name
stringlengths
12
178
code_snippet
stringlengths
8
36.5k
score
float64
3.26
3.68
flink_ResultPartitionType_isHybridResultPartition_rdh
/** * {@link #isHybridResultPartition()} is used to judge whether it is the specified {@link #HYBRID_FULL} or {@link #HYBRID_SELECTIVE} resultPartitionType. * * <p>this method suitable for judgment conditions related to the specific implementation of * {@link ResultPartitionType}. * * <p>this method not related to data consumption and partition release. As for the logic * related to partition release, use {@link #isReleaseByScheduler()} instead, and as consume * type, use {@link #mustBePipelinedConsumed()} or {@link #canBePipelinedConsumed()} instead. */ public boolean isHybridResultPartition() { return (this == HYBRID_FULL) || (this == HYBRID_SELECTIVE); }
3.26
flink_ResultPartitionType_isBounded_rdh
/** * Whether this partition uses a limited number of (network) buffers or not. * * @return <tt>true</tt> if the number of buffers should be bound to some limit */ public boolean isBounded() { return isBounded; }
3.26
flink_ResultPartitionType_isPipelinedOrPipelinedBoundedResultPartition_rdh
/** * {@link #isPipelinedOrPipelinedBoundedResultPartition()} is used to judge whether it is the * specified {@link #PIPELINED} or {@link #PIPELINED_BOUNDED} resultPartitionType. * * <p>This method suitable for judgment conditions related to the specific implementation of * {@link ResultPartitionType}. * * <p>This method not related to data consumption and partition release. As for the logic * related to partition release, use {@link #isReleaseByScheduler()} instead, and as consume * type, use {@link #mustBePipelinedConsumed()} or {@link #canBePipelinedConsumed()} instead. */ public boolean isPipelinedOrPipelinedBoundedResultPartition() { return (this == PIPELINED) || (this == PIPELINED_BOUNDED); }
3.26
flink_ResultPartitionType_isBlockingOrBlockingPersistentResultPartition_rdh
/** * {@link #isBlockingOrBlockingPersistentResultPartition()} is used to judge whether it is the * specified {@link #BLOCKING} or {@link #BLOCKING_PERSISTENT} resultPartitionType. * * <p>this method suitable for judgment conditions related to the specific implementation of * {@link ResultPartitionType}. * * <p>this method not related to data consumption and partition release. As for the logic * related to partition release, use {@link #isReleaseByScheduler()} instead, and as consume * type, use {@link #mustBePipelinedConsumed()} or {@link #canBePipelinedConsumed()} instead. */ public boolean isBlockingOrBlockingPersistentResultPartition() { return (this == BLOCKING) || (this == BLOCKING_PERSISTENT); }
3.26
flink_ResultPartitionType_mustBePipelinedConsumed_rdh
/** * return if this partition's upstream and downstream must be scheduled in the same time. */ public boolean mustBePipelinedConsumed() { return f1 == ConsumingConstraint.MUST_BE_PIPELINED;}
3.26
flink_ExternalPythonKeyedCoProcessOperator_processTimer_rdh
/** * It is responsible to send timer data to python worker when a registered timer is fired. The * input data is a Row containing 4 fields: TimerFlag 0 for proc time, 1 for event time; * Timestamp of the fired timer; Current watermark and the key of the timer. * * @param timeDomain * The type of the timer. * @param timer * The fired timer. * @throws Exception * The runnerInputSerializer might throw exception. */ private void processTimer(TimeDomain timeDomain, InternalTimer<Row, VoidNamespace> timer) throws Exception { Row timerData = timerHandler.buildTimerData(timeDomain, internalTimerService.currentWatermark(), timer.getTimestamp(), timer.getKey(), null); timerDataSerializer.serialize(timerData, baosWrapper); pythonFunctionRunner.processTimer(baos.toByteArray()); baos.reset(); elementCount++; checkInvokeFinishBundleByCount(); emitResults(); }
3.26
flink_ExternalPythonKeyedCoProcessOperator_setCurrentKey_rdh
/** * As the beam state gRPC service will access the KeyedStateBackend in parallel with this * operator, we must override this method to prevent changing the current key of the * KeyedStateBackend while the beam service is handling requests. */ @Override public void setCurrentKey(Object key) { if (inBatchExecutionMode(getKeyedStateBackend())) { super.setCurrentKey(key); } keyForTimerService = key; }
3.26
flink_GSFileSystemOptions_getWriterTemporaryBucketName_rdh
/** * The temporary bucket name to use for recoverable writes, if different from the final bucket * name. */public Optional<String> getWriterTemporaryBucketName() { return flinkConfig.getOptional(WRITER_TEMPORARY_BUCKET_NAME); }
3.26
flink_GSFileSystemOptions_m0_rdh
/** * The chunk size to use for writes on the underlying Google WriteChannel. */ public Optional<MemorySize> m0() { return flinkConfig.getOptional(WRITER_CHUNK_SIZE); }
3.26
flink_TableSource_explainSource_rdh
/** * Describes the table source. * * @return A String explaining the {@link TableSource}. */default String explainSource() { return TableConnectorUtils.generateRuntimeName(getClass(), getTableSchema().getFieldNames()); }
3.26
flink_TableSource_getProducedDataType_rdh
/** * Returns the {@link DataType} for the produced data of the {@link TableSource}. * * @return The data type of the returned {@code DataStream}. */ default DataType getProducedDataType() { final TypeInformation<T> legacyType = getReturnType(); if (legacyType == null) { throw new TableException("Table source does not implement a produced data type."); } return fromLegacyInfoToDataType(legacyType).notNull(); } /** * * @deprecated This method will be removed in future versions as it uses the old type system. It is recommended to use {@link #getProducedDataType()} instead which uses the new type system based on {@link DataTypes}
3.26
flink_RichSqlInsert_isUpsert_rdh
// ~ Tools ------------------------------------------------------------------ public static boolean isUpsert(List<SqlLiteral> keywords) { for (SqlNode keyword : keywords) { SqlInsertKeyword keyword2 = ((SqlLiteral) (keyword)).symbolValue(SqlInsertKeyword.class); if (keyword2 == SqlInsertKeyword.UPSERT) { return true; } } return false; }
3.26
flink_RichSqlInsert_isOverwrite_rdh
/** * Returns whether the insert mode is overwrite (for whole table or for specific partitions). * * @return true if this is overwrite mode */ public boolean isOverwrite() { return getModifierNode(RichSqlInsertKeyword.OVERWRITE) != null; }
3.26
flink_RichSqlInsert_getTableHints_rdh
/** * Returns the table hints as list of {@code SqlNode} for current insert node. */ public SqlNodeList getTableHints() { return this.tableHints; }
3.26
flink_TupleComparator_hash_rdh
// -------------------------------------------------------------------------------------------- // Comparator Methods // -------------------------------------------------------------------------------------------- @SuppressWarnings("unchecked") @Override public int hash(T value) { int i = 0; try { int code = this.comparators[0].hash(value.getFieldNotNull(keyPositions[0])); for (i = 1; i < this.keyPositions.length; i++) { code *= HASH_SALT[i & 0x1f];// salt code with (i % HASH_SALT.length)-th salt // component code += this.comparators[i].hash(value.getFieldNotNull(keyPositions[i])); } return code; } catch (NullFieldException nfex) { throw new NullKeyFieldException(nfex); } catch (IndexOutOfBoundsException iobex) { throw new KeyFieldOutOfBoundsException(keyPositions[i]); } }
3.26
flink_SourceProvider_of_rdh
/** * Helper method for creating a Source provider with a provided source parallelism. */ static SourceProvider of(Source<RowData, ?, ?> source, @Nullable Integer sourceParallelism) { return new SourceProvider() { @Override public Source<RowData, ?, ?> createSource() { return source; } @Override public boolean isBounded() { return Boundedness.BOUNDED.equals(source.getBoundedness()); } @Override public Optional<Integer> getParallelism() {return Optional.ofNullable(sourceParallelism); } }; }
3.26
flink_RowSerializer_getPositionByName_rdh
// -------------------------------------------------------------------------------------------- private int getPositionByName(String fieldName) { assert positionByName != null; final Integer targetPos = positionByName.get(fieldName); if (targetPos == null) { throw new RuntimeException(String.format("Unknown field name '%s' for mapping to a row position. " + "Available names are: %s", fieldName, positionByName.keySet())); } return targetPos; }
3.26
flink_RowSerializer_snapshotConfiguration_rdh
// -------------------------------------------------------------------------------------------- // Serializer configuration snapshoting & compatibility // -------------------------------------------------------------------------------------------- @Override public TypeSerializerSnapshot<Row> snapshotConfiguration() { return new RowSerializerSnapshot(this); }
3.26
flink_RowSerializer_fillMask_rdh
// -------------------------------------------------------------------------------------------- // Serialization utilities // -------------------------------------------------------------------------------------------- private static void fillMask(int fieldLength, Row row, boolean[] mask, boolean supportsRowKind, int rowKindOffset) {if (supportsRowKind) { final byte v45 = row.getKind().toByteValue(); mask[0] = (v45 & 0x1) > 0; mask[1] = (v45 & 0x2) > 0; } for (int fieldPos = 0; fieldPos < fieldLength; fieldPos++) { mask[rowKindOffset + fieldPos] = row.getField(fieldPos) == null; } }
3.26
flink_AbstractStreamTableEnvironmentImpl_execEnv_rdh
/** * This is a temporary workaround for Python API. Python API should not use * StreamExecutionEnvironment at all. */ @Internalpublic StreamExecutionEnvironment execEnv() { return executionEnvironment; }
3.26
flink_AbstractID_longToByteArray_rdh
/** * Converts a long to a byte array. * * @param l * the long variable to be converted * @param ba * the byte array to store the result the of the conversion * @param offset * offset indicating at what position inside the byte array the result of the * conversion shall be stored */ private static void longToByteArray(long l, byte[] ba, int offset) { for (int i = 0; i < SIZE_OF_LONG; ++i) { final int shift = i << 3;// i * 8 ba[((offset + SIZE_OF_LONG) - 1) - i] = ((byte) ((l & (0xffL << shift)) >>> shift)); } }
3.26
flink_AbstractID_getBytes_rdh
/** * Gets the bytes underlying this ID. * * @return The bytes underlying this ID. */public byte[] getBytes() { byte[] bytes = new byte[SIZE]; longToByteArray(lowerPart, bytes, 0); longToByteArray(upperPart, bytes, SIZE_OF_LONG); return bytes; }
3.26
flink_AbstractID_toHexString_rdh
/** * Returns pure String representation of the ID in hexadecimal. This method should be used to * construct things like paths etc., that require a stable representation and is therefore * final. */ public final String toHexString() { if (this.hexString == null) { final byte[] ba = new byte[SIZE]; longToByteArray(this.lowerPart, ba, 0); longToByteArray(this.upperPart, ba, SIZE_OF_LONG); this.hexString = StringUtils.byteToHexString(ba); } return this.hexString; }
3.26
flink_AbstractID_equals_rdh
// -------------------------------------------------------------------------------------------- // Standard Utilities // -------------------------------------------------------------------------------------------- @Override public boolean equals(Object obj) { if (obj == this) { return true; } else if ((obj != null) && (obj.getClass() == getClass())) { AbstractID that = ((AbstractID) (obj));return (that.lowerPart == this.lowerPart) && (that.upperPart == this.upperPart); } else { return false; } }
3.26
flink_AbstractID_getLowerPart_rdh
// -------------------------------------------------------------------------------------------- /** * Gets the lower 64 bits of the ID. * * @return The lower 64 bits of the ID. */ public long getLowerPart() { return lowerPart; }
3.26
flink_AbstractID_byteArrayToLong_rdh
// Conversion Utilities // -------------------------------------------------------------------------------------------- /** * Converts the given byte array to a long. * * @param ba * the byte array to be converted * @param offset * the offset indicating at which byte inside the array the conversion shall begin * @return the long variable */ private static long byteArrayToLong(byte[] ba, int offset) { long l = 0;for (int i = 0; i < SIZE_OF_LONG; ++i) { l |= (ba[((offset + SIZE_OF_LONG) - 1) - i] & 0xffL) << (i << 3); } return l; }
3.26
flink_AvroUtils_getAvroUtils_rdh
/** * Returns either the default {@link AvroUtils} which throw an exception in cases where Avro * would be needed or loads the specific utils for Avro from flink-avro. */ public static AvroUtils getAvroUtils() { // try and load the special AvroUtils from the flink-avro package try { Class<?> clazz = Class.forName(AVRO_KRYO_UTILS, false, Thread.currentThread().getContextClassLoader()); return clazz.asSubclass(AvroUtils.class).getConstructor().newInstance(); } catch (ClassNotFoundException e) { // cannot find the utils, return the default implementation return new DefaultAvroUtils(); } catch (Exception e) { throw new RuntimeException(("Could not instantiate " + AVRO_KRYO_UTILS) + ".", e); } }
3.26
flink_PlannerCallProcedureOperation_toExternal_rdh
/** * Convert the value with internal representation to the value with external representation. */private Object toExternal(Object internalValue, DataType inputType, ClassLoader classLoader) { if (!DataTypeUtils.isInternal(inputType)) { // if the expected input type of the procedure is not internal type, // which means the converted Flink internal value doesn't // match the expected input type, then we need to convert the Flink // internal value to external value DataStructureConverter<Object, Object> v9 = DataStructureConverters.getConverter(inputType); v9.open(classLoader); return v9.toExternal(internalValue); } else { return internalValue; } }
3.26
flink_PlannerCallProcedureOperation_procedureResultToTableResult_rdh
/** * Convert the result of procedure to table result . */ private TableResultInternal procedureResultToTableResult(Object procedureResult, TableConfig tableConfig, ClassLoader userClassLoader) { // get result converter ZoneId zoneId = tableConfig.getLocalTimeZone(); DataType v21 = outputType; // if is not composite type, wrap it to composited type if (!LogicalTypeChecks.isCompositeType(outputType.getLogicalType())) { v21 = DataTypes.ROW(DataTypes.FIELD("result", v21)); } RowRowConverter rowConverter = null; // if the output is struct type, // we need a row converter to help convert it to Row. // we will first convert the struct value to RowData, and then use the row converter // to convert the RowData to Row. if (outputType.getLogicalType().getTypeRoot() == STRUCTURED_TYPE) { rowConverter = RowRowConverter.create(v21); rowConverter.open(userClassLoader); } // expand the result type to schema ResolvedSchema resultSchema = DataTypeUtils.expandCompositeTypeToSchema(v21); RowDataToStringConverter rowDataToStringConverter = new RowDataToStringConverterImpl(v21, zoneId, userClassLoader, tableConfig.get(ExecutionConfigOptions.TABLE_EXEC_LEGACY_CAST_BEHAVIOUR).isEnabled()); // create DataStructure converters DataStructureConverter<Object, Object> converter = DataStructureConverters.getConverter(outputType); converter.open(userClassLoader); return TableResultImpl.builder().resultProvider(new CallProcedureResultProvider(converter, rowDataToStringConverter, rowConverter, procedureResult)).schema(resultSchema).resultKind(ResultKind.SUCCESS_WITH_CONTENT).build(); }
3.26
flink_WordCount_main_rdh
// ************************************************************************* // PROGRAM // ************************************************************************* public static void main(String[] args) throws Exception { LOGGER.warn(DATASET_DEPRECATION_INFO); final MultipleParameterTool params = MultipleParameterTool.fromArgs(args); // set up the execution environment final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); // make parameters available in the web interface env.getConfig().setGlobalJobParameters(params); // get input data DataSet<String> text = null; if (params.has("input")) { // union all the inputs from text files for (String input : params.getMultiParameterRequired("input")) { if (text == null) { text = env.readTextFile(input); } else { text = text.union(env.readTextFile(input)); } } Preconditions.checkNotNull(text, "Input DataSet should not be null."); } else { // get default test text data System.out.println("Executing WordCount example with default input data set."); System.out.println("Use --input to specify file input."); text = WordCountData.getDefaultTextLineDataSet(env); } // split up the lines in pairs (2-tuples) containing: (word,1) DataSet<Tuple2<String, Integer>> counts = // group by the tuple field "0" and sum up tuple field "1" text.flatMap(new Tokenizer()).groupBy(0).sum(1); // emit result if (params.has("output")) { counts.writeAsCsv(params.get("output"), "\n", " "); // execute program env.execute("WordCount Example"); } else {System.out.println("Printing result to stdout. Use --output to specify output path."); counts.print(); } }
3.26
flink_CoProcessFunction_onTimer_rdh
/** * Called when a timer set using {@link TimerService} fires. * * @param timestamp * The timestamp of the firing timer. * @param ctx * An {@link OnTimerContext} that allows querying the timestamp of the firing timer, * querying the {@link TimeDomain} of the firing timer and getting a {@link TimerService} * for registering timers and querying the time. The context is only valid during the * invocation of this method, do not store it. * @param out * The collector for returning result values. * @throws Exception * This method may throw exceptions. Throwing an exception will cause the * operation to fail and may trigger recovery. */ public void onTimer(long timestamp, OnTimerContext ctx, Collector<OUT> out) throws Exception { }
3.26
flink_ListAggWithRetractAggFunction_getArgumentDataTypes_rdh
// -------------------------------------------------------------------------------------------- // Planning // -------------------------------------------------------------------------------------------- @Override public List<DataType> getArgumentDataTypes() { return Collections.singletonList(DataTypes.STRING().bridgedTo(StringData.class)); }
3.26
flink_BatchShuffleReadBufferPool_requestBuffers_rdh
/** * Requests a collection of buffers (determined by {@link #numBuffersPerRequest}) from this * buffer pool. */ public List<MemorySegment> requestBuffers() throws Exception { List<MemorySegment> allocated = new ArrayList<>(numBuffersPerRequest); synchronized(buffers) { checkState(!destroyed, "Buffer pool is already destroyed."); if (!initialized) { initialize(); }Deadline deadline = Deadline.fromNow(WAITING_TIME); while (buffers.size() < numBuffersPerRequest) { checkState(!destroyed, "Buffer pool is already destroyed."); buffers.wait(WAITING_TIME.toMillis()); if (!deadline.hasTimeLeft()) { return allocated;// return the empty list } } while (allocated.size() < numBuffersPerRequest) { allocated.add(buffers.poll()); } lastBufferOperationTimestamp = System.currentTimeMillis(); } return allocated; }
3.26
flink_BatchShuffleReadBufferPool_destroy_rdh
/** * Destroys this buffer pool and after which, no buffer can be allocated any more. */ public void destroy() { synchronized(buffers) { destroyed = true; buffers.clear(); buffers.notifyAll(); } }
3.26
flink_BatchShuffleReadBufferPool_initialize_rdh
/** * Initializes this buffer pool which allocates all the buffers. */ public void initialize() { synchronized(buffers) { checkState(!destroyed, "Buffer pool is already destroyed."); if (initialized) { return; } initialized = true; try { for (int i = 0; i < numTotalBuffers; ++i) { buffers.add(MemorySegmentFactory.allocateUnpooledOffHeapMemory(bufferSize)); } } catch (OutOfMemoryError outOfMemoryError) { int allocated = buffers.size(); buffers.forEach(MemorySegment::free); buffers.clear(); throw new OutOfMemoryError(String.format(((((((("Can't allocate enough direct buffer for batch shuffle read buffer " + "pool (bytes allocated: %d, bytes still needed: %d). To ") + "avoid the exception, you need to do one of the following") + " adjustments: 1) If you have ever decreased %s, you need") + " to undo the decrement; 2) If you ever increased %s, you") + " should also increase %s; 3) If neither the above cases,") + " it usually means some other parts of your application ") + "have consumed too many direct memory and the value of %s") + " should be increased.", allocated * bufferSize, (numTotalBuffers - allocated) * bufferSize, TaskManagerOptions.FRAMEWORK_OFF_HEAP_MEMORY.key(), TaskManagerOptions.NETWORK_BATCH_SHUFFLE_READ_MEMORY.key(), TaskManagerOptions.FRAMEWORK_OFF_HEAP_MEMORY.key(), TaskManagerOptions.TASK_OFF_HEAP_MEMORY.key())); } } LOG.info("Batch shuffle IO buffer pool initialized: numBuffers={}, bufferSize={}.", numTotalBuffers, bufferSize); }
3.26
flink_BatchShuffleReadBufferPool_recycle_rdh
/** * Recycles a collection of buffers to this buffer pool. This method should never throw any * exception. */ public void recycle(Collection<MemorySegment> segments) { checkArgument(segments != null, "Buffer list must be not null."); if (segments.isEmpty()) { return; }synchronized(buffers) { checkState(initialized, "Recycling a buffer before initialization."); if (destroyed) { segments.forEach(MemorySegment::free); return; } boolean shouldNotify = (buffers.size() < numBuffersPerRequest) && ((buffers.size() + segments.size()) >= numBuffersPerRequest); buffers.addAll(segments); lastBufferOperationTimestamp = System.currentTimeMillis(); if (shouldNotify) { buffers.notifyAll(); } } }
3.26
flink_JobGraph_getCheckpointingSettings_rdh
/** * Gets the settings for asynchronous snapshots. This method returns null, when checkpointing is * not enabled. * * @return The snapshot settings */ public JobCheckpointingSettings getCheckpointingSettings() { return snapshotSettings;}
3.26
flink_JobGraph_addVertex_rdh
/** * Adds a new task vertex to the job graph if it is not already included. * * @param vertex * the new task vertex to be added */ public void addVertex(JobVertex vertex) { final JobVertexID id = vertex.getID(); JobVertex previous = taskVertices.put(id, vertex); // if we had a prior association, restore and throw an exception if (previous != null) { taskVertices.put(id, previous); throw new IllegalArgumentException("The JobGraph already contains a vertex with that id."); } }
3.26
flink_JobGraph_addUserJarBlobKey_rdh
/** * Adds the BLOB referenced by the key to the JobGraph's dependencies. * * @param key * path of the JAR file required to run the job on a task manager */ public void addUserJarBlobKey(PermanentBlobKey key) { if (key == null) { throw new IllegalArgumentException(); } if (!userJarBlobKeys.contains(key)) { userJarBlobKeys.add(key); } }
3.26
flink_JobGraph_getJobConfiguration_rdh
/** * Returns the configuration object for this job. Job-wide parameters should be set into that * configuration object. * * @return The configuration object for this job. */ public Configuration getJobConfiguration() { return this.jobConfiguration; }
3.26
flink_JobGraph_setJobID_rdh
/** * Sets the ID of the job. */ public void setJobID(JobID jobID) { this.jobID = jobID; }
3.26
flink_JobGraph_setClasspaths_rdh
/** * Sets the classpaths required to run the job on a task manager. * * @param paths * paths of the directories/JAR files required to run the job on a task manager */ public void setClasspaths(List<URL> paths) { classpaths = paths; }
3.26
flink_JobGraph_getVertices_rdh
/** * Returns an Iterable to iterate all vertices registered with the job graph. * * @return an Iterable to iterate all vertices registered with the job graph */public Iterable<JobVertex> getVertices() { return this.taskVertices.values(); }
3.26
flink_JobGraph_getNumberOfVertices_rdh
/** * Returns the number of all vertices. * * @return The number of all vertices. */ public int getNumberOfVertices() {return this.taskVertices.size(); }
3.26
flink_JobGraph_setExecutionConfig_rdh
/** * Sets the execution config. This method eagerly serialized the ExecutionConfig for future RPC * transport. Further modification of the referenced ExecutionConfig object will not affect this * serialized copy. * * @param executionConfig * The ExecutionConfig to be serialized. * @throws IOException * Thrown if the serialization of the ExecutionConfig fails */ public void setExecutionConfig(ExecutionConfig executionConfig) throws IOException { checkNotNull(executionConfig, "ExecutionConfig must not be null."); setSerializedExecutionConfig(new SerializedValue<>(executionConfig)); }
3.26
flink_JobGraph_getMaximumParallelism_rdh
/** * Gets the maximum parallelism of all operations in this job graph. * * @return The maximum parallelism of this job graph */public int getMaximumParallelism() { int maxParallelism = -1; for (JobVertex v6 : taskVertices.values()) { maxParallelism = Math.max(v6.getParallelism(), maxParallelism); } return maxParallelism; }
3.26
flink_JobGraph_addJars_rdh
/** * Adds the given jar files to the {@link JobGraph} via {@link JobGraph#addJar}. * * @param jarFilesToAttach * a list of the {@link URL URLs} of the jar files to attach to the * jobgraph. * @throws RuntimeException * if a jar URL is not valid. */ public void addJars(final List<URL> jarFilesToAttach) { for (URL jar : jarFilesToAttach) { try { addJar(new Path(jar.toURI())); } catch (URISyntaxException e) { throw new RuntimeException("URL is invalid. This should not happen.", e); } }}
3.26
flink_JobGraph_setSavepointRestoreSettings_rdh
/** * Sets the savepoint restore settings. * * @param settings * The savepoint restore settings. */ public void setSavepointRestoreSettings(SavepointRestoreSettings settings) { this.savepointRestoreSettings = checkNotNull(settings, "Savepoint restore settings"); }
3.26
flink_JobGraph_getVerticesSortedTopologicallyFromSources_rdh
// -------------------------------------------------------------------------------------------- public List<JobVertex> getVerticesSortedTopologicallyFromSources() throws InvalidProgramException { // early out on empty lists if (this.taskVertices.isEmpty()) { return Collections.emptyList(); } List<JobVertex> sorted = new ArrayList<JobVertex>(this.taskVertices.size());Set<JobVertex> remaining = new LinkedHashSet<JobVertex>(this.taskVertices.values()); // start by finding the vertices with no input edges // and the ones with disconnected inputs (that refer to some standalone data set) { Iterator<JobVertex> iter = remaining.iterator(); while (iter.hasNext()) { JobVertex v10 = iter.next(); if (v10.hasNoConnectedInputs()) { sorted.add(v10); iter.remove(); } } } int startNodePos = 0; // traverse from the nodes that were added until we found all elements while (!remaining.isEmpty()) { // first check if we have more candidates to start traversing from. if not, then the // graph is cyclic, which is not permitted if (startNodePos >= sorted.size()) { throw new InvalidProgramException("The job graph is cyclic."); } JobVertex current = sorted.get(startNodePos++); addNodesThatHaveNoNewPredecessors(current, sorted, remaining); } return sorted; }
3.26
flink_JobGraph_addUserArtifact_rdh
/** * Adds the path of a custom file required to run the job on a task manager. * * @param name * a name under which this artifact will be accessible through {@link DistributedCache} * @param file * path of a custom file required to run the job on a task manager */ public void addUserArtifact(String name, DistributedCache.DistributedCacheEntry file) { if (file == null) { throw new IllegalArgumentException(); }userArtifacts.putIfAbsent(name, file); }
3.26
flink_JobGraph_getJobID_rdh
// -------------------------------------------------------------------------------------------- /** * Returns the ID of the job. * * @return the ID of the job */ public JobID getJobID() { return this.jobID; }
3.26
flink_JobGraph_getSerializedExecutionConfig_rdh
/** * Returns the {@link ExecutionConfig}. * * @return ExecutionConfig */ public SerializedValue<ExecutionConfig> getSerializedExecutionConfig() { return serializedExecutionConfig;}
3.26
flink_JobGraph_addJar_rdh
// -------------------------------------------------------------------------------------------- // Handling of attached JAR files // -------------------------------------------------------------------------------------------- /** * Adds the path of a JAR file required to run the job on a task manager. * * @param jar * path of the JAR file required to run the job on a task manager */ public void addJar(Path jar) { if (jar == null) { throw new IllegalArgumentException(); } if (!userJars.contains(jar)) { userJars.add(jar); }}
3.26
flink_JobGraph_m1_rdh
/** * Returns an array of all job vertices that are registered with the job graph. The order in * which the vertices appear in the list is not defined. * * @return an array of all job vertices that are registered with the job graph */ public JobVertex[] m1() { return this.taskVertices.values().toArray(new JobVertex[this.taskVertices.size()]); }
3.26
flink_JobGraph_getUserArtifacts_rdh
/** * Gets the list of assigned user jar paths. * * @return The list of assigned user jar paths */ public Map<String, DistributedCache.DistributedCacheEntry> getUserArtifacts() { return userArtifacts; }
3.26
flink_JobGraph_getSavepointRestoreSettings_rdh
/** * Returns the configured savepoint restore setting. * * @return The configured savepoint restore settings. */ public SavepointRestoreSettings getSavepointRestoreSettings() { return savepointRestoreSettings; }
3.26
flink_JobGraph_getCoLocationGroups_rdh
/** * Returns all {@link CoLocationGroup} instances associated with this {@code JobGraph}. * * @return The associated {@code CoLocationGroup} instances. */ public Set<CoLocationGroup> getCoLocationGroups() { final Set<CoLocationGroup> coLocationGroups = IterableUtils.toStream(getVertices()).map(JobVertex::getCoLocationGroup).filter(Objects::nonNull).collect(Collectors.toSet()); return Collections.unmodifiableSet(coLocationGroups); }
3.26
flink_JobGraph_isCheckpointingEnabled_rdh
/** * Checks if the checkpointing was enabled for this job graph. * * @return true if checkpointing enabled */ public boolean isCheckpointingEnabled() { if (snapshotSettings == null) { return false; } return snapshotSettings.getCheckpointCoordinatorConfiguration().isCheckpointingEnabled(); }
3.26
flink_ApplicationDispatcherBootstrap_runApplicationEntryPoint_rdh
/** * Runs the user program entrypoint and completes the given {@code jobIdsFuture} with the {@link JobID JobIDs} of the submitted jobs. * * <p>This should be executed in a separate thread (or task). */ private void runApplicationEntryPoint(final CompletableFuture<List<JobID>> jobIdsFuture, final Set<JobID> tolerateMissingResult, final DispatcherGateway dispatcherGateway, final ScheduledExecutor scheduledExecutor, final boolean enforceSingleJobExecution, final boolean submitFailedJobOnApplicationError) { if (submitFailedJobOnApplicationError && (!enforceSingleJobExecution)) { jobIdsFuture.completeExceptionally(new ApplicationExecutionException(String.format("Submission of failed job in case of an application error ('%s') is not supported in non-HA setups.", DeploymentOptions.SUBMIT_FAILED_JOB_ON_APPLICATION_ERROR.key()))); return; } final List<JobID> v9 = new ArrayList<>(recoveredJobIds); try { final PipelineExecutorServiceLoader executorServiceLoader = new EmbeddedExecutorServiceLoader(v9, dispatcherGateway, scheduledExecutor); /* suppress sysout */ClientUtils.executeProgram(executorServiceLoader, configuration, f0, enforceSingleJobExecution, true); if (v9.isEmpty()) { jobIdsFuture.completeExceptionally(new ApplicationExecutionException("The application contains no execute() calls.")); } else { jobIdsFuture.complete(v9); } } catch (Throwable t) { // If we're running in a single job execution mode, it's safe to consider re-submission // of an already finished a success. final Optional<DuplicateJobSubmissionException> maybeDuplicate = ExceptionUtils.findThrowable(t, DuplicateJobSubmissionException.class); if ((enforceSingleJobExecution && maybeDuplicate.isPresent()) && maybeDuplicate.get().isGloballyTerminated()) { final JobID jobId = maybeDuplicate.get().getJobID(); tolerateMissingResult.add(jobId); jobIdsFuture.complete(Collections.singletonList(jobId)); } else if (submitFailedJobOnApplicationError && v9.isEmpty()) { final JobID failedJobId = JobID.fromHexString(configuration.get(PipelineOptionsInternal.PIPELINE_FIXED_JOB_ID)); dispatcherGateway.submitFailedJob(failedJobId, FAILED_JOB_NAME, t).thenAccept(ignored -> jobIdsFuture.complete(Collections.singletonList(failedJobId))); } else { jobIdsFuture.completeExceptionally(new ApplicationExecutionException("Could not execute application.", t)); } } }
3.26
flink_ApplicationDispatcherBootstrap_m0_rdh
/** * Runs the user program entrypoint by scheduling a task on the given {@code scheduledExecutor}. * The returned {@link CompletableFuture} completes when all jobs of the user application * succeeded. if any of them fails, or if job submission fails. */ private CompletableFuture<Void> m0(final DispatcherGateway dispatcherGateway, final ScheduledExecutor scheduledExecutor, final boolean enforceSingleJobExecution, final boolean submitFailedJobOnApplicationError) { final CompletableFuture<List<JobID>> applicationExecutionFuture = new CompletableFuture<>();final Set<JobID> tolerateMissingResult = Collections.synchronizedSet(new HashSet<>());// we need to hand in a future as return value because we need to get those JobIs out // from the scheduled task that executes the user program applicationExecutionTask = scheduledExecutor.schedule(() -> runApplicationEntryPoint(applicationExecutionFuture, tolerateMissingResult, dispatcherGateway, scheduledExecutor, enforceSingleJobExecution, submitFailedJobOnApplicationError), 0L, TimeUnit.MILLISECONDS); return applicationExecutionFuture.thenCompose(jobIds -> getApplicationResult(dispatcherGateway, jobIds, tolerateMissingResult, scheduledExecutor)); }
3.26
flink_ApplicationDispatcherBootstrap_finishBootstrapTasks_rdh
/** * Logs final application status and invokes error handler in case of unexpected failures. * Optionally shuts down the given dispatcherGateway when the application completes (either * successfully or in case of failure), depending on the corresponding config option. */ private CompletableFuture<Acknowledge> finishBootstrapTasks(final DispatcherGateway dispatcherGateway) { final CompletableFuture<Acknowledge> shutdownFuture = applicationCompletionFuture.handle((ignored, t) -> { if (t == null) { LOG.info("Application completed SUCCESSFULLY"); return finish(dispatcherGateway, ApplicationStatus.SUCCEEDED); } final Optional<ApplicationStatus> maybeApplicationStatus = extractApplicationStatus(t); if (maybeApplicationStatus.isPresent() && isCanceledOrFailed(maybeApplicationStatus.get())) { final ApplicationStatus applicationStatus = maybeApplicationStatus.get(); LOG.info("Application {}: ", applicationStatus, t); return finish(dispatcherGateway, applicationStatus); } if (t instanceof CancellationException) { LOG.warn("Application has been cancelled because the {} is being stopped.", ApplicationDispatcherBootstrap.class.getSimpleName()); return CompletableFuture.completedFuture(Acknowledge.get()); } LOG.warn("Application failed unexpectedly: ", t); return FutureUtils.<Acknowledge>completedExceptionally(t); }).thenCompose(Function.identity()); FutureUtils.handleUncaughtException(shutdownFuture, (t, e) -> errorHandler.onFatalError(e)); return shutdownFuture; }
3.26
flink_ApplicationDispatcherBootstrap_unwrapJobResultException_rdh
/** * If the given {@link JobResult} indicates success, this passes through the {@link JobResult}. * Otherwise, this returns a future that is finished exceptionally (potentially with an * exception from the {@link JobResult}). */ private CompletableFuture<JobResult> unwrapJobResultException(final CompletableFuture<JobResult> jobResult) { return jobResult.thenApply(result -> { if (result.isSuccess()) { return result; } throw new CompletionException(UnsuccessfulExecutionException.fromJobResult(result, f0.getUserCodeClassLoader())); }); }
3.26
flink_HsSubpartitionConsumerMemoryDataManager_addBuffer_rdh
// this method only called from subpartitionMemoryDataManager with write lock. @GuardedBy("consumerLock") public boolean addBuffer(HsBufferContext bufferContext) { tryIncreaseBacklog(bufferContext.getBuffer()); unConsumedBuffers.add(bufferContext); trimHeadingReleasedBuffers(); return unConsumedBuffers.size() <= 1; } /** * Check whether the head of {@link #unConsumedBuffers} is the buffer to be consumed. If so, * return the buffer and backlog. * * @param toConsumeIndex * index of buffer to be consumed. * @param buffersToRecycle * buffers to recycle if needed. * @return If the head of {@link #unConsumedBuffers} is target, return optional of the buffer and backlog. Otherwise, return {@link Optional#empty()}
3.26
flink_HsSubpartitionConsumerMemoryDataManager_getBacklog_rdh
// Un-synchronized get the backlog to provide memory data backlog, this will make the // result greater than or equal to the actual backlog, but obtaining an accurate backlog will // bring too much extra overhead. @SuppressWarnings("FieldAccessNotGuarded") @Override public int getBacklog() {return backlog; }
3.26
flink_HsSubpartitionConsumerMemoryDataManager_addInitialBuffers_rdh
// this method only called from subpartitionMemoryDataManager with write lock. @GuardedBy("consumerLock") public void addInitialBuffers(Deque<HsBufferContext> buffers) { for (HsBufferContext bufferContext : buffers) { tryIncreaseBacklog(bufferContext.getBuffer()); } unConsumedBuffers.addAll(buffers); }
3.26
flink_ServiceType_classify_rdh
// Helper method public static ServiceExposedType classify(Service service) { KubernetesConfigOptions.ServiceExposedType type = KubernetesConfigOptions.ServiceExposedType.valueOf(service.getSpec().getType()); if (type == ServiceExposedType.ClusterIP) { if (HeadlessClusterIPService.HEADLESS_CLUSTER_IP.equals(service.getSpec().getClusterIP())) {type = ServiceExposedType.Headless_ClusterIP; } }return type; }
3.26
flink_ServiceType_buildUpExternalRestService_rdh
/** * Build up the external rest service template, according to the jobManager parameters. * * @param kubernetesJobManagerParameters * the parameters of jobManager. * @return the external rest service */ public Service buildUpExternalRestService(KubernetesJobManagerParameters kubernetesJobManagerParameters) { final String serviceName = ExternalServiceDecorator.getExternalServiceName(kubernetesJobManagerParameters.getClusterId()); return new ServiceBuilder().withApiVersion(Constants.API_VERSION).withNewMetadata().withName(serviceName).withLabels(kubernetesJobManagerParameters.getCommonLabels()).withAnnotations(kubernetesJobManagerParameters.getRestServiceAnnotations()).endMetadata().withNewSpec().withType(kubernetesJobManagerParameters.getRestServiceExposedType().serviceType().getType()).withSelector(kubernetesJobManagerParameters.getSelectors()).addNewPort().withName(Constants.REST_PORT_NAME).withPort(kubernetesJobManagerParameters.getRestPort()).withNewTargetPort(kubernetesJobManagerParameters.getRestBindPort()).endPort().endSpec().build(); }
3.26
flink_ServiceType_getRestPortFromExternalService_rdh
/** * Get rest port from the external Service. */ public int getRestPortFromExternalService(Service externalService) { final List<ServicePort> servicePortCandidates = externalService.getSpec().getPorts().stream().filter(x -> x.getName().equals(Constants.REST_PORT_NAME)).collect(Collectors.toList()); if (servicePortCandidates.isEmpty()) { throw new RuntimeException(((("Failed to find port \"" + Constants.REST_PORT_NAME) + "\" in Service \"") + externalService.getMetadata().getName()) + "\""); } final ServicePort externalServicePort = servicePortCandidates.get(0); return getRestPort(externalServicePort); }
3.26
flink_Tuple12_equals_rdh
/** * Deep equality for tuples by calling equals() on the tuple members. * * @param o * the object checked for equality * @return true if this is equal to o. */ @Override public boolean equals(Object o) { if (this == o) { return true; } if (!(o instanceof Tuple12)) { return false; } @SuppressWarnings("rawtypes") Tuple12 tuple = ((Tuple12) (o)); if (f0 != null ? !f0.equals(tuple.f0) : tuple.f0 != null) { return false; } if (f1 != null ? !f1.equals(tuple.f1) : tuple.f1 != null) { return false; } if (f2 != null ? !f2.equals(tuple.f2) : tuple.f2 != null) { return false; } if (f3 != null ? !f3.equals(tuple.f3) : tuple.f3 != null) { return false; } if (f4 != null ? !f4.equals(tuple.f4) : tuple.f4 != null) { return false; } if (f5 != null ? !f5.equals(tuple.f5) : tuple.f5 != null) { return false; } if (f6 != null ? !f6.equals(tuple.f6) : tuple.f6 != null) { return false; } if (f7 != null ? !f7.equals(tuple.f7) : tuple.f7 != null) { return false; } if (f8 != null ? !f8.equals(tuple.f8) : tuple.f8 != null) { return false; } if (f9 != null ? !f9.equals(tuple.f9) : tuple.f9 != null) { return false; } if (f10 != null ? !f10.equals(tuple.f10) : tuple.f10 != null) { return false; } if (f11 != null ? !f11.equals(tuple.f11) : tuple.f11 != null) { return false; } return true; }
3.26
flink_Tuple12_m1_rdh
/** * Sets new values to all fields of the tuple. * * @param f0 * The value for field 0 * @param f1 * The value for field 1 * @param f2 * The value for field 2 * @param f3 * The value for field 3 * @param f4 * The value for field 4 * @param f5 * The value for field 5 * @param f6 * The value for field 6 * @param f7 * The value for field 7 * @param f8 * The value for field 8 * @param f9 * The value for field 9 * @param f10 * The value for field 10 * @param f11 * The value for field 11 */ public void m1(T0 f0, T1 f1, T2 f2, T3 f3, T4 f4, T5 f5, T6 f6, T7 f7, T8 f8, T9 f9, T10 f10, T11 f11) { this.f0 = f0; this.f1 = f1; this.f2 = f2; this.f3 = f3; this.f4 = f4; this.f5 = f5; this.f6 = f6; this.f7 = f7; this.f8 = f8; this.f9 = f9; this.f10 = f10; this.f11 = f11; }
3.26
flink_Tuple12_toString_rdh
// ------------------------------------------------------------------------------------------------- // standard utilities // ------------------------------------------------------------------------------------------------- /** * Creates a string representation of the tuple in the form (f0, f1, f2, f3, f4, f5, f6, f7, f8, * f9, f10, f11), where the individual fields are the value returned by calling {@link Object#toString} on that field. * * @return The string representation of the tuple. */ @Override public String toString() { return ((((((((((((((((((((((("(" + StringUtils.arrayAwareToString(this.f0)) + ",") + StringUtils.arrayAwareToString(this.f1)) + ",") + StringUtils.arrayAwareToString(this.f2)) + ",") + StringUtils.arrayAwareToString(this.f3)) + ",") + StringUtils.arrayAwareToString(this.f4)) + ",") + StringUtils.arrayAwareToString(this.f5)) + ",") + StringUtils.arrayAwareToString(this.f6)) + ",") + StringUtils.arrayAwareToString(this.f7)) + ",") + StringUtils.arrayAwareToString(this.f8)) + ",") + StringUtils.arrayAwareToString(this.f9)) + ",") + StringUtils.arrayAwareToString(this.f10)) + ",") + StringUtils.arrayAwareToString(this.f11)) + ")"; }
3.26
flink_Tuple12_of_rdh
/** * Creates a new tuple and assigns the given values to the tuple's fields. This is more * convenient than using the constructor, because the compiler can infer the generic type * arguments implicitly. For example: {@code Tuple3.of(n, x, s)} instead of {@code new * Tuple3<Integer, Double, String>(n, x, s)} */ public static <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11> Tuple12<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11> of(T0 f0, T1 f1, T2 f2, T3 f3, T4 f4, T5 f5, T6 f6, T7 f7, T8 f8, T9 f9, T10 f10, T11 f11) { return new Tuple12<>(f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11); }
3.26
flink_Tuple12_copy_rdh
/** * Shallow tuple copy. * * @return A new Tuple with the same fields as this. */ @Override @SuppressWarnings("unchecked") public Tuple12<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11> copy() {return new Tuple12<>(this.f0, this.f1, this.f2, this.f3, this.f4, this.f5, this.f6, this.f7, this.f8, this.f9, this.f10, this.f11); }
3.26
flink_ReduceDriver_prepare_rdh
// -------------------------------------------------------------------------------------------- @Override public void prepare() throws Exception { TaskConfig config = this.taskContext.getTaskConfig(); if (config.getDriverStrategy() != DriverStrategy.SORTED_REDUCE) { throw new Exception("Unrecognized driver strategy for Reduce driver: " + config.getDriverStrategy().name()); } this.serializer = this.taskContext.<T>getInputSerializer(0).getSerializer(); this.comparator = this.taskContext.getDriverComparator(0); this.input = this.taskContext.getInput(0); ExecutionConfig executionConfig = taskContext.getExecutionConfig(); this.objectReuseEnabled = executionConfig.isObjectReuseEnabled(); if (LOG.isDebugEnabled()) { LOG.debug(("ReduceDriver object reuse: " + (this.objectReuseEnabled ? "ENABLED" : "DISABLED")) + "."); } }
3.26
flink_ReduceDriver_setup_rdh
// ------------------------------------------------------------------------ @Override public void setup(TaskContext<ReduceFunction<T>, T> context) { this.taskContext = context; this.running = true; }
3.26
flink_OggJsonDecodingFormat_listReadableMetadata_rdh
// -------------------------------------------------------------------------------------------- // Metadata handling // -------------------------------------------------------------------------------------------- @Override public Map<String, DataType> listReadableMetadata() { final Map<String, DataType> metadataMap = new LinkedHashMap<>(); Stream.of(ReadableMetadata.values()).forEachOrdered(m -> metadataMap.put(m.key, m.dataType)); return metadataMap; }
3.26
flink_SharedStateRegistry_registerReference_rdh
/** * Shortcut for {@link #registerReference(SharedStateRegistryKey, StreamStateHandle, long, * boolean)} with preventDiscardingCreatedCheckpoint = false. */ default StreamStateHandle registerReference(SharedStateRegistryKey registrationKey, StreamStateHandle state, long checkpointID) { return registerReference(registrationKey, state, checkpointID, false); }
3.26
flink_KeyGroupStatePartitionStreamProvider_getKeyGroupId_rdh
/** * Returns the key group that corresponds to the data in the provided stream. */ public int getKeyGroupId() { return keyGroupId; }
3.26
flink_SegmentPartitionFileWriter_flush_rdh
/** * This method is only called by the flushing thread. */ private void flush(TieredStoragePartitionId partitionId, int subpartitionId, int segmentId, List<Tuple2<Buffer, Integer>> buffersToFlush) { try { writeBuffers(partitionId, subpartitionId, segmentId, buffersToFlush, getTotalBytes(buffersToFlush)); buffersToFlush.forEach(bufferToFlush -> bufferToFlush.f0.recycleBuffer()); } catch (IOException exception) { ExceptionUtils.rethrow(exception); } }
3.26
flink_SegmentPartitionFileWriter_flushOrFinishSegment_rdh
// ------------------------------------------------------------------------ // Internal Methods // ------------------------------------------------------------------------ private void flushOrFinishSegment(TieredStoragePartitionId partitionId, int subpartitionId, SegmentBufferContext segmentBufferContext, CompletableFuture<Void> flushSuccessNotifier) { int v5 = segmentBufferContext.getSegmentId(); List<Tuple2<Buffer, Integer>> buffersToFlush = segmentBufferContext.getBufferAndIndexes(); boolean isSegmentFinished = segmentBufferContext.isSegmentFinished(); checkState((!buffersToFlush.isEmpty()) || isSegmentFinished); if (buffersToFlush.size() > 0) { flush(partitionId, subpartitionId, v5, buffersToFlush); } if (isSegmentFinished) { writeSegmentFinishFile(partitionId, subpartitionId, v5); } flushSuccessNotifier.complete(null); }
3.26
flink_SegmentPartitionFileWriter_writeSegmentFinishFile_rdh
/** * Writing a segment-finish file when the current segment is complete. The downstream can * determine if the current segment is complete by checking for the existence of the * segment-finish file. * * <p>Note that the method is only called by the flushing thread. */ private void writeSegmentFinishFile(TieredStoragePartitionId partitionId, int subpartitionId, int segmentId) { try { WritableByteChannel channel = subpartitionChannels[subpartitionId]; if (channel != null) { channel.close(); subpartitionChannels[subpartitionId] = null; } SegmentPartitionFile.writeSegmentFinishFile(basePath, partitionId, subpartitionId, segmentId); } catch (IOException exception) { ExceptionUtils.rethrow(exception); } }
3.26
flink_PythonEnvironmentManagerUtils_pipInstallRequirements_rdh
/** * Installs the 3rd party libraries listed in the user-provided requirements file. An optional * requirements cached directory can be provided to support offline installation. In order not * to populate the public environment, the libraries will be installed to the specified * directory, and added to the PYTHONPATH of the UDF workers. * * @param requirementsFilePath * The path of the requirements file. * @param requirementsCacheDir * The path of the requirements cached directory. * @param requirementsInstallDir * The target directory of the installation. * @param pythonExecutable * The python interpreter used to launch the pip program. * @param environmentVariables * The environment variables used to launch the pip program. */ public static void pipInstallRequirements(String requirementsFilePath, @Nullable String requirementsCacheDir, String requirementsInstallDir, String pythonExecutable, Map<String, String> environmentVariables) throws IOException { String sitePackagesPath = getSitePackagesPath(requirementsInstallDir, pythonExecutable, environmentVariables); String path = String.join(File.pathSeparator, requirementsInstallDir, "bin"); appendToEnvironmentVariable("PYTHONPATH", sitePackagesPath, environmentVariables); appendToEnvironmentVariable("PATH", path, environmentVariables); List<String> commands = new ArrayList<>(Arrays.asList(pythonExecutable, "-m", "pip", "install", "--ignore-installed", "-r", requirementsFilePath, "--prefix", requirementsInstallDir)); if (requirementsCacheDir != null) { commands.addAll(Arrays.asList("--no-index", "--find-links", requirementsCacheDir)); } int retries = 0; while (true) { try { execute(commands.toArray(new String[0]), environmentVariables, true); break; } catch (Throwable t) { retries++; if (retries < MAX_RETRY_TIMES) { LOG.warn(String.format("Pip install failed, retrying... (%d/%d)", retries, MAX_RETRY_TIMES), t); } else { LOG.error(String.format("Pip install failed, already retried %d time...", retries)); throw new IOException(t); } } } }
3.26
flink_FailoverStrategyFactoryLoader_loadFailoverStrategyFactory_rdh
/** * Loads a {@link FailoverStrategy.Factory} from the given configuration. * * @param config * which specifies the failover strategy factory to load * @return failover strategy factory loaded */public static Factory loadFailoverStrategyFactory(final Configuration config) { checkNotNull(config); final String strategyParam = config.getString(JobManagerOptions.EXECUTION_FAILOVER_STRATEGY); switch (strategyParam.toLowerCase()) { case FULL_RESTART_STRATEGY_NAME : return new RestartAllFailoverStrategy.Factory(); case PIPELINED_REGION_RESTART_STRATEGY_NAME : return new RestartPipelinedRegionFailoverStrategy.Factory(); default : throw new IllegalConfigurationException("Unknown failover strategy: " + strategyParam); } }
3.26
flink_BinaryType_ofEmptyLiteral_rdh
/** * The SQL standard defines that character string literals are allowed to be zero-length strings * (i.e., to contain no characters) even though it is not permitted to declare a type that is * zero. For consistent behavior, the same logic applies to binary strings. * * <p>This method enables this special kind of binary string. * * <p>Zero-length binary strings have no serializable string representation. */public static BinaryType ofEmptyLiteral() { return new BinaryType(EMPTY_LITERAL_LENGTH, false); }
3.26
flink_DelegatingConfiguration_read_rdh
// -------------------------------------------------------------------------------------------- @Override public void read(DataInputView in) throws IOException { this.prefix = in.readUTF(); this.backingConfig.read(in); }
3.26
flink_DelegatingConfiguration_getString_rdh
// -------------------------------------------------------------------------------------------- @Override public String getString(String key, String defaultValue) { return this.backingConfig.getString(this.prefix + key, defaultValue); }
3.26
flink_DelegatingConfiguration_hashCode_rdh
// -------------------------------------------------------------------------------------------- @Override public int hashCode() {return this.prefix.hashCode() ^ this.backingConfig.hashCode(); }
3.26
flink_DelegatingConfiguration_prefixOption_rdh
// -------------------------------------------------------------------------------------------- private static <T> ConfigOption<T> prefixOption(ConfigOption<T> option, String prefix) { String key = prefix + option.key();List<FallbackKey> v11; if (option.hasFallbackKeys()) { v11 = new ArrayList<>(); for (FallbackKey dk : option.fallbackKeys()) { v11.add(createDeprecatedKey(prefix + dk.getKey())); } } else { v11 = Collections.emptyList(); } FallbackKey[] deprecated = v11.toArray(new FallbackKey[0]); return new ConfigOption<T>(key, option.getClazz(), option.description(), option.defaultValue(), option.isList(), deprecated); }
3.26
flink_SchedulerNG_updateJobResourceRequirements_rdh
/** * Update {@link JobResourceRequirements job resource requirements}. * * @param jobResourceRequirements * new resource requirements */ default void updateJobResourceRequirements(JobResourceRequirements jobResourceRequirements) { throw new UnsupportedOperationException(String.format("The %s does not support changing the parallelism without a job restart. This feature is currently only expected to work with the %s.", getClass().getSimpleName(), AdaptiveScheduler.class.getSimpleName())); }
3.26
flink_SchedulerNG_requestJobResourceRequirements_rdh
/** * Read current {@link JobResourceRequirements job resource requirements}. * * @return Current resource requirements. */ default JobResourceRequirements requestJobResourceRequirements() { throw new UnsupportedOperationException(String.format("The %s does not support changing the parallelism without a job restart. This feature is currently only expected to work with the %s.", getClass().getSimpleName(), AdaptiveScheduler.class.getSimpleName())); }
3.26
flink_StateConfigUtil_createTtlConfig_rdh
/** * Creates a {@link StateTtlConfig} depends on retentionTime parameter. * * @param retentionTime * State ttl time which unit is MILLISECONDS. */ public static StateTtlConfig createTtlConfig(long retentionTime) { if (retentionTime > 0) { return StateTtlConfig.newBuilder(Time.milliseconds(retentionTime)).setUpdateType(UpdateType.OnCreateAndWrite).setStateVisibility(StateVisibility.NeverReturnExpired).build(); } else {return StateTtlConfig.DISABLED; } }
3.26
flink_JoinDriver_setup_rdh
// ------------------------------------------------------------------------ @Override public void setup(TaskContext<FlatJoinFunction<IT1, IT2, OT>, OT> context) { this.taskContext = context; this.running = true; }
3.26
flink_FileRecordFormat_getCheckpointedPosition_rdh
/** * Optionally returns the current position of the reader. This can be implemented by readers * that want to speed up recovery from a checkpoint. * * <p>The current position of the reader is the position of the next record that will be * returned in a call to {@link #read()}. This can be implemented by readers that want to * speed up recovery from a checkpoint. * * <p>See the {@link FileRecordFormat top-level class comment} (section "Checkpointing") for * details. */ @Nullable default CheckpointedPosition getCheckpointedPosition() { return null; }
3.26
flink_MemoryBackendCheckpointStorageAccess_supportsHighlyAvailableStorage_rdh
// ------------------------------------------------------------------------ // Checkpoint Storage // ------------------------------------------------------------------------ @Override public boolean supportsHighlyAvailableStorage() { return checkpointsDirectory != null; }
3.26
flink_MemoryBackendCheckpointStorageAccess_toString_rdh
// ------------------------------------------------------------------------ // Utilities // ------------------------------------------------------------------------ @Override public String toString() { return (((((("MemoryBackendCheckpointStorage {" + "checkpointsDirectory=") + checkpointsDirectory) + ", fileSystem=") + fileSystem) + ", maxStateSize=") + maxStateSize) + '}'; }
3.26
flink_WebLogDataGenerator_genDocs_rdh
/** * Generates the files for the documents relation. The entries apply the following format: <br> * <code>URL | Content</code> * * @param noDocs * Number of entries for the documents relation * @param filterKeyWords * A list of keywords that should be contained * @param words * A list of words to fill the entries * @param path * Output path for the documents relation */ private static void genDocs(int noDocs, String[] filterKeyWords, String[] words, String path) { Random v5 = new Random(Calendar.getInstance().getTimeInMillis()); try (BufferedWriter fw = new BufferedWriter(new FileWriter(path))) { for (int i = 0; i < noDocs; i++) { int wordsInDoc = v5.nextInt(40) + 10; // URL StringBuilder doc = new StringBuilder(("url_" + i) + "|"); for (int j = 0; j < wordsInDoc; j++) { if (v5.nextDouble() > 0.9) { // Approx. every 10th word is a keyword doc.append(filterKeyWords[v5.nextInt(filterKeyWords.length)] + " "); } else { // Fills up the docs file(s) with random words doc.append(words[v5.nextInt(words.length)] + " "); } } doc.append("|\n"); fw.write(doc.toString()); } } catch (IOException e) { e.printStackTrace(); } }
3.26
flink_WebLogDataGenerator_main_rdh
/** * Main method to generate data for the {@link WebLogAnalysis} example program. * * <p>The generator creates to files: * * <ul> * <li><code>{tmp.dir}/documents</code> for the web documents * <li><code>{tmp.dir}/ranks</code> for the ranks of the web documents * <li><code>{tmp.dir}/visits</code> for the logged visits of web documents * </ul> * * @param args * <ol> * <li>Int: Number of web documents * <li>Int: Number of visits * </ol> */ public static void main(String[] args) { // parse parameters if (args.length < 2) {System.out.println("WebLogDataGenerator <numberOfDocuments> <numberOfVisits>"); System.exit(1); } int noDocs = Integer.parseInt(args[0]); int noVisits = Integer.parseInt(args[1]); String[] filterKWs = new String[]{ "editors", "oscillations", "convection" }; String[] words = new String[]{ "Lorem", "ipsum", "dolor", "sit", "amet", "consectetuer", "adipiscing", "elit", "sed", "diam", "nonummy", "nibh", "euismod", "tincidunt", "ut", "laoreet", "dolore", "magna", "aliquam", "erat", "volutpat", "Ut", "wisi", "enim", "ad", "minim", "veniam", "quis", "nostrud", "exerci", "tation", "ullamcorper", "suscipit", "lobortis", "nisl", "ut", "aliquip", "ex", "ea", "commodo" }; final String outPath = System.getProperty("java.io.tmpdir"); System.out.println("Generating documents files..."); genDocs(noDocs, filterKWs, words, outPath + "/documents"); System.out.println("Generating ranks files..."); genRanks(noDocs, outPath + "/ranks"); System.out.println("Generating visits files..."); m0(noVisits, noDocs, outPath + "/visits"); System.out.println("Done!"); }
3.26
flink_WebLogDataGenerator_m0_rdh
/** * Generates the files for the visits relation. The visits entries apply the following format: * <br> * <code>IP Address | URL | Date (YYYY-MM-DD) | Misc. Data (e.g. User-Agent) |\n</code> * * @param noVisits * Number of entries for the visits relation * @param noDocs * Number of entries in the documents relation * @param path * Output path for the visits relation */ private static void m0(int noVisits, int noDocs, String path) { Random rand = new Random(Calendar.getInstance().getTimeInMillis()); try (BufferedWriter fw = new BufferedWriter(new FileWriter(path))) { for (int i = 0; i < noVisits; i++) { int year = 2000 + rand.nextInt(10);// yearFilter 3 int month = rand.nextInt(12) + 1;// month between 1 and 12 int day = rand.nextInt(27) + 1;// day between 1 and 28 // IP address StringBuilder visit = new StringBuilder(((((((rand.nextInt(256) + ".") + rand.nextInt(256)) + ".") + rand.nextInt(256)) + ".") + rand.nextInt(256)) + "|"); // URL visit.append(("url_" + rand.nextInt(noDocs)) + "|"); // Date (format: YYYY-MM-DD) visit.append(((((year + "-") + month) + "-") + day) + "|"); // Miscellaneous data, e.g. User-Agent visit.append("0.12|Mozilla Firefox 3.1|de|de|Nothing special|124|\n"); fw.write(visit.toString()); } } catch (IOException e) { e.printStackTrace(); } }
3.26
flink_WebLogDataGenerator_genRanks_rdh
/** * Generates the files for the ranks relation. The ranks entries apply the following format: * <br> * <code>Rank | URL | Average Duration |\n</code> * * @param noDocs * Number of entries in the documents relation * @param path * Output path for the ranks relation */ private static void genRanks(int noDocs, String path) { Random rand = new Random(Calendar.getInstance().getTimeInMillis()); try (BufferedWriter fw = new BufferedWriter(new FileWriter(path))) { for (int i = 0; i < noDocs; i++) { // Rank StringBuilder rank = new StringBuilder(rand.nextInt(100) + "|"); // URL rank.append(("url_" + i) + "|"); // Average duration rank.append((rand.nextInt(10) + rand.nextInt(50)) + "|\n"); fw.write(rank.toString()); } } catch (IOException e) { e.printStackTrace(); } }
3.26
flink_MemoryTierProducerAgent_releaseResources_rdh
// ------------------------------------------------------------------------ // Internal Methods // ------------------------------------------------------------------------ private void releaseResources() { Arrays.stream(subpartitionProducerAgents).forEach(MemoryTierSubpartitionProducerAgent::release); }
3.26