text
stringlengths
1
2.05k
import subprocess\n", "
import sys\n", " subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"ezkl\"])\n", " subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"onnx\"])\n", "\n", " "except:\n", " pass\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from torch
import nn\n", "
import ezkl\n", "
import os\n", "
import json\n", "
import torch\n", "
import math\n", "\n", " "phi = torch.tensor(5 * math.pi / 180)\n", "s = torch.sin(phi)\n", "c = torch.cos(phi)\n", "\n", "\n", "
class RotateStuff(nn.Module):\n", " def __init__(self):\n", " super(RotateStuff, self).__init__()\n", "\n", " " self.rot = torch.stack([torch.stack([c, -s]),\n", " torch.stack([s, c])]).t()\n", "\n", " def forward(self, x):\n", " x_rot = x @ self.rot " return x_rot\n", "\n", "\n", "circuit = RotateStuff()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This will showcase the principle directions of rotation by plotting the rotation of a single unit vector." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from matplotlib
import pyplot\n", "pyplot.figure(figsize=(3, 3))\n", "pyplot.arrow(0, 0, 1, 0, width=0.02, alpha=0.5)\n", "pyplot.arrow(0, 0, 0, 1, width=0.02, alpha=0.5)\n", "pyplot.arrow(0, 0, circuit.rot[0, 0].item(), circuit.rot[0, 1].item(), width=0.02)\n", "pyplot.arrow(0, 0, circuit.rot[1, 0].item(), circuit.rot[1, 1].item(), width=0.02)\n" ] }, { "cell_type": "code", "execution_count": null, "id": "b37637c4", "metadata": {}, "outputs": [], "source": [ "model_path = os.path.join('network.onnx')\n", "compiled_model_path = os.path.join('network.compiled')\n", "pk_path = os.path.join('test.pk')\n", "vk_path = os.path.join('test.vk')\n", "settings_path = os.path.join('settings.json')\n", "srs_path = os.path.join('kzg.srs')\n", "witness_path = os.path.join('witness.json')\n", "data_path = os.path.join('input.json')" ] }, { "cell_type": "code", "execution_count": null, "id": "82db373a", "metadata": {}, "outputs": [], "source": [ "\n", "\n", " "x = torch.tensor([[1, 0], [0, 1]], dtype=torch.float32)\n", "\n", " "circuit.eval()\n", "\n", " "torch.onnx.export(circuit, " x, " model_path, " export_params=True, " opset_version=10, " do_constant_folding=True, " input_names = ['input'], " output_names = ['output'], " )\n", "\n", "data_array = ((x).detach().numpy()).reshape([-1]).tolist()\n", "\n", "data = dict(input_data = [data_array])\n", "\n", " "json.dump( data, open(data_path, 'w' ))\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For demo purposes we deploy these coordinates
to a contract running locally using Anvil. This creates our on-chain world. We then rotate the world using the EZKL package and submit the proof to the contract. The contract then updates the world rotation. For demo purposes we do this repeatedly, rotating the world by 1 transform each time." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "
import subprocess\n", "
import time\n", "
import threading\n", "\n", " " "\n", "RPC_URL = \"http: "\n", " "anvil_process = None\n", "\n", "def start_anvil():\n", " global anvil_process\n", " if anvil_process is None:\n", " anvil_process = subprocess.Popen([\"anvil\", \"-p\", \"3030\", \"--code-size-limit=41943040\"])\n", " if anvil_process.returncode is not None:\n", " raise Exception(\"failed to start anvil process\")\n", " time.sleep(3)\n", "\n", "def stop_anvil():\n", " global anvil_process\n", " if anvil_process is not None:\n", " anvil_process.terminate()\n", " anvil_process = None\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We define our `PyRunArgs` objects which contains the visibility parameters for out model. \n", "- `input_visibility` defines the visibility of the model inputs\n", "- `param_visibility` defines the visibility of the model weights and constants and parameters \n", "- `output_visibility` defines the visibility of the model outputs\n", "\n", "Here we create the following setup:\n", "- `input_visibility`: \"public\"\n", "- `param_visibility`: \"fixed\"\n", "- `output_visibility`: public" ] }, { "cell_type": "code", "execution_count": null, "id": "d5e374a2", "metadata": {}, "outputs": [], "source": [ "py_run_args = ezkl.PyRunArgs()\n", "py_run_args.input_visibility = \"public\"\n", "py_run_args.output_visibility = \"public\"\n", "py_run_args.param_visibility = \"private\" "py_run_args.scale_rebase_multiplier = 10\n", "\n", "res = ezkl.gen_settings(model_path, settings_path, py_run_args=py_run_args)" ] }, { "cell_type": "code", "execution_count": null, "id": "3aa4f090", "metadata": {}, "outputs": [], "source": [ "res = ezkl.compile_circuit(model_path, compiled_model_path, settings_path)\n", "assert res == True" ] }, { "cell_t
ype": "markdown", "metadata": {}, "source": [ "We also define a contract that holds out test data. This contract will contain in its storage the data that we will read from and attest to. In production you would not need to set up a local anvil instance. Instead you would replace RPC_URL with the actual RPC endpoint of the chain you are deploying your verifiers too, reading from the data on said chain." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ezkl.setup_test_evm_witness(\n", " data_path,\n", " compiled_model_path,\n", " " data_path,\n", " input_source=ezkl.PyTestDataSource.OnChain,\n", " output_source=ezkl.PyTestDataSource.File,\n", " rpc_url=RPC_URL)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As we use Halo2 with KZG-commitments we need an SRS string from (preferably) a multi-party trusted setup ceremony. For an overview of the procedures for such a ceremony check out [this page](https: "\n", "These SRS were generated with [this](https: ] }, { "cell_type": "code", "execution_count": null, "id": "8b74dcee", "metadata": {}, "outputs": [], "source": [ " "res = ezkl.get_srs( settings_path)" ] }, { "cell_type": "code", "execution_count": null, "id": "18c8b7c7", "metadata": {}, "outputs": [], "source": [ " "\n", "witness = ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n", "assert os.path.isfile(witness_path)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here we setup verifying and proving keys for the circuit. As the name suggests the proving key is needed for ... proving and the verifying key is needed for ... verifying. " ] }, { "cell_type": "code", "execution_count": null, "id": "b1c561a8", "metadata": {}, "outputs": [], "source": [ "res = ezkl.setup(\n", " compile
d_model_path,\n", " vk_path,\n", " pk_path,\n", " \n", " )\n", "\n", "assert res == True\n", "assert os.path.isfile(vk_path)\n", "assert os.path.isfile(pk_path)\n", "assert os.path.isfile(settings_path)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can now create an EVM verifier contract from our circuit. This contract will be deployed to the chain we are using. In this case we are using a local anvil instance." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "abi_path = 'test.abi'\n", "sol_code_path = 'test.sol'\n", "\n", "res = ezkl.create_evm_verifier(\n", " vk_path,\n", " \n", " settings_path,\n", " sol_code_path,\n", " abi_path,\n", " )\n", "assert res == True" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "
import json\n", "\n", "addr_path_verifier = \"addr_verifier.txt\"\n", "\n", "res = ezkl.deploy_evm(\n", " addr_path_verifier,\n", " sol_code_path,\n", " 'http: ")\n", "\n", "assert res == True" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "With the vanilla verifier deployed, we can now create the data attestation contract, which will read in the instances from the calldata to the verifier, attest to them, call the verifier and then return the result. \n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "abi_path = 'test.abi'\n", "sol_code_path = 'test.sol'\n", "input_path = 'input.json'\n", "\n", "res = ezkl.create_evm_data_attestation(\n", " input_path,\n", " settings_path,\n", " sol_code_path,\n", " abi_path,\n", " )" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "addr_path_da = \"addr_da.txt\"\n", "\n", "res = ezkl.deploy_da_evm(\n", " addr_path_da,\n", " input_path,\n", " settings_path,\n", " sol_code_path,\n", " RPC_URL,\n", " )" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we can pull in the data from the contract and calculate a new set of coordinates. We then rotate the world by 1 transform and submit the proof to the contract. The contract could then update the world rotation (logic not inserted here). For demo purposes we do this repeatedly, rotating the world by 1 transform. " ] }, { "cell_type": "code", "execution_count": null, "id": "c384cbc8", "metadata": {}, "outputs": [], "source": [ " "\n", "\n", "proof_path = os.path.join('test.pf'
)\n", "\n", "res = ezkl.prove(\n", " witness_path,\n", " compiled_model_path,\n", " pk_path,\n", " proof_path,\n", " \n", " \"single\",\n", " )\n", "\n", "print(res)\n", "assert os.path.isfile(proof_path)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Call the view only verify method on the contract to verify the proof. Since it is a view function this is safe to use in production since you don't have to pass your private key." ] }, { "cell_type": "code", "execution_count": null, "id": "76f00d41", "metadata": {}, "outputs": [], "source": [ " "addr_verifier = None\n", "with open(addr_path_verifier, 'r') as f:\n", " addr = f.read()\n", " "addr_da = None\n", "with open(addr_path_da, 'r') as f:\n", " addr_da = f.read()\n", "\n", "res = ezkl.verify_evm(\n", " addr,\n", " proof_path,\n", " RPC_URL,\n", " addr_da,\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As a sanity check lets plot the rotations of the unit vectors. We can see that the unit vectors rotate as expected by the output of the circuit. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "witness['outputs'][0][0]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "settings = json.load(open(settings_path, 'r'))\n", "out_scale = settings[\"model_output_scales\"][0]\n", "\n", "from matplotlib
import pyplot\n", "pyplot.figure(figsize=(3, 3))\n", "pyplot.arrow(0, 0, 1, 0, width=0.02, alpha=0.5)\n", "pyplot.arrow(0, 0, 0, 1, width=0.02, alpha=0.5)\n", "\n", "arrow_x = ezkl.felt_to_float(witness['outputs'][0][0], out_scale)\n", "arrow_y = ezkl.felt_to_float(witness['outputs'][0][1], out_scale)\n", "pyplot.arrow(0, 0, arrow_x, arrow_y, width=0.02)\n", "arrow_x = ezkl.felt_to_float(witness['outputs'][0][2], out_scale)\n", "arrow_y = ezkl.felt_to_float(witness['outputs'][0][3], out_scale)\n", "pyplot.arrow(0, 0, arrow_x, arrow_y, width=0.02)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.15" } }, "nbformat": 4, "nbformat_minor": 5 }
{ "cells": [ { "attachments": { "image-3.png": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAywAAAV+CAYAAACUGLpbAAAMPWlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnltSIbQAAlJCb4JIDSAlhBZAercRkgChhBgIKnZ0UcG1iwVs6KqIYqfZETuLYsO+WFBR1sWCXXmTArruK9873zf3/vefM/85c+7cMgCon+CKxbmoBgB5okJJbEgAIzkllUF6ChCgA8hgONDj8grErOjoCABt8Px3e3cDekO76iDT+mf/fzVNvqCABwASDXE6v4CXB/FBAPAqnlhSCABRxptPLhTLMGxAWwIThHiBDGcqcJUMpyvwXrlPfCwb4lYAyKpcriQTALXLkGcU8TKhhlofxE4ivlAEgDoDYt+8vHw+xGkQ20AfMcQyfWb6DzqZf9NMH9LkcjOHsGIuciMHCgvEudyp/2c5/rfl5UoHY1jBppolCY2VzRnW7WZOfrgMq0LcK0qPjIJYC+IPQr7cH2KUmiUNTVD4o4a8AjasGdCF2InPDQyH2BDiYFFuZISST88QBnMghisEnSIs5MRDrAfxAkFBUJzSZ5MkP1YZC63PkLBZSv4cVyKPK4t1X5qTwFLqv84ScJT6mFpxVnwSxFSILYqEiZEQq0HsWJATF670GV2cxY4c9JFIY2X5W0AcKxCFBCj0saIMSXCs0r8sr2BwvtimLCEnUon3F2bFhyrqg7XyuPL84VywywIRK2FQR1CQHDE4F74gMEgxd+yZQJQQp9T5IC4MiFWMxani3GilP24myA2R8WYQuxYUxSnH4omFcEEq9PEMcWF0vCJPvDibGxatyAdfCiIAGwQCBpDClg7yQTYQtvc29MIrRU8w4AIJyAQC4KBkBkckyXtE8BgHisGfEAlAwdC4AHmvABRB/usQqzg6gAx5b5F8RA54AnEeCAe58FoqHyUaipYIHkNG+I/oXNh4MN9c2GT9/54fZL8zLMhEKBnpYESG+qAnMYgYSAwlBhNtcQPcF/fGI+DRHzZnnIl7Ds7juz/hCaGD8JBwndBFuDVRWCL5KcsxoAvqBytrkf5jLXArqOmGB+A+UB0q47q4AXDAXWEcFu4HI7tBlq3MW1YVxk/af5vBD3dD6UdxoqCUYRR/is3PI9Xs1NyGVGS1/rE+ilzTh+rNHur5OT77h+rz4Tn8Z09sAXYAO4udxM5jR7AGwMCOY41YG3ZUhodW12P56hqMFivPJwfqCP8Rb/DOyipZ4FTr1OP0RdFXKJgie0cDdr54qkSYmVXIYMEvgoDBEfEcRzCcnZxdAJB9XxSvrzcx8u8Gotv2nZv7BwA+xwcGBg5/58KOA7DPAz7+Td85Gyb8dKgAcK6JJ5UUKThcdiDAt4Q6fNL0gTEwBzZwPs7AHXgDfxAEwkAUiAcpYALMPguucwmYDKaDOaAUlIOlYBVYBzaCLWAH2A32gwZwBJwEZ8BFcBlcB3fg6ukGL0AfeAc+IwhCQmgIHdFHTBBLxB5xRpiILxKERCCxSAqShmQiIkSKTEfmIuXIcmQdshmpQfYhTchJ5DzSgdxCHiA9yGvkE4qhqqg2aoRaoSNRJspCw9F4dDyaiU5Ci9F56GJ0DVqN7kLr0ZPoRfQ62oW+QPsxgKlgupgp5oAxMTYWhaViGZgEm4mVYRVYNVaHNcP7fBXrwnqxjzgRp+MM3AGu4FA8Aefhk/CZ+CJ8Hb4Dr8db8av4A7wP/0agEQwJ9gQvAoeQTMgkTCaUEioI2wiHCKfhs9RNeEckEnWJ1kQP+CymELOJ04iLiOuJe4gniB3ER8R+EomkT7In+ZCiSFxSIamUtJa0i3ScdIXUTfpAViGbkJ3JweRUsohcQq4g7yQfI18hPyV/pmhQLClelCgKnzKVsoSyldJMuUTppnymalKtqT7UeGo2dQ51DbWOepp6l/pGRUXFTMVTJ
UZFqDJbZY3KXpVzKg9UPqpqqdqpslXHqUpVF6tuVz2hekv1DY1Gs6L501JphbTFtBraKdp92gc1upqjGkeNrzZLrVKtXu2K2kt1irqlOkt9gnqxeoX6AfVL6r0aFA0rDbYGV2OmRqVGk0anRr8mXXOUZpRmnuYizZ2a5zWfaZG0rLSCtPha87S2aJ3SekTH6OZ0Np1Hn0vfSj9N79Ymaltrc7Sztcu1d2u3a/fpaOm46iTqTNGp1Dmq06WL6VrpcnRzdZfo7te9oftpmNEw1jDBsIXD6oZdGfZeb7iev55Ar0xvj951vU/6DP0g/Rz9ZfoN+vcMcAM7gxiDyQYbDE4b9A7XHu49nDe8bPj+4bcNUUM7w1jDaYZbDNsM+42MjUKMxEZrjU4Z9RrrGvsbZxuvND5m3GNCN/E1EZqsNDlu8pyhw2AxchlrGK2MPlND01BTqelm03bTz2bWZglmJWZ7zO6ZU82Z5hnmK81bzPssTCzGWEy3qLW4bUmxZFpmWa62PGv53sraKslqvlWD1TNrPWuOdbF1rfVdG5qNn80km2qba7ZEW6Ztju1628t2qJ2bXZZdpd0le9Te3V5ov96+YwRhhOcI0YjqEZ0Oqg4shyKHWocHjrqOEY4ljg2OL0dajEwduWzk2ZHfnNyccp22Ot0ZpTUqbFTJqOZRr53tnHnOlc7XXGguwS6zXBpdXrnauwpcN7jedKO7jXGb79bi9tXdw13iXufe42HhkeZR5dHJ1GZGMxcxz3kSPAM8Z3ke8fzo5e5V6LXf6y9vB+8c753ez0ZbjxaM3jr6kY+ZD9dns0+XL8M3zXeTb5efqR/Xr9rvob+5P99/m/9Tli0rm7WL9TLAKUAScCjgPduLPYN9IhALDAksC2wP0gpKCFoXdD/YLDgzuDa4L8QtZFrIiVBCaHjostBOjhGHx6nh9IV5hM0Iaw1XDY8LXxf+MMIuQhLRPAYdEzZmxZi7kZaRosiGKBDFiVoRdS/aOnpS9OEYYkx0TGXMk9hRsdNjz8bR4ybG7Yx7Fx8QvyT+ToJNgjShJVE9cVxiTeL7pMCk5UldySOTZyRfTDFIEaY0ppJSE1O3pfaPDRq7amz3OLdxpeNujLceP2X8+QkGE3InHJ2oPpE78UAaIS0pbWfaF24Ut5rbn85Jr0rv47F5q3kv+P78lfwegY9gueBphk/G8oxnmT6ZKzJ7svyyKrJ6hWzhOuGr7NDsjdnvc6JytucM5Cbl7skj56XlNYm0RDmi1nzj/Cn5HWJ7cam4a5LXpFWT+iThkm0FSMH4gsZCbfgj3ya1kf4ifVDkW1RZ9GFy4uQDUzSniKa0TbWbunDq0+Lg4t+m4dN401qmm06fM/3BDNaMzTORmekzW2aZz5o3q3t2yOwdc6hzcub8XuJUsrzk7dykuc3zjObNnvfol5BfakvVSiWlnfO9529cgC8QLmhf6LJw7cJvZfyyC+VO5RXlXxbxFl34ddSva34dWJyxuH2J+5INS4lLRUtvLPNbtmO55vLi5Y9WjFlRv5Kxsmzl21UTV52vcK3YuJq6Wrq6a03Emsa1FmuXrv2yLmvd9cqAyj1VhlULq96v56+/ssF/Q91Go43lGz9tEm66uTlkc321VXXFFuKWoi1PtiZuPfsb87eabQbbyrd93S7a3rUjdkdrjUdNzU7DnUtq0Vppbc+ucbsu7w7c3VjnULd5j+6e8r1gr3Tv831p+27sD9/fcoB5oO6g5cGqQ/RDZfVI/dT6voashq7GlMaOprCmlmbv5kOHHQ9vP2J6pPKoztElx6jH5h0bOF58vP+E+ETvycyTj1omttw5lXzqWmtMa/vp8NPnzgSfOXWWdfb4OZ9zR857nW+6wLzQcNH9Yn2bW9uh391+P9Tu3l5/yeNS42XPy80dozuOXfG7cvJq4NUz1zjXLl6PvN5xI+HGzc5xnV03+Tef3cq99ep20e3Pd2bfJdwtu6dxr+K+4f3qP2z/2NPl3nX0QeCDtodxD+884j168bjg8ZfueU9oTyqemjyteeb87EhPcM/l52Ofd
78Qv/jcW/qn5p9VL21eHvzL/6+2vuS+7leSVwOvF73Rf7P9revblv7o/vvv8t59fl/2Qf/Djo/Mj2c/JX16+nnyF9KXNV9tvzZ/C/92dyBvYEDMlXDlvwIYbGhGBgCvtwNASwGADvdn1LGK/Z/cEMWeVY7Af8KKPaLc3AGog }, "image.png": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUAAAAEbCAYAAACr2V2eAAABYmlDQ1BJQ0MgUHJvZmlsZQAAKJF1kDFLw1AUhU9stSAVHRwEHQKKUy01rdi1LSKCQxoVqlvyWlMlTR9JRNTFQRengi5uUhd/gS4OjoKDguAgIoKDP0DsoiXeNGpbxft43I/DvYfDBTrCKudGEEDJdCxlOi3mFpfE0Au60ENPQEBlNk/J8iyN4Lu3V+2O5qhuxzyvq5px+bw3PJi1N6Nscmv173xbdecLNqP+QT/BuOUAQoxYXne4x9vE/RaFIj7wWPf5xGPN5/PGzLySIb4h7mNFNU/8RBzRWnS9hUvGGvvK4KUPF8yFOeoD9IeQRgEmshAxhRzimEAM41D+2Uk0djIog2MDFlagowiHtlOkcBjkJmKGHBmiiBBL5Cch7t369w2bWrkKJN+AQKWpaYfA2S7FvG9qI0dA7w5wes1VS/25rFAL2stxyedwGuh8dN3XUSC0D9Qrrvtedd36Mfk/ABfmJ+uTZFvl1hD0AAAAVmVYSWZNTQAqAAAACAABh2kABAAAAAEAAAAaAAAAAAADkoYABwAAABIAAABEoAIABAAAAAEAAAFAoAMABAAAAAEAAAEbAAAAAEFTQ0lJAAAAU2NyZWVuc2hvdP5iyG4AAAHWaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA2LjAuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjI4MzwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4zMjA8L2V4aWY6UGl4ZWxYRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpVc2VyQ29tbWVudD5TY3JlZW5zaG90PC9leGlmOlVzZXJDb21tZW50PgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4Kk67BXQAAJDZJREFUeAHtnQuwVVUZxxfKS+QlIKJg8pSXKJQ8VbxqqKBjJmlaUxra5KTWZPhoSoXR1DR10lIZHUsrRZMJy8hSlLhAoJiIFSqKegUUBHkICEgZ/2X7uO/hnHP3Pufsc/ZZ67dmzr377L3W2uv7ffv+73rvZqNGjfrYECAAAQh4SGAvD23GZAhAAAKWAALIgwABCHhLAAH01vUYDgEIIIA8AxCAgLcEEEBvXY/hEIAAAsgzAAEIeEsAAfTW9RgOAQgggDwDEICAtwQQQG9dj+EQgAACyDMAAQh4SwAB9Nb1GA4BCCCAPAMQgIC3BBBAb12P4RCAAALIMwABCHhLAAH01vUYDgEIIIA8AxCAgLcEEEBvXY/hEIAAAsgzAAEIeEsAAfTW9RgOAQgggDwDEICAtwQQQG9dj+EQgAACyDMAAQh4SwAB9Nb1GA4BCCCAPAMQgIC3BBBAb12P4RCAAALIMwABCHhLAAH01vU
YDgEIIIA8AxCAgLcEEEBvXY/hEIAAAsgzAAEIeEsAAfTW9RgOAQgggDwDEICAtwQQQG9dj+EQgAACyDMAAQh4SwAB9Nb1GA4BCCCAPAMQgIC3BBBAb12P4RCAAALIMwABCHhLAAH01vUYDgEIIIA8AxCAgLcEEEBvXY/hEIAAAsgzAAEIeEsAAfTW9RgOAQgggDwDEICAtwQQQG9dj+EQgAACyDMAAQh4SwAB9Nb1GA4BCCCAPAMQgIC3BBBAb12P4RCAAALIMwABCHhLAAH01vUYDgEIIIA8AxCAgLcEEEBvXY/hEIAAAsgzAAEIeEsAAfTW9RgOAQgggDwDEICAtwQQQG9dj+EQgAACyDMAAQh4SwAB9Nb1GA4BCCCAPAMQgIC3BBBAb12P4RCAAALIMwABCHhLoLm3lmN4LAIffvih0ee } }, "cell_type": "markdown", "id": "cf69bb3f-94e6-4dba-92cd-ce08df117d67", "metadata": {}, "source": [ " "\n", "\n", "XGBoost based models are slightly finicky to get into a suitable onnx format. By default most tree based models will export into something that looks like this: \n", "\n", "\n", "![image.png](attachment:image.png)\n", "\n", "\n", "Processing such nodes can be difficult and error prone. It would be much better if the operations of the tree were represented as a proper graph, possibly ... like this: \n", "\n", "\n", "![image-3.png](attachment:image-3.png)\n", "\n", "\n", "This notebook showcases how to do that using the `hummingbird` python package ! " ] }, { "cell_type": "code", "execution_count": null, "id": "a60b90d6", "metadata": {}, "outputs": [], "source": [ "!python -m pip install hummingbird_ml" ] }, { "cell_type": "code", "execution_count": null, "id": "95613ee9", "metadata": {}, "outputs": [], "source": [ " "try:\n", " "
import google.colab\n", "
import subprocess\n", "
import sys\n", " subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"ezkl\"])\n", " subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"onnx\"])\n", " subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"hummingbird-ml\"])\n", " subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"xgboost\"])\n", "\n", " "except:\n", " pass\n", "\n", "\n", " "\n", " "
import json\n", "
import numpy as np\n", "from sklearn.datasets
import load_iris\n", "from sklearn.model_selection
import train_test_split\n", "from xgboost
import XGBClassifier as Gbc\n", "
import torch\n", "
import ezkl\n", "
import os\n", "from torch
import nn\n", "
import xgboost as xgb\n", "from hummingbird.ml
import convert\n", "\n", "NUM_CLASSES = 3\n", "\n", "iris = load_iris()\n", "X, y = iris.data, iris.target\n", "X = X.astype(np.float32)\n", "X_train, X_test, y_train, y_test = train_test_split(X, y)\n", "clr = Gbc(n_estimators=12)\n", "clr.fit(X_train, y_train)\n", "\n", " "\n", "\n", "torch_gbt = convert(clr, 'torch')\n", "\n", "print(torch_gbt)\n", " "diffs = []\n", "\n", "for i in range(len(X_test)):\n", " torch_pred = torch_gbt.predict(torch.tensor(X_test[i].reshape(1, -1)))\n", " sk_pred = clr.predict(X_test[i].reshape(1, -1))\n", " diffs.append(torch_pred != sk_pred[0])\n", "\n", "print(\"num diff: \", sum(diffs))\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "id": "b37637c4", "metadata": {}, "outputs": [], "source": [ "model_path = os.path.join('network.onnx')\n", "compiled_model_path = os.path.join('network.compiled')\n", "pk_path = os.path.join('test.pk')\n", "vk_path = os.path.join('test.vk')\n", "settings_path = os.path.join('settings.json')\n", "\n", "witness_path = os.path.join('witness.json')\n", "data_path = os.path.join('input.json')" ] }, { "cell_type": "code", "execution_count": null, "id": "82db373a", "metadata": {}, "outputs": [], "source": [ " "\n", "\n", " "
\n", "\n", " "shape = X_train.shape[1:]\n", "x = torch.rand(1, *shape, requires_grad=False)\n", "torch_out = torch_gbt.predict(x)\n", " "torch.onnx.export(torch_gbt.model, " " x,\n", " " \"network.onnx\",\n", " export_params=True, " opset_version=18, " input_names=['input'], " output_names=['output'], " dynamic_axes={'input': {0: 'batch_size'}, " 'output': {0: 'batch_size'}})\n", "\n", "d = ((x).detach().numpy()).reshape([-1]).tolist()\n", "\n", "data = dict(input_shapes=[shape],\n", " input_data=[d],\n", " output_data=[(o).reshape([-1]).tolist() for o in torch_out])\n", "\n", " "json.dump(data, open(\"input.json\", 'w'))\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "run_args = ezkl.PyRunArgs()\n", "run_args.variables = [(\"batch_size\", 1)]\n", "\n", " "res = ezkl.gen_settings(model_path, settings_path, py_run_args=run_args)\n", "assert res == True\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ " "cal_data = {\n", " \"input_data\": [(torc
h.rand(20, *shape)).flatten().tolist()],\n", "}\n", "\n", "cal_path = os.path.join('calibration.json')\n", " "with open(cal_path, \"w\") as f:\n", " json.dump(cal_data, f)\n", "\n", "res = ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\")" ] }, { "cell_type": "code", "execution_count": null, "id": "3aa4f090", "metadata": {}, "outputs": [], "source": [ "res = ezkl.compile_circuit(model_path, compiled_model_path, settings_path)\n", "assert res == True" ] }, { "cell_type": "code", "execution_count": null, "id": "8b74dcee", "metadata": {}, "outputs": [], "source": [ " "res = ezkl.get_srs( settings_path)" ] }, { "cell_type": "code", "execution_count": null, "id": "18c8b7c7", "metadata": {}, "outputs": [], "source": [ " "\n", "res = ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n", "assert os.path.isfile(witness_path)" ] }, { "cell_type": "code", "execution_count": null, "id": "b1c561a8", "metadata": {}, "outputs": [], "source": [ "\n", " " " " "\n", "\n", "\n", "res = ezkl.setup(\n", " compiled_model_path,\n", " vk_path,\n", " pk_path,\n", " \n", " )\n", "\n",
"assert res == True\n", "assert os.path.isfile(vk_path)\n", "assert os.path.isfile(pk_path)\n", "assert os.path.isfile(settings_path)" ] }, { "cell_type": "code", "execution_count": null, "id": "c384cbc8", "metadata": {}, "outputs": [], "source": [ " "\n", "\n", "proof_path = os.path.join('test.pf')\n", "\n", "res = ezkl.prove(\n", " witness_path,\n", " compiled_model_path,\n", " pk_path,\n", " proof_path,\n", " \n", " \"single\",\n", " )\n", "\n", "print(res)\n", "assert os.path.isfile(proof_path)" ] }, { "cell_type": "code", "execution_count": null, "id": "76f00d41", "metadata": {}, "outputs": [], "source": [ " "\n", "res = ezkl.verify(\n", " proof_path,\n", " settings_path,\n", " vk_path,\n", " \n", " )\n", "\n", "assert res == True\n", "print(\"verified\")" ] }, { "cell_type": "code", "execution_count": null, "id": "1f50a8d0", "metadata": {}, "outputs": [], "source": [ " "\n", "res = ezkl.verify(\n", " proof_path,\n", " settings_path,\n", " vk_path,\n", " \n", " )\n", "\n",
"assert res == True\n", "print(\"verified\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.15" } }, "nbformat": 4, "nbformat_minor": 5 }
from torch import nn from ezkl import export class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.layer = nn.AvgPool2d(2, 1, (1, 1)) def forward(self, x): return self.layer(x)[0] circuit = Model() export(circuit, input_shape=[3, 2, 2])
from torch import nn from ezkl import export class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.layer = nn.BatchNorm2d(3) def forward(self, x): return self.layer(x) circuit = Model() export(circuit, input_shape=[3, 2, 2])
import torch from torch import nn from ezkl import export class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() def forward(self, x): return torch.concat([x, x], 2) circuit = MyModel() export(circuit, input_shape=[3, 2, 3, 2, 2])
from torch import nn from ezkl import export class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.layer = nn.Conv2d(3, 1, (1, 1), 1, 1) def forward(self, x): return self.layer(x) circuit = Model() export(circuit, input_shape = [3, 1, 1])
import io import numpy as np from torch import nn import torch.onnx import torch.nn as nn import torch.nn.init as init import json class Circuit(nn.Module): def __init__(self, inplace=False): super(Circuit, self).__init__() self.convtranspose = nn.ConvTranspose2d(3, 3, (5, 5), stride=2, padding=2, output_padding=1) def forward(self, x): y = self.convtranspose(x) return y def main(): torch_model = Circuit() # Input to the model shape = [3, 5, 5] x = 0.1*torch.rand(1,*shape, requires_grad=True) torch_out = torch_model(x) # Export the model torch.onnx.export(torch_model, # model being run (x), # model input (or a tuple for multiple inputs) "network.onnx", # where to save the model (can be a file or file-like object) export_params=True, # store the trained parameter weights inside the model file opset_version=10, # the ONNX version to export the model to do_constant_folding=True, # whether to execute constant folding for optimization input_names = ['input'], # the model's input names output_names = ['output'], # the model's output names dynamic_axes={'input' : {0 : 'batch_size'}, # variable length axes 'output' : {0 : 'batch_size'}}) d = ((x).detach().numpy()).reshape([-1]).tolist() data = dict(input_shapes = [shape], input_data = [d], output_data = [((o).detach().numpy()).reshape([-1]).tolist() for o in torch_out]) # Serialize data into file: json.dump(data, open("input.json", 'w')) if __name__ == "__main__": main()
from torch import nn from ezkl import export class Circuit(nn.Module): def __init__(self, inplace=False): super(Circuit, self).__init__() def forward(self, x): return x/ 10 circuit = Circuit() export(circuit, input_shape = [1])
from torch import nn from ezkl import export class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.layer = nn.Conv2d(3, 1, (1, 1), 2, 1) def forward(self, x): return self.layer(x) circuit = Model() export(circuit, input_shape=[3, 6, 6])
from torch import nn from ezkl import export class Circuit(nn.Module): def __init__(self, inplace=False): super(Circuit, self).__init__() def forward(self, x): return x/(2*x) circuit = Circuit() export(circuit, input_shape=[1])
from torch import nn import torch import json class Circuit(nn.Module): def __init__(self): super(Circuit, self).__init__() self.layer = nn.ELU() def forward(self, x): return self.layer(x) def main(): torch_model = Circuit() # Input to the model shape = [3, 2, 3] x = 0.1*torch.rand(1, *shape, requires_grad=True) torch_out = torch_model(x) # Export the model torch.onnx.export(torch_model, # model being run # model input (or a tuple for multiple inputs) x, # where to save the model (can be a file or file-like object) "network.onnx", export_params=True, # store the trained parameter weights inside the model file opset_version=10, # the ONNX version to export the model to do_constant_folding=True, # whether to execute constant folding for optimization input_names=['input'], # the model's input names output_names=['output'], # the model's output names dynamic_axes={'input': {0: 'batch_size'}, # variable length axes 'output': {0: 'batch_size'}}) d = ((x).detach().numpy()).reshape([-1]).tolist() data = dict(input_shapes=[shape, shape, shape], input_data=[d], output_data=[((o).detach().numpy()).reshape([-1]).tolist() for o in torch_out]) # Serialize data into file: json.dump(data, open("input.json", 'w')) if __name__ == "__main__": main()
import json import torch from torch import nn class Circuit(nn.Module): def __init__(self): super(Circuit, self).__init__() def forward(self, x): return torch.special.erf(x) def main(): torch_model = Circuit() # Input to the model shape = [3] x = torch.rand(1,*shape, requires_grad=True) torch_out = torch_model(x) # Export the model torch.onnx.export(torch_model, # model being run x, # model input (or a tuple for multiple inputs) "network.onnx", # where to save the model (can be a file or file-like object) export_params=True, # store the trained parameter weights inside the model file opset_version=10, # the ONNX version to export the model to do_constant_folding=True, # whether to execute constant folding for optimization input_names = ['input'], # the model's input names output_names = ['output'], # the model's output names dynamic_axes={'input' : {0 : 'batch_size'}, # variable length axes 'output' : {0 : 'batch_size'}}) d = ((x).detach().numpy()).reshape([-1]).tolist() data = dict(input_shapes = [shape], input_data = [d], output_data = [((o).detach().numpy()).reshape([-1]).tolist() for o in torch_out]) # Serialize data into file: json.dump( data, open( "input.json", 'w' ) ) if __name__ == "__main__": main()
import io import numpy as np from torch import nn import torch.onnx import torch.nn as nn import torch.nn.init as init import json class Circuit(nn.Module): def __init__(self): super(Circuit, self).__init__() self.flatten = nn.Flatten() def forward(self, x): return self.flatten(x) def main(): torch_model = Circuit() # Input to the model shape = [3, 2, 3] x = 0.1*torch.rand(1,*shape, requires_grad=True) torch_out = torch_model(x) # Export the model torch.onnx.export(torch_model, # model being run x, # model input (or a tuple for multiple inputs) "network.onnx", # where to save the model (can be a file or file-like object) export_params=True, # store the trained parameter weights inside the model file opset_version=10, # the ONNX version to export the model to do_constant_folding=True, # whether to execute constant folding for optimization input_names = ['input'], # the model's input names output_names = ['output'], # the model's output names dynamic_axes={'input' : {0 : 'batch_size'}, # variable length axes 'output' : {0 : 'batch_size'}}) d = ((x).detach().numpy()).reshape([-1]).tolist() data = dict(input_shapes = [shape, shape, shape], input_data = [d], output_data = [((o).detach().numpy()).reshape([-1]).tolist() for o in torch_out]) # Serialize data into file: json.dump( data, open( "input.json", 'w' ) ) if __name__ == "__main__": main()
import json import torch from torch import nn class Circuit(nn.Module): def __init__(self): super(Circuit, self).__init__() self.layer = nn.GELU() # approximation = false in our case def forward(self, x): return self.layer(x) def main(): torch_model = Circuit() # Input to the model shape = [3] x = torch.rand(1,*shape, requires_grad=True) torch_out = torch_model(x) # Export the model torch.onnx.export(torch_model, # model being run x, # model input (or a tuple for multiple inputs) "network.onnx", # where to save the model (can be a file or file-like object) export_params=True, # store the trained parameter weights inside the model file opset_version=10, # the ONNX version to export the model to do_constant_folding=True, # whether to execute constant folding for optimization input_names = ['input'], # the model's input names output_names = ['output'], # the model's output names dynamic_axes={'input' : {0 : 'batch_size'}, # variable length axes 'output' : {0 : 'batch_size'}}) d = ((x).detach().numpy()).reshape([-1]).tolist() data = dict(input_shapes = [shape], input_data = [d], output_data = [((o).detach().numpy()).reshape([-1]).tolist() for o in torch_out]) # Serialize data into file: json.dump( data, open( "input.json", 'w' ) ) if __name__ == "__main__": main()
import json import torch from torch import nn class Circuit(nn.Module): def __init__(self): super(Circuit, self).__init__() self.layer = nn.GELU('tanh') # approximation = false in our case def forward(self, x): return self.layer(x) def main(): torch_model = Circuit() # Input to the model shape = [3] x = torch.rand(1,*shape, requires_grad=True) torch_out = torch_model(x) # Export the model torch.onnx.export(torch_model, # model being run x, # model input (or a tuple for multiple inputs) "network.onnx", # where to save the model (can be a file or file-like object) export_params=True, # store the trained parameter weights inside the model file opset_version=10, # the ONNX version to export the model to do_constant_folding=True, # whether to execute constant folding for optimization input_names = ['input'], # the model's input names output_names = ['output'], # the model's output names dynamic_axes={'input' : {0 : 'batch_size'}, # variable length axes 'output' : {0 : 'batch_size'}}) d = ((x).detach().numpy()).reshape([-1]).tolist() data = dict(input_shapes = [shape], input_data = [d], output_data = [((o).detach().numpy()).reshape([-1]).tolist() for o in torch_out]) # Serialize data into file: json.dump( data, open( "input.json", 'w' ) ) if __name__ == "__main__": main()
import torch from torch import nn import json class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() def forward(self, x): return x circuit = MyModel() x = 0.1*torch.rand(1, *[2], requires_grad=True) # Flips the neural net into inference mode circuit.eval() # Export the model torch.onnx.export(circuit, # model being run # model input (or a tuple for multiple inputs) x, # where to save the model (can be a file or file-like object) "network.onnx", export_params=True, # store the trained parameter weights inside the model file opset_version=10, # the ONNX version to export the model to do_constant_folding=True, # whether to execute constant folding for optimization input_names=['input'], # the model's input names output_names=['output'], # the model's output names dynamic_axes={'input': {0: 'batch_size'}, # variable length axes 'output': {0: 'batch_size'}}) data_array = ((x).detach().numpy()).reshape([-1]).tolist() data = dict(input_data=[data_array]) # Serialize data into file: json.dump(data, open("input.json", 'w'))
from torch import nn from ezkl import export import torch class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() self.layer = nn.InstanceNorm2d(3).eval() def forward(self, x): return [self.layer(x)] circuit = MyModel() export(circuit, input_shape=[3, 2, 2])
from torch import nn from ezkl import export class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.layer = nn.LeakyReLU(negative_slope=0.05) def forward(self, x): return self.layer(x) circuit = Model() export(circuit, input_shape = [3])
import random import math import numpy as np import torch from torch import nn import torch.nn.functional as F import json model = nn.Linear(1, 1) x = torch.randn(1, 1) print(x) # Flips the neural net into inference mode model.eval() model.to('cpu') # Export the model torch.onnx.export(model, # model being run # model input (or a tuple for multiple inputs) x, # where to save the model (can be a file or file-like object) "network.onnx", export_params=True, # store the trained parameter weights inside the model file opset_version=10, # the ONNX version to export the model to do_constant_folding=True, # whether to execute constant folding for optimization input_names=['input'], # the model's input names output_names=['output'], # the model's output names dynamic_axes={'input': {0: 'batch_size'}, # variable length axes 'output': {0: 'batch_size'}}) data_array = ((x).detach().numpy()).reshape([-1]).tolist() data_json = dict(input_data=[data_array]) print(data_json) # Serialize data into file: json.dump(data_json, open("input.json", 'w'))
from torch import nn import torch import json class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.layer = nn.LPPool2d(2, 1, (1, 1)) def forward(self, x): return self.layer(x)[0] circuit = Model() x = torch.empty(1, 3, 2, 2).uniform_(0, 1) out = circuit(x) print(out) torch.onnx.export(circuit, x, "network.onnx", export_params=True, # store the trained parameter weights inside the model file opset_version=17, # the ONNX version to export the model to do_constant_folding=True, # whether to execute constant folding for optimization input_names=['input'], # the model's input names output_names=['output'], # the model's output names dynamic_axes={'input': {0: 'batch_size'}, # variable length axes 'output': {0: 'batch_size'}}) d1 = ((x).detach().numpy()).reshape([-1]).tolist() data = dict( input_data=[d1], ) # Serialize data into file: json.dump(data, open("input.json", 'w'))
from torch import nn from ezkl import export import torch class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.layer = nn.MaxPool2d(2, 1, (1, 1), 1, 1) def forward(self, x): return self.layer(x)[0] circuit = Model() # Input to the model shape = [3, 2, 2] x = torch.rand(1, *shape, requires_grad=False) torch_out = circuit(x) # Export the model torch.onnx.export(circuit, # model being run # model input (or a tuple for multiple inputs) x, # where to save the model (can be a file or file-like object) "network.onnx", export_params=True, # store the trained parameter weights inside the model file opset_version=14, # the ONNX version to export the model to do_constant_folding=True, # whether to execute constant folding for optimization input_names=['input'], # the model's input names output_names=['output'], # the model's output names dynamic_axes={'input': {0: 'batch_size'}, # variable length axes 'output': {0: 'batch_size'}}) d = ((x).detach().numpy()).reshape([-1]).tolist() data = dict(input_shapes=[shape], input_data=[d], output_data=[(o).reshape([-1]).tolist() for o in torch_out])
from torch import nn from ezkl import export class Model(nn.Module): def __init__(self): super(Model, self).__init__() def forward(self, x): return nn.functional.pad(x, (1,1)) circuit = Model() export(circuit, input_shape = [3, 2, 2])
from torch import nn import torch import json import numpy as np class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() def forward(self, x): return torch.pow(x, -0.1) circuit = MyModel() x = torch.rand(1, 4) torch.onnx.export(circuit, (x), "network.onnx", export_params=True, # store the trained parameter weights inside the model file opset_version=15, # the ONNX version to export the model to do_constant_folding=True, # whether to execute constant folding for optimization input_names=['input'], # the model's input names output_names=['output'], # the model's output names dynamic_axes={'input': {0: 'batch_size'}, # variable length axes 'output': {0: 'batch_size'}}) d = ((x).detach().numpy()).reshape([-1]).tolist() data = dict( input_data=[d], ) # Serialize data into file: json.dump(data, open("input.json", 'w'))
from torch import nn from ezkl import export class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.layer = nn.PReLU(num_parameters=3, init=0.25) def forward(self, x): return self.layer(x) circuit = Model() export(circuit, input_shape = [3, 2, 2])
from torch import nn from ezkl import export class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() self.layer = nn.ReLU() def forward(self, x): return self.layer(x) circuit = MyModel() export(circuit, input_shape = [3])
import torch from torch import nn from ezkl import export class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() def forward(self, x): x = x.reshape([-1, 6]) return x circuit = MyModel() export(circuit, input_shape=[1, 3, 2])
from torch import nn from ezkl import export class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() self.layer = nn.Sigmoid() def forward(self, x): return self.layer(x) circuit = MyModel() export(circuit, input_shape = [3])
import torch from torch import nn from ezkl import export class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() def forward(self, x): return x[:,1:2] circuit = MyModel() export(circuit, input_shape=[3, 2])
import torch from torch import nn from ezkl import export class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() self.layer = nn.Softmax(dim=1) def forward(self, x): return self.layer(x) circuit = MyModel() export(circuit, input_shape=[3])
import torch from torch import nn from ezkl import export class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() def forward(self, x): return torch.sqrt(x) circuit = MyModel() export(circuit, input_shape = [3])
from torch import nn import torch import json class Circuit(nn.Module): def __init__(self, inplace=False): super(Circuit, self).__init__() def forward(self, x): return x/ 10000 circuit = Circuit() x = torch.empty(1, 8).random_(0, 2) out = circuit(x) print(out) torch.onnx.export(circuit, x, "network.onnx", export_params=True, # store the trained parameter weights inside the model file opset_version=17, # the ONNX version to export the model to do_constant_folding=True, # whether to execute constant folding for optimization input_names=['input'], # the model's input names output_names=['output'], # the model's output names dynamic_axes={'input': {0: 'batch_size'}, # variable length axes 'output': {0: 'batch_size'}}) d1 = ((x).detach().numpy()).reshape([-1]).tolist() data = dict( input_data=[d1], ) # Serialize data into file: json.dump(data, open("input.json", 'w'))
from torch import nn import torch import json class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() def forward(self, x): topk_largest = torch.topk(x, 4) topk_smallest = torch.topk(x, 4, largest=False) print(topk_largest) print(topk_smallest) return topk_largest.values + topk_smallest.values circuit = MyModel() x = torch.randint(10, (1, 6)) y = circuit(x) torch.onnx.export(circuit, x, "network.onnx", export_params=True, # store the trained parameter weights inside the model file opset_version=14, # the ONNX version to export the model to do_constant_folding=True, # whether to execute constant folding for optimization input_names=['input'], # the model's input names output_names=['output'], # the model's output names dynamic_axes={'input': {0: 'batch_size'}, # variable length axes 'output': {0: 'batch_size'}}) d = ((x).detach().numpy()).reshape([-1]).tolist() data = dict( input_data=[d], output_data=[((o).detach().numpy()).reshape([-1]).tolist() for o in y] ) # Serialize data into file: json.dump(data, open("input.json", 'w'))
import io import numpy as np from torch import nn import torch.onnx import torch.nn as nn import torch.nn.init as init import json class Circuit(nn.Module): def __init__(self, inplace=False): super(Circuit, self).__init__() self.upsample = nn.Upsample(scale_factor=2, mode='nearest') def forward(self, x): y = self.upsample(x) return y def main(): torch_model = Circuit() # Input to the model shape = [3, 5, 5] x = 0.1*torch.rand(1,*shape, requires_grad=True) torch_out = torch_model(x) # Export the model torch.onnx.export(torch_model, # model being run (x), # model input (or a tuple for multiple inputs) "network.onnx", # where to save the model (can be a file or file-like object) export_params=True, # store the trained parameter weights inside the model file opset_version=11, # the ONNX version to export the model to do_constant_folding=True, # whether to execute constant folding for optimization input_names = ['input'], # the model's input names output_names = ['output'], # the model's output names dynamic_axes={'input' : {0 : 'batch_size'}, # variable length axes 'output' : {0 : 'batch_size'}}) d = ((x).detach().numpy()).reshape([-1]).tolist() data = dict(input_shapes = [shape], input_data = [d], output_data = [((o).detach().numpy()).reshape([-1]).tolist() for o in torch_out]) # Serialize data into file: json.dump(data, open("input.json", 'w')) if __name__ == "__main__": main()
from torch import nn from ezkl import export import torch class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() def forward(self, x): return [torch.var(x, unbiased=False, dim=[1,2])] circuit = MyModel() export(circuit, input_shape = [1,3,3])
from torch import nn import torch import json class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() def forward(self, x): return [torch.where(x >= 0.0, 3.0, 5.0)] circuit = MyModel() x = torch.randint(1, (1, 64)) torch.onnx.export(circuit, x, "network.onnx", export_params=True, # store the trained parameter weights inside the model file opset_version=10, # the ONNX version to export the model to do_constant_folding=True, # whether to execute constant folding for optimization input_names=['input'], # the model's input names output_names=['output'], # the model's output names dynamic_axes={'input': {0: 'batch_size'}, # variable length axes 'output': {0: 'batch_size'}}) d = ((x).detach().numpy()).reshape([-1]).tolist() data = dict( input_data=[d], ) # Serialize data into file: json.dump(data, open("input.json", 'w'))
from torch import nn import torch.nn.init as init from ezkl import export class Model(nn.Module): def __init__(self, inplace=False): super(Model, self).__init__() self.aff1 = nn.Linear(3,1) self.relu = nn.ReLU() self._initialize_weights() def forward(self, x): x = self.aff1(x) x = self.relu(x) return (x) def _initialize_weights(self): init.orthogonal_(self.aff1.weight) circuit = Model() export(circuit, input_shape = [3])
from torch import nn from ezkl import export class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() self.fc = nn.Linear(3, 2) def forward(self, x): x = self.sigmoid(x) x = self.sigmoid(x) return x circuit = MyModel() export(circuit, input_shape = [1])
from torch import nn from ezkl import export class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() self.conv1 = nn.Conv2d(1,4, kernel_size=5, stride=2) self.conv2 = nn.Conv2d(4,4, kernel_size=5, stride=2) self.relu = nn.ReLU() self.fc = nn.Linear(4*4*4, 10) def forward(self, x): x = x.view(-1,1,28,28) x = self.relu(self.conv1(x)) x = self.relu(self.conv2(x)) x = x.view(-1,4*4*4) x = self.fc(x) return x circuit = MyModel() export(circuit, input_shape = [1,28,28])
from torch import nn from ezkl import export class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() self.conv1 = nn.Conv2d(in_channels=1, out_channels=2, kernel_size=5, stride=2) self.conv2 = nn.Conv2d(in_channels=2, out_channels=3, kernel_size=5, stride=2) self.relu = nn.ReLU() self.d1 = nn.Linear(48, 48) self.d2 = nn.Linear(48, 10) def forward(self, x): # 32x1x28x28 => 32x32x26x26 x = self.conv1(x) x = self.relu(x) x = self.conv2(x) x = self.relu(x) # flatten => 32 x (32*26*26) x = x.flatten(start_dim = 1) # x = x.flatten() # 32 x (32*26*26) => 32x128 x = self.d1(x) x = self.relu(x) # logits => 32x10 logits = self.d2(x) return logits circuit = MyModel() export(circuit, input_shape = [1,28,28])
from torch import nn import torch import json import numpy as np class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() def forward(self): return torch.arange(0, 10, 2) circuit = MyModel() torch.onnx.export(circuit, (), "network.onnx", export_params=True, # store the trained parameter weights inside the model file opset_version=15, # the ONNX version to export the model to do_constant_folding=True, # whether to execute constant folding for optimization output_names=['output'], # the model's output names ) data = dict( input_data=[[]], ) # Serialize data into file: json.dump(data, open("input.json", 'w'))
from torch import nn import torch import json import numpy as np class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() def forward(self, w, x, y, z): return x << 2, y >> 3, z << 1, w >> 4 circuit = MyModel() # random integers between 0 and 100 x = torch.empty(1, 3).uniform_(0, 100).to(torch.int32) y = torch.empty(1, 3).uniform_(0, 100).to(torch.int32) z = torch.empty(1, 3).uniform_(0, 100).to(torch.int32) w = torch.empty(1, 3).uniform_(0, 100).to(torch.int32) torch.onnx.export(circuit, (w, x, y, z), "network.onnx", export_params=True, # store the trained parameter weights inside the model file opset_version=16, # the ONNX version to export the model to do_constant_folding=True, # whether to execute constant folding for optimization input_names=['input', 'input1', 'input2', 'input3'], # the model's input names output_names=['output'], # the model's output names dynamic_axes={'input': {0: 'batch_size'}, # variable length axes 'input1': {0: 'batch_size'}, 'input2': {0: 'batch_size'}, 'input3': {0: 'batch_size'}, 'output': {0: 'batch_size'}, 'output1': {0: 'batch_size'}, 'output2': {0: 'batch_size'}, 'output3': {0: 'batch_size'}}) d = ((w).detach().numpy()).reshape([-1]).tolist() d1 = ((x).detach().numpy()).reshape([-1]).tolist() d2 = ((y).detach().numpy()).reshape([-1]).tolist() d3 = ((z).detach().numpy()).reshape([-1]).tolist() data = dict( input_data=[d, d1, d2, d3], ) # Serialize data into file: json.dump(data, open("input.json", 'w'))
from torch import nn import torch import json import numpy as np class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() def forward(self, w, x, y, z): # bitwise and and_xy = torch.bitwise_and(x, y) # bitwise or or_yz = torch.bitwise_or(y, z) # bitwise not not_wyz = torch.bitwise_not(or_yz) return not_wyz circuit = MyModel() a = torch.empty(1, 3).uniform_(0, 1) w = torch.bernoulli(a).to(torch.bool) x = torch.bernoulli(a).to(torch.bool) y = torch.bernoulli(a).to(torch.bool) z = torch.bernoulli(a).to(torch.bool) torch.onnx.export(circuit, (w, x, y, z), "network.onnx", export_params=True, # store the trained parameter weights inside the model file opset_version=16, # the ONNX version to export the model to do_constant_folding=True, # whether to execute constant folding for optimization input_names=['input', 'input1', 'input2', 'input3'], # the model's input names output_names=['output'], # the model's output names dynamic_axes={'input': {0: 'batch_size'}, # variable length axes 'input1': {0: 'batch_size'}, 'input2': {0: 'batch_size'}, 'input3': {0: 'batch_size'}, 'output': {0: 'batch_size'}}) d = ((w).detach().numpy()).reshape([-1]).tolist() d1 = ((x).detach().numpy()).reshape([-1]).tolist() d2 = ((y).detach().numpy()).reshape([-1]).tolist() d3 = ((z).detach().numpy()).reshape([-1]).tolist() data = dict( input_data=[d, d1, d2, d3], ) # Serialize data into file: json.dump(data, open("input.json", 'w'))
from torch import nn import torch import json import numpy as np class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() def forward(self, x): # bitwise and bmw = torch.blackman_window(8) + x return bmw circuit = MyModel() x = torch.empty(1, 8).uniform_(0, 1) torch.onnx.export(circuit, x, "network.onnx", export_params=True, # store the trained parameter weights inside the model file opset_version=16, # the ONNX version to export the model to do_constant_folding=True, # whether to execute constant folding for optimization input_names=['input'], # the model's input names output_names=['output'], # the model's output names dynamic_axes={'input': {0: 'batch_size'}, # variable length axes 'output': {0: 'batch_size'}}) d1 = ((x).detach().numpy()).reshape([-1]).tolist() data = dict( input_data=[d1], ) # Serialize data into file: json.dump(data, open("input.json", 'w'))
from torch import nn import torch import json import numpy as np class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() def forward(self, w, x, y, z): return [((x & y)) == (x & (y | (z ^ w)))] circuit = MyModel() a = torch.empty(1, 3).uniform_(0, 1) w = torch.bernoulli(a).to(torch.bool) x = torch.bernoulli(a).to(torch.bool) y = torch.bernoulli(a).to(torch.bool) z = torch.bernoulli(a).to(torch.bool) torch.onnx.export(circuit, (w, x, y, z), "network.onnx", export_params=True, # store the trained parameter weights inside the model file opset_version=15, # the ONNX version to export the model to do_constant_folding=True, # whether to execute constant folding for optimization input_names=['input', 'input1', 'input2', 'input3'], # the model's input names output_names=['output'], # the model's output names dynamic_axes={'input': {0: 'batch_size'}, # variable length axes 'input1': {0: 'batch_size'}, 'input2': {0: 'batch_size'}, 'input3': {0: 'batch_size'}, 'output': {0: 'batch_size'}}) d = ((w).detach().numpy()).reshape([-1]).tolist() d1 = ((x).detach().numpy()).reshape([-1]).tolist() d2 = ((y).detach().numpy()).reshape([-1]).tolist() d3 = ((z).detach().numpy()).reshape([-1]).tolist() data = dict( input_data=[d, d1, d2, d3], ) # Serialize data into file: json.dump(data, open("input.json", 'w'))
from torch import nn import torch import json import numpy as np class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() def forward(self, x): return [x] circuit = MyModel() a = torch.empty(1, 3).uniform_(0, 1) x = torch.bernoulli(a).to(torch.bool) torch.onnx.export(circuit, x, "network.onnx", export_params=True, # store the trained parameter weights inside the model file opset_version=15, # the ONNX version to export the model to do_constant_folding=True, # whether to execute constant folding for optimization input_names=['input'], # the model's input names output_names=['output'], # the model's output names dynamic_axes={'input': {0: 'batch_size'}, # variable length axes 'output': {0: 'batch_size'}}) d1 = ((x).detach().numpy()).reshape([-1]).tolist() data = dict( input_data=[d1], ) # Serialize data into file: json.dump(data, open("input.json", 'w'))
from torch import nn import torch import json import numpy as np class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() def forward(self, x): m = nn.CELU()(x) return m circuit = MyModel() x = torch.empty(1, 8).uniform_(0, 1) out = circuit(x) print(out) torch.onnx.export(circuit, x, "network.onnx", export_params=True, # store the trained parameter weights inside the model file opset_version=17, # the ONNX version to export the model to do_constant_folding=True, # whether to execute constant folding for optimization input_names=['input'], # the model's input names output_names=['output'], # the model's output names dynamic_axes={'input': {0: 'batch_size'}, # variable length axes 'output': {0: 'batch_size'}}) d1 = ((x).detach().numpy()).reshape([-1]).tolist() data = dict( input_data=[d1], ) # Serialize data into file: json.dump(data, open("input.json", 'w'))
from torch import nn import torch import json import numpy as np class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() def forward(self, x): m = torch.clamp(x, min=0.4, max=0.8) return m circuit = MyModel() x = torch.empty(1, 2, 2, 8).uniform_(0, 1) out = circuit(x) print(out) torch.onnx.export(circuit, x, "network.onnx", export_params=True, # store the trained parameter weights inside the model file opset_version=17, # the ONNX version to export the model to do_constant_folding=True, # whether to execute constant folding for optimization input_names=['input'], # the model's input names output_names=['output'], # the model's output names dynamic_axes={'input': {0: 'batch_size'}, # variable length axes 'output': {0: 'batch_size'}}) d1 = ((x).detach().numpy()).reshape([-1]).tolist() data = dict( input_data=[d1], ) # Serialize data into file: json.dump(data, open("input.json", 'w'))
# Train a model. import json import onnxruntime as rt from skl2onnx import to_onnx import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier as De import sk2torch import torch iris = load_iris() X, y = iris.data, iris.target X = X.astype(np.float32) X_train, X_test, y_train, y_test = train_test_split(X, y) clr = De() clr.fit(X_train, y_train) torch_model = sk2torch.wrap(clr) # Convert into ONNX format. # export to onnx format # Input to the model shape = X_train.shape[1:] x = torch.rand(1, *shape, requires_grad=True) torch_out = torch_model(x) # Export the model torch.onnx.export(torch_model, # model being run # model input (or a tuple for multiple inputs) x, # where to save the model (can be a file or file-like object) "network.onnx", export_params=True, # store the trained parameter weights inside the model file opset_version=10, # the ONNX version to export the model to do_constant_folding=True, # whether to execute constant folding for optimization input_names=['input'], # the model's input names output_names=['output'], # the model's output names dynamic_axes={'input': {0: 'batch_size'}, # variable length axes 'output': {0: 'batch_size'}}) d = ((x).detach().numpy()).reshape([-1]).tolist() data = dict(input_shapes=[shape], input_data=[d], output_data=[((o).detach().numpy()).reshape([-1]).tolist() for o in torch_out]) # Serialize data into file: json.dump(data, open("input.json", 'w'))
from torch import nn from ezkl import export class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() def forward(self, x): return x circuit = MyModel() export(circuit, input_shape=[1, 64, 64])
from torch import nn import torch import json import numpy as np class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() def forward(self, x): m = x @ torch.eye(8) return m circuit = MyModel() x = torch.empty(1, 8).uniform_(0, 1) out = circuit(x) print(out) torch.onnx.export(circuit, x, "network.onnx", export_params=True, # store the trained parameter weights inside the model file opset_version=17, # the ONNX version to export the model to do_constant_folding=True, # whether to execute constant folding for optimization input_names=['input'], # the model's input names output_names=['output'], # the model's output names dynamic_axes={'input': {0: 'batch_size'}, # variable length axes 'output': {0: 'batch_size'}}) d1 = ((x).detach().numpy()).reshape([-1]).tolist() data = dict( input_data=[d1], ) # Serialize data into file: json.dump(data, open("input.json", 'w'))
from torch import nn import torch import json import numpy as np class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() def forward(self, w, x): return torch.gather(w, 1, x) circuit = MyModel() w = torch.rand(1, 15, 18) x = torch.randint(0, 15, (1, 15, 2)) torch.onnx.export(circuit, (w, x), "network.onnx", export_params=True, # store the trained parameter weights inside the model file opset_version=15, # the ONNX version to export the model to do_constant_folding=True, # whether to execute constant folding for optimization input_names=['input', 'input1'], # the model's input names output_names=['output'], # the model's output names dynamic_axes={'input': {0: 'batch_size'}, # variable length axes 'input1': {0: 'batch_size'}, 'output': {0: 'batch_size'}}) d = ((w).detach().numpy()).reshape([-1]).tolist() d1 = ((x).detach().numpy()).reshape([-1]).tolist() data = dict( input_data=[d, d1], ) # Serialize data into file: json.dump(data, open("input.json", 'w'))
from torch import nn import json import numpy as np import tf2onnx import tensorflow as tf from tensorflow.keras.layers import * from tensorflow.keras.models import Model # gather_nd in tf then export to onnx x = in1 = Input((15, 18,)) w = in2 = Input((15, 1), dtype=tf.int32) x = tf.gather_nd(x, w, batch_dims=1) tm = Model((in1, in2), x ) tm.summary() tm.compile(optimizer='adam', loss='mse') shape = [1, 15, 18] index_shape = [1, 15, 1] # After training, export to onnx (network.onnx) and create a data file (input.json) x = 0.1*np.random.rand(1,*shape) # w = random int tensor w = np.random.randint(0, 10, index_shape) spec = tf.TensorSpec(shape, tf.float32, name='input_0') index_spec = tf.TensorSpec(index_shape, tf.int32, name='input_1') model_path = "network.onnx" tf2onnx.convert.from_keras(tm, input_signature=[spec, index_spec], inputs_as_nchw=['input_0', 'input_1'], opset=12, output_path=model_path) d = x.reshape([-1]).tolist() d1 = w.reshape([-1]).tolist() data = dict( input_data=[d, d1], ) # Serialize data into file: json.dump(data, open("input.json", 'w'))
import json
import numpy as np from sklearn.datasets
import load_iris from sklearn.model_selection
import train_test_split from sklearn.ensemble
import GradientBoostingClassifier as Gbc
import sk2torch
import torch
import ezkl
import os from torch