plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github
|
jacksky64/imageProcessing-master
|
colourmappath.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Colourmaps/colourmappath.m
| 11,106 |
utf_8
|
657a67e384f4f2074c75cffc36b9c945
|
% COLOURMAPPATH Plots the path of a colour map through colour space
%
% Usage: colourmappath(map, param_name, value, ....)
%
% Required argument:
% map - The colourmap to be plotted
%
% Optional parameter-value pairs, default values in brackets:
% 'N' - The nmber of slices through the colourspace to plot (6).
% 'colspace' - String 'rgb' or 'lab' indicating the colourspace to plot
% ('lab').
% 'fig' - Optional figure number to use (new figure created).
% 'linewidth' - Width of map path line (2.5).
% 'dotspace' - Spacing between colour map entries where dots are plotted
% along the path (5).
% 'dotsize' - (15). Use 0 if you want no dots plotted.
% 'dotcolour' - ([0.8 0.8 0.8])
% 'fontsize' - (14).
% 'fontweight' - ('bold').
%
% The colour space is represented as a series of semi-transparent 2D slices
% which hopefully lets you visualise the colour space and the colour map path
% simultaneously.
%
% Note that for some reason repeated calls of this function to render a colour
% map path in RGB space seem to ultimately cause MATLAB to crash (under MATLAB
% 2013b on OSX). Rendering paths in CIELAB space cause no problem.
%
% See also: CMAP, EQUALISECOLOURMAP, VIEWLABSPACE, SINERAMP, CIRCSINERAMP
% Copyright (c) 2013-2014 Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% peter.kovesi at uwa edu au
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% October 2013 - Original version
% October 2014 - Parameter options added
%function colourmappath(map, N, colspace, fig) % Original argument list
function colourmappath(varargin)
[map, N, colspace, fig, linewidth, ds, dotcolour, dotsize, fontsize, fontweight] ...
= parseinputs(varargin{:});
mapref = map;
%% RGB plot ---------------------------------------------------------
if strcmpi(colspace, 'rgb')
R = 255;
delta = 2; % Downsampling factor for red and green
[x,y] = meshgrid(0:delta:R, 0:delta:R);
[sze, ~] = size(x);
im = zeros(sze, sze, 3, 'uint8');
figure(fig), clf, axis([-1 sze+1 -1 sze+1 -1 sze+1])
% Draw N red-green planes of increasing blue value through RGB space
for b = 0:R/(N-1):R
for r = 0:delta:R
for g = 0:delta:R
im(g/delta+1, r/delta+1, :) = [r; g; round(b)];
end
end
h = warp(b*ones(sze,sze), im); hold on
set(h, 'FaceAlpha', 0.9);
end
% Plot the colour map path through the RGB colour space. Rescale map
% to account for scaling to 255 and for downsampling (yuk)
map(:,1:2) = map(:,1:2)*255/delta;
map(:,3) = map(:,3)*255;
line(map(:,1), map(:,2), map(:,3), 'linewidth', linewidth, 'color', [0 0 0]);
hold on
% Plot a dot for every 'dotspace' point along the colour map to indicate the
% spacing of colours in the colour map
if dotsize
plot3(map(1:ds:end,1), map(1:ds:end,2), map(1:ds:end,3), '.', ...
'Color', dotcolour, 'MarkerSize', dotsize);
end
hold off
% Generate axis tick values
tickcoords = [0:50:250]/delta;
ticklabels = {'0'; '50'; '100'; '150'; '200'; '250'};
set(gca, 'xtick', tickcoords);
set(gca, 'ytick', tickcoords);
set(gca, 'xticklabel', ticklabels);
set(gca, 'yticklabel', ticklabels);
xlabel('Red');
ylabel('Green');
zlabel('Blue');
set(gca,'Fontsize', fontsize);
set(gca,'Fontweight', fontweight);
axis vis3d
%% CIELAB plot ----------------------------------------------------
elseif strcmpi(colspace, 'lab')
if iscell(mapref) % We have a cell array of colour maps
figure(fig), clf, axis([-110 110 -110 110 0 100])
for n = 1:length(mapref)
lab = rgb2lab(mapref{n});
line(lab(:,2), lab(:,3), lab(:,1), 'linewidth', linewidth, 'color', [0 0 0])
hold on
if dotsize
plot3(lab(1:ds:end,2), lab(1:ds:end,3), lab(1:ds:end,1), '.', ...
'Color', dotcolour, 'MarkerSize', dotsize);
end
end
elseif ~isempty(map) % Single colour map supplied
lab = rgb2lab(mapref);
figure(fig), clf, axis([-110 110 -110 110 0 100])
line(lab(:,2), lab(:,3), lab(:,1), 'linewidth', linewidth, 'color', [0 0 0])
hold on
if dotsize
plot3(lab(1:ds:end,2), lab(1:ds:end,3), lab(1:ds:end,1), '.', ...
'Color', dotcolour, 'MarkerSize', dotsize);
end
% line([0 0], [0 0], [0 100]) % Line up a = 0, b = 0 axis
end
%% Generate Lab image slices
% Define a*b* grid for image
scale = 1;
[a, b] = meshgrid([-127:1/scale:127]);
[rows,cols] = size(a);
% Generate N equi-spaced lightness levels between 5 and 95.
for L = 5:90/(N-1):95 % For each lightness level...
% Build image in lab space
lab = zeros(rows,cols,3);
lab(:,:,1) = L;
lab(:,:,2) = a;
lab(:,:,3) = b;
% Generate rgb values from lab
rgb = applycform(lab, makecform('lab2srgb'));
% Invert to reconstruct the lab values
lab2 = applycform(rgb, makecform('srgb2lab'));
% Where the reconstructed lab values differ from the specified values is
% an indication that we have gone outside of the rgb gamut. Apply a
% mask to the rgb values accordingly
mask = max(abs(lab-lab2),[],3);
for n = 1:3
rgb(:,:,n) = rgb(:,:,n).*(mask<2); % tolerance of 2
end
[x,y,z,cdata] = labsurface(lab, rgb, L, 100);
h = surface(x,y,z,cdata); shading interp; hold on
set(h, 'FaceAlpha', 0.9);
end % for each lightness level
% Generate axis tick values
tickval = [-100 -50 0 50 100];
tickcoords = tickval; %scale*tickval + cols/2;
ticklabels = {'-100'; '-50'; '0'; '50'; '100'};
set(gca, 'xtick', tickcoords);
set(gca, 'ytick', tickcoords);
set(gca, 'xticklabel', ticklabels);
set(gca, 'yticklabel', ticklabels);
ztickval = [0 20 40 60 80 100];
zticklabels = {'0' '20' ' 40' '60' '80' '100'};
set(gca, 'ztick', ztickval);
set(gca, 'zticklabel', zticklabels);
set(gca,'Fontsize', fontsize);
set(gca,'Fontweight', fontweight);
% Label axes. Note option for manual placement for a and b
manual = 0;
if ~manual
xlabel('a', 'Fontsize', fontsize, 'FontWeight', fontweight);
ylabel('b', 'Fontsize', fontsize, 'FontWeight', fontweight);
else
text(0, -170, 0, 'a', 'Fontsize', fontsize, 'FontWeight', ...
fontweight);
text(155, 0, 0, 'b', 'Fontsize', fontsize, 'FontWeight', ...
fontweight);
end
zlabel('L', 'Fontsize', fontsize, 'FontWeight', fontweight);
axis vis3d
grid on, box on
view(64, 28)
hold off
else
error('colspace must be rgb or lab')
end
%-------------------------------------------------------------------
% LABSURFACE
%
% Idea to generate lab surfaces. Generate lab surface image, Sample a
% parametric grid of x, y, z and colour values. Texturemap the colour values
% onto the surface.
%
% Find first and last rows of image containing valid values. Interpolate y
% over this range. For each value of y find first and last valid x values.
% Interpolate x over this range sampling colour values as one goes.
function [x, y, z, cdata] = labsurface(lab, rgb, zval, N)
x = zeros(N,N);
y = zeros(N,N);
z = zeros(N,N);
cdata = zeros(N,N,3);
% Determine top and bottom edges of non-zero section of image
gim = sum(rgb, 3); % Sum over all colour channels
rowsum = sum(gim, 2); % Sum over rows
ind = find(rowsum);
top = ind(1);
bottom = ind(end);
rowvals = round(top + (0:N-1)/(N-1)*(bottom-top));
rowind = 1;
for row = rowvals
% Find first and last non-zero elements in this row
ind = find(gim(row,:));
left = ind(1);
right = ind(end);
colvals = round(left + (0:N-1)/(N-1)*(right-left));
% Fill matrices
colind = 1;
for col = colvals
x(rowind,colind) = lab(row,col,2);
y(rowind,colind) = lab(row,col,3);
z(rowind,colind) = zval;
cdata(rowind, colind, :) = rgb(row, col, :);
colind = colind+1;
end
rowind = rowind+1;
end
%-----------------------------------------------------------------------
% Function to parse the input arguments and set defaults
function [map, N, colspace, fig, linewidth, dotspace, dotcolour, dotsize, ...
fontsize, fontweight] = parseinputs(varargin)
p = inputParser;
% numericorcell = @(x) isnumeric(x) || iscell(x);
% addRequired(p, 'map', @numericorcell);
addRequired(p, 'map');
% Optional parameter-value pairs and their defaults
addParameter(p, 'N', 6, @isnumeric);
addParameter(p, 'colspace', 'LAB', @ischar);
addParameter(p, 'fig', -1, @isnumeric);
addParameter(p, 'linewidth', 2.5, @isnumeric);
addParameter(p, 'dotspace', 5, @isnumeric);
addParameter(p, 'dotsize', 15, @isnumeric);
addParameter(p, 'dotcolour', [0.8 0.8 0.8], @isnumeric);
addParameter(p, 'fontsize', 14, @isnumeric);
addParameter(p, 'fontweight', 'bold', @ischar);
parse(p, varargin{:});
map = p.Results.map;
N = p.Results.N;
colspace = p.Results.colspace;
dotspace = p.Results.dotspace;
dotcolour = p.Results.dotcolour;
dotsize = p.Results.dotsize;
linewidth = p.Results.linewidth;
fontsize = p.Results.fontsize;
fontweight = p.Results.fontweight;
fig = p.Results.fig;
if fig < 0, fig = figure; end
|
github
|
jacksky64/imageProcessing-master
|
map2imagejlutfile.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Colourmaps/map2imagejlutfile.m
| 946 |
utf_8
|
20cb86304c4f39be3822f85d6648f55f
|
% MAP2IMAGEJLUTFILE Writes a colourmap to a .lut file for use with ImageJ
%
% Usage: map2imagejlutfile(map, fname)
%
% The format of a lookup table for ImageJ is 256 bytes of red values, followed
% by 256 green values and finally 256 blue values. A total of 768 bytes.
%
% See also: READIMAGEJLUTFILE, READERMAPPERLUTFILE
% 2014 Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% peter.kovesi at uwa edu au
% PK June 2014
function map2imagejlutfile(map, fname)
[N, chan] = size(map);
if N ~= 256 | chan ~= 3
error('Colourmap must be 256x3');
end
% Ensure file has a .lut ending
if ~strendswith(fname, '.lut')
fname = [fname '.lut'];
end
% Convert map to integers 0-255 and form into a single vector of
% sequential RGB values
map = round(map(:)*255);
fid = fopen(fname, 'w');
fwrite(fid, map, 'uint8');
fclose(fid);
|
github
|
jacksky64/imageProcessing-master
|
generatelabslice.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Colourmaps/generatelabslice.m
| 2,213 |
utf_8
|
99f7d5a31fd659193715f4e2451be585
|
% GENERATELABSLICE Generates RGB image of slice through CIELAB space
%
% Usage: rgbim = generatelabslice(L, flip);
%
% Arguments: L - Desired lightness level of slice through CIELAB space
% flip - If set to 1 the image is fliped up-down. Default is 0
% Returns: rgbim - RGB image of slice
%
% The size of the returned image is 255 x 255.
% The achromatic point being at (128, 128)
% To convert from image (row, col) values to CIELAB (a, b) use:
% The a coordinate corresponds to (col - 128)
% If flip == 0 b = (row - 128)
% else b = -(row - 128)
%
% See also: VIEWLABSPACE
% Copyright (c) 2014 Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% peter.kovesi at uwa edu au
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% PK September 2014
function rgb = generatelabslice(L, flip)
if ~exist('flip', 'var'), flip = 0; end
% Define a*b* grid for image
[a, b] = meshgrid([-127:127]);
if flip
a = flipud(a); % Flip to make image display match convention
b = flipud(b); % of LAB space display
end
[rows,cols] = size(a);
% Build image in lab space
labim = zeros(rows,cols,3);
labim(:,:,1) = L;
labim(:,:,2) = a;
labim(:,:,3) = b;
% Generate rgb values from lab
rgb = applycform(labim, makecform('lab2srgb'));
% Invert to reconstruct the lab values
labim2 = applycform(rgb, makecform('srgb2lab'));
% Where the reconstructed lab values differ from the specified values is
% an indication that we have gone outside of the rgb gamut. Apply a
% mask to the rgb values accordingly
mask = max(abs(labim-labim2),[],3);
for n = 1:3
rgb(:,:,n) = rgb(:,:,n).*(mask<1); % tolerance of 1
end
|
github
|
jacksky64/imageProcessing-master
|
imagept2plane.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Projective/imagept2plane.m
| 4,695 |
utf_8
|
aa2e6cfa89e81e68b3652ab0b7ea3e52
|
% IMAGEPT2PLANE - Project image points to a plane and return their 3D locations
%
% Usage: pt = imagept2plane(C, xy, planeP, planeN)
%
% Arguments:
% C - Camera structure, see CAMSTRUCT for definition. Alternatively
% C can be a 3x4 camera projection matrix.
% xy - Image points specified as 2 x N array (x,y) / (col,row)
% planeP - Some point on the plane.
% planeN - Plane normal vector.
%
% Returns:
% pt - 3xN array of 3D points on the plane that the image points
% correspond to.
%
% Note that the plane is specified in terms of the world frame by defining a
% 3D point on the plane, planeP, and a surface normal, planeN.
%
% Lens distortion is handled by using the standard lens distortion parameters,
% assuming locally that the distortion is constant, computing the forward
% distortion and then subtracting the distortion.
%
% See also CAMSTRUCT, CAMERAPROJECT
% Copyright (c) 2015-2016 Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% peter.kovesi at uwa edu au
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% May 2015 - Original version
% Jan 2016 - Removed use of inverse lens distortion parameters and instead
% use the standard lens distortion parameters, assuming locally
% that the distortion is constant, and subtracting the distortion.
function pt = imagept2plane(C, xy, planeP, planeN)
[dim,N] = size(xy);
if dim ~= 2
error('Image xy data must be a 2 x N array');
end
if ~isstruct(C) && all(size(C) == [3,4]) % We have a projection matrix
C = projmatrix2camstruct(C); % Convert to camera structure
end
planeP = planeP(:); % Ensure column vectors
planeN = planeN(:);
% Reverse the projection process as used by CAMERAPROJECT
% If only one focal length specified in structure use it for both fx and fy
if isfield(C, 'f')
fx = C.f;
fy = C.f;
elseif isfield(C, 'fx') && isfield(C, 'fy')
fx = C.fx;
fy = C.fy;
else
error('Invalid focal length specification in camera structure');
end
if isfield(C, 'skew') % Handle optional skew specfication
skew = C.skew;
else
skew = 0;
end
% Subtract principal point and divide by focal length to get normalised,
% distorted image coordinates. Note skew represents the 2D shearing
% coefficient times fx
y_d = (xy(2,:) - C.ppy)/fy;
x_d = (xy(1,:) - C.ppx - y_d*skew)/fx;
% Radial distortion factor. Here the squared radius is computed from the
% already distorted coordinates. The approximation we are making here is to
% assume that the distortion is locally constant.
rsqrd = x_d.^2 + y_d.^2;
r_d = 1 + C.k1*rsqrd + C.k2*rsqrd.^2 + C.k3*rsqrd.^3;
% Tangential distortion component, again computed from the already distorted
% coords.
dtx = 2*C.p1*x_d.*y_d + C.p2*(rsqrd + 2*x_d.^2);
dty = C.p1*(rsqrd + 2*y_d.^2) + 2*C.p2*x_d.*y_d;
% Subtract the tangential distortion components and divide by the radial
% distortion factor to get an approximation of the undistorted normalised
% image coordinates (with no skew)
x_n = (x_d - dtx)./r_d;
y_n = (y_d - dty)./r_d;
% Define a set of points at the normalised distance of z = 1 from the
% principal point, these define the viewing rays in terms of the camera
% frame.
ray = [x_n; y_n; ones(1,N)];
% Rotate to get the viewing rays in the world frame
ray = C.Rc_w'*ray;
% The point of intersection of each ray with the plane will be
% pt = C.P + k*ray where k is to be determined
%
% Noting that the vector planeP -> pt will be perpendicular to planeN.
% Hence the dot product between these two vectors will be 0.
% dot((( C.P + k*ray ) - planeP) , planeN) = 0
% Rearranging this equation allows k to be solved
pt = zeros(3,N);
for n = 1:N
% k = (dot(planeP, planeN) - dot(C.P, planeN)) / dot(ray(:,n), planeN);
k = (planeP'*planeN - C.P'*planeN) / (ray(:,n)'*planeN); % Much faster!
pt(:,n) = C.P + k*ray(:,n);
end
|
github
|
jacksky64/imageProcessing-master
|
skew.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Projective/skew.m
| 527 |
utf_8
|
68057bbcf6dc0afb3b008a6351532a72
|
% SKEW - Constructs 3x3 skew-symmetric matrix from 3-vector
%
% Usage: s = skew(v)
%
% Argument: v - 3-vector
% Returns: s - 3x3 skew-symmetric matrix
%
% The cross product between two vectors, a x b can be implemented as a matrix
% product skew(a)*b
% Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% peter.kovesi at uwa edu au
% October 2013
function s = skew(v)
assert(numel(v) == 3);
s = [ 0 -v(3) v(2)
v(3) 0 -v(1)
-v(2) v(1) 0 ];
|
github
|
jacksky64/imageProcessing-master
|
makehomogeneous.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Projective/makehomogeneous.m
| 649 |
utf_8
|
19d1cac5b6483d4dd545ef8b6bca5dcb
|
% MAKEHOMOGENEOUS - Appends a scale of 1 to array inhomogeneous coordinates
%
% Usage: hx = makehomogeneous(x)
%
% Argument:
% x - an N x npts array of inhomogeneous coordinates.
%
% Returns:
% hx - an (N+1) x npts array of homogeneous coordinates with the
% homogeneous scale set to 1
%
% See also: MAKEINHOMOGENEOUS
% Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk at csse uwa edu au
% http://www.csse.uwa.edu.au/~pk
%
% April 2010
function hx = makehomogeneous(x)
[rows, npts] = size(x);
hx = ones(rows+1, npts);
hx(1:rows,:) = x;
|
github
|
jacksky64/imageProcessing-master
|
plotPoint.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Projective/plotPoint.m
| 1,068 |
utf_8
|
d515fe2aec3bd3915d334310b903a4ba
|
% PLOTPOINT - Plots point with specified mark and optional text label.
%
% Function to plot 2D points with an optionally specified
% marker and optional text label.
%
% Usage:
% plotPoint(p) where p is a 2D point
% plotPoint(p, 'mark') where mark is say 'r+' or 'g*' etc
% plotPoint(p, 'mark', 'text')
%
% Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk @ csse uwa edu au
% http://www.csse.uwa.edu.au/~pk
%
% April 2000
% November 2006 Typo in setting 'mk' fixed, text offset relative to point improved.
function plotPoint(p, mark, txt)
hold on
mk = 'r+'; % Default mark is a red +
if nargin >= 2
mk = mark;
end
plot(p(1), p(2), mk);
if nargin == 3
% Print text next to point - calculate an appropriate amount to offset
% the text from the point.
xlim = get(gca,'Xlim');
ylim = get(gca,'Ylim');
offset = min((xlim(2)-xlim(1)),(ylim(2)-ylim(1)))/50;
text(p(1)+offset,p(2)-offset,txt,'Color',mk(1));
end
|
github
|
jacksky64/imageProcessing-master
|
lengthRatioConstraint.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Projective/lengthRatioConstraint.m
| 1,137 |
utf_8
|
587f4507cf32933e2f0468f438c17505
|
% lengthRatioConstraint - Affine transform constraints given a length ratio.
%
% Function calculates centre and radius of the constraint
% circle in alpha-beta space generated by having a known
% lenth ratio between two non-parallel line segemnts in
% an affine image
%
% Usage: [c, r] = lengthRatioConstraint(p11, p12, p21, p22, s)
%
% Where: p11, p12 and p21, p22 are four points defining two line
% segments having a known length ratio.
% s is the known length ratio
% c is the 2D coordinate of the centre of the constraint circle.
% r is the radius of the centre of the constraint circle.
% Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk @ csse uwa edu au
% http://www.csse.uwa.edu.au/~pk
%
% April 2000
%
% Equations from Liebowitz and Zisserman
function [c, r] = lengthRatioConstraint(p11, p12, p21, p22, s)
dp1 = p12-p11; dx1 = dp1(1); dy1 = dp1(2);
dp2 = p22-p21; dx2 = dp2(1); dy2 = dp2(2);
c = [(dx1*dy1 - s^2*dx2*dy2)/(dy1^2 - s^2*dy2^2), 0];
r = abs( s*(dx2*dy1 - dx1*dy2)/(dy1^2 - s^2*dy2^2) );
|
github
|
jacksky64/imageProcessing-master
|
fundfromcameras.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Projective/fundfromcameras.m
| 1,308 |
utf_8
|
89d7618588ec84ececead8d97ea76b3e
|
% FUNDFROMCAMERAS - Fundamental matrix from camera matrices
%
% Usage: F = fundfromcameras(P1, P2)
%
% Arguments: P1, P2 - Two 3x4 camera matrices
% Returns: F - Fundamental matrix relating the two camera views
%
% See also: FUNDMATRIX, AFFINEFUNDMATRIX
% Reference: Hartley and Zisserman p244
% Copyright (c) 2009 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk at csse uwa edu au
% http://www.csse.uwa.edu.au/
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
% The Software is provided "as is", without warranty of any kind.
function F = fundfromcameras(P1, P2)
if ~all(size(P1) == [3 4]) | ~all(size(P2) == [3 4])
error('Camera matrices must be 3x4');
end
C1 = null(P1); % Camera centre 1 is the null space of P1
e2 = P2*C1; % epipole in camera 2
e2x = [ 0 -e2(3) e2(2) % Skew symmetric matrix from e2
e2(3) 0 -e2(1)
-e2(2) e2(1) 0 ];
F = e2x*P2*pinv(P1);
|
github
|
jacksky64/imageProcessing-master
|
circleintersect.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Projective/circleintersect.m
| 2,710 |
utf_8
|
489ffc783300c34976f2c82fbed8c020
|
% CIRCLEINTERSECT - Finds intersection of two circles.
%
% Function to return the intersection points between two circles
% given their centres and radi.
%
% Usage: [i1, i2] = circleintersect(c1, r1, c2, r2, lr)
%
% Where:
% c1 and c2 are 2-vectors specifying the centres of the two circles.
% r1 and r2 are the radii of the two circles.
% i1 and i2 are the two 2D intersection points (if they exist)
% lr is an optional string specifying what solution is wanted:
% 'l' for the solution to the left of the line from c1 to c2
% 'r' for the solution to the right of the line from c1 to c2
% 'lr' if both solutions are wanted (default).
% Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% Peter Kovesi
% pk @ csse uwa edu au
% http://www.csse.uwa.edu.au/~pk
%
% April 2000 - original version
% October 2003 - mods to allow selection of left/right solutions
% and catching of degenerate triangles
function [i1, i2] = circleintersect(c1, r1, c2, r2, lr)
if nargin == 4
lr = 'lr';
end
maxmag = max([max(r1, r2), max(c1), max(c2)]); % maximum value in data input
tol = 100*(maxmag+1)*eps; % Tolerance used for deciding whether values are equal
% scaling by 100 is a bit arbitrary...
bv = (c2-c1); % Baseline vector from c1 to c2
b = norm(bv); % The distance between the centres
% Trap case of baseline of zero length. If r1 == r2
% we have a valid geometric situation, but there are an infinite number of
% solutions. Here we simply choose to add r1 in the x direction to c1.
if b < eps & abs(r1-r2) < tol
i1 = c1 + [r1 0];
i2 = i1;
return
end
bv = bv/b; % Normalise baseline vector.
bvp = [-bv(2) bv(1)]; % Vector perpendicular to baseline
% Trap the degenerate cases where one of the radii are zero, or nearly zero
if r1 < tol & abs(b-r2) < tol
i1 = c1;
i2 = c1;
return;
elseif r2 < tol & abs(b-r1) < tol
i1 = c2;
i2 = c2;
return;
end
% Check triangle inequality
if b > (r1+r2) | r1 > (b+r2) | r2 > (b+r1)
c1, c2, r1, r2, b
error('No solution to circle intersection');
end
% Normal solution
cosR2 = (b^2 + r1^2 - r2^2)/(2*b*r1);
sinR2 = sqrt(1-cosR2^2);
if strcmpi(lr,'lr')
i1 = c1 + r1*cosR2*bv + r1*sinR2*bvp; % 'left' solution
i2 = c1 + r1*cosR2*bv - r1*sinR2*bvp; % and 'right solution
elseif strcmpi(lr,'l')
i1 = c1 + r1*cosR2*bv + r1*sinR2*bvp; % 'left' solution
i2 = [];
elseif strcmpi(lr,'r')
i1 = c1 + r1*cosR2*bv - r1*sinR2*bvp; % 'right solution
i2 = [];
else
error('illegal left/right solution request');
end
|
github
|
jacksky64/imageProcessing-master
|
undistortimage.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Projective/undistortimage.m
| 3,670 |
utf_8
|
96664f80594b9f7b22b3372441e5f591
|
% UNDISTORTIMAGE - Removes lens distortion from an image
%
% Usage: nim = undistortimage(im, f, ppx, ppy, k1, k2, k3, p1, p2)
%
% Arguments:
% im - Image to be corrected.
% f - Focal length in terms of pixel units
% (focal_length_mm/pixel_size_mm)
% ppx, ppy - Principal point location in pixels.
% k1, k2, k3 - Radial lens distortion parameters.
% p1, p2 - Tangential lens distortion parameters.
%
% Returns:
% nim - Corrected image.
%
% It is assumed that radial and tangential distortion parameters are
% computed/defined with respect to normalised image coordinates corresponding
% to an image plane 1 unit from the projection centre. This is why the
% focal length is required.
% Copyright (c) 2010 Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% peter.kovesi at uwa edu au
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% October 2010 Original version
% November 2010 Bilinear interpolation + corrections
% April 2015 Cleaned up and speeded up via use of interp2
% September 2015 Incorporated k3 + tangential distortion parameters
function nim = undistortimage(im, f, ppx, ppy, k1, k2, k3, p1, p2)
% Strategy: Generate a grid of coordinate values corresponding to an ideal
% undistorted image. We then apply the imaging process to these
% coordinates, including lens distortion, to obtain the actual distorted
% image locations. In this process these distorted image coordinates end up
% being stored in a matrix that is indexed via the original ideal,
% undistorted coords. Thus for every undistorted pixel location we can
% determine the location in the distorted image that we should map the grey
% value from.
% Start off generating a grid of ideal values in the undistorted image.
[rows,cols,chan] = size(im);
[xu,yu] = meshgrid(1:cols, 1:rows);
% Convert grid values to normalised values with the origin at the principal
% point. Dividing pixel coordinates by the focal length (defined in pixels)
% gives us normalised coords corresponding to z = 1
x = (xu-ppx)/f;
y = (yu-ppy)/f;
% Radial lens distortion component
r2 = x.^2+y.^2; % Squared normalized radius.
dr = k1*r2 + k2*r2.^2 + k3*r2.^3; % Distortion scaling factor.
% Tangential distortion component (Beware of different p1,p2
% orderings used in the literature)
dtx = 2*p1*x.*y + p2*(r2 + 2*x.^2);
dty = p1*(r2 + 2*y.^2) + 2*p2*x.*y;
% Apply the radial and tangential distortion components to x and y
x = x + dr.*x + dtx;
y = y + dr.*y + dty;
% Now rescale by f and add the principal point back to get distorted x
% and y coordinates
xd = x*f + ppx;
yd = y*f + ppy;
% Interpolate values from distorted image to their ideal locations
if ndims(im) == 2 % Greyscale
nim = interp2(xu,yu,double(im),xd,yd);
else % Colour
nim = zeros(size(im));
for n = 1:chan
nim(:,:,n) = interp2(xu,yu,double(im(:,:,n)),xd,yd);
end
end
if isa(im, 'uint8') % Cast back to uint8 if needed
nim = uint8(nim);
end
|
github
|
jacksky64/imageProcessing-master
|
homoTrans.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Projective/homoTrans.m
| 879 |
utf_8
|
bde17d25ed5c319d12d7c6c52fa76ac9
|
% HOMOTRANS - homogeneous transformation of points
%
% Function to perform a transformation on homogeneous points/lines
% The resulting points are normalised to have a homogeneous scale of 1
%
% Usage:
% t = homoTrans(P,v);
%
% Arguments:
% P - 3 x 3 or 4 x 4 transformation matrix
% v - 3 x n or 4 x n matrix of points/lines
% Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk @ csse uwa edu au
% http://www.csse.uwa.edu.au/~pk
%
% April 2000
% September 2007
function t = homotrans(P,v);
[dim,npts] = size(v);
if ~all(size(P)==dim)
error('Transformation matrix and point dimensions do not match');
end
t = P*v; % Transform
for r = 1:dim-1 % Now normalise
t(r,:) = t(r,:)./t(end,:);
end
t(end,:) = ones(1,npts);
|
github
|
jacksky64/imageProcessing-master
|
imTrans.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Projective/imTrans.m
| 6,266 |
utf_8
|
efdc293e9b12ecbd2485a2d4a360f8f8
|
% IMTRANS - Homogeneous transformation of an image.
%
% Applies a geometric transform to an image
%
% [newim, newT] = imTrans(im, T, region, sze);
%
% Arguments:
% im - The image to be transformed.
% T - The 3x3 homogeneous transformation matrix.
% region - An optional 4 element vector specifying
% [minrow maxrow mincol maxcol] to transform.
% This defaults to the whole image if you omit it
% or specify it as an empty array [].
% sze - An optional desired size of the transformed image
% (this is the maximum No of rows or columns).
% This defaults to the maximum of the rows and columns
% of the original image.
%
% Returns:
% newim - The transformed image.
% newT - The transformation matrix that relates transformed image
% coordinates to the reference coordinates for use in a
% function such as DIGIPLANE.
%
% The region argument is used when one is inverting a perspective
% transformation of a plane and the vanishing line of the plane lies within
% the image. Attempts to transform any part of the vanishing line will
% position you at infinity. Accordingly one should specify a region that
% excludes any part of the vanishing line.
%
% The sze parameter is optionally used to control the size of the
% output image. When inverting a perpective or affine transformation
% the scale parameter is unknown/arbitrary, and without specifying
% it explicitly the transformed image can end up being very small
% or very large.
%
% Problems: If your transformed image ends up as being two small bits of
% image separated by a large black area then the chances are that you have
% included the vanishing line of the plane within the specified region to
% transform. If your image degenerates to a very thin triangular shape
% part of your region is probably very close to the vanishing line of the
% plane.
% Copyright (c) 2000-2005 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% http://www.csse.uwa.edu.au/
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% April 2000 - original version.
% July 2001 - transformation of region boundaries corrected.
% May 2016 - Minor tidying
function [newim, newT] = imTrans(im, T, region, sze);
if isa(im,'uint8')
im = double(im); % Make sure image is double
end
% Set up default region and transformed image size values
[rows, cols, chan] = size(im);
if ~exist('region', 'var') || isempty(region)
region = [1 rows 1 cols];
end
if ~exist('sze', 'var') || isempty(sze)
sze = max([rows, cols]);
end
if chan == 3 % Transform red, green, blue components separately
im = im/255;
[r, newT] = transformImage(im(:,:,1), T, region, sze);
[g, newT] = transformImage(im(:,:,2), T, region, sze);
[b, newT] = transformImage(im(:,:,3), T, region, sze);
newim = repmat(uint8(0),[size(r),3]);
newim(:,:,1) = uint8(round(r*255));
newim(:,:,2) = uint8(round(g*255));
newim(:,:,3) = uint8(round(b*255));
else % Assume the image is greyscale
[newim, newT] = transformImage(im, T, region, sze);
end
%------------------------------------------------------------
% The internal function that does all the work
function [newim, newT] = transformImage(im, T, region, sze);
[rows, cols] = size(im);
% Cut the image down to the specified region
im = im(region(1):region(2), region(3):region(4));
[rows, cols] = size(im);
% Find where corners go - this sets the bounds on the final image
B = bounds(T,region);
nrows = B(2) - B(1);
ncols = B(4) - B(3);
% Determine any rescaling needed
s = sze/max(nrows,ncols);
S = [s 0 0 % Scaling matrix
0 s 0
0 0 1];
T = S*T;
Tinv = inv(T);
% Recalculate the bounds of the new (scaled) image to be generated
B = bounds(T,region);
nrows = B(2) - B(1);
ncols = B(4) - B(3);
% Construct a transformation matrix that relates transformed image
% coordinates to the reference coordinates for use in a function such as
% DIGIPLANE. This transformation is just an inverse of a scaling and
% origin shift.
newT=inv(S - [0 0 B(3); 0 0 B(1); 0 0 0]);
% Set things up for the image transformation.
newim = zeros(nrows,ncols);
[xi,yi] = meshgrid(1:ncols,1:nrows); % All possible xy coords in the image.
% Transform these xy coords to determine where to interpolate values
% from. Note we have to work relative to x=B(3) and y=B(1).
sxy = homoTrans(Tinv, [xi(:)'+B(3) ; yi(:)'+B(1) ; ones(1,ncols*nrows)]);
xi = reshape(sxy(1,:),nrows,ncols);
yi = reshape(sxy(2,:),nrows,ncols);
[x,y] = meshgrid(1:cols,1:rows);
x = x+region(3)-1; % Offset x and y relative to region origin.
y = y+region(1)-1;
newim = interp2(x,y,double(im),xi,yi); % Interpolate values from source image.
%% Plot bounding region
%P = [region(3) region(4) region(4) region(3)
% region(1) region(1) region(2) region(2)
% 1 1 1 1 ];
%B = round(homoTrans(T,P));
%Bx = B(1,:);
%By = B(2,:);
%Bx = Bx-min(Bx); Bx(5)=Bx(1);
%By = By-min(By); By(5)=By(1);
%show(newim,2), axis xy
%line(Bx,By,'Color',[1 0 0],'LineWidth',2);
%% end plot bounding region
%---------------------------------------------------------------------
%
% Internal function to find where the corners of a region, R
% defined by [minrow maxrow mincol maxcol] are transformed to
% by transform T and returns the bounds, B in the form
% [minrow maxrow mincol maxcol]
function B = bounds(T, R)
P = [R(3) R(4) R(4) R(3) % homogeneous coords of region corners
R(1) R(1) R(2) R(2)
1 1 1 1 ];
PT = round(homoTrans(T,P));
B = [min(PT(2,:)) max(PT(2,:)) min(PT(1,:)) max(PT(1,:))];
% minrow maxrow mincol maxcol
|
github
|
jacksky64/imageProcessing-master
|
affinefundmatrix.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Projective/affinefundmatrix.m
| 3,219 |
utf_8
|
7cbd1c7c427cf3466f0df1c9c57cd131
|
% AFFINEFUNDMATRIX - computes affine fundamental matrix from 4 or more points
%
% Function computes the affine fundamental matrix from 4 or more matching
% points in a stereo pair of images. The Gold Standard algorithm given
% by Hartley and Zisserman p351 (2nd Ed.) is used.
%
% Usage: [F, e1, e2] = affinefundmatrix(x1, x2)
% [F, e1, e2] = affinefundmatrix(x)
%
% Arguments:
% x1, x2 - Two sets of corresponding point. If each set is 3xN
% it is assumed that they are homogeneous coordinates.
% If they are 2xN it is assumed they are inhomogeneous.
%
% x - If a single argument is supplied it is assumed that it
% is in the form x = [x1; x2]
% Returns:
% F - The 3x3 fundamental matrix such that x2'*F*x1 = 0.
% e1 - The epipole in image 1 such that F*e1 = 0
% e2 - The epipole in image 2 such that F'*e2 = 0
%
% Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk at csse uwa edu au
% http://www.csse.uwa.edu.au/~pk
%
% Feb 2005
function [F,e1,e2] = affinefundmatrix(varargin)
[x1, x2, npts] = checkargs(varargin(:));
X = [x2; x1]; % Form vectors of correspondences
Xmean = mean(X,2); % Mean
deltaX = zeros(size(X));
for k = 1:4
deltaX(k,:) = X(k,:) - Xmean(k);
end
[U,D,V] = svd(deltaX',0);
% Form fundamental matrix from the column of V corresponding to
% smallest singular value.
v = V(:,4);
F = [ 0 0 v(1)
0 0 v(2)
v(3) v(4) -v'*Xmean];
% Solve for epipoles
[U,D,V] = svd(F,0);
e1 = V(:,3);
e2 = U(:,3);
%--------------------------------------------------------------------------
% Function to check argument values and set defaults
function [x1, x2, npts] = checkargs(arg);
if length(arg) == 2
x1 = arg{1};
x2 = arg{2};
if ~all(size(x1)==size(x2))
error('x1 and x2 must have the same size');
elseif size(x1,1) == 3
% Convert to inhomogeneous coords
x1(1,:) = x1(1,:)./x1(3,:);
x1(2,:) = x1(2,:)./x1(3,:);
x2(1,:) = x2(1,:)./x2(3,:);
x2(2,:) = x2(2,:)./x2(3,:);
x1 = x1(1:2,:); x2 = x2(1:2,:);
elseif size(x1,1) ~= 2
error('x1 and x2 must be 2xN or 3xN arrays');
end
elseif length(arg) == 1
if size(arg{1},1) == 6
x1 = arg{1}(1:3,:);
x2 = arg{1}(4:6,:);
% Convert to inhomogeneous coords
x1(1,:) = x1(1,:)./x1(3,:);
x1(2,:) = x1(2,:)./x1(3,:);
x2(1,:) = x2(1,:)./x2(3,:);
x2(2,:) = x2(2,:)./x2(3,:);
x1 = x1(1:2,:); x2 = x2(1:2,:);
elseif size(arg{1},1) == 4
x1 = arg{1}(1:2,:);
x2 = arg{1}(3:4,:);
else
error('Single argument x must be 6xN');
end
else
error('Wrong number of arguments supplied');
end
npts = size(x1,2);
if npts < 4
error('At least 4 points are needed to compute the affine fundamental matrix');
end
|
github
|
jacksky64/imageProcessing-master
|
ray2raydist.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Projective/ray2raydist.m
| 1,643 |
utf_8
|
eeaa7c5e8fa86f575414560d70b2d3ae
|
% RAY2RAYDIST Minimum distance between two 3D rays
%
% Usage: d = ray2raydist(p1, v1, p2, v2)
%
% Arguments:
% p1, p2 - 3D points that lie on rays 1 and 2.
% v1, v2 - 3D vectors defining the direction of each ray.
%
% Returns:
% d - The minimum distance between the rays.
%
% Each ray is defined by a point on the ray and a vector giving the direction
% of the ray. Thus a point on ray 1 will be given by p1 + alpha*v1 where
% alpha is some scalar.
% Peter Kovesi
% peterkovesi.com
% June 2016
function d = ray2raydist(p1, v1, p2, v2)
% Get vector perpendicular to both rays
n = cross(v1, v2); n = n(:);
nnorm = sqrt(n'*n);
% Check if lines are parallel. If so, form a vector perpendicular to v1
% that is within the plane formed by the parallel rays.
if nnorm < eps;
n = cross(v1, p1-p2); % Vector perpendicular to plane formed by pair
% of rays.
n = cross(v1, n); % Vector perpendicular to v1 within the plane
n = n(:); % formed by the 2 rays.
nnorm = sqrt(n'*n);
if nnorm < eps
d = 0;
return
end
end
n = n/nnorm; % Unit vector
% The vector joining the two closest points on the rays is:
% d*n = p2 + beta*v2 - (p1 + alpha*v1)
% for some unknown values of alpha and beta.
%
% Take dot product of n on both sides
% d*n.n = p2.n + beta*v2.n - p1.n - alpha*v1.n
%
% as n is prependicular to v1 and v2 this reduces to
% d = (p2 - p1).n
d = abs((p2(:)' - p1(:)')*n);
|
github
|
jacksky64/imageProcessing-master
|
idealimagepts.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Projective/idealimagepts.m
| 2,834 |
utf_8
|
b6897b349d37dd57db0f46ad95c3ade7
|
% IDEALIMAGEPTS - Ideal image points with no distortion.
%
% Usage: xyideal = idealimagepts(C, xy)
%
% Arguments:
% C - Camera structure, see CAMSTRUCT for definition.
% xy - Image points specified as 2 x N array (x,y) / (col,row)
%
% Returns:
% xyideal - Ideal image points. These points correspond to the image
% locations that would be obtained if the camera had no lens
% distortion. That is, if they had been projected using an ideal
% projection matrix computed from fx, fy, ppx, ppy, skew.
%
% See also CAMSTRUCT, CAMERAPROJECT, SOLVESTEREOPT
% Copyright (c) 2015 Peter Kovesi
% pk at peterkovesi com
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% August 2015 Adapted from imagept2plane
% February 2016 Refined inversion of distortion process slightly
function xyideal = idealimagepts(C, xy)
[dim,N] = size(xy);
if dim ~= 2
error('Image xy data must be a 2 x N array');
end
% Reverse the projection process as used by CAMERAPROJECT
% Subtract principal point and divide by focal length to get normalised,
% distorted image coordinates. Note skew represents the 2D shearing
% coefficient times fx
y_d = (xy(2,:) - C.ppy)/C.fy;
x_d = (xy(1,:) - C.ppx - y_d*C.skew)/C.fx;
% Compute the inverse of the lens distortion effect by computing the
% 'forward' direction lens distortion at this point and then subtracting
% this from the current point.
% Radial distortion factor. Here the squared radius is computed from the
% already distorted coordinates. The approximation we are making here is to
% assume that the distortion is locally constant.
rsqrd = x_d.^2 + y_d.^2;
r_d = 1 + C.k1*rsqrd + C.k2*rsqrd.^2 + C.k3*rsqrd^3;
% Tangential distortion component, again computed from the already distorted
% coords.
dtx = 2*C.p1*x_d.*y_d + C.p2*(rsqrd + 2*x_d.^2);
dty = C.p1*(rsqrd + 2*y_d.^2) + 2*C.p2*x_d.*y_d;
% Subtract the tangential distortion components and divide by the radial
% distortion factor to get an approximation of the undistorted normalised
% image coordinates (with no skew)
x_n = (x_d - dtx)./r_d;
y_n = (y_d - dty)./r_d;
% Finally project back to pixel coordinates.
x_p = C.ppx + x_n*C.fx + y_n*C.skew;
y_p = C.ppy + y_n*C.fy;
xyideal = [x_p
y_p];
|
github
|
jacksky64/imageProcessing-master
|
imTransD.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Projective/imTransD.m
| 3,965 |
utf_8
|
253939b60899cb7418ae8eebee0f8b87
|
% IMTRANSD - Homogeneous transformation of an image.
%
% This is a stripped down version of imTrans which does not apply any origin
% shifting to the transformed image
%
% Applies a geometric transform to an image
%
% newim = imTransD(im, T, sze, lhrh);
%
% Arguments:
% im - The image to be transformed.
% T - The 3x3 homogeneous transformation matrix.
% sze - 2 element vector specifying the size of the image that the
% transformed image is placed into. If you are not sure
% where your image is going to 'go' make sze large! (though
% this does not help you if the image is placed at a negative
% location)
% lhrh - String 'lh' or 'rh' indicating whether the transform was
% computed assuming columns represent x and rows represent y
% (a left handed coordinate system) or if it was computed
% using rows as x and columns as y (a right handed system,
% albeit rotated 90 degrees). The default is assumed 'lh'
% though 'rh' is probably more sensible.
%
%
% Returns:
% newim - The transformed image.
%
% See also: IMTRANS
%
% Copyright (c) 2000-2005 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% http://www.csse.uwa.edu.au/
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% April 2000 - Original version.
% April 2010 - Allowance for left hand and right hand coordinate systems.
% Offset of 1 pixel that was (incorrectly) applied in
% transformImage removed.
function newim = imTransD(im, T, sze, lhrh);
if ~exist('lhrh','var'), lhrh = 'l'; end
if isa(im,'uint8')
im = double(im); % Make sure image is double
end
if lhrh(1) == 'r' % Transpose the image allowing for colour images
im = permute(im,[2 1 3]);
end
threeD = (ndims(im)==3); % A colour image
if threeD % Transform red, green, blue components separately
im = im/255;
r = transformImage(im(:,:,1), T, sze);
g = transformImage(im(:,:,2), T, sze);
b = transformImage(im(:,:,3), T, sze);
newim = repmat(uint8(0),[size(r),3]);
newim(:,:,1) = uint8(round(r*255));
newim(:,:,2) = uint8(round(g*255));
newim(:,:,3) = uint8(round(b*255));
else % Assume the image is greyscale
newim = transformImage(im, T, sze);
end
if lhrh(1) == 'r' % Transpose back again
newim = permute(newim,[2 1 3]);
end
%------------------------------------------------------------
% The internal function that does all the work
function newim = transformImage(im, T, sze);
[rows, cols] = size(im);
% Set things up for the image transformation.
newim = zeros(rows,cols);
[xi,yi] = meshgrid(1:cols,1:rows); % All possible xy coords in the image.
% Transform these xy coords to determine where to interpolate values
% from.
Tinv = inv(T);
sxy = homoTrans(Tinv, [xi(:)' ; yi(:)' ; ones(1,cols*rows)]);
xi = reshape(sxy(1,:),rows,cols);
yi = reshape(sxy(2,:),rows,cols);
[x,y] = meshgrid(1:cols,1:rows);
% x = x-1; % Offset x and y relative to region origin.
% y = y-1;
newim = interp2(x,y,im,xi,yi); % Interpolate values from source image.
% Place new image into an image of the desired size
newim = implace(zeros(sze),newim,0,0);
|
github
|
jacksky64/imageProcessing-master
|
camstruct2projmatrix.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Projective/camstruct2projmatrix.m
| 1,238 |
utf_8
|
59571df196f3b1f2119baf291817faa7
|
% CAMSTRUCT2PROJMATRIX
%
% Usage: P = camstruct2projmatrix(C)
%
% Argument: C - Camera structure.
% Returns: P - 3x4 camera projection matrix that maps homogeneous 3D world
% coordinates to homogeneous image coordinates.
%
% Function takes a camera structure and returns its equivalent projection matrix
% ignoring lens distortion parameters etc
%
% See also: CAMSTRUCT, PROJMATRIX2CAMSTRUCT, CAMERAPROJECT
% Copyright (c) Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% peter.kovesi at uwa edu au
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% PK April 2015
function P = camstruct2projmatrix(C)
K = [C.fx C.skew C.ppx 0
0 C.fy C.ppy 0
0 0 1 0];
T = [ C.Rc_w -C.Rc_w*C.P
0 0 0 1 ];
P = K*T;
|
github
|
jacksky64/imageProcessing-master
|
hnormalise.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Projective/hnormalise.m
| 1,010 |
utf_8
|
40eeebb3462ab60fb05b133bf0055baf
|
% HNORMALISE - Normalises array of homogeneous coordinates to a scale of 1
%
% Usage: nx = hnormalise(x)
%
% Argument:
% x - an Nxnpts array of homogeneous coordinates.
%
% Returns:
% nx - an Nxnpts array of homogeneous coordinates rescaled so
% that the scale values nx(N,:) are all 1.
%
% Note that any homogeneous coordinates at infinity (having a scale value of
% 0) are left unchanged.
% Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% http://www.csse.uwa.edu.au/~pk
%
% February 2004
function nx = hnormalise(x)
[rows,npts] = size(x);
nx = x;
% Find the indices of the points that are not at infinity
finiteind = find(abs(x(rows,:)) > eps);
% if length(finiteind) ~= npts
% warning('Some points are at infinity');
% end
% Normalise points not at infinity
for r = 1:rows-1
nx(r,finiteind) = x(r,finiteind)./x(rows,finiteind);
end
nx(rows,finiteind) = 1;
|
github
|
jacksky64/imageProcessing-master
|
homography2d.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Projective/homography2d.m
| 2,963 |
utf_8
|
f321f03ac1a2722e93c1c15cf2ec62f2
|
% HOMOGRAPHY2D - computes 2D homography
%
% Usage: H = homography2d(x1, x2)
% H = homography2d(x)
%
% Arguments:
% x1 - 3xN set of homogeneous points
% x2 - 3xN set of homogeneous points such that x1<->x2
%
% x - If a single argument is supplied it is assumed that it
% is in the form x = [x1; x2]
% Returns:
% H - the 3x3 homography such that x2 = H*x1
%
% This code follows the normalised direct linear transformation
% algorithm given by Hartley and Zisserman "Multiple View Geometry in
% Computer Vision" p92.
% Copyright (c) 2003-2005 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk at csse uwa edu au
% http://www.csse.uwa.edu.au/~pk
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% May 2003 - Original version.
% Feb 2004 - Single argument allowed for to enable use with RANSAC.
% Feb 2005 - SVD changed to 'Economy' decomposition (thanks to Paul O'Leary)
function H = homography2d(varargin)
[x1, x2] = checkargs(varargin(:));
% Attempt to normalise each set of points so that the origin
% is at centroid and mean distance from origin is sqrt(2).
[x1, T1] = normalise2dpts(x1);
[x2, T2] = normalise2dpts(x2);
% Note that it may have not been possible to normalise
% the points if one was at infinity so the following does not
% assume that scale parameter w = 1.
Npts = length(x1);
A = zeros(3*Npts,9);
O = [0 0 0];
for n = 1:Npts
X = x1(:,n)';
x = x2(1,n); y = x2(2,n); w = x2(3,n);
A(3*n-2,:) = [ O -w*X y*X];
A(3*n-1,:) = [ w*X O -x*X];
A(3*n ,:) = [-y*X x*X O ];
end
[U,D,V] = svd(A,0); % 'Economy' decomposition for speed
% Extract homography
H = reshape(V(:,9),3,3)';
% Denormalise
H = T2\H*T1;
%--------------------------------------------------------------------------
% Function to check argument values and set defaults
function [x1, x2] = checkargs(arg);
if length(arg) == 2
x1 = arg{1};
x2 = arg{2};
if ~all(size(x1)==size(x2))
error('x1 and x2 must have the same size');
elseif size(x1,1) ~= 3
error('x1 and x2 must be 3xN');
end
elseif length(arg) == 1
if size(arg{1},1) ~= 6
error('Single argument x must be 6xN');
else
x1 = arg{1}(1:3,:);
x2 = arg{1}(4:6,:);
end
else
error('Wrong number of arguments supplied');
end
|
github
|
jacksky64/imageProcessing-master
|
digiplane.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Projective/digiplane.m
| 2,368 |
utf_8
|
9634b931390f4536b8d7280b8745f6a1
|
% DIGIPLANE - Digitise and transform points within a planar region in an image.
%
% This function allows you to digitise points within a planar region of an
% image for which an inverse perspective transformation has been previously
% determined using, say, INVPERSP. The digitised points are then
% transformed into coordinates defined in terms of the reference frame.
%
% Usage: pts = digiplane(im, T, xyij)
%
% Arguments: im - Image.
% T - Inverse perspective transform.
% xyij - An optional string 'xy' or 'ij' indicating what
% coordinate system should be used when displaying
% the image.
% xy - cartesian system with origin at bottom-left.
% ij - 'matrix' system with origin at top-left.
% An image which has been rectified, say using
% imTrans, may want 'xy' set.
%
% Returns: pts - Nx2 array of transformed (x,y) coordinates.
%
% See also: invpersp, imTrans
%
%
% Examples of use:
% Assuming you have an image `im' for which you have a set of image
% points 'impts' and a corresponding set of reference points 'refpts'.
%
% T = invpersp(refpts, impts); % Compute perspective transformation.
% p = digiplane(im,T); % Digitise points in original image.
%
% ... or work with the rectified image
% [newim, newT] = imTrans(im,T); % Rectify image using T from above
% p = digiplane(newim,newT); % Digitise points in rectified image.
% Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk @ csse uwa edu au
% http://www.csse.uwa.edu.au/~pk
%
% August 2001
function pts = digiplane(im, T, xyij)
if nargin < 3
xyij = 'ij';
end
pts = [];
figure(1), clf, imshow(im), axis(xyij), hold on
fprintf('Digitise points in the image with the left mouse button\n');
fprintf('Click any other button to exit\n');
[x,y,but] = ginput(1);
while but == 1
p = T*[x;y;1]; % Transform point.
xp = p(1)/p(3);
yp = p(2)/p(3);
pts = [pts; xp yp];
plot(x,y,'r+'); % Mark coordinates on image.
text(x+3,y-3,sprintf('[%.1f, %.1f]',xp,yp),'Color',[0 0 1], ...
'FontSize',6);
[x,y,but] = ginput(1); % Get next point.
end
|
github
|
jacksky64/imageProcessing-master
|
circle.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Projective/circle.m
| 1,226 |
utf_8
|
3ce939f9b481cd974576f40a598a69b6
|
% CIRCLE - Draws a circle.
%
% Usage: circle(c, r, n, col)
%
% Arguments: c - A 2-vector [x y] specifying the centre.
% r - The radius.
% n - Optional number of sides in the polygonal approximation.
% (defualt is 16 sides)
% col - optional colour, defaults to blue.
% Copyright (c) 1996-2005 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% http://www.csse.uwa.edu.au/
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
function h = circle(c, r, nsides, col)
if nargin == 2
nsides = 16;
end
if nargin < 4
col = [0 0 1];
end
nsides = max(round(nsides),3); % Make sure it is an integer >= 3
a = [0:2*pi/nsides:2*pi];
h = line(r*cos(a)+c(1), r*sin(a)+c(2), 'color', col);
|
github
|
jacksky64/imageProcessing-master
|
makeinhomogeneous.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Projective/makeinhomogeneous.m
| 791 |
utf_8
|
ce76d362845ed0c7eef257d1d0406795
|
% MAKEINHOMOGENEOUS - Converts homogeneous coords to inhomogeneous coordinates
%
% Usage: x = makehomogeneous(hx)
%
% Argument:
% hx - an N x npts array of homogeneous coordinates.
%
% Returns:
% x - an (N-1) x npts array of inhomogeneous coordinates
%
% Warning: If there are any points at infinity (scale = 0) the coordinates
% of these points are simply returned minus their scale coordinate.
%
% See also: MAKEHOMOGENEOUS, HNORMALISE
% Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk at csse uwa edu au
% http://www.csse.uwa.edu.au/~pk
%
% April 2010
function x = makeinhomogeneous(hx)
hx = hnormalise(hx); % Normalise to scale of one
x = hx(1:end-1,:); % Extract all but the last row
|
github
|
jacksky64/imageProcessing-master
|
equalAngleConstraint.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Projective/equalAngleConstraint.m
| 1,377 |
utf_8
|
ad2156349de0fe1efde5bee65bc38203
|
% equalAngleConstraint - Affine transform constraints given two equal angles.
%
% Function calculates centre and radius of the constraint
% circle in alpha-beta space generated by having two equal
% (but unknown) angles between two pairs of lines in
% an affine image
%
% Usage: [c, r] = equalAngleConstraint(la1, lb1, la2, lb2)
%
% Where: la1 and lb1 are two lines defined using homogeneous coords that
% are separated by an angle that is known to
% be the same as the angle between
% la2 and lb2 - the other two lines.
% c is the 2D coordinate of the centre of the constraint circle.
% r is the radius of the centre of the constraint circle.
% Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk @ csse uwa edu au
% http://www.csse.uwa.edu.au/~pk
%
% April 2000
%
% Equations from Liebowitz and Zisserman
function [c, r] = equalAngleConstraint(la1, lb1, la2, lb2)
a1 = -1a1(2)/la1(1); % direction of line la1
b1 = -1b1(2)/lb1(1); % direction of line lb1
a2 = -1a2(2)/la2(1); % direction of line la2
b2 = -1b2(2)/lb2(1); % direction of line lb2
c = [(a1*b2 - b1*a2)/(a1 - b1 - a2 + b2), 0];
r = ((a1*b2 - b1*a2)/(a1 - b1 - a2 + b2))^2 ...
+ ((a1 - b1)*(a1*b1 - a2*b2))/(a1 - b1 - a2 + b2) ...
- a1*b1;
|
github
|
jacksky64/imageProcessing-master
|
homogreprojerr.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Projective/homogreprojerr.m
| 1,423 |
utf_8
|
15a06a2d240a29dd5d8a3a1e64268057
|
% HOMOGREPROJERR
%
% Computes the symmetric reprojection error for points related by a
% homography.
%
% Usage:
% d2 = homogreprojerr(H, x1, x2)
%
% Arguments:
% H - The homography.
% x1, x2 - [ndim x npts] arrays of corresponding homogeneous
% data points.
%
% Returns:
% d2 - 1 x npts vector of squared reprojection distances for
% each corresponding pair of points.
% Copyright (c) 2003-2005 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% http://www.csse.uwa.edu.au/
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% May 2003
% November 2005 - bug fix (thanks to Scott Blunsden)
function d2 = homogreprojerr(H, x1, x2)
x2t = H*x1; % Calculate projections of points
x1t = H\x2;
x1 = hnormalise(x1); % Ensure scale is 1
x2 = hnormalise(x2);
x1t = hnormalise(x1t);
x2t = hnormalise(x2t);
d2 = sum( (x1-x1t).^2 + (x2-x2t).^2) );
|
github
|
jacksky64/imageProcessing-master
|
solvestereopt.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Projective/solvestereopt.m
| 2,796 |
utf_8
|
ab30e670d732d1cd166a798c6abcb100
|
% SOLVESTEREOPT - Homogeneous linear solution of a stereo point
%
% Usage: [pt, xy_reproj] = solvestereopt(xy, P)
%
% Multiview stereo: Solves 3D location of a point given image coordinates of
% that point in two, or more, images.
%
% Arguments: xy - 2xN matrix of x, y image coordinates, one column for
% each camera.
% C - N element cell array of corresponding image projection
% matrices. Or an N element cell array of camera structures
%
% Returns: pt - 3D location in space returned in normalised
% homogeneous coordinates (a 4-vector with last element = 1)
% xy_reproj - 2xN matrix of reprojected image coordinates.
%
%
% See also: CORRECTIMAGEPTS, CAMSTRUCT2PROJMATRIX
% Copyright (c) 2011-2016 Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% peter.kovesi at uwa edu au
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% May 2011
% February 2016 Provision for either camera projection matrices or camera
% structs
function [pt, xy_reproj] = solvestereopt(xy, C)
[dim,N] = size(xy);
assert(N == length(C));
assert(dim == 2);
assert(N >= 2);
% Determine if C is a cell array of projection matrices or camera
% structures
if isstruct(C{1}) % Assume camera structure
% Correct image points from each camera so that they correspond to image
% points from an ideal camera with no lens distortion. Also generate the
% corresponding ideal projection matrices for each camera struct
for n = 1:N
xy(:,n) = idealimagepts(C{n}, xy(:,n));
P{n} = camstruct2projmatrix(C{n});
end
elseif isnumeric(C{1}) % Assume projection matrix
P = C;
else
error('Camera argument must be a camera structure or projection matrix');
end
% Build eqn of the form A*pt = 0
A = zeros(2*N, 4);
for n = 1:N
A(2*n-1,:) = xy(1,n)*P{n}(3,:) - P{n}(1,:);
A(2*n ,:) = xy(2,n)*P{n}(3,:) - P{n}(2,:);
end
[~,~,v] = svd(A);
pt = hnormalise(v(:,4));
if nargout == 2
% Project the point back into the source images to determine the residual
% error
xy_reproj = zeros(size(xy));
for n = 1:N
xy_reproj(:,n) = cameraproject(P{n}, pt(1:3));
end
end
|
github
|
jacksky64/imageProcessing-master
|
plotcamera.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Projective/plotcamera.m
| 4,710 |
utf_8
|
d5ab74b232b4b16fae65c1dd4a7be3fe
|
% PLOTCAMERA - Plots graphical representation of camera(s) showing pose
%
% Usage plotcamera(C, l, col, plotCamPath, fig)
%
% Arguments:
% C - Camera structure (or structure array).
% l - The length of the sides of the rectangular cone indicating
% the camera's field of view.
% col - Optional three element vector specifying the RGB colour to
% use. If omitted or empty defaults to blue.
% plotCamPath - Optional flag 0/1 to plot line joining camera centre
% positions. If omitted or empty defaults to 0.
% fig - Optional figure number to be used.
%
% The function plots into the current figure a graphical representation of one
% or more cameras showing their pose. This consists of a rectangular cone,
% with its vertex at the camera centre, indicating the camera's field of view.
% The camera's coordinate axes are also plotted at the camera centre.
%
% See also: CAMERASTRUCT
% Copyright (c) Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% peter.kovesi at uwa edu au
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% September 2009
% September 2011 Fixed long standing bug in plotting camera frame.
% Allowance for cameras being a structure array.
% June 2015 Changes to make compatible with new version of
% CAMERASTRUCT.
function plotcamera(C, l, col, plotCamPath, fig)
if ~exist('col', 'var') || isempty(col)
col = [0 0 1];
end
if ~exist('plotCamPath', 'var') || isempty(plotCamPath)
plotCamPath = 0;
end
if exist('fig', 'var')
figure(fig)
end
for i = 1:length(C)
if C(i).rows == 0 || C(i).cols == 0
warning('Camera rows and cols not specified');
continue
end
% If only one focal length specified in structure use it for both fx and fy
if isfield(C, 'f')
f = C.f;
elseif isfield(C, 'fx') && isfield(C, 'fy')
f = C.fx; % Use fx as the focal length
else
error('Invalid focal length specification in camera structure');
end
if i > 1 & plotCamPath
line([C(i-1).P(1) C(i).P(1)],...
[C(i-1).P(2) C(i).P(2)],...
[C(i-1).P(3) C(i).P(3)])
end
% Construct transform from camera coordinates to world coords
Tw_c = [C(i).Rc_w' C(i).P
0 0 0 1 ];
% Generate the 4 viewing rays that emanate from the principal point and
% pass through the corners of the image.
corner{1} = [-C(i).cols/2; -C(i).rows/2; f];
corner{2} = [ C(i).cols/2; -C(i).rows/2; f];
corner{3} = [ C(i).cols/2; C(i).rows/2; f];
corner{4} = [-C(i).cols/2; C(i).rows/2; f];
for n = 1:4
% Scale rays to length l and make homogeneous
ray{n} = [corner{n}*l/f; 1];
% Transform to world coords
ray{n} = Tw_c*ray{n};
% Draw the ray
line([C(i).P(1), ray{n}(1)],...
[C(i).P(2), ray{n}(2)],...
[C(i).P(3), ray{n}(3)], ...
'color', col);
end
% Draw rectangle joining ends of rays
line([ray{1}(1) ray{2}(1) ray{3}(1) ray{4}(1) ray{1}(1)],...
[ray{1}(2) ray{2}(2) ray{3}(2) ray{4}(2) ray{1}(2)],...
[ray{1}(3) ray{2}(3) ray{3}(3) ray{4}(3) ray{1}(3)],...
'color', col);
% Draw and label axes
X = Tw_c(1:3,1)*l + C(i).P;
Y = Tw_c(1:3,2)*l + C(i).P;
Z = Tw_c(1:3,3)*l + C(i).P;
line([C(i).P(1), X(1,1)], [C(i).P(2), X(2,1)], [C(i).P(3), X(3,1)],...
'color', col);
line([C(i).P(1), Y(1,1)], [C(i).P(2), Y(2,1)], [C(i).P(3), Y(3,1)],...
'color', col);
% line([C(i).P(1), Z(1,1)], [C(i).P(2), Z(2,1)], [C(i).P(3), Z(3,1)],...
% 'color', col);
text(X(1), X(2), X(3), 'X', 'color', col);
text(Y(1), Y(2), Y(3), 'Y', 'color', col);
end
|
github
|
jacksky64/imageProcessing-master
|
rq3.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Projective/rq3.m
| 2,075 |
utf_8
|
e3b4214d505526702abed6b2183c76ea
|
% RQ3 RQ decomposition of 3x3 matrix
%
% Usage: [R,Q] = rq3(A)
%
% Argument: A - 3 x 3 matrix
% Returns: R - Upper triangular 3 x 3 matrix
% Q - 3 x 3 orthonormal rotation matrix
% Such that R*Q = A
%
% The signs of the rows and columns of R and Q are chosen so that the diagonal
% elements of R are +ve.
%
% See also: DECOMPOSECAMERA
% Follows algorithm given by Hartley and Zisserman 2nd Ed. A4.1 p 579
% Copyright (c) 2010 Peter Kovesi
% Centre for Exploration Targeting
% School of Earth and Environment
% The University of Western Australia
% peter.kovesi at uwa edu au
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% October 2010
% February 2014 Incorporated modifications suggested by Mathias Rothermel to
% avoid potential division by zero problems
function [R,Q] = rq3(A)
if ~all(size(A)==[3 3])
error('A must be 3x3');
end
eps = 1e-10;
% Find rotation Qx to set A(3,2) to 0
A(3,3) = A(3,3) + eps;
c = -A(3,3)/sqrt(A(3,3)^2+A(3,2)^2);
s = A(3,2)/sqrt(A(3,3)^2+A(3,2)^2);
Qx = [1 0 0; 0 c -s; 0 s c];
R = A*Qx;
% Find rotation Qy to set A(3,1) to 0
R(3,3) = R(3,3) + eps;
c = R(3,3)/sqrt(R(3,3)^2+R(3,1)^2);
s = R(3,1)/sqrt(R(3,3)^2+R(3,1)^2);
Qy = [c 0 s; 0 1 0;-s 0 c];
R = R*Qy;
% Find rotation Qz to set A(2,1) to 0
R(2,2) = R(2,2) + eps;
c = -R(2,2)/sqrt(R(2,2)^2+R(2,1)^2);
s = R(2,1)/sqrt(R(2,2)^2+R(2,1)^2);
Qz = [c -s 0; s c 0; 0 0 1];
R = R*Qz;
Q = Qz'*Qy'*Qx';
% Adjust R and Q so that the diagonal elements of R are +ve
for n = 1:3
if R(n,n) < 0
R(:,n) = -R(:,n);
Q(n,:) = -Q(n,:);
end
end
|
github
|
jacksky64/imageProcessing-master
|
cameraproject.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Projective/cameraproject.m
| 4,913 |
utf_8
|
f9fc42724dcaf1f7daedf1d2a3dc0eb1
|
% CAMERAPROJECT - Projects 3D points into camera image
%
% Usage: [xy, visible] = cameraproject(C, pt)
%
% Arguments:
% C - Camera structure, see CAMSTRUCT for definition.
% Alternatively C can be a 3x4 camera projection matrix.
% pt - 3xN matrix of 3D points to project into the image.
%
% Returns:
% xy - 2xN matrix of projected image positions
% visible - Array of values 1/0 indicating whether the point is
% within the field of view. This is only evaluated if
% the camera structure has non zero values for its
% 'rows' and 'cols' fields. Otherwise an empty matrix
% is returned, an empty matrix is also returned if C
% is a 3x4 projection matrix.
%
% Note the ordering of the tangential distortion parameters p1 and p2 is not
% always consistent in the literature. Here they are used in the following
% order.
% dx = 2*p1*x*y + p2*(r^2 + 2*x^2)
% dy = p1*(r^2 + 2*y^2) + 2*p2*x*y
%
% See also: CAMSTRUCT, CAMSTRUCT2PROJMATRIX, IMAGEPT2PLANE
% Copyright (c) 2008-2015 Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% peter.kovesi at uwa edu au
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% PK September 2008
% April 2015 - Refactored from CAMERAPROJECTV for camera structure
% which now includes fx, fy.
% May 2015 - Simplified by removing R and rotscale and, Tc_w reduced
% to a rotation matrix Rc_w, Allow for C to be a
% projection matrix as well.
% August 2015 - Changes to accommodate k1,k2,k3 radial parameter
% and p1,p2 tangential parameter renaming.
% December 2015 - Bug fix for k3 when pt represents multiple points.
function [xy, visible] = cameraproject(C, pt)
[rows, npts] = size(pt);
if rows ~= 3
error('Points must be in a 3xN array');
end
if ~isstruct(C) && all(size(C) == [3,4]) % C is a projection matrix
xy = C*makehomogeneous(pt);
xy = makeinhomogeneous(xy);
visible = [];
return;
end
% If we get here C is a camera structure and we follow the classical
% projection process.
% If only one focal length specified in structure use it for both fx and fy
if isfield(C, 'f')
fx = C.f;
fy = C.f;
elseif isfield(C, 'fx') && isfield(C, 'fy')
fx = C.fx;
fy = C.fy;
else
error('Invalid focal length specification in camera structure');
end
if isfield(C, 'skew') % Handle optional skew specfication
skew = C.skew;
else
skew = 0;
end
% Transformation of a ground point from world coordinates to camera coords
% can be thought of as a translation, then rotation as follows
%
% Gc = Tc_p * Tp_w * Gw
%
% | . . . | | 1 -x | |Gx|
% | Rc_w | | 1 -y | |Gy|
% | . . . | | 1 -z | |Gz|
% | 1 | | 1 | | 1|
%
% Subscripts:
% w - world frame
% p - world frame translated to camera origin
% c - camera frame
% First translate world frame origin to match camera origin. This is
% the Tp_w bit.
for n = 1:3
pt(n,:) = pt(n,:) - C.P(n);
end
% Then rotate to camera frame using Rc_w
pt = C.Rc_w*pt;
% Follow Bouget's projection process
% Generate normalized coords
x_n = pt(1,:)./pt(3,:);
y_n = pt(2,:)./pt(3,:);
rsqrd = x_n.^2 + y_n.^2; % radius squared from centre
% Radial distortion factor
r_d = 1 + C.k1*rsqrd + C.k2*rsqrd.^2 + C.k3*rsqrd.^3;
% Tangential distortion component
dtx = 2*C.p1*x_n.*y_n + C.p2*(rsqrd + 2*x_n.^2);
dty = C.p1*(rsqrd + 2*y_n.^2) + 2*C.p2*x_n.*y_n;
% Obtain lens distorted coordinates
x_d = r_d.*x_n + dtx;
y_d = r_d.*y_n + dty;
% Finally project to pixel coordinates
% Note skew represents the 2D shearing coefficient times fx
x_p = C.ppx + x_d*fx + y_d*skew;
y_p = C.ppy + y_d*fy;
xy = [x_p
y_p];
% If C.rows and C.cols ~= 0 determine points that are within image bounds
if C.rows && C.cols
visible = x_p >= 1 & x_p <= C.cols & y_p >= 1 & y_p <= C.rows;
else
visible = [];
end
|
github
|
jacksky64/imageProcessing-master
|
projmatrix2camstruct.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Projective/projmatrix2camstruct.m
| 1,873 |
utf_8
|
81a5a584da00209fcf97254abc68630d
|
% PROJMATRIX2CAMSTRUCT - Projection matrix to camera structure
%
% Function takes a projection matrix and returns its equivalent camera
% structure.
%
% Usage: C = projmatrix2camstruct(P, rows, cols)
%
% Argument: P - 3x4 camera projection matrix that maps homogeneous 3D world
% coordinates to homogeneous image coordinates.
% rows,cols - Optional specification of number of rows and columns in the
% camera image. This can get used later in functions such as
% CAMERAPROJECT to determine if projected points are within
% image bounds.
%
% Returns: C - Camera structure.
%
% See also: CAMSTRUCT2PROJMATRIX, CAMSTRUCT, CAMERAPROJECT
% Copyright (c) Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% peter.kovesi at uwa edu au
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% PK April 2015
% August 2015 Renaming of radial and tangential distortion parameters
function C = projmatrix2camstruct(P, rows, cols)
if ~exist('rows', 'var') || ~exist('cols', 'var')
rows = 0;
cols = 0;
end
[K, Rc_w, Pc, pp, pv] = decomposecamera(P);
C = struct('fx', K(1,1), 'fy', K(2,2), ...
'skew', K(1,2), ...
'ppx', pp(1), 'ppy', pp(2), ...
'k1', 0, 'k2', 0, 'k3', 0, 'p1', 0, 'p2', 0, ...
'rows', rows, 'cols', cols, ...
'P', Pc(:), 'Rc_w', Rc_w);
|
github
|
jacksky64/imageProcessing-master
|
camstruct.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Projective/camstruct.m
| 6,365 |
utf_8
|
dcc71aa566e144d95085ce040c320786
|
% CAMSTRUCT - Construct a camera structure
%
% Usage: C = camstruct(param_name, value, ...
%
% Where the parameter names can be as follows with defaults in brackets
%
% fx - X focal length in pixel units. ([])
% fy - Y focal length in pixel units. ([])
% or f - Focal length in pixel units, the same value is copied to
% both fx and fy. ([])
% ppx, ppy - Principal point. (0,0)
% k1, k2, k3 - Radial lens distortion parameters. (0,0,0)
% p1, p2 - Tangential lens distortion parameters. (0,0)
% skew - Camera skew. (0)
% rows, cols - Image size. (0,0)
% P - 3D location of camera in world coordinates. ([0;0;0])
% Rc_w - 3x3 rotation matrix describing the world relative to the
% camera frame. (eye(3))
%
% Alternatively P and Rc_w can be replaced with:
% Tw_c - 4x4 homogeneous transformation matrix describing camera
% position and orientation with respect to world
% coordinates. ([])
%
% Example:
% >> C = camstruct('f', 2000, 'k1', 1.5, 'P', [0;0;2000], 'Rc_w', rotx(pi));
%
% Alternatively you can construct a camera structure from a projection
% matrix using the parameter name 'PM'
%
% >> C = camstruct('PM', proj_matrix);
%
% Returns: C - Camera structure with fields:
% fx, fy, ppx, ppy, k1, k2, k3, k4, skew, rows, cols, P, Rc_w
%
% Note rows and cols, if supplied, are only used to determine if projected
% points fall within the image bounds by CAMERAPROJECT.
%
% Note the ordering of the tangential distortion parameters p1 and p2 is not
% always consistent in the literature. Within CAMERAPROJECT they are used in
% the following order.
% dx = 2*p1*x*y + p2*(r^2 + 2*x^2)
% dy = p1*(r^2 + 2*y^2) + 2*p2*x*y
%
% See also: CAMERAPROJECT, CAMSTRUCT2PROJMATRIX, IMAGEPT2PLANE
% Copyright (c) Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% peter.kovesi at uwa edu au
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% April 2015
% August 2015 Change to 3 radial distortion parameters k1, k2, k3 and two
% tangential parameters p1, p2
% January 2016 Allow for Rc_w to be supplied as a 4x4 homogeneous matrix
function C = camstruct(varargin)
% !! This code is awful, I wish MATLAB was a proper language which allowed you
% to specify optional argument values in the function definition and also had
% proper constructors for structures/objects, and had multiple dispatch !!
% I am moving all my code over to Julia...
% Parse the input arguments and set defaults
p = inputParser;
p.CaseSensitive = false;
% Define optional parameter-value pairs and their defaults
addParameter(p, 'PM', [], @isnumeric);
addParameter(p, 'f', [], @isnumeric);
addParameter(p, 'fx', [], @isnumeric);
addParameter(p, 'fy', [], @isnumeric);
addParameter(p, 'ppx', 0, @isnumeric);
addParameter(p, 'ppy', 0, @isnumeric);
addParameter(p, 'k1', 0, @isnumeric);
addParameter(p, 'k2', 0, @isnumeric);
addParameter(p, 'k3', 0, @isnumeric);
addParameter(p, 'p1', 0, @isnumeric);
addParameter(p, 'p2', 0, @isnumeric);
addParameter(p, 'skew', 0, @isnumeric);
addParameter(p, 'rows', 0, @isnumeric);
addParameter(p, 'cols', 0, @isnumeric);
addParameter(p, 'P', [0;0;0], @isnumeric);
addParameter(p, 'Rc_w', eye(3), @isnumeric);
addParameter(p, 'Tw_c', [], @isnumeric);
parse(p, varargin{:});
PM = p.Results.PM;
f = p.Results.f;
fx = p.Results.fx;
fy = p.Results.fy;
ppx = p.Results.ppx;
ppy = p.Results.ppy;
k1 = p.Results.k1;
k2 = p.Results.k2;
k3 = p.Results.k3;
p1 = p.Results.p1;
p2 = p.Results.p2;
skew = p.Results.skew;
rows = p.Results.rows;
cols = p.Results.cols;
P = p.Results.P(:);
Rc_w = p.Results.Rc_w;
Tw_c = p.Results.Tw_c;
% Handle case when projection matrix is supplied
if ~isempty(PM)
if ~all(size(PM) == [3,4])
error('Projection matrix must be 3x4');
end
C = projmatrix2camstruct(PM);
% It is possible, though unlikely, the user wanted to specify some lens
% distortion parameters in addition to the projection matrix.
C.k1 = k1;
C.k2 = k2;
C.k3 = k3;
C.p1 = p1;
C.p2 = p2;
return
end
% Handle case where f is supplied, copy it to fx, fy
if ~isempty(f) && isempty(fx) && isempty(fy)
fx = f;
fy = f;
elseif ~isempty(f) && (~isempty(fx) || ~isempty(fy))
error('Cannot specify f and fx or fy');
elseif isempty(fx) || isempty(fy)
error('Focal length not defined');
end
% Handle case when Tw_c is supplied
if ~isempty(Tw_c)
P = Tw_c(1:3,4);
Rc_w = Tw_c(1:3,1:3)';
elseif ~isempty(Tw_c) && (~isempty(P) || ~isempty(Rc_w))
error('Cannot specify Tw_c and P or Rc_w');
else
% Rc_w has been supplied. If it has been supplied as a 4x4
% homogeneous transform just extract the 3x3 rotation component
if all(size(Rc_w) == [4,4])
Rc_w = Rc_w(1:3,1:3)
end
end
if ~all(size(P) == [3,1])
error('Camera position must be 3x1 vector');
end
if ~all(size(Rc_w) == [3,3])
error('Camera pose must be specified via a 3x3 rotation matrix or 4x4 homogeneous matrix');
end
C = struct('fx', fx, 'fy', fy, ...
'ppx', ppx, 'ppy', ppy, ...
'k1', k1, 'k2', k2, 'k3', k3, ...
'p1', p1, 'p2', p2, ...
'skew', skew, ...
'rows', rows, 'cols', cols, ...
'P', P(:), 'Rc_w', Rc_w);
|
github
|
jacksky64/imageProcessing-master
|
knownAngleConstraint.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Projective/knownAngleConstraint.m
| 929 |
utf_8
|
b51714229fca51b80fc72c837575dd25
|
% knownAngleConstraint - Affine transform constraints given a known angle.
%
% Function calculates centre and radius of the constraint
% circle in alpha-beta space generated by having a known
% angle between two lines in an affine image
%
% Usage: [c, r] = knownAngleConstraint(la, lb, theta)
%
% Where: la and lb are the two lines defined using homogeneous coords.
% theta is the known angle between the lines.
% c is the 2D coordinate of the centre of the constraint circle.
% r is the radius of the centre of the constraint circle.
% Peter Kovesi April 2000
% Department of Computer Science
% The University of Western Australia
% Equations from Liebowitz and Zisserman
function [c, r] = knownAngleConstraint(la, lb, theta)
a = -la(2)/la(1); % direction of line la
b = -lb(2)/lb(1); % direction of line lb
c = [(a+b)/2, (a-b)/2*cot(theta)];
r = abs( (a-b)/(2*sin(theta)) );
|
github
|
jacksky64/imageProcessing-master
|
fundmatrix.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Projective/fundmatrix.m
| 4,069 |
utf_8
|
632e6f9e26790316764a91117aa2adb9
|
% FUNDMATRIX - computes fundamental matrix from 8 or more points
%
% Function computes the fundamental matrix from 8 or more matching points in
% a stereo pair of images. The normalised 8 point algorithm given by
% Hartley and Zisserman p265 is used. To achieve accurate results it is
% recommended that 12 or more points are used
%
% Usage: [F, e1, e2] = fundmatrix(x1, x2)
% [F, e1, e2] = fundmatrix(x)
%
% Arguments:
% x1, x2 - Two sets of corresponding 3xN set of homogeneous
% points.
%
% x - If a single argument is supplied it is assumed that it
% is in the form x = [x1; x2]
% Returns:
% F - The 3x3 fundamental matrix such that x2'*F*x1 = 0.
% e1 - The epipole in image 1 such that F*e1 = 0
% e2 - The epipole in image 2 such that F'*e2 = 0
%
% Copyright (c) 2002-2005 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% http://www.csse.uwa.edu.au/
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% Feb 2002 - Original version.
% May 2003 - Tidied up and numerically improved.
% Feb 2004 - Single argument allowed to enable use with RANSAC.
% Mar 2005 - Epipole calculation added, 'economy' SVD used.
% Aug 2005 - Octave compatibility
function [F,e1,e2] = fundmatrix(varargin)
[x1, x2, npts] = checkargs(varargin(:));
Octave = exist('OCTAVE_VERSION', 'builtin') == 5; % Are we running under Octave
% Normalise each set of points so that the origin
% is at centroid and mean distance from origin is sqrt(2).
% normalise2dpts also ensures the scale parameter is 1.
[x1, T1] = normalise2dpts(x1);
[x2, T2] = normalise2dpts(x2);
% Build the constraint matrix. Note that the line continuations are
% required so that we build a matrix with 9 columns (not 3)
A = [x2(1,:)'.*x1(1,:)' x2(1,:)'.*x1(2,:)' x2(1,:)' ...
x2(2,:)'.*x1(1,:)' x2(2,:)'.*x1(2,:)' x2(2,:)' ...
x1(1,:)' x1(2,:)' ones(npts,1) ];
if Octave
[U,D,V] = svd(A); % Don't seem to be able to use the economy
% decomposition under Octave here
else
[U,D,V] = svd(A,0); % Under MATLAB use the economy decomposition
end
% Extract fundamental matrix from the column of V corresponding to
% smallest singular value.
F = reshape(V(:,9),3,3)';
% Enforce constraint that fundamental matrix has rank 2 by performing
% a svd and then reconstructing with the two largest singular values.
[U,D,V] = svd(F,0);
F = U*diag([D(1,1) D(2,2) 0])*V';
% Denormalise
F = T2'*F*T1;
if nargout == 3 % Solve for epipoles
[U,D,V] = svd(F,0);
e1 = hnormalise(V(:,3));
e2 = hnormalise(U(:,3));
end
%--------------------------------------------------------------------------
% Function to check argument values and set defaults
function [x1, x2, npts] = checkargs(arg);
if length(arg) == 2
x1 = arg{1};
x2 = arg{2};
if ~all(size(x1)==size(x2))
error('x1 and x2 must have the same size');
elseif size(x1,1) ~= 3
error('x1 and x2 must be 3xN');
end
elseif length(arg) == 1
if size(arg{1},1) ~= 6
error('Single argument x must be 6xN');
else
x1 = arg{1}(1:3,:);
x2 = arg{1}(4:6,:);
end
else
error('Wrong number of arguments supplied');
end
npts = size(x1,2);
if npts < 8
error('At least 8 points are needed to compute the fundamental matrix');
end
|
github
|
jacksky64/imageProcessing-master
|
hline.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Projective/hline.m
| 1,836 |
utf_8
|
6b627df996e670c2c7287683e1851639
|
% HLINE - Plot 2D lines defined in homogeneous coordinates.
%
% Function for ploting 2D homogeneous lines defined by 2 points
% or a line defined by a single homogeneous vector
%
% Usage: hline(p1,p2) where p1 and p2 are 2D homogeneous points.
% hline(p1,p2,'colour_name') 'black' 'red' 'white' etc
% hline(l) where l is a line in homogeneous coordinates
% hline(l,'colour_name')
%
% Note that in the case where a homogeneous line is supplied as the argument
% the extent of the line drawn depends on the current axis limits. This will
% require you to set the desired limits with a call to AXIS prior to calling
% this function.
% Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% peter.kovesi at uwa edu au
%
% April 2000
% October 2013 Corrections to computation of line limits
function hline(a, b, c)
col = 'blue'; % default colour
if nargin >= 2 & isa(a,'double') & isa(b,'double') % Two points specified
p1 = a./a(3); % make sure homogeneous points lie in z=1 plane
p2 = b./b(3);
if nargin == 3 & isa(c,'char') % 2 points and a colour specified
col = c;
end
elseif nargin >= 1 & isa(a,'double') % A single line specified
a = a./a(3); % ensure line in z = 1 plane (not needed??)
if abs(a(1)) > abs(a(2)) % line is more vertical
ylim = get(gca,'Ylim');
p1 = hcross(a, [0 -1 ylim(1)]');
p2 = hcross(a, [0 -1 ylim(2)]');
else % line more horizontal
xlim = get(gca,'Xlim');
p1 = hcross(a, [-1 0 xlim(1)]');
p2 = hcross(a, [-1 0 xlim(2)]');
end
if nargin == 2 & isa(b,'char') % 1 line vector and a colour specified
col = b;
end
else
error('Bad arguments passed to hline');
end
line([p1(1) p2(1)], [p1(2) p2(2)], 'color', col);
|
github
|
jacksky64/imageProcessing-master
|
findinverselensdist.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Projective/findinverselensdist.m
| 3,831 |
utf_8
|
043036f753c8840f6f801b5111b368b7
|
% FINDINVERSELENSDIST - Find inverse radial lens distortion parameters
%
% Usage: [ik1, ik2, maxerr] = findinverselensdist(k1, k2, rmax, fig)
%
% Arguments: k1, k2 - Radial lens distortion coeffecients.
% rmax - Maximum normalised radius to consider in fitting the
% inverse lens distortion function. If omitted this
% parameter defaults to 0.43 which roughly corresponds
% to the normalized distance to the corner of a 35mm
% sensor with a 50mm lens. Use smaller values for
% longer lenses as this will improve accuracy.
% 50mm lens -> rmax ~0.43
% 100mm lens -> rmax ~0.22
% 200mm lens -> rmax ~0.11
% fig - Optional figure number to plot fitted result to.
%
% Returns: ik1, ik2 - Radial lens distortion coefficients that attempt to
% invert the distortion.
% maxerr - Maximum error between corrected radius and ideal
% radius reprted in normalised radius units.
%
% Given the distortion model as a function of radius from the principal point
%
% rd = r*(1 + k1*r^2 + k2*r^4)
%
% where r is the undistorted normalised radius and rd is the distorted radius.
% Rather than try to solve for the inverse of this 5th order polynomial this
% function numerically fits a function of the same form, but with new
% coefficients for k1 and k2, that attempts to recover r from the distorted
% values in rd.
%
% r = rd*(1 + ik1*rd^2 + ik2*rd^4)
%
% Thus r will not be exact, however the approximation is typically very good.
% The maximum error is reported back as maxerr. The ratio of maxerr to rmax
% is probably what you should be concerned with.
%
% Note the normalised image radius corresponds to the radius on an image plane
% with a focal length of 1.
%
% See also: CAMERAPROJECT, IMAGEPT2PLANE
% Copyright (c) 2010 Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% peter.kovesi at uwa edu au
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% October 2010
function [ik1, ik2, maxerr] = findinverselensdist(k1, k2, rmax, fig)
% Set up the range of radius values to fit the inverse function to.
if ~exist('rmax', 'var'), rmax = 0.43; end
r = [0:rmax/100:rmax]';
d = 1.0 + k1*r.^2 + k2*r.^4; % Distortion factor
rd = r.*d; % Distorted radius
% Least squares solution to the inverse transform
ik = [rd.^3 rd.^5]\(r-rd);
ik1 = ik(1);
ik2 = ik(2);
% Check results. Correct the distorted radius values and see how close
% the corrected values are to the ideal ones
rc = rd.*(1.0 + ik1*rd.^2 + ik2*rd.^4); % Corrected radius values
maxerr = max(abs(r-rc));
if exist('fig', 'var') % Produce diagnostic plots
figure(fig), clf
subplot(2,1,1)
plot(r, r, r, rc, r, rd)
title('Distorted vs corrected radius')
xlabel('Normalised radius');
legend('Ideal radius', 'Corrected radius', 'Distorted radius', ...
'Location', 'NorthWest' )
subplot(2,1,2)
plot(r,(r-rc))
title('Error between corrected radius and ideal radius')
xlabel('Normalised radius');
end
|
github
|
jacksky64/imageProcessing-master
|
homography1d.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Projective/homography1d.m
| 2,662 |
utf_8
|
bf1d84269964988e4400e66cabf14617
|
% HOMOGRAPHY1D - computes 1D homography
%
% Usage: H = homography1d(x1, x2)
%
% Arguments:
% x1 - 2xN set of homogeneous points
% x2 - 2xN set of homogeneous points such that x1<->x2
% Returns:
% H - the 2x2 homography such that x2 = H*x1
%
% This code is modelled after the normalised direct linear transformation
% algorithm for the 2D homography given by Hartley and Zisserman p92.
%
% Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk @ csse uwa edu au
% http://www.csse.uwa.edu.au/~pk
%
% May 2003
function H = homography1d(x1, x2)
% check matrix sizes
if ~all(size(x1) == size(x2))
error('x1 and x2 must have same dimensions');
end
% Attempt to normalise each set of points so that the origin
% is at centroid and mean distance from origin is 1.
[x1, T1] = normalise1dpts(x1);
[x2, T2] = normalise1dpts(x2);
% Note that it may have not been possible to normalise
% the points if one was at infinity so the following does not
% assume that scale parameter w = 1.
Npts = length(x1);
A = zeros(2*Npts,4);
for n = 1:Npts
X = x1(:,n)';
x = x2(1,n); w = x2(2,n);
A(n,:) = [-w*X x*X];
end
[U,D,V] = svd(A);
% Extract homography
H = reshape(V(:,4),2,2)';
% Denormalise
H = T2\H*T1;
% Report error in fitting homography...
% NORMALISE1DPTS - normalises 1D homogeneous points
%
% Function translates and normalises a set of 1D homogeneous points
% so that their centroid is at the origin and their mean distance from
% the origin is 1.
%
% Usage: [newpts, T] = normalise1dpts(pts)
%
% Argument:
% pts - 2xN array of 2D homogeneous coordinates
%
% Returns:
% newpts - 2xN array of transformed 1D homogeneous coordinates
% T - The 2x2 transformation matrix, newpts = T*pts
%
% Note that if one of the points is at infinity no normalisation
% is possible. In this case a warning is printed and pts is
% returned as newpts and T is the identity matrix.
function [newpts, T] = normalise1dpts(pts)
if ~all(pts(2,:))
warning('Attempt to normalise a point at infinity')
newpts = pts;
T = eye(2);
return;
end
% Ensure homogeneous coords have scale of 1
pts(1,:) = pts(1,:)./pts(2,:);
c = mean(pts(1,:)')'; % Centroid.
newp = pts(1,:)-c; % Shift origin to centroid.
meandist = mean(abs(newp));
scale = 1/meandist;
T = [scale -scale*c
0 1 ];
newpts = T*pts;
|
github
|
jacksky64/imageProcessing-master
|
decomposecamera.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Projective/decomposecamera.m
| 3,310 |
utf_8
|
bd4b36c6cb0956aae39430857afe8750
|
% DECOMPOSECAMERA Decomposition of a camera projection matrix
%
% Usage: [K, Rc_w, Pc, pp, pv] = decomposecamera(P);
%
% P is decomposed into the form P = K*[R -R*Pc]
%
% Argument: P - 3 x 4 camera projection matrix
% Returns:
% K - Calibration matrix of the form
% | ax s ppx |
% | 0 ay ppy |
% | 0 0 1 |
%
% Where:
% ax = f/pixel_width and ay = f/pixel_height,
% ppx and ppy define the principal point in pixels,
% s is the camera skew.
% Rc_w - 3 x 3 rotation matrix defining the world coordinate frame
% in terms of the camera frame. Columns of R transposed define
% the directions of the camera X, Y and Z axes in world
% coordinates.
% Pc - Camera centre position in world coordinates.
% pp - Image principal point.
% pv - Principal vector from the camera centre C through pp
% pointing out from the camera. This may not be the same as
% R'(:,3) if the principal point is not at the centre of the
% image, but it should be similar.
%
% See also: RQ3
% Reference: Hartley and Zisserman 2nd Ed. pp 155-164
% Copyright (c) 2010 Peter Kovesi
% Centre for Exploration Targeting
% School of Earth and Environment
% The University of Western Australia
% peter.kovesi at uwa edu au
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% October 2010 Original version
% November 2013 Description of rotation matrix R corrected (transposed)
function [K, Rc_w, Pc, pp, pv] = decomposecamera(P)
% Projection matrix from Hartley and Zisserman p 163 used for testing
if ~exist('P','var')
P = [ 3.53553e+2 3.39645e+2 2.77744e+2 -1.44946e+6
-1.03528e+2 2.33212e+1 4.59607e+2 -6.32525e+5
7.07107e-1 -3.53553e-1 6.12372e-1 -9.18559e+2];
end
% Convenience variables for the columns of P
p1 = P(:,1);
p2 = P(:,2);
p3 = P(:,3);
p4 = P(:,4);
M = [p1 p2 p3];
m3 = M(3,:)';
% Camera centre, analytic solution
X = det([p2 p3 p4]);
Y = -det([p1 p3 p4]);
Z = det([p1 p2 p4]);
T = -det([p1 p2 p3]);
Pc = [X;Y;Z;T];
Pc = Pc/Pc(4);
Pc = Pc(1:3); % Make inhomogeneous
% Pc = null(P,'r'); % numerical way of computing C
% Principal point
pp = M*m3;
pp = pp/pp(3);
pp = pp(1:2); % Make inhomogeneous
% Principal ray pointing out of camera
pv = det(M)*m3;
pv = pv/norm(pv);
% Perform RQ decomposition of M matrix. Note that rq3 returns K with +ve
% diagonal elements, as required for the calibration matrix.
[K Rc_w] = rq3(M);
% Check that R is right handed, if not give warning
if dot(cross(Rc_w(:,1), Rc_w(:,2)), Rc_w(:,3)) < 0
warning('Note that rotation matrix is left handed');
end
|
github
|
jacksky64/imageProcessing-master
|
normalise2dpts.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Projective/normalise2dpts.m
| 2,361 |
utf_8
|
2b9d94a3681186006a3fd47a45faf939
|
% NORMALISE2DPTS - normalises 2D homogeneous points
%
% Function translates and normalises a set of 2D homogeneous points
% so that their centroid is at the origin and their mean distance from
% the origin is sqrt(2). This process typically improves the
% conditioning of any equations used to solve homographies, fundamental
% matrices etc.
%
% Usage: [newpts, T] = normalise2dpts(pts)
%
% Argument:
% pts - 3xN array of 2D homogeneous coordinates
%
% Returns:
% newpts - 3xN array of transformed 2D homogeneous coordinates. The
% scaling parameter is normalised to 1 unless the point is at
% infinity.
% T - The 3x3 transformation matrix, newpts = T*pts
%
% If there are some points at infinity the normalisation transform
% is calculated using just the finite points. Being a scaling and
% translating transform this will not affect the points at infinity.
% Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk at csse uwa edu au
% http://www.csse.uwa.edu.au/~pk
%
% May 2003 - Original version
% February 2004 - Modified to deal with points at infinity.
% December 2008 - meandist calculation modified to work with Octave 3.0.1
% (thanks to Ron Parr)
function [newpts, T] = normalise2dpts(pts)
if size(pts,1) ~= 3
error('pts must be 3xN');
end
% Find the indices of the points that are not at infinity
finiteind = find(abs(pts(3,:)) > eps);
if length(finiteind) ~= size(pts,2)
warning('Some points are at infinity');
end
% For the finite points ensure homogeneous coords have scale of 1
pts(1,finiteind) = pts(1,finiteind)./pts(3,finiteind);
pts(2,finiteind) = pts(2,finiteind)./pts(3,finiteind);
pts(3,finiteind) = 1;
c = mean(pts(1:2,finiteind)')'; % Centroid of finite points
newp(1,finiteind) = pts(1,finiteind)-c(1); % Shift origin to centroid.
newp(2,finiteind) = pts(2,finiteind)-c(2);
dist = sqrt(newp(1,finiteind).^2 + newp(2,finiteind).^2);
meandist = mean(dist(:)); % Ensure dist is a column vector for Octave 3.0.1
scale = sqrt(2)/meandist;
T = [scale 0 -scale*c(1)
0 scale -scale*c(2)
0 0 1 ];
newpts = T*pts;
|
github
|
jacksky64/imageProcessing-master
|
hcross.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Projective/hcross.m
| 919 |
utf_8
|
dbb3f3d4ef79e25ca3000ea976409e0c
|
% HCROSS - Homogeneous cross product, result normalised to s = 1.
%
% Function to form cross product between two points, or lines,
% in homogeneous coodinates. The result is normalised to lie
% in the scale = 1 plane.
%
% Usage: c = hcross(a,b)
%
% Copyright (c) 2000-2005 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% http://www.csse.uwa.edu.au/
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% April 2000
function c = hcross(a,b)
c = cross(a,b);
c = c/c(3);
|
github
|
jacksky64/imageProcessing-master
|
upwardcontinue.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Geosci/upwardcontinue.m
| 3,839 |
utf_8
|
a7a1d8416166d9c658b7a7d4bac8770b
|
% UPWARDCONTINUE Upward continuation for magnetic or gravity potential field data
%
% Usage: [up, psf] = upwardcontinue(im, h, dx, dy)
%
% Arguments: im - Input potential field image
% h - Height to upward continue to (+ve)
% dx, dy - Grid spacing in x and y. The upward continuation height
% is computed relative to the grid spacing. If omitted dx =
% dy = 1, that is, the value of h is in grid spacing units.
% If dy is omitted it is assumed dy = dx.
%
% Returns: up - The upward continued field image
% psf - The point spread function corresponding to the upward
% continuation height.
%
% Upward continuation filtering is done in the frequency domain whereby the
% Fourier transform of the upward continued image F(Up) is obtained from the
% Fourier transform of the input image F(U) using
% F(Up) = e^(-2*pi*h * sqrt(u^2 + v^2)) * F(U)
% where u and v are the spatial frequencies over the input grid.
%
% To minimise edge effect problems Moisan's Periodic FFT is used. This avoids
% the need for data tapering.
%
% References:
% Richard Blakely, "Potential Theory in Gravity and Magnetic Applications"
% Cambridge University Press, 1996, pp 315-319
%
% L. Moisan, "Periodic plus Smooth Image Decomposition", Journal of
% Mathematical Imaging and Vision, vol 39:2, pp. 161-179, 2011.
%
% See also: PERFFT2
% Copyright (c) Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% peter.kovesi at uwa edu au
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
%
% June 2012 - Original version.
% June 2014 - Tidied up and documented.
% August 2014 - Smooth, non periodic component of orginal image added back to
% filtered result so that calculation of residual against the
% original image is facilitated.
function [up, psf] = upwardcontinue(im, h, dx, dy)
if ~exist('dx', 'var'), dx = 1; end
if ~exist('dy', 'var'), dy = dx; end
[rows,cols,chan] = size(im);
assert(chan == 1, 'Image must be single channel');
mask = ~isnan(im);
% Use Periodic FFT rather than data tapering to minimise edge effects.
% Save the smooth, non periodic component of the image to add back into
% the final filtered result.
[IM, ~, ~, sm] = perfft2(fillnan(im));
% Generate horizontal and vertical frequency grids that vary from
% -0.5 to 0.5
[u1, u2] = meshgrid(([1:cols]-(fix(cols/2)+1))/(cols-mod(cols,2)), ...
([1:rows]-(fix(rows/2)+1))/(rows-mod(rows,2)));
% Quadrant shift to put 0 frequency at the corners. Also, divide by grid
% size to get correct spatial frequencies
u1 = ifftshift(u1)/dx;
u2 = ifftshift(u2)/dy;
freq = sqrt(u1.^2 + u2.^2); % Matrix values contain spatial frequency
% values as a radius from centre (but
% quadrant shifted)
% Continuation filter in the frequency domain
W = exp(-2*pi*h*freq);
% Apply filter to obtain upward continuation, add smooth component of
% image back in and apply mask to remove NaN values
up = (real(ifft2(IM.*W)) + sm) .* double(mask);
% Reconstruct the spatial representation of the point spread function
% corresponding to the upward continuation height
psf = real(fftshift(ifft2(W)));
|
github
|
jacksky64/imageProcessing-master
|
tiltderiv.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Geosci/tiltderiv.m
| 1,298 |
utf_8
|
ef5a552157a3f7a9282a06162331419d
|
% TILTDERIV Tilt derivative of potential field data
%
% Usage: td = tiltderiv(im)
%
% Arguments: im - Input potential field image.
%
% Returns: td - The tilt derivative.
%
%
% Reference:
% Hugh G. Miller and Vijay Singh. Potential field tilt - a new concept for
% location of potential field sources. Applied Geophysics (32) 1994. pp
% 213-217.
%
% See also: VERTDERIV
% Copyright (c) Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% peter.kovesi at uwa edu au
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
%
% March 2015
function td = tiltderiv(im)
[rows,cols,chan] = size(im);
assert(chan == 1, 'Image must be single channel');
% Use Farid and Simoncelli's 5-tap derivative filters to get the horizontal
% gradient
[gx, gy] = derivative5(im, 'x', 'y');
gz = vertderiv(im, 1);
td = atan(gz./sqrt(gx.^2 + gy.^2));
|
github
|
jacksky64/imageProcessing-master
|
orientationfilter.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Geosci/orientationfilter.m
| 6,042 |
utf_8
|
9e5fa0a05cdc4d0f3b48c2710e4e91f4
|
% ORIENTATIONFILTER Generate orientation selective filterings of an image
%
% Usage: oim = orientationfilter(im, norient, angoverlap, boost, cutoff, histcut)
%
% Arguments: im - Image to be filtered.
% norient - Number of orientations, try 8.
% angoverlap - Angular bandwidth overlap factor. A value of 1 gives a
% minimum overlap between adjacent filter orientations
% while still providing full coverage of the spectrum.
% However, it is often useful to provide greater overlap
% between adjacent filter orientations, especially if the
% output is to be viewed using the CYCLEMIX image
% blender. This gives smoother transitions between
% images. Try values 1.5 to 2.0
% boost - The ratio that high frequency values are boosted
% (or supressed) relative to the low frequency values.
% Try values in the range 2 - 4 to start with. Use a
% value of 1 for no boost.
% cutoff - Cutoff frequency of the highboost filter 0 - 0.5, try 0.2
% histcut - Percentage of the histogram extremes to truncate. This
% is useful in preventing outlying values in the data
% from dominating in the image rescaling for display. Try
% a small amount, say, 0.01%
%
% Returns: oim - Cell array of length 'norient' containing the
% orientation filtered images.
%
%
% This function is designed to help identify oriented structures within an image
% by applying orientation selective filters. If one is looking for lineaments
% it is typically useful to boost the high frequency components in the image as
% well, hence the combination of the two filters
%
% Example: Generate 8 orientation filterings of an image with an angular
% bandwidth overlap factor of 1.5 and amplifying spatial frequencies greater
% than 0.1 (wavelenths < 10 pixels) by a factor of 2. Also truncate the image
% histograms so that 0.01% of image pixels are saturated. This helps ensure
% that outlying data values do not dominate when the image is scaled for
% display.
%
% >> oim = orienationfilter(im, 8, 1.5, 2, 0.1, 0.01);
%
% An effective way to view all the output images is to use the cyclic image
% blending tool CYCLEMIX.m
%
% >> cyclemix(oim);
%
% Note that the cyclemix control wheel varies from 0 - 2pi and these angles are
% mapped to the orientation filtered images which vary from 0 - pi in angle.
% This makes the interface a bit counterintuitive to use. To get around this
% one can replicate the the cell array of orientation filtered images giving an
% array that corresponds to the angles 0 - pi, 0 - pi. When this is passed to
% cyclemix you get a much more intuitive interface
%
% >> cyclemix({oim{:} oim{:}})
%
% See also: CYCLEMIX, HIGHBOOSTFILTER, HISTTRUNCATE
% Copyright (c) 2012-2014 Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% peter.kovesi at uwa edu au
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% August 2012 Original version
% July 2014 Revised to incorporate highboost filtering and histogram truncation
function oim = orientationfilter(im, norient, angoverlap, boost, cutoff, histcut)
IM = fft2(im);
[rows,cols] = size(im);
if ~exist('angoverlap','var')
angScale = norient/2;
else
angScale = norient/2 / angoverlap;
end
% If a highboost filter has been specified apply it to the fourier
% transform of the image.
if exist('cutoff', 'var')
IM = IM .* highboostfilter([rows,cols], cutoff, 1, boost);
end
if ~exist('histcut','var'), histcut = 0; end
% Construct frequency domain filter matrices
[ ~ , u1, u2] = filtergrid(rows,cols);
theta = atan2(-u2,u1); % Matrix values contain polar angle.
% (note -ve y is used to give +ve
% anti-clockwise angles)
sintheta = sin(theta);
costheta = cos(theta);
for o = 1:norient % For each orientation...
angl = (o-1)*pi/norient; % Filter angle.
% For each point in the filter matrix calculate the angular distance from
% the specified filter orientation. To overcome the angular wrap-around
% problem sine difference and cosine difference values are first computed
% and then the atan2 function is used to determine angular distance.
ds = sintheta * cos(angl) - costheta * sin(angl); % Difference in sine.
dc = costheta * cos(angl) + sintheta * sin(angl); % Difference in cosine.
dtheta = abs(atan2(ds,dc)); % Absolute angular distance.
% Scale theta so that cosine spread function has the right wavelength and clamp to pi
dtheta = min(dtheta*angScale,pi);
% The orientation filter haa a cosine cross section in the frequency domain
% The spread function is cos(dtheta) between -pi and pi. We add 1,
% and then divide by 2 so that the value ranges 0-1
spread = (cos(dtheta)+1)/2;
spread = spread + fliplr(flipud(spread));
% show(fftshift(spread),o);
% Apply orientation filter
oim{o} = real(ifft2(IM.*spread));
% Truncate extremes of image histogram
if histcut
oim{o} = histtruncate(oim{o}, histcut, histcut);
end
end
|
github
|
jacksky64/imageProcessing-master
|
relief.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Geosci/relief.m
| 5,218 |
utf_8
|
8f99e38c832592297aa91384d12779a2
|
% RELIEF Generates relief shaded image
%
% Usage: shadeim = relief(im, azimuth, elevation, dx, rgbim)
%
% Arguments: im - Image/heightmap to be relief shaded.
% azimuth - Of light direction in degrees. Zero azimuth points
% upwards and increases clockwise. Defaults to 45.
% elevation - Of light direction in degrees. Defaults to 45.
% gradscale - Scaling to apply to the surface gradients. If the shading
% is excessive decrease the scaling. Try successive doubling
% or halving to find a good value.
% rgbim - Optional RGB image to which the shading pattern derived
% from 'im' is applied. Alternatively, rgbim can be a Nx3
% RGB colourmap which is applied to the input
% image/heightmap in order to obtain a RGB image to which
% the shading pattern is applied.
%
% This function generates a relief shaded image. For interactive relief
% shading use IRELIEF. IRELIEF reports the azimuth, elevation and gradient
% scaling values that can then be reused on this function.
%
% Lambertian shading is used to form the relief image. This obtained from the
% cosine of the angle between the surface normal and light direction. Note that
% shadows are ignored. Thus a small feature that might otherwise be in the
% shadow of a nearby large structure is rendered as if the large feature was not
% there.
%
% See also: IRELIEF, APPLYCOLOURMAP
% Copyright (c) 2014 Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% peter.kovesi at uwa edu au
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% April 2014
function shadeim = relief(im, az, el, gradscale, rgbim)
[rows, cols, chan] = size(im);
assert(chan==1)
if ~exist('az', 'var'), az = 45; end
if ~exist('el', 'var'), el = 45; end
if ~exist('gradscale', 'var'), gradscale = 1; end
if exist('rgbim', 'var')
[rr, cc, ch] = size(rgbim);
if cc == 3 && ch == 1 % Assume this is a colourmap that is to be
% applied to the image/heightmap
rgbim = applycolourmap(im, rgbim);
elseif ~isempty(rgbim) % Check its size
if rows ~= rr || cols ~= cc || ch ~= 3
error('Sizes of im and rgbim are not compatible');
end
end
else % No image supplied
rgbim = [];
end
% Obtain surface normals of im
loggrad = 'lin';
[n1, n2, n3] = surfacenormals(im, gradscale, loggrad);
% Convert azimuth and elevation to a lighting direction vector. Note that
% the vector is constructed so that an azimuth of 0 points upwards and
% increases clockwise.
az = az/180*pi;
el = el/180*pi;
I = [cos(el)*sin(az), cos(el)*cos(az), sin(el)];
I = I./norm(I); % Ensure I is a unit vector
% Generate Lambertian shading via the dot product between surface normals
% and the light direction. Note that the product with n2 is negated to
% account for the image +ve y increasing downwards.
shading = I(1)*n1 - I(2)*n2 + I(3)*n3;
% Remove -ve shading values which are generated by surface normals pointing
% away from the light source.
shading(shading < 0) = 0;
% If no RGB image has been supplied just return the raw shading image
if isempty(rgbim)
shadeim = shading;
else % Apply shading to the RGB image supplied
shadeim = zeros(size(rgbim));
for n = 1:3
shadeim(:,:,n) = rgbim(:,:,n).*shading;
end
end
% ** Resolve issue with RGB image being double or uint8
%---------------------------------------------------------------------------
% Compute image/heightmap surface normals
function [n1, n2, n3] = surfacenormals(im, gradscale, loggrad)
% Compute partial derivatives of z.
% p = dz/dx, q = dz/dy
[p,q] = gradient(im);
p = p*gradscale;
q = q*gradscale;
% If specified take logs of gradient.
% Note that taking the log of the surface gradients will produce a surface
% that is not integrable (probably only of theoretical interest)
if strcmpi(loggrad, 'log')
p = sign(p).*log1p(abs(p));
q = sign(q).*log1p(abs(q));
elseif strcmpi(loggrad, 'loglog')
p = sign(p).*log1p(log1p(abs(p)));
q = sign(q).*log1p(log1p(abs(q)));
elseif strcmpi(loggrad, 'logloglog')
p = sign(p).*log1p(log1p(log1p(abs(p))));
q = sign(q).*log1p(log1p(log1p(abs(q))));
end
% Generate surface unit normal vectors. Components stored in n1, n2
% and n3
mag = sqrt(1 + p.^2 + q.^2);
n1 = -p./mag;
n2 = -q./mag;
n3 = 1./mag;
|
github
|
jacksky64/imageProcessing-master
|
irelief.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Geosci/irelief.m
| 13,089 |
utf_8
|
64ddae94f44fb4a9df10a6065b3753fe
|
% IRELIEF Interactive Relief Shading
%
% Usage: irelief(im, rgbim, figNo)
%
% Arguments: im - Image/heightmap to be relief shaded
% rgbim - Optional RGB image to which the shading pattern derived
% from 'im' is applied. Alternatively, rgbim can be a Nx3
% RGB colourmap which is applied to the input
% image/heightmap in order to obtain a RGB image to which
% the shading pattern is applied.
% figNo - Optional figure window number to use.
%
% This function provides an interactive relief shading image
%
% Click in the image to toggle in/out of interactive relief shading mode. The
% location of the click defines a reference point which is indicated by a
% surrounding circle. Positioning the cursor at the centre of the circle
% corresponds to the sun being placed directly overhead. Moving it radially
% outwards reduces the sun's elevation and moving it around the circle
% corresponds to changing the sun's azimuth. The intended use is that you would
% click on a feature of interest within an image and then move the sun around
% with respect to that feature to illuminate it from various directions.
%
% Lambertian shading is used to form the relief image. This is the cosine of
% the angle between the surface normal and light direction. Note that shadows
% are ignored. Thus a small feature that might otherwise be in the shadow of a
% nearby large structure is rendered as if the large feature was not there.
%
% Note that the scale of the surface gradient of the input image is arbitrary,
% indeed it is likely to be of mixed units. However, the gradient scale has a
% big effect on the resulting image display. Initially the gradient is scaled
% to achieve a median value of 0.25. Using the up and down arrow keys the
% user can successively double or halve the gradient values to obtain a
% pleasing result.
%
% A note on colourmaps: It is strongly suggested that you use a constant
% lightness colourmap, or low contrast colourmap, to construct the image to
% which the shading is applied. The reason for this is that the perception of
% features within the data is provided by the relief shading. If the colourmap
% itself has a wide range of lightness values within its colours then these will
% induce an independent shading pattern that will interfere with the relief
% shading. Thus, the use of a map having colours of uniform lightness ensures
% that they do not interfere with the perception of features induced by the
% relief shading.
%
% See also: RELIEF, APPLYCOLOURMAP
% Copyright (c) 2014 Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% peter.kovesi at uwa edu au
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% April 2014
function irelief(im, rgbim, figNo)
[rows, cols, chan] = size(im);
assert(chan==1)
im = double(im); % Ensure double
if exist('rgbim', 'var')
[rr, cc, ch] = size(rgbim);
if cc == 3 && ch == 1 % Assume this is a colourmap that is to be
% applied to the image/heightmap
rgbim = applycolourmap(im, rgbim);
elseif ~isempty(rgbim) % Check its size
if rows ~= rr || cols ~= cc || ch ~= 3
error('Sizes of im and rgbim are not compatible');
end
end
shrgbim = zeros(rows,cols,3); % Allocate space for shaded image
else % No image supplied
rgbim = [];
end
% Compute a gradient scaling to give initial median gradient of 0.25
gradscale = initialgradscale;
loggrad = 'linear';
% Max radius value for normalising radius values when determining
% elevation and azimuth
maxRadius = min(rows/6,cols/6);
fprintf('\nClick in the image to toggle in/out of relief rendering mode. \n\n');
fprintf(['The clicked location is the reference point for specifying the' ...
' sun direction. \n']);
fprintf('Move the cursor with respect to this point to change the illumination.\n\n');
fprintf('Use up and down arrow keys to increase/decrease surface gradients.\n\n');
if exist('figNo','var')
fig = figure(figNo); clf
else
fig = figure;
end
% precompute surface normals
[n1, n2, n3] = surfacenormals(im, gradscale, loggrad);
% Generate an initial dummy image to display and obtain its handle
S = warning('off');
imHandle = imshow(ones(rows,cols), 'border', 'tight');
ah = get(fig,'CurrentAxes');
if isempty(rgbim) % Use a slightly reduced contrast grey colourmap
colormap(gray(256));
% colormap(cmap('REDUCEDGREY'));
end
% Set initial reference point to the centre of the image and draw a
% circle around this point.
xo = cols/2;
yo = rows/2;
[xd, yd] = circlexy([xo, yo], maxRadius);
ho = line(xd, yd, 'Color', [.8 .8 .8]);
set(ho,'Visible', 'off');
% Set up button down callback and window title
set(fig, 'WindowButtonDownFcn', @wbdcb);
set(fig, 'KeyReleaseFcn', @keyreleasecb);
set(fig, 'NumberTitle', 'off')
set(fig, 'name', 'CET Interactive Relief Shading Tool')
set(fig, 'Menubar','none');
% Text area to display current azimuth, elevation, gradscale values
texth = text(50, 50,'', 'color', [1 1 1], 'FontSize', 20);
% Generate initial image display.
relief(xo+maxRadius, yo-maxRadius);
drawnow
warning(S)
blending = 0;
% Set up custom pointer
myPointer = [circularstruct(7) zeros(15,1); zeros(1, 16)];
myPointer(~myPointer) = NaN;
hold on
%-----------------------------------------------------------------------
% Window button down callback
function wbdcb(src,evnt)
if strcmp(get(src,'SelectionType'),'normal')
if ~blending % Turn blending on
blending = 1;
set(ho,'Visible', 'on');
set(src,'Pointer','custom', 'PointerShapeCData', myPointer,...
'PointerShapeHotSpot',[9 9])
set(src,'WindowButtonMotionFcn',@wbmcb)
% Reset reference point to the click location
cp = get(ah,'CurrentPoint');
xo = cp(1,1);
yo = cp(1,2);
[xd, yd] = circlexy([xo, yo], maxRadius);
set(ho,'XData', xd);
set(ho,'YData', yd);
else % Turn blending off
blending = 0;
set(ho,'Visible', 'off');
set(src,'Pointer','arrow')
set(src,'WindowButtonMotionFcn','')
% For paper illustration (need marker size of 95 if using export_fig)
cp = get(ah,'CurrentPoint');
x = cp(1,1);
y = cp(1,2);
end
% Right-clicks while blending also reset the origin for determining elevation and azimuth
elseif blending && strcmp(get(src,'SelectionType'),'alt')
cp = get(ah,'CurrentPoint');
xo = cp(1,1);
yo = cp(1,2);
[xd, yd] = circlexy([xo, yo], maxRadius);
set(ho,'XData', xd);
set(ho,'YData', yd);
wbmcb(src,evnt); % update the display
end
end
%-----------------------------------------------------------------------
% Window button move call back
function wbmcb(src,evnt)
cp = get(ah,'CurrentPoint');
x = cp(1,1); y = cp(1,2);
relief(x, y);
end
%-----------------------------------------------------------------------
% Key Release callback
% If '+' or up is pressed the gradients in the image are doubled
% '-' or down halves the gradients
function keyreleasecb(src,evnt)
if evnt.Character == '+' | evnt.Character == 30
gradscale = gradscale*2;
[n1, n2, n3] = surfacenormals(im, gradscale, loggrad);
elseif evnt.Character == '-' | evnt.Character == 31
gradscale = gradscale/2;
[n1, n2, n3] = surfacenormals(im, gradscale, loggrad);
elseif evnt.Character == 'l'
if strcmp(loggrad, 'linear')
loggrad = 'log';
fprintf('Using log of gradients\n');
elseif strcmp(loggrad, 'log')
loggrad = 'loglog';
fprintf('Using log of log of gradients\n');
elseif strcmp(loggrad, 'loglog')
loggrad = 'logloglog';
fprintf('Using log log log gradients\n');
elseif strcmp(loggrad, 'logloglog')
loggrad = 'linear';
fprintf('Using raw data gradients\n');
end
[n1, n2, n3] = surfacenormals(im, gradscale, loggrad);
end
wbmcb(src,evnt); % update the display
end
%-----------------------------------------------------------------------
function relief(x, y)
% Clamp x and y to image limits
x = max(0,x); x = min(cols,x);
y = max(0,y); y = min(rows,y);
% Convert to polar coordinates with respect to reference point
xp = x - xo;
yp = y - yo;
radius = sqrt(xp.^2 + yp.^2);
% Compute azimuth. We want 0 azimuth pointing up increasing
% clockwise. Hence yp must be negaated becasuse +ve y points down in the
% image, pi/2 must be subtracted to shift 0 from east to north, and the
% overall result must be negated to make angles +ve clockwise (yuk).
azimuth = -(atan2(-yp, xp) - pi/2);
% Convert radius to normalised coords with respect to image size a
radius = radius/maxRadius;
radius = min(radius,1);
% Convert azimuth and elevation to a light direction. Note that
% the vector is constructed so that an azimuth of 0 points upwards and
% increases clockwise.
elevation = pi/2 - radius*2*pi/8;
I = [cos(elevation)*sin(azimuth), cos(elevation)*cos(azimuth), sin(elevation)];
I = I./norm(I); % Ensure I is a unit vector
% Display light direction and current gradscale value
set(texth, 'String', sprintf('Az: %d El: %d Gs: %.2f', ...
round(azimuth/pi*180), round(elevation/pi*180), gradscale));
% Generate Lambertian shading - dot product between surface normal and light
% direction. Note that the product with n2 is negated to account for the
% image +ve y increasing downwards.
shading = I(1)*n1 - I(2)*n2 + I(3)*n3;
% Remove -ve shading values (surfaces pointing away from light source)
shading(shading < 0) = 0;
% If an image has been supplied apply shading to it
if ~isempty(rgbim)
for n = 1:3
shrgbim(:,:,n) = rgbim(:,:,n).*shading;
end
set(imHandle,'CData', shrgbim);
else % Just display shading image
set(imHandle,'CData', shading);
end
end
%---------------------------------------------------------------------------
% Compute image/heightmap surface normals
function [n1, n2, n3] = surfacenormals(im, gradscale, loggrad)
% Compute partial derivatives of z.
% p = dz/dx, q = dz/dy
[p,q] = gradient(im);
p = p*gradscale;
q = q*gradscale;
% If specified take logs of gradient
if strcmpi(loggrad, 'log')
p = sign(p).*log1p(abs(p));
q = sign(q).*log1p(abs(q));
elseif strcmpi(loggrad, 'loglog')
p = sign(p).*log1p(log1p(abs(p)));
q = sign(q).*log1p(log1p(abs(q)));
elseif strcmpi(loggrad, 'logloglog')
p = sign(p).*log1p(log1p(log1p(abs(p))));
q = sign(q).*log1p(log1p(log1p(abs(q))));
end
% Generate surface unit normal vectors. Components stored in n1, n2
% and n3
mag = sqrt(1 + p.^2 + q.^2);
n1 = -p./mag;
n2 = -q./mag;
n3 = 1./mag;
end
%---------------------------------------------------------------------------
% Generate coordinates of points around a circle with centre c, radius r
function [xd, yd] = circlexy(c, r)
nsides = 32;
a = [0:2*pi/nsides:2*pi];
xd = r*cos(a) + c(1);
yd = r*sin(a) + c(2);
end
%---------------------------------------------------------------------------
% Estimate initial gradient scale for a reasonable initial shading result
% Aim for a median gradient of around 0.25
function gradscale = initialgradscale
mediantarget = 0.25;
[p,q] = gradient(im);
pt = abs([p(:); q(:)]);
pt(isnan(pt) | pt <eps) = [];
gradscale = mediantarget/median(pt);
end
%---------------------------------------------------------------------------
end % of dynamicrelief
|
github
|
jacksky64/imageProcessing-master
|
agc.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Geosci/agc.m
| 3,871 |
utf_8
|
e4153ae09348114147d2cd732b327195
|
% AGC Automatic Gain Control for geophysical images
%
% Usage: agcim = agc(im, sigma, p, r)
%
% Arguments: im - The input image. NaNs in the image are handled
% automatically.
% sigma - The standard deviation of the Gaussian filter used to
% determine local image mean values and to perform the
% summation used to determine the local gain values.
% Sigma is specified in pixels, try experimenting with a
% wide range of values.
% p - The power used to compute the p-norm of the local image
% region. The gain is obtained from the p-norm. If
% unspecified its value defaults to 2 and r defaults to 0.5
% r - Normally r = 1/p (and it defaults to this) but it can
% specified separately to achieve specific results. See
% Rajagopalan's papers.
%
% Returns: agcim - The Automatic Gain Controlled image.
%
% The algorithm is based on Shanti Rajagopalan's papers, referenced below, with
% a couple of differences.
%
% 1) The gain is computed from the difference between the image and its local
% mean. The aim of this is to avoid any local base-level issues and to allow
% the code to be applied to a wide range of image types, not just magnetic
% gradient data. The gain is applied to the difference between the image and
% its local mean to obtain the final AGC image.
%
% 2) The computation of the local mean and the summation operations used to
% compute the local gain is performed using Gaussian smoothing. The aim of this
% is to avoid abrupt changes in gain as the summation window is moved across the
% image. The effective window size is controlled by the value of sigma used to
% specify the Gaussian filter.
%
% References:
% * Shanti Rajagopalan "The use of 'Automatic Gain Control' to Display Vertical
% Magnetic Gradient Data". 5th ASEG Conference 1987. pp 166-169
%
% * Shanti Rajagopalan and Peter Milligan. "Image Enhancement of Aeromagnetic Data
% using Automatic Gain Control". Exploration Geophysics (1995) 25. pp 173-178
% Copyright (c) 2012 Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% peter.kovesi at uwa edu au
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% April 2012 - Original version
function agcim = agc(im, sigma, p, r)
% Default values for p and r
if ~exist('p', 'var'), p = 2; end
if exist('p','var') & ~exist('r', 'var')
r = 1/p;
elseif ~exist('r', 'var')
r = 0.5;
end
% Make provision for the image containing NaNs
mask = ~isnan(im);
if any(mask)
im = fillnan(im);
end
% Get local mean by smoothing the image with a Gaussian filter
h = fspecial('gaussian', 6*sigma, sigma);
localMean = filter2(h, im);
% Subtract image from local mean, raise to power 'p' then apply Gaussian
% smoothing filter to obtain a local weighted sum. Finally raise the result
% to power 'r' to obtain the 'gain'. Typically p = 2 and r = 0.5 which will
% make gain equal to the local RMS. The abs() function is used to allow
% for arbitrary 'p' and 'r'.
gain = (filter2(h, abs(im-localMean).^p)).^r;
% Apply inverse gain to the difference between the image and the local
% mean to obtain the final AGC image.
agcim = (im-localMean)./(gain + eps) .* mask;
|
github
|
jacksky64/imageProcessing-master
|
vertderiv.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Geosci/vertderiv.m
| 2,723 |
utf_8
|
f77ed0c735d85a28547dfac1878a70a7
|
% VERTDERIV Vertical derivative of potential field data
%
% Usage: vd = vertderiv(im, order)
%
% Arguments: im - Input potential field image.
% order - Order of derivative 1st 2nd etc. Defaults to 1.
% The order can be fractional if you wish, say, 1.5
%
% Returns: vd - The vertical derivative.
%
% Vertical derivative filtering is done in the frequency domain whereby the
% Fourier transform of the filtered image F(VD) is obtained from the
% Fourier transform of the input image F(U) using
% F(VD) = F(U) * (sqrt(u^2 + v^2))^order
% where u and v are the spatial frequencies in x and y over the input grid.
%
% To minimise edge effect problems Moisan's Periodic FFT is used. This avoids
% the need for data tapering.
%
% References:
% Richard Blakely, "Potential Theory in Gravity and Magnetic Applications"
% Cambridge University Press, 1996. pp 324-326.
%
% L. Moisan, "Periodic plus Smooth Image Decomposition", Journal of
% Mathematical Imaging and Vision, vol 39:2, pp. 161-179, 2011.
%
% See also: TILTDERIV, PERFFT2
% Copyright (c) Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% peter.kovesi at uwa edu au
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
%
% March 2015
function vd = vertderiv(im, order)
if ~exist('order', 'var'), order = 1; end
[rows,cols,chan] = size(im);
assert(chan == 1, 'Image must be single channel');
assert(order >= 0, 'Derivative order must be >= 0');
mask = ~isnan(im);
% Use Periodic FFT rather than data tapering to minimise edge effects.
IM = perfft2(fillnan(im));
% Generate horizontal and vertical frequency grids that vary from -0.5 to
% 0.5. This represents spatial frequency in grid units.
[u1, u2] = meshgrid(([1:cols]-(fix(cols/2)+1))/(cols-mod(cols,2)), ...
([1:rows]-(fix(rows/2)+1))/(rows-mod(rows,2)));
% Quadrant shift to put 0 frequency at the corners.
u1 = ifftshift(u1);
u2 = ifftshift(u2);
% Form the filter by raising the frequency magnitude to the desired power,
% then multiply by the Fourier transform of the image, invert the Fourier
% transform, and finally mask out any NaN regions from the input image.
vd = real(ifft2(IM .* (sqrt(u1.^2 + u2.^2)).^order)) .* double(mask);
|
github
|
jacksky64/imageProcessing-master
|
smoothorient.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/smoothorient.m
| 1,577 |
utf_8
|
792640aa0e4acc0b3bf99d63587a382f
|
% SMOOTHORIENT - applies smoothing to orientation field
%
% Usage: smorient = smoothorient(orient, sigma)
%
% Input:
% orient - Image containing feature normal orientation angles in degrees.
% sigma - Standard deviation of Gaussian to use (try 1)
%
% Returns:
% smorient - Smoothed orientation image.
%
% It seems to be useful to smooth the orientation field returned by phasecong2
% before applying nonmaximal suppression.
%
% See Also: NONMAXSUP, PHASECONG2
% Copyright (c) 2007 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk at csse uwa edu au
% http://www.csse.uwa.edu.au/
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
function smor = smoothorient(or, sigma)
or = or/180*pi; % Convert orientations to radians
% Smoothing is applied separately to the sine and cosine of the angles to
% avoid wraparound problems.
cosor = cos(or);
sinor = sin(or);
f = fspecial('gaussian', max(1,fix(6*sigma)), sigma);
cosor = filter2(f,cosor);
sinor = filter2(f,sinor);
% Reconstitute angles and convert back to degrees
smor = atan2(sinor, cosor)/pi*180;
|
github
|
jacksky64/imageProcessing-master
|
imtrim.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/imtrim.m
| 767 |
utf_8
|
3198c92eac92c39200792c9dc1e94f9d
|
% IMTRIM - removes a boundary of an image
%
% Usage: trimmedim = imtrim(im, b)
%
% Arguments: im - Image to be trimmed (greyscale or colour)
% b - Width of boundary to be removed
%
% Returns: trimmedim - Trimmed image of size rows-2*b x cols-2*b
%
% See also: IMPAD, IMSETBORDER
% Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% http://www.csse.uwa.edu.au/~pk/research/matlabfns/
% June 2010
function tim = imtrim(im, b)
assert(b >= 1, 'Padding size must be > 1')
b = round(b); % ensure integer
[rows, cols, channels] = size(im);
if rows <= 2*b || cols <= 2*b
error('Amount to be trimmed is greater than image size');
end
tim = im(1+b:end-b, 1+b:end-b, 1:channels);
|
github
|
jacksky64/imageProcessing-master
|
hessianfeatures.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/hessianfeatures.m
| 2,917 |
utf_8
|
9e1d6647b257b73405b63ecc1dfc3924
|
% HESSIANFEATURES - Computes determiant of hessian features in an image.
%
% Usage: hdet = hessianfeatures(im, sigma)
%
% Arguments:
% im - Greyscale image to be processed.
% sigma - Defines smoothing scale.
%
% Returns: hdet - Matrix of determinants of Hessian
%
% The local maxima of hdet tend to mark the centres of dark or light blobs.
% However, the point that gets localised can be dependent on scale. If the
% blobs you wish to detect are large you will need to use a value of sigma that
% is comparable in magnitude.
%
% The local minima of hdet is useful for marking the intersection points of a
% camera calibration checkerbaord pattern. These saddle features seem to be
% more stable under scale variations.
%
% For example to get the 100 strongest saddle features in image 'im' use:
% >> hdet = hessianfeatures(im, 1); % sigma = 1
% >> [r, c] = nonmaxsuppts(-hdet, 'N', 100);
%
% See also: HARRIS, NOBLE, SHI_TOMASI, DERIVATIVE5, NONMAXSUPPTS
% Copyright (c) 2007-2016 Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% peter.kovesi at uwa edu au
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% PK Oct 2007 - Original version
% Sept 2015 - Cleanup, scaled Harris removed.
% Sept 2015 - Removed calculation of trace/LoG to reduce memory use
% Jan 2016 - Made single scale. See HESSAINFEATUREMULTISCALE instead
% Derivative calulation change to use DERIVATIVE5
function hdet = hessianfeatures(im, sigma)
if ndims(im) == 3
warning('Input image is colour, converting to greyscale')
im = rgb2gray(im);
end
if ~isa(im,'double')
im = double(im);
end
if sigma > 0 % Convolve with Gaussian at desired sigma
sze = ceil(7*sigma);
if ~mod(sze,2) % ensure size is odd
sze = sze+1;
end
G = fspecial('gaussian', sze, sigma);
Gim = filter2(G, im);
else % No smoothing
Gim = im;
sigma = 1; % Needed for normalisation later
end
% Take 1st and 2nd derivatives in x and y
[Lx, Ly, Lxx, Lxy, Lyy] = derivative5(Gim, 'x', 'y', 'xx', 'xy', 'yy');
% Apply normalizing scaling factor of sigma to 1st derivatives and
% sigma^2 to 2nd derivatives
Lx = Lx*sigma;
Ly = Ly*sigma;
Lxx = Lxx*sigma^2;
Lyy = Lyy*sigma^2;
Lxy = Lxy*sigma^2;
% Determinant
hdet = Lxx.*Lyy - Lxy.^2;
|
github
|
jacksky64/imageProcessing-master
|
regionadjacency.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/regionadjacency.m
| 4,510 |
utf_8
|
c2fb48dec79835eac0afc0d068601942
|
% REGIONADJACENCY Computes adjacency matrix for image of labeled segmented regions
%
% Usage: [Am, Al] = regionadjacency(L, connectivity)
%
% Arguments: L - A region segmented image, such as might be produced by a
% graph cut or superpixel algorithm. All pixels in each
% region are labeled by an integer.
% connectivity - 8 or 4. If not specified connectivity defaults to 8.
%
% Returns: Am - An adjacency matrix indicating which labeled regions are
% adjacent to each other, that is, they share boundaries. Am
% is sparse to save memory.
% Al - A cell array representing the adjacency list corresponding
% to Am. Al{n} is an array of the region indices adjacent to
% region n.
%
% Regions with a label of 0 are not processed. They are considered to be
% 'background regions' that are not to be considered. If you want to include
% these regions you should assign a new positive label to these areas using, say
% >> L(L==0) = max(L(:)) + 1;
%
% See also: CLEANUPREGIONS, RENUMBERREGIONS, SLIC
% Copyright (c) 2013 Peter Kovesi
% Centre for Exploration Targeting
% School of Earth and Environment
% The University of Western Australia
% peter.kovesi at uwa edu au
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% February 2013 Original version
% July 2013 Speed improvement in sparse matrix formation (4x)
function [Am, varargout] = regionadjacency(L, connectivity)
if ~exist('connectivity', 'var'), connectivity = 8; end
[rows,cols] = size(L);
% Identify the unique labels in the image, excluding 0 as a label.
labels = setdiff(unique(L(:))',0);
if isempty(labels)
warning('There are no objects in the image')
Am = [];
Al = {};
return
end
N = max(labels); % Required size of adjacency matrix
% Strategy: Step through the labeled image. For 8-connectedness inspect
% pixels as follows and set the appropriate entries in the adjacency
% matrix.
% x - o
% / | \
% o o o
%
% For 4-connectedness we only inspect the following pixels
% x - o
% |
% o
%
% Becuase the adjacency search looks 'forwards' a final OR operation is
% performed on the adjacency matrix and its transpose to ensure
% connectivity both ways.
% Allocate vectors for forming row, col, value triplets used to construct
% sparse matrix. Forming these vectors first is faster than filling
% entries directly into the sparse matrix
i = zeros(rows*cols,1); % row value
j = zeros(rows*cols,1); % col value
s = zeros(rows*cols,1); % value
if connectivity == 8
n = 1;
for r = 1:rows-1
% Handle pixels in 1st column
i(n) = L(r,1); j(n) = L(r ,2); s(n) = 1; n=n+1;
i(n) = L(r,1); j(n) = L(r+1,1); s(n) = 1; n=n+1;
i(n) = L(r,1); j(n) = L(r+1,2); s(n) = 1; n=n+1;
% ... now the rest of the column
for c = 2:cols-1
i(n) = L(r,c); j(n) = L(r ,c+1); s(n) = 1; n=n+1;
i(n) = L(r,c); j(n) = L(r+1,c-1); s(n) = 1; n=n+1;
i(n) = L(r,c); j(n) = L(r+1,c ); s(n) = 1; n=n+1;
i(n) = L(r,c); j(n) = L(r+1,c+1); s(n) = 1; n=n+1;
end
end
elseif connectivity == 4
n = 1;
for r = 1:rows-1
for c = 1:cols-1
i(n) = L(r,c); j(n) = L(r ,c+1); s(n) = 1; n=n+1;
i(n) = L(r,c); j(n) = L(r+1,c ); s(n) = 1; n=n+1;
end
end
else
error('Connectivity must be 4 or 8');
end
% Form the logical sparse adjacency matrix
Am = logical(sparse(i, j, s, N, N));
% Zero out the diagonal
for r = 1:N
Am(r,r) = 0;
end
% Ensure connectivity both ways for all regions.
Am = Am | Am';
% If an adjacency list is requested...
if nargout == 2
Al = cell(N,1);
for r = 1:N
Al{r} = find(Am(r,:));
end
varargout{1} = Al;
end
|
github
|
jacksky64/imageProcessing-master
|
integgausfilt.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/integgausfilt.m
| 2,500 |
utf_8
|
a2a14a4604cd4a021514fffb77dd587e
|
% INTEGGAUSFILT - Approximate Gaussian filtering using integral filters
%
% This function approximates Gaussian filtering by repeatedly applying
% averaging filters. The averaging is performed via integral images which
% results in a fixed and very low computational cost that is independent of
% the Gaussian size.
%
% Usage: fim = integgausfilt(im, sigma, nFilt)
%
% Arguments:
% im - Image to be Gaussian smoothed
% sigma - Desired standard deviation of Gaussian filter
% nFilt - The number of average filterings to be used to
% approximate the Gaussian. This should be a minimum of
% 3, using 4 is better. If the smoothed image is to be
% differentiated an additional averaging should be applied
% for each derivative. Eg if a second derivative is to be
% taken at least 5 averagings should be applied. If omitted
% this parameter defaults to 5.
%
% Note that the desired standard deviation will not be achieved exactly. A
% combination of different sized averaging filters are applied to approximate it
% as closely as possible. If nFilt is 5 the deviation from the desired standard
% deviation will be at most about 0.15 pixels
%
% See also: INTEGAVERAGE, SOLVEINTEG, INTEGRALIMAGE
% Copyright (c) 2009 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk at csse uwa edu au
% http://www.csse.uwa.edu.au/
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% September 2009
function im = integgausfilt(im, sigma, nFilt)
if ~exist('nFilt', 'var')
nFilt = 5;
end
% Solve for the combination of averaging filter sizes that will result in
% the closest approximation of sigma given nFilt.
[wl, wu, m] = solveinteg(sigma, nFilt);
radl = (wl-1)/2;
radu = (wu-1)/2;
% Apply the averaging filters via integral images.
for i = 1:m
im = integaverage(im,radl);
end
for n = 1:(nFilt-m)
im = integaverage(im,radu);
end
|
github
|
jacksky64/imageProcessing-master
|
anisodiff.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/anisodiff.m
| 2,600 |
utf_8
|
3d6827b7cb6831ab151cc363a892fd5a
|
% ANISODIFF - Anisotropic diffusion.
%
% Usage:
% diff = anisodiff(im, niter, kappa, lambda, option)
%
% Arguments:
% im - input image
% niter - number of iterations.
% kappa - conduction coefficient 20-100 ?
% lambda - max value of .25 for stability
% option - 1 Perona Malik diffusion equation No 1
% 2 Perona Malik diffusion equation No 2
%
% Returns:
% diff - diffused image.
%
% kappa controls conduction as a function of gradient. If kappa is low
% small intensity gradients are able to block conduction and hence diffusion
% across step edges. A large value reduces the influence of intensity
% gradients on conduction.
%
% lambda controls speed of diffusion (you usually want it at a maximum of
% 0.25)
%
% Diffusion equation 1 favours high contrast edges over low contrast ones.
% Diffusion equation 2 favours wide regions over smaller ones.
% Reference:
% P. Perona and J. Malik.
% Scale-space and edge detection using ansotropic diffusion.
% IEEE Transactions on Pattern Analysis and Machine Intelligence,
% 12(7):629-639, July 1990.
%
% Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk @ csse uwa edu au
% http://www.csse.uwa.edu.au
%
% June 2000 original version.
% March 2002 corrected diffusion eqn No 2.
function diff = anisodiff(im, niter, kappa, lambda, option)
if ndims(im)==3
error('Anisodiff only operates on 2D grey-scale images');
end
im = double(im);
[rows,cols] = size(im);
diff = im;
for i = 1:niter
% fprintf('\rIteration %d',i);
% Construct diffl which is the same as diff but
% has an extra padding of zeros around it.
diffl = zeros(rows+2, cols+2);
diffl(2:rows+1, 2:cols+1) = diff;
% North, South, East and West differences
deltaN = diffl(1:rows,2:cols+1) - diff;
deltaS = diffl(3:rows+2,2:cols+1) - diff;
deltaE = diffl(2:rows+1,3:cols+2) - diff;
deltaW = diffl(2:rows+1,1:cols) - diff;
% Conduction
if option == 1
cN = exp(-(deltaN/kappa).^2);
cS = exp(-(deltaS/kappa).^2);
cE = exp(-(deltaE/kappa).^2);
cW = exp(-(deltaW/kappa).^2);
elseif option == 2
cN = 1./(1 + (deltaN/kappa).^2);
cS = 1./(1 + (deltaS/kappa).^2);
cE = 1./(1 + (deltaE/kappa).^2);
cW = 1./(1 + (deltaW/kappa).^2);
end
diff = diff + lambda*(cN.*deltaN + cS.*deltaS + cE.*deltaE + cW.*deltaW);
% Uncomment the following to see a progression of images
% subplot(ceil(sqrt(niter)),ceil(sqrt(niter)), i)
% imagesc(diff), colormap(gray), axis image
end
%fprintf('\n');
|
github
|
jacksky64/imageProcessing-master
|
drawregionboundaries.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/drawregionboundaries.m
| 2,312 |
utf_8
|
52e55969a30f9db62b4847f5a14997d4
|
% DRAWREGIONBOUNDARIES Draw boundaries of labeled regions in an image
%
% Usage: maskim = drawregionboundaries(l, im, col)
%
% Arguments:
% l - Labeled image of regions.
% im - Optional image to overlay the region boundaries on.
% col - Optional colour specification. Defaults to black. Note that
% the colour components are specified as values 0-255.
% For example red is [255 0 0] and white is [255 255 255].
%
% Returns:
% maskim - If no image has been supplied maskim is a binary mask
% image indicating where the region boundaries are.
% If an image has been supplied maskim is the image with the
% region boundaries overlaid
%
% See also: MASKIMAGE
% Copyright (c) 2013 Peter Kovesi
% Centre for Exploration Targeting
% School of Earth and Environment
% The University of Western Australia
% peter.kovesi at uwa edu au
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% Feb 2013
function maskim = drawregionboundaries(l, im, col)
% Form the mask by applying a sobel edge detector to the labeled image,
% thresholding and then thinning the result.
% h = [1 0 -1
% 2 0 -2
% 1 0 -1];
h = [-1 1]; % A simple small filter is better in this application.
% Small regions 1 pixel wide get missed using a Sobel
% operator
gx = filter2(h ,l);
gy = filter2(h',l);
maskim = (gx.^2 + gy.^2) > 0;
maskim = bwmorph(maskim, 'thin', Inf);
% Zero out any mask values that may have been set around the edge of the
% image.
maskim(1,:) = 0; maskim(end,:) = 0;
maskim(:,1) = 0; maskim(:,end) = 0;
% If an image has been supplied apply the mask to the image and return it
if exist('im', 'var')
if ~exist('col', 'var'), col = 0; end
maskim = maskimage(im, maskim, col);
end
|
github
|
jacksky64/imageProcessing-master
|
canny.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/canny.m
| 2,293 |
utf_8
|
6bdaaea9bcfecd3c0443e573bdac5381
|
% CANNY - Canny edge detection
%
% Function to perform Canny edge detection.
%
% Usage: [gradient or] = canny(im, sigma)
%
% Arguments: im - image to be procesed
% sigma - standard deviation of Gaussian smoothing filter.
% Optional, defaults to 1.
%
% Returns: gradient - edge strength image (gradient amplitude)
% or - orientation image (in degrees 0-180, positive
% anti-clockwise)
%
%
% To obtain a binary edge image one would typically do the following
% >> [gr or] = canny(im, sigma); % Choose sigma to taste
% >> nm = nonmaxsup(gr, or, rad); % I use a rad value ~ 1.2 to 1.5
% >> bw = hysthresh(nm, T1, T2); % Choose T1 and T2 until the result looks ok
%
% See also: NONMAXSUP, HYSTHRESH, DERIVATIVE5
% Copyright (c) 1999-2010 Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% http://www.csse.uwa.edu.au/~pk/research/matlabfns/
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in all
% copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% April 1999 Original version
% January 2003 Error in calculation of d2 corrected
% August 2010 Changed to use derivatives computed using Farid and
% Simoncelli's filters. Cleaned up
% May 2013 Sigma optional with default of 1
function [gradient, or] = canny(im, sigma)
assert(ndims(im) == 2, 'Image must be greyscale');
if ~exist('sigma', 'var'), sigma = 1; end
% If needed convert im to double
if ~strcmp(class(im),'double')
im = double(im);
end
im = gaussfilt(im, sigma); % Smooth the image.
[Ix, Iy] = derivative5(im,'x','y'); % Get derivatives.
gradient = sqrt(Ix.*Ix + Iy.*Iy); % Gradient magnitude.
or = atan2(-Iy, Ix); % Angles -pi to + pi.
or(or<0) = or(or<0)+pi; % Map angles to 0-pi.
or = or*180/pi; % Convert to degrees.
|
github
|
jacksky64/imageProcessing-master
|
integralimage.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/integralimage.m
| 1,583 |
utf_8
|
625ff486923979d644b6b48a01c2af43
|
% INTEGRALIMAGE - computes integral image of an image
%
% Usage: intim = integralimage(im)
%
% This function computes an integral image such that the value of intim(r,c)
% equals sum(sum(im(1:r, 1:c))
%
% An integral image can be used with the function INTEGRALFILTER to perform
% filtering operations (using rectangular filters) on an image in time that
% only depends on the image size, irrespective of the filter size.
%
% See also: INTEGRALFILTER, INTEGAVERAGE, INTFILTTRANSPOSE
% Reference: Crow, Franklin (1984). "Summed-area tables for texture
% mapping". SIGGRAPH '84. pp. 207-212.
% Paul Viola and Michael Jones, "Robust Real-Time Face Detection",
% IJCV 57(2). pp 137-154. 2004.
% Copyright (c) 2006 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk at csse uwa edu au
% http://www.csse.uwa.edu.au/
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% October 2006
function intim = integralimage(im)
if ndims(im) == 3
error('Image must be greyscale');
end
if strcmp(class(im),'uint8') % A cast to double is needed
im = double(im);
end
intim = cumsum(cumsum(im,1),2);
|
github
|
jacksky64/imageProcessing-master
|
slic.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/slic.m
| 14,966 |
utf_8
|
8fa6f6e0639ea7e9ed8c1e3b8dd480fd
|
% SLIC Simple Linear Iterative Clustering SuperPixels
%
% Implementation of Achanta, Shaji, Smith, Lucchi, Fua and Susstrunk's
% SLIC Superpixels
%
% Usage: [l, Am, Sp, d] = slic(im, k, m, seRadius, colopt, mw)
%
% Arguments: im - Image to be segmented.
% k - Number of desired superpixels. Note that this is nominal
% the actual number of superpixels generated will generally
% be a bit larger, espiecially if parameter m is small.
% m - Weighting factor between colour and spatial
% differences. Values from about 5 to 40 are useful. Use a
% large value to enforce superpixels with more regular and
% smoother shapes. Try a value of 10 to start with.
% seRadius - Regions morphologically smaller than this are merged with
% adjacent regions. Try a value of 1 or 1.5. Use 0 to
% disable.
% colopt - String 'mean' or 'median' indicating how the cluster
% colour centre should be computed. Defaults to 'mean'
% mw - Optional median filtering window size. Image compression
% can result in noticeable artifacts in the a*b* components
% of the image. Median filtering can reduce this. mw can be
% a single value in which case the same median filtering is
% applied to each L* a* and b* components. Alternatively it
% can be a 2-vector where mw(1) specifies the median
% filtering window to be applied to L* and mw(2) is the
% median filtering window to be applied to a* and b*.
%
% Returns: l - Labeled image of superpixels. Labels range from 1 to k.
% Am - Adjacency matrix of segments. Am(i, j) indicates whether
% segments labeled i and j are connected/adjacent
% Sp - Superpixel attribute structure array with fields:
% L - Mean L* value
% a - Mean a* value
% b - Mean b* value
% r - Mean row value
% c - Mean column value
% stdL - Standard deviation of L*
% stda - Standard deviation of a*
% stdb - Standard deviation of b*
% N - Number of pixels
% edges - List of edge numbers that bound each
% superpixel. This field is allocated, but not set,
% by SLIC. Use SPEDGES for this.
% d - Distance image giving the distance each pixel is from its
% associated superpixel centre.
%
% It is suggested that use of this function is followed by SPDBSCAN to perform a
% DBSCAN clustering of superpixels. This results in a simple and fast
% segmentation of an image.
%
% Minor variations from the original algorithm as defined in Achanta et al's
% paper:
%
% - SuperPixel centres are initialised on a hexagonal grid rather than a square
% one. This results in a segmentation that will be nominally 6-connected
% which hopefully facilitates any subsequent post-processing that seeks to
% merge superpixels.
% - Initial cluster positions are not shifted to point of lowest gradient
% within a 3x3 neighbourhood because this will be rendered irrelevant the
% first time cluster centres are updated.
%
% Reference: R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua and
% S. Susstrunk. "SLIC Superpixels Compared to State-of-the-Art Superpixel
% Methods" PAMI. Vol 34 No 11. November 2012. pp 2274-2281.
%
% See also: SPDBSCAN, MCLEANUPREGIONS, REGIONADJACENCY, DRAWREGIONBOUNDARIES, RGB2LAB
% Copyright (c) 2013 Peter Kovesi
% Centre for Exploration Targeting
% School of Earth and Environment
% The University of Western Australia
% peter.kovesi at uwa edu au
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% Feb 2013
% July 2013 Super pixel attributes returned as a structure array
% Note that most of the computation time is not in the clustering, but rather
% in the region cleanup process.
function [l, Am, Sp, d] = slic(im, k, m, seRadius, colopt, mw, nItr, eim, We)
if ~exist('colopt','var') || isempty(colopt), colopt = 'mean'; end
if ~exist('mw','var') || isempty(mw), mw = 0; end
if ~exist('nItr','var') || isempty(nItr), nItr = 10; end
if exist('eim', 'var'), USEDIST = 0; else, USEDIST = 1; end
MEANCENTRE = 1;
MEDIANCENTRE = 2;
if strcmp(colopt, 'mean')
centre = MEANCENTRE;
elseif strcmp(colopt, 'median')
centre = MEDIANCENTRE;
else
error('Invalid colour centre computation option');
end
[rows, cols, chan] = size(im);
if chan ~= 3
error('Image must be colour');
end
% Convert image to L*a*b* colourspace. This gives us a colourspace that is
% nominally perceptually uniform. This allows us to use the euclidean
% distance between colour coordinates to measure differences between
% colours. Note the image becomes double after conversion. We may want to
% go to signed shorts to save memory.
im = rgb2lab(im);
% Apply median filtering to colour components if mw has been supplied
% and/or non-zero
if mw
if length(mw) == 1
mw(2) = mw(1); % Use same filtering for L and chrominance
end
for n = 1:3
im(:,:,n) = medfilt2(im(:,:,n), [mw(1) mw(1)]);
end
end
% Nominal spacing between grid elements assuming hexagonal grid
S = sqrt(rows*cols / (k * sqrt(3)/2));
% Get nodes per row allowing a half column margin at one end that alternates
% from row to row
nodeCols = round(cols/S - 0.5);
% Given an integer number of nodes per row recompute S
S = cols/(nodeCols + 0.5);
% Get number of rows of nodes allowing 0.5 row margin top and bottom
nodeRows = round(rows/(sqrt(3)/2*S));
vSpacing = rows/nodeRows;
% Recompute k
k = nodeRows * nodeCols;
% Allocate memory and initialise clusters, labels and distances.
C = zeros(6,k); % Cluster centre data 1:3 is mean Lab value,
% 4:5 is row, col of centre, 6 is No of pixels
l = -ones(rows, cols); % Pixel labels.
d = inf(rows, cols); % Pixel distances from cluster centres.
% Initialise clusters on a hexagonal grid
kk = 1;
r = vSpacing/2;
for ri = 1:nodeRows
% Following code alternates the starting column for each row of grid
% points to obtain a hexagonal pattern. Note S and vSpacing are kept
% as doubles to prevent errors accumulating across the grid.
if mod(ri,2), c = S/2; else, c = S; end
for ci = 1:nodeCols
cc = round(c); rr = round(r);
C(1:5, kk) = [squeeze(im(rr,cc,:)); cc; rr];
c = c+S;
kk = kk+1;
end
r = r+vSpacing;
end
% Now perform the clustering. 10 iterations is suggested but I suspect n
% could be as small as 2 or even 1
S = round(S); % We need S to be an integer from now on
for n = 1:nItr
for kk = 1:k % for each cluster
% Get subimage around cluster
rmin = max(C(5,kk)-S, 1); rmax = min(C(5,kk)+S, rows);
cmin = max(C(4,kk)-S, 1); cmax = min(C(4,kk)+S, cols);
subim = im(rmin:rmax, cmin:cmax, :);
assert(numel(subim) > 0)
% Compute distances D between C(:,kk) and subimage
if USEDIST
D = dist(C(:, kk), subim, rmin, cmin, S, m);
else
D = dist2(C(:, kk), subim, rmin, cmin, S, m, eim, We);
end
% If any pixel distance from the cluster centre is less than its
% previous value update its distance and label
subd = d(rmin:rmax, cmin:cmax);
subl = l(rmin:rmax, cmin:cmax);
updateMask = D < subd;
subd(updateMask) = D(updateMask);
subl(updateMask) = kk;
d(rmin:rmax, cmin:cmax) = subd;
l(rmin:rmax, cmin:cmax) = subl;
end
% Update cluster centres with mean values
C(:) = 0;
for r = 1:rows
for c = 1:cols
tmp = [im(r,c,1); im(r,c,2); im(r,c,3); c; r; 1];
C(:, l(r,c)) = C(:, l(r,c)) + tmp;
end
end
% Divide by number of pixels in each superpixel to get mean values
for kk = 1:k
C(1:5,kk) = round(C(1:5,kk)/C(6,kk));
end
% Note the residual error, E, is not calculated because we are using a
% fixed number of iterations
end
% Cleanup small orphaned regions and 'spurs' on each region using
% morphological opening on each labeled region. The cleaned up regions are
% assigned to the nearest cluster. The regions are renumbered and the
% adjacency matrix regenerated. This is needed because the cleanup is
% likely to change the number of labeled regions.
if seRadius
[l, Am] = mcleanupregions(l, seRadius);
else
l = makeregionsdistinct(l);
[l, minLabel, maxLabel] = renumberregions(l);
Am = regionadjacency(l);
end
% Recompute the final superpixel attributes and write information into
% the Sp struct array.
N = length(Am);
Sp = struct('L', cell(1,N), 'a', cell(1,N), 'b', cell(1,N), ...
'stdL', cell(1,N), 'stda', cell(1,N), 'stdb', cell(1,N), ...
'r', cell(1,N), 'c', cell(1,N), 'N', cell(1,N));
[X,Y] = meshgrid(1:cols, 1:rows);
L = im(:,:,1);
A = im(:,:,2);
B = im(:,:,3);
for n = 1:N
mask = l==n;
nm = sum(mask(:));
if centre == MEANCENTRE
Sp(n).L = sum(L(mask))/nm;
Sp(n).a = sum(A(mask))/nm;
Sp(n).b = sum(B(mask))/nm;
elseif centre == MEDIANCENTRE
Sp(n).L = median(L(mask));
Sp(n).a = median(A(mask));
Sp(n).b = median(B(mask));
end
Sp(n).r = sum(Y(mask))/nm;
Sp(n).c = sum(X(mask))/nm;
% Compute standard deviations of the colour components of each super
% pixel. This can be used by code seeking to merge superpixels into
% image segments. Note these are calculated relative to the mean colour
% component irrespective of the centre being calculated from the mean or
% median colour component values.
Sp(n).stdL = std(L(mask));
Sp(n).stda = std(A(mask));
Sp(n).stdb = std(B(mask));
Sp(n).N = nm; % Record number of pixels in superpixel too.
end
%-- dist -------------------------------------------
%
% Usage: D = dist(C, im, r1, c1, S, m)
%
% Arguments: C - Cluster being considered
% im - sub-image surrounding cluster centre
% r1, c1 - row and column of top left corner of sub image within the
% overall image.
% S - grid spacing
% m - weighting factor between colour and spatial differences.
%
% Returns: D - Distance image giving distance of every pixel in the
% subimage from the cluster centre
%
% Distance = sqrt( dc^2 + (ds/S)^2*m^2 )
% where:
% dc = sqrt(dl^2 + da^2 + db^2) % Colour distance
% ds = sqrt(dx^2 + dy^2) % Spatial distance
%
% m is a weighting factor representing the nominal maximum colour distance
% expected so that one can rank colour similarity relative to distance
% similarity. try m in the range [1-40] for L*a*b* space
%
% ?? Might be worth trying the Geometric Mean instead ??
% Distance = sqrt(dc * ds)
% but having a factor 'm' to play with is probably handy
% This code could be more efficient
function D = dist(C, im, r1, c1, S, m)
% Squared spatial distance
% ds is a fixed 'image' we should be able to exploit this
% and use a fixed meshgrid for much of the time somehow...
[rows, cols, chan] = size(im);
[x,y] = meshgrid(c1:(c1+cols-1), r1:(r1+rows-1));
x = x-C(4); % x and y dist from cluster centre
y = y-C(5);
ds2 = x.^2 + y.^2;
% Squared colour difference
for n = 1:3
im(:,:,n) = (im(:,:,n)-C(n)).^2;
end
dc2 = sum(im,3);
D = sqrt(dc2 + ds2/S^2*m^2);
%--- dist2 ------------------------------------------
%
% Usage: D = dist2(C, im, r1, c1, S, m, eim)
%
% Arguments: C - Cluster being considered
% im - sub-image surrounding cluster centre
% r1, c1 - row and column of top left corner of sub image within the
% overall image.
% S - grid spacing
% m - weighting factor between colour and spatial differences.
% eim - Edge strength sub-image corresponding to im
%
% Returns: D - Distance image giving distance of every pixel in the
% subimage from the cluster centre
%
% Distance = sqrt( dc^2 + (ds/S)^2*m^2 )
% where:
% dc = sqrt(dl^2 + da^2 + db^2) % Colour distance
% ds = sqrt(dx^2 + dy^2) % Spatial distance
%
% m is a weighting factor representing the nominal maximum colour distance
% expected so that one can rank colour similarity relative to distance
% similarity. try m in the range [1-40] for L*a*b* space
%
function D = dist2(C, im, r1, c1, S, m, eim, We)
% Squared spatial distance
% ds is a fixed 'image' we should be able to exploit this
% and use a fixed meshgrid for much of the time somehow...
[rows, cols, chan] = size(im);
[x,y] = meshgrid(c1:(c1+cols-1), r1:(r1+rows-1));
x = x-C(4);
y = y-C(5);
ds2 = x.^2 + y.^2;
% Squared colour difference
for n = 1:3
im(:,:,n) = (im(:,:,n)-C(n)).^2;
end
dc2 = sum(im,3);
% Combine colour and spatial distance measure
D = sqrt(dc2 + ds2/S^2*m^2);
% for every pixel in the subimage call improfile to the cluster centre
% and use the largest value as the 'edge distance'
rCentre = C(5)-r1; % Cluster centre coords relative to this sub-image
cCentre = C(4)-c1;
de = zeros(rows,cols);
for r = 1:rows
for c = 1:cols
v = improfile(eim,[c cCentre], [r rCentre]);
de(r,c) = max(v);
end
end
% Combine edge distance with weight, We with total Distance.
D = D + We * de;
|
github
|
jacksky64/imageProcessing-master
|
nonmaxsuppts.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/nonmaxsuppts.m
| 6,729 |
utf_8
|
eb23198eb43f6202473f2bc1364435e0
|
% NONMAXSUPPTS - Non-maximal suppression for features/corners
%
% Non maxima suppression and thresholding for points generated by a feature
% or corner detector.
%
% Usage: [r,c] = nonmaxsuppts(cim, Keyword-Value options...)
%
% Required argument:
% cim - Corner strength image.
%
% Optional arguments specified as keyword - value pairs:
% 'radius' - Radius of region considered in non-maximal
% suppression. Typical values to use might
% be 1-3 pixels. Default is 1.
% 'thresh' - Threshold, only features with value greater than
% threshold are returned. Default is 0.
% 'N' - Maximum number of features to return. In this case the
% N strongest features with value above 'thresh' are
% returned. Default is Inf.
% 'subpixel' - If set to true features are localised to subpixel
% precision. Default is false.
% 'im' - Optional image data. If an image is supplied the
% detected corners are overlayed on this image. This can
% be useful for parameter tuning. Default is [].
% Returns:
% r - Row coordinates of corner points.
% c - Column coordinates of corner points.
%
% Example of use:
% >> hes = hessianfeatures(im, 1); % Compute Hessian feature image in image im
%
% Find the 1000 strongest features to subpixel precision using a non-maximal
% suppression radius of 2 and overlay the detected corners on the origin image.
% >> [r,c]= nonmaxsuppts(abs(hes), 'radius', 2, 'N', 1000, 'im', im, 'subpixel', true);
%
% Note: An issue with integer valued images is that if there are multiple pixels
% all with the same value within distance 2*radius of each other then they will
% all be marked as local maxima.
%
% See also: HARRIS, NOBLE, SHI_TOMASI, HESSIANFEATURES
% Copyright (c) 2003-2016 Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% peter.kovesi at uwa edu au
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in all
% copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% September 2003 Original version
% August 2005 Subpixel localization and Octave compatibility
% January 2010 Fix for completely horizontal and vertical lines (by Thomas Stehle,
% RWTH Aachen University)
% January 2011 Warning given if no maxima found
% January 2016 Reworked to allow the N strongest features to be returned.
% Arguments changed to be specified as keyword - value
% pairs. (no doubt this breaks some code, sorry)
function [r,c] = nonmaxsuppts(cim, varargin)
[thresh, radius, N, subpixel, im] = checkargs(varargin);
[rows,cols] = size(cim);
% Extract local maxima by performing a grey scale morphological
% dilation and then finding points in the corner strength image that
% match the dilated image and are also greater than the threshold.
sze = 2*radius+1; % Size of dilation mask.
mx = imdilate(cim, strel('disk',radius));
% mx = ordfilt2(cim, sze^2,ones(sze)); % Grey-scale dilate.
% Make mask to exclude points within radius of the image boundary.
bordermask = zeros(size(cim));
bordermask(radius+1:end-radius, radius+1:end-radius) = 1;
% Find maxima, threshold, and apply bordermask
cimmx = (cim==mx) & (cim>thresh) & bordermask;
[r,c] = find(cimmx); % Find row,col coords.
% Check if we want to limit the number of maxima
if isfinite(N)
mxval = cim(cimmx); % Get values of maxima and sort them.
[mxval,ind] = sort(mxval,1,'descend');
r = r(ind); % Reorder r and c arrays
c = c(ind); % to match.
if length(r) > N % Grab the N strongest features.
r = r(1:N);
c = c(1:N);
end
end
if isempty(r)
warning('No maxima above threshold found');
return
end
if subpixel % Compute local maxima to sub pixel accuracy
ind = sub2ind(size(cim),r,c); % 1D indices of feature points
w = 1; % Width that we look out on each side of the feature
% point to fit a local parabola
% Indices of points above, below, left and right of feature point
indrminus1 = max(ind-w,1);
indrplus1 = min(ind+w,rows*cols);
indcminus1 = max(ind-w*rows,1);
indcplus1 = min(ind+w*rows,rows*cols);
% Solve for quadratic down rows
rowshift = zeros(size(ind));
cy = cim(ind);
ay = (cim(indrminus1) + cim(indrplus1))/2 - cy;
by = ay + cy - cim(indrminus1);
rowshift(ay ~= 0) = -w*by(ay ~= 0)./(2*ay(ay ~= 0)); % Maxima of quadradic
rowshift(ay == 0) = 0;
% Solve for quadratic across columns
colshift = zeros(size(ind));
cx = cim(ind);
ax = (cim(indcminus1) + cim(indcplus1))/2 - cx;
bx = ax + cx - cim(indcminus1);
colshift(ax ~= 0) = -w*bx(ax ~= 0)./(2*ax(ax ~= 0)); % Maxima of quadradic
colshift(ax == 0) = 0;
r = r+rowshift; % Add subpixel corrections to original row
c = c+colshift; % and column coords.
end
if ~isempty(im) % Overlay corners on supplied image.
figure, imshow(im,[]), hold on
plot(c,r,'r+'), title('corners detected');
hold off
end
end
%---------------------------------------------------------------
function [thresh, radius, N, subpixel, im] = checkargs(v)
p = inputParser;
p.CaseSensitive = false;
% Define optional parameter-value pairs and their defaults
addParameter(p, 'thresh', 0, @isnumeric);
addParameter(p, 'radius', 1, @isnumeric);
addParameter(p, 'N', Inf, @isnumeric);
addParameter(p, 'subpixel', false, @islogical);
addParameter(p, 'im', [], @isnumeric);
parse(p, v{:});
thresh = p.Results.thresh;
radius = p.Results.radius;
N = p.Results.N;
subpixel = p.Results.subpixel;
im = p.Results.im;
end
|
github
|
jacksky64/imageProcessing-master
|
hysthresh.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/hysthresh.m
| 2,218 |
utf_8
|
1083374237be0a6bad69e6afd431e1c0
|
% HYSTHRESH - Hysteresis thresholding
%
% Usage: bw = hysthresh(im, T1, T2)
%
% Arguments:
% im - image to be thresholded (assumed to be non-negative)
% T1 - upper threshold value
% T2 - lower threshold value
% (T1 and T2 can be entered in any order, the larger of the
% two values is used as the upper threshold)
% Returns:
% bw - the thresholded image (containing values 0 or 1)
%
% Function performs hysteresis thresholding of an image.
% All pixels with values above threshold T1 are marked as edges
% All pixels that are connected to points that have been marked as edges
% and with values above threshold T2 are also marked as edges. Eight
% connectivity is used.
% Copyright (c) 1996-2005 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% http://www.csse.uwa.edu.au/
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in all
% copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% December 1996 - Original version
% March 2001 - Speed improvements made (~4x)
% April 2005 - Modified to cope with MATLAB 7's uint8 behaviour
% July 2005 - Enormous simplification and great speedup by realizing
% that you can use bwselect to do all the work
function bw = hysthresh(im, T1, T2)
if T1 < T2 % T1 and T2 reversed - swap values
tmp = T1;
T1 = T2;
T2 = tmp;
end
aboveT2 = im > T2; % Edge points above lower
% threshold.
[aboveT1r, aboveT1c] = find(im > T1); % Row and colum coords of points
% above upper threshold.
% Obtain all connected regions in aboveT2 that include a point that has a
% value above T1
bw = bwselect(aboveT2, aboveT1c, aboveT1r, 8);
|
github
|
jacksky64/imageProcessing-master
|
renumberregions.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/renumberregions.m
| 2,350 |
utf_8
|
0bf07a365af7d4978066949f3e98d8a5
|
% RENUMBERREGIONS
%
% Usage: [nL, minLabel, maxLabel] = renumberregions(L)
%
% Argument: L - A labeled image segmenting an image into regions, such as
% might be produced by a graph cut or superpixel algorithm.
% All pixels in each region are labeled by an integer.
%
% Returns: nL - A relabeled version of L so that label numbers form a
% sequence 1:maxRegions or 0:maxRegions-1 depending on
% whether L has a region labeled with 0s or not.
% minLabel - Minimum label in the renumbered image. This will be 0 or 1.
% maxLabel - Maximum label in the renumbered image.
%
% Application: Segmentation algorithms can produce a labeled image with a non
% contiguous numbering of regions 1 4 6 etc. This function renumbers them into a
% contiguous sequence. If the input image has a region labeled with 0s this
% region is treated as a privileged 'background region' and retains its 0
% labeling. The resulting image will have labels ranging over 0:maxRegions-1.
% Otherwise the image will be relabeled over the sequence 1:maxRegions
%
% See also: CLEANUPREGIONS, REGIONADJACENCY
% Copyright (c) 2010 Peter Kovesi
% Centre for Exploration Targeting
% School of Earth and Environment
% The University of Western Australia
% peter.kovesi at uwa edu au
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% October 2010
% February 2013 Return label numbering range
function [nL, minLabel, maxLabel] = renumberregions(L)
nL = L;
labels = unique(L(:))'; % Sorted list of unique labels
N = length(labels);
% If there is a label of 0 we ensure that we do not renumber that region
% by removing it from the list of labels to be renumbered.
if labels(1) == 0
labels = labels(2:end);
minLabel = 0;
maxLabel = N-1;
else
minLabel = 1;
maxLabel = N;
end
% Now do the relabelling
count = 1;
for n = labels
nL(L==n) = count;
count = count+1;
end
|
github
|
jacksky64/imageProcessing-master
|
harris.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/harris.m
| 5,655 |
utf_8
|
e82f23a9bcba7fbf7a20e48f24f766f1
|
% Harris - Harris corner detector
%
% Usage: cim = harris(im, sigma, k)
% [cim, r, c] = harris(im, sigma, k, keyword-value options...)
%
% Required arguments:
% im - Image to be processed.
% sigma - Standard deviation of smoothing Gaussian used to sum
% the derivatives when forming the structure tensor. Typical
% values to use might be 1-3.
% k - Parameter relating the trace to the determinant of the
% structure tensor in the Harris measure.
% cim = det(M) - k trace^2(M).
% Traditionally k = 0.04
%
% Optional keyword - value arguments for performing non-maxima suppression:
%
% 'radius' - Radius of region considered in non-maximal
% suppression. Typical values to use might
% be 1-3 pixels. Default is 1.
% 'thresh' - Threshold, only features with value greater than
% threshold are returned. Default is 1.
% 'N' - Maximum number of features to return. In this case the
% N strongest features with value above 'thresh' are
% returned. Default is Inf.
% 'subpixel' - If set to true features are localised to subpixel
% precision. Default is false.
% 'display' - Optional flag true/false. If true the detected corners
% are overlayed on the input image. This can be useful
% for parameter tuning. Default is false.
%
% Returns:
% cim - Corner strength image.
% r - Row coordinates of corner points.
% c - Column coordinates of corner points.
%
% With only 'im' 'sigma' and 'k' supplied as arguments only 'cim' is returned
% as a raw corner strength image. You may then want to look at the values
% within 'cim' to determine the appropriate threshold value to use. Note that
% the Harris corner strength varies with the intensity gradient raised to the
% 4th power. Small changes in input image contrast result in huge changes in
% the appropriate threshold.
%
% If any of the optional keyword - value arguments for performing non-maxima
% suppression are specified then the feature coordinate locations are also
% returned.
%
% Example: To get the 100 strongest features and display the detected points
% on the input image use:
% >> [cim, r, c] = harris(im, 1, .04, 'N', 100, 'display', true);
%
% The Harris measure is det(M) - k trace^2(M), where k is a parameter you have
% to set (traditionally k = 0.04) and M is the structure tensor. Use Noble's
% measure if you wish to avoid the need to set a parameter k. However the
% Shi-Tomasi measure is probably what you really want.
%
% See also: NOBLE, SHI_TOMASI, HESSIANFEATURES, NONMAXSUPPTS, DERIVATIVE5
% References:
% C.G. Harris and M.J. Stephens. "A combined corner and edge detector",
% Proceedings Fourth Alvey Vision Conference, Manchester.
% pp 147-151, 1988.
% Copyright (c) 2002-2016 Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% http://www.csse.uwa.edu.au/~pk/research/matlabfns/
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% March 2002 - Original version
% December 2002 - Updated comments
% August 2005 - Changed so that code calls nonmaxsuppts
% August 2010 - Changed to use Farid and Simoncelli's derivative filters
% January 2016 - Noble made distinct from the Harris function and argument
% handling changed (this will break some code, sorry)
function [cim, r, c] = harris(im, sigma, k, varargin)
if ~isa(im,'double')
im = double(im);
end
% Compute derivatives and the elements of the structure tensor.
[Ix, Iy] = derivative5(im, 'x', 'y');
Ix2 = gaussfilt(Ix.^2, sigma);
Iy2 = gaussfilt(Iy.^2, sigma);
Ixy = gaussfilt(Ix.*Iy, sigma);
% Compute Harris corner measure.
cim = (Ix2.*Iy2 - Ixy.^2) - k*(Ix2 + Iy2).^2;
if length(varargin) > 0
[thresh, radius, N, subpixel, disp] = checkargs(varargin);
if disp
[r,c] = nonmaxsuppts(cim, 'thresh', thresh, 'radius', radius, 'N', N, ...
'subpixel', subpixel, 'im', im);
else
[r,c] = nonmaxsuppts(cim, 'thresh', thresh, 'radius', radius, 'N', N, ...
'subpixel', subpixel, 'im', []);
end
else
r = [];
c = [];
end
%---------------------------------------------------------------
function [thresh, radius, N, subpixel, disp] = checkargs(v)
p = inputParser;
p.CaseSensitive = false;
% Define optional parameter-value pairs and their defaults
addParameter(p, 'thresh', 0, @isnumeric);
addParameter(p, 'radius', 1, @isnumeric);
addParameter(p, 'N', Inf, @isnumeric);
addParameter(p, 'subpixel', false, @islogical);
addParameter(p, 'display', false, @islogical);
parse(p, v{:});
thresh = p.Results.thresh;
radius = p.Results.radius;
N = p.Results.N;
subpixel = p.Results.subpixel;
disp = p.Results.display;
|
github
|
jacksky64/imageProcessing-master
|
imsetborder.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/imsetborder.m
| 807 |
utf_8
|
8dd6e75f6b5240fffbdb56e60521ef9b
|
% IMSETBORDER - sets pixels on image border to a value
%
% Usage: im = imsetborder(im, b, v)
%
% Arguments:
% im - image
% b - border size
% v - value to set image borders to (defaults to 0)
%
% See also: IMPAD, IMTRIM
% Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% http://www.csse.uwa.edu.au/~pk/research/matlabfns/
% June 2010
function im = imsetborder(im, b, v)
if ~exist('v','var'), v = 0; end
assert(b >= 1, 'Padding size must be >= 1')
b = round(b); % ensure integer
[rows,cols,channels] = size(im);
for chan = 1:channels
im(1:b,:,chan) = v;
im(end-b+1:end,:,chan) = v;
im(:,1:b,chan) = v;
im(:,end-b+1:end,chan) = v;
end
|
github
|
jacksky64/imageProcessing-master
|
shi_tomasi.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/shi_tomasi.m
| 5,131 |
utf_8
|
af81f94ffce582e9531f9618ded6de3f
|
% SHI_TOMASI - Shi - Tomasi corner detector
%
% Usage: cim = shi_tomasi(im, sigma)
% [cim, r, c] = shi_tomasi(im, sigma, keyword-value options...)
%
% Required arguments:
% im - Image to be processed.
% sigma - Standard deviation of smoothing Gaussian used to sum
% the derivatives when forming the structure tensor. Typical
% values to use might be 1-3.
%
% Optional keyword - value arguments for performing non-maxima suppression:
%
% 'radius' - Radius of region considered in non-maximal
% suppression. Typical values to use might
% be 1-3 pixels. Default is 1.
% 'thresh' - Threshold, only features with value greater than
% threshold are returned. Default is 1.
% 'N' - Maximum number of features to return. In this case the
% N strongest features with value above 'thresh' are
% returned. Default is Inf.
% 'subpixel' - If set to true features are localised to subpixel
% precision. Default is false.
% 'display' - Optional flag true/false. If true the detected corners
% are overlayed on the input image. This can be useful
% for parameter tuning. Default is false.
%
% Returns:
% cim - Corner strength image.
% r - Row coordinates of corner points.
% c - Column coordinates of corner points.
%
% With only 'im' and 'sigma' supplied as arguments only 'cim' is returned
% as a raw corner strength image. You may then want to look at the values
% within 'cim' to determine the appropriate threshold value to use.
%
% If any of the optional keyword - value arguments for performing non-maxima
% suppression are specified then the feature coordinate locations are also
% returned.
%
% Example: To get the 100 strongest features and display the detected points
% on the input image use:
% >> [cim, r, c] = shi_tomasi(im, 1, 'N', 100, 'display', true);
%
% The Shi - Tomasi measure returns the minimum eigenvalue of the structure
% tensor. This represents the ideal that the Harris and Noble detectors attempt
% to approximate. Back in 1988 Harris wanted to avoid the computational cost of
% taking a square root when computing features. This is no longer relevant
% today!
%
% See also: HARRIS, NOBLE, HESSIANFEATURES, NONMAXSUPPTS, DERIVATIVE5
% Reference:
% J. Shi and C. Tomasi. "Good Features to Track,". 9th IEEE Conference on
% Computer Vision and Pattern Recognition. 1994.
% Copyright (c) 2016 Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% http://www.csse.uwa.edu.au/~pk/research/matlabfns/
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% January 2016 - Original version
function [cim, r, c] = shi_tomasi(im, sigma, varargin)
if ~isa(im,'double')
im = double(im);
end
% Compute derivatives and the elements of the structure tensor.
[Ix, Iy] = derivative5(im, 'x', 'y');
Ix2 = gaussfilt(Ix.^2, sigma);
Iy2 = gaussfilt(Iy.^2, sigma);
Ixy = gaussfilt(Ix.*Iy, sigma);
T = Ix2 + Iy2; % trace
D = Ix2.*Iy2 - Ixy.^2; % determinant
% The two eigenvalues of the 2x2 structure tensor are:
% L1 = T/2 + sqrt(T.^2/4 - D)
% L2 = T/2 - sqrt(T.^2/4 - D)
% We just want the minimum eigenvalue
cim = T/2 - sqrt(T.^2/4 - D);
if ~isempty(varargin)
[thresh, radius, N, subpixel, disp] = checkargs(varargin);
if disp
[r,c] = nonmaxsuppts(cim, 'thresh', thresh, 'radius', radius, 'N', N, ...
'subpixel', subpixel, 'im', im);
else
[r,c] = nonmaxsuppts(cim, 'thresh', thresh, 'radius', radius, 'N', N, ...
'subpixel', subpixel, 'im', []);
end
else
r = [];
c = [];
end
%---------------------------------------------------------------
function [thresh, radius, N, subpixel, display] = checkargs(v)
p = inputParser;
p.CaseSensitive = false;
% Define optional parameter-value pairs and their defaults
addParameter(p, 'thresh', 0, @isnumeric);
addParameter(p, 'radius', 1, @isnumeric);
addParameter(p, 'N', Inf, @isnumeric);
addParameter(p, 'subpixel', false, @islogical);
addParameter(p, 'display', false, @islogical);
parse(p, v{:});
thresh = p.Results.thresh;
radius = p.Results.radius;
N = p.Results.N;
subpixel = p.Results.subpixel;
display = p.Results.display;
|
github
|
jacksky64/imageProcessing-master
|
integralfilter.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/integralfilter.m
| 3,939 |
utf_8
|
ec95f49a7ef5558aefe8fd9a4309c358
|
% INTEGRALFILTER - performs filtering using an integral image
%
% This function exploits an integral image to perform filtering operations
% (using rectangular filters) on an image in time that only depends on the
% image size irrespective of the filter size.
%
% Usage: fim = integralfilter(intim, f)
%
% Arguments: intim - An integral image computed using INTEGRALIMAGE.
% f - An n x 5 array defining the filter (see below).
%
% Returns: fim - The filtered image.
%
%
% Defining Filters: f is a n x 5 array in the following form
% [ r1 c1 r2 c2 v
% r1 c1 r2 c2 v
% r1 c1 r2 c2 v
% ....... ]
%
% Where (r1 c1) and (r2 c2) are the row and column coordinates defining the
% top-left and bottom-right corners of a rectangular region of the filter
% (inclusive) and v is the value to be associated with that region of the
% filter. The row and column coordinates of the rectangular region are defined
% with respect to the reference point of the filter, typically its centre.
%
% Examples:
% f = [-3 -3 3 3 1/49] % Defines a 7x7 averaging filter
%
% f = [-3 -3 3 -1 -1
% -3 1 3 3 1]; % Defines a differnce of boxes filter over a 7x7
% region where the left 7x3 region has a value
% of -1, the right 7x3 region has a value of +1,
% and the vertical line of pixels through the
% centre have a (default) value of 0.
%
% If you want to check your filter design simply apply it to the integral image
% of an image that is zero everywhere except for one pixel with a value of 1.
% This will give you the impulse response/point spread function of your filter.
%
% Note under MATLAB the execution speed of this filtering code may not be any
% faster than using imfilter (sadly). So in some sense this code is a bit
% academic. However it is interesting that this interpreted code can perform
% filtering at a speed that is comparable to the native code that is exectuted
% via imfilter. Under Octave there may be useful speed gains.
%
% See also: INTEGRALIMAGE, INTEGAVERAGE, INTFILTTRANSPOSE
% Reference: Paul Viola and Michael Jones, "Robust Real-Time Face Detection",
% IJCV 57(2). pp 137-154. 2004.
% Copyright (c) 2007 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk at csse uwa edu au
% http://www.csse.uwa.edu.au/
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% October 2007
function fim = integralfilter(intim, f)
[rows, cols] = size(intim);
fim = zeros(rows, cols);
[nfilters, fcols] = size(f);
if fcols ~= 5
error('Filters must be specified via an nx5 matrix');
end
f(:,1:2) = f(:,1:2)-1; % Adjust the values of r1 and c1 to save addition
% operations inside the loops below
rmin = 1-min(f(:,1)); % Set loop bounds so that we do not try to
rmax = rows - max(f(:,3)); % access values outside the image.
cmin = 1-min(f(:,2));
cmax = cols - max(f(:,4));
for r = rmin:rmax
for c = cmin:cmax
for n = 1:nfilters
fim(r,c) = fim(r,c) + f(n,5)*...
(intim(r+f(n,3),c+f(n,4)) - intim(r+f(n,1),c+f(n,4)) ...
- intim(r+f(n,3),c+f(n,2)) + intim(r+f(n,1),c+f(n,2)));
end
end
end
|
github
|
jacksky64/imageProcessing-master
|
adaptivethresh.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/adaptivethresh.m
| 5,822 |
utf_8
|
bc7dac46afe55c2c4fb9c0add2d40792
|
% ADAPTIVETHRESH - Wellner's adaptive thresholding
%
% Thresholds an image using a threshold that is varied across the image relative
% to the local mean, or median, at that point in the image. Works quite well on
% text with shadows
%
% Usage: bw = adaptivethresh(im, fsize, t, filterType, thresholdMode)
%
% bw = adaptivethresh(im) (uses default parameter values)
%
% Arguments: im - Image to be thresholded.
%
% fsize - Filter size used to determine the local weighted mean
% or local median.
% - If the filterType is 'gaussian' fsize specifies the
% standard deviation of Gaussian smoothing to be
% applied.
% - If the filterType is 'median' fsize specifies the
% size of the window over which the local median is
% calculated.
%
% The value for fsize should be large, around one tenth to
% one twentieth of the image size. It defaults to one
% twentieth of the maximum image dimension.
%
% t - Depending on the value of 'mode' this is the value
% expressed as a percentage or fixed amount, relative to
% the local average, or median grey value, below which
% the local threshold is set.
% Try values in the range -20 to +20.
% Use +ve values to threshold dark objects against a
% white background. Use -ve values if you are
% thresholding white objects on a predominatly
% dark background so that the local threshold is set
% above the local mean/median. This parameter defaults to 15.
%
% filterType - Optional string specifying smoothing to be used
% - 'gaussian' use Gaussian smoothing to obtain local
% weighted mean as the local reference value for setting
% the local threshold. This is the default
% - 'median' use median filtering to obtain local reference
% value for setting the local threshold
%
% thresholdMode - Optional string specifying the way the threshold is
% defined.
% - 'relative' the value of t represents the percentage,
% relative to the local average grey value, below which
% the local threshold is set. This is the default.
% - 'fixed' the value of t represents the fixed grey level
% relative to the local average grey value, below which
% the local threshold is set.
%
% Note that in the 'relative' threshold mode the amount the
% threshold differs from the local mean/median will vary in
% proportion with the local mean/median. A small difference
% from the local mean in the dark regions of the image will
% be more significant than the same difference in a bright
% portion of the image. This will match with human
% perception. However this does mean that the results will
% depend on the grey value origin and whether the image
% is,say, negated.
%
% The implementation differs from Pierre Wellner's original adaptive
% thresholding algorithm in that he calculated the local weighted mean just
% along the row, or pairs of rows, in the image using a recursive filter. Here
% we use symmetrical 2D Gaussian smoothing to calculate the local mean. This is
% slower but more general. This code also offers the option of using median
% filtering as a robust alternative to the mean (outliers will not influence the
% result) and offers the option of using a fixed threshold relative to the
% mean/median. Despite the potential advantage of median filtering being
% more robust I find the output from using Gaussian filtering more pleasing.
%
% Reference: Pierre Wellner, "Adaptive Thresholding for the DigitalDesk" Rank
% Xerox Technical Report EPC-1993-110 1993
% Copyright (c) 2008 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk at csse uwa edu au
% http://www.csse.uwa.edu.au/
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
%
% August 2008
function bw = adaptivethresh(im, fsize, t, filterType, thresholdMode)
% Set up default parameter values as needed
if nargin < 2
fsize = fix(length(im)/20);
end
if nargin < 3
t = 15;
end
if nargin < 4
filterType = 'gaussian';
end
if nargin < 5
thresholdMode = 'relative';
end
% Apply Gaussian or median smoothing
if strncmpi(filterType, 'gaussian', 3)
g = fspecial('gaussian', 6*fsize, fsize);
fim = filter2(g, im);
elseif strncmpi(filterType, 'median', 3)
fim = medfilt2(im, [fsize fsize], 'symmetric');
else
error('Filtertype must be ''gaussian'' or ''median'' ');
end
% Finally apply the threshold
if strncmpi(thresholdMode,'relative',3)
bw = im > fim*(1-t/100);
elseif strncmpi(thresholdMode,'fixed',3)
bw = im > fim-t;
else
error('mode must be ''relative'' or ''fixed'' ');
end
|
github
|
jacksky64/imageProcessing-master
|
featureorient.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/featureorient.m
| 4,226 |
utf_8
|
a6493ad9d0ee982914e92bc8b1e31ce3
|
% FEATUREORIENT - Estimates the local orientation of features in an edgeimage
%
% Usage: orientim = featureorient(im, gradientsigma,...
% blocksigma, ...
% orientsmoothsigma, ...
% radians)
%
% Arguments: im - A normalised input image.
% gradientsigma - Sigma of the derivative of Gaussian
% used to compute image gradients. This can
% be 0 as the derivatives are calculaed with
% a 5-tap filter.
% blocksigma - Sigma of the Gaussian weighting used to
% form the local weighted sum of gradient
% covariance data. A small value around 1,
% or even less, is usually fine on most
% feature images.
% orientsmoothsigma - Sigma of the Gaussian used to smooth
% the final orientation vector field.
% Optional: if ommitted it defaults to 0
% radians - Optional flag 0/1 indicating whether the
% output should be given in radians. Defaults
% to 0 (degrees)
%
% Returns: orientim - The orientation image in degrees/radians
% range is (0 - 180) or (0 - pi).
% Orientation values are +ve anti-clockwise
% and give the orientation across the feature
% ridges
%
% The intended application of this function is to compute orientations on a
% feature image prior to nonmaximal suppression in the case where no orientation
% information is available from the feature detection process. Accordingly
% the default output is in degrees to suit NONMAXSUP.
%
% See also: NONMAXSUP, RIDGEORIENT
% Copyright (c) 1996-2013 Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% peter.kovesi at uwa edu au
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% May 2013 Adapted from RIDGEORIENT
function or = featureorient(im, gradientsigma, blocksigma, orientsmoothsigma, ...
radians)
if ~exist('orientsmoothsigma', 'var'), orientsmoothsigma = 0; end
if ~exist('radians', 'var'), radians = 0; end
[rows,cols] = size(im);
im = gaussfilt(im, gradientsigma); % Smooth the image.
[Gx, Gy] = derivative5(im,'x','y'); % Get derivatives.
Gy = -Gy; % Negate Gy to give +ve anticlockwise angles.
% Estimate the local ridge orientation at each point by finding the
% principal axis of variation in the image gradients.
Gxx = Gx.^2; % Covariance data for the image gradients
Gxy = Gx.*Gy;
Gyy = Gy.^2;
% Now smooth the covariance data to perform a weighted summation of the
% data.
Gxx = gaussfilt(Gxx, blocksigma);
Gxy = 2*gaussfilt(Gxy, blocksigma);
Gyy = gaussfilt(Gyy, blocksigma);
% Analytic solution of principal direction
denom = sqrt(Gxy.^2 + (Gxx - Gyy).^2) + eps;
sin2theta = Gxy./denom; % Sine and cosine of doubled angles
cos2theta = (Gxx-Gyy)./denom;
if orientsmoothsigma
cos2theta = gaussfilt(cos2theta, orientsmoothsigma); % Smoothed sine and cosine of
sin2theta = gaussfilt(sin2theta, orientsmoothsigma); % doubled angles
end
or = atan2(sin2theta,cos2theta)/2;
or(or<0) = or(or<0)+pi; % Map angles to 0-pi.
if ~radians % Convert to degrees.
or = or*180/pi;
end
|
github
|
jacksky64/imageProcessing-master
|
cleanupregions.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/cleanupregions.m
| 5,516 |
utf_8
|
c5b7d4595fd7df10edbce6cbb7cc912e
|
% CLEANUPREGIONS Cleans up small segments in an image of segmented regions
%
% Usage: [seg, Am] = cleanupregions(seg, areaThresh, connectivity)
%
% Arguments: seg - A region segmented image, such as might be produced by a
% graph cut algorithm. All pixels in each region are labeled
% by an integer.
% areaThresh - Regions below this area in pixels will be merged with an
% adjacent segment. I find a value of about 1/20th of the
% expected mean segment area, or 1/1000th of the image area
% usually looks 'about right'.
% connectivity - Specify 8 or 4 connectivity. If not specified 8
% connectivity is assumed.
%
% Note that regions with a label of 0 are ignored. These are treated as
% privileged 'background regions' and are untouched. If you want these
% regions to be considered you should assign a new positive label to these
% areas using, say
% >> L(L==0) = max(L(:)) + 1;
%
% Returns: seg - The updated segment image.
% Am - Adjacency matrix of segments. Am(i, j) indicates whether
% segments labeled i and j are connected/adjacent
%
% Typical application:
% If a graph cut or superpixel algorithm fails to converge stray segments
% can be left in the result. This function tries to clean things up by:
% 1) Checking there is only one region for each segment label. If there is more
% than one region they are given unique labels.
% 2) Eliminating regions below a specified size and assigning them a label of an
% adjacent region.
%
% See also: MCLEANUPREGIONS, REGIONADJACENCY, RENUMBERREGIONS
% Copyright (c) 2010 Peter Kovesi
% Centre for Exploration Targeting
% School of Earth and Environment
% The University of Western Australia
% peter.kovesi at uwa edu au
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
%
% October 2010 - Original version
% February 2013 - Connectivity choice, function returns adjacency matrix.
function [seg, Am] = cleanupregions(seg, areaThresh, connectivity, prioritySeg)
if ~exist('connectivity','var'), connectivity = 8; end
if ~exist('prioritySeg','var'), prioritySeg = -1; end
% 1) Ensure every segment is distinct but do not touch segments with a
% label of 0
labels = unique(seg(:))';
maxlabel = max(labels);
labels = setdiff(labels,0); % Remove 0 from the label list
for l = labels
[bl,num] = bwlabel(seg==l, connectivity);
if num > 1 % We have more than one region with the same label
for n = 2:num
maxlabel = maxlabel+1; % Generate a new label
seg(bl==n) = maxlabel; % and assign to this segment
end
end
end
if areaThresh
% 2) Merge segments with small areas
stat = regionprops(seg,'area'); % Get segment areas
area = cat(1, stat.Area);
Am = regionadjacency(seg); % Get adjacency matrix
labels = unique(seg(:))';
labels = setdiff(labels,0); % Remove 0 from the label list
for n = labels
if ~isnan(area(n)) && area(n) < areaThresh
% Find regions adjacent to n and keep merging with the first element
% in the adjacency list until we obtain an area >= areaThresh,
% or we run out of regions to merge.
ind = find(Am(n,:));
while ~isempty(ind) && area(n) < areaThresh
if ismember(prioritySeg, ind)
[seg, Am, area] = mergeregions(n, prioritySeg, seg, Am, area);
prioritySeg = n;
else
[seg, Am, area] = mergeregions(n, ind(1), seg, Am, area);
end
ind = find(Am(n,:)); % (The adjacency matrix will have changed)
end
end
end
end
% 3) As some regions will have been absorbed into others and no longer exist
% we now renumber the regions so that they sequentially increase from 1.
% We also need to reconstruct the adjacency matrix to reflect the reduced
% number of regions and their relabeling
[seg, minLabel, maxLabel] = renumberregions(seg);
Am = regionadjacency(seg);
%-------------------------------------------------------------------
% Function to merge segment s2 into s1
% The segment image, Adjacency matrix and area arrays are updated.
% We could make this a nested function for efficiency but then it would not
% run under Octave.
function [seg, Am, area] = mergeregions(s1, s2, seg, Am, area)
if s1==s2
fprintf('s1 == s2!\n')
return
end
% The area of s1 is now that of s1 and s2
area(s1) = area(s1)+area(s2);
area(s2) = NaN;
% s1 inherits the adjacancy matrix entries of s2
Am(s1,:) = Am(s1,:) | Am(s2,:);
Am(:,s1) = Am(:,s1) | Am(:,s2);
Am(s1,s1) = 0; % Ensure s1 is not connected to itself
% Disconnect s2 from the adjacency matrix
Am(s2,:) = 0;
Am(:,s2) = 0;
% Relabel s2 with s1 in the segment image
seg(seg==s2) = s1;
|
github
|
jacksky64/imageProcessing-master
|
subpix2d.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/subpix2d.m
| 4,179 |
utf_8
|
9130e8af913300cae8a4eec009fb10af
|
% SUBPIX2D Sub-pixel locations in 2D image
%
% Usage: [rs, cs] = subpix2d(r, c, L);
%
% Arguments:
% r, c - row, col vectors of extrema to pixel precision.
% L - 2D corner image
%
% Returns:
% rs, cs - row, col vectors of valid extrema to sub-pixel
% precision.
%
% Note that the number of sub-pixel extrema returned can be less than the number
% of integer precision extrema supplied. Any computed sub-pixel location that
% is more than 0.5 pixels from the initial integer location is rejected. The
% reasoning is that this implies that the extrema should be centred on a
% neighbouring pixel, but this is inconsistent with the assumption that the
% input data represents extrema locations to pixel precision.
%
% The sub-pixel locations are solved by forming a Taylor series representation
% of the corner image values in the vicinity of each integer location extrema
%
% L(x) = L + dL/dx' x + 1/2 x' d2L/dx2 x
%
% x represents a position relative to the integer location of the extrema. This
% gives us a quadratic and we solve for the location where the gradient is zero
% - these are the extrema locations to sub-pixel precision
%
% Reference: Brown and Lowe "Invariant Features from Interest Point Groups"
% BMVC 2002 pp 253-262
%
% See also: SUBPIX3D
% ** I am not entirely satisfied with the output of this function. Perhaps using
% finite differences for derivative calculation is a problem, try using Farid
% and Simoncelli's approach? **
% Copyright (c) 2010 Peter Kovesi
% Centre for Exploration Targeting
% School of Earth and Environment
% The University of Western Australia
% peter.kovesi at uwa edu au
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% July 2010
function [rs, cs] = subpix2d(R, C, L)
if ndims(L) == 3
error('Corner image must be grey scale');
end
[rows, cols] = size(L);
x = zeros(2, length(R)); % Buffer for storing sub-pixel locations
m = 0; % Counter for valid extrema
for n = 1:length(R)
r = R(n); % Convenience variables
c = C(n);
% If coords are too close to boundary skip
if r < 2 || c < 2 || ...
r > rows-1 || c > cols-1
continue
end
% Compute partial derivatives via finite differences
% 1st derivatives
dLdr = (L(r+1,c) - L(r-1,c))/2;
dLdc = (L(r,c+1) - L(r,c-1))/2;
D = [dLdr; dLdc]; % Column vector of derivatives
% 2nd Derivatives
d2Ldr2 = L(r+1,c) - 2*L(r,c) + L(r-1,c);
d2Ldc2 = L(r,c+1) - 2*L(r,c) + L(r,c-1);
d2Ldrdc = (L(r+1,c+1) - L(r+1,c-1) - L(r-1,c+1) + L(r-1,c-1))/4;
% Form Hessian from 2nd derivatives
H = [d2Ldr2 d2Ldrdc
d2Ldrdc d2Ldc2 ];
% Solve for location where gradients are zero - these are the extrema
% locations to sub-pixel precision
if rcond(H) < eps
continue; % Skip to next point
% warning('Hessian is singular');
else
dx = -H\D; % dx is location relative to centre pixel
% Check solution is within 0.5 pixels of centre. A solution
% outside of this implies that the extrema should be centred on a
% neighbouring pixel, but this is inconsistent with the
% assumption that the input data represents extrema locations to
% pixel precision. Hence these points are rejected
% if all(abs(dx) <= 0.5)
m = m + 1;
x(:,m) = [r;c] + dx;
% end
end
end
% Extract the subpixel row and column values from x noting we just
% have m valid extrema.
rs = x(1, 1:m);
cs = x(2, 1:m);
|
github
|
jacksky64/imageProcessing-master
|
filterregionproperties.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/filterregionproperties.m
| 3,359 |
utf_8
|
269f01ad39e5f78d6ef590d56473ad58
|
% FILTERREGIONPROPERTIES Filters regions on their property values
%
% Usage: bw = filterregionproperties(bw, {property, fn, value}, { ... } )
%
% Arguments:
% bw - Binary image
% {property, fn, value} - 3-element cell array consisting of:
% property - String matching one of the properties
% computed by REGIONPROPS.
% fn - Handle to a function that will compare
% the region property to a
% value. Typically @lt or @gt.
% value - The value that the region property is
% compared against
%
% You can specify multiple {property, fn, value} cell arrays in the argument
% list. Blobs/regions in the binary image that satisfy all the specified
% constaints are retained in the image.
%
% Examples:
%
% Retain blobs that have an area greater than 50 pixels
% >> bw = filterregionproperties(bw, {'Area', @gt, 50});
%
% Retain blobs with an area less than 20 and having a major axis orientation
% that is greater than 0
% >> bw = filterregionproperties(bw, {'Area', @lt, 20}, {'Orientation', @gt, 0});
%
% See also: REGIONPROPS
% Copyright (c) 2013 Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% peter.kovesi at uwa edu au
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% PK May 2013
function bw = filterregionproperties(bw, varargin)
varargin = varargin(:);
% Form separate cell arrays of the properties, functions and values,
% and perform basic check of datatypes
nOps = length(varargin);
property = cell(nOps,1);
fn = cell(nOps,1);
value = cell(nOps,1);
for m = 1:nOps
if length(varargin{m}) ~= 3
error('Property, function and value must be a 3 element cell array');
end
property{m} = varargin{m}{1};
fn{m} = varargin{m}{2};
value{m} = varargin{m}{3};
if ~ischar(property{m})
error('Property must be a string');
end
if ~strcmp(class(fn{m}), 'function_handle')
error('Invalid function handle');
end
end
[L, N] = bwlabel(bw); % Label image
s = regionprops(L, property); % Get region properties
% Form a table indicating which labeled region should be zeroed out on
% the basis that its properties do not satisfy the
% property-function-value requirements
table = ones(N,1);
for n = 1:N
for m = 1:nOps
if ~feval(fn{m}, s(n).(property{m}), value{m});
table(n) = 0;
end
end
end
% Step through the binary image applying the table to zero out the
% appropriate blobs
for n = 1:numel(bw)
if bw(n)
bw(n) = table(L(n));
end
end
|
github
|
jacksky64/imageProcessing-master
|
intfilttranspose.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/intfilttranspose.m
| 1,102 |
utf_8
|
0007e26379314049c0716d1ff851e36c
|
% INTFILTTRANSPOSE - transposes an integral filter
%
% Usage: ft = intfilttranspose(f)
%
% Argument: f - an integral image filter as described in the function INTEGRALFILTER
%
% Returns: ft - a transposed version of the filter
%
% See also: INTEGRALFILTER, INTEGRALIMAGE, INTEGAVERAGE
% Copyright (c) 2007 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk at csse uwa edu au
% http://www.csse.uwa.edu.au/
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% October 2007
function ft = intfilttranspose(f)
[nfilt, dum] = size(f);
ft = f;
for n = 1:nfilt
ft(n,1:4) = [f(n,2) -f(n,3) f(n,4) -f(n,1)];
end
|
github
|
jacksky64/imageProcessing-master
|
makeregionsdistinct.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/makeregionsdistinct.m
| 2,142 |
utf_8
|
87ec3511235a3eefd60cffbc8135de46
|
% MAKEREGIONSDISTINCT Ensures labeled segments are distinct
%
% Usage: [seg, maxlabel] = makeregionsdistinct(seg, connectivity)
%
% Arguments: seg - A region segmented image, such as might be produced by a
% superpixel or graph cut algorithm. All pixels in each
% region are labeled by an integer.
% connectivity - Optional parameter indicating whether 4 or 8 connectedness
% should be used. Defaults to 4.
%
% Returns: seg - A labeled image where all segments are distinct.
% maxlabel - Maximum segment label number.
%
% Typical application: A graphcut or superpixel algorithm may terminate in a few
% cases with multiple regions that have the same label. This function
% identifies these regions and assigns a unique label to them.
%
% See also: SLIC, CLEANUPREGIONS, RENUMBERREGIONS
% Copyright (c) 2013 Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% peter.kovesi at uwa edu au
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% June 2013
function [seg, maxlabel] = makeregionsdistinct(seg, connectivity)
if ~exist('connectivity', 'var'), connectivity = 4; end
% Ensure every segment is distinct but do not touch segments
% with a label of 0
labels = unique(seg(:))';
maxlabel = max(labels);
labels = setdiff(labels,0); % Remove 0 from the label list
for l = labels
[bl,num] = bwlabel(seg==l, connectivity);
if num > 1 % We have more than one region with the same label
for n = 2:num
maxlabel = maxlabel+1; % Generate a new label
seg(bl==n) = maxlabel; % and assign to this segment
end
end
end
|
github
|
jacksky64/imageProcessing-master
|
mcleanupregions.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/mcleanupregions.m
| 4,352 |
utf_8
|
956767ca7a2a6d8f168c2b2ab86d64f9
|
% MCLEANUPREGIONS Morphological clean up of small segments in an image of segmented regions
%
% Usage: [seg, Am] = mcleanupregions(seg, seRadius)
%
% Arguments: seg - A region segmented image, such as might be produced by a
% graph cut algorithm. All pixels in each region are labeled
% by an integer.
% seRadius - Structuring element radius. This can be set to 0 in which
% case the function will simply ensure all labeled regions
% are distinct and relabel them if necessary.
%
% Returns: seg - The updated segment image.
% Am - Adjacency matrix of segments. Am(i, j) indicates whether
% segments labeled i and j are connected/adjacent
%
% Typical application:
% If a graph cut or superpixel algorithm fails to converge stray segments
% can be left in the result. This function tries to clean things up by:
% 1) Checking there is only one region for each segment label. If there is
% more than one region they are given unique labels.
% 2) Eliminating regions below the structuring element size
%
% Note that regions labeled 0 are treated as a 'privileged' background region
% and is not processed/affected by the function.
%
% See also: REGIONADJACENCY, RENUMBERREGIONS, CLEANUPREGIONS, MAKEREGIONSDISTINCT
% Copyright (c) 2013 Peter Kovesi
% Centre for Exploration Targeting
% School of Earth and Environment
% The University of Western Australia
% peter.kovesi at uwa edu au
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
%
% March 2013
% June 2013 Improved morphological cleanup process using distance map
function [seg, Am, mask] = mcleanupregions(seg, seRadius)
option = 2;
% 1) Ensure every segment is distinct
[seg, maxlabel] = makeregionsdistinct(seg);
% 2) Perform a morphological opening on each segment, subtract the opening
% from the orignal segment to obtain regions to be reassigned to
% neighbouring segments.
if seRadius
se = circularstruct(seRadius); % Accurate and not noticeably slower
% if radius is small
% se = strel('disk', seRadius, 4); % Use approximated disk for speed
mask = zeros(size(seg));
if option == 1
for l = 1:maxlabel
b = seg == l;
mask = mask | (b - imopen(b,se));
end
else % Rather than perform a morphological opening on every
% individual region in sequence the following finds separate
% lists of unconnected regions and performs openings on these.
% Typically an image can be covered with only 5 or 6 lists of
% unconnected regions. Seems to be about 2X speed of option
% 1. (I was hoping for more...)
list = finddisconnected(seg);
for n = 1:length(list)
b = zeros(size(seg));
for m = 1:length(list{n})
b = b | seg == list{n}(m);
end
mask = mask | (b - imopen(b,se));
end
end
% Compute distance map on inverse of mask
[~, idx] = bwdist(~mask);
% Assign a label to every pixel in the masked area using the label of
% the closest pixel not in the mask as computed by bwdist
seg(mask) = seg(idx(mask));
end
% 3) As some regions will have been relabled, possibly broken into several
% parts, or absorbed into others and no longer exist we ensure all regions
% are distinct again, and renumber the regions so that they sequentially
% increase from 1. We also need to reconstruct the adjacency matrix to
% reflect the changed number of regions and their relabeling.
seg = makeregionsdistinct(seg);
[seg, minLabel, maxLabel] = renumberregions(seg);
Am = regionadjacency(seg);
|
github
|
jacksky64/imageProcessing-master
|
integaverage.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/integaverage.m
| 2,088 |
utf_8
|
6ff6d948c4e18c25ee2d9269d186448c
|
% INTEGAVERAGE - performs averaging filtering using an integral image
%
% Usage: avim = integaverage(im,rad)
%
% Arguments: im - Image to be filtered
% rad - 'Radius' of square region over which averaging is
% performed (rad = 1 implies a 3x3 average)
% Returns: avim - Averaged image
%
% See also: INTEGRALIMAGE, INTEGRALFILTER, INTFILTTRANSPOSE
% Reference: Paul Viola and Michael Jones, "Robust Real-Time Face Detection",
% IJCV 57(2). pp 137-154. 2004.
% Copyright (c) 2007 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk at csse uwa edu au
% http://www.csse.uwa.edu.au/
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% October 2007 - Original version
% September 2009 - Changed so that input is the image rather than its
% integral image
function avim = integaverage(im, rad)
if rad == 0 % Trap case where averaging filter is 1x1 hence radius = 0
avim = im;
return;
end
[rows, cols] = size(im);
intim = integralimage(im);
avim = zeros(rows, cols);
% Fiddle with indices to ensure we calculate the average over a square
% region that has an odd No of pixels on each side (ie has a centre pixel
% located over each pixel of interest)
down = rad; % offset to 'lower' indices
up = down+1; % offset to 'upper' indices
for r = 1+up:rows-down
for c = 1+up:cols-down
avim(r,c) = intim(r+down,c+down) - intim(r-up,c+down) ...
- intim(r+down,c-up) + intim(r-up,c-up);
end
end
avim = avim/(down+up)^2;
|
github
|
jacksky64/imageProcessing-master
|
subpix3d.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/subpix3d.m
| 4,434 |
utf_8
|
22fda4d036d1bac30b6b36da20187f7a
|
% SUBPIX3D Sub-pixel locations in 3D volume
%
% Usage: [rs, cs, ss] = subpix3d(r, c, s, L);
%
% Arguments:
% r, c, s - row, col and scale vectors of extrema to pixel precision.
% L - 3D volumetric corner data, or 2D + scale space data.
%
% Returns:
% rs, cs, ss - row, col and scale vectors of valid extrema to sub-pixel
% precision.
%
% Note that the number of sub-pixel extrema returned can be less than the number
% of integer precision extrema supplied. Any computed sub-pixel location that
% is more than 0.5 pixels from the initial integer location is rejected. The
% reasoning is that this implies that the extrema should be centred on a
% neighbouring pixel, but this is inconsistent with the assumption that the
% input data represents extrema locations to pixel precision.
%
% The sub-pixel locations are solved by forming a Taylor series representation
% of the scale-space values in the vicinity of each integer location extrema
%
% L(x) = L + dL/dx' x + 1/2 x' d2L/dx2 x
%
% x represents a position relative to the integer location of the extrema. This
% gives us a quadratic and we solve for the location where the gradient is zero
% - these are the extrema locations to sub-pixel precision
%
% Reference: Brown and Lowe "Invariant Features from Interest Point Groups"
% BMVC 2002 pp 253-262
%
% See also: SUBPIX2D
% Copyright (c) 2010 Peter Kovesi
% Centre for Exploration Targeting
% School of Earth and Environment
% The University of Western Australia
% peter.kovesi at uwa edu au
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% July 2010
function [rs, cs, ss] = subpix3d(R, C, S, L)
[rows, cols, scales] = size(L);
x = zeros(3, length(R)); % Buffer for storing sub-pixel locations
m = 0; % Counter for valid extrema
for n = 1:length(R)
r = R(n); % Convenience variables
c = C(n);
s = S(n);
% If coords are too close to boundary skip
if r < 2 || c < 2 || s < 2 || ...
r > rows-1 || c > cols-1 || s > scales-1
continue
end
% Compute partial derivatives via finite differences
% 1st derivatives
dLdr = (L(r+1,c,s) - L(r-1,c,s))/2;
dLdc = (L(r,c+1,s) - L(r,c-1,s))/2;
dLds = (L(r,c,s+1) - L(r,c,s-1))/2;
D = [dLdr; dLdc; dLds]; % Column vector of derivatives
% 2nd Derivatives
d2Ldr2 = L(r+1,c,s) - 2*L(r,c,s) + L(r-1,c,s);
d2Ldc2 = L(r,c+1,s) - 2*L(r,c,s) + L(r,c-1,s);
d2Lds2 = L(r,c,s+1) - 2*L(r,c,s) + L(r,c,s-1);
d2Ldrdc = (L(r+1,c+1,s) - L(r+1,c-1,s) - L(r-1,c+1,s) + L(r-1,c-1,s))/4;
d2Ldrds = (L(r+1,c,s+1) - L(r+1,c,s-1) - L(r-1,c,s+1) + L(r-1,c,s-1))/4;
d2Ldcds = (L(r,c+1,s+1) - L(r,c+1,s-1) - L(r,c-1,s+1) + L(r,c-1,s-1))/4;
% Form Hessian from 2nd derivatives
H = [d2Ldr2 d2Ldrdc d2Ldrds
d2Ldrdc d2Ldc2 d2Ldcds
d2Ldrds d2Ldcds d2Lds2 ];
% Solve for location where gradients are zero - these are the extrema
% locations to sub-pixel precision
if rcond(H) < eps
continue; % Skip to next point
% warning('Hessian is singular');
else
dx = -H\D; % dx is location relative to centre pixel
% Check solution is within 0.5 pixels of centre. A solution
% outside of this implies that the extrema should be centred on a
% neighbouring pixel, but this is inconsistent with the
% assumption that the input data represents extrema locations to
% pixel precision. Hence these points are rejected
if all(abs(dx) <= 0.5)
m = m + 1;
x(:,m) = [r;c;s] + dx;
end
end
end
% Extract the subpixel row, column and scale values from x noting we just
% have m valid extrema.
rs = x(1, 1:m);
cs = x(2, 1:m);
ss = x(3, 1:m);
|
github
|
jacksky64/imageProcessing-master
|
fastradial.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/fastradial.m
| 5,399 |
utf_8
|
b540902aad74684be591d3126ad87319
|
% FASTRADIAL - Loy and Zelinski's fast radial feature detector
%
% An implementation of Loy and Zelinski's fast radial feature detector
%
% Usage: S = fastradial(im, radii, alpha, beta)
%
% Arguments:
% im - Image to be analysed
% radii - Array of integer radius values to be processed
% suggested radii might be [1 3 5]
% alpha - Radial strictness parameter.
% 1 - slack, accepts features with bilateral symmetry.
% 2 - a reasonable compromise.
% 3 - strict, only accepts radial symmetry.
% ... and you can go higher
% beta - Gradient threshold. Gradients below this threshold do
% not contribute to symmetry measure, defaults to 0.
%
% Returns S - Symmetry map. Bright points with high symmetry are
% marked with large positive values. Dark points of
% high symmetry marked with large -ve values.
%
% To localize points use NONMAXSUPPTS on S, -S or abs(S) depending on
% what you are seeking to find.
% Reference:
% Loy, G. Zelinsky, A. Fast radial symmetry for detecting points of
% interest. IEEE PAMI, Vol. 25, No. 8, August 2003. pp 959-973.
% Copyright (c) 2004-2010 Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% http://www.csse.uwa.edu.au/~pk/research/matlabfns/
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% November 2004 - original version
% July 2005 - Bug corrected: magitude and orientation matrices were
% not zeroed for each radius value used (Thanks to Ben
% Jackson)
% December 2009 - Gradient threshold added + minor code cleanup
% July 2010 - Gradients computed via Farid and Simoncelli's 5 tap
% derivative filters
function [S, So] = fastradial(im, radii, alpha, beta, feedback)
if ~exist('beta','var'), beta = 0; end
if ~exist('feedback','var'), feedback = 0; end
if any(radii ~= round(radii)) || any(radii < 1)
error('radii must be integers and > 1')
end
[rows,cols]=size(im);
% Compute derivatives in x and y via Farid and Simoncelli's 5 tap
% derivative filters
[imgx, imgy] = derivative5(im, 'x', 'y');
mag = sqrt(imgx.^2 + imgy.^2)+eps; % (+eps to avoid division by 0)
% Normalise gradient values so that [imgx imgy] form unit
% direction vectors.
imgx = imgx./mag;
imgy = imgy./mag;
S = zeros(rows,cols); % Symmetry matrix
So = zeros(rows,cols); % Orientation only symmetry matrix
[x,y] = meshgrid(1:cols, 1:rows);
for n = radii
M = zeros(rows,cols); % Magnitude projection image
O = zeros(rows,cols); % Orientation projection image
% Coordinates of 'positively' and 'negatively' affected pixels
posx = x + round(n*imgx);
posy = y + round(n*imgy);
negx = x - round(n*imgx);
negy = y - round(n*imgy);
% Clamp coordinate values to range [1 rows 1 cols]
posx( posx<1 ) = 1;
posx( posx>cols ) = cols;
posy( posy<1 ) = 1;
posy( posy>rows ) = rows;
negx( negx<1 ) = 1;
negx( negx>cols ) = cols;
negy( negy<1 ) = 1;
negy( negy>rows ) = rows;
% Form the orientation and magnitude projection matrices
for r = 1:rows
for c = 1:cols
if mag(r,c) > beta
O(posy(r,c),posx(r,c)) = O(posy(r,c),posx(r,c)) + 1;
O(negy(r,c),negx(r,c)) = O(negy(r,c),negx(r,c)) - 1;
M(posy(r,c),posx(r,c)) = M(posy(r,c),posx(r,c)) + mag(r,c);
M(negy(r,c),negx(r,c)) = M(negy(r,c),negx(r,c)) - mag(r,c);
end
end
end
% Clamp Orientation projection matrix values to a maximum of
% +/-kappa, but first set the normalization parameter kappa to the
% values suggested by Loy and Zelinski
if n == 1, kappa = 8; else kappa = 9.9; end
O(O > kappa) = kappa;
O(O < -kappa) = -kappa;
% Unsmoothed symmetry measure at this radius value
F = M./kappa .* (abs(O)/kappa).^alpha;
Fo = sign(O) .* (abs(O)/kappa).^alpha; % Orientation only based measure
% Smooth and spread the symmetry measure with a Gaussian proportional to
% n. Also scale the smoothed result by n so that large scales do not
% lose their relative weighting.
S = S + gaussfilt(F, 0.25*n) * n;
So = So + gaussfilt(Fo, 0.25*n) * n;
end % for each radius
S = S /length(radii); % Average
So = So/length(radii);
|
github
|
jacksky64/imageProcessing-master
|
maskimage.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/maskimage.m
| 1,122 |
utf_8
|
189c1feb312b970fdf4e22824ef53747
|
% MASKIMAGE Apply mask to image
%
% Usage: maskedim = maskimage(im, mask, col)
%
% Arguments: im - Image to be masked
% mask - Binary masking image
% col - Value/colour to be applied to regions where mask == 1
% If im is a colour image col can be a 3-vector
% specifying the colour values to be applied.
%
% Returns: maskedim - The masked image
%
% See also; DRAWREGIONBOUNDARIES
% Peter Kovesi
% Centre for Exploration Targeting
% School of Earth and Environment
% The University of Western Australia
% peter.kovesi at uwa edu au
%
% Feb 2013
function maskedim = maskimage(im, mask, col)
[rows,cols, chan] = size(im);
% Set default colour to 0 (black)
if ~exist('col', 'var'), col = 0; end
% Ensure col has same length as image depth.
if length(col) == 1
col = repmat(col, [chan 1]);
else
assert(length(col) == chan);
end
% Perform masking
maskedim = im;
for n = 1:chan
tmp = maskedim(:,:,n);
tmp(mask) = col(n);
maskedim(:,:,n) = tmp;
end
|
github
|
jacksky64/imageProcessing-master
|
impad.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/impad.m
| 1,134 |
utf_8
|
5b51ac5f58f9a48d78c3468799786d4c
|
% IMPAD - adds zeros to the boundary of an image
%
% Usage: paddedim = impad(im, b, v)
%
% Arguments: im - Image to be padded (greyscale or colour)
% b - Width of padding boundary to be added
% v - Optional padding value if you do not want it to be 0.
%
% Returns: paddedim - Padded image of size rows+2*b x cols+2*b
%
% See also: IMTRIM, IMSETBORDER
% Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% http://www.csse.uwa.edu.au/~pk/research/matlabfns/
% June 2010
% January 2011 Added optional padding value
function pim = impad(im, b, v)
assert(b >= 1, 'Padding size must be >= 1')
if ~exist('v', 'var'), v = 0; end
b = round(b); % Ensure integer
[rows, cols, channels] = size(im);
if nargin == 3
pim = v*ones(rows+2*b, cols+2*b, channels, class(im));
else
if islogical(im)
pim = logical(zeros(rows+2*b, cols+2*b, channels, 'uint8'));
else
pim = zeros(rows+2*b, cols+2*b, channels, class(im));
end
end
pim(1+b:rows+b, 1+b:cols+b, 1:channels) = im;
|
github
|
jacksky64/imageProcessing-master
|
finddisconnected.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/finddisconnected.m
| 2,563 |
utf_8
|
3e7d83e1dd00f59f9bd54fe42b93428b
|
% FINDDISCONNECTED find groupings of disconnected labeled regions
%
% Usage: list = finddisconnected(l)
%
% Argument: l - A labeled image segmenting an image into regions, such as
% might be produced by a graph cut or superpixel algorithm.
% All pixels in each region are labeled by an integer.
%
% Returns: list - A cell array of lists of regions that are not
% connected. Typically there are 5 to 6 lists.
%
% Used by MCLEANUPREGIONS to reduce the number of morphological closing
% operations
%
% See also: MCLEANUPREGIONS, REGIONADJACENCY
% Copyright (c) 2013 Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% peter.kovesi at uwa edu au
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% PK July 2013
function list = finddisconnected(l)
debug = 0;
[Am, Al] = regionadjacency(l);
N = max(l(:)); % number of labels
% Array for keeping track of visited labels
visited = zeros(N,1);
list = {};
listNo = 0;
for n = 1:N
if ~visited(n)
listNo = listNo + 1;
list{listNo} = n;
visited(n) = 1;
% Find all regions not directly connected to n and not visited
notConnected = setdiff(find(~Am(n,:)), find(visited));
% For each unconnected region check that it is not already
% connected to a region in the list. If not, add to list
for m = notConnected
if isempty(intersect(Al{m}, list{listNo}))
list{listNo} = [list{listNo} m];
visited(m) = 1;
end
end
end % if not visited(n)
end
% Display each list of unconncted regions as an image
if debug
for n = 1:length(list)
mask = zeros(size(l));
for m = 1:length(list{n})
mask = mask | l == list{n}(m);
end
fprintf('list %d of %d length %d \n', n, length(list), length(list{n}))
show(mask);
keypause
end
end
|
github
|
jacksky64/imageProcessing-master
|
gaussfilt.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/gaussfilt.m
| 1,114 |
utf_8
|
4e021d34f436d86073a1a4fcb135b2b7
|
% GAUSSFILT - Small wrapper function for convenient Gaussian filtering
%
% Usage: smim = gaussfilt(im, sigma)
%
% Arguments: im - Image to be smoothed.
% sigma - Standard deviation of Gaussian filter.
%
% Returns: smim - Smoothed image.
%
% If called with sigma = 0 the function immediately returns with im assigned
% to smim
%
% See also: INTEGGAUSSFILT
% Peter Kovesi
% Centre for Explortion Targeting
% The University of Western Australia
% http://www.csse.uwa.edu.au/~pk/research/matlabfns/
% March 2010
% June 2013 - Provision for multi-channel images
function smim = gaussfilt(im, sigma)
if sigma < eps
smim = im;
return;
end
% If needed convert im to double
if ~strcmp(class(im),'double')
im = double(im);
end
sze = max(ceil(6*sigma), 1);
if ~mod(sze,2) % Ensure filter size is odd
sze = sze+1;
end
h = fspecial('gaussian', [sze sze], sigma);
% Apply filter to all image channels
smim = zeros(size(im));
for n = 1:size(im,3)
smim(:,:,n) = filter2(h, im(:,:,n));
end
|
github
|
jacksky64/imageProcessing-master
|
noble.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/noble.m
| 5,562 |
utf_8
|
5edfd0d0dceb4dad2a92712a2be8f5f6
|
% NOBLE - Noble's corner detector
%
% Usage: cim = noble(im, sigma)
% [cim, r, c] = noble(im, sigma, keyword-value options...)
%
% Required arguments:
% im - Image to be processed.
% sigma - Standard deviation of smoothing Gaussian used to sum
% the derivatives when forming the structure tensor. Typical
% values to use might be 1-3.
%
% Optional keyword - value arguments for performing non-maxima suppression:
%
% 'radius' - Radius of region considered in non-maximal
% suppression. Typical values to use might
% be 1-3 pixels. Default is 1.
% 'thresh' - Threshold, only features with value greater than
% threshold are returned. Default is 1.
% 'N' - Maximum number of features to return. In this case the
% N strongest features with value above 'thresh' are
% returned. Default is Inf.
% 'subpixel' - If set to true features are localised to subpixel
% precision. Default is false.
% 'display' - Optional flag true/false. If true the detected corners
% are overlayed on the input image. This can be useful
% for parameter tuning. Default is false.
%
% Returns:
% cim - Corner strength image.
% r - Row coordinates of corner points.
% c - Column coordinates of corner points.
%
% With only 'im' and 'sigma' supplied as arguments only 'cim' is returned as a
% raw corner strength image. You may then want to look at the values within
% 'cim' to determine the appropriate threshold value to use. Note that the Noble
% and Harris corner strength varies with the intensity gradient raised to the
% 4th power. Small changes in input image contrast result in huge changes in
% the appropriate threshold.
%
% If any of the optional keyword - value arguments for performing non-maxima
% suppression are specified then the feature coordinate locations are also
% returned.
%
% Example: To get the 100 strongest features and display the detected points
% on the input image use:
% >> [cim, r, c] = noble(im, 1, 'N', 100, 'display', true);
%
% Note that Noble's corner measure is det(M)/trace(M) where M is the stucture
% tensor. In comparision, the Harris measure is det(M) - k trace^2(M), where k
% is a parameter you have to set (traditionally k = 0.04). Noble's measure
% avoids the need to set a parameter k and to my mind is much more satisfactory.
% However the Shi-Tomasi measure is probably what one really wants.
%
% See also: HARRIS, SHI_TOMASI, HESSIANFEATURES, NONMAXSUPPTS, DERIVATIVE5
% References:
% C.G. Harris and M.J. Stephens. "A combined corner and edge detector",
% Proceedings Fourth Alvey Vision Conference, Manchester.
% pp 147-151, 1988.
%
% Alison Noble, "Descriptions of Image Surfaces", PhD thesis, Department
% of Engineering Science, Oxford University 1989, p45.
% Copyright (c) 2002-2016 Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% http://www.csse.uwa.edu.au/~pk/research/matlabfns/
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% March 2002 - Original version
% December 2002 - Updated comments
% August 2005 - Changed so that code calls nonmaxsuppts
% August 2010 - Changed to use Farid and Simoncelli's derivative filters
% January 2016 - Noble made distinct from the Harris function
function [cim, r, c] = noble(im, sigma, varargin)
if ~isa(im,'double')
im = double(im);
end
% Compute derivatives and the elements of the structure tensor.
[Ix, Iy] = derivative5(im, 'x', 'y');
Ix2 = gaussfilt(Ix.^2, sigma);
Iy2 = gaussfilt(Iy.^2, sigma);
Ixy = gaussfilt(Ix.*Iy, sigma);
% Compute Noble's corner measure.
cim = (Ix2.*Iy2 - Ixy.^2)./(Ix2 + Iy2 + eps);
if length(varargin) > 0
[thresh, radius, N, subpixel, disp] = checkargs(varargin);
if disp
[r,c] = nonmaxsuppts(cim, 'thresh', thresh, 'radius', radius, 'N', N, ...
'subpixel', subpixel, 'im', im);
else
[r,c] = nonmaxsuppts(cim, 'thresh', thresh, 'radius', radius, 'N', N, ...
'subpixel', subpixel, 'im', []);
end
else
r = [];
c = [];
end
%---------------------------------------------------------------
function [thresh, radius, N, subpixel, disp] = checkargs(v)
p = inputParser;
p.CaseSensitive = false;
% Define optional parameter-value pairs and their defaults
addParameter(p, 'thresh', 0, @isnumeric);
addParameter(p, 'radius', 1, @isnumeric);
addParameter(p, 'N', Inf, @isnumeric);
addParameter(p, 'subpixel', false, @islogical);
addParameter(p, 'display', false, @islogical);
parse(p, v{:});
thresh = p.Results.thresh;
radius = p.Results.radius;
N = p.Results.N;
subpixel = p.Results.subpixel;
disp = p.Results.display;
|
github
|
jacksky64/imageProcessing-master
|
derivative5.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/derivative5.m
| 4,808 |
utf_8
|
989b39a3f681a8cad7375573fa1a7a0f
|
% DERIVATIVE5 - 5-Tap 1st and 2nd discrete derivatives
%
% This function computes 1st and 2nd derivatives of an image using the 5-tap
% coefficients given by Farid and Simoncelli. The results are significantly
% more accurate than MATLAB's GRADIENT function on edges that are at angles
% other than vertical or horizontal. This in turn improves gradient orientation
% estimation enormously. If you are after extreme accuracy try using DERIVATIVE7.
%
% Usage: [gx, gy, gxx, gyy, gxy] = derivative5(im, derivative specifiers)
%
% Arguments:
% im - Image to compute derivatives from.
% derivative specifiers - A comma separated list of character strings
% that can be any of 'x', 'y', 'xx', 'yy' or 'xy'
% These can be in any order, the order of the
% computed output arguments will match the order
% of the derivative specifier strings.
% Returns:
% Function returns requested derivatives which can be:
% gx, gy - 1st derivative in x and y
% gxx, gyy - 2nd derivative in x and y
% gxy - 1st derivative in y of 1st derivative in x
%
% Examples:
% Just compute 1st derivatives in x and y
% [gx, gy] = derivative5(im, 'x', 'y');
%
% Compute 2nd derivative in x, 1st derivative in y and 2nd derivative in y
% [gxx, gy, gyy] = derivative5(im, 'xx', 'y', 'yy')
%
% See also: DERIVATIVE7
% Reference: Hany Farid and Eero Simoncelli "Differentiation of Discrete
% Multi-Dimensional Signals" IEEE Trans. Image Processing. 13(4): 496-508 (2004)
% Copyright (c) 2010 Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% http://www.csse.uwa.edu.au/~pk/research/matlabfns/
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
%
% April 2010
function varargout = derivative5(im, varargin)
varargin = varargin(:);
varargout = cell(size(varargin));
% Check if we are just computing 1st derivatives. If so use the
% interpolant and derivative filters optimized for 1st derivatives, else
% use 2nd derivative filters and interpolant coefficients.
% Detection is done by seeing if any of the derivative specifier
% arguments is longer than 1 char, this implies 2nd derivative needed.
secondDeriv = false;
for n = 1:length(varargin)
if length(varargin{n}) > 1
secondDeriv = true;
break
end
end
if ~secondDeriv
% 5 tap 1st derivative cofficients. These are optimal if you are just
% seeking the 1st deriavtives
p = [0.037659 0.249153 0.426375 0.249153 0.037659];
d1 =[0.109604 0.276691 0.000000 -0.276691 -0.109604];
else
% 5-tap 2nd derivative coefficients. The associated 1st derivative
% coefficients are not quite as optimal as the ones above but are
% consistent with the 2nd derivative interpolator p and thus are
% appropriate to use if you are after both 1st and 2nd derivatives.
p = [0.030320 0.249724 0.439911 0.249724 0.030320];
d1 = [0.104550 0.292315 0.000000 -0.292315 -0.104550];
d2 = [0.232905 0.002668 -0.471147 0.002668 0.232905];
end
% Compute derivatives. Note that in the 1st call below MATLAB's conv2
% function performs a 1D convolution down the columns using p then a 1D
% convolution along the rows using d1. etc etc.
gx = false;
for n = 1:length(varargin)
if strcmpi('x', varargin{n})
varargout{n} = conv2(p, d1, im, 'same');
gx = true; % Record that gx is available for gxy if needed
gxn = n;
elseif strcmpi('y', varargin{n})
varargout{n} = conv2(d1, p, im, 'same');
elseif strcmpi('xx', varargin{n})
varargout{n} = conv2(p, d2, im, 'same');
elseif strcmpi('yy', varargin{n})
varargout{n} = conv2(d2, p, im, 'same');
elseif strcmpi('xy', varargin{n}) | strcmpi('yx', varargin{n})
if gx
varargout{n} = conv2(d1, p, varargout{gxn}, 'same');
else
gx = conv2(p, d1, im, 'same');
varargout{n} = conv2(d1, p, gx, 'same');
end
else
error(sprintf('''%s'' is an unrecognized derivative option',varargin{n}));
end
end
|
github
|
jacksky64/imageProcessing-master
|
solveinteg.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/solveinteg.m
| 3,146 |
utf_8
|
0b0df74b4066fbe41ed1f8a44f09200f
|
% SOLVEINTEG
%
% This function is used by INTEGGAUSFILT to solve for the multiple averaging
% filter widths needed to approximate a Gaussian of desired standard deviation.
%
% Usage: [wl, wu, m, sigmaActual] = solveinteg(sigma, n)
%
% Arguments: sigma - Desired standard deviation of Gaussian. This should not
% be less than one.
% n - Number of averaging passes that will be used. I
% suggest using a value that is at least 4, use at least
% 5, perhaps 6 if you will be taking derivatives.
%
% Returns: wl - Width of smaller averaging filter to use
% wu - Width of larger averaging filter to use
% (Note wu = wl + 2 and wl is always odd)
% m - The number of filterings to be done with the smaller
% averaging filter. The number of filterings to be done
% with the larger filter is n-m
% sigmaActual - The actual standard deviation of the approximated
% Gaussian that is achieved.
%
% Note that the desired standard deviation will not be achieved exactly. A
% combination of different sized averaging filters are applied to approximate it
% as closely as possible. If n is 5 the deviation from the desired standard
% deviation will be at most about 0.15 pixels
%
% To acheive a filtering that approximates a Gaussian with the desired
% standard deviation perform:
% m filterings with an averaging filter of width wl, followed by
% n-m filterings with an averaging filter of width wu
%
% See also: INTEGGAUSSFILT, INTEGAVERAGE, INTEGRALIMAGE
% Copyright (c) 2009 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk at csse uwa edu au
% http://www.csse.uwa.edu.au/
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% September 2009
function [wl, wu, m, sigmaActual] = solveinteg(sigma, n)
if sigma < 0.8
warning('Sigma values below about 0.8 cannot be represented');
end
wIdeal = sqrt(12*sigma^2/n + 1); % Ideal averaging filter width
% wl is first odd valued integer less than wIdeal
wl = floor(wIdeal);
if ~mod(wl,2)
wl = wl-1;
end
% wu is the next odd value > wl
wu = wl+2;
% Compute m. Refer to the tech note for derivation of this formula
mIdeal = (12*sigma^2 - n*wl^2 - 4*n*wl - 3*n)/(-4*wl - 4);
m = round(mIdeal);
if m > n || m < 0
error('calculation of m has failed');
end
% Compute actual sigma that will be achieved
sigmaActual = sqrt((m*wl^2 + (n-m)*wu^2 - n)/12);
% fprintf('wl %d wu %d m %d actual sigma %.3f\n', wl, wu, m, sigmaActual);
|
github
|
jacksky64/imageProcessing-master
|
derivative7.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/derivative7.m
| 3,752 |
utf_8
|
358273e985c8915dbe914b5368390cdc
|
% DERIVATIVE7 - 7-Tap 1st and 2nd discrete derivatives
%
% This function computes 1st and 2nd derivatives of an image using the 7-tap
% coefficients given by Farid and Simoncelli. The results are significantly
% more accurate than MATLAB's GRADIENT function on edges that are at angles
% other than vertical or horizontal. This in turn improves gradient orientation
% estimation enormously.
%
% Usage: [gx, gy, gxx, gyy, gxy] = derivative7(im, derivative specifiers)
%
% Arguments:
% im - Image to compute derivatives from.
% derivative specifiers - A comma separated list of character strings
% that can be any of 'x', 'y', 'xx', 'yy' or 'xy'
% These can be in any order, the order of the
% computed output arguments will match the order
% of the derivative specifier strings.
% Returns:
% Function returns requested derivatives which can be:
% gx, gy - 1st derivative in x and y
% gxx, gyy - 2nd derivative in x and y
% gxy - 1st derivative in y of 1st derivative in x
%
% Examples:
% Just compute 1st derivatives in x and y
% [gx, gy] = derivative7(im, 'x', 'y');
%
% Compute 2nd derivative in x, 1st derivative in y and 2nd derivative in y
% [gxx, gy, gyy] = derivative7(im, 'xx', 'y', 'yy')
%
% See also: DERIVATIVE5
% Reference: Hany Farid and Eero Simoncelli "Differentiation of Discrete
% Multi-Dimensional Signals" IEEE Trans. Image Processing. 13(4): 496-508 (2004)
% Copyright (c) 2010 Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% http://www.csse.uwa.edu.au/~pk/research/matlabfns/
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
%
% April 2010
function varargout = derivative7(im, varargin)
varargin = varargin(:);
varargout = cell(size(varargin));
% 7-tap interpolant and 1st and 2nd derivative coefficients
p = [ 0.004711 0.069321 0.245410 0.361117 0.245410 0.069321 0.004711];
d1 = [ 0.018708 0.125376 0.193091 0.000000 -0.193091 -0.125376 -0.018708];
d2 = [ 0.055336 0.137778 -0.056554 -0.273118 -0.056554 0.137778 0.055336];
% Compute derivatives. Note that in the 1st call below MATLAB's conv2
% function performs a 1D convolution down the columns using p then a 1D
% convolution along the rows using d1. etc etc.
gx = false;
for n = 1:length(varargin)
if strcmpi('x', varargin{n})
varargout{n} = conv2(p, d1, im, 'same');
gx = true; % Record that gx is available for gxy if needed
gxn = n;
elseif strcmpi('y', varargin{n})
varargout{n} = conv2(d1, p, im, 'same');
elseif strcmpi('xx', varargin{n})
varargout{n} = conv2(p, d2, im, 'same');
elseif strcmpi('yy', varargin{n})
varargout{n} = conv2(d2, p, im, 'same');
elseif strcmpi('xy', varargin{n}) | strcmpi('yx', varargin{n})
if gx
varargout{n} = conv2(d1, p, varargout{gxn}, 'same');
else
gx = conv2(p, d1, im, 'same');
varargout{n} = conv2(d1, p, gx, 'same');
end
else
error(sprintf('''%s'' is an unrecognized derivative option',varargin{n}));
end
end
|
github
|
jacksky64/imageProcessing-master
|
nonmaxsup.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/nonmaxsup.m
| 6,606 |
utf_8
|
175ee530f04d95568bfbdb8b17524c7f
|
% NONMAXSUP - Non-maxima suppression
%
% Usage:
% [im,location] = nonmaxsup(inimage, orient, radius);
%
% Function for performing non-maxima suppression on an image using an
% orientation image. It is assumed that the orientation image gives
% feature normal orientation angles in degrees (0-180).
%
% Input:
% inimage - Image to be non-maxima suppressed.
%
% orient - Image containing feature normal orientation angles in degrees
% (0-180), angles positive anti-clockwise.
%
% radius - Distance in pixel units to be looked at on each side of each
% pixel when determining whether it is a local maxima or not.
% This value cannot be less than 1.
% (Suggested value about 1.2 - 1.5)
%
% Returns:
% im - Non maximally suppressed image.
% location - Complex valued image holding subpixel locations of edge
% points. For any pixel the real part holds the subpixel row
% coordinate of that edge point and the imaginary part holds
% the column coordinate. (If a pixel value is 0+0i then it
% is not an edgepoint.)
% (Note that if this function is called without 'location'
% being specified as an output argument is not computed)
%
% Notes:
%
% The suggested radius value is 1.2 - 1.5 for the following reason. If the
% radius parameter is set to 1 there is a chance that a maxima will not be
% identified on a broad peak where adjacent pixels have the same value. To
% overcome this one typically uses a radius value of 1.2 to 1.5. However
% under these conditions there will be cases where two adjacent pixels will
% both be marked as maxima. Accordingly there is a final morphological
% thinning step to correct this.
%
% This function is slow. It uses bilinear interpolation to estimate
% intensity values at ideal, real-valued pixel locations on each side of
% pixels to determine if they are local maxima.
% Copyright (c) 1996-2013 Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in all
% copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% December 1996 - Original version
% September 2004 - Subpixel localization added
% August 2005 - Made Octave compatible
% October 2013 - Final thinning applied to binary image for Octave
% compatbility (Thanks to Chris Pudney)
function [im, location] = nonmaxsup(inimage, orient, radius)
if any(size(inimage) ~= size(orient))
error('image and orientation image are of different sizes');
end
if radius < 1
error('radius must be >= 1');
end
Octave = exist('OCTAVE_VERSION', 'builtin') == 5; % Are we running under Octave
[rows,cols] = size(inimage);
im = zeros(rows,cols); % Preallocate memory for output image
if nargout == 2
location = zeros(rows,cols);
end
iradius = ceil(radius);
% Precalculate x and y offsets relative to centre pixel for each orientation angle
angle = [0:180].*pi/180; % Array of angles in 1 degree increments (but in radians).
xoff = radius*cos(angle); % x and y offset of points at specified radius and angle
yoff = radius*sin(angle); % from each reference position.
hfrac = xoff - floor(xoff); % Fractional offset of xoff relative to integer location
vfrac = yoff - floor(yoff); % Fractional offset of yoff relative to integer location
orient = fix(orient)+1; % Orientations start at 0 degrees but arrays start
% with index 1.
% Now run through the image interpolating grey values on each side
% of the centre pixel to be used for the non-maximal suppression.
for row = (iradius+1):(rows - iradius)
for col = (iradius+1):(cols - iradius)
or = orient(row,col); % Index into precomputed arrays
x = col + xoff(or); % x, y location on one side of the point in question
y = row - yoff(or);
fx = floor(x); % Get integer pixel locations that surround location x,y
cx = ceil(x);
fy = floor(y);
cy = ceil(y);
tl = inimage(fy,fx); % Value at top left integer pixel location.
tr = inimage(fy,cx); % top right
bl = inimage(cy,fx); % bottom left
br = inimage(cy,cx); % bottom right
upperavg = tl + hfrac(or) * (tr - tl); % Now use bilinear interpolation to
loweravg = bl + hfrac(or) * (br - bl); % estimate value at x,y
v1 = upperavg + vfrac(or) * (loweravg - upperavg);
if inimage(row, col) > v1 % We need to check the value on the other side...
x = col - xoff(or); % x, y location on the `other side' of the point in question
y = row + yoff(or);
fx = floor(x);
cx = ceil(x);
fy = floor(y);
cy = ceil(y);
tl = inimage(fy,fx); % Value at top left integer pixel location.
tr = inimage(fy,cx); % top right
bl = inimage(cy,fx); % bottom left
br = inimage(cy,cx); % bottom right
upperavg = tl + hfrac(or) * (tr - tl);
loweravg = bl + hfrac(or) * (br - bl);
v2 = upperavg + vfrac(or) * (loweravg - upperavg);
if inimage(row,col) > v2 % This is a local maximum.
im(row, col) = inimage(row, col); % Record value in the output
% image.
% Code for sub-pixel localization if it was requested
if nargout == 2
% Solve for coefficients of parabola that passes through
% [-1, v1] [0, inimage] and [1, v2].
% v = a*r^2 + b*r + c
c = inimage(row,col);
a = (v1 + v2)/2 - c;
b = a + c - v1;
% location where maxima of fitted parabola occurs
r = -b/(2*a);
location(row,col) = complex(row + r*yoff(or), col - r*xoff(or));
end
end
end
end
end
% Finally thin the 'nonmaximally suppressed' image by pointwise
% multiplying itself with a morphological skeletonization of itself.
%
% I know it is oxymoronic to thin a nonmaximally supressed image but
% fixes the multiple adjacent peaks that can arise from using a radius
% value > 1.
if Octave
skel = bwmorph(im>0,'thin',Inf); % Octave's 'thin' seems to produce better results.
else
skel = bwmorph(im>0,'skel',Inf);
end
im = im.*skel;
if nargout == 2
location = location.*skel;
end
|
github
|
jacksky64/imageProcessing-master
|
integgaussfilt.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Spatial/integgaussfilt.m
| 4,116 |
utf_8
|
957cc904a9b7d1545d8c3094dfc9e044
|
% INTEGGAUSSFILT - Approximate Gaussian filtering using integral filters
%
% This function approximates Gaussian filtering by repeatedly applying
% averaging filters. The averaging is performed via integral images which
% results in a fixed and very low computational cost that is independent of
% the Gaussian size.
%
% Usage: [fim, sigmaActual] = integgaussfilt(im, sigma, nFilt)
%
% Arguments:
% im - Image to be Gaussian smoothed
% sigma - Desired standard deviation of Gaussian filter
% nFilt - The number of average filterings to be used to
% approximate the Gaussian. This should be a minimum of
% 3, using 4 is better. If the smoothed image is to be
% differentiated an additional averaging should be applied
% for each derivative. Eg if a second derivative is to be
% taken at least 5 averagings should be applied. If omitted
% this parameter defaults to 5.
%
% Returns:
% fim - Smoothed image
% sigmaActual - Actual standard deviation of approximate Gaussian filter
% that was used
%
% Notes:
% 1. The desired standard deviation will not be achieved exactly. A combination
% of different sized averaging filters are applied to approximate it as closely
% as possible. If nFilt is 5 the deviation from the desired standard deviation
% will be at most about 0.15 pixels.
%
% 2. Values of sigma less than about 1.8 cannot be well approximated by
% repeated averagings. For sigma < 1.8 the smoothing is performed using
% conventional Gaussian convolution.
%
% See also: INTEGAVERAGE, SOLVEINTEG, INTEGRALIMAGE, GAUSSFILT
% Copyright (c) 2009-2010 Peter Kovesi
% Centre for Exploration Targeting
% The University of Western Australia
% http://www.csse.uwa.edu.au/~pk/research/matlabfns/
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% September 2009 - Original version
% April 2010 - Added return of actual standard deviation of effective
% filter used. Use standard convolution for small sigma
function [im, sigmaActual] = integgaussfilt(im, sigma, nFilt)
if ~exist('nFilt', 'var')
nFilt = 5;
end
% First check if sigma is too small to be well represented by repeated
% averagings. 5 averagings with a width 3 filter produces an equivalent
% sigma of ~1.8 This represents the minimum threshold. For sigma less
% than this we use conventional convolution
if sigma < 1.8
im = gaussfilt(im, sigma);
sigmaActual = sigma;
else % Use repeated averagings via integral images
% Solve for the combination of averaging filter sizes that will result
% in the closest approximation of sigma given nFilt.
[wl, wu, m, sigmaActual] = solveinteg(sigma, nFilt);
radl = (wl-1)/2;
radu = (wu-1)/2;
% Apply the averaging filters via integral images.
for i = 1:m
im = integaverage(im,radl);
% im = runningaverage(im,radl);
end
for n = 1:(nFilt-m)
im = integaverage(im,radu);
% im = runningaverage(im,radu);
end
end
%-------------------------------------------------------------------
% GAUSSFILT - Small wrapper function for convenient Gaussian filtering
%
% Usage: smim = gaussfilt(im, sigma)
%
function smim = gaussfilt(im, sigma)
sze = ceil(6*sigma);
if ~mod(sze,2) % Ensure filter size is odd
sze = sze+1;
end
sze = max(sze,1); % and make sure it is at least 1
h = fspecial('gaussian', [sze sze], sigma);
smim = filter2(h, im);
|
github
|
jacksky64/imageProcessing-master
|
rotx.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Rotations/rotx.m
| 589 |
utf_8
|
bc55598911b9d73eb90ab44cab59a9db
|
% ROTX - Homogeneous transformation for a rotation about the x axis
%
% Usage: T = rotx(theta)
%
% Argument: theta - rotation about x axis
% Returns: T - 4x4 homogeneous transformation matrix
%
% See also: TRANS, ROTY, ROTZ, INVHT
% Copyright (c) 2001 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk at csse uwa edu au
% http://www.csse.uwa.edu.au/
function T = rotx(theta)
T = [ 1 0 0 0
0 cos(theta) -sin(theta) 0
0 sin(theta) cos(theta) 0
0 0 0 1];
|
github
|
jacksky64/imageProcessing-master
|
angleaxisrotate.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Rotations/angleaxisrotate.m
| 1,352 |
utf_8
|
aa84e472c4234c58e628b30ac255b800
|
% ANGLEAXISROTATE - uses angle axis descriptor to rotate vectors
%
% Usage: v2 = angleaxisrotate(t, v)
%
% Arguments: t - 3-vector giving rotation axis with magnitude equal to the
% rotation angle in radians.
% v - 4xn matrix of homogeneous 4-vectors to be rotated or
% 3xn matrix of inhomogeneous 3-vectors to be rotated
% Returns: v2 - The rotated vectors.
%
% See also: MATRIX2ANGLEAXIS, NEWANGLEAXIS, ANGLEAXIS2MATRIX, NORMALISEANGLEAXIS
% Copyright (c) 2008 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk at csse uwa edu au
% http://www.csse.uwa.edu.au/
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
function v2 = angleaxisrotate(t, v)
[ndim,npts] = size(v);
T = angleaxis2matrix(t);
if ndim == 3
v2 = T(1:3,1:3)*v;
elseif ndim == 4
v2 = T*v;
else
error('v must be 4xN or 3xN');
end
|
github
|
jacksky64/imageProcessing-master
|
homotrans.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Rotations/homotrans.m
| 1,371 |
utf_8
|
8fc0c2c8b73dcccc47ba10e8a451beee
|
% HOMOTRANS - Homogeneous transformation of points/lines
%
% Function to perform a transformation on 2D or 3D homogeneous coordinates
% The resulting coordinates are normalised to have a homogeneous scale of 1
%
% Usage:
% t = homotrans(P, v);
%
% Arguments:
% P - 3 x 3 or 4 x 4 homogeneous transformation matrix
% v - 3 x n or 4 x n matrix of homogeneous coordinates
% Copyright (c) 2000-2007 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk at csse uwa edu au
% http://www.csse.uwa.edu.au/
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
function t = homotrans(P, v);
[dim,npts] = size(v);
if ~all(size(P)==dim)
error('Transformation matrix and point dimensions do not match');
end
t = P*v; % Transform
for r = 1:dim-1 % Now normalise
t(r,:) = t(r,:)./t(end,:);
end
t(end,:) = ones(1,npts);
|
github
|
jacksky64/imageProcessing-master
|
trans.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Rotations/trans.m
| 708 |
utf_8
|
c2bc04ae87a1f56d814ee75d140cea19
|
% TRANS - Homogeneous transformation for a translation by x, y, z
%
% Usage: T = trans(x, y, z)
% T = trans(v)
%
% Arguments: x,y,z - translations in x,y and z, or alternatively
% v - 3-vector defining x, y and z.
% Returns: T - 4x4 homogeneous transformation matrix
%
% See also: ROTX, ROTY, ROTZ, INVHT
% Copyright (c) 2001 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk at csse uwa edu au
% http://www.csse.uwa.edu.au/
function T = trans(x, y, z)
if nargin == 1 % x is a 3-vector
y = x(2); z = x(3); x = x(1);
end
T = [ 1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1];
|
github
|
jacksky64/imageProcessing-master
|
plotframe.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Rotations/plotframe.m
| 1,964 |
utf_8
|
0f41b60ca2191bba7912190141e9250b
|
% PLOTFRAME - plots a coordinate frame specified by a homogeneous transform
%
% Usage: function plotframe(T, len, label, colr)
%
% Arguments:
% T - 4x4 homogeneous transform or 3x3 rotation matrix
% len - length of axis arms to plot (defaults to 1)
% label - text string to append to x,y,z labels on axes
% colr - Three element array spcifying colour to plot axes.
%
% len, label and colr are optional and default to 1 and '' and [0 0 1]
% respectively.
%
% See also: ROTX, ROTY, ROTZ, TRANS, INVHT
% Peter Kovesi
% www.peterkovesi.com
% 2001 - Original version
% April 2016 - Allowance for 3x3 rotation matrices as as well as 4x4 homogeneous
% transforms
function plotframe(T, len, label, colr)
if all(size(T) == [3,3]) % we have a rotation matrix
T = [ T [0;0;0]
0 0 0 1 ];
end
if ~all(size(T) == [4,4])
error('plotframe: matrix is not 4x4')
end
if ~exist('len','var') || isempty(len)
len = 1;
end
if ~exist('label','var') || isempty(label)
label = '';
end
if ~exist('colr','var') || isempty(colr)
colr = [0 0 1];
end
% Assume scale specified by T(4,4) == 1
origin = T(1:3, 4); % 1st three elements of 4th column
X = origin + len*T(1:3, 1); % point 'len' units out along x axis
Y = origin + len*T(1:3, 2); % point 'len' units out along y axis
Z = origin + len*T(1:3, 3); % point 'len' units out along z axis
line([origin(1),X(1)], [origin(2), X(2)], [origin(3), X(3)], 'color', colr);
line([origin(1),Y(1)], [origin(2), Y(2)], [origin(3), Y(3)], 'color', colr);
line([origin(1),Z(1)], [origin(2), Z(2)], [origin(3), Z(3)], 'color', colr);
text(X(1), X(2), X(3), ['x' label], 'color', colr);
text(Y(1), Y(2), Y(3), ['y' label], 'color', colr);
text(Z(1), Z(2), Z(3), ['z' label], 'color', colr);
|
github
|
jacksky64/imageProcessing-master
|
newangleaxis.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Rotations/newangleaxis.m
| 1,120 |
utf_8
|
99157ce84285ee91eeb2c84cecccfd22
|
% NEWANGLEAXIS - Constructs angle-axis descriptor
%
% Usage: t = newangleaxis(theta, axis)
%
% Arguments: theta - angle of rotation
% axis - 3-vector defining axis of rotation
% Returns: t - 3-vector giving rotation axis with magnitude equal to the
% rotation angle in radians.
%
% See also: MATRIX2ANGLEAXIS, ANGLEAXISROTATE, ANGLEAXIS2MATRIX
% NORMALISEANGLEAXIS
% Copyright (c) 2008 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk at csse uwa edu au
% http://www.csse.uwa.edu.au/
function t = newangleaxis(theta, axis)
if length(axis) ~= 3
error('axis must be a 3 vector');
end
axis = axis(:)/norm(axis(:)); % Ensure unit magnitude
% Normalise theta to lie in the range -pi to pi to ensure one-to-one mapping
% between angle-axis descriptor and resulting rotation.
theta = rem(theta, 2*pi); % Remove multiples of 2pi
if theta > pi
theta = theta - 2*pi;
elseif theta < -pi
theta = theta + 2*pi;
end
t = theta*axis;
|
github
|
jacksky64/imageProcessing-master
|
rotz.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Rotations/rotz.m
| 593 |
utf_8
|
485891081a31d4907a07ce934642fea2
|
% ROTZ - Homogeneous transformation for a rotation about the z axis
%
% Usage: T = rotz(theta)
%
% Argument: theta - rotation about z axis
% Returns: T - 4x4 homogeneous transformation matrix
%
% See also: TRANS, ROTX, ROTY, INVHT
% Copyright (c) 2001 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk at csse uwa edu au
% http://www.csse.uwa.edu.au/
function T = rotz(theta)
T = [ cos(theta) -sin(theta) 0 0
sin(theta) cos(theta) 0 0
0 0 1 0
0 0 0 1];
|
github
|
jacksky64/imageProcessing-master
|
angleaxis2matrix.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Rotations/angleaxis2matrix.m
| 1,793 |
utf_8
|
965230307dd2fd317515c242f796a791
|
% ANGLEAXIS2MATRIX - converts angle-axis descriptor to 4x4 homogeneous
% transformation matrix
%
% Usage: T = angleaxis2matrix(t)
%
% Argument: t - 3-vector giving rotation axis with magnitude equal to the
% rotation angle in radians.
% Returns: T - 4x4 Homogeneous transformation matrix
%
% See also: MATRIX2ANGLEAXIS, ANGLEAXISROTATE, NEWANGLEAXIS, NORMALISEANGLEAXIS
% Copyright (c) 2008 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk at csse uwa edu au
% http://www.csse.uwa.edu.au/
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
function T = angleaxis2matrix(t)
theta = sqrt(t(:)'*t(:)); % = norm(t), but faster
if theta < eps % If the rotation is very small...
T = [ 1 -t(3) t(2) 0
t(3) 1 -t(1) 0
-t(2) t(1) 1 0
0 0 0 1];
return
end
% Otherwise set up standard matrix, first setting up some convenience
% variables
t = t/theta; x = t(1); y = t(2); z = t(3);
c = cos(theta); s = sin(theta); C = 1-c;
xs = x*s; ys = y*s; zs = z*s;
xC = x*C; yC = y*C; zC = z*C;
xyC = x*yC; yzC = y*zC; zxC = z*xC;
T = [ x*xC+c xyC-zs zxC+ys 0
xyC+zs y*yC+c yzC-xs 0
zxC-ys yzC+xs z*zC+c 0
0 0 0 1];
|
github
|
jacksky64/imageProcessing-master
|
matrix2quaternion.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Rotations/matrix2quaternion.m
| 2,010 |
utf_8
|
ad7a1983aceaa9953be167eddabb22ae
|
% MATRIX2QUATERNION - Homogeneous matrix to quaternion
%
% Converts 4x4 homogeneous rotation matrix to quaternion
%
% Usage: Q = matrix2quaternion(T)
%
% Argument: T - 4x4 Homogeneous transformation matrix
% Returns: Q - a quaternion in the form [w, xi, yj, zk]
%
% See Also QUATERNION2MATRIX
% Copyright (c) 2008 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk at csse uwa edu au
% http://www.csse.uwa.edu.au/
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
function Q = matrix2quaternion(T)
% This code follows the implementation suggested by Hartley and Zisserman
R = T(1:3, 1:3); % Extract rotation part of T
% Find rotation axis as the eigenvector having unit eigenvalue
% Solve (R-I)v = 0;
[v,d] = eig(R-eye(3));
% The following code assumes the eigenvalues returned are not necessarily
% sorted by size. This may be overcautious on my part.
d = diag(abs(d)); % Extract eigenvalues
[s, ind] = sort(d); % Find index of smallest one
if d(ind(1)) > 0.001 % Hopefully it is close to 0
warning('Rotation matrix is dubious');
end
axis = v(:,ind(1)); % Extract appropriate eigenvector
if abs(norm(axis) - 1) > .0001 % Debug
warning('non unit rotation axis');
end
% Now determine the rotation angle
twocostheta = trace(R)-1;
twosinthetav = [R(3,2)-R(2,3), R(1,3)-R(3,1), R(2,1)-R(1,2)]';
twosintheta = axis'*twosinthetav;
theta = atan2(twosintheta, twocostheta);
Q = [cos(theta/2); axis*sin(theta/2)];
|
github
|
jacksky64/imageProcessing-master
|
vector2quaternion.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Rotations/vector2quaternion.m
| 563 |
utf_8
|
a87aa8408a94f8010721a2ea603c64f9
|
% VECTOR2QUATERNION - embeds 3-vector in a quaternion representation
%
% Usage: Q = vector2quaternion(v)
%
% Argument: v - 3-vector
% Returns: Q - Quaternion given by [0; v(:)]
%
% See also: NEWQUATERNION, QUATERNIONROTATE, QUATERNIONPRODUCT, QUATERNIONCONJUGATE
% Copyright (c) 2008 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk at csse uwa edu au
% http://www.csse.uwa.edu.au/
function Q = vector2quaternion(v)
if length(v) ~= 3
error('v must be a 3-vector');
end
Q = [0; v(:)];
|
github
|
jacksky64/imageProcessing-master
|
invht.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Rotations/invht.m
| 505 |
utf_8
|
62f8fca3096c7b08ba22952fef7e6416
|
% INVHT - inverse of a homogeneous transformation matrix
%
% Usage: Tinv = invht(T)
%
% Argument: T - 4x4 homogeneous transformation matrix
% Returns: Tinv - inverse
%
% See also: TRANS, ROTX, ROTY, ROTZ
% Copyright (c) 2001 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk at csse uwa edu au
% http://www.csse.uwa.edu.au/
function Tinv = invht(T)
A = T(1:3,1:3);
Tinv = [ A' -A'*T(1:3,4)
0 0 0 1 ];
|
github
|
jacksky64/imageProcessing-master
|
roty.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Rotations/roty.m
| 589 |
utf_8
|
1523f4098a8a375de8eed1c69ae75c92
|
% ROTY - Homogeneous transformation for a rotation about the y axis
%
% Usage: T = roty(theta)
%
% Argument: theta - rotation about y axis
% Returns: T - 4x4 homogeneous transformation matrix
%
% See also: TRANS, ROTX, ROTZ, INVHT
% Copyright (c) 2001 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk at csse uwa edu au
% http://www.csse.uwa.edu.au/
function T = roty(theta)
T = [ cos(theta) 0 sin(theta) 0
0 1 0 0
-sin(theta) 0 cos(theta) 0
0 0 0 1];
|
github
|
jacksky64/imageProcessing-master
|
invrpy.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Rotations/invrpy.m
| 1,416 |
utf_8
|
564006f3b82a8b1d500b2ec21afc1f92
|
% INVRPY - inverse of Roll Pitch Yaw transform
%
% Usage: [rpy1, rpy2] = invrpy(RPY)
%
% Argument: RPY - 4x4 Homogeneous transformation matrix or 3x3 rotation matrix
% Returns: rpy1 = [phi1, theta1, psi1] - the 1st solution and
% rpy2 = [phi2, theta2, psi2] - the 2nd solution
%
% rotz(phi1) * roty(theta1) * rotx(psi1) = RPY
% rotz(rpy1(1)) * roty(rpy1(2)) * rotx(rpy1(3)) = RPY
%
%
% See also: INVEULER, INVHT, ROTX, ROTY, ROTZ
% Reference: Richard P. Paul Robot Manipulators: Mathematics, Programming and Control.
% MIT Press 1981. Page 70
%
% Copyright (c) 2001 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk at csse uwa edu au
% http://www.csse.uwa.edu.au/
%
% May 2015 Help documentation corrected!
function [rpy1, rpy2] = invrpy(RPY)
% Z rotation
phi1 = atan2(RPY(2,1), RPY(1,1));
phi2 = phi1 + pi;
% Y rotation
theta1 = atan2(-RPY(3,1), cos(phi1)*RPY(1,1) + sin(phi1)*RPY(2,1));
theta2 = atan2(-RPY(3,1), cos(phi2)*RPY(1,1) + sin(phi2)*RPY(2,1));
% X rotation
psi1 = atan2(sin(phi1)*RPY(1,3) - cos(phi1)*RPY(2,3), ...
-sin(phi1)*RPY(1,2) + cos(phi1)*RPY(2,2));
psi2 = atan2(sin(phi2)*RPY(1,3) - cos(phi2)*RPY(2,3), ...
-sin(phi2)*RPY(1,2) + cos(phi2)*RPY(2,2));
rpy1 = [phi1, theta1, psi1];
rpy2 = [phi2, theta2, psi2];
|
github
|
jacksky64/imageProcessing-master
|
normaliseangleaxis.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Rotations/normaliseangleaxis.m
| 1,163 |
utf_8
|
b382ff3c5687a58b63642451c0e3153b
|
% NORMALISEANGLEAXIS - normalises angle-axis descriptor
%
% Function normalises theta so that it lies in the range -pi to pi to ensure
% one-to-one mapping between angle-axis descriptor and resulting rotation
%
% Usage: t2 = normaliseangleaxis(t)
%
% Argument: t - 3-vector giving rotation axis with magnitude equal to the
% rotation angle in radians.
% Returns: t2 - Normalised angle-axis descriptor
%
% See also: MATRIX2ANGLEAXIS, NEWANGLEAXIS, ANGLEAXIS2MATRIX, ANGLEAXIS2MATRIX2,
% ANGLEAXISROTATE
% Copyright (c) 2008 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk at csse uwa edu au
% http://www.csse.uwa.edu.au/
function t2 = normaliseangleaxis(t)
if length(t) ~= 3
error('axis must be a 3 vector');
end
theta = norm(t);
axis = t/theta;
theta = rem(theta, 2*pi); % Remove multiples of 2pi
if theta > pi % Note theta cannot be -ve
theta = theta - 2*pi;
end
t = theta*axis;
if norm(t) > pi
t2 = t*(1 - (2*pi)/norm(t));
else
t2 = t;
end
|
github
|
jacksky64/imageProcessing-master
|
quaternionconjugate.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Rotations/quaternionconjugate.m
| 525 |
utf_8
|
d7df86d9770e7881f0cda73f664a8be5
|
% QUATERNIONCONJUGATE - Conjugate of a quaternion
%
% Usage: Qconj = quaternionconjugate(Q)
%
% Argument: Q - Quaternions in the form Q = [Qw Qi Qj Qk]
% Returns: Qconj - Conjugate
%
% See also: NEWQUATERNION, QUATERNIONROTATE, QUATERNIONPRODUCT
% Copyright (c) 2008 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk at csse uwa edu au
% http://www.csse.uwa.edu.au/
function Qconj = quaternionconjugate(Q)
Qconj = Q(:);
Qconj(2:4) = -Qconj(2:4);
|
github
|
jacksky64/imageProcessing-master
|
dhtrans.m
|
.m
|
imageProcessing-master/Matlab Code for Computer Vision/Rotations/dhtrans.m
| 1,161 |
utf_8
|
817bf7d3f603627a2da4773fefc67097
|
% DHTRANS - computes Denavit Hartenberg matrix
%
% This function calculates the 4x4 homogeneous transformation matrix, representing
% the Denavit Hartenberg matrix, given link parameters of joint angle, length, joint
% offset and twist.
%
% Usage: T = DHtrans(theta, offset, length, twist)
%
% Arguments: theta - joint angle (rotation about local z)
% offset - offset (translation along z)
% length - translation along link x axis
% twist - rotation about link x axis
%
% Returns: T - 4x4 Homogeneous transformation matrix
%
% See also: TRANS, ROTX, ROTY, ROTZ, INVHT
% Copyright (c) 2001 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk at csse uwa edu au
% http://www.csse.uwa.edu.au/
function T = dhtrans(theta, offset, length, twist)
T = [ cos(theta) -sin(theta)*cos(twist) sin(theta)*sin(twist) length*cos(theta)
sin(theta) cos(theta)*cos(twist) -cos(theta)*sin(twist) length*sin(theta)
0 sin(twist) cos(twist) offset
0 0 0 1 ];
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.