text
stringlengths 1
2.05k
|
---|
}
_ => unreachable!(),
});
}
let mut table_queries = vec![one.clone()];
for table in tables {
table_queries.push(match table {
VarTensor::Advice { inner: advices, .. } => {
cs.query_advice(advices[0][0], Rotation(0))
}
_ => unreachable!(),
});
}
let lhs = lookup_queries.into_iter().map(|c| c * s_lookupq.clone());
let rhs = table_queries.into_iter().map(|c| c * s_ltableq.clone());
expression.extend(lhs.zip(rhs));
expression
});
self.dynamic_lookups
.lookup_selectors
.entry((x, y))
.or_insert(s_lookup);
}
}
self.dynamic_lookups.table_selectors.push(s_ltable);
if self.dynamic_lookups.tables.is_empty() {
debug!("assigning dynamic lookup table");
self.dynamic_lookups.tables = tables.to_vec();
}
if self.dynamic_lookups.inputs.is_empty() {
debug!("assigning dynamic lookup input");
self.dynamic_lookups.inputs = lookups.to_vec();
}
Ok(())
}
pub fn configure_shuffles(
&mut self,
cs: &mut ConstraintSystem<F>,
inputs: &[VarTensor; 2],
references: &[VarTensor; 2],
) -> Result<(), Box<dyn Error>>
where
F: Field,
{
for l in inputs.iter() {
if !l.is_advice() {
return Err("wrong input type for dynamic lookup".into());
}
}
for t in references.iter() {
if !t.is_advice() || t.num_blocks() > 1 || t.num_inner_cols() > 1 {
return Err("wrong table type for dynamic lookup".into()); |
}
}
let one = Expression::Constant(F::ONE);
let s_reference = cs.complex_selector();
for x in 0..inputs[0].num_blocks() {
for y in 0..inputs[0].num_inner_cols() {
let s_input = cs.complex_selector();
cs.lookup_any("lookup", |cs| {
let s_inputq = cs.query_selector(s_input);
let mut expression = vec![];
let s_referenceq = cs.query_selector(s_reference);
let mut input_queries = vec![one.clone()];
for input in inputs {
input_queries.push(match input {
VarTensor::Advice { inner: advices, .. } => {
cs.query_advice(advices[x][y], Rotation(0))
}
_ => unreachable!(),
});
}
let mut ref_queries = vec![one.clone()];
for reference in references {
ref_queries.push(match reference {
VarTensor::Advice { inner: advices, .. } => {
cs.query_advice(advices[0][0], Rotation(0))
}
_ => unreachable!(),
});
}
let lhs = input_queries.into_iter().map(|c| c * s_inputq.clone());
let rhs = ref_queries.into_iter().map(|c| c * s_referenceq.clone());
expression.extend(lhs.zip(rhs));
expression
});
self.shuffles
.input_selectors
.entry((x, y))
.or_insert(s_input);
}
}
self.shuffles.reference_selectors.push(s_reference);
if self.shuffles.references.is_empty() {
debug!("assigning shuffles reference");
self.shuffles.references |
= references.to_vec();
}
if self.shuffles.inputs.is_empty() {
debug!("assigning shuffles input");
self.shuffles.inputs = inputs.to_vec();
}
Ok(())
}
pub fn configure_range_check(
&mut self,
cs: &mut ConstraintSystem<F>,
input: &VarTensor,
index: &VarTensor,
range: Range,
logrows: usize,
) -> Result<(), Box<dyn Error>>
where
F: Field,
{
if !input.is_advice() {
return Err("wrong input type for lookup input".into());
}
let range_check = if let std::collections::btree_map::Entry::Vacant(e) =
self.range_checks.ranges.entry(range)
{
let range_check = RangeCheck::<F>::configure(cs, range, logrows);
e.insert(range_check.clone());
range_check
} else {
return Ok(());
};
for x in 0..input.num_blocks() {
for y in 0..input.num_inner_cols() {
let len = range_check.selector_constructor.degree;
let multi_col_selector = cs.complex_selector();
for (col_idx, input_col) in range_check.inputs.iter().enumerate() {
cs.lookup("", |cs| {
let mut res = vec![];
let sel = cs.query_selector(multi_col_selector);
let synthetic_sel = match len {
1 => Expression::Constant(F::from(1)),
_ => match index {
VarTensor::Advice { inner: advices, .. } => {
cs.query_advice(advices[x][y], Rotation(0))
}
_ => unreachable!(),
},
};
let input_query = match &input {
VarTensor::Advice { inner: advices, .. } => { |
cs.query_advice(advices[x][y], Rotation(0))
}
_ => unreachable!(),
};
let default_x = range_check.get_first_element(col_idx);
let col_expr = sel.clone()
* range_check
.selector_constructor
.get_expr_at_idx(col_idx, synthetic_sel);
let multiplier = range_check
.selector_constructor
.get_selector_val_at_idx(col_idx);
let not_expr = Expression::Constant(multiplier) - col_expr.clone();
res.extend([(
col_expr.clone() * input_query.clone()
+ not_expr.clone() * Expression::Constant(default_x),
*input_col,
)]);
log::trace!("---------------- col {:?} ------------------", col_idx,);
log::trace!("expr: {:?}", col_expr,);
log::trace!("multiplier: {:?}", multiplier);
log::trace!("not_expr: {:?}", not_expr);
log::trace!("default x: {:?}", default_x);
res
});
}
self.range_checks
.selectors
.insert((range, x, y), multi_col_selector);
}
}
if let VarTensor::Empty = self.range_checks.input {
debug!("assigning range check input");
self.range_checks.input = input.clone();
}
if let VarTensor::Empty = self.range_checks.index {
debug!("assigning range check index");
self.range_checks.index = index.clone();
}
Ok(())
}
pub fn layout_tables(&mut self, layouter: &mut impl Layouter<F>) -> Result<(), Box<dyn |
Error>> {
for (i, table) in self.static_lookups.tables.values_mut().enumerate() {
if !table.is_assigned {
debug!(
"laying out table for {}",
crate::circuit::ops::Op::<F>::as_string(&table.nonlinearity)
);
if i == 0 {
table.layout(layouter, false)?;
} else {
table.layout(layouter, true)?;
}
}
}
Ok(())
}
pub fn layout_range_checks(
&mut self,
layouter: &mut impl Layouter<F>,
) -> Result<(), Box<dyn Error>> {
for range_check in self.range_checks.ranges.values_mut() {
if !range_check.is_assigned {
debug!("laying out range check for {:?}", range_check.range);
range_check.layout(layouter)?;
}
}
Ok(())
}
pub fn layout(
&mut self,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>],
op: Box<dyn Op<F>>,
) -> Result<Option<ValTensor<F>>, Box<dyn Error>> {
op.layout(self, region, values)
}
} |
use super::*;
use crate::{
circuit::{layouts, utils, Tolerance},
fieldutils::i128_to_felt,
graph::multiplier_to_scale,
tensor::{self, Tensor, TensorType, ValTensor},
};
use halo2curves::ff::PrimeField;
use serde::{Deserialize, Serialize};
pub enum HybridOp {
Recip {
input_scale: utils::F32,
output_scale: utils::F32,
use_range_check_for_int: bool,
},
Div {
denom: utils::F32,
use_range_check_for_int: bool,
},
ReduceMax {
axes: Vec<usize>,
},
ReduceArgMax {
dim: usize,
},
SumPool {
padding: Vec<(usize, usize)>,
stride: Vec<usize>,
kernel_shape: Vec<usize>,
normalized: bool,
},
MaxPool {
padding: Vec<(usize, usize)>,
stride: Vec<usize>,
pool_dims: Vec<usize>,
},
ReduceMin {
axes: Vec<usize>,
},
ReduceArgMin {
dim: usize,
},
Softmax {
input_scale: utils::F32,
output_scale: utils::F32,
axes: Vec<usize>,
},
RangeCheck(Tolerance),
Greater,
GreaterEqual,
Less,
LessEqual,
Equals,
Gather {
dim: usize,
constant_idx: Option<Tensor<usize>>,
},
TopK {
dim: usize,
k: usize,
largest: bool,
},
OneHot {
dim: usize,
num_classes: usize,
},
}
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for HybridOp {
fn requires_homogenous_input_scales(&self) -> Vec<usize> {
match self {
HybridOp::Greater | HybridOp::Less | HybridOp::Equals => vec![0, 1],
HybridOp::GreaterEqual | HybridOp::LessEqual => vec![0, 1],
_ => vec![],
}
}
fn as_any(&self) -> &dyn Any {
self
}
fn as_string(&self) -> String {
match self {
HybridOp::Recip {
input_scale,
output_scale,
use_range_check_for_int,
} => format!(
"RE |
CIP (input_scale={}, output_scale={}, use_range_check_for_int={})",
input_scale, output_scale, use_range_check_for_int
),
HybridOp::Div {
denom,
use_range_check_for_int,
} => format!(
"DIV (denom={}, use_range_check_for_int={})",
denom, use_range_check_for_int
),
HybridOp::SumPool {
padding,
stride,
kernel_shape,
normalized,
} => format!(
"SUMPOOL (padding={:?}, stride={:?}, kernel_shape={:?}, normalized={})",
padding, stride, kernel_shape, normalized
),
HybridOp::ReduceMax { axes } => format!("REDUCEMAX (axes={:?})", axes),
HybridOp::ReduceArgMax { dim } => format!("REDUCEARGMAX (dim={})", dim),
HybridOp::MaxPool {
padding,
stride,
pool_dims,
} => format!(
"MaxPool (padding={:?}, stride={:?}, pool_dims={:?})",
padding, stride, pool_dims
),
HybridOp::ReduceMin { axes } => format!("REDUCEMIN (axes={:?})", axes),
HybridOp::ReduceArgMin { dim } => format!("REDUCEARGMIN (dim={})", dim),
HybridOp::Softmax {
input_scale,
output_scale,
axes,
} => {
format!(
"SOFTMAX (input_scale={}, output_scale={}, axes={:?})",
input_scale, output_scale, axes
)
}
HybridOp::RangeCheck(p) => format!("RANGECHECK (tol={:?})", p),
HybridOp::Greater => "GREATER".into(),
HybridOp::GreaterEqual => "GREATEREQUAL".into(),
HybridOp::Less => "LESS".into(),
HybridOp::LessEqual => "LESSEQUAL".into(),
HybridOp::Equals => "EQUALS".into(),
HybridOp::Gather { dim, .. } => format!("GATHER (dim={})", dim |
),
HybridOp::TopK { k, dim, largest } => {
format!("TOPK (k={}, dim={}, largest={})", k, dim, largest)
}
HybridOp::OneHot { dim, num_classes } => {
format!("ONEHOT (dim={}, num_classes={})", dim, num_classes)
}
}
}
fn layout(
&self,
config: &mut crate::circuit::BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>],
) -> Result<Option<ValTensor<F>>, Box<dyn std::error::Error>> {
Ok(Some(match self {
HybridOp::SumPool {
padding,
stride,
kernel_shape,
normalized,
} => layouts::sumpool(
config,
region,
values[..].try_into()?,
padding,
stride,
kernel_shape,
*normalized,
)?,
HybridOp::Recip {
input_scale,
output_scale,
use_range_check_for_int,
} => {
if input_scale.0.fract() == 0.0
&& output_scale.0.fract() == 0.0
&& *use_range_check_for_int
{
layouts::recip(
config,
region,
values[..].try_into()?,
i128_to_felt(input_scale.0 as i128),
i128_to_felt(output_scale.0 as i128),
)?
} else {
layouts::nonlinearity(
config,
region,
values.try_into()?,
&LookupOp::Recip {
input_scale: *input_scale,
output_scale: *output_scale,
},
)?
}
}
HybridOp::Div {
denom,
use_range_check_f |
or_int,
..
} => {
if denom.0.fract() == 0.0 && *use_range_check_for_int {
layouts::loop_div(
config,
region,
values[..].try_into()?,
i128_to_felt(denom.0 as i128),
)?
} else {
layouts::nonlinearity(
config,
region,
values.try_into()?,
&LookupOp::Div { denom: *denom },
)?
}
}
HybridOp::Gather { dim, constant_idx } => {
if let Some(idx) = constant_idx {
tensor::ops::gather(values[0].get_inner_tensor()?, idx, *dim)?.into()
} else {
layouts::gather(config, region, values[..].try_into()?, *dim)?
}
}
HybridOp::MaxPool {
padding,
stride,
pool_dims,
} => layouts::max_pool(
config,
region,
values[..].try_into()?,
padding,
stride,
pool_dims,
)?,
HybridOp::ReduceMax { axes } => {
layouts::max_axes(config, region, values[..].try_into()?, axes)?
}
HybridOp::ReduceArgMax { dim } => {
layouts::argmax_axes(config, region, values[..].try_into()?, *dim)?
}
HybridOp::ReduceMin { axes } => {
layouts::min_axes(config, region, values[..].try_into()?, axes)?
}
HybridOp::ReduceArgMin { dim } => {
layouts::argmin_axes(config, region, values[..].try_into()?, *dim)?
}
HybridOp::Softmax {
input_scale,
output_scale,
axes,
} => layouts::softmax_axes(
config, |
region,
values[..].try_into()?,
*input_scale,
*output_scale,
axes,
)?,
HybridOp::RangeCheck(tol) => layouts::range_check_percent(
config,
region,
values[..].try_into()?,
tol.scale,
tol.val,
)?,
HybridOp::Greater => layouts::greater(config, region, values[..].try_into()?)?,
HybridOp::GreaterEqual => {
layouts::greater_equal(config, region, values[..].try_into()?)?
}
HybridOp::Less => layouts::less(config, region, values[..].try_into()?)?,
HybridOp::LessEqual => layouts::less_equal(config, region, values[..].try_into()?)?,
HybridOp::Equals => layouts::equals(config, region, values[..].try_into()?)?,
HybridOp::TopK { dim, k, largest } => {
layouts::topk_axes(config, region, values[..].try_into()?, *k, *dim, *largest)?
}
HybridOp::OneHot { dim, num_classes } => {
layouts::one_hot_axis(config, region, values[..].try_into()?, *num_classes, *dim)?
}
}))
}
fn out_scale(&self, in_scales: Vec<crate::Scale>) -> Result<crate::Scale, Box<dyn Error>> {
let scale = match self {
HybridOp::Greater { .. }
| HybridOp::GreaterEqual { .. }
| HybridOp::Less { .. }
| HybridOp::LessEqual { .. }
| HybridOp::ReduceArgMax { .. }
| HybridOp::OneHot { .. }
| HybridOp::ReduceArgMin { .. } => 0,
HybridOp::Softmax { output_scale, .. } | HybridOp::Recip { output_scale, .. } => {
multiplier_to_scale(output_scale.0 as f64)
}
_ => in_scales[0],
};
Ok(scale)
}
fn clone_dyn(&self) -> Box<dyn Op<F>> {
Box::new(self.clone())
}
} |
use std::{
collections::{HashMap, HashSet},
error::Error,
ops::Range,
};
use halo2_proofs::circuit::Value;
use halo2curves::ff::PrimeField;
use itertools::Itertools;
use log::{error, trace};
use maybe_rayon::{
iter::IntoParallelRefIterator,
prelude::{IndexedParallelIterator, IntoParallelIterator, ParallelIterator},
slice::ParallelSliceMut,
};
use self::tensor::{create_constant_tensor, create_zero_tensor};
use super::{
chip::{BaseConfig, CircuitError},
region::RegionCtx,
};
use crate::{
circuit::{ops::base::BaseOp, utils},
fieldutils::{felt_to_i128, i128_to_felt},
tensor::{
create_unit_tensor, get_broadcasted_shape,
ops::{accumulated, add, mult, sub},
Tensor, TensorError, ValType,
},
};
use super::*;
use crate::circuit::ops::lookup::LookupOp;
pub(crate) fn loop_div<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
value: &[ValTensor<F>; 1],
divisor: F,
) -> Result<ValTensor<F>, Box<dyn Error>> {
if divisor == F::ONE {
return Ok(value[0].clone());
}
let mut divisor = divisor;
let mut num_parts = 1;
while felt_to_i128(divisor) % 2 == 0 && felt_to_i128(divisor) > (2_i128.pow(F::S - 4)) {
divisor = i128_to_felt(felt_to_i128(divisor) / 2);
num_parts += 1;
}
let output = div(config, region, value, divisor)?;
if num_parts == 1 {
return Ok(output);
}
let divisor_int = 2_i128.pow(num_parts - 1);
let divisor_felt = i128_to_felt(divisor_int);
if divisor_int <= 2_i128.pow(F::S - 3) {
div(config, region, &[output], divisor_felt)
} else {
loop_div(config, region, &[output], divisor_felt)
}
}
pub(crate) fn div<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
value: &[ValTensor<F>; 1],
div: F,
) -> Result<ValTensor<F>, Box<dyn Error>> {
if div == F::ONE {
return Ok(va |
lue[0].clone());
}
let input = value[0].clone();
let input_dims = input.dims();
let range_check_bracket = felt_to_i128(div) / 2;
let divisor = create_constant_tensor(div, 1);
let divisor = region.assign(&config.custom_gates.inputs[1], &divisor)?;
region.increment(divisor.len());
let is_assigned = !input.any_unknowns()? && !divisor.any_unknowns()?;
let mut claimed_output: ValTensor<F> = if is_assigned {
let input_evals = input.get_int_evals()?;
tensor::ops::nonlinearities::const_div(&input_evals.clone(), felt_to_i128(div) as f64)
.par_iter()
.map(|x| Value::known(i128_to_felt(*x)))
.collect::<Tensor<Value<F>>>()
.into()
} else {
Tensor::new(
Some(&vec![Value::<F>::unknown(); input.len()]),
&[input.len()],
)?
.into()
};
claimed_output.reshape(input_dims)?;
region.assign(&config.custom_gates.output, &claimed_output)?;
region.increment(claimed_output.len());
let product = pairwise(
config,
region,
&[claimed_output.clone(), divisor.clone()],
BaseOp::Mult,
)?;
let diff_with_input = pairwise(
config,
region,
&[product.clone(), input.clone()],
BaseOp::Sub,
)?;
range_check(
config,
region,
&[diff_with_input],
&(-range_check_bracket, range_check_bracket),
)?;
Ok(claimed_output)
}
pub(crate) fn recip<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
value: &[ValTensor<F>; 1],
input_scale: F,
output_scale: F,
) -> Result<ValTensor<F>, Box<dyn Error>> {
let input = value[0].clone();
let input_dims = input.dims();
let integer_input_scale = felt_to_i128(input_scale);
let integer_output_scale = felt_to_i128(output_scale);
let range_check_len = std::cmp::min(integer_output_scale, 2_i128.pow(F::S - 4));
let input_scale_ra |
tio = if range_check_len > 0 {
i128_to_felt(integer_input_scale * integer_output_scale / range_check_len)
} else {
F::ONE
};
let range_check_bracket = range_check_len / 2;
let is_assigned = !input.any_unknowns()?;
let mut claimed_output: ValTensor<F> = if is_assigned {
let input_evals = input.get_int_evals()?;
tensor::ops::nonlinearities::recip(
&input_evals,
felt_to_i128(input_scale) as f64,
felt_to_i128(output_scale) as f64,
)
.par_iter()
.map(|x| Value::known(i128_to_felt(*x)))
.collect::<Tensor<Value<F>>>()
.into()
} else {
Tensor::new(
Some(&vec![Value::<F>::unknown(); input.len()]),
&[input.len()],
)?
.into()
};
claimed_output.reshape(input_dims)?;
let claimed_output = region.assign(&config.custom_gates.output, &claimed_output)?;
region.increment(claimed_output.len());
let product = pairwise(
config,
region,
&[claimed_output.clone(), input.clone()],
BaseOp::Mult,
)?;
let rebased_div = loop_div(config, region, &[product], input_scale_ratio)?;
let zero_inverse_val =
tensor::ops::nonlinearities::zero_recip(felt_to_i128(output_scale) as f64)[0];
let zero_inverse = create_constant_tensor(i128_to_felt(zero_inverse_val), 1);
let equal_zero_mask = equals_zero(config, region, &[input.clone()])?;
let equal_inverse_mask = equals(config, region, &[claimed_output.clone(), zero_inverse])?;
enforce_equality(
config,
region,
&[equal_zero_mask.clone(), equal_inverse_mask],
)?;
let unit_scale = create_constant_tensor(i128_to_felt(range_check_len), 1);
let unit_mask = pairwise(config, region, &[equal_zero_mask, unit_scale], BaseOp::Mult)?;
let rebased_offset_div = pairwise(config, region, &[rebased_div, unit_mask], BaseOp::Add)?;
range_check(
config,
region, |
&[rebased_offset_div],
&(range_check_bracket, 3 * range_check_bracket),
)?;
Ok(claimed_output)
}
pub fn dot<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
) -> Result<ValTensor<F>, Box<dyn Error>> {
region.flush()?;
let global_start = instant::Instant::now();
let mut values = values.clone();
let mut removal_indices = values[0].get_const_zero_indices()?;
let second_zero_indices = values[1].get_const_zero_indices()?;
removal_indices.extend(second_zero_indices);
removal_indices.par_sort_unstable();
removal_indices.dedup();
values[0].remove_indices(&mut removal_indices, true)?;
values[1].remove_indices(&mut removal_indices, true)?;
let elapsed = global_start.elapsed();
trace!("filtering const zero indices took: {:?}", elapsed);
if values[0].len() != values[1].len() {
return Err(Box::new(TensorError::DimMismatch("dot".to_string())));
}
if values[0].is_empty() && values[1].is_empty() {
return Ok(create_zero_tensor(1));
}
let start = instant::Instant::now();
let mut inputs = vec![];
let block_width = config.custom_gates.output.num_inner_cols();
let mut assigned_len = 0;
for (i, input) in values.iter_mut().enumerate() {
input.pad_to_zero_rem(block_width, ValType::Constant(F::ZERO))?;
let inp = {
let (res, len) = region.assign_with_duplication(
&config.custom_gates.inputs[i],
input,
&config.check_mode,
false,
)?;
assigned_len = len;
res.get_inner()?
};
inputs.push(inp);
}
let elapsed = start.elapsed();
trace!("assigning inputs took: {:?}", elapsed);
let start = instant::Instant::now();
let accumulated_dot = accumulated::dot(&[inputs[0].clone(), inputs[1].clone()], block_width)?; |
let elapsed = start.elapsed();
trace!("calculating accumulated dot took: {:?}", elapsed);
let start = instant::Instant::now();
let (output, output_assigned_len) = region.assign_with_duplication(
&config.custom_gates.output,
&accumulated_dot.into(),
&config.check_mode,
true,
)?;
let elapsed = start.elapsed();
trace!("assigning output took: {:?}", elapsed);
if !region.is_dummy() {
(0..output_assigned_len)
.map(|i| {
let (x, _, z) = config
.custom_gates
.output
.cartesian_coord(region.linear_coord() + i * block_width);
if z == 0 && i > 0 {
return Ok(());
}
let selector = if i == 0 {
config.custom_gates.selectors.get(&(BaseOp::DotInit, x, 0))
} else {
config.custom_gates.selectors.get(&(BaseOp::Dot, x, 0))
};
region.enable(selector, z)?;
Ok(())
})
.collect::<Result<Vec<_>, Box<dyn Error>>>()?;
}
let last_elem = output.get_slice(&[output.len() - 1..output.len()])?;
region.increment(assigned_len);
let elapsed = global_start.elapsed();
trace!("dot layout took: {:?}, row {}", elapsed, region.row());
trace!("----------------------------");
Ok(last_elem)
}
pub fn einsum<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
inputs: &[ValTensor<F>],
equation: &str,
) -> Result<ValTensor<F>, Box<dyn Error>> {
let mut equation = equation.split("->");
let inputs_eq = equation.next().ok_or(CircuitError::InvalidEinsum)?;
let output_eq = equation.next().ok_or(Circuit |
Error::InvalidEinsum)?;
let inputs_eq = inputs_eq.split(',').collect::<Vec<_>>();
if inputs.len() != inputs_eq.len() {
return Err(Box::new(TensorError::DimMismatch("einsum".to_string())));
}
let mut indices_to_size = HashMap::new();
for (i, input) in inputs.iter().enumerate() {
for j in 0..inputs_eq[i].len() {
let c = inputs_eq[i]
.chars()
.nth(j)
.ok_or(CircuitError::InvalidEinsum)?;
if let std::collections::hash_map::Entry::Vacant(e) = indices_to_size.entry(c) {
e.insert(input.dims()[j]);
} else if indices_to_size[&c] != input.dims()[j] {
return Err(Box::new(TensorError::DimMismatch("einsum".to_string())));
}
}
}
for c in output_eq.chars() {
indices_to_size.entry(c).or_insert(1);
}
let mut output_shape: Vec<usize> = output_eq
.chars()
.map(|c| {
indices_to_size
.get(&c)
.ok_or(CircuitError::InvalidEinsum)
.copied()
})
.collect::<Result<Vec<_>, _>>()?;
if output_shape.is_empty() {
output_shape.push(1);
}
let mut output: Tensor<ValType<F>> = Tensor::new(None, &output_shape)?;
let mut seen = HashSet::new();
let mut common_indices_to_inputs = vec![];
for input in inputs_eq.iter().take(inputs.len()) {
for c in input.chars() {
if !seen.contains(&c) {
seen.insert(c);
} else {
common_indices_to_inputs.push(c);
}
}
}
let non_common_indices = indices_to_size
.keys()
.filter(|&x| !common_indices_to_inputs.contains(x))
.collect::<Vec<_>>();
let non_common_coord_size = non_common_indices
.iter()
.map(|d| {
if output_eq.contains(**d) {
Ok(1)
} else {
indices_to_size |
.get(d)
.ok_or(CircuitError::InvalidEinsum)
.copied()
}
})
.collect::<Result<Vec<_>, _>>()?
.iter()
.product::<usize>();
let cartesian_coord = output_shape
.iter()
.map(|d| 0..*d)
.multi_cartesian_product()
.collect::<Vec<_>>();
let mut common_coord = common_indices_to_inputs
.iter()
.map(|d| {
if output_eq.contains(*d) {
Ok(0..1)
} else {
Ok(0..*indices_to_size.get(d).ok_or(CircuitError::InvalidEinsum)?)
}
})
.collect::<Result<Vec<Range<_>>, Box<dyn Error>>>()?
.into_iter()
.multi_cartesian_product()
.collect::<Vec<_>>();
if common_coord.is_empty() {
common_coord.push(vec![]);
}
let inner_loop_function = |i: usize, region: &mut RegionCtx<'_, F>| {
let coord = cartesian_coord[i].clone();
let inputs = (0..inputs.len())
.map(|idx| {
let mut slice = vec![];
for (i, c) in inputs_eq[idx].chars().enumerate() {
if let Some(idx) = output_eq.find(c) {
slice.push(coord[idx]..coord[idx] + 1);
} else {
slice.push(0..inputs[idx].dims()[i]);
}
}
inputs[idx].get_slice(&slice)
})
.collect::<Result<Vec<_>, _>>()?;
if non_common_coord_size == 1 && inputs.len() == 2 {
Ok(dot(
config,
region,
inputs[..].try_into().map_err(|e| {
error!("{}", e);
halo2_proofs::plonk::Error::Synthesis
})?,
)?
.get_inner_tensor()?[0]
.clone())
} else {
let |
mut prod_res = None;
for common_dim in &common_coord {
let inputs = (0..inputs.len())
.map(|idx| {
let mut slice = vec![];
for (i, c) in inputs_eq[idx].chars().enumerate() {
if let Some(j) = common_indices_to_inputs.iter().position(|&r| r == c) {
slice.push(common_dim[j]..common_dim[j] + 1);
} else {
slice.push(0..inputs[idx].dims()[i]);
}
}
inputs[idx].get_slice(&slice).map_err(|e| {
error!("{}", e);
halo2_proofs::plonk::Error::Synthesis
})
})
.collect::<Result<Vec<_>, _>>()?;
let mut input_pairs = vec![];
for input in inputs {
input_pairs.push(input.get_inner_tensor()?.clone().into_iter());
}
let input_pairs = input_pairs
.into_iter()
.multi_cartesian_product()
.collect::<Vec<_>>();
for pair in input_pairs {
let product_across_pair = prod(config, region, &[pair.into()])?;
if let Some(product) = prod_res {
prod_res = Some(
pairwise(config, region, &[product, product_across_pair], BaseOp::Add)
.map_err(|e| {
error!("{}", e);
halo2_proofs::plonk::Error::Synthesis
})?,
);
} else {
prod_res = Some(product_across_pair);
} |
}
}
Ok::<_, region::RegionError>(
prod_res
.ok_or(Into::<region::RegionError>::into("missing prod"))?
.get_inner_tensor()?[0]
.clone(),
)
}
};
region.flush()?;
region.apply_in_loop(&mut output, inner_loop_function)?;
let output: ValTensor<F> = output.into();
Ok(output)
}
fn _sort_ascending<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
) -> Result<ValTensor<F>, Box<dyn Error>> {
let mut input = values[0].clone();
input.flatten();
let is_assigned = !input.any_unknowns()?;
let sorted = if is_assigned {
let mut int_evals = input.get_int_evals()?;
int_evals.par_sort_unstable_by(|a, b| a.cmp(b));
int_evals
.par_iter()
.map(|x| Value::known(i128_to_felt(*x)))
.collect::<Tensor<Value<F>>>()
} else {
Tensor::new(
Some(&vec![Value::<F>::unknown(); input.len()]),
&[input.len()],
)?
};
let assigned_sort = region.assign(&config.custom_gates.inputs[0], &sorted.into())?;
region.increment(assigned_sort.len());
let window_a = assigned_sort.get_slice(&[0..assigned_sort.len() - 1])?;
let window_b = assigned_sort.get_slice(&[1..assigned_sort.len()])?;
let is_greater = greater_equal(config, region, &[window_b.clone(), window_a.clone()])?;
let unit = create_unit_tensor(is_greater.len());
enforce_equality(config, region, &[unit, is_greater])?;
shuffles(config, region, &[assigned_sort.clone()], &[input.clone()])?;
Ok(assigned_sort)
}
fn _select_topk<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
k: usize,
largest: bool,
) -> Result<ValTensor<F>, Box<dyn Error>> {
let mut sorted = _sort_ascending(conf |
ig, region, values)?;
if largest {
sorted.reverse()?;
}
sorted.get_slice(&[0..k])
}
pub fn topk_axes<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
k: usize,
dim: usize,
largest: bool,
) -> Result<ValTensor<F>, Box<dyn Error>> {
let topk_at_k = move |config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1]|
-> Result<ValTensor<F>, Box<dyn Error>> {
_select_topk(config, region, values, k, largest)
};
let output: ValTensor<F> = multi_dim_axes_op(config, region, values, &[dim], topk_at_k)?;
Ok(output)
}
fn select<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
) -> Result<ValTensor<F>, Box<dyn Error>> {
let start = instant::Instant::now();
let (mut input, index) = (values[0].clone(), values[1].clone());
input.flatten();
let dim_indices: ValTensor<F> =
Tensor::from((0..input.len() as u64).map(|x| ValType::Constant(F::from(x)))).into();
let is_assigned = !input.any_unknowns()? && !index.any_unknowns()?;
let output: ValTensor<F> = if is_assigned && region.witness_gen() {
let felt_evals = input.get_felt_evals()?;
index
.get_int_evals()?
.par_iter()
.map(|x| Value::known(felt_evals.get(&[*x as usize])))
.collect::<Tensor<Value<F>>>()
} else {
Tensor::new(
Some(&vec![Value::<F>::unknown(); index.len()]),
&[index.len()],
)?
}
.into();
let (_, assigned_output) =
dynamic_lookup(config, region, &[index, output], &[dim_indices, input])?;
let end = start.elapsed();
trace!("select took: {:?}", end);
Ok(assigned_output)
}
fn one_hot<F: PrimeField + TensorType + PartialOrd + std::has |
h::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
num_classes: usize,
) -> Result<ValTensor<F>, Box<dyn Error>> {
assert_eq!(values[0].dims().len(), 1);
assert_eq!(values[0].len(), 1);
let input = values[0].clone();
let is_assigned = !input.any_unknowns()?;
let output: ValTensor<F> = if is_assigned {
let int_evals = input.get_int_evals()?;
let res = tensor::ops::one_hot(&int_evals, num_classes, 1)?;
res.par_iter()
.map(|x| Value::known(i128_to_felt(*x)))
.collect::<Tensor<_>>()
} else {
Tensor::new(
Some(&vec![Value::<F>::unknown(); num_classes]),
&[num_classes],
)?
}
.into();
let assigned_input = region.assign(&config.custom_gates.inputs[0], &input)?;
let assigned_output = boolean_identity(config, region, &[output.clone()], true)?;
region.increment(std::cmp::max(assigned_output.len(), assigned_input.len()));
let sum = sum(config, region, &[assigned_output.clone()])?;
let unit = create_unit_tensor(1);
enforce_equality(config, region, &[unit.clone(), sum])?;
let gathered = gather(
config,
region,
&[assigned_output.clone(), assigned_input.clone()],
0,
)?;
enforce_equality(config, region, &[unit, gathered])?;
Ok(assigned_output)
}
pub(crate) fn dynamic_lookup<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
lookups: &[ValTensor<F>; 2],
tables: &[ValTensor<F>; 2],
) -> Result<(ValTensor<F>, ValTensor<F>), Box<dyn Error>> {
let start = instant::Instant::now();
if lookups[0].len() != lookups[1].len() {
return Err("lookups must be same length".into());
}
if tables[0].len() != tables[1].len() {
return Err("tables must be same length".into());
}
let dynamic_lookup_index = region.dynamic_lookup_index();
let (lookup_0, |
lookup_1) = (lookups[0].clone(), lookups[1].clone());
let (table_0, table_1) = (tables[0].clone(), tables[1].clone());
let table_0 = region.assign_dynamic_lookup(&config.dynamic_lookups.tables[0], &table_0)?;
let _table_1 = region.assign_dynamic_lookup(&config.dynamic_lookups.tables[1], &table_1)?;
let table_len = table_0.len();
trace!("assigning tables took: {:?}", start.elapsed());
let table_index = create_constant_tensor(F::from(dynamic_lookup_index as u64), table_len);
let _table_index =
region.assign_dynamic_lookup(&config.dynamic_lookups.tables[2], &table_index)?;
trace!("assigning table index took: {:?}", start.elapsed());
let lookup_0 = region.assign(&config.dynamic_lookups.inputs[0], &lookup_0)?;
let lookup_1 = region.assign(&config.dynamic_lookups.inputs[1], &lookup_1)?;
let lookup_len = lookup_0.len();
trace!("assigning lookups took: {:?}", start.elapsed());
let lookup_index = create_constant_tensor(F::from(dynamic_lookup_index as u64), lookup_len);
let _lookup_index = region.assign(&config.dynamic_lookups.inputs[2], &lookup_index)?;
trace!("assigning lookup index took: {:?}", start.elapsed());
if !region.is_dummy() {
(0..table_len)
.map(|i| {
let table_selector = config.dynamic_lookups.table_selectors[0];
let (_, _, z) = config.dynamic_lookups.tables[0]
.cartesian_coord(region.combined_dynamic_shuffle_coord() + i);
region.enable(Some(&table_selector), z)?;
Ok(())
})
.collect::<Result<Vec<_>, Box<dyn Error>>>()?;
}
if !region.is_dummy() {
(0..lookup_len)
.map(|i| {
let (x, y, z) =
config.dynamic_lookups.inputs[0].cartesian_coord(region.linear_coord() + i);
let lookup_selector = config
.dynamic_lookups
.lookup_selectors
.get(&(x, y)) |
.ok_or("missing selectors")?;
region.enable(Some(lookup_selector), z)?;
Ok(())
})
.collect::<Result<Vec<_>, Box<dyn Error>>>()?;
}
region.increment_dynamic_lookup_col_coord(table_len);
region.increment_dynamic_lookup_index(1);
region.increment(lookup_len);
let end = start.elapsed();
trace!("dynamic lookup took: {:?}", end);
Ok((lookup_0, lookup_1))
}
pub(crate) fn shuffles<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
input: &[ValTensor<F>; 1],
reference: &[ValTensor<F>; 1],
) -> Result<ValTensor<F>, Box<dyn Error>> {
let shuffle_index = region.shuffle_index();
let (input, reference) = (input[0].clone(), reference[0].clone());
if input.len() != reference.len() {
return Err("input and reference must be same length".into());
}
let reference = region.assign_shuffle(&config.shuffles.references[0], &reference)?;
let reference_len = reference.len();
let index = create_constant_tensor(F::from(shuffle_index as u64), reference_len);
let index = region.assign_shuffle(&config.shuffles.references[1], &index)?;
let input = region.assign(&config.shuffles.inputs[0], &input)?;
region.assign(&config.shuffles.inputs[1], &index)?;
if !region.is_dummy() {
(0..reference_len)
.map(|i| {
let ref_selector = config.shuffles.reference_selectors[0];
let (_, _, z) = config.shuffles.references[0]
.cartesian_coord(region.combined_dynamic_shuffle_coord() + i);
region.enable(Some(&ref_selector), z)?;
Ok(())
})
.collect::<Result<Vec<_>, Box<dyn Error>>>()?;
}
if !region.is_dummy() {
(0..reference_len)
.map(|i| {
let (x, y, z) =
config.custom_gates.inputs[0].cartesian_coord(region.linear_coord() + i) |
;
let input_selector = config
.shuffles
.input_selectors
.get(&(x, y))
.ok_or("missing selectors")?;
region.enable(Some(input_selector), z)?;
Ok(())
})
.collect::<Result<Vec<_>, Box<dyn Error>>>()?;
}
region.increment_shuffle_col_coord(reference_len);
region.increment_shuffle_index(1);
region.increment(reference_len);
Ok(input)
}
pub(crate) fn one_hot_axis<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
num_classes: usize,
dim: usize,
) -> Result<ValTensor<F>, Box<dyn Error>> {
let input = values[0].clone();
let input_inner = input.get_inner_tensor()?;
let mut output_dims = values[0].dims().to_vec();
output_dims.insert(dim, num_classes);
let mut op_tensors: Tensor<ValTensor<F>> = Tensor::new(None, input_inner.dims())?;
let inner_loop_function =
|i: usize, region: &mut RegionCtx<'_, F>| -> Result<ValTensor<F>, _> {
let inp = input_inner[i].clone();
let tensor = Tensor::new(Some(&[inp.clone()]), &[1])?;
Ok(one_hot(config, region, &[tensor.into()], num_classes)?)
};
region.apply_in_loop(&mut op_tensors, inner_loop_function)?;
let cartesian_coord = output_dims
.iter()
.map(|x| 0..*x)
.multi_cartesian_product()
.collect::<Vec<_>>();
let mut output = Tensor::<ValType<F>>::new(None, &output_dims)?;
output = output.par_enum_map(|i, _| {
let coord = cartesian_coord[i].clone();
let mut op_idx = coord.clone();
let coord_at_dims = vec![coord[dim]];
op_idx.remove(dim);
let op_tensor = op_tensors.get(&op_idx);
let op_tensor = op_tensor.get_inner_tensor()?;
let one_hot_val = op_tensor.get(&coord_at_dims).clone();
Ok::<_, region::RegionError>(o |
ne_hot_val)
})?;
Ok(output.into())
}
pub(crate) fn gather<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
dim: usize,
) -> Result<ValTensor<F>, Box<dyn Error>> {
let (input, mut index_clone) = (values[0].clone(), values[1].clone());
index_clone.flatten();
if index_clone.is_singleton() {
index_clone.reshape(&[1])?;
}
let input_dims = input.dims();
let mut output_size = input_dims.to_vec();
output_size[dim] = index_clone.dims()[0];
let linear_index =
linearize_element_index(config, region, &[index_clone], input_dims, dim, true)?;
let mut output = select(config, region, &[input, linear_index])?;
output.reshape(&output_size)?;
Ok(output)
}
pub(crate) fn gather_elements<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
dim: usize,
) -> Result<(ValTensor<F>, ValTensor<F>), Box<dyn Error>> {
let (input, index) = (values[0].clone(), values[1].clone());
assert_eq!(input.dims().len(), index.dims().len());
let output_size = index.dims().to_vec();
let linear_index = linearize_element_index(config, region, &[index], input.dims(), dim, false)?;
let mut output = select(config, region, &[input, linear_index.clone()])?;
output.reshape(&output_size)?;
Ok((output, linear_index))
}
pub(crate) fn gather_nd<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
batch_dims: usize,
) -> Result<(ValTensor<F>, ValTensor<F>), Box<dyn Error>> {
let (input, index) = (values[0].clone(), values[1].clone());
let index_dims = index.dims().to_vec();
let input_dims = input.dims().to_vec();
let last_value = index_dims
.last()
.ok_or(TensorError::DimMismatch("gather_nd".to_string()))?; |
if index_dims.last() > Some(&(input_dims.len() - batch_dims)) {
return Err(TensorError::DimMismatch("gather_nd".to_string()).into());
}
let output_size =
{
let output_rank = input_dims.len() + index_dims.len() - 1 - batch_dims - last_value;
let mut dims = index_dims[..index_dims.len() - 1].to_vec();
let input_offset = batch_dims + last_value;
dims.extend(input_dims[input_offset..input_dims.len()].to_vec());
assert_eq!(output_rank, dims.len());
dims
};
let linear_index = linearize_nd_index(config, region, &[index], input.dims(), batch_dims)?;
let mut output = select(config, region, &[input, linear_index.clone()])?;
output.reshape(&output_size)?;
Ok((output, linear_index))
}
pub(crate) fn linearize_element_index<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
dims: &[usize],
dim: usize,
is_flat_index: bool,
) -> Result<ValTensor<F>, Box<dyn Error>> {
let start_time = instant::Instant::now();
let index = values[0].clone();
if !is_flat_index {
assert_eq!(index.dims().len(), dims.len());
if index.dims().len() == 1 {
return Ok(index);
}
}
let dim_multiplier: Tensor<usize> = Tensor::new(None, &[dims.len()])?;
let dim_multiplier: Tensor<F> = dim_multiplier.par_enum_map(|i, _| {
let mut res = 1;
for dim in dims.iter().skip(i + 1) {
res *= dim;
}
Ok::<_, region::RegionError>(F::from(res as u64))
})?;
let iteration_dims = if is_flat_index {
let mut dims = dims.to_vec();
dims[dim] = index.len();
dims
} else {
index.dims().to_vec()
};
let cartesian_coord = iteration_dims
.iter()
.map(|x| 0..*x)
.multi_cartesian_product()
.collect::<Vec<_>>();
let val_dim_multiplier: |
ValTensor<F> = dim_multiplier
.get_slice(&[dim..dim + 1])?
.map(|x| ValType::Constant(x))
.into();
let mut output = Tensor::new(None, &[cartesian_coord.len()])?;
let inner_loop_function = |i: usize, region: &mut RegionCtx<'_, F>| {
let coord = cartesian_coord[i].clone();
let slice: Vec<Range<usize>> = if is_flat_index {
coord[dim..dim + 1].iter().map(|x| *x..*x + 1).collect()
} else {
coord.iter().map(|x| *x..*x + 1).collect::<Vec<_>>()
};
let index_val = index.get_slice(&slice)?;
let mut const_offset = F::ZERO;
for i in 0..dims.len() {
if i != dim {
const_offset += F::from(coord[i] as u64) * dim_multiplier[i];
}
}
let const_offset = create_constant_tensor(const_offset, 1);
let res = pairwise(
config,
region,
&[index_val, val_dim_multiplier.clone()],
BaseOp::Mult,
)?;
let res = pairwise(config, region, &[res, const_offset], BaseOp::Add)?;
Ok(res.get_inner_tensor()?[0].clone())
};
region.apply_in_loop(&mut output, inner_loop_function)?;
let elapsed = start_time.elapsed();
trace!("linearize_element_index took: {:?}", elapsed);
Ok(output.into())
}
pub(crate) fn linearize_nd_index<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
dims: &[usize],
batch_dims: usize,
) -> Result<ValTensor<F>, Box<dyn Error>> {
let index = values[0].clone();
let index_dims = index.dims().to_vec();
let last_dim = index.dims().last().unwrap();
let input_rank = dims[batch_dims..].len();
let dim_multiplier: Tensor<usize> = Tensor::new(None, &[dims.len()])?;
let dim_multiplier: Tensor<F> = dim_multiplier.par_enum_map(|i, _| {
let mut res = 1;
for dim in dims.iter().skip(i + 1) {
res *= dim; |
}
Ok::<_, region::RegionError>(F::from(res as u64))
})?;
let iteration_dims = index.dims()[0..batch_dims].to_vec();
let mut batch_cartesian_coord = iteration_dims
.iter()
.map(|x| 0..*x)
.multi_cartesian_product()
.collect::<Vec<_>>();
if batch_cartesian_coord.is_empty() {
batch_cartesian_coord.push(vec![]);
}
let index_dim_multiplier: ValTensor<F> = dim_multiplier
.get_slice(&[batch_dims..dims.len()])?
.map(|x| ValType::Constant(x))
.into();
let mut outer_results = vec![];
for coord in batch_cartesian_coord {
let slice: Vec<Range<usize>> = coord.iter().map(|x| *x..*x + 1).collect::<Vec<_>>();
let mut index_slice = index.get_slice(&slice)?;
index_slice.reshape(&index_dims[batch_dims..])?;
let mut inner_cartesian_coord = index_slice.dims()[0..index_slice.dims().len() - 1]
.iter()
.map(|x| 0..*x)
.multi_cartesian_product()
.collect::<Vec<_>>();
if inner_cartesian_coord.is_empty() {
inner_cartesian_coord.push(vec![]);
}
let indices = if last_dim < &input_rank {
inner_cartesian_coord
.iter()
.map(|x| {
let slice = x.iter().map(|x| *x..*x + 1).collect::<Vec<_>>();
let index = index_slice.get_slice(&slice)?;
let grid = (*last_dim..input_rank)
.map(|x| 0..dims[x])
.multi_cartesian_product();
Ok(grid
.map(|x| {
let index = index.clone();
let constant_valtensor: ValTensor<F> = Tensor::from(
x.into_iter().map(|x| ValType::Constant(F::from(x as u64))),
)
.into(); |
index.concat(constant_valtensor)
})
.collect::<Result<Vec<_>, TensorError>>()?)
})
.collect::<Result<Vec<_>, Box<dyn Error>>>()?
.into_iter()
.flatten()
.collect::<Vec<_>>()
} else {
inner_cartesian_coord
.iter()
.map(|x| {
let slice = x.iter().map(|x| *x..*x + 1).collect::<Vec<_>>();
index_slice.get_slice(&slice)
})
.collect::<Result<Vec<_>, Box<dyn Error>>>()?
};
let mut const_offset = F::ZERO;
for i in 0..batch_dims {
const_offset += F::from(coord[i] as u64) * dim_multiplier[i];
}
let const_offset = create_constant_tensor(const_offset, 1);
let mut results = vec![];
for index_val in indices {
let mut index_val = index_val.clone();
index_val.flatten();
let res = pairwise(
config,
region,
&[index_val.clone(), index_dim_multiplier.clone()],
BaseOp::Mult,
)?;
let res = res.concat(const_offset.clone())?;
let res = sum(config, region, &[res])?;
results.push(res.get_inner_tensor()?.clone());
if region.witness_gen() {
assert!(
res.get_int_evals()?
.iter()
.all(|x| *x < dims.iter().product::<usize>() as i128),
"res is greater than the product of the dims {} (coord={}, index_dim_multiplier={}, res={})",
dims.iter().product::<usize>(),
index_val.show(),
index_dim_multiplier.show(),
res.show()
);
}
}
let result_tensor = Tensor::from(results.into_iter());
outer_results.push(result_tensor.combine()?);
}
let out |
put = Tensor::from(outer_results.into_iter());
let output = output.combine()?;
Ok(output.into())
}
pub(crate) fn get_missing_set_elements<
F: PrimeField + TensorType + PartialOrd + std::hash::Hash,
>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
ordered: bool,
) -> Result<ValTensor<F>, Box<dyn Error>> {
let (mut input, fullset) = (values[0].clone(), values[1].clone());
let set_len = fullset.len();
input.flatten();
let is_assigned = !input.any_unknowns()? && !fullset.any_unknowns()?;
let mut claimed_output: ValTensor<F> = if is_assigned {
let input_evals = input.get_int_evals()?;
let mut fullset_evals = fullset.get_int_evals()?.into_iter().collect::<Vec<_>>();
for eval in input_evals.iter() {
if let Some(pos) = fullset_evals.iter().position(|x| x == eval) {
fullset_evals.remove(pos);
}
}
if fullset_evals.len() != set_len - input.len() {
fullset_evals.truncate(set_len - input.len());
}
fullset_evals
.par_iter()
.map(|x| Value::known(i128_to_felt(*x)))
.collect::<Tensor<Value<F>>>()
.into()
} else {
let dim = fullset.len() - input.len();
Tensor::new(Some(&vec![Value::<F>::unknown(); dim]), &[dim])?.into()
};
claimed_output = region.assign(&config.custom_gates.output, &claimed_output)?;
let input_and_claimed_output = input.concat(claimed_output.clone())?;
shuffles(
config,
region,
&[input_and_claimed_output.clone()],
&[fullset.clone()],
)?;
if ordered {
claimed_output = _sort_ascending(config, region, &[claimed_output])?;
}
Ok(claimed_output)
}
pub(crate) fn scatter_elements<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTen |
sor<F>; 3],
dim: usize,
) -> Result<ValTensor<F>, Box<dyn Error>> {
let (input, mut index, src) = (values[0].clone(), values[1].clone(), values[2].clone());
assert_eq!(input.dims().len(), index.dims().len());
if !index.all_prev_assigned() {
index = region.assign(&config.custom_gates.inputs[1], &index)?;
region.increment(index.len());
}
let is_assigned = !input.any_unknowns()? && !index.any_unknowns()? && !src.any_unknowns()?;
let claimed_output: ValTensor<F> = if is_assigned && region.witness_gen() {
let input_inner = input.get_int_evals()?;
let index_inner = index.get_int_evals()?.map(|x| x as usize);
let src_inner = src.get_int_evals()?;
let res = tensor::ops::scatter(&input_inner, &index_inner, &src_inner, dim)?;
res.par_iter()
.map(|x| Value::known(i128_to_felt(*x)))
.collect::<Tensor<Value<F>>>()
.into()
} else {
Tensor::new(
Some(&vec![Value::<F>::unknown(); input.len()]),
&[input.len()],
)?
.into()
};
let mut claimed_output = region.assign(&config.custom_gates.output, &claimed_output)?;
region.increment(claimed_output.len());
claimed_output.reshape(input.dims())?;
let (gather_src, linear_index) = gather_elements(
config,
region,
&[claimed_output.clone(), index.clone()],
dim,
)?;
enforce_equality(config, region, &[gather_src, src])?;
let full_index_set: ValTensor<F> =
Tensor::from((0..input.len() as u64).map(|x| ValType::Constant(F::from(x)))).into();
let input_indices = get_missing_set_elements(
config,
region,
&[linear_index, full_index_set.clone()],
true,
)?;
claimed_output.flatten();
let (gather_input, _) = gather_elements(
config,
region,
&[claimed_output.clone(), input_indices.clone()],
0,
)?;
dynamic_lookup(
config,
region, |
&[input_indices, gather_input],
&[full_index_set, input.clone()],
)?;
claimed_output.reshape(input.dims())?;
Ok(claimed_output)
}
pub(crate) fn scatter_nd<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 3],
) -> Result<ValTensor<F>, Box<dyn Error>> {
let (input, mut index, src) = (values[0].clone(), values[1].clone(), values[2].clone());
if !index.all_prev_assigned() {
index = region.assign(&config.custom_gates.inputs[1], &index)?;
region.increment(index.len());
}
let is_assigned = !input.any_unknowns()? && !index.any_unknowns()? && !src.any_unknowns()?;
let claimed_output: ValTensor<F> = if is_assigned && region.witness_gen() {
let input_inner = input.get_int_evals()?;
let index_inner = index.get_int_evals()?.map(|x| x as usize);
let src_inner = src.get_int_evals()?;
let res = tensor::ops::scatter_nd(&input_inner, &index_inner, &src_inner)?;
res.par_iter()
.map(|x| Value::known(i128_to_felt(*x)))
.collect::<Tensor<Value<F>>>()
.into()
} else {
Tensor::new(
Some(&vec![Value::<F>::unknown(); input.len()]),
&[input.len()],
)?
.into()
};
let mut claimed_output = region.assign(&config.custom_gates.output, &claimed_output)?;
region.increment(claimed_output.len());
claimed_output.reshape(input.dims())?;
let (gather_src, linear_index) =
gather_nd(config, region, &[claimed_output.clone(), index.clone()], 0)?;
enforce_equality(config, region, &[gather_src, src])?;
let full_index_set: ValTensor<F> =
Tensor::from((0..input.len() as u64).map(|x| ValType::Constant(F::from(x)))).into();
let input_indices = get_missing_set_elements(
config,
region,
&[linear_index, full_index_set.clone()],
true,
)?;
claimed_output.flatten(); |
let (gather_input, _) = gather_elements(
config,
region,
&[claimed_output.clone(), input_indices.clone()],
0,
)?;
dynamic_lookup(
config,
region,
&[input_indices, gather_input],
&[full_index_set, input.clone()],
)?;
claimed_output.reshape(input.dims())?;
Ok(claimed_output)
}
pub fn sum<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
) -> Result<ValTensor<F>, Box<dyn Error>> {
region.flush()?;
let global_start = instant::Instant::now();
let mut values = values.clone();
let mut removal_indices = values[0].get_const_zero_indices()?;
removal_indices.par_sort_unstable();
removal_indices.dedup();
values[0].remove_indices(&mut removal_indices, true)?;
let elapsed = global_start.elapsed();
trace!("filtering const zero indices took: {:?}", elapsed);
if values[0].is_empty() {
return Ok(create_zero_tensor(1));
}
let block_width = config.custom_gates.output.num_inner_cols();
let assigned_len: usize;
let input = {
let mut input = values[0].clone();
input.pad_to_zero_rem(block_width, ValType::Constant(F::ZERO))?;
let (res, len) = region.assign_with_duplication(
&config.custom_gates.inputs[1],
&input,
&config.check_mode,
false,
)?;
assigned_len = len;
res.get_inner()?
};
let accumulated_sum = accumulated::sum(&input, block_width)?;
let (output, output_assigned_len) = region.assign_with_duplication(
&config.custom_gates.output,
&accumulated_sum.into(),
&config.check_mode,
true,
)?;
if !region.is_dummy() {
for i in 0..output_assigned_len {
let (x, _, z) = config
.custom_gates
.output
.cartesian_coord |
(region.linear_coord() + i * block_width);
if z == 0 && i > 0 {
continue;
}
let selector = if i == 0 {
config.custom_gates.selectors.get(&(BaseOp::SumInit, x, 0))
} else {
config.custom_gates.selectors.get(&(BaseOp::Sum, x, 0))
};
region.enable(selector, z)?;
}
}
let last_elem = output.get_slice(&[output.len() - 1..output.len()])?;
region.increment(assigned_len);
Ok(last_elem)
}
pub fn prod<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
) -> Result<ValTensor<F>, Box<dyn Error>> {
region.flush()?;
let global_start = instant::Instant::now();
let removal_indices = values[0].get_const_zero_indices()?;
let elapsed = global_start.elapsed();
trace!("finding const zero indices took: {:?}", elapsed);
if !removal_indices.is_empty() {
return Ok(create_zero_tensor(1));
}
let block_width = config.custom_gates.output.num_inner_cols();
let assigned_len: usize;
let input = {
let mut input = values[0].clone();
input.pad_to_zero_rem(block_width, ValType::Constant(F::ONE))?;
let (res, len) = region.assign_with_duplication(
&config.custom_gates.inputs[1],
&input,
&config.check_mode,
false,
)?;
assigned_len = len;
res.get_inner()?
};
let accumulated_prod = accumulated::prod(&input, block_width)?;
let (output, output_assigned_len) = region.assign_with_duplication(
&config.custom_gates.output,
&accumulated_prod.into(),
&config.check_mode,
true,
)?;
if !region.is_dummy() {
(0..output_assigned_len)
.map(|i| {
let (x, _, z) = config
.custom_gates
.out |
put
.cartesian_coord(region.linear_coord() + i * block_width);
if z == 0 && i > 0 {
return Ok(());
}
let selector = if i == 0 {
config
.custom_gates
.selectors
.get(&(BaseOp::CumProdInit, x, 0))
} else {
config.custom_gates.selectors.get(&(BaseOp::CumProd, x, 0))
};
region.enable(selector, z)?;
Ok(())
})
.collect::<Result<Vec<_>, Box<dyn Error>>>()?;
}
let last_elem = output.get_slice(&[output.len() - 1..output.len()])?;
region.increment(assigned_len);
Ok(last_elem)
}
fn axes_wise_op<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
axes: &[usize],
op: impl Fn(
&BaseConfig<F>,
&mut RegionCtx<F>,
&[ValTensor<F>; 1],
) -> Result<ValTensor<F>, Box<dyn Error>>
+ Send
+ Sync,
) -> Result<ValTensor<F>, Box<dyn Error>> {
let a = &values[0];
if axes.is_empty() {
return Ok(a.clone());
}
let mut new_dims = vec![];
for i in 0..a.dims().len() {
if !axes.contains(&i) {
new_dims.push(a.dims()[i]);
} else {
new_dims.push(1);
}
}
let mut res = Tensor::new(None, &new_dims)?;
let cartesian_coord = new_dims
.iter()
.map(|x| 0..*x)
.multi_cartesian_product()
.collect::<Vec<_>>();
let inner_loop_function = |i: usize, region: &mut RegionCtx<'_, F>| {
let coord = cartesian_coord[i].clone();
let mut prod_dims = vec![];
for (i, c) in coord.iter().enumerate() {
if axes.contains(&i) {
prod_dims.push(0..a.dims()[i]);
} else {
prod_di |
ms.push(*c..*c + 1);
}
}
let values = a.get_slice(&prod_dims)?;
let op = op(config, region, &[values])?;
Ok(op.get_inner_tensor()?[0].clone())
};
region.apply_in_loop(&mut res, inner_loop_function)?;
Ok(res.into())
}
pub fn prod_axes<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
axes: &[usize],
) -> Result<ValTensor<F>, Box<dyn Error>> {
axes_wise_op(config, region, values, axes, prod)
}
pub fn sum_axes<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
axes: &[usize],
) -> Result<ValTensor<F>, Box<dyn Error>> {
axes_wise_op(config, region, values, axes, sum)
}
pub fn argmax_axes<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
dim: usize,
) -> Result<ValTensor<F>, Box<dyn Error>> {
let argmax =
move |config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1]|
-> Result<ValTensor<F>, Box<dyn Error>> { argmax(config, region, values) };
axes_wise_op(config, region, values, &[dim], argmax)
}
pub fn max_axes<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
axes: &[usize],
) -> Result<ValTensor<F>, Box<dyn Error>> {
axes_wise_op(config, region, values, axes, max)
}
pub fn argmin_axes<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
dim: usize,
) -> Result<ValTensor<F>, Box<dyn Error>> {
let arg |
min =
move |config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1]|
-> Result<ValTensor<F>, Box<dyn Error>> { argmin(config, region, values) };
axes_wise_op(config, region, values, &[dim], argmin)
}
pub fn min_axes<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
axes: &[usize],
) -> Result<ValTensor<F>, Box<dyn Error>> {
axes_wise_op(config, region, values, axes, min)
}
pub(crate) fn pairwise<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
op: BaseOp,
) -> Result<ValTensor<F>, Box<dyn Error>> {
let global_start = instant::Instant::now();
let (mut lhs, mut rhs) = (values[0].clone(), values[1].clone());
let broadcasted_shape = get_broadcasted_shape(lhs.dims(), rhs.dims())?;
lhs.expand(&broadcasted_shape)?;
rhs.expand(&broadcasted_shape)?;
let orig_lhs = lhs.clone();
let orig_rhs = rhs.clone();
let first_zero_indices = lhs.get_const_zero_indices()?;
let second_zero_indices = rhs.get_const_zero_indices()?;
let mut removal_indices = match op {
BaseOp::Add | BaseOp::Mult => {
let mut removal_indices = first_zero_indices.clone();
removal_indices.extend(second_zero_indices.clone());
removal_indices
}
BaseOp::Sub => second_zero_indices.clone(),
_ => return Err(Box::new(CircuitError::UnsupportedOp)),
};
removal_indices.dedup();
let removal_indices: HashSet<&usize> = HashSet::from_iter(removal_indices.iter());
let removal_indices_ptr = &removal_indices;
if lhs.len() != rhs.len() {
return Err(Box::new(CircuitError::DimMismatch(format!(
"pairwise {} layout",
op.as_str()
))));
}
let mut inputs = vec![]; |
for (i, input) in [lhs.clone(), rhs.clone()].iter().enumerate() {
let inp = {
let res = region.assign_with_omissions(
&config.custom_gates.inputs[i],
input,
removal_indices_ptr,
)?;
res.get_inner()?
};
inputs.push(inp);
}
let start = instant::Instant::now();
let op_result = match op {
BaseOp::Add => add(&inputs),
BaseOp::Sub => sub(&inputs),
BaseOp::Mult => mult(&inputs),
_ => return Err(Box::new(CircuitError::UnsupportedOp)),
}
.map_err(|e| {
error!("{}", e);
halo2_proofs::plonk::Error::Synthesis
})?;
let elapsed = start.elapsed();
let assigned_len = inputs[0].len() - removal_indices.len();
let mut output = region.assign_with_omissions(
&config.custom_gates.output,
&op_result.into(),
removal_indices_ptr,
)?;
trace!("pairwise {} calc took {:?}", op.as_str(), elapsed);
if !region.is_dummy() {
(0..assigned_len)
.map(|i| {
let (x, y, z) =
config.custom_gates.inputs[0].cartesian_coord(region.linear_coord() + i);
let selector = config.custom_gates.selectors.get(&(op.clone(), x, y));
region.enable(selector, z)?;
Ok(())
})
.collect::<Result<Vec<_>, Box<dyn Error>>>()?;
}
region.increment(assigned_len);
let a_tensor = orig_lhs.get_inner_tensor()?;
let b_tensor = orig_rhs.get_inner_tensor()?;
let first_zero_indices: HashSet<&usize> = HashSet::from_iter(first_zero_indices.iter());
let second_zero_indices: HashSet<&usize> = HashSet::from_iter(second_zero_indices.iter());
trace!("setting up indices took {:?}", start.elapsed());
if !removal_indices_ptr.is_empty() {
output
.get_inner_tensor_mut()?
.par_enum_map_mut_filtered(removal_indices_ptr, |i| {
let val = match |
op {
BaseOp::Add => {
let a_is_null = first_zero_indices.contains(&i);
let b_is_null = second_zero_indices.contains(&i);
if a_is_null && b_is_null {
ValType::Constant(F::ZERO)
} else if a_is_null {
b_tensor[i].clone()
} else {
a_tensor[i].clone()
}
}
BaseOp::Sub => {
let a_is_null = first_zero_indices.contains(&i);
if a_is_null {
ValType::Constant(F::ZERO)
} else {
a_tensor[i].clone()
}
}
BaseOp::Mult => ValType::Constant(F::ZERO),
_ => unreachable!(),
};
Ok::<_, TensorError>(val)
})?;
}
output.reshape(&broadcasted_shape)?;
let end = global_start.elapsed();
trace!(
"pairwise {} layout took {:?}, row: {}",
op.as_str(),
end,
region.row()
);
Ok(output)
}
pub fn mean_of_squares_axes<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
axes: &[usize],
) -> Result<ValTensor<F>, Box<dyn Error>> {
let squared = pow(config, region, values, 2)?;
let sum_squared = sum_axes(config, region, &[squared], axes)?;
let dividand: usize = values[0].len() / sum_squared.len();
let mean_squared = div(config, region, &[sum_squared], F::from(dividand as u64))?;
Ok(mean_squared)
}
pub(crate) fn expand<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1], |
shape: &[usize],
) -> Result<ValTensor<F>, Box<dyn Error>> {
let mut assigned_input = region.assign(&config.custom_gates.inputs[0], &values[0])?;
assigned_input.expand(shape)?;
region.increment(assigned_input.len());
Ok(assigned_input)
}
pub fn greater<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
) -> Result<ValTensor<F>, Box<dyn Error>> {
let (mut lhs, mut rhs) = (values[0].clone(), values[1].clone());
let broadcasted_shape = get_broadcasted_shape(lhs.dims(), rhs.dims())?;
lhs.expand(&broadcasted_shape)?;
rhs.expand(&broadcasted_shape)?;
let diff = pairwise(config, region, &[lhs, rhs], BaseOp::Sub)?;
nonlinearity(
config,
region,
&[diff],
&LookupOp::GreaterThan { a: utils::F32(0.) },
)
}
pub fn greater_equal<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
) -> Result<ValTensor<F>, Box<dyn Error>> {
let (mut lhs, mut rhs) = (values[0].clone(), values[1].clone());
let broadcasted_shape = get_broadcasted_shape(lhs.dims(), rhs.dims())?;
lhs.expand(&broadcasted_shape)?;
rhs.expand(&broadcasted_shape)?;
let diff = pairwise(config, region, &[lhs, rhs], BaseOp::Sub)?;
nonlinearity(
config,
region,
&[diff],
&LookupOp::GreaterThanEqual { a: utils::F32(0.) },
)
}
pub fn less<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
) -> Result<ValTensor<F>, Box<dyn Error>> {
greater(config, region, &[values[1].clone(), values[0].clone()])
}
pub fn less_equal<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: |
&mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
) -> Result<ValTensor<F>, Box<dyn Error>> {
greater_equal(config, region, &[values[1].clone(), values[0].clone()])
}
pub fn and<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
) -> Result<ValTensor<F>, Box<dyn Error>> {
let a = boolean_identity(config, region, &[values[0].clone()], true)?;
let b = boolean_identity(config, region, &[values[1].clone()], true)?;
let res = pairwise(config, region, &[a, b], BaseOp::Mult)?;
Ok(res)
}
pub fn or<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
) -> Result<ValTensor<F>, Box<dyn Error>> {
let a = values[0].clone();
let b = values[1].clone();
let b = boolean_identity(config, region, &[b], true)?;
let iff_values = &[a.clone(), a, b];
let res = iff(config, region, iff_values)?;
Ok(res)
}
pub fn equals<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
) -> Result<ValTensor<F>, Box<dyn Error>> {
let diff = pairwise(config, region, values, BaseOp::Sub)?;
equals_zero(config, region, &[diff])
}
pub(crate) fn equals_zero<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
) -> Result<ValTensor<F>, Box<dyn Error>> {
let values = values[0].clone();
let values_inverse = values.inverse()?;
let product_values_and_invert = pairwise(
config,
region,
&[values.clone(), values_inverse],
BaseOp::Mult,
)?;
let ones = create_unit_tensor(1);
let output = pairwise(
config,
region,
&[ones, product_values_and |
_invert],
BaseOp::Sub,
)?;
let prod_check = pairwise(config, region, &[values, output.clone()], BaseOp::Mult)?;
let zero_tensor = create_zero_tensor(prod_check.len());
enforce_equality(config, region, &[prod_check, zero_tensor])?;
Ok(output)
}
pub fn xor<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
) -> Result<ValTensor<F>, Box<dyn Error>> {
let lhs = values[0].clone();
let rhs = values[1].clone();
let lhs_not = not(config, region, &[lhs.clone()])?;
let rhs_not = not(config, region, &[rhs.clone()])?;
let lhs_and_rhs_not = and(config, region, &[lhs, rhs_not.clone()])?;
let lhs_not_and_rhs = and(config, region, &[rhs, lhs_not])?;
let res: ValTensor<F> = pairwise(
config,
region,
&[lhs_and_rhs_not, lhs_not_and_rhs],
BaseOp::Add,
)?;
Ok(res)
}
pub fn not<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
) -> Result<ValTensor<F>, Box<dyn Error>> {
let mask = values[0].clone();
let unit = create_unit_tensor(1);
let nil = create_zero_tensor(1);
let res = iff(config, region, &[mask, nil, unit])?;
Ok(res)
}
pub fn iff<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 3],
) -> Result<ValTensor<F>, Box<dyn Error>> {
let (mask, a, b) = (&values[0], &values[1], &values[2]);
let unit = create_unit_tensor(1);
let assigned_mask = boolean_identity(config, region, &[mask.clone()], true)?;
let one_minus_mask = pairwise(config, region, &[unit, assigned_mask.clone()], BaseOp::Sub)?;
let masked_a = pairwise(config, region, &[a.clone(), assigned_mask], BaseOp::Mult)?;
let maske |
d_b = pairwise(config, region, &[b.clone(), one_minus_mask], BaseOp::Mult)?;
let res = pairwise(config, region, &[masked_a, masked_b], BaseOp::Add)?;
Ok(res)
}
pub fn neg<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
) -> Result<ValTensor<F>, Box<dyn Error>> {
let nil = create_zero_tensor(1);
pairwise(config, region, &[nil, values[0].clone()], BaseOp::Sub)
}
pub fn sumpool<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>],
padding: &[(usize, usize)],
stride: &[usize],
kernel_shape: &[usize],
normalized: bool,
) -> Result<ValTensor<F>, Box<dyn Error>> {
let batch_size = values[0].dims()[0];
let image_channels = values[0].dims()[1];
let kernel_len = kernel_shape.iter().product();
let mut kernel = create_unit_tensor(kernel_len);
let mut kernel_dims = vec![1, 1];
kernel_dims.extend(kernel_shape);
kernel.reshape(&kernel_dims)?;
let kernel = region.assign(&config.custom_gates.inputs[1], &kernel)?;
region.increment(kernel.len());
let cartesian_coord = [(0..batch_size), (0..image_channels)]
.iter()
.cloned()
.multi_cartesian_product()
.collect::<Vec<_>>();
let mut res = vec![];
cartesian_coord
.iter()
.map(|coord| {
let (b, i) = (coord[0], coord[1]);
let input = values[0].get_slice(&[b..b + 1, i..i + 1])?;
let output = conv(config, region, &[input, kernel.clone()], padding, stride)?;
res.push(output);
Ok(())
})
.collect::<Result<Vec<_>, Box<dyn Error>>>()?;
let shape = &res[0].dims()[2..];
let mut last_elem = res[1..]
.iter()
.try_fold(res[0].clone(), |acc, elem| acc.concat(elem.clone()))?;
last_elem.reshape(&[&[batch_size, image_cha |
nnels], shape].concat())?;
if normalized {
last_elem = loop_div(config, region, &[last_elem], F::from(kernel_len as u64))?;
}
Ok(last_elem)
}
pub fn max_pool<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
padding: &[(usize, usize)],
stride: &[usize],
pool_dims: &[usize],
) -> Result<ValTensor<F>, Box<dyn Error>> {
let image = values[0].clone();
let image_dims = image.dims();
let (batch, input_channels) = (image_dims[0], image_dims[1]);
let mut padded_image = image.clone();
padded_image.pad(padding.to_vec(), 2)?;
let slides = image_dims[2..]
.iter()
.enumerate()
.map(|(i, d)| {
let d = padding[i].0 + d + padding[i].1;
d.checked_sub(pool_dims[i])
.ok_or_else(|| TensorError::Overflow("conv".to_string()))?
.checked_div(stride[i])
.ok_or_else(|| TensorError::Overflow("conv".to_string()))?
.checked_add(1)
.ok_or_else(|| TensorError::Overflow("conv".to_string()))
})
.collect::<Result<Vec<_>, TensorError>>()?;
let mut output_dims = vec![batch, input_channels];
output_dims.extend(slides);
let mut output: Tensor<ValType<F>> = Tensor::new(None, &output_dims)?;
let cartesian_coord = output_dims
.iter()
.map(|x| 0..*x)
.multi_cartesian_product()
.collect::<Vec<_>>();
output
.iter_mut()
.enumerate()
.map(|(flat_index, o)| {
let coord = &cartesian_coord[flat_index];
let (b, i) = (coord[0], coord[1]);
let mut slice = vec![b..b + 1, i..i + 1];
slice.extend(
coord[2..]
.iter()
.zip(stride.iter())
.zip(pool_dims.iter())
.map(|((c, s), k)| {
let start = c * s; |
let end = start + k;
start..end
}),
);
let slice = padded_image.get_slice(&slice)?;
let max_w = max(config, region, &[slice])?;
*o = max_w.get_inner_tensor()?[0].clone();
Ok(())
})
.collect::<Result<Vec<_>, Box<dyn Error>>>()?;
let res: ValTensor<F> = output.into();
Ok(res)
}
pub fn deconv<
F: PrimeField + TensorType + PartialOrd + std::hash::Hash + std::marker::Send + std::marker::Sync,
>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
inputs: &[ValTensor<F>],
padding: &[(usize, usize)],
output_padding: &[usize],
stride: &[usize],
) -> Result<ValTensor<F>, Box<dyn Error>> {
let has_bias = inputs.len() == 3;
let (image, kernel) = (&inputs[0], &inputs[1]);
if stride.iter().any(|&s| s == 0) {
return Err(Box::new(TensorError::DimMismatch(
"non-positive stride is not supported for deconv".to_string(),
)));
}
let null_val = ValType::Constant(F::ZERO);
let mut expanded_image = image.clone();
for (i, s) in stride.iter().enumerate() {
expanded_image.intercalate_values(null_val.clone(), *s, 2 + i)?;
}
expanded_image.pad(
kernel.dims()[2..]
.iter()
.map(|d| (d - 1, d - 1))
.collect::<Vec<_>>(),
2,
)?;
let channel_coord = (0..kernel.dims()[0])
.cartesian_product(0..kernel.dims()[1])
.collect::<Vec<_>>();
let slice_coord = expanded_image
.dims()
.iter()
.enumerate()
.map(|(i, d)| {
if i >= 2 {
padding[i - 2].0..d - padding[i - 2].1 + output_padding[i - 2]
} else {
0..*d
}
})
.collect::<Vec<_>>();
let sliced_expanded_image = expanded_imag |
e.get_slice(&slice_coord)?;
let mut inverted_kernels = vec![];
for (i, j) in channel_coord {
let channel = kernel.get_slice(&[i..i + 1, j..j + 1])?;
let mut channel = Tensor::from(channel.get_inner_tensor()?.clone().into_iter().rev());
channel.reshape(&kernel.dims()[2..])?;
inverted_kernels.push(channel);
}
let mut deconv_kernel =
Tensor::new(Some(&inverted_kernels), &[inverted_kernels.len()])?.combine()?;
deconv_kernel.reshape(kernel.dims())?;
if kernel.dims()[0] == sliced_expanded_image.dims()[1] {
let mut dims = deconv_kernel.dims().to_vec();
dims.swap(0, 1);
deconv_kernel.reshape(&dims)?;
}
let conv_input = if has_bias {
vec![
sliced_expanded_image,
deconv_kernel.clone().into(),
inputs[2].clone(),
]
} else {
vec![sliced_expanded_image, deconv_kernel.clone().into()]
};
let conv_dim = kernel.dims()[2..].len();
let output = conv(
config,
region,
&conv_input,
&vec![(0, 0); conv_dim],
&vec![1; conv_dim],
)?;
Ok(output)
}
pub fn conv<
F: PrimeField + TensorType + PartialOrd + std::hash::Hash + std::marker::Send + std::marker::Sync,
>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>],
padding: &[(usize, usize)],
stride: &[usize],
) -> Result<ValTensor<F>, Box<dyn Error>> {
let has_bias = values.len() == 3;
let (mut image, mut kernel) = (values[0].clone(), values[1].clone());
if stride.iter().any(|&s| s == 0) {
return Err(Box::new(TensorError::DimMismatch(
"non-positive stride is not supported for conv".to_string(),
)));
}
let mut assigned_len = vec![];
if !kernel.all_prev_assigned() {
kernel = region.assign(&config.custom_gates.inputs[0], &kernel)?;
assigned_len.push(kernel.len());
} |
if !image.all_prev_assigned() {
image = region.assign(&config.custom_gates.inputs[1], &image)?;
assigned_len.push(image.len());
}
if !assigned_len.is_empty() {
region.increment(*assigned_len.iter().max().unwrap());
}
let image_dims = image.dims();
let kernel_dims = kernel.dims();
let mut padded_image = image.clone();
padded_image.pad(padding.to_vec(), 2)?;
let batch_size = image_dims[0];
let input_channels = image_dims[1];
let output_channels = kernel_dims[0];
log::debug!(
"batch_size: {}, output_channels: {}, input_channels: {}",
batch_size,
output_channels,
input_channels
);
let slides = image_dims[2..]
.iter()
.enumerate()
.map(|(i, d)| {
let d = padding[i].0 + d + padding[i].1;
d.checked_sub(kernel_dims[i + 2])
.ok_or_else(|| TensorError::Overflow("conv".to_string()))?
.checked_div(stride[i])
.ok_or_else(|| TensorError::Overflow("conv".to_string()))?
.checked_add(1)
.ok_or_else(|| TensorError::Overflow("conv".to_string()))
})
.collect::<Result<Vec<_>, TensorError>>()?;
log::debug!("slides: {:?}", slides);
let num_groups = input_channels / kernel_dims[1];
let input_channels_per_group = input_channels / num_groups;
let output_channels_per_group = output_channels / num_groups;
log::debug!(
"num_groups: {}, input_channels_per_group: {}, output_channels_per_group: {}",
num_groups,
input_channels_per_group,
output_channels_per_group
);
if output_channels_per_group == 0 {
return Err(Box::new(TensorError::DimMismatch(format!(
"Given groups={}, expected kernel to be at least {} at dimension 0 but got {} instead",
num_groups, num_groups, output_channels_per_group
))));
}
let num_outputs =
batch_size * num_groups * output_channels_per |
_group * slides.iter().product::<usize>();
log::debug!("num_outputs: {}", num_outputs);
let mut output: Tensor<ValType<F>> = Tensor::new(None, &[num_outputs])?;
let mut iterations = vec![0..batch_size, 0..num_groups, 0..output_channels_per_group];
for slide in slides.iter() {
iterations.push(0..*slide);
}
let cartesian_coord = iterations
.iter()
.cloned()
.multi_cartesian_product()
.collect::<Vec<_>>();
let inner_loop_function = |idx: usize, region: &mut RegionCtx<F>| {
let cartesian_coord_per_group = &cartesian_coord[idx];
let (batch, group, i) = (
cartesian_coord_per_group[0],
cartesian_coord_per_group[1],
cartesian_coord_per_group[2],
);
let start_channel = group * input_channels_per_group;
let end_channel = start_channel + input_channels_per_group;
let mut slices = vec![batch..batch + 1, start_channel..end_channel];
for (i, stride) in stride.iter().enumerate() {
let coord = cartesian_coord_per_group[3 + i] * stride;
let kernel_dim = kernel_dims[2 + i];
slices.push(coord..(coord + kernel_dim));
}
let mut local_image = padded_image.get_slice(&slices)?;
local_image.flatten();
let start_kernel_index = group * output_channels_per_group + i;
let end_kernel_index = start_kernel_index + 1;
let mut local_kernel = kernel.get_slice(&[start_kernel_index..end_kernel_index])?;
local_kernel.flatten();
let mut res = einsum(config, region, &[local_image, local_kernel], "i,i->")?;
if has_bias {
let bias_index = if values[2].len() > 1 {
start_kernel_index
} else {
0
};
let bias = values[2].get_single_elem(bias_index)?;
res = pairwise(config, region, &[res, bias], BaseOp::Add)?;
}
region.flush()?;
Ok(res.get_inner_tensor()?[0].c |
lone())
};
region.flush()?;
region.apply_in_loop(&mut output, inner_loop_function)?;
let reshape_output = |output: &mut Tensor<ValType<F>>| -> Result<(), TensorError> {
let mut dims = vec![batch_size, output_channels];
dims.extend(slides.iter().cloned());
output.reshape(&dims)?;
Ok(())
};
reshape_output(&mut output)?;
let output: ValTensor<_> = output.into();
Ok(output)
}
pub(crate) fn pow<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
exponent: u32,
) -> Result<ValTensor<F>, Box<dyn Error>> {
let mut t = values[0].clone();
for _ in 1..exponent {
t = pairwise(config, region, &[t, values[0].clone()], BaseOp::Mult)?;
}
Ok(t)
}
pub(crate) fn rescale<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>],
scales: &[(usize, u128)],
) -> Result<Vec<ValTensor<F>>, Box<dyn Error>> {
let mut rescaled_inputs = vec![];
for (i, ri) in values.iter().enumerate() {
if scales[i].1 == 1 {
rescaled_inputs.push(ri.clone());
continue;
}
let multiplier = create_constant_tensor(F::from(scales[i].1 as u64), 1);
let scaled_input = pairwise(config, region, &[ri.clone(), multiplier], BaseOp::Mult)?;
rescaled_inputs.push(scaled_input);
}
Ok(rescaled_inputs)
}
pub(crate) fn reshape<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
values: &[ValTensor<F>; 1],
new_dims: &[usize],
) -> Result<ValTensor<F>, Box<dyn Error>> {
let mut t = values[0].clone();
t.reshape(new_dims)?;
Ok(t)
}
pub(crate) fn move_axis<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
values: &[ValTensor<F>; 1],
source: usize,
destination: usize,
) -> Result<ValTensor<F>, Box<dyn Error>> {
let mut t = values[0].clone(); |
t.move_axis(source, destination)?;
Ok(t)
}
pub(crate) fn resize<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
scales: &[usize],
) -> Result<ValTensor<F>, Box<dyn Error>> {
let mut output = region.assign(&config.custom_gates.output, &values[0])?;
region.increment(output.len());
output.resize(scales)?;
Ok(output)
}
pub(crate) fn slice<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
axis: &usize,
start: &usize,
end: &usize,
) -> Result<ValTensor<F>, Box<dyn Error>> {
let mut output = values[0].clone();
let is_assigned = output.all_prev_assigned();
if !is_assigned {
output = region.assign(&config.custom_gates.output, &values[0])?;
region.increment(output.len());
}
output.slice(axis, start, end)?;
Ok(output)
}
pub(crate) fn trilu<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
k: &i32,
upper: &bool,
) -> Result<ValTensor<F>, Box<dyn Error>> {
let mut output = values[0].clone();
let is_assigned = output.all_prev_assigned();
if !is_assigned {
output = region.assign(&config.custom_gates.inputs[0], &values[0])?;
}
let res = tensor::ops::trilu(output.get_inner_tensor()?, *k, *upper)?;
let output = region.assign(&config.custom_gates.output, &res.into())?;
region.increment(output.len());
Ok(output)
}
pub(crate) fn concat<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
values: &[ValTensor<F>],
axis: &usize,
) -> Result<ValTensor<F>, Box<dyn Error>> {
let collected_inner: Result<Vec<&Tensor<_>>, _> =
values.iter().map(|e| e.get_inner_tensor()).collect();
let collected_inner = collected_inner?;
Ok(tensor::ops::concat(&collected_inn |
er, *axis)?.into())
}
pub(crate) fn identity<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
) -> Result<ValTensor<F>, Box<dyn Error>> {
let mut output = values[0].clone();
if !output.all_prev_assigned() {
output = region.assign(&config.custom_gates.output, &values[0])?;
region.increment(output.len());
}
Ok(output)
}
pub(crate) fn boolean_identity<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
assign: bool,
) -> Result<ValTensor<F>, Box<dyn Error>> {
let output = if assign || !values[0].get_const_indices()?.is_empty() {
let output = region.assign(&config.custom_gates.output, &values[0])?;
region.increment(output.len());
output
} else {
values[0].clone()
};
if !region.is_dummy() {
(0..output.len())
.map(|j| {
let index = region.linear_coord() - j - 1;
let (x, y, z) = config.custom_gates.output.cartesian_coord(index);
let selector = config
.custom_gates
.selectors
.get(&(BaseOp::IsBoolean, x, y));
region.enable(selector, z)?;
Ok(())
})
.collect::<Result<Vec<_>, Box<dyn Error>>>()?;
}
Ok(output)
}
pub(crate) fn downsample<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
axis: &usize,
stride: &usize,
modulo: &usize,
) -> Result<ValTensor<F>, Box<dyn Error>> {
let input = region.assign(&config.custom_gates.inputs[0], &values[0])?;
let processed_output =
tensor::ops::downsample(input.get_inner_tensor()?, *axis, *stride, *modulo)?;
let output = region.assign(&config.custom_gates.output, &pro |
cessed_output.into())?;
region.increment(std::cmp::max(input.len(), output.len()));
Ok(output)
}
pub(crate) fn enforce_equality<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
) -> Result<ValTensor<F>, Box<dyn Error>> {
if values[0].len() != values[1].len() {
return Err(Box::new(TensorError::DimMismatch(
"enforce_equality".to_string(),
)));
}
let input = region.assign(&config.custom_gates.inputs[1], &values[0])?;
let output = region.assign(&config.custom_gates.output, &values[1])?;
if !region.is_dummy() {
region.constrain_equal(&input, &output)?;
}
region.increment(output.len());
Ok(output)
}
pub(crate) fn range_check<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
range: &crate::circuit::table::Range,
) -> Result<ValTensor<F>, Box<dyn Error>> {
region.add_used_range_check(*range)?;
let timer = instant::Instant::now();
let x = values[0].clone();
let w = region.assign(&config.range_checks.input, &x)?;
let assigned_len = x.len();
let is_dummy = region.is_dummy();
let table_index: ValTensor<F> = w
.get_inner_tensor()?
.par_enum_map(|_, e| {
Ok::<ValType<F>, TensorError>(if let Some(f) = e.get_felt_eval() {
let col_idx = if !is_dummy {
let table = config
.range_checks
.ranges
.get(range)
.ok_or(TensorError::TableLookupError)?;
table.get_col_index(f)
} else {
F::ZERO
};
Value::known(col_idx).into()
} else {
Value::<F>::unknown().into()
})
})?
.into();
region.assign(&config.range |
_checks.index, &table_index)?;
if !is_dummy {
(0..assigned_len)
.map(|i| {
let (x, y, z) = config
.range_checks
.input
.cartesian_coord(region.linear_coord() + i);
let selector = config.range_checks.selectors.get(&(*range, x, y));
region.enable(selector, z)?;
Ok(())
})
.collect::<Result<Vec<_>, Box<dyn Error>>>()?;
}
let is_assigned = !w.any_unknowns()?;
if is_assigned && region.witness_gen() {
let int_values = w.get_int_evals()?;
for v in int_values.iter() {
if v < &range.0 || v > &range.1 {
log::error!("Value ({:?}) out of range: {:?}", v, range);
return Err(Box::new(TensorError::TableLookupError));
}
}
}
region.increment(assigned_len);
let elapsed = timer.elapsed();
trace!(
"range check {:?} layout took {:?}, row: {:?}",
range,
elapsed,
region.row()
);
Ok(w)
}
pub(crate) fn nonlinearity<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
nl: &LookupOp,
) -> Result<ValTensor<F>, Box<dyn Error>> {
region.add_used_lookup(nl.clone(), values)?;
let timer = instant::Instant::now();
let x = values[0].clone();
let removal_indices = values[0].get_const_indices()?;
let removal_indices: HashSet<&usize> = HashSet::from_iter(removal_indices.iter());
let removal_indices_ptr = &removal_indices;
let w = region.assign_with_omissions(&config.static_lookups.input, &x, removal_indices_ptr)?;
let output = w.get_inner_tensor()?.par_enum_map(|i, e| {
Ok::<_, TensorError>(if let Some(f) = e.get_felt_eval() {
if !removal_indices.contains(&i) {
Value::known(nl.f(&[Tensor::from(vec![f].into_iter())])?.output[0]).into() |
} else {
ValType::Constant(nl.f(&[Tensor::from(vec![f].into_iter())])?.output[0])
}
} else {
Value::<F>::unknown().into()
})
})?;
let assigned_len = x.len() - removal_indices.len();
let mut output = region.assign_with_omissions(
&config.static_lookups.output,
&output.into(),
removal_indices_ptr,
)?;
let is_dummy = region.is_dummy();
let table_index: ValTensor<F> = w
.get_inner_tensor()?
.par_enum_map(|i, e| {
Ok::<_, TensorError>(if let Some(f) = e.get_felt_eval() {
let col_idx = if !is_dummy {
let table = config
.static_lookups
.tables
.get(nl)
.ok_or(TensorError::TableLookupError)?;
table.get_col_index(f)
} else {
F::ZERO
};
if !removal_indices.contains(&i) {
Value::known(col_idx).into()
} else {
ValType::Constant(col_idx)
}
} else {
Value::<F>::unknown().into()
})
})?
.into();
region.assign_with_omissions(
&config.static_lookups.index,
&table_index,
removal_indices_ptr,
)?;
if !is_dummy {
(0..assigned_len)
.map(|i| {
let (x, y, z) = config
.static_lookups
.input
.cartesian_coord(region.linear_coord() + i);
let selector = config.static_lookups.selectors.get(&(nl.clone(), x, y));
region.enable(selector, z)?;
Ok(())
})
.collect::<Result<Vec<_>, Box<dyn Error>>>()?;
}
region.increment(assigned_len);
output.reshape(x.dims())?;
let elapsed = timer.elapsed();
trace!(
"nonlinearity {} layout took {:?}, row: {: |
?}",
<LookupOp as Op<F>>::as_string(nl),
elapsed,
region.row()
);
Ok(output)
}
pub(crate) fn argmax<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
) -> Result<ValTensor<F>, Box<dyn Error>> {
let argmax = values[0]
.get_int_evals()?
.into_par_iter()
.enumerate()
.max_by_key(|(idx, value)| (*value, -(*idx as i64)))
.map(|(idx, _)| idx as i128);
let argmax_val: ValTensor<F> = match argmax {
None => Tensor::new(Some(&[Value::<F>::unknown()]), &[1])?.into(),
Some(i) => Tensor::new(Some(&[Value::known(i128_to_felt::<F>(i))]), &[1])?.into(),
};
let assigned_argmax: ValTensor<F> =
region.assign(&config.custom_gates.inputs[1], &argmax_val)?;
region.increment(assigned_argmax.len());
let claimed_val = select(
config,
region,
&[values[0].clone(), assigned_argmax.clone()],
)?;
let max_val = max(config, region, &[values[0].clone()])?;
enforce_equality(config, region, &[claimed_val, max_val])?;
Ok(assigned_argmax)
}
pub(crate) fn argmin<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
) -> Result<ValTensor<F>, Box<dyn Error>> {
let argmin = values[0]
.get_int_evals()?
.into_par_iter()
.enumerate()
.min_by_key(|(idx, value)| (*value, (*idx as i64)))
.map(|(idx, _)| idx as i128);
let argmin_val: ValTensor<F> = match argmin {
None => Tensor::new(Some(&[Value::<F>::unknown()]), &[1])?.into(),
Some(i) => Tensor::new(Some(&[Value::known(i128_to_felt::<F>(i))]), &[1])?.into(),
};
let assigned_argmin: ValTensor<F> =
region.assign(&config.custom_gates.inputs[1], &argmin_val)?;
region.increment(assigned_argmin.len());
let claimed_val = select( |
config,
region,
&[values[0].clone(), assigned_argmin.clone()],
)?;
let min_val = min(config, region, &[values[0].clone()])?;
enforce_equality(config, region, &[claimed_val, min_val])?;
Ok(assigned_argmin)
}
pub(crate) fn max<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
) -> Result<ValTensor<F>, Box<dyn Error>> {
let input_len = values[0].len();
_sort_ascending(config, region, values)?.get_slice(&[input_len - 1..input_len])
}
pub(crate) fn min<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
) -> Result<ValTensor<F>, Box<dyn Error>> {
_sort_ascending(config, region, values)?.get_slice(&[0..1])
}
fn multi_dim_axes_op<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
axes: &[usize],
op: impl Fn(
&BaseConfig<F>,
&mut RegionCtx<F>,
&[ValTensor<F>; 1],
) -> Result<ValTensor<F>, Box<dyn Error>>
+ Send
+ Sync,
) -> Result<ValTensor<F>, Box<dyn Error>> {
let mut input = values[0].clone();
if !input.all_prev_assigned() {
input = region.assign(&config.custom_gates.inputs[0], &input)?;
region.increment(input.len());
}
if input.dims().len() == 1 {
return op(config, region, &[input]);
}
let input_dims = input.dims();
let mut sorted_axes = axes.to_vec();
sorted_axes.sort_by(|x, y| y.cmp(x));
let mut output_size_without_dim = input_dims.to_vec();
for dim in &sorted_axes {
output_size_without_dim.remove(*dim);
}
let mut op_tensors = Tensor::<ValTensor<F>>::new(None, &output_size_without_dim)?;
let cartesian_coord = output_size_without_dim
.iter()
.map(|x| 0..*x)
.multi_cart |
esian_product()
.collect::<Vec<_>>();
let inner_loop_function = |i: usize, region: &mut RegionCtx<F>| {
let coord = cartesian_coord[i].clone();
let mut slice = coord.iter().map(|x| *x..*x + 1).collect::<Vec<_>>();
for dim in &sorted_axes {
slice.insert(*dim, 0..input_dims[*dim]);
}
let mut sliced_input = input.get_slice(&slice)?;
sliced_input.flatten();
Ok(op(config, region, &[sliced_input])?)
};
region.apply_in_loop(&mut op_tensors, inner_loop_function)?;
let sample_op_output_size = op_tensors[0].dims();
let mut output_size = input_dims.to_vec();
for dim in axes.iter().enumerate() {
output_size[*dim.1] = sample_op_output_size[dim.0];
}
let cartesian_coord = output_size
.iter()
.map(|x| 0..*x)
.multi_cartesian_product()
.collect::<Vec<_>>();
let mut output = Tensor::<ValType<F>>::new(None, &output_size)?;
output = output.par_enum_map(|i, _| {
let coord = cartesian_coord[i].clone();
let mut op_idx = coord.clone();
let mut coord_at_dims = vec![];
for dim in &sorted_axes {
op_idx.remove(*dim);
}
for dim in axes {
coord_at_dims.push(coord[*dim]);
}
let topk_elem = op_tensors
.get(&op_idx)
.get_inner_tensor()?
.get(&coord_at_dims)
.clone();
Ok::<_, region::RegionError>(topk_elem)
})?;
Ok(output.into())
}
pub(crate) fn softmax_axes<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
input_scale: utils::F32,
output_scale: utils::F32,
axes: &[usize],
) -> Result<ValTensor<F>, Box<dyn Error>> {
let soft_max_at_scale = move |config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1]| |
-> Result<ValTensor<F>, Box<dyn Error>> {
softmax(config, region, values, input_scale, output_scale)
};
let output = multi_dim_axes_op(config, region, values, axes, soft_max_at_scale)?;
Ok(output)
}
pub(crate) fn percent<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
input_scale: utils::F32,
output_scale: utils::F32,
) -> Result<ValTensor<F>, Box<dyn Error>> {
let is_assigned = values[0].all_prev_assigned();
let mut input = values[0].clone();
if !is_assigned {
input = region.assign(&config.custom_gates.inputs[0], &values[0])?;
region.increment(input.len());
};
let denom = sum(config, region, &[input.clone()])?;
let input_felt_scale = F::from(input_scale.0 as u64);
let output_felt_scale = F::from(output_scale.0 as u64);
let inv_denom = recip(
config,
region,
&[denom],
input_felt_scale,
output_felt_scale,
)?;
let percent = pairwise(config, region, &[input, inv_denom], BaseOp::Mult)?;
loop_div(config, region, &[percent], input_felt_scale)
}
pub fn softmax<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
input_scale: utils::F32,
output_scale: utils::F32,
) -> Result<ValTensor<F>, Box<dyn Error>> {
let max_val = max(config, region, values)?;
let sub = pairwise(config, region, &[values[0].clone(), max_val], BaseOp::Sub)?;
let ex = nonlinearity(
config,
region,
&[sub],
&LookupOp::Exp { scale: input_scale },
)?;
percent(config, region, &[ex.clone()], input_scale, output_scale)
}
pub fn range_check_percent<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; |
2],
scale: utils::F32,
tol: f32,
) -> Result<ValTensor<F>, Box<dyn Error>> {
if tol == 0.0 {
return enforce_equality(config, region, values);
}
let mut values = [values[0].clone(), values[1].clone()];
values[0] = region.assign(&config.custom_gates.inputs[0], &values[0])?;
values[1] = region.assign(&config.custom_gates.inputs[1], &values[1])?;
let total_assigned_0 = values[0].len();
let total_assigned_1 = values[1].len();
let total_assigned = std::cmp::max(total_assigned_0, total_assigned_1);
region.increment(total_assigned);
let diff = pairwise(config, region, &values, BaseOp::Sub)?;
let int_scale = scale.0 as i128;
let felt_scale = i128_to_felt(int_scale);
let range_check_bracket = std::cmp::min(
utils::F32(scale.0),
utils::F32(2_f32.powf((F::S - 5) as f32)),
)
.0;
let range_check_bracket_int = range_check_bracket as i128;
let input_scale_ratio = ((scale.0.powf(2.0) / range_check_bracket) * tol) as i128 / 2 * 2;
let recip = recip(
config,
region,
&[values[0].clone()],
felt_scale,
felt_scale * F::from(100),
)?;
log::debug!("recip: {}", recip.show());
let product = pairwise(config, region, &[diff, recip], BaseOp::Mult)?;
log::debug!("product: {}", product.show());
let rebased_product = loop_div(config, region, &[product], i128_to_felt(input_scale_ratio))?;
log::debug!("rebased_product: {}", rebased_product.show());
range_check(
config,
region,
&[rebased_product],
&(-range_check_bracket_int, range_check_bracket_int),
)
} |
use super::*;
use serde::{Deserialize, Serialize};
use std::error::Error;
use crate::{
circuit::{layouts, table::Range, utils},
fieldutils::{felt_to_i128, i128_to_felt},
graph::multiplier_to_scale,
tensor::{self, Tensor, TensorError, TensorType},
};
use super::Op;
use halo2curves::ff::PrimeField;
pub enum LookupOp {
Abs,
Div {
denom: utils::F32,
},
Cast {
scale: utils::F32,
},
ReLU,
Max {
scale: utils::F32,
a: utils::F32,
},
Min {
scale: utils::F32,
a: utils::F32,
},
Ceil {
scale: utils::F32,
},
Floor {
scale: utils::F32,
},
Round {
scale: utils::F32,
},
RoundHalfToEven {
scale: utils::F32,
},
Sqrt {
scale: utils::F32,
},
Rsqrt {
scale: utils::F32,
},
Recip {
input_scale: utils::F32,
output_scale: utils::F32,
},
LeakyReLU {
slope: utils::F32,
},
Sigmoid {
scale: utils::F32,
},
Ln {
scale: utils::F32,
},
Exp {
scale: utils::F32,
},
Cos {
scale: utils::F32,
},
ACos {
scale: utils::F32,
},
Cosh {
scale: utils::F32,
},
ACosh {
scale: utils::F32,
},
Sin {
scale: utils::F32,
},
ASin {
scale: utils::F32,
},
Sinh {
scale: utils::F32,
},
ASinh {
scale: utils::F32,
},
Tan {
scale: utils::F32,
},
ATan {
scale: utils::F32,
},
Tanh {
scale: utils::F32,
},
ATanh {
scale: utils::F32,
},
Erf {
scale: utils::F32,
},
GreaterThan {
a: utils::F32,
},
LessThan {
a: utils::F32,
},
GreaterThanEqual {
a: utils::F32,
},
LessThanEqual {
a: utils::F32,
},
Sign,
KroneckerDelta,
Pow {
scale: utils::F32,
a: utils::F32,
},
HardSwish {
scale: uti |
ls::F32,
},
}
impl LookupOp {
pub fn bit_range(max_len: usize) -> Range {
let range = (max_len - 1) as f64 / 2_f64;
let range = range as i128;
(-range, range)
}
pub(crate) fn f<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
&self,
x: &[Tensor<F>],
) -> Result<ForwardResult<F>, TensorError> {
let x = x[0].clone().map(|x| felt_to_i128(x));
let res = match &self {
LookupOp::Abs => Ok(tensor::ops::abs(&x)?),
LookupOp::Ceil { scale } => Ok(tensor::ops::nonlinearities::ceil(&x, scale.into())),
LookupOp::Floor { scale } => Ok(tensor::ops::nonlinearities::floor(&x, scale.into())),
LookupOp::Round { scale } => Ok(tensor::ops::nonlinearities::round(&x, scale.into())),
LookupOp::RoundHalfToEven { scale } => Ok(
tensor::ops::nonlinearities::round_half_to_even(&x, scale.into()),
),
LookupOp::Pow { scale, a } => Ok(tensor::ops::nonlinearities::pow(
&x,
scale.0.into(),
a.0.into(),
)),
LookupOp::KroneckerDelta => Ok(tensor::ops::nonlinearities::kronecker_delta(&x)),
LookupOp::Max { scale, a } => Ok(tensor::ops::nonlinearities::max(
&x,
scale.0.into(),
a.0.into(),
)),
LookupOp::Min { scale, a } => Ok(tensor::ops::nonlinearities::min(
&x,
scale.0.into(),
a.0.into(),
)),
LookupOp::Sign => Ok(tensor::ops::nonlinearities::sign(&x)),
LookupOp::LessThan { a } => Ok(tensor::ops::nonlinearities::less_than(
&x,
f32::from(*a).into(),
)),
LookupOp::LessThanEqual { a } => Ok(tensor::ops::nonlinearities::less_than_equal(
&x,
f32::from(*a).into(),
)),
LookupOp::GreaterThan { a } => Ok(tensor::ops::non |
linearities::greater_than(
&x,
f32::from(*a).into(),
)),
LookupOp::GreaterThanEqual { a } => Ok(
tensor::ops::nonlinearities::greater_than_equal(&x, f32::from(*a).into()),
),
LookupOp::Div { denom } => Ok(tensor::ops::nonlinearities::const_div(
&x,
f32::from(*denom).into(),
)),
LookupOp::Cast { scale } => Ok(tensor::ops::nonlinearities::const_div(
&x,
f32::from(*scale).into(),
)),
LookupOp::Recip {
input_scale,
output_scale,
} => Ok(tensor::ops::nonlinearities::recip(
&x,
input_scale.into(),
output_scale.into(),
)),
LookupOp::ReLU => Ok(tensor::ops::nonlinearities::leakyrelu(&x, 0_f64)),
LookupOp::LeakyReLU { slope: a } => {
Ok(tensor::ops::nonlinearities::leakyrelu(&x, a.0.into()))
}
LookupOp::Sigmoid { scale } => {
Ok(tensor::ops::nonlinearities::sigmoid(&x, scale.into()))
}
LookupOp::Sqrt { scale } => Ok(tensor::ops::nonlinearities::sqrt(&x, scale.into())),
LookupOp::Rsqrt { scale } => Ok(tensor::ops::nonlinearities::rsqrt(&x, scale.into())),
LookupOp::Erf { scale } => Ok(tensor::ops::nonlinearities::erffunc(&x, scale.into())),
LookupOp::Exp { scale } => Ok(tensor::ops::nonlinearities::exp(&x, scale.into())),
LookupOp::Ln { scale } => Ok(tensor::ops::nonlinearities::ln(&x, scale.into())),
LookupOp::Cos { scale } => Ok(tensor::ops::nonlinearities::cos(&x, scale.into())),
LookupOp::ACos { scale } => Ok(tensor::ops::nonlinearities::acos(&x, scale.into())),
LookupOp::Cosh { scale } => Ok(tensor::ops::nonlinearities::cosh(&x, scale.into())),
LookupOp::ACosh { scale } => Ok(tensor::ops::nonlinearities::acosh(&x, |
scale.into())),
LookupOp::Sin { scale } => Ok(tensor::ops::nonlinearities::sin(&x, scale.into())),
LookupOp::ASin { scale } => Ok(tensor::ops::nonlinearities::asin(&x, scale.into())),
LookupOp::Sinh { scale } => Ok(tensor::ops::nonlinearities::sinh(&x, scale.into())),
LookupOp::ASinh { scale } => Ok(tensor::ops::nonlinearities::asinh(&x, scale.into())),
LookupOp::Tan { scale } => Ok(tensor::ops::nonlinearities::tan(&x, scale.into())),
LookupOp::ATan { scale } => Ok(tensor::ops::nonlinearities::atan(&x, scale.into())),
LookupOp::ATanh { scale } => Ok(tensor::ops::nonlinearities::atanh(&x, scale.into())),
LookupOp::Tanh { scale } => Ok(tensor::ops::nonlinearities::tanh(&x, scale.into())),
LookupOp::HardSwish { scale } => {
Ok(tensor::ops::nonlinearities::hardswish(&x, scale.into()))
}
}?;
let output = res.map(|x| i128_to_felt(x));
Ok(ForwardResult { output })
}
}
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for LookupOp {
fn as_any(&self) -> &dyn Any {
self
}
fn as_string(&self) -> String {
match self {
LookupOp::Abs => "ABS".into(),
LookupOp::Ceil { scale } => format!("CEIL(scale={})", scale),
LookupOp::Floor { scale } => format!("FLOOR(scale={})", scale),
LookupOp::Round { scale } => format!("ROUND(scale={})", scale),
LookupOp::RoundHalfToEven { scale } => format!("ROUND_HALF_TO_EVEN(scale={})", scale),
LookupOp::Pow { a, scale } => format!("POW(scale={}, exponent={})", scale, a),
LookupOp::KroneckerDelta => "K_DELTA".into(),
LookupOp::Max { scale, a } => format!("MAX(scale={}, a={})", scale, a),
LookupOp::Min { scale, a } => format!("MIN(scale={}, a={})", scale, a),
LookupOp::Sign => "SIGN".into(),
LookupOp::GreaterThan { a } => format!("GREATER_THAN(a={}) |
", a),
LookupOp::GreaterThanEqual { a } => format!("GREATER_THAN_EQUAL(a={})", a),
LookupOp::LessThan { a } => format!("LESS_THAN(a={})", a),
LookupOp::LessThanEqual { a } => format!("LESS_THAN_EQUAL(a={})", a),
LookupOp::Recip {
input_scale,
output_scale,
} => format!(
"RECIP(input_scale={}, output_scale={})",
input_scale, output_scale
),
LookupOp::Div { denom, .. } => format!("DIV(denom={})", denom),
LookupOp::Cast { scale } => format!("CAST(scale={})", scale),
LookupOp::Ln { scale } => format!("LN(scale={})", scale),
LookupOp::ReLU => "RELU".to_string(),
LookupOp::LeakyReLU { slope: a } => format!("L_RELU(slope={})", a),
LookupOp::Sigmoid { scale } => format!("SIGMOID(scale={})", scale),
LookupOp::Sqrt { scale } => format!("SQRT(scale={})", scale),
LookupOp::Erf { scale } => format!("ERF(scale={})", scale),
LookupOp::Rsqrt { scale } => format!("RSQRT(scale={})", scale),
LookupOp::Exp { scale } => format!("EXP(scale={})", scale),
LookupOp::Tan { scale } => format!("TAN(scale={})", scale),
LookupOp::ATan { scale } => format!("ATAN(scale={})", scale),
LookupOp::Tanh { scale } => format!("TANH(scale={})", scale),
LookupOp::ATanh { scale } => format!("ATANH(scale={})", scale),
LookupOp::Cos { scale } => format!("COS(scale={})", scale),
LookupOp::ACos { scale } => format!("ACOS(scale={})", scale),
LookupOp::Cosh { scale } => format!("COSH(scale={})", scale),
LookupOp::ACosh { scale } => format!("ACOSH(scale={})", scale),
LookupOp::Sin { scale } => format!("SIN(scale={})", scale),
LookupOp::ASin { scale } => format!("ASIN(scale={})", scale),
LookupOp::Sinh { scale } => format!("SINH(scale={})", scale),
LookupOp::ASinh { scal |
e } => format!("ASINH(scale={})", scale),
LookupOp::HardSwish { scale } => format!("HARDSWISH(scale={})", scale),
}
}
fn layout(
&self,
config: &mut crate::circuit::BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>],
) -> Result<Option<ValTensor<F>>, Box<dyn Error>> {
Ok(Some(layouts::nonlinearity(
config,
region,
values[..].try_into()?,
self,
)?))
}
fn out_scale(&self, inputs_scale: Vec<crate::Scale>) -> Result<crate::Scale, Box<dyn Error>> {
let scale = match self {
LookupOp::Cast { scale } => {
let in_scale = inputs_scale[0];
in_scale + multiplier_to_scale(1. / scale.0 as f64)
}
LookupOp::Recip { output_scale, .. } => multiplier_to_scale(output_scale.into()),
LookupOp::Sign
| LookupOp::GreaterThan { .. }
| LookupOp::LessThan { .. }
| LookupOp::GreaterThanEqual { .. }
| LookupOp::LessThanEqual { .. }
| LookupOp::KroneckerDelta => 0,
_ => inputs_scale[0],
};
Ok(scale)
}
fn clone_dyn(&self) -> Box<dyn Op<F>> {
Box::new(self.clone())
}
} |
use std::{any::Any, error::Error};
use serde::{Deserialize, Serialize};
use crate::{
graph::quantize_tensor,
tensor::{self, Tensor, TensorType, ValTensor},
};
use halo2curves::ff::PrimeField;
use self::{lookup::LookupOp, region::RegionCtx};
pub mod base;
pub mod chip;
pub mod hybrid;
pub mod layouts;
pub mod lookup;
pub mod poly;
pub mod region;
pub struct ForwardResult<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> {
pub(crate) output: Tensor<F>,
}
pub trait Op<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>:
std::fmt::Debug + Send + Sync + Any
{
fn as_string(&self) -> String;
fn layout(
&self,
config: &mut crate::circuit::BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>],
) -> Result<Option<ValTensor<F>>, Box<dyn Error>>;
fn out_scale(&self, _: Vec<crate::Scale>) -> Result<crate::Scale, Box<dyn Error>>;
fn requires_homogenous_input_scales(&self) -> Vec<usize> {
vec![]
}
fn is_input(&self) -> bool {
false
}
fn is_constant(&self) -> bool {
false
}
fn clone_dyn(&self) -> Box<dyn Op<F>>;
fn as_any(&self) -> &dyn Any;
}
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Clone for Box<dyn Op<F>> {
fn clone(&self) -> Self {
self.clone_dyn()
}
}
pub enum InputType {
Bool,
F16,
F32,
F64,
Int,
TDim,
}
impl InputType {
pub fn is_integer(&self) -> bool {
matches!(self, InputType::Int | InputType::TDim | InputType::Bool)
}
pub fn roundtrip<T: num::ToPrimitive + num::FromPrimitive + Clone>(&self, input: &mut T) {
match self {
InputType::Bool => {
let boolean_input = input.clone().to_i64().unwrap();
assert!(boolean_input == 0 || boolean_input == 1);
*input = T::from_i64(boolean_input).unwrap();
}
Inpu |
tType::F16 => {
let f32_input = input.clone().to_f32().unwrap();
*input = T::from_f32(f32_input).unwrap();
}
InputType::F32 => {
let f32_input = input.clone().to_f32().unwrap();
*input = T::from_f32(f32_input).unwrap();
}
InputType::F64 => {
let f64_input = input.clone().to_f64().unwrap();
*input = T::from_f64(f64_input).unwrap();
}
InputType::Int | InputType::TDim => {
let int_input = input.clone().to_i128().unwrap();
*input = T::from_i128(int_input).unwrap();
}
}
}
}
pub |
struct Input {
pub scale: crate::Scale,
pub datum_type: InputType,
}
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Input {
fn out_scale(&self, _: Vec<crate::Scale>) -> Result<crate::Scale, Box<dyn Error>> {
Ok(self.scale)
}
fn as_any(&self) -> &dyn Any {
self
}
fn as_string(&self) -> String {
"Input".into()
}
fn layout(
&self,
config: &mut crate::circuit::BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>],
) -> Result<Option<ValTensor<F>>, Box<dyn Error>> {
let value = values[0].clone();
if !value.all_prev_assigned() {
match self.datum_type {
InputType::Bool => {
log::debug!("constraining input to be boolean");
Ok(Some(super::layouts::boolean_identity(
config,
region,
values[..].try_into()?,
true,
)?))
}
_ => Ok(Some(super::layouts::identity(
config,
region,
values[..].try_into()?,
)?)),
}
} else {
Ok(Some(value))
}
}
fn is_input(&self) -> bool {
true
}
fn clone_dyn(&self) -> Box<dyn Op<F>> {
Box::new(self.clone())
}
}
pub struct Unknown;
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Unknown {
fn out_scale(&self, _: Vec<crate::Scale>) -> Result<crate::Scale, Box<dyn Error>> {
Ok(0)
}
fn as_any(&self) -> &dyn Any {
self
}
fn as_string(&self) -> String {
"Unknown".into()
}
fn layout(
&self,
_: &mut crate::circuit::BaseConfig<F>,
_: &mut RegionCtx<F>,
_: &[ValTensor<F>],
) -> Result<Option<ValTensor<F>>, Box<dyn Error>> {
Err(Box::new(super::CircuitError::Unsu |
pportedOp))
}
fn clone_dyn(&self) -> Box<dyn Op<F>> {
Box::new(self.clone())
}
}
pub struct Constant<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> {
pub quantized_values: Tensor<F>,
pub raw_values: Tensor<f32>,
pub pre_assigned_val: Option<ValTensor<F>>,
}
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Constant<F> {
pub fn new(quantized_values: Tensor<F>, raw_values: Tensor<f32>) -> Self {
Self {
quantized_values,
raw_values,
pre_assigned_val: None,
}
}
pub fn rebase_scale(&mut self, new_scale: crate::Scale) -> Result<(), Box<dyn Error>> {
let visibility = self.quantized_values.visibility().unwrap();
self.quantized_values = quantize_tensor(self.raw_values.clone(), new_scale, &visibility)?;
Ok(())
}
pub |
fn empty_raw_value(&mut self) {
self.raw_values = Tensor::new(None, &[0]).unwrap();
}
pub |
fn pre_assign(&mut self, val: ValTensor<F>) {
self.pre_assigned_val = Some(val)
}
}
impl<
F: PrimeField
+ TensorType
+ PartialOrd
+ std::hash::Hash
+ Serialize
+ for<'de> Deserialize<'de>,
> Op<F> for Constant<F>
{
fn as_any(&self) -> &dyn Any {
self
}
fn as_string(&self) -> String {
format!("CONST (scale={})", self.quantized_values.scale().unwrap())
}
fn layout(
&self,
config: &mut crate::circuit::BaseConfig<F>,
region: &mut RegionCtx<F>,
_: &[ValTensor<F>],
) -> Result<Option<ValTensor<F>>, Box<dyn Error>> {
let value = if let Some(value) = &self.pre_assigned_val {
value.clone()
} else {
self.quantized_values.clone().try_into()?
};
Ok(Some(layouts::identity(config, region, &[value])?))
}
fn clone_dyn(&self) -> Box<dyn Op<F>> {
Box::new(self.clone())
}
fn out_scale(&self, _: Vec<crate::Scale>) -> Result<crate::Scale, Box<dyn Error>> {
Ok(self.quantized_values.scale().unwrap())
}
fn is_constant(&self) -> bool {
true
}
} |
use crate::{
circuit::layouts,
tensor::{self, Tensor, TensorError},
};
use super::{base::BaseOp, *};
pub enum PolyOp {
GatherElements {
dim: usize,
constant_idx: Option<Tensor<usize>>,
},
GatherND {
batch_dims: usize,
indices: Option<Tensor<usize>>,
},
ScatterElements {
dim: usize,
constant_idx: Option<Tensor<usize>>,
},
ScatterND {
constant_idx: Option<Tensor<usize>>,
},
MultiBroadcastTo {
shape: Vec<usize>,
},
Einsum {
equation: String,
},
Conv {
padding: Vec<(usize, usize)>,
stride: Vec<usize>,
},
Downsample {
axis: usize,
stride: usize,
modulo: usize,
},
DeConv {
padding: Vec<(usize, usize)>,
output_padding: Vec<usize>,
stride: Vec<usize>,
},
Add,
Sub,
Neg,
Mult,
Identity {
out_scale: Option<crate::Scale>,
},
Reshape(Vec<usize>),
MoveAxis {
source: usize,
destination: usize,
},
Flatten(Vec<usize>),
Pad(Vec<(usize, usize)>),
Sum {
axes: Vec<usize>,
},
MeanOfSquares {
axes: Vec<usize>,
},
Prod {
axes: Vec<usize>,
len_prod: usize,
},
Pow(u32),
Concat {
axis: usize,
},
Slice {
axis: usize,
start: usize,
end: usize,
},
Iff,
Resize {
scale_factor: Vec<usize>,
},
Not,
And,
Or,
Xor,
Trilu {
upper: bool,
k: i32,
},
}
impl<
F: PrimeField
+ TensorType
+ PartialOrd
+ std::hash::Hash
+ Serialize
+ for<'de> Deserialize<'de>,
> Op<F> for PolyOp
{
fn as_any(&self) -> &dyn Any {
self
}
fn as_string(&self) -> String {
match &self {
PolyOp::GatherElements { dim, constant_idx } => format!(
"GATHERELEMENTS (dim={}, constant_idx{})", |
dim,
constant_idx.is_some()
),
PolyOp::GatherND {
batch_dims,
indices,
} => format!(
"GATHERND (batch_dims={}, constant_idx{})",
batch_dims,
indices.is_some()
),
PolyOp::MeanOfSquares { axes } => format!("MEANOFSQUARES (axes={:?})", axes),
PolyOp::ScatterElements { dim, constant_idx } => format!(
"SCATTERELEMENTS (dim={}, constant_idx{})",
dim,
constant_idx.is_some()
),
PolyOp::ScatterND { constant_idx } => {
format!("SCATTERND (constant_idx={})", constant_idx.is_some())
}
PolyOp::MultiBroadcastTo { shape } => format!("MULTIBROADCASTTO (shape={:?})", shape),
PolyOp::MoveAxis { .. } => "MOVEAXIS".into(),
PolyOp::Downsample { .. } => "DOWNSAMPLE".into(),
PolyOp::Resize { .. } => "RESIZE".into(),
PolyOp::Iff => "IFF".into(),
PolyOp::Einsum { equation, .. } => format!("EINSUM {}", equation),
PolyOp::Identity { out_scale } => {
format!("IDENTITY (out_scale={:?})", out_scale)
}
PolyOp::Reshape(shape) => format!("RESHAPE (shape={:?})", shape),
PolyOp::Flatten(_) => "FLATTEN".into(),
PolyOp::Pad(pads) => format!("PAD (pads={:?})", pads),
PolyOp::Add => "ADD".into(),
PolyOp::Mult => "MULT".into(),
PolyOp::Sub => "SUB".into(),
PolyOp::Sum { axes } => format!("SUM (axes={:?})", axes),
PolyOp::Prod { .. } => "PROD".into(),
PolyOp::Pow(_) => "POW".into(),
PolyOp::Conv { stride, padding } => {
format!("CONV (stride={:?}, padding={:?})", stride, padding)
}
PolyOp::DeConv {
stride,
padding,
output_padding,
} => {
format!( |
"DECONV (stride={:?}, padding={:?}, output_padding={:?})",
stride, padding, output_padding
)
}
PolyOp::Concat { axis } => format!("CONCAT (axis={})", axis),
PolyOp::Slice { axis, start, end } => {
format!("SLICE (axis={}, start={}, end={})", axis, start, end)
}
PolyOp::Neg => "NEG".into(),
PolyOp::Not => "NOT".into(),
PolyOp::And => "AND".into(),
PolyOp::Or => "OR".into(),
PolyOp::Xor => "XOR".into(),
PolyOp::Trilu { upper, k } => format!("TRILU (upper={}, k={})", upper, k),
}
}
fn layout(
&self,
config: &mut crate::circuit::BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>],
) -> Result<Option<ValTensor<F>>, Box<dyn Error>> {
Ok(Some(match self {
PolyOp::MultiBroadcastTo { shape } => {
layouts::expand(config, region, values[..].try_into()?, shape)?
}
PolyOp::MeanOfSquares { axes } => {
layouts::mean_of_squares_axes(config, region, values[..].try_into()?, axes)?
}
PolyOp::Xor => layouts::xor(config, region, values[..].try_into()?)?,
PolyOp::Or => layouts::or(config, region, values[..].try_into()?)?,
PolyOp::And => layouts::and(config, region, values[..].try_into()?)?,
PolyOp::Not => layouts::not(config, region, values[..].try_into()?)?,
PolyOp::MoveAxis {
source,
destination,
} => layouts::move_axis(values[..].try_into()?, *source, *destination)?,
PolyOp::Downsample {
axis,
stride,
modulo,
} => layouts::downsample(config, region, values[..].try_into()?, axis, stride, modulo)?,
PolyOp::Resize { scale_factor } => {
layouts::resize(config, region, values[..].try_into()?, scale |
_factor)?
}
PolyOp::Neg => layouts::neg(config, region, values[..].try_into()?)?,
PolyOp::Iff => layouts::iff(config, region, values[..].try_into()?)?,
PolyOp::Einsum { equation } => layouts::einsum(config, region, values, equation)?,
PolyOp::Sum { axes } => {
layouts::sum_axes(config, region, values[..].try_into()?, axes)?
}
PolyOp::Prod { axes, .. } => {
layouts::prod_axes(config, region, values[..].try_into()?, axes)?
}
PolyOp::Conv { padding, stride } => {
layouts::conv(config, region, values[..].try_into()?, padding, stride)?
}
PolyOp::GatherElements { dim, constant_idx } => {
if let Some(idx) = constant_idx {
tensor::ops::gather_elements(values[0].get_inner_tensor()?, idx, *dim)?.into()
} else {
layouts::gather_elements(config, region, values[..].try_into()?, *dim)?.0
}
}
PolyOp::GatherND {
batch_dims,
indices,
} => {
if let Some(idx) = indices {
tensor::ops::gather_nd(values[0].get_inner_tensor()?, idx, *batch_dims)?.into()
} else {
layouts::gather_nd(config, region, values[..].try_into()?, *batch_dims)?.0
}
}
PolyOp::ScatterElements { dim, constant_idx } => {
if let Some(idx) = constant_idx {
tensor::ops::scatter(
values[0].get_inner_tensor()?,
idx,
values[1].get_inner_tensor()?,
*dim,
)?
.into()
} else {
layouts::scatter_elements(config, region, values[..].try_into()?, *dim)?
}
}
PolyOp::ScatterND { constant_idx } => { |
if let Some(idx) = constant_idx {
tensor::ops::scatter_nd(
values[0].get_inner_tensor()?,
idx,
values[1].get_inner_tensor()?,
)?
.into()
} else {
layouts::scatter_nd(config, region, values[..].try_into()?)?
}
}
PolyOp::DeConv {
padding,
output_padding,
stride,
} => layouts::deconv(
config,
region,
values[..].try_into()?,
padding,
output_padding,
stride,
)?,
PolyOp::Add => layouts::pairwise(config, region, values[..].try_into()?, BaseOp::Add)?,
PolyOp::Sub => layouts::pairwise(config, region, values[..].try_into()?, BaseOp::Sub)?,
PolyOp::Mult => {
layouts::pairwise(config, region, values[..].try_into()?, BaseOp::Mult)?
}
PolyOp::Identity { .. } => layouts::identity(config, region, values[..].try_into()?)?,
PolyOp::Reshape(d) | PolyOp::Flatten(d) => layouts::reshape(values[..].try_into()?, d)?,
PolyOp::Pad(p) => {
if values.len() != 1 {
return Err(Box::new(TensorError::DimError(
"Pad operation requires a single input".to_string(),
)));
}
let mut input = values[0].clone();
input.pad(p.clone(), 0)?;
input
}
PolyOp::Pow(exp) => layouts::pow(config, region, values[..].try_into()?, *exp)?,
PolyOp::Concat { axis } => layouts::concat(values[..].try_into()?, axis)?,
PolyOp::Slice { axis, start, end } => {
layouts::slice(config, region, values[..].try_into()?, axis, start, end)?
}
PolyOp::Trilu { upper, k } => { |
layouts::trilu(config, region, values[..].try_into()?, k, upper)?
}
}))
}
fn out_scale(&self, in_scales: Vec<crate::Scale>) -> Result<crate::Scale, Box<dyn Error>> {
let scale = match self {
PolyOp::MeanOfSquares { .. } => 2 * in_scales[0],
PolyOp::Xor | PolyOp::Or | PolyOp::And | PolyOp::Not => 0,
PolyOp::Iff => in_scales[1],
PolyOp::Einsum { .. } => {
let mut scale = in_scales[0];
for s in in_scales.iter().skip(1) {
scale += *s;
}
scale
}
PolyOp::Prod { len_prod, .. } => in_scales[0] * (*len_prod as crate::Scale),
PolyOp::Sum { .. } => in_scales[0],
PolyOp::Conv { .. } => {
let input_scale = in_scales[0];
let kernel_scale = in_scales[1];
let output_scale = input_scale + kernel_scale;
if in_scales.len() == 3 {
let bias_scale = in_scales[2];
assert_eq!(output_scale, bias_scale);
}
output_scale
}
PolyOp::DeConv { .. } => {
let input_scale = in_scales[0];
let kernel_scale = in_scales[1];
let output_scale = input_scale + kernel_scale;
if in_scales.len() == 3 {
let bias_scale = in_scales[2];
assert_eq!(output_scale, bias_scale);
}
output_scale
}
PolyOp::Add => {
let scale_a = in_scales[0];
let scale_b = in_scales[1];
assert_eq!(scale_a, scale_b);
scale_a
}
PolyOp::Sub => in_scales[0],
PolyOp::Mult => {
let mut scale = in_scales[0];
scale += in_scales[1];
scale
}
PolyOp::Reshape(_) | PolyOp::Flatten(_) => in_ |
scales[0],
PolyOp::Pow(pow) => in_scales[0] * (*pow as crate::Scale),
PolyOp::Identity { out_scale } => out_scale.unwrap_or(in_scales[0]),
_ => in_scales[0],
};
Ok(scale)
}
fn requires_homogenous_input_scales(&self) -> Vec<usize> {
if matches!(self, PolyOp::Add { .. } | PolyOp::Sub) {
vec![0, 1]
} else if matches!(self, PolyOp::Iff) {
vec![1, 2]
} else if matches!(self, PolyOp::Concat { .. }) {
(0..100).collect()
} else if matches!(self, PolyOp::ScatterElements { .. })
| matches!(self, PolyOp::ScatterND { .. })
{
vec![0, 2]
} else {
vec![]
}
}
fn clone_dyn(&self) -> Box<dyn Op<F>> {
Box::new(self.clone())
}
} |
use crate::{
circuit::table::Range,
tensor::{Tensor, TensorError, TensorType, ValTensor, ValType, VarTensor},
};
use colored::Colorize;
use halo2_proofs::{
circuit::Region,
plonk::{Error, Selector},
};
use halo2curves::ff::PrimeField;
use portable_atomic::AtomicI128 as AtomicInt;
use std::{
cell::RefCell,
collections::{HashMap, HashSet},
sync::{
atomic::{AtomicUsize, Ordering},
Arc, Mutex,
},
};
use super::lookup::LookupOp;
pub type ConstantsMap<F> = HashMap<F, ValType<F>>;
pub |
struct DynamicLookupIndex {
index: usize,
col_coord: usize,
}
impl DynamicLookupIndex {
pub fn new(index: usize, col_coord: usize) -> DynamicLookupIndex {
DynamicLookupIndex { index, col_coord }
}
pub fn index(&self) -> usize {
self.index
}
pub fn col_coord(&self) -> usize {
self.col_coord
}
pub |
fn update(&mut self, other: &DynamicLookupIndex) {
self.index += other.index;
self.col_coord += other.col_coord;
}
}
pub |
struct ShuffleIndex {
index: usize,
col_coord: usize,
}
impl ShuffleIndex {
pub fn new(index: usize, col_coord: usize) -> ShuffleIndex {
ShuffleIndex { index, col_coord }
}
pub fn index(&self) -> usize {
self.index
}
pub fn col_coord(&self) -> usize {
self.col_coord
}
pub |
fn update(&mut self, other: &ShuffleIndex) {
self.index += other.index;
self.col_coord += other.col_coord;
}
}
pub enum RegionError {
Wrapped(String),
}
impl From<String> for RegionError {
fn from(e: String) -> Self {
Self::Wrapped(e)
}
}
impl From<&str> for RegionError {
fn from(e: &str) -> Self {
Self::Wrapped(e.to_string())
}
}
impl From<TensorError> for RegionError {
fn from(e: TensorError) -> Self {
Self::Wrapped(format!("{:?}", e))
}
}
impl From<Error> for RegionError {
fn from(e: Error) -> Self {
Self::Wrapped(format!("{:?}", e))
}
}
impl From<Box<dyn std::error::Error>> for RegionError {
fn from(e: Box<dyn std::error::Error>) -> Self {
Self::Wrapped(format!("{:?}", e))
}
}
pub struct RegionCtx<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> {
region: Option<RefCell<Region<'a, F>>>,
row: usize,
linear_coord: usize,
num_inner_cols: usize,
dynamic_lookup_index: DynamicLookupIndex,
shuffle_index: ShuffleIndex,
used_lookups: HashSet<LookupOp>,
used_range_checks: HashSet<Range>,
max_lookup_inputs: i128,
min_lookup_inputs: i128,
max_range_size: i128,
witness_gen: bool,
assigned_constants: ConstantsMap<F>,
}
impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a, F> {
pub |
fn debug_report(&self) {
log::debug!(
"(rows={}, coord={}, constants={}, max_lookup_inputs={}, min_lookup_inputs={}, max_range_size={}, dynamic_lookup_col_coord={}, shuffle_col_coord={})",
self.row().to_string().blue(),
self.linear_coord().to_string().yellow(),
self.total_constants().to_string().red(),
self.max_lookup_inputs().to_string().green(),
self.min_lookup_inputs().to_string().green(),
self.max_range_size().to_string().green(),
self.dynamic_lookup_col_coord().to_string().green(),
self.shuffle_col_coord().to_string().green());
}
pub fn assigned_constants(&self) -> &ConstantsMap<F> {
&self.assigned_constants
}
pub |
fn update_constants(&mut self, constants: ConstantsMap<F>) {
self.assigned_constants.extend(constants);
}
pub |
fn increment_dynamic_lookup_index(&mut self, n: usize) {
self.dynamic_lookup_index.index += n;
}
pub |
fn increment_dynamic_lookup_col_coord(&mut self, n: usize) {
self.dynamic_lookup_index.col_coord += n;
}
pub |
fn increment_shuffle_index(&mut self, n: usize) {
self.shuffle_index.index += n;
}
pub |
fn increment_shuffle_col_coord(&mut self, n: usize) {
self.shuffle_index.col_coord += n;
}
pub fn witness_gen(&self) -> bool {
self.witness_gen
}
pub fn new(region: Region<'a, F>, row: usize, num_inner_cols: usize) -> RegionCtx<'a, F> {
let region = Some(RefCell::new(region));
let linear_coord = row * num_inner_cols;
RegionCtx {
region,
num_inner_cols,
row,
linear_coord,
dynamic_lookup_index: DynamicLookupIndex::default(),
shuffle_index: ShuffleIndex::default(),
used_lookups: HashSet::new(),
used_range_checks: HashSet::new(),
max_lookup_inputs: 0,
min_lookup_inputs: 0,
max_range_size: 0,
witness_gen: true,
assigned_constants: HashMap::new(),
}
}
pub fn new_with_constants(
region: Region<'a, F>,
row: usize,
num_inner_cols: usize,
constants: ConstantsMap<F>,
) -> RegionCtx<'a, F> {
let mut new_self = Self::new(region, row, num_inner_cols);
new_self.assigned_constants = constants;
new_self
}
pub fn from_wrapped_region(
region: Option<RefCell<Region<'a, F>>>,
row: usize,
num_inner_cols: usize,
dynamic_lookup_index: DynamicLookupIndex,
shuffle_index: ShuffleIndex,
) -> RegionCtx<'a, F> {
let linear_coord = row * num_inner_cols;
RegionCtx {
region,
num_inner_cols,
linear_coord,
row,
dynamic_lookup_index,
shuffle_index,
used_lookups: HashSet::new(),
used_range_checks: HashSet::new(),
max_lookup_inputs: 0,
min_lookup_inputs: 0,
max_range_size: 0,
witness_gen: false,
assigned_constants: HashMap::new(),
}
}
pub fn new_dummy(row: usize, num_inner_cols: usize, witness_gen: bool |
) -> RegionCtx<'a, F> {
let region = None;
let linear_coord = row * num_inner_cols;
RegionCtx {
region,
num_inner_cols,
linear_coord,
row,
dynamic_lookup_index: DynamicLookupIndex::default(),
shuffle_index: ShuffleIndex::default(),
used_lookups: HashSet::new(),
used_range_checks: HashSet::new(),
max_lookup_inputs: 0,
min_lookup_inputs: 0,
max_range_size: 0,
witness_gen,
assigned_constants: HashMap::new(),
}
}
pub fn new_dummy_with_linear_coord(
row: usize,
linear_coord: usize,
num_inner_cols: usize,
witness_gen: bool,
) -> RegionCtx<'a, F> {
let region = None;
RegionCtx {
region,
num_inner_cols,
linear_coord,
row,
dynamic_lookup_index: DynamicLookupIndex::default(),
shuffle_index: ShuffleIndex::default(),
used_lookups: HashSet::new(),
used_range_checks: HashSet::new(),
max_lookup_inputs: 0,
min_lookup_inputs: 0,
max_range_size: 0,
witness_gen,
assigned_constants: HashMap::new(),
}
}
pub fn apply_in_loop<T: TensorType + Send + Sync>(
&mut self,
output: &mut Tensor<T>,
inner_loop_function: impl Fn(usize, &mut RegionCtx<'a, F>) -> Result<T, RegionError>
+ Send
+ Sync,
) -> Result<(), RegionError> {
if self.is_dummy() {
self.dummy_loop(output, inner_loop_function)?;
} else {
self.real_loop(output, inner_loop_function)?;
}
Ok(())
}
pub fn real_loop<T: TensorType + Send + Sync>(
&mut self,
output: &mut Tensor<T>,
inner_loop_function: impl Fn(usize, &mut RegionCtx<'a, F>) -> Result<T, RegionError>,
) -> Result<(), RegionError> {
output |
.iter_mut()
.enumerate()
.map(|(i, o)| {
*o = inner_loop_function(i, self)?;
Ok(())
})
.collect::<Result<Vec<_>, RegionError>>()?;
Ok(())
}
pub fn dummy_loop<T: TensorType + Send + Sync>(
&mut self,
output: &mut Tensor<T>,
inner_loop_function: impl Fn(usize, &mut RegionCtx<'a, F>) -> Result<T, RegionError>
+ Send
+ Sync,
) -> Result<(), RegionError> {
let row = AtomicUsize::new(self.row());
let linear_coord = AtomicUsize::new(self.linear_coord());
let max_lookup_inputs = AtomicInt::new(self.max_lookup_inputs());
let min_lookup_inputs = AtomicInt::new(self.min_lookup_inputs());
let lookups = Arc::new(Mutex::new(self.used_lookups.clone()));
let range_checks = Arc::new(Mutex::new(self.used_range_checks.clone()));
let dynamic_lookup_index = Arc::new(Mutex::new(self.dynamic_lookup_index.clone()));
let shuffle_index = Arc::new(Mutex::new(self.shuffle_index.clone()));
let constants = Arc::new(Mutex::new(self.assigned_constants.clone()));
*output = output
.par_enum_map(|idx, _| {
let starting_offset = row.load(Ordering::SeqCst);
let starting_linear_coord = linear_coord.load(Ordering::SeqCst);
let mut local_reg = Self::new_dummy_with_linear_coord(
starting_offset,
starting_linear_coord,
self.num_inner_cols,
self.witness_gen,
);
let res = inner_loop_function(idx, &mut local_reg);
row.fetch_add(local_reg.row() - starting_offset, Ordering::SeqCst);
linear_coord.fetch_add(
local_reg.linear_coord() - starting_linear_coord,
Ordering::SeqCst,
); |
max_lookup_inputs.fetch_max(local_reg.max_lookup_inputs(), Ordering::SeqCst);
min_lookup_inputs.fetch_min(local_reg.min_lookup_inputs(), Ordering::SeqCst);
let mut lookups = lookups.lock().unwrap();
lookups.extend(local_reg.used_lookups());
let mut range_checks = range_checks.lock().unwrap();
range_checks.extend(local_reg.used_range_checks());
let mut dynamic_lookup_index = dynamic_lookup_index.lock().unwrap();
dynamic_lookup_index.update(&local_reg.dynamic_lookup_index);
let mut shuffle_index = shuffle_index.lock().unwrap();
shuffle_index.update(&local_reg.shuffle_index);
let mut constants = constants.lock().unwrap();
constants.extend(local_reg.assigned_constants);
res
})
.map_err(|e| RegionError::from(format!("dummy_loop: {:?}", e)))?;
self.linear_coord = linear_coord.into_inner();
{
self.max_lookup_inputs = max_lookup_inputs.into_inner();
self.min_lookup_inputs = min_lookup_inputs.into_inner();
}
self.row = row.into_inner();
self.used_lookups = Arc::try_unwrap(lookups)
.map_err(|e| RegionError::from(format!("dummy_loop: failed to get lookups: {:?}", e)))?
.into_inner()
.map_err(|e| {
RegionError::from(format!("dummy_loop: failed to get lookups: {:?}", e))
})?;
self.used_range_checks = Arc::try_unwrap(range_checks)
.map_err(|e| {
RegionError::from(format!("dummy_loop: failed to get range checks: {:?}", e))
})?
.into_inner()
.map_err(|e| {
RegionError::from(format!("dummy_loop: failed to get range checks: {:?}", e))
})?;
self.dynamic_lookup_index = Arc::try_unwrap(dynamic_l |
ookup_index)
.map_err(|e| {
RegionError::from(format!(
"dummy_loop: failed to get dynamic lookup index: {:?}",
e
))
})?
.into_inner()
.map_err(|e| {
RegionError::from(format!(
"dummy_loop: failed to get dynamic lookup index: {:?}",
e
))
})?;
self.shuffle_index = Arc::try_unwrap(shuffle_index)
.map_err(|e| {
RegionError::from(format!("dummy_loop: failed to get shuffle index: {:?}", e))
})?
.into_inner()
.map_err(|e| {
RegionError::from(format!("dummy_loop: failed to get shuffle index: {:?}", e))
})?;
self.assigned_constants = Arc::try_unwrap(constants)
.map_err(|e| {
RegionError::from(format!("dummy_loop: failed to get constants: {:?}", e))
})?
.into_inner()
.map_err(|e| {
RegionError::from(format!("dummy_loop: failed to get constants: {:?}", e))
})?;
Ok(())
}
pub fn update_max_min_lookup_inputs(
&mut self,
inputs: &[ValTensor<F>],
) -> Result<(), Box<dyn std::error::Error>> {
let (mut min, mut max) = (0, 0);
for i in inputs {
max = max.max(i.get_int_evals()?.into_iter().max().unwrap_or_default());
min = min.min(i.get_int_evals()?.into_iter().min().unwrap_or_default());
}
self.max_lookup_inputs = self.max_lookup_inputs.max(max);
self.min_lookup_inputs = self.min_lookup_inputs.min(min);
Ok(())
}
pub fn update_max_min_lookup_range(
&mut self,
range: Range,
) -> Result<(), Box<dyn std::error::Error>> {
if range.0 > range.1 {
return Err(format!("update_max_min_lookup_range: invalid range {:?}", range).into());
}
let range_size = (range.1 - |
range.0).abs();
self.max_range_size = self.max_range_size.max(range_size);
Ok(())
}
pub fn is_dummy(&self) -> bool {
self.region.is_none()
}
pub fn add_used_lookup(
&mut self,
lookup: LookupOp,
inputs: &[ValTensor<F>],
) -> Result<(), Box<dyn std::error::Error>> {
self.used_lookups.insert(lookup);
self.update_max_min_lookup_inputs(inputs)
}
pub fn add_used_range_check(&mut self, range: Range) -> Result<(), Box<dyn std::error::Error>> {
self.used_range_checks.insert(range);
self.update_max_min_lookup_range(range)
}
pub fn row(&self) -> usize {
self.row
}
pub fn linear_coord(&self) -> usize {
self.linear_coord
}
pub fn total_constants(&self) -> usize {
self.assigned_constants.len()
}
pub fn dynamic_lookup_index(&self) -> usize {
self.dynamic_lookup_index.index
}
pub fn dynamic_lookup_col_coord(&self) -> usize {
self.dynamic_lookup_index.col_coord
}
pub fn shuffle_index(&self) -> usize {
self.shuffle_index.index
}
pub fn shuffle_col_coord(&self) -> usize {
self.shuffle_index.col_coord
}
pub fn used_lookups(&self) -> HashSet<LookupOp> {
self.used_lookups.clone()
}
pub fn used_range_checks(&self) -> HashSet<Range> {
self.used_range_checks.clone()
}
pub fn max_lookup_inputs(&self) -> i128 {
self.max_lookup_inputs
}
pub fn min_lookup_inputs(&self) -> i128 {
self.min_lookup_inputs
}
pub fn max_range_size(&self) -> i128 {
self.max_range_size
}
pub fn assign(
&mut self,
var: &VarTensor,
values: &ValTensor<F>,
) -> Result<ValTensor<F>, Error> {
if let Some(region) = &self.region {
var.assign(
&mut region.borrow_mut(),
self.linear_coord, |
values,
&mut self.assigned_constants,
)
} else {
if !values.is_instance() {
let values_map = values.create_constants_map_iterator();
self.assigned_constants.extend(values_map);
}
Ok(values.clone())
}
}
pub fn combined_dynamic_shuffle_coord(&self) -> usize {
self.dynamic_lookup_col_coord() + self.shuffle_col_coord()
}
pub fn assign_dynamic_lookup(
&mut self,
var: &VarTensor,
values: &ValTensor<F>,
) -> Result<ValTensor<F>, Error> {
if let Some(region) = &self.region {
var.assign(
&mut region.borrow_mut(),
self.combined_dynamic_shuffle_coord(),
values,
&mut self.assigned_constants,
)
} else {
if !values.is_instance() {
let values_map = values.create_constants_map_iterator();
self.assigned_constants.extend(values_map);
}
Ok(values.clone())
}
}
pub fn assign_shuffle(
&mut self,
var: &VarTensor,
values: &ValTensor<F>,
) -> Result<ValTensor<F>, Error> {
self.assign_dynamic_lookup(var, values)
}
pub fn assign_with_omissions(
&mut self,
var: &VarTensor,
values: &ValTensor<F>,
ommissions: &HashSet<&usize>,
) -> Result<ValTensor<F>, Error> {
if let Some(region) = &self.region {
var.assign_with_omissions(
&mut region.borrow_mut(),
self.linear_coord,
values,
ommissions,
&mut self.assigned_constants,
)
} else {
let inner_tensor = values.get_inner_tensor().unwrap();
let mut values_map = values.create_constants_map();
for o in ommissions {
if let ValType::Constant(value) = inner_tensor.get_flat_index(**o) |
{
values_map.remove(&value);
}
}
self.assigned_constants.extend(values_map);
Ok(values.clone())
}
}
pub fn assign_with_duplication(
&mut self,
var: &VarTensor,
values: &ValTensor<F>,
check_mode: &crate::circuit::CheckMode,
single_inner_col: bool,
) -> Result<(ValTensor<F>, usize), Error> {
if let Some(region) = &self.region {
let (res, len) = var.assign_with_duplication(
&mut region.borrow_mut(),
self.row,
self.linear_coord,
values,
check_mode,
single_inner_col,
&mut self.assigned_constants,
)?;
Ok((res, len))
} else {
let (_, len) = var.dummy_assign_with_duplication(
self.row,
self.linear_coord,
values,
single_inner_col,
&mut self.assigned_constants,
)?;
Ok((values.clone(), len))
}
}
pub fn enable(&mut self, selector: Option<&Selector>, offset: usize) -> Result<(), Error> {
match &self.region {
Some(region) => selector.unwrap().enable(&mut region.borrow_mut(), offset),
None => Ok(()),
}
}
pub fn constrain_equal(&mut self, a: &ValTensor<F>, b: &ValTensor<F>) -> Result<(), Error> {
if let Some(region) = &self.region {
let a = a.get_inner_tensor().unwrap();
let b = b.get_inner_tensor().unwrap();
assert_eq!(a.len(), b.len());
a.iter().zip(b.iter()).try_for_each(|(a, b)| {
let a = a.get_prev_assigned();
let b = b.get_prev_assigned();
if let (Some(a), Some(b)) = (&a, &b) {
region.borrow_mut().constrain_equal(a.cell(), b.cell())
} else if a.is_some() || b.is_some() |
{
log::error!(
"constrain_equal: one of the tensors is assigned and the other is not"
);
return Err(Error::Synthesis);
} else {
Ok(())
}
})
} else {
Ok(())
}
}
pub |
fn next(&mut self) {
self.linear_coord += 1;
if self.linear_coord % self.num_inner_cols == 0 {
self.row += 1;
}
}
pub |
fn increment(&mut self, n: usize) {
for _ in 0..n {
self.next()
}
}
pub fn flush(&mut self) -> Result<(), Box<dyn std::error::Error>> {
let remainder = self.linear_coord % self.num_inner_cols;
if remainder != 0 {
let diff = self.num_inner_cols - remainder;
self.increment(diff);
}
if self.linear_coord % self.num_inner_cols != 0 {
return Err("flush: linear coord is not aligned with the next row".into());
}
Ok(())
}
} |
use std::{error::Error, marker::PhantomData};
use halo2curves::ff::PrimeField;
use halo2_proofs::{
circuit::{Layouter, Value},
plonk::{ConstraintSystem, Expression, TableColumn},
};
use log::{debug, warn};
use maybe_rayon::prelude::{IntoParallelIterator, ParallelIterator};
use crate::{
circuit::CircuitError,
fieldutils::i128_to_felt,
tensor::{Tensor, TensorType},
};
use crate::circuit::lookup::LookupOp;
pub type Range = (i128, i128);
pub const RANGE_MULTIPLIER: i128 = 2;
pub const RESERVED_BLINDING_ROWS_PAD: usize = 3;
pub struct SelectorConstructor<F: PrimeField> {
pub degree: usize,
_marker: PhantomData<F>,
}
impl<F: PrimeField> SelectorConstructor<F> {
pub fn new(degree: usize) -> Self {
Self {
degree,
_marker: PhantomData,
}
}
pub fn get_expr_at_idx(&self, i: usize, expr: Expression<F>) -> Expression<F> {
let indices = 0..self.degree;
indices
.into_par_iter()
.filter(|x| *x != i)
.map(|i| {
if i == 0 {
expr.clone()
} else {
(Expression::Constant(F::from(i as u64))) - expr.clone()
}
})
.reduce(|| Expression::Constant(F::from(1_u64)), |acc, x| acc * x)
}
pub fn get_selector_val_at_idx(&self, i: usize) -> F {
let indices = 0..self.degree;
indices
.into_par_iter()
.filter(|x| *x != i)
.map(|x| {
if x == 0 {
F::from(i as u64)
} else {
F::from(x as u64) - F::from(i as u64)
}
})
.product()
}
}
pub struct Table<F: PrimeField> {
pub nonlinearity: LookupOp,
pub table_inputs: Vec<TableColumn>,
pub col_size: usize,
pub table_outputs: Vec<TableColumn>,
pub selector_constructor: SelectorConstructor<F>,
pub is_assign |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.