name
stringlengths
12
178
code_snippet
stringlengths
8
36.5k
score
float64
3.26
3.68
flink_SharedBuffer_removeEvent_rdh
/** * Removes an event from cache and state. * * @param eventId * id of the event */ void removeEvent(EventId eventId) throws Exception { this.eventsBufferCache.invalidate(eventId); this.eventsBuffer.remove(eventId); }
3.26
flink_SharedBuffer_upsertEntry_rdh
/** * Inserts or updates a shareBufferNode in cache. * * @param nodeId * id of the event * @param entry * SharedBufferNode */ void upsertEntry(NodeId nodeId, Lockable<SharedBufferNode> entry) { this.entryCache.put(nodeId, entry); }
3.26
flink_SharedBuffer_getEntry_rdh
/** * It always returns node either from state or cache. * * @param nodeId * id of the node * @return SharedBufferNode */ Lockable<SharedBufferNode> getEntry(NodeId nodeId) { try { Lockable<SharedBufferNode> lockableFromCache = entryCache.getIfPresent(nodeId); if (Objects.nonNull(lockableFromCache)) { return lockableFromCache; } else { Lockable<SharedBufferNode> lockableFromState = entries.get(nodeId); if (Objects.nonNull(lockableFromState)) { entryCache.put(nodeId, lockableFromState); } return lockableFromState;} } catch (Exception ex) { throw new WrappingRuntimeException(ex);} }
3.26
flink_SharedBuffer_isEmpty_rdh
/** * Checks if there is no elements in the buffer. * * @return true if there is no elements in the buffer * @throws Exception * Thrown if the system cannot access the state. */ public boolean isEmpty() throws Exception {return Iterables.isEmpty(eventsBufferCache.asMap().keySet()) && Iterables.isEmpty(eventsBuffer.keys()); }
3.26
flink_SharedBuffer_upsertEvent_rdh
/** * Inserts or updates an event in cache. * * @param eventId * id of the event * @param event * event body */ void upsertEvent(EventId eventId, Lockable<V> event) { this.eventsBufferCache.put(eventId, event); }
3.26
flink_SharedBuffer_removeEntry_rdh
/** * Removes a ShareBufferNode from cache and state. * * @param nodeId * id of the event */ void removeEntry(NodeId nodeId) throws Exception { this.entryCache.invalidate(nodeId); this.entries.remove(nodeId); }
3.26
flink_TieredStorageResourceRegistry_clearResourceFor_rdh
/** * Remove all resources for the given owner. * * @param owner * identifier of the data that the resources correspond to. */ public void clearResourceFor(TieredStorageDataIdentifier owner) { List<TieredStorageResource> cleanersForOwner = registeredResources.remove(owner); if (cleanersForOwner != null) { cleanersForOwner.forEach(TieredStorageResource::release);} }
3.26
flink_TieredStorageResourceRegistry_registerResource_rdh
/** * Register a new resource for the given owner. * * @param owner * identifier of the data that the resource corresponds to. * @param tieredStorageResource * the tiered storage resources to be registered. */ public void registerResource(TieredStorageDataIdentifier owner, TieredStorageResource tieredStorageResource) { registeredResources.computeIfAbsent(owner, ignore -> new ArrayList<>()).add(tieredStorageResource); }
3.26
flink_MapSerializer_isImmutableType_rdh
// ------------------------------------------------------------------------ // Type Serializer implementation // ------------------------------------------------------------------------ @Override public boolean isImmutableType() { return false; }
3.26
flink_MapSerializer_snapshotConfiguration_rdh
// -------------------------------------------------------------------------------------------- @Override public TypeSerializerSnapshot<Map<K, V>> snapshotConfiguration() { return new MapSerializerSnapshot<>(this); }
3.26
flink_MapSerializer_getKeySerializer_rdh
// ------------------------------------------------------------------------ // MapSerializer specific properties // ------------------------------------------------------------------------ public TypeSerializer<K> getKeySerializer() { return keySerializer;}
3.26
flink_RateLimitedSourceReader_start_rdh
// ------------------------------------------------------------------------ @Override public void start() { sourceReader.start(); }
3.26
flink_TypeInferenceOperandInference_inferOperandTypesOrError_rdh
// -------------------------------------------------------------------------------------------- private void inferOperandTypesOrError(FlinkTypeFactory typeFactory, CallContext callContext, RelDataType[] operandTypes) { final List<DataType> expectedDataTypes; // typed arguments have highest priority if (typeInference.getTypedArguments().isPresent()) { expectedDataTypes = typeInference.getTypedArguments().get(); } else { expectedDataTypes = typeInference.getInputTypeStrategy().inferInputTypes(callContext, false).orElse(null); } // early out for invalid input if ((expectedDataTypes == null) || (expectedDataTypes.size() != operandTypes.length)) { return; } for (int i = 0; i < operandTypes.length; i++) { final LogicalType inferredType = expectedDataTypes.get(i).getLogicalType(); operandTypes[i] = typeFactory.createFieldTypeFromLogicalType(inferredType);} }
3.26
flink_LookupCallContext_getKey_rdh
// -------------------------------------------------------------------------------------------- private LookupKey getKey(int pos) { final int index = lookupKeyOrder[pos]; return lookupKeys.get(index); }
3.26
flink_JobID_generate_rdh
// ------------------------------------------------------------------------ // Static factory methods // ------------------------------------------------------------------------ /** * Creates a new (statistically) random JobID. * * @return A new random JobID. */ public static JobID generate() { return new JobID(); }
3.26
flink_JobID_fromHexString_rdh
/** * Parses a JobID from the given string. * * @param hexString * string representation of a JobID * @return Parsed JobID * @throws IllegalArgumentException * if the JobID could not be parsed from the given string */ public static JobID fromHexString(String hexString) { try { return new JobID(StringUtils.hexStringToByte(hexString)); } catch (Exception e) { throw new IllegalArgumentException((("Cannot parse JobID from \"" + hexString) + "\". The expected format is ") + "[0-9a-fA-F]{32}, e.g. fd72014d4c864993a2e5a9287b4a9c5d.", e); } }
3.26
flink_JobID_fromByteArray_rdh
/** * Creates a new JobID from the given byte sequence. The byte sequence must be exactly 16 bytes * long. The first eight bytes make up the lower part of the ID, while the next 8 bytes make up * the upper part of the ID. * * @param bytes * The byte sequence. * @return A new JobID corresponding to the ID encoded in the bytes. */ public static JobID fromByteArray(byte[] bytes) { return new JobID(bytes); }
3.26
flink_Table_limit_rdh
/** * Limits a (possibly sorted) result to the first n rows from an offset position. * * <p>This method is a synonym for {@link #offset(int)} followed by {@link #fetch(int)}. */default Table limit(int offset, int fetch) { return offset(offset).fetch(fetch); }
3.26
flink_AbstractMapSerializer_isImmutableType_rdh
// ------------------------------------------------------------------------ // Type Serializer implementation // ------------------------------------------------------------------------ @Override public boolean isImmutableType() { return false; }
3.26
flink_AbstractMapSerializer_getKeySerializer_rdh
// ------------------------------------------------------------------------ /** * Returns the serializer for the keys in the map. * * @return The serializer for the keys in the map. */ public TypeSerializer<K> getKeySerializer() { return keySerializer; }
3.26
flink_TupleTypeInfoBase_getFieldTypes_rdh
/** * Returns the field types. */ public TypeInformation<?>[] getFieldTypes() { return types; }
3.26
flink_LogicalTypeUtils_toRowType_rdh
/** * Converts any logical type to a row type. Composite types are converted to a row type. Atomic * types are wrapped into a field. */ public static RowType toRowType(LogicalType t) { switch (t.getTypeRoot()) { case ROW : return ((RowType) (t)); case STRUCTURED_TYPE : final StructuredType structuredType = ((StructuredType) (t)); final List<RowField> fields = structuredType.getAttributes().stream().map(attribute -> new RowField(attribute.getName(), attribute.getType(), attribute.getDescription().orElse(null))).collect(Collectors.toList()); return new RowType(structuredType.isNullable(), fields); case DISTINCT_TYPE : return toRowType(((DistinctType) (t)).getSourceType()); default : return RowType.of(t); } }
3.26
flink_LogicalTypeUtils_renameRowFields_rdh
/** * Renames the fields of the given {@link RowType}. */ public static RowType renameRowFields(RowType rowType, List<String> newFieldNames) { Preconditions.checkArgument(rowType.getFieldCount() == newFieldNames.size(), "Row length and new names must match."); final List<RowField> newFields = IntStream.range(0, rowType.getFieldCount()).mapToObj(pos -> { final RowField oldField = rowType.getFields().get(pos); return new RowField(newFieldNames.get(pos), oldField.getType(), oldField.getDescription().orElse(null)); }).collect(Collectors.toList()); return new RowType(rowType.isNullable(), newFields); }
3.26
flink_LogicalTypeUtils_toInternalConversionClass_rdh
/** * Returns the conversion class for the given {@link LogicalType} that is used by the table * runtime as internal data structure. * * @see RowData */ public static Class<?> toInternalConversionClass(LogicalType type) { // ordered by type root definition switch (type.getTypeRoot()) { case CHAR : case VARCHAR : return StringData.class; case BOOLEAN : return Boolean.class;case BINARY : case VARBINARY : return byte[].class; case DECIMAL : return DecimalData.class; case TINYINT : return Byte.class; case SMALLINT : return Short.class; case INTEGER : case DATE : case TIME_WITHOUT_TIME_ZONE : case INTERVAL_YEAR_MONTH : return Integer.class; case BIGINT : case INTERVAL_DAY_TIME : return Long.class; case FLOAT : return Float.class; case DOUBLE : return Double.class; case TIMESTAMP_WITHOUT_TIME_ZONE : case TIMESTAMP_WITH_LOCAL_TIME_ZONE : return TimestampData.class; case TIMESTAMP_WITH_TIME_ZONE : throw new UnsupportedOperationException("Unsupported type: " + type);case ARRAY : return ArrayData.class; case MULTISET : case MAP : return MapData.class; case ROW : case STRUCTURED_TYPE : return RowData.class; case DISTINCT_TYPE : return toInternalConversionClass(((DistinctType) (type)).getSourceType()); case RAW : return RawValueData.class; case NULL : return Object.class; case SYMBOL : case UNRESOLVED : default : throw new IllegalArgumentException("Illegal type: " + type); } }
3.26
flink_LogicalTypeUtils_m1_rdh
/** * Returns a unique name for an atomic type. */ public static String m1(List<String> existingNames) { int i = 0; String v3 = ATOMIC_FIELD_NAME; while ((null != existingNames) && existingNames.contains(v3)) { v3 = (ATOMIC_FIELD_NAME + "_") + (i++); } return v3; }
3.26
flink_SubpartitionDiskCacheManager_removeAllBuffers_rdh
/** * Note that allBuffers can be touched by multiple threads. */ List<Tuple2<Buffer, Integer>> removeAllBuffers() { synchronized(allBuffers) {List<Tuple2<Buffer, Integer>> targetBuffers = new ArrayList<>(allBuffers); allBuffers.clear(); return targetBuffers; } }
3.26
flink_SubpartitionDiskCacheManager_startSegment_rdh
// ------------------------------------------------------------------------ // Called by DiskCacheManager // ------------------------------------------------------------------------ void startSegment(int segmentId) { synchronized(allBuffers) { this.segmentId = segmentId; } }
3.26
flink_SubpartitionDiskCacheManager_addBuffer_rdh
/** * This method is only called by the task thread. */ private void addBuffer(Buffer buffer) {synchronized(allBuffers) {allBuffers.add(new Tuple2<>(buffer, bufferIndex)); } bufferIndex++;}
3.26
flink_HighAvailabilityServicesUtils_getWebMonitorAddress_rdh
/** * Get address of web monitor from configuration. * * @param configuration * Configuration contains those for WebMonitor. * @param resolution * Whether to try address resolution of the given hostname or not. This allows * to fail fast in case that the hostname cannot be resolved. * @return Address of WebMonitor. */ public static String getWebMonitorAddress(Configuration configuration, AddressResolution resolution) throws UnknownHostException { final String address = checkNotNull(configuration.getString(RestOptions.ADDRESS), "%s must be set", RestOptions.ADDRESS.key()); if (resolution == AddressResolution.TRY_ADDRESS_RESOLUTION) {// Fail fast if the hostname cannot be resolved // noinspection ResultOfMethodCallIgnored InetAddress.getByName(address); } final int port = configuration.getInteger(RestOptions.PORT); final boolean enableSSL = SecurityOptions.isRestSSLEnabled(configuration); final String protocol = (enableSSL) ? "https://" : "http://";return String.format("%s%s:%s", protocol, address, port); }
3.26
flink_HighAvailabilityServicesUtils_createAvailableOrEmbeddedServices_rdh
/** * Utils class to instantiate {@link HighAvailabilityServices} implementations. */ public class HighAvailabilityServicesUtils {public static HighAvailabilityServices createAvailableOrEmbeddedServices(Configuration config, Executor executor, FatalErrorHandler fatalErrorHandler) throws Exception { HighAvailabilityMode highAvailabilityMode = HighAvailabilityMode.fromConfig(config); switch (highAvailabilityMode) { case NONE : return new EmbeddedHaServices(executor); case ZOOKEEPER : return createZooKeeperHaServices(config, executor, fatalErrorHandler); case KUBERNETES : return createCustomHAServices("org.apache.flink.kubernetes.highavailability.KubernetesHaServicesFactory", config, executor); case FACTORY_CLASS : return createCustomHAServices(config, executor); default : throw new Exception(("High availability mode " + highAvailabilityMode) + " is not supported."); }
3.26
flink_HighAvailabilityServicesUtils_getJobManagerAddress_rdh
/** * Returns the JobManager's hostname and port extracted from the given {@link Configuration}. * * @param configuration * Configuration to extract the JobManager's address from * @return The JobManager's hostname and port * @throws ConfigurationException * if the JobManager's address cannot be extracted from the * configuration */ public static Tuple2<String, Integer> getJobManagerAddress(Configuration configuration) throws ConfigurationException { final String hostname = configuration.getString(JobManagerOptions.ADDRESS); final int port = configuration.getInteger(JobManagerOptions.PORT); if (hostname == null) { throw new ConfigurationException(("Config parameter '" + JobManagerOptions.ADDRESS) + "' is missing (hostname/address of JobManager to connect to)."); } if ((port <= 0) || (port >= 65536)) { throw new ConfigurationException(((("Invalid value for '" + JobManagerOptions.PORT) + "' (port of the JobManager actor system) : ") + port) + ". it must be greater than 0 and less than 65536."); } return Tuple2.of(hostname, port); }
3.26
flink_HighAvailabilityServicesUtils_getClusterHighAvailableStoragePath_rdh
/** * Gets the cluster high available storage path from the provided configuration. * * <p>The format is {@code HA_STORAGE_PATH/HA_CLUSTER_ID}. * * @param configuration * containing the configuration values * @return Path under which all highly available cluster artifacts are being stored */ public static Path getClusterHighAvailableStoragePath(Configuration configuration) { final String storagePath = configuration.getValue(HighAvailabilityOptions.HA_STORAGE_PATH); if (isNullOrWhitespaceOnly(storagePath)) { throw new IllegalConfigurationException("Configuration is missing the mandatory parameter: " + HighAvailabilityOptions.HA_STORAGE_PATH); } final Path path; try {path = new Path(storagePath); } catch (Exception e) { throw new IllegalConfigurationException(("Invalid path for highly available storage (" + HighAvailabilityOptions.HA_STORAGE_PATH.key()) + ')', e); } final String clusterId = configuration.getValue(HighAvailabilityOptions.HA_CLUSTER_ID); final Path clusterStoragePath; try { clusterStoragePath = new Path(path, clusterId); } catch (Exception e) { throw new IllegalConfigurationException(String.format("Cannot create cluster high available storage path '%s/%s'. This indicates that an invalid cluster id (%s) has been specified.", storagePath, clusterId, HighAvailabilityOptions.HA_CLUSTER_ID.key()), e); } return clusterStoragePath; }
3.26
flink_KerberosUtils_getKrb5LoginModuleName_rdh
/* Return the Kerberos login module name */ public static String getKrb5LoginModuleName() { return System.getProperty("java.vendor").contains("IBM") ? "com.ibm.security.auth.module.Krb5LoginModule" : "com.sun.security.auth.module.Krb5LoginModule"; }
3.26
flink_RequestStatusOverview_readResolve_rdh
/** * Preserve the singleton property by returning the singleton instance */ private Object readResolve() { return INSTANCE; }
3.26
flink_RequestStatusOverview_hashCode_rdh
// ------------------------------------------------------------------------ @Override public int hashCode() { return RequestStatusOverview.class.hashCode(); }
3.26
flink_StreamElementSerializer_snapshotConfiguration_rdh
// -------------------------------------------------------------------------------------------- // Serializer configuration snapshotting & compatibility // // This serializer may be used by Flink internal operators that need to checkpoint // buffered records. Therefore, it may be part of managed state and need to implement // the configuration snapshot and compatibility methods. // -------------------------------------------------------------------------------------------- @Override public StreamElementSerializerSnapshot<T> snapshotConfiguration() { return new StreamElementSerializerSnapshot<>(this); }
3.26
flink_StreamElementSerializer_isImmutableType_rdh
// ------------------------------------------------------------------------ // Utilities // ------------------------------------------------------------------------ @Override public boolean isImmutableType() { return false; }
3.26
flink_StreamElementSerializer_equals_rdh
// ------------------------------------------------------------------------ // Utilities // ------------------------------------------------------------------------ @Override public boolean equals(Object obj) { if (obj instanceof StreamElementSerializer) { StreamElementSerializer<?> other = ((StreamElementSerializer<?>) (obj)); return typeSerializer.equals(other.typeSerializer); } else { return false; } }
3.26
flink_StreamElementSerializer_createInstance_rdh
// ------------------------------------------------------------------------ // Utilities // ------------------------------------------------------------------------ @Override public StreamRecord<T> createInstance() { return new StreamRecord<T>(typeSerializer.createInstance()); }
3.26
flink_OperatorCoordinatorCheckpointContext_notifyCheckpointAborted_rdh
/** * We override the method here to remove the checked exception. Please check the Java docs of * {@link CheckpointListener#notifyCheckpointAborted(long)} for more detail semantic of the * method. */ @Override default void notifyCheckpointAborted(long checkpointId) { }
3.26
flink_CastRuleProvider_cast_rdh
/** * Create a {@link CastExecutor} and execute the cast on the provided {@code value}. Fails with * {@link IllegalArgumentException} if the rule cannot be resolved, or with an exception from * the {@link CastExecutor} itself if the rule can fail. */ @SuppressWarnings("unchecked") @Nullable public static Object cast(CastRule.Context context, LogicalType inputLogicalType, LogicalType targetLogicalType, Object value) { CastExecutor<Object, Object> castExecutor = ((CastExecutor<Object, Object>) (CastRuleProvider.create(context, inputLogicalType, targetLogicalType))); if (castExecutor == null) { throw new NullPointerException((("Unsupported casting from " + inputLogicalType) + " to ") + targetLogicalType); } return castExecutor.cast(value); }
3.26
flink_CastRuleProvider_exists_rdh
/** * Returns {@code true} if and only if a {@link CastRule} can be resolved for the provided input * type and target type. */ public static boolean exists(LogicalType inputType, LogicalType targetType) { return resolve(inputType, targetType) != null; }
3.26
flink_CastRuleProvider_resolve_rdh
/* ------- Entrypoint ------- */ /** * Resolve a {@link CastRule} for the provided input type and target type. Returns {@code null} * if no rule can be resolved. */ @Nullable public static CastRule<?, ?> resolve(LogicalType inputType, LogicalType targetType) { return INSTANCE.internalResolve(inputType, targetType);}
3.26
flink_CastRuleProvider_canFail_rdh
/** * Resolves the rule and returns the result of {@link CastRule#canFail(LogicalType, * LogicalType)}. Fails with {@link NullPointerException} if the rule cannot be resolved. */ public static boolean canFail(LogicalType inputType, LogicalType targetType) { return Preconditions.checkNotNull(resolve(inputType, targetType), "Cast rule cannot be resolved").canFail(inputType, targetType); }
3.26
flink_CastRuleProvider_create_rdh
/** * Create a {@link CastExecutor} for the provided input type and target type. Returns {@code null} if no rule can be resolved. * * @see CastRule#create(CastRule.Context, LogicalType, LogicalType) */ @Nullable public static CastExecutor<?, ?> create(CastRule.Context context, LogicalType inputLogicalType, LogicalType targetLogicalType) { CastRule<?, ?> rule = INSTANCE.internalResolve(inputLogicalType, targetLogicalType); if (rule == null) { return null; } return rule.create(context, inputLogicalType, targetLogicalType); } /** * Create a {@link CastCodeBlock} for the provided input type and target type. Returns {@code null} if no rule can be resolved or the resolved rule is not instance of {@link CodeGeneratorCastRule}
3.26
flink_CastRuleProvider_generateAlwaysNonNullCodeBlock_rdh
/** * This method wraps {@link #generateCodeBlock(CodeGeneratorCastRule.Context, String, String, * LogicalType, LogicalType)}, but adding the assumption that the inputTerm is always non-null. * Used by {@link CodeGeneratorCastRule}s which checks for nullability, rather than deferring * the check to the rules. */ static CastCodeBlock generateAlwaysNonNullCodeBlock(CodeGeneratorCastRule.Context context, String inputTerm, LogicalType inputLogicalType, LogicalType targetLogicalType) { if (inputLogicalType instanceof NullType) { return generateCodeBlock(context, inputTerm, "true", inputLogicalType, targetLogicalType); } return generateCodeBlock(context, inputTerm, "false", inputLogicalType.copy(false), targetLogicalType); }
3.26
flink_EncodingUtils_escapeJava_rdh
// -------------------------------------------------------------------------------------------- // Java String Escaping // // copied from o.a.commons.lang.StringEscapeUtils (commons-lang:2.4) // but without escaping forward slashes. // -------------------------------------------------------------------------------------------- /** * Escapes the characters in a <code>String</code> using Java String rules. * * <p>Deals correctly with quotes and control-chars (tab, backslash, cr, ff, etc.) * * <p>So a tab becomes the characters <code>'\\'</code> and <code>'t'</code>. * * <p>The only difference between Java strings and JavaScript strings is that in JavaScript, a * single quote must be escaped. * * <p>Example: * * <pre> * input string: He didn't say, "Stop!" * output string: He didn't say, \"Stop!\" * </pre> * * @param str * String to escape values in, may be null * @return String with escaped values, <code>null</code> if null string input */ public static String escapeJava(String str) { return escapeJavaStyleString(str, false); }
3.26
flink_EncodingUtils_repeat_rdh
/** * Returns padding using the specified delimiter repeated to a given length. * * <pre> * StringUtils.repeat('e', 0) = "" * StringUtils.repeat('e', 3) = "eee" * StringUtils.repeat('e', -2) = "" * </pre> * * <p>Note: this method doesn't not support padding with <a * href="http://www.unicode.org/glossary/#supplementary_character">Unicode Supplementary * Characters</a> as they require a pair of {@code char}s to be represented. If you are needing * to support full I18N of your applications consider using {@link #repeat(String, int)} * instead. * * @param ch * character to repeat * @param repeat * number of times to repeat char, negative treated as zero * @return String with repeated character * @see #repeat(String, int) */ public static String repeat(final char ch, final int repeat) { final char[] buf = new char[repeat]; for (int i = repeat - 1; i >= 0; i--) { buf[i] = ch;} return new String(buf); }
3.26
flink_EncodingUtils_decodeHex_rdh
/** * Converts an array of characters representing hexadecimal values into an array of bytes of * those same values. The returned array will be half the length of the passed array, as it * takes two characters to represent any given byte. An exception is thrown if the passed char * array has an odd number of elements. * * <p>Copied from * https://github.com/apache/commons-codec/blob/master/src/main/java/org/apache/commons/codec/binary/Hex.java. * * @param str * An array of characters containing hexadecimal digits * @return A byte array to contain the binary data decoded from the supplied char array. * @throws TableException * Thrown if an odd number of characters or illegal characters are * supplied */ public static byte[] decodeHex(final String str) throws TableException { final int len = str.length(); if ((len & 0x1) != 0) { throw new TableException("Odd number of characters."); } final int outLen = len >> 1; final byte[] out = new byte[outLen]; // two characters form the hex value. for (int i = 0, j = 0; j < len; i++) { int f = toDigit(str.charAt(j), j) << 4; j++; f = f | toDigit(str.charAt(j), j); j++; out[i] = ((byte) (f & 0xff));} return out; }
3.26
flink_EncodingUtils_toDigit_rdh
/** * Converts a hexadecimal character to an integer. * * <p>Copied from * https://github.com/apache/commons-codec/blob/master/src/main/java/org/apache/commons/codec/binary/Hex.java. * * @param ch * A character to convert to an integer digit * @param idx * The index of the character in the source * @return An integer * @throws TableException * Thrown if ch is an illegal hex character */ private static int toDigit(final char ch, final int idx) throws TableException { final int digit = Character.digit(ch, 16); if (digit == (-1)) { throw new TableException(((("Illegal hexadecimal character: [" + ch) + "] at index: [") + idx) + "]"); } return digit; }
3.26
flink_StringData_fromString_rdh
// ------------------------------------------------------------------------------------------ // Construction Utilities // ------------------------------------------------------------------------------------------ /** * Creates an instance of {@link StringData} from the given {@link String}. */ static StringData fromString(String str) { return BinaryStringData.fromString(str); }
3.26
flink_EmptyFieldsCountAccumulator_updateResultVector_rdh
/** * Increases the result vector component at the specified position by the specified delta. */ private void updateResultVector(int position, int delta) { // inflate the vector to contain the given position while (this.resultVector.size() <= position) { this.resultVector.add(0); } // increment the component value final int component = this.resultVector.get(position); this.resultVector.set(position, component + delta); }
3.26
flink_EmptyFieldsCountAccumulator_add_rdh
/** * Increases the result vector component at the specified position by 1. */ @Override public void add(Integer position) { updateResultVector(position, 1); }
3.26
flink_EmptyFieldsCountAccumulator_getDataSet_rdh
// UTIL METHODS // ************************************************************************* @SuppressWarnings("unchecked") private static DataSet<StringTriple> getDataSet(ExecutionEnvironment env, ParameterTool params) { if (params.has("input")) { return env.readCsvFile(params.get("input")).fieldDelimiter(";").pojoType(EmptyFieldsCountAccumulator.StringTriple.class); } else { System.out.println("Executing EmptyFieldsCountAccumulator example with default input data set."); System.out.println("Use --input to specify file input."); return env.fromCollection(getExampleInputTuples()); } }
3.26
flink_AvroInputFormat_getProducedType_rdh
// -------------------------------------------------------------------------------------------- // Typing // -------------------------------------------------------------------------------------------- @Override public TypeInformation<E> getProducedType() { return TypeExtractor.getForClass(this.avroValueType); }
3.26
flink_AvroInputFormat_getCurrentState_rdh
// -------------------------------------------------------------------------------------------- // Checkpointing // -------------------------------------------------------------------------------------------- @Override public Tuple2<Long, Long> getCurrentState() throws IOException { return new Tuple2<>(this.lastSync, this.recordsReadSinceLastSync); }
3.26
flink_AvroInputFormat_setReuseAvroValue_rdh
/** * Sets the flag whether to reuse the Avro value instance for all records. By default, the input * format reuses the Avro value. * * @param reuseAvroValue * True, if the input format should reuse the Avro value instance, false * otherwise. */ public void setReuseAvroValue(boolean reuseAvroValue) { this.reuseAvroValue = reuseAvroValue; }
3.26
flink_AvroInputFormat_open_rdh
// -------------------------------------------------------------------------------------------- // Input Format Methods // -------------------------------------------------------------------------------------------- @Override public void open(FileInputSplit split) throws IOException { super.open(split); f0 = initReader(split); f0.sync(split.getStart());lastSync = f0.previousSync(); }
3.26
flink_AvroInputFormat_setUnsplittable_rdh
/** * If set, the InputFormat will only read entire files. */ public void setUnsplittable(boolean unsplittable) { this.unsplittable = unsplittable; }
3.26
flink_TestingSplitEnumeratorContext_metricGroup_rdh
// ------------------------------------------------------------------------ // SplitEnumeratorContext methods // ------------------------------------------------------------------------ @Override public SplitEnumeratorMetricGroup metricGroup() { return UnregisteredMetricsGroup.createSplitEnumeratorMetricGroup(); }
3.26
flink_TestingSplitEnumeratorContext_triggerAllActions_rdh
// ------------------------------------------------------------------------ // access to events / properties / execution // ------------------------------------------------------------------------ public void triggerAllActions() { executor.triggerPeriodicScheduledTasks(); executor.triggerAll(); }
3.26
flink_DynamicSinkUtils_convertExternalToRel_rdh
/** * Converts an external sink (i.e. further {@link DataStream} transformations) to a {@link RelNode}. */ public static RelNode convertExternalToRel(FlinkRelBuilder relBuilder, RelNode input, ExternalModifyOperation externalModifyOperation) { final DynamicTableSink tableSink = new ExternalDynamicSink(externalModifyOperation.getChangelogMode().orElse(null), externalModifyOperation.getPhysicalDataType());return // targetColumns convertSinkToRel(relBuilder, input, Collections.emptyMap(), externalModifyOperation.getContextResolvedTable(), Collections.emptyMap(), null, false, tableSink); }
3.26
flink_DynamicSinkUtils_addExtraMetaCols_rdh
/** * Add extra meta columns for underlying table scan, return a new resolve schema after adding * extra meta columns. */ private static ResolvedSchema addExtraMetaCols(LogicalTableModify tableModify, LogicalTableScan tableScan, String tableDebugName, List<MetadataColumn> metadataColumns, FlinkTypeFactory typeFactory) { final TableSourceTable sourceTable = tableScan.getTable().unwrap(TableSourceTable.class); DynamicTableSource dynamicTableSource = sourceTable.tableSource(); // get old schema and new schema after add some cols ResolvedSchema oldSchema = sourceTable.contextResolvedTable().getResolvedSchema(); List<Column> newColumns = new ArrayList<>(oldSchema.getColumns()); newColumns.addAll(metadataColumns); // get the new resolved schema after adding extra meta columns ResolvedSchema resolvedSchema = ResolvedSchema.of(newColumns); List<RelDataTypeField> oldFields = sourceTable.getRowType().getFieldList(); List<RelDataTypeField> newFields = new ArrayList<>(sourceTable.getRowType().getFieldList()); for (int i = 0; i < metadataColumns.size(); i++) { MetadataColumn column = metadataColumns.get(i); // add a new field newFields.add(new RelDataTypeFieldImpl(column.getName(), oldFields.size() + i, typeFactory.createFieldTypeFromLogicalType(column.getDataType().getLogicalType()))); } // create a copy for TableSourceTable with new resolved schema TableSourceTable newTableSourceTab = sourceTable.copy(dynamicTableSource, sourceTable.contextResolvedTable().copy(resolvedSchema), new RelRecordType(StructKind.FULLY_QUALIFIED, newFields, false), sourceTable.abilitySpecs()); // create a copy for table scan with new TableSourceTable LogicalTableScan newTableScan = new LogicalTableScan(tableScan.getCluster(), tableScan.getTraitSet(), tableScan.getHints(), newTableSourceTab); Project project = ((Project) (tableModify.getInput())); // replace with the new table scan if (project.getInput() instanceof LogicalFilter) { LogicalFilter logicalFilter = ((LogicalFilter) (project.getInput())); project.replaceInput(0, logicalFilter.copy(logicalFilter.getTraitSet(), newTableScan, logicalFilter.getCondition())); } else { project.replaceInput(0, newTableScan); } // validate and apply metadata // TODO FLINK-33083 we should not ignore the produced abilities but actually put those into // the table scan DynamicSourceUtils.validateAndApplyMetadata(tableDebugName, resolvedSchema, newTableSourceTab.tableSource(), new ArrayList<>()); return resolvedSchema; }
3.26
flink_DynamicSinkUtils_convertSinkToRel_rdh
/** * Converts a given {@link DynamicTableSink} to a {@link RelNode}. It adds helper projections if * necessary. */ public static RelNode convertSinkToRel(FlinkRelBuilder relBuilder, RelNode input, SinkModifyOperation sinkModifyOperation, DynamicTableSink sink) { return convertSinkToRel(relBuilder, input, sinkModifyOperation.getDynamicOptions(), sinkModifyOperation.getContextResolvedTable(), sinkModifyOperation.getStaticPartitions(), sinkModifyOperation.getTargetColumns(), sinkModifyOperation.isOverwrite(), sink); }
3.26
flink_DynamicSinkUtils_prepareDynamicSink_rdh
/** * Prepares the given {@link DynamicTableSink}. It check whether the sink is compatible with the * INSERT INTO clause and applies initial parameters. */ private static void prepareDynamicSink(String tableDebugName, Map<String, String> staticPartitions, boolean isOverwrite, DynamicTableSink sink, ResolvedCatalogTable table, List<SinkAbilitySpec> sinkAbilitySpecs) { validatePartitioning(tableDebugName, staticPartitions, sink, table.getPartitionKeys()); validateAndApplyOverwrite(tableDebugName, isOverwrite, sink, sinkAbilitySpecs); validateAndApplyMetadata(tableDebugName, sink, table.getResolvedSchema(), sinkAbilitySpecs); }
3.26
flink_DynamicSinkUtils_convertPredicateToNegative_rdh
/** * Convert the predicate in WHERE clause to the negative predicate. */ private static void convertPredicateToNegative(LogicalTableModify tableModify) { RexBuilder rexBuilder = tableModify.getCluster().getRexBuilder(); RelNode input = tableModify.getInput(); LogicalFilter newFilter; // if the input is a table scan, there's no predicate which means it's always true // the negative predicate should be false if (input.getInput(0) instanceof LogicalTableScan) { newFilter = LogicalFilter.create(input.getInput(0), rexBuilder.makeLiteral(false)); } else { LogicalFilter filter = ((LogicalFilter) (input.getInput(0))); // create a filter with negative predicate RexNode complementFilter = rexBuilder.makeCall(filter.getCondition().getType(), FlinkSqlOperatorTable.NOT, Collections.singletonList(filter.getCondition())); newFilter = filter.copy(filter.getTraitSet(), filter.getInput(), complementFilter); } // replace with the new filter input.replaceInput(0, newFilter); }
3.26
flink_DynamicSinkUtils_getPhysicalColumnIndices_rdh
/** * Return the indices from {@param colIndexes} that belong to physical column. */private static int[] getPhysicalColumnIndices(List<Integer> colIndexes, ResolvedSchema schema) { return colIndexes.stream().filter(i -> schema.getColumns().get(i).isPhysical()).mapToInt(i -> i).toArray(); }
3.26
flink_DynamicSinkUtils_createRequiredMetadataColumns_rdh
/** * Returns a list of required metadata columns. Ordered by the iteration order of {@link SupportsWritingMetadata#listWritableMetadata()}. * * <p>This method assumes that sink and schema have been validated via {@link #prepareDynamicSink}. */ private static List<MetadataColumn> createRequiredMetadataColumns(ResolvedSchema schema, DynamicTableSink sink) { final List<Column> tableColumns = schema.getColumns(); final List<Integer> metadataColumns = extractPersistedMetadataColumns(schema); Map<String, MetadataColumn> metadataKeysToMetadataColumns = new HashMap<>(); for (Integer columnIndex : metadataColumns) { MetadataColumn metadataColumn = ((MetadataColumn) (tableColumns.get(columnIndex))); String metadataKey = metadataColumn.getMetadataKey().orElse(metadataColumn.getName()); // After resolving, every metadata column has the unique metadata key. metadataKeysToMetadataColumns.put(metadataKey, metadataColumn); } final Map<String, DataType> metadataMap = extractMetadataMap(sink); return metadataMap.keySet().stream().filter(metadataKeysToMetadataColumns::containsKey).map(metadataKeysToMetadataColumns::get).collect(Collectors.toList()); }
3.26
flink_DynamicSinkUtils_validateSchemaAndApplyImplicitCast_rdh
/** * Checks if the given query can be written into the given sink type. * * <p>It checks whether field types are compatible (types should be equal including precisions). * If types are not compatible, but can be implicitly cast, a cast projection will be applied. * Otherwise, an exception will be thrown. */ private static RelNode validateSchemaAndApplyImplicitCast(RelNode query, RowType sinkType, String tableDebugName, FlinkTypeFactory typeFactory) { final RowType queryType = FlinkTypeFactory.toLogicalRowType(query.getRowType()); final List<RowField> queryFields = queryType.getFields(); final List<RowField> sinkFields = sinkType.getFields(); if (queryFields.size() != sinkFields.size()) { throw createSchemaMismatchException("Different number of columns.", tableDebugName, queryFields, sinkFields); } boolean requiresCasting = false; for (int i = 0; i < sinkFields.size(); i++) { final LogicalType queryColumnType = queryFields.get(i).getType(); final LogicalType sinkColumnType = sinkFields.get(i).getType(); if (!supportsImplicitCast(queryColumnType, sinkColumnType)) { throw createSchemaMismatchException(String.format("Incompatible types for sink column '%s' at position %s.", sinkFields.get(i).getName(), i), tableDebugName, queryFields, sinkFields); }if (!supportsAvoidingCast(queryColumnType, sinkColumnType)) {requiresCasting = true; } } if (requiresCasting) { final RelDataType castRelDataType = typeFactory.buildRelNodeRowType(sinkType); return RelOptUtil.createCastRel(query, castRelDataType, true); } return query; }
3.26
flink_DynamicSinkUtils_createConsumedType_rdh
/** * Returns the {@link DataType} that a sink should consume as the output from the runtime. * * <p>The format looks as follows: {@code PHYSICAL COLUMNS + PERSISTED METADATA COLUMNS} */ private static RowType createConsumedType(ResolvedSchema schema, DynamicTableSink sink) { final Map<String, DataType> metadataMap = extractMetadataMap(sink); final Stream<RowField> physicalFields = schema.getColumns().stream().filter(Column::isPhysical).map(c -> new RowField(c.getName(), c.getDataType().getLogicalType())); final Stream<RowField> metadataFields = createRequiredMetadataColumns(schema, sink).stream().map(column -> // Use alias to ensures that physical and metadata // columns don't collide. new RowField(column.getName(), metadataMap.get(column.getMetadataKey().orElse(column.getName())).getLogicalType())); final List<RowField> rowFields = Stream.concat(physicalFields, metadataFields).collect(Collectors.toList()); return new RowType(false, rowFields); }
3.26
flink_DynamicSinkUtils_convertCollectToRel_rdh
/** * Converts an {@link TableResult#collect()} sink to a {@link RelNode}. */ public static RelNode convertCollectToRel(FlinkRelBuilder relBuilder, RelNode input, CollectModifyOperation collectModifyOperation, ReadableConfig configuration, ClassLoader classLoader) { final DataTypeFactory dataTypeFactory = unwrapContext(relBuilder).getCatalogManager().getDataTypeFactory(); final ResolvedSchema childSchema = collectModifyOperation.getChild().getResolvedSchema(); final ResolvedSchema schema = ResolvedSchema.physical(childSchema.getColumnNames(), childSchema.getColumnDataTypes()); final ResolvedCatalogTable catalogTable = new ResolvedCatalogTable(new ExternalCatalogTable(Schema.newBuilder().fromResolvedSchema(schema).build()), schema); final ContextResolvedTable contextResolvedTable = ContextResolvedTable.anonymous("collect", catalogTable); final DataType consumedDataType = fixCollectDataType(dataTypeFactory, schema); final String zone = configuration.get(TableConfigOptions.LOCAL_TIME_ZONE); final ZoneId zoneId = (TableConfigOptions.LOCAL_TIME_ZONE.defaultValue().equals(zone)) ? ZoneId.systemDefault() : ZoneId.of(zone);final CollectDynamicSink tableSink = new CollectDynamicSink(contextResolvedTable.getIdentifier(), consumedDataType, configuration.get(CollectSinkOperatorFactory.MAX_BATCH_SIZE), configuration.get(CollectSinkOperatorFactory.SOCKET_TIMEOUT), classLoader, zoneId, configuration.get(ExecutionConfigOptions.TABLE_EXEC_LEGACY_CAST_BEHAVIOUR).isEnabled()); collectModifyOperation.setSelectResultProvider(tableSink.getSelectResultProvider());collectModifyOperation.setConsumedDataType(consumedDataType); return // dynamicOptions // staticPartitions // targetColumns convertSinkToRel(relBuilder, input, Collections.emptyMap(), contextResolvedTable, Collections.emptyMap(), null, false, tableSink); }
3.26
flink_DynamicSinkUtils_fixCollectDataType_rdh
// -------------------------------------------------------------------------------------------- /** * Temporary solution until we drop legacy types. */ private static DataType fixCollectDataType(DataTypeFactory dataTypeFactory, ResolvedSchema schema) { final DataType fixedDataType = DataTypeUtils.transform(dataTypeFactory, schema.toSourceRowDataType(), TypeTransformations.legacyRawToTypeInfoRaw(), TypeTransformations.legacyToNonLegacy()); // TODO erase the conversion class earlier when dropping legacy code, esp. FLINK-22321 return TypeConversions.fromLogicalToDataType(fixedDataType.getLogicalType()); }
3.26
flink_DynamicSinkUtils_projectColumnsForUpdate_rdh
// create a project only select the required column or expression for update private static RelNode projectColumnsForUpdate(LogicalTableModify tableModify, int originColsCount, ResolvedSchema resolvedSchema, List<Integer> updatedIndexes, SupportsRowLevelUpdate.RowLevelUpdateMode updateMode, String tableDebugName, DataTypeFactory dataTypeFactory, FlinkTypeFactory typeFactory) { RexBuilder rexBuilder = tableModify.getCluster().getRexBuilder(); // the updated columns, whose order is same to user's update clause List<String> updatedColumnNames = tableModify.getUpdateColumnList(); List<RexNode> newRexNodeList = new ArrayList<>(); List<String> newFieldNames = new ArrayList<>(); List<DataType> updateTargetDataTypes = new ArrayList<>(); Project project = ((Project) (tableModify.getInput())); LogicalFilter filter = null; // if the update mode is all rows, we need to know the filter to rewrite // the update expression to IF(filter, updated_expr, col_expr) if ((updateMode == RowLevelUpdateMode.ALL_ROWS) && (project.getInput() instanceof LogicalFilter)) { filter = ((LogicalFilter) (project.getInput())); } // the rex nodes for the project are like: index for all col, update expressions for the // updated columns List<RexNode> oldRexNodes = project.getProjects(); for (int index : updatedIndexes) { String colName = resolvedSchema.getColumnNames().get(index); // if the updated cols contain the col to be selected, the updated expression should // be in the project node if (updatedColumnNames.contains(colName)) { // get the index of the updated column in all updated columns int i = updatedColumnNames.indexOf(colName); // get the update expression RexNode rexNode = oldRexNodes.get(originColsCount + i); if (filter != null) { rexNode = rexBuilder.makeCall(FlinkSqlOperatorTable.IF, Arrays.asList(filter.getCondition(), rexNode, rexBuilder.makeInputRef(project.getInput(), index))); } newRexNodeList.add(rexNode); } else { newRexNodeList.add(rexBuilder.makeInputRef(project.getInput(), index)); } newFieldNames.add(colName); updateTargetDataTypes.add(resolvedSchema.getColumnDataTypes().get(index));} project = // if filter is not null, we need to remove the filter in the plan since we // have rewritten the expression to IF(filter, updated_expr, col_expr) project.copy(project.getTraitSet(), filter != null ? filter.getInput() : project.getInput(), newRexNodeList, RexUtil.createStructType(typeFactory, newRexNodeList, newFieldNames, null)); return validateSchemaAndApplyImplicitCast(project, updateTargetDataTypes, tableDebugName, dataTypeFactory, typeFactory); }
3.26
flink_StreamingRuntimeContext_isCheckpointingEnabled_rdh
// ------------------ expose (read only) relevant information from the stream config -------- // /** * Returns true if checkpointing is enabled for the running job. * * @return true if checkpointing is enabled. */ public boolean isCheckpointingEnabled() { return streamConfig.isCheckpointingEnabled(); }
3.26
flink_StreamingRuntimeContext_m0_rdh
/** * Returns the task manager runtime info of the task manager running this stream task. * * @return The task manager runtime info. */ public TaskManagerRuntimeInfo m0() { return taskEnvironment.getTaskManagerInfo(); }
3.26
flink_StreamingRuntimeContext_hasBroadcastVariable_rdh
// ------------------------------------------------------------------------ // broadcast variables // ------------------------------------------------------------------------ @Override public boolean hasBroadcastVariable(String name) { throw new UnsupportedOperationException("Broadcast variables can only be used in DataSet programs"); }
3.26
flink_StreamingRuntimeContext_getState_rdh
// ------------------------------------------------------------------------ // key/value state // ------------------------------------------------------------------------ @Override public <T> ValueState<T> getState(ValueStateDescriptor<T> stateProperties) { KeyedStateStore keyedStateStore = checkPreconditionsAndGetKeyedStateStore(stateProperties);stateProperties.initializeSerializerUnlessSet(getExecutionConfig()); return keyedStateStore.getState(stateProperties); }
3.26
flink_StreamingRuntimeContext_getInputSplitProvider_rdh
// ------------------------------------------------------------------------ /** * Returns the input split provider associated with the operator. * * @return The input split provider. */ public InputSplitProvider getInputSplitProvider() { return taskEnvironment.getInputSplitProvider(); }
3.26
flink_WritableSerializer_ensureInstanceInstantiated_rdh
// -------------------------------------------------------------------------------------------- private void ensureInstanceInstantiated() { if (copyInstance == null) { copyInstance = createInstance(); }}
3.26
flink_WritableSerializer_snapshotConfiguration_rdh
// -------------------------------------------------------------------------------------------- // Serializer configuration snapshotting & compatibility // -------------------------------------------------------------------------------------------- @Override public TypeSerializerSnapshot<T> snapshotConfiguration() { return new WritableSerializerSnapshot<>(typeClass); }
3.26
flink_WritableSerializer_hashCode_rdh
// -------------------------------------------------------------------------------------------- @Override public int hashCode() { return this.typeClass.hashCode(); }
3.26
flink_HiveTableUtil_createSchema_rdh
/** * Create a Flink's Schema from Hive table's columns and partition keys. */ public static Schema createSchema(List<FieldSchema> nonPartCols, List<FieldSchema> partitionKeys, Set<String> notNullColumns, @Nullable UniqueConstraint primaryKey) { Tuple2<String[], DataType[]> columnInformation = getColumnInformation(nonPartCols, partitionKeys, notNullColumns, primaryKey); Builder builder = Schema.newBuilder().fromFields(columnInformation.f0, columnInformation.f1); if (primaryKey != null) { builder.primaryKeyNamed(primaryKey.getName(), primaryKey.getColumns().toArray(new String[0])); } return builder.build(); }
3.26
flink_HiveTableUtil_relyConstraint_rdh
// returns a constraint trait that requires RELY public static byte relyConstraint(byte trait) { return ((byte) (trait | HIVE_CONSTRAINT_RELY)); }
3.26
flink_HiveTableUtil_createHivePartition_rdh
// -------------------------------------------------------------------------------------------- // Helper methods // -------------------------------------------------------------------------------------------- /** * Creates a Hive partition instance. */public static Partition createHivePartition(String dbName, String tableName, List<String> values, StorageDescriptor sd, Map<String, String> parameters) { Partition partition = new Partition(); partition.setDbName(dbName); partition.setTableName(tableName); partition.setValues(values); partition.setParameters(parameters);partition.setSd(sd); int currentTime = ((int) (System.currentTimeMillis() / 1000)); partition.setCreateTime(currentTime); partition.setLastAccessTime(currentTime); return partition; }
3.26
flink_HiveTableUtil_maskFlinkProperties_rdh
/** * Add a prefix to Flink-created properties to distinguish them from Hive-created properties. */ private static Map<String, String> maskFlinkProperties(Map<String, String> properties) { return properties.entrySet().stream().filter(e -> (e.getKey() != null) && (e.getValue() != null)).map(e -> new Tuple2<>(FLINK_PROPERTY_PREFIX + e.getKey(), e.getValue())).collect(Collectors.toMap(t -> t.f0, t -> t.f1)); }
3.26
flink_HiveTableUtil_createHiveColumns_rdh
/** * Create Hive columns from Flink ResolvedSchema. */ public static List<FieldSchema> createHiveColumns(ResolvedSchema schema) {String[] fieldNames = schema.getColumnNames().toArray(new String[0]); DataType[] fieldTypes = schema.getColumnDataTypes().toArray(new DataType[0]); List<FieldSchema> v16 = new ArrayList<>(fieldNames.length); for (int i = 0; i < fieldNames.length; i++) { v16.add(new FieldSchema(fieldNames[i], HiveTypeUtil.toHiveTypeInfo(fieldTypes[i], true).getTypeName(), null)); } return v16; }
3.26
flink_HiveTableUtil_checkAcidTable_rdh
/** * Check whether to read or write on the hive ACID table. * * @param tableOptions * Hive table options. * @param tablePath * Identifier table path. * @throws FlinkHiveException * Thrown, if the source or sink table is transactional. */ public static void checkAcidTable(Map<String, String> tableOptions, ObjectPath tablePath) { String tableIsTransactional = tableOptions.get("transactional"); if (tableIsTransactional == null) { tableIsTransactional = tableOptions.get("transactional".toUpperCase()); } if ((tableIsTransactional != null) && tableIsTransactional.equalsIgnoreCase("true")) {throw new FlinkHiveException(String.format("Reading or writing ACID table %s is not supported.", tablePath)); } }
3.26
flink_HiveTableUtil_initiateTableFromProperties_rdh
/** * Extract DDL semantics from properties and use it to initiate the table. The related * properties will be removed from the map after they're used. */ private static void initiateTableFromProperties(Table hiveTable, Map<String, String> properties, HiveConf hiveConf) { extractExternal(hiveTable, properties); extractRowFormat(hiveTable.getSd(), properties); extractStoredAs(hiveTable.getSd(), properties, hiveConf); extractLocation(hiveTable.getSd(), properties); }
3.26
flink_HiveTableUtil_getHadoopConfiguration_rdh
/** * Returns a new Hadoop Configuration object using the path to the hadoop conf configured. * * @param hadoopConfDir * Hadoop conf directory path. * @return A Hadoop configuration instance. */ public static Configuration getHadoopConfiguration(String hadoopConfDir) { if (new File(hadoopConfDir).exists()) { List<File> possiableConfFiles = new ArrayList<File>(); File coreSite = new File(hadoopConfDir, "core-site.xml"); if (coreSite.exists()) { possiableConfFiles.add(coreSite); } File hdfsSite = new File(hadoopConfDir, "hdfs-site.xml"); if (hdfsSite.exists()) { possiableConfFiles.add(hdfsSite); } File yarnSite = new File(hadoopConfDir, "yarn-site.xml"); if (yarnSite.exists()) { possiableConfFiles.add(yarnSite); } // Add mapred-site.xml. We need to read configurations like compression codec. File v56 = new File(hadoopConfDir, "mapred-site.xml"); if (v56.exists()) { possiableConfFiles.add(v56); } if (possiableConfFiles.isEmpty()) { return null; } else { Configuration hadoopConfiguration = new Configuration(); for (File confFile : possiableConfFiles) { hadoopConfiguration.addResource(new Path(confFile.getAbsolutePath())); } return hadoopConfiguration; } } return null; }
3.26
flink_HiveTableUtil_enableConstraint_rdh
// returns a constraint trait that requires ENABLE public static byte enableConstraint(byte trait) { return ((byte) (trait | HIVE_CONSTRAINT_ENABLE)); }
3.26
flink_HiveTableUtil_createResolvedSchema_rdh
/** * Create a Flink's ResolvedSchema from Hive table's columns and partition keys. */ public static ResolvedSchema createResolvedSchema(List<FieldSchema> nonPartCols, List<FieldSchema> partitionKeys, Set<String> notNullColumns, @Nullable UniqueConstraint primaryKey) { Tuple2<String[], DataType[]> columnInformation = getColumnInformation(nonPartCols, partitionKeys, notNullColumns, primaryKey); return new ResolvedSchema(IntStream.range(0, columnInformation.f0.length).mapToObj(i -> Column.physical(columnInformation.f0[i], columnInformation.f1[i])).collect(Collectors.toList()), Collections.emptyList(), primaryKey == null ? null : UniqueConstraint.primaryKey(primaryKey.getName(), primaryKey.getColumns())); }
3.26
flink_HiveTableUtil_extractHiveTableInfo_rdh
/** * Get the hive table's information. * * @return non-part fields, part fields, notNullColumns, primaryKey. */ private static Tuple4<List<FieldSchema>, List<FieldSchema>, Set<String>, Optional<UniqueConstraint>> extractHiveTableInfo(HiveConf hiveConf, Table hiveTable, HiveMetastoreClientWrapper client, HiveShim hiveShim) { List<FieldSchema> fields = getNonPartitionFields(hiveConf, hiveTable, hiveShim); Set<String> notNullColumns = client.getNotNullColumns(hiveConf, hiveTable.getDbName(), hiveTable.getTableName()); Optional<UniqueConstraint> primaryKey = client.getPrimaryKey(hiveTable.getDbName(), hiveTable.getTableName(), HiveTableUtil.relyConstraint(((byte) (0)))); // PK columns cannot be null primaryKey.ifPresent(pk -> notNullColumns.addAll(pk.getColumns())); return Tuple4.of(fields, hiveTable.getPartitionKeys(), notNullColumns, primaryKey); }
3.26
flink_HiveTableUtil_extractRowType_rdh
/** * Create the Hive table's row type. */ public static DataType extractRowType(HiveConf hiveConf, Table hiveTable, HiveMetastoreClientWrapper client, HiveShim hiveShim) { Tuple4<List<FieldSchema>, List<FieldSchema>, Set<String>, Optional<UniqueConstraint>> hiveTableInfo = extractHiveTableInfo(hiveConf, hiveTable, client, hiveShim); Tuple2<String[], DataType[]> types = extractColumnInformation(Stream.of(hiveTableInfo.f0, hiveTableInfo.f1).flatMap(Collection::stream).collect(Collectors.toList()), hiveTableInfo.f2); return DataTypes.ROW(IntStream.range(0, types.f0.length).mapToObj(i -> DataTypes.FIELD(types.f0[i], types.f1[i])).collect(Collectors.toList()));}
3.26
flink_LongHybridHashTable_putBuildRow_rdh
// ---------------------- interface to join operator --------------------------------------- public void putBuildRow(BinaryRowData row) throws IOException { long key = getBuildLongKey(row); final int hashCode = hashLong(key, 0); m0(key, hashCode, row); }
3.26
flink_LongHybridHashTable_get_rdh
/** * This method is only used for operator fusion codegen to get build row from hash table. If the * build partition has spilled to disk, return null directly which requires the join operator * also spill probe row to disk. */ @Nullable public final RowIterator<BinaryRowData> get(long probeKey) throws IOException { if (denseMode) { if ((probeKey >= minKey) && (probeKey <= maxKey)) { long v4 = probeKey - minKey; long denseBucketOffset = v4 << 3; int v6 = ((int) (denseBucketOffset >>> segmentSizeBits)); int denseSegOffset = ((int) (denseBucketOffset & segmentSizeMask)); long address = denseBuckets[v6].getLong(denseSegOffset); this.matchIterator = densePartition.valueIter(address); } else { this.matchIterator = densePartition.valueIter(INVALID_ADDRESS); } return matchIterator; } else { final int hash = hashLong(probeKey, this.currentRecursionDepth); currentProbePartition = this.partitionsBeingBuilt.get(hash % partitionsBeingBuilt.size()); if (currentProbePartition.isInMemory()) { this.matchIterator = currentProbePartition.get(probeKey, hash); return matchIterator; } else { // If the build partition has spilled to disk, return null directly which requires // the join operator also spill probe row to disk. return null; } } }
3.26
flink_LongHybridHashTable_tryDenseMode_rdh
// ---------------------- interface to join operator end ----------------------------------- /** * After build end, try to use dense mode. */private void tryDenseMode() { // if some partitions have spilled to disk, always use hash mode if (numSpillFiles != 0) { return; } long v18 = Long.MAX_VALUE; long maxKey = Long.MIN_VALUE; long recordCount = 0; for (LongHashPartition p : this.partitionsBeingBuilt) { long partitionRecords = p.getBuildSideRecordCount(); recordCount += partitionRecords; if (partitionRecords > 0) { if (p.getMinKey() < v18) { v18 = p.getMinKey(); } if (p.getMaxKey() > maxKey) { maxKey = p.getMaxKey(); } } } if (buildSpillRetBufferNumbers != 0) { throw new RuntimeException("buildSpillRetBufferNumbers should be 0: " + buildSpillRetBufferNumbers); } long range = (maxKey - v18) + 1; // 1.range is negative mean: range is too big to overflow // 2.range is zero, maybe the max is Long.Max, and the min is Long.Min, // so we should not use dense mode too. if ((range > 0) && ((range <= (recordCount * 4)) || (range <= (segmentSize / 8)))) { // try to request memory. int buffers = ((int) (Math.ceil(((double) (range * 8)) / segmentSize))); // TODO MemoryManager needs to support flexible larger segment, so that the index area // of the build side is placed on a segment to avoid the overhead of addressing. MemorySegment[] denseBuckets = new MemorySegment[buffers]; for (int i = 0; i < buffers; i++) { MemorySegment seg = getNextBuffer(); if (seg == null) { returnAll(Arrays.asList(denseBuckets)); return; } denseBuckets[i] = seg; for (int j = 0; j < segmentSize; j += 8) { seg.putLong(j, INVALID_ADDRESS); } } denseMode = true; LOG.info("LongHybridHashTable: Use dense mode!"); this.minKey = v18; this.maxKey = maxKey; List<MemorySegment> segments = new ArrayList<>(); buildSpillReturnBuffers.drainTo(segments); returnAll(segments); ArrayList<MemorySegment> dataBuffers = new ArrayList<>(); long addressOffset = 0; for (LongHashPartition p : this.partitionsBeingBuilt) { p.iteratorToDenseBucket(denseBuckets, addressOffset, v18); p.updateDenseAddressOffset(addressOffset); dataBuffers.addAll(Arrays.asList(p.getPartitionBuffers())); addressOffset += p.getPartitionBuffers().length << segmentSizeBits; returnAll(Arrays.asList(p.getBuckets())); } this.denseBuckets = denseBuckets; this.densePartition = new LongHashPartition(this, buildSideSerializer, dataBuffers.toArray(new MemorySegment[0])); freeCurrent(); } }
3.26
flink_LongHybridHashTable_insertIntoProbeBuffer_rdh
/** * If the probe row corresponding partition has been spilled to disk, just call this method * spill probe row to disk. * * <p>Note: This must be called only after {@link LongHybridHashTable#get} method. */ public final void insertIntoProbeBuffer(RowData probeRecord) throws IOException { checkNotNull(currentProbePartition); currentProbePartition.insertIntoProbeBuffer(probeSideSerializer, probeToBinary(probeRecord)); }
3.26
flink_ExecNodeContext_getTypeAsString_rdh
/** * Returns the {@link #name} and {@link #version}, to be serialized into the JSON plan as one * string, which in turn will be parsed by {@link ExecNodeContext#ExecNodeContext(String)} when * deserialized from a JSON plan or when needed by {@link ExecNodeTypeIdResolver#typeFromId(DatabindContext, String)}. */ @JsonValue public String getTypeAsString() { if ((name == null) || (version == null)) { throw new TableException(String.format("Can not serialize ExecNode with id: %d. Missing type, this is a bug," + " please file a ticket.", getId())); } return (name + "_") + version; }
3.26
flink_ExecNodeContext_generateUid_rdh
/** * Returns a new {@code uid} for transformations. */ public String generateUid(String transformationName, ExecNodeConfig config) { if (!transformationNamePattern.matcher(transformationName).matches()) { throw new TableException((("Invalid transformation name '" + transformationName) + "'. ") + "This is a bug, please file an issue."); } final String uidPattern = config.get(ExecutionConfigOptions.TABLE_EXEC_UID_FORMAT); // Note: name and version are not included in the UID by default as they would prevent // migration. // No version because: An operator can change its state layout and bump up the ExecNode // version, in this case the UID should still be able to map state even after plan // migration to the new version. // No name because: We might fuse operators in the future, and a new operator might // subscribe to multiple old UIDs. return StringUtils.replaceEach(uidPattern, new String[]{ "<id>", "<type>", "<version>", "<transformation>" }, new String[]{ String.valueOf(id), name, String.valueOf(version), transformationName }); }
3.26
flink_ExecNodeContext_newNodeId_rdh
/** * Generate an unique ID for ExecNode. */ public static int newNodeId() { return idCounter.incrementAndGet(); }
3.26