name
stringlengths
12
178
code_snippet
stringlengths
8
36.5k
score
float64
3.26
3.68
flink_GenericArraySerializer_snapshotConfiguration_rdh
// -------------------------------------------------------------------------------------------- // Serializer configuration snapshotting & compatibility // -------------------------------------------------------------------------------------------- @Override public GenericArraySerializerSnapshot<C> snapshotConfiguration() { return new GenericArraySerializerSnapshot<>(this); }
3.26
flink_GenericArraySerializer_hashCode_rdh
// -------------------------------------------------------------------------------------------- @Override public int hashCode() { return (31 * componentClass.hashCode()) + componentSerializer.hashCode(); }
3.26
flink_ArrayColumnReader_readPrimitiveTypedRow_rdh
// Need to be in consistent with that VectorizedPrimitiveColumnReader#readBatchHelper // TODO Reduce the duplicated code private Object readPrimitiveTypedRow(LogicalType type) { switch (type.getTypeRoot()) { case CHAR : case VARCHAR : case BINARY : case VARBINARY : return dataColumn.readBytes(); case BOOLEAN : return dataColumn.readBoolean(); case TIME_WITHOUT_TIME_ZONE : case DATE : case INTEGER : return dataColumn.readInteger(); case TINYINT : return dataColumn.readTinyInt(); case SMALLINT : return dataColumn.readSmallInt(); case BIGINT : return dataColumn.readLong(); case FLOAT : return dataColumn.readFloat(); case DOUBLE : return dataColumn.readDouble(); case DECIMAL : switch (descriptor.getPrimitiveType().getPrimitiveTypeName()) { case INT32 : return dataColumn.readInteger(); case INT64 : return dataColumn.readLong(); case BINARY : case FIXED_LEN_BYTE_ARRAY : return dataColumn.readBytes(); } case TIMESTAMP_WITHOUT_TIME_ZONE : case TIMESTAMP_WITH_LOCAL_TIME_ZONE : return dataColumn.readTimestamp(); default : throw new RuntimeException("Unsupported type in the list: " + type); } }
3.26
flink_ArrayColumnReader_setChildrenInfo_rdh
/** * The lengths & offsets will be initialized as default size (1024), it should be set to the * actual size according to the element number. */ private void setChildrenInfo(HeapArrayVector lcv, int itemNum, int elementNum) { lcv.setSize(itemNum); long[] lcvLength = new long[elementNum]; long[] lcvOffset = new long[elementNum]; System.arraycopy(lcv.getLengths(), 0, lcvLength, 0, elementNum); System.arraycopy(lcv.getOffsets(), 0, lcvOffset, 0, elementNum); lcv.setLengths(lcvLength); lcv.setOffsets(lcvOffset); }
3.26
flink_ArrayColumnReader_collectDataFromParquetPage_rdh
/** * Collects data from a parquet page and returns the final row index where it stopped. The * returned index can be equal to or less than total. * * @param total * maximum number of rows to collect * @param lcv * column vector to do initial setup in data collection time * @param valueList * collection of values that will be fed into the vector later * @param type * the element type of array * @return int */ private int collectDataFromParquetPage(int total, HeapArrayVector lcv, List<Object> valueList, LogicalType type) { int index = 0; /* Here is a nested loop for collecting all values from a parquet page. A column of array type can be considered as a list of lists, so the two loops are as below: 1. The outer loop iterates on rows (index is a row index, so points to a row in the batch), e.g.: [0, 2, 3] <- index: 0 [NULL, 3, 4] <- index: 1 2. The inner loop iterates on values within a row (sets all data from parquet data page for an element in ListColumnVector), so fetchNextValue returns values one-by-one: 0, 2, 3, NULL, 3, 4 As described below, the repetition level (repetitionLevel != 0) can be used to decide when we'll start to read values for the next list. */ while ((!eof) && (index < total)) { // add element to ListColumnVector one by one lcv.getOffsets()[index] = valueList.size(); /* Let's collect all values for a single list. Repetition level = 0 means that a new list started there in the parquet page, in that case, let's exit from the loop, and start to collect value for a new list. */ do { /* Definition level = 0 when a NULL value was returned instead of a list (this is not the same as a NULL value in of a list). */ if (definitionLevel == 0) { lcv.setNullAt(index); } valueList.add(isCurrentPageDictionaryEncoded ? dictionaryDecodeValue(type, ((Integer) (lastValue))) : lastValue); } while (fetchNextValue(type) && (repetitionLevel != 0) ); lcv.getLengths()[index] = valueList.size() - lcv.getOffsets()[index]; index++; } return index;}
3.26
flink_ArrayColumnReader_fetchNextValue_rdh
/** * Reads a single value from parquet page, puts it into lastValue. Returns a boolean indicating * if there is more values to read (true). * * @param type * the element type of array * @return boolean */ private boolean fetchNextValue(LogicalType type) { int left = readPageIfNeed(); if (left > 0) { // get the values of repetition and definitionLevel readRepetitionAndDefinitionLevels(); // read the data if it isn't null if (definitionLevel == maxDefLevel) { if (isCurrentPageDictionaryEncoded) { lastValue = dataColumn.readValueDictionaryId(); } else { lastValue = readPrimitiveTypedRow(type); } } else { lastValue = null; } return true; } else { eof = true;return false; } }
3.26
flink_RemoteStorageScanner_start_rdh
/** * Start the executor. */ public void start() { synchronized(scannerExecutor) { if (!scannerExecutor.isShutdown()) { scannerExecutor.schedule(this, lastInterval, TimeUnit.MILLISECONDS); } } }
3.26
flink_RemoteStorageScanner_close_rdh
/** * Close the executor. */ public void close() { synchronized(scannerExecutor) { scannerExecutor.shutdownNow(); } try { if (!scannerExecutor.awaitTermination(5L, TimeUnit.MINUTES)) { throw new TimeoutException("Timeout to shutdown the flush thread."); } } catch (InterruptedException | TimeoutException e) { ExceptionUtils.rethrow(e); } }
3.26
flink_RemoteStorageScanner_watchSegment_rdh
/** * Watch the segment for a specific subpartition in the {@link RemoteStorageScanner}. * * <p>If a segment with a larger or equal id already exists, the current segment won't be * watched. * * <p>If a segment with a smaller segment id is still being watched, the current segment will * replace it because the smaller segment should have been consumed. This method ensures that * only one segment file can be watched for each subpartition. * * @param partitionId * is the id of partition. * @param subpartitionId * is the id of subpartition. * @param segmentId * is the id of segment. */ public void watchSegment(TieredStoragePartitionId partitionId, TieredStorageSubpartitionId subpartitionId, int segmentId) { Tuple2<TieredStoragePartitionId, TieredStorageSubpartitionId> key = Tuple2.of(partitionId, subpartitionId); scannedMaxSegmentIds.compute(key, (segmentKey, maxSegmentId) -> { if ((maxSegmentId == null) || (maxSegmentId < segmentId)) { requiredSegmentIds.put(segmentKey, segmentId); } return maxSegmentId; }); }
3.26
flink_RemoteStorageScanner_run_rdh
/** * Iterate the watched segment ids and check related file status. */ @Override public void run() { try { Iterator<Map.Entry<Tuple2<TieredStoragePartitionId, TieredStorageSubpartitionId>, Integer>> iterator = requiredSegmentIds.entrySet().iterator(); boolean scanned = false;while (iterator.hasNext()) {Map.Entry<Tuple2<TieredStoragePartitionId, TieredStorageSubpartitionId>, Integer> ids = iterator.next(); TieredStoragePartitionId partitionId = ids.getKey().f0; TieredStorageSubpartitionId subpartitionId = ids.getKey().f1; int requiredSegmentId = ids.getValue(); int maxSegmentId = scannedMaxSegmentIds.getOrDefault(ids.getKey(), -1); if ((maxSegmentId >= requiredSegmentId) && checkSegmentExist(partitionId, subpartitionId, requiredSegmentId)) { scanned = true; iterator.remove(); checkNotNull(notifier).notifyAvailable(partitionId, subpartitionId); } else { // The segment should be watched again because it's not found. // If the segment belongs to other tiers and has been consumed, the segment will // be replaced by newly watched segment with larger segment id. This logic is // ensured by the method {@code watchSegment}. scanMaxSegmentId(partitionId, subpartitionId); } } lastInterval = (scanned) ? INITIAL_SCAN_INTERVAL_MS : scanStrategy.getInterval(lastInterval); start(); } catch (Throwable throwable) { // handle un-expected exception as unhandledExceptionHandler is not // worked for ScheduledExecutorService. FatalExitExceptionHandler.INSTANCE.uncaughtException(Thread.currentThread(), throwable); } }
3.26
flink_RemoteStorageScanner_scanMaxSegmentId_rdh
// ------------------------------------------------------------------------ // Internal Methods // ------------------------------------------------------------------------ /** * Scan the max segment id of segment files for the specific partition and subpartition. The max * segment id can be obtained from a file named by max segment id. * * @param partitionId * the partition id. * @param subpartitionId * the subpartition id. */ private void scanMaxSegmentId(TieredStoragePartitionId partitionId, TieredStorageSubpartitionId subpartitionId) { Path segmentFinishDir = getSegmentFinishDirPath(baseRemoteStoragePath, partitionId, subpartitionId.getSubpartitionId()); FileStatus[] fileStatuses = new FileStatus[0]; try { if (!remoteFileSystem.exists(segmentFinishDir)) { return; } fileStatuses = remoteFileSystem.listStatus(segmentFinishDir); currentRetryTime = 0; } catch (Throwable t) { if (t instanceof FileNotFoundException) { return; } currentRetryTime++; tryThrowException(t, "Failed to list the segment finish file."); } if (fileStatuses.length != 1) { return; } scannedMaxSegmentIds.put(Tuple2.of(partitionId, subpartitionId), Integer.parseInt(fileStatuses[0].getPath().getName())); }
3.26
flink_TieredStorageProducerClient_canBeCompressed_rdh
/** * Whether the buffer can be compressed or not. Note that event is not compressed because it is * usually small and the size can become even larger after compression. */ private boolean canBeCompressed(Buffer buffer) { return ((bufferCompressor != null) && buffer.isBuffer()) && (buffer.readableBytes() > 0); }
3.26
flink_TieredStorageProducerClient_write_rdh
/** * Write records to the producer client. The {@link BufferAccumulator} will accumulate the * records into buffers. * * <p>Note that isBroadcast indicates whether the record is broadcast, while isBroadcastOnly * indicates whether the result partition is broadcast-only. When the result partition is not * broadcast-only and the record is a broadcast record, the record will be written to all the * subpartitions. * * @param record * the written record data * @param subpartitionId * the subpartition identifier * @param dataType * the data type of the record * @param isBroadcast * whether the record is a broadcast record */ public void write(ByteBuffer record, TieredStorageSubpartitionId subpartitionId, Buffer.DataType dataType, boolean isBroadcast) throws IOException { if (isBroadcast && (!isBroadcastOnly)) { for (int i = 0; i < numSubpartitions; ++i) { // As the tiered storage subpartition ID is created only for broadcast records, // which are fewer than normal records, the performance impact of generating new // TieredStorageSubpartitionId objects is expected to be manageable. If the // performance is significantly affected, this logic will be optimized accordingly. bufferAccumulator.receive(record.duplicate(), new TieredStorageSubpartitionId(i), dataType, isBroadcast); }} else { bufferAccumulator.receive(record, subpartitionId, dataType, isBroadcast); } }
3.26
flink_TieredStorageProducerClient_writeAccumulatedBuffers_rdh
/** * Write the accumulated buffers of this subpartitionId to the appropriate tiers. * * @param subpartitionId * the subpartition identifier * @param accumulatedBuffers * the accumulated buffers of this subpartition */ private void writeAccumulatedBuffers(TieredStorageSubpartitionId subpartitionId, List<Buffer> accumulatedBuffers) { Iterator<Buffer> bufferIterator = accumulatedBuffers.iterator(); int numWriteBytes = 0; int numWriteBuffers = 0; while (bufferIterator.hasNext()) { Buffer buffer = bufferIterator.next(); numWriteBuffers++; numWriteBytes += buffer.readableBytes(); try { writeAccumulatedBuffer(subpartitionId, buffer); } catch (IOException ioe) { buffer.recycleBuffer(); while (bufferIterator.hasNext()) { bufferIterator.next().recycleBuffer(); } ExceptionUtils.rethrow(ioe); } } updateMetricStatistics(numWriteBuffers, numWriteBytes); }
3.26
flink_TieredStorageProducerClient_writeAccumulatedBuffer_rdh
/** * Write the accumulated buffer of this subpartitionId to an appropriate tier. After the tier is * decided, the buffer will be written to the selected tier. * * <p>Note that the method only throws an exception when choosing a storage tier, so the caller * should ensure that the buffer is recycled when throwing an exception. * * @param subpartitionId * the subpartition identifier * @param accumulatedBuffer * one accumulated buffer of this subpartition */ private void writeAccumulatedBuffer(TieredStorageSubpartitionId subpartitionId, Buffer accumulatedBuffer) throws IOException { Buffer compressedBuffer = compressBufferIfPossible(accumulatedBuffer); if (currentSubpartitionTierAgent[subpartitionId.getSubpartitionId()] == null) { chooseStorageTierToStartSegment(subpartitionId); } if (!currentSubpartitionTierAgent[subpartitionId.getSubpartitionId()].tryWrite(subpartitionId, compressedBuffer, bufferAccumulator)) { chooseStorageTierToStartSegment(subpartitionId); checkState(currentSubpartitionTierAgent[subpartitionId.getSubpartitionId()].tryWrite(subpartitionId, compressedBuffer, bufferAccumulator), "Failed to write the first buffer to the new segment"); } }
3.26
flink_WatermarkSpec_getRowtimeAttribute_rdh
/** * Returns the name of a rowtime attribute. * * <p>The referenced attribute must be present in the {@link ResolvedSchema} and must be of * {@link TimestampType}. */public String getRowtimeAttribute() { return rowtimeAttribute; }
3.26
flink_WatermarkSpec_getWatermarkExpression_rdh
/** * Returns the {@link ResolvedExpression} for watermark generation. */ public ResolvedExpression getWatermarkExpression() { return watermarkExpression; }
3.26
flink_SemanticPropUtil_areFieldsCompatible_rdh
// //////////////////// UTIL METHODS /////////////////////////////// private static boolean areFieldsCompatible(String sourceField, TypeInformation<?> inType, String targetField, TypeInformation<?> outType, boolean throwException) { try { // get source type information TypeInformation<?> sourceType = getExpressionTypeInformation(sourceField, inType); // get target type information TypeInformation<?> targetType = getExpressionTypeInformation(targetField, outType); return sourceType.equals(targetType); } catch (InvalidFieldReferenceException e) { if (throwException) { throw e; } else { return false; } } }
3.26
flink_SemanticPropUtil_addSourceFieldOffset_rdh
/** * Creates SemanticProperties by adding an offset to each input field index of the given * SemanticProperties. * * @param props * The SemanticProperties to which the offset is added. * @param numInputFields * The original number of fields of the input. * @param offset * The offset that is added to each input field index. * @return New SemanticProperties with added offset. */ public static SingleInputSemanticProperties addSourceFieldOffset(SingleInputSemanticProperties props, int numInputFields, int offset) { SingleInputSemanticProperties offsetProps = new SingleInputSemanticProperties(); if (props.getReadFields(0) != null) { FieldSet offsetReadFields = new FieldSet(); for (int r : props.getReadFields(0)) { offsetReadFields = offsetReadFields.addField(r + offset); }offsetProps.addReadFields(offsetReadFields); } for (int s = 0; s < numInputFields; s++) { FieldSet targetFields = props.getForwardingTargetFields(0, s); for (int t : targetFields) { offsetProps.addForwardedField(s + offset, t);} } return offsetProps; }
3.26
flink_MetricListener_getHistogram_rdh
/** * Get registered {@link Histogram} with identifier relative to the root metric group. * * @param identifier * identifier relative to the root metric group * @return Optional registered histogram */ public Optional<Histogram> getHistogram(String... identifier) { return getMetric(Histogram.class, identifier); }
3.26
flink_MetricListener_getGauge_rdh
/** * Get registered {@link Gauge} with identifier relative to the root metric group. * * @param identifier * identifier relative to the root metric group * @return Optional registered gauge */@SuppressWarnings("unchecked") public <T> Optional<Gauge<T>> getGauge(String... identifier) { if (!metrics.containsKey(getActualIdentifier(identifier))) { return Optional.empty();} else { return Optional.of(((Gauge<T>) (metrics.get(getActualIdentifier(identifier))))); } }
3.26
flink_MetricListener_getCounter_rdh
/** * Get registered {@link Counter} with identifier relative to the root metric group. * * @param identifier * identifier relative to the root metric group * @return Optional registered counter */ public Optional<Counter> getCounter(String... identifier) { return getMetric(Counter.class, identifier); }
3.26
flink_MetricListener_getMetric_rdh
/** * Get registered {@link Metric} with identifier relative to the root metric group. * * <p>For example, identifier of metric "myMetric" registered in group "myGroup" under root * metric group can be reached by identifier ("myGroup", "myMetric") * * @param identifier * identifier relative to the root metric group * @return Optional registered metric */ public <T extends Metric> Optional<T> getMetric(Class<T> metricType, String... identifier) { if (!metrics.containsKey(getActualIdentifier(identifier))) { return Optional.empty(); } return Optional.of(metricType.cast(metrics.get(getActualIdentifier(identifier)))); }
3.26
flink_MetricListener_getMeter_rdh
/** * Get registered {@link Meter} with identifier relative to the root metric group. * * @param identifier * identifier relative to the root metric group * @return Optional registered meter */ public Optional<Meter> getMeter(String... identifier) { return getMetric(Meter.class, identifier); }
3.26
flink_JoinHintsResolver_matchIdentifier_rdh
/** * Check whether the given hint option matches the table qualified names. For convenience, we * follow a simple rule: the matching is successful if the option is the suffix of the table * qualified names. */ private boolean matchIdentifier(String option, String tableIdentifier) { String[] optionNames = option.split("\\."); int optionNameLength = optionNames.length; String[] tableNames = tableIdentifier.split("\\."); int tableNameLength = tableNames.length; for (int i = 0; i < Math.min(optionNameLength, tableNameLength); i++) { String currOptionName = optionNames[(optionNameLength - 1) - i]; String currTableName = tableNames[(tableNameLength - 1) - i]; if (!currOptionName.equals(currTableName)) { return false;} } return true; }
3.26
flink_JoinHintsResolver_resolve_rdh
/** * Resolves and validates join hints in the given {@link RelNode} list, an {@link ValidationException} will be raised for invalid hints. * * <p>After resolving join hints, the options of the join hints (declared table name or query * block name) will be replaced to {@link JoinStrategy#LEFT_INPUT} or {@link JoinStrategy#RIGHT_INPUT} * * <p>If the declared table name or query name in a join hint could not match the left side or * right side of this join, that means this join hint is invalid and a {@link ValidationException} will be thrown. */ final List<RelNode> resolve(List<RelNode> roots) { List<RelNode> resolvedRoots = roots.stream().map(node -> node.accept(this)).collect(Collectors.toList()); validateHints(); return resolvedRoots; }
3.26
flink_AvgAggFunction_getValueExpression_rdh
/** * If all input are nulls, count will be 0 and we will get null after the division. */ @Override public Expression getValueExpression() { Expression ifTrue = nullOf(getResultType()); Expression ifFalse = cast(div(sum, count), typeLiteral(getResultType())); return ifThenElse(equalTo(count, literal(0L)), ifTrue, ifFalse); }
3.26
flink_ChannelStateWriteRequestExecutorImpl_m0_rdh
/** * Retrieves and removes the head request of the {@link #deque}, waiting if necessary until an * element becomes available. * * @return The head request, it can be null when the executor is closed. */ @Nullable private ChannelStateWriteRequest m0() throws InterruptedException { ChannelStateWriteRequest request; while (!wasClosed) { request = deque.pollFirst(); if (request == null) { lock.wait(); } else {return request; } } return null; }
3.26
flink_Sum0AggFunction_getResultType_rdh
/** * Built-in Float Sum0 aggregate function. */public static class FloatSum0AggFunction extends Sum0AggFunction { @Override public DataType getResultType() { return DataTypes.FLOAT(); }
3.26
flink_DataStreamScanProvider_produceDataStream_rdh
/** * Creates a scan Java {@link DataStream} from a {@link StreamExecutionEnvironment}. */ @Deprecated default DataStream<RowData> produceDataStream(StreamExecutionEnvironment execEnv) { throw new UnsupportedOperationException("This method is deprecated. " + "Use produceDataStream(ProviderContext, StreamExecutionEnvironment) instead"); }
3.26
flink_KeyedProcessFunction_onTimer_rdh
/** * Called when a timer set using {@link TimerService} fires. * * @param timestamp * The timestamp of the firing timer. * @param ctx * An {@link OnTimerContext} that allows querying the timestamp, the {@link TimeDomain}, and the key of the firing timer and getting a {@link TimerService} for * registering timers and querying the time. The context is only valid during the invocation * of this method, do not store it. * @param out * The collector for returning result values. * @throws Exception * This method may throw exceptions. Throwing an exception will cause the * operation to fail and may trigger recovery. */ public void onTimer(long timestamp, OnTimerContext ctx, Collector<O> out) throws Exception { }
3.26
flink_ParquetProtoWriters_forType_rdh
/** * Creates a {@link ParquetWriterFactory} for the given type. The type should represent a * Protobuf message. * * @param type * The class of the type to write. */ public static <T extends Message> ParquetWriterFactory<T> forType(Class<T> type) { ParquetBuilder<T> builder = out -> new ParquetProtoWriterBuilder<>(out, type).build(); return new ParquetWriterFactory<>(builder); }
3.26
flink_SessionWithGap_on_rdh
/** * Specifies the time attribute on which rows are grouped. * * <p>For streaming tables you can specify grouping by a event-time or processing-time * attribute. * * <p>For batch tables you can specify grouping on a timestamp or long attribute. * * @param timeField * time attribute for streaming and batch tables * @return a tumbling window on event-time */ public SessionWithGapOnTime on(Expression timeField) { return new SessionWithGapOnTime(timeField, gap); }
3.26
flink_UserDefinedFunction_close_rdh
/** * Tear-down method for user-defined function. It can be used for clean up work. By default, * this method does nothing. */ public void close() throws Exception { // do nothing }
3.26
flink_UserDefinedFunction_toString_rdh
/** * Returns the name of the UDF that is used for plan explanation and logging. */ @Override public String toString() { return getClass().getSimpleName(); }
3.26
flink_UserDefinedFunction_functionIdentifier_rdh
/** * Returns a unique, serialized representation for this function. */ public final String functionIdentifier() { final String className = getClass().getName(); if (isClassNameSerializable(this)) { return className;}final String md5 = EncodingUtils.hex(EncodingUtils.md5(EncodingUtils.encodeObjectToString(this))); return className.concat("$").concat(md5); }
3.26
flink_UserDefinedFunction_open_rdh
/** * Setup method for user-defined function. It can be used for initialization work. By default, * this method does nothing. */ public void open(FunctionContext context) throws Exception { // do nothing }
3.26
flink_ProcessingTimeSessionWindows_mergeWindows_rdh
/** * Merge overlapping {@link TimeWindow}s. */ @Override public void mergeWindows(Collection<TimeWindow> windows, MergeCallback<TimeWindow> c) { TimeWindow.mergeWindows(windows, c); }
3.26
flink_ProcessingTimeSessionWindows_m0_rdh
/** * Creates a new {@code SessionWindows} {@link WindowAssigner} that assigns elements to sessions * based on the element timestamp. * * @param size * The session timeout, i.e. the time gap between sessions * @return The policy. */ public static ProcessingTimeSessionWindows m0(Time size) { return new ProcessingTimeSessionWindows(size.toMilliseconds()); } /** * Creates a new {@code SessionWindows} {@link WindowAssigner}
3.26
flink_AbstractBlobCache_createTemporaryFilename_rdh
/** * Returns a temporary file inside the BLOB server's incoming directory. * * @return a temporary file inside the BLOB server's incoming directory * @throws IOException * if creating the directory fails */File createTemporaryFilename() throws IOException { return new File(BlobUtils.getIncomingDirectory(storageDir.deref()), String.format("temp-%08d", tempFileCounter.getAndIncrement())); }
3.26
flink_AbstractBlobCache_setBlobServerAddress_rdh
/** * Sets the address of the {@link BlobServer}. * * @param blobServerAddress * address of the {@link BlobServer}. */ public void setBlobServerAddress(InetSocketAddress blobServerAddress) { serverAddress = checkNotNull(blobServerAddress); }
3.26
flink_AbstractBlobCache_getPort_rdh
/** * Returns the port the BLOB server is listening on. * * @return BLOB server port or {@code -1} if no server address */ public int getPort() { final InetSocketAddress currentServerAddress = serverAddress; if (currentServerAddress != null) { return currentServerAddress.getPort(); } else { return -1; }}
3.26
flink_AbstractBlobCache_m0_rdh
/** * Returns local copy of the file for the BLOB with the given key. * * <p>The method will first attempt to serve the BLOB from its local cache. If the BLOB is not * in the cache, the method will try to download it from this cache's BLOB server via a * distributed BLOB store (if available) or direct end-to-end download. * * @param jobId * ID of the job this blob belongs to (or <tt>null</tt> if job-unrelated) * @param blobKey * The key of the desired BLOB. * @return file referring to the local storage location of the BLOB. * @throws IOException * Thrown if an I/O error occurs while downloading the BLOBs from the BLOB * server. */ protected File m0(@Nullable JobID jobId, BlobKey blobKey) throws IOException { checkArgument(blobKey != null, "BLOB key cannot be null."); final File localFile = BlobUtils.getStorageLocation(storageDir.deref(), jobId, blobKey); readWriteLock.readLock().lock(); try {if (localFile.exists()) { return localFile; } } finally { readWriteLock.readLock().unlock(); } // first try the distributed blob store (if available) // use a temporary file (thread-safe without locking) File incomingFile = createTemporaryFilename(); try { try {if (blobView.get(jobId, blobKey, incomingFile)) { // now move the temp file to our local cache atomically readWriteLock.writeLock().lock(); try { BlobUtils.moveTempFileToStore(incomingFile, jobId, blobKey, localFile, log, null); } finally { readWriteLock.writeLock().unlock(); } return localFile; } } catch (Exception e) { log.info("Failed to copy from blob store. Downloading from BLOB server instead.", e); }final InetSocketAddress currentServerAddress = serverAddress; if (currentServerAddress != null) { // fallback: download from the BlobServer BlobClient.downloadFromBlobServer(jobId, blobKey, incomingFile, currentServerAddress, blobClientConfig, numFetchRetries);readWriteLock.writeLock().lock(); try { BlobUtils.moveTempFileToStore(incomingFile, jobId, blobKey, localFile, log, null); } finally { readWriteLock.writeLock().unlock(); } } else { throw new IOException("Cannot download from BlobServer, because the server address is unknown."); }return localFile; } finally { // delete incomingFile from a failed download if ((!incomingFile.delete()) && incomingFile.exists()) { log.warn("Could not delete the staging file {} for blob key {} and job {}.", incomingFile, blobKey, jobId); } } }
3.26
flink_VarCharType_ofEmptyLiteral_rdh
/** * The SQL standard defines that character string literals are allowed to be zero-length strings * (i.e., to contain no characters) even though it is not permitted to declare a type that is * zero. This has also implications on variable-length character strings during type inference * because any fixed-length character string should be convertible to a variable-length one. * * <p>This method enables this special kind of character string. * * <p>Zero-length character strings have no serializable string representation. */ public static VarCharType ofEmptyLiteral() { return new VarCharType(EMPTY_LITERAL_LENGTH, false); }
3.26
flink_AsyncSnapshotCallable_logAsyncSnapshotComplete_rdh
/** * This method is invoked after completion of the snapshot and can be overridden to output a * logging about the duration of the async part. */ protected void logAsyncSnapshotComplete(long startTime) {}
3.26
flink_AsyncSnapshotCallable_toAsyncSnapshotFutureTask_rdh
/** * Creates a future task from this and registers it with the given {@link CloseableRegistry}. * The task is unregistered again in {@link FutureTask#done()}. */ public AsyncSnapshotTask toAsyncSnapshotFutureTask(@Nonnull CloseableRegistry taskRegistry) throws IOException { return new AsyncSnapshotTask(taskRegistry); }
3.26
flink_SplitFetcher_shutdown_rdh
/** * Shutdown the split fetcher. */ public void shutdown() { lock.lock(); try { if (!closed) { closed = true; paused = false; LOG.info("Shutting down split fetcher {}", id); wakeUpUnsafe(false); } } finally { lock.unlock(); } }
3.26
flink_SplitFetcher_addSplits_rdh
/** * Add splits to the split fetcher. This operation is asynchronous. * * @param splitsToAdd * the splits to add. */ public void addSplits(List<SplitT> splitsToAdd) { lock.lock(); try { enqueueTaskUnsafe(new AddSplitsTask<>(splitReader, splitsToAdd, assignedSplits)); wakeUpUnsafe(true); } finally { lock.unlock();} }
3.26
flink_SplitFetcher_isIdle_rdh
/** * Package private for unit test. * * @return true if task queue is empty, false otherwise. */ boolean isIdle() { lock.lock(); try { return (assignedSplits.isEmpty() && taskQueue.isEmpty()) && (runningTask == null); } finally { lock.unlock(); } }
3.26
flink_SplitFetcher_runOnce_rdh
/** * Package private method to help unit test. */ boolean runOnce() { // first blocking call = get next task. blocks only if there are no active splits and queued // tasks. SplitFetcherTask task; lock.lock(); try { if (closed) {return false; } task = getNextTaskUnsafe(); if (task == null) { // (spurious) wakeup, so just repeat return true; } LOG.debug("Prepare to run {}", task); // store task for #wakeUp this.runningTask = task; } finally { lock.unlock(); } // execute the task outside of lock, so that it can be woken up boolean taskFinished; try { taskFinished = task.run(); } catch (Exception e) { throw new RuntimeException(String.format("SplitFetcher thread %d received unexpected exception while polling the records", id), e); } // re-acquire lock as all post-processing steps, need it lock.lock(); try { this.runningTask = null; processTaskResultUnsafe(task, taskFinished); } finally { lock.unlock(); } return true; }
3.26
flink_SplitFetcher_removeSplits_rdh
/** * Notice the split fetcher that some splits finished. This operation is asynchronous. * * @param splitsToRemove * the splits need to be removed. */ public void removeSplits(List<SplitT> splitsToRemove) { lock.lock(); try { enqueueTaskUnsafe(new RemoveSplitsTask<>(splitReader, splitsToRemove, assignedSplits, splitFinishedHook)); wakeUpUnsafe(true); } finally { lock.unlock(); } }
3.26
flink_SplitFetcher_wakeUp_rdh
/** * Wake up the fetcher thread. There are only two blocking points in a running fetcher. 1. * Waiting for the next task in an idle fetcher. 2. Running a task. * * <p>They need to be waken up differently. If the fetcher is blocking waiting on the next task * in the task queue, we should just notify that a task is available. If the fetcher is running * the user split reader, we should call SplitReader.wakeUp() instead. * * <p>The correctness can be thought of in the following way. The purpose of wake up is to let * the fetcher thread go to the very beginning of the running loop. */void wakeUp(boolean taskOnly) { // Synchronize to make sure the wake up only works for the current invocation of runOnce(). lock.lock(); try { wakeUpUnsafe(taskOnly); } finally { lock.unlock(); } }
3.26
flink_SplitFetcher_pauseOrResumeSplits_rdh
/** * Called when some splits of this source instance progressed too much beyond the global * watermark of all subtasks. If the split reader implements {@link SplitReader}, it will relay * the information asynchronously through the split fetcher thread. * * @param splitsToPause * the splits to pause * @param splitsToResume * the splits to resume */ public void pauseOrResumeSplits(Collection<SplitT> splitsToPause, Collection<SplitT> splitsToResume) { lock.lock(); try { enqueueTaskUnsafe(new PauseOrResumeSplitsTask<>(splitReader, splitsToPause, splitsToResume, allowUnalignedSourceSplits)); wakeUpUnsafe(true); } finally { lock.unlock(); } }
3.26
flink_TieredStorageMemoryManagerImpl_recycleBuffer_rdh
/** * Note that this method may be called by the netty thread. */ private void recycleBuffer(Object owner, MemorySegment buffer) { bufferPool.recycle(buffer); decNumRequestedBuffer(owner); }
3.26
flink_JobMetricGroup_putVariables_rdh
// ------------------------------------------------------------------------ // Component Metric Group Specifics // ------------------------------------------------------------------------ @Override protected void putVariables(Map<String, String> variables) { variables.put(ScopeFormat.SCOPE_JOB_ID, jobId.toString()); variables.put(ScopeFormat.SCOPE_JOB_NAME, jobName); }
3.26
flink_ClusterClientFactory_m0_rdh
/** * Returns the option to be used when trying to execute an application in Application Mode using * this cluster client factory, or an {@link Optional#empty()} if the environment of this * cluster client factory does not support Application Mode. */ default Optional<String> m0() { return Optional.empty(); }
3.26
flink_SourceBuilder_fromFormat_rdh
/** * Creates a new source that is bounded. * * @param env * The stream execution environment. * @param inputFormat * The input source to consume. * @param typeInfo * The type of the output. * @param <OUT> * The output type. * @return A source that is bounded. */ public static <OUT> DataStreamSource<OUT> fromFormat(StreamExecutionEnvironment env, InputFormat<OUT, ?> inputFormat, TypeInformation<OUT> typeInfo) { InputFormatSourceFunction<OUT> function = new InputFormatSourceFunction<>(inputFormat, typeInfo); env.clean(function); final StreamSource<OUT, ?> sourceOperator = new StreamSource<>(function); return new DataStreamSource<>(env, typeInfo, sourceOperator, true, SOURCE_NAME, Boundedness.BOUNDED); }
3.26
flink_DataSink_getPreferredResources_rdh
/** * Returns the preferred resources of this data sink. If no preferred resources have been set, * this returns the default resource profile. * * @return The preferred resources of this data sink. */ @PublicEvolving public ResourceSpec getPreferredResources() {return this.preferredResources; }
3.26
flink_DataSink_setParallelism_rdh
/** * Sets the parallelism for this data sink. The degree must be 1 or more. * * @param parallelism * The parallelism for this data sink. A value equal to {@link ExecutionConfig#PARALLELISM_DEFAULT} will use the system default. * @return This data sink with set parallelism. */ public DataSink<T> setParallelism(int parallelism) { OperatorValidationUtils.validateParallelism(parallelism); this.parallelism = parallelism; return this; }
3.26
flink_DataSink_withParameters_rdh
/** * Pass a configuration to the OutputFormat. * * @param parameters * Configuration parameters */ public DataSink<T> withParameters(Configuration parameters) {this.parameters = parameters;return this; } /** * Sorts each local partition of a {@link org.apache.flink.api.java.tuple.Tuple} data set on the * specified field in the specified {@link Order} before it is emitted by the output format. * * <p><b>Note: Only tuple data sets can be sorted using integer field indices.</b> * * <p>The tuple data set can be sorted on multiple fields in different orders by chaining {@link #sortLocalOutput(int, Order)} calls. * * @param field * The Tuple field on which the data set is locally sorted. * @param order * The Order in which the specified Tuple field is locally sorted. * @return This data sink operator with specified output order. * @see org.apache.flink.api.java.tuple.Tuple * @see Order * @deprecated Use {@link DataSet#sortPartition(int, Order)}
3.26
flink_DataSink_getParameters_rdh
/** * * @return Configuration for the OutputFormat. */ public Configuration getParameters() { return this.parameters; }
3.26
flink_DataSink_toString_rdh
// -------------------------------------------------------------------------------------------- @Override public String toString() { return ((("DataSink '" + (this.name == null ? "<unnamed>" : this.name)) + "' (") + this.format.toString()) + ")"; }
3.26
flink_DataSink_translateToDataFlow_rdh
// -------------------------------------------------------------------------------------------- protected GenericDataSinkBase<T> translateToDataFlow(Operator<T> input) { // select the name (or create a default one) String name = (this.name != null) ? this.name : this.format.toString(); GenericDataSinkBase<T> sink = new GenericDataSinkBase<>(this.format, new UnaryOperatorInformation<>(this.type, new NothingTypeInfo()), name); // set input sink.setInput(input); // set parameters if (this.parameters != null) { sink.getParameters().addAll(this.parameters); } // set parallelism if (this.parallelism > 0) { // use specified parallelism sink.setParallelism(this.parallelism); } else { // if no parallelism has been specified, use parallelism of input operator to enable // chaining sink.setParallelism(input.getParallelism()); } if (this.sortKeyPositions != null) { // configure output sorting Ordering ordering = new Ordering(); for (int i = 0; i < this.sortKeyPositions.length; i++) { ordering.appendOrdering(this.sortKeyPositions[i], null, this.sortOrders[i]);} sink.setLocalOrder(ordering); } return sink; }
3.26
flink_DataSink_setResources_rdh
/** * Sets the resources for this data sink, and the minimum and preferred resources are the same * by default. * * @param resources * The resources for this data sink. * @return The data sink with set minimum and preferred resources. */ private DataSink<T> setResources(ResourceSpec resources) { OperatorValidationUtils.validateResources(resources); this.minResources = resources; this.preferredResources = resources; return this; }
3.26
flink_DataSink_name_rdh
// -------------------------------------------------------------------------------------------- public DataSink<T> name(String name) { this.name = name; return this; }
3.26
flink_HiveServer2Endpoint_GetQueryId_rdh
// CHECKSTYLE.OFF: MethodName /** * To be compatible with Hive3, add a default implementation. */ public TGetQueryIdResp GetQueryId(TGetQueryIdReq tGetQueryIdReq) throws TException { throw new TException(new UnsupportedOperationException(String.format(UNSUPPORTED_ERROR_MESSAGE, "GetQueryId"))); }
3.26
flink_HiveServer2Endpoint_waitUntilOperationIsTerminated_rdh
/** * Similar solution comparing to the {@code org.apache.hive.jdbc.HiveStatement#waitForOperationToComplete}. * * <p>The better solution is to introduce an interface similar to {@link TableResult#await()}. */ private void waitUntilOperationIsTerminated(SessionHandle sessionHandle, OperationHandle operationHandle) throws Exception { OperationInfo v63; do { v63 = service.getOperationInfo(sessionHandle, operationHandle); switch (v63.getStatus()) { case INITIALIZED : case PENDING : case RUNNING : Thread.sleep(CHECK_INTERVAL_MS); break; case CANCELED : case TIMEOUT : throw new SqlGatewayException(String.format("The operation %s's status is %s for the session %s.", operationHandle, v63.getStatus(), sessionHandle)); case ERROR : throw new SqlGatewayException(String.format("The operation %s's status is %s for the session %s.", operationHandle, v63.getStatus(), sessionHandle), v63.getException().orElseThrow(() -> new SqlGatewayException("Impossible! ERROR status should contains the error."))); case FINISHED : return; default : throw new SqlGatewayException(String.format("Unknown status: %s.", v63.getStatus())); } } while (true ); }
3.26
flink_HiveServer2Endpoint_SetClientInfo_rdh
/** * To be compatible with Hive3, add a default implementation. */ public TSetClientInfoResp SetClientInfo(TSetClientInfoReq tSetClientInfoReq) throws TException { return new TSetClientInfoResp(buildErrorStatus("SetClientInfo")); }
3.26
flink_HiveServer2Endpoint_equals_rdh
// CHECKSTYLE.ON: MethodName @Override public boolean equals(Object o) { if (this == o) { return true; } if (!(o instanceof HiveServer2Endpoint)) { return false; } HiveServer2Endpoint that = ((HiveServer2Endpoint) (o)); return ((((((((((Objects.equals(socketAddress, that.socketAddress) && (minWorkerThreads == that.minWorkerThreads)) && (maxWorkerThreads == that.maxWorkerThreads)) && (requestTimeoutMs == that.requestTimeoutMs)) && (backOffSlotLengthMs == that.backOffSlotLengthMs)) && (maxMessageSize == that.maxMessageSize)) && Objects.equals(workerKeepAliveTime, that.workerKeepAliveTime)) && Objects.equals(catalogName, that.catalogName)) && Objects.equals(defaultDatabase, that.defaultDatabase)) && Objects.equals(allowEmbedded, that.allowEmbedded)) && Objects.equals(isVerbose, that.isVerbose)) && Objects.equals(moduleName, that.moduleName); }
3.26
flink_TaskEventDispatcher_m0_rdh
/** * Removes all registered event handlers. */ public void m0() { synchronized(registeredHandlers) { registeredHandlers.clear(); } }
3.26
flink_TaskEventDispatcher_publish_rdh
/** * Publishes the event to the registered {@link EventListener} instances. * * <p>This method is either called directly from a {@link LocalInputChannel} or the network I/O * thread on behalf of a {@link RemoteInputChannel}. * * @return whether the event was published to a registered event handler (initiated via {@link #registerPartition(ResultPartitionID)}) or not */ @Override public boolean publish(ResultPartitionID partitionId, TaskEvent event) { checkNotNull(partitionId);checkNotNull(event); TaskEventHandler taskEventHandler; synchronized(registeredHandlers) { taskEventHandler = registeredHandlers.get(partitionId); }if (taskEventHandler != null) { taskEventHandler.publish(event); return true; } return false; }
3.26
flink_TaskEventDispatcher_subscribeToEvent_rdh
/** * Subscribes a listener to this dispatcher for events on a partition. * * @param partitionId * ID of the partition to subscribe for (must be registered via {@link #registerPartition(ResultPartitionID)} first!) * @param eventListener * the event listener to subscribe * @param eventType * event type to subscribe to */ public void subscribeToEvent(ResultPartitionID partitionId, EventListener<TaskEvent> eventListener, Class<? extends TaskEvent> eventType) { checkNotNull(partitionId);checkNotNull(eventListener); checkNotNull(eventType); TaskEventHandler taskEventHandler; synchronized(registeredHandlers) { taskEventHandler = registeredHandlers.get(partitionId); } if (taskEventHandler == null) { throw new IllegalStateException(("Partition " + partitionId) + " not registered at task event dispatcher.");} taskEventHandler.subscribe(eventListener, eventType); }
3.26
flink_TaskEventDispatcher_registerPartition_rdh
/** * Registers the given partition for incoming task events allowing calls to {@link #subscribeToEvent(ResultPartitionID, EventListener, Class)}. * * @param partitionId * the partition ID */ public void registerPartition(ResultPartitionID partitionId) { checkNotNull(partitionId); synchronized(registeredHandlers) { LOG.debug("registering {}", partitionId); if (registeredHandlers.put(partitionId, new TaskEventHandler()) != null) { throw new IllegalStateException(("Partition " + partitionId) + " already registered at task event dispatcher."); } } }
3.26
flink_TaskEventDispatcher_unregisterPartition_rdh
/** * Removes the given partition from listening to incoming task events, thus forbidding calls to * {@link #subscribeToEvent(ResultPartitionID, EventListener, Class)}. * * @param partitionId * the partition ID */ public void unregisterPartition(ResultPartitionID partitionId) { checkNotNull(partitionId);synchronized(registeredHandlers) { LOG.debug("unregistering {}", partitionId); // NOTE: tolerate un-registration of non-registered task (unregister is always called // in the cleanup phase of a task even if it never came to the registration - see // Task.java) registeredHandlers.remove(partitionId); } }
3.26
flink_SlidingWindowAssigner_of_rdh
// ------------------------------------------------------------------------ // Utilities // ------------------------------------------------------------------------ /** * Creates a new {@code SlidingEventTimeWindows} {@link org.apache.flink.streaming.api.windowing.assigners.WindowAssigner} that assigns elements to * sliding time windows based on the element timestamp. * * @param size * The size of the generated windows. * @param slide * The slide interval of the generated windows. * @return The time policy. */ public static SlidingWindowAssigner of(Duration size, Duration slide) { return new SlidingWindowAssigner(size.toMillis(), slide.toMillis(), 0, true); }
3.26
flink_HttpRequestHandler_m0_rdh
/** * Checks whether the given directory exists and is writable. If it doesn't exist this method * will attempt to create it. * * @param uploadDir * directory to check * @throws IOException * if the directory does not exist and cannot be created, or if the * directory isn't writable */ public static synchronized void m0(File uploadDir) throws IOException { if (uploadDir.exists() && uploadDir.canWrite()) { LOG.info("Using directory {} for web frontend JAR file uploads.", uploadDir); } else if (uploadDir.mkdirs() && uploadDir.canWrite()) { LOG.info("Created directory {} for web frontend JAR file uploads.", uploadDir); } else { LOG.warn("Jar upload directory {} cannot be created or is not writable.", uploadDir.getAbsolutePath()); throw new IOException(String.format("Jar upload directory %s cannot be created or is not writable.", uploadDir.getAbsolutePath())); } }
3.26
flink_JobSubmissionResult_m0_rdh
/** * Checks if this JobSubmissionResult is also a JobExecutionResult. See {@code getJobExecutionResult} to retrieve the JobExecutionResult. * * @return True if this is a JobExecutionResult, false otherwise */ public boolean m0() { return false; }
3.26
flink_CrossOperator_projectTuple10_rdh
/** * Projects a pair of crossed elements to a {@link Tuple} with the previously selected * fields. * * @return The projected data set. * @see Tuple * @see DataSet */ public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9> ProjectCross<I1, I2, Tuple10<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>> projectTuple10() { TypeInformation<?>[] fTypes = m3(fieldIndexes); TupleTypeInfo<Tuple10<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>> tType = new TupleTypeInfo<Tuple10<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>>(fTypes); return new ProjectCross<I1, I2, Tuple10<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>>(this.ds1, this.ds2, this.fieldIndexes, this.isFieldInFirst, tType, this, hint); }
3.26
flink_CrossOperator_projectTuple2_rdh
/** * Projects a pair of crossed elements to a {@link Tuple} with the previously selected * fields. * * @return The projected data set. * @see Tuple * @see DataSet */ public <T0, T1> ProjectCross<I1, I2, Tuple2<T0, T1>> projectTuple2() { TypeInformation<?>[] fTypes = m3(fieldIndexes); TupleTypeInfo<Tuple2<T0, T1>> tType = new TupleTypeInfo<Tuple2<T0, T1>>(fTypes); return new ProjectCross<I1, I2, Tuple2<T0, T1>>(this.ds1, this.ds2, this.fieldIndexes, this.isFieldInFirst, tType, this, hint); }
3.26
flink_CrossOperator_projectTuple21_rdh
/** * Projects a pair of crossed elements to a {@link Tuple} with the previously selected * fields. * * @return The projected data set. * @see Tuple * @see DataSet */ public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20> ProjectCross<I1, I2, Tuple21<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20>> projectTuple21() { TypeInformation<?>[] fTypes = m3(fieldIndexes); TupleTypeInfo<Tuple21<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20>> tType = new TupleTypeInfo<Tuple21<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20>>(fTypes);return new ProjectCross<I1, I2, Tuple21<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20>>(this.ds1, this.ds2, this.fieldIndexes, this.isFieldInFirst, tType, this, hint); }
3.26
flink_CrossOperator_projectTuple6_rdh
/** * Projects a pair of crossed elements to a {@link Tuple} with the previously selected * fields. * * @return The projected data set. * @see Tuple * @see DataSet */ public <T0, T1, T2, T3, T4, T5> ProjectCross<I1, I2, Tuple6<T0, T1, T2, T3, T4, T5>> projectTuple6() { TypeInformation<?>[] fTypes = m3(fieldIndexes); TupleTypeInfo<Tuple6<T0, T1, T2, T3, T4, T5>> tType = new TupleTypeInfo<Tuple6<T0, T1, T2, T3, T4, T5>>(fTypes); return new ProjectCross<I1, I2, Tuple6<T0, T1, T2, T3, T4, T5>>(this.ds1, this.ds2, this.fieldIndexes, this.isFieldInFirst, tType, this, hint); }
3.26
flink_CrossOperator_projectTuple25_rdh
/** * Projects a pair of crossed elements to a {@link Tuple} with the previously selected * fields. * * @return The projected data set. * @see Tuple * @see DataSet */ public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22, T23, T24> ProjectCross<I1, I2, Tuple25<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22, T23, T24>> projectTuple25() { TypeInformation<?>[] fTypes = m3(fieldIndexes); TupleTypeInfo<Tuple25<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22, T23, T24>> tType = new TupleTypeInfo<Tuple25<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22, T23, T24>>(fTypes); return new ProjectCross<I1, I2, Tuple25<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22, T23, T24>>(this.ds1, this.ds2, this.fieldIndexes, this.isFieldInFirst, tType, this, hint); }
3.26
flink_CrossOperator_projectTuple14_rdh
/** * Projects a pair of crossed elements to a {@link Tuple} with the previously selected * fields. * * @return The projected data set. * @see Tuple * @see DataSet */public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13> ProjectCross<I1, I2, Tuple14<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13>> projectTuple14() { TypeInformation<?>[] fTypes = m3(fieldIndexes); TupleTypeInfo<Tuple14<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13>> tType = new TupleTypeInfo<Tuple14<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13>>(fTypes); return new ProjectCross<I1, I2, Tuple14<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13>>(this.ds1, this.ds2, this.fieldIndexes, this.isFieldInFirst, tType, this, hint); }
3.26
flink_CrossOperator_projectTuple18_rdh
/** * Projects a pair of crossed elements to a {@link Tuple} with the previously selected * fields. * * @return The projected data set. * @see Tuple * @see DataSet */ public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17> ProjectCross<I1, I2, Tuple18<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17>> projectTuple18() { TypeInformation<?>[] fTypes = m3(fieldIndexes); TupleTypeInfo<Tuple18<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17>> v57 = new TupleTypeInfo<Tuple18<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17>>(fTypes); return new ProjectCross<I1, I2, Tuple18<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17>>(this.ds1, this.ds2, this.fieldIndexes, this.isFieldInFirst, v57, this, hint); }
3.26
flink_CrossOperator_projectFirst_rdh
/** * Continues a ProjectCross transformation and adds fields of the first cross input. * * <p>If the first cross input is a {@link Tuple} {@link DataSet}, fields can be selected by * their index. If the first cross input is not a Tuple DataSet, no parameters should be * passed. * * <p>Fields of the first and second input can be added by chaining the method calls of * {@link org.apache.flink.api.java.operators.CrossOperator.CrossProjection#projectFirst(int...)} * and {@link org.apache.flink.api.java.operators.CrossOperator.CrossProjection#projectSecond(int...)}. * * @param firstFieldIndexes * If the first input is a Tuple DataSet, the indexes of the * selected fields. For a non-Tuple DataSet, do not provide parameters. The order of * fields in the output tuple is defined by to the order of field indexes. * @return An extended CrossProjection. * @see Tuple * @see DataSet * @see org.apache.flink.api.java.operators.CrossOperator.CrossProjection * @see org.apache.flink.api.java.operators.CrossOperator.ProjectCross */ protected CrossProjection<I1, I2> projectFirst(int... firstFieldIndexes) { boolean isFirstTuple; if ((ds1.getType() instanceof TupleTypeInfo) && (firstFieldIndexes.length > 0)) { isFirstTuple = true; } else { isFirstTuple = false; } if ((!isFirstTuple) && (firstFieldIndexes.length != 0)) { // field index provided for non-Tuple input throw new IllegalArgumentException("Input is not a Tuple. Call projectFirst() without arguments to include it."); } else if (firstFieldIndexes.length > (22 - this.fieldIndexes.length)) { // to many field indexes provided throw new IllegalArgumentException("You may select only up to twenty-two (22) fields in total."); } int offset = this.fieldIndexes.length; if (isFirstTuple) { // extend index and flag arrays this.fieldIndexes = Arrays.copyOf(this.fieldIndexes, this.fieldIndexes.length + firstFieldIndexes.length); this.isFieldInFirst = Arrays.copyOf(this.isFieldInFirst, this.isFieldInFirst.length + firstFieldIndexes.length); // copy field indexes int maxFieldIndex = numFieldsDs1; for (int i = 0; i < firstFieldIndexes.length; i++) { // check if indexes in range Preconditions.checkElementIndex(firstFieldIndexes[i], maxFieldIndex); this.isFieldInFirst[offset + i] = true; this.fieldIndexes[offset + i] = firstFieldIndexes[i]; } } else { // extend index and flag arrays this.fieldIndexes = Arrays.copyOf(this.fieldIndexes, this.fieldIndexes.length + 1); this.isFieldInFirst = Arrays.copyOf(this.isFieldInFirst, this.isFieldInFirst.length + 1); // add input object to output tuple this.isFieldInFirst[offset] = true; this.fieldIndexes[offset] = -1;} return this; }
3.26
flink_CrossOperator_m1_rdh
/** * Projects a pair of crossed elements to a {@link Tuple} with the previously selected * fields. * * @return The projected data set. * @see Tuple * @see DataSet */ public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18> ProjectCross<I1, I2, Tuple19<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18>> m1() { TypeInformation<?>[] fTypes = m3(fieldIndexes); TupleTypeInfo<Tuple19<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18>> tType = new TupleTypeInfo<Tuple19<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18>>(fTypes); return new ProjectCross<I1, I2, Tuple19<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18>>(this.ds1, this.ds2, this.fieldIndexes, this.isFieldInFirst, tType, this, hint); }
3.26
flink_CrossOperator_projectTuple11_rdh
/** * Projects a pair of crossed elements to a {@link Tuple} with the previously selected * fields. * * @return The projected data set. * @see Tuple * @see DataSet */ public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10> ProjectCross<I1, I2, Tuple11<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>> projectTuple11() { TypeInformation<?>[] fTypes = m3(fieldIndexes); TupleTypeInfo<Tuple11<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>> tType = new TupleTypeInfo<Tuple11<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>>(fTypes); return new ProjectCross<I1, I2, Tuple11<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>>(this.ds1, this.ds2, this.fieldIndexes, this.isFieldInFirst, tType, this, hint); }
3.26
flink_CrossOperator_projectTuple3_rdh
/** * Projects a pair of crossed elements to a {@link Tuple} with the previously selected * fields. * * @return The projected data set. * @see Tuple * @see DataSet */ public <T0, T1, T2> ProjectCross<I1, I2, Tuple3<T0, T1, T2>> projectTuple3() {TypeInformation<?>[] fTypes = m3(fieldIndexes); TupleTypeInfo<Tuple3<T0, T1, T2>> tType = new TupleTypeInfo<Tuple3<T0, T1, T2>>(fTypes); return new ProjectCross<I1, I2, Tuple3<T0, T1, T2>>(this.ds1, this.ds2, this.fieldIndexes, this.isFieldInFirst, tType, this, hint);}
3.26
flink_CrossOperator_projectTuple24_rdh
/** * Projects a pair of crossed elements to a {@link Tuple} with the previously selected * fields. * * @return The projected data set. * @see Tuple * @see DataSet */ public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22, T23> ProjectCross<I1, I2, Tuple24<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22, T23>> projectTuple24() { TypeInformation<?>[] fTypes = m3(fieldIndexes); TupleTypeInfo<Tuple24<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22, T23>> tType = new TupleTypeInfo<Tuple24<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22, T23>>(fTypes); return new ProjectCross<I1, I2, Tuple24<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22, T23>>(this.ds1, this.ds2, this.fieldIndexes, this.isFieldInFirst, tType, this, hint); }
3.26
flink_CrossOperator_projectTuple7_rdh
/** * Projects a pair of crossed elements to a {@link Tuple} with the previously selected * fields. * * @return The projected data set. * @see Tuple * @see DataSet */ public <T0, T1, T2, T3, T4, T5, T6> ProjectCross<I1, I2, Tuple7<T0, T1, T2, T3, T4, T5, T6>> projectTuple7() { TypeInformation<?>[] fTypes = m3(fieldIndexes); TupleTypeInfo<Tuple7<T0, T1, T2, T3, T4, T5, T6>> tType = new TupleTypeInfo<Tuple7<T0, T1, T2, T3, T4, T5, T6>>(fTypes); return new ProjectCross<I1, I2, Tuple7<T0, T1, T2, T3, T4, T5, T6>>(this.ds1, this.ds2, this.fieldIndexes, this.isFieldInFirst, tType, this, hint); }
3.26
flink_CrossOperator_projectTuple15_rdh
/** * Projects a pair of crossed elements to a {@link Tuple} with the previously selected * fields. * * @return The projected data set. * @see Tuple * @see DataSet */ public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14> ProjectCross<I1, I2, Tuple15<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14>> projectTuple15() { TypeInformation<?>[] fTypes = m3(fieldIndexes); TupleTypeInfo<Tuple15<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14>> tType = new TupleTypeInfo<Tuple15<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14>>(fTypes); return new ProjectCross<I1, I2, Tuple15<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14>>(this.ds1, this.ds2, this.fieldIndexes, this.isFieldInFirst, tType, this, hint); }
3.26
flink_CrossOperator_projectSecond_rdh
/** * Continues a ProjectCross transformation and adds fields of the second cross input. * * <p>If the second cross input is a {@link Tuple} {@link DataSet}, fields can be selected * by their index. If the second cross input is not a Tuple DataSet, no parameters should be * passed. * * <p>Fields of the first and second input can be added by chaining the method calls of * {@link org.apache.flink.api.java.operators.CrossOperator.CrossProjection#projectFirst(int...)} * and {@link org.apache.flink.api.java.operators.CrossOperator.CrossProjection#projectSecond(int...)}. * * @param secondFieldIndexes * If the second input is a Tuple DataSet, the indexes of the * selected fields. For a non-Tuple DataSet, do not provide parameters. The order of * fields in the output tuple is defined by to the order of field indexes. * @return An extended CrossProjection. * @see Tuple * @see DataSet * @see org.apache.flink.api.java.operators.CrossOperator.CrossProjection * @see org.apache.flink.api.java.operators.CrossOperator.ProjectCross */ protected CrossProjection<I1, I2> projectSecond(int... secondFieldIndexes) { boolean v17; if ((ds2.getType() instanceof TupleTypeInfo) && (secondFieldIndexes.length > 0)) { v17 = true; } else { v17 = false; } if ((!v17) && (secondFieldIndexes.length != 0)) { // field index provided for non-Tuple input throw new IllegalArgumentException("Input is not a Tuple. Call projectSecond() without arguments to include it."); } else if (secondFieldIndexes.length > (22 - this.fieldIndexes.length)) { // to many field indexes provided throw new IllegalArgumentException("You may select only up to twenty-two (22) fields in total."); } int offset = this.fieldIndexes.length; if (v17) { // extend index and flag arrays this.fieldIndexes = Arrays.copyOf(this.fieldIndexes, this.fieldIndexes.length + secondFieldIndexes.length); this.isFieldInFirst = Arrays.copyOf(this.isFieldInFirst, this.isFieldInFirst.length + secondFieldIndexes.length); // copy field indexes int maxFieldIndex = f0; for (int i = 0; i < secondFieldIndexes.length; i++) { // check if indexes in range Preconditions.checkElementIndex(secondFieldIndexes[i], maxFieldIndex); this.isFieldInFirst[offset + i] = false; this.fieldIndexes[offset + i] = secondFieldIndexes[i]; } } else { // extend index and flag arrays this.fieldIndexes = Arrays.copyOf(this.fieldIndexes, this.fieldIndexes.length + 1); this.isFieldInFirst = Arrays.copyOf(this.isFieldInFirst, this.isFieldInFirst.length + 1); // add input object to output tuple this.isFieldInFirst[offset] = false; this.fieldIndexes[offset] = -1; } return this; }
3.26
flink_CrossOperator_projectTuple9_rdh
/** * Projects a pair of crossed elements to a {@link Tuple} with the previously selected * fields. * * @return The projected data set. * @see Tuple * @see DataSet */ public <T0, T1, T2, T3, T4, T5, T6, T7, T8> ProjectCross<I1, I2, Tuple9<T0, T1, T2, T3, T4, T5, T6, T7, T8>> projectTuple9() { TypeInformation<?>[] fTypes = m3(fieldIndexes); TupleTypeInfo<Tuple9<T0, T1, T2, T3, T4, T5, T6, T7, T8>> tType = new TupleTypeInfo<Tuple9<T0, T1, T2, T3, T4, T5, T6, T7, T8>>(fTypes); return new ProjectCross<I1, I2, Tuple9<T0, T1, T2, T3, T4, T5, T6, T7, T8>>(this.ds1, this.ds2, this.fieldIndexes, this.isFieldInFirst, tType, this, hint); }
3.26
flink_CrossOperator_m2_rdh
/** * Projects a pair of crossed elements to a {@link Tuple} with the previously selected * fields. * * @return The projected data set. * @see Tuple * @see DataSet */ public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19> ProjectCross<I1, I2, Tuple20<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19>> m2() {TypeInformation<?>[] fTypes = m3(fieldIndexes); TupleTypeInfo<Tuple20<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19>> tType = new TupleTypeInfo<Tuple20<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19>>(fTypes); return new ProjectCross<I1, I2, Tuple20<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19>>(this.ds1, this.ds2, this.fieldIndexes, this.isFieldInFirst, tType, this, hint); }
3.26
flink_CrossOperator_projectTupleX_rdh
// -------------------------------------------------------------------------------------------- // The following lines are generated. // -------------------------------------------------------------------------------------------- // BEGIN_OF_TUPLE_DEPENDENT_CODE // GENERATED FROM org.apache.flink.api.java.tuple.TupleGenerator. /** * Chooses a projectTupleX according to the length of {@link org.apache.flink.api.java.operators.CrossOperator.CrossProjection#fieldIndexes}. * * @return The projected DataSet. */ @SuppressWarnings("unchecked") public <OUT extends Tuple> ProjectCross<I1, I2, OUT> projectTupleX() { ProjectCross<I1, I2, OUT> projectionCross = null; switch (fieldIndexes.length) { case 1 : projectionCross = ((ProjectCross<I1, I2, OUT>) (projectTuple1())); break; case 2 :projectionCross = ((ProjectCross<I1, I2, OUT>) (projectTuple2())); break; case 3 : projectionCross = ((ProjectCross<I1, I2, OUT>) (projectTuple3())); break; case 4 : projectionCross = ((ProjectCross<I1, I2, OUT>) (projectTuple4())); break; case 5 : projectionCross = ((ProjectCross<I1, I2, OUT>) (projectTuple5())); break; case 6 : projectionCross = ((ProjectCross<I1, I2, OUT>) (projectTuple6())); break; case 7 : projectionCross = ((ProjectCross<I1, I2, OUT>) (projectTuple7())); break; case 8 : projectionCross = ((ProjectCross<I1, I2, OUT>) (projectTuple8())); break; case 9 : projectionCross = ((ProjectCross<I1, I2, OUT>) (projectTuple9())); break; case 10 : projectionCross = ((ProjectCross<I1, I2, OUT>) (projectTuple10())); break; case 11 : projectionCross = ((ProjectCross<I1, I2, OUT>) (projectTuple11())); break; case 12 : projectionCross = ((ProjectCross<I1, I2, OUT>) (projectTuple12())); break; case 13 :projectionCross = ((ProjectCross<I1, I2, OUT>) (projectTuple13())); break;case 14 : projectionCross = ((ProjectCross<I1, I2, OUT>) (projectTuple14())); break; case 15 : projectionCross = ((ProjectCross<I1, I2, OUT>) (projectTuple15())); break; case 16 : projectionCross = ((ProjectCross<I1, I2, OUT>) (projectTuple16())); break; case 17 : projectionCross = ((ProjectCross<I1, I2, OUT>) (projectTuple17())); break; case 18 : projectionCross = ((ProjectCross<I1, I2, OUT>) (projectTuple18())); break; case 19 : projectionCross = ((ProjectCross<I1, I2, OUT>) (m1())); break; case 20 : projectionCross = ((ProjectCross<I1, I2, OUT>) (m2())); break; case 21 : projectionCross = ((ProjectCross<I1, I2, OUT>) (projectTuple21())); break; case 22 : projectionCross = ((ProjectCross<I1, I2, OUT>) (projectTuple22())); break; case 23 : projectionCross = ((ProjectCross<I1, I2, OUT>) (projectTuple23())); break; case 24 : projectionCross = ((ProjectCross<I1, I2, OUT>) (projectTuple24())); break; case 25 : projectionCross = ((ProjectCross<I1, I2, OUT>) (projectTuple25())); break; default : throw new IllegalStateException("Excessive arity in tuple."); } return projectionCross; } /** * Projects a pair of crossed elements to a {@link Tuple}
3.26
flink_CrossOperator_projectTuple13_rdh
/** * Projects a pair of crossed elements to a {@link Tuple} with the previously selected * fields. * * @return The projected data set. * @see Tuple * @see DataSet */ public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12> ProjectCross<I1, I2, Tuple13<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12>> projectTuple13() { TypeInformation<?>[] fTypes = m3(fieldIndexes); TupleTypeInfo<Tuple13<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12>> tType = new TupleTypeInfo<Tuple13<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12>>(fTypes); return new ProjectCross<I1, I2, Tuple13<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12>>(this.ds1, this.ds2, this.fieldIndexes, this.isFieldInFirst, tType, this, hint); }
3.26
flink_CrossOperator_types_rdh
/** * * @deprecated Deprecated method only kept for compatibility. */ @SuppressWarnings({ "hiding", "unchecked" }) @Deprecated @PublicEvolvingpublic <OUT extends Tuple> CrossOperator<I1, I2, OUT> types(Class<?>... types) { TupleTypeInfo<OUT> typeInfo = ((TupleTypeInfo<OUT>) (this.getResultType())); if (types.length != typeInfo.getArity()) { throw new InvalidProgramException("Provided types do not match projection."); } for (int i = 0; i < types.length; i++) { Class<?> typeClass = types[i]; if (!typeClass.equals(typeInfo.getTypeAt(i).getTypeClass())) { throw new InvalidProgramException(((("Provided type " + typeClass.getSimpleName()) + " at position ") + i) + " does not match projection"); } } return ((CrossOperator<I1, I2, OUT>) (this)); }
3.26
flink_CrossOperator_projectTuple22_rdh
/** * Projects a pair of crossed elements to a {@link Tuple} with the previously selected * fields. * * @return The projected data set. * @see Tuple * @see DataSet */ public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21> ProjectCross<I1, I2, Tuple22<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21>> projectTuple22() { TypeInformation<?>[] fTypes = m3(fieldIndexes); TupleTypeInfo<Tuple22<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21>> tType = new TupleTypeInfo<Tuple22<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21>>(fTypes); return new ProjectCross<I1, I2, Tuple22<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21>>(this.ds1, this.ds2, this.fieldIndexes, this.isFieldInFirst, tType, this, hint); }
3.26
flink_CrossOperator_projectTuple5_rdh
/** * Projects a pair of crossed elements to a {@link Tuple} with the previously selected * fields. * * @return The projected data set. * @see Tuple * @see DataSet */ public <T0, T1, T2, T3, T4> ProjectCross<I1, I2, Tuple5<T0, T1, T2, T3, T4>> projectTuple5() { TypeInformation<?>[] fTypes = m3(fieldIndexes); TupleTypeInfo<Tuple5<T0, T1, T2, T3, T4>> tType = new TupleTypeInfo<Tuple5<T0, T1, T2, T3, T4>>(fTypes); return new ProjectCross<I1, I2, Tuple5<T0, T1, T2, T3, T4>>(this.ds1, this.ds2, this.fieldIndexes, this.isFieldInFirst, tType, this, hint); }
3.26
flink_CrossOperator_projectTuple17_rdh
/** * Projects a pair of crossed elements to a {@link Tuple} with the previously selected * fields. * * @return The projected data set. * @see Tuple * @see DataSet */ public <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16> ProjectCross<I1, I2, Tuple17<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16>> projectTuple17() { TypeInformation<?>[] fTypes = m3(fieldIndexes); TupleTypeInfo<Tuple17<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16>> v55 = new TupleTypeInfo<Tuple17<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16>>(fTypes); return new ProjectCross<I1, I2, Tuple17<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16>>(this.ds1, this.ds2, this.fieldIndexes, this.isFieldInFirst, v55, this, hint); }
3.26