name
stringlengths
12
178
code_snippet
stringlengths
8
36.5k
score
float64
3.26
3.68
flink_ExecEdge_hashShuffle_rdh
/** * Return hash {@link Shuffle}. * * @param keys * hash keys */ public static Shuffle hashShuffle(int[] keys) { return new HashShuffle(keys); }
3.26
flink_ExecEdge_translateToPlan_rdh
/** * Translates this edge into a Flink operator. * * @param planner * The {@link Planner} of the translated Table. */ public Transformation<?> translateToPlan(Planner planner) { return source.translateToPlan(planner); }
3.26
flink_RowType_validateFields_rdh
// -------------------------------------------------------------------------------------------- private static void validateFields(List<RowField> fields) { final List<String> fieldNames = fields.stream().map(f -> f.name).collect(Collectors.toList());if (fieldNames.stream().anyMatch(StringUtils::isNullOrWhitespaceOnly)) { throw new ValidationException("Field names must contain at least one non-whitespace character."); } final Set<String> duplicates = fieldNames.stream().filter(n -> Collections.frequency(fieldNames, n) > 1).collect(Collectors.toSet()); if (!duplicates.isEmpty()) { throw new ValidationException(String.format("Field names must be unique. Found duplicates: %s", duplicates)); } }
3.26
flink_BinaryHashBucketArea_startLookup_rdh
/** * Probe start lookup joined build rows. */ void startLookup(int hashCode) { final int posHashCode = findBucket(hashCode); // get the bucket for the given hash code final int bucketArrayPos = posHashCode >> table.bucketsPerSegmentBits; final int bucketInSegmentOffset = (posHashCode & table.bucketsPerSegmentMask) << BUCKET_SIZE_BITS; final MemorySegment bucket = this.buckets[bucketArrayPos]; table.bucketIterator.set(bucket, overflowSegments, partition, hashCode, bucketInSegmentOffset); }
3.26
flink_BinaryHashBucketArea_buildBloomFilterAndFree_rdh
/** * Three situations: 1.Not use bloom filter, just free memory. 2.In rehash, free new memory and * let rehash go build bloom filter from old memory. 3.Not in rehash and use bloom filter, build * it and free memory. */ void buildBloomFilterAndFree() { if (inReHash || (!table.useBloomFilters)) { freeMemory(); } else { buildBloomFilterAndFree(buckets, numBuckets, overflowSegments); } }
3.26
flink_BinaryHashBucketArea_insertToBucket_rdh
/** * Insert into bucket by hashCode and pointer. * * @return return false when spill own partition. */ boolean insertToBucket(int hashCode, int pointer, boolean sizeAddAndCheckResize) throws IOException { final int posHashCode = findBucket(hashCode); // get the bucket for the given hash code final int v47 = posHashCode >> table.bucketsPerSegmentBits; final int bucketInSegmentPos = (posHashCode & table.bucketsPerSegmentMask) << BUCKET_SIZE_BITS; final MemorySegment bucket = this.buckets[v47]; return insertToBucket(bucket, bucketInSegmentPos, hashCode, pointer, sizeAddAndCheckResize); }
3.26
flink_BinaryHashBucketArea_appendRecordAndInsert_rdh
/** * Append record and insert to bucket. */ boolean appendRecordAndInsert(BinaryRowData record, int hashCode) throws IOException { final int posHashCode = findBucket(hashCode); // get the bucket for the given hash code final int bucketArrayPos = posHashCode >> table.bucketsPerSegmentBits; final int bucketInSegmentPos = (posHashCode & table.bucketsPerSegmentMask) << BUCKET_SIZE_BITS;final MemorySegment v53 = this.buckets[bucketArrayPos]; if (((!table.tryDistinctBuildRow) || (!partition.isInMemory())) || (!findFirstSameBuildRow(v53, hashCode, bucketInSegmentPos, record))) { int pointer = partition.insertIntoBuildBuffer(record); if (pointer != (-1)) { // record was inserted into an in-memory partition. a pointer must be inserted into // the buckets insertToBucket(v53, bucketInSegmentPos, hashCode, pointer, true); return true; } else { return false; } } else { // distinct build rows in memory. return true; } }
3.26
flink_BinaryHashBucketArea_findFirstSameBuildRow_rdh
/** * For distinct build. */ private boolean findFirstSameBuildRow(MemorySegment bucket, int searchHashCode, int bucketInSegmentOffset, BinaryRowData buildRowToInsert) { int posInSegment = bucketInSegmentOffset + BUCKET_HEADER_LENGTH; int countInBucket = bucket.getShort(bucketInSegmentOffset + HEADER_COUNT_OFFSET); int numInBucket = 0; RandomAccessInputView view = partition.getBuildStageInputView(); while (countInBucket != 0) { while (numInBucket < countInBucket) { final int thisCode = bucket.getInt(posInSegment); posInSegment += HASH_CODE_LEN; if (thisCode == searchHashCode) { final int pointer = bucket.getInt((bucketInSegmentOffset + BUCKET_POINTER_START_OFFSET) + (numInBucket * POINTER_LEN)); numInBucket++; try { view.setReadPosition(pointer); BinaryRowData row = table.binaryBuildSideSerializer.mapFromPages(table.reuseBuildRow, view); if (buildRowToInsert.equals(row)) { return true; } } catch (IOException e) { throw new RuntimeException("Error deserializing key or value from the hashtable: " + e.getMessage(), e);} } else { numInBucket++; } } // this segment is done. check if there is another chained bucket final int forwardPointer = bucket.getInt(bucketInSegmentOffset + HEADER_FORWARD_OFFSET); if (forwardPointer == BUCKET_FORWARD_POINTER_NOT_SET) { return false; } final int overflowSegIndex = forwardPointer >>> table.segmentSizeBits; bucket = overflowSegments[overflowSegIndex]; bucketInSegmentOffset = forwardPointer & table.segmentSizeMask; countInBucket = bucket.getShort(bucketInSegmentOffset + HEADER_COUNT_OFFSET);posInSegment = bucketInSegmentOffset + BUCKET_HEADER_LENGTH; numInBucket = 0; } return false; }
3.26
flink_SimpleCounter_inc_rdh
/** * Increment the current count by the given value. * * @param n * value to increment the current count by */ @Override public void inc(long n) { count += n; }
3.26
flink_SimpleCounter_dec_rdh
/** * Decrement the current count by the given value. * * @param n * value to decrement the current count by */ @Override public void dec(long n) { count -= n; }
3.26
flink_ColumnOperationUtils_addOrReplaceColumns_rdh
/** * Creates a projection list that adds new or replaces existing (if a column with corresponding * name already exists) columns. * * <p><b>NOTE:</b> Resulting expression are still unresolved. * * @param inputFields * names of current columns * @param newExpressions * new columns to add * @return projection expressions */ static List<Expression> addOrReplaceColumns(List<String> inputFields, List<Expression> newExpressions) { LinkedHashMap<String, Expression> finalFields = new LinkedHashMap<>(); inputFields.forEach(field -> finalFields.put(field, unresolvedRef(field))); newExpressions.forEach(expr -> { String name = extractName(expr).orElse(expr.toString()); finalFields.put(name, expr); }); return new ArrayList<>(finalFields.values()); }
3.26
flink_ColumnOperationUtils_dropFields_rdh
/** * Creates a projection list that removes given columns. * * <p><b>NOTE:</b> Resulting expression are still unresolved. * * @param inputFields * names of current columns * @param dropExpressions * columns to remove * @return projection expressions */static List<Expression> dropFields(List<String> inputFields, List<Expression> dropExpressions) { Set<String> columnsToDrop = dropExpressions.stream().map(expr -> expr.accept(dropColumnsExtractor)).collect(Collectors.toSet()); columnsToDrop.forEach(c -> { if (!inputFields.contains(c)) { throw new ValidationException(format("Field %s does not exist in source table", c)); } });return inputFields.stream().filter(oldName -> !columnsToDrop.contains(oldName)).map(ApiExpressionUtils::unresolvedRef).collect(Collectors.toList());}
3.26
flink_DefaultFileWriterBucketFactory_getNewBucket_rdh
/** * A factory returning {@link FileWriter writer}. */
3.26
flink_MessageHeaders_getCustomHeaders_rdh
/** * Returns a collection of custom HTTP headers. * * <p>This default implementation returns an empty list. Override this method to provide custom * headers if needed. * * @return a collection of custom {@link HttpHeaders}, empty by default. */ default Collection<HttpHeader> getCustomHeaders() {return Collections.emptyList(); }
3.26
flink_MessageHeaders_operationId_rdh
/** * Returns a short description for this header suitable for method code generation. * * @return short description */ default String operationId() { final String className = getClass().getSimpleName(); if (getHttpMethod() != HttpMethodWrapper.GET) { throw new UnsupportedOperationException(("The default implementation is only supported for GET calls. Please override 'operationId()' in '" + className) + "'."); } final int headersSuffixStart = className.lastIndexOf("Headers"); if (headersSuffixStart == (-1)) { throw new IllegalStateException(("Expect name of class " + getClass()) + " to end on 'Headers'. Please rename the class or override 'operationId()'."); }return getHttpMethod().name().toLowerCase(Locale.ROOT) + className.substring(0, headersSuffixStart); }
3.26
flink_KvStateInternalRequest_deserializeMessage_rdh
/** * A {@link MessageDeserializer deserializer} for {@link KvStateInternalRequest}. */public static class KvStateInternalRequestDeserializer implements MessageDeserializer<KvStateInternalRequest> { @Override public KvStateInternalRequest deserializeMessage(ByteBuf buf) { KvStateID kvStateId = new KvStateID(buf.readLong(), buf.readLong()); int length = buf.readInt(); Preconditions.checkArgument(length >= 0, "Negative length for key and namespace. " + "This indicates a serialization error.");byte[] serializedKeyAndNamespace = new byte[length]; if (length > 0) { buf.readBytes(serializedKeyAndNamespace); } return new KvStateInternalRequest(kvStateId, serializedKeyAndNamespace); }
3.26
flink_HsSubpartitionFileReaderImpl_getNextOffsetToLoad_rdh
/** * Returns Long.MAX_VALUE if it shouldn't load. */ private long getNextOffsetToLoad() { int bufferIndex = bufferIndexManager.getNextToLoad(); if (bufferIndex < 0) {return Long.MAX_VALUE; } else { return cachedRegionManager.getFileOffset(bufferIndex); } }
3.26
flink_HsSubpartitionFileReaderImpl_compareTo_rdh
/** * Provides priority calculation logic for io scheduler. */ @Override public int compareTo(HsSubpartitionFileReader that) { checkArgument(that instanceof HsSubpartitionFileReaderImpl); return Long.compare(getNextOffsetToLoad(), ((HsSubpartitionFileReaderImpl) (that)).getNextOffsetToLoad()); }
3.26
flink_HsSubpartitionFileReaderImpl_prepareForScheduling_rdh
/** * Refresh downstream consumption progress for another round scheduling of reading. */ @Override public void prepareForScheduling() { // Access the consuming offset with lock, to prevent loading any buffer released from the // memory data manager that is already consumed. int consumingOffset = operations.getConsumingOffset(true); bufferIndexManager.updateLastConsumed(consumingOffset); cachedRegionManager.updateConsumingOffset(consumingOffset); }
3.26
flink_HsSubpartitionFileReaderImpl_updateCachedRegionIfNeeded_rdh
// ------------------------------------------------------------------------ // Internal Methods // ------------------------------------------------------------------------ /** * Points the cursors to the given buffer index, if possible. */ private void updateCachedRegionIfNeeded(int bufferIndex) { if (isInCachedRegion(bufferIndex)) { int numAdvance = bufferIndex - currentBufferIndex; numSkip += numAdvance; numReadable -= numAdvance; currentBufferIndex = bufferIndex; return; } Optional<HsFileDataIndex.ReadableRegion> lookupResultOpt = dataIndex.getReadableRegion(subpartitionId, bufferIndex, consumingOffset);if (!lookupResultOpt.isPresent()) { currentBufferIndex = -1; numReadable = 0; numSkip = 0; offset = -1L; } else { HsFileDataIndex.ReadableRegion cachedRegion = lookupResultOpt.get(); currentBufferIndex = bufferIndex; numSkip = cachedRegion.numSkip; numReadable = cachedRegion.numReadable; offset = cachedRegion.offset; } }
3.26
flink_HsSubpartitionFileReaderImpl_updateConsumingOffset_rdh
// ------------------------------------------------------------------------ // Called by HsSubpartitionFileReader // ------------------------------------------------------------------------ public void updateConsumingOffset(int consumingOffset) { this.consumingOffset = consumingOffset; }
3.26
flink_HsSubpartitionFileReaderImpl_getFileOffset_rdh
/** * Return Long.MAX_VALUE if region does not exist to giving the lowest priority. */private long getFileOffset(int bufferIndex) { updateCachedRegionIfNeeded(bufferIndex); return currentBufferIndex == (-1) ? Long.MAX_VALUE : offset; }
3.26
flink_HsSubpartitionFileReaderImpl_readBuffers_rdh
/** * Read subpartition data into buffers. * * <p>This transfers the ownership of used buffers to this class. It's this class' * responsibility to release the buffers using the recycler when no longer needed. * * <p>Calling this method does not always use up all the provided buffers. It's this class' * decision when to stop reading. Currently, it stops reading when: 1) buffers are used up, or * 2) reaches the end of the subpartition data within the region, or 3) enough data have been * read ahead the downstream consuming offset. */ @Override public void readBuffers(Queue<MemorySegment> buffers, BufferRecycler recycler) throws IOException { synchronized(f0) { if (isReleased) { return; } if (isFailed) { throw new IOException("subpartition reader has already failed."); } int v1 = bufferIndexManager.getNextToLoad(); if (v1 < 0) { return; } // If lookup result is empty, it means that one the following things have happened: // 1) The target buffer has not been spilled into disk. // 2) The target buffer has not been released from memory. // So, just skip this round reading. int numRemainingBuffer = cachedRegionManager.getRemainingBuffersInRegion(v1); if (numRemainingBuffer == 0) { return;} moveFileOffsetToBuffer(v1); int indexToLoad; int numLoaded = 0; while (((!buffers.isEmpty()) && ((indexToLoad = bufferIndexManager.getNextToLoad()) >= 0)) && ((numRemainingBuffer--) > 0)) { MemorySegment segment = buffers.poll(); Buffer buffer; try { if ((buffer = readFromByteChannel(dataFileChannel, headerBuf, segment, recycler)) == null) { buffers.add(segment); break; } } catch (Throwable throwable) { buffers.add(segment); throw throwable; } tryIncreaseBacklog(buffer); loadedBuffers.add(BufferIndexOrError.newBuffer(buffer, indexToLoad)); bufferIndexManager.updateLastLoaded(indexToLoad); cachedRegionManager.advance(buffer.readableBytes() + BufferReaderWriterUtil.HEADER_LENGTH); ++numLoaded; } if (loadedBuffers.size() <= numLoaded) { operations.notifyDataAvailable(); } } }
3.26
flink_HsSubpartitionFileReaderImpl_getNextToLoad_rdh
/** * Returns a negative value if shouldn't load. */ private int getNextToLoad() { int nextToLoad = Math.max(lastLoaded, lastConsumed) + 1; int maxToLoad = lastConsumed + maxBuffersReadAhead; return nextToLoad <= maxToLoad ? nextToLoad : -1; } } /** * Maintains a set of cursors on the last fetched readable region. * * <p>The semantics are: * * <ol> * <li>The offset of the buffer with {@code currentBufferIndex} in file can be derived by * starting from {@code offset} and skipping {@code numSkip} buffers. * <li>The {@code numReadable}
3.26
flink_QueryableStateStream_getKeySerializer_rdh
/** * Returns the key serializer for the queryable state instance. * * @return Key serializer for the state instance. */ public TypeSerializer<K> getKeySerializer() { return keySerializer;}
3.26
flink_PbSchemaValidationUtils_validateTypeMatch_rdh
/** * Validate type match of general type. * * @param fd * the {@link Descriptors.Descriptor} of the protobuf object. * @param logicalType * the corresponding {@link LogicalType} to the {@link FieldDescriptor} */ private static void validateTypeMatch(FieldDescriptor fd, LogicalType logicalType) { if (!fd.isRepeated()) { if (fd.getJavaType() != JavaType.MESSAGE) { // simple type m0(fd, logicalType.getTypeRoot()); } else { // message type if (!(logicalType instanceof RowType)) { throw new ValidationException(("Unexpected LogicalType: " + logicalType) + ". It should be RowType"); } validateTypeMatch(fd.getMessageType(), ((RowType) (logicalType))); } } else if (fd.isMapField()) { // map type if (!(logicalType instanceof MapType)) { throw new ValidationException(("Unexpected LogicalType: " + logicalType) + ". It should be MapType"); } MapType mapType = ((MapType) (logicalType)); m0(fd.getMessageType().findFieldByName(PbConstant.PB_MAP_KEY_NAME), mapType.getKeyType().getTypeRoot());validateTypeMatch(fd.getMessageType().findFieldByName(PbConstant.PB_MAP_VALUE_NAME), mapType.getValueType()); } else { // array type if (!(logicalType instanceof ArrayType)) { throw new ValidationException(("Unexpected LogicalType: " + logicalType) + ". It should be ArrayType"); } ArrayType arrayType = ((ArrayType) (logicalType)); if (fd.getJavaType() == JavaType.MESSAGE) { // array message type LogicalType elementType = arrayType.getElementType(); if (!(elementType instanceof RowType)) { throw new ValidationException(("Unexpected logicalType: " + elementType) + ". It should be RowType"); } validateTypeMatch(fd.getMessageType(), ((RowType) (elementType))); } else { // array simple type m0(fd, arrayType.getElementType().getTypeRoot()); } } }
3.26
flink_PbSchemaValidationUtils_m0_rdh
/** * Only validate type match for simple type like int, long, string, boolean. * * @param fd * {@link FieldDescriptor} in proto descriptor * @param logicalTypeRoot * {@link LogicalTypeRoot} of row element */ private static void m0(FieldDescriptor fd, LogicalTypeRoot logicalTypeRoot) { if (!TYPE_MATCH_MAP.containsKey(fd.getJavaType())) { throw new ValidationException("Unsupported protobuf java type: " + fd.getJavaType()); } if (TYPE_MATCH_MAP.get(fd.getJavaType()).stream().noneMatch(x -> x == logicalTypeRoot)) { throw new ValidationException((("Protobuf field type does not match column type, " + fd.getJavaType()) + "(protobuf) is not compatible of ") + logicalTypeRoot); } }
3.26
flink_FlinkContainerTestEnvironment_getFlinkContainers_rdh
/** * Get instance of Flink containers for cluster controlling. * * @return Flink cluster on Testcontainers */public FlinkContainers getFlinkContainers() { return this.flinkContainers; }
3.26
flink_KubernetesJobGraphStoreUtil_jobIDToName_rdh
/** * Convert a {@link JobID} to config map key. We will add prefix {@link Constants#JOB_GRAPH_STORE_KEY_PREFIX}. * * @param jobID * job id * @return a key to store job graph in the ConfigMap */ public String jobIDToName(JobID jobID) { return JOB_GRAPH_STORE_KEY_PREFIX + jobID; }
3.26
flink_KubernetesJobGraphStoreUtil_nameToJobID_rdh
/** * Convert a key in ConfigMap to {@link JobID}. The key is stored with prefix {@link Constants#JOB_GRAPH_STORE_KEY_PREFIX}. * * @param key * job graph key in ConfigMap. * @return the parsed {@link JobID}. */ public JobID nameToJobID(String key) { return JobID.fromHexString(key.substring(JOB_GRAPH_STORE_KEY_PREFIX.length())); }
3.26
flink_DataStream_setConnectionType_rdh
/** * Internal function for setting the partitioner for the DataStream. * * @param partitioner * Partitioner to set. * @return The modified DataStream. */ protected DataStream<T> setConnectionType(StreamPartitioner<T> partitioner) { return new DataStream<>(this.getExecutionEnvironment(), new PartitionTransformation<>(this.getTransformation(), partitioner)); }
3.26
flink_DataStream_rescale_rdh
/** * Sets the partitioning of the {@link DataStream} so that the output elements are distributed * evenly to a subset of instances of the next operation in a round-robin fashion. * * <p>The subset of downstream operations to which the upstream operation sends elements depends * on the degree of parallelism of both the upstream and downstream operation. For example, if * the upstream operation has parallelism 2 and the downstream operation has parallelism 4, then * one upstream operation would distribute elements to two downstream operations while the other * upstream operation would distribute to the other two downstream operations. If, on the other * hand, the downstream operation has parallelism 2 while the upstream operation has parallelism * 4 then two upstream operations will distribute to one downstream operation while the other * two upstream operations will distribute to the other downstream operations. * * <p>In cases where the different parallelisms are not multiples of each other one or several * downstream operations will have a differing number of inputs from upstream operations. * * @return The DataStream with rescale partitioning set. */ @PublicEvolving public DataStream<T> rescale() { return setConnectionType(new RescalePartitioner<T>()); }
3.26
flink_DataStream_printToErr_rdh
/** * Writes a DataStream to the standard error stream (stderr). * * <p>For each element of the DataStream the result of {@link Object#toString()} is written. * * <p>NOTE: This will print to stderr on the machine where the code is executed, i.e. the Flink * worker. * * @param sinkIdentifier * The string to prefix the output with. * @return The closed DataStream. */ @PublicEvolving public DataStreamSink<T> printToErr(String sinkIdentifier) { PrintSinkFunction<T> printFunction = new PrintSinkFunction<>(sinkIdentifier, true); return addSink(printFunction).name("Print to Std. Err"); } /** * Writes a DataStream to the file specified by path in text format. * * <p>For every element of the DataStream the result of {@link Object#toString()} is written. * * @param path * The path pointing to the location the text file is written to. * @return The closed DataStream. * @deprecated Please use the {@link org.apache.flink.streaming.api.functions.sink.filesystem.StreamingFileSink} explicitly using the {@link #addSink(SinkFunction)}
3.26
flink_DataStream_addSink_rdh
/** * Adds the given sink to this DataStream. Only streams with sinks added will be executed once * the {@link StreamExecutionEnvironment#execute()} method is called. * * @param sinkFunction * The object containing the sink's invoke function. * @return The closed DataStream. */ public DataStreamSink<T> addSink(SinkFunction<T> sinkFunction) { // read the output type of the input Transform to coax out errors about MissingTypeInfo transformation.getOutputType(); // configure the type if needed if (sinkFunction instanceof InputTypeConfigurable) { ((InputTypeConfigurable) (sinkFunction)).setInputType(getType(), getExecutionConfig()); } return DataStreamSink.forSinkFunction(this, clean(sinkFunction)); }
3.26
flink_DataStream_map_rdh
/** * Applies a Map transformation on a {@link DataStream}. The transformation calls a {@link MapFunction} for each element of the DataStream. Each MapFunction call returns exactly one * element. The user can also extend {@link RichMapFunction} to gain access to other features * provided by the {@link org.apache.flink.api.common.functions.RichFunction} interface. * * @param mapper * The MapFunction that is called for each element of the DataStream. * @param outputType * {@link TypeInformation} for the result type of the function. * @param <R> * output type * @return The transformed {@link DataStream}. */ public <R> SingleOutputStreamOperator<R> map(MapFunction<T, R> mapper, TypeInformation<R> outputType) { return transform("Map", outputType, new StreamMap<>(clean(mapper))); }
3.26
flink_DataStream_filter_rdh
/** * Applies a Filter transformation on a {@link DataStream}. The transformation calls a {@link FilterFunction} for each element of the DataStream and retains only those element for which * the function returns true. Elements for which the function returns false are filtered. The * user can also extend {@link RichFilterFunction} to gain access to other features provided by * the {@link org.apache.flink.api.common.functions.RichFunction} interface. * * @param filter * The FilterFunction that is called for each element of the DataStream. * @return The filtered DataStream. */ public SingleOutputStreamOperator<T> filter(FilterFunction<T> filter) { return transform("Filter", getType(), new StreamFilter<>(clean(filter))); }
3.26
flink_DataStream_shuffle_rdh
/** * Sets the partitioning of the {@link DataStream} so that the output elements are shuffled * uniformly randomly to the next operation. * * @return The DataStream with shuffle partitioning set. */ @PublicEvolving public DataStream<T> shuffle() { return setConnectionType(new ShufflePartitioner<T>()); }
3.26
flink_DataStream_project_rdh
/** * Initiates a Project transformation on a {@link Tuple} {@link DataStream}.<br> * <b>Note: Only Tuple DataStreams can be projected.</b> * * <p>The transformation projects each Tuple of the DataSet onto a (sub)set of fields. * * @param fieldIndexes * The field indexes of the input tuples that are retained. The order of * fields in the output tuple corresponds to the order of field indexes. * @return The projected DataStream * @see Tuple * @see DataStream */ @PublicEvolving public <R extends Tuple> SingleOutputStreamOperator<R> project(int... fieldIndexes) { return new StreamProjection<>(this, fieldIndexes).projectTupleX(); }
3.26
flink_DataStream_countWindowAll_rdh
/** * Windows this {@code DataStream} into sliding count windows. * * <p>Note: This operation is inherently non-parallel since all elements have to pass through * the same operator instance. * * @param size * The size of the windows in number of elements. * @param slide * The slide interval in number of elements. */ public AllWindowedStream<T, GlobalWindow> countWindowAll(long size, long slide) { return windowAll(GlobalWindows.create()).evictor(CountEvictor.of(size)).trigger(CountTrigger.of(slide)); }
3.26
flink_DataStream_executeAndCollect_rdh
/** * Triggers the distributed execution of the streaming dataflow and returns an iterator over the * elements of the given DataStream. * * <p>The DataStream application is executed in the regular distributed manner on the target * environment, and the events from the stream are polled back to this application process and * thread through Flink's REST API. */ public List<T> executeAndCollect(String jobExecutionName, int limit) throws Exception { Preconditions.checkState(limit > 0, "Limit must be greater than 0"); try (ClientAndIterator<T> clientAndIterator = executeAndCollectWithClient(jobExecutionName)) { List<T> results = new ArrayList<>(limit); while ((limit > 0) && clientAndIterator.iterator.hasNext()) { results.add(clientAndIterator.iterator.next()); limit--; } return results; } }
3.26
flink_DataStream_partitionCustom_rdh
// private helper method for custom partitioning private <K> DataStream<T> partitionCustom(Partitioner<K> partitioner, Keys<T> keys) { KeySelector<T, K> keySelector = KeySelectorUtil.getSelectorForOneKey(keys, partitioner, getType(), getExecutionConfig()); return setConnectionType(new CustomPartitionerWrapper<>(clean(partitioner), clean(keySelector))); }
3.26
flink_DataStream_getPreferredResources_rdh
/** * Gets the preferred resources for this operator. * * @return The preferred resources set for this operator. */ @PublicEvolving public ResourceSpec getPreferredResources() { return transformation.getPreferredResources(); }
3.26
flink_DataStream_m1_rdh
/** * Windows this {@code DataStream} into tumbling count windows. * * <p>Note: This operation is inherently non-parallel since all elements have to pass through * the same operator instance. * * @param size * The size of the windows in number of elements. */ public AllWindowedStream<T, GlobalWindow> m1(long size) { return windowAll(GlobalWindows.create()).trigger(PurgingTrigger.of(CountTrigger.of(size))); }
3.26
flink_DataStream_process_rdh
/** * Applies the given {@link ProcessFunction} on the input stream, thereby creating a transformed * output stream. * * <p>The function will be called for every element in the input streams and can produce zero or * more output elements. * * @param processFunction * The {@link ProcessFunction} that is called for each element in the * stream. * @param outputType * {@link TypeInformation} for the result type of the function. * @param <R> * The type of elements emitted by the {@code ProcessFunction}. * @return The transformed {@link DataStream}. */ @Internal public <R> SingleOutputStreamOperator<R> process(ProcessFunction<T, R> processFunction, TypeInformation<R> outputType) { ProcessOperator<T, R> operator = new ProcessOperator<>(clean(processFunction)); return transform("Process", outputType, operator);}
3.26
flink_DataStream_flatMap_rdh
/** * Applies a FlatMap transformation on a {@link DataStream}. The transformation calls a {@link FlatMapFunction} for each element of the DataStream. Each FlatMapFunction call can return any * number of elements including none. The user can also extend {@link RichFlatMapFunction} to * gain access to other features provided by the {@link org.apache.flink.api.common.functions.RichFunction} interface. * * @param flatMapper * The FlatMapFunction that is called for each element of the DataStream * @param outputType * {@link TypeInformation} for the result type of the function. * @param <R> * output type * @return The transformed {@link DataStream}. */ public <R> SingleOutputStreamOperator<R> flatMap(FlatMapFunction<T, R> flatMapper, TypeInformation<R> outputType) { return transform("Flat Map", outputType, new StreamFlatMap<>(clean(flatMapper))); }
3.26
flink_DataStream_union_rdh
/** * Creates a new {@link DataStream} by merging {@link DataStream} outputs of the same type with * each other. The DataStreams merged using this operator will be transformed simultaneously. * * @param streams * The DataStreams to union output with. * @return The {@link DataStream}. */ @SafeVarargs public final DataStream<T> union(DataStream<T>... streams) { List<Transformation<T>> unionedTransforms = new ArrayList<>(); unionedTransforms.add(this.transformation); for (DataStream<T> newStream : streams) { if (!getType().equals(newStream.getType())) { throw new IllegalArgumentException((("Cannot union streams of different types: " + getType()) + " and ") + newStream.getType()); } unionedTransforms.add(newStream.getTransformation()); } return new DataStream<>(this.environment, new UnionTransformation<>(unionedTransforms)); }
3.26
flink_DataStream_getExecutionEnvironment_rdh
/** * Returns the {@link StreamExecutionEnvironment} that was used to create this {@link DataStream}. * * @return The Execution Environment */ public StreamExecutionEnvironment getExecutionEnvironment() { return environment; }
3.26
flink_DataStream_collectAsync_rdh
/** * Sets up the collection of the elements in this {@link DataStream}, which can be retrieved * later via the given {@link Collector}. * * <p>Caution: When multiple streams are being collected it is recommended to consume all * streams in parallel to not back-pressure the job. * * <p>Caution: Closing the iterator from the collector cancels the job! It is recommended to * close all iterators once you are no longer interested in any of the collected streams. * * <p>This method is functionally equivalent to {@link #collectAsync()}. * * <p>This method is meant to support use-cases where the application of a sink is done via a * {@code Consumer<DataStream<T>>}, where it wouldn't be possible (or inconvenient) to return an * iterator. * * @param collector * a collector that can be used to retrieve the elements */ @Experimentalpublic void collectAsync(Collector<T> collector) { TypeSerializer<T> serializer = getType().createSerializer(getExecutionEnvironment().getConfig()); String accumulatorName = "dataStreamCollect_" + UUID.randomUUID().toString(); StreamExecutionEnvironment env = getExecutionEnvironment(); CollectSinkOperatorFactory<T> factory = new CollectSinkOperatorFactory<>(serializer, accumulatorName); CollectSinkOperator<T> operator = ((CollectSinkOperator<T>) (factory.getOperator())); long resultFetchTimeout = env.getConfiguration().get(AkkaOptions.ASK_TIMEOUT_DURATION).toMillis(); CollectResultIterator<T> iterator = new CollectResultIterator<>(operator.getOperatorIdFuture(), serializer, accumulatorName, env.getCheckpointConfig(), resultFetchTimeout);CollectStreamSink<T> sink = new CollectStreamSink<>(this, factory); sink.name("Data stream collect sink"); env.addOperator(sink.getTransformation()); env.registerCollectIterator(iterator); collector.setIterator(iterator); } /** * This class acts as an accessor to elements collected via {@link #collectAsync(Collector)}
3.26
flink_DataStream_windowAll_rdh
/** * Windows this data stream to a {@code AllWindowedStream}, which evaluates windows over a non * key grouped stream. Elements are put into windows by a {@link org.apache.flink.streaming.api.windowing.assigners.WindowAssigner}. The grouping of elements * is done by window. * * <p>A {@link org.apache.flink.streaming.api.windowing.triggers.Trigger} can be defined to * specify when windows are evaluated. However, {@code WindowAssigners} have a default {@code Trigger} that is used if a {@code Trigger} is not specified. * * <p>Note: This operation is inherently non-parallel since all elements have to pass through * the same operator instance. * * @param assigner * The {@code WindowAssigner} that assigns elements to windows. * @return The trigger windows data stream. */ @PublicEvolving public <W extends Window> AllWindowedStream<T, W> windowAll(WindowAssigner<? super T, W> assigner) { return new AllWindowedStream<>(this, assigner); }
3.26
flink_DataStream_print_rdh
/** * Writes a DataStream to the standard output stream (stdout). * * <p>For each element of the DataStream the result of {@link Object#toString()} is written. * * <p>NOTE: This will print to stdout on the machine where the code is executed, i.e. the Flink * worker. * * @param sinkIdentifier * The string to prefix the output with. * @return The closed DataStream. */ @PublicEvolving public DataStreamSink<T> print(String sinkIdentifier) { PrintSinkFunction<T> printFunction = new PrintSinkFunction<>(sinkIdentifier, false); return addSink(printFunction).name("Print to Std. Out"); }
3.26
flink_DataStream_writeToSocket_rdh
/** * Writes the DataStream to a socket as a byte array. The format of the output is specified by a * {@link SerializationSchema}. * * @param hostName * host of the socket * @param port * port of the socket * @param schema * schema for serialization * @return the closed DataStream */ @PublicEvolving public DataStreamSink<T> writeToSocket(String hostName, int port, SerializationSchema<T> schema) {DataStreamSink<T> returnStream = addSink(new SocketClientSink<>(hostName, port, schema, 0));returnStream.setParallelism(1);// It would not work if multiple instances would connect to the same port return returnStream; } /** * Writes the dataStream into an output, described by an OutputFormat. * * <p>The output is not participating in Flink's checkpointing! * * <p>For writing to a file system periodically, the use of the {@link org.apache.flink.streaming.api.functions.sink.filesystem.StreamingFileSink} is recommended. * * @param format * The output format * @return The closed DataStream * @deprecated Please use the {@link org.apache.flink.streaming.api.functions.sink.filesystem.StreamingFileSink} explicitly using the {@link #addSink(SinkFunction)}
3.26
flink_DataStream_transform_rdh
/** * Method for passing user defined operators created by the given factory along with the type * information that will transform the DataStream. * * <p>This method uses the rather new operator factories and should only be used when custom * factories are needed. * * @param operatorName * name of the operator, for logging purposes * @param outTypeInfo * the output type of the operator * @param operatorFactory * the factory for the operator. * @param <R> * type of the return stream * @return the data stream constructed. */ @PublicEvolving public <R> SingleOutputStreamOperator<R> transform(String operatorName, TypeInformation<R> outTypeInfo, OneInputStreamOperatorFactory<T, R> operatorFactory) { return m2(operatorName, outTypeInfo, operatorFactory); }
3.26
flink_DataStream_getType_rdh
/** * Gets the type of the stream. * * @return The type of the datastream. */ public TypeInformation<T> getType() { return transformation.getOutputType(); }
3.26
flink_DataStream_broadcast_rdh
/** * Sets the partitioning of the {@link DataStream} so that the output elements are broadcasted * to every parallel instance of the next operation. * * @return The DataStream with broadcast partitioning set. */ public DataStream<T> broadcast() { return setConnectionType(new BroadcastPartitioner<T>()); } /** * Sets the partitioning of the {@link DataStream} so that the output elements are broadcasted * to every parallel instance of the next operation. In addition, it implicitly as many {@link org.apache.flink.api.common.state.BroadcastState broadcast states} as the specified * descriptors which can be used to store the element of the stream. * * @param broadcastStateDescriptors * the descriptors of the broadcast states to create. * @return A {@link BroadcastStream} which can be used in the {@link #connect(BroadcastStream)} to create a {@link BroadcastConnectedStream}
3.26
flink_DataStream_assignTimestampsAndWatermarks_rdh
/** * Assigns timestamps to the elements in the data stream and creates watermarks based on events, * to signal event time progress. * * <p>This method uses the deprecated watermark generator interfaces. Please switch to {@link #assignTimestampsAndWatermarks(WatermarkStrategy)} to use the new interfaces instead. The new * interfaces support watermark idleness and no longer need to differentiate between "periodic" * and "punctuated" watermarks. * * @deprecated Please use {@link #assignTimestampsAndWatermarks(WatermarkStrategy)} instead. */ @Deprecated public SingleOutputStreamOperator<T> assignTimestampsAndWatermarks(AssignerWithPunctuatedWatermarks<T> timestampAndWatermarkAssigner) { final AssignerWithPunctuatedWatermarks<T> cleanedAssigner = clean(timestampAndWatermarkAssigner); final WatermarkStrategy<T> wms = new AssignerWithPunctuatedWatermarksAdapter.Strategy<>(cleanedAssigner); return assignTimestampsAndWatermarks(wms); }
3.26
flink_DataStream_rebalance_rdh
/** * Sets the partitioning of the {@link DataStream} so that the output elements are distributed * evenly to instances of the next operation in a round-robin fashion. * * @return The DataStream with rebalance partitioning set. */ public DataStream<T> rebalance() { return setConnectionType(new RebalancePartitioner<T>()); }
3.26
flink_DataStream_getOutput_rdh
/** * Returns an iterator over the collected elements. The returned iterator must only be used * once the job execution was triggered. * * <p>This method will always return the same iterator instance. * * @return iterator over collected elements */public CloseableIterator<T> getOutput() { // we intentionally fail here instead of waiting, because it indicates a // misunderstanding on the user and would usually just block the application Preconditions.checkNotNull(iterator, "The job execution was not yet started."); return iterator; }
3.26
flink_DataStream_connect_rdh
/** * Creates a new {@link BroadcastConnectedStream} by connecting the current {@link DataStream} * or {@link KeyedStream} with a {@link BroadcastStream}. * * <p>The latter can be created using the {@link #broadcast(MapStateDescriptor[])} method. * * <p>The resulting stream can be further processed using the {@code BroadcastConnectedStream.process(MyFunction)} method, where {@code MyFunction} can be either * a {@link org.apache.flink.streaming.api.functions.co.KeyedBroadcastProcessFunction * KeyedBroadcastProcessFunction} or a {@link org.apache.flink.streaming.api.functions.co.BroadcastProcessFunction * BroadcastProcessFunction} depending on the current stream being a {@link KeyedStream} or not. * * @param broadcastStream * The broadcast stream with the broadcast state to be connected with * this stream. * @return The {@link BroadcastConnectedStream}. */ @PublicEvolving public <R> BroadcastConnectedStream<T, R> connect(BroadcastStream<R> broadcastStream) { return new BroadcastConnectedStream<>(environment, this, Preconditions.checkNotNull(broadcastStream), broadcastStream.getBroadcastStateDescriptors()); }
3.26
flink_DataStream_global_rdh
/** * Sets the partitioning of the {@link DataStream} so that the output values all go to the first * instance of the next processing operator. Use this setting with care since it might cause a * serious performance bottleneck in the application. * * @return The DataStream with shuffle partitioning set. */ @PublicEvolving public DataStream<T> global() { return setConnectionType(new GlobalPartitioner<T>()); } /** * Initiates an iterative part of the program that feeds back data streams. The iterative part * needs to be closed by calling {@link IterativeStream#closeWith(DataStream)}. The * transformation of this IterativeStream will be the iteration head. The data stream given to * the {@link IterativeStream#closeWith(DataStream)} method is the data stream that will be fed * back and used as the input for the iteration head. The user can also use different feedback * type than the input of the iteration and treat the input and feedback streams as a {@link ConnectedStreams} be calling {@link IterativeStream#withFeedbackType(TypeInformation)} * * <p>A common usage pattern for streaming iterations is to use output splitting to send a part * of the closing data stream to the head. Refer to {@link ProcessFunction.Context#output(OutputTag, Object)} for more information. * * <p>The iteration edge will be partitioned the same way as the first input of the iteration * head unless it is changed in the {@link IterativeStream#closeWith(DataStream)}
3.26
flink_DataStream_join_rdh
/** * Creates a join operation. See {@link JoinedStreams} for an example of how the keys and window * can be specified. */ public <T2> JoinedStreams<T, T2> join(DataStream<T2> otherStream) { return new JoinedStreams<>(this, otherStream); } /** * Windows this {@code DataStream} into tumbling time windows. * * <p>This is a shortcut for either {@code .window(TumblingEventTimeWindows.of(size))} or {@code .window(TumblingProcessingTimeWindows.of(size))} depending on the time characteristic set * using * * <p>Note: This operation is inherently non-parallel since all elements have to pass through * the same operator instance. * * <p>{@link org.apache.flink.streaming.api.environment.StreamExecutionEnvironment#setStreamTimeCharacteristic(org.apache.flink.streaming.api.TimeCharacteristic)} * * @param size * The size of the window. * @deprecated Please use {@link #windowAll(WindowAssigner)} with either {@link TumblingEventTimeWindows} or {@link TumblingProcessingTimeWindows}. For more information, see the deprecation notice on {@link TimeCharacteristic}
3.26
flink_DataStream_keyBy_rdh
/** * Partitions the operator state of a {@link DataStream} using field expressions. A field * expression is either the name of a public field or a getter method with parentheses of the * {@link DataStream}'s underlying type. A dot can be used to drill down into objects, as in * {@code "field1.getInnerField2()"}. * * @deprecated Use {@link DataStream#keyBy(KeySelector)}. * @param fields * One or more field expressions on which the state of the {@link DataStream} * operators will be partitioned. * @return The {@link DataStream} with partitioned state (i.e. KeyedStream) */ @Deprecated public KeyedStream<T, Tuple> keyBy(String... fields) { return keyBy(new Keys.ExpressionKeys<>(fields, getType())); }
3.26
flink_DataStream_clean_rdh
/** * Invokes the {@link org.apache.flink.api.java.ClosureCleaner} on the given function if closure * cleaning is enabled in the {@link ExecutionConfig}. * * @return The cleaned Function */ protected <F> F clean(F f) {return getExecutionEnvironment().clean(f); }
3.26
flink_DataStream_getId_rdh
/** * Returns the ID of the {@link DataStream} in the current {@link StreamExecutionEnvironment}. * * @return ID of the DataStream */ @Internal public int getId() { return transformation.getId();}
3.26
flink_DataStream_sinkTo_rdh
/** * Adds the given {@link Sink} to this DataStream. Only streams with sinks added will be * executed once the {@link StreamExecutionEnvironment#execute()} method is called. * * <p>This method is intended to be used only to recover a snapshot where no uids have been set * before taking the snapshot. * * @param customSinkOperatorUidHashes * operator hashes to support state binding * @param sink * The user defined sink. * @return The closed DataStream. */ @PublicEvolving public DataStreamSink<T> sinkTo(Sink<T> sink, CustomSinkOperatorUidHashes customSinkOperatorUidHashes) { // read the output type of the input Transform to coax out errors about MissingTypeInfo transformation.getOutputType(); return DataStreamSink.forSink(this, sink, customSinkOperatorUidHashes); }
3.26
flink_HiveParserIntervalDayTime_clone_rdh
/** * Return a copy of this object. */ public Object clone() { return new HiveParserIntervalDayTime(f0, nanos); }
3.26
flink_HiveParserIntervalDayTime_getDouble_rdh
/** * * @return double representation of the interval day time, accurate to nanoseconds */ public double getDouble() { return f0 + (nanos / 1000000000); }
3.26
flink_HiveParserIntervalDayTime_normalizeSecondsAndNanos_rdh
// Ensures that the seconds and nanoseconds fields have consistent sign protected void normalizeSecondsAndNanos() { if ((f0 > 0) && (nanos < 0)) { --f0; nanos += HiveParserIntervalUtils.NANOS_PER_SEC; } else if ((f0 < 0) && (nanos > 0)) { ++f0; nanos -= HiveParserIntervalUtils.NANOS_PER_SEC; } }
3.26
flink_MemoryLogger_getDirectMemoryStatsAsString_rdh
/** * Returns a String with the <strong>direct</strong> memory footprint. * * <p>These stats are not part of the other memory beans. * * @param bufferPoolMxBean * The direct buffer pool bean or <code>null</code> if none available. * @return A string with the count, total capacity, and used direct memory. */ public static String getDirectMemoryStatsAsString(BufferPoolMXBean bufferPoolMxBean) { if (bufferPoolMxBean == null) { return "Direct memory stats: unavailable"; } else { return String.format("Direct memory stats: Count: %d, Total Capacity: %d, Used Memory: %d", bufferPoolMxBean.getCount(), bufferPoolMxBean.getTotalCapacity(), bufferPoolMxBean.getMemoryUsed()); } }
3.26
flink_MemoryLogger_getMemoryPoolStatsAsString_rdh
/** * Gets the memory pool statistics from the JVM. * * @param poolBeans * The collection of memory pool beans. * @return A string denoting the names and sizes of the memory pools. */ public static String getMemoryPoolStatsAsString(List<MemoryPoolMXBean> poolBeans) { StringBuilder bld = new StringBuilder("Off-heap pool stats: "); int count = 0; for (MemoryPoolMXBean bean : poolBeans) { if (bean.getType() == MemoryType.NON_HEAP) { if (count > 0) { bld.append(", "); } count++; MemoryUsage usage = bean.getUsage(); long used = usage.getUsed() >> 20; long committed = usage.getCommitted() >> 20; long max = usage.getMax() >> 20; bld.append('[').append(bean.getName()).append(": "); bld.append(used).append('/').append(committed).append('/').append(max); bld.append(" MB (used/committed/max)]"); } } return bld.toString(); }
3.26
flink_MemoryLogger_getGarbageCollectorStatsAsString_rdh
/** * Gets the garbage collection statistics from the JVM. * * @param gcMXBeans * The collection of garbage collector beans. * @return A string denoting the number of times and total elapsed time in garbage collection. */ public static String getGarbageCollectorStatsAsString(List<GarbageCollectorMXBean> gcMXBeans) { StringBuilder bld = new StringBuilder("Garbage collector stats: "); for (GarbageCollectorMXBean bean : gcMXBeans) { bld.append('[').append(bean.getName()).append(", GC TIME (ms): ").append(bean.getCollectionTime()); bld.append(", GC COUNT: ").append(bean.getCollectionCount()).append(']'); bld.append(", "); } if (!gcMXBeans.isEmpty()) { bld.setLength(bld.length() - 2); } return bld.toString(); }
3.26
flink_MemoryLogger_getMemoryUsageStatsAsString_rdh
/** * Gets the memory footprint of the JVM in a string representation. * * @return A string describing how much heap memory and direct memory are allocated and used. */ public static String getMemoryUsageStatsAsString(MemoryMXBean memoryMXBean) { MemoryUsage heap = memoryMXBean.getHeapMemoryUsage(); MemoryUsage nonHeap = memoryMXBean.getNonHeapMemoryUsage(); long heapUsed = heap.getUsed() >> 20; long heapCommitted = heap.getCommitted() >> 20; long heapMax = heap.getMax() >> 20; long v7 = nonHeap.getUsed() >> 20;long nonHeapCommitted = nonHeap.getCommitted() >> 20;long nonHeapMax = nonHeap.getMax() >> 20; return String.format("Memory usage stats: [HEAP: %d/%d/%d MB, " + "NON HEAP: %d/%d/%d MB (used/committed/max)]", heapUsed, heapCommitted, heapMax, v7, nonHeapCommitted, nonHeapMax); }
3.26
flink_MemoryLogger_run_rdh
// ------------------------------------------------------------------------ @Override public void run() { try { while (running && ((monitored == null) || (!monitored.isDone()))) { logger.info(getMemoryUsageStatsAsString(memoryBean)); logger.info(getDirectMemoryStatsAsString(directBufferBean)); logger.info(getMemoryPoolStatsAsString(poolBeans)); logger.info(getGarbageCollectorStatsAsString(gcBeans)); try { Thread.sleep(interval);} catch (InterruptedException e) { if (running) { throw e; } } } } catch (Throwable t) { logger.error("Memory logger terminated with exception", t); } }
3.26
flink_OpFusionCodegenSpecGenerator_setup_rdh
/** * Initializes the operator spec generator needed information. This method must be called before * produce and consume related method. */ public void setup(Context context) { this.managedMemoryFraction = context.getManagedMemoryFraction(); this.opFusionCodegenSpec.setup(opFusionContext); }
3.26
flink_DistributedRandomSampler_sample_rdh
/** * Combine the first phase and second phase in sequence, implemented for test purpose only. * * @param input * Source data. * @return Sample result in sequence. */ @Override public Iterator<T> sample(Iterator<T> input) { return sampleInCoordinator(sampleInPartition(input)); }
3.26
flink_DistributedRandomSampler_sampleInCoordinator_rdh
/** * Sample algorithm for the second phase. This operation should be executed as the UDF of an all * reduce operation. * * @param input * The intermediate sample output generated in the first phase. * @return The sampled output. */ public Iterator<T> sampleInCoordinator(Iterator<IntermediateSampleData<T>> input) { if (f0 == 0) { return emptyIterable; } // This queue holds fixed number elements with the top K weight for the coordinator. PriorityQueue<IntermediateSampleData<T>> reservoir = new PriorityQueue<IntermediateSampleData<T>>(f0); int index = 0; IntermediateSampleData<T> smallest = null; while (input.hasNext()) { IntermediateSampleData<T> element = input.next(); if (index < f0) { // Fill the queue with first K elements from input. reservoir.add(element); smallest = reservoir.peek(); } else // If current element weight is larger than the smallest one in queue, remove the // element // with the smallest weight, and append current element into the queue. if (element.getWeight() > smallest.getWeight()) { reservoir.remove(); reservoir.add(element); smallest = reservoir.peek(); } index++; } final Iterator<IntermediateSampleData<T>> itr = reservoir.iterator(); return new Iterator<T>() { @Override public boolean hasNext() { return itr.hasNext(); } @Override public T m0() { return itr.next().getElement(); } @Override public void remove() { itr.remove(); } }; }
3.26
flink_AbstractPagedOutputView_seekOutput_rdh
/** * Sets the internal state to the given memory segment and the given position within the * segment. * * @param seg * The memory segment to write the next bytes to. * @param position * The position to start writing the next bytes to. */ protected void seekOutput(MemorySegment seg, int position) { this.currentSegment = seg; this.positionInSegment = position; }
3.26
flink_AbstractPagedOutputView_m0_rdh
// -------------------------------------------------------------------------------------------- // Data Output Specific methods // -------------------------------------------------------------------------------------------- @Override public void m0(int b) throws IOException { writeByte(b); }
3.26
flink_AbstractPagedOutputView_clear_rdh
/** * Clears the internal state. Any successive write calls will fail until either {@link #advance()} or {@link #seekOutput(MemorySegment, int)} is called. * * @see #advance() * @see #seekOutput(MemorySegment, int) */ protected void clear() { this.currentSegment = null; this.positionInSegment = this.headerLength;}
3.26
flink_AbstractPagedOutputView_advance_rdh
/** * Moves the output view to the next page. This method invokes internally the {@link #nextSegment(MemorySegment, int)} method to give the current memory segment to the concrete * subclass' implementation and obtain the next segment to write to. Writing will continue * inside the new segment after the header. * * @throws IOException * Thrown, if the current segment could not be processed or a new segment * could not be obtained. */ public void advance() throws IOException { this.currentSegment = nextSegment(this.currentSegment, this.positionInSegment); this.positionInSegment = this.headerLength; }
3.26
flink_AbstractPagedOutputView_getSegmentSize_rdh
/** * Gets the size of the segments used by this view. * * @return The memory segment size. */ public int getSegmentSize() {return this.segmentSize; }
3.26
flink_AbstractPagedOutputView_getCurrentPositionInSegment_rdh
/** * Gets the current write position (the position where the next bytes will be written) in the * current memory segment. * * @return The current write offset in the current memory segment. */ public int getCurrentPositionInSegment() { return this.positionInSegment; }
3.26
flink_AbstractPagedOutputView_getHeaderLength_rdh
/** * * @return header length. */ public int getHeaderLength() { return headerLength; }
3.26
flink_CompositeTypeSerializerSnapshot_internalWriteOuterSnapshot_rdh
// ------------------------------------------------------------------------------------------ // Utilities // ------------------------------------------------------------------------------------------ private void internalWriteOuterSnapshot(DataOutputView out) throws IOException { out.writeInt(MAGIC_NUMBER); out.writeInt(getCurrentOuterSnapshotVersion()); writeOuterSnapshot(out); }
3.26
flink_CompositeTypeSerializerSnapshot_writeOuterSnapshot_rdh
// ------------------------------------------------------------------------------------------ // Outer snapshot methods; need to be overridden if outer snapshot is not empty, // or in other words, the outer serializer has extra configuration beyond its nested // serializers. // ------------------------------------------------------------------------------------------ /** * Writes the outer snapshot, i.e. any information beyond the nested serializers of the outer * serializer. * * <p>The base implementation of this methods writes nothing, i.e. it assumes that the outer * serializer only has nested serializers and no extra information. Otherwise, if the outer * serializer contains some extra information that needs to be persisted as part of the * serializer snapshot, this must be overridden. Note that this method and the corresponding * methods {@link #readOuterSnapshot(int, DataInputView, ClassLoader)}, {@link #resolveOuterSchemaCompatibility(TypeSerializer)} needs to be implemented. * * @param out * the {@link DataOutputView} to write the outer snapshot to. */ protected void writeOuterSnapshot(DataOutputView out) throws IOException { }
3.26
flink_CompositeTypeSerializerSnapshot_readOuterSnapshot_rdh
/** * Reads the outer snapshot, i.e. any information beyond the nested serializers of the outer * serializer. * * <p>The base implementation of this methods reads nothing, i.e. it assumes that the outer * serializer only has nested serializers and no extra information. Otherwise, if the outer * serializer contains some extra information that has been persisted as part of the serializer * snapshot, this must be overridden. Note that this method and the corresponding methods {@link #writeOuterSnapshot(DataOutputView)}, {@link #resolveOuterSchemaCompatibility(TypeSerializer)} needs to be implemented. * * @param readOuterSnapshotVersion * the read version of the outer snapshot. * @param in * the {@link DataInputView} to read the outer snapshot from. * @param userCodeClassLoader * the user code class loader. */ protected void readOuterSnapshot(int readOuterSnapshotVersion, DataInputView in, ClassLoader userCodeClassLoader) throws IOException { } /** * Checks whether the outer snapshot is compatible with a given new serializer. * * <p>The base implementation of this method just returns {@code true}, i.e. it assumes that the * outer serializer only has nested serializers and no extra information, and therefore the * result of the check must always be true. Otherwise, if the outer serializer contains some * extra information that has been persisted as part of the serializer snapshot, this must be * overridden. Note that this method and the corresponding methods {@link #writeOuterSnapshot(DataOutputView)}, {@link #readOuterSnapshot(int, DataInputView, * ClassLoader)} needs to be implemented. * * @param newSerializer * the new serializer, which contains the new outer information to check * against. * @return a flag indicating whether or not the new serializer's outer information is compatible with the one written in this snapshot. * @deprecated this method is deprecated, and will be removed in the future. Please implement {@link #resolveOuterSchemaCompatibility(TypeSerializer)}
3.26
flink_CommonExecSink_getFieldInfoForLengthEnforcer_rdh
/** * Returns a List of {@link ConstraintEnforcer.FieldInfo}, each containing the info needed to * determine whether a string or binary value needs trimming and/or padding. */ private List<ConstraintEnforcer.FieldInfo> getFieldInfoForLengthEnforcer(RowType physicalType, LengthEnforcerType enforcerType) { LogicalTypeRoot staticType = null; LogicalTypeRoot variableType = null; int maxLength = 0; switch (enforcerType) { case CHAR :staticType = LogicalTypeRoot.CHAR; variableType = LogicalTypeRoot.VARCHAR; maxLength = CharType.MAX_LENGTH; break; case BINARY : staticType = LogicalTypeRoot.BINARY; variableType = LogicalTypeRoot.VARBINARY; maxLength = BinaryType.MAX_LENGTH;} final List<ConstraintEnforcer.FieldInfo> fieldsAndLengths = new ArrayList<>(); for (int i = 0; i < physicalType.getFieldCount(); i++) { LogicalType type = physicalType.getTypeAt(i); boolean isStatic = type.is(staticType); // Should trim and possibly pad if ((isStatic && (LogicalTypeChecks.getLength(type) < maxLength)) || (type.is(variableType) && (LogicalTypeChecks.getLength(type) < maxLength))) { fieldsAndLengths.add(new ConstraintEnforcer.FieldInfo(i, LogicalTypeChecks.getLength(type), isStatic)); } else if (isStatic) { // Should pad fieldsAndLengths.add(new ConstraintEnforcer.FieldInfo(i, null, isStatic)); } } return fieldsAndLengths; }
3.26
flink_CommonExecSink_applyConstraintValidations_rdh
/** * Apply an operator to filter or report error to process not-null values for not-null fields. */ private Transformation<RowData> applyConstraintValidations(Transformation<RowData> inputTransform, ExecNodeConfig config, RowType physicalRowType) { final ConstraintEnforcer.Builder validatorBuilder = ConstraintEnforcer.newBuilder(); final String[] fieldNames = physicalRowType.getFieldNames().toArray(new String[0]); // Build NOT NULL enforcer final int[] notNullFieldIndices = getNotNullFieldIndices(physicalRowType); if (notNullFieldIndices.length > 0) { final ExecutionConfigOptions.NotNullEnforcer notNullEnforcer = config.get(ExecutionConfigOptions.TABLE_EXEC_SINK_NOT_NULL_ENFORCER); final List<String> notNullFieldNames = Arrays.stream(notNullFieldIndices).mapToObj(idx -> fieldNames[idx]).collect(Collectors.toList()); validatorBuilder.addNotNullConstraint(notNullEnforcer, notNullFieldIndices, notNullFieldNames, fieldNames); } final ExecutionConfigOptions.TypeLengthEnforcer typeLengthEnforcer = config.get(ExecutionConfigOptions.TABLE_EXEC_SINK_TYPE_LENGTH_ENFORCER); // Build CHAR/VARCHAR length enforcer final List<ConstraintEnforcer.FieldInfo> charFieldInfo = getFieldInfoForLengthEnforcer(physicalRowType, LengthEnforcerType.CHAR); if (!charFieldInfo.isEmpty()) { final List<String> charFieldNames = charFieldInfo.stream().map(cfi -> fieldNames[cfi.fieldIdx()]).collect(Collectors.toList()); validatorBuilder.addCharLengthConstraint(typeLengthEnforcer, charFieldInfo, charFieldNames, fieldNames); } // Build BINARY/VARBINARY length enforcer final List<ConstraintEnforcer.FieldInfo> binaryFieldInfo = getFieldInfoForLengthEnforcer(physicalRowType, LengthEnforcerType.BINARY); if (!binaryFieldInfo.isEmpty()) { final List<String> binaryFieldNames = binaryFieldInfo.stream().map(cfi -> fieldNames[cfi.fieldIdx()]).collect(Collectors.toList()); validatorBuilder.addBinaryLengthConstraint(typeLengthEnforcer, binaryFieldInfo, binaryFieldNames, fieldNames); } ConstraintEnforcer constraintEnforcer = validatorBuilder.build(); if (constraintEnforcer != null) { return ExecNodeUtil.createOneInputTransformation(inputTransform, createTransformationMeta(CONSTRAINT_VALIDATOR_TRANSFORMATION, constraintEnforcer.getOperatorName(), "ConstraintEnforcer", config), constraintEnforcer, getInputTypeInfo(), inputTransform.getParallelism(), false); } else { // there are no not-null fields, just skip adding the enforcer operator return inputTransform; } }
3.26
flink_CommonExecSink_deriveSinkParallelism_rdh
/** * Returns the parallelism of sink operator, it assumes the sink runtime provider implements * {@link ParallelismProvider}. It returns parallelism defined in {@link ParallelismProvider} if * the parallelism is provided, otherwise it uses parallelism of input transformation. */ private int deriveSinkParallelism(Transformation<RowData> inputTransform, SinkRuntimeProvider runtimeProvider) { final int inputParallelism = inputTransform.getParallelism(); if (isParallelismConfigured(runtimeProvider)) { int v30 = ((ParallelismProvider) (runtimeProvider)).getParallelism().get(); if (v30 <= 0) { throw new TableException(String.format("Invalid configured parallelism %s for table '%s'.", v30, tableSinkSpec.getContextResolvedTable().getIdentifier().asSummaryString())); } return v30; } else { return inputParallelism; } }
3.26
flink_CommonExecSink_applyKeyBy_rdh
/** * Apply a primary key partition transformation to guarantee the strict ordering of changelog * messages. */ private Transformation<RowData> applyKeyBy(ExecNodeConfig config, ClassLoader classLoader, Transformation<RowData> inputTransform, int[] primaryKeys, int sinkParallelism, int inputParallelism, boolean needMaterialize) { final ExecutionConfigOptions.SinkKeyedShuffle sinkShuffleByPk = config.get(ExecutionConfigOptions.TABLE_EXEC_SINK_KEYED_SHUFFLE); boolean sinkKeyBy = false; switch (sinkShuffleByPk) { case NONE : break; case AUTO : // should cover both insert-only and changelog input sinkKeyBy = (sinkParallelism != inputParallelism) && (sinkParallelism != 1); break; case FORCE : // sink single parallelism has no problem (because none partitioner will cause worse // disorder) sinkKeyBy = sinkParallelism != 1;break; } if ((!sinkKeyBy) && (!needMaterialize)) { return inputTransform; } final RowDataKeySelector selector = KeySelectorUtil.getRowDataSelector(classLoader, primaryKeys, getInputTypeInfo()); final KeyGroupStreamPartitioner<RowData, RowData> partitioner = new KeyGroupStreamPartitioner<>(selector, KeyGroupRangeAssignment.DEFAULT_LOWER_BOUND_MAX_PARALLELISM); Transformation<RowData> partitionedTransform = new PartitionTransformation<>(inputTransform, partitioner); createTransformationMeta(PARTITIONER_TRANSFORMATION, "Partitioner", "Partitioner", config).fill(partitionedTransform); partitionedTransform.setParallelism(sinkParallelism, sinkParallelismConfigured); return partitionedTransform; }
3.26
flink_CommonExecSink_getTargetRowKind_rdh
/** * Get the target row-kind that the row data should change to, assuming the current row kind is * RowKind.INSERT. Return Optional.empty() if it doesn't need to change. Currently, it'll only * consider row-level delete/update. */ private Optional<RowKind> getTargetRowKind() { if (tableSinkSpec.getSinkAbilities() != null) { for (SinkAbilitySpec sinkAbilitySpec : tableSinkSpec.getSinkAbilities()) { if (sinkAbilitySpec instanceof RowLevelDeleteSpec) { RowLevelDeleteSpec deleteSpec = ((RowLevelDeleteSpec) (sinkAbilitySpec)); if (deleteSpec.getRowLevelDeleteMode() == RowLevelDeleteMode.DELETED_ROWS) {return Optional.of(RowKind.DELETE); }} else if (sinkAbilitySpec instanceof RowLevelUpdateSpec) { RowLevelUpdateSpec updateSpec = ((RowLevelUpdateSpec) (sinkAbilitySpec)); if (updateSpec.getRowLevelUpdateMode() == RowLevelUpdateMode.UPDATED_ROWS) { return Optional.of(RowKind.UPDATE_AFTER); } } } } return Optional.empty(); }
3.26
flink_TypeInfoLogicalTypeConverter_fromLogicalTypeToTypeInfo_rdh
/** * Use {@link BigDecimalTypeInfo} to retain precision and scale of decimal. */ public static TypeInformation fromLogicalTypeToTypeInfo(LogicalType type) { DataType dataType = fromLogicalTypeToDataType(type).nullable().bridgedTo(ClassLogicalTypeConverter.getDefaultExternalClassForType(type)); return TypeInfoDataTypeConverter.fromDataTypeToTypeInfo(dataType); }
3.26
flink_TypeInfoLogicalTypeConverter_fromTypeInfoToLogicalType_rdh
/** * It will lose some information. (Like {@link PojoTypeInfo} will converted to {@link RowType}) * It and {@link TypeInfoLogicalTypeConverter#fromLogicalTypeToTypeInfo} not allows * back-and-forth conversion. */ public static LogicalType fromTypeInfoToLogicalType(TypeInformation typeInfo) { DataType dataType = TypeConversions.fromLegacyInfoToDataType(typeInfo); return LogicalTypeDataTypeConverter.fromDataTypeToLogicalType(dataType); }
3.26
flink_ReusingBuildSecondReOpenableHashJoinIterator_reopenProbe_rdh
/** * Set new input for probe side * * @throws IOException */ public void reopenProbe(MutableObjectIterator<V1> probeInput) throws IOException { reopenHashTable.reopenProbe(probeInput); }
3.26
flink_AbstractRowTimeUnboundedPrecedingOver_processElement_rdh
/** * Puts an element from the input stream into state if it is not late. Registers a timer for the * next watermark. * * @param input * The input value. * @param ctx * A {@link Context} that allows querying the timestamp of the element and getting * TimerService for registering timers and querying the time. The context is only valid * during the invocation of this method, do not store it. * @param out * The collector for returning result values. * @throws Exception */ @Override public void processElement(RowData input, KeyedProcessFunction<K, RowData, RowData>.Context ctx, Collector<RowData> out) throws Exception { // register state-cleanup timer registerProcessingCleanupTimer(ctx, ctx.timerService().currentProcessingTime()); long timestamp = input.getLong(rowTimeIdx); long curWatermark = ctx.timerService().currentWatermark();if (timestamp > curWatermark) { // ensure every key just registers one timer // default watermark is Long.Min, avoid overflow we use zero when watermark < 0 long triggerTs = (curWatermark < 0) ? 0 : curWatermark + 1; ctx.timerService().registerEventTimeTimer(triggerTs); // put row into state List<RowData> rowList = inputState.get(timestamp); if (rowList == null) { rowList = new ArrayList<RowData>(); } rowList.add(input); inputState.put(timestamp, rowList); } else { // discard late record numLateRecordsDropped.inc(); } }
3.26
flink_AbstractRowTimeUnboundedPrecedingOver_insertToSortedList_rdh
/** * Inserts timestamps in order into a linked list. If timestamps arrive in order (as in case of * using the RocksDB state backend) this is just an append with O(1). */ private void insertToSortedList(Long recordTimestamp) { ListIterator<Long> listIterator = sortedTimestamps.listIterator(sortedTimestamps.size()); boolean isContinue = true; while (listIterator.hasPrevious() && isContinue) { Long timestamp = listIterator.previous(); if (recordTimestamp >= timestamp) {listIterator.next(); listIterator.add(recordTimestamp); isContinue = false; } } if (isContinue) { sortedTimestamps.addFirst(recordTimestamp); } }
3.26
flink_Tumble_over_rdh
/** * Creates a tumbling window. Tumbling windows are fixed-size, consecutive, non-overlapping * windows of a specified fixed length. For example, a tumbling window of 5 minutes size groups * elements in 5 minutes intervals. * * @param size * the size of the window as time or row-count interval. * @return a partially defined tumbling window */ public static TumbleWithSize over(Expression size) { return new TumbleWithSize(size); }
3.26
flink_StateBackend_useManagedMemory_rdh
/** * Whether the state backend uses Flink's managed memory. */ default boolean useManagedMemory() { return false; }
3.26
flink_StateBackend_getName_rdh
/** * Return the name of this backend, default is simple class name. {@link org.apache.flink.runtime.state.delegate.DelegatingStateBackend} may return the simple class * name of the delegated backend. */ default String getName() { return this.getClass().getSimpleName(); } /** * Creates a new {@link CheckpointableKeyedStateBackend}
3.26
flink_StateBackend_createKeyedStateBackend_rdh
/** * Creates a new {@link CheckpointableKeyedStateBackend} with the given managed memory fraction. * Backends that use managed memory are required to implement this interface. */ default <K> CheckpointableKeyedStateBackend<K> createKeyedStateBackend(Environment env, JobID jobID, String operatorIdentifier, TypeSerializer<K> keySerializer, int numberOfKeyGroups, KeyGroupRange keyGroupRange, TaskKvStateRegistry kvStateRegistry, TtlTimeProvider ttlTimeProvider, MetricGroup metricGroup, @Nonnull Collection<KeyedStateHandle> stateHandles, CloseableRegistry cancelStreamRegistry, double managedMemoryFraction) throws Exception { // ignore managed memory fraction by default return createKeyedStateBackend(env, jobID, operatorIdentifier, keySerializer, numberOfKeyGroups, keyGroupRange, kvStateRegistry, ttlTimeProvider, metricGroup, stateHandles, cancelStreamRegistry); }
3.26
flink_StateBackend_supportsNoClaimRestoreMode_rdh
/** * Tells if a state backend supports the {@link RestoreMode#NO_CLAIM} mode. * * <p>If a state backend supports {@code NO_CLAIM} mode, it should create an independent * snapshot when it receives {@link CheckpointType#FULL_CHECKPOINT} in {@link Snapshotable#snapshot(long, long, CheckpointStreamFactory, CheckpointOptions)}. * * @return If the state backend supports {@link RestoreMode#NO_CLAIM} mode. */ default boolean supportsNoClaimRestoreMode() { return false; }
3.26