|
--- |
|
dataset_info: |
|
- config_name: Behaviour |
|
features: |
|
- name: text |
|
dtype: string |
|
- name: label |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 608966 |
|
num_examples: 5000 |
|
- name: test |
|
num_bytes: 128067 |
|
num_examples: 1000 |
|
download_size: 455378 |
|
dataset_size: 737033 |
|
- config_name: Synth |
|
features: |
|
- name: text |
|
dtype: string |
|
- name: label |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 681703 |
|
num_examples: 7014 |
|
- name: test |
|
num_bytes: 199047 |
|
num_examples: 2908 |
|
download_size: 498443 |
|
dataset_size: 880750 |
|
configs: |
|
- config_name: Behaviour |
|
data_files: |
|
- split: train |
|
path: Behaviour/train-* |
|
- split: test |
|
path: Behaviour/test-* |
|
- config_name: Synth |
|
data_files: |
|
- split: train |
|
path: Synth/train-* |
|
- split: test |
|
path: Synth/test-* |
|
--- |
|
|
|
# Automatic Misogyny Identification (AMI) |
|
|
|
Original Paper: https://amievalita2020.github.io |
|
|
|
Task presented at EVALITA-2020 |
|
|
|
This task consists of tweet classification, specifically, categorization of the level of misogyny in a given text. |
|
|
|
We taken both subtasks, *raw_dataset* uploaded as *Behaviour* (3 class classification) and *synthetic* uploaded as *Synth* (2 class classification). |
|
|
|
## Example |
|
|
|
Here you can see the structure of the single sample in the present dataset. |
|
|
|
### Behaviour |
|
|
|
```json |
|
{ |
|
"text": string, # text of the tweet |
|
"label": int, # 0: Non Misogino, 1: Misogino, 2: Misogino Aggressivo |
|
} |
|
``` |
|
|
|
### Synth |
|
|
|
```json |
|
{ |
|
"text": string, # text of the tweet |
|
"label": int, # 0: Non Misogino, 1: Misogino |
|
} |
|
``` |
|
|
|
## Statitics |
|
|
|
| AMI Behaviour | Non Misogino | Misogino | Misogino Aggressivo | |
|
| :--------: | :----: | :----: | :----: | |
|
| Training | 2663 | 554 | 1783 | |
|
| Test | 500 | 324 | 176 | |
|
|
|
| AMI Synth | Non Misogino | Misogino | |
|
| :--------: | :----: | :----: | |
|
| Training | 3670 | 3344 | |
|
| Test | 1454 | 1454 | |
|
|
|
|
|
## Proposed Prompts |
|
|
|
Here we will describe the prompt given to the model over which we will compute the perplexity score, as model's answer we will chose the prompt with lower perplexity. |
|
Moreover, for each subtask, we define a description that is prepended to the prompts, needed by the model to understand the task. |
|
|
|
### Behaviour |
|
|
|
Description of the task: "Indica il livello di misoginia presente nei seguenti tweet.\n\n" |
|
|
|
|
|
#### Cloze Style: |
|
|
|
Label (**Non Misogino**): "Tweet: '{{text}}'.\nIl tweet non presenta caratteristiche misogine." |
|
|
|
Label (**Misogino**): "Tweet: '{{text}}'.\nIl tweet presenta caratteristiche misogine." |
|
|
|
Label (**Misogino Aggressivo**): "Tweet: '{{text}}'.\nIl tweet presenta caratteristiche misogine aggressive." |
|
|
|
#### MCQA Style: |
|
|
|
```txt |
|
Tweet: '{{text}}'.\nDomanda: che livello di misoginia è presente nel tweet?\nA. Nessuno\nB. Misogino\nC. Misogino Aggressivo\nRisposta: |
|
``` |
|
|
|
### Synth |
|
Description of the task: "Indica se i seguenti tweet presentano caratteristiche misogine.\n\n" |
|
|
|
#### Cloze Style: |
|
|
|
Label (**Non Misogino**): "Tweet: '{{text}}'.\nIl tweet non presenta caratteristiche misogine." |
|
|
|
Label (**Misogino**): "Tweet: '{{text}}'.\nIl tweet presenta caratteristiche misogine." |
|
|
|
|
|
#### MCQA Style: |
|
|
|
```txt |
|
Tweet: '{{text}}'.\nDomanda: Il tweet contiene elementi misogini? Rispondi sì o no: |
|
``` |
|
|
|
## Results |
|
|
|
The following results are given by the Cloze-style prompting over some english and italian-adapted LLMs. |
|
|
|
| AMI Synth | ACCURACY (5-shots) | |
|
| :-----: | :--: | |
|
| Gemma-2B | 53.78 | |
|
| QWEN2-1.5B | 60.72 | |
|
| Mistral-7B | 71.59 | |
|
| ZEFIRO | 74.69 | |
|
| Llama-3-8B | 74.55 | |
|
| Llama-3-8B-IT | 78.47 | |
|
| ANITA | 82.66 | |
|
|
|
## Acknowledge |
|
|
|
We would like to thank the authors of this resource for publicly releasing such an intriguing benchmark. |
|
|
|
Additionally, we extend our gratitude to the students of the [MNLP-2024 course](https://naviglinlp.blogspot.com/), whose first homework explored various interesting prompting strategies. |
|
|
|
The original dataset is freely available for download [link](https://live.european-language-grid.eu/catalogue/corpus/7005/download/). |
|
|
|
## License |
|
|
|
The data come under license [Creative Commons Attribution Non Commercial Share Alike 4.0 International](https://creativecommons.org/licenses/by-nc-sa/4.0/). |