text
stringlengths
1
2.05k
fn axis_0() { let tensor = u32_tensor_2x2x2_helper(); let result = tensor.flatten(0); assert((*result.shape[0]).into() == 1, 'result[0] = 1'); assert((*result.shape[1]).into() == 8, 'result[1] = 8'); }
fn axis_1() { let tensor = u32_tensor_2x2x2_helper(); let result = tensor.flatten(1); assert((*result.shape[0]).into() == 2, 'result[0] = 2'); assert((*result.shape[1]).into() == 4, 'result[1] = 4'); }
fn axis_2() { let tensor = u32_tensor_2x2x2_helper(); let result = tensor.flatten(2); assert((*result.shape[0]).into() == 4, 'result[0] = 4'); assert((*result.shape[1]).into() == 2, 'result[1] = 2'); } }
mod max_u32_test; mod max_i32_test; mod max_fp_test;
mod max_fp8x23_test; mod max_fp16x16_test;
// ===== 1D ===== // #[cfg(test)] mod tensor_1D { use orion::operators::tensor::implementations::tensor_fp16x16::FP16x16Tensor; use orion::operators::tensor::core::TensorTrait; use orion::test_helper::tensor::fixed_point::fp16x16::fp_tensor_1x3_helper; use orion::numbers::fixed_point::implementations::fp16x16::core::FP16x16; use orion::numbers::fixed_point::core::{FixedTrait}; #[test] #[available_gas(2000000)] fn tensor_max() { let tensor = fp_tensor_1x3_helper(); let result = tensor.max_in_tensor().mag; assert(result == FixedTrait::<FP16x16>::new_unscaled(2, false).mag, 'tensor.max = 2'); } } // ===== 2D ===== // #[cfg(test)] mod tensor_2D { use orion::operators::tensor::implementations::tensor_fp16x16::FP16x16Tensor; use orion::operators::tensor::core::TensorTrait; use orion::test_helper::tensor::fixed_point::fp16x16::fp_tensor_2x2_helper; use orion::numbers::fixed_point::implementations::fp16x16::core::FP16x16; use orion::numbers::fixed_point::core::{FixedTrait}; #[test] #[available_gas(2000000)] fn tensor_max() { let tensor = fp_tensor_2x2_helper(); let result = tensor.max_in_tensor().mag; assert(result == FixedTrait::<FP16x16>::new_unscaled(3, false).mag, 'tensor.max = 3'); } } // ===== 3D ===== // #[cfg(test)] mod tensor_3D { use orion::operators::tensor::implementations::tensor_fp16x16::FP16x16Tensor; use orion::operators::tensor::core::TensorTrait; use orion::test_helper::tensor::fixed_point::fp16x16::fp_tensor_2x2x2_helper; use orion::numbers::fixed_point::implementations::fp16x16::core::FP16x16; use orion::numbers::fixed_point::core::{FixedTrait}; #[test] #[available_gas(2000000)] fn tensor_max() { let tensor = fp_tensor_2x2x2_helper(); let result = tensor.max_in_tensor().mag; assert(result == FixedTrait::<FP16x16>::new_unscaled(7, false).mag, 'tensor.max = 7'); } }
// ===== 1D ===== // #[cfg(test)] mod tensor_1D { use orion::operators::tensor::implementations::tensor_fp8x23::FP8x23Tensor; use orion::operators::tensor::core::TensorTrait; use orion::test_helper::tensor::fixed_point::fp8x23::fp_tensor_1x3_helper; use orion::numbers::fixed_point::implementations::fp8x23::core::FP8x23; use orion::numbers::fixed_point::core::{FixedTrait}; #[test] #[available_gas(2000000)] fn tensor_max() { let tensor = fp_tensor_1x3_helper(); let result = tensor.max_in_tensor().mag; assert(result == FixedTrait::<FP8x23>::new_unscaled(2, false).mag, 'tensor.max = 2'); } } // ===== 2D ===== // #[cfg(test)] mod tensor_2D { use orion::operators::tensor::implementations::tensor_fp8x23::FP8x23Tensor; use orion::operators::tensor::core::TensorTrait; use orion::test_helper::tensor::fixed_point::fp8x23::fp_tensor_2x2_helper; use orion::numbers::fixed_point::implementations::fp8x23::core::FP8x23; use orion::numbers::fixed_point::core::{FixedTrait}; #[test] #[available_gas(2000000)] fn tensor_max() { let tensor = fp_tensor_2x2_helper(); let result = tensor.max_in_tensor().mag; assert(result == FixedTrait::<FP8x23>::new_unscaled(3, false).mag, 'tensor.max = 3'); } } // ===== 3D ===== // #[cfg(test)] mod tensor_3D { use orion::operators::tensor::implementations::tensor_fp8x23::FP8x23Tensor; use orion::operators::tensor::core::TensorTrait; use orion::test_helper::tensor::fixed_point::fp8x23::fp_tensor_2x2x2_helper; use orion::numbers::fixed_point::implementations::fp8x23::core::FP8x23; use orion::numbers::fixed_point::core::{FixedTrait}; #[test] #[available_gas(2000000)] fn tensor_max() { let tensor = fp_tensor_2x2x2_helper(); let result = tensor.max_in_tensor().mag; assert(result == FixedTrait::<FP8x23>::new_unscaled(7, false).mag, 'tensor.max = 7'); } }
// ===== 1D ===== // #[cfg(test)] mod tensor_1D { use orion::operators::tensor::I32Tensor; use orion::operators::tensor::core::TensorTrait; use orion::test_helper::tensor::i32::i32_tensor_1x3_helper; #[test] #[available_gas(2000000)] fn tensor_max() { let tensor = i32_tensor_1x3_helper(); let result = tensor.max_in_tensor(); assert(result == 2, 'tensor.max = 2'); } } // ===== 2D ===== // #[cfg(test)] mod tensor_2D { use orion::operators::tensor::I32Tensor; use orion::operators::tensor::core::TensorTrait; use orion::test_helper::tensor::i32::i32_tensor_2x2_helper; #[test] #[available_gas(2000000)] fn tensor_max() { let tensor = i32_tensor_2x2_helper(); let result = tensor.max_in_tensor(); assert(result == 3, 'tensor.max = 3'); } } // ===== 3D ===== // #[cfg(test)] mod tensor_3D { use orion::operators::tensor::I32Tensor; use orion::operators::tensor::core::TensorTrait; use orion::test_helper::tensor::i32::i32_tensor_2x2x2_helper; #[test] #[available_gas(2000000)] fn tensor_max() { let tensor = i32_tensor_2x2x2_helper(); let result = tensor.max_in_tensor(); assert(result == 7, 'tensor.max = 7'); } }
// ===== 1D ===== // #[cfg(test)] mod tensor_1D { use orion::operators::tensor::U32Tensor; use orion::operators::tensor::core::TensorTrait; use orion::test_helper::tensor::u32::u32_tensor_1x3_helper; #[test] #[available_gas(2000000)] fn tensor_max() { let tensor = u32_tensor_1x3_helper(); let result = tensor.max_in_tensor(); assert(result == 2, 'tensor.max = 2'); } } // ===== 2D ===== // #[cfg(test)] mod tensor_2D { use orion::operators::tensor::U32Tensor; use orion::operators::tensor::core::TensorTrait; use orion::test_helper::tensor::u32::u32_tensor_2x2_helper; #[test] #[available_gas(2000000)] fn tensor_max() { let tensor = u32_tensor_2x2_helper(); let result = tensor.max_in_tensor(); assert(result == 3, 'tensor.max = 3'); } } // ===== 3D ===== // #[cfg(test)] mod tensor_3D { use orion::operators::tensor::U32Tensor; use orion::operators::tensor::core::TensorTrait; use orion::test_helper::tensor::u32::u32_tensor_2x2x2_helper; #[test] #[available_gas(2000000)] fn tensor_max() { let tensor = u32_tensor_2x2x2_helper(); let result = tensor.max_in_tensor(); assert(result == 7, 'tensor.max = 7'); } }
mod min_u32_test; mod min_i32_test; mod min_fp_test;
mod min_fp8x23_test; mod min_fp16x16_test;
// ===== 1D ===== // #[cfg(test)] mod tensor_1D { use orion::operators::tensor::implementations::tensor_fp16x16::FP16x16Tensor; use orion::operators::tensor::core::TensorTrait; use orion::test_helper::tensor::fixed_point::fp16x16::fp_tensor_1x3_helper; use orion::numbers::fixed_point::implementations::fp16x16::core::FP16x16Impl; use orion::numbers::fixed_point::core::{FixedTrait}; #[test] #[available_gas(2000000)] fn tensor_min() { let tensor = fp_tensor_1x3_helper(); let result = tensor.min_in_tensor().mag; assert(result == 0, 'tensor.min = 0'); } } // ===== 2D ===== // #[cfg(test)] mod tensor_2D { use orion::operators::tensor::implementations::tensor_fp16x16::FP16x16Tensor; use orion::operators::tensor::core::TensorTrait; use orion::test_helper::tensor::fixed_point::fp16x16::fp_tensor_2x2_helper; use orion::numbers::fixed_point::implementations::fp16x16::core::FP16x16Impl; use orion::numbers::fixed_point::core::{FixedTrait}; #[test] #[available_gas(2000000)] fn tensor_min() { let tensor = fp_tensor_2x2_helper(); let result = tensor.min_in_tensor().mag; assert(result == 0, 'tensor.min = 0'); } } // ===== 3D ===== // #[cfg(test)] mod tensor_3D { use orion::operators::tensor::implementations::tensor_fp16x16::FP16x16Tensor; use orion::operators::tensor::core::TensorTrait; use orion::test_helper::tensor::fixed_point::fp16x16::fp_tensor_2x2x2_helper; use orion::numbers::fixed_point::implementations::fp16x16::core::FP16x16Impl; use orion::numbers::fixed_point::core::{FixedTrait}; #[test] #[available_gas(2000000)] fn tensor_min() { let tensor = fp_tensor_2x2x2_helper(); let result = tensor.min_in_tensor().mag; assert(result == 0, 'tensor.min = 0'); } }
// ===== 1D ===== // #[cfg(test)] mod tensor_1D { use orion::operators::tensor::implementations::tensor_fp8x23::FP8x23Tensor; use orion::operators::tensor::core::TensorTrait; use orion::test_helper::tensor::fixed_point::fp8x23::fp_tensor_1x3_helper; use orion::numbers::fixed_point::implementations::fp8x23::core::FP8x23Impl; use orion::numbers::fixed_point::core::{FixedTrait}; #[test] #[available_gas(2000000)] fn tensor_min() { let tensor = fp_tensor_1x3_helper(); let result = tensor.min_in_tensor().mag; assert(result == 0, 'tensor.min = 0'); } } // ===== 2D ===== // #[cfg(test)] mod tensor_2D { use orion::operators::tensor::implementations::tensor_fp8x23::FP8x23Tensor; use orion::operators::tensor::core::TensorTrait; use orion::test_helper::tensor::fixed_point::fp8x23::fp_tensor_2x2_helper; use orion::numbers::fixed_point::implementations::fp8x23::core::FP8x23Impl; use orion::numbers::fixed_point::core::{FixedTrait}; #[test] #[available_gas(2000000)] fn tensor_min() { let tensor = fp_tensor_2x2_helper(); let result = tensor.min_in_tensor().mag; assert(result == 0, 'tensor.min = 0'); } } // ===== 3D ===== // #[cfg(test)] mod tensor_3D { use orion::operators::tensor::implementations::tensor_fp8x23::FP8x23Tensor; use orion::operators::tensor::core::TensorTrait; use orion::test_helper::tensor::fixed_point::fp8x23::fp_tensor_2x2x2_helper; use orion::numbers::fixed_point::implementations::fp8x23::core::FP8x23Impl; use orion::numbers::fixed_point::core::{FixedTrait}; #[test] #[available_gas(2000000)] fn tensor_min() { let tensor = fp_tensor_2x2x2_helper(); let result = tensor.min_in_tensor().mag; assert(result == 0, 'tensor.min = 0'); } }
// ===== 1D ===== // #[cfg(test)] mod tensor_1D { use orion::operators::tensor::I32Tensor; use orion::operators::tensor::core::TensorTrait; use orion::test_helper::tensor::i32::i32_tensor_1x3_helper; #[test] #[available_gas(2000000)] fn tensor_min() { let tensor = i32_tensor_1x3_helper(); let result = tensor.min_in_tensor(); assert(result == 0, 'tensor.min = 0'); } } // ===== 2D ===== // #[cfg(test)] mod tensor_2D { use orion::operators::tensor::I32Tensor; use orion::operators::tensor::core::TensorTrait; use orion::test_helper::tensor::i32::i32_tensor_2x2_helper; #[test] #[available_gas(2000000)] fn tensor_min() { let tensor = i32_tensor_2x2_helper(); let result = tensor.min_in_tensor(); assert(result == 0, 'tensor.min = 0'); } } // ===== 3D ===== // #[cfg(test)] mod tensor_3D { use orion::operators::tensor::I32Tensor; use orion::operators::tensor::core::TensorTrait; use orion::test_helper::tensor::i32::i32_tensor_2x2x2_helper; #[test] #[available_gas(2000000)] fn tensor_min() { let tensor = i32_tensor_2x2x2_helper(); let result = tensor.min_in_tensor(); assert(result == 0, 'tensor.min = 0'); } }
// ===== 1D ===== // #[cfg(test)] mod tensor_1D { use orion::operators::tensor::U32Tensor; use orion::operators::tensor::core::TensorTrait; use orion::test_helper::tensor::u32::u32_tensor_1x3_helper; #[test] #[available_gas(2000000)] fn tensor_min() { let tensor = u32_tensor_1x3_helper(); let result = tensor.min_in_tensor(); assert(result == 0, 'tensor.min = 0'); } } // ===== 2D ===== // #[cfg(test)] mod tensor_2D { use orion::operators::tensor::U32Tensor; use orion::operators::tensor::core::TensorTrait; use orion::test_helper::tensor::u32::u32_tensor_2x2_helper; #[test] #[available_gas(2000000)] fn tensor_min() { let tensor = u32_tensor_2x2_helper(); let result = tensor.min_in_tensor(); assert(result == 0, 'tensor.min = 0'); } } // ===== 3D ===== // #[cfg(test)] mod tensor_3D { use orion::operators::tensor::U32Tensor; use orion::operators::tensor::core::TensorTrait; use orion::test_helper::tensor::u32::u32_tensor_2x2x2_helper; #[test] #[available_gas(2000000)] fn tensor_min() { let tensor = u32_tensor_2x2x2_helper(); let result = tensor.min_in_tensor(); assert(result == 0, 'tensor.min = 0'); } }
mod onehot_fp_test;
mod onehot_fp8x23_test; mod onehot_fp16x16_test;
use core::serde::Serde; use core::option::OptionTrait; use core::clone::Clone; use orion::numbers::fixed_point::core::FixedTrait; mod tensor_1D { use core::array::{ArrayTrait, SpanTrait}; use core::traits::Into; use orion::numbers::fixed_point::core::{FixedTrait}; use orion::numbers::fixed_point::implementations::fp16x16::core::{FP16x16, FP16x16PartialEq}; use orion::operators::tensor::implementations::tensor_fp16x16::FP16x16Tensor; use orion::test_helper::tensor::fixed_point::fp16x16::{ fp_tensor_1x3_helper, fp_tensor_2x2_helper, fp_tensor_3x2x2_neg_helper, fp_tensor_1x3_neg_helper, fp_tensor_2x2x2_helper }; use orion::operators::tensor::core::TensorTrait; use core::debug::PrintTrait; use core::clone::Clone; use core::option::OptionTrait; use core::serde::Serde; use orion::operators::tensor::core::{Tensor}; fn fp_tensor_3x2x2_new() -> Tensor<FP16x16> { let mut sizes = ArrayTrait::new(); sizes.append(3); sizes.append(2); sizes.append(2); let mut data = ArrayTrait::new(); data.append(FixedTrait::new_unscaled(0, false)); data.append(FixedTrait::new_unscaled(1, false)); data.append(FixedTrait::new_unscaled(2, false)); data.append(FixedTrait::new_unscaled(3, false)); data.append(FixedTrait::new_unscaled(0, false)); data.append(FixedTrait::new_unscaled(1, false)); data.append(FixedTrait::new_unscaled(2, false)); data.append(FixedTrait::new_unscaled(3, false)); data.append(FixedTrait::new_unscaled(0, false)); data.append(FixedTrait::new_unscaled(1, false)); data.append(FixedTrait::new_unscaled(2, false)); data.append(FixedTrait::new_unscaled(3, false)); let tensor = TensorTrait::<FP16x16>::new(sizes.span(), data.span()); return tensor; } fn fp_tensor_2x2_pos_neg_new() -> Tensor<FP16x16> { let mut sizes = ArrayTrait::new(); sizes.append(2); sizes.app
end(2); let mut data = ArrayTrait::new(); data.append(FixedTrait::new_unscaled(0, false)); data.append(FixedTrait::new_unscaled(1, false)); data.append(FixedTrait::new_unscaled(2, true)); data.append(FixedTrait::new_unscaled(1, true)); let tensor = TensorTrait::<FP16x16>::new(sizes.span(), data.span()); return tensor; }
fn tensor_onehot_1x3_last_axis() { let tensor = fp_tensor_1x3_helper(); let mut values = ArrayTrait::new(); values.append(0); values.append(1); let depth = 3; let axis: Option<usize> = Option::None(()); let result = tensor.onehot(depth: depth, axis: axis, values: values.span()); assert((*result.data[0]) == FixedTrait::new_unscaled(1, false), 'result[0] = 1'); assert((*result.data[1]) == FixedTrait::new_unscaled(0, false), 'result[1] = 0'); assert((*result.data[2]) == FixedTrait::new_unscaled(0, false), 'result[2] = 0'); assert((*result.data[3]) == FixedTrait::new_unscaled(0, false), 'result[3] = 0'); assert((*result.data[4]) == FixedTrait::new_unscaled(1, false), 'result[4] = 1'); assert((*result.data[5]) == FixedTrait::new_unscaled(0, false), 'result[5] = 0'); assert((*result.data[6]) == FixedTrait::new_unscaled(0, false), 'result[6] = 0'); assert((*result.data[7]) == FixedTrait::new_unscaled(0, false), 'result[7] = 0'); assert((*result.data[8]) == FixedTrait::new_unscaled(1, false), 'result[8] = 1'); }
fn tensor_onehot_1x3_neg_last_axis() { let tensor = fp_tensor_1x3_neg_helper(); let mut values = ArrayTrait::new(); values.append(0); values.append(1); let depth = 3; let axis: Option<usize> = Option::None(()); let result = tensor.onehot(depth: depth, axis: axis, values: values.span()); assert((*result.data[0]) == FixedTrait::new_unscaled(1, false), 'result[0] = 1'); assert((*result.data[1]) == FixedTrait::new_unscaled(0, false), 'result[1] = 0'); assert((*result.data[2]) == FixedTrait::new_unscaled(0, false), 'result[2] = 0'); assert((*result.data[3]) == FixedTrait::new_unscaled(0, false), 'result[3] = 0'); assert((*result.data[4]) == FixedTrait::new_unscaled(0, false), 'result[4] = 1'); assert((*result.data[5]) == FixedTrait::new_unscaled(1, false), 'result[5] = 0'); assert((*result.data[6]) == FixedTrait::new_unscaled(0, false), 'result[6] = 0'); assert((*result.data[7]) == FixedTrait::new_unscaled(1, false), 'result[7] = 0'); assert((*result.data[8]) == FixedTrait::new_unscaled(0, false), 'result[8] = 1'); }
fn tensor_onehot_2x2_post_neg_last_axis() { let tensor = fp_tensor_2x2_pos_neg_new(); let mut values = ArrayTrait::new(); values.append(0); values.append(1); let depth = 3; let axis: Option<usize> = Option::None(()); let result = tensor.onehot(depth: depth, axis: axis, values: values.span()); assert((*result.data[0]) == FixedTrait::new_unscaled(1, false), 'result[0] = 1'); assert((*result.data[1]) == FixedTrait::new_unscaled(0, false), 'result[1] = 0'); assert((*result.data[2]) == FixedTrait::new_unscaled(0, false), 'result[2] = 0'); assert((*result.data[3]) == FixedTrait::new_unscaled(0, false), 'result[3] = 0'); assert((*result.data[4]) == FixedTrait::new_unscaled(1, false), 'result[4] = 1'); assert((*result.data[5]) == FixedTrait::new_unscaled(0, false), 'result[5] = 0'); assert((*result.data[6]) == FixedTrait::new_unscaled(0, false), 'result[6] = 0'); assert((*result.data[7]) == FixedTrait::new_unscaled(1, false), 'result[7] = 1'); assert((*result.data[8]) == FixedTrait::new_unscaled(0, false), 'result[8] = 0'); assert((*result.data[9]) == FixedTrait::new_unscaled(0, false), 'result[9] = 0'); assert((*result.data[10]) == FixedTrait::new_unscaled(0, false), 'result[10] = 0'); assert((*result.data[11]) == FixedTrait::new_unscaled(1, false), 'result[11] = 0'); }
fn tensor_onehot_tensor_1x3_fail() { let tensor = fp_tensor_1x3_helper(); let mut values = ArrayTrait::new(); values.append(0); values.append(1); let depth = 3; let axis: Option<usize> = Option::Some(3); let _result = tensor.onehot(depth: depth, axis: axis, values: values.span()); }
fn tensor_onehot_1x3_Zero_axis() { let tensor = fp_tensor_1x3_helper(); let mut values = ArrayTrait::new(); values.append(0); values.append(1); let depth = 3; let axis: Option<usize> = Option::Some(0); let result = tensor.onehot(depth: depth, axis: axis, values: values.span()); assert((*result.data[0]) == FixedTrait::new_unscaled(1, false), 'result[0] = 1'); assert((*result.data[1]) == FixedTrait::new_unscaled(0, false), 'result[1] = 0'); assert((*result.data[2]) == FixedTrait::new_unscaled(0, false), 'result[2] = 0'); assert((*result.data[3]) == FixedTrait::new_unscaled(0, false), 'result[3] = 0'); assert((*result.data[4]) == FixedTrait::new_unscaled(1, false), 'result[4] = 1'); assert((*result.data[5]) == FixedTrait::new_unscaled(0, false), 'result[5] = 0'); assert((*result.data[6]) == FixedTrait::new_unscaled(0, false), 'result[6] = 0'); assert((*result.data[7]) == FixedTrait::new_unscaled(0, false), 'result[7] = 0'); assert((*result.data[8]) == FixedTrait::new_unscaled(1, false), 'result[8] = 1'); }
fn tensor_onehot_1x3_axis_one() { let tensor = fp_tensor_1x3_helper(); let mut values = ArrayTrait::new(); values.append(0); values.append(1); let depth = 3; let axis: Option<usize> = Option::Some(1); let result = tensor.onehot(depth: depth, axis: axis, values: values.span()); assert((*result.data[0]) == FixedTrait::new_unscaled(1, false), 'result[0] = 1'); assert((*result.data[1]) == FixedTrait::new_unscaled(0, false), 'result[1] = 0'); assert((*result.data[2]) == FixedTrait::new_unscaled(0, false), 'result[2] = 0'); assert((*result.data[3]) == FixedTrait::new_unscaled(0, false), 'result[3] = 0'); assert((*result.data[4]) == FixedTrait::new_unscaled(1, false), 'result[4] = 1'); assert((*result.data[5]) == FixedTrait::new_unscaled(0, false), 'result[5] = 0'); assert((*result.data[6]) == FixedTrait::new_unscaled(0, false), 'result[6] = 0'); assert((*result.data[7]) == FixedTrait::new_unscaled(0, false), 'result[7] = 0'); assert((*result.data[8]) == FixedTrait::new_unscaled(1, false), 'result[8] = 1'); }
fn fp_tensor_onehot_2x2_helper_last_axis() { let tensor = fp_tensor_2x2_helper(); let mut values = ArrayTrait::new(); values.append(0); values.append(1); let depth = 4; let axis: Option<usize> = Option::None(()); let result = tensor.onehot(depth: depth, axis: axis, values: values.span()); assert((*result.data[0]) == FixedTrait::new_unscaled(1, false), 'result[0] = 1'); assert((*result.data[1]) == FixedTrait::new_unscaled(0, false), 'result[1] = 0'); assert((*result.data[2]) == FixedTrait::new_unscaled(0, false), 'result[2] = 0'); assert((*result.data[3]) == FixedTrait::new_unscaled(0, false), 'result[3] = 0'); assert((*result.data[4]) == FixedTrait::new_unscaled(0, false), 'result[4] = 0'); assert((*result.data[5]) == FixedTrait::new_unscaled(1, false), 'result[5] = 1'); assert((*result.data[6]) == FixedTrait::new_unscaled(0, false), 'result[6] = 0'); assert((*result.data[7]) == FixedTrait::new_unscaled(0, false), 'result[7] = 0'); assert((*result.data[8]) == FixedTrait::new_unscaled(0, false), 'result[8] = 0'); assert((*result.data[9]) == FixedTrait::new_unscaled(0, false), 'result[9] = 0'); assert((*result.data[10]) == FixedTrait::new_unscaled(1, false), 'result[10] = 1'); assert((*result.data[11]) == FixedTrait::new_unscaled(0, false), 'result[11] = 0'); assert((*result.data[12]) == FixedTrait::new_unscaled(0, false), 'result[12] = 0'); assert((*result.data[13]) == FixedTrait::new_unscaled(0, false), 'result[13] = 0'); assert((*result.data[14]) == FixedTrait::new_unscaled(0, false), 'result[14] = 0'); assert((*result.data[15]) == FixedTrait::new_unscaled(1, false), 'result[15] = 1'); assert((*result.shape.at(0)) == 2, 'shape[0] = 2'); assert((*result.shape.at(1)) == 2, 'shape[0] = 2'); assert((*result.shape.at(2)) == 4, 'shape[0] = 4'); }
fn tensor_onehot_tensor_2x2_fail() { let tensor = fp_tensor_2x2_helper(); let mut values = ArrayTrait::new(); values.append(0); values.append(1); let depth = 4; let axis: Option<usize> = Option::Some(3); let _result = tensor.onehot(depth: depth, axis: axis, values: values.span()); }
fn fp_tensor_onehot_2x2_helper_first_axis() { let tensor = fp_tensor_2x2_helper(); let mut values = ArrayTrait::new(); values.append(0); values.append(1); let depth = 4; let axis: Option<usize> = Option::Some(0); let result = tensor.onehot(depth: depth, axis: axis, values: values.span()); assert((*result.data[0]) == FixedTrait::new_unscaled(1, false), 'result[0] = 1'); assert((*result.data[1]) == FixedTrait::new_unscaled(0, false), 'result[1] = 0'); assert((*result.data[2]) == FixedTrait::new_unscaled(0, false), 'result[2] = 0'); assert((*result.data[3]) == FixedTrait::new_unscaled(0, false), 'result[3] = 0'); assert((*result.data[4]) == FixedTrait::new_unscaled(0, false), 'result[4] = 0'); assert((*result.data[5]) == FixedTrait::new_unscaled(1, false), 'result[5] = 1'); assert((*result.data[6]) == FixedTrait::new_unscaled(0, false), 'result[6] = 0'); assert((*result.data[7]) == FixedTrait::new_unscaled(0, false), 'result[7] = 0'); assert((*result.data[8]) == FixedTrait::new_unscaled(0, false), 'result[8] = 0'); assert((*result.data[9]) == FixedTrait::new_unscaled(0, false), 'result[9] = 0'); assert((*result.data[10]) == FixedTrait::new_unscaled(1, false), 'result[10] = 1'); assert((*result.data[11]) == FixedTrait::new_unscaled(0, false), 'result[11] = 0'); assert((*result.data[12]) == FixedTrait::new_unscaled(0, false), 'result[12] = 0'); assert((*result.data[13]) == FixedTrait::new_unscaled(0, false), 'result[13] = 0'); assert((*result.data[14]) == FixedTrait::new_unscaled(0, false), 'result[14] = 0'); assert((*result.data[15]) == FixedTrait::new_unscaled(1, false), 'result[15] = 1'); assert((*result.shape.at(0)) == 4, 'shape[0] = 4'); assert((*result.shape.at(1)) == 2, 'shape[0] = 2'); assert((*result.shape.at(2)) == 2, 'shape[0] = 2'); }
fn fp_tensor_onehot_2x2_helper_second_axis() { let tensor = fp_tensor_2x2_helper(); let mut values = ArrayTrait::new(); values.append(0); values.append(1); let depth = 4; let axis: Option<usize> = Option::Some(1); let result = tensor.onehot(depth: depth, axis: axis, values: values.span()); assert((*result.data[0]) == FixedTrait::new_unscaled(1, false), 'result[0] = 1'); assert((*result.data[1]) == FixedTrait::new_unscaled(0, false), 'result[1] = 0'); assert((*result.data[2]) == FixedTrait::new_unscaled(0, false), 'result[2] = 0'); assert((*result.data[3]) == FixedTrait::new_unscaled(1, false), 'result[3] = 1'); assert((*result.data[4]) == FixedTrait::new_unscaled(0, false), 'result[4] = 0'); assert((*result.data[5]) == FixedTrait::new_unscaled(0, false), 'result[5] = 0'); assert((*result.data[6]) == FixedTrait::new_unscaled(0, false), 'result[6] = 0'); assert((*result.data[7]) == FixedTrait::new_unscaled(0, false), 'result[7] = 0'); assert((*result.data[8]) == FixedTrait::new_unscaled(0, false), 'result[8] = 0'); assert((*result.data[9]) == FixedTrait::new_unscaled(0, false), 'result[9] = 0'); assert((*result.data[10]) == FixedTrait::new_unscaled(0, false), 'result[10] = 1'); assert((*result.data[11]) == FixedTrait::new_unscaled(0, false), 'result[11] = 0'); assert((*result.data[12]) == FixedTrait::new_unscaled(1, false), 'result[12] = 1'); assert((*result.data[13]) == FixedTrait::new_unscaled(0, false), 'result[13] = 0'); assert((*result.data[14]) == FixedTrait::new_unscaled(0, false), 'result[14] = 0'); assert((*result.data[15]) == FixedTrait::new_unscaled(1, false), 'result[15] = 1'); assert((*result.shape.at(0)) == 2, 'shape[0] = 2'); assert((*result.shape.at(1)) == 4, 'shape[0] = 4'); assert((*result.shape.at(2)) == 2, 'shape[0] = 2'); }
fn fp_tensor_onehot_3x2x2_new_last_axis() { let tensor = fp_tensor_3x2x2_new(); let mut values = ArrayTrait::new(); values.append(0); values.append(1); let depth = 4; let axis: Option<usize> = Option::None(()); let result = tensor.onehot(depth: depth, axis: axis, values: values.span()); assert((*result.data[0]) == FixedTrait::new_unscaled(1, false), 'result[0] = 1'); assert((*result.data[1]) == FixedTrait::new_unscaled(0, false), 'result[1] = 0'); assert((*result.data[2]) == FixedTrait::new_unscaled(0, false), 'result[2] = 0'); assert((*result.data[3]) == FixedTrait::new_unscaled(0, false), 'result[3] = 0'); assert((*result.data[4]) == FixedTrait::new_unscaled(0, false), 'result[4] = 0'); assert((*result.data[5]) == FixedTrait::new_unscaled(1, false), 'result[5] = 1'); assert((*result.data[6]) == FixedTrait::new_unscaled(0, false), 'result[6] = 0'); assert((*result.data[7]) == FixedTrait::new_unscaled(0, false), 'result[7] = 0'); assert((*result.data[8]) == FixedTrait::new_unscaled(0, false), 'result[8] = 0'); assert((*result.data[9]) == FixedTrait::new_unscaled(0, false), 'result[9] = 0'); assert((*result.data[10]) == FixedTrait::new_unscaled(1, false), 'result[10] = 1'); assert((*result.data[11]) == FixedTrait::new_unscaled(0, false), 'result[11] = 0'); assert((*result.data[12]) == FixedTrait::new_unscaled(0, false), 'result[12] = 0'); assert((*result.data[13]) == FixedTrait::new_unscaled(0, false), 'result[13] = 0'); assert((*result.data[14]) == FixedTrait::new_unscaled(0, false), 'result[14] = 0'); assert((*result.data[15]) == FixedTrait::new_unscaled(1, false), 'result[15] = 1'); assert((*result.data[16]) == FixedTrait::new_unscaled(1, false), 'result[16] = 1'); assert((*result.data[21]) == FixedTrait::new_unscaled(1, false), 'result[21] = 1'); assert((*result.data[26]) == FixedTrait::new_uns
caled(1, false), 'result[26] = 1'); assert((*result.data[31]) == FixedTrait::new_unscaled(1, false), 'result[31] = 1'); assert((*result.data[32]) == FixedTrait::new_unscaled(1, false), 'result[32] = 1'); assert((*result.data[37]) == FixedTrait::new_unscaled(1, false), 'result[37] = 1'); assert((*result.data[42]) == FixedTrait::new_unscaled(1, false), 'result[42] = 1'); assert((*result.data[46]) == FixedTrait::new_unscaled(0, false), 'result[46] = 0'); assert((*result.data[47]) == FixedTrait::new_unscaled(1, false), 'result[47] = 1'); assert((*result.shape.at(0)) == 3, 'shape[0] = 3'); assert((*result.shape.at(1)) == 2, 'shape[1] = 2'); assert((*result.shape.at(2)) == 2, 'shape[2] = 2'); assert((*result.shape.at(3)) == 4, 'shape[0] = 4'); }
fn tensor_onehot_tensor_3x2x2_fail() { let tensor = fp_tensor_3x2x2_new(); let mut values = ArrayTrait::new(); values.append(0); values.append(1); let depth = 4; let axis: Option<usize> = Option::Some(4); let _result = tensor.onehot(depth: depth, axis: axis, values: values.span()); }
fn fp_tensor_onehot_3x2x2_new_first_axis() { let tensor = fp_tensor_3x2x2_new(); let mut values = ArrayTrait::new(); values.append(2); values.append(5); let depth = 4; let axis: Option<usize> = Option::Some(0); let result = tensor.onehot(depth: depth, axis: axis, values: values.span()); assert((*result.data[0]) == FixedTrait::new_unscaled(5, false), 'result[0] = 5'); assert((*result.data[1]) == FixedTrait::new_unscaled(2, false), 'result[1] = 2'); assert((*result.data[2]) == FixedTrait::new_unscaled(2, false), 'result[2] = 2'); assert((*result.data[3]) == FixedTrait::new_unscaled(2, false), 'result[3] = 2'); assert((*result.data[4]) == FixedTrait::new_unscaled(5, false), 'result[4] = 5'); assert((*result.data[5]) == FixedTrait::new_unscaled(2, false), 'result[5] = 2'); assert((*result.data[6]) == FixedTrait::new_unscaled(2, false), 'result[6] = 2'); assert((*result.data[7]) == FixedTrait::new_unscaled(2, false), 'result[7] = 2'); assert((*result.data[8]) == FixedTrait::new_unscaled(5, false), 'result[8] = 5'); assert((*result.data[9]) == FixedTrait::new_unscaled(2, false), 'result[9] = 2'); assert((*result.data[10]) == FixedTrait::new_unscaled(2, false), 'result[10] = 2'); assert((*result.data[11]) == FixedTrait::new_unscaled(2, false), 'result[11] = 2'); assert((*result.data[12]) == FixedTrait::new_unscaled(2, false), 'result[12] = 2'); assert((*result.data[13]) == FixedTrait::new_unscaled(5, false), 'result[13] = 5'); assert((*result.data[14]) == FixedTrait::new_unscaled(2, false), 'result[14] = 2'); assert((*result.data[17]) == FixedTrait::new_unscaled(5, false), 'result[17] = 5'); assert((*result.data[21]) == FixedTrait::new_unscaled(5, false), 'result[21] = 5'); assert((*result.data[26]) == FixedTrait::new_unscaled(5, false), 'result[26] = 5'); assert((*result.data[30]) == FixedTrait::new_unscaled(5,
false), 'result[30] = 5'); assert((*result.data[34]) == FixedTrait::new_unscaled(5, false), 'result[34] = 5'); assert((*result.data[39]) == FixedTrait::new_unscaled(5, false), 'result[39] = 5'); assert((*result.data[43]) == FixedTrait::new_unscaled(5, false), 'result[43] = 5'); assert((*result.data[46]) == FixedTrait::new_unscaled(2, false), 'result[46] = 2'); assert((*result.data[47]) == FixedTrait::new_unscaled(5, false), 'result[47] = 5'); assert((*result.shape.at(0)) == 4, 'shape[0] = 4'); assert((*result.shape.at(1)) == 3, 'shape[1] = 3'); assert((*result.shape.at(2)) == 2, 'shape[2] = 3'); assert((*result.shape.at(3)) == 2, 'shape[0] = 2'); }
fn fp_tensor_onehot_3x2x2_new_second_axis() { let tensor = fp_tensor_3x2x2_new(); let mut values = ArrayTrait::new(); values.append(0); values.append(1); let depth = 4; let axis: Option<usize> = Option::Some(1); let result = tensor.onehot(depth: depth, axis: axis, values: values.span()); assert((*result.data[0]) == FixedTrait::new_unscaled(1, false), 'result[0] = 1'); assert((*result.data[1]) == FixedTrait::new_unscaled(0, false), 'result[1] = 0'); assert((*result.data[2]) == FixedTrait::new_unscaled(0, false), 'result[2] = 0'); assert((*result.data[3]) == FixedTrait::new_unscaled(0, false), 'result[3] = 0'); assert((*result.data[4]) == FixedTrait::new_unscaled(0, false), 'result[4] = 0'); assert((*result.data[5]) == FixedTrait::new_unscaled(1, false), 'result[5] = 1'); assert((*result.data[6]) == FixedTrait::new_unscaled(0, false), 'result[6] = 0'); assert((*result.data[7]) == FixedTrait::new_unscaled(0, false), 'result[7] = 0'); assert((*result.data[8]) == FixedTrait::new_unscaled(0, false), 'result[8] = 0'); assert((*result.data[9]) == FixedTrait::new_unscaled(0, false), 'result[9] = 0'); assert((*result.data[10]) == FixedTrait::new_unscaled(1, false), 'result[10] = 1'); assert((*result.data[11]) == FixedTrait::new_unscaled(0, false), 'result[11] = 0'); assert((*result.data[12]) == FixedTrait::new_unscaled(0, false), 'result[12] = 0'); assert((*result.data[13]) == FixedTrait::new_unscaled(0, false), 'result[13] = 0'); assert((*result.data[14]) == FixedTrait::new_unscaled(0, false), 'result[14] = 0'); assert((*result.data[15]) == FixedTrait::new_unscaled(1, false), 'result[15] = 1'); assert((*result.data[16]) == FixedTrait::new_unscaled(1, false), 'result[16] = 1'); assert((*result.data[21]) == FixedTrait::new_unscaled(1, false), 'result[21] = 1'); assert((*result.data[26]) == FixedTrait::new_unscaled(1,
false), 'result[26] = 1'); assert((*result.data[31]) == FixedTrait::new_unscaled(1, false), 'result[31] = 1'); assert((*result.data[32]) == FixedTrait::new_unscaled(1, false), 'result[32] = 1'); assert((*result.data[37]) == FixedTrait::new_unscaled(1, false), 'result[37] = 1'); assert((*result.data[42]) == FixedTrait::new_unscaled(1, false), 'result[42] = 1'); assert((*result.data[46]) == FixedTrait::new_unscaled(0, false), 'result[46] = 0'); assert((*result.data[47]) == FixedTrait::new_unscaled(1, false), 'result[47] = 1'); assert((*result.shape.at(0)) == 3, 'shape[0] = 3'); assert((*result.shape.at(1)) == 4, 'shape[1] = 4'); assert((*result.shape.at(2)) == 2, 'shape[2] = 3'); assert((*result.shape.at(3)) == 2, 'shape[0] = 2'); }
fn fp_tensor_onehot_3x2x2_new_third_axis() { let tensor = fp_tensor_3x2x2_new(); let mut values = ArrayTrait::new(); values.append(0); values.append(1); let depth = 4; let axis: Option<usize> = Option::Some(2); let result = tensor.onehot(depth: depth, axis: axis, values: values.span()); assert((*result.data[0]) == FixedTrait::new_unscaled(1, false), 'result[0] = 1'); assert((*result.data[1]) == FixedTrait::new_unscaled(0, false), 'result[1] = 0'); assert((*result.data[2]) == FixedTrait::new_unscaled(0, false), 'result[2] = 0'); assert((*result.data[3]) == FixedTrait::new_unscaled(1, false), 'result[3] = 1'); assert((*result.data[4]) == FixedTrait::new_unscaled(0, false), 'result[4] = 0'); assert((*result.data[5]) == FixedTrait::new_unscaled(0, false), 'result[5] = 0'); assert((*result.data[6]) == FixedTrait::new_unscaled(0, false), 'result[6] = 0'); assert((*result.data[12]) == FixedTrait::new_unscaled(1, false), 'result[12] = 1'); assert((*result.data[13]) == FixedTrait::new_unscaled(0, false), 'result[13] = 0'); assert((*result.data[14]) == FixedTrait::new_unscaled(0, false), 'result[14] = 0'); assert((*result.data[15]) == FixedTrait::new_unscaled(1, false), 'result[15] = 1'); assert((*result.data[16]) == FixedTrait::new_unscaled(1, false), 'result[16] = 1'); assert((*result.data[19]) == FixedTrait::new_unscaled(1, false), 'result[19] = 1'); assert((*result.data[21]) == FixedTrait::new_unscaled(0, false), 'result[21] = 0'); assert((*result.data[26]) == FixedTrait::new_unscaled(0, false), 'result[26] = 0'); assert((*result.data[28]) == FixedTrait::new_unscaled(1, false), 'result[28] = 1'); assert((*result.data[31]) == FixedTrait::new_unscaled(1, false), 'result[31] = 1'); assert((*result.data[32]) == FixedTrait::new_unscaled(1, false), 'result[32] = 1'); assert((*result.data[35]) == FixedTrait::new_unscal
ed(1, false), 'result[35] = 1'); assert((*result.data[37]) == FixedTrait::new_unscaled(0, false), 'result[37] = 0'); assert((*result.data[44]) == FixedTrait::new_unscaled(1, false), 'result[44] = 1'); assert((*result.data[46]) == FixedTrait::new_unscaled(0, false), 'result[46] = 0'); assert((*result.data[47]) == FixedTrait::new_unscaled(1, false), 'result[47] = 1'); assert((*result.shape.at(0)) == 3, 'shape[0] = 3'); assert((*result.shape.at(1)) == 2, 'shape[1] = 2'); assert((*result.shape.at(2)) == 4, 'shape[2] = 4'); assert((*result.shape.at(3)) == 2, 'shape[0] = 2'); } }
use core::serde::Serde; use core::option::OptionTrait; use core::clone::Clone; use orion::numbers::fixed_point::core::FixedTrait; mod tensor_1D { use core::array::{ArrayTrait, SpanTrait}; use core::traits::Into; use orion::numbers::fixed_point::core::{FixedTrait}; use orion::numbers::fixed_point::implementations::fp8x23::core::{FP8x23, FP8x23PartialEq}; use orion::operators::tensor::implementations::tensor_fp8x23::FP8x23Tensor; use orion::operators::tensor::core::TensorTrait; use orion::test_helper::tensor::fixed_point::fp8x23::{ fp_tensor_1x3_helper, fp_tensor_2x2_helper, fp_tensor_3x2x2_neg_helper, fp_tensor_1x3_neg_helper, fp_tensor_2x2x2_helper }; use core::debug::PrintTrait; use core::clone::Clone; use core::option::OptionTrait; use core::serde::Serde; use orion::operators::tensor::core::{Tensor}; fn fp_tensor_3x2x2_new() -> Tensor<FP8x23> { let mut sizes = ArrayTrait::new(); sizes.append(3); sizes.append(2); sizes.append(2); let mut data = ArrayTrait::new(); data.append(FixedTrait::new_unscaled(0, false)); data.append(FixedTrait::new_unscaled(1, false)); data.append(FixedTrait::new_unscaled(2, false)); data.append(FixedTrait::new_unscaled(3, false)); data.append(FixedTrait::new_unscaled(0, false)); data.append(FixedTrait::new_unscaled(1, false)); data.append(FixedTrait::new_unscaled(2, false)); data.append(FixedTrait::new_unscaled(3, false)); data.append(FixedTrait::new_unscaled(0, false)); data.append(FixedTrait::new_unscaled(1, false)); data.append(FixedTrait::new_unscaled(2, false)); data.append(FixedTrait::new_unscaled(3, false)); let tensor = TensorTrait::<FP8x23>::new(sizes.span(), data.span()); return tensor; } fn fp_tensor_2x2_pos_neg_new() -> Tensor<FP8x23> { let mut sizes = ArrayTrait::new(); sizes.append(2); sizes.append(2); le
t mut data = ArrayTrait::new(); data.append(FixedTrait::new_unscaled(0, false)); data.append(FixedTrait::new_unscaled(1, false)); data.append(FixedTrait::new_unscaled(2, true)); data.append(FixedTrait::new_unscaled(1, true)); let tensor = TensorTrait::<FP8x23>::new(sizes.span(), data.span()); return tensor; }
fn tensor_onehot_1x3_last_axis() { let tensor = fp_tensor_1x3_helper(); let mut values = ArrayTrait::new(); values.append(0); values.append(1); let depth = 3; let axis: Option<usize> = Option::None(()); let result = tensor.onehot(depth: depth, axis: axis, values: values.span()); assert((*result.data[0]) == FixedTrait::new_unscaled(1, false), 'result[0] = 1'); assert((*result.data[1]) == FixedTrait::new_unscaled(0, false), 'result[1] = 0'); assert((*result.data[2]) == FixedTrait::new_unscaled(0, false), 'result[2] = 0'); assert((*result.data[3]) == FixedTrait::new_unscaled(0, false), 'result[3] = 0'); assert((*result.data[4]) == FixedTrait::new_unscaled(1, false), 'result[4] = 1'); assert((*result.data[5]) == FixedTrait::new_unscaled(0, false), 'result[5] = 0'); assert((*result.data[6]) == FixedTrait::new_unscaled(0, false), 'result[6] = 0'); assert((*result.data[7]) == FixedTrait::new_unscaled(0, false), 'result[7] = 0'); assert((*result.data[8]) == FixedTrait::new_unscaled(1, false), 'result[8] = 1'); }
fn tensor_onehot_1x3_neg_last_axis() { let tensor = fp_tensor_1x3_neg_helper(); let mut values = ArrayTrait::new(); values.append(0); values.append(1); let depth = 3; let axis: Option<usize> = Option::None(()); let result = tensor.onehot(depth: depth, axis: axis, values: values.span()); assert((*result.data[0]) == FixedTrait::new_unscaled(1, false), 'result[0] = 1'); assert((*result.data[1]) == FixedTrait::new_unscaled(0, false), 'result[1] = 0'); assert((*result.data[2]) == FixedTrait::new_unscaled(0, false), 'result[2] = 0'); assert((*result.data[3]) == FixedTrait::new_unscaled(0, false), 'result[3] = 0'); assert((*result.data[4]) == FixedTrait::new_unscaled(0, false), 'result[4] = 1'); assert((*result.data[5]) == FixedTrait::new_unscaled(1, false), 'result[5] = 0'); assert((*result.data[6]) == FixedTrait::new_unscaled(0, false), 'result[6] = 0'); assert((*result.data[7]) == FixedTrait::new_unscaled(1, false), 'result[7] = 0'); assert((*result.data[8]) == FixedTrait::new_unscaled(0, false), 'result[8] = 1'); }
fn tensor_onehot_2x2_post_neg_last_axis() { let tensor = fp_tensor_2x2_pos_neg_new(); let mut values = ArrayTrait::new(); values.append(0); values.append(1); let depth = 3; let axis: Option<usize> = Option::None(()); let result = tensor.onehot(depth: depth, axis: axis, values: values.span()); assert((*result.data[0]) == FixedTrait::new_unscaled(1, false), 'result[0] = 1'); assert((*result.data[1]) == FixedTrait::new_unscaled(0, false), 'result[1] = 0'); assert((*result.data[2]) == FixedTrait::new_unscaled(0, false), 'result[2] = 0'); assert((*result.data[3]) == FixedTrait::new_unscaled(0, false), 'result[3] = 0'); assert((*result.data[4]) == FixedTrait::new_unscaled(1, false), 'result[4] = 1'); assert((*result.data[5]) == FixedTrait::new_unscaled(0, false), 'result[5] = 0'); assert((*result.data[6]) == FixedTrait::new_unscaled(0, false), 'result[6] = 0'); assert((*result.data[7]) == FixedTrait::new_unscaled(1, false), 'result[7] = 1'); assert((*result.data[8]) == FixedTrait::new_unscaled(0, false), 'result[8] = 0'); assert((*result.data[9]) == FixedTrait::new_unscaled(0, false), 'result[9] = 0'); assert((*result.data[10]) == FixedTrait::new_unscaled(0, false), 'result[10] = 0'); assert((*result.data[11]) == FixedTrait::new_unscaled(1, false), 'result[11] = 0'); }
fn tensor_onehot_tensor_1x3_fail() { let tensor = fp_tensor_1x3_helper(); let mut values = ArrayTrait::new(); values.append(0); values.append(1); let depth = 3; let axis: Option<usize> = Option::Some(3); let _result = tensor.onehot(depth: depth, axis: axis, values: values.span()); }
fn tensor_onehot_1x3_Zero_axis() { let tensor = fp_tensor_1x3_helper(); let mut values = ArrayTrait::new(); values.append(0); values.append(1); let depth = 3; let axis: Option<usize> = Option::Some(0); let result = tensor.onehot(depth: depth, axis: axis, values: values.span()); assert((*result.data[0]) == FixedTrait::new_unscaled(1, false), 'result[0] = 1'); assert((*result.data[1]) == FixedTrait::new_unscaled(0, false), 'result[1] = 0'); assert((*result.data[2]) == FixedTrait::new_unscaled(0, false), 'result[2] = 0'); assert((*result.data[3]) == FixedTrait::new_unscaled(0, false), 'result[3] = 0'); assert((*result.data[4]) == FixedTrait::new_unscaled(1, false), 'result[4] = 1'); assert((*result.data[5]) == FixedTrait::new_unscaled(0, false), 'result[5] = 0'); assert((*result.data[6]) == FixedTrait::new_unscaled(0, false), 'result[6] = 0'); assert((*result.data[7]) == FixedTrait::new_unscaled(0, false), 'result[7] = 0'); assert((*result.data[8]) == FixedTrait::new_unscaled(1, false), 'result[8] = 1'); }
fn tensor_onehot_1x3_axis_one() { let tensor = fp_tensor_1x3_helper(); let mut values = ArrayTrait::new(); values.append(0); values.append(1); let depth = 3; let axis: Option<usize> = Option::Some(1); let result = tensor.onehot(depth: depth, axis: axis, values: values.span()); assert((*result.data[0]) == FixedTrait::new_unscaled(1, false), 'result[0] = 1'); assert((*result.data[1]) == FixedTrait::new_unscaled(0, false), 'result[1] = 0'); assert((*result.data[2]) == FixedTrait::new_unscaled(0, false), 'result[2] = 0'); assert((*result.data[3]) == FixedTrait::new_unscaled(0, false), 'result[3] = 0'); assert((*result.data[4]) == FixedTrait::new_unscaled(1, false), 'result[4] = 1'); assert((*result.data[5]) == FixedTrait::new_unscaled(0, false), 'result[5] = 0'); assert((*result.data[6]) == FixedTrait::new_unscaled(0, false), 'result[6] = 0'); assert((*result.data[7]) == FixedTrait::new_unscaled(0, false), 'result[7] = 0'); assert((*result.data[8]) == FixedTrait::new_unscaled(1, false), 'result[8] = 1'); }
fn fp_tensor_onehot_2x2_helper_last_axis() { let tensor = fp_tensor_2x2_helper(); let mut values = ArrayTrait::new(); values.append(0); values.append(1); let depth = 4; let axis: Option<usize> = Option::None(()); let result = tensor.onehot(depth: depth, axis: axis, values: values.span()); assert((*result.data[0]) == FixedTrait::new_unscaled(1, false), 'result[0] = 1'); assert((*result.data[1]) == FixedTrait::new_unscaled(0, false), 'result[1] = 0'); assert((*result.data[2]) == FixedTrait::new_unscaled(0, false), 'result[2] = 0'); assert((*result.data[3]) == FixedTrait::new_unscaled(0, false), 'result[3] = 0'); assert((*result.data[4]) == FixedTrait::new_unscaled(0, false), 'result[4] = 0'); assert((*result.data[5]) == FixedTrait::new_unscaled(1, false), 'result[5] = 1'); assert((*result.data[6]) == FixedTrait::new_unscaled(0, false), 'result[6] = 0'); assert((*result.data[7]) == FixedTrait::new_unscaled(0, false), 'result[7] = 0'); assert((*result.data[8]) == FixedTrait::new_unscaled(0, false), 'result[8] = 0'); assert((*result.data[9]) == FixedTrait::new_unscaled(0, false), 'result[9] = 0'); assert((*result.data[10]) == FixedTrait::new_unscaled(1, false), 'result[10] = 1'); assert((*result.data[11]) == FixedTrait::new_unscaled(0, false), 'result[11] = 0'); assert((*result.data[12]) == FixedTrait::new_unscaled(0, false), 'result[12] = 0'); assert((*result.data[13]) == FixedTrait::new_unscaled(0, false), 'result[13] = 0'); assert((*result.data[14]) == FixedTrait::new_unscaled(0, false), 'result[14] = 0'); assert((*result.data[15]) == FixedTrait::new_unscaled(1, false), 'result[15] = 1'); assert((*result.shape.at(0)) == 2, 'shape[0] = 2'); assert((*result.shape.at(1)) == 2, 'shape[0] = 2'); assert((*result.shape.at(2)) == 4, 'shape[0] = 4'); }
fn tensor_onehot_tensor_2x2_fail() { let tensor = fp_tensor_2x2_helper(); let mut values = ArrayTrait::new(); values.append(0); values.append(1); let depth = 4; let axis: Option<usize> = Option::Some(3); let _result = tensor.onehot(depth: depth, axis: axis, values: values.span()); }
fn fp_tensor_onehot_2x2_helper_first_axis() { let tensor = fp_tensor_2x2_helper(); let mut values = ArrayTrait::new(); values.append(0); values.append(1); let depth = 4; let axis: Option<usize> = Option::Some(0); let result = tensor.onehot(depth: depth, axis: axis, values: values.span()); assert((*result.data[0]) == FixedTrait::new_unscaled(1, false), 'result[0] = 1'); assert((*result.data[1]) == FixedTrait::new_unscaled(0, false), 'result[1] = 0'); assert((*result.data[2]) == FixedTrait::new_unscaled(0, false), 'result[2] = 0'); assert((*result.data[3]) == FixedTrait::new_unscaled(0, false), 'result[3] = 0'); assert((*result.data[4]) == FixedTrait::new_unscaled(0, false), 'result[4] = 0'); assert((*result.data[5]) == FixedTrait::new_unscaled(1, false), 'result[5] = 1'); assert((*result.data[6]) == FixedTrait::new_unscaled(0, false), 'result[6] = 0'); assert((*result.data[7]) == FixedTrait::new_unscaled(0, false), 'result[7] = 0'); assert((*result.data[8]) == FixedTrait::new_unscaled(0, false), 'result[8] = 0'); assert((*result.data[9]) == FixedTrait::new_unscaled(0, false), 'result[9] = 0'); assert((*result.data[10]) == FixedTrait::new_unscaled(1, false), 'result[10] = 1'); assert((*result.data[11]) == FixedTrait::new_unscaled(0, false), 'result[11] = 0'); assert((*result.data[12]) == FixedTrait::new_unscaled(0, false), 'result[12] = 0'); assert((*result.data[13]) == FixedTrait::new_unscaled(0, false), 'result[13] = 0'); assert((*result.data[14]) == FixedTrait::new_unscaled(0, false), 'result[14] = 0'); assert((*result.data[15]) == FixedTrait::new_unscaled(1, false), 'result[15] = 1'); assert((*result.shape.at(0)) == 4, 'shape[0] = 4'); assert((*result.shape.at(1)) == 2, 'shape[0] = 2'); assert((*result.shape.at(2)) == 2, 'shape[0] = 2'); }
fn fp_tensor_onehot_2x2_helper_second_axis() { let tensor = fp_tensor_2x2_helper(); let mut values = ArrayTrait::new(); values.append(0); values.append(1); let depth = 4; let axis: Option<usize> = Option::Some(1); let result = tensor.onehot(depth: depth, axis: axis, values: values.span()); assert((*result.data[0]) == FixedTrait::new_unscaled(1, false), 'result[0] = 1'); assert((*result.data[1]) == FixedTrait::new_unscaled(0, false), 'result[1] = 0'); assert((*result.data[2]) == FixedTrait::new_unscaled(0, false), 'result[2] = 0'); assert((*result.data[3]) == FixedTrait::new_unscaled(1, false), 'result[3] = 1'); assert((*result.data[4]) == FixedTrait::new_unscaled(0, false), 'result[4] = 0'); assert((*result.data[5]) == FixedTrait::new_unscaled(0, false), 'result[5] = 0'); assert((*result.data[6]) == FixedTrait::new_unscaled(0, false), 'result[6] = 0'); assert((*result.data[7]) == FixedTrait::new_unscaled(0, false), 'result[7] = 0'); assert((*result.data[8]) == FixedTrait::new_unscaled(0, false), 'result[8] = 0'); assert((*result.data[9]) == FixedTrait::new_unscaled(0, false), 'result[9] = 0'); assert((*result.data[10]) == FixedTrait::new_unscaled(0, false), 'result[10] = 1'); assert((*result.data[11]) == FixedTrait::new_unscaled(0, false), 'result[11] = 0'); assert((*result.data[12]) == FixedTrait::new_unscaled(1, false), 'result[12] = 1'); assert((*result.data[13]) == FixedTrait::new_unscaled(0, false), 'result[13] = 0'); assert((*result.data[14]) == FixedTrait::new_unscaled(0, false), 'result[14] = 0'); assert((*result.data[15]) == FixedTrait::new_unscaled(1, false), 'result[15] = 1'); assert((*result.shape.at(0)) == 2, 'shape[0] = 2'); assert((*result.shape.at(1)) == 4, 'shape[0] = 4'); assert((*result.shape.at(2)) == 2, 'shape[0] = 2'); }
fn fp_tensor_onehot_3x2x2_new_last_axis() { let tensor = fp_tensor_3x2x2_new(); let mut values = ArrayTrait::new(); values.append(0); values.append(1); let depth = 4; let axis: Option<usize> = Option::None(()); let result = tensor.onehot(depth: depth, axis: axis, values: values.span()); assert((*result.data[0]) == FixedTrait::new_unscaled(1, false), 'result[0] = 1'); assert((*result.data[1]) == FixedTrait::new_unscaled(0, false), 'result[1] = 0'); assert((*result.data[2]) == FixedTrait::new_unscaled(0, false), 'result[2] = 0'); assert((*result.data[3]) == FixedTrait::new_unscaled(0, false), 'result[3] = 0'); assert((*result.data[4]) == FixedTrait::new_unscaled(0, false), 'result[4] = 0'); assert((*result.data[5]) == FixedTrait::new_unscaled(1, false), 'result[5] = 1'); assert((*result.data[6]) == FixedTrait::new_unscaled(0, false), 'result[6] = 0'); assert((*result.data[7]) == FixedTrait::new_unscaled(0, false), 'result[7] = 0'); assert((*result.data[8]) == FixedTrait::new_unscaled(0, false), 'result[8] = 0'); assert((*result.data[9]) == FixedTrait::new_unscaled(0, false), 'result[9] = 0'); assert((*result.data[10]) == FixedTrait::new_unscaled(1, false), 'result[10] = 1'); assert((*result.data[11]) == FixedTrait::new_unscaled(0, false), 'result[11] = 0'); assert((*result.data[12]) == FixedTrait::new_unscaled(0, false), 'result[12] = 0'); assert((*result.data[13]) == FixedTrait::new_unscaled(0, false), 'result[13] = 0'); assert((*result.data[14]) == FixedTrait::new_unscaled(0, false), 'result[14] = 0'); assert((*result.data[15]) == FixedTrait::new_unscaled(1, false), 'result[15] = 1'); assert((*result.data[16]) == FixedTrait::new_unscaled(1, false), 'result[16] = 1'); assert((*result.data[21]) == FixedTrait::new_unscaled(1, false), 'result[21] = 1'); assert((*result.data[26]) == FixedTrait::new_uns
caled(1, false), 'result[26] = 1'); assert((*result.data[31]) == FixedTrait::new_unscaled(1, false), 'result[31] = 1'); assert((*result.data[32]) == FixedTrait::new_unscaled(1, false), 'result[32] = 1'); assert((*result.data[37]) == FixedTrait::new_unscaled(1, false), 'result[37] = 1'); assert((*result.data[42]) == FixedTrait::new_unscaled(1, false), 'result[42] = 1'); assert((*result.data[46]) == FixedTrait::new_unscaled(0, false), 'result[46] = 0'); assert((*result.data[47]) == FixedTrait::new_unscaled(1, false), 'result[47] = 1'); assert((*result.shape.at(0)) == 3, 'shape[0] = 3'); assert((*result.shape.at(1)) == 2, 'shape[1] = 2'); assert((*result.shape.at(2)) == 2, 'shape[2] = 2'); assert((*result.shape.at(3)) == 4, 'shape[0] = 4'); }
fn tensor_onehot_tensor_3x2x2_fail() { let tensor = fp_tensor_3x2x2_new(); let mut values = ArrayTrait::new(); values.append(0); values.append(1); let depth = 4; let axis: Option<usize> = Option::Some(4); let _result = tensor.onehot(depth: depth, axis: axis, values: values.span()); }
fn fp_tensor_onehot_3x2x2_new_first_axis() { let tensor = fp_tensor_3x2x2_new(); let mut values = ArrayTrait::new(); values.append(2); values.append(5); let depth = 4; let axis: Option<usize> = Option::Some(0); let result = tensor.onehot(depth: depth, axis: axis, values: values.span()); assert((*result.data[0]) == FixedTrait::new_unscaled(5, false), 'result[0] = 5'); assert((*result.data[1]) == FixedTrait::new_unscaled(2, false), 'result[1] = 2'); assert((*result.data[2]) == FixedTrait::new_unscaled(2, false), 'result[2] = 2'); assert((*result.data[3]) == FixedTrait::new_unscaled(2, false), 'result[3] = 2'); assert((*result.data[4]) == FixedTrait::new_unscaled(5, false), 'result[4] = 5'); assert((*result.data[5]) == FixedTrait::new_unscaled(2, false), 'result[5] = 2'); assert((*result.data[6]) == FixedTrait::new_unscaled(2, false), 'result[6] = 2'); assert((*result.data[7]) == FixedTrait::new_unscaled(2, false), 'result[7] = 2'); assert((*result.data[8]) == FixedTrait::new_unscaled(5, false), 'result[8] = 5'); assert((*result.data[9]) == FixedTrait::new_unscaled(2, false), 'result[9] = 2'); assert((*result.data[10]) == FixedTrait::new_unscaled(2, false), 'result[10] = 2'); assert((*result.data[11]) == FixedTrait::new_unscaled(2, false), 'result[11] = 2'); assert((*result.data[12]) == FixedTrait::new_unscaled(2, false), 'result[12] = 2'); assert((*result.data[13]) == FixedTrait::new_unscaled(5, false), 'result[13] = 5'); assert((*result.data[14]) == FixedTrait::new_unscaled(2, false), 'result[14] = 2'); assert((*result.data[17]) == FixedTrait::new_unscaled(5, false), 'result[17] = 5'); assert((*result.data[21]) == FixedTrait::new_unscaled(5, false), 'result[21] = 5'); assert((*result.data[26]) == FixedTrait::new_unscaled(5, false), 'result[26] = 5'); assert((*result.data[30]) == FixedTrait::new_unscaled(5,
false), 'result[30] = 5'); assert((*result.data[34]) == FixedTrait::new_unscaled(5, false), 'result[34] = 5'); assert((*result.data[39]) == FixedTrait::new_unscaled(5, false), 'result[39] = 5'); assert((*result.data[43]) == FixedTrait::new_unscaled(5, false), 'result[43] = 5'); assert((*result.data[46]) == FixedTrait::new_unscaled(2, false), 'result[46] = 2'); assert((*result.data[47]) == FixedTrait::new_unscaled(5, false), 'result[47] = 5'); assert((*result.shape.at(0)) == 4, 'shape[0] = 4'); assert((*result.shape.at(1)) == 3, 'shape[1] = 3'); assert((*result.shape.at(2)) == 2, 'shape[2] = 3'); assert((*result.shape.at(3)) == 2, 'shape[0] = 2'); }
fn fp_tensor_onehot_3x2x2_new_second_axis() { let tensor = fp_tensor_3x2x2_new(); let mut values = ArrayTrait::new(); values.append(0); values.append(1); let depth = 4; let axis: Option<usize> = Option::Some(1); let result = tensor.onehot(depth: depth, axis: axis, values: values.span()); assert((*result.data[0]) == FixedTrait::new_unscaled(1, false), 'result[0] = 1'); assert((*result.data[1]) == FixedTrait::new_unscaled(0, false), 'result[1] = 0'); assert((*result.data[2]) == FixedTrait::new_unscaled(0, false), 'result[2] = 0'); assert((*result.data[3]) == FixedTrait::new_unscaled(0, false), 'result[3] = 0'); assert((*result.data[4]) == FixedTrait::new_unscaled(0, false), 'result[4] = 0'); assert((*result.data[5]) == FixedTrait::new_unscaled(1, false), 'result[5] = 1'); assert((*result.data[6]) == FixedTrait::new_unscaled(0, false), 'result[6] = 0'); assert((*result.data[7]) == FixedTrait::new_unscaled(0, false), 'result[7] = 0'); assert((*result.data[8]) == FixedTrait::new_unscaled(0, false), 'result[8] = 0'); assert((*result.data[9]) == FixedTrait::new_unscaled(0, false), 'result[9] = 0'); assert((*result.data[10]) == FixedTrait::new_unscaled(1, false), 'result[10] = 1'); assert((*result.data[11]) == FixedTrait::new_unscaled(0, false), 'result[11] = 0'); assert((*result.data[12]) == FixedTrait::new_unscaled(0, false), 'result[12] = 0'); assert((*result.data[13]) == FixedTrait::new_unscaled(0, false), 'result[13] = 0'); assert((*result.data[14]) == FixedTrait::new_unscaled(0, false), 'result[14] = 0'); assert((*result.data[15]) == FixedTrait::new_unscaled(1, false), 'result[15] = 1'); assert((*result.data[16]) == FixedTrait::new_unscaled(1, false), 'result[16] = 1'); assert((*result.data[21]) == FixedTrait::new_unscaled(1, false), 'result[21] = 1'); assert((*result.data[26]) == FixedTrait::new_unscaled(1,
false), 'result[26] = 1'); assert((*result.data[31]) == FixedTrait::new_unscaled(1, false), 'result[31] = 1'); assert((*result.data[32]) == FixedTrait::new_unscaled(1, false), 'result[32] = 1'); assert((*result.data[37]) == FixedTrait::new_unscaled(1, false), 'result[37] = 1'); assert((*result.data[42]) == FixedTrait::new_unscaled(1, false), 'result[42] = 1'); assert((*result.data[46]) == FixedTrait::new_unscaled(0, false), 'result[46] = 0'); assert((*result.data[47]) == FixedTrait::new_unscaled(1, false), 'result[47] = 1'); assert((*result.shape.at(0)) == 3, 'shape[0] = 3'); assert((*result.shape.at(1)) == 4, 'shape[1] = 4'); assert((*result.shape.at(2)) == 2, 'shape[2] = 3'); assert((*result.shape.at(3)) == 2, 'shape[0] = 2'); }
fn fp_tensor_onehot_3x2x2_new_third_axis() { let tensor = fp_tensor_3x2x2_new(); let mut values = ArrayTrait::new(); values.append(0); values.append(1); let depth = 4; let axis: Option<usize> = Option::Some(2); let result = tensor.onehot(depth: depth, axis: axis, values: values.span()); assert((*result.data[0]) == FixedTrait::new_unscaled(1, false), 'result[0] = 1'); assert((*result.data[1]) == FixedTrait::new_unscaled(0, false), 'result[1] = 0'); assert((*result.data[2]) == FixedTrait::new_unscaled(0, false), 'result[2] = 0'); assert((*result.data[3]) == FixedTrait::new_unscaled(1, false), 'result[3] = 1'); assert((*result.data[4]) == FixedTrait::new_unscaled(0, false), 'result[4] = 0'); assert((*result.data[5]) == FixedTrait::new_unscaled(0, false), 'result[5] = 0'); assert((*result.data[6]) == FixedTrait::new_unscaled(0, false), 'result[6] = 0'); assert((*result.data[12]) == FixedTrait::new_unscaled(1, false), 'result[12] = 1'); assert((*result.data[13]) == FixedTrait::new_unscaled(0, false), 'result[13] = 0'); assert((*result.data[14]) == FixedTrait::new_unscaled(0, false), 'result[14] = 0'); assert((*result.data[15]) == FixedTrait::new_unscaled(1, false), 'result[15] = 1'); assert((*result.data[16]) == FixedTrait::new_unscaled(1, false), 'result[16] = 1'); assert((*result.data[19]) == FixedTrait::new_unscaled(1, false), 'result[19] = 1'); assert((*result.data[21]) == FixedTrait::new_unscaled(0, false), 'result[21] = 0'); assert((*result.data[26]) == FixedTrait::new_unscaled(0, false), 'result[26] = 0'); assert((*result.data[28]) == FixedTrait::new_unscaled(1, false), 'result[28] = 1'); assert((*result.data[31]) == FixedTrait::new_unscaled(1, false), 'result[31] = 1'); assert((*result.data[32]) == FixedTrait::new_unscaled(1, false), 'result[32] = 1'); assert((*result.data[35]) == FixedTrait::new_unscal
ed(1, false), 'result[35] = 1'); assert((*result.data[37]) == FixedTrait::new_unscaled(0, false), 'result[37] = 0'); assert((*result.data[44]) == FixedTrait::new_unscaled(1, false), 'result[44] = 1'); assert((*result.data[46]) == FixedTrait::new_unscaled(0, false), 'result[46] = 0'); assert((*result.data[47]) == FixedTrait::new_unscaled(1, false), 'result[47] = 1'); assert((*result.shape.at(0)) == 3, 'shape[0] = 3'); assert((*result.shape.at(1)) == 2, 'shape[1] = 2'); assert((*result.shape.at(2)) == 4, 'shape[2] = 4'); assert((*result.shape.at(3)) == 2, 'shape[0] = 2'); } }
// ===== 1D ===== // #[cfg(test)] mod tensor_1D { use core::array::ArrayTrait; use orion::operators::tensor::core::{ravel_index}; #[test] #[available_gas(2000000)] fn tensor_ravel_index() { let mut shape = ArrayTrait::new(); shape.append(5); let mut indices = ArrayTrait::new(); indices.append(2); let result = ravel_index(shape.span(), indices.span()); assert(result == 2, 'result = 2'); } } // ===== 2D ===== // #[cfg(test)] mod tensor_2D { use core::array::ArrayTrait; use orion::operators::tensor::core::{ravel_index}; #[test] #[available_gas(2000000)] fn tensor_ravel_index() { let mut shape = ArrayTrait::new(); shape.append(2); shape.append(4); let mut indices = ArrayTrait::new(); indices.append(1); indices.append(2); let result = ravel_index(shape.span(), indices.span()); assert(result == 6, 'result = 6'); } } // ===== 3D ===== // #[cfg(test)] mod tensor_3D { use core::array::ArrayTrait; use orion::operators::tensor::core::{ravel_index}; #[test] #[available_gas(2000000)] fn tensor_ravel_index() { let mut shape = ArrayTrait::new(); shape.append(2); shape.append(4); shape.append(6); let mut indices = ArrayTrait::new(); indices.append(1); indices.append(3); indices.append(0); let result = ravel_index(shape.span(), indices.span()); assert(result == 42, 'result = 42'); } }
mod stride_u32_test; mod stride_i32_test; mod stride_bool_test; mod stride_fp_test;
mod tensor_1D { use core::array::ArrayTrait; use orion::operators::tensor::{BoolTensor}; use orion::operators::tensor::core::{TensorTrait};
fn tensor_at() { let mut sizes = ArrayTrait::new(); sizes.append(3); let mut data = ArrayTrait::new(); data.append(false); data.append(true); data.append(false); let tensor = TensorTrait::<bool>::new(sizes.span(), data.span()); let result = tensor.stride(); assert(*result[0] == 1, 'stride x = 1'); assert(result.len() == 1, 'len = 1'); } } mod tensor_2D { use core::array::ArrayTrait; use orion::operators::tensor::{BoolTensor}; use orion::operators::tensor::core::{TensorTrait};
fn tensor_at() { let mut sizes = ArrayTrait::new(); sizes.append(2); sizes.append(2); let mut data = ArrayTrait::new(); data.append(false); data.append(false); data.append(false); data.append(true); let tensor = TensorTrait::<bool>::new(sizes.span(), data.span()); let result = tensor.stride(); assert(*result[0] == 2, 'stride x = 2'); assert(*result[1] == 1, 'stride y = 1'); assert(result.len() == 2, 'len = 2'); } } mod tensor_3D { use core::array::ArrayTrait; use orion::operators::tensor::{BoolTensor}; use orion::operators::tensor::core::{TensorTrait};
fn tensor_at() { let mut sizes = ArrayTrait::new(); sizes.append(2); sizes.append(2); sizes.append(2); let mut data = ArrayTrait::new(); data.append(false); data.append(false); data.append(false); data.append(true); data.append(false); data.append(false); data.append(false); data.append(false); let tensor = TensorTrait::<bool>::new(sizes.span(), data.span()); let result = tensor.stride(); assert(*result[0] == 4, 'stride x = 4'); assert(*result[1] == 2, 'stride y = 2'); assert(*result[2] == 1, 'stride z = 1'); assert(result.len() == 3, 'len = 3'); } }
mod stride_fp8x23_test; mod stride_fp16x16_test;
// ===== 1D ===== // #[cfg(test)] mod tensor_1D { use core::array::ArrayTrait; use core::array::SpanTrait; use orion::operators::tensor::implementations::tensor_fp16x16::FP16x16Tensor; use orion::operators::tensor::core::{TensorTrait}; use orion::test_helper::tensor::fixed_point::fp16x16::fp_tensor_1x3_helper; #[test] #[available_gas(2000000)] fn tensor_stride() { let tensor = fp_tensor_1x3_helper(); let result = tensor.stride(); assert(*result[0] == 1, 'stride x = 1'); assert(result.len() == 1, 'len = 1'); } } // ===== 2D ===== // #[cfg(test)] mod tensor_2D { use core::array::ArrayTrait; use core::array::SpanTrait; use orion::operators::tensor::implementations::tensor_fp16x16::FP16x16Tensor; use orion::operators::tensor::core::{TensorTrait}; use orion::test_helper::tensor::fixed_point::fp16x16::fp_tensor_2x2_helper; #[test] #[available_gas(2000000)] fn tensor_stride() { let tensor = fp_tensor_2x2_helper(); let result = tensor.stride(); assert(*result[0] == 2, 'stride x = 2'); assert(*result[1] == 1, 'stride y = 1'); assert(result.len() == 2, 'len = 2'); } } // ===== 3D ===== // #[cfg(test)] mod tensor_3D { use core::array::ArrayTrait; use core::array::SpanTrait; use orion::operators::tensor::implementations::tensor_fp16x16::FP16x16Tensor; use orion::operators::tensor::core::{TensorTrait}; use orion::test_helper::tensor::fixed_point::fp16x16::fp_tensor_2x2x2_helper; #[test] #[available_gas(2000000)] fn tensor_stride() { let tensor = fp_tensor_2x2x2_helper(); let result = tensor.stride(); assert(*result[0] == 4, 'stride x = 4'); assert(*result[1] == 2, 'stride y = 2'); assert(*result[2] == 1, 'stride z = 1'); assert(result.len() == 3, 'len = 3'); } }
// ===== 1D ===== // #[cfg(test)] mod tensor_1D { use core::array::ArrayTrait; use core::array::SpanTrait; use orion::operators::tensor::implementations::tensor_fp8x23::FP8x23Tensor; use orion::operators::tensor::core::{TensorTrait}; use orion::test_helper::tensor::fixed_point::fp8x23::fp_tensor_1x3_helper; #[test] #[available_gas(2000000)] fn tensor_stride() { let tensor = fp_tensor_1x3_helper(); let result = tensor.stride(); assert(*result[0] == 1, 'stride x = 1'); assert(result.len() == 1, 'len = 1'); } } // ===== 2D ===== // #[cfg(test)] mod tensor_2D { use core::array::ArrayTrait; use core::array::SpanTrait; use orion::operators::tensor::implementations::tensor_fp8x23::FP8x23Tensor; use orion::operators::tensor::core::{TensorTrait}; use orion::test_helper::tensor::fixed_point::fp8x23::fp_tensor_2x2_helper; #[test] #[available_gas(2000000)] fn tensor_stride() { let tensor = fp_tensor_2x2_helper(); let result = tensor.stride(); assert(*result[0] == 2, 'stride x = 2'); assert(*result[1] == 1, 'stride y = 1'); assert(result.len() == 2, 'len = 2'); } } // ===== 3D ===== // #[cfg(test)] mod tensor_3D { use core::array::ArrayTrait; use core::array::SpanTrait; use orion::operators::tensor::implementations::tensor_fp8x23::FP8x23Tensor; use orion::operators::tensor::core::{TensorTrait}; use orion::test_helper::tensor::fixed_point::fp8x23::fp_tensor_2x2x2_helper; #[test] #[available_gas(2000000)] fn tensor_stride() { let tensor = fp_tensor_2x2x2_helper(); let result = tensor.stride(); assert(*result[0] == 4, 'stride x = 4'); assert(*result[1] == 2, 'stride y = 2'); assert(*result[2] == 1, 'stride z = 1'); assert(result.len() == 3, 'len = 3'); } }
// ===== 1D ===== // #[cfg(test)] mod tensor_1D { use core::array::ArrayTrait; use core::array::SpanTrait; use orion::operators::tensor::I32Tensor; use orion::operators::tensor::core::{TensorTrait}; use orion::test_helper::tensor::i32::i32_tensor_1x3_helper; #[test] #[available_gas(2000000)] fn tensor_stride() { let tensor = i32_tensor_1x3_helper(); let result = tensor.stride(); assert(*result[0] == 1, 'stride x = 1'); assert(result.len() == 1, 'len = 1'); } } // ===== 2D ===== // #[cfg(test)] mod tensor_2D { use core::array::ArrayTrait; use core::array::SpanTrait; use orion::operators::tensor::I32Tensor; use orion::operators::tensor::core::{TensorTrait}; use orion::test_helper::tensor::i32::i32_tensor_2x2_helper; #[test] #[available_gas(2000000)] fn tensor_at() { let tensor = i32_tensor_2x2_helper(); let result = tensor.stride(); assert(*result[0] == 2, 'stride x = 2'); assert(*result[1] == 1, 'stride y = 1'); assert(result.len() == 2, 'len = 2'); } } // ===== 3D ===== // #[cfg(test)] mod tensor_3D { use core::array::ArrayTrait; use core::array::SpanTrait; use orion::operators::tensor::I32Tensor; use orion::operators::tensor::core::{TensorTrait}; use orion::test_helper::tensor::i32::i32_tensor_2x2x2_helper; #[test] #[available_gas(2000000)] fn tensor_at() { let tensor = i32_tensor_2x2x2_helper(); let result = tensor.stride(); assert(*result[0] == 4, 'stride x = 4'); assert(*result[1] == 2, 'stride y = 2'); assert(*result[2] == 1, 'stride z = 1'); assert(result.len() == 3, 'len = 3'); } }
// ===== 1D ===== // #[cfg(test)] mod tensor_1D { use core::array::ArrayTrait; use core::array::SpanTrait; use orion::operators::tensor::U32Tensor; use orion::operators::tensor::core::{TensorTrait}; use orion::test_helper::tensor::u32::u32_tensor_1x3_helper; #[test] #[available_gas(2000000)] fn tensor_stride() { let tensor = u32_tensor_1x3_helper(); let result = tensor.stride(); assert(*result[0] == 1, 'stride x = 1'); assert(result.len() == 1, 'len = 1'); } } // ===== 2D ===== // #[cfg(test)] mod tensor_2D { use core::array::ArrayTrait; use core::array::SpanTrait; use orion::operators::tensor::U32Tensor; use orion::operators::tensor::core::{TensorTrait}; use orion::test_helper::tensor::u32::u32_tensor_2x2_helper; #[test] #[available_gas(2000000)] fn tensor_at() { let tensor = u32_tensor_2x2_helper(); let result = tensor.stride(); assert(*result[0] == 2, 'stride x = 2'); assert(*result[1] == 1, 'stride y = 1'); assert(result.len() == 2, 'len = 2'); } } // ===== 3D ===== // #[cfg(test)] mod tensor_3D { use core::array::ArrayTrait; use core::array::SpanTrait; use orion::operators::tensor::U32Tensor; use orion::operators::tensor::core::{TensorTrait}; use orion::test_helper::tensor::u32::u32_tensor_2x2x2_helper; #[test] #[available_gas(2000000)] fn tensor_at() { let tensor = u32_tensor_2x2x2_helper(); let result = tensor.stride(); assert(*result[0] == 4, 'stride x = 4'); assert(*result[1] == 2, 'stride y = 2'); assert(*result[2] == 1, 'stride z = 1'); assert(result.len() == 3, 'len = 3'); } }
// ===== 1D ===== // #[cfg(test)] mod tensor_1D { use core::array::ArrayTrait; use core::array::SpanTrait; use orion::operators::tensor::core::{unravel_index}; #[test] #[available_gas(2000000)] fn tensor_unravel_index() { let mut shape = ArrayTrait::new(); shape.append(5); let result = unravel_index(2, shape.span()); assert(*result[0] == 2, 'result[0] = 2'); } } // ===== 2D ===== // #[cfg(test)] mod tensor_2D { use core::array::ArrayTrait; use core::array::SpanTrait; use orion::operators::tensor::core::{unravel_index}; #[test] #[available_gas(2000000)] fn tensor_unravel_index() { let mut shape = ArrayTrait::new(); shape.append(2); shape.append(4); let result = unravel_index(6, shape.span()); assert(*result[0] == 1, 'result[0] = 1'); assert(*result[1] == 2, 'result[1] = 2'); } } // ===== 3D ===== // #[cfg(test)] mod tensor_3D { use core::array::ArrayTrait; use core::array::SpanTrait; use orion::operators::tensor::core::{unravel_index}; #[test] #[available_gas(2000000)] fn tensor_unravel_index() { let mut shape = ArrayTrait::new(); shape.append(2); shape.append(4); shape.append(6); let result = unravel_index(42, shape.span()); assert(*result[0] == 1, 'result[0] = 1'); assert(*result[1] == 3, 'result[1] = 3'); assert(*result[2] == 0, 'result[2] = 0'); } }
import argparse
import os
import pprint
import numpy as np from addresses
import ADDRESSES from dotenv
import find_dotenv, load_dotenv from giza_actions.action
import action from giza_actions.agent
import AgentResult, GizaAgent from giza_actions.task
import task from lp_tools
import get_tick_range from prefect
import get_run_logger from uni_helpers
import ( approve_token, check_allowance, close_position, get_all_user_positions, get_mint_params, ) load_dotenv(find_dotenv()) os.environ["DEV_PASSPHRASE"] = os.environ.get("DEV_PASSPHRASE") sepolia_rpc_url = os.environ.get("SEPOLIA_RPC_URL") @task(name="Data processing") def process_data(realized_vol: float, dec_price_change: float): pct_change_sq = (100 * dec_price_change) ** 2 X = np.array([[realized_vol, pct_change_sq]]) return X @task(name="Get volatility and price change data") def get_data(): realized_vol = 4.20 dec_price_change = 0.1 return realized_vol, dec_price_change @task(name="Create a Giza agent for the Volatility prediction model") def create_agent( model_id: int, version_id: int, chain: str, contracts: dict, account: str ): """ Create a Giza agent for the volatility prediction model """ agent = GizaAgent( contracts=contracts, id=model_id, version_id=version_id, chain=chain, account=account, ) return agent @task(name="Run the volatility prediction model") def predict(agent: GizaAgent, X: np.ndarray): """ Predict the next day volatility. Args: X (np.ndarray): Input to the model. Returns: int: Predicted value. """ prediction = agent.predict(input_feed={"val": X}, verifiable=True, job_size="XL") return prediction @task(name="Verify the inference proof and return the predicted value") def get_pred_val(prediction: AgentResult): """ Get the value from the prediction. Args: prediction (dict): Prediction from the model. Returns: int: Predicted value. """ return prediction.value[0][0] @action(log_prints=True) def rebalance_lp( tokenA_amount: int, tokenB_amount: int, pred_model_id: int, pred_version_id: int, account="dev", chain=f"ethereum:sepolia:{sepolia_rpc_url}", nft_id=None, ): logger = get_run_logger() nft_manager_address = ADDRESSES["
NonfungiblePositionManager"][11155111] tokenA_address = ADDRESSES["UNI"][11155111] tokenB_address = ADDRESSES["WETH"][11155111] pool_address = "0x287B0e934ed0439E2a7b1d5F0FC25eA2c24b64f7" user_address = "0xCBB090699E0664f0F6A4EFbC616f402233718152" pool_fee = 3000 logger.info("Fetching input data") realized_vol, dec_price_change = get_data() logger.info(f"Input data: {realized_vol}, {dec_price_change}") X = process_data(realized_vol, dec_price_change) contracts = { "nft_manager": nft_manager_address, "tokenA": tokenA_address, "tokenB": tokenB_address, "pool": pool_address, } agent = create_agent( model_id=pred_model_id, version_id=pred_version_id, chain=chain, contracts=contracts, account=account, ) result = predict(agent, X) predicted_value = get_pred_val(result) logger.info(f"Result: {result}") with agent.execute() as contracts: logger.info("Executing contract") if nft_id is None: positions = [ max(get_all_user_positions(contracts.nft_manager, user_address)) ] else: positions = [nft_id] logger.info(f"Closing the following positions {positions}") for nft_id in positions: close_position(user_address, contracts.nft_manager, nft_id) logger.info("Calculating mint params...") _, curr_tick, _, _, _, _, _ = contracts.pool.slot0() if not check_allowance( contracts.tokenA, nft_manager_address, account, tokenA_amount ): approve_token(contracts.tokenA, nft_manager_address, tokenA_amount) if not check_allowance( contracts.tokenB, nft_manager_address, account, tokenB_amount ): approve_token(contracts.tokenB, nft_manager_address, tokenB_amount) tokenA_decimals = contracts.tokenA.decimals() tokenB_decimals = contracts.tokenB.decimals() predicted_value = predicted_value /
100 * 1.96 lower_tick, upper_tick = get_tick_range( curr_tick, predicted_value, tokenA_decimals, tokenB_decimals, pool_fee ) mint_params = get_mint_params( user_address, contracts.tokenA.address, contracts.tokenB.address, tokenA_amount, tokenB_amount, pool_fee, lower_tick, upper_tick, ) logger.info("Minting new position...") contract_result = contracts.nft_manager.mint(mint_params) logger.info("SUCCESSFULLY MINTED A POSITION") logger.info("Contract executed") logger.info(f"Contract result: {contract_result}") pprint.pprint(contract_result.__dict__) logger.info("Finished") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--model-id", metavar="M", type=int, help="model-id") parser.add_argument("--version-id", metavar="V", type=int, help="version-id") parser.add_argument("--tokenA-amount", metavar="A", type=int, help="tokenA-amount") parser.add_argument("--tokenB-amount", metavar="B", type=int, help="tokenB-amount") args = parser.parse_args() MODEL_ID = args.model_id VERSION_ID = args.version_id tokenA_amount = args.tokenA_amount tokenB_amount = args.tokenB_amount rebalance_lp(tokenA_amount, tokenB_amount, MODEL_ID, VERSION_ID)
# source: https://docs.uniswap.org/contracts/v3/reference/deployments ADDRESSES = { "WETH": { 1: "0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", 11155111: "0xfFf9976782d46CC05630D1f6eBAb18b2324d6B14", 5: "0xB4FBF271143F4FBf7B91A5ded31805e42b2208d6", 42161: "0x82aF49447D8a07e3bd95BD0d56f35241523fBab1", }, "UNI": { 1: "0x1f9840a85d5aF5bf1D1762F925BDADdC4201F984", 11155111: "0x1f9840a85d5aF5bf1D1762F925BDADdC4201F984", 5: "0x1f9840a85d5aF5bf1D1762F925BDADdC4201F984", 42161: "0xFa7F8980b0f1E64A2062791cc3b0871572f1F7f0", }, "USDC": { 1: "0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", 11155111: "0x1c7D4B196Cb0C7B01d743Fbc6116a902379C7238", 5: "", 42161: "0xaf88d065e77c8cC2239327C5EDb3A432268e5831", }, "NonfungiblePositionManager": { 1: "0xC36442b4a4522E871399CD717aBDD847Ab11FE88", 11155111: "0x1238536071E1c677A632429e3655c799b22cDA52", 5: "0xC36442b4a4522E871399CD717aBDD847Ab11FE88", 42161: "0xC36442b4a4522E871399CD717aBDD847Ab11FE88", }, "PoolFactory": { 1: "0x1F98431c8aD98523631AE4a59f267346ea31F984", 11155111: "0x0227628f3F023bb0B980b67D528571c95c6DaC1c", 5: "0x1F98431c8aD98523631AE4a59f267346ea31F984", 42161: "0x1F98431c8aD98523631AE4a59f267346ea31F984", }, "Router": { 1: "0x68b3465833fb72A70ecDF485E0e4C7bD8665Fc45", 11155111: "0x3bFA4769FB09eefC5a80d6E87c3B9C650f7Ae48E", 5: "0x68b3465833fb72A70ecDF485E0e4C7bD8665Fc45", 42161: "0x68b3465833fb72A70ecDF485E0e4C7bD8665Fc45", }, }
import os from addresses import ADDRESSES from ape import Contract, accounts, chain, networks from dotenv import find_dotenv, load_dotenv load_dotenv(find_dotenv()) dev_passphrase = os.environ.get("DEV_PASSPHRASE") sepolia_rpc_url = os.environ.get("SEPOLIA_RPC_URL") if __name__ == "__main__": networks.parse_network_choice(f"ethereum:sepolia:{sepolia_rpc_url}").__enter__() chain_id = chain.chain_id weth_mint_amount = 0.0001 pool_fee = 3000 uni = Contract(ADDRESSES["UNI"][chain_id]) weth = Contract(ADDRESSES["WETH"][chain_id]) weth_decimals = weth.decimals() uni_decimals = uni.decimals() weth_mint_amount = int(weth_mint_amount * 10**weth_decimals) uni_mint_amount = int(0.5 * weth_mint_amount) pool_factory = Contract(ADDRESSES["PoolFactory"][chain_id]) pool_address = "0x287B0e934ed0439E2a7b1d5F0FC25eA2c24b64f7" pool = Contract(pool_address) swap_router = Contract(ADDRESSES["Router"][chain_id]) wallet = accounts.load("dev") wallet.set_autosign(True, passphrase=dev_passphrase) with accounts.use_sender("dev"): print(f"Minting {weth_mint_amount/10**weth_decimals} WETH") weth.deposit(value=weth_mint_amount) print("Approving WETH for swap") weth.approve(swap_router.address, weth_mint_amount) swap_params = { "tokenIn": weth.address, "tokenOut": uni.address, "fee": pool_fee, "recipient": wallet.address, "amountIn": weth_mint_amount, "amountOutMinimum": 0, "sqrtPriceLimitX96": 0, } swap_params = tuple(swap_params.values()) print("Swapping WETH for UNI") amountOut = swap_router.exactInputSingle(swap_params) print(f"Successfully minted {uni_mint_amount/10**uni_decimals} UNI") print(f"Your WETH balance: {weth.balanceOf(wallet.address)/10**weth_decimals}") print(f"Your UNI balance: {uni.balanceOf(wallet.address)/10**uni_decimals}")
import math MIN_TICK = -887272 MAX_TICK = -MIN_TICK TICKS_Q = 1.0001 Q96 = 2**96 MAX_UINT_128 = 2 ** (128) - 1 _tick_spacing = {100: 1, 500: 10, 3_000: 60, 10_000: 200} def price_to_tick(price): sqrtPriceX96 = int(price * 2**96) tick = math.floor(math.log((sqrtPriceX96 / Q96) ** 2) / math.log(TICKS_Q)) return tick def tick_to_price(tick, decimals0, decimals1, invert=False): if invert: return 1 / (TICKS_Q**tick / 10 ** (decimals1 - decimals0)) else: return TICKS_Q**tick / 10 ** (decimals1 - decimals0) def get_min_tick(fee: int): min_tick_spacing: int = _tick_spacing[fee] return -(MIN_TICK def get_max_tick(fee: int): max_tick_spacing: int = _tick_spacing[fee] return (MAX_TICK def default_tick_range(fee: int): min_tick = get_min_tick(fee) max_tick = get_max_tick(fee) return min_tick, max_tick def nearest_tick(tick: int, fee: int): min_tick, max_tick = default_tick_range(fee) assert ( min_tick <= tick <= max_tick ), f"Provided tick is out of bounds: {(min_tick, max_tick)}" tick_spacing = _tick_spacing[fee] rounded_tick_spacing = round(tick / tick_spacing) * tick_spacing if rounded_tick_spacing < min_tick: return rounded_tick_spacing + tick_spacing elif rounded_tick_spacing > max_tick: return rounded_tick_spacing - tick_spacing else: return rounded_tick_spacing def get_tick_range(curr_tick, pct_dev, tokenA_decimals, tokenB_decimals, fee): curr_price = tick_to_price(curr_tick, tokenA_decimals, tokenB_decimals) upper_price = curr_price * (1 + pct_dev) lower_price = curr_price * (1 - pct_dev) lower_tick = price_to_tick(lower_price) upper_tick = price_to_tick(upper_price) lower_tick = nearest_tick(lower_tick, fee) upper_tick = nearest_tick(upper_tick, fee) return lower_tick, upper_tick
import datetime
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
import yfinance as yf from sklearn.metrics
import mean_squared_error as mse def download_data(): uni_ticker = "UNI-USD" eth_ticker = "ETH-USD" start = datetime.datetime(2019, 1, 1) end = datetime.datetime(2024, 4, 1) uni = yf.download(uni_ticker, start=start, end=end, interval="1d") eth = yf.download(eth_ticker, start=start, end=end, interval="1d") uni = uni.reset_index() uni.to_csv("uni.csv", index=False) eth = eth.reset_index() eth.to_csv("eth.csv", index=False) return uni, eth def process_data(uni: pd.DataFrame, eth: pd.DataFrame): uni = uni[uni["Open"] < 0.30] uni = uni[["Date", "Open"]] eth = eth[["Date", "Open"]] uni.rename(columns={"Open": "UNI"}, inplace=True) eth.rename(columns={"Open": "ETH"}, inplace=True) df = pd.merge(uni, eth, on="Date") df.dropna(inplace=True) df["price"] = df["ETH"] / df["UNI"] ret = 100 * (df["price"].pct_change()[1:]) realized_vol = ret.rolling(5).std() realized_vol = pd.DataFrame(realized_vol) realized_vol.reset_index(drop=True, inplace=True) returns_svm = ret**2 returns_svm = returns_svm.reset_index() X = pd.concat([realized_vol, returns_svm], axis=1, ignore_index=True) X = X[4:].copy() X = X.reset_index() X.drop("index", axis=1, inplace=True) X.drop(1, axis=1, inplace=True) X.rename(columns={0: "realized_vol", 2: "returns_squared"}, inplace=True) X["target"] = X["realized_vol"].shift(-5) X.dropna(inplace=True) Y = X["target"] X.drop("target", axis=1, inplace=True) n = 252 X_train = X.iloc[:-n] X_test = X.iloc[-n:] Y_train = Y.iloc[:-n] Y_test = Y.iloc[-n:] return X_train, X_test, Y_train, Y_test def train_model( X_train: pd.DataFrame, X_test: pd.DataFrame, Y_train: pd.DataFrame, Y_test: pd.DataFrame, ): model = nn.Sequential( nn.Linear(X_train.shape[1], 128), nn.ReLU(), nn.Linear(128, 64), nn.ReLU(), nn.Linear(64, 1), ) criterion = nn.MSELoss() optimizer = optim.RMSprop(
model.parameters()) X_tensor = torch.tensor(X_train.values, dtype=torch.float32) y_tensor = torch.tensor(Y_train.values.reshape(-1, 1), dtype=torch.float32) X_test_tensor = torch.tensor(X_test.values, dtype=torch.float32) epochs_trial = np.arange(100, 400, 4) batch_trial = np.arange(100, 400, 4) DL_pred = [] DL_RMSE = [] for i, j, k in zip(range(4), epochs_trial, batch_trial): for epoch in range(j): optimizer.zero_grad() outputs = model(X_tensor) loss = criterion(outputs, y_tensor) loss.backward() optimizer.step() with torch.no_grad(): DL_predict = model(X_test_tensor).numpy() DL_RMSE.append( np.sqrt(mse(Y_test.values / 100, DL_predict.flatten() / 100)) ) DL_pred.append(DL_predict) print("DL_RMSE_{}:{:.6f}".format(i + 1, DL_RMSE[i])) return model def serialize_to_onnx( model: nn.Module, X_train: pd.DataFrame, save_path="torch_vol_model" ): model.eval() sample_input = torch.randn( 1, X_train.shape[1] ) onnx_file_path = save_path + ".onnx" torch.onnx.export( model, sample_input, onnx_file_path, export_params=True, opset_version=10, do_constant_folding=True, input_names=["input"], output_names=["output"], dynamic_axes={ "input": {0: "batch_size"}, "output": {0: "batch_size"}, }, ) print(f"Saved serialized ONNX model to {onnx_file_path}.") def main(): uni, eth = download_data() X_train, X_test, Y_train, Y_test = process_data(uni, eth) model = train_model(X_train, X_test, Y_train, Y_test) serialize_to_onnx(model, X_train) if __name__ == "__main__": main()
import os
import time from ape.contracts.base
import ContractInstance from dotenv