text
stringlengths
1
2.05k
.."); let original_predictions = Model::run_onnx_predictions( &settings.run_args, &model_path, &chunks, model.graph.input_shapes()?, )?; let range = if let Some(scales) = scales { scales } else { (11..14).collect::<Vec<crate::Scale>>() }; let div_rebasing = if only_range_check_rebase { vec![false] } else { vec![true, false] }; let mut found_params: Vec<GraphSettings> = vec![]; let range_grid = range .iter() .cartesian_product(range.iter()) .map(|(a, b)| (*a, *b)) .collect::<Vec<(crate::Scale, crate::Scale)>>(); let mut range_grid = range_grid .into_iter() .filter(|(a, b)| a <= b) .collect::<Vec<(crate::Scale, crate::Scale)>>(); let all_scale_0 = model .graph .get_input_types()? .iter() .all(|t| t.is_integer()); if all_scale_0 { range_grid = range_grid .iter() .map(|(_, b)| (0, *b)) .sorted() .dedup() .collect::<Vec<(crate::Scale, crate::Scale)>>(); } let range_grid = range_grid .iter() .cartesian_product(scale_rebase_multiplier.iter()) .map(|(a, b)| (*a, *b)) .collect::<Vec<((crate::Scale, crate::Scale), u32)>>(); let range_grid = range_grid .iter() .cartesian_product(div_rebasing.iter()) .map(|(a, b)| (*a, *b)) .collect::<Vec<(((crate::Scale, crate::Scale), u32), bool)>>(); let mut forward_pass_res = HashMap::new(); let pb = init_bar(range_grid.len() as u64); pb.set_message("calibrating..."); let mut num_failed = 0; let mut num_passed = 0; for (((input_scale, param_scale), scale_rebase_multiplier), div_rebasing) in range_grid { pb.set_message(format!( "i-scale: {}, p-scale: {}, rebase-(x): {}, div-rebase: {}, fail: {}, pass: {}", input_scale.to_string().blue(), param_s
cale.to_string().blue(), scale_rebase_multiplier.to_string().blue(), div_rebasing.to_string().yellow(), num_failed.to_string().red(), num_passed.to_string().green() )); let key = ( input_scale, param_scale, scale_rebase_multiplier, div_rebasing, ); forward_pass_res.insert(key, vec![]); let local_run_args = RunArgs { input_scale, param_scale, scale_rebase_multiplier, div_rebasing, ..settings.run_args.clone() }; let _r = match Gag::stdout() { Ok(g) => Some(g), _ => None, }; let _g = match Gag::stderr() { Ok(g) => Some(g), _ => None, }; let mut circuit = match GraphCircuit::from_run_args(&local_run_args, &model_path) { Ok(c) => c, Err(e) => { error!("circuit creation from run args failed: {:?}", e); pb.inc(1); num_failed += 1; continue; } }; let forward_res = chunks .iter() .map(|chunk| { let chunk = chunk.clone(); let data = circuit .load_graph_from_file_exclusively(&chunk) .map_err(|e| format!("failed to load circuit inputs: {}", e))?; let forward_res = circuit .forward::<KZGCommitmentScheme<Bn256>>(&mut data.clone(), None, None, true) .map_err(|e| format!("failed to forward: {}", e))?; forward_pass_res .get_mut(&key) .ok_or("key not found")? .push(forward_res); Ok(()) as Result<(), String> }) .collect::<Result<Vec<()>, String>>(); match forward_res { Ok(_) => (),
Err(e) => { error!("forward pass failed: {:?}", e); pb.inc(1); num_failed += 1; continue; } } drop(_r); drop(_g); let result = forward_pass_res.get(&key).ok_or("key not found")?; let min_lookup_range = result .iter() .map(|x| x.min_lookup_inputs) .min() .unwrap_or(0); let max_lookup_range = result .iter() .map(|x| x.max_lookup_inputs) .max() .unwrap_or(0); let max_range_size = result.iter().map(|x| x.max_range_size).max().unwrap_or(0); let res = circuit.calc_min_logrows( (min_lookup_range, max_lookup_range), max_range_size, max_logrows, lookup_safety_margin, ); if res.is_ok() { let new_settings = circuit.settings().clone(); let found_run_args = RunArgs { input_scale: new_settings.run_args.input_scale, param_scale: new_settings.run_args.param_scale, div_rebasing: new_settings.run_args.div_rebasing, lookup_range: new_settings.run_args.lookup_range, logrows: new_settings.run_args.logrows, scale_rebase_multiplier: new_settings.run_args.scale_rebase_multiplier, ..settings.run_args.clone() }; let found_settings = GraphSettings { run_args: found_run_args, required_lookups: new_settings.required_lookups, required_range_checks: new_settings.required_range_checks, model_output_scales: new_settings.model_output_scales, model_input_scales: new_settings.model_input_scales, num_rows: new_settings.num_rows, total_assignments: new_settings.total_assignments, total_const_size: new_settings.total_const_size,
..settings.clone() }; found_params.push(found_settings.clone()); debug!( "found settings: \n {}", found_settings.as_json()?.to_colored_json_auto()? ); num_passed += 1; } else { error!("calibration failed {}", res.err().unwrap()); num_failed += 1; } pb.inc(1); } pb.finish_with_message("Calibration Done."); if found_params.is_empty() { return Err("calibration failed, could not find any suitable parameters given the calibration dataset".into()); } debug!("Found {} sets of parameters", found_params.len()); let mut best_params = match target { CalibrationTarget::Resources { .. } => { let mut param_iterator = found_params.iter().sorted_by_key(|p| p.run_args.logrows); let min_logrows = param_iterator .next() .ok_or("no params found")? .run_args .logrows; found_params .iter() .filter(|p| p.run_args.logrows == min_logrows) .max_by_key(|p| { ( p.run_args.input_scale, p.run_args.param_scale, p.run_args.scale_rebase_multiplier, ) }) .ok_or("no params found")? .clone() } CalibrationTarget::Accuracy => { let param_iterator = found_params.iter().sorted_by_key(|p| { ( p.run_args.input_scale, p.run_args.param_scale, p.run_args.scale_rebase_multiplier, ) }); let last = param_iterator.last().ok_or("no params found")?; let max_scale = ( last.run_args.input_scale, last
.run_args.param_scale, last.run_args.scale_rebase_multiplier, ); found_params .iter() .filter(|p| { ( p.run_args.input_scale, p.run_args.param_scale, p.run_args.scale_rebase_multiplier, ) == max_scale }) .min_by_key(|p| p.run_args.logrows) .ok_or("no params found")? .clone() } }; let outputs = forward_pass_res .get(&( best_params.run_args.input_scale, best_params.run_args.param_scale, best_params.run_args.scale_rebase_multiplier, best_params.run_args.div_rebasing, )) .ok_or("no params found")? .iter() .map(|x| x.get_float_outputs(&best_params.model_output_scales)) .collect::<Vec<_>>(); let accuracy_res = AccuracyResults::new( original_predictions.into_iter().flatten().collect(), outputs.into_iter().flatten().collect(), )?; let tear_sheet_table = Table::new(vec![accuracy_res]); warn!( "\n\n <------------- Numerical Fidelity Report (input_scale: {}, param_scale: {}, scale_input_multiplier: {}) ------------->\n\n{}\n\n", best_params.run_args.input_scale, best_params.run_args.param_scale, best_params.run_args.scale_rebase_multiplier, tear_sheet_table.to_string().as_str() ); if matches!(target, CalibrationTarget::Resources { col_overflow: true }) { let lookup_log_rows = best_params.lookup_log_rows_with_blinding(); let module_log_row = best_params.module_constraint_logrows_with_blinding(); let instance_logrows = best_params.log2_total_instances_with_blinding(); let dynamic_lookup_logrows = best_params.dynamic_lookup_and_shuffle_logrows_with_blinding(); let mut reduction = std::cmp::max(lookup_log_rows, module_log_ro
w); reduction = std::cmp::max(reduction, instance_logrows); reduction = std::cmp::max(reduction, dynamic_lookup_logrows); reduction = std::cmp::max(reduction, crate::graph::MIN_LOGROWS); info!( "logrows > bits, shrinking logrows: {} -> {}", best_params.run_args.logrows, reduction ); best_params.run_args.logrows = reduction; } best_params.save(&settings_path)?; debug!("Saved parameters."); Ok(best_params) } pub(crate) fn mock( compiled_circuit_path: PathBuf, data_path: PathBuf, ) -> Result<String, Box<dyn Error>> { let mut circuit = GraphCircuit::load(compiled_circuit_path)?; let data = GraphWitness::from_path(data_path)?; circuit.load_graph_witness(&data)?; let public_inputs = circuit.prepare_public_inputs(&data)?; info!("Mock proof"); let prover = halo2_proofs::dev::MockProver::run( circuit.settings().run_args.logrows, &circuit, vec![public_inputs], ) .map_err(Box::<dyn Error>::from)?; prover .verify() .map_err(|e| Box::<dyn Error>::from(ExecutionError::VerifyError(e)))?; Ok(String::new()) } pub(crate) fn create_evm_verifier( vk_path: PathBuf, srs_path: Option<PathBuf>, settings_path: PathBuf, sol_code_path: PathBuf, abi_path: PathBuf, render_vk_seperately: bool, ) -> Result<String, Box<dyn Error>> { check_solc_requirement(); let settings = GraphSettings::load(&settings_path)?; let commitment: Commitments = settings.run_args.commitment.into(); let params = load_params_verifier::<KZGCommitmentScheme<Bn256>>( srs_path, settings.run_args.logrows, commitment, )?; let num_instance = settings.total_instances(); let num_instance: usize = num_instance.iter().sum::<usize>(); let vk = load_vk::<KZGCommitmentScheme<Bn256>, GraphCircuit>(vk_path, settings)?; trace!("params computed"); let generator = halo2_solidity_verifier::SolidityGenerator:
:new( &params, &vk, halo2_solidity_verifier::BatchOpenScheme::Bdfg21, num_instance, ); let verifier_solidity = if render_vk_seperately { generator.render_separately()?.0 } else { generator.render()? }; File::create(sol_code_path.clone())?.write_all(verifier_solidity.as_bytes())?; let (abi, _, _) = get_contract_artifacts(sol_code_path, "Halo2Verifier", 0)?; serde_json::to_writer(std::fs::File::create(abi_path)?, &abi)?; Ok(String::new()) } pub(crate) fn create_evm_vk( vk_path: PathBuf, srs_path: Option<PathBuf>, settings_path: PathBuf, sol_code_path: PathBuf, abi_path: PathBuf, ) -> Result<String, Box<dyn Error>> { check_solc_requirement(); let settings = GraphSettings::load(&settings_path)?; let commitment: Commitments = settings.run_args.commitment.into(); let params = load_params_verifier::<KZGCommitmentScheme<Bn256>>( srs_path, settings.run_args.logrows, commitment, )?; let num_instance = settings.total_instances(); let num_instance: usize = num_instance.iter().sum::<usize>(); let vk = load_vk::<KZGCommitmentScheme<Bn256>, GraphCircuit>(vk_path, settings)?; trace!("params computed"); let generator = halo2_solidity_verifier::SolidityGenerator::new( &params, &vk, halo2_solidity_verifier::BatchOpenScheme::Bdfg21, num_instance, ); let vk_solidity = generator.render_separately()?.1; File::create(sol_code_path.clone())?.write_all(vk_solidity.as_bytes())?; let (abi, _, _) = get_contract_artifacts(sol_code_path, "Halo2VerifyingKey", 0)?; serde_json::to_writer(std::fs::File::create(abi_path)?, &abi)?; Ok(String::new()) } pub(crate) fn create_evm_data_attestation( settings_path: PathBuf, _sol_code_path: PathBuf, _abi_path: PathBuf, _input: PathBuf, ) -> Result<String, Box<dyn Error>> { use crate::graph::{DataSource, VarVisibility}; check_sol
c_requirement(); let settings = GraphSettings::load(&settings_path)?; let visibility = VarVisibility::from_args(&settings.run_args)?; trace!("params computed"); let data = GraphData::from_path(_input)?; let output_data = if let Some(DataSource::OnChain(source)) = data.output_data { if visibility.output.is_private() { return Err("private output data on chain is not supported on chain".into()); } let mut on_chain_output_data = vec![]; for call in source.calls { on_chain_output_data.push(call); } Some(on_chain_output_data) } else { None }; let input_data = if let DataSource::OnChain(source) = data.input_data { if visibility.input.is_private() { return Err("private input data on chain is not supported on chain".into()); } let mut on_chain_input_data = vec![]; for call in source.calls { on_chain_input_data.push(call); } Some(on_chain_input_data) } else { None }; if input_data.is_some() || output_data.is_some() { let output = fix_da_sol(input_data, output_data)?; let mut f = File::create(_sol_code_path.clone())?; let _ = f.write(output.as_bytes()); let (abi, _, _) = get_contract_artifacts(_sol_code_path, "DataAttestation", 0)?; serde_json::to_writer(std::fs::File::create(_abi_path)?, &abi)?; } else { return Err( "Neither input or output data source is on-chain. Atleast one must be on chain.".into(), ); } Ok(String::new()) } pub(crate) async fn deploy_da_evm( data: PathBuf, settings_path: PathBuf, sol_code_path: PathBuf, rpc_url: Option<String>, addr_path: PathBuf, runs: usize, private_key: Option<String>, ) -> Result<String, Box<dyn Error>> { check_solc_requirement(); let contract_address = deploy_da_verifier_via_solidity( settings_path, data, sol_code_pat
h, rpc_url.as_deref(), runs, private_key.as_deref(), ) .await?; info!("Contract deployed at: {}", contract_address); let mut f = File::create(addr_path)?; write!(f, "{: Ok(String::new()) } pub(crate) async fn deploy_evm( sol_code_path: PathBuf, rpc_url: Option<String>, addr_path: PathBuf, runs: usize, private_key: Option<String>, contract_name: &str, ) -> Result<String, Box<dyn Error>> { check_solc_requirement(); let contract_address = deploy_contract_via_solidity( sol_code_path, rpc_url.as_deref(), runs, private_key.as_deref(), contract_name, ) .await?; info!("Contract deployed at: {: let mut f = File::create(addr_path)?; write!(f, "{: Ok(String::new()) } pub(crate) async fn verify_evm( proof_path: PathBuf, addr_verifier: H160Flag, rpc_url: Option<String>, addr_da: Option<H160Flag>, addr_vk: Option<H160Flag>, ) -> Result<String, Box<dyn Error>> { use crate::eth::verify_proof_with_data_attestation; check_solc_requirement(); let proof = Snark::load::<KZGCommitmentScheme<Bn256>>(&proof_path)?; let result = if let Some(addr_da) = addr_da { verify_proof_with_data_attestation( proof.clone(), addr_verifier.into(), addr_da.into(), addr_vk.map(|s| s.into()), rpc_url.as_deref(), ) .await? } else { verify_proof_via_solidity( proof.clone(), addr_verifier.into(), addr_vk.map(|s| s.into()), rpc_url.as_deref(), ) .await? }; info!("Solidity verification result: {}", result); if !result { return Err("Solidity verification failed".into()); } Ok(String::new()) } pub(crate) fn create_evm_aggregate_verifier( vk_path: PathBuf, srs_path: Option<PathBuf>, sol_code_path: PathBuf, abi_path: PathBuf, circuit_settings: Vec<PathBuf>, logrows
: u32, render_vk_seperately: bool, ) -> Result<String, Box<dyn Error>> { check_solc_requirement(); let srs_path = get_srs_path(logrows, srs_path, Commitments::KZG); let params: ParamsKZG<Bn256> = load_srs_verifier::<KZGCommitmentScheme<Bn256>>(srs_path)?; let mut settings: Vec<GraphSettings> = vec![]; for path in circuit_settings.iter() { let s = GraphSettings::load(path)?; settings.push(s); } let num_instance: usize = settings .iter() .map(|s| s.total_instances().iter().sum::<usize>()) .sum(); let num_instance = AggregationCircuit::num_instance(num_instance); assert_eq!(num_instance.len(), 1); let num_instance = num_instance[0]; let agg_vk = load_vk::<KZGCommitmentScheme<Bn256>, AggregationCircuit>(vk_path, ())?; let mut generator = halo2_solidity_verifier::SolidityGenerator::new( &params, &agg_vk, halo2_solidity_verifier::BatchOpenScheme::Bdfg21, num_instance, ); let acc_encoding = halo2_solidity_verifier::AccumulatorEncoding::new( 0, AggregationCircuit::num_limbs(), AggregationCircuit::num_bits(), ); generator = generator.set_acc_encoding(Some(acc_encoding)); let verifier_solidity = if render_vk_seperately { generator.render_separately()?.0 } else { generator.render()? }; File::create(sol_code_path.clone())?.write_all(verifier_solidity.as_bytes())?; let (abi, _, _) = get_contract_artifacts(sol_code_path, "Halo2Verifier", 0)?; serde_json::to_writer(std::fs::File::create(abi_path)?, &abi)?; Ok(String::new()) } pub(crate) fn compile_circuit( model_path: PathBuf, compiled_circuit: PathBuf, settings_path: PathBuf, ) -> Result<String, Box<dyn Error>> { let settings = GraphSettings::load(&settings_path)?; let circuit = GraphCircuit::from_settings(&settings, &model_path, CheckMode::UNSAFE)?; circuit.save(compiled_circuit)?; Ok(String::new()) } pub(crate) fn setu
p( compiled_circuit: PathBuf, srs_path: Option<PathBuf>, vk_path: PathBuf, pk_path: PathBuf, witness: Option<PathBuf>, disable_selector_compression: bool, ) -> Result<String, Box<dyn Error>> { let mut circuit = GraphCircuit::load(compiled_circuit)?; if let Some(witness) = witness { let data = GraphWitness::from_path(witness)?; circuit.load_graph_witness(&data)?; } let logrows = circuit.settings().run_args.logrows; let commitment: Commitments = circuit.settings().run_args.commitment.into(); let pk = match commitment { Commitments::KZG => { let params = load_params_prover::<KZGCommitmentScheme<Bn256>>( srs_path, logrows, Commitments::KZG, )?; create_keys::<KZGCommitmentScheme<Bn256>, GraphCircuit>( &circuit, &params, disable_selector_compression, )? } Commitments::IPA => { let params = load_params_prover::<IPACommitmentScheme<G1Affine>>( srs_path, logrows, Commitments::IPA, )?; create_keys::<IPACommitmentScheme<G1Affine>, GraphCircuit>( &circuit, &params, disable_selector_compression, )? } }; save_vk::<G1Affine>(&vk_path, pk.get_vk())?; save_pk::<G1Affine>(&pk_path, &pk)?; Ok(String::new()) } pub(crate) async fn setup_test_evm_witness( data_path: PathBuf, compiled_circuit_path: PathBuf, test_data: PathBuf, rpc_url: Option<String>, input_source: TestDataSource, output_source: TestDataSource, ) -> Result<String, Box<dyn Error>> { use crate::graph::TestOnChainData; info!("run this command in background to keep the instance running for testing"); let mut data = GraphData::from_path(data_path)?; let mut circuit = GraphCircuit::load(compiled_circuit_path)?; if matches
!(input_source, TestDataSource::File) && matches!(output_source, TestDataSource::File) { return Err("Both input and output cannot be from files".into()); } let test_on_chain_data = TestOnChainData { data: test_data.clone(), rpc: rpc_url, data_sources: TestSources { input: input_source, output: output_source, }, }; circuit .populate_on_chain_test_data(&mut data, test_on_chain_data) .await?; Ok(String::new()) } use crate::pfsys::ProofType; pub(crate) async fn test_update_account_calls( addr: H160Flag, data: PathBuf, rpc_url: Option<String>, ) -> Result<String, Box<dyn Error>> { use crate::eth::update_account_calls; check_solc_requirement(); update_account_calls(addr.into(), data, rpc_url.as_deref()).await?; Ok(String::new()) } pub(crate) fn prove( data_path: PathBuf, compiled_circuit_path: PathBuf, pk_path: PathBuf, proof_path: Option<PathBuf>, srs_path: Option<PathBuf>, proof_type: ProofType, check_mode: CheckMode, ) -> Result<Snark<Fr, G1Affine>, Box<dyn Error>> { let data = GraphWitness::from_path(data_path)?; let mut circuit = GraphCircuit::load(compiled_circuit_path)?; circuit.load_graph_witness(&data)?; let pretty_public_inputs = circuit.pretty_public_inputs(&data)?; let public_inputs = circuit.prepare_public_inputs(&data)?; let circuit_settings = circuit.settings().clone(); let strategy: StrategyType = proof_type.into(); let transcript: TranscriptType = proof_type.into(); let proof_split_commits: Option<ProofSplitCommit> = data.into(); let commitment = circuit_settings.run_args.commitment.into(); let logrows = circuit_settings.run_args.logrows; let mut snark = match commitment { Commitments::KZG => { let pk = load_pk::<KZGCommitmentScheme<Bn256>, GraphCircuit>(pk_path, circuit.params())?; let params = load_params_prover::<KZGCommitment
Scheme<Bn256>>( srs_path, logrows, Commitments::KZG, )?; match strategy { StrategyType::Single => create_proof_circuit::< KZGCommitmentScheme<Bn256>, _, ProverSHPLONK<_>, VerifierSHPLONK<_>, KZGSingleStrategy<_>, _, EvmTranscript<_, _, _, _>, EvmTranscript<_, _, _, _>, >( circuit, vec![public_inputs], &params, &pk, check_mode, commitment, transcript, proof_split_commits, None, ), StrategyType::Accum => { let protocol = Some(compile( &params, pk.get_vk(), Config::kzg().with_num_instance(vec![public_inputs.len()]), )); create_proof_circuit::< KZGCommitmentScheme<Bn256>, _, ProverSHPLONK<_>, VerifierSHPLONK<_>, KZGAccumulatorStrategy<_>, _, PoseidonTranscript<NativeLoader, _>, PoseidonTranscript<NativeLoader, _>, >( circuit, vec![public_inputs], &params, &pk, check_mode, commitment, transcript, proof_split_commits, protocol, ) } } } Commitments::IPA => { let pk = load_pk::<IPACommitmentScheme<G1Affine>, Graph
Circuit>(pk_path, circuit.params())?; let params = load_params_prover::<IPACommitmentScheme<G1Affine>>( srs_path, circuit_settings.run_args.logrows, Commitments::IPA, )?; match strategy { StrategyType::Single => create_proof_circuit::< IPACommitmentScheme<G1Affine>, _, ProverIPA<_>, VerifierIPA<_>, IPASingleStrategy<_>, _, EvmTranscript<_, _, _, _>, EvmTranscript<_, _, _, _>, >( circuit, vec![public_inputs], &params, &pk, check_mode, commitment, transcript, proof_split_commits, None, ), StrategyType::Accum => { let protocol = Some(compile( &params, pk.get_vk(), Config::ipa().with_num_instance(vec![public_inputs.len()]), )); create_proof_circuit::< IPACommitmentScheme<G1Affine>, _, ProverIPA<_>, VerifierIPA<_>, IPAAccumulatorStrategy<_>, _, PoseidonTranscript<NativeLoader, _>, PoseidonTranscript<NativeLoader, _>, >( circuit, vec![public_inputs], &params, &pk, check_mode, commitment, transcript, proof_split_commits, protocol, ) } }
} }?; snark.pretty_public_inputs = pretty_public_inputs; if let Some(proof_path) = proof_path { snark.save(&proof_path)?; } Ok(snark) } pub(crate) fn swap_proof_commitments_cmd( proof_path: PathBuf, witness: PathBuf, ) -> Result<Snark<Fr, G1Affine>, Box<dyn Error>> { let snark = Snark::load::<KZGCommitmentScheme<Bn256>>(&proof_path)?; let witness = GraphWitness::from_path(witness)?; let commitments = witness.get_polycommitments(); if commitments.is_empty() { log::warn!("no commitments found in witness"); } let snark_new = swap_proof_commitments_polycommit(&snark, &commitments)?; if snark_new.proof != *snark.proof { log::warn!("swap proof has created a different proof"); } snark_new.save(&proof_path)?; Ok(snark_new) } pub(crate) fn mock_aggregate( aggregation_snarks: Vec<PathBuf>, logrows: u32, split_proofs: bool, ) -> Result<String, Box<dyn Error>> { let mut snarks = vec![]; for proof_path in aggregation_snarks.iter() { match Snark::load::<KZGCommitmentScheme<Bn256>>(proof_path) { Ok(snark) => { snarks.push(snark); } Err(_) => { return Err( "invalid sample commitment type for aggregation, must be KZG" .to_string() .into(), ); } } } let pb = { let pb = init_spinner(); pb.set_message("Aggregating (may take a while)..."); pb }; let circuit = AggregationCircuit::new(&G1Affine::generator().into(), snarks, split_proofs)?; let prover = halo2_proofs::dev::MockProver::run(logrows, &circuit, vec![circuit.instances()]) .map_err(Box::<dyn Error>::from)?; prover .verify() .map_err(|e| Box::<dyn Error>::from(ExecutionError::VerifyError(e)))?; pb.finish_with_message("Done."); Ok(String::new()) } pub(crate) fn setup_aggregate( sampl
e_snarks: Vec<PathBuf>, vk_path: PathBuf, pk_path: PathBuf, srs_path: Option<PathBuf>, logrows: u32, split_proofs: bool, disable_selector_compression: bool, commitment: Commitments, ) -> Result<String, Box<dyn Error>> { let mut snarks = vec![]; for proof_path in sample_snarks.iter() { match Snark::load::<KZGCommitmentScheme<Bn256>>(proof_path) { Ok(snark) => { snarks.push(snark); } Err(_) => { return Err( "invalid sample commitment type for aggregation, must be KZG" .to_string() .into(), ); } } } let circuit = AggregationCircuit::new(&G1Affine::generator().into(), snarks, split_proofs)?; let pk = match commitment { Commitments::KZG => { let params = load_params_prover::<KZGCommitmentScheme<Bn256>>( srs_path, logrows, Commitments::KZG, )?; create_keys::<KZGCommitmentScheme<Bn256>, AggregationCircuit>( &circuit, &params, disable_selector_compression, )? } Commitments::IPA => { let params = load_params_prover::<IPACommitmentScheme<G1Affine>>( srs_path, logrows, Commitments::IPA, )?; create_keys::<IPACommitmentScheme<G1Affine>, AggregationCircuit>( &circuit, &params, disable_selector_compression, )? } }; save_vk::<G1Affine>(&vk_path, pk.get_vk())?; save_pk::<G1Affine>(&pk_path, &pk)?; Ok(String::new()) } pub(crate) fn aggregate( proof_path: PathBuf, aggregation_snarks: Vec<PathBuf>, pk_path: PathBuf, srs_path: Option<PathBuf>, transcript: TranscriptType, logrows: u32, check_mode: CheckMode, split_proofs: bool, commitment:
Commitments, ) -> Result<Snark<Fr, G1Affine>, Box<dyn Error>> { let mut snarks = vec![]; for proof_path in aggregation_snarks.iter() { match Snark::load::<KZGCommitmentScheme<Bn256>>(proof_path) { Ok(snark) => { snarks.push(snark); } Err(_) => { return Err( "invalid sample commitment type for aggregation, must be KZG" .to_string() .into(), ); } } } let pb = { let pb = init_spinner(); pb.set_message("Aggregating (may take a while)..."); pb }; let now = Instant::now(); let snark = match commitment { Commitments::KZG => { let pk = load_pk::<KZGCommitmentScheme<Bn256>, AggregationCircuit>(pk_path, ())?; let params: ParamsKZG<Bn256> = load_params_prover::<KZGCommitmentScheme<_>>( srs_path.clone(), logrows, Commitments::KZG, )?; let circuit = AggregationCircuit::new( &ParamsProver::<G1Affine>::get_g(&params)[0].into(), snarks, split_proofs, )?; let public_inputs = circuit.instances(); match transcript { TranscriptType::EVM => create_proof_circuit::< KZGCommitmentScheme<Bn256>, _, ProverSHPLONK<_>, VerifierSHPLONK<_>, KZGSingleStrategy<_>, _, EvmTranscript<_, _, _, _>, EvmTranscript<_, _, _, _>, >( circuit, vec![public_inputs], &params, &pk, check_mode, commitment, transcript, None, None, ), Transcr
iptType::Poseidon => { let protocol = Some(compile( &params, pk.get_vk(), Config::kzg().with_num_instance(vec![public_inputs.len()]), )); create_proof_circuit::< KZGCommitmentScheme<Bn256>, _, ProverSHPLONK<_>, VerifierSHPLONK<_>, KZGAccumulatorStrategy<_>, _, PoseidonTranscript<NativeLoader, _>, PoseidonTranscript<NativeLoader, _>, >( circuit, vec![public_inputs], &params, &pk, check_mode, commitment, transcript, None, protocol, ) } } } Commitments::IPA => { let pk = load_pk::<IPACommitmentScheme<_>, AggregationCircuit>(pk_path, ())?; let params: ParamsIPA<_> = load_params_prover::<IPACommitmentScheme<_>>( srs_path.clone(), logrows, Commitments::IPA, )?; let circuit = AggregationCircuit::new( &ParamsProver::<G1Affine>::get_g(&params)[0].into(), snarks, split_proofs, )?; let public_inputs = circuit.instances(); match transcript { TranscriptType::EVM => create_proof_circuit::< IPACommitmentScheme<G1Affine>, _, ProverIPA<_>, VerifierIPA<_>, IPASingleStrategy<_>, _, EvmTranscript<_, _, _, _>, EvmTranscript<_, _, _, _>, >(
circuit, vec![public_inputs], &params, &pk, check_mode, commitment, transcript, None, None, ), TranscriptType::Poseidon => { let protocol = Some(compile( &params, pk.get_vk(), Config::ipa().with_num_instance(vec![public_inputs.len()]), )); create_proof_circuit::< IPACommitmentScheme<G1Affine>, _, ProverIPA<_>, VerifierIPA<_>, IPAAccumulatorStrategy<_>, _, PoseidonTranscript<NativeLoader, _>, PoseidonTranscript<NativeLoader, _>, >( circuit, vec![public_inputs], &params, &pk, check_mode, commitment, transcript, None, protocol, ) } } } }?; let elapsed = now.elapsed(); info!( "Aggregation proof took {}.{}", elapsed.as_secs(), elapsed.subsec_millis() ); snark.save(&proof_path)?; pb.finish_with_message("Done."); Ok(snark) } pub(crate) fn verify( proof_path: PathBuf, settings_path: PathBuf, vk_path: PathBuf, srs_path: Option<PathBuf>, reduced_srs: bool, ) -> Result<bool, Box<dyn Error>> { let circuit_settings = GraphSettings::load(&settings_path)?; let logrows = circuit_settings.run_args.logrows; let commitment = circuit_settings.run_args.commitment.into(); match commitment { Commitments::KZG => { le
t proof = Snark::load::<KZGCommitmentScheme<Bn256>>(&proof_path)?; let params: ParamsKZG<Bn256> = if reduced_srs { load_params_verifier::<KZGCommitmentScheme<Bn256>>(srs_path, 1, Commitments::KZG)? } else { load_params_verifier::<KZGCommitmentScheme<Bn256>>( srs_path, logrows, Commitments::KZG, )? }; match proof.transcript_type { TranscriptType::EVM => { verify_commitment::< KZGCommitmentScheme<Bn256>, VerifierSHPLONK<'_, Bn256>, _, KZGSingleStrategy<_>, EvmTranscript<G1Affine, _, _, _>, GraphCircuit, _, >(proof_path, circuit_settings, vk_path, &params, logrows) } TranscriptType::Poseidon => { verify_commitment::< KZGCommitmentScheme<Bn256>, VerifierSHPLONK<'_, Bn256>, _, KZGSingleStrategy<_>, PoseidonTranscript<NativeLoader, _>, GraphCircuit, _, >(proof_path, circuit_settings, vk_path, &params, logrows) } } } Commitments::IPA => { let proof = Snark::load::<IPACommitmentScheme<G1Affine>>(&proof_path)?; let params: ParamsIPA<_> = load_params_verifier::<IPACommitmentScheme<G1Affine>>( srs_path, logrows, Commitments::IPA, )?; match proof.transcript_type { TranscriptType::EVM => { verify_commitment::< IPACommitmentScheme<G1Affine>, VerifierIPA<_>, _
, IPASingleStrategy<_>, EvmTranscript<G1Affine, _, _, _>, GraphCircuit, _, >(proof_path, circuit_settings, vk_path, &params, logrows) } TranscriptType::Poseidon => { verify_commitment::< IPACommitmentScheme<G1Affine>, VerifierIPA<_>, _, IPASingleStrategy<_>, PoseidonTranscript<NativeLoader, _>, GraphCircuit, _, >(proof_path, circuit_settings, vk_path, &params, logrows) } } } } } fn verify_commitment< 'a, Scheme: CommitmentScheme, V: Verifier<'a, Scheme>, E: EncodedChallenge<Scheme::Curve>, Strategy: VerificationStrategy<'a, Scheme, V>, TR: TranscriptReadBuffer<Cursor<Vec<u8>>, Scheme::Curve, E>, C: Circuit<<Scheme as CommitmentScheme>::Scalar, Params = Params>, Params, >( proof_path: PathBuf, settings: Params, vk_path: PathBuf, params: &'a Scheme::ParamsVerifier, logrows: u32, ) -> Result<bool, Box<dyn Error>> where Scheme::Scalar: FromUniformBytes<64> + SerdeObject + Serialize + DeserializeOwned + WithSmallOrderMulGroup<3>, Scheme::Curve: SerdeObject + Serialize + DeserializeOwned, Scheme::ParamsVerifier: 'a, { let proof = Snark::load::<Scheme>(&proof_path)?; let strategy = Strategy::new(params); let vk = load_vk::<Scheme, C>(vk_path, settings)?; let now = Instant::now(); let result = verify_proof_circuit::<V, _, _, _, TR>(&proof, params, &vk, strategy, 1 << logrows); let elapsed = now.elapsed(); info!( "verify took {}.{}", elapsed.as_secs(), elapsed.subsec_millis() ); info!("verified: {}", result.is_ok()); result.map_err(|e: plonk::Error| e.into()).map(|
_| true) } pub(crate) fn verify_aggr( proof_path: PathBuf, vk_path: PathBuf, srs_path: Option<PathBuf>, logrows: u32, reduced_srs: bool, commitment: Commitments, ) -> Result<bool, Box<dyn Error>> { match commitment { Commitments::KZG => { let proof = Snark::load::<KZGCommitmentScheme<Bn256>>(&proof_path)?; let params: ParamsKZG<Bn256> = if reduced_srs { load_params_verifier::<KZGCommitmentScheme<Bn256>>(srs_path, 1, Commitments::KZG)? } else { load_params_verifier::<KZGCommitmentScheme<Bn256>>( srs_path, logrows, Commitments::KZG, )? }; match proof.transcript_type { TranscriptType::EVM => verify_commitment::< KZGCommitmentScheme<Bn256>, VerifierSHPLONK<'_, Bn256>, _, KZGSingleStrategy<_>, EvmTranscript<_, _, _, _>, AggregationCircuit, _, >(proof_path, (), vk_path, &params, logrows), TranscriptType::Poseidon => { verify_commitment::< KZGCommitmentScheme<Bn256>, VerifierSHPLONK<'_, Bn256>, _, KZGAccumulatorStrategy<_>, PoseidonTranscript<NativeLoader, _>, AggregationCircuit, _, >(proof_path, (), vk_path, &params, logrows) } } } Commitments::IPA => { let proof = Snark::load::<IPACommitmentScheme<G1Affine>>(&proof_path)?; let params: ParamsIPA<_> = load_params_verifier::<IPACommitmentScheme<G1Affine>>( srs_path, logrows, Commitments::IPA, )?; match proof.transcript_type {
TranscriptType::EVM => verify_commitment::< IPACommitmentScheme<G1Affine>, VerifierIPA<_>, _, IPASingleStrategy<_>, EvmTranscript<_, _, _, _>, AggregationCircuit, _, >(proof_path, (), vk_path, &params, logrows), TranscriptType::Poseidon => { verify_commitment::< IPACommitmentScheme<G1Affine>, VerifierIPA<_>, _, IPAAccumulatorStrategy<_>, PoseidonTranscript<NativeLoader, _>, AggregationCircuit, _, >(proof_path, (), vk_path, &params, logrows) } } } } } pub(crate) fn load_params_verifier<Scheme: CommitmentScheme>( srs_path: Option<PathBuf>, logrows: u32, commitment: Commitments, ) -> Result<Scheme::ParamsVerifier, Box<dyn Error>> { let srs_path = get_srs_path(logrows, srs_path, commitment); let mut params = load_srs_verifier::<Scheme>(srs_path)?; info!("downsizing params to {} logrows", logrows); if logrows < params.k() { params.downsize(logrows); } Ok(params) } pub(crate) fn load_params_prover<Scheme: CommitmentScheme>( srs_path: Option<PathBuf>, logrows: u32, commitment: Commitments, ) -> Result<Scheme::ParamsProver, Box<dyn Error>> { let srs_path = get_srs_path(logrows, srs_path, commitment); let mut params = load_srs_prover::<Scheme>(srs_path)?; info!("downsizing params to {} logrows", logrows); if logrows < params.k() { params.downsize(logrows); } Ok(params) }
use halo2_proofs::arithmetic::Field; use halo2curves::ff::PrimeField; pub fn i32_to_felt<F: PrimeField>(x: i32) -> F { if x >= 0 { F::from(x as u64) } else { -F::from(x.unsigned_abs() as u64) } } pub fn i128_to_felt<F: PrimeField>(x: i128) -> F { if x >= 0 { F::from_u128(x as u128) } else { -F::from_u128((-x) as u128) } } pub fn felt_to_i32<F: PrimeField + PartialOrd + Field>(x: F) -> i32 { if x > F::from(i32::MAX as u64) { let rep = (-x).to_repr(); let negtmp: &[u8] = rep.as_ref(); let lower_32 = u32::from_le_bytes(negtmp[..4].try_into().unwrap()); -(lower_32 as i32) } else { let rep = (x).to_repr(); let tmp: &[u8] = rep.as_ref(); let lower_32 = u32::from_le_bytes(tmp[..4].try_into().unwrap()); lower_32 as i32 } } pub fn felt_to_f64<F: PrimeField + PartialOrd + Field>(x: F) -> f64 { if x > F::from_u128(i128::MAX as u128) { let rep = (-x).to_repr(); let negtmp: &[u8] = rep.as_ref(); let lower_128: u128 = u128::from_le_bytes(negtmp[..16].try_into().unwrap()); -(lower_128 as f64) } else { let rep = (x).to_repr(); let tmp: &[u8] = rep.as_ref(); let lower_128: u128 = u128::from_le_bytes(tmp[..16].try_into().unwrap()); lower_128 as f64 } } pub fn felt_to_i128<F: PrimeField + PartialOrd + Field>(x: F) -> i128 { if x > F::from_u128(i128::MAX as u128) { let rep = (-x).to_repr(); let negtmp: &[u8] = rep.as_ref(); let lower_128: u128 = u128::from_le_bytes(negtmp[..16].try_into().unwrap()); -(lower_128 as i128) } else { let rep = (x).to_repr(); let tmp: &[u8] = rep.as_ref(); let lower_128: u128 = u128::from_le_bytes(tmp[..16].try_into().unwrap()); lower_128 as i128 } } mod test { use super::*; use halo2curves::pasta::Fp as F;
fn test_conv() { let res: F = i32_to_felt(-15i32); assert_eq!(res, -F::from(15)); let res: F = i32_to_felt(2_i32.pow(17)); assert_eq!(res, F::from(131072)); let res: F = i128_to_felt(-15i128); assert_eq!(res, -F::from(15)); let res: F = i128_to_felt(2_i128.pow(17)); assert_eq!(res, F::from(131072)); }
fn felttoi32() { for x in -(2i32.pow(16))..(2i32.pow(16)) { let fieldx: F = i32_to_felt::<F>(x); let xf: i32 = felt_to_i32::<F>(fieldx); assert_eq!(x, xf); } }
fn felttoi128() { for x in -(2i128.pow(20))..(2i128.pow(20)) { let fieldx: F = i128_to_felt::<F>(x); let xf: i128 = felt_to_i128::<F>(fieldx); assert_eq!(x, xf); } } }
use super::quantize_float; use super::GraphError; use crate::circuit::InputType; use crate::fieldutils::i128_to_felt; use crate::tensor::Tensor; use crate::EZKL_BUF_CAPACITY; use halo2curves::bn256::Fr as Fp; use postgres::{Client, NoTls}; use pyo3::prelude::*; use pyo3::types::PyDict; use pyo3::ToPyObject; use serde::ser::SerializeStruct; use serde::{Deserialize, Deserializer, Serialize, Serializer}; use std::io::BufReader; use std::io::BufWriter; use std::io::Read; use std::panic::UnwindSafe; use tract_onnx::tract_core::{ tract_data::{prelude::Tensor as TractTensor, TVec}, value::TValue, }; use tract_onnx::tract_hir::tract_num_traits::ToPrimitive; type Decimals = u8; type Call = String; type RPCUrl = String; pub enum FileSourceInner { Float(f64), Bool(bool), Field(Fp), } impl FileSourceInner { pub fn is_float(&self) -> bool { matches!(self, FileSourceInner::Float(_)) } pub fn is_bool(&self) -> bool { matches!(self, FileSourceInner::Bool(_)) } pub fn is_field(&self) -> bool { matches!(self, FileSourceInner::Field(_)) } } impl Serialize for FileSourceInner { fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: Serializer, { match self { FileSourceInner::Field(data) => data.serialize(serializer), FileSourceInner::Bool(data) => data.serialize(serializer), FileSourceInner::Float(data) => data.serialize(serializer), } } } impl<'de> Deserialize<'de> for FileSourceInner { fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> where D: Deserializer<'de>, { let this_json: Box<serde_json::value::RawValue> = Deserialize::deserialize(deserializer)?; let bool_try: Result<bool, _> = serde_json::from_str(this_json.get()); if let Ok(t) = bool_try { return Ok(FileSourceInner::Bool(t)); } let float_try: Result<f64, _> = serde_json::from_str(this
_json.get()); if let Ok(t) = float_try { return Ok(FileSourceInner::Float(t)); } let field_try: Result<Fp, _> = serde_json::from_str(this_json.get()); if let Ok(t) = field_try { return Ok(FileSourceInner::Field(t)); } Err(serde::de::Error::custom( "failed to deserialize FileSourceInner", )) } } pub type FileSource = Vec<Vec<FileSourceInner>>; impl FileSourceInner { pub fn new_float(f: f64) -> Self { FileSourceInner::Float(f) } pub fn new_field(f: Fp) -> Self { FileSourceInner::Field(f) } pub fn new_bool(f: bool) -> Self { FileSourceInner::Bool(f) } pub
fn as_type(&mut self, input_type: &InputType) { match self { FileSourceInner::Float(f) => input_type.roundtrip(f), FileSourceInner::Bool(_) => assert!(matches!(input_type, InputType::Bool)), FileSourceInner::Field(_) => {} } } pub fn to_field(&self, scale: crate::Scale) -> Fp { match self { FileSourceInner::Float(f) => i128_to_felt(quantize_float(f, 0.0, scale).unwrap()), FileSourceInner::Bool(f) => { if *f { Fp::one() } else { Fp::zero() } } FileSourceInner::Field(f) => *f, } } pub fn to_float(&self) -> f64 { match self { FileSourceInner::Float(f) => *f, FileSourceInner::Bool(f) => { if *f { 1.0 } else { 0.0 } } FileSourceInner::Field(f) => crate::fieldutils::felt_to_i128(*f) as f64, } } } pub
struct OnChainSource { pub calls: Vec<CallsToAccount>, pub rpc: RPCUrl, } impl OnChainSource { pub fn new(calls: Vec<CallsToAccount>, rpc: RPCUrl) -> Self { OnChainSource { calls, rpc } } } pub
struct PostgresSource { pub host: RPCUrl, pub user: String, pub password: String, pub query: String, pub dbname: String, pub port: String, } impl PostgresSource { pub fn new( host: RPCUrl, port: String, user: String, query: String, dbname: String, password: String, ) -> Self { PostgresSource { host, user, password, query, dbname, port, } } pub fn fetch(&self) -> Result<Vec<Vec<pg_bigdecimal::PgNumeric>>, Box<dyn std::error::Error>> { let user = self.user.clone(); let host = self.host.clone(); let query = self.query.clone(); let dbname = self.dbname.clone(); let port = self.port.clone(); let password = self.password.clone(); let config = if password.is_empty() { format!( "host={} user={} dbname={} port={}", host, user, dbname, port ) } else { format!( "host={} user={} dbname={} port={} password={}", host, user, dbname, port, password ) }; let mut client = Client::connect(&config, NoTls)?; let mut res: Vec<pg_bigdecimal::PgNumeric> = Vec::new(); for row in client.query(&query, &[])? { for i in 0..row.len() { res.push(row.get(i)); } } Ok(vec![res]) } pub fn fetch_and_format_as_file( &self, ) -> Result<Vec<Vec<FileSourceInner>>, Box<dyn std::error::Error>> { Ok(self .fetch()? .iter() .map(|d| { d.iter() .map(|d| { FileSourceInner::Float( d.n.as_ref() .unwrap() .to_f64()
.ok_or("could not convert decimal to f64") .unwrap(), ) }) .collect() }) .collect()) } } impl OnChainSource { pub async fn test_from_file_data( data: &FileSource, scales: Vec<crate::Scale>, mut shapes: Vec<Vec<usize>>, rpc: Option<&str>, ) -> Result<(Vec<Tensor<Fp>>, Self), Box<dyn std::error::Error>> { use crate::eth::{evm_quantize, read_on_chain_inputs, test_on_chain_data}; use log::debug; let (anvil, client) = crate::eth::setup_eth_backend(rpc, None).await?; let address = client.address(); let mut scales = scales; for (idx, i) in data.iter().enumerate() { if i.iter().all(|e| e.is_field()) { scales[idx] = 0; shapes[idx] = vec![i.len()]; } } let calls_to_accounts = test_on_chain_data(client.clone(), data).await?; debug!("Calls to accounts: {:?}", calls_to_accounts); let inputs = read_on_chain_inputs(client.clone(), address, &calls_to_accounts).await?; debug!("Inputs: {:?}", inputs); let mut quantized_evm_inputs = vec![]; let mut prev = 0; for (idx, i) in data.iter().enumerate() { quantized_evm_inputs.extend( evm_quantize( client.clone(), vec![scales[idx]; i.len()], &( inputs.0[prev..i.len()].to_vec(), inputs.1[prev..i.len()].to_vec(), ), ) .await?, ); prev += i.len(); } let mut inputs: Vec<Tensor<Fp>> = vec![]; for (input, shape) in [quantized_evm_inputs].iter().zip(shapes) { let mut t: Tensor<Fp> = input.iter().cloned().collect(); t.reshape(&shape)?; inputs.push(t);
} let used_rpc = rpc.unwrap_or(&anvil.endpoint()).to_string(); Ok(( inputs, OnChainSource::new(calls_to_accounts.clone(), used_rpc), )) } } pub
struct CallsToAccount { pub call_data: Vec<(Call, Decimals)>, pub address: String, } pub enum DataSource { File(FileSource), OnChain(OnChainSource), DB(PostgresSource), } impl Default for DataSource { fn default() -> Self { DataSource::File(vec![vec![]]) } } impl From<FileSource> for DataSource { fn from(data: FileSource) -> Self { DataSource::File(data) } } impl From<Vec<Vec<Fp>>> for DataSource { fn from(data: Vec<Vec<Fp>>) -> Self { DataSource::File( data.iter() .map(|e| e.iter().map(|e| FileSourceInner::Field(*e)).collect()) .collect(), ) } } impl From<Vec<Vec<f64>>> for DataSource { fn from(data: Vec<Vec<f64>>) -> Self { DataSource::File( data.iter() .map(|e| e.iter().map(|e| FileSourceInner::Float(*e)).collect()) .collect(), ) } } impl From<OnChainSource> for DataSource { fn from(data: OnChainSource) -> Self { DataSource::OnChain(data) } } impl<'de> Deserialize<'de> for DataSource { fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> where D: Deserializer<'de>, { let this_json: Box<serde_json::value::RawValue> = Deserialize::deserialize(deserializer)?; let first_try: Result<FileSource, _> = serde_json::from_str(this_json.get()); if let Ok(t) = first_try { return Ok(DataSource::File(t)); } let second_try: Result<OnChainSource, _> = serde_json::from_str(this_json.get()); if let Ok(t) = second_try { return Ok(DataSource::OnChain(t)); } { let third_try: Result<PostgresSource, _> = serde_json::from_str(this_json.get()); if let Ok(t) = third_try { return Ok(DataSource::DB(t)); } } Err(serde::de::Error::custom("failed to deserialize DataSource")) } }
pub
struct GraphData { pub input_data: DataSource, pub output_data: Option<DataSource>, } impl UnwindSafe for GraphData {} impl GraphData { pub fn to_tract_data( &self, shapes: &[Vec<usize>], datum_types: &[tract_onnx::prelude::DatumType], ) -> Result<TVec<TValue>, Box<dyn std::error::Error>> { let mut inputs = TVec::new(); match &self.input_data { DataSource::File(data) => { for (i, input) in data.iter().enumerate() { if !input.is_empty() { let dt = datum_types[i]; let input = input.iter().map(|e| e.to_float()).collect::<Vec<f64>>(); let tt = TractTensor::from_shape(&shapes[i], &input)?; let tt = tt.cast_to_dt(dt)?; inputs.push(tt.into_owned().into()); } } } _ => { return Err(Box::new(GraphError::InvalidDims( 0, "non file data cannot be split into batches".to_string(), ))) } } Ok(inputs) } pub fn new(input_data: DataSource) -> Self { GraphData { input_data, output_data: None, } } pub fn from_path(path: std::path::PathBuf) -> Result<Self, Box<dyn std::error::Error>> { let reader = std::fs::File::open(path)?; let mut reader = BufReader::with_capacity(*EZKL_BUF_CAPACITY, reader); let mut buf = String::new(); reader.read_to_string(&mut buf)?; let graph_input = serde_json::from_str(&buf)?; Ok(graph_input) } pub fn save(&self, path: std::path::PathBuf) -> Result<(), Box<dyn std::error::Error>> { let writer = BufWriter::with_capacity(*EZKL_BUF_CAPACITY, std::fs::File::create(path)?); serde_json::to_writer(writer, self)?; Ok(()) } pub fn split_int
o_batches( &self, input_shapes: Vec<Vec<usize>>, ) -> Result<Vec<Self>, Box<dyn std::error::Error>> { let mut batched_inputs = vec![]; let iterable = match self { GraphData { input_data: DataSource::File(data), output_data: _, } => data.clone(), GraphData { input_data: DataSource::OnChain(_), output_data: _, } => { return Err(Box::new(GraphError::InvalidDims( 0, "on-chain data cannot be split into batches".to_string(), ))) } GraphData { input_data: DataSource::DB(data), output_data: _, } => data.fetch_and_format_as_file()?, }; for (i, shape) in input_shapes.iter().enumerate() { let input_size = shape.clone().iter().product::<usize>(); let input = &iterable[i]; if input.len() % input_size != 0 { return Err(Box::new(GraphError::InvalidDims( 0, "calibration data length must be evenly divisible by the original input_size" .to_string(), ))); } let mut batches = vec![]; for batch in input.chunks(input_size) { batches.push(batch.to_vec()); } batched_inputs.push(batches); } let num_batches = if batched_inputs.is_empty() { 0 } else { let num_batches = batched_inputs[0].len(); for input in batched_inputs.iter() { assert_eq!(input.len(), num_batches); } num_batches }; let mut input_batches = vec![]; for i in 0..num_batches { let mut batch = vec![]; for input in batched_inputs.iter() { batch.push(i
nput[i].clone()); } input_batches.push(DataSource::File(batch)); } if input_batches.is_empty() { input_batches.push(DataSource::File(vec![vec![]])); } let batches = input_batches .into_iter() .map(GraphData::new) .collect::<Vec<GraphData>>(); Ok(batches) } } impl ToPyObject for CallsToAccount { fn to_object(&self, py: Python) -> PyObject { let dict = PyDict::new(py); dict.set_item("account", &self.address).unwrap(); dict.set_item("call_data", &self.call_data).unwrap(); dict.to_object(py) } } impl ToPyObject for DataSource { fn to_object(&self, py: Python) -> PyObject { match self { DataSource::File(data) => data.to_object(py), DataSource::OnChain(source) => { let dict = PyDict::new(py); dict.set_item("rpc_url", &source.rpc).unwrap(); dict.set_item("calls_to_accounts", &source.calls).unwrap(); dict.to_object(py) } DataSource::DB(source) => { let dict = PyDict::new(py); dict.set_item("host", &source.host).unwrap(); dict.set_item("user", &source.user).unwrap(); dict.set_item("query", &source.query).unwrap(); dict.to_object(py) } } } } use crate::pfsys::field_to_string; impl ToPyObject for FileSourceInner { fn to_object(&self, py: Python) -> PyObject { match self { FileSourceInner::Field(data) => field_to_string(data).to_object(py), FileSourceInner::Bool(data) => data.to_object(py), FileSourceInner::Float(data) => data.to_object(py), } } } impl Serialize for GraphData { fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: Serializer, { let mut state = serializer.serialize_struct("GraphData", 4)?; state.se
rialize_field("input_data", &self.input_data)?; state.serialize_field("output_data", &self.output_data)?; state.end() } } mod tests { use super::*;
fn test_data_source_serialization_round_trip() { let source = DataSource::from(vec![vec![0.053_262_424, 0.074_970_566, 0.052_355_476]]); let serialized = serde_json::to_string(&source).unwrap(); const JSON: &str = r assert_eq!(serialized, JSON); let expect = serde_json::from_str::<DataSource>(JSON) .map_err(|e| e.to_string()) .unwrap(); assert_eq!(expect, source); }
fn test_graph_input_serialization_round_trip() { let file = GraphData::new(DataSource::from(vec![vec![ 0.05326242372393608, 0.07497056573629379, 0.05235547572374344, ]])); let serialized = serde_json::to_string(&file).unwrap(); const JSON: &str = r assert_eq!(serialized, JSON); let graph_input3 = serde_json::from_str::<GraphData>(JSON) .map_err(|e| e.to_string()) .unwrap(); assert_eq!(graph_input3, file); }
fn test_python_compat() { let source = Fp::from_raw([18445520602771460712, 838677322461845011, 3079992810, 0]); let original_addr = "0x000000000000000000000000b794f5ea0ba39494ce839613fffba74279579268"; assert_eq!(format!("{:?}", source), original_addr); } }
pub mod input; pub mod model; pub mod modules; pub mod node; pub mod utilities; pub mod vars; use colored_json::ToColoredJson; use gag::Gag; use halo2_proofs::plonk::VerifyingKey; use halo2_proofs::poly::commitment::CommitmentScheme; pub use input::DataSource; use itertools::Itertools; use tosubcommand::ToFlags; use self::input::OnChainSource; use self::input::{FileSource, GraphData}; use self::modules::{GraphModules, ModuleConfigs, ModuleForwardResult, ModuleSizes}; use crate::circuit::lookup::LookupOp; use crate::circuit::modules::ModulePlanner; use crate::circuit::region::ConstantsMap; use crate::circuit::table::{num_cols_required, Range, Table, RESERVED_BLINDING_ROWS_PAD}; use crate::circuit::{CheckMode, InputType}; use crate::fieldutils::felt_to_f64; use crate::pfsys::PrettyElements; use crate::tensor::{Tensor, ValTensor}; use crate::{RunArgs, EZKL_BUF_CAPACITY}; use halo2_proofs::{ circuit::Layouter, plonk::{Circuit, ConstraintSystem, Error as PlonkError}, }; use halo2curves::bn256::{self, Fr as Fp, G1Affine}; use halo2curves::ff::{Field, PrimeField}; use lazy_static::lazy_static; use log::{debug, error, trace, warn}; use maybe_rayon::prelude::{IntoParallelRefIterator, ParallelIterator}; pub use model::*; pub use node::*; use pyo3::prelude::*; use pyo3::types::PyDict; use pyo3::ToPyObject; use serde::{Deserialize, Serialize}; use std::ops::Deref; use thiserror::Error; pub use utilities::*; pub use vars::*; use crate::pfsys::field_to_string; pub const RANGE_MULTIPLIER: i128 = 2; pub const MAX_NUM_LOOKUP_COLS: usize = 12; pub const MAX_LOOKUP_ABS: i128 = (MAX_NUM_LOOKUP_COLS as i128) * 2_i128.pow(MAX_PUBLIC_SRS); lazy_static! { pub static ref EZKL_MAX_CIRCUIT_AREA: Option<usize> = if let Ok(max_circuit_area) = std::env::var("EZKL_MAX_CIRCUIT_AREA") { Some(max_circuit_area.parse().unwrap_or(0)) } else { None }; } const EZKL_MAX_CIRCUIT_AREA: Option<usize> = None; pub enum GraphError { InvalidLookupInputs
, InvalidDims(usize, String), WrongMethod(usize, String), MissingNode(usize), OpMismatch(usize, String), UnsupportedOp, UnsupportedDataType, MissingParams(String), MisformedParams(String), Visibility, NonConstantDiv, NonConstantPower, RescalingError(String), ModelLoad, PackingExponent, InvalidInputTypes, MissingResults, } pub const ASSUMED_BLINDING_FACTORS: usize = 5; pub const MIN_LOGROWS: u32 = 6; pub const MAX_PUBLIC_SRS: u32 = bn256::Fr::S - 2; pub const RESERVED_BLINDING_ROWS: usize = ASSUMED_BLINDING_FACTORS + RESERVED_BLINDING_ROWS_PAD; use std::cell::RefCell; thread_local!( pub static GLOBAL_SETTINGS: RefCell<Option<GraphSettings>> = const { RefCell::new(None) } ); pub
struct GraphWitness { pub inputs: Vec<Vec<Fp>>, pub pretty_elements: Option<PrettyElements>, pub outputs: Vec<Vec<Fp>>, pub processed_inputs: Option<ModuleForwardResult>, pub processed_params: Option<ModuleForwardResult>, pub processed_outputs: Option<ModuleForwardResult>, pub max_lookup_inputs: i128, pub min_lookup_inputs: i128, pub max_range_size: i128, } impl GraphWitness { pub fn get_float_outputs(&self, scales: &[crate::Scale]) -> Vec<Tensor<f32>> { self.outputs .iter() .enumerate() .map(|(i, x)| { x.iter() .map(|y| (felt_to_f64(*y) / scale_to_multiplier(scales[i])) as f32) .collect::<Tensor<f32>>() }) .collect() } pub fn new(inputs: Vec<Vec<Fp>>, outputs: Vec<Vec<Fp>>) -> Self { GraphWitness { inputs, outputs, pretty_elements: None, processed_inputs: None, processed_params: None, processed_outputs: None, max_lookup_inputs: 0, min_lookup_inputs: 0, max_range_size: 0, } } pub
fn generate_rescaled_elements( &mut self, input_scales: Vec<crate::Scale>, output_scales: Vec<crate::Scale>, visibility: VarVisibility, ) { let mut pretty_elements = PrettyElements { rescaled_inputs: self .inputs .iter() .enumerate() .map(|(i, t)| { let scale = input_scales[i]; t.iter() .map(|x| dequantize(*x, scale, 0.).to_string()) .collect() }) .collect(), inputs: self .inputs .iter() .map(|t| t.iter().map(|x| format!("{:?}", x)).collect()) .collect(), rescaled_outputs: self .outputs .iter() .enumerate() .map(|(i, t)| { let scale = output_scales[i]; t.iter() .map(|x| dequantize(*x, scale, 0.).to_string()) .collect() }) .collect(), outputs: self .outputs .iter() .map(|t| t.iter().map(|x| format!("{:?}", x)).collect()) .collect(), ..Default::default() }; if let Some(processed_inputs) = self.processed_inputs.clone() { pretty_elements.processed_inputs = processed_inputs .get_result(visibility.input) .iter() .map(|x| x.iter().map(|y| format!("{:?}", y)).collect()) .collect(); } if let Some(processed_params) = self.processed_params.clone() { pretty_elements.processed_params = processed_params .get_result(visibility.params) .iter() .map(|x| x.iter().map(|y| format!("{:?}", y)).collect()) .collect(); }
if let Some(processed_outputs) = self.processed_outputs.clone() { pretty_elements.processed_outputs = processed_outputs .get_result(visibility.output) .iter() .map(|x| x.iter().map(|y| format!("{:?}", y)).collect()) .collect(); } self.pretty_elements = Some(pretty_elements); } pub fn get_polycommitments(&self) -> Vec<G1Affine> { let mut commitments = vec![]; if let Some(processed_inputs) = &self.processed_inputs { if let Some(commits) = &processed_inputs.polycommit { commitments.extend(commits.iter().flatten()); } } if let Some(processed_params) = &self.processed_params { if let Some(commits) = &processed_params.polycommit { commitments.extend(commits.iter().flatten()); } } if let Some(processed_outputs) = &self.processed_outputs { if let Some(commits) = &processed_outputs.polycommit { commitments.extend(commits.iter().flatten()); } } commitments } pub fn as_json(&self) -> Result<String, Box<dyn std::error::Error>> { let serialized = match serde_json::to_string(&self) { Ok(s) => s, Err(e) => { return Err(Box::new(e)); } }; Ok(serialized) } pub fn from_path(path: std::path::PathBuf) -> Result<Self, Box<dyn std::error::Error>> { let file = std::fs::File::open(path.clone()) .map_err(|_| format!("failed to load {}", path.display()))?; let reader = std::io::BufReader::with_capacity(*EZKL_BUF_CAPACITY, file); serde_json::from_reader(reader).map_err(|e| e.into()) } pub fn save(&self, path: std::path::PathBuf) -> Result<(), Box<dyn std::error::Error>> { let writer = std::io::BufWriter::with_capacity(*EZKL_BUF_CAPACITY, std::fs::File
::create(path)?); serde_json::to_writer(writer, &self).map_err(|e| e.into()) } pub fn get_input_tensor(&self) -> Vec<Tensor<Fp>> { self.inputs .clone() .into_iter() .map(|i| Tensor::from(i.into_iter())) .collect::<Vec<Tensor<Fp>>>() } pub fn get_output_tensor(&self) -> Vec<Tensor<Fp>> { self.outputs .clone() .into_iter() .map(|i| Tensor::from(i.into_iter())) .collect::<Vec<Tensor<Fp>>>() } } impl ToPyObject for GraphWitness { fn to_object(&self, py: Python) -> PyObject { let dict = PyDict::new(py); let dict_inputs = PyDict::new(py); let dict_params = PyDict::new(py); let dict_outputs = PyDict::new(py); let inputs: Vec<Vec<String>> = self .inputs .iter() .map(|x| x.iter().map(field_to_string).collect()) .collect(); let outputs: Vec<Vec<String>> = self .outputs .iter() .map(|x| x.iter().map(field_to_string).collect()) .collect(); dict.set_item("inputs", inputs).unwrap(); dict.set_item("outputs", outputs).unwrap(); dict.set_item("max_lookup_inputs", self.max_lookup_inputs) .unwrap(); dict.set_item("min_lookup_inputs", self.min_lookup_inputs) .unwrap(); dict.set_item("max_range_size", self.max_range_size) .unwrap(); if let Some(processed_inputs) = &self.processed_inputs { if let Some(processed_inputs_poseidon_hash) = &processed_inputs.poseidon_hash { insert_poseidon_hash_pydict(dict_inputs, processed_inputs_poseidon_hash).unwrap(); } if let Some(processed_inputs_polycommit) = &processed_inputs.polycommit { insert_polycommit_pydict(dict_inputs, processed_inputs_polycommit).unwrap(); } dict.set_item("processed_inputs", dic
t_inputs).unwrap(); } if let Some(processed_params) = &self.processed_params { if let Some(processed_params_poseidon_hash) = &processed_params.poseidon_hash { insert_poseidon_hash_pydict(dict_params, processed_params_poseidon_hash).unwrap(); } if let Some(processed_params_polycommit) = &processed_params.polycommit { insert_polycommit_pydict(dict_inputs, processed_params_polycommit).unwrap(); } dict.set_item("processed_params", dict_params).unwrap(); } if let Some(processed_outputs) = &self.processed_outputs { if let Some(processed_outputs_poseidon_hash) = &processed_outputs.poseidon_hash { insert_poseidon_hash_pydict(dict_outputs, processed_outputs_poseidon_hash).unwrap(); } if let Some(processed_outputs_polycommit) = &processed_outputs.polycommit { insert_polycommit_pydict(dict_inputs, processed_outputs_polycommit).unwrap(); } dict.set_item("processed_outputs", dict_outputs).unwrap(); } dict.to_object(py) } } fn insert_poseidon_hash_pydict(pydict: &PyDict, poseidon_hash: &Vec<Fp>) -> Result<(), PyErr> { let poseidon_hash: Vec<String> = poseidon_hash.iter().map(field_to_string).collect(); pydict.set_item("poseidon_hash", poseidon_hash)?; Ok(()) } fn insert_polycommit_pydict(pydict: &PyDict, commits: &Vec<Vec<G1Affine>>) -> Result<(), PyErr> { use crate::python::PyG1Affine; let poseidon_hash: Vec<Vec<PyG1Affine>> = commits .iter() .map(|c| c.iter().map(|x| PyG1Affine::from(*x)).collect()) .collect(); pydict.set_item("polycommit", poseidon_hash)?; Ok(()) } pub
struct GraphSettings { pub run_args: RunArgs, pub num_rows: usize, pub total_assignments: usize, pub total_const_size: usize, pub total_dynamic_col_size: usize, pub num_dynamic_lookups: usize, pub num_shuffles: usize, pub total_shuffle_col_size: usize, pub model_instance_shapes: Vec<Vec<usize>>, pub model_output_scales: Vec<crate::Scale>, pub model_input_scales: Vec<crate::Scale>, pub module_sizes: ModuleSizes, pub required_lookups: Vec<LookupOp>, pub required_range_checks: Vec<Range>, pub check_mode: CheckMode, pub version: String, pub num_blinding_factors: Option<usize>, pub timestamp: Option<u128>, } impl GraphSettings { pub fn lookup_log_rows(&self) -> u32 { ((self.run_args.lookup_range.1 - self.run_args.lookup_range.0) as f32) .log2() .ceil() as u32 } pub fn lookup_log_rows_with_blinding(&self) -> u32 { ((self.run_args.lookup_range.1 - self.run_args.lookup_range.0) as f32 + RESERVED_BLINDING_ROWS as f32) .log2() .ceil() as u32 } fn model_constraint_logrows_with_blinding(&self) -> u32 { (self.num_rows as f64 + RESERVED_BLINDING_ROWS as f64) .log2() .ceil() as u32 } fn dynamic_lookup_and_shuffle_logrows(&self) -> u32 { (self.total_dynamic_col_size as f64 + self.total_shuffle_col_size as f64) .log2() .ceil() as u32 } pub fn dynamic_lookup_and_shuffle_logrows_with_blinding(&self) -> u32 { (self.total_dynamic_col_size as f64 + self.total_shuffle_col_size as f64 + RESERVED_BLINDING_ROWS as f64) .log2() .ceil() as u32 } fn dynamic_lookup_and_shuffle_col_size(&self) -> usize { self.total_dynamic_col_size + self.total_shuffle_col_size } pub fn module_constraint_logrows(&self) -> u
32 { (self.module_sizes.max_constraints() as f64).log2().ceil() as u32 } pub fn module_constraint_logrows_with_blinding(&self) -> u32 { (self.module_sizes.max_constraints() as f64 + RESERVED_BLINDING_ROWS as f64) .log2() .ceil() as u32 } fn constants_logrows(&self) -> u32 { (self.total_const_size as f64 / self.run_args.num_inner_cols as f64) .log2() .ceil() as u32 } pub fn total_instances(&self) -> Vec<usize> { let mut instances: Vec<usize> = self .model_instance_shapes .iter() .map(|x| x.iter().product()) .collect(); instances.extend(self.module_sizes.num_instances()); instances } pub fn log2_total_instances(&self) -> u32 { let sum = self.total_instances().iter().sum::<usize>(); std::cmp::max((sum as f64).log2().ceil() as u32, 1) } pub fn log2_total_instances_with_blinding(&self) -> u32 { let sum = self.total_instances().iter().sum::<usize>() + RESERVED_BLINDING_ROWS; std::cmp::max((sum as f64).log2().ceil() as u32, 1) } pub fn save(&self, path: &std::path::PathBuf) -> Result<(), std::io::Error> { let writer = std::io::BufWriter::with_capacity(*EZKL_BUF_CAPACITY, std::fs::File::create(path)?); serde_json::to_writer(writer, &self).map_err(|e| { error!("failed to save settings file at {}", e); std::io::Error::new(std::io::ErrorKind::Other, e) }) } pub fn load(path: &std::path::PathBuf) -> Result<Self, std::io::Error> { let reader = std::io::BufReader::with_capacity(*EZKL_BUF_CAPACITY, std::fs::File::open(path)?); serde_json::from_reader(reader).map_err(|e| { error!("failed to load settings file at {}", e); std::io::Error::new(std::io::ErrorKind::Other, e) }) } pub fn as_json(&self)
-> Result<String, Box<dyn std::error::Error>> { let serialized = match serde_json::to_string(&self) { Ok(s) => s, Err(e) => { return Err(Box::new(e)); } }; Ok(serialized) } pub fn from_json(arg_json: &str) -> Result<Self, serde_json::Error> { serde_json::from_str(arg_json) }
fn set_num_blinding_factors(&mut self, num_blinding_factors: usize) { self.num_blinding_factors = Some(num_blinding_factors); } pub fn available_col_size(&self) -> usize { let base = 2u32; if let Some(num_blinding_factors) = self.num_blinding_factors { base.pow(self.run_args.logrows) as usize - num_blinding_factors - 1 } else { log::error!("num_blinding_factors not set"); log::warn!("using default available_col_size"); base.pow(self.run_args.logrows) as usize - ASSUMED_BLINDING_FACTORS - 1 } } pub fn uses_modules(&self) -> bool { !self.module_sizes.max_constraints() > 0 } pub fn module_requires_fixed(&self) -> bool { self.run_args.input_visibility.is_hashed() || self.run_args.output_visibility.is_hashed() || self.run_args.param_visibility.is_hashed() } pub fn requires_dynamic_lookup(&self) -> bool { self.num_dynamic_lookups > 0 } pub fn requires_shuffle(&self) -> bool { self.num_shuffles > 0 } pub fn module_requires_polycommit(&self) -> bool { self.run_args.input_visibility.is_polycommit() || self.run_args.output_visibility.is_polycommit() || self.run_args.param_visibility.is_polycommit() } } pub
struct GraphConfig { model_config: ModelConfig, module_configs: ModuleConfigs, circuit_size: CircuitSize, } pub
struct CoreCircuit { pub model: Model, pub settings: GraphSettings, } pub
struct GraphCircuit { pub core: CoreCircuit, pub graph_witness: GraphWitness, } impl GraphCircuit { pub fn settings(&self) -> &GraphSettings { &self.core.settings } pub fn settings_mut(&mut self) -> &mut GraphSettings { &mut self.core.settings } pub fn model(&self) -> &Model { &self.core.model } pub fn save(&self, path: std::path::PathBuf) -> Result<(), Box<dyn std::error::Error>> { let f = std::fs::File::create(path)?; let writer = std::io::BufWriter::with_capacity(*EZKL_BUF_CAPACITY, f); bincode::serialize_into(writer, &self)?; Ok(()) } pub fn load(path: std::path::PathBuf) -> Result<Self, Box<dyn std::error::Error>> { let f = std::fs::File::open(path)?; let reader = std::io::BufReader::with_capacity(*EZKL_BUF_CAPACITY, f); let result: GraphCircuit = bincode::deserialize_from(reader)?; Ok(result) } } pub enum TestDataSource { File, OnChain, } impl std::fmt::Display for TestDataSource { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { match self { TestDataSource::File => write!(f, "file"), TestDataSource::OnChain => write!(f, "on-chain"), } } } impl ToFlags for TestDataSource {} impl From<String> for TestDataSource { fn from(value: String) -> Self { match value.to_lowercase().as_str() { "file" => TestDataSource::File, "on-chain" => TestDataSource::OnChain, _ => { error!("invalid data source: {}", value); warn!("using default data source: on-chain"); TestDataSource::default() } } } } pub
struct TestSources { pub input: TestDataSource, pub output: TestDataSource, } pub
struct TestOnChainData { pub data: std::path::PathBuf, pub rpc: Option<String>, pub data_sources: TestSources, } impl GraphCircuit { pub fn new( model: Model, run_args: &RunArgs, ) -> Result<GraphCircuit, Box<dyn std::error::Error>> { let mut inputs: Vec<Vec<Fp>> = vec![]; for shape in model.graph.input_shapes()? { let t: Vec<Fp> = vec![Fp::zero(); shape.iter().product::<usize>()]; inputs.push(t); } let mut settings = model.gen_params(run_args, run_args.check_mode)?; let mut num_params = 0; if !model.const_shapes().is_empty() { for shape in model.const_shapes() { num_params += shape.iter().product::<usize>(); } } let sizes = GraphModules::num_constraints_and_instances( model.graph.input_shapes()?, vec![vec![num_params]], model.graph.output_shapes()?, VarVisibility::from_args(run_args)?, ); settings.module_sizes = sizes.clone(); settings.num_rows = std::cmp::max(settings.num_rows, sizes.max_constraints()); let core = CoreCircuit { model, settings: settings.clone(), }; Ok(GraphCircuit { core, graph_witness: GraphWitness::new(inputs, vec![]), }) } pub fn new_from_settings( model: Model, mut settings: GraphSettings, check_mode: CheckMode, ) -> Result<GraphCircuit, Box<dyn std::error::Error>> { let mut inputs: Vec<Vec<Fp>> = vec![]; for shape in model.graph.input_shapes()? { let t: Vec<Fp> = vec![Fp::zero(); shape.iter().product::<usize>()]; inputs.push(t); } settings.check_mode = check_mode; let core = CoreCircuit { model, settings: settings.clone(), }; Ok(GraphCircuit {
core, graph_witness: GraphWitness::new(inputs, vec![]), }) } pub fn load_graph_witness( &mut self, data: &GraphWitness, ) -> Result<(), Box<dyn std::error::Error>> { self.graph_witness = data.clone(); Ok(()) } pub fn prepare_public_inputs( &self, data: &GraphWitness, ) -> Result<Vec<Fp>, Box<dyn std::error::Error>> { let mut public_inputs: Vec<Fp> = vec![]; if self.settings().run_args.input_visibility.is_public() { public_inputs.extend(self.graph_witness.inputs.clone().into_iter().flatten()) } else if let Some(processed_inputs) = &data.processed_inputs { public_inputs.extend(processed_inputs.get_instances().into_iter().flatten()); } if let Some(processed_params) = &data.processed_params { public_inputs.extend(processed_params.get_instances().into_iter().flatten()); } if self.settings().run_args.output_visibility.is_public() { public_inputs.extend(self.graph_witness.outputs.clone().into_iter().flatten()); } else if let Some(processed_outputs) = &data.processed_outputs { public_inputs.extend(processed_outputs.get_instances().into_iter().flatten()); } if public_inputs.len() < 11 { debug!("public inputs: {:?}", public_inputs); } else { debug!("public inputs: {:?} ...", &public_inputs[0..10]); } Ok(public_inputs) } pub fn pretty_public_inputs( &self, data: &GraphWitness, ) -> Result<Option<PrettyElements>, Box<dyn std::error::Error>> { if data.pretty_elements.is_none() { warn!("no rescaled elements found in witness data"); return Ok(None); } let mut public_inputs = PrettyElements::default(); let elements = data.pretty_elements.as_ref().unwrap(); if self.settings().run_arg
s.input_visibility.is_public() { public_inputs.rescaled_inputs = elements.rescaled_inputs.clone(); public_inputs.inputs = elements.inputs.clone(); } else if data.processed_inputs.is_some() { public_inputs.processed_inputs = elements.processed_inputs.clone(); } if data.processed_params.is_some() { public_inputs.processed_params = elements.processed_params.clone(); } if self.settings().run_args.output_visibility.is_public() { public_inputs.rescaled_outputs = elements.rescaled_outputs.clone(); public_inputs.outputs = elements.outputs.clone(); } else if data.processed_outputs.is_some() { public_inputs.processed_outputs = elements.processed_outputs.clone(); } debug!( "rescaled and processed public inputs: {}", serde_json::to_string(&public_inputs)?.to_colored_json_auto()? ); Ok(Some(public_inputs)) } pub fn load_graph_input( &mut self, data: &GraphData, ) -> Result<Vec<Tensor<Fp>>, Box<dyn std::error::Error>> { let shapes = self.model().graph.input_shapes()?; let scales = self.model().graph.get_input_scales(); let input_types = self.model().graph.get_input_types()?; self.process_data_source(&data.input_data, shapes, scales, input_types) } pub fn load_graph_from_file_exclusively( &mut self, data: &GraphData, ) -> Result<Vec<Tensor<Fp>>, Box<dyn std::error::Error>> { let shapes = self.model().graph.input_shapes()?; let scales = self.model().graph.get_input_scales(); let input_types = self.model().graph.get_input_types()?; debug!("input scales: {:?}", scales); match &data.input_data { DataSource::File(file_data) => { self.load_file_data(file_data, &shapes, scales, input_types) } _ => Err("Cannot use non-file data source as input
for this method.".into()), } } pub fn load_graph_input( &mut self, data: &GraphData, ) -> Result<Vec<Tensor<Fp>>, Box<dyn std::error::Error>> { let shapes = self.model().graph.input_shapes()?; let scales = self.model().graph.get_input_scales(); let input_types = self.model().graph.get_input_types()?; debug!("input scales: {:?}", scales); self.process_data_source(&data.input_data, shapes, scales, input_types) } fn process_data_source( &mut self, data: &DataSource, shapes: Vec<Vec<usize>>, scales: Vec<crate::Scale>, input_types: Vec<InputType>, ) -> Result<Vec<Tensor<Fp>>, Box<dyn std::error::Error>> { match &data { DataSource::File(file_data) => { self.load_file_data(file_data, &shapes, scales, input_types) } DataSource::OnChain(_) => { Err("Cannot use on-chain data source as input for this method.".into()) } } } fn process_data_source( &mut self, data: &DataSource, shapes: Vec<Vec<usize>>, scales: Vec<crate::Scale>, input_types: Vec<InputType>, ) -> Result<Vec<Tensor<Fp>>, Box<dyn std::error::Error>> { match &data { DataSource::OnChain(source) => { let mut per_item_scale = vec![]; for (i, shape) in shapes.iter().enumerate() { per_item_scale.extend(vec![scales[i]; shape.iter().product::<usize>()]); } let runtime = tokio::runtime::Builder::new_current_thread() .enable_all() .build()?; runtime.block_on(async { self.load_on_chain_data(source.clone(), &shapes, per_item_scale) .await }) } DataSource::File(file_data) => { self.load_file_data(
file_data, &shapes, scales, input_types) } DataSource::DB(pg) => { let data = pg.fetch_and_format_as_file()?; self.load_file_data(&data, &shapes, scales, input_types) } } } pub async fn load_on_chain_data( &mut self, source: OnChainSource, shapes: &Vec<Vec<usize>>, scales: Vec<crate::Scale>, ) -> Result<Vec<Tensor<Fp>>, Box<dyn std::error::Error>> { use crate::eth::{evm_quantize, read_on_chain_inputs, setup_eth_backend}; let (_, client) = setup_eth_backend(Some(&source.rpc), None).await?; let inputs = read_on_chain_inputs(client.clone(), client.address(), &source.calls).await?; let quantized_evm_inputs = evm_quantize(client, scales, &inputs).await?; let mut inputs: Vec<Tensor<Fp>> = vec![]; for (input, shape) in [quantized_evm_inputs].iter().zip(shapes) { let mut t: Tensor<Fp> = input.iter().cloned().collect(); t.reshape(shape)?; inputs.push(t); } Ok(inputs) } pub fn load_file_data( &mut self, file_data: &FileSource, shapes: &Vec<Vec<usize>>, scales: Vec<crate::Scale>, input_types: Vec<InputType>, ) -> Result<Vec<Tensor<Fp>>, Box<dyn std::error::Error>> { let mut data: Vec<Tensor<Fp>> = vec![]; for (((d, shape), scale), input_type) in file_data .iter() .zip(shapes) .zip(scales) .zip(input_types.iter()) { let t: Vec<Fp> = d .par_iter() .map(|x| { let mut x = x.clone(); x.as_type(input_type); x.to_field(scale) }) .collect(); let mut t: Tensor<Fp> = t.into_iter().into(); t.reshape(shape)?; data.push(t); } Ok(data) } pub fn load_witnes
s_file_data( &mut self, file_data: &[Vec<Fp>], shapes: &[Vec<usize>], ) -> Result<Vec<Tensor<Fp>>, Box<dyn std::error::Error>> { let mut data: Vec<Tensor<Fp>> = vec![]; for (d, shape) in file_data.iter().zip(shapes) { let mut t: Tensor<Fp> = d.clone().into_iter().into(); t.reshape(shape)?; data.push(t); } Ok(data) } fn calc_safe_lookup_range(min_max_lookup: Range, lookup_safety_margin: i128) -> Range { ( lookup_safety_margin * min_max_lookup.0, lookup_safety_margin * min_max_lookup.1, ) } fn calc_num_cols(range_len: i128, max_logrows: u32) -> usize { let max_col_size = Table::<Fp>::cal_col_size(max_logrows as usize, RESERVED_BLINDING_ROWS); num_cols_required(range_len, max_col_size) } fn table_size_logrows( &self, safe_lookup_range: Range, max_range_size: i128, ) -> Result<u32, Box<dyn std::error::Error>> { let safe_range = std::cmp::max( (safe_lookup_range.1 - safe_lookup_range.0).abs(), max_range_size, ); let min_bits = (safe_range as f64 + RESERVED_BLINDING_ROWS as f64 + 1.) .log2() .ceil() as u32; Ok(min_bits) } pub fn calc_min_logrows( &mut self, min_max_lookup: Range, max_range_size: i128, max_logrows: Option<u32>, lookup_safety_margin: i128, ) -> Result<(), Box<dyn std::error::Error>> { let max_logrows = max_logrows.unwrap_or(MAX_PUBLIC_SRS); let max_logrows = std::cmp::min(max_logrows, MAX_PUBLIC_SRS); let mut max_logrows = std::cmp::max(max_logrows, MIN_LOGROWS); let mut min_logrows = MIN_LOGROWS; let safe_lookup_range = Self::calc_safe_lookup_range(min_max_lookup, lookup_safety_margin); if (min_max_lookup.1 - min_max_lookup.0).abs() > MAX_LOOKUP_ABS / lookup_safety_margin {
let err_string = format!("max lookup input {:?} is too large", min_max_lookup); return Err(err_string.into()); } if max_range_size.abs() > MAX_LOOKUP_ABS { let err_string = format!("max range check size {:?} is too large", max_range_size); return Err(err_string.into()); } let instance_logrows = self.settings().log2_total_instances(); let module_constraint_logrows = self.settings().module_constraint_logrows(); let dynamic_lookup_logrows = self.settings().dynamic_lookup_and_shuffle_logrows(); min_logrows = std::cmp::max( min_logrows, *[ instance_logrows, module_constraint_logrows, dynamic_lookup_logrows, ] .iter() .max() .unwrap(), ); let model_constraint_logrows = self.settings().model_constraint_logrows_with_blinding(); let min_bits = self.table_size_logrows(safe_lookup_range, max_range_size)?; let constants_logrows = self.settings().constants_logrows(); max_logrows = std::cmp::min( max_logrows, *[model_constraint_logrows, min_bits, constants_logrows] .iter() .max() .unwrap(), ); max_logrows = std::cmp::max(min_logrows, max_logrows); while min_logrows < max_logrows && !self.extended_k_is_small_enough(max_logrows, safe_lookup_range, max_range_size) { max_logrows -= 1; } if !self.extended_k_is_small_enough(max_logrows, safe_lookup_range, max_range_size) { let err_string = format!( "extended k is too large to accommodate the quotient polynomial with logrows {}", max_logrows ); debug!("{}", err_string); return Err(err_string.into()); } let logrows = max_logro
ws; let model = self.model().clone(); let settings_mut = self.settings_mut(); settings_mut.run_args.lookup_range = safe_lookup_range; settings_mut.run_args.logrows = logrows; *settings_mut = GraphCircuit::new(model, &settings_mut.run_args)? .settings() .clone(); debug!( "setting lookup_range to: {:?}, setting logrows to: {}", self.settings().run_args.lookup_range, self.settings().run_args.logrows ); Ok(()) } fn extended_k_is_small_enough( &self, k: u32, safe_lookup_range: Range, max_range_size: i128, ) -> bool { if Self::calc_num_cols(safe_lookup_range.1 - safe_lookup_range.0, k) > MAX_NUM_LOOKUP_COLS || Self::calc_num_cols(max_range_size, k) > MAX_NUM_LOOKUP_COLS { return false; } let mut settings = self.settings().clone(); settings.run_args.lookup_range = safe_lookup_range; settings.run_args.logrows = k; settings.required_range_checks = vec![(0, max_range_size)]; let mut cs = ConstraintSystem::default(); let _r = match Gag::stdout() { Ok(g) => Some(g), _ => None, }; let _g = match Gag::stderr() { Ok(g) => Some(g), _ => None, }; Self::configure_with_params(&mut cs, settings); drop(_r); drop(_g); let cs = cs.chunk_lookups(); let max_degree = cs.degree(); let quotient_poly_degree = (max_degree - 1) as u64; let n = 1u64 << k; let mut extended_k = k; while (1 << extended_k) < (n * quotient_poly_degree) { extended_k += 1; if extended_k > bn256::Fr::S { return false; } } true } pub fn forward<Scheme: CommitmentScheme<Scalar = Fp, Curve = G
1Affine>>( &self, inputs: &mut [Tensor<Fp>], vk: Option<&VerifyingKey<G1Affine>>, srs: Option<&Scheme::ParamsProver>, witness_gen: bool, ) -> Result<GraphWitness, Box<dyn std::error::Error>> { let original_inputs = inputs.to_vec(); let visibility = VarVisibility::from_args(&self.settings().run_args)?; let mut processed_inputs = None; let mut processed_params = None; let mut processed_outputs = None; if visibility.input.requires_processing() { let module_outlets = visibility.input.overwrites_inputs(); if !module_outlets.is_empty() { let mut module_inputs = vec![]; for outlet in &module_outlets { module_inputs.push(inputs[*outlet].clone()); } let res = GraphModules::forward::<Scheme>(&module_inputs, &visibility.input, vk, srs)?; processed_inputs = Some(res.clone()); let module_results = res.get_result(visibility.input.clone()); for (i, outlet) in module_outlets.iter().enumerate() { inputs[*outlet] = Tensor::from(module_results[i].clone().into_iter()); } } else { processed_inputs = Some(GraphModules::forward::<Scheme>( inputs, &visibility.input, vk, srs, )?); } } if visibility.params.requires_processing() { let params = self.model().get_all_params(); if !params.is_empty() { let flattened_params = Tensor::new(Some(&params), &[params.len()])?.combine()?; processed_params = Some(GraphModules::forward::<Scheme>( &[flattened_params], &visibility.params, vk, srs, )?); } } let mut model_results
= self.model() .forward(inputs, &self.settings().run_args, witness_gen)?; if visibility.output.requires_processing() { let module_outlets = visibility.output.overwrites_inputs(); if !module_outlets.is_empty() { let mut module_inputs = vec![]; for outlet in &module_outlets { module_inputs.push(model_results.outputs[*outlet].clone()); } let res = GraphModules::forward::<Scheme>(&module_inputs, &visibility.output, vk, srs)?; processed_outputs = Some(res.clone()); let module_results = res.get_result(visibility.output.clone()); for (i, outlet) in module_outlets.iter().enumerate() { model_results.outputs[*outlet] = Tensor::from(module_results[i].clone().into_iter()); } } else { processed_outputs = Some(GraphModules::forward::<Scheme>( &model_results.outputs, &visibility.output, vk, srs, )?); } } let mut witness = GraphWitness { inputs: original_inputs .iter() .map(|t| t.deref().to_vec()) .collect_vec(), pretty_elements: None, outputs: model_results .outputs .iter() .map(|t| t.deref().to_vec()) .collect_vec(), processed_inputs, processed_params, processed_outputs, max_lookup_inputs: model_results.max_lookup_inputs, min_lookup_inputs: model_results.min_lookup_inputs, max_range_size: model_results.max_range_size, }; witness.generate_rescaled_elements( self.model().graph.get_input_scales(), self.model().graph.get_output_scales()?, visi
bility, ); log::trace!( "witness: \n {}", &witness.as_json()?.to_colored_json_auto()? ); Ok(witness) } pub fn from_run_args( run_args: &RunArgs, model_path: &std::path::Path, ) -> Result<Self, Box<dyn std::error::Error>> { let model = Model::from_run_args(run_args, model_path)?; Self::new(model, run_args) } pub fn from_settings( params: &GraphSettings, model_path: &std::path::Path, check_mode: CheckMode, ) -> Result<Self, Box<dyn std::error::Error>> { params.run_args.validate()?; let model = Model::from_run_args(&params.run_args, model_path)?; Self::new_from_settings(model, params.clone(), check_mode) } pub async fn populate_on_chain_test_data( &mut self, data: &mut GraphData, test_on_chain_data: TestOnChainData, ) -> Result<(), Box<dyn std::error::Error>> { let input_scales = self.model().graph.get_input_scales(); let output_scales = self.model().graph.get_output_scales()?; let input_shapes = self.model().graph.input_shapes()?; let output_shapes = self.model().graph.output_shapes()?; if matches!( test_on_chain_data.data_sources.input, TestDataSource::OnChain ) { if self.settings().run_args.input_visibility.is_private() { return Err("Cannot use on-chain data source as private data".into()); } let input_data = match &data.input_data { DataSource::File(input_data) => input_data, _ => { return Err("Cannot use non file source as input for on-chain test. Manually populate on-chain data from file source instead" .into()) } }; let datam: (Vec<Tensor<Fp>>, OnChainSource) = OnChai
nSource::test_from_file_data( input_data, input_scales, input_shapes, test_on_chain_data.rpc.as_deref(), ) .await?; data.input_data = datam.1.into(); } if matches!( test_on_chain_data.data_sources.output, TestDataSource::OnChain ) { if self.settings().run_args.output_visibility.is_private() { return Err("Cannot use on-chain data source as private data".into()); } let output_data = match &data.output_data { Some(DataSource::File(output_data)) => output_data, Some(DataSource::OnChain(_)) => { return Err( "Cannot use on-chain data source as output for on-chain test. Will manually populate on-chain data from file source instead" .into(), ) } _ => return Err("No output data found".into()), }; let datum: (Vec<Tensor<Fp>>, OnChainSource) = OnChainSource::test_from_file_data( output_data, output_scales, output_shapes, test_on_chain_data.rpc.as_deref(), ) .await?; data.output_data = Some(datum.1.into()); } data.save(test_on_chain_data.data)?; Ok(()) } } pub
struct CircuitSize { num_instances: usize, num_advice_columns: usize, num_fixed: usize, num_challenges: usize, num_selectors: usize, logrows: u32, } impl CircuitSize { pub fn from_cs<F: Field>(cs: &ConstraintSystem<F>, logrows: u32) -> Self { CircuitSize { num_instances: cs.num_instance_columns(), num_advice_columns: cs.num_advice_columns(), num_fixed: cs.num_fixed_columns(), num_challenges: cs.num_challenges(), num_selectors: cs.num_selectors(), logrows, } } pub fn as_json(&self) -> Result<String, Box<dyn std::error::Error>> { let serialized = match serde_json::to_string(&self) { Ok(s) => s, Err(e) => { return Err(Box::new(e)); } }; Ok(serialized) } pub fn num_columns(&self) -> usize { self.num_instances + self.num_advice_columns + self.num_fixed } pub fn area(&self) -> usize { self.num_columns() * (1 << self.logrows) } pub fn area_less_than_max(&self) -> bool { if EZKL_MAX_CIRCUIT_AREA.is_some() { self.area() < EZKL_MAX_CIRCUIT_AREA.unwrap() } else { true } } } impl Circuit<Fp> for GraphCircuit { type Config = GraphConfig; type FloorPlanner = ModulePlanner; type Params = GraphSettings; fn without_witnesses(&self) -> Self { self.clone() } fn params(&self) -> Self::Params { self.settings().clone() } fn configure_with_params(cs: &mut ConstraintSystem<Fp>, params: Self::Params) -> Self::Config { let mut params = params.clone(); params.set_num_blinding_factors(cs.blinding_factors()); GLOBAL_SETTINGS.with(|settings| { *settings.borrow_mut() = Some(params.clone()); }); let visibility = match VarVisibility::from_args(&params.run_args) { Ok(v) => v, Err(e) => {
log::error!("failed to create visibility: {:?}", e); log::warn!("using default visibility"); VarVisibility::default() } }; let mut module_configs = ModuleConfigs::from_visibility( cs, params.module_sizes.clone(), params.run_args.logrows as usize, ); let mut vars = ModelVars::new(cs, &params); module_configs.configure_complex_modules(cs, visibility, params.module_sizes.clone()); vars.instantiate_instance( cs, params.model_instance_shapes.clone(), params.run_args.input_scale, module_configs.instance, ); let base = Model::configure(cs, &vars, &params).unwrap(); let model_config = ModelConfig { base, vars }; debug!( "degree: {}, log2_ceil of degrees: {:?}", cs.degree(), (cs.degree() as f32).log2().ceil() ); let circuit_size = CircuitSize::from_cs(cs, params.run_args.logrows); debug!( "circuit size: \n {}", circuit_size .as_json() .unwrap() .to_colored_json_auto() .unwrap() ); GraphConfig { model_config, module_configs, circuit_size, } } fn configure(_: &mut ConstraintSystem<Fp>) -> Self::Config { unimplemented!("you should call configure_with_params instead") } fn synthesize( &self, config: Self::Config, mut layouter: impl Layouter<Fp>, ) -> Result<(), PlonkError> { if !config.circuit_size.area_less_than_max() { error!( "circuit area {} is larger than the max allowed area {}", config.circuit_size.area(), EZKL_MAX_CIRCUIT_AREA.unwrap() ); return Err(PlonkError::Synthesis); } trace!("Setting input in synthesize
"); let input_vis = &self.settings().run_args.input_visibility; let output_vis = &self.settings().run_args.output_visibility; let mut graph_modules = GraphModules::new(); let mut constants = ConstantsMap::new(); let mut config = config.clone(); let mut inputs = self .graph_witness .get_input_tensor() .iter_mut() .map(|i| { i.set_visibility(input_vis); ValTensor::try_from(i.clone()).map_err(|e| { log::error!("failed to convert input to valtensor: {:?}", e); PlonkError::Synthesis }) }) .collect::<Result<Vec<ValTensor<Fp>>, PlonkError>>()?; let outputs = self .graph_witness .get_output_tensor() .iter_mut() .map(|i| { i.set_visibility(output_vis); ValTensor::try_from(i.clone()).map_err(|e| { log::error!("failed to convert output to valtensor: {:?}", e); PlonkError::Synthesis }) }) .collect::<Result<Vec<ValTensor<Fp>>, PlonkError>>()?; let mut instance_offset = 0; trace!("running input module layout"); let input_visibility = &self.settings().run_args.input_visibility; let outlets = input_visibility.overwrites_inputs(); if !outlets.is_empty() { let mut input_outlets = vec![]; for outlet in &outlets { input_outlets.push(inputs[*outlet].clone()); } graph_modules.layout( &mut layouter, &mut config.module_configs, &mut input_outlets, input_visibility, &mut instance_offset, &mut constants, )?; for (i, outlet) in outlets.iter().enumerate() { inputs[*outlet] = input_outlets[i].clone(); }
} else { graph_modules.layout( &mut layouter, &mut config.module_configs, &mut inputs, input_visibility, &mut instance_offset, &mut constants, )?; } let mut model = self.model().clone(); let param_visibility = &self.settings().run_args.param_visibility; trace!("running params module layout"); if !self.model().get_all_params().is_empty() && param_visibility.requires_processing() { let consts = self.model().get_all_params(); let mut flattened_params = { let mut t = Tensor::new(Some(&consts), &[consts.len()]) .map_err(|_| { log::error!("failed to flatten params"); PlonkError::Synthesis })? .combine() .map_err(|_| { log::error!("failed to combine params"); PlonkError::Synthesis })?; t.set_visibility(param_visibility); vec![t.try_into().map_err(|_| { log::error!("failed to convert params to valtensor"); PlonkError::Synthesis })?] }; graph_modules.layout( &mut layouter, &mut config.module_configs, &mut flattened_params, param_visibility, &mut instance_offset, &mut constants, )?; let shapes = self.model().const_shapes(); trace!("replacing processed consts"); let split_params = split_valtensor(&flattened_params[0], shapes).map_err(|_| { log::error!("failed to split params"); PlonkError::Synthesis })?; model.replace_consts(&split_params); } lay
outer.assign_region(|| "_enter_module_2", |_| Ok(()))?; trace!("laying out model"); let mut vars = config.model_config.vars.clone(); vars.set_initial_instance_offset(instance_offset); let mut outputs = model .layout( config.model_config.clone(), &mut layouter, &self.settings().run_args, &inputs, &mut vars, &outputs, &mut constants, ) .map_err(|e| { log::error!("{}", e); PlonkError::Synthesis })?; trace!("running output module layout"); let output_visibility = &self.settings().run_args.output_visibility; let outlets = output_visibility.overwrites_inputs(); instance_offset += vars.get_instance_len(); if !outlets.is_empty() { let mut output_outlets = vec![]; for outlet in &outlets { output_outlets.push(outputs[*outlet].clone()); } graph_modules.layout( &mut layouter, &mut config.module_configs, &mut output_outlets, &self.settings().run_args.output_visibility, &mut instance_offset, &mut constants, )?; for (i, outlet) in outlets.iter().enumerate() { outputs[*outlet] = output_outlets[i].clone(); } } else { graph_modules.layout( &mut layouter, &mut config.module_configs, &mut outputs, &self.settings().run_args.output_visibility, &mut instance_offset, &mut constants, )?; } Ok(()) } }
use super::extract_const_quantized_values; use super::node::*; use super::scale_to_multiplier; use super::vars::*; use super::GraphError; use super::GraphSettings; use crate::circuit::hybrid::HybridOp; use crate::circuit::region::ConstantsMap; use crate::circuit::region::RegionCtx; use crate::circuit::table::Range; use crate::circuit::Input; use crate::circuit::InputType; use crate::circuit::Unknown; use crate::tensor::ValType; use crate::{ circuit::{lookup::LookupOp, BaseConfig as PolyConfig, CheckMode, Op}, tensor::{Tensor, ValTensor}, RunArgs, }; use halo2curves::bn256::Fr as Fp; use super::input::GraphData; use colored::Colorize; use halo2_proofs::{ circuit::{Layouter, Value}, plonk::ConstraintSystem, }; use halo2curves::ff::Field; use itertools::Itertools; use log::error; use log::{debug, info, trace}; use serde::Deserialize; use serde::Serialize; use std::collections::BTreeMap; use std::collections::HashMap; use std::collections::HashSet; use std::error::Error; use std::fs; use std::io::Read; use std::path::PathBuf; use tabled::Table; use tract_onnx; use tract_onnx::prelude::{ Framework, Graph, InferenceFact, InferenceModelExt, SymbolValues, TypedFact, TypedOp, }; use tract_onnx::tract_core::internal::DatumType; use tract_onnx::tract_hir::ops::scan::Scan; use unzip_n::unzip_n; unzip_n!(pub 3); type TractResult = (Graph<TypedFact, Box<dyn TypedOp>>, SymbolValues); pub
struct ForwardResult { pub outputs: Vec<Tensor<Fp>>, pub max_lookup_inputs: i128, pub min_lookup_inputs: i128, pub max_range_size: i128, } impl From<DummyPassRes> for ForwardResult { fn from(res: DummyPassRes) -> Self { Self { outputs: res.outputs, max_lookup_inputs: res.max_lookup_inputs, min_lookup_inputs: res.min_lookup_inputs, max_range_size: res.max_range_size, } } } pub
struct ModelConfig { pub base: PolyConfig<Fp>, pub vars: ModelVars<Fp>, } pub type NodeGraph = BTreeMap<usize, NodeType>; pub
struct DummyPassRes { pub num_rows: usize, pub num_dynamic_lookups: usize, pub dynamic_lookup_col_coord: usize, pub num_shuffles: usize, pub shuffle_col_coord: usize, pub linear_coord: usize, pub total_const_size: usize, pub lookup_ops: HashSet<LookupOp>, pub range_checks: HashSet<Range>, pub max_lookup_inputs: i128, pub min_lookup_inputs: i128, pub max_range_size: i128, pub outputs: Vec<Tensor<Fp>>, } pub
struct Model { pub graph: ParsedNodes, pub visibility: VarVisibility, } pub enum OutputMapping { Single { outlet: usize, is_state: bool, }, Stacked { outlet: usize, axis: usize, is_state: bool, }, } impl OutputMapping { pub fn is_state(&self) -> bool { match self { OutputMapping::Single { is_state, .. } => *is_state, OutputMapping::Stacked { is_state, .. } => *is_state, } } pub fn outlet(&self) -> usize { match self { OutputMapping::Single { outlet, .. } => *outlet, OutputMapping::Stacked { outlet, .. } => *outlet, } } } pub enum InputMapping { Full, State, Stacked { axis: usize, chunk: usize, }, } fn number_of_iterations(mappings: &[InputMapping], dims: Vec<&[usize]>) -> usize { let mut number_of_iterations = dims.iter() .zip(mappings) .filter_map(|(dims, mapping)| match mapping { InputMapping::Stacked { axis, chunk } => Some( (dims[*axis] + chunk - 1) / chunk, ), _ => None, }); assert!(number_of_iterations.clone().all_equal()); number_of_iterations.next().unwrap_or(1) } fn input_state_idx(input_mappings: &[InputMapping]) -> Vec<usize> { input_mappings .iter() .enumerate() .filter(|(_, r)| matches!(r, InputMapping::State)) .map(|(index, _)| index) .collect::<Vec<_>>() } fn output_state_idx(output_mappings: &[Vec<OutputMapping>]) -> Vec<usize> { output_mappings .iter() .flatten() .filter_map(|x| if x.is_state() { Some(x.outlet()) } else { None }) .collect::<Vec<_>>() } pub enum NodeType { Node(Node), SubGraph { model: Model
, inputs: Vec<Outlet>, idx: usize, output_mappings: Vec<Vec<OutputMapping>>, input_mappings: Vec<InputMapping>, out_dims: Vec<Vec<usize>>, out_scales: Vec<crate::Scale>, }, } impl NodeType { pub fn is_lookup(&self) -> bool { match self { NodeType::Node(n) => n.opkind.is_lookup(), NodeType::SubGraph { .. } => false, } } pub fn num_uses(&self) -> usize { match self { NodeType::Node(n) => n.num_uses, NodeType::SubGraph { .. } => 0, } } pub fn inputs(&self) -> Vec<Outlet> { match self { NodeType::Node(n) => n.inputs.clone(), NodeType::SubGraph { inputs, .. } => inputs.clone(), } } pub fn out_dims(&self) -> Vec<Vec<usize>> { match self { NodeType::Node(n) => vec![n.out_dims.clone()], NodeType::SubGraph { out_dims, .. } => out_dims.clone(), } } pub fn out_scales(&self) -> Vec<crate::Scale> { match self { NodeType::Node(n) => vec![n.out_scale], NodeType::SubGraph { out_scales, .. } => out_scales.clone(), } } pub fn as_str(&self) -> String { match self { NodeType::Node(n) => n.opkind.as_string(), NodeType::SubGraph { .. } => "SUBGRAPH".into(), } } pub fn is_rebase(&self) -> bool { match self { NodeType::Node(n) => matches!(n.opkind, SupportedOp::RebaseScale { .. }), NodeType::SubGraph { .. } => false, } } pub fn is_input(&self) -> bool { match self { NodeType::Node(n) => n.opkind.is_input(), NodeType::SubGraph { .. } => false, } } pub fn is_constant(&self) -> bool { match self { NodeType::Node(n) => n.opkind.is_constant(), NodeType::SubGraph { .. } => fa
lse, } } pub fn idx(&self) -> usize { match self { NodeType::Node(n) => n.idx, NodeType::SubGraph { idx, .. } => *idx, } } pub
fn decrement_use(&mut self) { match self { NodeType::Node(n) => n.num_uses -= 1, NodeType::SubGraph { .. } => log::warn!("Cannot decrement const of subgraph"), } } pub
fn bump_scale(&mut self, scale: crate::Scale) { match self { NodeType::Node(n) => n.out_scale = scale, NodeType::SubGraph { .. } => log::warn!("Cannot bump scale of subgraph"), } } pub
fn replace_opkind(&mut self, opkind: SupportedOp) { match self { NodeType::Node(n) => n.opkind = opkind, NodeType::SubGraph { .. } => log::warn!("Cannot replace opkind of subgraph"), } } pub fn opkind(&self) -> SupportedOp { match self { NodeType::Node(n) => n.opkind.clone(), NodeType::SubGraph { .. } => SupportedOp::Unknown(Unknown), } } } pub
struct ParsedNodes { pub nodes: BTreeMap<usize, NodeType>, inputs: Vec<usize>, outputs: Vec<Outlet>, } impl ParsedNodes { pub fn num_inputs(&self) -> usize { let input_nodes = self.inputs.iter(); input_nodes.len() } pub fn get_input_types(&self) -> Result<Vec<InputType>, GraphError> { self.inputs .iter() .map(|o| { match self .nodes .get(o) .ok_or(GraphError::MissingNode(*o))? .opkind() { SupportedOp::Input(Input { datum_type, .. }) => Ok(datum_type.clone()), _ => Err(GraphError::InvalidInputTypes), } }) .collect::<Result<Vec<_>, _>>() } pub fn input_shapes(&self) -> Result<Vec<Vec<usize>>, Box<dyn Error>> { let mut inputs = vec![]; for input in self.inputs.iter() { let node = self .nodes .get(input) .ok_or(GraphError::MissingNode(*input))?; let input_dims = node.out_dims(); let input_dim = input_dims.first().ok_or(GraphError::MissingNode(*input))?; inputs.push(input_dim.clone()); } Ok(inputs) } pub fn num_outputs(&self) -> usize { let output_nodes = self.outputs.iter(); output_nodes.len() } pub fn output_shapes(&self) -> Result<Vec<Vec<usize>>, GraphError> { let mut outputs = vec![]; for output in self.outputs.iter() { let (idx, outlet) = output; let node = self.nodes.get(idx).ok_or(GraphError::MissingNode(*idx))?; let out_dims = node.out_dims(); let out_dim = out_dims .get(*outlet) .ok_or(GraphError::MissingNode(*outlet))?; outputs.push(out_dim.clone()); } Ok(outputs) } pub fn get_input_scales(&self) -> Vec<crate:
:Scale> { let input_nodes = self.inputs.iter(); input_nodes .flat_map(|idx| { self.nodes .get(idx) .ok_or(GraphError::MissingNode(*idx)) .map(|n| n.out_scales()) .unwrap_or_default() }) .collect() } pub fn get_output_scales(&self) -> Result<Vec<crate::Scale>, GraphError> { let output_nodes = self.outputs.iter(); output_nodes .map(|(idx, outlet)| { Ok(self .nodes .get(idx) .ok_or(GraphError::MissingNode(*idx))? .out_scales()[*outlet]) }) .collect::<Result<Vec<_>, GraphError>>() } } impl Model { pub fn new(reader: &mut dyn std::io::Read, run_args: &RunArgs) -> Result<Self, Box<dyn Error>> { let visibility = VarVisibility::from_args(run_args)?; let graph = Self::load_onnx_model(reader, run_args, &visibility)?; let om = Model { graph, visibility }; debug!("\n {}", om.table_nodes()); Ok(om) } pub fn save(&self, path: PathBuf) -> Result<(), Box<dyn Error>> { let f = std::fs::File::create(path)?; let writer = std::io::BufWriter::new(f); bincode::serialize_into(writer, &self)?; Ok(()) } pub fn load(path: PathBuf) -> Result<Self, Box<dyn Error>> { let mut f = std::fs::File::open(&path)?; let metadata = fs::metadata(&path)?; let mut buffer = vec![0; metadata.len() as usize]; f.read_exact(&mut buffer)?; let result = bincode::deserialize(&buffer)?; Ok(result) } pub fn gen_params( &self, run_args: &RunArgs, check_mode: CheckMode, ) -> Result<GraphSettings, Box<dyn Error>> { let instance_shapes = self.instance_shapes()?; debug!( "{} {} {}", "
model has".blue(), instance_shapes.len().to_string().blue(), "instances".blue() ); let inputs: Vec<ValTensor<Fp>> = self .graph .input_shapes()? .iter() .map(|shape| { let len = shape.iter().product(); let mut t: ValTensor<Fp> = (0..len) .map(|_| { if !self.visibility.input.is_fixed() { ValType::Value(Value::<Fp>::unknown()) } else { ValType::Constant(Fp::random(&mut rand::thread_rng())) } }) .collect::<Vec<_>>() .into(); t.reshape(shape)?; Ok(t) }) .collect::<Result<Vec<_>, Box<dyn Error>>>()?; let res = self.dummy_layout(run_args, &inputs, false)?; Ok(GraphSettings { run_args: run_args.clone(), model_instance_shapes: instance_shapes, module_sizes: crate::graph::modules::ModuleSizes::default(), num_rows: res.num_rows, total_assignments: res.linear_coord, required_lookups: res.lookup_ops.into_iter().collect(), required_range_checks: res.range_checks.into_iter().collect(), model_output_scales: self.graph.get_output_scales()?, model_input_scales: self.graph.get_input_scales(), num_dynamic_lookups: res.num_dynamic_lookups, total_dynamic_col_size: res.dynamic_lookup_col_coord, num_shuffles: res.num_shuffles, total_shuffle_col_size: res.shuffle_col_coord, total_const_size: res.total_const_size, check_mode, version: env!("CARGO_PKG_VERSION").to_string(), num_blinding_factors: None, timestamp: Some( instant::SystemTime::now() .duration_since
(instant::SystemTime::UNIX_EPOCH)? .as_millis(), ), timestamp: None, }) } pub fn forward( &self, model_inputs: &[Tensor<Fp>], run_args: &RunArgs, witness_gen: bool, ) -> Result<ForwardResult, Box<dyn Error>> { let valtensor_inputs: Vec<ValTensor<Fp>> = model_inputs .iter() .map(|x| x.map(|elem| ValType::Value(Value::known(elem))).into()) .collect(); let res = self.dummy_layout(run_args, &valtensor_inputs, witness_gen)?; Ok(res.into()) } fn load_onnx_using_tract( reader: &mut dyn std::io::Read, run_args: &RunArgs, ) -> Result<TractResult, Box<dyn Error>> { use tract_onnx::{ tract_core::internal::IntoArcTensor, tract_hir::internal::GenericFactoid, }; let mut model = tract_onnx::onnx().model_for_read(reader).map_err(|e| { error!("Error loading model: {}", e); GraphError::ModelLoad })?; let variables: std::collections::HashMap<String, usize> = std::collections::HashMap::from_iter(run_args.variables.clone()); for (i, id) in model.clone().inputs.iter().enumerate() { let input = model.node_mut(id.node); let mut fact: InferenceFact = input.outputs[0].fact.clone(); for (i, x) in fact.clone().shape.dims().enumerate() { if matches!(x, GenericFactoid::Any) { let batch_size = match variables.get("batch_size") { Some(x) => x, None => return Err("Unknown dimension batch_size in model inputs, set batch_size in variables".into()), }; fact.shape .set_dim(i, tract_onnx::prelude::TDim::Val(*batch_size as i64)); } } model.set_input_fact(i, fact)?; }
for (i, _) in model.clone().outputs.iter().enumerate() { model.set_output_fact(i, InferenceFact::default())?; } let mut symbol_values = SymbolValues::default(); for (symbol, value) in run_args.variables.iter() { let symbol = model.symbol_table.sym(symbol); symbol_values = symbol_values.with(&symbol, *value as i64); debug!("set {} to {}", symbol, value); } let mut typed_model = model .into_typed()? .concretize_dims(&symbol_values)? .into_decluttered()?; for node in typed_model.eval_order()? { let node = typed_model.node_mut(node); if let Some(op) = node.op_as_mut::<tract_onnx::tract_core::ops::konst::Const>() { if op.0.datum_type() == DatumType::TDim { let mut constant = op.0.as_ref().clone(); constant .as_slice_mut::<tract_onnx::prelude::TDim>()? .iter_mut() .for_each(|x| *x = x.eval(&symbol_values)); op.0 = constant.into_arc_tensor(); } } } Ok((typed_model, symbol_values)) } fn load_onnx_model( reader: &mut dyn std::io::Read, run_args: &RunArgs, visibility: &VarVisibility, ) -> Result<ParsedNodes, Box<dyn Error>> { let start_time = instant::Instant::now(); let (model, symbol_values) = Self::load_onnx_using_tract(reader, run_args)?; let scales = VarScales::from_args(run_args)?; let nodes = Self::nodes_from_graph( &model, run_args, &scales, visibility, &symbol_values, None, None, )?; debug!("\n {}", model); let parsed_nodes = ParsedNodes { nodes, inputs: model.inputs.iter().map
(|o| o.node).collect(), outputs: model.outputs.iter().map(|o| (o.node, o.slot)).collect(), }; let duration = start_time.elapsed(); trace!("model loading took: {:?}", duration); Ok(parsed_nodes) } pub fn table_nodes(&self) -> String { let mut node_accumulator = vec![]; let mut string = String::new(); for (idx, node) in &self.graph.nodes { match node { NodeType::Node(n) => { node_accumulator.push(n); } NodeType::SubGraph { model, inputs, .. } => { let mut table = Table::new(node_accumulator.iter()); table.with(tabled::settings::Style::modern()); table.with(tabled::settings::Shadow::new(1)); table.with( tabled::settings::style::BorderColor::default() .top(tabled::settings::Color::BG_YELLOW), ); string = format!("{} \n\n MAIN GRAPH \n\n{}", string, table); node_accumulator = vec![]; string = format!( "{}\n\n SUBGRAPH AT IDX {} WITH INPUTS {:?}\n{}", string, idx, inputs, model.table_nodes(), ); } } } let mut table = Table::new(node_accumulator.iter()); table.with(tabled::settings::Style::modern()); format!("{} \n{}", string, table) } pub fn nodes_from_graph( graph: &Graph<TypedFact, Box<dyn TypedOp>>, run_args: &RunArgs, scales: &VarScales, visibility: &VarVisibility, symbol_values: &SymbolValues, override_input_scales: Option<Vec<crate::Scale>>, override_output_scales: Option<HashMap<usize, crate::Scale>>, ) -> Result<BTreeMap<usize, NodeType
>, Box<dyn Error>> { use crate::graph::node_output_shapes; let mut nodes = BTreeMap::<usize, NodeType>::new(); let mut input_idx = 0; for (i, n) in graph.nodes.iter().enumerate() { match n.op().downcast_ref::<Scan>() { Some(b) => { let model = b.body.clone(); let input_scales = n .inputs .iter() .map(|i| { Ok(nodes .get(&i.node) .ok_or(GraphError::MissingNode(i.node))? .out_scales()[0]) }) .collect::<Result<Vec<_>, GraphError>>()?; let mut input_mappings = vec![]; for mapping in &b.input_mapping { match mapping { tract_onnx::tract_hir::ops::scan::InputMapping::Scan(info) => { input_mappings.push(InputMapping::Stacked { axis: info.axis, chunk: info.chunk as usize, }); } tract_onnx::tract_hir::ops::scan::InputMapping::State => { input_mappings.push(InputMapping::State); } tract_onnx::tract_hir::ops::scan::InputMapping::Full => { input_mappings.push(InputMapping::Full); } } } let input_state_idx = input_state_idx(&input_mappings); let mut output_mappings = vec![]; for (i, mapping) in b.output_mapping.iter().enumerate() { let mut mappings = vec![]; if let Some(outlet) = mapping.last_value_s
lot { mappings.push(OutputMapping::Single { outlet, is_state: mapping.state, }); } else if mapping.state { mappings.push(OutputMapping::Single { outlet: i, is_state: mapping.state, }); } if let Some(last) = mapping.scan { mappings.push(OutputMapping::Stacked { outlet: last.0, axis: last.1.axis, is_state: false, }); } output_mappings.push(mappings); } let output_state_idx = output_state_idx(&output_mappings); let mut output_scale_override = HashMap::new(); for (input_idx, output_idx) in input_state_idx.iter().zip(output_state_idx) { let input_scale = input_scales[*input_idx]; let mut traversed_len = 0; for (outer_idx, mappings) in output_mappings.iter().enumerate() { let mapping_len = mappings.len(); if traversed_len + mapping_len > output_idx { let output_node_idx = b.body.outputs[outer_idx].node; output_scale_override.insert(output_node_idx, input_scale); } traversed_len += mapping_len; } } let subgraph_nodes = Self::nodes_from_graph( &model, run_args, scales, visibility,
symbol_values, Some(input_scales.clone()), Some(output_scale_override), )?; let subgraph = ParsedNodes { nodes: subgraph_nodes, inputs: model.inputs.iter().map(|o| o.node).collect(), outputs: model.outputs.iter().map(|o| (o.node, o.slot)).collect(), }; let om = Model { graph: subgraph, visibility: visibility.clone(), }; let out_dims = node_output_shapes(n, symbol_values)?; let mut output_scales = BTreeMap::new(); for (i, _mapping) in b.output_mapping.iter().enumerate() { for mapping in b.output_mapping.iter() { if let Some(outlet) = mapping.last_value_slot { output_scales.insert(outlet, om.graph.get_output_scales()?[i]); } if let Some(last) = mapping.scan { output_scales.insert(last.0, om.graph.get_output_scales()?[i]); } } } let out_scales = output_scales.into_values().collect_vec(); nodes.insert( i, NodeType::SubGraph { model: om, inputs: n.inputs.iter().map(|i| (i.node, i.slot)).collect_vec(), idx: i, output_mappings, input_mappings, out_dims, out_scales, }, ); } None => { let mut n = Node::new( n.clone(), &m
ut nodes, scales, &run_args.param_visibility, i, symbol_values, run_args.div_rebasing, run_args.rebase_frac_zero_constants, )?; if let Some(ref scales) = override_input_scales { if let Some(inp) = n.opkind.get_input() { let scale = scales[input_idx]; n.opkind = SupportedOp::Input(Input { scale, datum_type: inp.datum_type, }); input_idx += 1; n.out_scale = scale; } } if let Some(ref scales) = override_output_scales { if scales.contains_key(&i) { let scale_diff = n.out_scale - scales[&i]; n.opkind = if scale_diff > 0 { RebaseScale::rebase( n.opkind, scales[&i], n.out_scale, 1, run_args.div_rebasing, ) } else { RebaseScale::rebase_up( n.opkind, scales[&i], n.out_scale, run_args.div_rebasing, ) }; n.out_scale = scales[&i]; } } nodes.insert(i, NodeType::Node(n)); } } } Self::remove_unused_nodes(&mut nodes); Ok(nodes) }
fn remove_unused_nodes(nodes: &mut BTreeMap<usize, NodeType>) { nodes.retain(|_, n| match n { NodeType::Node(n) => match &mut n.opkind { SupportedOp::Constant(c) => { c.empty_raw_value(); n.num_uses > 0 } _ => n.num_uses > 0, }, NodeType::SubGraph { model, .. } => { Self::remove_unused_nodes(&mut model.graph.nodes); true } }); } pub fn run_onnx_predictions( run_args: &RunArgs, model_path: &std::path::Path, data_chunks: &[GraphData], input_shapes: Vec<Vec<usize>>, ) -> Result<Vec<Vec<Tensor<f32>>>, Box<dyn Error>> { use tract_onnx::tract_core::internal::IntoArcTensor; let (model, _) = Model::load_onnx_using_tract( &mut std::fs::File::open(model_path) .map_err(|_| format!("failed to load {}", model_path.display()))?, run_args, )?; let datum_types: Vec<DatumType> = model .input_outlets()? .iter() .map(|o| model.node(o.node).outputs[o.slot].fact.datum_type) .collect(); let runnable_model = model.into_runnable()?; let mut outputs = vec![]; for chunk in data_chunks { let result = runnable_model.run(chunk.to_tract_data(&input_shapes, &datum_types)?)?; outputs.push( result .into_iter() .map(|t| { crate::graph::utilities::extract_tensor_value(t.into_arc_tensor()).unwrap() }) .collect(), ); } Ok(outputs) } pub fn from_run_args( run_args: &RunArgs, model: &std::path::Path, ) -> Result<Self, Box<dyn Error>> { Model::new( &mut std::fs::File::open(model) .map_err(|_| format!("failed to l
oad {}", model.display()))?, run_args, ) } pub fn configure( meta: &mut ConstraintSystem<Fp>, vars: &ModelVars<Fp>, settings: &GraphSettings, ) -> Result<PolyConfig<Fp>, Box<dyn Error>> { debug!("configuring model"); let lookup_range = settings.run_args.lookup_range; let logrows = settings.run_args.logrows as usize; let required_lookups = settings.required_lookups.clone(); let required_range_checks = settings.required_range_checks.clone(); let mut base_gate = PolyConfig::configure( meta, vars.advices[0..2].try_into()?, &vars.advices[2], settings.check_mode, ); let input = &vars.advices[0]; let output = &vars.advices[2]; let index = &vars.advices[1]; for op in required_lookups { base_gate.configure_lookup(meta, input, output, index, lookup_range, logrows, &op)?; } for range in required_range_checks { base_gate.configure_range_check(meta, input, index, range, logrows)?; } if settings.requires_dynamic_lookup() { base_gate.configure_dynamic_lookup( meta, vars.advices[0..3].try_into()?, vars.advices[3..6].try_into()?, )?; } if settings.requires_shuffle() { base_gate.configure_shuffles( meta, vars.advices[0..2].try_into()?, vars.advices[3..5].try_into()?, )?; } Ok(base_gate) } pub fn layout( &self, mut config: ModelConfig, layouter: &mut impl Layouter<Fp>, run_args: &RunArgs, inputs: &[ValTensor<Fp>], vars: &mut ModelVars<Fp>, witnessed_outputs: &[ValTensor<Fp>], constants: &mut ConstantsMap<Fp>, ) -> Result<Vec<ValTensor<Fp>>, Box<dyn Error>> {
info!("model layout..."); let start_time = instant::Instant::now(); let mut results = BTreeMap::<usize, Vec<ValTensor<Fp>>>::new(); let input_shapes = self.graph.input_shapes()?; for (i, input_idx) in self.graph.inputs.iter().enumerate() { if self.visibility.input.is_public() { let instance = vars.instance.as_ref().ok_or("no instance")?.clone(); results.insert(*input_idx, vec![instance]); vars.increment_instance_idx(); } else { let mut input = inputs[i].clone(); input.reshape(&input_shapes[i])?; results.insert(*input_idx, vec![input]); } } let instance_idx = vars.get_instance_idx(); config.base.layout_tables(layouter)?; config.base.layout_range_checks(layouter)?; let original_constants = constants.clone(); let outputs = layouter.assign_region( || "model", |region| { let mut thread_safe_region = RegionCtx::new_with_constants(region, 0, run_args.num_inner_cols, original_constants.clone()); vars.set_instance_idx(instance_idx); let outputs = self .layout_nodes(&mut config, &mut thread_safe_region, &mut results) .map_err(|e| { error!("{}", e); halo2_proofs::plonk::Error::Synthesis })?; if run_args.output_visibility.is_public() || run_args.output_visibility.is_fixed() { let output_scales = self.graph.get_output_scales().map_err(|e| { error!("{}", e); halo2_proofs::plonk::Error::Synthesis })?; let res = outputs .iter() .enumerate() .map(|(i, output)| { let mut tolerance = run_args.tol
erance; tolerance.scale = scale_to_multiplier(output_scales[i]).into(); let comparators = if run_args.output_visibility == Visibility::Public { let res = vars.instance.as_ref().ok_or("no instance")?.clone(); vars.increment_instance_idx(); res } else { if witnessed_outputs.len() <= i { return Err("you provided insufficient witness values to generate a fixed output".into()); } witnessed_outputs[i].clone() }; config.base.layout( &mut thread_safe_region, &[output.clone(), comparators], Box::new(HybridOp::RangeCheck(tolerance)), ) }) .collect::<Result<Vec<_>,_>>(); res.map_err(|e| { error!("{}", e); halo2_proofs::plonk::Error::Synthesis })?; } thread_safe_region.debug_report(); *constants = thread_safe_region.assigned_constants().clone(); Ok(outputs) }, )?; let duration = start_time.elapsed(); trace!("model layout took: {:?}", duration); Ok(outputs) } fn layout_nodes( &self, config: &mut ModelConfig, region: &mut RegionCtx<Fp>, results: &mut BTreeMap<usize, Vec<ValTensor<Fp>>>, ) -> Result<Vec<ValTensor<Fp>>, Box<dyn Error>> { let orig_inputs: BTreeMap<usize, _> = results .clone() .into_iter() .filter(|(idx, _)| self.graph.inpu
ts.contains(idx)) .collect(); for (idx, node) in self.graph.nodes.iter() { debug!("laying out {}: {}", idx, node.as_str(),); region.debug_report(); debug!("input indices: {:?}", node.inputs()); debug!("output scales: {:?}", node.out_scales()); debug!( "input scales: {:?}", node.inputs() .iter() .map(|(idx, outlet)| self.graph.nodes[idx].out_scales()[*outlet]) .collect_vec() ); let mut values: Vec<ValTensor<Fp>> = if !node.is_input() { node.inputs() .iter() .map(|(idx, outlet)| { Ok(results.get(idx).ok_or(GraphError::MissingResults)?[*outlet].clone()) }) .collect::<Result<Vec<_>, GraphError>>()? } else { vec![results.get(idx).ok_or(GraphError::MissingResults)?[0].clone()] }; debug!("output dims: {:?}", node.out_dims()); debug!( "input dims {:?}", values.iter().map(|v| v.dims()).collect_vec() ); match &node { NodeType::Node(n) => { let res = if node.is_constant() && node.num_uses() == 1 { log::debug!("node {} is a constant with 1 use", n.idx); let mut node = n.clone(); let c = node.opkind.get_mutable_constant().ok_or("no constant")?; Some(c.quantized_values.clone().try_into()?) } else { config .base .layout(region, &values, n.opkind.clone_dyn()) .map_err(|e| { error!("{}", e); halo2_proofs::plonk::Error::Synthesis