text
stringlengths
1
2.05k
image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAKTCAYAAAAKS4AtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6CElEQVR4nO3de3RW5Z3o8V8CJKCSRG4JaADvICIoN5GuwUoUqlbxMiLHCzhOmY53UatYBKvTYr1UvFQde9p6tLVSr22p4iCotZKighcU8DgdFBUDWiQoKGCyzx8e3poKCMhreODzWetdrOz97Hc/OzvUbzf73SnIsiwLAABIUGFjTwAAADaXmAUAIFliFgCAZIlZAACSJWYBAEiWmAUAIFliFgCAZDVt7Ak0hvr6+li0aFG0bNkyCgoKGns6AAD8gyzL4sMPP4wOHTpEYeH6r79ulzG7aNGiqKysbOxpAADwJd56663Ydddd17t+u4zZli1bRsRn35ySkpJGng0AAP9o+fLlUVlZmeu29dkuY3btrQUlJSViFgBgK/Zlt4T6ABgAAMkSswAAJEvMAgCQrO3ynlkA2JbU1dXFmjVrGnsasEmaNWsWTZo0+crvI2YBIFFZlkVNTU0sW7assacCm6WsrCwqKiq+0nP/xSwAJGptyLZr1y522GEHvwiIZGRZFitXrowlS5ZERET79u03+73ELAAkqK6uLheyrVu3buzpwCZr0aJFREQsWbIk2rVrt9m3HPgAGAAkaO09sjvssEMjzwQ239qf369yz7eYBYCEubWAlG2Jn18xCwBAssQsAADJErMAwFapoKAgHn744by9/8iRI2Po0KFf6T2efPLJKCgo8Hi0RiRmAYCvzciRI6OgoCAKCgqiWbNmUV5eHocddlj84he/iPr6+gZj33333fjWt76Vt7nceOONceedd36l9zj44IPj3XffjdLS0i0zqf8v3yF/yCGHxPnnn5+39/86iVkA4Gs1ZMiQePfdd+ONN96IRx99NL75zW/GeeedF0cddVR8+umnuXEVFRVRXFy8xfdfV1cX9fX1UVpaGmVlZV/pvYqKir7yQ "text/plain": [ "<Figure size 800x800 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from matplotlib.pyplot
import plot, legend\n", "figure(figsize=(8,8))\n", "plot(dlosses[100:], label=\"Discriminator Loss\")\n", "plot(glosses[100:], label=\"Generator Loss\")\n", "legend()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 32ms/step\n", "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step\n", "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n", "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n", "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n", "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n", "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n", "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n", "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n", "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n" ] }, { "data": { "text/plain": [
"<matplotlib.image.AxesImage at 0x34f32bd70>" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAakAAAGiCAYAAABd6zmYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9WYytWZqehz1r+oc9x3zmnCu7pp67i01R1kSZsARfGIZAwIDBC18ZIGGhr9i0QKJNwpQF2KAB8oK3vmteWRYkUIBbalKim2Srh+rqqsqqzMo8J88UcSJiR+zxn9bgi+/f+1SDbLJk092V9FnAQeaJExF77/Wv9Y3v+34qpZR4s96sN+vNerPerB/Dpf+k38Cb9Wa9WW/Wm/Vm/VHrjZN6s96sN+vNerN+bNcbJ/VmvVlv1pv1Zv3YrjdO6s16s96sN+vN+rFdb5zUm/VmvVlv1pv1Y7veOKk36816s96sN+vHdr1xUm/Wm/VmvVlv1o/teuOk3qw36816s96sH9v1xkm9WW/Wm/VmvVk/tuuNk3qz3qw36816s35s15+Yk/o7f+fv8Pbbb1MUBd/4xjf4p "text/plain": [ "<Figure size 640x480 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "x = []\n", "for i in range(10):\n", " x.append(np.concatenate(gm.predict(np.random.normal(size=(10,ZDIM))), axis=1))\n", "imshow(np.concatenate(x, axis=0))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we export the _generator_ to onnx" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\
"><span style=\"font-weight: bold\">Model: \"sequential\"</span>\n", "</pre>\n" ], "text/plain": [ "\u001b[1mModel: \"sequential\"\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", "┃<span style=\"font-weight: bold\"> Layer (type) </span>┃<span style=\"font-weight: bold\"> Output Shape </span>┃<span style=\"font-weight: bold\"> Param "┑━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", "β”‚ dense_2 (<span style=\"color: "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ batch_normalization_3 β”‚ (<span style=\"color: "β”‚ (<span style=\"color: "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ elu_3 (<span style=\"color: "β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜\n", "</pre>\n" ], "text/plain": [ "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[
0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param "┑━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", "β”‚ dense_2 (\u001b[38;5;33mDense\u001b[0m) β”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m3136\u001b[0m) β”‚ \u001b[38;5;34m316,736\u001b[0m β”‚\n", "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ batch_normalization_3 β”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m3136\u001b[0m) β”‚ \u001b[38;5;34m12,544\u001b[0m β”‚\n", "β”‚ (\u001b[38;5;33mBatchNormalization\u001b[0m) β”‚ β”‚ β”‚\n", "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ elu_3 (\u001b[38;5;33mELU\u001b[0m) β”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m3136\u001b[0m) β”‚ \u001b[38;5;34m0\u001b[0m β”‚\n", "β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Total params: </span><span style=\"color: "</pre>\n" ], "text/plain": [ "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m329,280\u001b[0m (1.26 MB)\n" ] }, "metadata": {}, "output_type": "
display_data" }, { "data": { "text/html": [ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Trainable params: </span><span style=\"color: "</pre>\n" ], "text/plain": [ "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m323,008\u001b[0m (1.23 MB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Non-trainable params: </span><span style=\"color: "</pre>\n" ], "text/plain": [ "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m6,272\u001b[0m (24.50 KB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">Model: \"sequential_1\"</span>\n", "</pre>\n" ], "text/plain": [ "\u001b[1mModel: \"sequential_1\"\u001b[0m\n" ] }, "metadata": {},
"output_type": "display_data" }, { "data": { "text/html": [ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", "┃<span style=\"font-weight: bold\"> Layer (type) </span>┃<span style=\"font-weight: bold\"> Output Shape </span>┃<span style=\"font-weight: bold\"> Param "┑━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", "β”‚ reshape_1 (<span style=\"color: "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ conv2d_transpose β”‚ (<span style=\"color: "β”‚ (<span style=\"color: "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ batch_normalization_4 β”‚ (<span style=\"color: "β”‚ (<span style=\"color: "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ elu_4 (<span style=\"color: "β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜\n", "</pre>\n" ], "text/plain": [ "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param
"┑━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", "β”‚ reshape_1 (\u001b[38;5;33mReshape\u001b[0m) β”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m64\u001b[0m) β”‚ \u001b[38;5;34m0\u001b[0m β”‚\n", "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ conv2d_transpose β”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m128\u001b[0m) β”‚ \u001b[38;5;34m204,928\u001b[0m β”‚\n", "β”‚ (\u001b[38;5;33mConv2DTranspose\u001b[0m) β”‚ β”‚ β”‚\n", "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ batch_normalization_4 β”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m128\u001b[0m) β”‚ \u001b[38;5;34m512\u001b[0m β”‚\n", "β”‚ (\u001b[38;5;33mBatchNormalization\u001b[0m) β”‚ β”‚ β”‚\n", "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ elu_4 (\u001b[38;5;33mELU\u001b[0m) β”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m128\u001b[0m) β”‚ \u001b[38;5;34m0\u001b[0m β”‚\n", "β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<pre style=\"white-s
pace:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Total params: </span><span style=\"color: "</pre>\n" ], "text/plain": [ "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m205,440\u001b[0m (802.50 KB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Trainable params: </span><span style=\"color: "</pre>\n" ], "text/plain": [ "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m205,184\u001b[0m (801.50 KB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Non-trainable params: </span><span style=\"color: "</pre>\n" ], "text/plain": [ "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m256\u001b[0m (1.00 KB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": {
"text/html": [ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">Model: \"sequential_2\"</span>\n", "</pre>\n" ], "text/plain": [ "\u001b[1mModel: \"sequential_2\"\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", "┃<span style=\"font-weight: bold\"> Layer (type) </span>┃<span style=\"font-weight: bold\"> Output Shape </span>┃<span style=\"font-weight: bold\"> Param "┑━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", "β”‚ conv2d_transpose_1 β”‚ (<span style=\"color: "β”‚ (<span style=\"color: "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ activation (<span style=\"color: "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ reshape_2 (<span style=\"color: "β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜\n", "</pre>\n" ], "text/plain": [ "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━
━━━━━━━━━━━┓\n", "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param "┑━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", "β”‚ conv2d_transpose_1 β”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m1\u001b[0m) β”‚ \u001b[38;5;34m3,201\u001b[0m β”‚\n", "β”‚ (\u001b[38;5;33mConv2DTranspose\u001b[0m) β”‚ β”‚ β”‚\n", "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ activation (\u001b[38;5;33mActivation\u001b[0m) β”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m1\u001b[0m) β”‚ \u001b[38;5;34m0\u001b[0m β”‚\n", "β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€\n", "β”‚ reshape_2 (\u001b[38;5;33mReshape\u001b[0m) β”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m) β”‚ \u001b[38;5;34m0\u001b[0m β”‚\n", "β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Total params: </span><span style=\"color:
"</pre>\n" ], "text/plain": [ "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m3,201\u001b[0m (12.50 KB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Trainable params: </span><span style=\"color: "</pre>\n" ], "text/plain": [ "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m3,201\u001b[0m (12.50 KB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Non-trainable params: </span><span style=\"color: "</pre>\n" ], "text/plain": [ "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "transpose_input for input_0: shape must be rank 4, ignored\n" ] } ], "source":
[ "\n", "
import numpy as np\n", "
import tf2onnx\n", "
import tensorflow as tf\n", "
import json\n", "\n", " "gm2 = tf.keras.models.Sequential(gm.layers[0:4])\n", " "gm2.summary()\n", "gm2.output_names=['output']\n", "\n", "gm3 = tf.keras.models.Sequential(gm.layers[4:8])\n", " "gm3.summary() \n", "gm3.output_names=['output']\n", "\n", "gm4 = tf.keras.models.Sequential(gm.layers[8:])\n", " "gm4.summary()\n", "gm4.output_names=['output'] \n", "\n", " "x = 0.1*np.random.rand(1,*[1, ZDIM])\n", "inter_x1 = gm2(x[0])\n", "inter_x2 = gm3(inter_x1)\n", "\n", "output_path = \"network_split_0.onnx\"\n", "spec = tf.TensorSpec([1, ZDIM], tf.float32, name='input_0')\n", "tf2onnx.convert.from_keras(gm2, input_signature=[spec], inputs_as_nchw=['input_0'], opset=12, output_path=output_path)\n", "output_path = \"network_split_1.onnx\"\n", "spec = tf.TensorSpec(inter_x1.shape, tf.float32, name='elu1')\n", "tf2onnx.convert.from_keras(gm3, input_signature=[spec], inputs_as_nchw=['input_1'], opset=12, output_path=output_path)\n", "output_path = \"network_split_2.onnx\"\n", "spec = tf.TensorSpec(inter_x2.shape, tf.float32, name='elu2')\n", "tf2onnx.convert.from_keras(gm4, input_signature=[spec], inputs_as_nchw=['input_2'], opset=12, output_path=output_path)\n", "\n", "data_array = x.reshape([-1]).tolist()\n", "\n", "data = dict(input_data = [data_array])\n", "inter_x1 = inter_x1.numpy().reshape([-1]).tolist()\n", "inter_x2 = inter_x2.numpy().reshape([-1]).tolist()\n", "data_2 = dict(input_data = [inter_x1])\n",
"data_3 = dict(input_data = [inter_x2])\n", "\n", " "data_path = os.path.join('gan_input_0.json')\n", "json.dump( data, open(data_path, 'w' ))\n", "data_path = os.path.join('gan_input_1.json')\n", "json.dump( data_2, open(data_path, 'w' ))\n", "data_path = os.path.join('gan_input_2.json')\n", "json.dump( data_3, open(data_path, 'w' ))\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " "\n", "the visibility parameters are:\n", "- `input_visibility`: \"polycommit\"\n", "- `param_visibility`: \"public\"\n", "- `output_visibility`: polycommit" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "
import ezkl\n", "\n", "srs_path = os.path.join('kzg.srs')\n", "\n", "run_args = ezkl.PyRunArgs()\n", "run_args.input_visibility = \"polycommit\"\n", "run_args.param_visibility = \"fixed\"\n", "run_args.output_visibility = \"polycommit\"\n", "run_args.variables = [(\"batch_size\", 1)]\n", "run_args.input_scale = 0\n", "run_args.param_scale = 0\n", "run_args.logrows = 18\n", "\n", "ezkl.get_srs(logrows=run_args.logrows, commitment=ezkl.PyCommitments.KZG)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "\n", "\n", " <------------- Numerical Fidelity Report (input_scale: 0, param_scale: 0, scale_input_multiplier: 10) ------------->\n", "\n", "+----------------+--------------+-------------+--------------+----------------+------------------+---------------+-----------------+--------------------+--------------------+------------------------+\n", "| mean_error | median_error | max_error | min_error | mean_abs_error | median_abs_error | max_abs_error | min_abs_error | mean_squared_error | mean_percent_error | mean_abs_percent_error |\n", "+----------------+--------------+-------------+--------------+----------------+------------------+---------------+-----------------+--------------------+--------------------+------------------------+\n", "| -
0.00045216593 | 0.0071961936 | 0.059581105 | -0.051913798 | 0.011681631 | 0.0071961936 | 0.059581105 | 0.0000062934123 | 0.0002161761 | 1 | 1 |\n", "+----------------+--------------+-------------+--------------+----------------+------------------+---------------+-----------------+--------------------+--------------------+------------------------+\n", "\n", "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Setting up split model 0\n", "Setting up split model 1\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n", "\n", " <------------- Numerical Fidelity Report (input_scale: 0, param_scale: 0, scale_input_multiplier: 10) ------------->\n", "\n", "+----------------+--------------+-------------+--------------+----------------+------------------+---------------+---------------+--------------------+--------------------+------------------------+\n", "| mean_error | median_error | max_error | min_error | mean_abs_error | median_abs_error | max_abs_error | min_abs_error | mean_squared_error | mean_percent_error | mean_abs_percent_error |\n", "+----------------+--------------+-------------+--------------+----------------+------------------+---------------+---------------+--------------------+--------------------+------------------------+\n", "| -0.00008474619 | -0.002256453 | 0.003519658 | -0.003081262 | 0.0018818051 | 0.002256453 | 0.003519658 | 0.00017167516 | 0.000003900568 | 1
| 1 |\n", "+----------------+--------------+-------------+--------------+----------------+------------------+---------------+---------------+--------------------+--------------------+------------------------+\n", "\n", "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Setting up split model 2\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n", "\n", " <------------- Numerical Fidelity Report (input_scale: 0, param_scale: 0, scale_input_multiplier: 10) ------------->\n", "\n", "+-------------+--------------+-------------+-------------+----------------+------------------+---------------+---------------+--------------------+--------------------+------------------------+\n", "| mean_error | median_error | max_error | min_error | mean_abs_error | median_abs_error | max_abs_error | min_abs_error | mean_squared_error | mean_percent_error | mean_abs_percent_error |\n", "+-------------+--------------+-------------+-------------+----------------+------------------+---------------+---------------+--------------------+--------------------+------------------------+\n", "| -0.49951223 | -0.49951398 | -0.49951398 | -0.49951398 | 0.49951223 | 0.49951398 | 0.49951398 | 0.49951398 | 0.24951272 | -0.9980509 | 0.9980509 |\n", "+-------------+--------------+-------------+-------------+----------------+------------------+---------------+---------------+--------------------+--------------------+------
------------------+\n", "\n", "\n" ] } ], "source": [ " "\n", "def setup(i):\n", " print(\"Setting up split model \"+str(i))\n", " " model_path = os.path.join('network_split_'+str(i)+'.onnx')\n", " settings_path = os.path.join('settings_split_'+str(i)+'.json')\n", " data_path = os.path.join('gan_input_'+str(i)+'.json')\n", " compiled_model_path = os.path.join('network_split_'+str(i)+'.compiled')\n", " pk_path = os.path.join('test_split_'+str(i)+'.pk')\n", " vk_path = os.path.join('test_split_'+str(i)+'.vk')\n", " witness_path = os.path.join('witness_split_'+str(i)+'.json')\n", "\n", " if i > 0:\n", " prev_witness_path = os.path.join('witness_split_'+str(i-1)+'.json')\n", " witness = json.load(open(prev_witness_path, 'r'))\n", " data = dict(input_data = witness['outputs'])\n", " " json.dump(data, open(data_path, 'w' ))\n", " else:\n", " data_path = os.path.join('gan_input_0.json')\n", "\n", " " res = ezkl.gen_settings(model_path, settings_path, py_run_args=run_args)\n", " res = ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\", scales=[run_args.input_scale], max_logrows=run_args.logrows)\n", " assert res == True\n", "\n", " " settings = json.load(open(settings_path, 'r'))\n", " settings['run_args']['logrows'] = run_args.logrows\n", " json.dump(settings, open(settings_path, 'w' ))\n",
"\n", " res = ezkl.compile_circuit(model_path, compiled_model_path, settings_path)\n", "\n", "\n", " res = ezkl.setup(\n", " compiled_model_path,\n", " vk_path,\n", " pk_path,\n", " )\n", "\n", " assert res == True\n", " assert os.path.isfile(vk_path)\n", " assert os.path.isfile(pk_path)\n", " res = ezkl.gen_witness(data_path, compiled_model_path, witness_path, vk_path)\n", " run_args.input_scale = settings[\"model_output_scales\"][0]\n", "\n", "for i in range(3):\n", " setup(i)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ " "\n", "print(\"Proving split models\")\n", "\n", "\n", "def prove_model(i): \n", " proof_path = os.path.join('proof_split_'+str(i)+'.json')\n", " witness_path = os.path.join('witness_split_'+str(i)+'.json')\n", " compiled_model_path = os.path.join('network_split_'+str(i)+'.compiled')\n", " pk_path = os.path.join('test_split_'+str(i)+'.pk')\n", " vk_path = os.path.join('test_split_'+str(i)+'.vk')\n", " settings_path = os.path.join('settings_split_'+str(i)+'.json')\n", "\n", " res = ezkl.prove(\n", " witness_path,\n", " compiled_model_path,\n", " pk_path,\n",
" proof_path,\n", " \"for-aggr\",\n", " )\n", "\n", " print(res)\n", " assert os.path.isfile(proof_path)\n", "\n", " " if i > 0:\n", " " prev_witness_path = os.path.join('witness_split_'+str(i-1)+'.json')\n", " prev_witness = json.load(open(prev_witness_path, 'r'))\n", "\n", " witness = json.load(open(witness_path, 'r'))\n", "\n", " print(prev_witness[\"processed_outputs\"])\n", " print(witness[\"processed_inputs\"])\n", "\n", " witness[\"processed_inputs\"] = prev_witness[\"processed_outputs\"]\n", "\n", " " with open(witness_path, \"w\") as f:\n", " json.dump(witness, f)\n", "\n", " res = ezkl.swap_proof_commitments(proof_path, witness_path)\n", "\n", " res = ezkl.verify(\n", " proof_path,\n", " settings_path,\n", " vk_path,\n", " )\n", "\n", " assert res == True\n", " print(\"verified\")\n", "\n", "\n", "for i in range(3):\n", " print(\"----- proving split \"+str(i))\n", " prove_model(i)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can also mock aggregate the split proofs into a single proof. This is useful if you want to verify the proof on chain at a lower cost. Here we mock aggregate the proofs to save time. You can use other
notebooks to see how to aggregate in full ! " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ " "proofs = []\n", "for i in range(3):\n", " proof_path = os.path.join('proof_split_'+str(i)+'.json')\n", " proofs.append(proof_path)\n", "\n", "ezkl.mock_aggregate(proofs, logrows=22, split_proofs = True)" ] } ], "metadata": { "kernelspec": { "display_name": "ezkl", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.2" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Credits to [geohot](https: ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ " "try:\n", " "
import google.colab\n", "
import subprocess\n", "
import sys\n", " subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"ezkl\"])\n", " subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"tf2onnx\"])\n", " subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"onnx\"])\n", "\n", " "except:\n", " pass\n", "\n", "\n", "
import os\n", "
import time\n", "
import random\n", "\n", "
import tensorflow as tf\n", "
import tensorflow.keras.backend as K\n", "from tensorflow.keras.optimizers
import Adam\n", "from tensorflow.keras.layers
import *\n", "from tensorflow.keras.models
import Model\n", "from tensorflow.keras.losses
import mse\n", "from tensorflow.keras.datasets
import mnist\n", "(x_train, y_train), (x_test, y_test) = mnist.load_data()\n", "x_train, x_test = [x/255.0 for x in [x_train, x_test]]\n", "y_train, y_test = [tf.keras.utils.to_categorical(x) for x in [y_train, y_test]]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ZDIM = 4\n", "\n", "def get_encoder():\n", " x = in1 = Input((28,28))\n", " x = Reshape((28,28,1))(x)\n", "\n", " x = Conv2D(64, (5,5), padding='same', strides=(2,2))(x)\n", " x = BatchNormalization()(x)\n", " x = ELU()(x)\n", "\n", " x = Conv2D(128, (5,5), padding='same', strides=(2,2))(x)\n", " x = BatchNormalization()(x)\n", " x = ELU()(x)\n", "\n", " x = Flatten()(x)\n", " x = Dense(ZDIM)(x)\n", " return Model(in1, x)\n", "\n", "def get_decoder():\n", " x = in1 = Input((ZDIM,))\n", "\n", " x = Dense(7*7*64)(x)\n", " x = BatchNormalization()(x)\n", " x = ELU()(x)\n", " x = Reshape((7,7,64))(x)\n", "\n", " x = Conv2DTranspose(128, (5,5), strides=(2,2), padding='same')(x)\n", " x = BatchNormalization()(x)\n", " x = ELU()(x)\n", "\n", " x = Conv2DTranspose(1, (5,5), strides=(2,2), padding='same')(x)\n", " x = Activation('sigmoid')(x)\n", " x = Reshape((28,28))(x)\n", " return Model(in1, x)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [
" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ " "enc = get_encoder()\n", "dec = get_decoder()\n", "ae = Model(enc.input, dec(enc.output))\n", "ae.compile('adam', 'mse')\n", "ae.summary()\n", " "ae.fit(x_train, x_train, batch_size=128, epochs=1, shuffle=1, validation_data=(x_test, x_test))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ " "
import numpy as np\n", "from matplotlib.pyplot
import figure, imshow\n", "imshow(np.concatenate(ae.predict(np.array([random.choice(x_test) for i in range(10)])), axis=1))\n", "figure(figsize=(16,16))\n", "imshow(np.concatenate(ae.layers[-1].predict(np.random.normal(size=(10, ZDIM))), axis=1))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "
import os \n", "\n", "model_path = os.path.join('ae.onnx')\n", "compiled_model_path = os.path.join('ae.compiled')\n", "pk_path = os.path.join('ae.pk')\n", "vk_path = os.path.join('ae.vk')\n", "settings_path = os.path.join('ae_settings.json')\n", "srs_path = os.path.join('ae_kzg.srs')\n", "witness_path = os.path.join('ae_witness.json')\n", "data_path = os.path.join('ae_input.json')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we export the decoder (which presumably is what we want) -- to onnx" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "\n", "
import numpy as np\n", "
import tf2onnx\n", "
import tensorflow as tf\n", "
import json\n", "\n", "shape = [1, ZDIM]\n", " "x = 0.1*np.random.rand(1,*shape)\n", "\n", "spec = tf.TensorSpec(shape, tf.float32, name='input_0')\n", "\n", "\n", "tf2onnx.convert.from_keras(dec, input_signature=[spec], inputs_as_nchw=['input_0'], opset=12, output_path=model_path)\n", "\n", "data_array = x.reshape([-1]).tolist()\n", "\n", "data = dict(input_data = [data_array])\n", "\n", " "json.dump( data, open(data_path, 'w' ))\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "
import ezkl\n", "\n", "!RUST_LOG=trace\n", "res = ezkl.gen_settings(model_path, settings_path)\n", "assert res == True\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "cal_path = os.path.join(\"calibration.json\")\n", "\n", "data_array = (0.1 * np.random.rand(20, *shape)).reshape([-1]).tolist()\n", "\n", "data = dict(input_data = [data_array])\n", "\n", " "json.dump(data, open(cal_path, 'w'))\n", "\n", "\n", "ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "res = ezkl.compile_circuit(model_path, compiled_model_path, settings_path)\n", "assert res == True" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ " "res = ezkl.get_srs( settings_path)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ " "witness_path = \"ae_witness.json\"\n", "\n", "res = ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n", "assert os.path.isfile(witness_path)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [
"res = ezkl.mock(witness_path, compiled_model_path)\n", "assert res == True" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "\n", " " " " "\n", "res = ezkl.setup(\n", " compiled_model_path,\n", " vk_path,\n", " pk_path,\n", " \n", " )\n", "\n", "assert res == True\n", "assert os.path.isfile(vk_path)\n", "assert os.path.isfile(pk_path)\n", "assert os.path.isfile(settings_path)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ " "\n", "\n", "proof_path = os.path.join('ae.pf')\n", "\n", "res = ezkl.prove(\n", " witness_path,\n", " compiled_model_path,\n", " pk_path,\n", " proof_path,\n", " \n", " \"single\",\n", " )\n", "\n", "print(res)\n", "assert os.path.isfile(proof_path)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ " "res = ezkl.verify(\n", " proof_path,\n", " settings_path,\n", " vk_path,\n", " \n", " )\n", "\n",
"assert res == True\n", "print(\"verified\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "in1 = Input((28,28))\n", "x = get_encoder()(in1)\n", "\n", " "z_mu = Dense(ZDIM)(x)\n", "z_log_var = Dense(ZDIM)(x)\n", "z = Lambda(lambda x: x[0] + K.exp(0.5 * x[1]) * K.random_normal(shape=K.shape(x[0])))([z_mu, z_log_var])\n", "dec = get_decoder()\n", "dec.output_names=['output']\n", "\n", "out = dec(z)\n", "\n", "mse_loss = mse(Reshape((28*28,))(in1), Reshape((28*28,))(out)) * 28 * 28\n", "kl_loss = 1 + z_log_var - K.square(z_mu) - K.exp(z_log_var)\n", "kl_loss = -0.5 * K.mean(kl_loss, axis=-1)\n", "\n", "vae = Model(in1, out)\n", "vae.add_loss(K.mean(mse_loss + kl_loss))\n", "vae.compile('adam')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ " "test = Model(in1, [z, z_mu, z_log_var])\n", "test.predict(x_train[0:1])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "vae.fit(x_train, batch_size=128, epochs=1, shuffle=1, validation_data=(x_test, None))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "
outputs": [], "source": [ "imshow(np.concatenate(vae.predict(np.array([random.choice(x_test) for i in range(10)])), axis=1))\n", "figure(figsize=(16,16))\n", "imshow(np.concatenate(vae.layers[5].predict(np.random.normal(size=(10, ZDIM))), axis=1))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "
import os \n", "\n", "model_path = os.path.join('vae.onnx')\n", "compiled_model_path = os.path.join('vae.compiled')\n", "pk_path = os.path.join('vae.pk')\n", "vk_path = os.path.join('vae.vk')\n", "settings_path = os.path.join('vae_settings.json')\n", "srs_path = os.path.join('vae_kzg.srs')\n", "witness_path = os.path.join('vae_witness.json')\n", "data_path = os.path.join('vae_input.json')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "\n", "
import numpy as np\n", "
import tf2onnx\n", "
import tensorflow as tf\n", "
import json\n", "\n", " "x = 0.1*np.random.rand(1,*[1, ZDIM])\n", "\n", "spec = tf.TensorSpec([1, ZDIM], tf.float32, name='input_0')\n", "\n", "\n", "tf2onnx.convert.from_keras(dec, input_signature=[spec], inputs_as_nchw=['input_0'], opset=12, output_path=model_path)\n", "\n", "data_array = x.reshape([-1]).tolist()\n", "\n", "data = dict(input_data = [data_array])\n", "\n", " "json.dump( data, open(data_path, 'w' ))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "
import ezkl\n", "\n", "!RUST_LOG=trace\n", "res = ezkl.gen_settings(model_path, settings_path)\n", "assert res == True\n", "\n", "res = ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n", "assert res == True\n", "print(\"verified\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "res = ezkl.compile_circuit(model_path, compiled_model_path, settings_path)\n", "assert res == True" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ " "res = ezkl.get_srs( settings_path)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ " "witness_path = \"vae_witness.json\"\n", "\n", "res = ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n", "assert os.path.isfile(witness_path)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ " " " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "\n", " " " " "\n", "res = ezkl.setup(\n", " compiled_model_path,\n", " vk_path,
\n", " pk_path,\n", " \n", " )\n", "\n", "\n", "assert res == True\n", "assert os.path.isfile(vk_path)\n", "assert os.path.isfile(pk_path)\n", "assert os.path.isfile(settings_path)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ " "\n", "\n", "proof_path = os.path.join('test.pf')\n", "\n", "res = ezkl.prove(\n", " witness_path,\n", " compiled_model_path,\n", " pk_path,\n", " proof_path,\n", " \n", " \"single\",\n", " )\n", "\n", "print(res)\n", "assert os.path.isfile(proof_path)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ " "res = ezkl.verify(\n", " proof_path,\n", " settings_path,\n", " vk_path,\n", " \n", " )\n", "\n", "assert res == True\n", "print(\"verified\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python",
"nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.15" } }, "nbformat": 4, "nbformat_minor": 2 }
{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "TB8jFLoLwZ8K" }, "source": [ " "In this tutorial we utilize the N-BEATS (Neural basis expansion analysis for interpretable time series forecasting\n", ") for forecasting the price of ethereum.\n", "\n", "For more details regarding N-BEATS, visit this link [https: "\n", "The code for N-BEATS used is adapted from [nbeats-pytorch](https: ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Ccy0MgZLwY1Z" }, "outputs": [], "source": [ "
import pandas as pd\n", "
import torch\n", "from torch
import nn, optim\n", "from torch.nn
import functional as F\n", "from torch.nn.functional
import mse_loss, l1_loss, binary_cross_entropy, cross_entropy\n", "from torch.optim
import Optimizer\n", "
import matplotlib.pyplot as plt\n", "
import requests\n", "
import json\n", "from torch.utils.data
import DataLoader, TensorDataset\n", "
import numpy as np\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "ovxRhGv0xS0i" }, "outputs": [], "source": [ " "coins = [\"ETH\"]\n", "days_ago_to_fetch = 2000 "coin_history = {}\n", "hist_length = 0\n", "average_returns = {}\n", "cumulative_returns = {}\n", "\n", "def index_history_coin(hist):\n", " hist = hist.set_index('time')\n", " hist.index = pd.to_datetime(hist.index, unit='s')\n", " return hist\n", "\n", "def filter_history_by_date(hist):\n", " result = hist[hist.index.year >= 2017]\n", " return result\n", "\n", "def fetch_history_coin(coin):\n", " endpoint_url = \"https: " res = requests.get(endpoint_url)\n", " hist = pd.DataFrame(json.loads(res.content)['Data'])\n", " hist = index_history_coin(hist)\n", " hist = filter_history_by_date(hist)\n", " return hist\n", "\n", "def get_history_from_file(filename):\n", " return pd.read_csv(filename)\n", "\n", "\n", "for coin in coins:\n", " coin_history[coin] = fetch_history_coin(coin)\n", "\n", "hist_length = len(coin_history[coins[0]])\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "CNeFMmvpx5ig" }, "outputs": [], "source": [ " " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "_wPJcU8EyOsF" }, "outputs": [], "source": [ " "coin_history['ETH'] = get_history_from_file(\"eth_price.csv\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https: }, "id": "ij_DBZl7yQqE",
"outputId": "3b7838de-fa00-4560-cbcb-62c11e311a0f" }, "outputs": [], "source": [ " "\n", "def add_all_returns():\n", " for coin in coins:\n", " hist = coin_history[coin]\n", " hist['return'] = (hist['close'] - hist['open']) / hist['open']\n", " average = hist[\"return\"].mean()\n", " average_returns[coin] = average\n", " cumulative_returns[coin] = (hist[\"return\"] + 1).prod() - 1\n", " hist['excess_return'] = hist['return'] - average\n", " coin_history[coin] = hist\n", "\n", "add_all_returns()\n", "\n", " "cumulative_returns" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https: }, "id": "nW3xWLCNyeGN", "outputId": "a5d7f42b-447b-4ec4-8b42-4bd845ba3b3b" }, "outputs": [], "source": [ " "average_returns" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https: }, "id": "J9AOW3czykk-", "outputId": "23d9564c-ae0e-4bb4-cf3e-bdb46e9e1639" }, "outputs": [], "source": [ " "excess_matrix = np.zeros((hist_length, len(coins)))\n", "\n", "for i in range(0, hist_length):\n", " for idx, coin in enumerate(coins):\n", " excess_matrix[i][idx] = coin_history[coin].iloc[i]['excess_return']\n", "\n", "excess_matrix" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https: "height": 424 }, "id": "A3GuFe_-yq_Q", "outputId": "3313aa46-88ef-4dbb-e07d-6cc6c9584eb9" }, "outputs": [], "source": [ " "pretty_matrix = pd.DataFrame(exces
s_matrix).copy()\n", "pretty_matrix.columns = coins\n", "pretty_matrix.index = coin_history[coins[0]].index\n", "\n", "pretty_matrix" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https: }, "id": "rRYQ63frys8K", "outputId": "d4df3245-f4e6-4511-dd8a-7c7e52cb4982" }, "outputs": [], "source": [ " "\n", " "product_matrix = np.matmul(excess_matrix.transpose(), excess_matrix)\n", "var_covar_matrix = product_matrix / hist_length\n", "\n", "var_covar_matrix" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https: "height": 81 }, "id": "F_0y258Iz2-1", "outputId": "f161c55d-5600-41da-f065-821c87340f33" }, "outputs": [], "source": [ " "pretty_var_covar = pd.DataFrame(var_covar_matrix).copy()\n", "pretty_var_covar.columns = coins\n", "pretty_var_covar.index = coins\n", "\n", "pretty_var_covar" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "_HS7sq_Xz4Js" }, "outputs": [], "source": [ " "\n", "std_dev = np.zeros((len(coins), 1))\n", "neg_std_dev = np.zeros((len(coins), 1))\n", "\n", "for idx, coin in enumerate(coins):\n", " std_dev[idx][0] = np.std(coin_history[coin]['return'])\n", " coin_history[coin]['downside_return'] = 0\n", "\n", " coin_history[coin].loc[coin_history[coin]['return'] < 0,\n", " 'downside_return'] = coin_history[coin]['return']**2\n", " neg_std_dev[idx][0] = np.sqrt(coin_history[coin]['downside_return'].mean())" ] }, { "cell_type": "code", "execution_count":
null, "metadata": { "colab": { "base_uri": "https: "height": 81 }, "id": "gLpf-k1az77u", "outputId": "d6dc063f-05b7-4a9f-de59-cc60b0cfee5e" }, "outputs": [], "source": [ " "pretty_std = pd.DataFrame(std_dev).copy()\n", "pretty_neg_std = pd.DataFrame(neg_std_dev).copy()\n", "pretty_comb = pd.concat([pretty_std, pretty_neg_std], axis=1)\n", "\n", "pretty_comb.columns = ['std dev', 'neg std dev']\n", "pretty_comb.index = coins\n", "\n", "pretty_comb" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "MAd19PQcz9A5" }, "outputs": [], "source": [ " "std_product_matrix = np.matmul(std_dev, std_dev.transpose())\n", "\n", " "neg_std_product_matrix = np.matmul(neg_std_dev, neg_std_dev.transpose())" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https: "height": 81 }, "id": "O8aD5ZiYz-8E", "outputId": "945391f5-8e3b-4369-cc0c-1cf927f72ef2" }, "outputs": [], "source": [ "pretty_std_prod = pd.DataFrame(std_product_matrix).copy()\n", "pretty_std_prod.columns = coins\n", "pretty_std_prod.index = coins\n", "\n", "pretty_std_prod" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https: "height": 81 }, "id": "KecwUguO0Ago", "outputId": "f77f4bd2-3314-4d7e-8525-078825a83a8c" }, "outputs": [], "source": [ " "corr_matrix = var_covar_matrix / std_product_matrix\n", "pretty_corr = pd.DataFrame(corr_matrix).copy()\n", "pretty_corr.columns = coins\n", "pretty_corr.index = coins\n", "\n", "prett
y_corr" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https: "height": 424 }, "id": "m62kaZFu0C0p", "outputId": "b3c10014-afe1-4cdb-e5a3-3a1361b54501" }, "outputs": [], "source": [ " "coin_history['ETH']" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https: }, "id": "JdtkDBc90rM6", "outputId": "19d1c7af-809e-4b1b-a1a0-b50bba67d425" }, "outputs": [], "source": [ "def simulate_portfolio_growth(initial_amount, daily_returns):\n", " portfolio_value = [initial_amount]\n", " for ret in daily_returns:\n", " portfolio_value.append(portfolio_value[-1] * (1 + ret))\n", " return portfolio_value\n", "\n", "initial_investment = 100000\n", "\n", "eth_portfolio = simulate_portfolio_growth(initial_investment, coin_history[\"ETH\"]['return'])\n", "\n", "print(\"ETH Portfolio Growth:\", eth_portfolio)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https: "height": 564 }, "id": "ADBacxHA27v0", "outputId": "3f5f8f35-4efc-473d-a5af-12515fa897b6" }, "outputs": [], "source": [ " "plt.figure(figsize=(10,6))\n", "plt.plot(eth_portfolio, label='ETH Portfolio', color='blue')\n", "plt.title('Portfolio Growth Over Time')\n", "plt.xlabel('Days')\n", "plt.ylabel('Portfolio Value')\n", "plt.legend()\n", "plt.grid(True)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https: }, "id": "fWAx5OZ-302J", "out
putId": "a94346ac-4c16-428d-eac1-d8fbbd9208b4" }, "outputs": [], "source": [ " "eth_df = coin_history['ETH'][['close']].copy()\n", "\n", " "close_tensor = torch.tensor(eth_df.values)\n", "\n", " "eth_df = coin_history['ETH'][['return']].copy()\n", "\n", " "return_tensor = torch.tensor(eth_df.values)\n", "\n", " "print(close_tensor)\n", "print(return_tensor)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "4M6hIqZ15aqs" }, "outputs": [], "source": [ " " "\n", "def squeeze_last_dim(tensor):\n", " if len(tensor.shape) == 3 and tensor.shape[-1] == 1: " return tensor[..., 0]\n", " return tensor\n", "\n", "\n", "def seasonality_model(thetas, t, device):\n", " p = thetas.size()[-1]\n", " assert p <= thetas.shape[1], 'thetas_dim is too big.'\n", " p1, p2 = (p " s1 = torch.tensor(np.array([np.cos(2 * np.pi * i * t) for i in range(p1)])).float() " s2 = torch.tensor(np.array([np.sin(2 * np.pi * i * t) for i in range(p2)])).float()\n", " S = torch.cat([s1, s2])\n", " return thetas.mm(S.to(device))\n", "\n", "\n", "def trend_model(thetas, t, device):\n", " p = thetas.size()[-1]\n", " assert p <= 4, 'thetas_dim is too big.'\n", " T = torch.tensor(np.array([t ** i for i in range(p)])).float()\n", " return thetas.mm(T.to(device))\n", "\n", "\n", "def linear_space(backcast_length, forecast_length, is_forecast=True):\n", " horizon = forecast_length if is_forecast else backcast_length\n", " return np.arange(0, horizon) / horizon\n", "\n", "
class Block(nn.Module):\n", "\n", " def __init__(self, units, thetas_dim, device, backcast_length=10, forecast_length=5, share_thetas=False,\n", " nb_harmonics=None):\n", " super(Block, self).__init__()\n", " self.units = units\n", " self.thetas_dim = thetas_dim\n", " self.backcast_length = backcast_length\n", " self.forecast_length = forecast_length\n", " self.share_thetas = share_thetas\n", " self.fc1 = nn.Linear(backcast_length, units)\n", " self.fc2 = nn.Linear(units, units)\n", " self.fc3 = nn.Linear(units, units)\n", " self.fc4 = nn.Linear(units, units)\n", " self.device = device\n", " self.backcast_linspace = linear_space(backcast_length, forecast_length, is_forecast=False)\n", " self.forecast_linspace = linear_space(backcast_length, forecast_length, is_forecast=True)\n", " if share_thetas:\n", " self.theta_f_fc = self.theta_b_fc = nn.Linear(units, thetas_dim, bias=False)\n", " else:\n", " self.theta_b_fc = nn.Linear(units, thetas_dim, bias=False)\n", " self.theta_f_fc = nn.Linear(units, thetas_dim, bias=False)\n", "\n", " def forward(self, x):\n", " x = squeeze_last_dim(x)\n", " x = F.relu(self.fc1(x.to(self.device)))\n", " x = F.relu(self.fc2(x))\n", " x = F.relu(self.fc3(x))\n", " x = F.relu(self.fc4(x))\n", " return x\n", "\n", " def __str__(self):\n", " block_type = type(self).__name__\n", " return f'{block_type}(units={self.units}, thetas_dim={self.thetas_dim}, ' \\\n", " f'backcast_length={self.backcast_length}, forecast_length={self.forecast_length}, ' \\\n", " f'share_thetas={self
.share_thetas}) at @{id(self)}'\n", "\n", "\n", "
class SeasonalityBlock(Block):\n", "\n", " def __init__(self, units, thetas_dim, device, backcast_length=10, forecast_length=5, nb_harmonics=None):\n", " if nb_harmonics:\n", " super(SeasonalityBlock, self).__init__(units, nb_harmonics, device, backcast_length,\n", " forecast_length, share_thetas=True)\n", " else:\n", " super(SeasonalityBlock, self).__init__(units, forecast_length, device, backcast_length,\n", " forecast_length, share_thetas=True)\n", "\n", " def forward(self, x):\n", " x = super(SeasonalityBlock, self).forward(x)\n", " backcast = seasonality_model(self.theta_b_fc(x), self.backcast_linspace, self.device)\n", " forecast = seasonality_model(self.theta_f_fc(x), self.forecast_linspace, self.device)\n", " return backcast, forecast\n", "\n", "\n", "
class TrendBlock(Block):\n", "\n", " def __init__(self, units, thetas_dim, device, backcast_length=10, forecast_length=5, nb_harmonics=None):\n", " super(TrendBlock, self).__init__(units, thetas_dim, device, backcast_length,\n", " forecast_length, share_thetas=True)\n", "\n", " def forward(self, x):\n", " x = super(TrendBlock, self).forward(x)\n", " backcast = trend_model(self.theta_b_fc(x), self.backcast_linspace, self.device)\n", " forecast = trend_model(self.theta_f_fc(x), self.forecast_linspace, self.device)\n", " return backcast, forecast\n", "\n", "\n", "\n", "
class GenericBlock(Block):\n", "\n", " def __init__(self, units, thetas_dim, device, backcast_length=10, forecast_length=5, nb_harmonics=None):\n", " super(GenericBlock, self).__init__(units, thetas_dim, device, backcast_length, forecast_length)\n", "\n", " self.backcast_fc = nn.Linear(thetas_dim, backcast_length)\n", " self.forecast_fc = nn.Linear(thetas_dim, forecast_length)\n", "\n", " def forward(self, x):\n", " " x = super(GenericBlock, self).forward(x)\n", "\n", " theta_b = self.theta_b_fc(x)\n", " theta_f = self.theta_f_fc(x)\n", "\n", " backcast = self.backcast_fc(theta_b) " forecast = self.forecast_fc(theta_f) "\n", " return backcast, forecast\n", "\n", "\n", "
class NBEATS(nn.Module):\n", " SEASONALITY_BLOCK = 'seasonality'\n", " TREND_BLOCK = 'trend'\n", " GENERIC_BLOCK = 'generic'\n", "\n", " def __init__(\n", " self,\n", " device=torch.device(\"cpu\"),\n", " stack_types=(GENERIC_BLOCK, GENERIC_BLOCK),\n", " nb_blocks_per_stack=1,\n", " forecast_length=7,\n", " backcast_length=14,\n", " theta_dims=(2,2),\n", " share_weights_in_stack=False,\n", " hidden_layer_units=32,\n", " nb_harmonics=None,\n", " ):\n", " super(NBEATS, self).__init__()\n", " self.forecast_length = forecast_length\n", " self.backcast_length = backcast_length\n", " self.hidden_layer_units = hidden_layer_units\n", " self.nb_blocks_per_stack = nb_blocks_per_stack\n", " self.share_weights_in_stack = share_weights_in_stack\n", " self.nb_harmonics = nb_harmonics " self.stack_types = stack_types\n", " self.stacks = nn.ModuleList()\n", " self.thetas_dim = theta_dims\n", " self.device = device\n", " print('| N-Beats')\n", " for stack_id in range(len(self.stack_types)):\n", " stack = self.create_stack(stack_id)\n", " self.stacks.append(stack)\n", " self.to(self.device)\n", " " "\n", "\n", " def create_stack(self, stack_id):\n", " stack_type = self.stack_types[stack_id]\n", " print(f'| -- Stack {stack_type.title()} ( " blocks = nn.ModuleList()\n", " for block_id in range(self.nb_blocks_per_stack):\n", " block_init = NBEATS.select_block(stack_type)\n", " if self.share_weights_in_stack and block_id != 0
:\n", " block = blocks[-1] " else:\n", " block = block_init(\n", " self.hidden_layer_units, self.thetas_dim[stack_id],\n", " self.device, self.backcast_length, self.forecast_length,\n", " self.nb_harmonics\n", " )\n", " print(f' | -- {block}')\n", " blocks.append(block)\n", " return blocks\n", "\n", " @staticmethod\n", " def select_block(block_type):\n", " if block_type == NBEATS.SEASONALITY_BLOCK:\n", " return SeasonalityBlock\n", " elif block_type == NBEATS.TREND_BLOCK:\n", " return TrendBlock\n", " else:\n", " return GenericBlock\n", "\n", "\n", " def get_generic_and_interpretable_outputs(self):\n", " g_pred = sum([a['value'][0] for a in self._intermediary_outputs if 'generic' in a['layer'].lower()])\n", " i_pred = sum([a['value'][0] for a in self._intermediary_outputs if 'generic' not in a['layer'].lower()])\n", " outputs = {o['layer']: o['value'][0] for o in self._intermediary_outputs}\n", " return g_pred, i_pred,\n", "\n", " def forward(self, backcast):\n", " self._intermediary_outputs = []\n", " backcast = squeeze_last_dim(backcast)\n", " forecast = torch.zeros(size=(backcast.size()[0], self.forecast_length,)) " for stack_id in range(len(self.stacks)):\n", " for block_id in range(len(self.stacks[stack_id])):\n", " b, f = self.stacks[stack_id][block_id](backcast)\n", " backcast = backcast.to(self.device) - b\n", " forecast = forecast.to(self.device) + f\n", " block_type = self.sta
cks[stack_id][block_id].__class__.__name__\n", " layer_name = f'stack_{stack_id}-{block_type}_{block_id}'\n", "\n", " return backcast, forecast\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https: }, "id": "tTH313qbRLMG", "outputId": "34275438-5548-4a8b-f4a9-d96056ebde1c" }, "outputs": [], "source": [ "from torch.utils.data
import Dataset, DataLoader\n", "\n", "
class TimeSeriesDataset(Dataset):\n", " def __init__(self, close_data, return_data, backcast_length, forecast_length, shuffle=True):\n", " self.close_data = close_data\n", " self.return_data = return_data\n", " self.backcast_length = backcast_length\n", " self.forecast_length = forecast_length\n", " self.indices = list(range(len(self.close_data) - self.backcast_length - self.forecast_length + 1))\n", " if shuffle:\n", " np.random.shuffle(self.indices)\n", "\n", " def __len__(self):\n", " return len(self.close_data) - self.backcast_length - self.forecast_length + 1\n", "\n", " def __getitem__(self, idx):\n", " start = idx\n", " end = idx + self.backcast_length\n", " x = self.close_data[start:end] " y = self.close_data[end:end+self.forecast_length] " return x, y\n", "\n", " "BACKCAST_LENGTH = 14\n", "FORECAST_LENGTH = 7\n", "\n", "train_length = round(len(close_tensor) * 0.7)\n", "train_dataset = TimeSeriesDataset(close_tensor[0:train_length], return_tensor[0:train_length], BACKCAST_LENGTH, FORECAST_LENGTH)\n", "test_dataset = TimeSeriesDataset(close_tensor[train_length:], return_tensor[train_length:], BACKCAST_LENGTH, FORECAST_LENGTH)\n", "train_loader = DataLoader(train_dataset)\n", "\n", "model = NBEATS(forecast_length=FORECAST_LENGTH, backcast_length=BACKCAST_LENGTH, device=('cuda' if torch.cuda.is_available() else 'cpu'))\n", "model = model.to('cuda' if torch.cuda.is_available() else 'cpu')\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https: }, "id": "JJ8-nh2GLKN_", "outputId": "0d761daa-0f14-4a50-be41-b17993a4a182" }, "outputs": [],
"source": [ "EPOCHS = 1\n", "\n", "num_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)\n", "print(f\"Number of trainable parameters in model: {num_parameters}\")\n", "\n", "criterion = torch.nn.L1Loss()\n", "optimizer = torch.optim.Adam(model.parameters(), lr=0.001)\n", "\n", "for epoch in range(EPOCHS):\n", " total_loss = 0.0\n", " for batch_idx, (x, y) in enumerate(train_loader):\n", " " optimizer.zero_grad()\n", "\n", " x = x.clone().detach().to(dtype=torch.float)\n", " x = x.to('cuda' if torch.cuda.is_available() else 'cpu')\n", " y = y.clone().detach().to(dtype=torch.float)\n", " y = y.to('cuda' if torch.cuda.is_available() else 'cpu')\n", "\n", "\n", " " forecast = model(x)\n", "\n", " loss = criterion(forecast[0], y)\n", "\n", " " loss.backward()\n", " optimizer.step()\n", "\n", " " total_loss += loss "\n", " avg_loss = total_loss / len(train_loader)\n", " print(f\"Epoch {epoch+1}/{EPOCHS}, Average Loss: {avg_loss:.4f}\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "jWLKwNFLYDOk" }, "outputs": [], "source": [ " "try:\n", " "
import google.colab\n", "
import subprocess\n", "
import sys\n", " subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"ezkl\"])\n", " subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"onnx\"])\n", "\n", " "except:\n", " pass\n", "\n", "
import ezkl\n", "
import os\n", "
import json" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "dhOHiCmt4pUn" }, "outputs": [], "source": [ "model_path = os.path.join('network.onnx')\n", "compiled_model_path = os.path.join('network.compiled')\n", "pk_path = os.path.join('test.pk')\n", "vk_path = os.path.join('test.vk')\n", "settings_path = os.path.join('settings.json')\n", "\n", "witness_path = os.path.join('witness.json')\n", "data_path = os.path.join('input.json')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https: }, "id": "xsZ9xg7I48l4", "outputId": "6dec08c6-f55e-4df1-b957-55d025286018" }, "outputs": [], "source": [ " "x_export = None\n", "for batch_idx, (x, y) in enumerate(train_loader):\n", " x_export = x.clone().detach().to(dtype=torch.float)\n", " break\n", "\n", " "model.eval()\n", "\n", " "torch.onnx.export(model, " x_export, " model_path, " export_params=True, " opset_version=10, " do_constant_folding=True, " input_names = ['input'], " output_names = ['output'], " dynamic_axes={'input' : {0 : 'batch_size'}, " 'output' : {0 : 'batch_size'}})\n", "\n", "data_array = ((x).detach().numpy()).reshape([-1]).tolist()\n", "\n", "data = dict(input_data = [data_array])\n", "\n", " "json.dump( data, open(data_path, 'w' ))" ] }, { "cell_type": "code"
, "execution_count": null, "metadata": { "id": "5qdEFK_75GUb" }, "outputs": [], "source": [ "run_args = ezkl.PyRunArgs()\n", "run_args.input_visibility = \"private\"\n", "run_args.param_visibility = \"fixed\"\n", "run_args.output_visibility = \"public\"\n", "run_args.variables = [(\"batch_size\", 1)]\n", "\n", "!RUST_LOG=trace\n", " "res = ezkl.gen_settings(model_path, settings_path)\n", "assert res == True\n", "\n", "res = ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\", max_logrows = 20, scales = [3])\n", "assert res == True" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "pxDJPz-Q5LPF" }, "outputs": [], "source": [ "res = ezkl.compile_circuit(model_path, compiled_model_path, settings_path)\n", "assert res == True" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "ptcb4SGA5Qeb" }, "outputs": [], "source": [ " "res = ezkl.get_srs( settings_path)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "OE7t0okU5WBQ" }, "outputs": [], "source": [ "res = ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n", "assert os.path.isfile(witness_path)" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "id": "12YIcFr85X9-" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "spawning module 2\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "quotient_poly_degree 4\n", "n 262144\n", "extended_k 20\n" ] }
], "source": [ "res = ezkl.setup(\n", " compiled_model_path,\n", " vk_path,\n", " pk_path,\n", " \n", " )\n", "\n", "assert res == True\n", "assert os.path.isfile(vk_path)\n", "assert os.path.isfile(pk_path)\n", "assert os.path.isfile(settings_path)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "CSbWeZB35awS" }, "outputs": [], "source": [ "proof_path = os.path.join('test.pf')\n", "\n", "res = ezkl.prove(\n", " witness_path,\n", " compiled_model_path,\n", " pk_path,\n", " proof_path,\n", " \n", " \"single\",\n", " )\n", "\n", "print(res)\n", "assert os.path.isfile(proof_path)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "aGt8f4LS5dTP" }, "outputs": [], "source": [ " "\n", "res = ezkl.verify(\n", " proof_path,\n", " settings_path,\n", " vk_path,\n", " \n", " )\n", "\n", "assert res == True\n", "print(\"verified\")" ] } ], "metadata": { "accelerator": "GPU", "colab": { "gpuType": "T4", "provenance": [] }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.15" } }, "nbformat": 4, "nbformat_minor": 0 }
{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ " "\n", "Here we showcase how to split a larger circuit into multiple smaller proofs. This is useful if you want to prove over multiple machines, or if you want to split a proof into multiple parts to reduce the memory requirements.\n", "\n", "We showcase how to do this in the case where:\n", "- intermediate calculations can be public (i.e. they do not need to be kept secret) and we can stitch the circuits together using instances\n", "- intermediate calculations need to be kept secret (but not blinded !) and we need to use the low overhead kzg commitment scheme detailed [here](https: ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "First we
import the necessary dependencies and set up logging to be as informative as possible. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ " "try:\n", " "
import google.colab\n", "
import subprocess\n", "
import sys\n", " subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"ezkl\"])\n", " subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"onnx\"])\n", "\n", " "except:\n", " pass\n", "\n", "from torch