text
stringlengths
1
2.05k
import logging\n", " "FORMAT = '%(levelname)s %(name)s %(asctime)-15s %(filename)s:%(lineno)d %(message)s'\n", "logging.basicConfig(format=FORMAT)\n", "logging.getLogger().setLevel(logging.DEBUG)\n", "\n", "print(\"ezkl version: \", ezkl.__version__)" ] }, { "cell_type": "markdown", "metadata": { "id": "osjj-0Ta3E8O" }, "source": [ "**Create Computational Graph**" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https: }, "id": "x1vl9ZXF3EEW", "outputId": "bda21d02-fe5f-4fb2-8106-f51a8e2e67aa" }, "outputs": [], "source": [ "from torch
import nn\n", "
import torch\n", "\n", "\n", "
class Model(nn.Module):\n", " def __init__(self):\n", " super(Model, self).__init__()\n", "\n", " " def forward(self, x):\n", " return [torch.mean(x)]\n", "\n", "\n", "\n", "\n", "circuit = Model()\n", "\n", "\n", "\n", "\n", "x = 0.1*torch.rand(1,*[1,5], requires_grad=True)\n", "\n", " "device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n", "\n", "print(device)\n", "\n", "circuit.to(device)\n", "\n", " "circuit.eval()\n", "\n", " "torch.onnx.export(circuit, " x, " \"lol.onnx\", " export_params=True, " opset_version=11, " do_constant_folding=True, " input_names = ['input'], " output_names = ['output'], " dynamic_axes={'input' : {0 : 'batch_size'}, " 'output' : {0 : 'batch_size'}})\n", "\n", " "\n" ] }, { "cell_type": "markdown", "metadata": { "id": "E3qCeX-X5xqd" }, "source": [ "**Set Data Source and Get Data**" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https: }, "id": "6RAMplxk5xPk", "outputId": "bd2158fe-0c00-44fd-e632-6a3f70cdb7c9" }, "outputs": [], "source": [ "
import getpass\n", " "input_filename = os.path.join('input.json')\n", "\n", "pg_input_file = dict(input_data = {\n", " \"host\": \"localhost\",\n", " " \"user\": getpass.getuser(),\n", " \"dbname\": \"shovel\",\n", " \"password\": \"\",\n", " \"query\": \"SELECT v FROM usdc ORDER BY block_num DESC LIMIT 5\",\n", " \"port\": \"5432\",\n", "})\n", "\n", "json_formatted_str = json.dumps(pg_input_file, indent=2)\n", "print(json_formatted_str)\n", "\n", "\n", " "json.dump(pg_input_file, open(input_filename, 'w' ))\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ " "calibration_filename = os.path.join('calibration.json')\n", "\n", "pg_cal_file = dict(input_data = {\n", " \"host\": \"localhost\",\n", " " \"user\": getpass.getuser(),\n", " \"dbname\": \"shovel\",\n", " \"password\": \"\",\n", " \"query\": \"SELECT v FROM usdc ORDER BY block_num DESC LIMIT 20\",\n", " \"port\": \"5432\",\n", "})\n", "\n", " "json.dump( pg_cal_file, open(calibration_filename, 'w' ))" ] }, { "cell_type": "markdown", "metadata": { "id": "eLJ7oirQ_HQR" }, "source": [ "**EZKL Workflow**" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "rNw0C9QL6W88" }, "outputs": [], "source": [ "
import subprocess\n", "
import os\n", "\n", "onnx_filename = os.path.join('lol.onnx')\n", "compiled_filename = os.path.join('lol.compiled')\n", "settings_filename = os.path.join('settings.json')\n", "\n", " "res = ezkl.gen_settings(onnx_filename, settings_filename)\n", "\n", "assert res == True\n", "\n", "res = ezkl.calibrate_settings(input_filename, onnx_filename, settings_filename, \"resources\")\n", "\n", "assert res == True" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "\n", "ezkl.compile_circuit(onnx_filename, compiled_filename, settings_filename)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https: }, "id": "4MmE9SX66_Il", "outputId": "16403639-66a4-4280-ac7f-6966b75de5a3" }, "outputs": [], "source": [ " "\n", "\n", " "with open(\"settings.json\") as f:\n", " data = json.load(f)\n", " json_formatted_str = json.dumps(data, indent=2)\n", "\n", " print(json_formatted_str)\n", "\n", "assert os.path.exists(\"settings.json\")\n", "assert os.path.exists(\"input.json\")\n", "assert os.path.exists(\"lol.onnx\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "fULvvnK7_CMb" }, "outputs": [], "source": [ "pk_path = os.path.join('test.pk')\n", "vk_path = os.path.join('test.vk')\n", "\n", "\n", " "res = ezkl.setup(\n", " compiled_filename,\n", " vk_path,\n", " pk_path\n", " )\n", "\n", "assert res == True\n", "assert os.path.isfile(vk_path)\n", "assert os.path.isfile(pk_path)\
n", "assert os.path.isfile(settings_filename)\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "witness_path = \"witness.json\"\n", "\n", " "res = ezkl.gen_witness(\n", " input_filename,\n", " compiled_filename,\n", " witness_path\n", " )\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https: }, "id": "Oog3j6Kd-Wed", "outputId": "5839d0c1-5b43-476e-c2f8-6707de562260" }, "outputs": [], "source": [ " " "proof_path = os.path.join('test.pf')\n", "\n", "\n", "proof = ezkl.prove(\n", " witness_path,\n", " compiled_filename,\n", " pk_path,\n", " proof_path,\n", " \"single\"\n", " )\n", "\n", "\n", "print(\"proved\")\n", "\n", "assert os.path.isfile(proof_path)\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ " "os.system(\"pkill -f shovel\")" ] } ], "metadata": { "colab": { "provenance": [] }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.2" } }, "nbformat": 4, "nbformat_minor": 0 }
{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "6ypZa6jg0rZy" }, "source": [ " "\n", "Here we demonstrate how to use the EZKL package to build an MNIST classifier for on-chain handrawn digit recognition.\n", "The proofs get submitted to a contract that assigns the users account to a digit clan (0-9). The contract keeps track of the member count of each clan. The clan with the most members is the winner!\n", "\n", "![zk-gaming-diagram-transformed](https: "> **A typical ZK application flow**. For all the image classifictiton hackers out there β€” this is an fairly straight forward example. A user computes a ZKML-proof that they have calculated a valid classification of a hand drawn digit from a MNIST trained lenet model. They submit this proof to a verifier contract which governs a set of clans, along with the output values of the model (length 10 tensor whereby the index with the max value represented the prediction), and the clan count updates according the lenets model's prediction. " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Fm2DMmXW0rZ0" }, "outputs": [], "source": [ " "try:\n", " "
import google.colab\n", "
import subprocess\n", "
import sys\n", " subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"ezkl\"])\n", " subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"torch\"])\n", " subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"torchvision\"])\n", " subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"tf2onnx\"])\n", " subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"onnx\"])\n", "\n", " "except:\n", " pass\n", "\n", " "
import ezkl\n", "
import os\n", "
import json\n", "
import time\n", "
import random\n", "
import logging\n", "\n", "\n", " "FORMAT = '%(levelname)s %(name)s %(asctime)-15s %(filename)s:%(lineno)d %(message)s'\n", "logging.basicConfig(format=FORMAT)\n", "logging.getLogger().setLevel(logging.INFO)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "jbRkAJLz0rZ1" }, "outputs": [], "source": [ "
import torch\n", "
import torch.nn as nn\n", "
import torch.nn.functional as F\n", "\n", "
class LeNet(nn.Module):\n", " def __init__(self):\n", " super(LeNet, self).__init__()\n", " " self.conv1 = nn.Conv2d(1, 6, 5) " self.conv2 = nn.Conv2d(6, 16, 5) "\n", " " self.fc1 = nn.Linear(16 * 4 * 4, 120) \n", " self.fc2 = nn.Linear(120, 84) " self.fc3 = nn.Linear(84, 10) "\n", " def forward(self, x):\n", " " x = F.avg_pool2d(F.sigmoid(self.conv1(x)), (2, 2)) " x = F.avg_pool2d(F.sigmoid(self.conv2(x)), (2, 2)) "\n", " " x = x.view(x.size(0), -1)\n", "\n", " " x = F.sigmoid(self.fc1(x))\n", " x = F.sigmoid(self.fc2(x))\n", " x = self.fc3(x) " return x\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https: }, "id": "8yYNrvus0rZ2", "outputId": "d3ae2380-fa03-4368-9bea-46c38a65ddca" }, "outputs": [], "source": [ "
import numpy as np\n", "
import os\n", "
import torch\n", "from torchvision.datasets
import mnist\n", "from torch.nn
import CrossEntropyLoss\n", "from torch.optim
import Adam "from torch.utils.data
import DataLoader\n", "from torchvision.transforms
import ToTensor\n", "\n", "def normalize_img(image, label):\n", " return torch.round(image), label\n", "\n", "device = 'cuda' if torch.cuda.is_available() else 'cpu'\n", "batch_size = 256\n", "train_dataset = mnist.MNIST(root='./train', train=True, transform=ToTensor(), download=True)\n", "test_dataset = mnist.MNIST(root='./test', train=False, transform=ToTensor(), download=True)\n", "train_loader = DataLoader(train_dataset, batch_size=batch_size)\n", "test_loader = DataLoader(test_dataset, batch_size=batch_size)\n", "model = LeNet().to(device)\n", "adam = Adam(model.parameters()) "loss_fn = CrossEntropyLoss()\n", "all_epoch = 25\n", "prev_acc = 0\n", "for current_epoch in range(all_epoch):\n", " model.train()\n", " for idx, (train_x, train_label) in enumerate(train_loader):\n", " train_x = train_x.to(device)\n", " " train_x = train_x.round()\n", " train_label = train_label.to(device)\n", " adam.zero_grad() " predict_y = model(train_x.float())\n", " loss = loss_fn(predict_y, train_label.long())\n", " loss.backward()\n", " adam.step() " all_correct_num = 0\n", " all_sample_num = 0\n", " model.eval()\n", "\n", " for idx, (test_x, test_label) in enumerate(test_loader):\n", " test_x = test_x.to(device)\n", " " test_x = test_x.round()\n", " test_label = test_label.to(device)\n", " predict_y = model(test_x.float()).detach()\n", " predict_y = torch.argmax(predict_y, dim=-1)\n", " current_correct_num = predict_y == test_label\n", " all_correct_num += np.sum(current_correct_num.to('cpu').numpy(), axis=-1)\n", " all_sample_num += current_correct_num.
shape[0]\n", " acc = all_correct_num / all_sample_num\n", " print('test accuracy: {:.3f}'.format(acc), flush=True)\n", " if not os.path.isdir(\"models\"):\n", " os.mkdir(\"models\")\n", " torch.save(model, 'models/mnist_{:.3f}.pkl'.format(acc))\n", " prev_acc = acc\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "
import matplotlib.pyplot as plt\n", "
import numpy as np\n", "from matplotlib
import colors\n", "from scipy
import stats\n", "n_bins = 100\n", " "minimum_abs_val = 100000\n", "params_abs = []\n", "for param in model.parameters():\n", " if param.abs().min() < minimum_abs_val:\n", " minimum_abs_val = param.abs().min()\n", " params_abs.extend(param.abs().detach().numpy().flatten().tolist())\n", "\n", "print(minimum_abs_val)\n", "\n", "xx = np.linspace(0, 0.2, 1000)\n", "\n", "kde = stats.gaussian_kde(params_abs)\n", "fig, ax = plt.subplots(figsize = (6,4))\n", "\n", "ax.set_xlim(0, 0.2)\n", "\n", " "N, bins, patches = ax.hist(params_abs, bins=n_bins, density = True, alpha =0.65)\n", "ax.plot(xx, kde(xx))\n", "\n", "\n", "ax.set_ylim(0, 14)\n", "ax.set_yticklabels([])\n", "ax.set_ylabel(\"\")\n", "plt.style.use(\"bmh\")\n", "ax.set_xticks([1.0/128.0, 1.0/32.0, 1.0/16.0])\n", "ax.set_xticklabels([\"1/2^7\", \"1/2^6\", \"1/2^5\"])\n", "ax.grid(False)\n", " "quant_5, quant_25, quant_50, quant_75, quant_95 = np.quantile(params_abs, 0.05), np.quantile(params_abs, 0.25), np.quantile(params_abs, 0.5), np.quantile(params_abs, 0.75), np.quantile(params_abs, 0.95)\n", "\n", " "quants = [[quant_5, 0.6, 0.16], [quant_25, 0.8, 0.26], [quant_50, 1, 0.36], [quant_75, 0.8, 0.46], [quant_95, 0.6, 0.56]]\n", "\n", " "for i in quants:\n", " ax.axvline(i[0], alpha = i[1], ymax = i[2], linestyle = \":\")\n", "\n", " "ax.text(quant_5, 14 * 0.17, \"5th\", size = 10, alpha = 0.8)\n", "ax.text(quant_25, 14 * 0.27, \"25th\", size = 10, alpha = 0.85)\n", "ax.text(quant_50, 14 * 0.37, \"50th\", size = 10, alpha = 1)\n", "ax.text(quant_75, 14 * 0.47, \"75th\", size = 10, alpha = 0.85)\n", "ax.text(quant_95, 14 * 0.57, \"95th Percentile\", size = 10, alpha =.8)\n", "\n",
"ax.set_title(\"Absolute value of parameters\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "tmGo25eb0rZ3" }, "outputs": [], "source": [ "
import os\n", "\n", "model_path = os.path.join('network_lenet.onnx')\n", "compiled_model_path = os.path.join('network.compiled')\n", "pk_path = os.path.join('key.pk')\n", "vk_path = os.path.join('key.vk')\n", "settings_path = os.path.join('settings.json')\n", "witness_path = os.path.join('witness.json')\n", "data_path = os.path.join('input.json')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "RfFjaXrM0rZ3" }, "outputs": [], "source": [ "
import torch\n", "
import json\n", "\n", "model.eval() "\n", " " "train_data_point, _ = next(iter(train_dataset))\n", "train_data_point = train_data_point.unsqueeze(0) "\n", " "device = 'cuda' if torch.cuda.is_available() else 'cpu'\n", "train_data_point = train_data_point.to(device)\n", "\n", " "torch.onnx.export(model, train_data_point, model_path, export_params=True, opset_version=12, do_constant_folding=True, input_names=['input_0'], output_names=['output'])\n", "\n", " "x = train_data_point.cpu().detach().numpy().reshape([-1]).tolist()\n", "data = {'input_data': [x]}\n", "with open('input.json', 'w') as f:\n", " json.dump(data, f)\n", "\n", "print(f\"Model exported to {model_path} and input data saved to input.json\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "dS-yXte30rZ3" }, "outputs": [], "source": [ "
import ezkl\n", "\n", "run_args = ezkl.PyRunArgs()\n", "run_args.input_visibility = \"private\"\n", "run_args.param_visibility = \"fixed\"\n", "run_args.output_visibility = \"public\"\n", "run_args.num_inner_cols = 2\n", "run_args.variables = [(\"batch_size\", 1)]\n", "\n", " "num_data_points = 8\n", "\n", " "data_points = []\n", "for i, (data_point, _) in enumerate(train_dataset):\n", " if i >= num_data_points:\n", " break\n", " data_points.append(data_point)\n", "\n", " "train_data_batch = torch.stack(data_points)\n", "\n", " "if train_data_batch.dim() == 3:\n", " train_data_batch = train_data_batch.unsqueeze(0)\n", "\n", "x = train_data_batch.cpu().detach().numpy().reshape([-1]).tolist()\n", "\n", "data = dict(input_data = [x])\n", "\n", "cal_path = os.path.join('cal_data.json')\n", "\n", " "json.dump( data, open(cal_path, 'w' ))\n", "\n", "!RUST_LOG=trace\n", " "res = ezkl.gen_settings(model_path, settings_path, py_run_args=run_args)\n", "assert res == True\n", "\n", "res = ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\", scales=[2,7])\n", "assert res == True" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "pGb1nj720rZ3" }, "outputs": [], "source": [ "res = ezkl.compile_circuit(model_path, compiled_model_path, settings_path)\n", "assert res == True" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "umpLxVAI0rZ3" }, "outputs": [], "source": [ " "res = ezkl.get_srs(settings_path)" ] }, { "cell_type": "code", "execution_count":
null, "metadata": { "id": "syLy2Kt90rZ3" }, "outputs": [], "source": [ " "witness_path = \"witness.json\"\n", "\n", "res = ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n", "assert os.path.isfile(witness_path)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "65u_ObBQ0rZ4" }, "outputs": [], "source": [ "res = ezkl.mock(witness_path, compiled_model_path)\n", "assert res == True" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "c8GIoMD40rZ4" }, "outputs": [], "source": [ "\n", " " " " "\n", "res = ezkl.setup(\n", " compiled_model_path,\n", " vk_path,\n", " pk_path,\n", " )\n", "\n", "assert res == True\n", "assert os.path.isfile(vk_path)\n", "assert os.path.isfile(pk_path)\n", "assert os.path.isfile(settings_path)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "vkIutAhR0rZ4" }, "outputs": [], "source": [ " "\n", "\n", "proof_path = os.path.join('test.pf')\n", "\n", "res = ezkl.prove(\n", " witness_path,\n", " compiled_model_path,\n", " pk_path,\n", " proof_path,\n", " \"single\",\n", " )\n", "\n", "print(res)\n", "assert os.path.isfile(proof_path)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "KmpQBZUT0rZ4" }, "outputs": [], "source": [ " "res = ezkl.verify(\n", " proof_path,\n", " settings_path,\n", " vk_path,\n",
" )\n", "\n", "assert res == True\n", "print(\"verified\")" ] }, { "cell_type": "markdown", "metadata": { "id": "CZ2CYQdm0rZ4" }, "source": [ "We can now create an EVM / `.sol` verifier that can be deployed on chain to verify submitted proofs using a view function." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "jASymUWQ0rZ4" }, "outputs": [], "source": [ "\n", "abi_path = 'test.abi'\n", "sol_code_path = 'test_1.sol'\n", "\n", "res = ezkl.create_evm_verifier(\n", " vk_path,\n", " settings_path,\n", " sol_code_path,\n", " abi_path,\n", " )\n", "assert res == True" ] }, { "cell_type": "markdown", "metadata": { "id": "-icN2yw60rZ5" }, "source": [ " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "sTLsLwaC0rZ5" }, "outputs": [], "source": [ " " " "
import json\n", "\n", "address_path = os.path.join(\"address.json\")\n", "\n", "res = ezkl.deploy_evm(\n", " address_path,\n", " sol_code_path,\n", " 'http: ")\n", "\n", "assert res == True\n", "\n", "with open(address_path, 'r') as file:\n", " addr = file.read().rstrip()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "PrSyQK4B0rZ5" }, "outputs": [], "source": [ " " "\n", "res = ezkl.verify_evm(\n", " addr,\n", " proof_path,\n", " \"http: ")\n", "assert res == True" ] } ], "metadata": { "colab": { "provenance": [] }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.15" } }, "nbformat": 4, "nbformat_minor": 0 }
{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "\n", "Credits to [geohot](https: ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ " "try:\n", " "
import google.colab\n", "
import subprocess\n", "
import sys\n", " subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"ezkl\"])\n", " subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"tf2onnx\"])\n", " subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"onnx\"])\n", "\n", " "except:\n", " pass\n", "\n", " "
import ezkl\n", "
import os\n", "
import json\n", "
import time\n", "
import random\n", "
import logging\n", "\n", "
import tensorflow as tf\n", "from tensorflow.keras.optimizers
import Adam\n", "from tensorflow.keras.layers
import *\n", "from tensorflow.keras.models
import Model\n", "from tensorflow.keras.datasets
import mnist\n", "\n", " " " " "\n", " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "\n", "(x_train, y_train), (x_test, y_test) = mnist.load_data()\n", "x_train, x_test = [x/255.0 for x in [x_train, x_test]]\n", "y_train, y_test = [tf.keras.utils.to_categorical(x) for x in [y_train, y_test]]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "ZDIM = 100\n", "\n", "opt = Adam()\n", "\n", "\n", " " "x = in1 = Input((28,28))\n", "x = Reshape((28,28,1))(x)\n", "\n", "x = Conv2D(64, (5,5), padding='same', strides=(2,2))(x)\n", "x = BatchNormalization()(x)\n", "x = ELU()(x)\n", "\n", "x = Conv2D(128, (5,5), padding='same', strides=(2,2))(x)\n", "x = BatchNormalization()(x)\n", "x = ELU()(x)\n", "\n", "x = Flatten()(x)\n", "x = Dense(128)(x)\n", "x = BatchNormalization()(x)\n", "x = ELU()(x)\n", "x = Dense(1, activation='sigmoid')(x)\n", "dm = Model(in1, x)\n", "dm.compile(opt, 'binary_crossentropy')\n", "dm.summary()\n", "\n", " "x = in1 = Input((ZDIM,))\n", "\n", "x = Dense(7*7*64)(x)\n", "x = BatchNormalization()(x)\n",
"x = ELU()(x)\n", "x = Reshape((7,7,64))(x)\n", "\n", "x = Conv2DTranspose(128, (5,5), strides=(2,2), padding='same')(x)\n", "x = BatchNormalization()(x)\n", "x = ELU()(x)\n", "\n", "x = Conv2DTranspose(1, (5,5), strides=(2,2), padding='same')(x)\n", "x = Activation('sigmoid')(x)\n", "x = Reshape((28,28))(x)\n", "\n", "gm = Model(in1, x)\n", "gm.compile('adam', 'mse')\n", "gm.output_names=['output']\n", "gm.summary()\n", "\n", "opt = Adam()\n", "\n", " "dm.trainable = False\n", "x = dm(gm.output)\n", "tm = Model(gm.input, x)\n", "tm.compile(opt, 'binary_crossentropy')\n", "\n", "dlosses, glosses = [], []" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "
import numpy as np\n", "from matplotlib.pyplot
import figure, imshow, show\n", "\n", "BS = 256\n", "\n", " " "for i in range(1):\n", " " dm.trainable = True\n", " real_i = x_train[np.random.choice(x_train.shape[0], BS)]\n", " fake_i = gm.predict_on_batch(np.random.normal(0,1,size=(BS,ZDIM)))\n", " dloss_r = dm.train_on_batch(real_i, np.ones(BS))\n", " dloss_f = dm.train_on_batch(fake_i, np.zeros(BS))\n", " dloss = (dloss_r + dloss_f)/2\n", "\n", " " dm.trainable = False\n", " gloss_0 = tm.train_on_batch(np.random.normal(0,1,size=(BS,ZDIM)), np.ones(BS))\n", " gloss_1 = tm.train_on_batch(np.random.normal(0,1,size=(BS,ZDIM)), np.ones(BS))\n", " gloss = (gloss_0 + gloss_1)/2\n", "\n", " if i%50 == 0:\n", " print(\"%4d: dloss:%8.4f gloss:%8.4f\" % (i, dloss, gloss))\n", " dlosses.append(dloss)\n", " glosses.append(gloss)\n", " \n", " if i%250 == 0:\n", " \n", " figure(figsize=(16,16))\n", " imshow(np.concatenate(gm.predict(np.random.normal(size=(10,ZDIM))), axis=1))\n", " show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from matplotlib.pyplot
import plot, legend\n", "figure(figsize=(8,8))\n", "plot(dlosses[100:], label=\"Discriminator Loss\")\n", "plot(glosses[100:], label=\"Generator Loss\")\n", "legend()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "x = []\n", "for i in range(10):\n", " x.append(np.concatenate(gm.predict(np.random.normal(size=(10,ZDIM))), axis=1))\n", "imshow(np.concatenate(x, axis=0))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "
import os \n", "\n", "model_path = os.path.join('gan.onnx')\n", "compiled_model_path = os.path.join('gan.compiled')\n", "pk_path = os.path.join('gan.pk')\n", "vk_path = os.path.join('gan.vk')\n", "settings_path = os.path.join('gan_settings.json')\n", "srs_path = os.path.join('gan_kzg.srs')\n", "witness_path = os.path.join('gan_witness.json')\n", "data_path = os.path.join('gan_input.json')\n", "\n" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Now we export the _generator_ to onnx" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "\n", "
import numpy as np\n", "
import tf2onnx\n", "
import tensorflow as tf\n", "
import json\n", "\n", "shape = [1, ZDIM]\n", " "x = 0.1*np.random.rand(1,*shape)\n", "\n", "spec = tf.TensorSpec(shape, tf.float32, name='input_0')\n", "\n", "\n", "tf2onnx.convert.from_keras(gm, input_signature=[spec], inputs_as_nchw=['input_0'], opset=12, output_path=model_path)\n", "\n", "data_array = x.reshape([-1]).tolist()\n", "\n", "data = dict(input_data = [data_array])\n", "\n", " "json.dump( data, open(data_path, 'w' ))\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "
import ezkl\n", "\n", "run_args = ezkl.PyRunArgs()\n", "run_args.input_visibility = \"private\"\n", "run_args.param_visibility = \"fixed\"\n", "run_args.output_visibility = \"public\"\n", "run_args.variables = [(\"batch_size\", 1)]\n", "\n", "!RUST_LOG=trace\n", " "res = ezkl.gen_settings(model_path, settings_path, py_run_args=run_args)\n", "assert res == True\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "cal_path = os.path.join(\"calibration.json\")\n", "\n", "data_array = (0.2 * np.random.rand(20, *shape)).reshape([-1]).tolist()\n", "\n", "data = dict(input_data = [data_array])\n", "\n", " "json.dump(data, open(cal_path, 'w'))\n", "\n", "\n", "ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\", scales=[0,6])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "res = ezkl.compile_circuit(model_path, compiled_model_path, settings_path)\n", "assert res == True" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ " "res = ezkl.get_srs( settings_path)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ " "witness_path = \"g
an_witness.json\"\n", "\n", "res = ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n", "assert os.path.isfile(witness_path)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ " " " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "\n", " " " " "\n", "res = ezkl.setup(\n", " compiled_model_path,\n", " vk_path,\n", " pk_path,\n", " \n", " )\n", "\n", "assert res == True\n", "assert os.path.isfile(vk_path)\n", "assert os.path.isfile(pk_path)\n", "assert os.path.isfile(settings_path)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ " "\n", "\n", "proof_path = os.path.join('test.pf')\n", "\n", "res = ezkl.prove(\n", " witness_path,\n", " compiled_model_path,\n", " pk_path,\n", " proof_path,\n", " \n", " \"single\",\n", " )\n", "\n", "print(res)\n", "assert os.path.isfile(proof_path)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {},
"outputs": [], "source": [ " "res = ezkl.verify(\n", " proof_path,\n", " settings_path,\n", " vk_path,\n", " \n", " )\n", "\n", "assert res == True\n", "print(\"verified\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.2" } }, "nbformat": 4, "nbformat_minor": 2 }
{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ " "\n", "Here we showcase how to split a larger circuit into multiple smaller proofs. This is useful if you want to prove over multiple machines, or if you want to split a proof into multiple parts to reduce the memory requirements.\n", "\n", "We showcase how to do this in the case where:\n", "- intermediate calculations need to be kept secret (but not blinded !) and we need to use the low overhead kzg commitment scheme detailed [here](https: ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "First we
import the necessary dependencies and set up logging to be as informative as possible. " ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ " "try:\n", " "
import google.colab\n", "
import subprocess\n", "
import sys\n", " subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"ezkl\"])\n", " subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"tf2onnx\"])\n", " subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"onnx\"])\n", "\n", " "except:\n", " pass\n", "\n", " "
import ezkl\n", "
import os\n", "
import json\n", "
import time\n", "
import random\n", "
import logging\n", "\n", "
import tensorflow as tf\n", "from tensorflow.keras.optimizers
import Adam\n", "from tensorflow.keras.layers
import *\n", "from tensorflow.keras.models
import Model\n", "from tensorflow.keras.datasets
import mnist\n", "\n", " " " " "\n", " ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "\n", "(x_train, y_train), (x_test, y_test) = mnist.load_data()\n", "x_train, x_test = [x/255.0 for x in [x_train, x_test]]\n", "y_train, y_test = [tf.keras.utils.to_categorical(x) for x in [y_train, y_test]]" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">Model: \"functional_1\"</span>\n", "</pre>\n" ], "text/plain": [ "\u001b[1mModel: \"functional_1\"\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", "┃<span style=\"font-weight: bold\"> Layer (type) </span>┃<span style=\"font-weight: bold\"> Output Shape </span>┃<span style=\"font-weight: bold\"> Param "┑━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━
━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", "β”‚ input_layer (<span style=\"color: "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ reshape (<span style=\"color: "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ conv2d (<span style=\"color: "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ batch_normalization β”‚ (<span style=\"color: "β”‚ (<span style=\"color: "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ elu (<span style=\"color: "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ conv2d_1 (<span style=\"color: "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ batch_normalization_1 β”‚ (<span style=\"color: "β”‚ (<span style=\"color: "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ elu_1 (<span style=\"color: "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ flatten (<span style=\"color: "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ dense (<span style=\"color: "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ batch_normalization_2 β”‚ (<span style=\"color: "β”‚ (<span style=\"color:
"β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ elu_2 (<span style=\"color: "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ dense_1 (<span style=\"color: "β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜\n", "</pre>\n" ], "text/plain": [ "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param "┑━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", "β”‚ input_layer (\u001b[38;5;33mInputLayer\u001b[0m) β”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m) β”‚ \u001b[38;5;34m0\u001b[0m β”‚\n", "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ reshape (\u001b[38;5;33mReshape\u001b[0m) β”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m1\u001b[0m) β”‚ \u001b[38;5;34m0\u001b[0m β”‚\n", "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ conv2d (\u001b[38;5;33mConv2D\u001b[0m) β”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m64\u001b[0m) β”‚ \u001b[38;5;34m1,664\u001b[0m β”‚\n", "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
──────────────┼────────────────\n", "β”‚ batch_normalization β”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m64\u001b[0m) β”‚ \u001b[38;5;34m256\u001b[0m β”‚\n", "β”‚ (\u001b[38;5;33mBatchNormalization\u001b[0m) β”‚ β”‚ β”‚\n", "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ elu (\u001b[38;5;33mELU\u001b[0m) β”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m64\u001b[0m) β”‚ \u001b[38;5;34m0\u001b[0m β”‚\n", "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ conv2d_1 (\u001b[38;5;33mConv2D\u001b[0m) β”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m128\u001b[0m) β”‚ \u001b[38;5;34m204,928\u001b[0m β”‚\n", "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ batch_normalization_1 β”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m128\u001b[0m) β”‚ \u001b[38;5;34m512\u001b[0m β”‚\n", "β”‚ (\u001b[38;5;33mBatchNormalization\u001b[0m) β”‚ β”‚ β”‚\n", "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ elu_1 (\u001b[38;5;33mELU\u001b[0m) β”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m128\u001b[0m) β”‚ \u001b[38;5;34m0\u001b[0m β”‚\n", "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
──────┼────────────────\n", "β”‚ flatten (\u001b[38;5;33mFlatten\u001b[0m) β”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m6272\u001b[0m) β”‚ \u001b[38;5;34m0\u001b[0m β”‚\n", "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ dense (\u001b[38;5;33mDense\u001b[0m) β”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) β”‚ \u001b[38;5;34m802,944\u001b[0m β”‚\n", "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ batch_normalization_2 β”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) β”‚ \u001b[38;5;34m512\u001b[0m β”‚\n", "β”‚ (\u001b[38;5;33mBatchNormalization\u001b[0m) β”‚ β”‚ β”‚\n", "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ elu_2 (\u001b[38;5;33mELU\u001b[0m) β”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) β”‚ \u001b[38;5;34m0\u001b[0m β”‚\n", "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ dense_1 (\u001b[38;5;33mDense\u001b[0m) β”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m) β”‚ \u001b[38;5;34m129\u001b[0m β”‚\n", "β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<pre style=\"white-space:pre;overflow-x:auto;line-height:norm
al;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Total params: </span><span style=\"color: "</pre>\n" ], "text/plain": [ "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m1,010,945\u001b[0m (3.86 MB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Trainable params: </span><span style=\"color: "</pre>\n" ], "text/plain": [ "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m1,010,305\u001b[0m (3.85 MB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Non-trainable params: </span><span style=\"color: "</pre>\n" ], "text/plain": [ "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m640\u001b[0m (2.50 KB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">Model: \"functional_3\"</span>\n", "</pre>\n" ], "text/plain": [ "\u001b[1mModel: \"functional_3\"\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", "┃<span style=\"font-weight: bold\"> Layer (type) </span>┃<span style=\"font-weight: bold\"> Output Shape </span>┃<span style=\"font-weight: bold\"> Param "┑━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", "β”‚ input_layer_1 (<span style=\"color: "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ dense_2 (<span style=\"color: "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ batch_normalization_3 β”‚ (<span style=\"color: "β”‚ (<span style=\"color: "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ elu_3 (<span style=\"color: "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ reshape_1 (<span style=\"color:
"β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ conv2d_transpose β”‚ (<span style=\"color: "β”‚ (<span style=\"color: "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ batch_normalization_4 β”‚ (<span style=\"color: "β”‚ (<span style=\"color: "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ elu_4 (<span style=\"color: "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ conv2d_transpose_1 β”‚ (<span style=\"color: "β”‚ (<span style=\"color: "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ activation (<span style=\"color: "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ reshape_2 (<span style=\"color: "β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜\n", "</pre>\n" ], "text/plain": [ "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param "┑━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", "β”‚ input_layer_1 (\u001b[38;5;33mInputLayer\u001b[0m) β”‚ (\u001b[38;5;45
mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m) β”‚ \u001b[38;5;34m0\u001b[0m β”‚\n", "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ dense_2 (\u001b[38;5;33mDense\u001b[0m) β”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m3136\u001b[0m) β”‚ \u001b[38;5;34m316,736\u001b[0m β”‚\n", "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ batch_normalization_3 β”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m3136\u001b[0m) β”‚ \u001b[38;5;34m12,544\u001b[0m β”‚\n", "β”‚ (\u001b[38;5;33mBatchNormalization\u001b[0m) β”‚ β”‚ β”‚\n", "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ elu_3 (\u001b[38;5;33mELU\u001b[0m) β”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m3136\u001b[0m) β”‚ \u001b[38;5;34m0\u001b[0m β”‚\n", "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ reshape_1 (\u001b[38;5;33mReshape\u001b[0m) β”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m64\u001b[0m) β”‚ \u001b[38;5;34m0\u001b[0m β”‚\n", "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ conv2d_transpose β”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m128\u001b[0m) β”‚ \u001b[38;5;34m204,928\u001b[0m β”‚\n", "β”‚ (\u001b[38;5;33mConv2DTranspose\u001b[0m) β”‚ β”‚ β”‚\n", "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
─────────────┼────────────────────────┼────────────────\n", "β”‚ batch_normalization_4 β”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m128\u001b[0m) β”‚ \u001b[38;5;34m512\u001b[0m β”‚\n", "β”‚ (\u001b[38;5;33mBatchNormalization\u001b[0m) β”‚ β”‚ β”‚\n", "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ elu_4 (\u001b[38;5;33mELU\u001b[0m) β”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m128\u001b[0m) β”‚ \u001b[38;5;34m0\u001b[0m β”‚\n", "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ conv2d_transpose_1 β”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m1\u001b[0m) β”‚ \u001b[38;5;34m3,201\u001b[0m β”‚\n", "β”‚ (\u001b[38;5;33mConv2DTranspose\u001b[0m) β”‚ β”‚ β”‚\n", "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ activation (\u001b[38;5;33mActivation\u001b[0m) β”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m1\u001b[0m) β”‚ \u001b[38;5;34m0\u001b[0m β”‚\n", "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ reshape_2 (\u001b[38;5;33mReshape\u001b[0m) β”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m) β”‚ \u001b[38;5;34m0\u001b[0m β”‚\n", "└─────────────────────────────────┴──────────────────
β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Total params: </span><span style=\"color: "</pre>\n" ], "text/plain": [ "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m537,921\u001b[0m (2.05 MB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Trainable params: </span><span style=\"color: "</pre>\n" ], "text/plain": [ "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m531,393\u001b[0m (2.03 MB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Non-trainable params: </span><span style=\"color: "</pre>\n" ], "text/plain": [
"\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m6,528\u001b[0m (25.50 KB)\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "opt = Adam()\n", "ZDIM = 100\n", "\n", " " "x = in1 = Input((28,28))\n", "x = Reshape((28,28,1))(x)\n", "\n", "x = Conv2D(64, (5,5), padding='same', strides=(2,2))(x)\n", "x = BatchNormalization()(x)\n", "x = ELU()(x)\n", "\n", "x = Conv2D(128, (5,5), padding='same', strides=(2,2))(x)\n", "x = BatchNormalization()(x)\n", "x = ELU()(x)\n", "\n", "x = Flatten()(x)\n", "x = Dense(128)(x)\n", "x = BatchNormalization()(x)\n", "x = ELU()(x)\n", "x = Dense(1, activation='sigmoid')(x)\n", "dm = Model(in1, x)\n", "dm.compile(opt, 'binary_crossentropy')\n", "dm.summary()\n", "\n", " "x = in1 = Input((ZDIM,))\n", "\n", "x = Dense(7*7*64)(x)\n", "x = BatchNormalization()(x)\n", "x = ELU()(x)\n", "x = Reshape((7,7,64))(x)\n", "\n", "x = Conv2DTranspose(128, (5,5), strides=(2,2), padding='same')(x)\n", "x = BatchNormalization()(x)\n", "x = ELU()(x)\n", "\n", "x = Conv2DTranspose(1, (5,5), strides=(2,2), padding='same')(x)\n", "x = Activation('sigmoid')(x)\n", "x = Reshape((28,28))(x)\n", "\n", "gm = Model(in1, x)\n", "gm.compile('adam', 'mse')\n", "gm.summ
ary()\n", "\n", "opt = Adam()\n", "\n", " "dm.trainable = False\n", "x = dm(gm.output)\n", "tm = Model(gm.input, x)\n", "tm.compile(opt, 'binary_crossentropy')\n", "\n", "dlosses, glosses = [], []" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 0: dloss: 0.8063 gloss: 0.6461\n", "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABQcAAACrCAYAAADb2yoEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACNcklEQVR4nO39eZRlV3Xmi87TN3Ga6LuMyL5TKqWUlJJSCUIIK5EAGyPA1xhzjUxx8SsscQtwCzZQ+NnWe9S71wyXKXNHjbrGHlXYmLoGjGzAsgQSQqlEvZSp7LuIyOi7cyJO370/ZBLNb05lpEAoBfH9xsgxcp2z9mrnmmvtHWd/M9BqtVpCCCGEEEIIIYQQQghZdQQvdQMIIYQQQgghhBBCCCGXBj4cJIQQQgghhBBCCCFklcKHg4QQQgghhBBCCCGErFL4cJAQQgghhBBCCCGEkFUKHw4SQgghhBBCCCGEELJK4cNBQgghhBBCCCGEEEJWKXw4SAghhBBCCCGEEELIKoUPBwkhhBBCCCGEEEIIWaXw4SAhhBBCCCGEEEIIIasUPhwkhBBCCCGEEEIIIWSV8hN7OPi5z31O1q9fL/F4XPbs2SPf "text/plain": [ "<Figure size 1600x1600 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "
import numpy as np\n", "from matplotlib.pyplot
import figure, imshow, show\n", "\n", "BS = 256\n", "\n", " " "for i in range(1):\n", " " dm.trainable = True\n", " real_i = x_train[np.random.choice(x_train.shape[0], BS)]\n", " fake_i = gm.predict_on_batch(np.random.normal(0,1,size=(BS,ZDIM)))\n", " dloss_r = dm.train_on_batch(real_i, np.ones(BS))\n", " dloss_f = dm.train_on_batch(fake_i, np.zeros(BS))\n", " dloss = (dloss_r + dloss_f)/2\n", "\n", " " dm.trainable = False\n", " gloss_0 = tm.train_on_batch(np.random.normal(0,1,size=(BS,ZDIM)), np.ones(BS))\n", " gloss_1 = tm.train_on_batch(np.random.normal(0,1,size=(BS,ZDIM)), np.ones(BS))\n", " gloss = (gloss_0 + gloss_1)/2\n", "\n", " if i%50 == 0:\n", " print(\"%4d: dloss:%8.4f gloss:%8.4f\" % (i, dloss, gloss))\n", " dlosses.append(dloss)\n", " glosses.append(gloss)\n", " \n", " if i%250 == 0:\n", " \n", " figure(figsize=(16,16))\n", " imshow(np.concatenate(gm.predict(np.random.normal(size=(10,ZDIM))), axis=1))\n", " show()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.legend.Legend at 0x34f625160>" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, { "data": { "