text
stringlengths
1
2.05k
import find_dotenv, load_dotenv from giza_actions.task
import task from lp_tools
import MAX_UINT_128 load_dotenv(find_dotenv()) dev_passphrase = os.environ.get("DEV_PASSPHRASE") sepolia_rpc_url = os.environ.get("SEPOLIA_RPC_URL") @task(name="Check allowance") def check_allowance(token: ContractInstance, spender: str, account: str, amount: int): return token.allowance(account, spender) >= amount @task(name="Approve token spend") def approve_token(token: ContractInstance, spender: str, amount: int): return token.approve(spender, amount) @task(name="Get mint parameters") def get_mint_params( user_address: str, tokenA_address: str, tokenB_address: str, amount0: int, amount1: int, pool_fee: int, lower_tick: int, upper_tick: int, deadline=None, slippage_tolerance=0.01, ): if deadline is None: deadline = int(time.time()) + 60 mint_params = { "token0": tokenA_address, "token1": tokenB_address, "fee": pool_fee, "tickLower": lower_tick, "tickUpper": upper_tick, "amount0Desired": amount0, "amount1Desired": amount1, "amount0Min": 0, "amount1Min": 0, "recipient": user_address, "deadline": deadline, } return tuple(mint_params.values()) @task(name="Get all user LP positions") def get_all_user_positions(nft_manager: ContractInstance, user_address: str): n_positions = nft_manager.balanceOf(user_address) positions = [] for n in range(n_positions): position = nft_manager.tokenOfOwnerByIndex(user_address, n) positions.append(position) return positions def get_pos_liquidity(nft_manager: ContractInstance, nft_id: int): ( nonce, operator, token0, token1, fee, tickLower, tickUpper, liquidity, feeGrowthInside0LastX128, feeGrowthInside1LastX128, tokensOwed0, tokensOwed1, ) = nft_manager.positions(nft_id) return liquidity @task(name="Close the position") def close_position(user_address: str, nft_manager: Co
ntractInstance, nft_id: int): liq = get_pos_liquidity(nft_manager, nft_id) if liq > 0: nft_manager.decreaseLiquidity((nft_id, liq, 0, 0, int(time.time() + 60))) nft_manager.collect((nft_id, user_address, MAX_UINT_128, MAX_UINT_128))
{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "04w3OowXkaQh" }, "source": [ " "\n", "Orion is a dedicated Cairo-based library designed specifically to build machine learning models for ValidityML. Its purpose is to facilitate verifiable inference. For better performance we will operate with an 8-bit quantized model. In this tutorial, you will be guided on how to train your model using Quantized Aware Training using MNIST dataset, how to convert your pre-trained model to Cairo 1, and how to perform inference with Orion." ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ " "Let's start by installing all dependecies." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "id": "1Sfci39Llvii" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: numpy in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (1.24.3)\n", "Requirement already satisfied: tensorflow in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (2.13.0rc1)\n", "Requirement already satisfied: tensorflow_model_optimization in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (0.7.5)\n", "Requirement already satisfied: matplotlib in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (3.7.1)\n", "Requirement already satisfied: scipy in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (1.10.1)\n", "Requirement already satisfied: tensorflow-macos==2.13.0-rc1 in /Users/raphaeldoukhan/De
sktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from tensorflow) (2.13.0rc1)\n", "Requirement already satisfied: six>=1.12.0 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from tensorflow-macos==2.13.0-rc1->tensorflow) (1.16.0)\n", "Requirement already satisfied: google-pasta>=0.1.1 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from tensorflow-macos==2.13.0-rc1->tensorflow) (0.2.0)\n", "Requirement already satisfied: typing-extensions>=3.6.6 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from tensorflow-macos==2.13.0-rc1->tensorflow) (4.6.3)\n", "Requirement already satisfied: keras<2.14,>=2.13.1rc0 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from tensorflow-macos==2.13.0-rc1->tensorflow) (2.13.1rc0)\n", "Requirement already satisfied: gast<=0.4.0,>=0.2.1 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from tensorflow-macos==2.13.0-rc1->tensorflow) (0.4.0)\n", "Requirement already satisfied: grpcio<2.0,>=1.24.3 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from tensorflow-macos==2.13.0-rc1->tensorflow) (1.54.2)\n", "Requirement already satisfied: tensorflow-estimator<2.14,>=2.13.0rc0 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from tensorflow-macos==2.13.0-rc1->tensorflow) (2.13.0rc0)\n", "Requirement already satisfied: flatbuffers>=23.1.21 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from tensorflow-macos==2.13.0-rc1->tensorflow) (23.5.
26)\n", "Requirement already satisfied: opt-einsum>=2.3.2 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from tensorflow-macos==2.13.0-rc1->tensorflow) (3.3.0)\n", "Requirement already satisfied: libclang>=13.0.0 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from tensorflow-macos==2.13.0-rc1->tensorflow) (16.0.0)\n", "Requirement already satisfied: tensorboard<2.14,>=2.13 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from tensorflow-macos==2.13.0-rc1->tensorflow) (2.13.0)\n", "Requirement already satisfied: termcolor>=1.1.0 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from tensorflow-macos==2.13.0-rc1->tensorflow) (2.3.0)\n", "Requirement already satisfied: packaging in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from tensorflow-macos==2.13.0-rc1->tensorflow) (23.1)\n", "Requirement already satisfied: setuptools in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from tensorflow-macos==2.13.0-rc1->tensorflow) (67.8.0)\n", "Requirement already satisfied: h5py>=2.9.0 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from tensorflow-macos==2.13.0-rc1->tensorflow) (3.8.0)\n", "Requirement already satisfied: wrapt>=1.11.0 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from tensorflow-macos==2.13.0-rc1->tensorflow) (1.15.0)\n", "Requirement already satisfied: astunparse>=1.6.0 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-pac
kages (from tensorflow-macos==2.13.0-rc1->tensorflow) (1.6.3)\n", "Requirement already satisfied: absl-py>=1.0.0 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from tensorflow-macos==2.13.0-rc1->tensorflow) (1.4.0)\n", "Requirement already satisfied: protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from tensorflow-macos==2.13.0-rc1->tensorflow) (4.23.2)\n", "Requirement already satisfied: dm-tree~=0.1.1 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from tensorflow_model_optimization) (0.1.8)\n", "Requirement already satisfied: contourpy>=1.0.1 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from matplotlib) (1.0.7)\n", "Requirement already satisfied: pyparsing>=2.3.1 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from matplotlib) (3.0.9)\n", "Requirement already satisfied: pillow>=6.2.0 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from matplotlib) (9.5.0)\n", "Requirement already satisfied: kiwisolver>=1.0.1 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from matplotlib) (1.4.4)\n", "Requirement already satisfied: fonttools>=4.22.0 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from matplotlib) (4.39.4)\n", "Requirement already satisfied: python-dateutil>=2.7 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from matplotlib) (2.8.
2)\n", "Requirement already satisfied: cycler>=0.10 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from matplotlib) (0.11.0)\n", "Requirement already satisfied: wheel<1.0,>=0.23.0 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from astunparse>=1.6.0->tensorflow-macos==2.13.0-rc1->tensorflow) (0.38.4)\n", "Requirement already satisfied: markdown>=2.6.8 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from tensorboard<2.14,>=2.13->tensorflow-macos==2.13.0-rc1->tensorflow) (3.4.3)\n", "Requirement already satisfied: google-auth-oauthlib<1.1,>=0.5 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from tensorboard<2.14,>=2.13->tensorflow-macos==2.13.0-rc1->tensorflow) (1.0.0)\n", "Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from tensorboard<2.14,>=2.13->tensorflow-macos==2.13.0-rc1->tensorflow) (0.7.0)\n", "Requirement already satisfied: requests<3,>=2.21.0 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from tensorboard<2.14,>=2.13->tensorflow-macos==2.13.0-rc1->tensorflow) (2.31.0)\n", "Requirement already satisfied: werkzeug>=1.0.1 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from tensorboard<2.14,>=2.13->tensorflow-macos==2.13.0-rc1->tensorflow) (2.3.5)\n", "Requirement already satisfied: google-auth<3,>=1.6.3 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from tensorboard<2.14,>=2.13->tensorflow-macos==2.13.0-rc1->tens
orflow) (2.19.1)\n", "Requirement already satisfied: urllib3<2.0 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.14,>=2.13->tensorflow-macos==2.13.0-rc1->tensorflow) (1.26.16)\n", "Requirement already satisfied: pyasn1-modules>=0.2.1 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.14,>=2.13->tensorflow-macos==2.13.0-rc1->tensorflow) (0.3.0)\n", "Requirement already satisfied: rsa<5,>=3.1.4 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.14,>=2.13->tensorflow-macos==2.13.0-rc1->tensorflow) (4.9)\n", "Requirement already satisfied: cachetools<6.0,>=2.0.0 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.14,>=2.13->tensorflow-macos==2.13.0-rc1->tensorflow) (5.3.1)\n", "Requirement already satisfied: requests-oauthlib>=0.7.0 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from google-auth-oauthlib<1.1,>=0.5->tensorboard<2.14,>=2.13->tensorflow-macos==2.13.0-rc1->tensorflow) (1.3.1)\n", "Requirement already satisfied: charset-normalizer<4,>=2 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from requests<3,>=2.21.0->tensorboard<2.14,>=2.13->tensorflow-macos==2.13.0-rc1->tensorflow) (3.1.0)\n", "Requirement already satisfied: certifi>=2017.4.17 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from requests<3,>=2.21.0->tensorboard<2.14,>=2.13->tensorflow-macos==2.13.0-rc1->tensorflow) (2023.5.7)\n", "Requ
irement already satisfied: idna<4,>=2.5 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from requests<3,>=2.21.0->tensorboard<2.14,>=2.13->tensorflow-macos==2.13.0-rc1->tensorflow) (3.4)\n", "Requirement already satisfied: MarkupSafe>=2.1.1 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from werkzeug>=1.0.1->tensorboard<2.14,>=2.13->tensorflow-macos==2.13.0-rc1->tensorflow) (2.1.3)\n", "Requirement already satisfied: pyasn1<0.6.0,>=0.4.6 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard<2.14,>=2.13->tensorflow-macos==2.13.0-rc1->tensorflow) (0.5.0)\n", "Requirement already satisfied: oauthlib>=3.0.0 in /Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<1.1,>=0.5->tensorboard<2.14,>=2.13->tensorflow-macos==2.13.0-rc1->tensorflow) (3.2.2)\n" ] } ], "source": [ "
import sys\n", "!{sys.executable} -m pip install numpy tensorflow tensorflow_model_optimization matplotlib scipy" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "GwTsquVDEe4p" }, "outputs": [], "source": [ "!curl --proto '=https' --tlsv1.2 -sSf https: ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https: }, "id": "uBsZQCRBExEc", "outputId": "54cbbc65-854e-4afa-b809-d2fc838f6ecf" }, "outputs": [], "source": [ " "! mkdir $HOME/.cairo\n", "\n", "! source \"$HOME/.cargo/env\"\n", "\n", " "! cd $HOME/.cairo && git clone https: "\n", " " "! git fetch --all --tags\n", " "! git describe --tags `git rev-list --tags`\n", " "! git checkout tags/v1.1.0\n", "\n", " "! cd $HOME/.cairo && $HOME/.cargo/bin/cargo build --all --release" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ " "! curl --proto '=https' --tlsv1.2 -sSf https: ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ " "In this section we will use Tensorflow to train and test a feedforward neural network with MNIST dataset." ] }, { "attachments": {}, "cell_type": "markdown", "metadata": { "id": "nKiq8oKxklon" }, "source": [ " "Import the required libraries and load the dataset." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "id": "4po2PWTAkWOR" }, "outputs": [], "source": [ "from tensorflow
import keras\n", "from keras.datasets
import mnist\n", "from scipy.ndimage
import zoom\n", "
import numpy as np\n", "\n", "(x_train, y_train), (x_test, y_test) = mnist.load_data()" ] }, { "cell_type": "markdown", "metadata": { "id": "NXigQHM_k0ux" }, "source": [ "We have a total of 70,000 grayscale images, each with a dimension of 28 x 28 pixels. 60,000 images are for training and the remaining 10,000 are for testing. \n", "\n", "We now need to pre-process our data. For the purposes of this tutorial and performance, we'll resize the images to 14 x 14 pixels. You'll see later that the neural network's input layer supports a 1D tensor. We, therefore, need to flatten and normalize our data." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "id": "6AwxawnnkaA5" }, "outputs": [], "source": [ "from scipy.ndimage
import zoom\n", "\n", " "def resize_images(images):\n", " return np.array([zoom(image, 0.5) for image in images])\n", "\n", " "x_train = resize_images(x_train)\n", "x_test = resize_images(x_test)\n", "\n", " "x_train = x_train.reshape(60000, 14*14)\n", "x_test = x_test.reshape(10000, 14*14)\n", "x_train = x_train.astype('float32')\n", "x_test = x_test.astype('float32')\n", "\n", " "x_train /= 255\n", "x_test /= 255" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": { "id": "ix3qnUgElDlB" }, "source": [ " "We will design a straightforward feedforward neural network." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "id": "7gilDCS6k9-u" }, "outputs": [], "source": [ "from tensorflow.keras
import layers\n", "\n", "num_classes = 10\n", "\n", "model = keras.Sequential([\n", " keras.layers.InputLayer(input_shape=(14*14,)),\n", " keras.layers.Dense(10, activation='relu'), \n", " keras.layers.Dense(10, activation='softmax')\n", "])\n", "\n", "model.compile(optimizer='adam', \n", " loss='sparse_categorical_crossentropy', \n", " metrics=['accuracy'])\n" ] }, { "cell_type": "markdown", "metadata": { "id": "BFUZZOudlQmP" }, "source": [ "Now let's train this model on our training data." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "id": "jjkH102GlOd2" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/10\n", "1500/1500 [==============================] - 1s 449us/step - loss: 0.8094 - accuracy: 0.7795 - val_loss: 0.3885 - val_accuracy: 0.8953\n", "Epoch 2/10\n", "1500/1500 [==============================] - 1s 399us/step - loss: 0.3693 - accuracy: 0.8961 - val_loss: 0.3152 - val_accuracy: 0.9122\n", "Epoch 3/10\n", "1500/1500 [==============================] - 1s 402us/step - loss: 0.3239 - accuracy: 0.9072 - val_loss: 0.2905 - val_accuracy: 0.9185\n", "Epoch 4/10\n", "1500/1500 [==============================] - 1s 403us/step - loss: 0.3041 - accuracy: 0.9130 - val_loss: 0.2842 - val_accuracy: 0.9192\n", "Epoch 5/10\n", "1500/1500 [==============================] - 1s 428us/step - loss: 0.2931 - accuracy: 0.9162 - val_loss: 0.2716 - val_accuracy: 0.9237\n", "Epoch 6/10\n", "1500/1500 [==============================] - 1s 406us/step - loss: 0.2849 - accuracy: 0.9193 - val_loss: 0.2689 - val_accuracy: 0.9228\n", "Epoch 7/10\n",
"1500/1500 [==============================] - 1s 407us/step - loss: 0.2791 - accuracy: 0.9202 - val_loss: 0.2645 - val_accuracy: 0.9259\n", "Epoch 8/10\n", "1500/1500 [==============================] - 1s 401us/step - loss: 0.2747 - accuracy: 0.9215 - val_loss: 0.2608 - val_accuracy: 0.9269\n", "Epoch 9/10\n", "1500/1500 [==============================] - 1s 401us/step - loss: 0.2705 - accuracy: 0.9226 - val_loss: 0.2585 - val_accuracy: 0.9283\n", "Epoch 10/10\n", "1500/1500 [==============================] - 1s 401us/step - loss: 0.2674 - accuracy: 0.9236 - val_loss: 0.2582 - val_accuracy: 0.9283\n" ] } ], "source": [ "batch_size = 256\n", "epochs = 10\n", "history = model.fit(x_train, y_train,\n", " epochs=epochs,\n", " validation_split=0.2)\n" ] }, { "cell_type": "markdown", "metadata": { "id": "uNRdKGpflar4" }, "source": [ "At this point, we have trained a regular model.\n", "\n" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": { "id": "7Bu55FCqlbj4" }, "source": [ " "Now, let's transform our model into a quantization aware model. We use the TensorFlow Model Optimization Toolkit for this.\n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "id": "iAZYo9vKlTHK" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Model: \"sequential\"\n", "_________________________________________________________________\n", " Layer (type) Output Shape Param "=================================================================\n", " quantize_layer (QuantizeLa (None, 196) 3 \n",
" yer) \n", " \n", " quant_dense (QuantizeWrapp (None, 10) 1975 \n", " erV2) \n", " \n", " quant_dense_1 (QuantizeWra (None, 10) 115 \n", " pperV2) \n", " \n", "=================================================================\n", "Total params: 2093 (8.18 KB)\n", "Trainable params: 2080 (8.12 KB)\n", "Non-trainable params: 13 (52.00 Byte)\n", "_________________________________________________________________\n" ] } ], "source": [ "
import tensorflow_model_optimization as tfmot\n", "\n", " "quantize_model = tfmot.quantization.keras.quantize_model\n", "\n", " "q_aware_model = quantize_model(model)\n", "\n", " "q_aware_model.compile(optimizer='adam',\n", " loss='sparse_categorical_crossentropy',\n", " metrics=['accuracy'])\n", "\n", "q_aware_model.summary()" ] }, { "cell_type": "markdown", "metadata": { "id": "eYPUWWwTl_np" }, "source": [ "We have now created a new model, q_aware_model, which is a quantization aware version of our original model. Now we can train this model exactly like our original model." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "id": "U-t5MPhGlqoI" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/10\n", "1500/1500 [==============================] - 1s 526us/step - loss: 0.2671 - accuracy: 0.9236 - val_loss: 0.2581 - val_accuracy: 0.9283\n", "Epoch 2/10\n", "1500/1500 [==============================] - 1s 478us/step - loss: 0.2625 - accuracy: 0.9235 - val_loss: 0.2538 - val_accuracy: 0.9293\n", "Epoch 3/10\n", "1500/1500 [==============================] - 1s 491us/step - loss: 0.2602 - accuracy: 0.9246 - val_loss: 0.2521 - val_accuracy: 0.9308\n", "Epoch 4/10\n", "1500/1500 [==============================] - 1s 481us/step - loss: 0.2579 - accuracy: 0.9265 - val_loss: 0.2541 - val_accuracy: 0.9296\n", "Epoch 5/10\n", "1500/1500 [==============================] - 1s 481us/step - loss: 0.2557 - accuracy: 0.9271 - val_loss: 0.2490 - val_accuracy: 0.9317\n", "Epoch 6/10\n", "1500/1500 [==============================] - 1s 482us/step - loss: 0.2540 - a
ccuracy: 0.9274 - val_loss: 0.2492 - val_accuracy: 0.9313\n", "Epoch 7/10\n", "1500/1500 [==============================] - 1s 497us/step - loss: 0.2522 - accuracy: 0.9277 - val_loss: 0.2495 - val_accuracy: 0.9296\n", "Epoch 8/10\n", "1500/1500 [==============================] - 1s 491us/step - loss: 0.2505 - accuracy: 0.9277 - val_loss: 0.2472 - val_accuracy: 0.9306\n", "Epoch 9/10\n", "1500/1500 [==============================] - 1s 479us/step - loss: 0.2491 - accuracy: 0.9288 - val_loss: 0.2461 - val_accuracy: 0.9337\n", "Epoch 10/10\n", "1500/1500 [==============================] - 1s 483us/step - loss: 0.2477 - accuracy: 0.9285 - val_loss: 0.2444 - val_accuracy: 0.9325\n", "Test loss: 0.25082069635391235\n", "Test accuracy: 0.9277999997138977\n" ] } ], "source": [ "batch_size = 256\n", "epochs = 10\n", "history = q_aware_model.fit(x_train, y_train,\n", " epochs=epochs,\n", " validation_split=0.2)\n", "\n", "scores, acc = q_aware_model.evaluate(x_test, y_test, verbose=0)\n", "print('Test loss:', scores)\n", "print('Test accuracy:', acc)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": { "id": "XhbweTQEmWN-" }, "source": [ " "Now, we will convert our model to TFLite format, which is a format optimized for on-device machine learning." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "id": "uOwZiCRWmHDT" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "INFO:tensorflow:Assets written to: /var/folders/s3/6c0gmns50x36dt6vvfhv6jhc0000gn/T/tmpwwestso3/assets\n" ] }, { "name": "stderr",
"output_type": "stream", "text": [ "INFO:tensorflow:Assets written to: /var/folders/s3/6c0gmns50x36dt6vvfhv6jhc0000gn/T/tmpwwestso3/assets\n", "/Users/raphaeldoukhan/Desktop/Orion-Giza/Academy/Tutorials/orion_tutorials/.conda/lib/python3.10/site-packages/tensorflow/lite/python/convert.py:887: UserWarning: Statistics for quantized inputs were expected, but not specified; continuing anyway.\n", " warnings.warn(\n", "2023-09-08 08:57:11.760815: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:364] Ignored output_format.\n", "2023-09-08 08:57:11.760826: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:367] Ignored drop_control_dependency.\n", "2023-09-08 08:57:11.761006: I tensorflow/cc/saved_model/reader.cc:45] Reading SavedModel from: /var/folders/s3/6c0gmns50x36dt6vvfhv6jhc0000gn/T/tmpwwestso3\n", "2023-09-08 08:57:11.761945: I tensorflow/cc/saved_model/reader.cc:91] Reading meta graph with tags { serve }\n", "2023-09-08 08:57:11.761951: I tensorflow/cc/saved_model/reader.cc:132] Reading SavedModel debug info (if present) from: /var/folders/s3/6c0gmns50x36dt6vvfhv6jhc0000gn/T/tmpwwestso3\n", "2023-09-08 08:57:11.764080: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:375] MLIR V1 optimization pass is not enabled\n", "2023-09-08 08:57:11.765054: I tensorflow/cc/saved_model/loader.cc:231] Restoring SavedModel bundle.\n", "2023-09-08 08:57:11.795103: I tensorflow/cc/saved_model/loader.cc:215] Running initialization op on SavedModel bundle at path: /var/folders/s3/6c0gmns50x36dt6vvfhv6jhc0000gn/T/tmpwwestso3\n", "2023-09-08 08:57:11.804542: I tensorflow/cc/saved_model/loader.cc:314] SavedModel load for tags { serve }; Status: success: OK. Took 43536 microseconds.\n", "2023-09-08 08:57:11.814757: I tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.cc:255] disabling MLIR crash reproducer, set env
var `MLIR_CRASH_REPRODUCER_DIRECTORY` to enable.\n", "fully_quantize: 0, inference_type: 6, input_inference_type: INT8, output_inference_type: INT8\n" ] }, { "data": { "text/plain": [ "4312" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "
import tensorflow as tf\n", "\n", " "converter = tf.lite.TFLiteConverter.from_keras_model(q_aware_model)\n", "\n", " " "converter.optimizations = [tf.lite.Optimize.DEFAULT]\n", "\n", " "def representative_data_gen():\n", " for i in range(500):\n", " yield [x_test[i:i+1]]\n", "\n", " "converter.representative_dataset = representative_data_gen\n", "\n", " "converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]\n", "\n", " "converter.inference_input_type = tf.int8\n", "converter.inference_output_type = tf.int8\n", "\n", " "tflite_model = converter.convert()\n", "\n", " "open(\"q_aware_model.tflite\", \"wb\").write(tflite_model)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": { "id": "zxGWitSs3MAH" }, "source": [ " "Now that we have trained a quantization-aware model and converted it to the TFLite format, we can now perform inference using the TensorFlow Lite interpreter.\n" ] }, { "cell_type": "markdown", "metadata": { "id": "8qbfjJFa3Zy7" }, "source": [ "We first load the TFLite model and allocate the required tensors. The Interpreter class provides methods for loading a model and running inferences.\n", "\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "id": "sXEM3WEv3SSt" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "INFO: Created TensorFlow Lite XNNPACK delegate for CPU.\n" ] } ], "source": [ " "interpreter = tf.lite.Interpreter(model_path=\"q_aware_model.tflite\")\n", "interpreter.allocate_tensors()" ] }, {
"cell_type": "markdown", "metadata": { "id": "mP6WRo1L3dZp" }, "source": [ "Next, we get the details of the input and output tensors. Each tensor in a TensorFlow Lite model has a name, index, shape, data type, and quantization parameters. These can be accessed via the input_details and output_details methods." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "id": "T7r8JFTC3Xxe" }, "outputs": [], "source": [ " "input_details = interpreter.get_input_details()\n", "output_details = interpreter.get_output_details()\n" ] }, { "cell_type": "markdown", "metadata": { "id": "ofFMDXq13ix7" }, "source": [ "Before performing the inference, we need to normalize the input to match the data type of our model's input tensor, which in our case is int8. Then, we use the set_tensor method to provide the input data to the model. We perform the inference using the invoke method." ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "id": "-1yOJjl83b9i" }, "outputs": [], "source": [ " "input_shape = input_details[0]['shape']\n", "input_data = np.array(x_test[0:1], dtype=np.int8)\n", "interpreter.set_tensor(input_details[0]['index'], input_data)\n", "\n", " "interpreter.invoke()\n" ] }, { "cell_type": "markdown", "metadata": { "id": "ge-Y3K1J3oWs" }, "source": [ "After the inference, we get the output data from the model's output tensor.\n", "\n", "Now, we are going to run the inference for the entire test set:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "id": "MtfTBPCl3iKm" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [
"[[-122 -128 -22 -67 -128 -47 -128 -127 -128 -128]]\n" ] } ], "source": [ " "output_data = interpreter.get_tensor(output_details[0]['index'])\n", "print(output_data)\n" ] }, { "cell_type": "markdown", "metadata": { "id": "JO9fwtAF3sRP" }, "source": [ "We normalize the entire test set and initialize an array to store the predictions.\n", "\n" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "id": "B5fDA1Vt3num" }, "outputs": [], "source": [ "(_, _), (x_test_image, y_test_label) = mnist.load_data()\n", "\n", " "x_test_image = resize_images(x_test_image)\n", "x_test_image_norm = (x_test_image / 255.0 * 255 - 128).astype(np.int8)\n", "\n", " "predictions = []\n" ] }, { "cell_type": "markdown", "metadata": { "id": "l1PzXSuj3uy9" }, "source": [ "We then iterate over the test set, making predictions for each image. For each image, we flatten the image, normalize it, and then expand its dimensions to match the shape of our model's input tensor.\n", "\n" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "id": "z1Clh4Kt3fuF" }, "outputs": [], "source": [ " "for i in range(len(x_test_image_norm)):\n", " test_image = np.expand_dims(x_test_image_norm[i].flatten(), axis=0)\n", " \n", " " interpreter.set_tensor(input_details[0]['index'], test_image)\n", " \n", " " interpreter.invoke()\n", "\n", " output = interpreter.get_tensor(output_details[0]['index'])\n", " predictions.append(output)\n" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [
"Finally, we use a function to plot the test images along with their predicted labels. This will give us a visual representation of how well our model is performing." ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "id": "5wWyve_E3uL8" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7YAAARDCAYAAABcAr28AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABojklEQVR4nO3de5zWZZ0 "text/plain": [ "<Figure size 1200x1400 with 25 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "
import matplotlib.pyplot as plt\n", "\n", "def plot_images_labels_prediction(images,labels,idx,num=10):\n", " fig=plt.gcf()\n", " fig.set_size_inches(12, 14)\n", " if num > 25: num=25\n", " for i in range(0, num):\n", " ax=plt.subplot(5, 5, i+1)\n", " ax.imshow(images[idx], cmap='binary')\n", " title=\"label=\" + str(labels[idx])\n", " ax.set_title(title, fontsize=10)\n", " ax.set_xticks([]);\n", " ax.set_yticks([]);\n", " idx += 1\n", " plt.show()\n", "\n", "plot_images_labels_prediction(x_test_image, y_test_label, 0, 25)\n" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": { "id": "VOHKHUMp30j8" }, "source": [ "That's it! We have successfully trained a quantization-aware model, converted it to the TFLite format, and performed inference using the TensorFlow Lite interpreter." ] }, { "attachments": {}, "cell_type": "markdown", "metadata": { "id": "ywhXM1mA-a7F" }, "source": [ " "In this section you will generate Cairo files for each bias and weight of the model. " ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "id": "wP_kVSuEKA1U" }, "outputs": [], "source": [ "
import numpy as np\n", "
import tensorflow as tf\n", "
import os\n", "\n", "\n", " "interpreter = tf.lite.Interpreter(model_path=\"q_aware_model.tflite\")\n", "interpreter.allocate_tensors()\n", "\n", " "tensors = {\n", " \"input\": x_test_image[0].flatten(), " \"fc1_weights\": interpreter.get_tensor(1), \n", " \"fc1_bias\": interpreter.get_tensor(2), \n", " \"fc2_weights\": interpreter.get_tensor(4), \n", " \"fc2_bias\": interpreter.get_tensor(5)\n", "}\n", "\n", " "os.makedirs('src/generated', exist_ok=True)\n", "\n", "for tensor_name, tensor in tensors.items():\n", " with open(os.path.join('src', 'generated', f\"{tensor_name}.cairo\"), \"w\") as f:\n", " f.write(\n", " \"use array::ArrayTrait;\\n\" +\n", " \"use orion::operators::tensor::{TensorTrait, Tensor, I32Tensor};\\n\" +\n", " \"use orion::numbers::i32;\\n\\n\" +\n", " \"\\nfn {0}() -> Tensor<i32> \".format(tensor_name) + \"{\\n\" +\n", " \" let mut shape = ArrayTrait::<usize>::new();\\n\"\n", " )\n", " for dim in tensor.shape:\n", " f.write(\" shape.append({0});\\n\".format(dim))\n", " f.write(\n", " \" let mut data = ArrayTrait::<i32>::new();\\n\"\n", " )\n", " for val in np.nditer(tensor.flatten()):\n", " f.write(\" data.append(i32 {{ mag: {0}, sign: {1} }});\\n\".format(abs(int(val)), str(val < 0).lower()))\n", " f.write(\n", " \" TensorTrait::new(shape.span(), data.span())\\n\" +\n", " \"}\\n\"\n", " )\n", " \n", "with open(os.path.join('src', 'generated.cairo'), 'w') as f:\n", " for param_name in tensors.keys():\n", " f.write(f\"mod {param_name};\\n\")\n"
] }, { "attachments": {}, "cell_type": "markdown", "metadata": { "id": "iobaWNzdW4Jq" }, "source": [ " "In this section you will perform inference with Cairo and Orion.\n" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Create the `nn.cairo` file in which we'll build the neural network functions." ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "id": "x2slaqnnUWlB" }, "outputs": [], "source": [ "! touch src/nn.cairo" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Let's create the two dense layer functions of the neural network: `fc1` and `fc2`." ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "id": "UMF0u2gcUko9" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Overwriting src/nn.cairo\n" ] } ], "source": [ "%%writefile src/nn.cairo\n", "use orion::operators::tensor::core::Tensor;\n", "use orion::numbers::signed_integer::{integer_trait::IntegerTrait, i32::i32};\n", "use orion::operators::nn::{NNTrait, I32NN};\n", "\n", "fn fc1(i: Tensor<i32>, w: Tensor<i32>, b: Tensor<i32>) -> Tensor<i32> {\n", " let x = NNTrait::linear(i, w, b);\n", " NNTrait::relu(@x)\n", "}\n", "\n", "fn fc2(i: Tensor<i32>, w: Tensor<i32>, b: Tensor<i32>) -> Tensor<i32> {\n", " NNTrait::linear(i, w, b)\n", "}\n" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "We will make predictions in a test. First, create the testing file." ] }, { "cell_type": "code", "execution
_count": 21, "metadata": { "id": "OF8ANN0IU0BL" }, "outputs": [], "source": [ "! touch src/test.cairo" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Let's now define the input data and parameters generated earlier, and set the neural network.\n", "The input data represents the number 7. The probability at index 7 must therefore be close to 1." ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "id": "FsWjlfyeWJF8" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Overwriting src/test.cairo\n" ] } ], "source": [ "%%writefile src/test.cairo\n", "use core::array::SpanTrait;\n", "\n", "use mnist_nn::nn::fc1;\n", "use mnist_nn::nn::fc2;\n", "use mnist_nn::generated::input::input;\n", "use mnist_nn::generated::fc1_bias::fc1_bias;\n", "use mnist_nn::generated::fc1_weights::fc1_weights;\n", "use mnist_nn::generated::fc2_bias::fc2_bias;\n", "use mnist_nn::generated::fc2_weights::fc2_weights;\n", "\n", "use orion::operators::tensor::I32Tensor;\n", "\n", " " "
fn mnist_nn_test() {\n", " let input = input();\n", " let fc1_bias = fc1_bias();\n", " let fc1_weights = fc1_weights();\n", " let fc2_bias = fc2_bias();\n", " let fc2_weights = fc2_weights();\n", "\n", " let x = fc1(input, fc1_weights, fc1_bias);\n", " let x = fc2(x, fc2_weights, fc2_bias);\n", "\n", " let x = *x.argmax(0, Option::None(()), Option::None(())).data.at(0);\n", "\n", " assert(x == 7, 'should predict 7');\n", "}\n", "\n" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Run the following cell to test your file." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "lkep4mVkWMtS" }, "outputs": [], "source": [ "! scarb run test" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "colab": { "provenance": [] }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.11" } }, "nbformat": 4, "nbformat_minor": 0 }
mod input; mod fc1_weights; mod fc1_bias; mod fc2_weights; mod fc2_bias;
use array::ArrayTrait; use orion::operators::tensor::{TensorTrait, Tensor, I32Tensor}; use orion::numbers::i32; fn fc1_bias() -> Tensor<i32> { let mut shape = ArrayTrait::<usize>::new(); shape.append(10); let mut data = ArrayTrait::<i32>::new(); data.append(i32 { mag: 1287, sign: false }); data.append(i32 { mag: 3667, sign: true }); data.append(i32 { mag: 2954, sign: false }); data.append(i32 { mag: 7938, sign: false }); data.append(i32 { mag: 3959, sign: false }); data.append(i32 { mag: 5862, sign: true }); data.append(i32 { mag: 4886, sign: false }); data.append(i32 { mag: 4992, sign: false }); data.append(i32 { mag: 10126, sign: false }); data.append(i32 { mag: 2237, sign: true }); TensorTrait::new(shape.span(), data.span()) }
use array::ArrayTrait; use orion::operators::tensor::{TensorTrait, Tensor, I32Tensor}; use orion::numbers::i32; fn fc1_weights() -> Tensor<i32> { let mut shape = ArrayTrait::<usize>::new(); shape.append(10); shape.append(196); let mut data = ArrayTrait::<i32>::new(); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 23, sign: false }); data.append(i32 { mag: 11, sign: true }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 20, sign: true }); data.append(i32 { mag: 25, sign: true }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 22, sign: false }); data.append(i32 { mag: 30, sign: false }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 11, sign: false }); data.append(i32 { mag: 23, sign: false }); data.append(i32 { mag: 55, sign: false }); data.append(i32 { mag: 46, sign: false }); data.append(i32 { mag: 9, sign: false }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 42, sign: true }); data.append(i32 { mag: 14, sign: true }); data.append(i32 { mag: 11, sign: true }); data.append(i32 { mag: 9, sign: false }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 31, sign: false }); data.append(i32 { mag: 31, sign: false }); data.appe
nd(i32 { mag: 53, sign: false }); data.append(i32 { mag: 51, sign: false }); data.append(i32 { mag: 27, sign: false }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 33, sign: true }); data.append(i32 { mag: 20, sign: false }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 11, sign: false }); data.append(i32 { mag: 9, sign: true }); data.append(i32 { mag: 28, sign: true }); data.append(i32 { mag: 25, sign: true }); data.append(i32 { mag: 21, sign: true }); data.append(i32 { mag: 20, sign: true }); data.append(i32 { mag: 15, sign: true }); data.append(i32 { mag: 35, sign: false }); data.append(i32 { mag: 75, sign: false }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 12, sign: false }); data.append(i32 { mag: 10, sign: false }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 28, sign: true }); data.append(i32 { mag: 57, sign: true }); data.append(i32 { mag: 44, sign: true }); data.append(i32 { mag: 28, sign: true }); data.append(i32 { mag: 9, sign: true }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 35, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 45, sign: true }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 18, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 53, sign: true }); data.append(i32 { mag: 15, sign: true }); data.append(i32 { mag: 12, sign: true }); data.append(i32 { mag: 9, sign: true }); data.append(i32 { mag: 10, sign: true }); data.append(i32 { mag: 10, sign:
true }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 18, sign: true }); data.append(i32 { mag: 32, sign: true }); data.append(i32 { mag: 11, sign: false }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { mag: 29, sign: false }); data.append(i32 { mag: 26, sign: false }); data.append(i32 { mag: 15, sign: true }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 16, sign: false }); data.append(i32 { mag: 46, sign: false }); data.append(i32 { mag: 29, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 21, sign: false }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 11, sign: false }); data.append(i32 { mag: 10, sign: false }); data.append(i32 { mag: 29, sign: false }); data.append(i32 { mag: 31, sign: false }); data.append(i32 { mag: 32, sign: false }); data.append(i32 { mag: 23, sign: false }); data.append(i32 { mag: 11, sign: false }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 22, sign: false }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 23, sign: true }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 35, sign: true }); data.append(i32 { mag: 9, sign: false }); data.append(i32 { mag: 29, sign: false }); data.append(i32 { mag: 27, sign: false }); data.append(i32 { mag: 50, sign: false }); data.append(i32 { mag: 45, sign: false }); data.append(i32 { mag: 23, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 12, sign: false }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 37, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 19, sign: true
}); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { mag: 41, sign: false }); data.append(i32 { mag: 25, sign: false }); data.append(i32 { mag: 16, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 33, sign: true }); data.append(i32 { mag: 15, sign: true }); data.append(i32 { mag: 22, sign: true }); data.append(i32 { mag: 23, sign: true }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 11, sign: false }); data.append(i32 { mag: 23, sign: false }); data.append(i32 { mag: 21, sign: false }); data.append(i32 { mag: 22, sign: false }); data.append(i32 { mag: 18, sign: false }); data.append(i32 { mag: 12, sign: false }); data.append(i32 { mag: 17, sign: false }); data.append(i32 { mag: 34, sign: true }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 9, sign: false }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 61, sign: true }); data.append(i32 { mag: 9, sign: true }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 13, sign: false }); data.append(i32 { mag: 15, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 29, sign: false }); data.append(i32 { mag: 32, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 71, sign: true }); data.append(i32 { mag: 78, sign: true }); data.appe
nd(i32 { mag: 63, sign: true }); data.append(i32 { mag: 74, sign: true }); data.append(i32 { mag: 49, sign: true }); data.append(i32 { mag: 54, sign: true }); data.append(i32 { mag: 29, sign: true }); data.append(i32 { mag: 29, sign: true }); data.append(i32 { mag: 36, sign: true }); data.append(i32 { mag: 37, sign: true }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 17, sign: true }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 9, sign: true }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 9, sign: true }); data.append(i32 { mag: 9, sign: false }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 17, sign: false }); data.append(i32 { mag: 19, sign: true }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 32, sign: false }); data.append(i32 { mag: 36, sign: false }); data.append(i32 { mag: 38, sign: false }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 19, sign: false });
data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 35, sign: false }); data.append(i32 { mag: 22, sign: false }); data.append(i32 { mag: 37, sign: false }); data.append(i32 { mag: 25, sign: true }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 33, sign: true }); data.append(i32 { mag: 31, sign: true }); data.append(i32 { mag: 17, sign: true }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { mag: 20, sign: false }); data.append(i32 { mag: 17, sign: false }); data.append(i32 { mag: 11, sign: false }); data.append(i32 { mag: 10, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 28, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 11, sign: true }); data.append(i32 { mag: 25, sign: true }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 13, sign: false }); data.append(i32 { mag: 19, sign: false }); data.append(i32 { mag: 16, sign: false }); data.append(i32 { mag: 22, sign: false }); data.append(i32 { mag: 10, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 16, sign: false }); data.append(i32 { mag: 36, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 29, sign: true }); data.append(i32 { mag: 12, sign: true }); data.append(i32 { mag: 22, sign: false }); data.append(i32 { mag: 26, sign: false }); data.append(i32 { mag: 10, sign: false }); data.append(i32 { mag: 13, sign: false }); data.append(i32 { mag: 1, sign: true }); data.a
ppend(i32 { mag: 8, sign: false }); data.append(i32 { mag: 11, sign: false }); data.append(i32 { mag: 12, sign: false }); data.append(i32 { mag: 11, sign: false }); data.append(i32 { mag: 42, sign: false }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 16, sign: false }); data.append(i32 { mag: 20, sign: false }); data.append(i32 { mag: 34, sign: false }); data.append(i32 { mag: 45, sign: false }); data.append(i32 { mag: 31, sign: false }); data.append(i32 { mag: 35, sign: false }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 17, sign: true }); data.append(i32 { mag: 18, sign: false }); data.append(i32 { mag: 25, sign: false }); data.append(i32 { mag: 39, sign: false }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 32, sign: true }); data.append(i32 { mag: 9, sign: false }); data.append(i32 { mag: 40, sign: false }); data.append(i32 { mag: 49, sign: false }); data.append(i32 { mag: 27, sign: false }); data.append(i32 { mag: 13, sign: false }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 11, sign: false }); data.append(i32 { mag: 22, sign: false }); data.append(i32 { mag: 65, sign: false }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 23, sign: false }); data.append(i32 { mag: 41, sign: true }); data.append(i32 { mag: 25, sign: true }); data.append(i32 { mag: 27, sign: true }); data.append(i32 { mag: 18, sign: true }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 1, sign: true }); data.append(i32
{ mag: 9, sign: true }); data.append(i32 { mag: 12, sign: true }); data.append(i32 { mag: 14, sign: true }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 11, sign: true }); data.append(i32 { mag: 12, sign: true }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 15, sign: false }); data.append(i32 { mag: 23, sign: false }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 13, sign: true }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 17, sign: true }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 33, sign: true }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 19, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 16, sign: true }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 12, sign: false }); data.append(i32 { mag: 24, sign: false }); data.append(i32 { mag: 12, sign: true }); data.append(i32 { mag: 15, sign: true }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 10, sign: false }); data.append(i32 { mag: 53, sign: true }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 21, sign: true }); data.append(i32 { mag: 41, sign: true }); data.append(i32 { mag: 17, sign: true }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 22, sign: false }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 16, sign: true }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 11, sign: true }); data.append(i32 { mag: 44, sign: true });
data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 37, sign: true }); data.append(i32 { mag: 32, sign: true }); data.append(i32 { mag: 14, sign: true }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 29, sign: false }); data.append(i32 { mag: 31, sign: false }); data.append(i32 { mag: 10, sign: false }); data.append(i32 { mag: 10, sign: true }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 21, sign: true }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 30, sign: false }); data.append(i32 { mag: 16, sign: true }); data.append(i32 { mag: 11, sign: true }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 19, sign: false }); data.append(i32 { mag: 16, sign: false }); data.append(i32 { mag: 15, sign: false }); data.append(i32 { mag: 23, sign: false }); data.append(i32 { mag: 26, sign: false }); data.append(i32 { mag: 9, sign: true }); data.append(i32 { mag: 14, sign: true }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag:
3, sign: true }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 18, sign: false }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 9, sign: false }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 21, sign: false }); data.append(i32 { mag: 42, sign: false }); data.append(i32 { mag: 55, sign: false }); data.append(i32 { mag: 97, sign: false }); data.append(i32 { mag: 125, sign: false }); data.append(i32 { mag: 68, sign: false }); data.append(i32 { mag: 24, sign: false }); data.append(i32 { mag: 21, sign: false }); data.append(i32 { mag: 47, sign: false }); data.append(i32 { mag: 42, sign: false }); data.append(i32 { mag: 46, sign: false }); data.append(i32 { mag: 27, sign: false }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 10, sign: false }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { mag: 28, sign: false }); data.append(i32 { mag: 12, sign: false }); data.append(i32 { mag: 21, sign: false }); data.append(i32 { mag: 18, sign: false }); data.append(i32 { mag: 18, sign: false }); data.append(i32 { mag: 26, sign: false }); data.append(i32 { mag: 23, sign: false }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 31, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 25, sign
: true }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 15, sign: false }); data.append(i32 { mag: 44, sign: false }); data.append(i32 { mag: 26, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 33, sign: true }); data.append(i32 { mag: 40, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 18, sign: true }); data.append(i32 { mag: 15, sign: true }); data.append(i32 { mag: 14, sign: true }); data.append(i32 { mag: 19, sign: true }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 9, sign: false }); data.append(i32 { mag: 18, sign: false }); data.append(i32 { mag: 29, sign: false }); data.append(i32 { mag: 10, sign: true }); data.append(i32 { mag: 13, sign: true }); data.append(i32 { mag: 12, sign: true }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 21, sign: false }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 21, sign: true }); data.append(i32 { mag: 22, sign: true }); data.append(i32 { mag: 12, sign: true }); data.append(i32 { mag: 10, sign: false }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 10, sign: true }); data.append(i32 { mag: 28, sign: true }); data.append(i32 { mag: 32, sign: true }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 38, sign: false }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 22, sign: true }); data.append(i32 { mag: 27, sign: true }); data.append(i32 { mag: 13, sign: true }); data.append(i32 { mag: 14, sign: true }); data.append(i32 { mag: 15, sign: true }); data.append(i32 { mag: 9, sign: true }); data.ap
pend(i32 { mag: 24, sign: false }); data.append(i32 { mag: 17, sign: true }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 13, sign: true }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 24, sign: false }); data.append(i32 { mag: 50, sign: true }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 10, sign: false }); data.append(i32 { mag: 39, sign: false }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 9, sign: true }); data.append(i32 { mag: 10, sign: true }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 54, sign: false }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 23, sign: true }); data.append(i32 { mag: 43, sign: false }); data.append(i32 { mag: 24, sign: false }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 17, sign: true }); data.append(i32 { mag: 23, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 16, sign: true }); data.append(i32 { mag: 15, sign: false }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 15, sign: false }); data.append(i32 { mag: 56, sign: false }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 19, sign: false }); data.append(i32 { mag: 12, sign: false }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 44, sign: false }); data.append(i32 { mag: 21, sign: false }); data.append(i32 { mag: 22, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { ma
g: 40, sign: false }); data.append(i32 { mag: 34, sign: false }); data.append(i32 { mag: 19, sign: false }); data.append(i32 { mag: 42, sign: false }); data.append(i32 { mag: 37, sign: false }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 22, sign: true }); data.append(i32 { mag: 35, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 24, sign: false }); data.append(i32 { mag: 29, sign: false }); data.append(i32 { mag: 27, sign: false }); data.append(i32 { mag: 32, sign: false }); data.append(i32 { mag: 27, sign: false }); data.append(i32 { mag: 26, sign: false }); data.append(i32 { mag: 30, sign: false }); data.append(i32 { mag: 12, sign: false }); data.append(i32 { mag: 27, sign: false }); data.append(i32 { mag: 11, sign: false }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 80, sign: false }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 27, sign: true }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { mag: 18, sign: false }); data.append(i32 { mag: 12, sign: false }); data.append(i32 { mag: 11, sign: false }); data.append(i32 { mag: 26, sign: false }); data.append(i32 { mag: 44, sign: false }); data.append(i32 { mag: 68, sign: false }); data.append(i32 { mag: 32, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 9, sign: true }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 13, sign: false }); data.append(i32 { mag: 10, sign: false }); data.append(i32 { mag: 15, sign: false }); data.append(i32 { mag: 22, sign: false }); data.append(i32 { mag: 19, sign: false }); data.append(i32 { m
ag: 31, sign: false }); data.append(i32 { mag: 29, sign: false }); data.append(i32 { mag: 18, sign: false }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 18, sign: false }); data.append(i32 { mag: 11, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 26, sign: true }); data.append(i32 { mag: 46, sign: true }); data.append(i32 { mag: 60, sign: true }); data.append(i32 { mag: 84, sign: true }); data.append(i32 { mag: 84, sign: true }); data.append(i32 { mag: 95, sign: true }); data.append(i32 { mag: 70, sign: true }); data.append(i32 { mag: 36, sign: true }); data.append(i32 { mag: 26, sign: true }); data.append(i32 { mag: 38, sign: true }); data.append(i32 { mag: 39, sign: true }); data.append(i32 { mag: 27, sign: false }); data.
append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 9, sign: true }); data.append(i32 { mag: 49, sign: true }); data.append(i32 { mag: 63, sign: true }); data.append(i32 { mag: 23, sign: true }); data.append(i32 { mag: 35, sign: true }); data.append(i32 { mag: 18, sign: true }); data.append(i32 { mag: 14, sign: true }); data.append(i32 { mag: 13, sign: true }); data.append(i32 { mag: 17, sign: true }); data.append(i32 { mag: 16, sign: true }); data.append(i32 { mag: 18, sign: true }); data.append(i32 { mag: 13, sign: true }); data.append(i32 { mag: 27, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 21, sign: false }); data.append(i32 { mag: 15, sign: true }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 24, sign: false }); data.append(i32 { mag: 30, sign: false }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { mag: 23, sign: false }); data.append(i32 { mag: 34, sign: false }); data.append(i32 { mag: 20, sign: false }); data.append(i32 { mag: 11, sign: false }); data.append(i32 { mag: 13, sign: false }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 34, sign: true }); data.append(i32 { mag: 16, sign: false }); data.append(i32 { mag: 40, sign: false }); data.append(i32 { mag: 34, sign: false }); data.append(i32 { mag: 33, sign: false }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { mag: 13, sign: false }); data.append(i32 { mag: 40, sign: false }); data.append(i32 { mag: 30, sign: false }); data.append(i32 { mag: 66, sign: false }); data.append(i32 { mag: 121, sign: false }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 20, sign: false }); data.append(i
32 { mag: 14, sign: false }); data.append(i32 { mag: 9, sign: false }); data.append(i32 { mag: 36, sign: false }); data.append(i32 { mag: 41, sign: false }); data.append(i32 { mag: 39, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 16, sign: true }); data.append(i32 { mag: 12, sign: false }); data.append(i32 { mag: 23, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 13, sign: false }); data.append(i32 { mag: 43, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 42, sign: false }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 15, sign: true }); data.append(i32 { mag: 16, sign: true }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 32, sign: false }); data.append(i32 { mag: 9, sign: false }); data.append(i32 { mag: 29, sign: true }); data.append(i32 { mag: 19, sign: false }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 33, sign: false }); data.append(i32 { mag: 33, sign: true }); data.append(i32 { mag: 17, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 10, sign: true }); data.append(i32 { mag: 27, sign: false }); data.append(i32 { mag: 21, sign: false }); data.append(i32 { mag: 15, sign: true }); data.append(i32 { mag: 12, sign: true }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 12, sign: false }); data.append(i32 { mag: 22, sign: true }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag:
2, sign: true }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 10, sign: true }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { mag: 38, sign: false }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 14, sign: true }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 20, sign: false }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 20, sign: false }); data.append(i32 { mag: 15, sign: false }); data.append(i32 { mag: 13, sign: true }); data.append(i32 { mag: 17, sign: true }); data.append(i32 { mag: 18, sign: true }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 17, sign: true }); data.append(i32 { mag: 10, sign: true }); data.append(i32 { mag: 11, sign: true }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 15, sign: true }); data.append(i32 { mag: 22, sign: true }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 12, sign: true }); data.append(i32 { mag: 24, sign: true }); data.append(i32 { mag: 23, sign: true }); data.append(i32 { mag: 15, sign: true }); data.append(i32 { mag: 24, sign: true }); data.append(i32 { mag: 13, sign: true }); data.append(i32 { mag: 28, sign: true }); data.append(i32 { mag: 16, sign: true }); data.append(i32 { mag: 15, sign: false }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 15, sign: true }); data.append(i32 { mag: 30, sign: true }); data.append(i32 { mag: 19, sign: true }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 12, sign: false }); data.append(i32 { mag: 14, sign: false }); data.
append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 10, sign: true }); data.append(i32 { mag: 17, sign: false }); data.append(i32 { mag: 127, sign: false }); data.append(i32 { mag: 29, sign: false }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 10, sign: false }); data.append(i32 { mag: 24, sign: false }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 13, sign: false }); data.append(i32 { mag: 54, sign: false }); data.append(i32 { mag: 47, sign: false }); data.append(i32 { mag: 55, sign: false }); data.append(i32 { mag: 62, sign: false }); data.append(i32 { mag: 25, sign: false }); data.append(i32 { mag: 51, sign: false }); data.append(i32 { mag: 67, sign: false }); data.append(i32 { mag: 23, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 3,
sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 41, sign: true }); data.append(i32 { mag: 24, sign: true }); data.append(i32 { mag: 83, sign: true }); data.append(i32 { mag: 71, sign: true }); data.append(i32 { mag: 27, sign: true }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 20, sign: true }); data.append(i32 { mag: 16, sign: false }); data.append(i32 { mag: 33, sign: false }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 33, sign: true }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 14, sign: true }); data.append(i32 { mag: 60, sign: true }); data.append(i32 { mag: 65, sign: true }); data.append(i32 { mag: 29, sign: true }); data.append(i32 { mag: 46, sign: true }); data.append(i32 { mag: 17, sign: true }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 11, sign: false }); data.append(i32 { mag: 18, sign: false }); data.append(i32 { mag: 28, sign: false }); data.append(i32 { mag: 29, sign: true }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 42, sign: true }); data.append(i32 { mag: 43, sign: true }); data.append(i32 { mag: 55, sign: true }); data.append(i32 { mag: 44, sign: true }); data.append(i32 { mag: 26, sign: true }); data.append(i32 { mag: 17, sign: true }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 11, sign: false }); data.append(i32 { mag: 21, sign: false }); da
ta.append(i32 { mag: 22, sign: false }); data.append(i32 { mag: 41, sign: false }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 52, sign: true }); data.append(i32 { mag: 55, sign: true }); data.append(i32 { mag: 21, sign: true }); data.append(i32 { mag: 22, sign: true }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 24, sign: false }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 14, sign: true }); data.append(i32 { mag: 9, sign: true }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 27, sign: false }); data.append(i32 { mag: 53, sign: false }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 66, sign: true }); data.append(i32 { mag: 70, sign: true }); data.append(i32 { mag: 58, sign: true }); data.append(i32 { mag: 11, sign: false }); data.append(i32 { mag: 37, sign: false }); data.append(i32 { mag: 36, sign: false }); data.append(i32 { mag: 15, sign: false }); data.append(i32 { mag: 30, sign: true }); data.append(i32 { mag: 34, sign: true }); data.append(i32 { mag: 27, sign: true }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 11, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 10, sign: false }); data.append(i32 { mag: 28, sign: true }); data.append(i32 { mag: 45, sign: true }); data.append(i32 { mag: 18, sign: true }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 37, sign: false }); data.append(i32 { mag: 45, sign: false }); data.append(i32 { mag: 18, sign: false }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 10, sign: true }); data.append(i32 { mag: 89, sign: true }); data.append(i32 {
mag: 8, sign: true }); data.append(i32 { mag: 28, sign: false }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 50, sign: true }); data.append(i32 { mag: 27, sign: true }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 18, sign: true }); data.append(i32 { mag: 33, sign: false }); data.append(i32 { mag: 37, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 21, sign: true }); data.append(i32 { mag: 45, sign: true }); data.append(i32 { mag: 84, sign: true }); data.append(i32 { mag: 71, sign: true }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 27, sign: true }); data.append(i32 { mag: 9, sign: true }); data.append(i32 { mag: 25, sign: true }); data.append(i32 { mag: 33, sign: true }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { mag: 15, sign: false }); data.append(i32 { mag: 24, sign: true }); data.append(i32 { mag: 37, sign: true }); data.append(i32 { mag: 34, sign: true }); data.append(i32 { mag: 32, sign: true }); data.append(i32 { mag: 53, sign: true }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 28, sign: false }); data.append(i32 { mag: 78, sign: true }); data.append(i32 { mag: 39, sign: true }); data.append(i32 { mag: 12, sign: true }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 33, sign: true }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 36, sign: false }); data.append(i32 { mag: 33, sign: true });
data.append(i32 { mag: 26, sign: true }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 15, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 24, sign: true }); data.append(i32 { mag: 30, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 20, sign: false }); data.append(i32 { mag: 10, sign: true }); data.append(i32 { mag: 16, sign: true }); data.append(i32 { mag: 22, sign: true }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 27, sign: false }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 28, sign: false }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 13, sign: true }); data.append(i32 { mag: 49, sign: true }); data.append(i32 { mag: 37, sign: true }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 17, sign: true }); data.append(i32 { mag: 12, sign: false }); data.append(i32 { mag: 14, sign: true }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 1,
sign: true }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 29, sign: false }); data.append(i32 { mag: 19, sign: true }); data.append(i32 { mag: 30, sign: true }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 13, sign: true }); data.append(i32 { mag: 13, sign: true }); data.append(i32 { mag: 31, sign: true }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 46, sign: true }); data.append(i32 { mag: 16, sign: false }); data.append(i32 { mag: 10, sign: false }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { ma
g: 20, sign: false }); data.append(i32 { mag: 29, sign: false }); data.append(i32 { mag: 18, sign: false }); data.append(i32 { mag: 13, sign: false }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 29, sign: true }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 23, sign: true }); data.append(i32 { mag: 24, sign: true }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 29, sign: true }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 15, sign: true }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 19, sign: false }); data.append(i32 { mag: 20, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 73, sign: true }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 14, sign: true }); data.append(i32 { mag: 10, sign: true }); data.append(i32 { mag: 15, sign: true }); data.append(i32 { mag: 19, sign: true }); data.append(i32 { mag: 15, sign: true }); data.append(i32 { mag: 23, sign: true }); data.append(i32 { mag: 32, sign: false }); data.append(i32 { mag: 29, sign: false }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 13, sign: false }); data.append(i32 { mag: 80, sign: true }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 24, sign: false }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 22, sign: true }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 49, sign: true }); data.append(i32 { mag: 11, sign: false }); data.append(i32 { mag: 26, sign: false });
data.append(i32 { mag: 25, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 84, sign: true }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 20, sign: false }); data.append(i32 { mag: 23, sign: true }); data.append(i32 { mag: 9, sign: false }); data.append(i32 { mag: 9, sign: false }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 47, sign: true }); data.append(i32 { mag: 12, sign: true }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { mag: 34, sign: false }); data.append(i32 { mag: 25, sign: false }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 20, sign: true }); data.append(i32 { mag: 23, sign: false }); data.append(i32 { mag: 38, sign: false }); data.append(i32 { mag: 28, sign: false }); data.append(i32 { mag: 17, sign: false }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 39, sign: true }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 18, sign: false }); data.append(i32 { mag: 35, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 16, sign: false }); data.append(i32 { mag: 40, sign: false }); data.append(i32 { mag: 45, sign: false }); data.append(i32 { mag: 17, sign: true }); data.append(i32 { mag: 20, sign: true }); data.append(i32 { mag: 16, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 2, sign: false }); data.append(i3
2 { mag: 15, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 25, sign: true }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { mag: 30, sign: false }); data.append(i32 { mag: 32, sign: false }); data.append(i32 { mag: 36, sign: true }); data.append(i32 { mag: 16, sign: true }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 12, sign: false }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 21, sign: false }); data.append(i32 { mag: 17, sign: false }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { mag: 17, sign: false }); data.append(i32 { mag: 10, sign: true }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 15, sign: false }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 25, sign: true }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { mag: 30, sign: false }); data.append(i32 { mag: 20, sign: false }); data.append(i32 { mag: 10, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 10, sign: false }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 10, sign: true }); data.append(i32 { mag: 9, sign: true }); data.append(i32 { mag: 7, sign: fa
lse }); data.append(i32 { mag: 30, sign: true }); data.append(i32 { mag: 74, sign: true }); data.append(i32 { mag: 48, sign: true }); data.append(i32 { mag: 36, sign: true }); data.append(i32 { mag: 37, sign: true }); data.append(i32 { mag: 22, sign: true }); data.append(i32 { mag: 38, sign: true }); data.append(i32 { mag: 23, sign: true }); data.append(i32 { mag: 36, sign: true }); data.append(i32 { mag: 40, sign: true }); data.append(i32 { mag: 20, sign: true }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 23, sign: false }); data.append(i32 { mag: 15, sign: true }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 30, sign: true }); data.append(i32 { mag: 20, sign: false }); data.append(i32 { mag
: 5, sign: false }); data.append(i32 { mag: 21, sign: false }); data.append(i32 { mag: 20, sign: false }); data.append(i32 { mag: 36, sign: false }); data.append(i32 { mag: 40, sign: false }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 24, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 65, sign: false }); data.append(i32 { mag: 104, sign: false }); data.append(i32 { mag: 18, sign: false }); data.append(i32 { mag: 16, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 11, sign: true }); data.append(i32 { mag: 26, sign: true }); data.append(i32 { mag: 14, sign: true }); data.append(i32 { mag: 29, sign: true }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 16, sign: true }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 25, sign: false }); data.append(i32 { mag: 21, sign: false }); data.append(i32 { mag: 10, sign: false }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 16, sign: false }); data.append(i32 { mag: 13, sign: false }); data.append(i32 { mag: 19, sign: true }); data.append(i32 { mag: 28, sign: true }); data.append(i32 { mag: 21, sign: true }); data.append(i32 { mag: 11, sign: true }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 21, sign: false }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { mag: 40, sign: false }); data.append(i32 { mag: 18, sign: false }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { mag: 5, sig
n: false }); data.append(i32 { mag: 9, sign: false }); data.append(i32 { mag: 32, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 9, sign: true }); data.append(i32 { mag: 55, sign: true }); data.append(i32 { mag: 42, sign: true }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 22, sign: false }); data.append(i32 { mag: 13, sign: false }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 22, sign: false }); data.append(i32 { mag: 24, sign: false }); data.append(i32 { mag: 29, sign: false }); data.append(i32 { mag: 43, sign: true }); data.append(i32 { mag: 85, sign: true }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 22, sign: false }); data.append(i32 { mag: 36, sign: false }); data.append(i32 { mag: 23, sign: false }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { mag: 12, sign: false }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 14, sign: true }); data.append(i32 { mag: 25, sign: false }); data.append(i32 { mag: 53, sign: false }); data.append(i32 { mag: 35, sign: false }); data.append(i32 { mag: 41, sign: false }); data.append(i32 { mag: 21, sign: false }); data.append(i32 { mag: 71, sign: true }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 34, sign: true }); data.append(i32 { mag: 18, sign: false }); data.append(i32 { mag: 10, sign: false }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 16, sign: true }); data.append(i32 { mag: 15, sign: true }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 44, sign: false });
data.append(i32 { mag: 48, sign: false }); data.append(i32 { mag: 25, sign: false }); data.append(i32 { mag: 18, sign: false }); data.append(i32 { mag: 16, sign: true }); data.append(i32 { mag: 44, sign: true }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 19, sign: false }); data.append(i32 { mag: 28, sign: true }); data.append(i32 { mag: 20, sign: true }); data.append(i32 { mag: 27, sign: true }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 35, sign: false }); data.append(i32 { mag: 44, sign: false }); data.append(i32 { mag: 27, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 11, sign: true }); data.append(i32 { mag: 21, sign: true }); data.append(i32 { mag: 28, sign: true }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 22, sign: false }); data.append(i32 { mag: 12, sign: true }); data.append(i32 { mag: 15, sign: true }); data.append(i32 { mag: 52, sign: true }); data.append(i32 { mag: 37, sign: true }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 11, sign: false }); data.append(i32 { mag: 15, sign: false }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 10, sign: true }); data.append(i32 { mag: 32, sign: true }); data.append(i32 { mag: 14, sign: true }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 30, sign: false }); data.append(i32 { mag: 35, sign: true }); data.append(i32 { mag: 30, sign: true }); data.append(i32 { mag: 36, sign: true }); data.append(i32 { mag: 20, sign: true }); data.append(i32 { mag: 16, sign: true }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 8, sign: true }); data.append
(i32 { mag: 34, sign: true }); data.append(i32 { mag: 40, sign: true }); data.append(i32 { mag: 19, sign: false }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 11, sign: false }); data.append(i32 { mag: 43, sign: true }); data.append(i32 { mag: 21, sign: true }); data.append(i32 { mag: 15, sign: true }); data.append(i32 { mag: 22, sign: true }); data.append(i32 { mag: 20, sign: true }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 24, sign: true }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 38, sign: false }); data.append(i32 { mag: 48, sign: false }); data.append(i32 { mag: 35, sign: false }); data.append(i32 { mag: 19, sign: false }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 30, sign: false }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 13, sign: false }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 7, sign: true });
data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 35, sign: true }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 32, sign: true }); data.append(i32 { mag: 10, sign: true }); data.append(i32 { mag: 50, sign: true }); data.append(i32 { mag: 95, sign: true }); data.append(i32 { mag: 60, sign: true }); data.append(i32 { mag: 17, sign: true }); data.append(i32 { mag: 23, sign: true }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 11, sign: true }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 45, sign: false }); data.append(i32 { mag: 45, sign: false }); data.append(i32 { mag: 10, sign: false }); data.append(i32 { mag: 9, sign: false }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 25, sign: false }); data.append(i32 { mag: 28, sign: false }); data.append(i32 { mag: 16, sign: false }); data.append(i32 { mag: 13, sign: false }); data.append(i32 { mag: 21, sign: false }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 6
, sign: false }); data.append(i32 { mag: 31, sign: false }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 10, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 28, sign: false }); data.append(i32 { mag: 17, sign: false }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 13, sign: true }); data.append(i32 { mag: 17, sign: false }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 16, sign: true }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 15, sign: true }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 17, sign: false }); data.append(i32 { mag: 15, sign: false }); data.append(i32 { mag: 10, sign: false }); data.append(i32 { mag: 78, sign: false }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 19, sign: true }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 18, sign: true }); data.append(i32 { mag: 9, sign: true }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 21, sign: false }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 10, sign: false }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 53, sign: false }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 33, sign: true }); data.append(i32 { mag: 39, sign: true }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 15, sign: false }); data
.append(i32 { mag: 21, sign: false }); data.append(i32 { mag: 32, sign: false }); data.append(i32 { mag: 49, sign: false }); data.append(i32 { mag: 30, sign: false }); data.append(i32 { mag: 18, sign: false }); data.append(i32 { mag: 9, sign: false }); data.append(i32 { mag: 19, sign: true }); data.append(i32 { mag: 65, sign: true }); data.append(i32 { mag: 56, sign: true }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 28, sign: false }); data.append(i32 { mag: 20, sign: false }); data.append(i32 { mag: 24, sign: false }); data.append(i32 { mag: 9, sign: true }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 24, sign: false }); data.append(i32 { mag: 22, sign: false }); data.append(i32 { mag: 17, sign: false }); data.append(i32 { mag: 10, sign: false }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 57, sign: true }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 29, sign: true }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 13, sign: true }); data.append(i32 { mag: 13, sign: true }); data.append(i32 { mag: 35, sign: true }); data.append(i32 { mag: 11, sign: true }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 12, sign: false }); data.append(i32 { mag: 12, sign: false }); data.append(i32 { mag: 10, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 79, sign: true }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 30, sign: true }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { mag: 22, sign: false }); data.append(i32 { mag: 17, sign: false }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 39, sign: true }); data.append(i32
{ mag: 34, sign: true }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 21, sign: false }); data.append(i32 { mag: 16, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 93, sign: true }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 23, sign: true }); data.append(i32 { mag: 22, sign: false }); data.append(i32 { mag: 13, sign: false }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 22, sign: true }); data.append(i32 { mag: 20, sign: true }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 13, sign: false }); data.append(i32 { mag: 11, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 14, sign: true }); data.append(i32 { mag: 109, sign: true }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 25, sign: false }); data.append(i32 { mag: 15, sign: false }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 16, sign: false }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 13, sign: false }); data.append(i32 { mag: 17, sign: false }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 21, sign: true }); data.append(i32 { mag: 48, sign: true }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 18, sign: false }); data.append(i32 { mag: 40, sign: false }); data.append(i32 { mag: 52, sign: false }); data.append(i32 { mag: 52, sign: false }); data.append(i32 { mag: 40, sign: false }); data.append(i32 { mag: 12, sign: false }); data.append(i32 { mag: 8,
sign: false }); data.append(i32 { mag: 15, sign: false }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 41, sign: false }); data.append(i32 { mag: 9, sign: true }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 27, sign: false }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 9, sign: true }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 20, sign: false }); data.append(i32 { mag: 29, sign: false }); data.append(i32 { mag: 40, sign: false }); data.append(i32 { mag: 17, sign: false }); data.append(i32 { mag: 11, sign: false }); data.append(i32 { mag: 24, sign: false }); data.append(i32 { mag: 39, sign: false }); data.append(i32 { mag: 47, sign: false }); data.append(i32 { mag: 63, sign: false }); data.append(i32 { mag: 37, sign: false }); data.a
ppend(i32 { mag: 54, sign: false }); data.append(i32 { mag: 10, sign: true }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 61, sign: true }); data.append(i32 { mag: 25, sign: true }); data.append(i32 { mag: 13, sign: true }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 14, sign: true }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 9, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 36, sign: false }); data.append(i32 { mag: 11, sign: true }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 24, sign: false }); data.append(i32 { mag: 14, sign: true }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 27, sign: false }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 31, sign: false }); data.append(i32 { mag: 9, sign: true }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 17, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 11, sign: true }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 12, sign: false }); data.append(i32 { mag: 18, sign: false }); data.append(i32 { mag: 7, sign: fa
lse }); data.append(i32 { mag: 26, sign: false }); data.append(i32 { mag: 38, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 11, sign: false }); data.append(i32 { mag: 24, sign: false }); data.append(i32 { mag: 45, sign: false }); data.append(i32 { mag: 12, sign: true }); data.append(i32 { mag: 26, sign: true }); data.append(i32 { mag: 11, sign: true }); data.append(i32 { mag: 14, sign: true }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 29, sign: false }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 30, sign: false }); data.append(i32 { mag: 36, sign: false }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 27, sign: false }); data.append(i32 { mag: 21, sign: false }); data.append(i32 { mag: 28, sign: false }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 46, sign: true }); data.append(i32 { mag: 17, sign: true }); data.append(i32 { mag: 23, sign: true }); data.append(i32 { mag: 32, sign: true }); data.append(i32 { mag: 21, sign: true }); data.append(i32 { mag: 15, sign: true }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 20, sign: false }); data.append(i32 { mag: 50, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 22, sign: false }); data.append(i32 { mag: 18, sign: false }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 37, sign: true }); data.append(i32 { mag: 35, sign: true }); data.append(i32 { mag: 18, sign: true }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 16, sign: false }); data.append(i32 { mag: 49, sign: false }); data.append(i32 { mag: 10, sign: true }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 29, sign: false }); data.append(i32 { mag: 38, sign: true });
data.append(i32 { mag: 18, sign: false }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 14, sign: true }); data.append(i32 { mag: 11, sign: true }); data.append(i32 { mag: 54, sign: true }); data.append(i32 { mag: 18, sign: true }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 22, sign: false }); data.append(i32 { mag: 16, sign: false }); data.append(i32 { mag: 9, sign: false }); data.append(i32 { mag: 23, sign: true }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 23, sign: true }); data.append(i32 { mag: 20, sign: false }); data.append(i32 { mag: 15, sign: false }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 13, sign: true }); data.append(i32 { mag: 9, sign: true }); data.append(i32 { mag: 10, sign: true }); data.append(i32 { mag: 16, sign: false }); data.append(i32 { mag: 22, sign: false }); data.append(i32 { mag: 13, sign: false }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 23, sign: true }); data.append(i32 { mag: 9, sign: true }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 15, sign: false }); data.append(i32 { mag: 28, sign: false }); data.append(i32 { mag: 30, sign: false }); data.append(i32 { mag: 28, sign: false }); data.append(i32 { mag: 15, sign: false }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 13, sign: true }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 17, sign: true }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 9, sign: true }); data.append(i32 { mag
: 2, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { mag: 11, sign: false }); data.append(i32 { mag: 14, sign: true }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 26, sign: true }); data.append(i32 { mag: 29, sign: true }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 35, sign: false }); data.append(i32 { mag: 11, sign: true }); data.append(i32 { mag: 23, sign: false }); data.append(i32 { mag: 9, sign: false }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { mag: 20, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 39, sign: false }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 9, sign: true }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 11, sign: false }); data.append(i32 { mag: 23, sign: true }); dat
a.append(i32 { mag: 15, sign: false }); data.append(i32 { mag: 12, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 22, sign: false }); data.append(i32 { mag: 41, sign: false }); data.append(i32 { mag: 29, sign: false }); data.append(i32 { mag: 45, sign: false }); data.append(i32 { mag: 30, sign: false }); data.append(i32 { mag: 32, sign: false }); data.append(i32 { mag: 11, sign: true }); data.append(i32 { mag: 23, sign: true }); data.append(i32 { mag: 20, sign: true }); data.append(i32 { mag: 32, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 68, sign: false }); data.append(i32 { mag: 23, sign: false }); data.append(i32 { mag: 24, sign: false }); data.append(i32 { mag: 38, sign: false }); data.append(i32 { mag: 44, sign: false }); data.append(i32 { mag: 35, sign: false }); data.append(i32 { mag: 40, sign: false }); data.append(i32 { mag: 29, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 9, sign: true }); data.append(i32 { mag: 57, sign: true }); data.append(i32 { mag: 16, sign: true }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 35, sign: false }); data.append(i32 { mag: 41, sign: false }); data.append(i32 { mag: 31, sign: false }); data.append(i32 { mag: 20, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 9, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i
32 { mag: 5, sign: false }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 16, sign: true }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 44, sign: false }); data.append(i32 { mag: 69, sign: false }); data.append(i32 { mag: 29, sign: false }); data.append(i32 { mag: 19, sign: false }); data.append(i32 { mag: 22, sign: false }); data.append(i32 { mag: 19, sign: false }); data.append(i32 { mag: 27, sign: false }); data.append(i32 { mag: 12, sign: false }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { mag: 19, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 11, sign: false }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 15, sign: false }); data.append(i32 { mag: 73, sign: false }); data.append(i32 { mag: 37, sign: false }); data.append(i32 { mag: 12, sign: false }); data.append(i32 { mag: 9, sign: true }); data.append(i32 { mag: 18, sign: true }); data.append(i32 { mag: 15, sign: true }); data.append(i32 { mag: 20, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 7, sign: false }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 13, sign: false }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 34, sign: false }); data.append(i32 { mag: 20, sign: true }); data.append(i32 { mag: 74, sign: true }); data.append(i32 { mag: 89, sign: true }); data.append(i32 { mag: 60, sign: true }); data.append(i32 { mag: 68, sign: true }); data.append(i32 { mag: 21, sign: true }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 15, sign: true }); data.append(i32 { mag: 9, sign: true }); data.append(i32 { mag: 16, sign: true }); data.append(i32 { mag:
49, sign: true }); data.append(i32 { mag: 41, sign: false }); data.append(i32 { mag: 8, sign: true }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 29, sign: true }); data.append(i32 { mag: 45, sign: true }); data.append(i32 { mag: 53, sign: true }); data.append(i32 { mag: 42, sign: true }); data.append(i32 { mag: 36, sign: true }); data.append(i32 { mag: 22, sign: false }); data.append(i32 { mag: 39, sign: false }); data.append(i32 { mag: 13, sign: true }); data.append(i32 { mag: 13, sign: true }); data.append(i32 { mag: 23, sign: true }); data.append(i32 { mag: 20, sign: true }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 74, sign: false }); data.append(i32 { mag: 37, sign: false }); data.append(i32 { mag: 13, sign: true }); data.append(i32 { mag: 18, sign: true }); data.append(i32 { mag: 11, sign: true }); data.append(i32 { mag: 38, sign: false }); data.append(i32 { mag: 17, sign: false }); data.append(i32 { mag: 6, sign: true }); data.append(i32 { mag: 11, sign: true }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 25, sign: false }); data.append(i32 { mag: 39, sign: false }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 30, sign: true }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 27, sign: false }); data.append(i32 { mag: 12, sign: false }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { mag: 28, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 11, sign: false }); data.append(i32 { mag: 11, sign: false }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 49, sign: false }); data.append(i32 { mag: 56, sign: false }); data.append(i32 { mag: 3, sign: tr
ue }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 58, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 39, sign: false }); data.append(i32 { mag: 27, sign: false }); data.append(i32 { mag: 25, sign: false }); data.append(i32 { mag: 11, sign: false }); data.append(i32 { mag: 10, sign: false }); data.append(i32 { mag: 18, sign: false }); data.append(i32 { mag: 29, sign: false }); data.append(i32 { mag: 24, sign: false }); data.append(i32 { mag: 9, sign: false }); data.append(i32 { mag: 33, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 9, sign: false }); data.append(i32 { mag: 36, sign: false }); data.append(i32 { mag: 38, sign: false }); data.append(i32 { mag: 26, sign: false }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 17, sign: false }); data.append(i32 { mag: 24, sign: false }); data.append(i32 { mag: 24, sign: false }); data.append(i32 { mag: 29, sign: false }); data.append(i32 { mag: 18, sign: false }); data.append(i32 { mag: 12, sign: true }); data.append(i32 { mag: 12, sign: true }); data.append(i32 { mag: 15, sign: false }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 36, sign: true }); data.append(i32 { mag: 38, sign: true }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 23, sign: false }); data.append(i32 { mag: 15, sign: false }); data.append(i32 { mag: 8, sign: false }); data.append(i32 { mag: 17, sign: true }); data.append(i32 { mag: 40, sign: true }); data.append(i32 { mag: 59, sign: true }); data.append(i32 { mag: 16, sign: true }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 5, sign: true });
data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 4, sign: true }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 7, sign: true }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 4, sign: false }); data.append(i32 { mag: 9, sign: true }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 7, sign: true }); TensorTrait::new(shape.span(), data.span()) }
use array::ArrayTrait; use orion::operators::tensor::{TensorTrait, Tensor, I32Tensor}; use orion::numbers::i32; fn fc2_bias() -> Tensor<i32> { let mut shape = ArrayTrait::<usize>::new(); shape.append(10); let mut data = ArrayTrait::<i32>::new(); data.append(i32 { mag: 313, sign: true }); data.append(i32 { mag: 1064, sign: false }); data.append(i32 { mag: 28, sign: true }); data.append(i32 { mag: 184, sign: true }); data.append(i32 { mag: 1012, sign: true }); data.append(i32 { mag: 1885, sign: false }); data.append(i32 { mag: 787, sign: true }); data.append(i32 { mag: 835, sign: false }); data.append(i32 { mag: 1819, sign: true }); data.append(i32 { mag: 208, sign: false }); TensorTrait::new(shape.span(), data.span()) }
use array::ArrayTrait; use orion::operators::tensor::{TensorTrait, Tensor, I32Tensor}; use orion::numbers::i32; fn fc2_weights() -> Tensor<i32> { let mut shape = ArrayTrait::<usize>::new(); shape.append(10); shape.append(10); let mut data = ArrayTrait::<i32>::new(); data.append(i32 { mag: 42, sign: true }); data.append(i32 { mag: 41, sign: false }); data.append(i32 { mag: 15, sign: false }); data.append(i32 { mag: 27, sign: true }); data.append(i32 { mag: 58, sign: true }); data.append(i32 { mag: 71, sign: false }); data.append(i32 { mag: 21, sign: true }); data.append(i32 { mag: 50, sign: true }); data.append(i32 { mag: 32, sign: false }); data.append(i32 { mag: 21, sign: true }); data.append(i32 { mag: 38, sign: true }); data.append(i32 { mag: 67, sign: true }); data.append(i32 { mag: 35, sign: true }); data.append(i32 { mag: 112, sign: true }); data.append(i32 { mag: 95, sign: false }); data.append(i32 { mag: 78, sign: false }); data.append(i32 { mag: 15, sign: false }); data.append(i32 { mag: 28, sign: true }); data.append(i32 { mag: 64, sign: false }); data.append(i32 { mag: 49, sign: false }); data.append(i32 { mag: 19, sign: false }); data.append(i32 { mag: 69, sign: true }); data.append(i32 { mag: 53, sign: false }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 62, sign: true }); data.append(i32 { mag: 47, sign: false }); data.append(i32 { mag: 30, sign: true }); data.append(i32 { mag: 70, sign: true }); data.append(i32 { mag: 28, sign: true }); data.append(i32 { mag: 48, sign: false }); data.append(i32 { mag: 69, sign: true }); data.append(i32 { mag: 21, sign: true }); data.append(i32 { mag: 35, sign: false }); data.append(i32 { mag: 38, sign: true }); data.append(i32 { mag: 100, sign: true }); data.append(i32 { mag: 41, sign: true }); data.append(i32 { mag: 13, sign: true }); data.append(i32 { mag: 78, sign: false })
; data.append(i32 { mag: 12, sign: true }); data.append(i32 { mag: 29, sign: false }); data.append(i32 { mag: 59, sign: false }); data.append(i32 { mag: 49, sign: true }); data.append(i32 { mag: 36, sign: true }); data.append(i32 { mag: 12, sign: false }); data.append(i32 { mag: 11, sign: false }); data.append(i32 { mag: 24, sign: false }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { mag: 31, sign: false }); data.append(i32 { mag: 19, sign: true }); data.append(i32 { mag: 99, sign: true }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 11, sign: false }); data.append(i32 { mag: 29, sign: false }); data.append(i32 { mag: 9, sign: false }); data.append(i32 { mag: 2, sign: true }); data.append(i32 { mag: 127, sign: true }); data.append(i32 { mag: 117, sign: true }); data.append(i32 { mag: 31, sign: false }); data.append(i32 { mag: 39, sign: false }); data.append(i32 { mag: 17, sign: true }); data.append(i32 { mag: 67, sign: false }); data.append(i32 { mag: 9, sign: false }); data.append(i32 { mag: 42, sign: false }); data.append(i32 { mag: 112, sign: true }); data.append(i32 { mag: 26, sign: false }); data.append(i32 { mag: 10, sign: true }); data.append(i32 { mag: 1, sign: true }); data.append(i32 { mag: 73, sign: true }); data.append(i32 { mag: 21, sign: false }); data.append(i32 { mag: 65, sign: true }); data.append(i32 { mag: 76, sign: true }); data.append(i32 { mag: 5, sign: true }); data.append(i32 { mag: 90, sign: true }); data.append(i32 { mag: 19, sign: false }); data.append(i32 { mag: 75, sign: true }); data.append(i32 { mag: 36, sign: true }); data.append(i32 { mag: 71, sign: false }); data.append(i32 { mag: 45, sign: true }); data.append(i32 { mag: 82, sign: false }); data.append(i32 { mag: 13, sign: false }); data.append(i32 { mag: 5, sign: false }); data.append(i32 { mag: 81, sign: false });
data.append(i32 { mag: 12, sign: false }); data.append(i32 { mag: 13, sign: true }); data.append(i32 { mag: 22, sign: false }); data.append(i32 { mag: 28, sign: true }); data.append(i32 { mag: 46, sign: true }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 110, sign: true }); data.append(i32 { mag: 3, sign: true }); data.append(i32 { mag: 82, sign: true }); data.append(i32 { mag: 16, sign: false }); data.append(i32 { mag: 32, sign: false }); data.append(i32 { mag: 12, sign: false }); data.append(i32 { mag: 31, sign: false }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 45, sign: false }); data.append(i32 { mag: 30, sign: true }); data.append(i32 { mag: 87, sign: true }); data.append(i32 { mag: 125, sign: true }); TensorTrait::new(shape.span(), data.span()) }
use array::ArrayTrait; use orion::operators::tensor::{TensorTrait, Tensor, I32Tensor}; use orion::numbers::i32; fn input() -> Tensor<i32> { let mut shape = ArrayTrait::<usize>::new(); shape.append(196); let mut data = ArrayTrait::<i32>::new(); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false
}); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 14, sign: false }); data.append(i32 { mag: 24, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 220, sign: false }); data.append(i32 { mag: 216, sign: false }); data.append(i32 { mag: 255, sign: false }); data.append(i32 { mag: 240, sign: false }); data.append(i32 { mag: 246, sign: false }); data.append(i32 { mag: 245, sign: false }); data.append(i32 { mag: 237, sign: false }); data.append(i32 { mag: 114, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 27, sign: false }); data.append(i32 { mag: 26, sign: false }); data.append(i32 { mag: 171, sign: false }); data.append(i32 { mag: 108, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false
}); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 19, sign: false }); data.append(i32 { mag: 255, sign: false }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 207, sign: false }); data.append(i32 { mag: 72, sign: false }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 1, sign: false }); data.append(i32 { mag: 20, sign: false }); data.append(i32 { mag: 255, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.ap
pend(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 244, sign: false }); data.append(i32 { mag: 73, sign: false }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 3, sign: false }); data.append(i32 { mag: 120, sign: false }); data.append(i32 { mag: 187, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 28, sign: false }); data.append(i32 { mag: 255, sign: false }); data.append(i32 { mag: 6, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag
: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 179, sign: false }); data.append(i32 { mag: 255, sign: false }); data.append(i32 { mag: 2, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); data.append(i32 { mag: 0, sign: false }); TensorTrait::new(shape.span(), data.span()) }
// use orion::operators::tensor::core::TensorTrait; // use core::array::{SpanTrait, ArrayTrait}; // use mnist_nn::nn::fc1; // use mnist_nn::nn::fc2; // use mnist_nn::generated::input::input; // use mnist_nn::generated::fc1_bias::fc1_bias; // use mnist_nn::generated::fc1_weights::fc1_weights; // use mnist_nn::generated::fc2_bias::fc2_bias; // use mnist_nn::generated::fc2_weights::fc2_weights; // use orion::operators::tensor::implementations::impl_tensor_fp::Tensor_fp; // fn main() -> u32 { // let input = input(); // let fc1_bias = fc1_bias(); // let fc1_weights = fc1_weights(); // let fc2_bias = fc2_bias(); // let fc2_weights = fc2_weights(); // let x = fc1(input, fc1_weights, fc1_bias); // let x = fc2(x, fc2_weights, fc2_bias); // let x = *x.argmax(0, Option::None(()), Option::None(())).data.at(0); // x // }
mod generated; mod nn; mod test; mod inference;
use orion::operators::tensor::core::Tensor; use orion::numbers::signed_integer::{integer_trait::IntegerTrait, i32::i32}; use orion::operators::nn::{NNTrait, I32NN}; fn fc1(i: Tensor<i32>, w: Tensor<i32>, b: Tensor<i32>) -> Tensor<i32> { let x = NNTrait::linear(i, w, b); NNTrait::relu(@x) } fn fc2(i: Tensor<i32>, w: Tensor<i32>, b: Tensor<i32>) -> Tensor<i32> { NNTrait::linear(i, w, b) }
use core::array::SpanTrait; use mnist_nn::nn::fc1; use mnist_nn::nn::fc2; use mnist_nn::generated::input::input; use mnist_nn::generated::fc1_bias::fc1_bias; use mnist_nn::generated::fc1_weights::fc1_weights; use mnist_nn::generated::fc2_bias::fc2_bias; use mnist_nn::generated::fc2_weights::fc2_weights; use orion::operators::tensor::{I32Tensor, Tensor}; use orion::numbers::i32; #[test] #[available_gas(99999999999999999)] fn mnist_nn_test() { let input = input(); let fc1_bias = fc1_bias(); let fc1_weights = fc1_weights(); let fc2_bias = fc2_bias(); let fc2_weights = fc2_weights(); let x = fc1(input, fc1_weights, fc1_bias); let x = fc2(x, fc2_weights, fc2_bias); let x = *x.argmax(0, Option::None(()), Option::None(())).data.at(0); assert(x == 7, 'should predict 7'); }
{ "cells": [ { "cell_type": "code", "execution_count": 7, "id": "c7d8c871", "metadata": {}, "outputs": [], "source": [ "def fp16x16_to_decimal(fp_number):\n", " whole_number = (fp_number >> 16) & 0xFFFF\n", " fractional_part = fp_number & 0xFFFF\n", " decimal_value = whole_number + (fractional_part / 65536) " return decimal_value\n", "\n", "def decimal_to_fp16x16(decimal_number):\n", " whole_number = int(decimal_number)\n", " fractional_part = int((decimal_number - whole_number) * 65536) " fp_number = (whole_number << 16) + fractional_part\n", " return fp_number\n", "\n", "def hex_to_decimal(hex_string):\n", " try:\n", " decimal_number = int(hex_string, 16)\n", " return decimal_number\n", " except ValueError:\n", " return \"Invalid hexadecimal input\"\n", " \n", "def fp16x16_hex_to_decimal(hex_string):\n", " hex_to_decimal_variable = hex_to_decimal(hex_string)\n", " decimal_value = fp16x16_to_decimal(hex_to_decimal_variable)\n", " return decimal_value\n", "\n" ] }, { "cell_type": "code", "execution_count": 9, "id": "b0d907a8", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "38.45289611816406" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "felt_to_number(\"0x2673f1\")" ] }, { "cell_type": "code", "execution_count": null, "id": "9fe1872d", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert
_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.13" } }, "nbformat": 4, "nbformat_minor": 5 }
{ "cells": [ { "cell_type": "markdown", "id": "4a28cde5", "metadata": {}, "source": [ " "\n", "Simple Linear Regression model is a foundational technique used to determine the linear relationship between an independent variables (predictors) and a dependent variable (outcome) . By identifying the line of best fit, we can make informed predictions based on new data points or decipher how changes in one variable may lead to changes in another. \n", "\n", "The following is a small run through of the implementation of a Simple Linear Regression model using <b>Ordinary Least Squares</b> (OLS) in python, which we will in later stages convert it to Cairo to turn it into a <b>\"Verifiable Linear Regression model\" </b>. By utilysing the <b>Orion's</b> library we will be able to add an extra layer of transparency and robustness enabling us to make <b>verifiable inferences</b> which can be easily <b>proved</b> using the LambdaClass STARK Prover.\n", "\n", "In this particular exercise, we'll replicate the entire linear regression model in Cairo. This approach will not only enable us to validate each individual inference made to the model but also allow us to verify all the steps executed during the model's construction phase also. This is to provide an opportunity to get familiar with Orion's main functions and operators along the process. \n" ] }, { "cell_type": "markdown", "id": "2d479a73", "metadata": {}, "source": [ " ] }, { "cell_type": "code", "execution_count": 58, "id": "f60750c4", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "X values = [-0.5 -0.49328859 -0.48657718 -0.47986577 -0.47315436 -0.46644295\n", " -0.45973154 -0.45302013 -0.44630872 -0.43959732 -0.43288591 -0.4261745\n", " -0.41946309 -0.41275168 -0.40604027 -0.39932886 -0.39261745 -0.38590604\n", " -0.37919463 -0.37248322 -0.36577181 -0.3590604 -0.35234899 -0.34563758\n",
" -0.33892617 -0.33221477 -0.32550336 -0.31879195 -0.31208054 -0.30536913\n", " -0.29865772 -0.29194631 -0.2852349 -0.27852349 -0.27181208 -0.26510067\n", " -0.25838926 -0.25167785 -0.24496644 -0.23825503 -0.23154362 -0.22483221\n", " -0.21812081 -0.2114094 -0.20469799 -0.19798658 -0.19127517 -0.18456376\n", " -0.17785235 -0.17114094 -0.16442953 -0.15771812 -0.15100671 -0.1442953\n", " -0.13758389 -0.13087248 -0.12416107 -0.11744966 -0.11073826 -0.10402685\n", " -0.09731544 -0.09060403 -0.08389262 -0.07718121 -0.0704698 -0.06375839\n", " -0.05704698 -0.05033557 -0.04362416 -0.03691275 -0.03020134 -0.02348993\n", " -0.01677852 -0.01006711 -0.0033557 0.0033557 0.01006711 0.01677852\n", " 0.02348993 0.03020134 0.03691275 0.04362416 0.05033557 0.05704698\n", " 0.06375839 0.0704698 0.07718121 0.08389262 0.09060403 0.09731544\n", " 0.10402685 0.11073826 0.11744966 0.12416107 0.13087248 0.13758389\n", " 0.1442953 0.15100671 0.15771812 0.16442953 0.17114094 0.17785235\n", " 0.18456376 0.19127517 0.19798658 0.20469799 0.2114094 0.21812081\n", " 0.22483221 0.23154362 0.23825503 0.24496644 0.25167785 0.25838926\n", " 0.26510067 0.27181208 0.27852349 0.2852349 0.29194631 0.29865772\n", " 0.30536913 0.31208054 0.31879195 0.32550336 0.33221477 0.33892617\n", " 0.34563758 0.35234899 0.3590604 0.36577181 0.37248322 0.37919463\n", " 0.38590604 0.39261745 0.39932886 0.40604027 0.41275168 0.41946309\n", " 0.4261745 0.43288591 0.43959732 0.44630872 0.45302013 0.45973154\n", " 0.46644295 0.47315436 0.47986577 0.48657718 0.49328859 0.5 ]\n", "y values = [4.04967142 3.99959639 4.09161449 4.19257144 4.03027594 4.0437004\n", " 4.23845819 4.1707032 4.06043511 4.17506137 4.08788642 4.10107803\n", " 4.18527005 3.98316862 4.01542768 4.14511353 4.11348199 4.25961265\n", " 4.15080833 4.11380319 4.41502125
4.25930156 4.30205483 4.16625001\n", " 4.26770938 4.34666273 4.23389393 4.39998591 4.31577506 4.36009237\n", " 4.3425139 4.6013352 4.42818048 4.33718193 4.53863033 4.34771429\n", " 4.50410784 4.30067728 4.37724851 4.54317606 4.61075941 4.5674724\n", " 4.55219356 4.54707084 4.44275183 4.53204242 4.57138579 4.73658471\n", " 4.67865713 4.48141411 4.70354934 4.64605553 4.63029438 4.77257702\n", " 4.82793217 4.83138305 4.6677561 4.73417943 4.81164983 4.88950082\n", " 4.7574517 4.80022605 4.72158127 4.72601692 4.94031298 5.00810722\n", " 4.87870503 4.99968215 4.94891528 4.86166252 4.97573688 5.10682379\n", " 4.96286035 5.13633014 4.73131408 5.08890166 5.02883894 5.00365631\n", " 5.05615594 4.86164579 5.05185831 5.12295958 5.24846055 5.06226694\n", " 5.04666742 5.09076389 5.24590263 5.20066035 5.12823203 5.24595762\n", " 5.21776145 5.31834101 5.16469402 5.21555593 5.22253415 5.12881629\n", " 5.31820263 5.32811895 5.31594759 5.30540035 5.2007448 5.31364017\n", " 5.33485607 5.30232261 5.37984458 5.44980106 5.61143738 5.45369939\n", " 5.47541947 5.45564266 5.28463295 5.4872815 5.50937873 5.76310273\n", " 5.51096525 5.5737789 5.5535758 5.45360199 5.6981749 5.67250874\n", " 5.68984145 5.53322233 5.77786332 5.51082161 5.72311524 5.89689791\n", " 5.59222154 5.64806821 5.72808594 5.68119606 5.5899001 5.76524556\n", " 5.66558171 5.83259414 5.70671529 5.96707398 5.74717803 5.80672002\n", " 5.93370072 5.74268538 5.90194062 6.02333173 5.74529195 5.93792647\n", " 5.95887419 6.02449101 5.83603647 5.8411087 6.03877134 6.02969847]\n" ] } ], "source": [ "