SamplePerfectTile", [1, 4, 7, 4]), ("SamplePerfectTile", [1, 8, 2, 2]), ("SamplePerfectTile", [1, 3]), ("SamplePerfectTile", [1, 3]), ("SampleCategorical", 1), ("SampleComputeLocation", -1), ] decision_2 = [ ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [1, 4, 2, 14]), ("SamplePerfectTile", [1, 4, 7, 4]), ("SamplePerfectTile", [1, 8, 2, 2]), ("SamplePerfectTile", [1, 3]), ("SamplePerfectTile", [1, 3]), ("SampleCategorical", 0), ("SampleComputeLocation", 5), ] mod = create_te_workload("DEP", 0) actual = _design_space(mod) check_sketches( mod, sketches=actual, expected_mods=[dep_0, dep_1, dep_2], expected_decisions=[decision_0, decision_1, decision_2], ) def test_cpu_dil(): @T.prim_func def dil_0(inputs: T.Buffer[(1, 224, 224, 3), "float32"], weight: T.Buffer[(7, 7, 3, 64), "float32"], conv2d_nhwc: T.Buffe
r[(1, 109, 109, 64), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":64, "meta_schedule.vectorize":64}) PadInput = T.alloc_buffer([1, 230, 230, 3], dtype="float32") conv2d_nhwc_global = T.alloc_buffer([1, 109, 109, 64], dtype="float32") for i0_0, i1_0, i2_0, i3_0, i0_1, i1_1, i2_1, i3_1 in T.grid(1, 109, 1, 4, 1, 1, 1, 2): for ax0, ax1, ax2, ax3 in T.grid(1, 13, 229, 3): with T.block("PadInput"): i0 = T.axis.spatial(1, ax0) i1 = T.axis.spatial(230, i1_0 * 2 + ax1) i2 = T.axis.spatial(230, ax2) i3 = T.axis.spatial(3, ax3) T.reads(inputs[i0, i1 - 3, i2 - 3, i3]) T.writes(PadInput[i0, i1, i2, i3]) PadInput[i0, i1, i2, i3] = T.if_then_else(3 <= i1 and i1 < 227 and 3 <= i2 and i2 < 227, inputs[i0, i1 - 3, i2 - 3, i3], T.float32(0), dtype="float32") for i4_0, i5_0, i6_0, i0_2, i1_2, i2_2, i3_2, i4_1, i5_1, i6_1, i0_3, i1_3, i2_3, i3_3 in T.grid(7, 1, 1, 1, 1, 109, 8, 1, 7, 3, 1, 1, 1, 1): with T.block("conv2d_nhwc"): n = T.axis.spatial(1, i0_3 + i0_0 + i0_1 + i0_2) h = T.axis.spatial(109, i1_2 + i1_3 + i1_0 + i1_1) w = T.axis.spatial(109, i2_3 + i2_0 * 109 + i2_1 * 109 + i2_2) co = T.axis.spatial(64, i3_0 * 16 + i3_1 * 8 + i3_2 + i3_3) rh = T.axis.reduce(7, i4_1 + i4_0) rw = T.axis.reduce(7, i5_0 * 7 + i5_1) rc = T.axis.reduce(3, i6_0 * 3 + i6_1) T.reads(PadInput[n, h * 2 + rh * 2, w * 2 + rw * 2, co T.writes(conv2d_n
hwc_global[n, h, w, co]) T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) with T.init(): conv2d_nhwc_global[n, h, w, co] = T.float32(0) conv2d_nhwc_global[n, h, w, co] = conv2d_nhwc_global[n, h, w, co] + PadInput[n, h * 2 + rh * 2, w * 2 + rw * 2, co for ax0, ax1, ax2, ax3 in T.grid(1, 1, 109, 8): with T.block("conv2d_nhwc_global"): v0 = T.axis.spatial(1, ax0) v1 = T.axis.spatial(109, i1_0 + ax1) v2 = T.axis.spatial(109, ax2) v3 = T.axis.spatial(64, i3_0 * 16 + i3_1 * 8 + ax3) T.reads(conv2d_nhwc_global[v0, v1, v2, v3]) T.writes(conv2d_nhwc[v0, v1, v2, v3]) conv2d_nhwc[v0, v1, v2, v3] = conv2d_nhwc_global[v0, v1, v2, v3] @T.prim_func def dil_1(inputs: T.Buffer[(1, 224, 224, 3), "float32"], weight: T.Buffer[(7, 7, 3, 64), "float32"], conv2d_nhwc: T.Buffer[(1, 109, 109, 64), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":0, "meta_schedule.vectorize":64}) PadInput = T.alloc_buffer([1, 230, 230, 3], dtype="float32") conv2d_nhwc_global = T.alloc_buffer([1, 109, 109, 64], dtype="float32") for i0_0, i1_0, i2_0, i3_0 in T.grid(1, 109, 1, 4): for i0_1, i1_1, i2_1, i3_1, i4_0 in T.grid(1, 1, 1, 2, 7): for ax0, ax1, ax2, ax3 in T.grid(1, 1, 229, 3): with T.block("PadInput"): i0 = T.axis.spatial(1, ax0) i1 = T.axis.spatial(230, i1_0 * 2 + i4_0 * 2 + ax1) i2 = T.axis.spatial(230, ax2) i3
= T.axis.spatial(3, ax3) T.reads(inputs[i0, i1 - 3, i2 - 3, i3]) T.writes(PadInput[i0, i1, i2, i3]) PadInput[i0, i1, i2, i3] = T.if_then_else(3 <= i1 and i1 < 227 and 3 <= i2 and i2 < 227, inputs[i0, i1 - 3, i2 - 3, i3], T.float32(0), dtype="float32") for i5_0, i6_0, i0_2, i1_2, i2_2, i3_2, i4_1, i5_1, i6_1, i0_3, i1_3, i2_3, i3_3 in T.grid(1, 1, 1, 1, 109, 8, 1, 7, 3, 1, 1, 1, 1): with T.block("conv2d_nhwc"): n = T.axis.spatial(1, i0_3 + i0_0 + i0_1 + i0_2) h = T.axis.spatial(109, i1_2 + i1_3 + i1_0 + i1_1) w = T.axis.spatial(109, i2_3 + i2_0 * 109 + i2_1 * 109 + i2_2) co = T.axis.spatial(64, i3_0 * 16 + i3_1 * 8 + i3_2 + i3_3) rh = T.axis.reduce(7, i4_1 + i4_0) rw = T.axis.reduce(7, i5_0 * 7 + i5_1) rc = T.axis.reduce(3, i6_0 * 3 + i6_1) T.reads(PadInput[n, h * 2 + rh * 2, w * 2 + rw * 2, co T.writes(conv2d_nhwc_global[n, h, w, co]) T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) with T.init(): conv2d_nhwc_global[n, h, w, co] = T.float32(0) conv2d_nhwc_global[n, h, w, co] = conv2d_nhwc_global[n, h, w, co] + PadInput[n, h * 2 + rh * 2, w * 2 + rw * 2, co for ax0, ax1, ax2, ax3 in T.grid(1, 1, 109, 16): with T.block("conv2d_nhwc_global"): v0 = T.axis.spatial(1, ax0) v1 = T.axis.spatial(109, i1_0 + ax1) v2 = T.axis.spatial(109, ax2) v3 = T.axis.spatial(64, i3_0 * 16 + ax3) T.reads(conv2d_nhwc_global[v0, v1, v2, v3]) T.writes(conv2d_nhwc[v
0, v1, v2, v3]) conv2d_nhwc[v0, v1, v2, v3] = conv2d_nhwc_global[v0, v1, v2, v3] @T.prim_func def dil_2(inputs: T.Buffer[(1, 224, 224, 3), "float32"], weight: T.Buffer[(7, 7, 3, 64), "float32"], conv2d_nhwc: T.Buffer[(1, 109, 109, 64), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":0, "meta_schedule.vectorize":64}) PadInput = T.alloc_buffer([1, 230, 230, 3], dtype="float32") for i0_0, i1_0 in T.grid(1, 109): for ax0, ax1, ax2, ax3 in T.grid(1, 13, 229, 3): with T.block("PadInput"): i0 = T.axis.spatial(1, ax0) i1 = T.axis.spatial(230, i1_0 * 2 + ax1) i2 = T.axis.spatial(230, ax2) i3 = T.axis.spatial(3, ax3) T.reads(inputs[i0, i1 - 3, i2 - 3, i3]) T.writes(PadInput[i0, i1, i2, i3]) PadInput[i0, i1, i2, i3] = T.if_then_else(3 <= i1 and i1 < 227 and 3 <= i2 and i2 < 227, inputs[i0, i1 - 3, i2 - 3, i3], T.float32(0), dtype="float32") for i2_0, i3_0, i0_1, i1_1, i2_1, i3_1, i4_0, i5_0, i6_0, i0_2, i1_2, i2_2, i3_2, i4_1, i5_1, i6_1, i0_3, i1_3, i2_3, i3_3 in T.grid(1, 4, 1, 1, 1, 2, 7, 1, 1, 1, 1, 109, 8, 1, 7, 3, 1, 1, 1, 1): with T.block("conv2d_nhwc"): n = T.axis.spatial(1, i0_3 + i0_0 + i0_1 + i0_2) h = T.axis.spatial(109, i1_2 + i1_3 + i1_0 + i1_1) w = T.axis.spatial(109, i2_3 + i2_0 * 109 + i2_1 * 109 + i2_2) co = T.axis.spatial(64, i3_0 * 16 + i3_1 * 8 + i3_2 + i3_3) rh = T.axis.reduce(7, i4_1 + i4_0) rw = T.axis.reduce(7, i5_0 * 7 + i5_1)
rc = T.axis.reduce(3, i6_0 * 3 + i6_1) T.reads(PadInput[n, h * 2 + rh * 2, w * 2 + rw * 2, co T.writes(conv2d_nhwc[n, h, w, co]) T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) with T.init(): conv2d_nhwc[n, h, w, co] = T.float32(0) conv2d_nhwc[n, h, w, co] = conv2d_nhwc[n, h, w, co] + PadInput[n, h * 2 + rh * 2, w * 2 + rw * 2, co decision_0 = [ ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [109, 1, 1, 1]), ("SamplePerfectTile", [1, 1, 109, 1]), ("SamplePerfectTile", [4, 2, 8, 1]), ("SamplePerfectTile", [7, 1]), ("SamplePerfectTile", [1, 7]), ("SamplePerfectTile", [1, 3]), ("SampleCategorical", 2), ("SampleComputeLocation", 7), ] decision_1 = [ ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [109, 1, 1, 1]), ("SamplePerfectTile", [1, 1, 109, 1]), ("SamplePerfectTile", [4, 2, 8, 1]), ("SamplePerfectTile", [7, 1]), ("SamplePerfectTile", [1, 7]), ("SamplePerfectTile", [1, 3]), ("SampleCategorical", 0), ("SampleComputeLocation", 8), ] decision_2 = [ ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [109, 1, 1, 1]), ("SamplePerfectTile", [1, 1, 109, 1]), ("SamplePerfectTile", [4, 2, 8, 1]), ("SamplePerfectTile", [7, 1]), ("SamplePerfectTile", [1, 7]), ("SamplePerfectTile", [1, 3]), ("SampleCategorical", 0), ("SampleComputeLocation", 1), ] mod = create_te_workload("DIL", 0) actual = _design_space(mod) check_sketches( mod, sketches=actual, expected_mods=[dil_0, dil_1, dil_2], expected_decisions=[decision_0, decision_1, decision_2], ) def test_cpu_gmm(): @T.prim_func def gmm_0(X: T.Buffer[(1, 128, 128), "float32"], Y: T.Buffer
[(1, 128, 128), "float32"], Z: T.Buffer[(1, 128, 128), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":16, "meta_schedule.vectorize":64}) Z_global = T.alloc_buffer([1, 128, 128], dtype="float32") for i0_0, i1_0, i2_0, i0_1, i1_1, i2_1 in T.grid(1, 4, 2, 1, 1, 8): for i3_0, i0_2, i1_2, i2_2, i3_1, i0_3, i1_3, i2_3 in T.grid(128, 1, 16, 1, 1, 1, 2, 8): with T.block("Z"): b = T.axis.spatial(1, i0_0 + i0_1 + i0_2 + i0_3) i = T.axis.spatial(128, i1_0 * 32 + i1_1 * 32 + i1_2 * 2 + i1_3) j = T.axis.spatial(128, i2_0 * 64 + i2_1 * 8 + i2_2 * 8 + i2_3) k = T.axis.reduce(128, i3_1 + i3_0) T.reads(X[b, i, k], Y[b, k, j]) T.writes(Z_global[b, i, j]) T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) with T.init(): Z_global[b, i, j] = T.float32(0) Z_global[b, i, j] = Z_global[b, i, j] + X[b, i, k] * Y[b, k, j] for ax0, ax1, ax2 in T.grid(1, 32, 8): with T.block("Z_global"): v0 = T.axis.spatial(1, ax0) v1 = T.axis.spatial(128, i1_0 * 32 + ax1) v2 = T.axis.spatial(128, i2_0 * 64 + i2_1 * 8 + ax2) T.reads(Z_global[v0, v1, v2]) T.writes(Z[v0, v1, v2]) Z[v0, v1, v2] = Z_global[v0, v1, v2] @T.prim_func def gmm_1(X: T.Buffer[(1, 128, 128), "float32"], Y: T.Buffer[(1, 128, 128), "float32"], Z: T.Buffer[(1, 128, 128), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True})
with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":16, "meta_schedule.vectorize":64}) Z_global = T.alloc_buffer([1, 128, 128], dtype="float32") for i0_0, i1_0, i2_0 in T.grid(1, 4, 2): for i0_1, i1_1, i2_1, i3_0, i0_2, i1_2, i2_2, i3_1, i0_3, i1_3, i2_3 in T.grid(1, 1, 8, 128, 1, 16, 1, 1, 1, 2, 8): with T.block("Z"): b = T.axis.spatial(1, i0_0 + i0_1 + i0_2 + i0_3) i = T.axis.spatial(128, i1_0 * 32 + i1_1 * 32 + i1_2 * 2 + i1_3) j = T.axis.spatial(128, i2_0 * 64 + i2_1 * 8 + i2_2 * 8 + i2_3) k = T.axis.reduce(128, i3_1 + i3_0) T.reads(X[b, i, k], Y[b, k, j]) T.writes(Z_global[b, i, j]) T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) with T.init(): Z_global[b, i, j] = T.float32(0) Z_global[b, i, j] = Z_global[b, i, j] + X[b, i, k] * Y[b, k, j] for ax0, ax1, ax2 in T.grid(1, 32, 64): with T.block("Z_global"): v0 = T.axis.spatial(1, ax0) v1 = T.axis.spatial(128, i1_0 * 32 + ax1) v2 = T.axis.spatial(128, i2_0 * 64 + ax2) T.reads(Z_global[v0, v1, v2]) T.writes(Z[v0, v1, v2]) Z[v0, v1, v2] = Z_global[v0, v1, v2] @T.prim_func def gmm_2(X: T.Buffer[(1, 128, 128), "float32"], Y: T.Buffer[(1, 128, 128), "float32"], Z: T.Buffer[(1, 128, 128), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":16, "meta_schedul
e.vectorize":64}) for i0_0, i1_0, i2_0, i0_1, i1_1, i2_1, i3_0, i0_2, i1_2, i2_2, i3_1, i0_3, i1_3, i2_3 in T.grid(1, 4, 2, 1, 1, 8, 128, 1, 16, 1, 1, 1, 2, 8): with T.block("Z"): b = T.axis.spatial(1, i0_0 + i0_1 + i0_2 + i0_3) i = T.axis.spatial(128, i1_0 * 32 + i1_1 * 32 + i1_2 * 2 + i1_3) j = T.axis.spatial(128, i2_0 * 64 + i2_1 * 8 + i2_2 * 8 + i2_3) k = T.axis.reduce(128, i3_1 + i3_0) T.reads(X[b, i, k], Y[b, k, j]) T.writes(Z[b, i, j]) T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) with T.init(): Z[b, i, j] = T.float32(0) Z[b, i, j] = Z[b, i, j] + X[b, i, k] * Y[b, k, j] decision_0 = [ ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [4, 1, 16, 2]), ("SamplePerfectTile", [2, 8, 1, 8]), ("SamplePerfectTile", [128, 1]), ("SampleCategorical", 1), ] decision_1 = [ ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [4, 1, 16, 2]), ("SamplePerfectTile", [2, 8, 1, 8]), ("SamplePerfectTile", [128, 1]), ("SampleCategorical", 1), ] decision_2 = [ ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [4, 1, 16, 2]), ("SamplePerfectTile", [2, 8, 1, 8]), ("SamplePerfectTile", [128, 1]), ("SampleCategorical", 1), ] mod = create_te_workload("GMM", 0) actual = _design_space(mod) check_sketches( mod, sketches=actual, expected_mods=[gmm_0, gmm_1, gmm_2], expected_decisions=[decision_0, decision_1, decision_2], ) def test_cpu_grp(): @T.prim_func def grp_0(inputs: T.Buffer[(1, 56, 56, 64), "float32"], weight: T.Buffer[(3, 3, 16, 128), "float32"], conv2d_nhwc: T.Buffer[(1, 28, 28, 128), "float32"]) -> None: T.func_attr({"global_symbol": "mai
n", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":16, "meta_schedule.vectorize":64}) PadInput = T.alloc_buffer([1, 58, 58, 64], dtype="float32") conv2d_nhwc_global = T.alloc_buffer([1, 28, 28, 128], dtype="float32") for i0_0, i1_0, i2_0, i3_0 in T.grid(1, 7, 1, 2): for ax0, ax1, ax2, ax3 in T.grid(1, 9, 57, 32): with T.block("PadInput"): i0 = T.axis.spatial(1, ax0) i1 = T.axis.spatial(58, i1_0 * 8 + ax1) i2 = T.axis.spatial(58, ax2) i3 = T.axis.spatial(64, i3_0 * 32 + ax3) T.reads(inputs[i0, i1 - 1, i2 - 1, i3]) T.writes(PadInput[i0, i1, i2, i3]) PadInput[i0, i1, i2, i3] = T.if_then_else(1 <= i1 and i1 < 57 and 1 <= i2 and i2 < 57, inputs[i0, i1 - 1, i2 - 1, i3], T.float32(0), dtype="float32") for i0_1, i1_1, i2_1, i3_1 in T.grid(1, 4, 1, 1): for i4_0, i5_0, i6_0, i0_2, i1_2, i2_2, i3_2, i4_1, i5_1, i6_1, i0_3, i1_3, i2_3, i3_3 in T.grid(1, 3, 8, 1, 1, 4, 4, 3, 1, 2, 1, 1, 7, 16): with T.block("conv2d_nhwc"): n = T.axis.spatial(1, i0_3 + i0_0 + i0_1 + i0_2) h = T.axis.spatial(28, i1_0 * 4 + i1_1 + i1_2 + i1_3) w = T.axis.spatial(28, i2_0 * 28 + i2_1 * 28 + i2_2 * 7 + i2_3) co = T.axis.spatial(128, i3_0 * 64 + i3_1 * 64 + i3_2 * 16 + i3_3) rh = T.axis.reduce(3, i4_0 * 3 + i4_1) rw = T.axis.reduce(3, i5_0 + i5_1) rc = T.axis.reduce(16, i6_0 * 2 + i6_1) T.reads(PadInput[n, h * 2 + rh, w * 2 + rw, co T.writes(conv2d_nhwc_global[n
, h, w, co]) T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) with T.init(): conv2d_nhwc_global[n, h, w, co] = T.float32(0) conv2d_nhwc_global[n, h, w, co] = conv2d_nhwc_global[n, h, w, co] + PadInput[n, h * 2 + rh, w * 2 + rw, co for ax0, ax1, ax2, ax3 in T.grid(1, 1, 28, 64): with T.block("conv2d_nhwc_global"): v0 = T.axis.spatial(1, ax0) v1 = T.axis.spatial(28, i1_0 * 4 + i1_1 + ax1) v2 = T.axis.spatial(28, ax2) v3 = T.axis.spatial(128, i3_0 * 64 + ax3) T.reads(conv2d_nhwc_global[v0, v1, v2, v3]) T.writes(conv2d_nhwc[v0, v1, v2, v3]) conv2d_nhwc[v0, v1, v2, v3] = conv2d_nhwc_global[v0, v1, v2, v3] @T.prim_func def grp_1(inputs: T.Buffer[(1, 56, 56, 64), "float32"], weight: T.Buffer[(3, 3, 16, 128), "float32"], conv2d_nhwc: T.Buffer[(1, 28, 28, 128), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":512, "meta_schedule.vectorize":64}) PadInput = T.alloc_buffer([1, 58, 58, 64], dtype="float32") conv2d_nhwc_global = T.alloc_buffer([1, 28, 28, 128], dtype="float32") for i0, i1, i2, i3 in T.grid(1, 58, 58, 64): with T.block("PadInput"): i0_1, i1_1, i2_1, i3_1 = T.axis.remap("SSSS", [i0, i1, i2, i3]) T.reads(inputs[i0_1, i1_1 - 1, i2_1 - 1, i3_1]) T.writes(PadInput[i0_1, i1_1, i2_1, i3_1]) PadInput[i0_1, i1_1, i2_1, i3_1] = T.if_then_else(1 <= i1_1 and i1_1 < 57 and 1 <= i2_1 and i2_1 < 57, inputs[i0_1,
i1_1 - 1, i2_1 - 1, i3_1], T.float32(0), dtype="float32") for i0_0, i1_0, i2_0, i3_0 in T.grid(1, 7, 1, 2): for i0_1_1, i1_1_1, i2_1_1, i3_1_1, i4_0, i5_0, i6_0, i0_2, i1_2, i2_2, i3_2, i4_1, i5_1, i6_1, i0_3, i1_3, i2_3, i3_3 in T.grid(1, 4, 1, 1, 1, 3, 8, 1, 1, 4, 4, 3, 1, 2, 1, 1, 7, 16): with T.block("conv2d_nhwc"): n = T.axis.spatial(1, i0_3 + i0_0 + i0_1_1 + i0_2) h = T.axis.spatial(28, i1_0 * 4 + i1_1_1 + i1_2 + i1_3) w = T.axis.spatial(28, i2_0 * 28 + i2_1_1 * 28 + i2_2 * 7 + i2_3) co = T.axis.spatial(128, i3_0 * 64 + i3_1_1 * 64 + i3_2 * 16 + i3_3) rh = T.axis.reduce(3, i4_0 * 3 + i4_1) rw = T.axis.reduce(3, i5_0 + i5_1) rc = T.axis.reduce(16, i6_0 * 2 + i6_1) T.reads(PadInput[n, h * 2 + rh, w * 2 + rw, co T.writes(conv2d_nhwc_global[n, h, w, co]) T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) with T.init(): conv2d_nhwc_global[n, h, w, co] = T.float32(0) conv2d_nhwc_global[n, h, w, co] = conv2d_nhwc_global[n, h, w, co] + PadInput[n, h * 2 + rh, w * 2 + rw, co for ax0, ax1, ax2, ax3 in T.grid(1, 4, 28, 64): with T.block("conv2d_nhwc_global"): v0 = T.axis.spatial(1, ax0) v1 = T.axis.spatial(28, i1_0 * 4 + ax1) v2 = T.axis.spatial(28, ax2) v3 = T.axis.spatial(128, i3_0 * 64 + ax3) T.reads(conv2d_nhwc_global[v0, v1, v2, v3]) T.writes(conv2d_nhwc[v0, v1, v2, v3]) conv2d_nhwc[v0, v1, v2, v3] = conv2d_nhwc_global[v0, v1, v2, v3] @T.prim_func def grp_2(inputs: T.Buffer[(1, 56, 56, 64), "float32"], weight: T.Buffer[(3, 3, 16, 128), "fl
oat32"], conv2d_nhwc: T.Buffer[(1, 28, 28, 128), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":16, "meta_schedule.vectorize":64}) PadInput = T.alloc_buffer([1, 58, 58, 64], dtype="float32") for i0_0, i1_0, i2_0, i3_0, i0_1, i1_1, i2_1, i3_1, i4_0, i5_0 in T.grid(1, 7, 1, 2, 1, 4, 1, 1, 1, 3): for ax0, ax1, ax2, ax3 in T.grid(1, 3, 55, 32): with T.block("PadInput"): i0 = T.axis.spatial(1, ax0) i1 = T.axis.spatial(58, i1_0 * 8 + i1_1 * 2 + ax1) i2 = T.axis.spatial(58, i5_0 + ax2) i3 = T.axis.spatial(64, i3_0 * 32 + ax3) T.reads(inputs[i0, i1 - 1, i2 - 1, i3]) T.writes(PadInput[i0, i1, i2, i3]) PadInput[i0, i1, i2, i3] = T.if_then_else(1 <= i1 and i1 < 57 and 1 <= i2 and i2 < 57, inputs[i0, i1 - 1, i2 - 1, i3], T.float32(0), dtype="float32") for i6_0, i0_2, i1_2, i2_2, i3_2, i4_1, i5_1, i6_1, i0_3, i1_3, i2_3, i3_3 in T.grid(8, 1, 1, 4, 4, 3, 1, 2, 1, 1, 7, 16): with T.block("conv2d_nhwc"): n = T.axis.spatial(1, i0_3 + i0_0 + i0_1 + i0_2) h = T.axis.spatial(28, i1_0 * 4 + i1_1 + i1_2 + i1_3) w = T.axis.spatial(28, i2_0 * 28 + i2_1 * 28 + i2_2 * 7 + i2_3) co = T.axis.spatial(128, i3_0 * 64 + i3_1 * 64 + i3_2 * 16 + i3_3) rh = T.axis.reduce(3, i4_0 * 3 + i4_1) rw = T.axis.reduce(3, i5_0 + i5_1) rc = T.axis.reduce(16, i6_0 * 2 + i6_1) T.reads(PadInput[n, h * 2 + rh, w * 2 + rw, co T.writes(conv2d_nhwc[n, h, w, co])
T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) with T.init(): conv2d_nhwc[n, h, w, co] = T.float32(0) conv2d_nhwc[n, h, w, co] = conv2d_nhwc[n, h, w, co] + PadInput[n, h * 2 + rh, w * 2 + rw, co decision_0 = [ ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [7, 4, 1, 1]), ("SamplePerfectTile", [1, 1, 4, 7]), ("SamplePerfectTile", [2, 1, 4, 16]), ("SamplePerfectTile", [1, 3]), ("SamplePerfectTile", [3, 1]), ("SamplePerfectTile", [8, 2]), ("SampleCategorical", 1), ("SampleComputeLocation", 3), ] decision_1 = [ ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [7, 4, 1, 1]), ("SamplePerfectTile", [1, 1, 4, 7]), ("SamplePerfectTile", [2, 1, 4, 16]), ("SamplePerfectTile", [1, 3]), ("SamplePerfectTile", [3, 1]), ("SamplePerfectTile", [8, 2]), ("SampleCategorical", 3), ("SampleComputeLocation", -1), ] decision_2 = [ ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [7, 4, 1, 1]), ("SamplePerfectTile", [1, 1, 4, 7]), ("SamplePerfectTile", [2, 1, 4, 16]), ("SamplePerfectTile", [1, 3]), ("SamplePerfectTile", [3, 1]), ("SamplePerfectTile", [8, 2]), ("SampleCategorical", 1), ("SampleComputeLocation", 9), ] mod = create_te_workload("GRP", 0) actual = _design_space(mod) check_sketches( mod, sketches=actual, expected_mods=[grp_0, grp_1, grp_2], expected_decisions=[decision_0, decision_1, decision_2], ) def test_cpu_t2d(): @T.prim_func def t2d_0(inputs: T.Buffer[(1, 4, 4, 512), "float32"], weight: T.Buffer[(4, 4, 512, 256), "float32"], conv2d_transpose_nhwc: T.Buffer[(1, 8, 8, 256), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with
T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":64, "meta_schedule.vectorize":64}) PadInput = T.alloc_buffer([1, 6, 6, 512], dtype="float32") conv2d_transpose_nhwc_global = T.alloc_buffer([1, 8, 8, 256], dtype="float32") for i0, i1, i2, i3 in T.grid(1, 6, 6, 512): with T.block("PadInput"): i0_1, i1_1, i2_1, i3_1 = T.axis.remap("SSSS", [i0, i1, i2, i3]) T.reads(inputs[i0_1, i1_1 - 1, i2_1 - 1, i3_1]) T.writes(PadInput[i0_1, i1_1, i2_1, i3_1]) PadInput[i0_1, i1_1, i2_1, i3_1] = T.if_then_else(1 <= i1_1 and i1_1 < 5 and 1 <= i2_1 and i2_1 < 5, inputs[i0_1, i1_1 - 1, i2_1 - 1, i3_1], T.float32(0), dtype="float32") for i0_0, i1_0, i2_0, i3_0, i0_1_1, i1_1_1, i2_1_1, i3_1_1 in T.grid(1, 1, 2, 8, 1, 4, 1, 4): for i4_0, i5_0, i6_0, i0_2, i1_2, i2_2, i3_2, i4_1, i5_1, i6_1, i0_3, i1_3, i2_3, i3_3 in T.grid(2, 2, 64, 1, 1, 1, 1, 2, 2, 8, 1, 2, 4, 8): with T.block("conv2d_transpose_nhwc"): n = T.axis.spatial(1, i0_3 + i0_0 + i0_1_1 + i0_2) h = T.axis.spatial(8, i1_0 * 8 + i1_1_1 * 2 + i1_2 * 2 + i1_3) w = T.axis.spatial(8, i2_0 * 4 + i2_1_1 * 4 + i2_2 * 4 + i2_3) co = T.axis.spatial(256, i3_0 * 32 + i3_1_1 * 8 + i3_2 * 8 + i3_3) rh = T.axis.reduce(4, i4_0 * 2 + i4_1) rw = T.axis.reduce(4, i5_0 * 2 + i5_1) rc = T.axis.reduce(512, i6_0 * 8 + i6_1) T.reads(PadInput[n, (h + rh) T.writes(conv2d_transpose_nhwc_global[n, h, w, co]) T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) with T.init(): conv2d_transpose_nhwc_global[n, h, w, co] = T.float32(0)
conv2d_transpose_nhwc_global[n, h, w, co] = conv2d_transpose_nhwc_global[n, h, w, co] + T.if_then_else((h + rh) % 2 == 0 and (w + rw) % 2 == 0, PadInput[n, (h + rh) for ax0, ax1, ax2, ax3 in T.grid(1, 2, 4, 8): with T.block("conv2d_transpose_nhwc_global"): v0 = T.axis.spatial(1, ax0) v1 = T.axis.spatial(8, i1_1_1 * 2 + ax1) v2 = T.axis.spatial(8, i2_0 * 4 + ax2) v3 = T.axis.spatial(256, i3_0 * 32 + i3_1_1 * 8 + ax3) T.reads(conv2d_transpose_nhwc_global[v0, v1, v2, v3]) T.writes(conv2d_transpose_nhwc[v0, v1, v2, v3]) conv2d_transpose_nhwc[v0, v1, v2, v3] = conv2d_transpose_nhwc_global[v0, v1, v2, v3] @T.prim_func def t2d_1(inputs: T.Buffer[(1, 4, 4, 512), "float32"], weight: T.Buffer[(4, 4, 512, 256), "float32"], conv2d_transpose_nhwc: T.Buffer[(1, 8, 8, 256), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":64, "meta_schedule.vectorize":64}) PadInput = T.alloc_buffer([1, 6, 6, 512], dtype="float32") conv2d_transpose_nhwc_global = T.alloc_buffer([1, 8, 8, 256], dtype="float32") for i0_0, i1_0, i2_0, i3_0 in T.grid(1, 1, 2, 8): for ax0, ax1, ax2, ax3 in T.grid(1, 6, 4, 512): with T.block("PadInput"): i0, i1 = T.axis.remap("SS", [ax0, ax1]) i2 = T.axis.spatial(6, i2_0 * 2 + ax2) i3 = T.axis.spatial(512, ax3) T.reads(inputs[i0, i1 - 1, i2 - 1, i3]) T.writes(PadInput[i0, i1, i2, i3]) PadInput[i0, i1, i2, i3] = T.if_then_else(1 <= i1 and i1 < 5 and 1 <= i2 and i2
< 5, inputs[i0, i1 - 1, i2 - 1, i3], T.float32(0), dtype="float32") for i0_1, i1_1, i2_1, i3_1, i4_0, i5_0, i6_0, i0_2, i1_2, i2_2, i3_2, i4_1, i5_1, i6_1, i0_3, i1_3, i2_3, i3_3 in T.grid(1, 4, 1, 4, 2, 2, 64, 1, 1, 1, 1, 2, 2, 8, 1, 2, 4, 8): with T.block("conv2d_transpose_nhwc"): n = T.axis.spatial(1, i0_3 + i0_0 + i0_1 + i0_2) h = T.axis.spatial(8, i1_0 * 8 + i1_1 * 2 + i1_2 * 2 + i1_3) w = T.axis.spatial(8, i2_0 * 4 + i2_1 * 4 + i2_2 * 4 + i2_3) co = T.axis.spatial(256, i3_0 * 32 + i3_1 * 8 + i3_2 * 8 + i3_3) rh = T.axis.reduce(4, i4_0 * 2 + i4_1) rw = T.axis.reduce(4, i5_0 * 2 + i5_1) rc = T.axis.reduce(512, i6_0 * 8 + i6_1) T.reads(PadInput[n, (h + rh) T.writes(conv2d_transpose_nhwc_global[n, h, w, co]) T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) with T.init(): conv2d_transpose_nhwc_global[n, h, w, co] = T.float32(0) conv2d_transpose_nhwc_global[n, h, w, co] = conv2d_transpose_nhwc_global[n, h, w, co] + T.if_then_else((h + rh) % 2 == 0 and (w + rw) % 2 == 0, PadInput[n, (h + rh) for ax0, ax1, ax2, ax3 in T.grid(1, 8, 4, 32): with T.block("conv2d_transpose_nhwc_global"): v0, v1 = T.axis.remap("SS", [ax0, ax1]) v2 = T.axis.spatial(8, i2_0 * 4 + ax2) v3 = T.axis.spatial(256, i3_0 * 32 + ax3) T.reads(conv2d_transpose_nhwc_global[v0, v1, v2, v3]) T.writes(conv2d_transpose_nhwc[v0, v1, v2, v3]) conv2d_transpose_nhwc[v0, v1, v2, v3] = conv2d_transpose_nhwc_global[v0, v1, v2, v3] @T.prim_func def t2d_2(inputs: T.Buffer[(1, 4, 4, 512), "float32"], weight: T.Buffer[(4, 4
, 512, 256), "float32"], conv2d_transpose_nhwc: T.Buffer[(1, 8, 8, 256), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":512, "meta_schedule.vectorize":64}) for i0_0, i1_0, i2_0, i3_0, i0_1, i1_1, i2_1, i3_1, i4_0, i5_0, i6_0, i0_2, i1_2, i2_2, i3_2, i4_1, i5_1, i6_1, i0_3, i1_3, i2_3, i3_3 in T.grid(1, 1, 2, 8, 1, 4, 1, 4, 2, 2, 64, 1, 1, 1, 1, 2, 2, 8, 1, 2, 4, 8): with T.block("conv2d_transpose_nhwc"): n = T.axis.spatial(1, i0_3 + i0_0 + i0_1 + i0_2) h = T.axis.spatial(8, i1_0 * 8 + i1_1 * 2 + i1_2 * 2 + i1_3) w = T.axis.spatial(8, i2_0 * 4 + i2_1 * 4 + i2_2 * 4 + i2_3) co = T.axis.spatial(256, i3_0 * 32 + i3_1 * 8 + i3_2 * 8 + i3_3) rh = T.axis.reduce(4, i4_0 * 2 + i4_1) rw = T.axis.reduce(4, i5_0 * 2 + i5_1) rc = T.axis.reduce(512, i6_0 * 8 + i6_1) T.reads(inputs[n, (h + rh) T.writes(conv2d_transpose_nhwc[n, h, w, co]) T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) with T.init(): conv2d_transpose_nhwc[n, h, w, co] = T.float32(0) conv2d_transpose_nhwc[n, h, w, co] = conv2d_transpose_nhwc[n, h, w, co] + T.if_then_else((h + rh) % 2 == 0 and (w + rw) % 2 == 0, T.if_then_else(1 <= (h + rh) decision_0 = [ ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [1, 4, 1, 2]), ("SamplePerfectTile", [2, 1, 1, 4]), ("SamplePerfectTile", [8, 4, 1, 8]), ("SamplePerfectTile", [2, 2]), ("SamplePerfectTile", [2, 2]), ("SamplePerfectTile", [64, 8]), ("SampleCategorical", 2), ("SampleComputeLocation", -1), ] decision_
1 = [ ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [1, 4, 1, 2]), ("SamplePerfectTile", [2, 1, 1, 4]), ("SamplePerfectTile", [8, 4, 1, 8]), ("SamplePerfectTile", [2, 2]), ("SamplePerfectTile", [2, 2]), ("SamplePerfectTile", [64, 8]), ("SampleCategorical", 2), ("SampleComputeLocation", 3), ] decision_2 = [ ("SamplePerfectTile", [1, 1, 1, 1]), ("SamplePerfectTile", [1, 4, 1, 2]), ("SamplePerfectTile", [2, 1, 1, 4]), ("SamplePerfectTile", [8, 4, 1, 8]), ("SamplePerfectTile", [2, 2]), ("SamplePerfectTile", [2, 2]), ("SamplePerfectTile", [64, 8]), ("SampleCategorical", 3), ("SampleComputeLocation", -2), ] mod = create_te_workload("T2D", 0) actual = _design_space(mod) check_sketches( mod, sketches=actual, expected_mods=[t2d_0, t2d_1, t2d_2], expected_decisions=[decision_0, decision_1, decision_2], debug_mask=0, ) def test_cpu_nrm(): @T.prim_func def nrm_0(A: T.Buffer[(1, 256, 256), "float32"], D: T.Buffer[1, "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":0, "meta_schedule.vectorize":64}) C = T.alloc_buffer([1], dtype="float32") C_rf = T.alloc_buffer([1, 32768], dtype="float32") for i0, i1_i2_fused_0, i1_i2_fused_1 in T.grid(1, 32768, 2): with T.block("C_rf"): vi1_i2_fused_0, b, vi1_i2_fused_1 = T.axis.remap("SSR", [i1_i2_fused_0, i0, i1_i2_fused_1]) T.reads(A[b, (vi1_i2_fused_0 * 2 + vi1_i2_fused_1) T.writes(C_rf[b, vi1_i2_fused_0]) with T.init(): C_rf[b, vi1_i2_fused_0] = T.float32(0) C_rf
[b, vi1_i2_fused_0] = C_rf[b, vi1_i2_fused_0] + A[b, (vi1_i2_fused_0 * 2 + vi1_i2_fused_1) for i0, i1_i2_fused_0 in T.grid(1, 32768): with T.block("C"): vi1_i2_fused_0, b = T.axis.remap("RS", [i1_i2_fused_0, i0]) T.reads(C_rf[b, vi1_i2_fused_0]) T.writes(C[b]) with T.init(): C[b] = T.float32(0) C[b] = C[b] + C_rf[b, vi1_i2_fused_0] for i0 in T.serial(1): with T.block("D"): b = T.axis.spatial(1, i0) T.reads(C[b]) T.writes(D[b]) D[b] = T.sqrt(C[b], dtype="float32") @T.prim_func def nrm_1(A: T.Buffer[(1, 256, 256), "float32"], D: T.Buffer[1, "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":16, "meta_schedule.vectorize":64}) C = T.alloc_buffer([1], dtype="float32") C_rf = T.alloc_buffer([1, 2], dtype="float32") for i0, i1_i2_fused_0, i1_i2_fused_1 in T.grid(1, 32768, 2): with T.block("C_rf"): vi1_i2_fused_1, b, vi1_i2_fused_0 = T.axis.remap("SSR", [i1_i2_fused_1, i0, i1_i2_fused_0]) T.reads(A[b, (vi1_i2_fused_0 * 2 + vi1_i2_fused_1) T.writes(C_rf[b, vi1_i2_fused_1]) with T.init(): C_rf[b, vi1_i2_fused_1] = T.float32(0) C_rf[b, vi1_i2_fused_1] = C_rf[b, vi1_i2_fused_1] + A[b, (vi1_i2_fused_0 * 2 + vi1_i2_fused_1) for i0, i1_i2_fused_1 in T.grid(1, 2): with T.block("C"): vi1_i2_fused_1, b = T.axis.remap("RS", [i1_i2_fused_1, i0]) T.reads(C_rf[b, vi1_i2_fused_1]) T.writes(C[b])
with T.init(): C[b] = T.float32(0) C[b] = C[b] + C_rf[b, vi1_i2_fused_1] for i0 in T.serial(1): with T.block("D"): b = T.axis.spatial(1, i0) T.reads(C[b]) T.writes(D[b]) D[b] = T.sqrt(C[b], dtype="float32") @T.prim_func def nrm_2(A: T.Buffer[(1, 256, 256), "float32"], D: T.Buffer[1, "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":0, "meta_schedule.vectorize":64}) C = T.alloc_buffer([1], dtype="float32") for i0, i1, i2 in T.grid(1, 256, 256): with T.block("C"): b, i, j = T.axis.remap("SRR", [i0, i1, i2]) T.reads(A[b, i, j]) T.writes(C[b]) with T.init(): C[b] = T.float32(0) C[b] = C[b] + A[b, i, j] * A[b, i, j] for i0 in T.serial(1): with T.block("D"): b = T.axis.spatial(1, i0) T.reads(C[b]) T.writes(D[b]) D[b] = T.sqrt(C[b], dtype="float32") decision_0 = [ ("SamplePerfectTile", [32768, 2]), ("SampleCategorical", 0), ("SampleComputeLocation", -1), ("SampleComputeLocation", -1), ] decision_1 = [ ("SamplePerfectTile", [32768, 2]), ("SampleCategorical", 1), ("SampleComputeLocation", -1), ("SampleComputeLocation", -1), ] decision_2 = [ ("SampleCategorical", 0), ("SampleComputeLocation", -1), ] mod = create_te_workload("NRM", 0) actual = _design_space(mod) check_sketches( mod, sketches=actual, expected_mods=[nrm_0, n
rm_1, nrm_2], expected_decisions=[decision_0, decision_1, decision_2], ) def test_cpu_sfm(): @T.prim_func def sfm_0(A: T.Buffer[(256, 256), "float32"], T_softmax_norm: T.Buffer[(256, 256), "float32"]) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) with T.block("root"): T.reads() T.writes() T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":0, "meta_schedule.vectorize":64}) T_softmax_maxelem = T.alloc_buffer([256], dtype="float32") T_softmax_expsum = T.alloc_buffer([256], dtype="float32") T_softmax_expsum_rf = T.alloc_buffer([256, 16], dtype="float32") T_softmax_maxelem_rf = T.alloc_buffer([256, 4], dtype="float32") for i0, i1_0, i1_1 in T.grid(256, 4, 64): with T.block("T_softmax_maxelem_rf"): vi1_0, i0_1, vi1_1 = T.axis.remap("SSR", [i1_0, i0, i1_1]) T.reads(A[i0_1, vi1_0 * 64 + vi1_1]) T.writes(T_softmax_maxelem_rf[i0_1, vi1_0]) with T.init(): T_softmax_maxelem_rf[i0_1, vi1_0] = T.float32(-3.4028234663852886e+38) T_softmax_maxelem_rf[i0_1, vi1_0] = T.max(T_softmax_maxelem_rf[i0_1, vi1_0], A[i0_1, vi1_0 * 64 + vi1_1]) for i0, i1_0 in T.grid(256, 4): with T.block("T_softmax_maxelem"): vi1_0, i0_2 = T.axis.remap("RS", [i1_0, i0]) T.reads(T_softmax_maxelem_rf[i0_2, vi1_0]) T.writes(T_softmax_maxelem[i0_2]) with T.init(): T_softmax_maxelem[i0_2] = T.float32(-3.4028234663852886e+38) T_softmax_maxelem[i0_2] = T.max(T_softmax_maxelem[i0_2], T_softmax_maxelem_rf[i0_2, vi1_0]) for i0_3, i1_0, i1_1 in T.grid(256, 16, 16): with T.block("T_softmax_expsum_rf"): vi1_0, i0_4, vi1_1 = T.axis.re