text
stringlengths 1
2.05k
|
---|
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
self.attn_dropout = nn.Dropout(config.dropout)
self.resid_dropout = nn.Dropout(config.dropout)
self.n_head = config.n_head
self.n_embd = config.n_embd
self.dropout = config.dropout
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
.view(1, 1, config.block_size, config.block_size))
def forward(self, x):
B, T, C = x.size()
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C
q = q.view(B, T, self.n_head, C
v = v.view(B, T, self.n_head, C
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float(-10))
att = F.softmax(att, dim=-1)
att = self.attn_dropout(att)
y = att @ v
y = y.transpose(1, 2).contiguous().view(B, T, C)
y = self.resid_dropout(self.c_proj(y))
return y |
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
self.dropout = nn.Dropout(config.dropout)
def forward(self, x):
x = self.c_fc(x)
x = new_gelu(x)
x = self.c_proj(x)
x = self.dropout(x)
return x |
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attention = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attention(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
shape = [1, 64, 64]
x = torch.ones(1, 64, 64)
config = GPTConfig(block_size = 64, vocab_size = 65, n_layer = 4, n_head = 4, n_embd = 64,dropout = 0.0, bias = False)
model = Block(config)
torch_out = model(x)
torch.onnx.export(model, x, "network.onnx",
export_params=True,
opset_version=10,
do_constant_folding=True,
input_names = ['input'],
output_names = ['output'],
dynamic_axes={'input' : {0 : 'batch_size'},
'output' : {0 : 'batch_size'}})
d = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(input_shapes = [shape],
input_data = [d],
output_data = [((o).detach().numpy()).reshape([-1]).tolist() for o in torch_out])
json.dump( data, open( "input.json", 'w' ) ) |
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = nn.SELU()(x)
return m
circuit = MyModel()
x = torch.empty(1, 8).uniform_(0, 1)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))
|
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = nn.Softplus()(x)
return m
circuit = MyModel()
x = torch.empty(1, 8).uniform_(0, 1)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))
|
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = nn.Softsign()(x)
return m
circuit = MyModel()
x = torch.empty(1, 8).uniform_(0, 1)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))
|
import io |
import numpy as np
from torch |
import nn |
import torch.onnx |
import torch |
import torch.nn as nn |
import torch.nn.init as init |
import json |
class Circuit(nn.Module):
def __init__(self):
super(Circuit, self).__init__()
self.softplus = nn.Softplus()
def forward(self, x):
x = self.softplus(x)
x = torch.cos(x)
x = torch.sin(x)
x = torch.tan(x)
x = torch.acos(x)
x = torch.asin(x)
x = torch.atan(x)
x = torch.tanh(x)
return (-x).abs().sign()
def main():
torch_model = Circuit()
shape = [3, 2, 3]
x = 0.1*torch.rand(1, *shape, requires_grad=True)
torch_out = torch_model(x)
torch.onnx.export(torch_model,
x,
"network.onnx",
export_params=True,
opset_version=10,
do_constant_folding=True,
input_names=['input'],
output_names=['output'],
dynamic_axes={'input': {0: 'batch_size'},
'output': {0: 'batch_size'}})
d = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(input_shapes=[shape, shape, shape],
input_data=[d],
output_data=[((o).detach().numpy()).reshape([-1]).tolist() for o in torch_out])
json.dump(data, open("input.json", 'w'))
if __name__ == "__main__":
main() |
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = torch.triu(x)
return m
circuit = MyModel()
x = torch.empty(1, 3, 3).uniform_(0, 5)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))
|
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = torch.tril(x)
return m
circuit = MyModel()
x = torch.empty(1, 3, 3).uniform_(0, 5)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))
|
import io |
import numpy as np
from torch |
import nn |
import torch.onnx |
import torch.nn as nn |
import torch.nn.init as init |
import json |
class Circuit(nn.Module):
def __init__(self, inplace=False):
super(Circuit, self).__init__()
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
self.conv = nn.Conv2d(3, 3, (2, 2), 1, 2)
self._initialize_weights()
def forward(self, x, y, z):
x = self.sigmoid(self.conv(y@x**2 + (x) - (self.relu(z)))) + 2
return (x, self.relu(z) / 3)
def _initialize_weights(self):
init.orthogonal_(self.conv.weight)
def main():
torch_model = Circuit()
shape = [3, 2, 2]
x = 0.1*torch.rand(1, *shape, requires_grad=True)
y = 0.1*torch.rand(1, *shape, requires_grad=True)
z = 0.1*torch.rand(1, *shape, requires_grad=True)
torch_out = torch_model(x, y, z)
torch.onnx.export(torch_model,
(x, y, z),
"network.onnx",
export_params=True,
opset_version=10,
do_constant_folding=True,
input_names=['input'],
output_names=['output'],
dynamic_axes={'input': {0: 'batch_size'},
'output': {0: 'batch_size'}})
d = ((x).detach().numpy()).reshape([-1]).tolist()
dy = ((y).detach().numpy()).reshape([-1]).tolist()
dz = ((z).detach().numpy()).reshape([-1]).tolist()
data = dict(input_shapes=[shape, shape, shape],
input_data=[d, dy, dz],
output_data=[((o).detach().numpy()).reshape([-1]).tolist() for o in torch_out])
json.dump(data, open("input.json", 'w'))
if __name__ == "__main__":
main() |
import json |
import numpy as np
from sklearn.datasets |
import load_iris
from sklearn.model_selection |
import train_test_split
from xgboost |
import XGBClassifier as Gbc |
import torch |
import ezkl |
import os
from torch |
import nn |
import xgboost as xgb
from hummingbird.ml |
import convert
NUM_CLASSES = 3
iris = load_iris()
X, y = iris.data, iris.target
X = X.astype(np.float32)
X_train, X_test, y_train, y_test = train_test_split(X, y)
clr = Gbc(n_estimators=12)
clr.fit(X_train, y_train)
torch_gbt = convert(clr, 'torch')
print(torch_gbt)
diffs = []
for i in range(len(X_test)):
torch_pred = torch_gbt.predict(torch.tensor(X_test[i].reshape(1, -1)))
sk_pred = clr.predict(X_test[i].reshape(1, -1))
diffs.append(torch_pred != sk_pred[0])
print("num diff: ", sum(diffs))
shape = X_train.shape[1:]
x = torch.rand(1, *shape, requires_grad=False)
torch_out = torch_gbt.predict(x)
torch.onnx.export(torch_gbt.model,
x,
"network.onnx",
export_params=True,
opset_version=11,
do_constant_folding=True,
input_names=['input'],
output_names=['output'],
dynamic_axes={'input': {0: 'batch_size'},
'output': {0: 'batch_size'}})
d = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(input_shapes=[shape],
input_data=[d],
output_data=[(o).reshape([-1]).tolist() for o in torch_out])
json.dump(data, open("input.json", 'w')) |
# make sure you have the dependencies required here already installed
import json
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor as Gbc
import torch
import ezkl
import os
from torch import nn
import xgboost as xgb
from hummingbird.ml import convert
NUM_CLASSES = 3
X, y = np.random.rand(1000, 4), np.random.rand(1000, 1)
X = X.astype(np.float32)
X_train, X_test, y_train, y_test = train_test_split(X, y)
clr = Gbc(n_estimators=12)
clr.fit(X_train, y_train)
# convert to torch
torch_gbt = convert(clr, 'torch')
print(torch_gbt)
# assert predictions from torch are = to sklearn
diffs = []
# Input to the model
shape = X_train.shape[1:]
x = torch.rand(1, *shape, requires_grad=False)
torch_out = torch_gbt.predict(x)
# Export the model
torch.onnx.export(torch_gbt.model, # model being run
# model input (or a tuple for multiple inputs)
x,
# where to save the model (can be a file or file-like object)
"network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=11, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
|
module.exports = {
preset: 'ts-jest',
testEnvironment: 'node',
}; |
use clap::Parser;
use colored_json::ToColoredJson;
use ezkl::commands::Cli;
use ezkl::execute::run;
use ezkl::logger::init_logger;
use log::{debug, error, info};
use rand::prelude::SliceRandom;
use std::env;
use std::error::Error;
pub async fn main() -> Result<(), Box<dyn Error>> {
let args = Cli::parse();
init_logger();
banner();
if env::var("ENABLE_ICICLE_GPU").is_ok() {
info!("Running with ICICLE GPU");
} else {
info!("Running with CPU");
}
debug!("command: \n {}", &args.as_json()?.to_colored_json_auto()?);
let res = run(args.command).await;
match &res {
Ok(_) => info!("succeeded"),
Err(e) => error!("failed: {}", e),
};
res.map(|_| ())
}
pub |
fn main() {} |
fn banner() {
let ell: Vec<&str> = vec![
"for Neural Networks",
"Linear Algebra",
"for Layers",
"for the Laconic",
"Learning",
"for Liberty",
"for the Lyrical",
];
info!(
"{}",
format!(
"
βββββββββββββββββββ ββββββ
βββββββββββββββββββ βββββββ
ββββββ βββββ βββββββ βββ
ββββββ βββββ βββββββ βββ
βββββββββββββββββββ βββββββββββ
βββββββββββββββββββ βββββββββββ
-----------------------------------------------------------
Easy Zero Knowledge {}.
-----------------------------------------------------------
",
ell.choose(&mut rand::thread_rng()).unwrap()
)
);
} |
///
pub mod modules;
///
pub mod table;
///
pub mod utils;
///
pub mod ops;
pub use ops::chip::*;
pub use ops::*;
/// Tests
#[cfg(test)]
mod tests;
|
///
pub mod poseidon;
///
pub mod polycommit;
///
pub mod planner;
use halo2_proofs::{
circuit::Layouter,
plonk::{ConstraintSystem, Error},
};
use halo2curves::ff::PrimeField;
pub use planner::*;
use crate::tensor::{TensorType, ValTensor};
use super::region::ConstantsMap;
/// Module trait used to extend ezkl functionality
pub trait Module<F: PrimeField + TensorType + PartialOrd> {
/// Config
type Config;
/// The return type after an input assignment
type InputAssignments;
/// The inputs used in the run function
type RunInputs;
/// The params used in configure
type Params;
/// construct new module from config
fn new(config: Self::Config) -> Self;
/// Configure
fn configure(meta: &mut ConstraintSystem<F>, params: Self::Params) -> Self::Config;
/// Name
fn name(&self) -> &'static str;
/// Run the operation the module represents
fn run(input: Self::RunInputs) -> Result<Vec<Vec<F>>, Box<dyn std::error::Error>>;
/// Layout inputs
fn layout_inputs(
&self,
layouter: &mut impl Layouter<F>,
input: &[ValTensor<F>],
constants: &mut ConstantsMap<F>,
) -> Result<Self::InputAssignments, Error>;
/// Layout
fn layout(
&self,
layouter: &mut impl Layouter<F>,
input: &[ValTensor<F>],
row_offset: usize,
constants: &mut ConstantsMap<F>,
) -> Result<ValTensor<F>, Error>;
/// Number of instance values the module uses every time it is applied
fn instance_increment_input(&self) -> Vec<usize>;
/// Number of rows used by the module
fn num_rows(input_len: usize) -> usize;
}
|
use std::cmp;
use std::collections::HashMap;
use std::fmt;
use std::marker::PhantomData;
use halo2curves::ff::Field;
use halo2_proofs::{
circuit::{
layouter::{RegionColumn, RegionLayouter, RegionShape, SyncDeps, TableLayouter},
Cell, Layouter, Region, RegionIndex, RegionStart, Table, Value,
},
plonk::{
Advice, Any, Assigned, Assignment, Challenge, Circuit, Column, Error, Fixed, FloorPlanner,
Instance, Selector, TableColumn,
},
};
use log::{debug, trace};
pub struct ModulePlanner;
impl FloorPlanner for ModulePlanner {
fn synthesize<F: Field, CS: Assignment<F> + SyncDeps, C: Circuit<F>>(
cs: &mut CS,
circuit: &C,
config: C::Config,
constants: Vec<Column<Fixed>>,
) -> Result<(), Error> {
let layouter = ModuleLayouter::new(cs, constants)?;
circuit.synthesize(config, layouter)
}
}
pub type ModuleIdx = usize;
pub type RegionIdx = usize;
pub struct ModuleLayouter<'a, F: Field, CS: Assignment<F> + 'a> {
cs: &'a mut CS,
constants: Vec<Column<Fixed>>,
regions: HashMap<ModuleIdx, HashMap<RegionIdx, RegionStart>>,
region_idx: HashMap<RegionIdx, ModuleIdx>,
columns: HashMap<(ModuleIdx, RegionColumn), usize>,
table_columns: Vec<TableColumn>,
_marker: PhantomData<F>,
current_module: usize,
total_constants: usize,
}
impl<'a, F: Field, CS: Assignment<F> + 'a> fmt::Debug for ModuleLayouter<'a, F, CS> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("ModuleLayouter")
.field("regions", &self.regions)
.field("columns", &self.columns)
.field("total_constants", &self.total_constants)
.finish()
}
}
impl<'a, F: Field, CS: Assignment<F>> ModuleLayouter<'a, F, CS> {
pub fn new(cs: &'a mut CS, constants: Vec<Column<Fixed>>) -> Result<Self, Error> {
let ret = ModuleLayouter {
cs,
constants,
regions: HashMap::default() |
,
columns: HashMap::default(),
region_idx: HashMap::default(),
table_columns: vec![],
current_module: 0,
total_constants: 0,
_marker: PhantomData,
};
Ok(ret)
}
fn get_constant_col_cartesian_coord(
&self,
linear_coord: usize,
col_size: usize,
) -> (usize, usize) {
let x = linear_coord / col_size;
let y = linear_coord % col_size;
(x, y)
}
}
impl<'a, F: Field, CS: Assignment<F> + 'a + SyncDeps> Layouter<F> for ModuleLayouter<'a, F, CS> {
type Root = Self;
fn assign_region<A, AR, N, NR>(&mut self, name: N, mut assignment: A) -> Result<AR, Error>
where
A: FnMut(Region<'_, F>) -> Result<AR, Error>,
N: Fn() -> NR,
NR: Into<String>,
{
if Into::<String>::into(name()).contains("_enter_module_") {
let name = Into::<String>::into(name());
let index = match name.split("_enter_module_").last() {
Some(v) => v,
None => {
log::error!("Invalid module name");
return Err(Error::Synthesis);
}
};
let index = index.parse::<usize>().map_err(|_| {
log::error!("Invalid module name");
Error::Synthesis
})?;
if !self.regions.contains_key(&index) {
debug!("spawning module {}", index)
};
self.current_module = index;
}
let region_index = self.region_idx.len();
self.region_idx.insert(region_index, self.current_module);
let mut shape = RegionShape::new(region_index.into());
{
let region: &mut dyn RegionLayouter<F> = &mut shape;
assignment(region.into())?;
}
let region_start = match self.regions.get_mut(&self.current_module) {
Some(v) => {
let mut region_start = 0; |
for column in shape.columns().iter() {
region_start = cmp::max(
region_start,
self.columns
.get(&(self.current_module, *column))
.cloned()
.unwrap_or(0),
);
}
v.insert(region_index, region_start.into());
region_start
}
None => {
let map = HashMap::from([(region_index, 0.into())]);
self.regions.insert(self.current_module, map);
0
}
};
for column in shape.columns() {
self.columns.insert(
(self.current_module, *column),
region_start + shape.row_count(),
);
}
self.cs.enter_region(name);
let mut region = ModuleLayouterRegion::new(self, region_index.into());
let result = {
let region: &mut dyn RegionLayouter<F> = &mut region;
assignment(region.into())
}?;
let constants_to_assign = region.constants;
self.cs.exit_region();
if self.constants.is_empty() {
if !constants_to_assign.is_empty() {
return Err(Error::NotEnoughColumnsForConstants);
}
} else {
for (constant, advice) in constants_to_assign {
let (constant_column, y) = crate::graph::GLOBAL_SETTINGS.with(|settings| {
match settings.borrow().as_ref() {
Some(settings) => {
let col_size = settings.available_col_size();
let (x, y) = self
.get_constant_col_cartesian_coord(self.total_constants, col_size);
(self.constants[x], y)
}
None => (self.constants[0], self.total_constants), |
}
});
self.cs.assign_fixed(
|| format!("Constant({:?})", constant.evaluate()),
constant_column,
y,
|| Value::known(constant),
)?;
let region_module = self.region_idx[&advice.region_index];
self.cs.copy(
constant_column.into(),
y,
advice.column,
*self.regions[®ion_module][&advice.region_index] + advice.row_offset,
)?;
self.total_constants += 1;
}
}
trace!("region {} assigned", region_index);
trace!("total_constants: {:?}", self.total_constants);
let max_row_index = self
.columns
.iter()
.filter(|((module, _), _)| *module == self.current_module)
.map(|(_, row)| *row)
.max()
.unwrap_or(0);
trace!("max_row_index: {:?}", max_row_index);
Ok(result)
}
fn assign_table<A, N, NR>(&mut self, name: N, mut assignment: A) -> Result<(), Error>
where
A: FnMut(Table<'_, F>) -> Result<(), Error>,
N: Fn() -> NR,
NR: Into<String>,
{
self.cs.enter_region(name);
let mut table =
halo2_proofs::circuit::SimpleTableLayouter::new(self.cs, &self.table_columns);
{
let table: &mut dyn TableLayouter<F> = &mut table;
assignment(table.into())
}?;
let default_and_assigned = table.default_and_assigned;
self.cs.exit_region();
let first_unused = {
match default_and_assigned
.values()
.map(|(_, assigned)| {
if assigned.iter().all(|b| *b) {
Some(assigned.len())
} else {
None
}
})
.red |
uce(|acc, item| match (acc, item) {
(Some(a), Some(b)) if a == b => Some(a),
_ => None,
}) {
Some(Some(len)) => len,
_ => return Err(Error::Synthesis),
}
};
for column in default_and_assigned.keys() {
self.table_columns.push(*column);
}
for (col, (default_val, _)) in default_and_assigned {
let default_val = default_val.ok_or(Error::Synthesis)?;
self.cs
.fill_from_row(col.inner(), first_unused, default_val)?;
}
Ok(())
}
fn constrain_instance(
&mut self,
cell: Cell,
instance: Column<Instance>,
row: usize,
) -> Result<(), Error> {
let module_idx = self.region_idx[&cell.region_index];
self.cs.copy(
cell.column,
*self.regions[&module_idx][&cell.region_index] + cell.row_offset,
instance.into(),
row,
)
}
fn get_challenge(&self, challenge: Challenge) -> Value<F> {
self.cs.get_challenge(challenge)
}
fn get_root(&mut self) -> &mut Self::Root {
self
}
fn push_namespace<NR, N>(&mut self, name_fn: N)
where
NR: Into<String>,
N: FnOnce() -> NR,
{
self.cs.push_namespace(name_fn)
} |
fn pop_namespace(&mut self, gadget_name: Option<String>) {
self.cs.pop_namespace(gadget_name)
}
}
struct ModuleLayouterRegion<'r, 'a, F: Field, CS: Assignment<F> + 'a> {
layouter: &'r mut ModuleLayouter<'a, F, CS>,
region_index: RegionIndex,
constants: Vec<(Assigned<F>, Cell)>,
}
impl<'r, 'a, F: Field, CS: Assignment<F> + 'a> fmt::Debug for ModuleLayouterRegion<'r, 'a, F, CS> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("ModuleLayouterRegion")
.field("layouter", &self.layouter)
.field("region_index", &self.region_index)
.finish()
}
}
impl<'r, 'a, F: Field, CS: Assignment<F> + 'a> ModuleLayouterRegion<'r, 'a, F, CS> {
fn new(layouter: &'r mut ModuleLayouter<'a, F, CS>, region_index: RegionIndex) -> Self {
ModuleLayouterRegion {
layouter,
region_index,
constants: vec![],
}
}
}
impl<'r, 'a, F: Field, CS: Assignment<F> + 'a + SyncDeps> RegionLayouter<F>
for ModuleLayouterRegion<'r, 'a, F, CS>
{
fn instance_value(
&mut self,
instance: Column<Instance>,
row: usize,
) -> Result<Value<F>, Error> {
self.layouter.cs.query_instance(instance, row)
}
fn enable_selector<'v>(
&'v mut self,
annotation: &'v (dyn Fn() -> String + 'v),
selector: &Selector,
offset: usize,
) -> Result<(), Error> {
let module_idx = self.layouter.region_idx[&self.region_index];
self.layouter.cs.enable_selector(
annotation,
selector,
*self.layouter.regions[&module_idx][&self.region_index] + offset,
)
}
fn name_column<'v>(
&'v mut self,
annotation: &'v (dyn Fn() -> String + 'v),
column: Column<Any>,
) {
self.layouter.cs.annotate_column(annotation, column);
}
fn assign_advice<'v>(
&'v mut self,
annotation: &'v (dyn Fn() -> String + 'v),
column: Column<Advice>, |
offset: usize,
to: &'v mut (dyn FnMut() -> Value<Assigned<F>> + 'v),
) -> Result<Cell, Error> {
let module_idx = self.layouter.region_idx[&self.region_index];
self.layouter.cs.assign_advice(
annotation,
column,
*self.layouter.regions[&module_idx][&self.region_index] + offset,
to,
)?;
Ok(Cell {
region_index: self.region_index,
row_offset: offset,
column: column.into(),
})
}
fn assign_advice_from_constant<'v>(
&'v mut self,
annotation: &'v (dyn Fn() -> String + 'v),
column: Column<Advice>,
offset: usize,
constant: Assigned<F>,
) -> Result<Cell, Error> {
let advice =
self.assign_advice(annotation, column, offset, &mut || Value::known(constant))?;
self.constrain_constant(advice, constant)?;
Ok(advice)
}
fn assign_advice_from_instance<'v>(
&mut self,
annotation: &'v (dyn Fn() -> String + 'v),
instance: Column<Instance>,
row: usize,
advice: Column<Advice>,
offset: usize,
) -> Result<(Cell, Value<F>), Error> {
let value = self.layouter.cs.query_instance(instance, row)?;
let cell = self.assign_advice(annotation, advice, offset, &mut || value.to_field())?;
let module_idx = self.layouter.region_idx[&cell.region_index];
self.layouter.cs.copy(
cell.column,
*self.layouter.regions[&module_idx][&cell.region_index] + cell.row_offset,
instance.into(),
row,
)?;
Ok((cell, value))
}
fn assign_fixed<'v>(
&'v mut self,
annotation: &'v (dyn Fn() -> String + 'v),
column: Column<Fixed>,
offset: usize,
to: &'v mut (dyn FnMut() -> Value<Assigned<F>> + 'v),
) -> Result<Cell, Error> {
let module_idx = self.layouter.region_idx[&self.region_index];
self.layouter.cs.assign_fixed( |
annotation,
column,
*self.layouter.regions[&module_idx][&self.region_index] + offset,
to,
)?;
Ok(Cell {
region_index: self.region_index,
row_offset: offset,
column: column.into(),
})
}
fn constrain_constant(&mut self, cell: Cell, constant: Assigned<F>) -> Result<(), Error> {
self.constants.push((constant, cell));
Ok(())
}
fn constrain_equal(&mut self, left: Cell, right: Cell) -> Result<(), Error> {
let left_module = self.layouter.region_idx[&left.region_index];
let right_module = self.layouter.region_idx[&right.region_index];
self.layouter.cs.copy(
left.column,
*self.layouter.regions[&left_module][&left.region_index] + left.row_offset,
right.column,
*self.layouter.regions[&right_module][&right.region_index] + right.row_offset,
)?;
Ok(())
}
}
mod tests {
use halo2curves::pasta::vesta;
use super::ModulePlanner;
use halo2_proofs::{
dev::MockProver,
plonk::{Advice, Circuit, Column, Error},
}; |
fn not_enough_columns_for_constants() { |
struct MyCircuit {}
impl Circuit<vesta::Scalar> for MyCircuit {
type Config = Column<Advice>;
type FloorPlanner = ModulePlanner;
type Params = ();
fn without_witnesses(&self) -> Self {
MyCircuit {}
}
fn configure(
meta: &mut halo2_proofs::plonk::ConstraintSystem<vesta::Scalar>,
) -> Self::Config {
meta.advice_column()
}
fn synthesize(
&self,
config: Self::Config,
mut layouter: impl halo2_proofs::circuit::Layouter<vesta::Scalar>,
) -> Result<(), halo2_proofs::plonk::Error> {
layouter.assign_region(
|| "assign constant",
|mut region| {
region.assign_advice_from_constant(
|| "one",
config,
0,
vesta::Scalar::one(),
)
},
)?;
Ok(())
}
}
let circuit = MyCircuit {};
assert!(matches!(
MockProver::run(3, &circuit, vec![]).unwrap_err(),
Error::NotEnoughColumnsForConstants,
));
}
} |
/*
An easy-to-use implementation of the Poseidon Hash in the form of a Halo2 Chip. While the Poseidon Hash function
is already implemented in halo2_gadgets, there is no wrapper chip that makes it easy to use in other circuits.
Thanks to https:
*/
use std::collections::HashMap;
use halo2_proofs::halo2curves::bn256::Fr as Fp;
use halo2_proofs::poly::commitment::{Blind, CommitmentScheme, Params};
use halo2_proofs::{circuit::*, plonk::*};
use halo2curves::bn256::G1Affine;
use halo2curves::group::prime::PrimeCurveAffine;
use halo2curves::group::Curve;
use halo2curves::CurveAffine;
use crate::circuit::region::ConstantsMap;
use crate::tensor::{Tensor, ValTensor, ValType, VarTensor};
use super::Module;
pub const NUM_INSTANCE_COLUMNS: usize = 0;
pub const NUM_INNER_COLS: usize = 1;
pub |
struct PolyCommitConfig {
pub inputs: VarTensor,
}
type InputAssignments = ();
pub |
struct PolyCommitChip {
config: PolyCommitConfig,
}
impl PolyCommitChip {
pub fn commit<Scheme: CommitmentScheme<Scalar = Fp, Curve = G1Affine>>(
message: Vec<Scheme::Scalar>,
num_unusable_rows: u32,
params: &Scheme::ParamsProver,
) -> Vec<G1Affine> {
let k = params.k();
let domain = halo2_proofs::poly::EvaluationDomain::new(2, k);
let n = 2_u64.pow(k) - num_unusable_rows as u64;
let num_poly = (message.len() / n as usize) + 1;
let mut poly = vec![domain.empty_lagrange(); num_poly];
(0..num_unusable_rows).for_each(|i| {
for p in &mut poly {
p[(n + i as u64) as usize] = Blind::default().0;
}
});
for (i, m) in message.iter().enumerate() {
let x = i / (n as usize);
let y = i % (n as usize);
poly[x][y] = *m;
}
let mut advice_commitments_projective = vec![];
for a in poly {
advice_commitments_projective.push(params.commit_lagrange(&a, Blind::default()))
}
let mut advice_commitments =
vec![G1Affine::identity(); advice_commitments_projective.len()];
<G1Affine as CurveAffine>::CurveExt::batch_normalize(
&advice_commitments_projective,
&mut advice_commitments,
);
advice_commitments
}
}
impl Module<Fp> for PolyCommitChip {
type Config = PolyCommitConfig;
type InputAssignments = InputAssignments;
type RunInputs = Vec<Fp>;
type Params = (usize, usize);
fn name(&self) -> &'static str {
"PolyCommit"
}
fn instance_increment_input(&self) -> Vec<usize> {
vec![0]
}
fn new(config: Self::Config) -> Self {
Self { config }
}
fn configure(meta: &mut ConstraintSystem<Fp>, params: Self::Params) -> Self::Config {
let inputs = VarTensor::new_unblinded_advice(meta, params.0, NUM_INNER_COLS, params.1);
Self::Config { inputs }
}
fn layout_i |
nputs(
&self,
_: &mut impl Layouter<Fp>,
_: &[ValTensor<Fp>],
_: &mut ConstantsMap<Fp>,
) -> Result<Self::InputAssignments, Error> {
Ok(())
}
fn layout(
&self,
layouter: &mut impl Layouter<Fp>,
input: &[ValTensor<Fp>],
_: usize,
constants: &mut ConstantsMap<Fp>,
) -> Result<ValTensor<Fp>, Error> {
assert_eq!(input.len(), 1);
let local_constants = constants.clone();
layouter.assign_region(
|| "PolyCommit",
|mut region| {
let mut local_inner_constants = local_constants.clone();
let res = self.config.inputs.assign(
&mut region,
0,
&input[0],
&mut local_inner_constants,
)?;
*constants = local_inner_constants;
Ok(res)
},
)
}
fn run(message: Vec<Fp>) -> Result<Vec<Vec<Fp>>, Box<dyn std::error::Error>> {
Ok(vec![message])
}
fn num_rows(_: usize) -> usize {
0
}
}
mod tests {
use crate::circuit::modules::ModulePlanner;
use super::*;
use std::marker::PhantomData;
use halo2_proofs::{
circuit::{Layouter, SimpleFloorPlanner, Value},
plonk::{Circuit, ConstraintSystem},
};
use halo2curves::ff::Field;
const K: usize = 8;
const R: usize = 2048; |
struct HashCircuit {
message: ValTensor<Fp>,
}
impl Circuit<Fp> for HashCircuit {
type Config = PolyCommitConfig;
type FloorPlanner = ModulePlanner;
type Params = ();
fn without_witnesses(&self) -> Self {
let empty_val: Vec<ValType<Fp>> = vec![Value::<Fp>::unknown().into(); R];
let message: Tensor<ValType<Fp>> = empty_val.into_iter().into();
Self {
message: message.into(),
}
}
fn configure(meta: &mut ConstraintSystem<Fp>) -> Self::Config {
let params = (K, R);
PolyCommitChip::configure(meta, params)
}
fn synthesize(
&self,
config: Self::Config,
mut layouter: impl Layouter<Fp>,
) -> Result<(), Error> {
let polycommit_chip = PolyCommitChip::new(config);
polycommit_chip.layout(
&mut layouter,
&[self.message.clone()],
0,
&mut HashMap::new(),
);
Ok(())
}
} |
fn polycommit_chip_for_a_range_of_input_sizes() {
let rng = rand::rngs::OsRng;
env_logger::init();
{
let i = 32;
println!(
"i is {} -------------------------------------------------",
i
);
let message: Vec<Fp> = (0..i).map(|_| Fp::random(rng)).collect::<Vec<_>>();
let mut message: Tensor<ValType<Fp>> =
message.into_iter().map(|m| Value::known(m).into()).into();
let circuit = HashCircuit {
message: message.into(),
};
let prover = halo2_proofs::dev::MockProver::run(K as u32, &circuit, vec![]).unwrap();
assert_eq!(prover.verify(), Ok(()))
}
} |
fn polycommit_chip_much_longer_input() {
env_logger::init();
let rng = rand::rngs::OsRng;
let mut message: Vec<Fp> = (0..2048).map(|_| Fp::random(rng)).collect::<Vec<_>>();
let mut message: Tensor<ValType<Fp>> =
message.into_iter().map(|m| Value::known(m).into()).into();
let circuit = HashCircuit {
message: message.into(),
};
let prover = halo2_proofs::dev::MockProver::run(K as u32, &circuit, vec![]).unwrap();
assert_eq!(prover.verify(), Ok(()))
}
} |
/*
An easy-to-use implementation of the Poseidon Hash in the form of a Halo2 Chip. While the Poseidon Hash function
is already implemented in halo2_gadgets, there is no wrapper chip that makes it easy to use in other circuits.
Thanks to https:
*/
pub mod poseidon_params;
pub mod spec;
use halo2_gadgets::poseidon::{primitives::*, Hash, Pow5Chip, Pow5Config};
use halo2_proofs::arithmetic::Field;
use halo2_proofs::halo2curves::bn256::Fr as Fp;
use halo2_proofs::{circuit::*, plonk::*};
use maybe_rayon::prelude::ParallelIterator;
use maybe_rayon::slice::ParallelSlice;
use std::marker::PhantomData;
use crate::circuit::region::ConstantsMap;
use crate::tensor::{Tensor, ValTensor, ValType};
use super::Module;
pub const NUM_INSTANCE_COLUMNS: usize = 1;
pub struct PoseidonConfig<const WIDTH: usize, const RATE: usize> {
pub hash_inputs: Vec<Column<Advice>>,
pub instance: Option<Column<Instance>>,
pub pow5_config: Pow5Config<Fp, WIDTH, RATE>,
}
type InputAssignments = (Vec<AssignedCell<Fp, Fp>>, AssignedCell<Fp, Fp>);
pub struct PoseidonChip<
S: Spec<Fp, WIDTH, RATE> + Sync,
const WIDTH: usize,
const RATE: usize,
const L: usize,
> {
config: PoseidonConfig<WIDTH, RATE>,
_marker: PhantomData<S>,
}
impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize, const L: usize>
PoseidonChip<S, WIDTH, RATE, L>
{
pub fn configure_with_cols(
meta: &mut ConstraintSystem<Fp>,
partial_sbox: Column<Advice>,
rc_a: [Column<Fixed>; WIDTH],
rc_b: [Column<Fixed>; WIDTH],
hash_inputs: Vec<Column<Advice>>,
instance: Option<Column<Instance>>,
) -> PoseidonConfig<WIDTH, RATE> {
let pow5_config = Pow5Chip::configure::<S>(
meta,
hash_inputs.clone().try_into().unwrap(),
partial_sbox,
rc_a,
rc_b,
);
PoseidonConfig {
pow5_config,
instance,
hash_inputs,
}
}
}
impl<S: Spec<Fp |
, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize, const L: usize>
PoseidonChip<S, WIDTH, RATE, L>
{
pub fn configure_with_optional_instance(
meta: &mut ConstraintSystem<Fp>,
instance: Option<Column<Instance>>,
) -> PoseidonConfig<WIDTH, RATE> {
let hash_inputs = (0..WIDTH).map(|_| meta.advice_column()).collect::<Vec<_>>();
for input in &hash_inputs {
meta.enable_equality(*input);
}
let partial_sbox = meta.advice_column();
let rc_a = (0..WIDTH).map(|_| meta.fixed_column()).collect::<Vec<_>>();
let rc_b = (0..WIDTH).map(|_| meta.fixed_column()).collect::<Vec<_>>();
for input in hash_inputs.iter().take(WIDTH) {
meta.enable_equality(*input);
}
meta.enable_constant(rc_b[0]);
Self::configure_with_cols(
meta,
partial_sbox,
rc_a.try_into().unwrap(),
rc_b.try_into().unwrap(),
hash_inputs,
instance,
)
}
}
impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize, const L: usize>
Module<Fp> for PoseidonChip<S, WIDTH, RATE, L>
{
type Config = PoseidonConfig<WIDTH, RATE>;
type InputAssignments = InputAssignments;
type RunInputs = Vec<Fp>;
type Params = ();
fn name(&self) -> &'static str {
"Poseidon"
}
fn instance_increment_input(&self) -> Vec<usize> {
vec![1]
}
fn new(config: Self::Config) -> Self {
Self {
config,
_marker: PhantomData,
}
}
fn configure(meta: &mut ConstraintSystem<Fp>, _: Self::Params) -> Self::Config {
let hash_inputs = (0..WIDTH).map(|_| meta.advice_column()).collect::<Vec<_>>();
for input in &hash_inputs {
meta.enable_equality(*input);
}
let partial_sbox = meta.advice_column();
let rc_a = (0..WIDTH).map(|_| meta.fixed_column()).collect::<Vec<_>>();
let rc_b = (0.. |
WIDTH).map(|_| meta.fixed_column()).collect::<Vec<_>>();
for input in hash_inputs.iter().take(WIDTH) {
meta.enable_equality(*input);
}
meta.enable_constant(rc_b[0]);
let instance = meta.instance_column();
meta.enable_equality(instance);
Self::configure_with_cols(
meta,
partial_sbox,
rc_a.try_into().unwrap(),
rc_b.try_into().unwrap(),
hash_inputs,
Some(instance),
)
}
fn layout_inputs(
&self,
layouter: &mut impl Layouter<Fp>,
message: &[ValTensor<Fp>],
constants: &mut ConstantsMap<Fp>,
) -> Result<Self::InputAssignments, Error> {
assert_eq!(message.len(), 1);
let message = message[0].clone();
let start_time = instant::Instant::now();
let local_constants = constants.clone();
let res = layouter.assign_region(
|| "load message",
|mut region| {
let assigned_message: Result<Vec<AssignedCell<Fp, Fp>>, Error> = match &message {
ValTensor::Value { inner: v, .. } => v
.iter()
.enumerate()
.map(|(i, value)| {
let x = i % WIDTH;
let y = i / WIDTH;
match value {
ValType::Value(v) => region.assign_advice(
|| format!("load message_{}", i),
self.config.hash_inputs[x],
y,
|| *v,
),
ValType::PrevAssigned(v) | ValType::AssignedConstant(v, ..) => {
Ok(v.clone())
}
ValType::Constant(f) => {
if local_constants.contains_key(f) { |
Ok(constants.get(f).unwrap().assigned_cell().ok_or({
log::error!("constant not previously assigned");
Error::Synthesis
})?)
} else {
let res = region.assign_advice_from_constant(
|| format!("load message_{}", i),
self.config.hash_inputs[x],
y,
*f,
)?;
constants
.insert(*f, ValType::AssignedConstant(res.clone(), *f));
Ok(res)
}
}
e => {
log::error!(
"wrong input type {:?}, must be previously assigned",
e
);
Err(Error::Synthesis)
}
}
})
.collect(),
ValTensor::Instance {
dims,
inner: col,
idx,
initial_offset,
..
} => {
let num_elems = dims[*idx].iter().product::<usize>();
(0..num_elems)
.map(|i| {
let x = i % WIDTH;
let y = i / WIDTH;
region.assign_advice_from_instance( |
|| "pub input anchor",
*col,
initial_offset + i,
self.config.hash_inputs[x],
y,
)
})
.collect()
}
};
let offset = message.len() / WIDTH + 1;
let zero_val = region
.assign_advice_from_constant(
|| "",
self.config.hash_inputs[0],
offset,
Fp::ZERO,
)
.unwrap();
Ok((assigned_message?, zero_val))
},
);
log::trace!(
"input (N={:?}) layout took: {:?}",
message.len(),
start_time.elapsed()
);
res
}
fn layout(
&self,
layouter: &mut impl Layouter<Fp>,
input: &[ValTensor<Fp>],
row_offset: usize,
constants: &mut ConstantsMap<Fp>,
) -> Result<ValTensor<Fp>, Error> {
let (mut input_cells, zero_val) = self.layout_inputs(layouter, input, constants)?;
let mut assigned_input: Tensor<ValType<Fp>> =
input_cells.iter().map(|e| ValType::from(e.clone())).into();
let len = assigned_input.len();
let start_time = instant::Instant::now();
let mut one_iter = false;
while input_cells.len() > 1 || !one_iter {
let hashes: Result<Vec<AssignedCell<Fp, Fp>>, Error> = input_cells
.chunks(L)
.enumerate()
.map(|(i, block)| {
let _start_time = instant::Instant::now();
let mut block = block.to_vec();
let remainder = block.len() % L;
if remainder != 0 {
block.extend(vec![zero_val.clone(); L - rema |
inder]);
}
let pow5_chip = Pow5Chip::construct(self.config.pow5_config.clone());
let hasher = Hash::<_, _, S, ConstantLength<L>, WIDTH, RATE>::init(
pow5_chip,
layouter.namespace(|| "block_hasher"),
)?;
let hash = hasher.hash(
layouter.namespace(|| "hash"),
block.to_vec().try_into().map_err(|_| Error::Synthesis)?,
);
if i == 0 {
log::trace!("block (L={:?}) took: {:?}", L, _start_time.elapsed());
}
hash
})
.collect();
log::trace!("hashes (N={:?}) took: {:?}", len, start_time.elapsed());
one_iter = true;
input_cells = hashes?;
}
let duration = start_time.elapsed();
log::trace!("layout (N={:?}) took: {:?}", len, duration);
let result = Tensor::from(input_cells.iter().map(|e| ValType::from(e.clone())));
let output = match result[0].clone() {
ValType::PrevAssigned(v) => v,
_ => {
log::error!("wrong input type, must be previously assigned");
return Err(Error::Synthesis);
}
};
if let Some(instance) = self.config.instance {
layouter.assign_region(
|| "constrain output",
|mut region| {
let expected_var = region.assign_advice_from_instance(
|| "pub input anchor",
instance,
row_offset,
self.config.hash_inputs[0],
0,
)?;
region.constrain_equal(output.cell(), expected_var.cell())
},
)?;
assigned_input.reshape(input[0].dims()).map_err(|e| { |
log::error!("reshape failed: {:?}", e);
Error::Synthesis
})?;
Ok(assigned_input.into())
} else {
Ok(result.into())
}
}
fn run(message: Vec<Fp>) -> Result<Vec<Vec<Fp>>, Box<dyn std::error::Error>> {
let mut hash_inputs = message;
let len = hash_inputs.len();
let start_time = instant::Instant::now();
let mut one_iter = false;
while hash_inputs.len() > 1 || !one_iter {
let hashes: Vec<Fp> = hash_inputs
.par_chunks(L)
.map(|block| {
let mut block = block.to_vec();
let remainder = block.len() % L;
if remainder != 0 {
block.extend(vec![Fp::ZERO; L - remainder].iter());
}
let message = block.try_into().map_err(|_| Error::Synthesis)?;
Ok(halo2_gadgets::poseidon::primitives::Hash::<
_,
S,
ConstantLength<L>,
{ WIDTH },
{ RATE },
>::init()
.hash(message))
})
.collect::<Result<Vec<_>, Error>>()?;
one_iter = true;
hash_inputs = hashes;
}
let duration = start_time.elapsed();
log::trace!("run (N={:?}) took: {:?}", len, duration);
Ok(vec![hash_inputs])
}
fn num_rows(mut input_len: usize) -> usize {
let fixed_cost: usize = 41 * L;
let mut num_rows = 0;
loop {
let num_chunks = input_len / L + 1;
num_rows += num_chunks * fixed_cost;
if num_chunks == 1 {
break;
}
input_len = num_chunks;
}
num_rows
}
}
mod tests {
use crate::circuit::modules::ModulePlanner;
use super::{
spec::{PoseidonS |
pec, POSEIDON_RATE, POSEIDON_WIDTH},
*,
};
use std::{collections::HashMap, marker::PhantomData};
use halo2_gadgets::poseidon::primitives::Spec;
use halo2_proofs::{
circuit::{Layouter, SimpleFloorPlanner, Value},
plonk::{Circuit, ConstraintSystem},
};
use halo2curves::ff::Field;
const WIDTH: usize = POSEIDON_WIDTH;
const RATE: usize = POSEIDON_RATE;
const R: usize = 240;
struct HashCircuit<S: Spec<Fp, WIDTH, RATE>, const L: usize> {
message: ValTensor<Fp>,
_spec: PhantomData<S>,
}
impl<S: Spec<Fp, WIDTH, RATE>, const L: usize> Circuit<Fp> for HashCircuit<S, L> {
type Config = PoseidonConfig<WIDTH, RATE>;
type FloorPlanner = ModulePlanner;
type Params = ();
fn without_witnesses(&self) -> Self {
let empty_val: Vec<ValType<Fp>> = vec![Value::<Fp>::unknown().into()];
let message: Tensor<ValType<Fp>> = empty_val.into_iter().into();
Self {
message: message.into(),
_spec: PhantomData,
}
}
fn configure(meta: &mut ConstraintSystem<Fp>) -> PoseidonConfig<WIDTH, RATE> {
PoseidonChip::<PoseidonSpec, WIDTH, RATE, L>::configure(meta, ())
}
fn synthesize(
&self,
config: PoseidonConfig<WIDTH, RATE>,
mut layouter: impl Layouter<Fp>,
) -> Result<(), Error> {
let chip: PoseidonChip<PoseidonSpec, WIDTH, RATE, L> = PoseidonChip::new(config);
chip.layout(
&mut layouter,
&[self.message.clone()],
0,
&mut HashMap::new(),
)?;
Ok(())
}
} |
fn poseidon_hash() {
let rng = rand::rngs::OsRng;
let message = [Fp::random(rng), Fp::random(rng)];
let output = PoseidonChip::<PoseidonSpec, WIDTH, RATE, 2>::run(message.to_vec()).unwrap();
let mut message: Tensor<ValType<Fp>> =
message.into_iter().map(|m| Value::known(m).into()).into();
let k = 9;
let circuit = HashCircuit::<PoseidonSpec, 2> {
message: message.into(),
_spec: PhantomData,
};
let prover = halo2_proofs::dev::MockProver::run(k, &circuit, output).unwrap();
assert_eq!(prover.verify(), Ok(()))
} |
fn poseidon_hash_longer_input() {
let rng = rand::rngs::OsRng;
let message = [Fp::random(rng), Fp::random(rng), Fp::random(rng)];
let output = PoseidonChip::<PoseidonSpec, WIDTH, RATE, 3>::run(message.to_vec()).unwrap();
let mut message: Tensor<ValType<Fp>> =
message.into_iter().map(|m| Value::known(m).into()).into();
let k = 9;
let circuit = HashCircuit::<PoseidonSpec, 3> {
message: message.into(),
_spec: PhantomData,
};
let prover = halo2_proofs::dev::MockProver::run(k, &circuit, output).unwrap();
assert_eq!(prover.verify(), Ok(()))
} |
fn hash_for_a_range_of_input_sizes() {
let rng = rand::rngs::OsRng;
env_logger::init();
{
let i = 32;
println!(
"i is {} -------------------------------------------------",
i
);
let message: Vec<Fp> = (0..i).map(|_| Fp::random(rng)).collect::<Vec<_>>();
let output =
PoseidonChip::<PoseidonSpec, WIDTH, RATE, 32>::run(message.clone()).unwrap();
let mut message: Tensor<ValType<Fp>> =
message.into_iter().map(|m| Value::known(m).into()).into();
let k = 17;
let circuit = HashCircuit::<PoseidonSpec, 32> {
message: message.into(),
_spec: PhantomData,
};
let prover = halo2_proofs::dev::MockProver::run(k, &circuit, output).unwrap();
assert_eq!(prover.verify(), Ok(()))
}
} |
fn poseidon_hash_much_longer_input() {
let rng = rand::rngs::OsRng;
let mut message: Vec<Fp> = (0..2048).map(|_| Fp::random(rng)).collect::<Vec<_>>();
let output = PoseidonChip::<PoseidonSpec, WIDTH, RATE, 25>::run(message.clone()).unwrap();
let mut message: Tensor<ValType<Fp>> =
message.into_iter().map(|m| Value::known(m).into()).into();
let k = 17;
let circuit = HashCircuit::<PoseidonSpec, 25> {
message: message.into(),
_spec: PhantomData,
};
let prover = halo2_proofs::dev::MockProver::run(k, &circuit, output).unwrap();
assert_eq!(prover.verify(), Ok(()))
}
} |
use halo2_proofs::halo2curves::bn256::Fr as Fp;
pub(crate) const ROUND_CONSTANTS: [[Fp; 2]; 64] = [
[
Fp::from_raw([
0x6c7d_c0db_d0ab_d7a7,
0xa71a_a177_534c_dd1b,
0xfe1f_aaba_294c_ba38,
0x09c4_6e9e_c68e_9bd4,
]),
Fp::from_raw([
0x3c1d_83ff_a604_cb81,
0xc514_2b3a_e405_b834,
0x2a97_ed93_7f31_35cf,
0x0c03_5653_0896_eec4,
]),
],
[
Fp::from_raw([
0x317e_a977_cc15_4a30,
0xa00e_a5aa_bd62_68bd,
0x142e_5118_2bb5_4cf4,
0x1e28_a1d9_3569_8ad1,
]),
Fp::from_raw([
0x4cf9_e2b1_2b91_251f,
0x0e57_57c3_e008_db96,
0x0809_65db_30e2_98e4,
0x27af_2d83_1a9d_2748,
]),
],
[
Fp::from_raw([
0x79aa_f435_45b7_4e03,
0x4129_1462_f214_cd08,
0x3a6a_3cfe_16ae_175a,
0x1e6f_11ce_60fc_8f51,
]),
Fp::from_raw([
0xf719_2062_68d1_42d3,
0x0446_2ed1_4c36_13d8,
0x8541_819c_b681_f0be,
0x2a67_384d_3bbd_5e43,
]),
],
[
Fp::from_raw([
0x3640_8f5d_5c9f_45d0,
0xb985_e381_f025_1889,
0x1609_f8e1_2fbf_ecf0,
0x0b66_fdf3_5609_3a61,
]),
Fp::from_raw([
0xdaa6_852d_bdb0_9e21,
0x0b26_c83c_c5ce_beed,
0x830c_6109_3c2a_de37,
0x012e_e3ec_1e78_d470,
]),
],
[
Fp::from_raw([
0x2d10_8e7b_445b_b1b9,
0x6cd1_c431_b099_b6bb,
0xfd88_f67f_8175_e3fd,
0x0252_ba5f_6760_bfbd,
]),
Fp::from_raw([
0xef5a_eaad_7ca9_32f1,
0x5439_1a89_35ff_71d6,
0x6c6b_ec3c_ef54_2963,
0x1794_74cc_eca5_ff67,
]),
],
[
Fp::from_raw([
0x7e1a_2589_bbed_2b91,
0x9c1f_974a_2649_69b3,
0x9228_ff4a_503f_d4ed, |
0x2c24_2613_79a5_1bfa,
]),
Fp::from_raw([
0x53e6_6c05_5180_1b05,
0xc2f6_3f50_01fc_0fc5,
0xac2f_288b_d069_5b43,
0x1cc1_d7b6_2692_e63e,
]),
],
[
Fp::from_raw([
0x5d9e_ff5f_d9c9_1b56,
0x0078_4dbf_17fb_acd0,
0xb2ed_55f8_5297_9e96,
0x2550_5930_1aad_a98b,
]),
Fp::from_raw([
0xb11c_29ce_7e59_efd9,
0xaea2_4234_970a_8193,
0x79e1_f5c0_eccd_32b3,
0x2843_7be3_ac1c_b2e4,
]),
],
[
Fp::from_raw([
0x3387_62c3_7f5f_2043,
0x1854_8da8_fb4f_78d4,
0x1ca4_fa6b_5376_6eb1,
0x2821_6a44_2f2e_1f71,
]),
Fp::from_raw([
0x131f_2377_3234_82c9,
0xeee1_efce_0309_4581,
0x1f39_f4e7_056d_d03f,
0x2c1f_47cd_17fa_5adf,
]),
],
[
Fp::from_raw([
0x646b_8566_a621_afc9,
0xd9da_fca2_7663_8a63,
0x8632_bcc9_356c_eb7d,
0x07ab_ad02_b7a5_ebc4,
]),
Fp::from_raw([
0x37da_0c4d_15f9_6c3c,
0x9429_f908_80a6_9cd1,
0x275b_33ff_aab5_1dfe,
0x0230_2646_01ff_df29,
]),
],
[
Fp::from_raw([
0x717e_5d66_899a_a0a9,
0xa864_4145_57ee_289e,
0xa0f1_6865_6497_ca40,
0x1bc9_7305_4e51_d905,
]),
Fp::from_raw([
0x2a6b_2228_8f0a_67fc,
0xd249_aff5_c2d8_421f,
0x206c_3157_e863_41ed,
0x2e1c_22f9_6443_5008,
]),
],
[
Fp::from_raw([
0xa704_52bc_2bba_86b8,
0x9e8e_a159_8e46_c9f7,
0x121c_1d5f_461b_bc50,
0x1224_f38d_f67c_5378,
]),
Fp::from_raw([
0x69d2_9891_86cd_e20e,
0xd7bf_e8cd_9dfe_da19,
0x9280_b4bd_9ed0_068f,
0x02e4_e69d_8ba5_9e51,
]),
], |
[
Fp::from_raw([
0x6d47_e973_5d98_018e,
0x4f19_ee36_4e65_3f07,
0x7f5d_f81f_c04f_f3ee,
0x1f1e_ccc3_4aab_a013,
]),
Fp::from_raw([
0xeacb_8a4d_4284_f582,
0x1424_4480_32cd_1819,
0x7426_6c30_39a9_a731,
0x1672_ad3d_709a_3539,
]),
],
[
Fp::from_raw([
0x1d2e_d602_df8c_8fc7,
0xcda6_961f_284d_2499,
0x56f4_4af5_192b_4ae9,
0x283e_3fdc_2c6e_420c,
]),
Fp::from_raw([
0x614f_bd69_ff39_4bcc,
0x6837_51f8_fdff_59d6,
0xd0db_0957_170f_a013,
0x1c2a_3d12_0c55_0ecf,
]),
],
[
Fp::from_raw([
0x96cb_6b81_7765_3fbd,
0x143a_9a43_773e_a6f2,
0xf789_7a73_2345_6efe,
0x216f_8487_7aac_6172,
]),
Fp::from_raw([
0x11a1_f515_52f9_4788,
0xceaa_47ea_61ca_59a4,
0x64ba_7e8e_3e28_d12b,
0x2c0d_272b_ecf2_a757,
]),
],
[
Fp::from_raw([
0xcb4a_6c3d_8954_6f43,
0x170a_5480_abe0_508f,
0x484e_e7a7_4c45_4e9f,
0x16e3_4299_865c_0e28,
]),
Fp::from_raw([
0x48cd_9397_5548_8fc5,
0x7720_4776_5802_290f,
0x375a_232a_6fb9_cc71,
0x175c_eba5_99e9_6f5b,
]),
],
[
Fp::from_raw([
0xd8c5_ffbb_44a1_ee32,
0x6aa4_10bf_bc35_4f54,
0xfead_9e17_58b0_2806,
0x0c75_9444_0dc4_8c16,
]),
Fp::from_raw([
0x9247_9882_d919_fd8d,
0x760e_2001_3ccf_912c,
0xc466_db7d_7eb6_fd8f,
0x1a3c_29bc_39f2_1bb5,
]),
],
[
Fp::from_raw([
0x95c8_eeab_cd22_e68f,
0x0855_d349_074f_5a66,
0xc098_6ea0_49b2_5340,
0x0ccf_dd90_6f34_26e5,
]),
Fp::from_raw([
0xe0e6_99b6_7dd9_e79 |
6,
0x66a7_a8a3_fd06_5b3c,
0x2bdb_475c_e6c9_4118,
0x14f6_bc81_d9f1_86f6,
]),
],
[
Fp::from_raw([
0x88ed_eb73_86b9_7052,
0xcc09_9810_c9c4_95c8,
0x9702_ca70_b2f6_c5aa,
0x0962_b827_89fb_3d12,
]),
Fp::from_raw([
0xafef_0c8f_6a31_a86d,
0x1328_4ab0_1ef0_2575,
0xbf20_c79d_e251_27bc,
0x1a88_0af7_074d_18b3,
]),
],
[
Fp::from_raw([
0x4c30_12bb_7ae9_311b,
0x20af_2924_fc20_ff3f,
0xcd5e_77f0_211c_154b,
0x10cb_a184_19a6_a332,
]),
Fp::from_raw([
0x756a_2849_f302_f10d,
0xfa27_b731_9cae_3406,
0xbdc7_6ba6_3a9e_aca8,
0x057e_62a9_a8f8_9b3e,
]),
],
[
Fp::from_raw([
0xafa0_413b_4428_0cee,
0xb961_303b_bf65_cff5,
0xd44a_df53_84b4_988c,
0x287c_971d_e91d_c0ab,
]),
Fp::from_raw([
0x6f7f_7960_e306_891d,
0x1e56_2bc4_6d4a_ba4e,
0xb3bc_a9da_0cca_908f,
0x21df_3388_af16_87bb,
]),
],
[
Fp::from_raw([
0x3eff_8b56_0e16_82b3,
0x789d_f8f7_0b49_8fd8,
0x3e25_cc97_4d09_34cd,
0x1be5_c887_d25b_ce70,
]),
Fp::from_raw([
0x48d5_9c27_06a0_d5c1,
0xd2cb_5d42_fda5_acea,
0x6811_7175_cea2_cd0d,
0x268d_a36f_76e5_68fb,
]),
],
[
Fp::from_raw([
0xbd06_460c_c26a_5ed6,
0xc5d8_bb74_135e_bd05,
0xc609_beaf_5510_ecec,
0x0e17_ab09_1f6e_ae50,
]),
Fp::from_raw([
0x040f_5caa_1f62_af40,
0x91ef_62d8_cf83_d270,
0x7aee_535a_b074_a430,
0x04d7_27e7_28ff_a0a6,
]),
],
[
Fp::from_raw([
0x2b15_417d_7e39_ca6e,
0x3370_2ac1_0f1b_fd86, |
0x81b5_4976_2bc0_22ed,
0x0ddb_d7bf_9c29_3415,
]),
Fp::from_raw([
0x8a29_c49c_8789_654b,
0x34f5_b0d1_d3af_9b58,
0x7681_62e8_2989_c6c2,
0x2790_eb33_5162_1752,
]),
],
[
Fp::from_raw([
0x84b7_6420_6142_f9e9,
0x395f_3d9a_b8b2_fd09,
0x4471_9501_93d8_a570,
0x1e45_7c60_1a63_b73e,
]),
Fp::from_raw([
0xc4c6_86fc_46e0_91b0,
0xfa90_ecd0_c43f_f91f,
0x638d_6ab2_bbe7_135f,
0x21ae_6430_1dca_9625,
]),
],
[
Fp::from_raw([
0x5858_534e_ed8d_350b,
0x854b_e9e3_432e_0955,
0x4da2_9316_6f49_4928,
0x0379_f63c_8ce3_468d,
]),
Fp::from_raw([
0x8c9f_58a3_24c3_5049,
0xca0e_4921_a466_86ac,
0x6a74_4a08_0809_e054,
0x002d_5642_0359_d026,
]),
],
[
Fp::from_raw([
0x0fc2_c5af_9635_15a6,
0xda8d_6245_9e21_f409,
0x1d68_b3cd_32e1_0bbe,
0x1231_58e5_965b_5d9b,
]),
Fp::from_raw([
0x60c8_0eb4_9cad_9ec1,
0x0fbb_2b6f_5283_6d4e,
0x661d_14bb_f6cb_e042,
0x0be2_9fc4_0847_a941,
]),
],
[
Fp::from_raw([
0x2338_02f2_4fdf_4c1a,
0x36db_9d85_9cad_5f9a,
0x5771_6142_015a_453c,
0x1ac9_6991_dec2_bb05,
]),
Fp::from_raw([
0x51ca_3355_bcb0_627e,
0x5e12_c9fa_97f1_8a92,
0x5f49_64fc_61d2_3b3e,
0x1596_443f_763d_bcc2,
]),
],
[
Fp::from_raw([
0xd6d0_49ea_e3ba_3212,
0xf185_7d9f_17e7_15ae,
0x6b28_61d4_ec3a_eae0,
0x12e0_bcd3_654b_dfa7,
]),
Fp::from_raw([
0x04e6_c76c_7cf9_64ba,
0xceab_ac7f_3715_4b19,
0x9ea7_3d4a_f9af_2a50,
0x0fc9_2b4f_1bbe_a |
82b,
]),
],
[
Fp::from_raw([
0x9c7e_9652_3387_2762,
0xb14f_7c77_2223_6f4f,
0xd6f2_e592_a801_3f40,
0x1f9c_0b16_1044_6442,
]),
Fp::from_raw([
0x8d15_9f64_3dbb_f4d3,
0x050d_914d_a38b_4c05,
0xf8cd_e061_57a7_82f4,
0x0ebd_7424_4ae7_2675,
]),
],
[
Fp::from_raw([
0x7a83_9839_dccf_c6d1,
0x3b06_71e9_7346_ee39,
0x69a9_fafd_4ab9_51c0,
0x2cb7_f0ed_39e1_6e9f,
]),
Fp::from_raw([
0x90c7_2bca_7352_d9bf,
0xce76_1d05_14ce_5266,
0x5605_443e_e41b_ab20,
0x1a9d_6e2e_cff0_22cc,
]),
],
[
Fp::from_raw([
0x87da_182d_648e_c72f,
0xd0c1_3326_a9a7_ba30,
0x5ea8_3c3b_c44a_9331,
0x2a11_5439_607f_335a,
]),
Fp::from_raw([
0x9535_c115_c5a4_c060,
0xe738_b563_05cd_44f2,
0x15b8_fa7a_ee3e_3410,
0x23f9_b652_9b5d_040d,
]),
],
[
Fp::from_raw([
0x260e_b939_f0e6_e8a7,
0xa3ce_97c1_6d58_b68b,
0x249a_c6ba_484b_b9c3,
0x0587_2c16_db0f_72a2,
]),
Fp::from_raw([
0x2b62_4a7c_dedd_f6a7,
0x0219_b615_1d55_b5c5,
0xca20_fb80_1180_75f4,
0x1300_bdee_08bb_7824,
]),
],
[
Fp::from_raw([
0x072e_4e7b_7d52_b376,
0x8d7a_d299_16d9_8cb1,
0xe638_1786_3a8f_6c28,
0x19b9_b63d_2f10_8e17,
]),
Fp::from_raw([
0x24a2_0128_481b_4f7f,
0x13d1_c887_26b5_ec42,
0xb5bd_a237_6685_22f6,
0x015b_ee13_57e3_c015,
]),
],
[
Fp::from_raw([
0xea92_c785_b128_ffd1,
0xfe1e_1ce4_bab2_18cb,
0x1b97_07a4_f161_5e4e,
0x2953_736e_94bb_6b9f,
]),
Fp::from_raw([ |
0x4ce7_266e_d660_8dfc,
0x851b_98d3_72b4_5f54,
0x862f_8061_80c0_385f,
0x0b06_9353_ba09_1618,
]),
],
[
Fp::from_raw([
0x4f58_8ac9_7d81_f429,
0x55ae_b7eb_9306_b64e,
0x15e4_e0bc_fb93_817e,
0x304f_74d4_61cc_c131,
]),
Fp::from_raw([
0xb8ee_5415_cde9_13fc,
0xaad2_a164_a461_7a4c,
0xe8a3_3f5e_77df_e4f5,
0x15bb_f146_ce9b_ca09,
]),
],
[
Fp::from_raw([
0xa9ff_2385_9572_c8c6,
0x9b8f_4b85_0405_c10c,
0x4490_1031_4879_64ed,
0x0ab4_dfe0_c274_2cde,
]),
Fp::from_raw([
0x251d_e39f_9639_779a,
0xef5e_edfe_a546_dea9,
0x97f4_5f76_49a1_9675,
0x0e32_db32_0a04_4e31,
]),
],
[
Fp::from_raw([
0xa307_8efa_516d_a016,
0x6797_733a_8277_4896,
0xb276_35a7_8b68_88e6,
0x0a17_56aa_1f37_8ca4,
]),
Fp::from_raw([
0x4254_d6a2_a25d_93ef,
0x95e6_1d32_8f85_efa9,
0x47fd_1717_7f95_2ef8,
0x044c_4a33_b10f_6934,
]),
],
[
Fp::from_raw([
0xd37b_07b5_466c_4b8b,
0xfe08_79d7_9a49_6891,
0xbe65_5b53_7f66_f700,
0x2ed3_611b_725b_8a70,
]),
Fp::from_raw([
0xd833_9ea7_1208_58aa,
0xadfd_eb9c_fdd3_47b5,
0xc8ec_c3d7_22aa_2e0e,
0x1f9b_a4e8_bab7_ce42,
]),
],
[
Fp::from_raw([
0xb740_56f8_65c5_d3da,
0xa38e_82ac_4502_066d,
0x8f7e_e907_a84e_518a,
0x1b23_3043_052e_8c28,
]),
Fp::from_raw([
0xca2f_97b0_2087_5954,
0x9020_53bf_c0f1_4db0,
0x7403_1ab7_2bd5_5b4c,
0x2431_e1cc_164b_b8d0,
]),
],
[
Fp::from_raw([
0xa791_f273_9658_01fd,
0xa |
13e_3220_9758_3319,
0x30cd_6953_a0a7_db45,
0x082f_934c_91f5_aac3,
]),
Fp::from_raw([
0x9ad6_bb93_0c48_997c,
0xc772_45e2_ae7c_be99,
0xa34b_e074_3155_42a3,
0x2b9a_0a22_3e75_38b0,
]),
],
[
Fp::from_raw([
0xb0b5_89cc_7021_4e7d,
0x8164_163e_75a8_a00e,
0xceb8_5483_b887_a9be,
0x0e1c_d91e_dd2c_fa2c,
]),
Fp::from_raw([
0x88d3_2460_1ceb_e2f9,
0x9977_4f19_854d_00f5,
0xc951_f614_77e3_6989,
0x2e1e_ac0f_2bfd_fd63,
]),
],
[
Fp::from_raw([
0x23d7_4811_5b50_0b83,
0x7345_784d_8efd_b33c,
0x0c76_158e_769d_6d15,
0x0cbf_a95f_37fb_7406,
]),
Fp::from_raw([
0x980c_232d_fa4a_4f84,
0x76d9_91e3_a775_13d9,
0xd65a_d49d_8a61_e9a6,
0x08f0_5b3b_e923_ed44,
]),
],
[
Fp::from_raw([
0x25a2_dd51_0c04_7ef6,
0xe728_4925_dc07_58a3,
0x52bf_8e21_984d_0443,
0x2271_9e2a_070b_cd08,
]),
Fp::from_raw([
0xf41f_62b2_f268_30c0,
0x7bdb_f036_1199_82c0,
0xc060_f7fc_c3a1_ab4c,
0x041f_596a_9ee1_cb2b,
]),
],
[
Fp::from_raw([
0x19fc_dd09_86b1_0f89,
0x021b_e1c2_d0dc_464a,
0x8762_8eb0_6f6b_1d4c,
0x233f_d35d_e1be_520a,
]),
Fp::from_raw([
0xefcb_453c_61c9_c267,
0xd31e_078a_a1b4_707e,
0x4325_e0a4_23eb_c810,
0x0524_b46d_1aa8_7a5e,
]),
],
[
Fp::from_raw([
0xcc44_8623_7c51_5211,
0x4227_bb95_4b0f_3199,
0xce47_fcac_894b_8582,
0x2c34_f424_c81e_5716,
]),
Fp::from_raw([
0xf330_1032_7de4_915e,
0x2dd2_025b_5457_cc97,
0x207e_ffc2_b554_1fb7, |
0x0b5f_2a4b_6338_7819,
]),
],
[
Fp::from_raw([
0xaefa_c41f_e05c_659f,
0xc174_35d2_f57a_f6ce,
0xc5b7_2fe4_39d2_cfd6,
0x2220_7856_082c_cc54,
]),
Fp::from_raw([
0x2785_4048_ce2c_8171,
0xcdfb_2101_94ca_f79f,
0x4e24_159b_7f89_50b5,
0x24d5_7a8b_f5da_63fe,
]),
],
[
Fp::from_raw([
0x7391_9bb2_3b79_396e,
0x374a_d709_7bb0_1a85,
0x3b37_1d75_bd69_3f98,
0x0afa_b181_fdd5_e058,
]),
Fp::from_raw([
0xf162_90d6_2b11_28ee,
0x76c0_0571_94c1_6c0b,
0x998a_52ef_ac7c_bd56,
0x2dba_9b10_8f20_8772,
]),
],
[
Fp::from_raw([
0x5aff_13e6_bce4_20b3,
0xcbb8_3de0_bd59_2b25,
0x56f8_81c7_88f5_3f83,
0x2634_9b66_edb8_b16f,
]),
Fp::from_raw([
0x2352_88a3_e6f1_37db,
0xd81a_56d2_8ecc_193b,
0x685e_95f9_2339_753a,
0x25af_7ce0_e5e1_0357,
]),
],
[
Fp::from_raw([
0x1f7c_0187_fe35_011f,
0x70ee_d7aa_e88b_2bff,
0xc094_d6a5_5edd_68b9,
0x25b4_ce7b_d229_4390,
]),
Fp::from_raw([
0x8cb9_d54c_1e02_b631,
0xde9c_ef28_ebdf_30b1,
0x387e_53f1_908a_88e5,
0x22c5_43f1_0f6c_89ec,
]),
],
[
Fp::from_raw([
0xdf66_8e74_882f_87a9,
0x425e_906a_919d_7a34,
0x4fc7_908a_9f19_1e1e,
0x0236_f93e_7789_c472,
]),
Fp::from_raw([
0x9cb4_97af_980c_4b52,
0x652b_dae1_14eb_0165,
0x0e7d_27e3_7d05_da99,
0x2935_0b40_1166_ca01,
]),
],
[
Fp::from_raw([
0xee12_6091_6652_363f,
0x65ed_b75d_844e_bb89,
0x6bd3_1bba_b547_f75a,
0x0eed_787d_6582_0d3f,
]), |
Fp::from_raw([
0x1906_f656_f4de_6fad,
0xfdcd_0e99_bd94_297d,
0x036a_753f_520b_3291,
0x07cc_1170_f13b_46f2,
]),
],
[
Fp::from_raw([
0x2059_4356_89e8_acea,
0x9087_86d7_f9f5_d10c,
0xf49b_cf61_3a3d_30b1,
0x22b9_3923_3b1d_7205,
]),
Fp::from_raw([
0xadd6_50ac_e60a_e5a6,
0x740f_083a_5aa8_5438,
0x8aad_1dc8_bc33_e870,
0x0145_1762_a0aa_b81c,
]),
],
[
Fp::from_raw([
0xe704_fec0_892f_ce89,
0xe32e_aa61_dec7_da57,
0x61fa_bf10_25d4_6d1f,
0x2350_6bb5_d872_7d44,
]),
Fp::from_raw([
0x7f8b_d689_0735_5522,
0x2a37_0953_1e1e_fea9,
0xbac0_6ae3_f71b_dd09,
0x2e48_4c44_e838_aea0,
]),
],
[
Fp::from_raw([
0x4541_8da2_6835_b54c,
0xaf4a_5945_45ce_dc25,
0x379e_78c5_0bd2_e42b,
0x0f4b_c7d0_7eba_fd64,
]),
Fp::from_raw([
0xe620_996d_50d8_e74e,
0x5158_2388_725d_f460,
0xfa76_6378_62fa_aee8,
0x1f4d_3c8f_6583_e9e5,
]),
],
[
Fp::from_raw([
0x53eb_9bcb_48fe_7389,
0xfae0_2abc_7b68_1d91,
0x2660_d07b_e0e4_a988,
0x0935_14e0_c707_11f8,
]),
Fp::from_raw([
0x4a58_e0a3_47e1_53d8,
0x43ee_83ec_e472_28f2,
0x4669_9a2b_5f3b_c036,
0x1ada_b0c8_e2b3_bad3,
]),
],
[
Fp::from_raw([
0x1a22_dbef_9e80_dad2,
0x378c_1b94_b807_2bac,
0xd147_09eb_b474_641a,
0x1672_b172_6057_d99d,
]),
Fp::from_raw([
0x30d4_7b23_9b47_9c14,
0xc5d8_e2fa_e0ac_c4ee,
0x8f44_f53f_dcab_468c,
0x1dfd_53d4_576a_f2e3,
]),
],
[
Fp::from_raw([
0xbc7f_2077 |
_5320_5c60,
0xe6d7_7d64_0f6f_c3de,
0xa70a_3626_3a37_e17f,
0x0c68_88a1_0b75_b0f3,
]),
Fp::from_raw([
0x8509_1ecc_a9d1_e508,
0x611a_61e0_0ee6_848b,
0x92b3_4a7e_77d1_2fe8,
0x1add_b933_a65b_e770,
]),
],
[
Fp::from_raw([
0x7935_628e_299d_1791,
0xf638_ff54_25f0_afff,
0x5c10_ae18_d1de_933c,
0x00d7_540d_cd26_8a84,
]),
Fp::from_raw([
0xd316_939d_20b8_2c0e,
0x26fe_dde4_acd9_9db1,
0x01b2_827a_5664_ca9c,
0x140c_0e42_687e_9ead,
]),
],
[
Fp::from_raw([
0xc091_e2ae_5656_5984,
0xc20a_0f9b_24f8_c5ed,
0x91ba_89b8_d13d_1806,
0x2f0c_3a11_5d43_17d1,
]),
Fp::from_raw([
0xd8c5_38a1_dc95_8c61,
0x08a0_cff6_70b2_2b82,
0x3006_ed22_0cf9_c810,
0x0c4e_e778_ff7c_1455,
]),
],
[
Fp::from_raw([
0x27c3_d748_5de7_4c69,
0x9424_ed26_c0ac_c662,
0x3693_f004_40cc_c360,
0x1704_f276_6d46_f82c,
]),
Fp::from_raw([
0x39b6_6fe9_009c_3cfa,
0xf076_9c9f_8544_e402,
0xa7a0_2c1b_51d2_44ab,
0x2f2d_19cc_3ea5_d78e,
]),
],
[
Fp::from_raw([
0xd6c7_66a8_06fc_6629,
0xdd7e_e6cb_9cfe_d9c7,
0x5053_f112_e2a8_e8dc,
0x1ae0_3853_b75f_caba,
]),
Fp::from_raw([
0x4e41_a86d_daf0_56d5,
0x3556_921b_2d6f_014e,
0x51d1_31d0_fa61_aa5f,
0x0971_aabf_7952_41df,
]),
],
[
Fp::from_raw([
0x5f5c_29f7_bfe2_f646,
0xda62_4f83_80df_1c87,
0x91d4_cf6b_6e0d_e73e,
0x1408_c316_e601_4e1a,
]),
Fp::from_raw([
0x4169_1f39_822e_f5bd,
0x6c89_f1f7_73ef_2853, |
0x248a_be42_b543_093b,
0x1667_f3fe_2edb_e850,
]),
],
[
Fp::from_raw([
0x424c_6957_6500_fe37,
0x5b81_7184_09e5_c133,
0xa48b_0a03_557c_df91,
0x13bf_7c5d_0d2c_4376,
]),
Fp::from_raw([
0x19bc_0ba7_43a6_2c2c,
0x024b_9534_7856_b797,
0x3016_adf3_d353_3c24,
0x0762_0a6d_fb0b_6cec,
]),
],
[
Fp::from_raw([
0x1675_de3e_1982_b4d0,
0x75d2_959e_2f32_2b73,
0x36a8_ca08_bdbd_d8b0,
0x1574_c7ef_0c43_545f,
]),
Fp::from_raw([
0xc06e_03a7_ff83_78f0,
0x5bd4_1845_71c2_54fd,
0xfd56_7970_a717_ceec,
0x269e_4b5b_7a2e_b21a,
]),
],
];
pub(crate) const MDS: [[Fp; 2]; 2] = [
[
Fp::from_raw([
0xbcec_a70b_d2af_7ad5,
0xaf07_f38a_f8c9_52a7,
0xec10_3453_51a2_3a3a,
0x066f_6f85_d6f6_8a85,
]),
Fp::from_raw([
0x0546_2b9f_8125_b1e8,
0x20a7_c02b_bd8b_ea73,
0x7782_e150_9b1d_0fdb,
0x2b9d_4b41_10c9_ae99,
]),
],
[
Fp::from_raw([
0xf573_f431_221f_8ff9,
0xb6c0_9d55_7013_fff1,
0x2bf6_7a44_93cc_262f,
0x0cc5_7cdb_b085_07d6,
]),
Fp::from_raw([
0x21bc_d147_9432_03c8,
0xade8_57e8_6eb5_c3a1,
0xa31a_6ed6_9724_e1ad,
0x1274_e649_a32e_d355,
]),
],
];
pub(crate) const MDS_INV: [[Fp; 2]; 2] = [
[
Fp::from_raw([
0x8dbe_bd0f_a8c5_3e66,
0x0554_569d_9b29_d1ea,
0x7081_9ab1_c784_6f21,
0x13ab_ec39_0ada_7f43,
]),
Fp::from_raw([
0xaaf6_185b_1a1e_60fe,
0xbd52_1ead_5dfe_0345,
0x4c98_62a1_d97d_1510,
0x1eb9_e1dc_19a3_3a62,
]),
],
[
Fp::from_ra |
w([
0x763f_7875_036b_cb02,
0x8ce5_1690_30a2_ad69,
0x601a_bc49_fdad_4f03,
0x0fc1_c939_4db8_9bb2,
]),
Fp::from_raw([
0x8abc_ed6b_d147_c8be,
0x2b7e_ac34_3459_61bc,
0x9502_054e_dc03_e7b2,
0x16a9_e98c_493a_902b,
]),
],
]; |
//! This file was generated by running generate_params.py
//! Specification for rate 5 Poseidon using the BN256 curve.
//! Patterned after [halo2_gadgets::poseidon::primitives::P128Pow5T3]
use halo2_gadgets::poseidon::primitives::*;
use halo2_proofs::arithmetic::Field;
use halo2_proofs::halo2curves::bn256::Fr as Fp;
use super::poseidon_params;
/// The specification for the Poseidon hash function.
#[derive(Debug, Clone, Copy)]
pub struct PoseidonSpec;
/// Basically the number of columns allocated within the poseidon chip
pub const POSEIDON_WIDTH: usize = 2;
/// The number of full SBox rounds
pub const POSEIDON_RATE: usize = 1;
pub(crate) type Mds<Fp, const T: usize> = [[Fp; T]; T];
impl Spec<Fp, POSEIDON_WIDTH, POSEIDON_RATE> for PoseidonSpec {
fn full_rounds() -> usize {
8
}
fn partial_rounds() -> usize {
56
}
fn sbox(val: Fp) -> Fp {
val.pow_vartime([5])
}
fn secure_mds() -> usize {
unimplemented!()
}
fn constants() -> (
Vec<[Fp; POSEIDON_WIDTH]>,
Mds<Fp, POSEIDON_WIDTH>,
Mds<Fp, POSEIDON_WIDTH>,
) {
(
poseidon_params::ROUND_CONSTANTS[..].to_vec(),
poseidon_params::MDS,
poseidon_params::MDS_INV,
)
}
}
|
use crate::tensor::TensorType;
use std::{
fmt,
ops::{Add, Mul, Neg, Sub},
};
pub enum BaseOp {
Dot,
DotInit,
CumProdInit,
CumProd,
Add,
Mult,
Sub,
SumInit,
Sum,
IsBoolean,
}
impl BaseOp {
pub fn nonaccum_f<
T: TensorType + Add<Output = T> + Sub<Output = T> + Mul<Output = T> + Neg<Output = T>,
>(
&self,
inputs: (T, T),
) -> T {
let (a, b) = inputs;
match &self {
BaseOp::Add => a + b,
BaseOp::Sub => a - b,
BaseOp::Mult => a * b,
BaseOp::IsBoolean => b,
_ => panic!("nonaccum_f called on accumulating operation"),
}
}
pub fn accum_f<
T: TensorType + Add<Output = T> + Sub<Output = T> + Mul<Output = T> + Neg<Output = T>,
>(
&self,
prev_output: T,
a: Vec<T>,
b: Vec<T>,
) -> T {
let zero = T::zero().unwrap();
let one = T::one().unwrap();
match &self {
BaseOp::DotInit => a.into_iter().zip(b).fold(zero, |acc, (a, b)| acc + a * b),
BaseOp::Dot => prev_output + a.into_iter().zip(b).fold(zero, |acc, (a, b)| acc + a * b),
BaseOp::CumProdInit => b.into_iter().fold(one, |acc, b| acc * b),
BaseOp::CumProd => prev_output * b.into_iter().fold(one, |acc, b| acc * b),
BaseOp::SumInit => b.into_iter().fold(zero, |acc, b| acc + b),
BaseOp::Sum => prev_output + b.into_iter().fold(zero, |acc, b| acc + b),
_ => panic!("accum_f called on non-accumulating operation"),
}
}
pub fn as_str(&self) -> &'static str {
match self {
BaseOp::Dot => "DOT",
BaseOp::DotInit => "DOTINIT",
BaseOp::CumProdInit => "CUMPRODINIT",
BaseOp::CumProd => "CUMPROD",
BaseOp::Add => "ADD",
BaseOp::Sub => "SUB",
BaseOp::Mult => "MULT",
BaseOp::Sum => "SUM",
BaseOp::SumInit => "SUMINIT", |
BaseOp::IsBoolean => "ISBOOLEAN",
}
}
pub fn query_offset_rng(&self) -> (i32, usize) {
match self {
BaseOp::DotInit => (0, 1),
BaseOp::Dot => (-1, 2),
BaseOp::CumProd => (-1, 2),
BaseOp::CumProdInit => (0, 1),
BaseOp::Add => (0, 1),
BaseOp::Sub => (0, 1),
BaseOp::Mult => (0, 1),
BaseOp::Sum => (-1, 2),
BaseOp::SumInit => (0, 1),
BaseOp::IsBoolean => (0, 1),
}
}
pub fn num_inputs(&self) -> usize {
match self {
BaseOp::DotInit => 2,
BaseOp::Dot => 2,
BaseOp::CumProdInit => 1,
BaseOp::CumProd => 1,
BaseOp::Add => 2,
BaseOp::Sub => 2,
BaseOp::Mult => 2,
BaseOp::Sum => 1,
BaseOp::SumInit => 1,
BaseOp::IsBoolean => 0,
}
}
pub fn constraint_idx(&self) -> usize {
match self {
BaseOp::DotInit => 0,
BaseOp::Dot => 1,
BaseOp::Add => 0,
BaseOp::Sub => 0,
BaseOp::Mult => 0,
BaseOp::Sum => 1,
BaseOp::SumInit => 0,
BaseOp::CumProd => 1,
BaseOp::CumProdInit => 0,
BaseOp::IsBoolean => 0,
}
}
}
impl fmt::Display for BaseOp {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.as_str())
}
} |
use std::str::FromStr;
use thiserror::Error;
use halo2_proofs::{
circuit::Layouter,
plonk::{ConstraintSystem, Constraints, Expression, Selector},
poly::Rotation,
};
use log::debug;
use pyo3::{
conversion::{FromPyObject, PyTryFrom},
exceptions::PyValueError,
prelude::*,
types::PyString,
};
use serde::{Deserialize, Serialize};
use tosubcommand::ToFlags;
use crate::{
circuit::{
ops::base::BaseOp,
table::{Range, RangeCheck, Table},
utils,
},
tensor::{Tensor, TensorType, ValTensor, VarTensor},
};
use std::{collections::BTreeMap, error::Error, marker::PhantomData};
use super::{lookup::LookupOp, region::RegionCtx, Op};
use halo2curves::ff::{Field, PrimeField};
pub enum CircuitError {
DimMismatch(String),
LookupInstantiation,
TableAlreadyAssigned,
UnsupportedOp,
InvalidEinsum,
}
Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, Serialize, Deserialize, Default, Copy,
)]
pub enum CheckMode {
SAFE,
UNSAFE,
}
impl std::fmt::Display for CheckMode {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
CheckMode::SAFE => write!(f, "safe"),
CheckMode::UNSAFE => write!(f, "unsafe"),
}
}
}
impl ToFlags for CheckMode {
fn to_flags(&self) -> Vec<String> {
vec![format!("{}", self)]
}
}
impl From<String> for CheckMode {
fn from(value: String) -> Self {
match value.to_lowercase().as_str() {
"safe" => CheckMode::SAFE,
"unsafe" => CheckMode::UNSAFE,
_ => {
log::error!("Invalid value for CheckMode");
log::warn!("defaulting to SAFE");
CheckMode::SAFE
}
}
}
}
pub |
struct Tolerance {
pub val: f32,
pub scale: utils::F32,
}
impl std::fmt::Display for Tolerance {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{:.2}", self.val)
}
}
impl ToFlags for Tolerance {
fn to_flags(&self) -> Vec<String> {
vec![format!("{}", self)]
}
}
impl FromStr for Tolerance {
type Err = String;
fn from_str(s: &str) -> Result<Self, Self::Err> {
if let Ok(val) = s.parse::<f32>() {
Ok(Tolerance {
val,
scale: utils::F32(1.0),
})
} else {
Err(
"Invalid tolerance value provided. It should expressed as a percentage (f32)."
.to_string(),
)
}
}
}
impl From<f32> for Tolerance {
fn from(value: f32) -> Self {
Tolerance {
val: value,
scale: utils::F32(1.0),
}
}
}
impl IntoPy<PyObject> for CheckMode {
fn into_py(self, py: Python) -> PyObject {
match self {
CheckMode::SAFE => "safe".to_object(py),
CheckMode::UNSAFE => "unsafe".to_object(py),
}
}
}
impl<'source> FromPyObject<'source> for CheckMode {
fn extract(ob: &'source PyAny) -> PyResult<Self> {
let trystr = <PyString as PyTryFrom>::try_from(ob)?;
let strval = trystr.to_string();
match strval.to_lowercase().as_str() {
"safe" => Ok(CheckMode::SAFE),
"unsafe" => Ok(CheckMode::UNSAFE),
_ => Err(PyValueError::new_err("Invalid value for CheckMode")),
}
}
}
impl IntoPy<PyObject> for Tolerance {
fn into_py(self, py: Python) -> PyObject {
(self.val, self.scale.0).to_object(py)
}
}
impl<'source> FromPyObject<'source> for Tolerance {
fn extract(ob: &'source PyAny) -> PyResult<Self> {
if let Ok((val, scale)) = ob.extract::<(f32, f32)>() {
Ok(Tolerance {
val,
scale: utils::F32(scale), |
})
} else {
Err(PyValueError::new_err("Invalid tolerance value provided. "))
}
}
}
pub |
struct DynamicLookups {
pub lookup_selectors: BTreeMap<(usize, usize), Selector>,
pub table_selectors: Vec<Selector>,
pub inputs: Vec<VarTensor>,
pub tables: Vec<VarTensor>,
}
impl DynamicLookups {
pub fn dummy(col_size: usize, num_inner_cols: usize) -> Self {
let dummy_var = VarTensor::dummy(col_size, num_inner_cols);
let single_col_dummy_var = VarTensor::dummy(col_size, 1);
Self {
lookup_selectors: BTreeMap::new(),
table_selectors: vec![],
inputs: vec![dummy_var.clone(), dummy_var.clone(), dummy_var.clone()],
tables: vec![
single_col_dummy_var.clone(),
single_col_dummy_var.clone(),
single_col_dummy_var.clone(),
],
}
}
}
pub |
struct Shuffles {
pub input_selectors: BTreeMap<(usize, usize), Selector>,
pub reference_selectors: Vec<Selector>,
pub inputs: Vec<VarTensor>,
pub references: Vec<VarTensor>,
}
impl Shuffles {
pub fn dummy(col_size: usize, num_inner_cols: usize) -> Self {
let dummy_var = VarTensor::dummy(col_size, num_inner_cols);
let single_col_dummy_var = VarTensor::dummy(col_size, 1);
Self {
input_selectors: BTreeMap::new(),
reference_selectors: vec![],
inputs: vec![dummy_var.clone(), dummy_var.clone()],
references: vec![single_col_dummy_var.clone(), single_col_dummy_var.clone()],
}
}
}
pub struct StaticLookups<F: PrimeField + TensorType + PartialOrd> {
pub selectors: BTreeMap<(LookupOp, usize, usize), Selector>,
pub tables: BTreeMap<LookupOp, Table<F>>,
pub index: VarTensor,
pub output: VarTensor,
pub input: VarTensor,
}
impl<F: PrimeField + TensorType + PartialOrd> StaticLookups<F> {
pub fn dummy(col_size: usize, num_inner_cols: usize) -> Self {
let dummy_var = VarTensor::dummy(col_size, num_inner_cols);
Self {
selectors: BTreeMap::new(),
tables: BTreeMap::new(),
index: dummy_var.clone(),
output: dummy_var.clone(),
input: dummy_var,
}
}
}
pub |
struct CustomGates {
pub inputs: Vec<VarTensor>,
pub output: VarTensor,
pub selectors: BTreeMap<(BaseOp, usize, usize), Selector>,
}
impl CustomGates {
pub fn dummy(col_size: usize, num_inner_cols: usize) -> Self {
let dummy_var = VarTensor::dummy(col_size, num_inner_cols);
Self {
inputs: vec![dummy_var.clone(), dummy_var.clone()],
output: dummy_var,
selectors: BTreeMap::new(),
}
}
}
pub struct RangeChecks<F: PrimeField + TensorType + PartialOrd> {
pub selectors: BTreeMap<(Range, usize, usize), Selector>,
pub ranges: BTreeMap<Range, RangeCheck<F>>,
pub index: VarTensor,
pub input: VarTensor,
}
impl<F: PrimeField + TensorType + PartialOrd> RangeChecks<F> {
pub fn dummy(col_size: usize, num_inner_cols: usize) -> Self {
let dummy_var = VarTensor::dummy(col_size, num_inner_cols);
Self {
selectors: BTreeMap::new(),
ranges: BTreeMap::new(),
index: dummy_var.clone(),
input: dummy_var,
}
}
}
pub struct BaseConfig<F: PrimeField + TensorType + PartialOrd> {
pub custom_gates: CustomGates,
pub static_lookups: StaticLookups<F>,
pub dynamic_lookups: DynamicLookups,
pub range_checks: RangeChecks<F>,
pub shuffles: Shuffles,
pub check_mode: CheckMode,
_marker: PhantomData<F>,
}
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
pub fn dummy(col_size: usize, num_inner_cols: usize) -> Self {
Self {
custom_gates: CustomGates::dummy(col_size, num_inner_cols),
static_lookups: StaticLookups::dummy(col_size, num_inner_cols),
dynamic_lookups: DynamicLookups::dummy(col_size, num_inner_cols),
shuffles: Shuffles::dummy(col_size, num_inner_cols),
range_checks: RangeChecks::dummy(col_size, num_inner_cols),
check_mode: CheckMode::SAFE, |
_marker: PhantomData,
}
}
pub fn configure(
meta: &mut ConstraintSystem<F>,
inputs: &[VarTensor; 2],
output: &VarTensor,
check_mode: CheckMode,
) -> Self {
let mut nonaccum_selectors = BTreeMap::new();
let mut accum_selectors = BTreeMap::new();
if inputs[0].num_cols() != inputs[1].num_cols() {
log::warn!("input shapes do not match");
}
if inputs[0].num_cols() != output.num_cols() {
log::warn!("input and output shapes do not match");
}
for i in 0..output.num_blocks() {
for j in 0..output.num_inner_cols() {
nonaccum_selectors.insert((BaseOp::Add, i, j), meta.selector());
nonaccum_selectors.insert((BaseOp::Sub, i, j), meta.selector());
nonaccum_selectors.insert((BaseOp::Mult, i, j), meta.selector());
nonaccum_selectors.insert((BaseOp::IsBoolean, i, j), meta.selector());
}
}
for i in 0..output.num_blocks() {
accum_selectors.insert((BaseOp::DotInit, i, 0), meta.selector());
accum_selectors.insert((BaseOp::Dot, i, 0), meta.selector());
accum_selectors.insert((BaseOp::CumProd, i, 0), meta.selector());
accum_selectors.insert((BaseOp::CumProdInit, i, 0), meta.selector());
accum_selectors.insert((BaseOp::Sum, i, 0), meta.selector());
accum_selectors.insert((BaseOp::SumInit, i, 0), meta.selector());
}
for ((base_op, block_idx, inner_col_idx), selector) in nonaccum_selectors.iter() {
meta.create_gate(base_op.as_str(), |meta| {
let selector = meta.query_selector(*selector);
let zero = Expression::<F>::Constant(F::ZERO);
let mut qis = vec![zero; 2];
for (i, q_i) in qis
.iter_mut()
.enumerate()
.take(2)
.skip( |
2 - base_op.num_inputs())
{
*q_i = inputs[i]
.query_rng(meta, *block_idx, *inner_col_idx, 0, 1)
.expect("non accum: input query failed")[0]
.clone()
}
let (rotation_offset, rng) = base_op.query_offset_rng();
let constraints = match base_op {
BaseOp::IsBoolean => {
let expected_output: Tensor<Expression<F>> = output
.query_rng(meta, *block_idx, *inner_col_idx, 0, 1)
.expect("non accum: output query failed");
let output = expected_output[base_op.constraint_idx()].clone();
vec![(output.clone()) * (output.clone() - Expression::Constant(F::from(1)))]
}
_ => {
let expected_output: Tensor<Expression<F>> = output
.query_rng(meta, *block_idx, *inner_col_idx, rotation_offset, rng)
.expect("non accum: output query failed");
let res = base_op.nonaccum_f((qis[0].clone(), qis[1].clone()));
vec![expected_output[base_op.constraint_idx()].clone() - res]
}
};
Constraints::with_selector(selector, constraints)
});
}
for ((base_op, block_idx, _), selector) in accum_selectors.iter() {
meta.create_gate(base_op.as_str(), |meta| {
let selector = meta.query_selector(*selector);
let mut qis = vec![vec![]; 2];
for (i, q_i) in qis
.iter_mut()
.enumerate()
.take(2)
.skip(2 - base_op.num_inputs())
{
*q_i = inputs[i]
.query_whole_block(meta, *block_idx, 0, 1) |
.expect("accum: input query failed")
.into_iter()
.collect()
}
let (rotation_offset, rng) = base_op.query_offset_rng();
let expected_output: Tensor<Expression<F>> = output
.query_rng(meta, *block_idx, 0, rotation_offset, rng)
.expect("accum: output query failed");
let res =
base_op.accum_f(expected_output[0].clone(), qis[0].clone(), qis[1].clone());
let constraints = vec![expected_output[base_op.constraint_idx()].clone() - res];
Constraints::with_selector(selector, constraints)
});
}
let selectors = nonaccum_selectors
.into_iter()
.chain(accum_selectors)
.collect();
Self {
custom_gates: CustomGates {
inputs: inputs.to_vec(),
output: output.clone(),
selectors,
},
static_lookups: StaticLookups::default(),
dynamic_lookups: DynamicLookups::default(),
shuffles: Shuffles::default(),
range_checks: RangeChecks::default(),
check_mode,
_marker: PhantomData,
}
}
pub fn configure_lookup(
&mut self,
cs: &mut ConstraintSystem<F>,
input: &VarTensor,
output: &VarTensor,
index: &VarTensor,
lookup_range: Range,
logrows: usize,
nl: &LookupOp,
) -> Result<(), Box<dyn Error>>
where
F: Field,
{
if !index.is_advice() {
return Err("wrong input type for lookup index".into());
}
if !input.is_advice() {
return Err("wrong input type for lookup input".into());
}
if !output.is_advice() {
return Err("wrong input type for lookup output".into());
}
let table = if !self.static_lookups.tables.c |
ontains_key(nl) {
let table = if let Some(table) = self.static_lookups.tables.values().next() {
Table::<F>::configure(
cs,
lookup_range,
logrows,
nl,
Some(table.table_inputs.clone()),
)
} else {
Table::<F>::configure(cs, lookup_range, logrows, nl, None)
};
self.static_lookups.tables.insert(nl.clone(), table.clone());
table
} else {
return Ok(());
};
for x in 0..input.num_blocks() {
for y in 0..input.num_inner_cols() {
let len = table.selector_constructor.degree;
let multi_col_selector = cs.complex_selector();
for ((col_idx, input_col), output_col) in table
.table_inputs
.iter()
.enumerate()
.zip(table.table_outputs.iter())
{
cs.lookup("", |cs| {
let mut res = vec![];
let sel = cs.query_selector(multi_col_selector);
let synthetic_sel = match len {
1 => Expression::Constant(F::from(1)),
_ => match index {
VarTensor::Advice { inner: advices, .. } => {
cs.query_advice(advices[x][y], Rotation(0))
}
_ => unreachable!(),
},
};
let input_query = match &input {
VarTensor::Advice { inner: advices, .. } => {
cs.query_advice(advices[x][y], Rotation(0))
}
_ => unreachable!(),
};
let output_query = match & |
output {
VarTensor::Advice { inner: advices, .. } => {
cs.query_advice(advices[x][y], Rotation(0))
}
_ => unreachable!(),
};
let col_expr = sel.clone()
* table
.selector_constructor
.get_expr_at_idx(col_idx, synthetic_sel);
let multiplier =
table.selector_constructor.get_selector_val_at_idx(col_idx);
let not_expr = Expression::Constant(multiplier) - col_expr.clone();
let (default_x, default_y) = table.get_first_element(col_idx);
log::trace!("---------------- col {:?} ------------------", col_idx,);
log::trace!("expr: {:?}", col_expr,);
log::trace!("multiplier: {:?}", multiplier);
log::trace!("not_expr: {:?}", not_expr);
log::trace!("default x: {:?}", default_x);
log::trace!("default y: {:?}", default_y);
res.extend([
(
col_expr.clone() * input_query.clone()
+ not_expr.clone() * Expression::Constant(default_x),
*input_col,
),
(
col_expr.clone() * output_query.clone()
+ not_expr.clone() * Expression::Constant(default_y),
*output_col,
),
]);
res
});
}
self.static_lookups
.selectors
.insert((nl.clone(), |
x, y), multi_col_selector);
}
}
if let VarTensor::Empty = self.static_lookups.input {
debug!("assigning lookup input");
self.static_lookups.input = input.clone();
}
if let VarTensor::Empty = self.static_lookups.output {
debug!("assigning lookup output");
self.static_lookups.output = output.clone();
}
if let VarTensor::Empty = self.static_lookups.index {
debug!("assigning lookup index");
self.static_lookups.index = index.clone();
}
Ok(())
}
pub fn configure_dynamic_lookup(
&mut self,
cs: &mut ConstraintSystem<F>,
lookups: &[VarTensor; 3],
tables: &[VarTensor; 3],
) -> Result<(), Box<dyn Error>>
where
F: Field,
{
for l in lookups.iter() {
if !l.is_advice() {
return Err("wrong input type for dynamic lookup".into());
}
}
for t in tables.iter() {
if !t.is_advice() || t.num_blocks() > 1 || t.num_inner_cols() > 1 {
return Err("wrong table type for dynamic lookup".into());
}
}
let one = Expression::Constant(F::ONE);
let s_ltable = cs.complex_selector();
for x in 0..lookups[0].num_blocks() {
for y in 0..lookups[0].num_inner_cols() {
let s_lookup = cs.complex_selector();
cs.lookup_any("lookup", |cs| {
let s_lookupq = cs.query_selector(s_lookup);
let mut expression = vec![];
let s_ltableq = cs.query_selector(s_ltable);
let mut lookup_queries = vec![one.clone()];
for lookup in lookups {
lookup_queries.push(match lookup {
VarTensor::Advice { inner: advices, .. } => {
cs.query_advice(advices[x][y], Rotation(0)) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.