text
stringlengths
1
2.05k
const poseidonGenContract = require("./poseidon_gencontract"); if (process.argv.length != 3) { console.log("Usage: node poseidon_gencontract.js [numberOfInputs]"); process.exit(1); } const nInputs = Number(process.argv[2]); console.log(nInputs); console.log(poseidonGenContract.createCode(nInputs));
const Poseidon = require("./poseidon.js"); const M = Poseidon.getMatrix(); let S = "[\n "; for (let i=0; i<M.length; i++) { const LC = M[i]; S = S + "[\n"; for (let j=0; j<LC.length; j++) { S = S + " " + M[i][j].toString(); if (j<LC.length-1) S = S + ","; S = S + "\n"; } S = S + " ]"; if (i<M.length-1) S = S + ","; } S=S+ "\n]\n"; console.log(S);
const Scalar = require("ffjavascript").Scalar; const SMTMemDB = require("./smt_memdb"); const {hash0, hash1, F} = require("./smt_hashes_poseidon");
class SMT { constructor(db, root) { this.db = db; this.root = root; } _splitBits(_key) { const res = Scalar.bits(_key); while (res.length<256) res.push(false); return res; } async update(_key, _newValue) { const key = Scalar.e(_key); const newValue = F.e(_newValue); const resFind = await this.find(key); const res = {}; res.oldRoot = this.root; res.oldKey = key; res.oldValue = resFind.foundValue; res.newKey = key; res.newValue = newValue; res.siblings = resFind.siblings; const ins = []; const dels = []; let rtOld = hash1(key, resFind.foundValue); let rtNew = hash1(key, newValue); ins.push([rtNew, [1, key, newValue ]]); dels.push(rtOld); const keyBits = this._splitBits(key); for (let level = resFind.siblings.length-1; level >=0; level--) { let oldNode, newNode; const sibling = resFind.siblings[level]; if (keyBits[level]) { oldNode = [sibling, rtOld]; newNode = [sibling, rtNew]; } else { oldNode = [rtOld, sibling]; newNode = [rtNew, sibling]; } rtOld = hash0(oldNode[0], oldNode[1]); rtNew = hash0(newNode[0], newNode[1]); dels.push(rtOld); ins.push([rtNew, newNode]); } res.newRoot = rtNew; await this.db.multiDel(dels); await this.db.multiIns(ins); await this.db.setRoot(rtNew); this.root = rtNew; return res; } async delete(_key) { const key = Scalar.e(_key); const resFind = await this.find(key); if (!resFind.found) throw new Error("Key does not exists"); const res = { siblings: [], delKey: key, delValue: resFind.foundValue }; const dels = []; const ins = []; let rtOld = h
ash1(key, resFind.foundValue); let rtNew; dels.push(rtOld); let mixed; if (resFind.siblings.length > 0) { const record = await this.db.get(resFind.siblings[resFind.siblings.length - 1]); if ((record.length == 3)&&(F.eq(record[0], F.one))) { mixed = false; res.oldKey = record[1]; res.oldValue = record[2]; res.isOld0 = false; rtNew = resFind.siblings[resFind.siblings.length - 1]; } else if (record.length == 2) { mixed = true; res.oldKey = key; res.oldValue = F.zero; res.isOld0 = true; rtNew = F.zero; } else { throw new Error("Invalid node. Database corrupted"); } } else { rtNew = F.zero; res.oldKey = key; res.oldValue = F.zero; res.isOld0 = true; } const keyBits = this._splitBits(key); for (let level = resFind.siblings.length-1; level >=0; level--) { let newSibling = resFind.siblings[level]; if ((level == resFind.siblings.length-1)&&(!res.isOld0)) { newSibling = F.zero; } const oldSibling = resFind.siblings[level]; if (keyBits[level]) { rtOld = hash0(oldSibling, rtOld); } else { rtOld = hash0(rtOld, oldSibling); } dels.push(rtOld); if (!F.isZero(newSibling)) { mixed = true; } if (mixed) { res.siblings.unshift(resFind.siblings[level]); let newNode; if (keyBits[level]) { newNode = [newSibling, rtNew]; } else { newNode = [rtNew, newSibling]; } rtNew = hash0(newNode[0], newNode[1]); ins.push([rtNew, newNode]); }
} await this.db.multiIns(ins); await this.db.setRoot(rtNew); this.root = rtNew; await this.db.multiDel(dels); res.newRoot = rtNew; res.oldRoot = rtOld; return res; } async insert(_key, _value) { const key = Scalar.e(_key); const value = F.e(_value); let addedOne = false; const res = {}; res.oldRoot = this.root; const newKeyBits = this._splitBits(key); let rtOld; const resFind = await this.find(key); if (resFind.found) throw new Error("Key already exists"); res.siblings = resFind.siblings; let mixed; if (!resFind.isOld0) { const oldKeyits = this._splitBits(resFind.notFoundKey); for (let i= res.siblings.length; oldKeyits[i] == newKeyBits[i]; i++) { res.siblings.push(F.zero); } rtOld = hash1(resFind.notFoundKey, resFind.notFoundValue); res.siblings.push(rtOld); addedOne = true; mixed = false; } else if (res.siblings.length >0) { mixed = true; rtOld = F.zero; } const inserts = []; const dels = []; let rt = hash1(key, value); inserts.push([rt,[1, key, value]] ); for (let i=res.siblings.length-1; i>=0; i--) { if ((i<res.siblings.length-1)&&(!F.isZero(res.siblings[i]))) { mixed = true; } if (mixed) { const oldSibling = resFind.siblings[i]; if (newKeyBits[i]) { rtOld = hash0(oldSibling, rtOld); } else { rtOld = hash0(rtOld, oldSibling); } dels.push(rtOld); } let newRt; if (newKeyBits[i]) { newRt = hash0(res.siblings[i], rt); inserts.push([newRt,[res.siblings[i], rt]] ); } else { newRt = hash0(rt, res.siblings[i
]); inserts.push([newRt,[rt, res.siblings[i]]] ); } rt = newRt; } if (addedOne) res.siblings.pop(); while ((res.siblings.length>0) && (F.isZero(res.siblings[res.siblings.length-1]))) { res.siblings.pop(); } res.oldKey = resFind.notFoundKey; res.oldValue = resFind.notFoundValue; res.newRoot = rt; res.isOld0 = resFind.isOld0; await this.db.multiIns(inserts); await this.db.setRoot(rt); this.root = rt; await this.db.multiDel(dels); return res; } async find(key) { const keyBits = this._splitBits(key); return await this._find(key, keyBits, this.root, 0); } async _find(key, keyBits, root, level) { if (typeof root === "undefined") root = this.root; let res; if (F.isZero(root)) { res = { found: false, siblings: [], notFoundKey: key, notFoundValue: F.zero, isOld0: true }; return res; } const record = await this.db.get(root); if ((record.length==3)&&(F.eq(record[0],F.one))) { if (F.eq(record[1],key)) { res = { found: true, siblings: [], foundValue: record[2], isOld0: false }; } else { res = { found: false, siblings: [], notFoundKey: record[1], notFoundValue: record[2], isOld0: false }; } } else { if (keyBits[level] == 0) { res = await this._find(key, keyBits, record[0], level+1); res.siblings.unshift(record[1]); } else { res = await this._find(key, keyBits, record[1], level+1); res.siblings.unshift(re
cord[0]); } } return res; } } async
function loadFromFile(fileName) { } async
function newMemEmptyTrie() { const db = new SMTMemDB(); const rt = await db.getRoot(); const smt = new SMT(db, rt); return smt; } module.exports.loadFromFile = loadFromFile; module.exports.newMemEmptyTrie = newMemEmptyTrie; module.exports.SMT = SMT; module.exports.SMTMemDB = SMTMemDB;
const mimc7 = require("./mimc7"); const bigInt = require("big-integer"); exports.hash0 = function (left, right) { return mimc7.multiHash(left, right); }; exports.hash1 = function(key, value) { return mimc7.multiHash([key, value], bigInt.one); }; exports.F = mimc7.F;
const ZqField = require("ffjavascript").ZqField; const Scalar = require("ffjavascript").Scalar; const poseidon = require("./poseidon"); const F = new ZqField(Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617")); exports.hash0 = function (left, right) { return poseidon([left, right]); }; exports.hash1 = function(key, value) { return poseidon([key, value, F.one]); }; exports.F = F;
const Scalar = require("ffjavascript").Scalar; const ZqField = require("ffjavascript").ZqField; // Prime 0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001 const F = new ZqField(Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617")); class SMTMemDb { constructor() { this.nodes = {}; this.root = F.zero; } async getRoot() { return this.root; } _key2str(k) { // const keyS = bigInt(key).leInt2Buff(32).toString("hex"); const keyS = k.toString(); return keyS; } _normalize(n) { for (let i=0; i<n.length; i++) { n[i] = F.e(n[i]); } } async get(key) { const keyS = this._key2str(key); return this.nodes[keyS]; } async multiGet(keys) { const promises = []; for (let i=0; i<keys.length; i++) { promises.push(this.get(keys[i])); } return await Promise.all(promises); } async setRoot(rt) { this.root = rt; } async multiIns(inserts) { for (let i=0; i<inserts.length; i++) { const keyS = this._key2str(inserts[i][0]); this._normalize(inserts[i][1]); this.nodes[keyS] = inserts[i][1]; } } async multiDel(dels) { for (let i=0; i<dels.length; i++) { const keyS = this._key2str(dels[i]); delete this.nodes[keyS]; } } } module.exports = SMTMemDb;
use eyre::{bail, eyre, Result, WrapErr as _}; use std::{ env::{var, VarError}, fs, path::Path, process::Command, }; use time::{format_description::well_known::Rfc3339, OffsetDateTime, UtcOffset}; fn main() -> Result<()> { let commit = rerun_if_git_changes().unwrap_or_else(|e| { eprintln!("Warning: {}", e); None }); println!( "cargo:rustc-env=COMMIT_SHA={}", env_or_cmd("COMMIT_SHA", &["git", "rev-parse", "HEAD"]).unwrap_or_else(|e| { eprintln!("Warning: {}", e); commit.unwrap_or_else(|| "0000000000000000000000000000000000000000".to_string()) }) ); let build_date = OffsetDateTime::now_utc(); let commit_date = env_or_cmd("COMMIT_DATE", &[ "git", "log", "-n1", "--pretty=format:'%aI'", ]) .and_then(|str| Ok(OffsetDateTime::parse(str.trim_matches('\''), &Rfc3339)?)) .unwrap_or_else(|e| { eprintln!("Warning: {}", e); OffsetDateTime::UNIX_EPOCH }); println!( "cargo:rustc-env=COMMIT_DATE={}", commit_date.to_offset(UtcOffset::UTC).date() ); println!( "cargo:rustc-env=BUILD_DATE={}", build_date.to_offset(UtcOffset::UTC).date() ); println!( "cargo:rustc-env=TARGET={}", var("TARGET").wrap_err("Fetching environment variable TARGET")? ); Ok(()) } fn env_or_cmd(env: &str, cmd: &[&str]) -> Result<String> { match var(env) { Ok(s) => return Ok(s), Err(VarError::NotPresent) => (), Err(e) => bail!(e), }; let err = || { format!( "Variable {} is unset and command \"{}\" failed", env, cmd.join(" ") ) }; let output = Command::new(cmd[0]) .args(&cmd[1..]) .output() .with_context(err)?; if output.status.success() { Ok(String::from_utf8(output.stdout)?.trim().to_string()) } else { bail!(err()) } } fn rerun_if_git_changes() -> Result<Option<
String>> { let git_head = Path::new(".git/HEAD"); if !git_head.exists() { eprintln!("No .git/HEAD found, not rerunning on git change"); return Ok(None); } println!("cargo:rerun-if-changed=.git/HEAD"); let contents = fs::read_to_string(git_head).wrap_err("Error reading .git/HEAD")?; let head_ref = contents.split(": ").collect::<Vec<_>>(); let commit = if head_ref.len() == 2 && head_ref[0] == "ref" { let ref_path = Path::new(".git").join(head_ref[1].trim()); let ref_path_str = ref_path .to_str() .ok_or_else(|| eyre!("Could not convert ref path {:?} to string", ref_path))?; println!("cargo:rerun-if-changed={}", ref_path_str); fs::read_to_string(&ref_path).with_context(|| format!("Error reading {}", ref_path_str))? } else { contents }; Ok(Some(commit)) }
use neural_zkp as lib; fn main() { let mut criterion = criterion::Criterion::default().configure_from_args(); lib::bench::group(&mut criterion); criterion.final_summary(); }
import timeit
import numpy as np from vanilla_cnn
import * if __name__ == "__main__": np.random.seed(12345) x = np.random.randint(low=-5, high=5, size=(120, 80, 3)) f = np.random.randint(low=-10, high=+10, size=(32, 5, 5, 3)) k = np.random.randint(low=-10, high=+10, size=(32,5,5,32)) weights1 = np.random.randint(low=-10, high=+10, size=(1000, 14688)) biases1 = np.random.randint(low=-10, high=+10, size=(1000)) weights2 = np.random.randint(low=-10, high=+10, size=(5, 1000)) biases2 = np.random.randint(low=-10, high=+10, size=(5)) times = [] runs = 100 for _ in range(runs): starttime = timeit.default_timer() x, n_params, n_multiplications, name = conv_layer(x, f) x, n_params, n_multiplications, name = max_pooling_layer(x, 2) x, n_params, n_multiplications, name = relu_layer(x) x, n_params, n_multiplications, name = conv_layer(x, k) x, n_params, n_multiplications, name = max_pooling_layer(x, 2) x, n_params, n_multiplications, name = relu_layer(x) x, n_params, n_multiplications, name = flatten_layer(x) x, n_params, n_multiplications, name = fully_connected_layer(x, weights1, biases1) x, n_params, n_multiplications, name = relu_layer(x) x, n_params, n_multiplications, name = fully_connected_layer(x, weights2, biases2) x, n_params, n_multiplications, name = normalize(x) times.append(timeit.default_timer() - starttime) np.random.seed(12345) x = np.random.randint(low=-5, high=5, size=(120, 80, 3)) average = sum(times) / len(times) print(f'The average time is {average} seconds for {runs} runs')
import json from json
import JSONEncoder
import numpy as np from enum
import Enum
import re
class Encoder(JSONEncoder): def default(self, obj): if isinstance(obj, np.ndarray): return obj.tolist() elif isinstance(obj, Layer): return obj.value[0] return JSONEncoder.default(self, obj) def conv_layer(input, f): """ Evaluate the output of a convolutional layer using the filter f. input.shape = (h, w, c) f.shape = (c_out, hf, wf, c_in) """ h, w, c = input.shape c_out, hf, wf, c_in = f.shape assert c == c_in, "Input channels must match!" assert hf%2 == 1, "Height of the filter (f.shape[1]) must be an uneven number!" assert wf%2 == 1, "Width of the filter (f.shape[2]) must be an uneven number!" dh = hf dw = wf output = np.zeros(shape=(h-2*dh, w-2*dw, c_out)) for i in range(dh, h-dh): for j in range(dw, w-dw): a = input[i-dh:i+dh+1, j-dw:j+dw+1] for k in range(c_out): b = f[k,:,:,:] output[i-dh, j-dw, k] = (a*b).sum() n_params = f.size n_multiplications = a.size * c_out * (w-2*dw) * (h-2*dh) name = f"conv {'x'.join([str(e) for e in f.shape])}" return output, n_params, n_multiplications, name def relu_layer(input): output = input.copy() output[output<0] = 0 n_params = 0 n_multiplications = input.size return output, n_params, n_multiplications, "relu" def max_pooling_layer(input, s): """ Apply max pooling layer using a sxs patch. """ h, w, c = input.shape assert h%s == 0, "Height must be divisible by s!" assert w%s == 0, "Width must be dibisible by s!" output = np.zeros(shape=(h for i in range(0, h, s): for j in range(0, w, s): for k in range(c): a = input[i:i+s, j:j+s, k] output[i n_params = 0 n_multiplications = input.size return output, n_params, n_multiplications, "max-pool" def flatten_layer(in
put): output = input.flatten() n_params = 0 n_multiplications = 0 return output, n_params, n_multiplications, "flatten" def fully_connected_layer(input, weights, biases): """ Evaluate the output of a fully connected layer. input.shape = (output_dim) weights.shape = (output_dim, input_dim) f.shape = (output_dim) """ assert input.ndim == 1, "Input must be a flattend array!" assert weights.shape[1] == input.shape[0], "Input shapes must match!" assert weights.shape[0] == biases.shape[0], "Output shapes must match!" output = np.dot(weights, input) + biases n_params = weights.size + biases.size n_multiplications = weights.size name = f"full {'x'.join([str(e) for e in weights.shape])}" return output, n_params, n_multiplications, name def normalize(input): output = input / np.linalg.norm(input) n_params = 0 n_multiplications = 1 + input.size return output, n_params, n_multiplications, "normalize"
class Layer(Enum): Convolution = 'convolution', MaxPool = 'max_pool', Relu = 'relu', Flatten = 'flatten', FullyConnected = 'fully_connected', Normalize = 'normalize', np.random.seed(12345) p = "{:>20} | {:>15} | {:>15} | {:>15} " print(p.format("layer", "output shape", " print(p.format("-"*20, "-"*15, "-"*15, "-"*15)) shape = (120,80,3) x = np.random.randint(low=-5, high=5, size=shape) initial = x.flatten().astype(np.float32, copy=False) data = { "v": 1, "dim": shape, "data": initial } shape = (32,5,5,3) f = np.random.randint(low=-10, high=+10, size=shape) conv1 = f.flatten().astype(np.float32, copy=False) data = { "v": 1, "dim": shape, "data": conv1 } conv = { "layer_type": Layer.Convolution, "input_shape": x.shape, "kernel": data, } model = [conv] x, n_params, n_multiplications, name = conv_layer(x, f) print(p.format(name, str(x.shape), n_params, n_multiplications)) maxpool = { "layer_type": Layer.MaxPool, "input_shape": x.shape, "window": 2, } model.append(maxpool) x, n_params, n_multiplications, name = max_pooling_layer(x, 2) print(p.format(name, str(x.shape), n_params, n_multiplications)) relu = { "layer_type": Layer.Relu, "input_shape": x.shape } model.append(relu) x, n_params, n_multiplications, name = relu_layer(x) print(p.format(name, str(x.shape), n_params, n_multiplications)) shape = (32,5,5,32) f = np.random.randint(low=-10, high=+10, size=shape) conv2 = f.flatten().astype(np.float32, copy=False) data = { "v": 1, "dim": shape, "data": conv2 } conv = { "layer_type": Layer.Convolution, "input_shape": x.shape, "kernel":data } model.append(conv) x, n_params, n_multiplications, name = conv_layer(x, f) print(p.format(name, str(x.shape), n_params, n_multiplications)) maxpool = { "layer_type": Layer.MaxPool, "input_shape": x.shape, "window": 2 } model.append(maxpool) x, n_params, n_multiplications, name = max_pooling_layer(x, 2) print(p.format(
name, str(x.shape), n_params, n_multiplications)) relu = { "layer_type": Layer.Relu, "input_shape": x.shape, } model.append(relu) x, n_params, n_multiplications, name = relu_layer(x) print(p.format(name, str(x.shape), n_params, n_multiplications)) flatten = { "layer_type": Layer.Flatten, "input_shape": x.shape, } model.append(flatten) x, n_params, n_multiplications, name = flatten_layer(x) print(p.format(name, str(x.shape), n_params, n_multiplications)) shape = (1000, x.shape[0]) weights = np.random.randint(low=-10, high=+10, size=shape) data = { "v": 1, "dim": shape, "data": weights.flatten().astype(np.float32, copy=False) } shape = [1000] biases = np.random.randint(low=-10, high=+10, size=(1000)) data2 = { "v": 1, "dim": shape, "data": biases.flatten().astype(np.float32, copy=False) } fully_connected = { "layer_type": Layer.FullyConnected, "input_shape": x.shape, "weights":data, "biases": data2 } model.append(fully_connected) x, n_params, n_multiplications, name = fully_connected_layer(x, weights, biases) print(p.format(name, str(x.shape), n_params, n_multiplications)) relu = { "layer_type": Layer.Relu, "input_shape": x.shape, } model.append(relu) x, n_params, n_multiplications, name = relu_layer(x) print(p.format(name, str(x.shape), n_params, n_multiplications)) shape = (5, x.shape[0]) weights = np.random.randint(low=-10, high=+10, size=shape) data = { "v": 1, "dim": shape, "data": weights.flatten().astype(np.float32, copy=False) } shape = [5] biases = np.random.randint(low=-10, high=+10, size=shape) data2 = { "v": 1, "dim": [5], "data": biases.flatten().astype(np.float32, copy=False) } fully_connected = { "layer_type": Layer.FullyConnected, "input_shape": x.shape, "weights":data, "biases": data2 } model.append(fully_connected) x, n_params, n_multiplications, name = fully_connected_layer(x, weights, biases) print(p.format(name, str(x.shape), n_params, n_multiplication
s)) assert(np.isclose(x, [ -9404869, -11033050, -34374361, -20396580, 70483360.]).all()) norm = { "layer_type": Layer.Normalize, "input_shape": x.shape, } model.append(norm) model = { "layers": model } x, n_params, n_multiplications, name = normalize(x) print(p.format(name, str(x.shape), n_params, n_multiplications)) print("\nfinal output:", x) model_data = json.dumps(model, cls=Encoder) with open('../src/json/model.json', "w") as f: print('\ncreated model.json in the proto-neural-zkp/src/json folder') f.write(model_data)
{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "cf9cc6d3-87d9-4c07-8773-39cfcc94d0f5", "metadata": {}, "outputs": [], "source": [ " ] }, { "cell_type": "code", "execution_count": null, "id": "cb8f77a5-dc82-4c34-8ee8-4d510afb175d", "metadata": {}, "outputs": [], "source": [ "
import os" ] }, { "cell_type": "code", "execution_count": null, "id": "dc648e92-7bfa-4991-829b-012822604d0f", "metadata": {}, "outputs": [], "source": [ "
import numpy as np" ] }, { "cell_type": "code", "execution_count": null, "id": "d306a253-dc0d-425f-b77a-44b0dfadcaa3", "metadata": {}, "outputs": [], "source": [ "
import pandas as pd" ] }, { "cell_type": "code", "execution_count": null, "id": "b73322c2-d188-4dae-8480-558a3317fd17", "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "\n", "
import matplotlib.pyplot as plt\n", "
import matplotlib as mpl\n", "\n", " "mpl.rcParams[\"figure.dpi\"] = 120\n", "mpl.rcParams[\"figure.figsize\"] = [12.0, 8.0]\n", " "mpl.rcParams['mathtext.fontset'] = 'cm'\n", "mpl.rcParams['font.family'] = 'CMU Serif'\n", " "mpl.rcParams[\"savefig.bbox\"] = 'tight'\n", "mpl.rcParams[\"savefig.dpi\"] = 300\n", "mpl.rcParams[\"savefig.facecolor\"] = 'white'\n", " "mpl.rcParams[\"animation.writer\"] = 'ffmpeg'\n", "mpl.rcParams[\"animation.codec\"] = 'webp'\n", "mpl.rcParams[\"animation.ffmpeg_args\"] = [\"-lossless\", \"1\", \"-qscale\", \"100\"]\n", " ] }, { "cell_type": "code", "execution_count": null, "id": "64b79d42-6bcf-49d4-899f-113f193f6d11", "metadata": {}, "outputs": [], "source": [ "
import watermark.watermark as watermark\n", "print(watermark(machine=True, iso8601=True, python=True, iversions=True, globals_=globals()))\n", "print(os.getcwd())" ] }, { "cell_type": "code", "execution_count": null, "id": "33eec25e-635a-4779-b34f-09f638a246d2", "metadata": {}, "outputs": [], "source": [ "df1 = pd.read_csv('../bench-1.csv')\n", "df1['ops'] = df.input_size * df.output_size\n", "df1" ] }, { "cell_type": "code", "execution_count": null, "id": "e0a47916-268f-42fb-8880-7298aef847e6", "metadata": {}, "outputs": [], "source": [ "df2 = pd.read_csv('../bench-2.csv')\n", "df2['ops'] = df.input_size * df.output_size\n", "df2" ] }, { "cell_type": "code", "execution_count": null, "id": "fd37c694-d984-46af-af89-febee74eefcf", "metadata": {}, "outputs": [], "source": [ "df5 = pd.read_csv('../bench-5.csv')\n", "df5['ops'] = df.input_size * df.output_size\n", "df5" ] }, { "cell_type": "code", "execution_count": null, "id": "d1d9a5d1-a8fa-417d-9ea3-378018f9ff36", "metadata": {}, "outputs": [], "source": [ "df10 = pd.read_csv('../bench-10.csv')\n", "df10['ops'] = df10.input_size * df10.output_size\n", "df10" ] }, { "cell_type": "code", "execution_count": null, "id": "952a923e-8241-4b78-a156-961bf1b85570", "metadata": {}, "outputs": [], "source": [ "plt.title('Prover performance')\n", "plt.xlabel(' "plt.ylabel('proof time [s]')\n", "plt.plot(df1.ops, df1.proof_time_s, label='1 thread')\n", "plt.plot(df2.ops, df2.proof_time_s, label='2 thread')\n", "plt.plot(df5.ops, df5.proof_time_s, label='5 thread')\n", "plt.plot(df10.ops, df10.proof_time_s, label='10 threads')\n", "plt.ylim([0, 120])\n", "plt.legend()" ] }, { "cell_type": "code", "execution_count": null, "id": "149a5d0c-a272-4fc4-b8fe-18771b9d6d44", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code",
"execution_count": null, "id": "f758c3a7-4694-4673-971b-f5087b70c2ad", "metadata": {}, "outputs": [], "source": [ "plt.title('Prover performance')\n", "plt.xlabel(' "plt.ylabel('utilization')\n", "plt.plot(df1.ops, df1.proof_time_s / (df2.proof_time_s * 2), label='2 thread utilization')\n", "plt.plot(df1.ops, df1.proof_time_s / (df5.proof_time_s * 5), label='5 thread utilization')\n", "plt.plot(df.ops, df1.proof_time_s / (df.proof_time_s * 10), label='10 thread utilization')\n", "plt.ylim([0, 1])\n", "plt.legend()" ] }, { "cell_type": "code", "execution_count": null, "id": "25aaf206-4a58-47f1-8272-3df48b5e6e54", "metadata": {}, "outputs": [], "source": [ "plt.title('Prover performance (1 threads)')\n", "plt.xlabel(' "plt.ylabel('memory [b]')\n", "plt.plot(df1.ops, df1.proof_mem_b, label='1 threads')\n", "plt.plot(df5.ops, df5.proof_mem_b, label='5 threads')\n", "plt.plot(df10.ops, df10.proof_mem_b, label='10 threads')\n", "plt.ylim([0, 1.1*np.max(df.proof_mem_b)])\n", "plt.legend()" ] }, { "cell_type": "code", "execution_count": null, "id": "3cef9590-7689-477f-bac3-21d68ff591c2", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "99d7647e-e9f2-48ba-8ea3-27ab41b06808", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.10" } }, "nbformat": 4, "nbformat_minor": 5 }
{ "cells": [ { "cell_type": "markdown", "id": "d5c490d4", "metadata": {}, "source": [ " ] }, { "cell_type": "code", "execution_count": null, "id": "794b9914-cce9-4d71-b20d-96df96f6403b", "metadata": {}, "outputs": [], "source": [ "
import numpy as np" ] }, { "cell_type": "code", "execution_count": null, "id": "4c3349aa-434a-4c9b-a451-feeb341aaa72", "metadata": {}, "outputs": [], "source": [ "def conv_layer(input, f):\n", " \"\"\"\n", " Evaluate the output of a convolutional layer using the filter f.\n", " input.shape = (h, w, c)\n", " f.shape = (c_out, hf, wf, c_in)\n", " \"\"\"\n", " h, w, c = input.shape\n", " c_out, hf, wf, c_in = f.shape\n", "\n", " assert c == c_in, \"Input channels must match!\"\n", " assert hf%2 == 1, \"Height of the filter (f.shape[1]) must be an uneven number!\"\n", " assert wf%2 == 1, \"Width of the filter (f.shape[2]) must be an uneven number!\"\n", "\n", " " dh = hf " dw = wf "\n", " " " output = np.zeros(shape=(h-2*dh, w-2*dw, c_out))\n", "\n", " " " for i in range(dh, h-dh):\n", " " for j in range(dw, w-dw):\n", " " a = input[i-dh:i+dh+1, j-dw:j+dw+1]\n", " for k in range(c_out):\n", " " b = f[k,:,:,:]\n", " " output[i-dh, j-dw, k] = (a*b).sum() " \n", " n_params = f.size\n", " n_multiplications = a.size * c_out * (w-2*dw) * (h-2*dh)\n", " name = f\"conv {'x'.join([str(e) for e in f.shape])}\"\n", " \n", " return output, n_params, n_multiplications, name\n", "\n", "\n", "def relu_layer(input): \n", " output = input.copy()\n", " output[output<0] = 0\n", " \n", " n_params = 0\n", " n_multiplications = input.size\n", " \n", " return output, n_params, n_multiplications, \"relu\"\n", "\n", "\n", "def max_pooling_layer(input, s):\n", " \"\"\"\n", " Apply max pooling layer using a sxs patch.\n", " \"\"\"\n", " h, w, c = input.shape\n", "\n", " as
sert h%s == 0, \"Height must be divisible by s!\"\n", " assert w%s == 0, \"Width must be dibisible by s!\"\n", "\n", " output = np.zeros(shape=(h "\n", " for i in range(0, h, s):\n", " for j in range(0, w, s):\n", " for k in range(c):\n", " a = input[i:i+s, j:j+s, k]\n", " output[i " \n", " n_params = 0\n", " n_multiplications = input.size\n", " return output, n_params, n_multiplications, \"max-pool\"\n", "\n", "\n", "def flatten_layer(input):\n", " output = input.flatten()\n", " n_params = 0\n", " n_multiplications = 0\n", " return output, n_params, n_multiplications, \"flatten\"\n", "\n", "\n", "def fully_connected_layer(input, weights, biases):\n", " \"\"\"\n", " Evaluate the output of a fully connected layer.\n", " input.shape = (output_dim)\n", " weights.shape = (output_dim, input_dim)\n", " f.shape = (output_dim)\n", " \"\"\"\n", " assert input.ndim == 1, \"Input must be a flattend array!\"\n", " assert weights.shape[1] == input.shape[0], \"Input shapes must match!\"\n", " assert weights.shape[0] == biases.shape[0], \"Output shapes must match!\"\n", "\n", " output = np.dot(weights, input) + biases\n", " \n", " n_params = weights.size + biases.size\n", " n_multiplications = weights.size\n", " name = f\"full {'x'.join([str(e) for e in weights.shape])}\"\n", " \n", " return output, n_params, n_multiplications, name\n", "\n", "\n", "def normalize(input):\n", " output = input / np.linalg.norm(input)\n", " n_params = 0\n", " n_multiplications = 1 + input.size\n", " return output, n_params, n_multiplications, \"normalize\"\n" ] }, { "cell_type": "markdown", "id": "2896d5ed", "metadata": {}, "source": [ " ] }, { "cell_type": "code", "execution_count": null,
"id": "00fd6550", "metadata": {}, "outputs": [], "source": [ "np.random.seed(12345)\n", "\n", "p = \"{:>20} | {:>15} | {:>15} | {:>15} \"\n", "print(p.format(\"layer\", \"output shape\", \" "print(p.format(\"-\"*20, \"-\"*15, \"-\"*15, \"-\"*15))\n", "\n", " "x = np.random.randint(low=-5, high=5, size=(120,80,3))\n", "\n", " "f = np.random.randint(low=-10, high=+10, size=(32,5,5,3)) \n", "x, n_params, n_multiplications, name = conv_layer(x, f)\n", "print(p.format(name, str(x.shape), n_params, n_multiplications))\n", "\n", " "x, n_params, n_multiplications, name = max_pooling_layer(x, 2)\n", "print(p.format(name, str(x.shape), n_params, n_multiplications))\n", "\n", " "x, n_params, n_multiplications, name = relu_layer(x)\n", "print(p.format(name, str(x.shape), n_params, n_multiplications))\n", "\n", " "f = np.random.randint(low=-10, high=+10, size=(32,5,5,32)) \n", "x, n_params, n_multiplications, name = conv_layer(x, f)\n", "print(p.format(name, str(x.shape), n_params, n_multiplications))\n", "\n", " "x, n_params, n_multiplications, name = max_pooling_layer(x, 2)\n", "print(p.format(name, str(x.shape), n_params, n_multiplications))\n", "\n", " "x, n_params, n_multiplications, name = relu_layer(x)\n", "print(p.format(name, str(x.shape), n_params, n_multiplications))\n", "\n", " "x, n_params, n_multiplications, name = flatten_layer(x)\n", "print(p.format(name, str(x.shape), n_params, n_multiplications))\n", "\n", " "weights = np.random.randint(low=-10, high=+10, size=(1000, x.shape[0])) \n", "biases = np.random.randint(low=-10, high=+10, size=(1000)) \n", "x, n_params, n_multiplications, name = fully_connected_layer(x, weights, biases)\n", "print(p.format(name, str(x.shape), n_params, n_multiplications))\n", "\n", " "x, n_params, n_multiplications, name = relu_layer(x)\n", "print(p.format(name, str(x.shape), n_
params, n_multiplications))\n", "\n", " "weights = np.random.randint(low=-10, high=+10, size=(5, x.shape[0])) \n", "biases = np.random.randint(low=-10, high=+10, size=(5)) \n", "x, n_params, n_multiplications, name = fully_connected_layer(x, weights, biases)\n", "print(p.format(name, str(x.shape), n_params, n_multiplications))\n", "\n", "assert(np.isclose(x, [ -9404869, -11033050, -34374361, -20396580, 70483360.]).all())\n", "\n", " "x, n_params, n_multiplications, name = normalize(x)\n", "print(p.format(name, str(x.shape), n_params, n_multiplications))\n", "\n", "print(\"\\nfinal output:\", x)" ] }, { "cell_type": "markdown", "id": "43c065d3-e68b-4a63-9e7e-237dbf704819", "metadata": {}, "source": [ " ] }, { "cell_type": "code", "execution_count": null, "id": "d97c695a-f706-401f-b85c-b46396a8c42f", "metadata": {}, "outputs": [], "source": [ "
import json\n", "\n", " "from json
import JSONEncoder\n", "\n", "
class Encoder(JSONEncoder):\n", " def default(self, obj):\n", " if isinstance(obj, np.ndarray):\n", " return obj.tolist()\n", " return JSONEncoder.default(self, obj)\n", "\n", "np.random.seed(12345)\n", "\n", "shape = (3,3,3)\n", "x = np.random.randint(low=-5, high=5, size=shape)\n", "\n", "x = x.flatten()\n", "\n", " "data = {\n", " \"v\": 1,\n", " \"dim\": shape,\n", " \"data\": x\n", " }\n", "\n", "json_data = json.dumps(data, cls=Encoder)\n", "\n", "with open(\"../src/json/test.json\", \"w\") as f:\n", " f.write(json_data)" ] }, { "cell_type": "markdown", "id": "e9f4e31a", "metadata": {}, "source": [ " ] }, { "cell_type": "code", "execution_count": null, "id": "a619bbbb-fad3-46ae-83b4-b74398cb953b", "metadata": {}, "outputs": [], "source": [ "8388608" ] }, { "cell_type": "code", "execution_count": null, "id": "5a1787ed-b448-40e2-96e7-7d597a4660e2", "metadata": {}, "outputs": [], "source": [ "4897963 / 8388608" ] }, { "cell_type": "code", "execution_count": null, "id": "33087999-ac7f-4ebd-b290-8dbbe3d0c51b", "metadata": {}, "outputs": [], "source": [ "np.log(262144)/np.log(2)" ] }, { "cell_type": "code", "execution_count": null, "id": "ae322e92-7fcb-4270-9025-392773fc6da4", "metadata": {}, "outputs": [], "source": [ "4896000 * 3 / (14688 * 1000)" ] }, { "cell_type": "code", "execution_count": null, "id": "3078557e-adc4-4385-be93-567aa7d93e2d", "metadata": {}, "outputs": [], "source": [ "np.log(14688 * 800 / 3) / np.log(2)" ] }, { "cell_type": "code", "execution_count": null, "id": "8316d646-b622-47b1-a58c-2ceb5de41c74", "metadata": {}, "outputs": [], "source": [ "14688 * 400" ] }, { "cell_type": "code", "execution_count": null, "id": "8abe8302-5958-427f-9453-7e2c4ff2cd
c9", "metadata": {}, "outputs": [], "source": [ "14688 * 1600" ] }, { "cell_type": "code", "execution_count": null, "id": "70387136-104a-4a18-9f20-72847ecee8a0", "metadata": {}, "outputs": [], "source": [ "234076 * 100" ] }, { "cell_type": "code", "execution_count": null, "id": "93298188-6ed4-4e9e-b3cc-20f9778e38bc", "metadata": {}, "outputs": [], "source": [ "
import numpy as np\n", "\n", "output = [-6276474000, 8343393300, 8266027500, -7525360600, 7814137000]\n", "norm = np.linalg.norm(output)\n", "norm" ] }, { "cell_type": "code", "execution_count": null, "id": "d1b09558", "metadata": {}, "outputs": [], "source": [ "
import math\n", "math.sqrt(6276474000**2 + 8343393300**2 + 8266027500**2 + 7525360600**2 + 7814137000**2)" ] }, { "cell_type": "code", "execution_count": null, "id": "c9c85ea1", "metadata": {}, "outputs": [], "source": [ "output/norm" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3.9.13 64-bit", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.6" }, "vscode": { "interpreter": { "hash": "b0fa6594d8f4cbf19f97940f81e996739fb7646882a419484c72d19e05852a7e" } } }, "nbformat": 4, "nbformat_minor": 5 }
import numpy as np def conv_layer(input, f): """ Evaluate the output of a convolutional layer using the filter f. input.shape = (h, w, c) f.shape = (c_out, hf, wf, c_in) """ h, w, c = input.shape c_out, hf, wf, c_in = f.shape assert c == c_in, "Input channels must match!" assert hf%2 == 1, "Height of the filter (f.shape[1]) must be an uneven number!" assert wf%2 == 1, "Width of the filter (f.shape[2]) must be an uneven number!" dh = hf dw = wf output = np.zeros(shape=(h-2*dh, w-2*dw, c_out)) for i in range(dh, h-dh): for j in range(dw, w-dw): a = input[i-dh:i+dh+1, j-dw:j+dw+1] for k in range(c_out): b = f[k,:,:,:] output[i-dh, j-dw, k] = (a*b).sum() n_params = f.size n_multiplications = a.size * c_out * (w-2*dw) * (h-2*dh) name = f"conv {'x'.join([str(e) for e in f.shape])}" return output, n_params, n_multiplications, name def relu_layer(input): output = input.copy() output[output<0] = 0 n_params = 0 n_multiplications = 0 return output, n_params, n_multiplications, "relu" def max_pooling_layer(input, s): """ Apply max pooling layer using a sxs patch. """ h, w, c = input.shape assert h%s == 0, "Height must be devisable by s!" assert w%s == 0, "Width must be devisable by s!" output = np.zeros(shape=(h for i in range(0, h, s): for j in range(0, w, s): for k in range(c): a = input[i:i+s, j:j+s, k] output[i n_params = 0 n_multiplications = 0 return output, n_params, n_multiplications, "max-pool" def flatten_layer(input): output = input.flatten() n_params = 0 n_multiplications = 0 return output, n_params, n_multiplications, "flatten" def fully_connected_layer(input, weights, biases): """ Evaluate the output of a fully connected layer. input.shape = (output_dim) weights.shape = (output_dim, inpu
t_dim) f.shape = (output_dim) """ assert input.ndim == 1, "Input must be a flattend array!" assert weights.shape[1] == input.shape[0], "Input shapes must match!" assert weights.shape[0] == biases.shape[0], "Output shapes must match!" output = np.dot(weights, input) + biases n_params = weights.size + biases.size n_multiplications = weights.size name = f"conv {'x'.join([str(e) for e in weights.shape])}" return output, n_params, n_multiplications, name def normalize(input): output = input / np.linalg.norm(input) n_params = 0 n_multiplications = 1 + input.size return output, n_params, n_multiplications, "normalize" if __name__ == "__main__": np.random.seed(12345) p = "{:>20} | {:>15} | {:>15} | {:>15} " print(p.format("layer", "output shape", " print(p.format("-"*20, "-"*15, "-"*15, "-"*15)) x = np.random.randint(low=-5, high=5, size=(120,80,3)) f = np.random.randint(low=-10, high=+10, size=(32,5,5,3)) x, n_params, n_multiplications, name = conv_layer(x, f) print(p.format(name, str(x.shape), n_params, n_multiplications)) x, n_params, n_multiplications, name = max_pooling_layer(x, 2) print(p.format(name, str(x.shape), n_params, n_multiplications)) x, n_params, n_multiplications, name = relu_layer(x) print(p.format(name, str(x.shape), n_params, n_multiplications)) f = np.random.randint(low=-10, high=+10, size=(32,5,5,32)) x, n_params, n_multiplications, name = conv_layer(x, f) print(p.format(name, str(x.shape), n_params, n_multiplications)) x, n_params, n_multiplications, name = max_pooling_layer(x, 2) print(p.format(name, str(x.shape), n_params, n_multiplications)) x, n_params, n_multiplications, name = relu_layer(x) print(p.format(name, str(x.shape), n_params, n_multiplications)) x, n_params, n_multiplications, name = flatten_layer(x) print(p.format(name, str(x.shape), n_params, n_multiplications))
weights = np.random.randint(low=-10, high=+10, size=(1000, x.shape[0])) biases = np.random.randint(low=-10, high=+10, size=(1000)) x, n_params, n_multiplications, name = fully_connected_layer(x, weights, biases) print(p.format(name, str(x.shape), n_params, n_multiplications)) x, n_params, n_multiplications, name = relu_layer(x) print(p.format(name, str(x.shape), n_params, n_multiplications)) weights = np.random.randint(low=-10, high=+10, size=(5, x.shape[0])) biases = np.random.randint(low=-10, high=+10, size=(5)) x, n_params, n_multiplications, name = fully_connected_layer(x, weights, biases) print(p.format(name, str(x.shape), n_params, n_multiplications)) assert(np.isclose(x, [ -9404869, -11033050, -34374361, -20396580, 70483360.]).all()) x, n_params, n_multiplications, name = normalize(x) print(p.format(name, str(x.shape), n_params, n_multiplications)) print("\nfinal output:", x)
use core::sync::atomic::{AtomicUsize, Ordering::Relaxed}; pub use std::alloc::System as StdAlloc; use std::alloc::{GlobalAlloc, Layout}; pub use mimalloc::MiMalloc; pub struct Allocator<T: GlobalAlloc> { inner: T, pub allocated: AtomicUsize, pub peak_allocated: AtomicUsize, pub total_allocated: AtomicUsize, pub largest_allocated: AtomicUsize, pub num_allocations: AtomicUsize, } pub const fn new_std() -> Allocator<StdAlloc> { Allocator::new(StdAlloc) } pub const fn new_mimalloc() -> Allocator<MiMalloc> { Allocator::new(MiMalloc) } impl<T: GlobalAlloc> Allocator<T> { pub const fn new(alloc: T) -> Self { Self { inner: alloc, allocated: AtomicUsize::new(0), peak_allocated: AtomicUsize::new(0), total_allocated: AtomicUsize::new(0), largest_allocated: AtomicUsize::new(0), num_allocations: AtomicUsize::new(0), } }
fn count_alloc(&self, size: usize) { let allocated = self.allocated.fetch_add(size, Relaxed); self.total_allocated.fetch_add(size, Relaxed); self.num_allocations.fetch_add(1, Relaxed); self.peak_allocated.fetch_max(allocated, Relaxed); self.largest_allocated.fetch_max(size, Relaxed); }
fn count_dealloc(&self, size: usize) { self.allocated.fetch_sub(size, Relaxed); } } unsafe impl<T: GlobalAlloc> GlobalAlloc for Allocator<T> { unsafe fn alloc(&self, layout: Layout) -> *mut u8 { self.count_alloc(layout.size()); self.inner.alloc(layout) } unsafe
fn dealloc(&self, ptr: *mut u8, layout: Layout) { self.count_dealloc(layout.size()); self.inner.dealloc(ptr, layout); } unsafe fn alloc_zeroed(&self, layout: Layout) -> *mut u8 { self.count_alloc(layout.size()); self.inner.alloc_zeroed(layout) } unsafe fn realloc(&self, ptr: *mut u8, layout: Layout, new_size: usize) -> *mut u8 { let old_size = layout.size(); if new_size >= old_size { self.count_alloc(new_size - old_size); } else { self.count_dealloc(old_size - new_size); } self.inner.realloc(ptr, layout, new_size) } }
use eyre::eyre; pub trait MapAny<T> { fn map_any(self) -> eyre::Result<T>; } impl<T> MapAny<T> for anyhow::Result<T> { fn map_any(self) -> eyre::Result<T> { self.map_err(|e| eyre!(e.to_string())) } }
use core::str::FromStr; use eyre::{bail, Error as EyreError, Result as EyreResult, WrapErr as _}; use std::process::id as pid; use structopt::StructOpt; use tracing::{info, Level, Subscriber}; use tracing_log::{AsLog as _, LogTracer}; use tracing_subscriber::{ filter::{LevelFilter, Targets}, fmt::{self, time::Uptime}, layer::SubscriberExt, Layer, Registry, }; enum LogFormat { Compact, Pretty, Json, } impl LogFormat { fn to_layer<S>(&self) -> impl Layer<S> where S: Subscriber + for<'a> tracing_subscriber::registry::LookupSpan<'a> + Send + Sync, { let layer = fmt::Layer::new().with_writer(std::io::stderr); match self { LogFormat::Compact => { Box::new(layer.event_format(fmt::format().with_timer(Uptime::default()).compact())) as Box<dyn Layer<S> + Send + Sync> } LogFormat::Pretty => Box::new(layer.event_format(fmt::format().pretty())), LogFormat::Json => Box::new(layer.event_format(fmt::format().json())), } } } impl FromStr for LogFormat { type Err = EyreError; fn from_str(s: &str) -> Result<Self, Self::Err> { Ok(match s { "compact" => Self::Compact, "pretty" => Self::Pretty, "json" => Self::Json, _ => bail!("Invalid log format: {}", s), }) } } pub
struct Options { verbose: usize, log_filter: String, log_format: LogFormat, } impl Options { pub fn init(&self) -> EyreResult<()> { let verbosity = { let (all, app) = match self.verbose { 0 => (Level::INFO, Level::INFO), 1 => (Level::INFO, Level::DEBUG), 2 => (Level::INFO, Level::TRACE), 3 => (Level::DEBUG, Level::TRACE), _ => (Level::TRACE, Level::TRACE), }; Targets::new() .with_default(all) .with_target("lib", app) .with_target(env!("CARGO_CRATE_NAME"), app) }; let log_filter = if self.log_filter.is_empty() { Targets::new() } else { self.log_filter .parse() .wrap_err("Error parsing log-filter")? }; let targets = verbosity.with_targets(log_filter); let subscriber = Registry::default().with(self.log_format.to_layer().with_filter(targets)); tracing::subscriber::set_global_default(subscriber)?; LogTracer::builder() .with_max_level(LevelFilter::current().as_log()) .init()?; info!( host = env!("TARGET"), pid = pid(), main = &crate::main as *const _ as usize, commit = &env!("COMMIT_SHA")[..8], "{name} {version}", name = env!("CARGO_CRATE_NAME"), version = env!("CARGO_PKG_VERSION"), ); Ok(()) } } pub mod test { use super::*;
fn test_parse_args() { let cmd = "arg0 -v --log-filter foo -vvv"; let options = Options::from_iter_safe(cmd.split(' ')).unwrap(); assert_eq!(options, Options { verbose: 4, log_filter: "foo".to_owned(), log_format: LogFormat::Compact, }); } }
use neural_zkp as lib; mod logging; mod random; use eyre::{Result as EyreResult, WrapErr as _}; use structopt::StructOpt; use tokio::runtime::{self, Runtime}; use tracing::info; const VERSION: &str = concat!( env!("CARGO_PKG_VERSION"), "\n", env!("COMMIT_SHA"), " ", env!("COMMIT_DATE"), "\n", env!("TARGET"), " ", env!("BUILD_DATE"), "\n", env!("CARGO_PKG_AUTHORS"), "\n", env!("CARGO_PKG_HOMEPAGE"), "\n", env!("CARGO_PKG_DESCRIPTION"), );
struct Options { log: logging::Options, app: lib::Options, random: random::Options, threads: Option<usize>, } fn main() -> EyreResult<()> { color_eyre::install()?; let matches = Options::clap().long_version(VERSION).get_matches(); let options = Options::from_clap(&matches); options.log.init()?; let rng = options.random.init(); init_rayon(options.threads)?; let runtime = init_tokio()?; let main_future = lib::main(rng, options.app); runtime.block_on(main_future)?; info!("Program terminating normally"); Ok(()) } fn init_rayon(threads: Option<usize>) -> EyreResult<()> { if let Some(threads) = threads { rayon::ThreadPoolBuilder::new() .num_threads(threads) .build_global() .context("Failed to build thread pool.")?; } info!( "Using {} compute threads on {} cores", rayon::current_num_threads(), num_cpus::get() ); Ok(()) } fn init_tokio() -> EyreResult<Runtime> { runtime::Builder::new_multi_thread() .enable_all() .build() .wrap_err("Error creating Tokio runtime") } pub mod test { use super::*; use tracing::{error, warn}; use tracing_test::traced_test;
fn test_with_log_output() { error!("logged on the error level"); assert!(logs_contain("logged on the error level")); } async
fn async_test_with_log() { info!("This is being logged on the info level"); tokio::spawn(async { warn!("This is being logged on the warn level from a spawned task"); }) .await .unwrap(); assert!(logs_contain("logged on the info level")); assert!(logs_contain("logged on the warn level")); assert!(!logs_contain("logged on the error level")); } }
use rand::{rngs::OsRng, RngCore, SeedableRng}; use rand_pcg::Mcg128Xsl64; use structopt::StructOpt; use tracing::info; pub type Generator = Mcg128Xsl64; #[derive(StructOpt)] pub struct Options { /// Random seed for deterministic random number generation. /// If not specified a seed is periodically generated from OS entropy. #[structopt(long, parse(try_from_str = parse_hex_u64))] seed: Option<u64>, } impl Options { #[must_use] pub fn init(self) -> Generator { let rng_seed = self.seed.unwrap_or_else(random_seed); info!("Using random seed {rng_seed:16x}"); Mcg128Xsl64::seed_from_u64(rng_seed) } } #[must_use] fn random_seed() -> u64 { OsRng::default().next_u64() } #[must_use] fn parse_hex_u64(src: &str) -> Result<u64, std::num::ParseIntError> { u64::from_str_radix(src, 16) }
use ndarray::{s, Array, Array3, Array4, ArrayD, ArrayViewD, Ix3}; use serde::Serialize; use super::{Layer, LayerJson}; pub
struct Convolution { kernel: Array4<f32>, name: String, input_shape: Vec<usize>, } impl Convolution { pub fn new(kernel: Array4<f32>, input_shape: Vec<usize>) -> Convolution { let (c_out, hf, wf, c_in) = kernel.dim(); let name = format!("conv {}x{}x{}x{}", c_out, hf, wf, c_in); Convolution { kernel, name, input_shape, } } } impl Layer for Convolution { fn box_clone(&self) -> Box<dyn Layer> { Box::new(self.clone()) } fn apply(&self, input: &ArrayViewD<f32>) -> ArrayD<f32> { let input = input.clone().into_dimensionality::<Ix3>().unwrap(); let (h, w, c) = input.dim(); let (c_out, hf, wf, c_in) = self.kernel.dim(); assert_eq!(c, c_in, "input channels must match"); assert!(hf % 2 == 1, "height of the kernel must be an odd number"); assert!(wf % 2 == 1, "width of the kernel must be an odd number"); let window_dim = (hf, wf, c_in); let output_shape = (h - hf + 1, w - wf + 1); let mut output = Array3::zeros((output_shape.0, output_shape.1, c_out)); for i in 0..c_out { let mut output_mut = output.slice_mut(s![.., .., i]); let kernel = self.kernel.slice(s![i, .., .., ..]); let values = input .windows(window_dim) .into_iter() .map(|w| (&w * &kernel).sum()); let values = Array::from_iter(values) .into_shape(output_shape) .expect("Kernel result dimensions mismatch"); output_mut.assign(&values); } output.into_dyn() } fn input_shape(&self) -> Vec<usize> { self.input_shape.clone() } fn name(&self) -> &str { &self.name } fn num_params(&self) -> usize { self.kernel.len() } fn num_muls(&self) -> usize { let (c_out, hf, wf, _) = self.kernel.dim(); let output_shape
= self.output_shape(); output_shape[0] * output_shape[1] * c_out * hf * wf } fn output_shape(&self) -> Vec<usize> { let input_shape = self.input_shape(); let h = input_shape[0]; let w = input_shape[1]; let c = input_shape[2]; let (c_out, hf, wf, c_in) = self.kernel.dim(); assert_eq!(c, c_in, "input channels must match"); assert!(hf % 2 == 1, "height of the kernel must be an odd number"); assert!(wf % 2 == 1, "width of the kernel must be an odd number"); vec![h - hf + 1, w - wf + 1, c_out] } fn to_json(&self) -> LayerJson { LayerJson::Convolution { kernel: self.kernel.clone().into(), input_shape: self.input_shape(), } } } pub mod test { use super::*;
fn test_small() { use ndarray::array; let input = array![ [ [0.51682377_f32], [-2.3552072], [-0.120499134], [2.3132505], [-3.470844] ], [[-1.1741579], [3.4295654], [-1.2318683], [-1.9749749], [ -0.8161392 ]], [[4.7562046], [-2.8918338], [2.308525], [2.6111293], [ -1.0765815 ]], [[-4.1224194], [3.022316], [-4.5339823], [4.2970715], [ 2.6773367 ]], [[-4.289216], [-3.3795083], [-2.651745], [-1.1392272], [ 3.9378529 ]] ]; let kernel: Array4<f32> = array![ [[1.0336475_f32], [-4.7104144], [-0.24099827]], [[4.626501], [-6.941688], [-2.3483157]], [[6.859131], [-2.4637365], [-3.9499497]] ] .into_shape((1, 3, 3, 1)) .unwrap(); let expected = array![ [[15.940444], [-9.205237], [13.396301]], [[1.7727833], [-10.784569], [-48.952152]], [[-22.043327], [8.725433], [-97.68271]] ]; let conv = Convolution::new(kernel, vec![1, 5, 5, 1]); let result = conv.apply(&input.into_dyn().view()); let delta = result - &expected; let max_error = delta.into_iter().map(f32::abs).fold(0.0, f32::max); dbg!(max_error); assert!(max_error < 10.0 * f32::EPSILON); }
fn conv_test() { use ndarray_rand::{rand::SeedableRng, rand_distr::Uniform, RandomExt}; use rand::rngs::StdRng; let seed = 694201337; let mut rng = StdRng::seed_from_u64(seed); let input = Array3::random_using((120, 80, 3), Uniform::<f32>::new(-5., 5.), &mut rng); let kernel = Array4::random_using((32, 5, 5, 3), Uniform::<f32>::new(-10., 10.), &mut rng); let conv = Convolution::new(kernel, vec![120, 80, 3]); let result = conv .apply(&input.into_dyn().view()) .into_dimensionality::<Ix3>() .unwrap(); assert_eq!(conv.output_shape(), vec![116, 76, 32]); let (dim_x, dim_y, dim_z) = result.dim(); println!( " output dim: {}x{}x{}\n {} output:\n {}", conv.num_params(), dim_x, dim_y, dim_z, conv.num_muls(), conv.name(), result ); } }
use ndarray::{Array1, ArrayD, ArrayViewD}; use serde::Serialize; use super::{Layer, LayerJson}; pub
struct Flatten { name: String, input_shape: Vec<usize>, } impl Flatten { pub fn new(input_shape: Vec<usize>) -> Flatten { Flatten { name: "flatten".into(), input_shape, } } } impl Layer for Flatten { fn box_clone(&self) -> Box<dyn Layer> { Box::new(self.clone()) } fn apply(&self, input: &ArrayViewD<f32>) -> ArrayD<f32> { Array1::from_iter(input.iter().copied()).into_dyn() } fn input_shape(&self) -> Vec<usize> { self.input_shape.clone() } fn name(&self) -> &str { &self.name } fn num_params(&self) -> usize { 0 } fn num_muls(&self) -> usize { 0 } fn output_shape(&self) -> Vec<usize> { let mut output_shape = 1; for i in self.input_shape() { output_shape *= i; } vec![output_shape] } fn to_json(&self) -> LayerJson { LayerJson::Flatten { input_shape: self.input_shape(), } } } mod test { use super::*; use ndarray::Array3; use ndarray_rand::{rand::SeedableRng, rand_distr::Uniform, RandomExt}; use rand::rngs::StdRng;
fn flatten_test() { let seed = 694201337; let mut rng = StdRng::seed_from_u64(seed); let input = Array3::random_using((27, 17, 32), Uniform::<f32>::new(-5.0, 5.0), &mut rng); let flat = Flatten::new(vec![27, 17, 32]); let output = flat.apply(&input.into_dyn().view()); let n_multiplications = flat.num_muls(); let n_params = flat.num_params(); assert_eq!(output.len(), 14688); println!( " {} \n output dim: {} \n output:\n {}", flat.name, n_params, output.len(), n_multiplications, output ); } }
use ndarray::{Array1, Array2, ArrayD, ArrayViewD, Ix1}; use serde::Serialize; use super::{Layer, LayerJson}; pub
struct FullyConnected { weights: Array2<f32>, biases: Array1<f32>, name: String, } impl FullyConnected { pub fn new(weights: Array2<f32>, biases: Array1<f32>) -> FullyConnected { FullyConnected { weights, biases, name: "full".into(), } } } impl Layer for FullyConnected { fn box_clone(&self) -> Box<dyn Layer> { Box::new(self.clone()) } fn apply(&self, input: &ArrayViewD<f32>) -> ArrayD<f32> { assert!(input.ndim() == 1, "Input must be a flattenened array!"); assert!( self.weights.shape()[1] == input.shape()[0], "Input shapes must match (for the dot product to work)!" ); assert!( self.weights.shape()[0] == self.biases.shape()[0], "Output shapes must match!" ); let output = self .weights .dot(&input.clone().into_dimensionality::<Ix1>().unwrap()) + self.biases.clone(); output.into_dyn() } fn name(&self) -> &str { &self.name } fn num_params(&self) -> usize { self.weights.len() + self.biases.len() } fn num_muls(&self) -> usize { self.weights.len() } fn output_shape(&self) -> Vec<usize> { assert!( self.weights.shape()[0] == self.biases.shape()[0], "Output shapes must match!" ); vec![self.weights.shape()[0]] } fn input_shape(&self) -> Vec<usize> { vec![self.weights.shape()[1]] } fn to_json(&self) -> LayerJson { LayerJson::FullyConnected { weights: self.weights.clone().into(), biases: self.biases.clone().into(), } } } pub mod test { use super::*; use ndarray_rand::{rand::SeedableRng, rand_distr::Uniform, RandomExt}; use rand::rngs::StdRng;
fn fully_connected_test() { let seed = 694201337; let mut rng = StdRng::seed_from_u64(seed); let input = Array1::random_using(14688, Uniform::<f32>::new(-10.0, 10.0), &mut rng); let weights = Array2::random_using((1000, 14688), Uniform::<f32>::new(-10.0, 10.0), &mut rng); let biases = Array1::random_using(1000, Uniform::<f32>::new(-10.0, 10.0), &mut rng); let fully_connected = FullyConnected::new(weights, biases); let output = fully_connected.apply(&input.into_dyn().view()); let n_params = fully_connected.num_params(); let n_multiplications = fully_connected.num_muls(); println!( " {} output dim: {}x1 output:\n{}", fully_connected.name, n_params, output.len(), n_multiplications, output ); } }
use ndarray::{s, Array3, ArrayD, ArrayViewD, Ix3}; use ndarray_stats::QuantileExt; use serde::Serialize; use super::{Layer, LayerJson}; pub
struct MaxPool { kernel_side: usize, name: String, input_shape: Vec<usize>, } impl MaxPool { pub fn new(kernel_side: usize, input_shape: Vec<usize>) -> MaxPool { MaxPool { name: "max-pool".into(), kernel_side, input_shape, } } } impl Layer for MaxPool { fn box_clone(&self) -> Box<dyn Layer> { Box::new(self.clone()) } fn apply(&self, input: &ArrayViewD<f32>) -> ArrayD<f32> { let input = input.clone().into_dimensionality::<Ix3>().unwrap(); let (h, w, c) = input.dim(); assert!(h % self.kernel_side == 0, "Height must be divisible by s!"); assert!(w % self.kernel_side == 0, "Width must be divisible by s!"); let mut output = Array3::<f32>::zeros((h / self.kernel_side, w / self.kernel_side, c)); for i in (0..h).step_by(self.kernel_side) { for j in (0..w).step_by(self.kernel_side) { for k in 0..c { let a = input.slice(s![i..i + self.kernel_side, j..j + self.kernel_side, k]); output[[i / self.kernel_side, j / self.kernel_side, k]] = *a.max().unwrap(); } } } output.into_dyn() } fn name(&self) -> &str { &self.name } fn num_params(&self) -> usize { 0 } fn num_muls(&self) -> usize { let mut muls = 1; for i in self.input_shape() { muls *= i; } muls } fn output_shape(&self) -> Vec<usize> { let input_shape = self.input_shape(); let h = input_shape[0]; let w = input_shape[1]; let c = input_shape[2]; assert!(h % self.kernel_side == 0, "Height must be divisible by s!"); assert!(w % self.kernel_side == 0, "Width must be divisible by s!"); vec![w / self.kernel_side, h / self.kernel_side, c] } fn input_shape(&self) -> Vec<usize> { self.input_shape.clo
ne() } fn to_json(&self) -> LayerJson { LayerJson::MaxPool { window: self.kernel_side, input_shape: self.input_shape(), } } } pub mod test { use super::*; use ndarray_rand::{rand::SeedableRng, rand_distr::Uniform, RandomExt}; use rand::rngs::StdRng;
fn maxpool_test() { let seed = 694201337; let mut rng = StdRng::seed_from_u64(seed); let input = Array3::random_using((116, 76, 32), Uniform::<f32>::new(-5.0, 5.0), &mut rng); let maxpool = MaxPool::new(2, vec![126, 76, 32]); let output = maxpool .apply(&input.into_dyn().view()) .into_dimensionality::<Ix3>() .unwrap(); let n_params = maxpool.num_params(); let n_multiplications = maxpool.num_muls(); assert_eq!(output.dim(), (58, 38, 32)); let (dim_x, dim_y, dim_z) = output.dim(); println!( " {} \n output dim: {}x{}x{}\n output:\n {}", maxpool.name, n_params, dim_x, dim_y, dim_z, n_multiplications, output ); } }
use std::fmt::{Display, Formatter, Result}; use erased_serde::serialize_trait_object; use ndarray::{ArcArray, ArrayD, ArrayViewD, Ix1, Ix2, Ix4}; use serde::{Deserialize, Serialize}; pub mod conv; pub mod flatten; pub mod fully_connected; pub mod maxpool; pub mod normalize; pub mod relu; pub trait Layer: erased_serde::Serialize { fn apply(&self, input: &ArrayViewD<f32>) -> ArrayD<f32>; fn input_shape(&self) -> Vec<usize>; fn name(&self) -> &str; fn num_params(&self) -> usize; fn num_muls(&self) -> usize; fn output_shape(&self) -> Vec<usize>; fn to_json(&self) -> LayerJson; fn box_clone(&self) -> Box<dyn Layer>; } serialize_trait_object!(Layer); impl Display for Box<dyn Layer> { fn fmt(&self, f: &mut Formatter<'_>) -> Result { write!( f, "{:<20} | {:?}{:<5} | {:<5} | {:<5}", self.name(), self.output_shape(), "", self.num_params(), self.num_muls(), ) } } impl Clone for Box<dyn Layer> { fn clone(&self) -> Self { Layer::box_clone(&**self) } } pub enum LayerJson { Convolution { kernel: ArcArray<f32, Ix4>, input_shape: Vec<usize>, }, MaxPool { window: usize, input_shape: Vec<usize>, }, FullyConnected { weights: ArcArray<f32, Ix2>, biases: ArcArray<f32, Ix1>, }, Relu { input_shape: Vec<usize>, }, Flatten { input_shape: Vec<usize>, }, Normalize { input_shape: Vec<usize>, }, } pub
struct NNJson { pub layers: Vec<LayerJson>, } impl TryFrom<LayerJson> for Box<dyn Layer> { type Error = (); fn try_from(value: LayerJson) -> std::result::Result<Self, ()> { Ok(match value { LayerJson::Convolution { kernel, input_shape, } => Box::new(conv::Convolution::new(kernel.to_owned(), input_shape)), LayerJson::MaxPool { window, input_shape, } => Box::new(maxpool::MaxPool::new(window.to_owned(), input_shape)), LayerJson::FullyConnected { weights, biases } => Box::new( fully_connected::FullyConnected::new(weights.to_owned(), biases.to_owned()), ), LayerJson::Flatten { input_shape } => Box::new(flatten::Flatten::new(input_shape)), LayerJson::Relu { input_shape } => Box::new(relu::Relu::new(input_shape)), LayerJson::Normalize { input_shape } => { Box::new(normalize::Normalize::new(input_shape)) } }) } } impl FromIterator<LayerJson> for NNJson { fn from_iter<T: IntoIterator<Item = LayerJson>>(iter: T) -> Self { let mut nnvec = vec![]; for i in iter { nnvec.push(i); } Self { layers: nnvec } } } impl From<NeuralNetwork> for NNJson { fn from(nn: NeuralNetwork) -> Self { nn.layers.into_iter().map(|l| l.to_json()).collect() } } impl TryFrom<NNJson> for NeuralNetwork { type Error = (); fn try_from(value: NNJson) -> std::result::Result<Self, ()> { Ok(Self { layers: value .layers .into_iter() .map(|i| i.try_into().unwrap()) .collect(), }) } } pub
struct NeuralNetwork { layers: Vec<Box<dyn Layer>>, } impl NeuralNetwork { pub fn new() -> Self { Self { layers: vec![] } } pub
fn add_layer(&mut self, layer: Box<dyn Layer>) { self.layers.push(layer); } pub fn apply(&self, input: &ArrayViewD<f32>, dim: usize) -> Option<ArrayD<f32>> { if dim == 3 { let mut output = input.view().into_owned(); for layer in &self.layers { output = layer.apply(&output.view()); println!("{}", layer); } Some(output) } else { None } } } impl Default for NeuralNetwork { fn default() -> Self { Self::new() } }
use super::LayerJson; use ndarray::{ArrayD, ArrayViewD}; use serde::Serialize; use super::Layer; #[derive(Clone, Serialize)] pub struct Normalize { name: String, input_shape: Vec<usize>, } impl Normalize { #[must_use] pub fn new(input_shape: Vec<usize>) -> Normalize { Normalize { name: "normalize".into(), input_shape, } } } impl Layer for Normalize { fn box_clone(&self) -> Box<dyn Layer> { Box::new(self.clone()) } fn apply(&self, input: &ArrayViewD<f32>) -> ArrayD<f32> { let input = input.clone().mapv(|x| x as i128); let norm = f32::sqrt(input.mapv(|x| x.pow(2)).sum() as f32); input.mapv(|x| x as f32 / norm).into_dyn() } fn input_shape(&self) -> Vec<usize> { self.input_shape.clone() } fn name(&self) -> &str { &self.name } fn num_params(&self) -> usize { 0 } fn num_muls(&self) -> usize { let mut muls = 1; for i in self.input_shape() { muls *= i; } 1 + muls } fn output_shape(&self) -> Vec<usize> { self.input_shape.clone() } fn to_json(&self) -> LayerJson { LayerJson::Normalize { input_shape: self.input_shape(), } } } #[cfg(test)] mod test { use super::*; use ndarray::{arr1, array}; #[test] fn normalize_test() { let input = arr1(&[ -6276474000., 8343393300., 8266027500., -7525360600., 7814137000., ]); let normalize = Normalize::new(vec![5]); let output = normalize.apply(&input.into_dyn().view()); let expected = array![-0.36541474, 0.4857503, 0.48124605, -0.43812463, 0.4549371]; let delta = &output - &expected; let max_error = delta.into_iter().map(f32::abs).fold(0.0, f32::max); assert!(max_error < 10.0 * f32::EPSILON); println!("{}", output); } }
use ndarray::{ArrayD, ArrayViewD}; use serde::Serialize; use super::{Layer, LayerJson}; pub
struct Relu { name: String, input_shape: Vec<usize>, } impl Relu { pub fn new(input_shape: Vec<usize>) -> Self { Self { name: "relu".into(), input_shape, } } } impl Layer for Relu { fn box_clone(&self) -> Box<dyn Layer> { Box::new(self.clone()) } fn apply(&self, input: &ArrayViewD<f32>) -> ArrayD<f32> { input.mapv(|x| f32::max(0.0, x)) } fn name(&self) -> &str { &self.name } fn num_params(&self) -> usize { let mut params = 1; for i in self.input_shape() { params *= i; } params } fn num_muls(&self) -> usize { 0 } fn output_shape(&self) -> Vec<usize> { self.input_shape.clone() } fn input_shape(&self) -> Vec<usize> { self.input_shape.clone() } fn to_json(&self) -> LayerJson { LayerJson::Relu { input_shape: self.input_shape(), } } } pub mod test { use super::*; use ndarray::{arr1, arr3, Ix1, Ix3};
fn relu_test3() { let input = arr3(&[[[1.2, -4.3], [-2.1, 4.3]], [[5.2, 6.1], [7.6, -1.8]], [ [9.3, 0.0], [1.2, 3.4], ]]); let relu = Relu::new(vec![3, 2, 2]); let output = relu.apply(&input.into_dyn().view()); let n_params = relu.num_params(); let n_multiplications = relu.num_muls(); assert_eq!( output, arr3(&[[[1.2, 0.0], [0.0, 4.3]], [[5.2, 6.1], [7.6, 0.0]], [ [9.3, 0.0], [1.2, 3.4], ]]) .into_dyn() ); let size: (usize, usize, usize) = (3, 2, 2); assert_eq!( &output.clone().into_dimensionality::<Ix3>().unwrap().dim(), &size ); println!( " {} output dim: {}x1 output:\n{}", relu.name(), n_params, n_params, n_multiplications, output ); }
fn relu_test1() { let input = arr1(&[-4., -3.4, 6., 7., 1., -3.]).into_dyn(); let relu = Relu::new(vec![6]); let output = relu.apply(&input.into_dyn().view()); let n_params = relu.num_params(); let n_multiplications = relu.num_muls(); assert_eq!(output, arr1(&[0., 0., 6., 7., 1., 0.]).into_dyn()); assert_eq!( output.clone().into_dimensionality::<Ix1>().unwrap().len(), 6 ); println!( " {} output dim: {}x1 output:\n{}", relu.name(), n_params, n_params, n_multiplications, output ); } }
mod allocator; mod anyhow; pub mod layers; pub mod nn; pub mod serialize; use self::{allocator::Allocator, anyhow::MapAny as _}; use bytesize::ByteSize; use eyre::{eyre, Result as EyreResult}; use log::Level; use plonky2::{ field::types::Field, iop::{ target::Target, witness::{PartialWitness, Witness}, }, plonk::{ circuit_builder::CircuitBuilder, circuit_data::{CircuitConfig, CircuitData}, config::{GenericConfig, KeccakGoldilocksConfig, PoseidonGoldilocksConfig}, proof::{CompressedProofWithPublicInputs, ProofWithPublicInputs}, }, }; use rand::Rng as _; use std::{iter::once, sync::atomic::Ordering, time::Instant}; use structopt::StructOpt; use tracing::{info, trace}; type Rng = rand_pcg::Mcg128Xsl64; pub static ALLOCATOR: Allocator<allocator::StdAlloc> = allocator::new_std(); pub static ALLOCATOR: Allocator<allocator::MiMalloc> = allocator::new_mimalloc(); pub
struct Options { pub bench: bool, pub input_size: usize, pub output_size: usize, pub coefficient_bits: usize, pub num_wires: usize, pub num_routed_wires: usize, pub constant_gate_size: usize, } const D: usize = 2; type C = PoseidonGoldilocksConfig; type F = <C as GenericConfig<D>>::F; type Builder = CircuitBuilder<F, D>; type Proof = ProofWithPublicInputs<F, C, D>; fn to_field(value: i32) -> F { if value >= 0 { F::from_canonical_u32(value as u32) } else { -F::from_canonical_u32(-value as u32) } } fn dot(builder: &mut Builder, coefficients: &[i32], input: &[Target]) -> Target { assert_eq!(coefficients.len(), input.len()); let mut sum = builder.zero(); for (&coefficient, &input) in coefficients.iter().zip(input) { let coefficient = to_field(coefficient); sum = builder.mul_const_add(coefficient, input, sum); } sum } fn full(builder: &mut Builder, coefficients: &[i32], input: &[Target]) -> Vec<Target> { let input_size = input.len(); let output_size = coefficients.len() / input_size; assert_eq!(coefficients.len(), input_size * output_size); builder.push_context(Level::Info, "full"); let mut output = Vec::with_capacity(output_size); for coefficients in coefficients.chunks_exact(input_size) { output.push(dot(builder, coefficients, input)); } builder.pop_context(); output }
struct Circuit { inputs: Vec<Target>, outputs: Vec<Target>, data: CircuitData<F, C, D>, } impl Circuit { fn build(options: &Options, coefficients: &[i32]) -> Circuit { assert_eq!(coefficients.len(), options.input_size * options.output_size); info!( "Building circuit for for {}x{} matrix-vector multiplication", options.input_size, options.output_size ); let config = CircuitConfig { num_wires: options.num_wires, num_routed_wires: options.num_routed_wires, ..CircuitConfig::default() }; let mut builder = CircuitBuilder::<F, D>::new(config); builder.push_context(Level::Info, "Inputs"); let inputs = builder.add_virtual_targets(options.input_size); inputs .iter() .for_each(|target| builder.register_public_input(*target)); builder.pop_context(); let outputs = full(&mut builder, &coefficients, &inputs); outputs .iter() .for_each(|target| builder.register_public_input(*target)); builder.print_gate_counts(0); let data = builder.build::<C>(); Self { inputs, outputs, data, } } fn prove(&self, input: &[i32]) -> EyreResult<Proof> { info!("Proving {} size input", input.len()); let mut pw = PartialWitness::new(); for (&target, &value) in self.inputs.iter().zip(input) { pw.set_target(target, to_field(value)); } let proof = self.data.prove(pw).map_any()?; let proof_size = ByteSize(proof.to_bytes().map_any()?.len() as u64); info!("Proof size: {proof_size}"); Ok(proof) } fn verify(&self, proof: &Proof) -> EyreResult<()> { info!( "Verifying proof with {} public inputs", proof.public_inputs.len() ); self.data.verify
(proof.clone()).map_any() } } pub async fn main(mut rng: Rng, mut options: Options) -> EyreResult<()> { info!( "Computing proof for {}x{} matrix-vector multiplication", options.input_size, options.output_size ); println!( "input_size,output_size,build_time_s,proof_time_s,proof_mem_b,proof_size_b,verify_time_s" ); let output_sizes: Box<dyn Iterator<Item = usize>> = if options.bench { Box::new((1..).map(|n| n * 1000)) } else { Box::new(once(options.output_size)) }; for output_size in output_sizes { options.output_size = output_size; let quantize_coeff = |c: i32| c % (1 << options.coefficient_bits); let coefficients: Vec<i32> = (0..options.input_size * options.output_size) .map(|_| quantize_coeff(rng.gen())) .collect(); let now = Instant::now(); let circuit = Circuit::build(&options, &coefficients); let circuit_build_time = now.elapsed(); ALLOCATOR.peak_allocated.store(0, Ordering::Release); let input_values = (0..options.input_size as i32) .into_iter() .map(|_| rng.gen()) .collect::<Vec<_>>(); let now = Instant::now(); let proof = circuit.prove(&input_values)?; let proof_mem = ALLOCATOR.peak_allocated.load(Ordering::Acquire); let proof_time = now.elapsed(); let proof_size = proof.to_bytes().map_any()?.len() as u64; info!("Prover memory usage: {}", ByteSize(proof_mem as u64)); let now = Instant::now(); circuit.verify(&proof)?; let verify_time = now.elapsed(); println!( "{},{},{},{},{},{},{}", options.input_size, options.output_size, circuit_build_time.as_secs_f64(), proof_time.as_secs_f64(), proof_mem, proof_size, verify_time.as_secs_f64() ); } Ok(()) } pub mod test {
use super::*; use proptest::proptest; use tracing::{error, warn}; use tracing_test::traced_test;
fn test_with_log_output() { error!("logged on the error level"); assert!(logs_contain("logged on the error level")); } async
fn async_test_with_log() { info!("This is being logged on the info level"); tokio::spawn(async { warn!("This is being logged on the warn level from a spawned task"); }) .await .unwrap(); assert!(logs_contain("logged on the info level")); assert!(logs_contain("logged on the warn level")); assert!(!logs_contain("logged on the error level")); } } pub mod bench { use criterion::{black_box, BatchSize, Criterion}; use proptest::{ strategy::{Strategy, ValueTree}, test_runner::TestRunner, }; use std::time::Duration; use tokio::runtime; pub
fn group(criterion: &mut Criterion) { bench_example_proptest(criterion); bench_example_async(criterion); } pub(crate) fn runtime() -> runtime::Runtime { runtime::Builder::new_multi_thread() .enable_all() .build() .unwrap() }
fn bench_example_proptest(criterion: &mut Criterion) { let input = (0..5, 0..5); let mut runner = TestRunner::deterministic(); criterion.bench_function("example_proptest", move |bencher| { bencher.iter_batched( || input.new_tree(&mut runner).unwrap().current(), |(a, b)| { black_box(a + b) }, BatchSize::LargeInput, ); }); }
fn bench_example_async(criterion: &mut Criterion) { let duration = Duration::from_micros(1); criterion.bench_function("example_async", move |bencher| { bencher.to_async(runtime()).iter(|| async { tokio::time::sleep(duration).await; }); }); } }
use crate::layers::{ conv::Convolution, flatten::Flatten, fully_connected::FullyConnected, maxpool::MaxPool, normalize::Normalize, relu::Relu, NeuralNetwork, }; use ndarray::{Array1, Array2, Array4}; use ndarray_rand::{rand::SeedableRng, rand_distr::Uniform, RandomExt}; use rand::rngs::StdRng; pub fn create_neural_net() -> NeuralNetwork { let seed = 694201337; let mut rng = StdRng::seed_from_u64(seed); let mut neural_net = NeuralNetwork::new(); let kernel = Array4::random_using((32, 5, 5, 3), Uniform::<f32>::new(-10., 10.), &mut rng); neural_net.add_layer(Box::new(Convolution::new(kernel, vec![120, 80, 3]))); neural_net.add_layer(Box::new(MaxPool::new(2, vec![116, 76, 32]))); neural_net.add_layer(Box::new(Relu::new(vec![58, 38, 32]))); let kernel = Array4::random_using((32, 5, 5, 32), Uniform::<f32>::new(-10., 10.), &mut rng); neural_net.add_layer(Box::new(Convolution::new(kernel, vec![58, 38, 32]))); neural_net.add_layer(Box::new(MaxPool::new(2, vec![54, 34, 32]))); neural_net.add_layer(Box::new(Relu::new(vec![27, 17, 32]))); neural_net.add_layer(Box::new(Flatten::new(vec![27, 17, 32]))); let weights = Array2::random_using((1000, 14688), Uniform::<f32>::new(-10.0, 10.0), &mut rng); let biases = Array1::random_using(1000, Uniform::<f32>::new(-10.0, 10.0), &mut rng); neural_net.add_layer(Box::new(FullyConnected::new(weights, biases))); neural_net.add_layer(Box::new(Relu::new(vec![1000]))); let weights = Array2::random_using((5, 1000), Uniform::<f32>::new(-10.0, 10.0), &mut rng); let biases = Array1::random_using(5, Uniform::<f32>::new(-10.0, 10.0), &mut rng); neural_net.add_layer(Box::new(FullyConnected::new(weights, biases))); neural_net.add_layer(Box::new(Normalize::new(vec![5]))); neural_net } pub
fn log_nn_table() { println!( "{:<20} | {:<15} | {:<15} | {:<15}", "layer", "output shape", " ); println!("{:-<77}", ""); } pub mod tests { extern crate test; use crate::{ layers::{ conv::Convolution, flatten::Flatten, fully_connected::FullyConnected, maxpool::MaxPool, normalize::Normalize, relu::Relu, NeuralNetwork, }, serialize::deserialize_model_json, }; use ndarray::{ArcArray, Array1, Array2, Array3, Array4, Ix1, Ix2, Ix3, Ix4}; use ndarray_rand::{rand::SeedableRng, rand_distr::Uniform, RandomExt}; use rand::rngs::StdRng; use std::fs; use test::Bencher; use super::log_nn_table;