name
stringlengths
12
178
code_snippet
stringlengths
8
36.5k
score
float64
3.26
3.68
flink_BinaryHashTable_endBuild_rdh
/** * End build phase. */ public void endBuild() throws IOException { // finalize the partitions int buildWriteBuffers = 0; for (BinaryHashPartition p : this.partitionsBeingBuilt) { buildWriteBuffers += p.finalizeBuildPhase(this.ioManager, this.currentEnumerator); } buildSpillRetBufferNumbers += buildWriteBuffers; // the first prober is the probe-side input, but the input is null at beginning this.probeIterator = new ProbeIterator(this.binaryProbeSideSerializer.createInstance()); // the bucket iterator can remain constant over the time this.bucketIterator = new LookupBucketIterator(this); }
3.26
flink_BinaryHashTable_putBuildRow_rdh
// ========================== build phase public method ====================================== /** * Put a build side row to hash table. */ public void putBuildRow(RowData row) throws IOException { final int hashCode = hash(this.buildSideProjection.apply(row).hashCode(), 0); // TODO: combine key projection and build side conversion to code gen. insertIntoTable(originBuildSideSerializer.toBinaryRow(row), hashCode); }
3.26
flink_BinaryHashTable_clearPartitions_rdh
/** * This method clears all partitions currently residing (partially) in memory. It releases all * memory and deletes all spilled partitions. * * <p>This method is intended for a hard cleanup in the case that the join is aborted. */ @Override public void clearPartitions() { // clear the iterators, so the next call to next() will notice this.bucketIterator = null; this.probeIterator = null; for (int i = this.partitionsBeingBuilt.size() - 1; i >= 0; --i) { final BinaryHashPartition p = this.partitionsBeingBuilt.get(i); try { p.clearAllMemory(this.internalPool); } catch (Exception e) { LOG.error("Error during partition cleanup.", e); } } this.partitionsBeingBuilt.clear(); // clear the partitions that are still to be done (that have files on disk) for (final BinaryHashPartition p : this.partitionsPending) { p.clearAllMemory(this.internalPool); } // clear the partitions that processed by sort merge join operator for (final BinaryHashPartition p : this.partitionsPendingForSMJ) {try { p.clearAllMemory(this.internalPool); } catch (Exception e) { LOG.error("Error during partition cleanup.", e); } } this.partitionsPendingForSMJ.clear(); }
3.26
flink_BinaryHashTable_spillPartition_rdh
/** * Selects a partition and spills it. The number of the spilled partition is returned. * * @return The number of the spilled partition. */ @Override protected int spillPartition() throws IOException { // find the largest partition int largestNumBlocks = 0; int largestPartNum = -1;for (int i = 0; i < partitionsBeingBuilt.size(); i++) { BinaryHashPartition p = partitionsBeingBuilt.get(i); if (p.isInMemory() && (p.getNumOccupiedMemorySegments() > largestNumBlocks)) { largestNumBlocks = p.getNumOccupiedMemorySegments(); largestPartNum = i; } } final BinaryHashPartition p = partitionsBeingBuilt.get(largestPartNum); // spill the partition int numBuffersFreed = p.spillPartition(this.ioManager, this.currentEnumerator.next(), this.buildSpillReturnBuffers); this.buildSpillRetBufferNumbers += numBuffersFreed; LOG.info(String.format("Grace hash join: Ran out memory, choosing partition " + "[%d] to spill, %d memory segments being freed", largestPartNum, numBuffersFreed)); // grab as many buffers as are available directly MemorySegment currBuff; while ((this.buildSpillRetBufferNumbers > 0) && ((currBuff = this.buildSpillReturnBuffers.poll()) != null)) { returnPage(currBuff); this.buildSpillRetBufferNumbers--; } numSpillFiles++; spillInBytes += numBuffersFreed * segmentSize; // The bloomFilter is built by bucket area after the data is spilled, so that we can use // enough memory. p.buildBloomFilterAndFreeBucket(); return largestPartNum; }
3.26
flink_BinaryHashTable_nextMatching_rdh
// ========================== rebuild phase public method ====================================== /** * Next record from rebuilt spilled partition or build side outer partition. */ public boolean nextMatching() throws IOException { if (type.needSetProbed()) { return (processProbeIter() || m1()) || prepareNextPartition(); } else {return processProbeIter() || prepareNextPartition(); } }
3.26
flink_NullValue_getBinaryLength_rdh
// -------------------------------------------------------------------------------------------- @Override public int getBinaryLength() { return 1; }
3.26
flink_NullValue_compareTo_rdh
// -------------------------------------------------------------------------------------------- @Override public int compareTo(NullValue o) { return 0; }
3.26
flink_NullValue_getMaxNormalizedKeyLen_rdh
// -------------------------------------------------------------------------------------------- @Override public int getMaxNormalizedKeyLen() { return 0; }
3.26
flink_NullValue_read_rdh
// -------------------------------------------------------------------------------------------- @Override public void read(DataInputView in) throws IOException {in.readBoolean(); }
3.26
flink_NullValue_toString_rdh
// -------------------------------------------------------------------------------------------- @Override public String toString() { return "(null)"; }
3.26
flink_NonReusingBuildSecondReOpenableHashJoinIterator_reopenProbe_rdh
/** * Set new input for probe side * * @throws java.io.IOException */ public void reopenProbe(MutableObjectIterator<V1> probeInput) throws IOException { reopenHashTable.reopenProbe(probeInput); }
3.26
flink_RestartAllFailoverStrategy_getTasksNeedingRestart_rdh
/** * Returns all vertices on any task failure. * * @param executionVertexId * ID of the failed task * @param cause * cause of the failure * @return set of IDs of vertices to restart */ @Override public Set<ExecutionVertexID> getTasksNeedingRestart(ExecutionVertexID executionVertexId, Throwable cause) { return IterableUtils.toStream(topology.getVertices()).map(SchedulingExecutionVertex::getId).collect(Collectors.toSet()); }
3.26
flink_SourcePlanNode_setSerializer_rdh
/** * Sets the serializer for this PlanNode. * * @param serializer * The serializer to set. */ public void setSerializer(TypeSerializerFactory<?> serializer) { this.serializer = serializer; }
3.26
flink_SourcePlanNode_getDataSourceNode_rdh
// -------------------------------------------------------------------------------------------- public DataSourceNode getDataSourceNode() { return ((DataSourceNode) (this.template)); }
3.26
flink_SourcePlanNode_accept_rdh
// -------------------------------------------------------------------------------------------- @Override public void accept(Visitor<PlanNode> visitor) { if (visitor.preVisit(this)) { visitor.postVisit(this); }}
3.26
flink_PojoCsvInputFormat_findAllFields_rdh
/** * Finds all declared fields in a class and all its super classes. * * @param clazz * Class for which all declared fields are found * @param allFields * Map containing all found fields so far */ private void findAllFields(Class<?> clazz, Map<String, Field> allFields) { for (Field field : clazz.getDeclaredFields()) { allFields.put(field.getName(), field); } if (clazz.getSuperclass() != null) { findAllFields(clazz.getSuperclass(), allFields); } }
3.26
flink_AbstractCollectResultBuffer_revert_rdh
/** * Revert the buffer back to the result whose offset is `checkpointedOffset`. */ protected void revert(long checkpointedOffset) { while (offset > checkpointedOffset) {buffer.removeLast();offset--; } }
3.26
flink_AbstractCollectResultBuffer_next_rdh
/** * Get next user visible result, returns null if currently there is no more. */ public T next() { if (userVisibleHead == userVisibleTail) { return null; } T ret = buffer.removeFirst(); userVisibleHead++; sanityCheck(); return ret; }
3.26
flink_AbstractCollectResultBuffer_m0_rdh
/** * Clear the whole buffer and discard all results. */ protected void m0() { buffer.clear(); userVisibleHead = 0; userVisibleTail = 0; offset = 0; }
3.26
flink_StandaloneResourceManagerFactory_getConfigurationWithoutResourceLimitationIfSet_rdh
/** * Get the configuration for standalone ResourceManager, overwrite invalid configs. * * @param configuration * configuration object * @return the configuration for standalone ResourceManager */ @VisibleForTesting public static Configuration getConfigurationWithoutResourceLimitationIfSet(Configuration configuration) { final Configuration copiedConfig = new Configuration(configuration); removeResourceLimitationConfig(copiedConfig); return copiedConfig; }
3.26
flink_TimeIntervalJoin_removeExpiredRows_rdh
/** * Remove the expired rows. Register a new timer if the cache still holds valid rows after the * cleaning up. * * @param collector * the collector to emit results * @param expirationTime * the expiration time for this cache * @param rowCache * the row cache * @param timerState * timer state for the opposite stream * @param ctx * the context to register the cleanup timer * @param removeLeft * whether to remove the left rows */ private void removeExpiredRows(Collector<RowData> collector, long expirationTime, MapState<Long, List<Tuple2<RowData, Boolean>>> rowCache, ValueState<Long> timerState, OnTimerContext ctx, boolean removeLeft) throws Exception { Iterator<Map.Entry<Long, List<Tuple2<RowData, Boolean>>>> iterator = rowCache.iterator(); long earliestTimestamp = -1L; // We remove all expired keys and do not leave the loop early. // Hence, we do a full pass over the state. while (iterator.hasNext()) {Map.Entry<Long, List<Tuple2<RowData, Boolean>>> entry = iterator.next(); Long rowTime = entry.getKey(); if (rowTime <= expirationTime) { if (removeLeft && joinType.isLeftOuter()) { List<Tuple2<RowData, Boolean>> rows = entry.getValue(); rows.forEach((Tuple2<RowData, Boolean> tuple) -> { if (!tuple.f1) { // Emit a null padding result if the row has never been // successfully joined. collector.collect(paddingUtil.padLeft(tuple.f0)); } }); } else if ((!removeLeft) && joinType.isRightOuter()) { List<Tuple2<RowData, Boolean>> rows = entry.getValue(); rows.forEach((Tuple2<RowData, Boolean> tuple) -> { if (!tuple.f1) { // Emit a null padding result if the row has never been // successfully joined. collector.collect(paddingUtil.padRight(tuple.f0)); } }); } iterator.remove(); } else // We find the earliest timestamp that is still valid. if ((rowTime < earliestTimestamp) || (earliestTimestamp < 0)) { earliestTimestamp = rowTime; } } if (earliestTimestamp > 0) { // There are rows left in the cache. Register a timer to expire them later. registerCleanUpTimer(ctx, earliestTimestamp, removeLeft);} else { // No rows left in the cache. Clear the states and the timerState will be 0. timerState.clear(); rowCache.clear(); } }
3.26
flink_TimeIntervalJoin_registerCleanUpTimer_rdh
/** * Register a timer for cleaning up rows in a specified time. * * @param ctx * the context to register timer * @param rowTime * time for the input row * @param leftRow * whether this row comes from the left stream */ private void registerCleanUpTimer(Context ctx, long rowTime, boolean leftRow) throws IOException { if (leftRow) { long cleanUpTime = (((rowTime + leftRelativeSize) + minCleanUpInterval) + allowedLateness) + 1; registerTimer(ctx, cleanUpTime); rightTimerState.update(cleanUpTime); } else { long v33 = (((rowTime + f0) + minCleanUpInterval) + allowedLateness) + 1; registerTimer(ctx, v33); leftTimerState.update(v33); } }
3.26
flink_HadoopFileStatus_fromHadoopStatus_rdh
// ------------------------------------------------------------------------ /** * Creates a new {@code HadoopFileStatus} from Hadoop's {@link org.apache.hadoop.fs.FileStatus}. * If Hadoop's file status is <i>located</i>, i.e., it contains block information, then this * method returns an implementation of Flink's {@link org.apache.flink.core.fs.LocatedFileStatus}. */ public static HadoopFileStatus fromHadoopStatus(final FileStatus fileStatus) { return fileStatus instanceof LocatedFileStatus ? new LocatedHadoopFileStatus(((LocatedFileStatus) (fileStatus))) : new HadoopFileStatus(fileStatus); }
3.26
flink_PythonStreamGroupTableAggregateOperator_getUserDefinedFunctionsProto_rdh
/** * Gets the proto representation of the Python user-defined table aggregate function to be * executed. */ @Overridepublic UserDefinedAggregateFunctions getUserDefinedFunctionsProto() { FlinkFnApi.UserDefinedAggregateFunctions.Builder builder = super.getUserDefinedFunctionsProto().toBuilder(); return builder.build(); }
3.26
flink_OSSTestCredentials_getOSSAccessKey_rdh
/** * Get OSS access key. * * @return OSS access key */ public static String getOSSAccessKey() { if (ACCESS_KEY != null) { return ACCESS_KEY; } else { throw new IllegalStateException("OSS access key is not available"); } }
3.26
flink_OSSTestCredentials_credentialsAvailable_rdh
// ------------------------------------------------------------------------ public static boolean credentialsAvailable() { return (((ENDPOINT != null) && (BUCKET != null)) && (ACCESS_KEY != null)) && (SECRET_KEY != null); }
3.26
flink_OSSTestCredentials_getOSSSecretKey_rdh
/** * Get OSS secret key. * * @return OSS secret key */ public static String getOSSSecretKey() { if (SECRET_KEY != null) { return SECRET_KEY; } else { throw new IllegalStateException("OSS secret key is not available"); } }
3.26
flink_BulkPartialSolutionNode_setCandidateProperties_rdh
// -------------------------------------------------------------------------------------------- public void setCandidateProperties(GlobalProperties gProps, LocalProperties lProps, Channel initialInput) { if (this.cachedPlans != null) { throw new IllegalStateException(); } else { this.cachedPlans = Collections.<PlanNode>singletonList(new BulkPartialSolutionPlanNode(this, ("PartialSolution (" + this.getOperator().getName()) + ")", gProps, lProps, initialInput)); } }
3.26
flink_BulkPartialSolutionNode_getOperator_rdh
// -------------------------------------------------------------------------------------------- /** * Gets the operator (here the {@link PartialSolutionPlaceHolder}) that is represented by this * optimizer node. * * @return The operator represented by this optimizer node. */ @Override public PartialSolutionPlaceHolder<?> getOperator() { return ((PartialSolutionPlaceHolder<?>) (super.getOperator())); }
3.26
flink_AvroSchemaConverter_m0_rdh
/** * Converts Flink SQL {@link LogicalType} (can be nested) into an Avro schema. * * <p>The "{rowName}_" is used as the nested row type name prefix in order to generate the right * schema. Nested record type that only differs with type name is still compatible. * * @param logicalType * logical type * @param rowName * the record name * @return Avro's {@link Schema} matching this logical type. */ public static Schema m0(LogicalType logicalType, String rowName) { int precision; boolean nullable = logicalType.isNullable(); switch (logicalType.getTypeRoot()) { case NULL : return SchemaBuilder.builder().nullType(); case BOOLEAN : Schema bool = SchemaBuilder.builder().booleanType(); return nullable ? nullableSchema(bool) : bool; case TINYINT : case SMALLINT : case INTEGER : Schema integer = SchemaBuilder.builder().intType(); return nullable ? nullableSchema(integer) : integer; case BIGINT : Schema bigint = SchemaBuilder.builder().longType(); return nullable ? nullableSchema(bigint) : bigint; case FLOAT : Schema f = SchemaBuilder.builder().floatType(); return nullable ? nullableSchema(f) : f; case DOUBLE : Schema d = SchemaBuilder.builder().doubleType(); return nullable ? nullableSchema(d) : d; case CHAR : case VARCHAR : Schema str = SchemaBuilder.builder().stringType(); return nullable ? nullableSchema(str) : str; case BINARY : case VARBINARY : Schema v28 = SchemaBuilder.builder().bytesType(); return nullable ? nullableSchema(v28) : v28; case TIMESTAMP_WITHOUT_TIME_ZONE : // use long to represents Timestamp final TimestampType timestampType = ((TimestampType) (logicalType));precision = timestampType.getPrecision(); LogicalType avroLogicalType; if (precision <= 3) { avroLogicalType = LogicalTypes.timestampMillis(); } else { throw new IllegalArgumentException((("Avro does not support TIMESTAMP type " + "with precision: ") + precision) + ", it only supports precision less than 3."); } Schema timestamp = avroLogicalType.addToSchema(SchemaBuilder.builder().longType()); return nullable ? nullableSchema(timestamp) : timestamp;case DATE : // use int to represents Date Schema date = LogicalTypes.date().addToSchema(SchemaBuilder.builder().intType()); return nullable ? nullableSchema(date) : date; case TIME_WITHOUT_TIME_ZONE : precision = ((TimeType) (logicalType)).getPrecision(); if (precision > 3) { throw new IllegalArgumentException(("Avro does not support TIME type with precision: " + precision) + ", it only supports precision less than 3."); } // use int to represents Time, we only support millisecond when deserialization Schema time = LogicalTypes.timeMillis().addToSchema(SchemaBuilder.builder().intType()); return nullable ? nullableSchema(time) : time; case DECIMAL : DecimalType decimalType = ((DecimalType) (logicalType)); // store BigDecimal as byte[] Schema decimal = LogicalTypes.decimal(decimalType.getPrecision(), decimalType.getScale()).addToSchema(SchemaBuilder.builder().bytesType()); return nullable ? nullableSchema(decimal) : decimal; case ROW : RowType rowType = ((RowType) (logicalType)); List<String> fieldNames = rowType.getFieldNames();// we have to make sure the record name is different in a Schema SchemaBuilder.FieldAssembler<Schema> builder = SchemaBuilder.builder().record(rowName).fields(); for (int i = 0; i < rowType.getFieldCount(); i++) { String fieldName = fieldNames.get(i); LogicalType fieldType = rowType.getTypeAt(i); SchemaBuilder.GenericDefault<Schema> fieldBuilder = builder.name(fieldName).type(m0(fieldType, (rowName + "_") + fieldName)); if (fieldType.isNullable()) { builder = fieldBuilder.withDefault(null); } else { builder = fieldBuilder.noDefault(); } } Schema record = builder.endRecord(); return nullable ? nullableSchema(record) : record; case MULTISET : case MAP : Schema map = SchemaBuilder.builder().map().values(m0(extractValueTypeToAvroMap(logicalType), rowName)); return nullable ? nullableSchema(map) : map; case ARRAY : ArrayType arrayType = ((ArrayType) (logicalType)); Schema array = SchemaBuilder.builder().array().items(m0(arrayType.getElementType(), rowName)); return nullable ? nullableSchema(array) : array; case RAW : case TIMESTAMP_WITH_LOCAL_TIME_ZONE : default : throw new UnsupportedOperationException("Unsupported to derive Schema for type: " + logicalType); } }
3.26
flink_AvroSchemaConverter_convertToDataType_rdh
/** * Converts an Avro schema string into a nested row structure with deterministic field order and * data types that are compatible with Flink's Table & SQL API. * * @param avroSchemaString * Avro schema definition string * @return data type matching the schema */ public static DataType convertToDataType(String avroSchemaString) { Preconditions.checkNotNull(avroSchemaString, "Avro schema must not be null."); final Schema schema; try { schema = new Schema.Parser().parse(avroSchemaString); } catch (SchemaParseException e) { throw new IllegalArgumentException("Could not parse Avro schema string.", e); } return convertToDataType(schema); }
3.26
flink_AvroSchemaConverter_convertToTypeInfo_rdh
/** * Converts an Avro schema string into a nested row structure with deterministic field order and * data types that are compatible with Flink's Table & SQL API. * * @param avroSchemaString * Avro schema definition string * @return type information matching the schema */ @SuppressWarnings("unchecked") public static <T> TypeInformation<T> convertToTypeInfo(String avroSchemaString) { Preconditions.checkNotNull(avroSchemaString, "Avro schema must not be null."); final Schema schema; try { schema = new Schema.Parser().parse(avroSchemaString); } catch (SchemaParseException e) { throw new IllegalArgumentException("Could not parse Avro schema string.", e); } return ((TypeInformation<T>) (convertToTypeInfo(schema))); }
3.26
flink_StreamExchangeModeUtils_getGlobalStreamExchangeMode_rdh
/** * The {@link GlobalStreamExchangeMode} should be determined by the {@link StreamGraphGenerator} * in the future. */ @Deprecated static Optional<GlobalStreamExchangeMode> getGlobalStreamExchangeMode(ReadableConfig config) { return config.getOptional(ExecutionConfigOptions.TABLE_EXEC_SHUFFLE_MODE).map(value -> { try { return GlobalStreamExchangeMode.valueOf(convertLegacyShuffleMode(value).toUpperCase()); } catch (IllegalArgumentException e) { throw new IllegalArgumentException(String.format("Unsupported value %s for config %s.", value, ExecutionConfigOptions.TABLE_EXEC_SHUFFLE_MODE.key())); } }); }
3.26
flink_LocationPreferenceSlotSelectionStrategy_createDefault_rdh
// ------------------------------------------------------------------------------------------- // Factory methods // ------------------------------------------------------------------------------------------- public static LocationPreferenceSlotSelectionStrategy createDefault() {return new DefaultLocationPreferenceSlotSelectionStrategy(); }
3.26
flink_Time_hours_rdh
/** * Creates a new {@link Time} that represents the given number of hours. */ public static Time hours(long hours) {return of(hours, TimeUnit.HOURS); }
3.26
flink_Time_seconds_rdh
/** * Creates a new {@link Time} that represents the given number of seconds. */ public static Time seconds(long seconds) { return of(seconds, TimeUnit.SECONDS); }
3.26
flink_Time_days_rdh
/** * Creates a new {@link Time} that represents the given number of days. */ public static Time days(long days) { return of(days, TimeUnit.DAYS); }
3.26
flink_Time_milliseconds_rdh
/** * Creates a new {@link Time} that represents the given number of milliseconds. */ public static Time milliseconds(long milliseconds) { return of(milliseconds, TimeUnit.MILLISECONDS);}
3.26
flink_Time_of_rdh
// ------------------------------------------------------------------------ // Factory // ------------------------------------------------------------------------ /** * Creates a new {@link Time} of the given duration and {@link TimeUnit}. * * <p>The {@code Time} refers to the time characteristic that is set on the dataflow via {@link org.apache.flink.streaming.api.environment.StreamExecutionEnvironment#setStreamTimeCharacteristic(org.apache.flink.streaming.api.TimeCharacteristic)}. * * @param size * The duration of time. * @param unit * The unit of time of the duration, for example {@code TimeUnit.SECONDS}. * @return The time policy. */ public static Time of(long size, TimeUnit unit) { return new Time(size, unit); }
3.26
flink_Time_minutes_rdh
/** * Creates a new {@link Time} that represents the given number of minutes. */ public static Time minutes(long minutes) { return of(minutes, TimeUnit.MINUTES); }
3.26
flink_TableResultImpl_m0_rdh
/** * Specifies print style. Default is {@link TableauStyle} with max integer column width. */ public Builder m0(PrintStyle printStyle) { Preconditions.checkNotNull(printStyle, "printStyle should not be null"); this.printStyle = printStyle; return this; }
3.26
flink_TableResultImpl_resultKind_rdh
/** * Specifies result kind of the execution result. * * @param resultKind * a {@link ResultKind} for the execution result. */ public Builder resultKind(ResultKind resultKind) { Preconditions.checkNotNull(resultKind, "resultKind should not be null"); this.resultKind = resultKind; return this; }
3.26
flink_TableResultImpl_jobClient_rdh
/** * Specifies job client which associates the submitted Flink job. * * @param jobClient * a {@link JobClient} for the submitted Flink job. */ public Builder jobClient(JobClient jobClient) { this.jobClient = jobClient; return this; }
3.26
flink_TableResultImpl_data_rdh
/** * Specifies an row list as the execution result. * * @param rowList * a row list as the execution result. */ public Builder data(List<Row> rowList) { Preconditions.checkNotNull(rowList, "listRows should not be null"); this.resultProvider = new StaticResultProvider(rowList); return this; }
3.26
flink_TableResultImpl_build_rdh
/** * Returns a {@link TableResult} instance. */ public TableResultInternal build() { if (printStyle == null) { printStyle = PrintStyle.rawContent(resultProvider.getRowDataStringConverter()); }return new TableResultImpl(jobClient, resolvedSchema, resultKind, resultProvider, printStyle); }
3.26
flink_TableResultImpl_schema_rdh
/** * Specifies schema of the execution result. * * @param resolvedSchema * a {@link ResolvedSchema} for the execution result. */ public Builder schema(ResolvedSchema resolvedSchema) { Preconditions.checkNotNull(resolvedSchema, "resolvedSchema should not be null"); this.resolvedSchema = resolvedSchema; return this; }
3.26
flink_TwoInputUdfOperator_setSemanticProperties_rdh
/** * Sets the semantic properties for the user-defined function (UDF). The semantic properties * define how fields of tuples and other objects are modified or preserved through this UDF. The * configured properties can be retrieved via {@link UdfOperator#getSemanticProperties()}. * * @param properties * The semantic properties for the UDF. * @see UdfOperator#getSemanticProperties() */ @Internal public void setSemanticProperties(DualInputSemanticProperties properties) { this.udfSemantics = properties; this.analyzedUdfSemantics = false; }
3.26
flink_TwoInputUdfOperator_withParameters_rdh
// -------------------------------------------------------------------------------------------- // Fluent API methods // -------------------------------------------------------------------------------------------- @Override public O withParameters(Configuration parameters) { this.parameters = parameters; @SuppressWarnings("unchecked") O returnType = ((O) (this)); return returnType; }
3.26
flink_TwoInputUdfOperator_returns_rdh
/** * Adds a type information hint about the return type of this operator. This method can be used * in cases where Flink cannot determine automatically what the produced type of a function is. * That can be the case if the function uses generic type variables in the return type that * cannot be inferred from the input type. * * <p>In most cases, the methods {@link #returns(Class)} and {@link #returns(TypeHint)} are * preferable. * * @param typeInfo * The type information for the returned data type. * @return This operator using the given type information for the return type. */ public O returns(TypeInformation<OUT> typeInfo) {requireNonNull(typeInfo, "TypeInformation must not be null"); fillInType(typeInfo); @SuppressWarnings("unchecked") O returnType = ((O) (this)); return returnType; }
3.26
flink_TwoInputUdfOperator_withForwardedFieldsFirst_rdh
/** * Adds semantic information about forwarded fields of the first input of the user-defined * function. The forwarded fields information declares fields which are never modified by the * function and which are forwarded at the same position to the output or unchanged copied to * another position in the output. * * <p>Fields that are forwarded at the same position are specified by their position. The * specified position must be valid for the input and output data type and have the same type. * For example <code>withForwardedFieldsFirst("f2")</code> declares that the third field of a * Java input tuple from the first input is copied to the third field of an output tuple. * * <p>Fields which are unchanged copied from the first input to another position in the output * are declared by specifying the source field reference in the first input and the target field * reference in the output. {@code withForwardedFieldsFirst("f0->f2")} denotes that the first * field of the first input Java tuple is unchanged copied to the third field of the Java output * tuple. When using a wildcard ("*") ensure that the number of declared fields and their types * in first input and output type match. * * <p>Multiple forwarded fields can be annotated in one ({@code withForwardedFieldsFirst("f2; * f3->f0; f4")}) or separate Strings ({@code withForwardedFieldsFirst("f2", "f3->f0", "f4")}). * Please refer to the JavaDoc of {@link org.apache.flink.api.common.functions.Function} or * Flink's documentation for details on field references such as nested fields and wildcard. * * <p>It is not possible to override existing semantic information about forwarded fields of the * first input which was for example added by a {@link org.apache.flink.api.java.functions.FunctionAnnotation.ForwardedFieldsFirst} class * annotation. * * <p><b>NOTE: Adding semantic information for functions is optional! If used correctly, * semantic information can help the Flink optimizer to generate more efficient execution plans. * However, incorrect semantic information can cause the optimizer to generate incorrect * execution plans which compute wrong results! So be careful when adding semantic information. * </b> * * @param forwardedFieldsFirst * A list of forwarded field expressions for the first input of the * function. * @return This operator with annotated forwarded field information. * @see org.apache.flink.api.java.functions.FunctionAnnotation * @see org.apache.flink.api.java.functions.FunctionAnnotation.ForwardedFieldsFirst */ @SuppressWarnings("unchecked") public O withForwardedFieldsFirst(String... forwardedFieldsFirst) { if ((this.udfSemantics == null) || this.analyzedUdfSemantics) { // extract semantic properties from function annotations setSemanticProperties(extractSemanticAnnotationsFromUdf(getFunction().getClass())); } if ((this.udfSemantics == null) || this.analyzedUdfSemantics) { setSemanticProperties(new DualInputSemanticProperties()); SemanticPropUtil.getSemanticPropsDualFromString(this.udfSemantics, forwardedFieldsFirst, null, null, null, null, null, getInput1Type(), getInput2Type(), getResultType()); } else if (this.udfWithForwardedFieldsFirstAnnotation(getFunction().getClass())) { // refuse semantic information as it would override the function annotation throw new SemanticProperties.InvalidSemanticAnnotationException(("Forwarded field information " + "has already been added by a function annotation for the first input of this operator. ") + "Cannot overwrite function annotations."); } else { SemanticPropUtil.getSemanticPropsDualFromString(this.udfSemantics, forwardedFieldsFirst, null, null, null, null, null, getInput1Type(), getInput2Type(), getResultType());}O returnType = ((O) (this)); return returnType; }
3.26
flink_TwoInputUdfOperator_getBroadcastSets_rdh
// -------------------------------------------------------------------------------------------- // Accessors // -------------------------------------------------------------------------------------------- @Override @Internal public Map<String, DataSet<?>> getBroadcastSets() { return this.broadcastVariables == null ? Collections.<String, DataSet<?>>emptyMap() : Collections.unmodifiableMap(this.broadcastVariables); }
3.26
flink_TwoInputUdfOperator_withForwardedFieldsSecond_rdh
/** * Adds semantic information about forwarded fields of the second input of the user-defined * function. The forwarded fields information declares fields which are never modified by the * function and which are forwarded at the same position to the output or unchanged copied to * another position in the output. * * <p>Fields that are forwarded at the same position are specified by their position. The * specified position must be valid for the input and output data type and have the same type. * For example <code>withForwardedFieldsSecond("f2")</code> declares that the third field of a * Java input tuple from the second input is copied to the third field of an output tuple. * * <p>Fields which are unchanged copied from the second input to another position in the output * are declared by specifying the source field reference in the second input and the target * field reference in the output. {@code withForwardedFieldsSecond("f0->f2")} denotes that the * first field of the second input Java tuple is unchanged copied to the third field of the Java * output tuple. When using a wildcard ("*") ensure that the number of declared fields and their * types in second input and output type match. * * <p>Multiple forwarded fields can be annotated in one ({@code withForwardedFieldsSecond("f2; * f3->f0; f4")}) or separate Strings ({@code withForwardedFieldsSecond("f2", "f3->f0", "f4")}). * Please refer to the JavaDoc of {@link org.apache.flink.api.common.functions.Function} or * Flink's documentation for details on field references such as nested fields and wildcard. * * <p>It is not possible to override existing semantic information about forwarded fields of the * second input which was for example added by a {@link org.apache.flink.api.java.functions.FunctionAnnotation.ForwardedFieldsSecond} class * annotation. * * <p><b>NOTE: Adding semantic information for functions is optional! If used correctly, * semantic information can help the Flink optimizer to generate more efficient execution plans. * However, incorrect semantic information can cause the optimizer to generate incorrect * execution plans which compute wrong results! So be careful when adding semantic information. * </b> * * @param forwardedFieldsSecond * A list of forwarded field expressions for the second input of * the function. * @return This operator with annotated forwarded field information. * @see org.apache.flink.api.java.functions.FunctionAnnotation * @see org.apache.flink.api.java.functions.FunctionAnnotation.ForwardedFieldsSecond */ @SuppressWarnings("unchecked") public O withForwardedFieldsSecond(String... forwardedFieldsSecond) { if ((this.udfSemantics == null) || this.analyzedUdfSemantics) { // extract semantic properties from function annotations setSemanticProperties(extractSemanticAnnotationsFromUdf(getFunction().getClass())); }if ((this.udfSemantics == null) || this.analyzedUdfSemantics) { setSemanticProperties(new DualInputSemanticProperties()); SemanticPropUtil.getSemanticPropsDualFromString(this.udfSemantics, null, forwardedFieldsSecond, null, null, null, null, getInput1Type(), getInput2Type(), getResultType()); } else if (m0(getFunction().getClass())) { // refuse semantic information as it would override the function annotation throw new SemanticProperties.InvalidSemanticAnnotationException(("Forwarded field information " + "has already been added by a function annotation for the second input of this operator. ") + "Cannot overwrite function annotations."); } else { SemanticPropUtil.getSemanticPropsDualFromString(this.udfSemantics, null, forwardedFieldsSecond, null, null, null, null, getInput1Type(), getInput2Type(), getResultType());} O returnType = ((O) (this)); return returnType; }
3.26
flink_PojoSerializerSnapshot_getCompatibilityOfPreExistingFields_rdh
/** * Finds which Pojo fields exists both in the new {@link PojoSerializer} as well as in the * previous one (represented by this snapshot), and returns an {@link IntermediateCompatibilityResult} of the serializers of those preexisting fields. */ private static <T> IntermediateCompatibilityResult<T> getCompatibilityOfPreExistingFields(PojoSerializer<T> newPojoSerializer, LinkedOptionalMap<Field, TypeSerializerSnapshot<?>> fieldSerializerSnapshots) { // the present entries dictates the preexisting fields, because removed fields would be // represented as absent keys in the optional map. final Set<LinkedOptionalMap.KeyValue<Field, TypeSerializerSnapshot<?>>> presentFieldSnapshots = fieldSerializerSnapshots.getPresentEntries(); final ArrayList<TypeSerializerSnapshot<?>> associatedFieldSerializerSnapshots = new ArrayList<>(presentFieldSnapshots.size()); final ArrayList<TypeSerializer<?>> associatedNewFieldSerializers = new ArrayList<>(presentFieldSnapshots.size()); final Map<Field, TypeSerializer<?>> newFieldSerializersIndex = buildNewFieldSerializersIndex(newPojoSerializer); for (LinkedOptionalMap.KeyValue<Field, TypeSerializerSnapshot<?>> presentFieldEntry : presentFieldSnapshots) { TypeSerializer<?> associatedNewFieldSerializer = newFieldSerializersIndex.get(presentFieldEntry.getKey()); checkState(associatedNewFieldSerializer != null, "a present field should have its associated new field serializer available."); associatedFieldSerializerSnapshots.add(presentFieldEntry.getValue()); associatedNewFieldSerializers.add(associatedNewFieldSerializer); }return CompositeTypeSerializerUtil.constructIntermediateCompatibilityResult(associatedNewFieldSerializers.toArray(new TypeSerializer<?>[associatedNewFieldSerializers.size()]), associatedFieldSerializerSnapshots.toArray(new TypeSerializerSnapshot<?>[associatedFieldSerializerSnapshots.size()])); }
3.26
flink_PojoSerializerSnapshot_decomposeSubclassSerializerRegistry_rdh
/** * Transforms the subclass serializer registry structure, {@code LinkedHashMap<Class<?>, * TypeSerializer<?>>} to 2 separate structures: a map containing with registered classes as key * and their corresponding ids (order in the original map) as value, as well as a separate array * of the corresponding subclass serializers. */ @SuppressWarnings("unchecked") private static Tuple2<LinkedHashMap<Class<?>, Integer>, TypeSerializer<Object>[]> decomposeSubclassSerializerRegistry(LinkedHashMap<Class<?>, TypeSerializer<?>> subclassSerializerRegistry) { final LinkedHashMap<Class<?>, Integer> subclassIds = CollectionUtil.newLinkedHashMapWithExpectedSize(subclassSerializerRegistry.size()); final TypeSerializer[] subclassSerializers = new TypeSerializer[subclassSerializerRegistry.size()]; subclassSerializerRegistry.forEach((registeredSubclassClass, serializer) -> { int id = subclassIds.size(); subclassIds.put(registeredSubclassClass, id); subclassSerializers[id] = serializer; }); return Tuple2.of(subclassIds, subclassSerializers); }
3.26
flink_PojoSerializerSnapshot_previousSerializerHasNonRegisteredSubclasses_rdh
/** * Checks whether the previous serializer, represented by this snapshot, has non-registered * subclasses. */ private static boolean previousSerializerHasNonRegisteredSubclasses(LinkedOptionalMap<Class<?>, TypeSerializerSnapshot<?>> nonRegisteredSubclassSerializerSnapshots) { return nonRegisteredSubclassSerializerSnapshots.size() > 0; } /** * Creates a reconfigured version of the {@link PojoSerializer}. * * @param originalNewPojoSerializer * the original new {@link PojoSerializer} to create a * reconfigured version of. * @param fieldSerializerCompatibility * compatibility of preexisting fields' serializers. * @param registeredSerializerSnapshots * snapshot of previous registered subclasses' serializers. * @param preExistingRegistrationsCompatibility * compatibility of preexisting subclasses' * serializers. * @param nonRegisteredSubclassSerializerSnapshots * snapshot of previous non-registered * subclasses' serializers. * @return a reconfigured version of the original new {@link PojoSerializer}
3.26
flink_PojoSerializerSnapshot_m2_rdh
/** * Checks whether the new {@link PojoSerializer} has a different subclass registration order * compared to the previous one. */ private static boolean m2(LinkedOptionalMap<Class<?>, TypeSerializerSnapshot<?>> registeredSubclassSerializerSnapshots, PojoSerializer<?> newPojoSerializer) { Set<Class<?>> previousRegistrationOrder = registeredSubclassSerializerSnapshots.unwrapOptionals().keySet(); Set<Class<?>> newRegistrationOrder = newPojoSerializer.getRegisteredClasses().keySet(); return !isPreviousRegistrationPrefixOfNewRegistration(previousRegistrationOrder, newRegistrationOrder); }
3.26
flink_PojoSerializerSnapshot_getCompatibilityOfPreExistingRegisteredSubclasses_rdh
/** * Finds which registered subclasses exists both in the new {@link PojoSerializer} as well as in * the previous one (represented by this snapshot), and returns an {@link IntermediateCompatibilityResult} of the serializers of this preexisting registered * subclasses. */ private static <T> IntermediateCompatibilityResult<T> getCompatibilityOfPreExistingRegisteredSubclasses(PojoSerializer<T> newPojoSerializer, LinkedOptionalMap<Class<?>, TypeSerializerSnapshot<?>> registeredSubclassSerializerSnapshots) { final LinkedHashMap<Class<?>, TypeSerializerSnapshot<?>> unwrappedSerializerSnapshots = registeredSubclassSerializerSnapshots.unwrapOptionals(); final ArrayList<TypeSerializerSnapshot<?>> associatedSubclassSerializerSnapshots = new ArrayList<>(); final ArrayList<TypeSerializer<?>> associatedNewSubclassSerializers = new ArrayList<>(); final LinkedHashMap<Class<?>, TypeSerializer<?>> v31 = newPojoSerializer.getBundledSubclassSerializerRegistry(); for (Map.Entry<Class<?>, TypeSerializerSnapshot<?>> entry : unwrappedSerializerSnapshots.entrySet()) { TypeSerializer<?> v33 = v31.get(entry.getKey()); if (v33 != null) {associatedSubclassSerializerSnapshots.add(entry.getValue()); associatedNewSubclassSerializers.add(v33); } } return CompositeTypeSerializerUtil.constructIntermediateCompatibilityResult(associatedNewSubclassSerializers.toArray(new TypeSerializer<?>[associatedNewSubclassSerializers.size()]), associatedSubclassSerializerSnapshots.toArray(new TypeSerializerSnapshot<?>[associatedSubclassSerializerSnapshots.size()])); }
3.26
flink_PojoSerializerSnapshot_newPojoSerializerIsCompatibleWithReconfiguredSerializer_rdh
/** * Checks if the new {@link PojoSerializer} is compatible with a reconfigured instance. */ private static <T> boolean newPojoSerializerIsCompatibleWithReconfiguredSerializer(PojoSerializer<T> newPojoSerializer, IntermediateCompatibilityResult<T> fieldSerializerCompatibility, IntermediateCompatibilityResult<T> preExistingRegistrationsCompatibility, LinkedOptionalMap<Class<?>, TypeSerializerSnapshot<?>> registeredSubclassSerializerSnapshots, LinkedOptionalMap<Class<?>, TypeSerializerSnapshot<?>> nonRegisteredSubclassSerializerSnapshots) { return ((m2(registeredSubclassSerializerSnapshots, newPojoSerializer) || previousSerializerHasNonRegisteredSubclasses(nonRegisteredSubclassSerializerSnapshots)) || fieldSerializerCompatibility.isCompatibleWithReconfiguredSerializer()) || preExistingRegistrationsCompatibility.isCompatibleWithReconfiguredSerializer(); }
3.26
flink_PojoSerializerSnapshot_newPojoHasNewOrRemovedFields_rdh
/** * Checks whether the new {@link PojoSerializer} has new or removed fields compared to the * previous one. */ private static boolean newPojoHasNewOrRemovedFields(LinkedOptionalMap<Field, TypeSerializerSnapshot<?>> fieldSerializerSnapshots, PojoSerializer<?> newPojoSerializer) { int numRemovedFields = fieldSerializerSnapshots.absentKeysOrValues().size(); int numPreexistingFields = fieldSerializerSnapshots.size() - numRemovedFields; boolean hasRemovedFields = numRemovedFields > 0; boolean hasNewFields = (newPojoSerializer.getFields().length - numPreexistingFields) > 0; return hasRemovedFields || hasNewFields; }
3.26
flink_PojoSerializerSnapshot_m1_rdh
// --------------------------------------------------------------------------------------------- // Utility methods // --------------------------------------------------------------------------------------------- /** * Transforms a {@link LinkedHashMap} with {@link TypeSerializerSnapshot}s as the value to * {@link TypeSerializer} as the value by restoring the snapshot. */ private static <K> LinkedHashMap<K, TypeSerializer<?>> m1(LinkedHashMap<K, TypeSerializerSnapshot<?>> snapshotsMap) { final LinkedHashMap<K, TypeSerializer<?>> restoredSerializersMap = CollectionUtil.newLinkedHashMapWithExpectedSize(snapshotsMap.size()); snapshotsMap.forEach((key, snapshot) -> restoredSerializersMap.put(key, snapshot.restoreSerializer())); return restoredSerializersMap; }
3.26
flink_PojoSerializerSnapshot_newPojoSerializerIsCompatibleAfterMigration_rdh
/** * Checks if the new {@link PojoSerializer} is compatible after migration. */ private static <T> boolean newPojoSerializerIsCompatibleAfterMigration(PojoSerializer<T> newPojoSerializer, IntermediateCompatibilityResult<T> fieldSerializerCompatibility, IntermediateCompatibilityResult<T> preExistingRegistrationsCompatibility, LinkedOptionalMap<Field, TypeSerializerSnapshot<?>> fieldSerializerSnapshots) { return (newPojoHasNewOrRemovedFields(fieldSerializerSnapshots, newPojoSerializer) || fieldSerializerCompatibility.isCompatibleAfterMigration()) || preExistingRegistrationsCompatibility.isCompatibleAfterMigration(); }
3.26
flink_PojoSerializerSnapshot_buildNewFieldSerializersIndex_rdh
/** * Builds an index of fields to their corresponding serializers for the new {@link PojoSerializer} for faster field serializer lookups. */private static <T> Map<Field, TypeSerializer<?>> buildNewFieldSerializersIndex(PojoSerializer<T> newPojoSerializer) {final Field[] newFields = newPojoSerializer.getFields(); final TypeSerializer<?>[] newFieldSerializers = newPojoSerializer.getFieldSerializers(); checkState(newFields.length == newFieldSerializers.length); int numFields = newFields.length; final Map<Field, TypeSerializer<?>> index = CollectionUtil.newHashMapWithExpectedSize(numFields); for (int i = 0; i < numFields; i++) { index.put(newFields[i], newFieldSerializers[i]); } return index; }
3.26
flink_TemporalRowTimeJoinOperator_cleanupExpiredVersionInState_rdh
/** * Removes all expired version in the versioned table's state according to current watermark. */ private void cleanupExpiredVersionInState(long currentWatermark, List<RowData> rightRowsSorted) throws Exception { int v14 = 0; int indexToKeep = firstIndexToKeep(currentWatermark, rightRowsSorted); // clean old version data that behind current watermark while (v14 < indexToKeep) { long v16 = getRightTime(rightRowsSorted.get(v14));rightState.remove(v16); v14 += 1; } }
3.26
flink_TemporalRowTimeJoinOperator_cleanupState_rdh
/** * The method to be called when a cleanup timer fires. * * @param time * The timestamp of the fired timer. */ @Override public void cleanupState(long time) { leftState.clear(); rightState.clear(); nextLeftIndex.clear(); registeredTimer.clear(); }
3.26
flink_TemporalRowTimeJoinOperator_latestRightRowToJoin_rdh
/** * Binary search {@code rightRowsSorted} to find the latest right row to join with {@code leftTime}. Latest means a right row with largest time that is still smaller or equal to * {@code leftTime}. For example with: rightState = [1(+I), 4(+U), 7(+U), 9(-D), 12(I)], * * <p>If left time is 6, the valid period should be [4, 7), data 4(+U) should be joined. * * <p>If left time is 10, the valid period should be [9, 12), but data 9(-D) is a DELETE message * which means the correspond version has no data in period [9, 12), data 9(-D) should not be * correlated. * * @return found element or {@code Optional.empty} If such row was not found (either {@code rightRowsSorted} is empty or all {@code rightRowsSorted} are are newer). */ private Optional<RowData> latestRightRowToJoin(List<RowData> rightRowsSorted, long leftTime) { return latestRightRowToJoin(rightRowsSorted, 0, rightRowsSorted.size() - 1, leftTime); }
3.26
flink_Rowtime_timestampsFromExtractor_rdh
/** * Sets a custom timestamp extractor to be used for the rowtime attribute. * * @param extractor * The {@link TimestampExtractor} to extract the rowtime attribute from the * physical type. */ public Rowtime timestampsFromExtractor(TimestampExtractor extractor) { internalProperties.putProperties(extractor.toProperties()); return this; }
3.26
flink_Rowtime_m0_rdh
/** * Sets a custom watermark strategy to be used for the rowtime attribute. */ public Rowtime m0(WatermarkStrategy strategy) { internalProperties.putProperties(strategy.toProperties()); return this; }
3.26
flink_Rowtime_timestampsFromSource_rdh
/** * Sets a built-in timestamp extractor that converts the assigned timestamps from a DataStream * API record into the rowtime attribute and thus preserves the assigned timestamps from the * source. * * <p>Note: This extractor only works in streaming environments. */ public Rowtime timestampsFromSource() { internalProperties.putString(ROWTIME_TIMESTAMPS_TYPE, ROWTIME_TIMESTAMPS_TYPE_VALUE_FROM_SOURCE); return this; }
3.26
flink_Rowtime_timestampsFromField_rdh
/** * Sets a built-in timestamp extractor that converts an existing {@link Long} or {@link Types#SQL_TIMESTAMP} field into the rowtime attribute. * * @param fieldName * The field to convert into a rowtime attribute. */ public Rowtime timestampsFromField(String fieldName) { internalProperties.putString(ROWTIME_TIMESTAMPS_TYPE, ROWTIME_TIMESTAMPS_TYPE_VALUE_FROM_FIELD); internalProperties.putString(ROWTIME_TIMESTAMPS_FROM, fieldName); return this; }
3.26
flink_Rowtime_watermarksPeriodicBounded_rdh
/** * Sets a built-in watermark strategy for rowtime attributes which are out-of-order by a bounded * time interval. * * <p>Emits watermarks which are the maximum observed timestamp minus the specified delay. * * @param delay * delay in milliseconds */ public Rowtime watermarksPeriodicBounded(long delay) { internalProperties.putString(ROWTIME_WATERMARKS_TYPE, ROWTIME_WATERMARKS_TYPE_VALUE_PERIODIC_BOUNDED); internalProperties.putLong(ROWTIME_WATERMARKS_DELAY, delay); return this; }
3.26
flink_Rowtime_watermarksPeriodicAscending_rdh
/** * Sets a built-in watermark strategy for ascending rowtime attributes. * * <p>Emits a watermark of the maximum observed timestamp so far minus 1. Rows that have a * timestamp equal to the max timestamp are not late. */ public Rowtime watermarksPeriodicAscending() { internalProperties.putString(ROWTIME_WATERMARKS_TYPE, ROWTIME_WATERMARKS_TYPE_VALUE_PERIODIC_ASCENDING); return this; }
3.26
flink_Rowtime_toProperties_rdh
/** * Converts this descriptor into a set of properties. */ @Override public Map<String, String> toProperties() { final DescriptorProperties properties = new DescriptorProperties(); properties.putProperties(internalProperties); return properties.asMap();}
3.26
flink_Rowtime_watermarksFromSource_rdh
/** * Sets a built-in watermark strategy which indicates the watermarks should be preserved from * the underlying DataStream API and thus preserves the assigned watermarks from the source. */ public Rowtime watermarksFromSource() { internalProperties.putString(ROWTIME_WATERMARKS_TYPE, ROWTIME_WATERMARKS_TYPE_VALUE_FROM_SOURCE); return this; }
3.26
flink_FileExecutionGraphInfoStore_calculateSize_rdh
// -------------------------------------------------------------- // Internal methods // -------------------------------------------------------------- private int calculateSize(JobID jobId, ExecutionGraphInfo serializableExecutionGraphInfo) {final File executionGraphInfoFile = getExecutionGraphFile(jobId); if (executionGraphInfoFile.exists()) { return Math.toIntExact(executionGraphInfoFile.length()); } else { LOG.debug("Could not find execution graph information file for {}. Estimating the size instead.", jobId); final ArchivedExecutionGraph serializableExecutionGraph = serializableExecutionGraphInfo.getArchivedExecutionGraph(); return (serializableExecutionGraph.getAllVertices().size() * 1000) + (serializableExecutionGraph.getAccumulatorsSerialized().size() * 1000); } }
3.26
flink_FileExecutionGraphInfoStore_getStorageDir_rdh
// Testing methods // -------------------------------------------------------------- @VisibleForTesting File getStorageDir() { return storageDir; }
3.26
flink_ChangelogMode_insertOnly_rdh
/** * Shortcut for a simple {@link RowKind#INSERT}-only changelog. */ public static ChangelogMode insertOnly() {return INSERT_ONLY; }
3.26
flink_ChangelogMode_newBuilder_rdh
/** * Builder for configuring and creating instances of {@link ChangelogMode}. */ public static Builder newBuilder() { return new Builder(); }
3.26
flink_ChangelogMode_all_rdh
/** * Shortcut for a changelog that can contain all {@link RowKind}s. */ public static ChangelogMode all() { return ALL;}
3.26
flink_AccumulatorSnapshot_deserializeUserAccumulators_rdh
/** * Gets the user-defined accumulators values. * * @return the serialized map */ public Map<String, Accumulator<?, ?>> deserializeUserAccumulators(ClassLoader classLoader) throws IOException, ClassNotFoundException { return userAccumulators.deserializeValue(classLoader); }
3.26
flink_KeyedBroadcastProcessFunction_onTimer_rdh
/** * Called when a timer set using {@link TimerService} fires. * * @param timestamp * The timestamp of the firing timer. * @param ctx * An {@link OnTimerContext} that allows querying the timestamp of the firing timer, * querying the current processing/event time, iterating the broadcast state with * <b>read-only</b> access, querying the {@link TimeDomain} of the firing timer and getting * a {@link TimerService} for registering timers and querying the time. The context is only * valid during the invocation of this method, do not store it. * @param out * The collector for returning result values. * @throws Exception * This method may throw exceptions. Throwing an exception will cause the * operation to fail and may trigger recovery. */ public void onTimer(final long timestamp, final OnTimerContext ctx, final Collector<OUT> out) throws Exception { // the default implementation does nothing. }
3.26
flink_ResolvedCatalogTable_getOptions_rdh
// -------------------------------------------------------------------------------------------- // Delegations to original CatalogTable // -------------------------------------------------------------------------------------------- @Override public Map<String, String> getOptions() { return origin.getOptions(); }
3.26
flink_PipelinedApproximateSubpartition_createReadView_rdh
/** * To simply the view releasing threading model, {@link PipelinedApproximateSubpartition#releaseView()} is called only before creating a new view. * * <p>There is still one corner case when a downstream task fails continuously in a short period * of time then multiple netty worker threads can createReadView at the same time. TODO: This * problem will be solved in FLINK-19774 */ @Override public PipelinedSubpartitionView createReadView(BufferAvailabilityListener availabilityListener) { synchronized(buffers) {checkState(!isReleased); releaseView(); LOG.debug("{}: Creating read view for subpartition {} of partition {}.", parent.getOwningTaskName(), getSubPartitionIndex(), parent.getPartitionId()); readView = new PipelinedApproximateSubpartitionView(this, availabilityListener); } return readView; }
3.26
flink_PipelinedApproximateSubpartition_setIsPartialBufferCleanupRequired_rdh
/** * for testing only. */ @VisibleForTesting void setIsPartialBufferCleanupRequired() { isPartialBufferCleanupRequired = true; }
3.26
flink_ManagedInitializationContext_isRestored_rdh
/** * Returns true, if state was restored from the snapshot of a previous execution. */ default boolean isRestored() { return getRestoredCheckpointId().isPresent(); }
3.26
flink_HsFileDataManager_run_rdh
// Note, this method is synchronized on `this`, not `lock`. The purpose here is to prevent // concurrent `run()` executions. Concurrent calls to other methods are allowed. @Override public synchronized void run() { int numBuffersRead = tryRead();endCurrentRoundOfReading(numBuffersRead);}
3.26
flink_HsFileDataManager_release_rdh
/** * Releases this file data manager and delete shuffle data after all readers is removed. */ public void release() { synchronized(lock) { if (isReleased) { return;} isReleased = true; List<HsSubpartitionFileReader> pendingReaders = new ArrayList<>(allReaders); mayNotifyReleased(); failSubpartitionReaders(pendingReaders, new IllegalStateException("Result partition has been already released.")); // close data index and delete shuffle file only when no reader is reading now. releaseFuture.thenRun(this::closeDataIndexAndDeleteShuffleFile); } }
3.26
flink_HsFileDataManager_tryRead_rdh
// ------------------------------------------------------------------------ // Internal Methods // ------------------------------------------------------------------------ /** * * @return number of buffers read. */ private int tryRead() { Queue<HsSubpartitionFileReader> availableReaders = prepareAndGetAvailableReaders(); if (availableReaders.isEmpty()) { return 0; } Queue<MemorySegment> buffers; try { buffers = allocateBuffers(); } catch (Exception exception) { // fail all pending subpartition readers immediately if any exception occurs failSubpartitionReaders(availableReaders, exception); LOG.error("Failed to request buffers for data reading.", exception); return 0; } int numBuffersAllocated = buffers.size(); if (numBuffersAllocated <= 0) { return 0; } readData(availableReaders, buffers); int numBuffersRead = numBuffersAllocated - buffers.size(); releaseBuffers(buffers); return numBuffersRead; }
3.26
flink_HsFileDataManager_recycle_rdh
// ------------------------------------------------------------------------ // Implementation Methods of BufferRecycler // ------------------------------------------------------------------------ @Override public void recycle(MemorySegment segment) { synchronized(lock) { bufferPool.recycle(segment); --numRequestedBuffers; mayTriggerReading(); } }
3.26
flink_HsFileDataManager_setup_rdh
/** * Setup read buffer pool. */ public void setup() { bufferPool.initialize(); }
3.26
flink_HsFileDataManager_releaseSubpartitionReader_rdh
/** * Release specific {@link HsSubpartitionFileReader} from {@link HsFileDataManager}. * * @param subpartitionFileReader * to release. */ public void releaseSubpartitionReader(HsSubpartitionFileReader subpartitionFileReader) { synchronized(lock) { removeSubpartitionReaders(Collections.singleton(subpartitionFileReader)); } }
3.26
flink_HsFileDataManager_m0_rdh
/** * This method only called by result partition to create subpartitionFileReader. */ public HsDataView m0(int subpartitionId, HsConsumerId consumerId, HsSubpartitionConsumerInternalOperations operation) throws IOException { synchronized(lock) { checkState(!isReleased, "HsFileDataManager is already released."); lazyInitialize(); HsSubpartitionFileReader subpartitionReader = fileReaderFactory.createFileReader(subpartitionId, consumerId, dataFileChannel, operation, dataIndex, hybridShuffleConfiguration.getMaxBuffersReadAhead(), this::releaseSubpartitionReader, headerBuf); allReaders.add(subpartitionReader); mayTriggerReading(); return subpartitionReader; } }
3.26
flink_ReduceOperatorBase_setCustomPartitioner_rdh
// -------------------------------------------------------------------------------------------- public void setCustomPartitioner(Partitioner<?> customPartitioner) { if (customPartitioner != null) { int[] keys = getKeyColumns(0); if ((keys == null) || (keys.length == 0)) { throw new IllegalArgumentException("Cannot use custom partitioner for a non-grouped GroupReduce (AllGroupReduce)"); } if (keys.length > 1) { throw new IllegalArgumentException("Cannot use the key partitioner for composite keys (more than one key field)"); } } this.customPartitioner = customPartitioner; }
3.26
flink_ReduceOperatorBase_executeOnCollections_rdh
// -------------------------------------------------------------------------------------------- @Override protected List<T> executeOnCollections(List<T> inputData, RuntimeContext ctx, ExecutionConfig executionConfig) throws Exception { // make sure we can handle empty inputs if (inputData.isEmpty()) { return Collections.emptyList(); } ReduceFunction<T> function = this.userFunction.getUserCodeObject(); UnaryOperatorInformation<T, T> operatorInfo = getOperatorInfo(); TypeInformation<T> inputType = operatorInfo.getInputType(); int[] inputColumns = getKeyColumns(0); if ((!(inputType instanceof CompositeType)) && (inputColumns.length > 1)) { throw new InvalidProgramException("Grouping is only possible on composite types."); } FunctionUtils.setFunctionRuntimeContext(function, ctx); FunctionUtils.openFunction(function, DefaultOpenContext.INSTANCE); TypeSerializer<T> serializer = getOperatorInfo().getInputType().createSerializer(executionConfig);if (inputColumns.length > 0) { boolean[] inputOrderings = new boolean[inputColumns.length]; TypeComparator<T> inputComparator = (inputType instanceof AtomicType) ? ((AtomicType<T>) (inputType)).createComparator(false, executionConfig) : ((CompositeType<T>) (inputType)).createComparator(inputColumns, inputOrderings, 0, executionConfig); Map<TypeComparable<T>, T> aggregateMap = new HashMap<TypeComparable<T>, T>(inputData.size() / 10); for (T next : inputData) { TypeComparable<T> wrapper = new TypeComparable<T>(next, inputComparator); T existing = aggregateMap.get(wrapper); T v12; if (existing != null) { v12 = function.reduce(existing, serializer.copy(next)); } else { v12 = next; } v12 = serializer.copy(v12);aggregateMap.put(wrapper, v12); } FunctionUtils.closeFunction(function); return new ArrayList<T>(aggregateMap.values()); } else { T aggregate = inputData.get(0); aggregate = serializer.copy(aggregate); for (int i = 1; i < inputData.size(); i++) { T next = function.reduce(aggregate, serializer.copy(inputData.get(i))); aggregate = serializer.copy(next); } FunctionUtils.setFunctionRuntimeContext(function, ctx); return Collections.singletonList(aggregate); } }
3.26
flink_BoundedBlockingSubpartition_createWithMemoryMappedFile_rdh
/** * Creates a BoundedBlockingSubpartition that stores the partition data in memory mapped file. * Data is written to and read from the mapped memory region. Disk spilling happens lazily, when * the OS swaps out the pages from the memory mapped file. */ public static BoundedBlockingSubpartition createWithMemoryMappedFile(int index, ResultPartition parent, File tempFile) throws IOException { final MemoryMappedBoundedData bd = MemoryMappedBoundedData.create(tempFile.toPath()); return new BoundedBlockingSubpartition(index, parent, bd, false); }
3.26
flink_BoundedBlockingSubpartition_unsynchronizedGetNumberOfQueuedBuffers_rdh
// ---------------------------- statistics -------------------------------- @Override public int unsynchronizedGetNumberOfQueuedBuffers() { return 0; }
3.26
flink_BoundedBlockingSubpartition_isFinished_rdh
// ------------------------------------------------------------------------ /** * Checks if writing is finished. Readers cannot be created until writing is finished, and no * further writes can happen after that. */ public boolean isFinished() { return isFinished; }
3.26
flink_BoundedBlockingSubpartition_createWithFileChannel_rdh
// ---------------------------- factories -------------------------------- /** * Creates a BoundedBlockingSubpartition that simply stores the partition data in a file. Data * is eagerly spilled (written to disk) and readers directly read from the file. */ public static BoundedBlockingSubpartition createWithFileChannel(int index, ResultPartition parent, File tempFile, int readBufferSize, boolean sslEnabled) throws IOException { final FileChannelBoundedData bd = FileChannelBoundedData.create(tempFile.toPath(), readBufferSize); return new BoundedBlockingSubpartition(index, parent, bd, !sslEnabled); }
3.26
flink_BoundedBlockingSubpartition_createWithFileAndMemoryMappedReader_rdh
/** * Creates a BoundedBlockingSubpartition that stores the partition data in a file and memory * maps that file for reading. Data is eagerly spilled (written to disk) and then mapped into * memory. The main difference to the {@link #createWithMemoryMappedFile(int, ResultPartition, * File)} variant is that no I/O is necessary when pages from the memory mapped file are * evicted. */ public static BoundedBlockingSubpartition createWithFileAndMemoryMappedReader(int index, ResultPartition parent, File tempFile) throws IOException { final FileChannelMemoryMappedBoundedData bd = FileChannelMemoryMappedBoundedData.create(tempFile.toPath()); return new BoundedBlockingSubpartition(index, parent, bd, false); }
3.26
flink_ExecEdge_translateToFusionCodegenSpec_rdh
/** * Translates this edge into operator fusion codegen spec generator. * * @param planner * The {@link Planner} of the translated Table. */ public OpFusionCodegenSpecGenerator translateToFusionCodegenSpec(Planner planner) { return source.translateToFusionCodegenSpec(planner); }
3.26
flink_ExecEdge_getOutputType_rdh
/** * Returns the output {@link LogicalType} of the data passing this edge. */ public LogicalType getOutputType() { return source.getOutputType(); }
3.26