name
stringlengths
12
178
code_snippet
stringlengths
8
36.5k
score
float64
3.26
3.68
flink_ResultPartitionFactory_createBufferPoolFactory_rdh
/** * The minimum pool size should be <code>numberOfSubpartitions + 1</code> for two * considerations: * * <p>1. StreamTask can only process input if there is at-least one available buffer on output * side, so it might cause stuck problem if the minimum pool size is exactly equal to the number * of subpartitions, because every subpartition might maintain a partial unfilled buffer. * * <p>2. Increases one more buffer for every output LocalBufferPool to avoid performance * regression if processing input is based on at-least one buffer available on output side. */ @VisibleForTesting SupplierWithException<BufferPool, IOException> createBufferPoolFactory(int numberOfSubpartitions, ResultPartitionType type) { return () -> { Pair<Integer, Integer> pair = NettyShuffleUtils.getMinMaxNetworkBuffersPerResultPartition(configuredNetworkBuffersPerChannel, floatingNetworkBuffersPerGate, sortShuffleMinParallelism, sortShuffleMinBuffers, numberOfSubpartitions, tieredStorage.isPresent(), tieredStorage.map(storage -> storage.getTieredStorageConfiguration().getTotalExclusiveBufferNum()).orElse(0), type); return bufferPoolFactory.createBufferPool(pair.getLeft(), pair.getRight(), numberOfSubpartitions, maxBuffersPerChannel, isOverdraftBufferNeeded(type) ? maxOverdraftBuffersPerGate : 0); }; }
3.26
flink_SchedulerBase_startScheduling_rdh
// ------------------------------------------------------------------------ // SchedulerNG // ------------------------------------------------------------------------ @Override public final void startScheduling() { mainThreadExecutor.assertRunningInMainThread(); registerJobMetrics(jobManagerJobMetricGroup, executionGraph, this::getNumberOfRestarts, deploymentStateTimeMetrics, executionGraph::registerJobStatusListener, executionGraph.getStatusTimestamp(JobStatus.INITIALIZING), jobStatusMetricsSettings); operatorCoordinatorHandler.startAllOperatorCoordinators(); startSchedulingInternal(); }
3.26
flink_SchedulerBase_getExecutionGraph_rdh
/** * ExecutionGraph is exposed to make it easier to rework tests to be based on the new scheduler. * ExecutionGraph is expected to be used only for state check. Yet at the moment, before all the * actions are factored out from ExecutionGraph and its sub-components, some actions may still * be performed directly on it. */ @VisibleForTesting public ExecutionGraph getExecutionGraph() { return executionGraph; }
3.26
flink_SchedulerBase_computeVertexParallelismStore_rdh
/** * Compute the {@link VertexParallelismStore} for all vertices of a given job graph, which will * set defaults and ensure that the returned store contains valid parallelisms. * * @param jobGraph * the job graph to retrieve vertices from * @return the computed parallelism store */ public static VertexParallelismStore computeVertexParallelismStore(JobGraph jobGraph) { return computeVertexParallelismStore(jobGraph.getVertices());}
3.26
flink_SchedulerBase_getJobId_rdh
// ------------------------------------------------------------------------ // access utils for testing // ------------------------------------------------------------------------ @VisibleForTesting JobID getJobId() { return f0.getJobID(); }
3.26
flink_SchedulerBase_getDefaultMaxParallelism_rdh
/** * Get a default value to use for a given vertex's max parallelism if none was specified. * * @param vertex * the vertex to compute a default max parallelism for * @return the computed max parallelism */ public static int getDefaultMaxParallelism(JobVertex vertex) { return KeyGroupRangeAssignment.computeDefaultMaxParallelism(normalizeParallelism(vertex.getParallelism())); }
3.26
flink_SchedulerBase_deliverOperatorEventToCoordinator_rdh
// Note: It may be worthwhile to move the OperatorCoordinators out // of the scheduler (have them owned by the JobMaster directly). // Then we could avoid routing these events through the scheduler and // doing this lazy initialization dance. However, this would require // that the Scheduler does not eagerly construct the CheckpointCoordinator // in the ExecutionGraph and does not eagerly restore the savepoint while // doing that. Because during savepoint restore, the OperatorCoordinators // (or at least their holders) already need to exist, to accept the restored // state. But some components they depend on (Scheduler and MainThreadExecutor) // are not fully usable and accessible at that point. // ------------------------------------------------------------------------ @Override public void deliverOperatorEventToCoordinator(final ExecutionAttemptID taskExecutionId, final OperatorID operatorId, final OperatorEvent evt) throws FlinkException { operatorCoordinatorHandler.deliverOperatorEventToCoordinator(taskExecutionId, operatorId, evt); }
3.26
flink_StreamElement_asWatermarkStatus_rdh
/** * Casts this element into a WatermarkStatus. * * @return This element as a WatermarkStatus. * @throws java.lang.ClassCastException * Thrown, if this element is actually not a Watermark * Status. */ public final WatermarkStatus asWatermarkStatus() {return ((WatermarkStatus) (this)); }
3.26
flink_StreamElement_asWatermark_rdh
/** * Casts this element into a Watermark. * * @return This element as a Watermark. * @throws java.lang.ClassCastException * Thrown, if this element is actually not a Watermark. */public final Watermark asWatermark() { return ((Watermark) (this)); }
3.26
flink_StreamElement_isLatencyMarker_rdh
/** * Checks whether this element is a latency marker. * * @return True, if this element is a latency marker, false otherwise. */ public final boolean isLatencyMarker() { return getClass() == LatencyMarker.class; }
3.26
flink_StreamElement_asRecord_rdh
/** * Casts this element into a StreamRecord. * * @return This element as a stream record. * @throws java.lang.ClassCastException * Thrown, if this element is actually not a stream record. */ @SuppressWarnings("unchecked") public final <E> StreamRecord<E> asRecord() { return ((StreamRecord<E>) (this)); }
3.26
flink_StreamElement_isWatermarkStatus_rdh
/** * Checks whether this element is a watermark status. * * @return True, if this element is a watermark status, false otherwise. */ public final boolean isWatermarkStatus() { return getClass() == WatermarkStatus.class; }
3.26
flink_StreamElement_asLatencyMarker_rdh
/** * Casts this element into a LatencyMarker. * * @return This element as a LatencyMarker. * @throws java.lang.ClassCastException * Thrown, if this element is actually not a LatencyMarker. */ public final LatencyMarker asLatencyMarker() { return ((LatencyMarker) (this)); }
3.26
flink_FileChannelManagerImpl_close_rdh
/** * Remove all the temp directories. */ @Override public void close() throws Exception { // Marks shutdown and exits if it has already shutdown. if (!isShutdown.compareAndSet(false, true)) { return; } IOUtils.closeAll(Arrays.stream(paths).filter(File::exists).map(FileChannelManagerImpl::getFileCloser).collect(Collectors.toList()));ShutdownHookUtil.removeShutdownHook(shutdownHook, String.format("%s-%s", getClass().getSimpleName(), f0), LOG); }
3.26
flink_ClusterClient_reportHeartbeat_rdh
/** * The client reports the heartbeat to the dispatcher for aliveness. * * @param jobId * The jobId for the client and the job. * @return */ default CompletableFuture<Void> reportHeartbeat(JobID jobId, long expiredTimestamp) { return FutureUtils.completedVoidFuture(); }
3.26
flink_ClusterClient_getAccumulators_rdh
/** * Requests and returns the accumulators for the given job identifier. Accumulators can be * requested while a is running or after it has finished. The default class loader is used to * deserialize the incoming accumulator results. * * @param jobID * The job identifier of a job. * @return A Map containing the accumulator's name and its value. */ default CompletableFuture<Map<String, Object>> getAccumulators(JobID jobID) { return getAccumulators(jobID, ClassLoader.getSystemClassLoader()); }
3.26
flink_ClusterClient_listCompletedClusterDatasetIds_rdh
/** * Return a set of ids of the completed cluster datasets. * * @return A set of ids of the completely cached intermediate dataset. */default CompletableFuture<Set<AbstractID>> listCompletedClusterDatasetIds() { return CompletableFuture.completedFuture(Collections.emptySet()); }
3.26
flink_NFA_extractCurrentMatches_rdh
/** * Extracts all the sequences of events from the start to the given computation state. An event * sequence is returned as a map which contains the events and the names of the states to which * the events were mapped. * * @param sharedBufferAccessor * The accessor to {@link SharedBuffer} from which to extract the * matches * @param computationState * The end computation state of the extracted event sequences * @return Collection of event sequences which end in the given computation state * @throws Exception * Thrown if the system cannot access the state. */ private Map<String, List<EventId>> extractCurrentMatches(final SharedBufferAccessor<T> sharedBufferAccessor, final ComputationState computationState) throws Exception { if (computationState.getPreviousBufferEntry() == null) { return new HashMap<>(); } List<Map<String, List<EventId>>> paths = sharedBufferAccessor.extractPatterns(computationState.getPreviousBufferEntry(), computationState.getVersion()); if (paths.isEmpty()) { return new HashMap<>(); } // for a given computation state, we cannot have more than one matching patterns. Preconditions.checkState(paths.size() == 1); return paths.get(0); }
3.26
flink_NFA_open_rdh
/** * Initialization method for the NFA. It is called before any element is passed and thus * suitable for one time setup work. * * @param cepRuntimeContext * runtime context of the enclosing operator * @param conf * The configuration containing the parameters attached to the contract. */ public void open(RuntimeContext cepRuntimeContext, Configuration conf) throws Exception { for (State<T> state : getStates()) { for (StateTransition<T> transition : state.getStateTransitions()) { IterativeCondition condition = transition.getCondition(); FunctionUtils.setFunctionRuntimeContext(condition, cepRuntimeContext); FunctionUtils.openFunction(condition, DefaultOpenContext.INSTANCE); } } }
3.26
flink_NFA_computeNextStates_rdh
/** * Computes the next computation states based on the given computation state, the current event, * its timestamp and the internal state machine. The algorithm is: * * <ol> * <li>Decide on valid transitions and number of branching paths. See {@link OutgoingEdges} * <li>Perform transitions: * <ol> * <li>IGNORE (links in {@link SharedBuffer} will still point to the previous event) * <ul> * <li>do not perform for Start State - special case * <li>if stays in the same state increase the current stage for future use with * number of outgoing edges * <li>if after PROCEED increase current stage and add new stage (as we change the * state) * <li>lock the entry in {@link SharedBuffer} as it is needed in the created * branch * </ul> * <li>TAKE (links in {@link SharedBuffer} will point to the current event) * <ul> * <li>add entry to the shared buffer with version of the current computation * state * <li>add stage and then increase with number of takes for the future computation * states * <li>peek to the next state if it has PROCEED path to a Final State, if true * create Final ComputationState to emit results * </ul> * </ol> * <li>Handle the Start State, as it always have to remain * <li>Release the corresponding entries in {@link SharedBuffer}. * </ol> * * @param sharedBufferAccessor * The accessor to shared buffer that we need to change * @param computationState * Current computation state * @param event * Current event which is processed * @param timerService * timer service which provides access to time related features * @return Collection of computation states which result from the current one * @throws Exception * Thrown if the system cannot access the state. */ private Collection<ComputationState> computeNextStates(final SharedBufferAccessor<T> sharedBufferAccessor, final ComputationState computationState, final EventWrapper event, final TimerService timerService) throws Exception { final ConditionContext context = new ConditionContext(sharedBufferAccessor, computationState, timerService, event.getTimestamp()); final OutgoingEdges<T> outgoingEdges = createDecisionGraph(context, computationState, event.getEvent()); // Create the computing version based on the previously computed edges // We need to defer the creation of computation states until we know how many edges start // at this computation state so that we can assign proper version final List<StateTransition<T>> v37 = outgoingEdges.getEdges(); int takeBranchesToVisit = Math.max(0, outgoingEdges.getTotalTakeBranches() - 1); int ignoreBranchesToVisit = outgoingEdges.getTotalIgnoreBranches(); int totalTakeToSkip = Math.max(0, outgoingEdges.getTotalTakeBranches() - 1); final List<ComputationState> resultingComputationStates = new ArrayList<>(); for (StateTransition<T> edge : v37) { switch (edge.getAction()) { case IGNORE : { if (!isStartState(computationState)) { final DeweyNumber version; if (isEquivalentState(edge.getTargetState(), getState(computationState))) { // Stay in the same state (it can be either looping one or // singleton) final int toIncrease = calculateIncreasingSelfState(outgoingEdges.getTotalIgnoreBranches(), outgoingEdges.getTotalTakeBranches()); version = computationState.getVersion().increase(toIncrease); } else { // IGNORE after PROCEED version = computationState.getVersion().increase(totalTakeToSkip + ignoreBranchesToVisit).addStage(); ignoreBranchesToVisit--; } addComputationState(sharedBufferAccessor, resultingComputationStates, edge.getTargetState(), computationState.getPreviousBufferEntry(), version, computationState.getStartTimestamp(), computationState.getPreviousTimestamp(), computationState.getStartEventID()); } } break; case TAKE : final State<T> nextState = edge.getTargetState(); final State<T> v46 = edge.getSourceState(); final NodeId previousEntry = computationState.getPreviousBufferEntry(); final DeweyNumber currentVersion = computationState.getVersion().increase(takeBranchesToVisit); final DeweyNumber nextVersion = new DeweyNumber(currentVersion).addStage(); takeBranchesToVisit--; final NodeId newEntry = sharedBufferAccessor.put(v46.getName(), event.getEventId(), previousEntry, currentVersion); final long startTimestamp; final EventId startEventId; if (isStartState(computationState)) {startTimestamp = event.getTimestamp(); startEventId = event.getEventId(); } else { startTimestamp = computationState.getStartTimestamp(); startEventId = computationState.getStartEventID(); } final long previousTimestamp = event.getTimestamp(); addComputationState(sharedBufferAccessor, resultingComputationStates, nextState, newEntry, nextVersion, startTimestamp, previousTimestamp, startEventId); // check if newly created state is optional (have a PROCEED path to Final state) final State<T> finalState = findFinalStateAfterProceed(context, nextState, event.getEvent()); if (finalState != null) { addComputationState(sharedBufferAccessor, resultingComputationStates, finalState, newEntry, nextVersion, startTimestamp, previousTimestamp, startEventId); } break; } }if (isStartState(computationState)) { int v55 = calculateIncreasingSelfState(outgoingEdges.getTotalIgnoreBranches(), outgoingEdges.getTotalTakeBranches()); DeweyNumber startVersion = computationState.getVersion().increase(v55); ComputationState startState = ComputationState.createStartState(computationState.getCurrentStateName(), startVersion);resultingComputationStates.add(startState); } if (computationState.getPreviousBufferEntry() != null) { // release the shared entry referenced by the current computation state. sharedBufferAccessor.releaseNode(computationState.getPreviousBufferEntry(), computationState.getVersion()); } return resultingComputationStates; }
3.26
flink_NFA_close_rdh
/** * Tear-down method for the NFA. */ public void close() throws Exception { for (State<T> v10 : getStates()) { for (StateTransition<T> transition : v10.getStateTransitions()) { IterativeCondition condition = transition.getCondition(); FunctionUtils.closeFunction(condition); } } }
3.26
flink_NFA_advanceTime_rdh
/** * Prunes states assuming there will be no events with timestamp <b>lower</b> than the given * one. It clears the sharedBuffer and also emits all timed out partial matches. * * @param sharedBufferAccessor * the accessor to SharedBuffer object that we need to work upon * while processing * @param nfaState * The NFAState object that we need to affect while processing * @param timestamp * timestamp that indicates that there will be no more events with lower * timestamp * @return all pending matches and timed outed partial matches * @throws Exception * Thrown if the system cannot access the state. */ public Tuple2<Collection<Map<String, List<T>>>, Collection<Tuple2<Map<String, List<T>>, Long>>> advanceTime(final SharedBufferAccessor<T> sharedBufferAccessor, final NFAState nfaState, final long timestamp, final AfterMatchSkipStrategy afterMatchSkipStrategy) throws Exception { final List<Map<String, List<T>>> result = new ArrayList<>(); final Collection<Tuple2<Map<String, List<T>>, Long>> timeoutResult = new ArrayList<>(); final PriorityQueue<ComputationState> newPartialMatches = new PriorityQueue<>(NFAState.COMPUTATION_STATE_COMPARATOR); final PriorityQueue<ComputationState> potentialMatches = new PriorityQueue<>(NFAState.COMPUTATION_STATE_COMPARATOR); for (ComputationState computationState : nfaState.getPartialMatches()) { String currentStateName = computationState.getCurrentStateName(); boolean isTimeoutForPreviousEvent = windowTimes.containsKey(currentStateName) && isStateTimedOut(computationState, timestamp, computationState.getPreviousTimestamp(), windowTimes.get(currentStateName)); boolean isTimeoutForFirstEvent = isStateTimedOut(computationState, timestamp, computationState.getStartTimestamp(), windowTime); if (isTimeoutForPreviousEvent || isTimeoutForFirstEvent) { nfaState.setStateChanged(); if (getState(computationState).isPending()) { // save pending states for after-match pruning, where those states will be // released potentialMatches.add(computationState); continue; } if (handleTimeout) { // extract the timed out event pattern Map<String, List<T>> timedOutPattern = sharedBufferAccessor.materializeMatch(extractCurrentMatches(sharedBufferAccessor, computationState));timeoutResult.add(Tuple2.of(timedOutPattern, isTimeoutForPreviousEvent ? computationState.getPreviousTimestamp() + windowTimes.get(computationState.getCurrentStateName()) : computationState.getStartTimestamp() + windowTime)); } // release timeout states sharedBufferAccessor.releaseNode(computationState.getPreviousBufferEntry(), computationState.getVersion()); } else { newPartialMatches.add(computationState); } } // If a timeout partial match "frees" some completed matches // Or if completed not-followed-by matches need pruning processMatchesAccordingToSkipStrategy(sharedBufferAccessor, nfaState, afterMatchSkipStrategy, potentialMatches, newPartialMatches, result); nfaState.setNewPartialMatches(newPartialMatches); sharedBufferAccessor.advanceTime(timestamp); return Tuple2.of(result, timeoutResult); }
3.26
flink_JoinOperationFactory_create_rdh
/** * Creates a valid {@link JoinQueryOperation} operation. * * <p>It performs validations such as: * * <ul> * <li>condition returns boolean * <li>the condition is either always true or contains equi join * <li>left and right side of the join do not contain ambiguous column names * <li>that correlated join is an INNER join * </ul> * * @param left * left side of the relational operation * @param right * right side of the relational operation * @param joinType * what sort of join to create * @param condition * join condition to apply * @param correlated * if the join should be a correlated join * @return valid join operation */ QueryOperation create(QueryOperation left, QueryOperation right, JoinType joinType, ResolvedExpression condition, boolean correlated) { verifyConditionType(condition); validateNamesAmbiguity(left, right); validateCondition(right, joinType, condition, correlated); return new JoinQueryOperation(left, right, joinType, condition, correlated); }
3.26
flink_AnotherDummyFSFileSystem_getUri_rdh
// ------------------------------------------------------------------------ @Override public URI getUri() { return FS_URI; }
3.26
flink_RocksDBHandle_restoreInstanceDirectoryFromPath_rdh
/** * This recreates the new working directory of the recovered RocksDB instance and links/copies * the contents from a local state. */ private void restoreInstanceDirectoryFromPath(Path source) throws IOException { final Path instanceRocksDBDirectory = Paths.get(f0); final Path[] files = FileUtils.listDirectory(source); if (!new File(f0).mkdirs()) { String errMsg = "Could not create RocksDB data directory: " + f0; logger.error(errMsg); throw new IOException(errMsg); } for (Path file : files) { final String v7 = file.getFileName().toString(); final Path targetFile = instanceRocksDBDirectory.resolve(v7); if (v7.endsWith(SST_FILE_SUFFIX)) { try { // hardlink'ing the immutable sst-files. Files.createLink(targetFile, file); continue; } catch (IOException ioe) {final String logMessage = String.format(("Could not hard link sst file %s. Trying to copy it over. This might " + "increase the recovery time. In order to avoid this, configure ") + "RocksDB's working directory and the local state directory to be on the same volume.", v7); if (logger.isDebugEnabled()) { logger.debug(logMessage, ioe); } else { logger.info(logMessage); } } } // true copy for all other files and files that could not be hard linked. Files.copy(file, targetFile, StandardCopyOption.REPLACE_EXISTING); } }
3.26
flink_BridgingSqlFunction_of_rdh
/** * Creates an instance of a scalar or table built-in function during translation. */ public static BridgingSqlFunction of(RelOptCluster cluster, BuiltInFunctionDefinition functionDefinition) { return m0(cluster, ContextResolvedFunction.permanent(FunctionIdentifier.of(functionDefinition.getName()), functionDefinition)); }
3.26
flink_BridgingSqlFunction_getRowTypeInference_rdh
/** * The conversion to a row type is handled on the caller side. This allows us to perform it * SQL/Table API-specific. This is in particular important to set the aliases of fields * correctly (see {@link FlinkRelBuilder#pushFunctionScan(RelBuilder, SqlOperator, int, * Iterable, List)}). */@Override public SqlReturnTypeInference getRowTypeInference() { return getReturnTypeInference(); }
3.26
flink_FileStateHandle_discardState_rdh
/** * Discard the state by deleting the file that stores the state. If the parent directory of the * state is empty after deleting the state file, it is also deleted. * * @throws Exception * Thrown, if the file deletion (not the directory deletion) fails. */ @Override public void discardState() throws Exception { final FileSystem fs = getFileSystem(); IOException actualException = null; boolean success = true; try { success = fs.delete(filePath, false); } catch (IOException e) { actualException = e;} if ((!success) || (actualException != null)) { if (fs.exists(filePath)) { throw Optional.ofNullable(actualException).orElse(new IOException(("Unknown error caused the file '" + filePath) + "' to not be deleted.")); } } }
3.26
flink_FileStateHandle_equals_rdh
// ------------------------------------------------------------------------ @Override public boolean equals(Object o) { if (this == o) { return true; } if (!(o instanceof FileStateHandle)) { return false; }FileStateHandle that = ((FileStateHandle) (o)); return filePath.equals(that.filePath); }
3.26
flink_FileStateHandle_getFilePath_rdh
/** * Gets the path where this handle's state is stored. * * @return The path where this handle's state is stored. */ public Path getFilePath() {return filePath; }
3.26
flink_FileStateHandle_getStateSize_rdh
/** * Returns the file size in bytes. * * @return The file size in bytes. */ @Override public long getStateSize() { return stateSize; }
3.26
flink_FileStateHandle_getFileSystem_rdh
/** * Gets the file system that stores the file state. * * @return The file system that stores the file state. * @throws IOException * Thrown if the file system cannot be accessed. */ private FileSystem getFileSystem() throws IOException { return FileSystem.get(filePath.toUri()); }
3.26
flink_ThreadInfoRequestCoordinator_triggerThreadInfoRequest_rdh
/** * Triggers collection of thread info stats of a job vertex by combining thread info responses * from given subtasks. A thread info response of a subtask in turn consists of {@code numSamples}, collected with {@code delayBetweenSamples} milliseconds delay between them. * * @param executionsWithGateways * Execution attempts together with TaskExecutors running them. * @param numSamples * Number of thread info samples to collect from each subtask. * @param delayBetweenSamples * Delay between consecutive samples (ms). * @param maxStackTraceDepth * Maximum depth of the stack traces collected within thread info * samples. * @return A future of the completed thread info stats. */ public CompletableFuture<VertexThreadInfoStats> triggerThreadInfoRequest(Map<ImmutableSet<ExecutionAttemptID>, CompletableFuture<TaskExecutorThreadInfoGateway>> executionsWithGateways, int numSamples, Duration delayBetweenSamples, int maxStackTraceDepth) { checkNotNull(executionsWithGateways, "Tasks to sample"); checkArgument(executionsWithGateways.size() > 0, "No tasks to sample"); checkArgument(numSamples >= 1, "No number of samples"); checkArgument(maxStackTraceDepth >= 0, "Negative maximum stack trace depth"); // Execution IDs of running tasks grouped by the task manager Collection<ImmutableSet<ExecutionAttemptID>> runningSubtasksIds = executionsWithGateways.keySet(); synchronized(lock) { if (isShutDown) { return FutureUtils.completedExceptionally(new IllegalStateException("Shut down")); } final int requestId = requestIdCounter++;log.debug("Triggering thread info request {}", requestId); final PendingThreadInfoRequest pending = new PendingThreadInfoRequest(requestId, runningSubtasksIds); // requestTimeout is treated as the time on top of the expected sampling duration. // Discard the request if it takes too long. We don't send cancel // messages to the task managers, but only wait for the responses // and then ignore them. long expectedDuration = numSamples * delayBetweenSamples.toMillis(); Time timeout = Time.milliseconds(expectedDuration + requestTimeout.toMillis()); // Add the pending request before scheduling the discard task to // prevent races with removing it again. pendingRequests.put(requestId, pending); ThreadInfoSamplesRequest requestParams = new ThreadInfoSamplesRequest(requestId, numSamples, delayBetweenSamples, maxStackTraceDepth); requestThreadInfo(executionsWithGateways, requestParams, timeout); return pending.getStatsFuture(); } }
3.26
flink_ThreadInfoRequestCoordinator_requestThreadInfo_rdh
/** * Requests thread infos from given subtasks. The response would be ignored if it does not * return within timeout. */ private void requestThreadInfo(Map<ImmutableSet<ExecutionAttemptID>, CompletableFuture<TaskExecutorThreadInfoGateway>> executionWithGateways, ThreadInfoSamplesRequest requestParams, Time timeout) { // Trigger samples collection from all subtasks for (Map.Entry<ImmutableSet<ExecutionAttemptID>, CompletableFuture<TaskExecutorThreadInfoGateway>> executionWithGateway : executionWithGateways.entrySet()) { CompletableFuture<TaskExecutorThreadInfoGateway> executorGatewayFuture = executionWithGateway.getValue(); CompletableFuture<TaskThreadInfoResponse> threadInfo = executorGatewayFuture.thenCompose(executorGateway -> executorGateway.requestThreadInfoSamples(executionWithGateway.getKey(), requestParams, timeout)); threadInfo.whenCompleteAsync((TaskThreadInfoResponse threadInfoSamplesResponse,Throwable throwable) -> { if (threadInfoSamplesResponse != null) { handleSuccessfulResponse(requestParams.getRequestId(), executionWithGateway.getKey(), threadInfoSamplesResponse.getSamples()); } else { handleFailedResponse(requestParams.getRequestId(), throwable); } }, executor); } }
3.26
flink_SortPartitionOperatorBase_executeOnCollections_rdh
// -------------------------------------------------------------------------------------------- @Override protected List<IN> executeOnCollections(List<IN> inputData, RuntimeContext runtimeContext, ExecutionConfig executionConfig) { TypeInformation<IN> inputType = getInput().getOperatorInfo().getOutputType(); int[] sortColumns = this.partitionOrdering.getFieldPositions(); boolean[] sortOrderings = this.partitionOrdering.getFieldSortDirections(); final TypeComparator<IN> sortComparator; if (inputType instanceof CompositeType) { sortComparator = ((CompositeType<IN>) (inputType)).createComparator(sortColumns, sortOrderings, 0, executionConfig); } else if (inputType instanceof AtomicType) {sortComparator = ((AtomicType) (inputType)).createComparator(sortOrderings[0], executionConfig); } else { throw new UnsupportedOperationException(("Partition sorting does not support type " + inputType) + " yet."); } Collections.sort(inputData, new Comparator<IN>() {@Override public int compare(IN o1, IN o2) { return sortComparator.compare(o1, o2); } }); return inputData; }
3.26
flink_BroadcastPartitioner_selectChannel_rdh
/** * Note: Broadcast mode could be handled directly for all the output channels in record writer, * so it is no need to select channels via this method. */ @Override public int selectChannel(SerializationDelegate<StreamRecord<T>> record) { throw new UnsupportedOperationException("Broadcast partitioner does not support select channels."); }
3.26
flink_TaskExecutorMemoryConfiguration_getTaskHeap_rdh
/** * Returns the configured heap size used by the tasks. */ public Long getTaskHeap() { return taskHeap; }
3.26
flink_TaskExecutorMemoryConfiguration_getFrameworkHeap_rdh
/** * Returns the configured heap size used by the framework. */ public Long getFrameworkHeap() { return frameworkHeap; }
3.26
flink_TaskExecutorMemoryConfiguration_getFrameworkOffHeap_rdh
/** * Returns the configured off-heap size used by the framework. */ public Long getFrameworkOffHeap() { return frameworkOffHeap; }
3.26
flink_TaskExecutorMemoryConfiguration_getNetworkMemory_rdh
/** * Returns the configured maximum network memory. */ public Long getNetworkMemory() { return networkMemory; }
3.26
flink_TaskExecutorMemoryConfiguration_m0_rdh
/** * Factory method for initializing a TaskExecutorMemoryConfiguration based on the passed * Configuration. * * @param config * The Configuration used for initializing the TaskExecutorMemoryConfiguration. * @return The newly instantiated TaskExecutorMemoryConfiguration. */ public static TaskExecutorMemoryConfiguration m0(Configuration config) { return new TaskExecutorMemoryConfiguration(getConfigurationValue(config, FRAMEWORK_HEAP_MEMORY), getConfigurationValue(config, TASK_HEAP_MEMORY), getConfigurationValue(config, FRAMEWORK_OFF_HEAP_MEMORY), getConfigurationValue(config, TASK_OFF_HEAP_MEMORY), getConfigurationValue(config, NETWORK_MEMORY_MAX), getConfigurationValue(config, MANAGED_MEMORY_SIZE), getConfigurationValue(config, JVM_METASPACE), getConfigurationValue(config, JVM_OVERHEAD_MAX), calculateTotalFlinkMemoryFromComponents(config), calculateTotalProcessMemoryFromComponents(config)); }
3.26
flink_TaskExecutorMemoryConfiguration_getJvmMetaspace_rdh
/** * Returns the maximum Metaspace size allowed for the task manager. */ public Long getJvmMetaspace() { return jvmMetaspace; }
3.26
flink_TaskExecutorMemoryConfiguration_getTaskOffHeap_rdh
/** * Returns the configured off-heap size used by the tasks. */ public Long getTaskOffHeap() { return taskOffHeap; }
3.26
flink_TaskExecutorMemoryConfiguration_getManagedMemoryTotal_rdh
/** * Returns the total amount of memory reserved for by the MemoryManager. */ public Long getManagedMemoryTotal() { return managedMemoryTotal; }
3.26
flink_SubQueryInputTypeStrategy_getArgumentCount_rdh
/** * {@link InputTypeStrategy} for {@link BuiltInFunctionDefinitions#IN}. */ @Internalpublic class SubQueryInputTypeStrategy implements InputTypeStrategy { @Override public ArgumentCount getArgumentCount() {return ConstantArgumentCount.from(2); }
3.26
flink_SourceCoordinatorSerdeUtils_readAndVerifyCoordinatorSerdeVersion_rdh
/** * Read and verify the serde version. */ static int readAndVerifyCoordinatorSerdeVersion(DataInputStream in) throws IOException { int version = in.readInt(); if (version > CURRENT_VERSION) { throw new IOException("Unsupported source coordinator serde version " + version); } return version; }
3.26
flink_SourceCoordinatorSerdeUtils_writeCoordinatorSerdeVersion_rdh
/** * Write the current serde version. */ static void writeCoordinatorSerdeVersion(DataOutputStream out) throws IOException {out.writeInt(CURRENT_VERSION); }
3.26
flink_DataSinkTask_getLogString_rdh
// ------------------------------------------------------------------------ // Utilities // ------------------------------------------------------------------------ /** * Utility function that composes a string for logging purposes. The string includes the given * message and the index of the task in its task group together with the number of tasks in the * task group. * * @param message * The main message for the log. * @return The string ready for logging. */ private String getLogString(String message) { return BatchTask.constructLogString(message, this.getEnvironment().getTaskInfo().getTaskName(), this); }
3.26
flink_DataSinkTask_initOutputFormat_rdh
/** * Initializes the OutputFormat implementation and configuration. * * @throws RuntimeException * Throws if instance of OutputFormat implementation can not be * obtained. */ private void initOutputFormat() { ClassLoader userCodeClassLoader = getUserCodeClassLoader(); // obtain task configuration (including stub parameters) Configuration taskConf = getTaskConfiguration(); this.config = new TaskConfig(taskConf); final Pair<OperatorID, OutputFormat<IT>> operatorIDAndOutputFormat; InputOutputFormatContainer formatContainer = new InputOutputFormatContainer(config, userCodeClassLoader); try {operatorIDAndOutputFormat = formatContainer.getUniqueOutputFormat(); this.format = operatorIDAndOutputFormat.getValue(); // check if the class is a subclass, if the check is required if (!OutputFormat.class.isAssignableFrom(this.format.getClass())) { throw new RuntimeException(((("The class '" + this.format.getClass().getName()) + "' is not a subclass of '") + OutputFormat.class.getName()) + "' as is required."); } } catch (ClassCastException ccex) { throw new RuntimeException("The stub class is not a proper subclass of " + OutputFormat.class.getName(), ccex); } Thread thread = Thread.currentThread(); ClassLoader original = thread.getContextClassLoader(); // configure the stub. catch exceptions here extra, to report them as originating from the // user code try { thread.setContextClassLoader(userCodeClassLoader);this.format.configure(formatContainer.getParameters(operatorIDAndOutputFormat.getKey())); } catch (Throwable t) { throw new RuntimeException("The user defined 'configure()' method in the Output Format caused an error: " + t.getMessage(), t); } finally { thread.setContextClassLoader(original); } }
3.26
flink_DataSinkTask_initInputReaders_rdh
/** * Initializes the input readers of the DataSinkTask. * * @throws RuntimeException * Thrown in case of invalid task input configuration. */ @SuppressWarnings("unchecked") private void initInputReaders() throws Exception { int numGates = 0; // ---------------- create the input readers --------------------- // in case where a logical input unions multiple physical inputs, create a union reader final int groupSize = this.config.getGroupSize(0); numGates += groupSize; if (groupSize == 1) { // non-union case inputReader = new MutableRecordReader<DeserializationDelegate<IT>>(getEnvironment().getInputGate(0), getEnvironment().getTaskManagerInfo().getTmpDirectories()); } else if (groupSize > 1) { // union case inputReader = new MutableRecordReader<IOReadableWritable>(new UnionInputGate(getEnvironment().getAllInputGates()), getEnvironment().getTaskManagerInfo().getTmpDirectories()); } else { throw new Exception("Illegal input group size in task configuration: " + groupSize); } this.inputTypeSerializerFactory = this.config.getInputSerializer(0, getUserCodeClassLoader()); @SuppressWarnings({ "rawtypes" }) final MutableObjectIterator<?> iter = new ReaderIterator(inputReader, this.inputTypeSerializerFactory.getSerializer()); this.reader = ((MutableObjectIterator<IT>) (iter)); // final sanity check if (numGates != this.config.getNumInputs()) { throw new Exception("Illegal configuration: Number of input gates and group sizes are not consistent."); } }
3.26
flink_TransientBlobCache_m0_rdh
/** * Returns the blob expiry times - for testing purposes only! * * @return blob expiry times (internal state!) */ @VisibleForTesting ConcurrentMap<Tuple2<JobID, TransientBlobKey>, Long> m0() { return blobExpiryTimes; }
3.26
flink_TransientBlobCache_getStorageLocation_rdh
/** * Returns a file handle to the file associated with the given blob key on the blob server. * * @param jobId * ID of the job this blob belongs to (or <tt>null</tt> if job-unrelated) * @param key * identifying the file * @return file handle to the file * @throws IOException * if creating the directory fails */ @VisibleForTesting public File getStorageLocation(@Nullable JobID jobId, BlobKey key) throws IOException { return BlobUtils.getStorageLocation(storageDir.deref(), jobId, key); }
3.26
flink_DataOutputEncoder_writeFixed_rdh
// -------------------------------------------------------------------------------------------- // bytes // -------------------------------------------------------------------------------------------- @Override public void writeFixed(byte[] bytes, int start, int len) throws IOException { out.write(bytes, start, len); }
3.26
flink_DataOutputEncoder_writeString_rdh
// -------------------------------------------------------------------------------------------- // strings // -------------------------------------------------------------------------------------------- @Override public void writeString(String str) throws IOException { byte[] bytes = Utf8.getBytesFor(str); writeBytes(bytes, 0, bytes.length); }
3.26
flink_DataOutputEncoder_writeNull_rdh
// -------------------------------------------------------------------------------------------- // primitives // -------------------------------------------------------------------------------------------- @Override public void writeNull() { }
3.26
flink_DataOutputEncoder_writeVarLongCount_rdh
// -------------------------------------------------------------------------------------------- // utils // -------------------------------------------------------------------------------------------- public static void writeVarLongCount(DataOutput out, long val) throws IOException { if (val < 0) { throw new IOException("Illegal count (must be non-negative): " + val); } while ((val & (~0x7fL)) != 0) { out.write(((int) (val)) | 0x80); val >>>= 7; } out.write(((int) (val))); }
3.26
flink_DataOutputEncoder_writeIndex_rdh
// -------------------------------------------------------------------------------------------- // union // -------------------------------------------------------------------------------------------- @Override public void writeIndex(int unionIndex) throws IOException { out.writeInt(unionIndex); }
3.26
flink_DataOutputEncoder_writeArrayStart_rdh
// -------------------------------------------------------------------------------------------- // collection types // -------------------------------------------------------------------------------------------- @Override public void writeArrayStart() { }
3.26
flink_AvroRowSerializationSchema_convertRowToAvroRecord_rdh
// -------------------------------------------------------------------------------------------- private GenericRecord convertRowToAvroRecord(Schema schema, Row row) { final List<Schema.Field> fields = schema.getFields(); final int length = fields.size(); final GenericRecord record = new GenericData.Record(schema); for (int i = 0; i < length; i++) { final Schema.Field field = fields.get(i); record.put(i, convertFlinkType(field.schema(), row.getField(i))); } return record; }
3.26
flink_KeyedStateTransformation_window_rdh
/** * Windows this transformation into a {@code WindowedOperatorTransformation}, which bootstraps * state that can be restored by a {@code WindowOperator}. Elements are put into windows by a * {@link WindowAssigner}. The grouping of elements is done both by key and by window. * * <p>A {@link org.apache.flink.streaming.api.windowing.triggers.Trigger} can be defined to * specify when windows are evaluated. However, {@code WindowAssigners} have a default {@code Trigger} that is used if a {@code Trigger} is not specified. * * @param assigner * The {@code WindowAssigner} that assigns elements to windows. */ public <W extends Window> WindowedStateTransformation<T, K, W> window(WindowAssigner<? super T, W> assigner) { return new WindowedStateTransformation<>(stream, operatorMaxParallelism, keySelector, keyType, assigner); }
3.26
flink_KeyedStateTransformation_transform_rdh
/** * Method for passing user defined operators along with the type information that will transform * the OperatorTransformation. * * <p><b>IMPORTANT:</b> Any output from this operator will be discarded. * * @param factory * A factory returning transformation logic type of the return stream * @return An {@link StateBootstrapTransformation} that can be added to a {@link Savepoint}. */ public StateBootstrapTransformation<T> transform(SavepointWriterOperatorFactory factory) { return new StateBootstrapTransformation<>(stream, operatorMaxParallelism, factory, keySelector, keyType); }
3.26
flink_StreamProjection_projectTuple17_rdh
/** * Projects a {@link Tuple} {@link DataStream} to the previously selected fields. * * @return The projected DataStream. * @see Tuple * @see DataStream */ public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16> SingleOutputStreamOperator<Tuple17<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16>> projectTuple17() { TypeInformation<?>[] fTypes = m1(fieldIndexes, dataStream.getType()); TupleTypeInfo<Tuple17<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16>> tType = new TupleTypeInfo<Tuple17<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16>>(fTypes); return dataStream.transform("Projection", tType, new StreamProject<IN, Tuple17<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16>>(fieldIndexes, tType.createSerializer(dataStream.getExecutionConfig()))); }
3.26
flink_StreamProjection_projectTuple4_rdh
/** * Projects a {@link Tuple} {@link DataStream} to the previously selected fields. * * @return The projected DataStream. * @see Tuple * @see DataStream */public <T0, T1, T2, T3> SingleOutputStreamOperator<Tuple4<T0, T1, T2, T3>> projectTuple4() { TypeInformation<?>[] fTypes = m1(fieldIndexes, dataStream.getType()); TupleTypeInfo<Tuple4<T0, T1, T2, T3>> tType = new TupleTypeInfo<Tuple4<T0, T1, T2, T3>>(fTypes); return dataStream.transform("Projection", tType, new StreamProject<IN, Tuple4<T0, T1, T2, T3>>(fieldIndexes, tType.createSerializer(dataStream.getExecutionConfig()))); }
3.26
flink_StreamProjection_projectTuple13_rdh
/** * Projects a {@link Tuple} {@link DataStream} to the previously selected fields. * * @return The projected DataStream. * @see Tuple * @see DataStream */ public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12> SingleOutputStreamOperator<Tuple13<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12>> projectTuple13() { TypeInformation<?>[] fTypes = m1(fieldIndexes, dataStream.getType()); TupleTypeInfo<Tuple13<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12>> tType = new TupleTypeInfo<Tuple13<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12>>(fTypes); return dataStream.transform("Projection", tType, new StreamProject<IN, Tuple13<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12>>(fieldIndexes, tType.createSerializer(dataStream.getExecutionConfig()))); }
3.26
flink_StreamProjection_projectTuple22_rdh
/** * Projects a {@link Tuple} {@link DataStream} to the previously selected fields. * * @return The projected DataStream. * @see Tuple * @see DataStream */ public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21> SingleOutputStreamOperator<Tuple22<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21>> projectTuple22() { TypeInformation<?>[] fTypes = m1(fieldIndexes, dataStream.getType()); TupleTypeInfo<Tuple22<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21>> tType = new TupleTypeInfo<Tuple22<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21>>(fTypes); return dataStream.transform("Projection", tType, new StreamProject<IN, Tuple22<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21>>(fieldIndexes, tType.createSerializer(dataStream.getExecutionConfig()))); }
3.26
flink_StreamProjection_projectTuple8_rdh
/** * Projects a {@link Tuple} {@link DataStream} to the previously selected fields. * * @return The projected DataStream. * @see Tuple * @see DataStream */ public <T0, T1, T2, T3, T4, T5, T6, T7> SingleOutputStreamOperator<Tuple8<T0, T1, T2, T3, T4, T5, T6, T7>> projectTuple8() { TypeInformation<?>[] fTypes = m1(fieldIndexes, dataStream.getType()); TupleTypeInfo<Tuple8<T0, T1, T2, T3, T4, T5, T6, T7>> tType = new TupleTypeInfo<Tuple8<T0, T1, T2, T3, T4, T5, T6, T7>>(fTypes); return dataStream.transform("Projection", tType, new StreamProject<IN, Tuple8<T0, T1, T2, T3, T4, T5, T6, T7>>(fieldIndexes, tType.createSerializer(dataStream.getExecutionConfig()))); }
3.26
flink_StreamProjection_projectTupleX_rdh
/** * Chooses a projectTupleX according to the length of {@link org.apache.flink.streaming.api.datastream.StreamProjection#fieldIndexes}. * * @return The projected DataStream. * @see org.apache.flink.api.java.operators.ProjectOperator.Projection */ @SuppressWarnings("unchecked") public <OUT extends Tuple> SingleOutputStreamOperator<OUT> projectTupleX() { SingleOutputStreamOperator<OUT> projOperator = null; switch (fieldIndexes.length) { case 1 : projOperator = ((SingleOutputStreamOperator<OUT>) (m0())); break; case 2 : projOperator = ((SingleOutputStreamOperator<OUT>) (projectTuple2())); break; case 3 : projOperator = ((SingleOutputStreamOperator<OUT>) (projectTuple3())); break; case 4 : projOperator = ((SingleOutputStreamOperator<OUT>) (projectTuple4())); break; case 5 : projOperator = ((SingleOutputStreamOperator<OUT>) (projectTuple5())); break; case 6 : projOperator = ((SingleOutputStreamOperator<OUT>) (projectTuple6())); break; case 7 : projOperator = ((SingleOutputStreamOperator<OUT>) (projectTuple7())); break; case 8 : projOperator = ((SingleOutputStreamOperator<OUT>) (projectTuple8())); break;case 9 : projOperator = ((SingleOutputStreamOperator<OUT>) (projectTuple9())); break; case 10 :projOperator = ((SingleOutputStreamOperator<OUT>) (projectTuple10())); break; case 11 : projOperator = ((SingleOutputStreamOperator<OUT>) (projectTuple11())); break; case 12 : projOperator = ((SingleOutputStreamOperator<OUT>) (projectTuple12())); break;case 13 : projOperator = ((SingleOutputStreamOperator<OUT>) (projectTuple13())); break; case 14 : projOperator = ((SingleOutputStreamOperator<OUT>) (projectTuple14())); break; case 15 : projOperator = ((SingleOutputStreamOperator<OUT>) (projectTuple15())); break; case 16 : projOperator = ((SingleOutputStreamOperator<OUT>) (projectTuple16())); break; case 17 : projOperator = ((SingleOutputStreamOperator<OUT>) (projectTuple17())); break; case 18 : projOperator = ((SingleOutputStreamOperator<OUT>) (projectTuple18())); break; case 19 : projOperator = ((SingleOutputStreamOperator<OUT>) (projectTuple19())); break;case 20 : projOperator = ((SingleOutputStreamOperator<OUT>) (projectTuple20())); break; case 21 :projOperator = ((SingleOutputStreamOperator<OUT>) (projectTuple21())); break; case 22 : projOperator = ((SingleOutputStreamOperator<OUT>) (projectTuple22())); break; case 23 : projOperator = ((SingleOutputStreamOperator<OUT>) (projectTuple23())); break; case 24 :projOperator = ((SingleOutputStreamOperator<OUT>) (projectTuple24())); break; case 25 : projOperator = ((SingleOutputStreamOperator<OUT>) (projectTuple25())); break; default : throw new IllegalStateException("Excessive arity in tuple."); } return projOperator; } /** * Projects a {@link Tuple} {@link DataStream}
3.26
flink_StreamProjection_projectTuple9_rdh
/** * Projects a {@link Tuple} {@link DataStream} to the previously selected fields. * * @return The projected DataStream. * @see Tuple * @see DataStream */ public <T0, T1, T2, T3, T4, T5, T6, T7, T8> SingleOutputStreamOperator<Tuple9<T0, T1, T2, T3, T4, T5, T6, T7, T8>> projectTuple9() { TypeInformation<?>[] fTypes = m1(fieldIndexes, dataStream.getType()); TupleTypeInfo<Tuple9<T0, T1, T2, T3, T4, T5, T6, T7, T8>> tType = new TupleTypeInfo<Tuple9<T0, T1, T2, T3, T4, T5, T6, T7, T8>>(fTypes); return dataStream.transform("Projection", tType, new StreamProject<IN, Tuple9<T0, T1, T2, T3, T4, T5, T6, T7, T8>>(fieldIndexes, tType.createSerializer(dataStream.getExecutionConfig()))); }
3.26
flink_StreamProjection_projectTuple5_rdh
/** * Projects a {@link Tuple} {@link DataStream} to the previously selected fields. * * @return The projected DataStream. * @see Tuple * @see DataStream */ public <T0, T1, T2, T3, T4> SingleOutputStreamOperator<Tuple5<T0, T1, T2, T3, T4>> projectTuple5() { TypeInformation<?>[] fTypes = m1(fieldIndexes, dataStream.getType()); TupleTypeInfo<Tuple5<T0, T1, T2, T3, T4>> tType = new TupleTypeInfo<Tuple5<T0, T1, T2, T3, T4>>(fTypes); return dataStream.transform("Projection", tType, new StreamProject<IN, Tuple5<T0, T1, T2, T3, T4>>(fieldIndexes, tType.createSerializer(dataStream.getExecutionConfig()))); }
3.26
flink_StreamProjection_projectTuple16_rdh
/** * Projects a {@link Tuple} {@link DataStream} to the previously selected fields. * * @return The projected DataStream. * @see Tuple * @see DataStream */public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15> SingleOutputStreamOperator<Tuple16<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15>> projectTuple16() { TypeInformation<?>[] fTypes = m1(fieldIndexes, dataStream.getType()); TupleTypeInfo<Tuple16<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15>> tType = new TupleTypeInfo<Tuple16<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15>>(fTypes);return dataStream.transform("Projection", tType, new StreamProject<IN, Tuple16<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15>>(fieldIndexes, tType.createSerializer(dataStream.getExecutionConfig()))); }
3.26
flink_StreamProjection_projectTuple12_rdh
/** * Projects a {@link Tuple} {@link DataStream} to the previously selected fields. * * @return The projected DataStream. * @see Tuple * @see DataStream */ public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11> SingleOutputStreamOperator<Tuple12<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11>> projectTuple12() { TypeInformation<?>[] fTypes = m1(fieldIndexes, dataStream.getType()); TupleTypeInfo<Tuple12<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11>> tType = new TupleTypeInfo<Tuple12<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11>>(fTypes); return dataStream.transform("Projection", tType, new StreamProject<IN, Tuple12<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11>>(fieldIndexes, tType.createSerializer(dataStream.getExecutionConfig()))); }
3.26
flink_StreamProjection_projectTuple23_rdh
/** * Projects a {@link Tuple} {@link DataStream} to the previously selected fields. * * @return The projected DataStream. * @see Tuple * @see DataStream */ public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22> SingleOutputStreamOperator<Tuple23<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22>> projectTuple23() { TypeInformation<?>[] fTypes = m1(fieldIndexes, dataStream.getType()); TupleTypeInfo<Tuple23<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22>> tType = new TupleTypeInfo<Tuple23<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22>>(fTypes); return dataStream.transform("Projection", tType, new StreamProject<IN, Tuple23<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22>>(fieldIndexes, tType.createSerializer(dataStream.getExecutionConfig()))); }
3.26
flink_StreamProjection_projectTuple18_rdh
/** * Projects a {@link Tuple} {@link DataStream} to the previously selected fields. * * @return The projected DataStream. * @see Tuple * @see DataStream */ public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17> SingleOutputStreamOperator<Tuple18<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17>> projectTuple18() { TypeInformation<?>[] fTypes = m1(fieldIndexes, dataStream.getType()); TupleTypeInfo<Tuple18<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17>> tType = new TupleTypeInfo<Tuple18<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17>>(fTypes); return dataStream.transform("Projection", tType, new StreamProject<IN, Tuple18<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17>>(fieldIndexes, tType.createSerializer(dataStream.getExecutionConfig()))); }
3.26
flink_StreamProjection_projectTuple25_rdh
/** * Projects a {@link Tuple} {@link DataStream} to the previously selected fields. * * @return The projected DataStream. * @see Tuple * @see DataStream */ public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22, T23, T24> SingleOutputStreamOperator<Tuple25<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22, T23, T24>> projectTuple25() { TypeInformation<?>[] fTypes = m1(fieldIndexes, dataStream.getType()); TupleTypeInfo<Tuple25<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22, T23, T24>> tType = new TupleTypeInfo<Tuple25<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22, T23, T24>>(fTypes); return dataStream.transform("Projection", tType, new StreamProject<IN, Tuple25<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22, T23, T24>>(fieldIndexes, tType.createSerializer(dataStream.getExecutionConfig()))); }
3.26
flink_StreamProjection_projectTuple14_rdh
/** * Projects a {@link Tuple} {@link DataStream} to the previously selected fields. * * @return The projected DataStream. * @see Tuple * @see DataStream */public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13> SingleOutputStreamOperator<Tuple14<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13>> projectTuple14() { TypeInformation<?>[] fTypes = m1(fieldIndexes, dataStream.getType()); TupleTypeInfo<Tuple14<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13>> tType = new TupleTypeInfo<Tuple14<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13>>(fTypes); return dataStream.transform("Projection", tType, new StreamProject<IN, Tuple14<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13>>(fieldIndexes, tType.createSerializer(dataStream.getExecutionConfig()))); }
3.26
flink_StreamProjection_projectTuple7_rdh
/** * Projects a {@link Tuple} {@link DataStream} to the previously selected fields. * * @return The projected DataStream. * @see Tuple * @see DataStream */ public <T0, T1, T2, T3, T4, T5, T6> SingleOutputStreamOperator<Tuple7<T0, T1, T2, T3, T4, T5, T6>> projectTuple7() { TypeInformation<?>[] fTypes = m1(fieldIndexes, dataStream.getType()); TupleTypeInfo<Tuple7<T0, T1, T2, T3, T4, T5, T6>> tType = new TupleTypeInfo<Tuple7<T0, T1, T2, T3, T4, T5, T6>>(fTypes); return dataStream.transform("Projection", tType, new StreamProject<IN, Tuple7<T0, T1, T2, T3, T4, T5, T6>>(fieldIndexes, tType.createSerializer(dataStream.getExecutionConfig()))); }
3.26
flink_StreamProjection_projectTuple10_rdh
/** * Projects a {@link Tuple} {@link DataStream} to the previously selected fields. * * @return The projected DataStream. * @see Tuple * @see DataStream */ public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9> SingleOutputStreamOperator<Tuple10<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>> projectTuple10() { TypeInformation<?>[] fTypes = m1(fieldIndexes, dataStream.getType());TupleTypeInfo<Tuple10<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>> tType = new TupleTypeInfo<Tuple10<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>>(fTypes); return dataStream.transform("Projection", tType, new StreamProject<IN, Tuple10<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>>(fieldIndexes, tType.createSerializer(dataStream.getExecutionConfig()))); } /** * Projects a {@link Tuple} {@link DataStream}
3.26
flink_StreamProjection_projectTuple3_rdh
/** * Projects a {@link Tuple} {@link DataStream} to the previously selected fields. * * @return The projected DataStream. * @see Tuple * @see DataStream */ public <T0, T1, T2> SingleOutputStreamOperator<Tuple3<T0, T1, T2>> projectTuple3() { TypeInformation<?>[] fTypes = m1(fieldIndexes, dataStream.getType()); TupleTypeInfo<Tuple3<T0, T1, T2>> tType = new TupleTypeInfo<Tuple3<T0, T1, T2>>(fTypes); return dataStream.transform("Projection", tType, new StreamProject<IN, Tuple3<T0, T1, T2>>(fieldIndexes, tType.createSerializer(dataStream.getExecutionConfig()))); }
3.26
flink_StreamProjection_projectTuple21_rdh
/** * Projects a {@link Tuple} {@link DataStream} to the previously selected fields. * * @return The projected DataStream. * @see Tuple * @see DataStream */ public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20> SingleOutputStreamOperator<Tuple21<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20>> projectTuple21() { TypeInformation<?>[] v43 = m1(fieldIndexes, dataStream.getType()); TupleTypeInfo<Tuple21<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20>> tType = new TupleTypeInfo<Tuple21<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20>>(v43); return dataStream.transform("Projection", tType, new StreamProject<IN, Tuple21<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20>>(fieldIndexes, tType.createSerializer(dataStream.getExecutionConfig()))); }
3.26
flink_StreamProjection_projectTuple24_rdh
/** * Projects a {@link Tuple} {@link DataStream} to the previously selected fields. * * @return The projected DataStream. * @see Tuple * @see DataStream */ public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22, T23> SingleOutputStreamOperator<Tuple24<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22, T23>> projectTuple24() { TypeInformation<?>[] fTypes = m1(fieldIndexes, dataStream.getType()); TupleTypeInfo<Tuple24<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22, T23>> tType = new TupleTypeInfo<Tuple24<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22, T23>>(fTypes);return dataStream.transform("Projection", tType, new StreamProject<IN, Tuple24<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22, T23>>(fieldIndexes, tType.createSerializer(dataStream.getExecutionConfig()))); }
3.26
flink_StreamProjection_projectTuple6_rdh
/** * Projects a {@link Tuple} {@link DataStream} to the previously selected fields. * * @return The projected DataStream. * @see Tuple * @see DataStream */ public <T0, T1, T2, T3, T4, T5> SingleOutputStreamOperator<Tuple6<T0, T1, T2, T3, T4, T5>> projectTuple6() { TypeInformation<?>[] fTypes = m1(fieldIndexes, dataStream.getType()); TupleTypeInfo<Tuple6<T0, T1, T2, T3, T4, T5>> tType = new TupleTypeInfo<Tuple6<T0, T1, T2, T3, T4, T5>>(fTypes); return dataStream.transform("Projection", tType, new StreamProject<IN, Tuple6<T0, T1, T2, T3, T4, T5>>(fieldIndexes, tType.createSerializer(dataStream.getExecutionConfig()))); }
3.26
flink_StreamProjection_projectTuple15_rdh
/** * Projects a {@link Tuple} {@link DataStream} to the previously selected fields. * * @return The projected DataStream. * @see Tuple * @see DataStream */ public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14> SingleOutputStreamOperator<Tuple15<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14>> projectTuple15() { TypeInformation<?>[] v31 = m1(fieldIndexes, dataStream.getType()); TupleTypeInfo<Tuple15<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14>> tType = new TupleTypeInfo<Tuple15<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14>>(v31); return dataStream.transform("Projection", tType, new StreamProject<IN, Tuple15<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14>>(fieldIndexes, tType.createSerializer(dataStream.getExecutionConfig()))); }
3.26
flink_StreamProjection_projectTuple2_rdh
/** * Projects a {@link Tuple} {@link DataStream} to the previously selected fields. * * @return The projected DataStream. * @see Tuple * @see DataStream */ public <T0, T1> SingleOutputStreamOperator<Tuple2<T0, T1>> projectTuple2() { TypeInformation<?>[] fTypes = m1(fieldIndexes, dataStream.getType()); TupleTypeInfo<Tuple2<T0, T1>> tType = new TupleTypeInfo<Tuple2<T0, T1>>(fTypes); return dataStream.transform("Projection", tType, new StreamProject<IN, Tuple2<T0, T1>>(fieldIndexes, tType.createSerializer(dataStream.getExecutionConfig()))); }
3.26
flink_StreamProjection_projectTuple20_rdh
/** * Projects a {@link Tuple} {@link DataStream} to the previously selected fields. * * @return The projected DataStream. * @see Tuple * @see DataStream */ public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19> SingleOutputStreamOperator<Tuple20<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19>> projectTuple20() { TypeInformation<?>[] fTypes = m1(fieldIndexes, dataStream.getType()); TupleTypeInfo<Tuple20<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19>> tType = new TupleTypeInfo<Tuple20<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19>>(fTypes); return dataStream.transform("Projection", tType, new StreamProject<IN, Tuple20<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19>>(fieldIndexes, tType.createSerializer(dataStream.getExecutionConfig()))); }
3.26
flink_StreamProjection_projectTuple19_rdh
/** * Projects a {@link Tuple} {@link DataStream} to the previously selected fields. * * @return The projected DataStream. * @see Tuple * @see DataStream */ public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18> SingleOutputStreamOperator<Tuple19<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18>> projectTuple19() { TypeInformation<?>[] fTypes = m1(fieldIndexes, dataStream.getType());TupleTypeInfo<Tuple19<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18>> tType = new TupleTypeInfo<Tuple19<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18>>(fTypes); return dataStream.transform("Projection", tType, new StreamProject<IN, Tuple19<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18>>(fieldIndexes, tType.createSerializer(dataStream.getExecutionConfig()))); }
3.26
flink_OptimizedPlan_getJobName_rdh
/** * Returns the name of the program. * * @return The name of the program. */ public String getJobName() { return this.jobName; }
3.26
flink_OptimizedPlan_accept_rdh
// ------------------------------------------------------------------------ /** * Applies the given visitor top down to all nodes, starting at the sinks. * * @param visitor * The visitor to apply to the nodes in this plan. * @see org.apache.flink.util.Visitable#accept(org.apache.flink.util.Visitor) */ @Override public void accept(Visitor<PlanNode> visitor) { for (SinkPlanNode node : this.dataSinks) { node.accept(visitor); } }
3.26
flink_OptimizedPlan_getAllNodes_rdh
/** * Gets all the nodes from this OptimizedPlan. * * @return All nodes. */ public Collection<PlanNode> getAllNodes() { return allNodes; }
3.26
flink_CoGroupedStreams_equalTo_rdh
/** * Specifies a {@link KeySelector} for elements from the second input. * * @param keySelector * The KeySelector to be used for extracting the second input's key for * partitioning. */ public EqualTo equalTo(KeySelector<T2, KEY> keySelector) { Preconditions.checkNotNull(keySelector); final TypeInformation<KEY> otherKey = TypeExtractor.getKeySelectorTypes(keySelector, input2.getType()); return equalTo(keySelector, otherKey); }
3.26
flink_CoGroupedStreams_where_rdh
/** * Specifies a {@link KeySelector} for elements from the first input with explicit type * information. * * @param keySelector * The KeySelector to be used for extracting the first input's key for * partitioning. * @param keyType * The type information describing the key type. */ public <KEY> Where<KEY> where(KeySelector<T1, KEY> keySelector, TypeInformation<KEY> keyType) { Preconditions.checkNotNull(keySelector); Preconditions.checkNotNull(keyType); return new Where<>(input1.clean(keySelector), keyType); }
3.26
flink_CoGroupedStreams_m0_rdh
/** * Sets the {@code Trigger} that should be used to trigger window emission. */ @PublicEvolving public WithWindow<T1, T2, KEY, W> m0(Trigger<? super TaggedUnion<T1, T2>, ? super W> newTrigger) { return new WithWindow<>(input1, input2, keySelector1, keySelector2, keyType, windowAssigner, newTrigger, evictor, allowedLateness); } /** * Sets the {@code Evictor}
3.26
flink_CoGroupedStreams_apply_rdh
/** * Completes the co-group operation with the user function that is executed for windowed * groups. * * <p>Note: This method's return type does not support setting an operator-specific * parallelism. Due to binary backwards compatibility, this cannot be altered. Use the * {@link #with(CoGroupFunction, TypeInformation)} method to set an operator-specific * parallelism. */ public <T> DataStream<T> apply(CoGroupFunction<T1, T2, T> function, TypeInformation<T> resultType) { // clean the closure function = input1.getExecutionEnvironment().clean(function); UnionTypeInfo<T1, T2> unionType = new UnionTypeInfo<>(input1.getType(), input2.getType());UnionKeySelector<T1, T2, KEY> unionKeySelector = new UnionKeySelector<>(keySelector1, keySelector2); SingleOutputStreamOperator<TaggedUnion<T1, T2>> taggedInput1 = input1.map(new Input1Tagger<T1, T2>()); taggedInput1.getTransformation().setParallelism(input1.getParallelism(), false); taggedInput1.returns(unionType); SingleOutputStreamOperator<TaggedUnion<T1, T2>> taggedInput2 = input2.map(new Input2Tagger<T1, T2>()); taggedInput2.getTransformation().setParallelism(input2.getParallelism(), false); taggedInput2.returns(unionType); DataStream<TaggedUnion<T1, T2>> unionStream = taggedInput1.union(taggedInput2); // we explicitly create the keyed stream to manually pass the key type information in windowedStream = new KeyedStream<TaggedUnion<T1, T2>, KEY>(unionStream, unionKeySelector, keyType).window(windowAssigner); if (trigger != null) { windowedStream.trigger(trigger); } if (evictor != null) { windowedStream.evictor(evictor); } if (allowedLateness != null) { windowedStream.allowedLateness(allowedLateness); } return windowedStream.apply(new CoGroupWindowFunction<T1, T2, T, KEY, W>(function), resultType); } /** * Completes the co-group operation with the user function that is executed for windowed * groups. * * <p><b>Note:</b> This is a temporary workaround while the {@link #apply(CoGroupFunction, * TypeInformation)} method has the wrong return type and hence does not allow one to set an * operator-specific parallelism * * @deprecated This method will be removed once the {@link #apply(CoGroupFunction, TypeInformation)}
3.26
flink_CoGroupedStreams_allowedLateness_rdh
/** * Sets the time by which elements are allowed to be late. * * @see WindowedStream#allowedLateness(Time) */ @PublicEvolving public WithWindow<T1, T2, KEY, W> allowedLateness(Time newLateness) { return new WithWindow<>(input1, input2, keySelector1, keySelector2, keyType, windowAssigner, trigger, evictor, newLateness); }
3.26
flink_MessageParameter_getKey_rdh
/** * Returns the key of this parameter, e.g. "jobid". * * @return key of this parameter */ public final String getKey() { return f0; }
3.26
flink_MessageParameter_resolve_rdh
/** * Resolves this parameter for the given value. * * @param value * value to resolve this parameter with */ public final void resolve(X value) { Preconditions.checkState(!resolved, "This parameter was already resolved."); this.value = Preconditions.checkNotNull(value);this.resolved = true; }
3.26
flink_MessageParameter_m0_rdh
/** * Returns the resolved value of this parameter as a string, or {@code null} if it isn't * resolved yet. * * @return resolved value, or null if it wasn't resolved yet */ final String m0() { return value == null ? null : convertToString(value); }
3.26
flink_MessageParameter_getValue_rdh
/** * Returns the resolved value of this parameter, or {@code null} if it isn't resolved yet. * * @return resolved value, or null if it wasn't resolved yet */ public final X getValue() { return value; }
3.26
flink_NotDuplicatingCheckpointStateToolset_canFastDuplicate_rdh
/** * An empty implementation of {@link CheckpointStateToolset}. */public final class NotDuplicatingCheckpointStateToolset implements CheckpointStateToolset { @Override public boolean canFastDuplicate(StreamStateHandle stateHandle) throws IOException { return false; }
3.26
flink_LegacySinkTransformation_setStateKeySelector_rdh
/** * Sets the {@link KeySelector} that must be used for partitioning keyed state of this Sink. * * @param stateKeySelector * The {@code KeySelector} to set */ public void setStateKeySelector(KeySelector<T, ?> stateKeySelector) { this.stateKeySelector = stateKeySelector; updateManagedMemoryStateBackendUseCase(stateKeySelector != null); }
3.26
flink_LegacySinkTransformation_getOperatorFactory_rdh
/** * Returns the {@link StreamOperatorFactory} of this {@code LegacySinkTransformation}. */ public StreamOperatorFactory<Object> getOperatorFactory() { return operatorFactory; }
3.26