text
stringlengths
1
2.05k
b[38;5;241;43m.\u001b[39;49m\u001b[43mround\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mastype\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mint\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdepthBias\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mastype\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mint\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpointBias\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mastype\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mint\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 25\u001b[0m actual_scaled \u001b[38;5;241m=\u001b[39m [[[point_out[i][j][k] \u001b[38;5;241m/\u001b[39m \u001b[38;5;241m10\u001b[39m\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mEXPONENT \u001b[38;5;28;01mfor\u001b[39;00m k \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;241m6\u001b[39m)] \u001b[38;5;28;01mfor\u001b[39;00m j \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;241m5\u001b[39m)] \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;241m5\u001b[39m)]\n\u001b[1;32m 27\u001b[0m expected \u001b[38;5;241m=\u001b[39m expected\u001b[38;5;241m.\u001b[39msqueeze()\u001b[38;5;241m.\u001b[39mtranspose((\u001b[38;5;241m1\u001b[39m, \u001b[38;5;241m2\u001b[39m, \u001b[38;5;241m0\u001b[39m))\n", "Cell \u001b[0;32mIn[5], line 60\u001b[0m, in \u001b[0;36mSeparableConvImpl\u001b[0;34m(nRows, nCols, nChannels, nDepthFilters, nPointFilters, kernelSize, strides, n, input, depthWeights, pointWeights, depthBias, pointBias)\u001b[0m\n\u001b[1;32m 57\u001b[0m outCols \u001b[38;5;241m=\u001b[39m (nCols \u001b[38;5;241m-\u001b[39m kernelSize)\u001b[38;5;241m/\u001b[39m\u001b[38;5;241m/\u001b[39mstrides \u001b[38;5;241m+\u001b[39m \u001b[38;5;241m1\u001b[39m\n\u001b[1;32m 59\u001b[0m depth_out, depth_remainder \u001
b[38;5;241m=\u001b[39m DepthwiseConv(nRows, nCols, nChannels, nDepthFilters, kernelSize, strides, n, \u001b[38;5;28minput\u001b[39m, depthWeights, depthBias)\n\u001b[0;32m---> 60\u001b[0m point_out, point_str_out, point_remainder \u001b[38;5;241m=\u001b[39m PointwiseConv2d(outRows, outCols, nChannels, nPointFilters, strides, n, \u001b[43mdepthOut\u001b[49m, pointWeights, pointBias)\n\u001b[1;32m 61\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m depth_out, depth_remainder, point_out, point_str_out, point_remainder\n", "\u001b[0;31mNameError\u001b[0m: name 'depthOut' is not defined" ] } ], "source": [ "depthWeights = model.dw_conv.weight.squeeze().detach().numpy()\n", "depthBias = torch.zeros(depthWeights.shape[0]).numpy()\n", "\n", "depthWeights = depthWeights.transpose((1, 2, 0))\n", "\n", "pointWeights = model.pw_conv.weight.detach().numpy()\n", "print(f\"{depthWeights.shape=}\")\n", "pointBias = torch.zeros(pointWeights.shape[0]).numpy()\n", "pointWeights = pointWeights.transpose((2, 3, 1, 0)).squeeze()\n", "\n", "expected = model(input).detach().numpy()\n", "print(f\"{expected.shape=}\")\n", "\n", "padded = F.pad(input, (1,1,1,1), \"constant\", 0) "padded = padded.squeeze().numpy().transpose((1, 2, 0))\n", "\n", "print(pointBias.shape)\n", " "quantized_image = padded * 10**EXPONENT\n", "quantized_depth_weights = depthWeights * 10**EXPONENT\n", "quantized_point_weights = pointWeights * 10**EXPONENT\n", "\n", "depth_out, depth_remainder, point_out, point_str_out, point_remainder = SeparableConvImpl(7, 7, 3, 3, 6, 3, 1, 10**EXPONENT, quantized_image.round().astype(int), quantized_depth_weights.round().astype(int), quantized_point_weights.round().astype(int), depthBias.astype(int), pointBias.astype(int))\n", "\n", "actual_scaled = [[[point_out[i][j][k] / 10**EXPONENT for k in range(6)] for j in range(5)] for i in range(5)]\n", "\n", "expected = expected.squeeze().transpose((1, 2, 0)
)\n", "\n", "assert(np.allclose(expected, actual_scaled, atol=0.00001))\n", "\n", "\n", " "\n", "circuit_in = quantized_image.round().astype(int).astype(str).tolist()\n", "circuit_depth_weights = quantized_depth_weights.round().astype(int).astype(str).tolist()\n", "circuit_point_weights = quantized_point_weights.round().astype(int).astype(str).tolist()\n", "circuit_depth_bias = depthBias.round().astype(int).astype(str).tolist()\n", "circuit_point_bias = pointBias.round().astype(int).astype(str).tolist()\n", "\n", "\n", "input_json_path = \"separableConv2D_input.json\"\n", "with open(input_json_path, \"w\") as input_file:\n", " json.dump({\"in\": circuit_in,\n", " \"depthWeights\": circuit_depth_weights,\n", " \"depthBias\": circuit_depth_bias,\n", " \"depthRemainder\": depth_remainder,\n", " \"depthOut\": depth_out,\n", " \n", " \"pointWeights\": circuit_point_weights,\n", " \"pointBias\": circuit_point_bias,\n", " \"pointRemainder\": point_remainder,\n", " \"pointOut\": point_str_out,\n", " },\n", " input_file)\n" ] }, { "cell_type": "code", "execution_count": 44, "id": "f0dcbca8-7f2f-47ea-b662-29a8560774b1", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 289246014266912, 458852178050435, -104551710192411,\n", " -85286796832706, 70991076566637, -373719950995314])" ] }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ "test = np.array(actual)\n", "test[0][0]" ] }, { "cell_type": "code", "execution_count": 45, "id": "3a652322-2fa0-4f51-bb2f-ed49bd94c65a", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 0.289246 , 0.45885214, -0.10455
171, -0.0852868 , 0.07099106,\n", " -0.37371993], dtype=float32)" ] }, "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ "expected[0][0]" ] }, { "cell_type": "code", "execution_count": null, "id": "56d3dda8-af64-402e-9c86-b333ca6782ba", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.5" } }, "nbformat": 4, "nbformat_minor": 5 }
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from tensorflow.keras.layers
import Input, AveragePooling2D, Lambda\n", "from tensorflow.keras
import Model\n", "
import numpy as np" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "inputs = Input(shape=(5,5,3))\n", "x = AveragePooling2D(pool_size=2)(inputs)\n", "x = Lambda(lambda x: x*4)(x)\n", "model = Model(inputs, x)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Model: \"model\"\n", "_________________________________________________________________\n", "Layer (type) Output Shape Param "=================================================================\n", "input_1 (InputLayer) [(None, 5, 5, 3)] 0 \n", "_________________________________________________________________\n", "average_pooling2d (AveragePo (None, 2, 2, 3) 0 \n", "_________________________________________________________________\n", "lambda (Lambda) (None, 2, 2, 3) 0 \n", "=================================================================\n", "Total params: 0\n", "Trainable params: 0\n", "Non-trainable params: 0\n", "_________________________________________________________________\n" ] } ], "source": [ "model.summary()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[[[0.83128186, 0.15650764, 0.23798145],\n", " [0.00277366, 0.8374127 , 0.95278315],\n", " [0.3074389 , 0.21931738, 0.14886067],\n", " [0.13590018, 0.98728255, 0.12085182],\n", " [0.47212572, 0.51380922, 0.74891219]],\n", "\n", " [[0.74680338, 0.2533205 , 0.5039968 ],\n", " [0.14475403, 0.00791911, 0.4361197 ],\n", " [0.69925568, 0.77507624, 0.40388991],\n", "
[0.29508251, 0.99375606, 0.84959701],\n", " [0.88844918, 0.33910189, 0.9617212 ]],\n", "\n", " [[0.76480625, 0.591287 , 0.0714191 ],\n", " [0.94371681, 0.1695303 , 0.4476252 ],\n", " [0.54372616, 0.83818804, 0.95211573],\n", " [0.30485104, 0.15165265, 0.94709317],\n", " [0.90827137, 0.58854675, 0.01857002]],\n", "\n", " [[0.70123418, 0.43090173, 0.7096038 ],\n", " [0.20637783, 0.20096581, 0.22956612],\n", " [0.81978383, 0.16775403, 0.67412096],\n", " [0.1011535 , 0.35596916, 0.36702071],\n", " [0.5874605 , 0.79341372, 0.93292159]],\n", "\n", " [[0.77997124, 0.46311399, 0.5465576 ],\n", " [0.20406287, 0.37547625, 0.59862253],\n", " [0.52933135, 0.84249092, 0.02969684],\n", " [0.29114617, 0.10405779, 0.5359062 ],\n", " [0.25197146, 0.83297465, 0.67025403]]]])" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X = np.random.rand(1,5,5,3)\n", "X" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[[[1.7256129, 1.2551599, 2.1308813],\n", " [1.4376774, 2.9754324, 1.5231993]],\n", "\n", " [[2.6161351, 1.3926848, 1.4582142],\n", " [1.7695144, 1.5135639, 2.9403505]]]], dtype=float32)" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "y = model.predict(X)\n", "y" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "in_json = {\n", " \"in\": (X*1000).round().astype(int).flatten().tolist()\n", "}" ] }, { "cell_type": "code", "execution_count": 7, "metad
ata": {}, "outputs": [], "source": [ "out_json = {\n", " \"out\": (y*1000).round().astype(int).flatten().tolist()\n", "}" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "
import json" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "with open(\"sumPooling2D_input.json\", \"w\") as f:\n", " json.dump(in_json, f)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "with open(\"sumPooling2D_output.json\", \"w\") as f:\n", " json.dump(out_json, f)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "inputs = Input(shape=(10,10,3))\n", "x = AveragePooling2D(pool_size=2, strides=3)(inputs)\n", "x = Lambda(lambda x: x*4)(x)\n", "model = Model(inputs, x)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Model: \"model_2\"\n", "_________________________________________________________________\n", "Layer (type) Output Shape Param "=================================================================\n", "input_3 (InputLayer) [(None, 10, 10, 3)] 0 \n", "_________________________________________________________________\n", "average_pooling2d_2 (Average (None, 3, 3, 3) 0 \n", "_________________________________________________________________\n", "lambda_2 (Lambda) (None, 3, 3, 3) 0 \n", "=================================================================\n", "Total params: 0\n", "Trainable params: 0\n", "Non-trainable params: 0\n", "_________________________________________________________________\n" ] } ], "source": [ "model.summary()" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[[[0.31514958, 0.03200121, 0.29129004],\n", "
[0.35725668, 0.87252739, 0.77162311],\n", " [0.61707883, 0.7945887 , 0.48907944],\n", " [0.98197306, 0.88814753, 0.69652672],\n", " [0.2518265 , 0.82753267, 0.57464263],\n", " [0.62115028, 0.76805041, 0.65967975],\n", " [0.32491691, 0.93353364, 0.74831234],\n", " [0.45570461, 0.96830864, 0.8476189 ],\n", " [0.02149766, 0.27808247, 0.18207897],\n", " [0.15949257, 0.69372265, 0.43455872]],\n", "\n", " [[0.70915807, 0.60410698, 0.94721792],\n", " [0.5621233 , 0.65546021, 0.27357865],\n", " [0.00414209, 0.08635782, 0.30528659],\n", " [0.11492599, 0.15002234, 0.58496289],\n", " [0.72848003, 0.55169839, 0.91708802],\n", " [0.43479205, 0.08069621, 0.68404234],\n", " [0.3946513 , 0.20447291, 0.10467492],\n", " [0.78817621, 0.63518792, 0.00827133],\n", " [0.0853401 , 0.75656605, 0.95034115],\n", " [0.92239164, 0.06871402, 0.37783711]],\n", "\n", " [[0.36000095, 0.35659628, 0.6507159 ],\n", " [0.29486935, 0.49464939, 0.40502335],\n", " [0.09509896, 0.08726498, 0.39326876],\n", " [0.38827707, 0.50908505, 0.63443643],\n", " [0.27030144, 0.67783072, 0.09309034],\n", " [0.76360544, 0.67003754, 0.28767228],\n", " [0.55305299, 0.60216561, 0.3544107 ],\n", " [0.55839884, 0.86964781, 0.26053367],\n", " [0.87306012, 0.78756102, 0.04817508],\n", " [0.72406774, 0.67679246, 0.82272016]],\n", "\n", " [[0.71765743, 0.50852032, 0.52047892],\n", " [0.7484707 , 0.97207503, 0.08778545],\n", " [0.15780167, 0.73192822, 0.40718403],\n", " [0.93263197, 0.8772701 , 0.34486053],\n", " [0.42436095, 0.80504181, 0.39139203],\n", "
[0.81358273, 0.56754054, 0.12608038],\n", " [0.11843567, 0.61136361, 0.81339895],\n", " [0.27636648, 0.57453166, 0.10632468],\n", " [0.53090786, 0.14594835, 0.08140653],\n", " [0.34118642, 0.27554414, 0.19515355]],\n", "\n", " [[0.12974003, 0.6264065 , 0.56250089],\n", " [0.05655555, 0.93847961, 0.71849845],\n", " [0.57644684, 0.37077012, 0.53949152],\n", " [0.45904117, 0.30854737, 0.73517714],\n", " [0.64076017, 0.59373326, 0.83758554],\n", " [0.80707699, 0.79461191, 0.69655474],\n", " [0.79872758, 0.26420269, 0.29237624],\n", " [0.45087863, 0.28258419, 0.50447663],\n", " [0.29494657, 0.31770288, 0.49309187],\n", " [0.82460949, 0.3940875 , 0.33865267]],\n", "\n", " [[0.1108653 , 0.35294351, 0.44014634],\n", " [0.4988099 , 0.34405962, 0.77622373],\n", " [0.76444373, 0.88689451, 0.05756076],\n", " [0.57160174, 0.0752442 , 0.5098132 ],\n", " [0.22539676, 0.47741414, 0.28993556],\n", " [0.43298235, 0.58710277, 0.69306001],\n", " [0.9521223 , 0.87239108, 0.10672981],\n", " [0.93125144, 0.19405455, 0.95483289],\n", " [0.91030892, 0.85961313, 0.67439157],\n", " [0.09377237, 0.75818836, 0.61985122]],\n", "\n", " [[0.4344654 , 0.97297157, 0.89560878],\n", " [0.91664946, 0.68966445, 0.0530751 ],\n", " [0.72099738, 0.05779864, 0.30259649],\n", " [0.55598956, 0.11611106, 0.24856552],\n", " [0.40690072, 0.66148966, 0.22159354],\n", " [0.53035294, 0.23237414, 0.82781172],\n", " [0.20375017, 0.23486322, 0.36461596],\n", " [0.05525619, 0.59671011, 0.08001122],\n", " [0.11250979, 0.98519728, 0.57553523],\n", "
[0.6117834 , 0.65811775, 0.78386287]],\n", "\n", " [[0.39532528, 0.78660638, 0.37617851],\n", " [0.86246711, 0.59398046, 0.50843286],\n", " [0.41395181, 0.96399598, 0.8374128 ],\n", " [0.76981858, 0.41760042, 0.17438256],\n", " [0.05937649, 0.93289121, 0.63833505],\n", " [0.97571178, 0.06364159, 0.34572432],\n", " [0.42278241, 0.52111442, 0.62746908],\n", " [0.0401781 , 0.80713288, 0.26990436],\n", " [0.21850787, 0.19009324, 0.04497292],\n", " [0.16176602, 0.20893733, 0.34094974]],\n", "\n", " [[0.13094336, 0.90151022, 0.82541695],\n", " [0.73192844, 0.24791076, 0.3587372 ],\n", " [0.88818939, 0.92023872, 0.69098959],\n", " [0.08104613, 0.6361497 , 0.42552169],\n", " [0.44517886, 0.99055202, 0.15580116],\n", " [0.78742252, 0.04735346, 0.46423316],\n", " [0.53474903, 0.79917168, 0.33019955],\n", " [0.31087978, 0.65384266, 0.77275665],\n", " [0.56393354, 0.5761927 , 0.4287843 ],\n", " [0.57457285, 0.67154059, 0.52881047]],\n", "\n", " [[0.78373278, 0.15164648, 0.92791502],\n", " [0.0999971 , 0.47319914, 0.44424683],\n", " [0.74758969, 0.04583226, 0.0579972 ],\n", " [0.37325021, 0.12464474, 0.61199188],\n", " [0.07404238, 0.65504221, 0.18787021],\n", " [0.16955187, 0.12750002, 0.48252436],\n", " [0.17829354, 0.85701326, 0.41402596],\n", " [0.21677806, 0.18949005, 0.27735136],\n", " [0.06721647, 0.16941253, 0.46916978],\n", " [0.39921131, 0.17705116, 0.94534667]]]])" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X = np.random.rand(1,10,10,3)\n", "X" ] }, {
"cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[[[1.9436876 , 2.1640959 , 2.2837098 ],\n", " [2.0772057 , 2.4174008 , 2.7732203 ],\n", " [1.963449 , 2.741503 , 1.7088774 ]],\n", "\n", " [[1.6524236 , 3.0454814 , 1.8892637 ],\n", " [2.4567943 , 2.5845926 , 2.3090153 ],\n", " [1.6444083 , 1.7326821 , 1.7165766 ]],\n", "\n", " [[2.6089072 , 3.043223 , 1.8332952 ],\n", " [1.7920854 , 2.1280923 , 1.2828767 ],\n", " [0.72196686, 2.1598206 , 1.3420006 ]]]], dtype=float32)" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "y = model.predict(X)\n", "y" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "in_json = {\n", " \"in\": (X*1000).round().astype(int).flatten().tolist()\n", "}" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "out_json = {\n", " \"out\": (y*1000).round().astype(int).flatten().tolist()\n", "}" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "with open(\"sumPooling2D_stride_input.json\", \"w\") as f:\n", " json.dump(in_json, f)" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "with open(\"sumPooling2D_stride_output.json\", \"w\") as f:\n", " json.dump(out_json, f)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "tf24", "language": "python", "name": "tf24" }, "language_info": { "codemirror_mode": { "name": "ipython", "version"
: 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.6" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }
{ "cells": [ { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "from tensorflow.keras.layers
import Input, UpSampling2D\n", "from tensorflow.keras
import Model\n", "
import numpy as np" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "inputs = Input(shape=(1,2,3))\n", "x = UpSampling2D(size=2)(inputs)\n", "model = Model(inputs, x)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Model: \"model_1\"\n", "_________________________________________________________________\n", " Layer (type) Output Shape Param "=================================================================\n", " input_2 (InputLayer) [(None, 1, 2, 3)] 0 \n", " \n", " up_sampling2d_1 (UpSampling (None, 2, 4, 3) 0 \n", " 2D) \n", " \n", "=================================================================\n", "Total params: 0\n", "Trainable params: 0\n", "Non-trainable params: 0\n", "_________________________________________________________________\n" ] } ], "source": [ "model.summary()" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[[[842674, 497907, 66624],\n", " [875287, 832625, 34934]]]])" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X = (np.random.rand(1,1,2,3)*1e6).astype(int)\n", "X" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1/1 [==============================] - 0s 27ms/step\n" ] }, {
"data": { "text/plain": [ "array([[[[842674., 497907., 66624.],\n", " [842674., 497907., 66624.],\n", " [875287., 832625., 34934.],\n", " [875287., 832625., 34934.]],\n", "\n", " [[842674., 497907., 66624.],\n", " [842674., 497907., 66624.],\n", " [875287., 832625., 34934.],\n", " [875287., 832625., 34934.]]]], dtype=float32)" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "y = model.predict(X)\n", "y" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "def UpSampling2DInt(nRows, nCols, nChannels, size, input):\n", " out = [[[None for _ in range(nChannels)] for _ in range(nCols*size)] for _ in range(nRows*size)]\n", " for i in range(nRows):\n", " for j in range(nCols):\n", " for c in range(nChannels):\n", " for k in range(size):\n", " for l in range(size):\n", " out[i*size+k][j*size+l][c] = input[i][j][c]\n", " return out\n" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "X_in = [[[int(X[0][i][j][k]) for k in range(3)] for j in range(2)] for i in range(1)]" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[[[842674, 497907, 66624],\n", " [842674, 497907, 66624],\n", " [875287, 832625, 34934],\n", " [875287, 832625, 34934]],\n", " [[842674, 497907, 66624],\n", " [842674, 497907, 66624],\n", " [875287, 832625, 34934],\n", " [875287, 832625, 34934]]]" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "out = Up
Sampling2DInt(1, 2, 3, 2, X_in)\n", "out" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "assert np.all(y[0].astype(int) == np.array(out))" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "in_json = {\n", " \"in\": X_in,\n", " \"out\": out\n", "}" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "
import json\n", "with open(\"upSampling2D_input.json\", \"w\") as f:\n", " json.dump(in_json, f)" ] } ], "metadata": { "kernelspec": { "display_name": "keras2circom", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.13" } }, "nbformat": 4, "nbformat_minor": 2 }
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("AveragePooling2D layer test", function () { this.timeout(100000000); // AveragePooling with strides==poolSize it("(5,5,3) -> (2,2,3)", async () => { const INPUT = require("../models/averagePooling2D_input.json"); const circuit = await wasm_tester(path.join(__dirname, "circuits", "AveragePooling2D_test.circom")); const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); // AveragePooling with strides!=poolSize it("(10,10,3) -> (4,4,3)", async () => { const INPUT = require("../models/averagePooling2D_stride_input.json"); const circuit = await wasm_tester(path.join(__dirname, "circuits", "AveragePooling2D_stride_test.circom")); const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); });
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("BatchNormalization layer test", function () { this.timeout(100000000); it("(5,5,3) -> (5,5,3)", async () => { const INPUT = require("../models/batchNormalization_input.json"); const circuit = await wasm_tester(path.join(__dirname, "circuits", "BatchNormalization_test.circom")); const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); });
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; const INPUT = require("../models/conv1D_input.json"); describe("Conv1D layer test", function () { this.timeout(100000000); it("(20,3) -> (6,2)", async () => { const circuit = await wasm_tester(path.join(__dirname, "circuits", "Conv1D_test.circom")); const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); });
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("Conv2D layer test", function () { this.timeout(100000000); it("(5,5,3) -> (3,3,2)", async () => { const INPUT = require("../models/conv2D_input.json"); const circuit = await wasm_tester(path.join(__dirname, "circuits", "Conv2D_test.circom")); const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); it("(10,10,3) -> (3,3,2)", async () => { const INPUT = require("../models/conv2D_stride_input.json"); const circuit = await wasm_tester(path.join(__dirname, "circuits", "Conv2D_stride_test.circom")); const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); });
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("Conv2Dsame layer test", function () { this.timeout(100000000); it("(5,5,3) -> (5,5,2)", async () => { const INPUT = require("../models/Conv2Dsame_input.json"); const circuit = await wasm_tester(path.join(__dirname, "circuits", "Conv2Dsame_test.circom")); const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); it("(10,10,3) -> (4,4,2)", async () => { const INPUT = require("../models/Conv2Dsame_stride_input.json"); const circuit = await wasm_tester(path.join(__dirname, "circuits", "Conv2Dsame_stride_test.circom")); const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); });
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("Dense layer test", function () { this.timeout(100000000); it("20 nodes -> 10 nodes", async () => { const INPUT = require("../models/dense_input.json"); const circuit = await wasm_tester(path.join(__dirname, "circuits", "Dense_test.circom")); const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); });
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("DepthwiseConv2D layer test", function () { this.timeout(100000000); it("(7,7,3) -> (5,5,3)", async () => { const INPUT = require("../models/depthwiseConv2D_input.json"); const circuit = await wasm_tester(path.join(__dirname, "circuits", "DepthwiseConv2D_test.circom")); const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); });
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("Flatten2D layer test", function () { this.timeout(100000000); it("(5,5,3) -> 75", async () => { const INPUT = require("../models/flatten2D_input.json"); const circuit = await wasm_tester(path.join(__dirname, "circuits", "Flatten2D_test.circom")); const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); });
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("GlobalAveragePooling2D layer test", function () { this.timeout(100000000); // GlobalAveragePooling with strides==poolSize it("(5,5,3) -> (3,)", async () => { const INPUT = require("../models/globalAveragePooling2D_input.json"); const circuit = await wasm_tester(path.join(__dirname, "circuits", "GlobalAveragePooling2D_test.circom")); const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); });
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("GlobalMaxPooling2D layer test", function () { this.timeout(100000000); // GlobalMaxPooling with strides==poolSize it("(5,5,3) -> (3,)", async () => { const INPUT = require("../models/globalMaxPooling2D_input.json"); const circuit = await wasm_tester(path.join(__dirname, "circuits", "GlobalMaxPooling2D_test.circom")); const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); });
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("IsNegative test", function () { this.timeout(100000000); it("Negative -> 1", async () => { const circuit = await wasm_tester(path.join(__dirname, "circuits", "IsNegative_test.circom")); //await circuit.loadConstraints(); //assert.equal(circuit.nVars, 516); //assert.equal(circuit.constraints.length, 516); const INPUT = { "in": Fr.e(-1) } const witness = await circuit.calculateWitness(INPUT, true); //console.log(witness); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); assert(Fr.eq(Fr.e(witness[1]),Fr.e(1))); }); it("Positive -> 0", async () => { const circuit = await wasm_tester(path.join(__dirname, "circuits", "IsNegative_test.circom")); //await circuit.loadConstraints(); //assert.equal(circuit.nVars, 516); //assert.equal(circuit.constraints.length, 516); const INPUT = { "in": "1" } const witness = await circuit.calculateWitness(INPUT, true); //console.log(witness); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); assert(Fr.eq(Fr.e(witness[1]),Fr.e(0))); }); });
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("IsPositive test", function () { this.timeout(100000000); it("Positive -> 1", async () => { const circuit = await wasm_tester(path.join(__dirname, "circuits", "IsPositive_test.circom")); //await circuit.loadConstraints(); //assert.equal(circuit.nVars, 516); //assert.equal(circuit.constraints.length, 516); const INPUT = { "in": "1" } const witness = await circuit.calculateWitness(INPUT, true); //console.log(witness); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); assert(Fr.eq(Fr.e(witness[1]),Fr.e(1))); }); it("Negative -> 0", async () => { const circuit = await wasm_tester(path.join(__dirname, "circuits", "IsPositive_test.circom")); //await circuit.loadConstraints(); //assert.equal(circuit.nVars, 516); //assert.equal(circuit.constraints.length, 516); const INPUT = { "in": Fr.e(-1) } const witness = await circuit.calculateWitness(INPUT, true); //console.log(witness); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); assert(Fr.eq(Fr.e(witness[1]),Fr.e(0))); }); });
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("LeakyReLU layer test", function () { this.timeout(100000000); it("3 nodes", async () => { const circuit = await wasm_tester(path.join(__dirname, "circuits", "LeakyReLU_test.circom")); const INPUT = { "in": [Fr.e(-11),"0","3"], "out": [Fr.e(-4),"0","3"], "remainder": ["7","0","0"] } const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); });
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("Max test", function () { this.timeout(100000000); it("Maximum of 4 numbers", async () => { const circuit = await wasm_tester(path.join(__dirname, "circuits", "Max_test.circom")); //await circuit.loadConstraints(); //assert.equal(circuit.nVars, 516); //assert.equal(circuit.constraints.length, 516); const INPUT = { "in": ["1","4","2","3"] } const witness = await circuit.calculateWitness(INPUT, true); //console.log(witness); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); assert(Fr.eq(Fr.e(witness[1]),Fr.e(4))); }); });
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("MaxPooling2D layer test", function () { this.timeout(100000000); // MaxPooling with strides==poolSize it("(5,5,3) -> (2,2,3)", async () => { const INPUT = require("../models/maxPooling2D_input.json"); const circuit = await wasm_tester(path.join(__dirname, "circuits", "MaxPooling2D_test.circom")); const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); // MaxPooling with strides!=poolSize it("(10,10,3) -> (3,3,3)", async () => { const INPUT = require("../models/maxPooling2D_stride_input.json"); const circuit = await wasm_tester(path.join(__dirname, "circuits", "MaxPooling2D_stride_test.circom")); const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); });
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("MaxPooling2Dsame layer test", function () { this.timeout(100000000); // MaxPooling with strides==poolSize it("(5,5,3) -> (3,3,3)", async () => { const INPUT = require("../models/maxPooling2Dsame_input.json"); const circuit = await wasm_tester(path.join(__dirname, "circuits", "MaxPooling2Dsame_test.circom")); const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); // MaxPooling with strides!=poolSize it("(10,10,3) -> (4,4,3)", async () => { const INPUT = require("../models/maxPooling2Dsame_stride_input.json"); const circuit = await wasm_tester(path.join(__dirname, "circuits", "MaxPooling2Dsame_stride_test.circom")); const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); });
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("PointwiseConv2D layer test", function () { this.timeout(100000000); it("(7,7,3) -> (5,5,3)", async () => { const INPUT = require("../models/pointwiseConv2D_input.json"); const circuit = await wasm_tester(path.join(__dirname, "circuits", "PointwiseConv2D_test.circom")); const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); });
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("ReLU layer test", function () { this.timeout(100000000); it("3 nodes", async () => { const circuit = await wasm_tester(path.join(__dirname, "circuits", "ReLU_test.circom")); const INPUT = { "in": [Fr.e(-3),"0","3"], "out": ["0","0","3"] } const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); });
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("Reshape2D layer test", function () { this.timeout(100000000); it("75 -> (5,5,3)", async () => { const INPUT = require("../models/reshape2D_input.json"); const circuit = await wasm_tester(path.join(__dirname, "circuits", "Reshape2D_test.circom")); const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); });
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("SeparableConv2D layer test", function () { this.timeout(100000000); it("(7,7,3) -> (5,5,3)", async () => { const INPUT = require("../models/separableConv2D_input.json"); const circuit = await wasm_tester(path.join(__dirname, "circuits", "SeparableConv2D_test.circom")); const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); });
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("SumPooling2D layer test", function () { this.timeout(100000000); it("(5,5,3) -> (2,2,3)", async () => { const json = require("../models/sumPooling2D_input.json"); const OUTPUT = require("../models/sumPooling2D_output.json"); const circuit = await wasm_tester(path.join(__dirname, "circuits", "SumPooling2D_test.circom")); const INPUT = { "in": json.in } const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); let ape = 0; for (var i=0; i<OUTPUT.out.length; i++) { ape += Math.abs((OUTPUT.out[i]-parseInt(Fr.toString(witness[i+1])))/OUTPUT.out[i]); } const mape = ape/OUTPUT.out.length; console.log("mean absolute % error", mape); assert(mape < 0.01); }); it("(10,10,3) -> (3,3,3)", async () => { const json = require("../models/sumPooling2D_stride_input.json"); const OUTPUT = require("../models/sumPooling2D_stride_output.json"); const circuit = await wasm_tester(path.join(__dirname, "circuits", "SumPooling2D_stride_test.circom")); const INPUT = { "in": json.in } const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); let ape = 0; for (var i=0; i<OUTPUT.out.length; i++) { ape += Math.abs((OUTPUT.out[i]-parseInt(Fr.toString(witness[i+1])))/OUTPUT.out[i]); } const mape = ape/OUTPUT.out.length; console.log
("mean absolute % error", mape); assert(mape < 0.01); }); });
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("UpSampling2D layer test", function () { this.timeout(100000000); // UpSampling with strides==poolSize it("(1,2,3) -> (2,4,3)", async () => { const INPUT = require("../models/upSampling2D_input.json"); const circuit = await wasm_tester(path.join(__dirname, "circuits", "UpSampling2D_test.circom")); const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); });
pragma circom 2.0.0; include "../../circuits/AveragePooling2D.circom"; // poolSize!=strides component main = AveragePooling2D(10, 10, 3, 3, 2);
pragma circom 2.0.0; include "../../circuits/AveragePooling2D.circom"; // poolSize=strides - default Keras settings component main = AveragePooling2D(5, 5, 3, 2, 2);
pragma circom 2.0.0; include "../../circuits/BatchNormalization2D.circom"; component main = BatchNormalization2D(5,5,3,10**36);
pragma circom 2.0.0; include "../../circuits/Conv1D.circom"; component main = Conv1D(20, 3, 2, 4, 3, 10**36);
pragma circom 2.0.0; include "../../circuits/Conv2D.circom"; component main = Conv2D(10, 10, 3, 2, 4, 3, 10**36);
pragma circom 2.0.0; include "../../circuits/Conv2D.circom"; component main = Conv2D(5, 5, 3, 2, 3, 1, 10**36);
pragma circom 2.0.0; include "../../circuits/Conv2Dsame.circom"; component main = Conv2Dsame(10, 10, 3, 2, 4, 3, 10**36);
pragma circom 2.0.0; include "../../circuits/Conv2Dsame.circom"; component main = Conv2Dsame(5, 5, 3, 2, 3, 1, 10**36);
pragma circom 2.0.0; include "../../circuits/Dense.circom"; component main = Dense(20,10,10**36);
pragma circom 2.0.0; include "../../circuits/DepthwiseConv2D.circom"; component main = DepthwiseConv2D(7, 7, 3, 3, 3, 1, 10**15);
pragma circom 2.0.0; include "../../circuits/Flatten2D.circom"; component main = Flatten2D(5, 5, 3);
pragma circom 2.0.0; include "../../circuits/GlobalAveragePooling2D.circom"; component main = GlobalAveragePooling2D(5, 5, 3);
pragma circom 2.0.0; include "../../circuits/GlobalMaxPooling2D.circom"; component main = GlobalMaxPooling2D(5, 5, 3);
pragma circom 2.0.0; include "../../circuits/util.circom"; component main = IsNegative();
pragma circom 2.0.0; include "../../circuits/util.circom"; component main = IsPositive();
pragma circom 2.0.0; include "../../circuits/LeakyReLU.circom"; template leaky_relu_test() { signal input in[3]; signal input out[3]; signal input remainder[3]; component leaky_relu[3]; for (var i=0; i<3; i++) { leaky_relu[i] = LeakyReLU(3); leaky_relu[i].in <== in[i]; leaky_relu[i].out <== out[i]; leaky_relu[i].remainder <== remainder[i]; } } component main = leaky_relu_test();
pragma circom 2.0.0; include "../../circuits/MaxPooling2D.circom"; component main = MaxPooling2D(10, 10, 3, 2, 3);
pragma circom 2.0.0; include "../../circuits/MaxPooling2D.circom"; // poolSize=strides - default Keras settings component main = MaxPooling2D(5, 5, 3, 2, 2);
pragma circom 2.0.0; include "../../circuits/MaxPooling2Dsame.circom"; component main = MaxPooling2Dsame(10, 10, 3, 2, 3);
pragma circom 2.0.0; include "../../circuits/MaxPooling2Dsame.circom"; // poolSize=strides - default Keras settings component main = MaxPooling2Dsame(5, 5, 3, 2, 2);
pragma circom 2.0.0; include "../../circuits/util.circom"; component main = Max(4);
pragma circom 2.0.0; include "../../circuits/PointwiseConv2D.circom"; component main = PointwiseConv2D(5, 5, 3, 6, 10**15);
pragma circom 2.0.0; include "../../circuits/ReLU.circom"; template relu_test() { signal input in[3]; signal input out[3]; component relu[3]; for (var i=0; i<3; i++) { relu[i] = ReLU(); relu[i].in <== in[i]; relu[i].out <== out[i]; } } component main = relu_test();
pragma circom 2.0.0; include "../../circuits/Reshape2D.circom"; component main = Reshape2D(5, 5, 3);
pragma circom 2.0.0; include "../../circuits/SeparableConv2D.circom"; component main = SeparableConv2D(7, 7, 3, 3, 6, 3, 1, 10**15);
pragma circom 2.0.0; include "../../circuits/SumPooling2D.circom"; component main = SumPooling2D(10, 10, 3, 2, 3);
pragma circom 2.0.0; include "../../circuits/SumPooling2D.circom"; // poolSize=strides - default Keras settings component main = SumPooling2D(5, 5, 3, 2, 2);
pragma circom 2.0.0; include "../../circuits/UpSampling2D.circom"; component main = UpSampling2D(1, 2, 3, 2);
pragma circom 2.0.0; include "../../circuits/crypto/encrypt.circom"; component main = DecryptBits(1000);
pragma circom 2.0.0; include "../../circuits/crypto/encrypt.circom"; component main = Decrypt();
pragma circom 2.0.0; include "../../circuits/crypto/ecdh.circom"; component main = Ecdh();
pragma circom 2.0.0; include "../../circuits/crypto/encrypt.circom"; include "../../circuits/crypto/ecdh.circom"; // from zk-ml/linear-regression-demo template Test() { signal input message; signal input shared_key; signal output out; signal input private_key; signal input public_key[2]; component ecdh = Ecdh(); ecdh.private_key <== private_key; ecdh.public_key[0] <== public_key[0]; ecdh.public_key[1] <== public_key[1]; log(ecdh.shared_key); log(shared_key); log(private_key); log(public_key[0]); log(public_key[1]); shared_key === ecdh.shared_key; component enc = Encrypt(); component dec = Decrypt(); message ==> enc.plaintext; shared_key ==> enc.shared_key; shared_key ==> dec.shared_key; enc.out[0] ==> dec.message[0]; enc.out[1] ==> dec.message[1]; log(dec.out); dec.out === message; out <== 1; } component main = Test();
pragma circom 2.0.0; include "../../circuits/crypto/encrypt.circom"; component main = EncryptBits(1000);
pragma circom 2.0.0; include "../../circuits/crypto/encrypt.circom"; component main = Encrypt();
pragma circom 2.0.0;
include "../../circuits/Conv2D.circom";
include "../../circuits/Dense.circom";
include "../../circuits/ArgMax.circom";
include "../../circuits/Poly.circom";
include "../../circuits/AveragePooling2D.circom";
include "../../circuits/BatchNormalization2D.circom";
include "../../circuits/Flatten2D.circom";
include "../../circuits/crypto/encrypt.circom";
include "../../circuits/crypto/ecdh.circom"; template encrypted_mnist_latest() { signal input in[28][28][1]; signal input conv2d_1_weights[3][3][1][4]; signal input conv2d_1_bias[4]; signal input bn_1_a[4]; signal input bn_1_b[4]; signal input conv2d_2_weights[3][3][4][8]; signal input conv2d_2_bias[8]; signal input bn_2_a[8]; signal input bn_2_b[8]; signal input dense_weights[200][10]; signal input dense_bias[10]; signal output out; signal input private_key; signal input public_key[2]; component ecdh = Ecdh(); ecdh.private_key <== private_key; ecdh.public_key[0] <== public_key[0]; ecdh.public_key[1] <== public_key[1]; signal output message[3*3*1*4+4+4+4+3*3*4*8+8+8+8+200*10+10+1]; component enc = EncryptBits(3*3*1*4+4+4+4+3*3*4*8+8+8+8+200*10+10); enc.shared_key <== ecdh.shared_key; var idx = 0; component conv2d_1 = Conv2D(28,28,1,4,3,1); component bn_1 = BatchNormalization2D(26,26,4); component poly_1[26][26][4]; component avg2d_1 = AveragePooling2D(26,26,4,2,2,25); component conv2d_2 = Conv2D(13,13,4,8,3,1); component bn_2 = BatchNormalization2D(11,11,8); component poly_2[11][11][8]; component avg2d_2 = AveragePooling2D(11,11,8,2,2,25); component flatten = Flatten2D(5,5,8); component dense = Dense(200,10); component argmax = ArgMax(10); for (var i=0; i<28; i++) { for (var j=0; j<28; j++) { conv2d_1.in[i][j][0] <== in[i][j][0]; } } for (var i=0; i<3; i++) { for (var j=0; j<3; j++) { for (var m=0; m<4; m++) { conv2d_1.weights[i][j][0][m] <== conv2d_1_weights[i][j][0][m]; enc.plaintext[idx] <== conv2d_1_weights[i][j][0][m]; idx++; } } } for (var m=0; m<4; m++) { conv2d_1.bias[m] <== conv2d_1_bias[m]; enc.plaintext[idx] <== conv2d_1_bias[m]; idx++; } for (var k=0; k<4; k++) { bn_1.a[k] <== bn_1_a
[k]; enc.plaintext[idx] <== bn_1_a[k]; idx++; } for (var k=0; k<4; k++) { bn_1.b[k] <== bn_1_b[k]; enc.plaintext[idx] <== bn_1_b[k]; idx++; for (var i=0; i<26; i++) { for (var j=0; j<26; j++) { bn_1.in[i][j][k] <== conv2d_1.out[i][j][k]; } } } for (var i=0; i<26; i++) { for (var j=0; j<26; j++) { for (var k=0; k<4; k++) { poly_1[i][j][k] = Poly(10**6); poly_1[i][j][k].in <== bn_1.out[i][j][k]; avg2d_1.in[i][j][k] <== poly_1[i][j][k].out; } } } for (var i=0; i<13; i++) { for (var j=0; j<13; j++) { for (var k=0; k<4; k++) { conv2d_2.in[i][j][k] <== avg2d_1.out[i][j][k]; } } } for (var i=0; i<3; i++) { for (var j=0; j<3; j++) { for (var k=0; k<4; k++) { for (var m=0; m<8; m++) { conv2d_2.weights[i][j][k][m] <== conv2d_2_weights[i][j][k][m]; enc.plaintext[idx] <== conv2d_2_weights[i][j][k][m]; idx++; } } } } for (var m=0; m<8; m++) { conv2d_2.bias[m] <== conv2d_2_bias[m]; enc.plaintext[idx] <== conv2d_2_bias[m]; idx++; } for (var k=0; k<8; k++) { bn_2.a[k] <== bn_2_a[k]; enc.plaintext[idx] <== bn_2_a[k]; idx++; } for (var k=0; k<8; k++) { bn_2.b[k] <== bn_2_b[k]; enc.plaintext[idx] <== bn_2_b[k]; idx++; for (var i=0; i<11; i++) { for (var j=0; j<11; j++) { bn_2.in[i][j][k] <== conv2d_2.out[i][j][k]; } } } for (var i=0; i<11; i++) { for (var j=0; j<11; j++) { for (var k=0; k<8; k++) { poly_2[i][j][k] = Poly(10**18); poly_2[i][j][k].in <== bn_2.out[i][j][k]; avg2d_2.in[i][j][k] <== poly_2
[i][j][k].out; } } } for (var i=0; i<5; i++) { for (var j=0; j<5; j++) { for (var k=0; k<8; k++) { flatten.in[i][j][k] <== avg2d_2.out[i][j][k]; } } } for (var i=0; i<200; i++) { dense.in[i] <== flatten.out[i]; for (var j=0; j<10; j++) { dense.weights[i][j] <== dense_weights[i][j]; enc.plaintext[idx] <== dense_weights[i][j]; idx++; } } for (var i=0; i<10; i++) { dense.bias[i] <== dense_bias[i]; enc.plaintext[idx] <== dense_bias[i]; idx++; } for (var i=0; i<10; i++) { argmax.in[i] <== dense.out[i]; } out <== argmax.out; for (var i=0; i<3*3*1*4+4+4+4+3*3*4*8+8+8+8+200*10+10+1; i++) { message[i] <== enc.out[i]; } } component main = encrypted_mnist_latest();
pragma circom 2.0.0;
include "../../circuits/Conv2D.circom";
include "../../circuits/Dense.circom";
include "../../circuits/ArgMax.circom";
include "../../circuits/ReLU.circom";
include "../../circuits/AveragePooling2D.circom";
include "../../circuits/BatchNormalization2D.circom";
include "../../circuits/Flatten2D.circom"; template mnist() { signal input in[28][28][1]; signal input conv2d_1_weights[3][3][1][4]; signal input conv2d_1_bias[4]; signal input conv2d_1_out[26][26][4]; signal input conv2d_1_remainder[26][26][4]; signal input bn_1_a[4]; signal input bn_1_b[4]; signal input bn_1_out[26][26][4]; signal input bn_1_remainder[26][26][4]; signal input relu_1_out[26][26][4]; signal input avg2d_1_out[13][13][4]; signal input avg2d_1_remainder[13][13][4]; signal input conv2d_2_weights[3][3][4][8]; signal input conv2d_2_bias[8]; signal input conv2d_2_out[11][11][8]; signal input conv2d_2_remainder[11][11][8]; signal input bn_2_a[8]; signal input bn_2_b[8]; signal input bn_2_out[11][11][8]; signal input bn_2_remainder[11][11][8]; signal input relu_2_out[11][11][8]; signal input avg2d_2_out[5][5][8]; signal input avg2d_2_remainder[5][5][8]; signal input flatten_out[200]; signal input dense_weights[200][10]; signal input dense_bias[10]; signal input dense_out[10]; signal input dense_remainder[10]; signal input argmax_out; signal output out; component conv2d_1 = Conv2D(28,28,1,4,3,1,10**18); component bn_1 = BatchNormalization2D(26,26,4,10**18); component relu_1[26][26][4]; component avg2d_1 = AveragePooling2D(26,26,4,2,2); component conv2d_2 = Conv2D(13,13,4,8,3,1,10**18); component bn_2 = BatchNormalization2D(11,11,8,10**18); component relu_2[11][11][8]; component avg2d_2 = AveragePooling2D(11,11,8,2,2); component flatten = Flatten2D(5,5,8); component dense = Dense(200,10,10**18); component argmax = ArgMax(10); for (var i=0; i<28; i++) { for (var j=0; j<28; j++) { conv2d_1.in[i][j][0] <== in[i][j][0]; } } for (var m=0; m<4; m++) { for (var i=0; i<3; i++) { for (var j=0; j<3; j++) { conv2d_1.weights[i][j][0][m] <== conv2d_1_weights[i][j][0][m